1. Table of Contents


This project implements different predictive modelling procedures for multiclass categorical responses using various helpful packages in R. Models applied in the analysis to predict multiclass categorical responses included the Penalized Multinomial Regression, Linear Discriminant Analysis, Flexible Discriminant Analysis, Mixture Discriminant Analysis, Naive Bayes, Nearest Shrunken Centroids, Averaged Neural Network, Support Vector Machine (Radial Basis Function Kernel, Polynomial Kernel), K-Nearest Neighbors, Classification and Regression Trees, Conditional Inference Trees, C5.0 Decision Trees, Random Forest and Bagged Trees algorithms. The resulting predictions derived from the candidate models were evaluated in terms of their classification performance using the accuracy metric. All results were consolidated in a Summary presented at the end of the document.

Multiclass classification learning refers to a predictive modelling problem where more than two class labels are predicted for a given sample of input data. These models use the training data set and calculate how to best map instances of input data to the specific class labels. Multiclass classification does not have the notion of normal and abnormal outcomes. Instead, instances are classified as belonging to one among a range of known classes. It is common to model a multiclass classification task with a model that predicts a Multinoulli probability distribution for each instance. The Multinoulli distribution is a discrete probability distribution that covers a case where an event will have a categorical outcome. For classification, this means that the model predicts the probability of an instance belonging to each class label. The algorithms applied in this study (mostly contained in the caret package) attempt to categorize the input data and form polytomous groups based on their similarities.

1.1 Sample Data


The Solubility dataset from the AppliedPredictiveModeling package was used for this illustrated example. The original numeric response was transformed to simulate a multiclass variable.

Preliminary dataset assessment:

[A] 1267 rows (observations)
     [A.1] Train Set = 951 observations
     [A.2] Test Set = 316 observations

[B] 229 columns (variables)
     [B.1] 1/229 response = Log_Solubility_Class variable (factor)
            [B.1.1] Levels = Log_Solubility_Class=Low < Log_Solubility_Class=Mid < Log_Solubility_Class=High
     [B.2] 228/229 predictors = All remaining variables (208/228 factor + 20/228 numeric)

Code Chunk | Output
##################################
# Loading R libraries
##################################
library(AppliedPredictiveModeling)
library(caret)
library(rpart)
library(lattice)
library(dplyr)
library(tidyr)
library(moments)
library(skimr)
library(RANN)
library(pls)
library(corrplot)
library(tidyverse)
library(lares)
library(DMwR2)
library(gridExtra)
library(rattle)
library(rpart.plot)
library(RColorBrewer)
library(stats)
library(nnet)
library(elasticnet)
library(earth)
library(party)
library(kernlab)
library(randomForest)
library(Cubist)
library(pROC)
library(mda)
library(klaR)
library(pamr)
library(MLmetrics)
library(ordinalNet)
library(C50)

##################################
# Loading source and
# formulating the train set
##################################
data(solubility)
Solubility_Train <- as.data.frame(cbind(solTrainY,solTrainX))
Solubility_Test  <- as.data.frame(cbind(solTestY,solTestX))

##################################
# Computing the thresholds
# for converting the numeric response
# to a multiclass response
##################################
Log_Solubility_Mean <- mean(Solubility_Train$solTrainY)
Log_Solubility_75Percentile <- quantile(Solubility_Train$solTrainY, probs = 0.75)[1]

##################################
# Applying dichotomization and
# defining the response variable
##################################
Solubility_Train$Log_Solubility_Class <- ifelse(Solubility_Train$solTrainY<Log_Solubility_Mean,
                                                "Low",ifelse(Solubility_Train$solTrainY<Log_Solubility_75Percentile,
                                                             "Mid","High"))
Solubility_Train$Log_Solubility_Class <- factor(Solubility_Train$Log_Solubility_Class,
                                                levels = c("Low","Mid","High"))
Solubility_Test$Log_Solubility_Class <- ifelse(Solubility_Test$solTestY<Log_Solubility_Mean,
                                                "Low",ifelse(Solubility_Test$solTestY<Log_Solubility_75Percentile,
                                                             "Mid","High"))
Solubility_Test$Log_Solubility_Class <- factor(Solubility_Test$Log_Solubility_Class,
                                                levels = c("Low","Mid","High"))

Solubility_Train$solTrainY <- NULL
Solubility_Test$solTestY <- NULL

##################################
# Performing a general exploration of the train set
##################################
dim(Solubility_Train)
## [1] 951 229
str(Solubility_Train)
## 'data.frame':    951 obs. of  229 variables:
##  $ FP001               : int  0 0 1 0 0 1 0 1 1 1 ...
##  $ FP002               : int  1 1 1 0 0 0 1 0 0 1 ...
##  $ FP003               : int  0 0 1 1 1 1 0 1 1 1 ...
##  $ FP004               : int  0 1 1 0 1 1 1 1 1 1 ...
##  $ FP005               : int  1 1 1 0 1 0 1 0 0 1 ...
##  $ FP006               : int  0 1 0 0 1 0 0 0 1 1 ...
##  $ FP007               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP008               : int  1 1 1 0 0 0 1 0 0 0 ...
##  $ FP009               : int  0 0 0 0 1 1 1 0 1 0 ...
##  $ FP010               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP011               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP012               : int  0 0 0 0 0 1 0 1 0 0 ...
##  $ FP013               : int  0 0 0 0 1 0 1 0 0 0 ...
##  $ FP014               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP015               : int  1 1 1 1 1 1 1 1 1 1 ...
##  $ FP016               : int  0 1 0 0 1 1 0 1 0 0 ...
##  $ FP017               : int  0 0 1 1 0 0 0 0 1 1 ...
##  $ FP018               : int  0 1 0 0 0 0 0 0 0 0 ...
##  $ FP019               : int  1 0 0 0 1 0 1 0 0 0 ...
##  $ FP020               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP021               : int  0 0 0 0 0 1 0 0 1 0 ...
##  $ FP022               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP023               : int  0 0 0 1 0 0 0 0 1 0 ...
##  $ FP024               : int  1 0 0 0 1 0 0 0 0 0 ...
##  $ FP025               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP026               : int  1 0 0 0 0 0 1 0 0 0 ...
##  $ FP027               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP028               : int  0 1 0 0 0 0 0 0 1 1 ...
##  $ FP029               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP030               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP031               : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ FP032               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP033               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP034               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP035               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP036               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP037               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP038               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP039               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP040               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP041               : int  0 0 0 1 0 0 0 0 1 0 ...
##  $ FP042               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP043               : int  0 1 0 0 0 0 0 0 0 0 ...
##  $ FP044               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP045               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP046               : int  0 1 0 0 0 0 1 0 0 1 ...
##  $ FP047               : int  0 1 1 0 0 0 1 0 0 0 ...
##  $ FP048               : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ FP049               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP050               : int  0 0 0 0 0 0 0 1 0 1 ...
##  $ FP051               : int  0 1 0 0 0 0 0 0 0 0 ...
##  $ FP052               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP053               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP054               : int  0 0 0 1 0 0 0 0 1 1 ...
##  $ FP055               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP056               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP057               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP058               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP059               : int  0 0 0 0 0 0 0 1 0 0 ...
##  $ FP060               : int  0 1 1 0 0 0 0 1 1 0 ...
##  $ FP061               : int  0 0 1 0 0 0 0 1 1 0 ...
##  $ FP062               : int  0 0 1 0 0 1 0 1 1 1 ...
##  $ FP063               : int  1 1 0 0 1 1 1 0 0 1 ...
##  $ FP064               : int  0 1 1 0 1 1 0 1 0 0 ...
##  $ FP065               : int  1 1 0 0 1 0 1 0 1 1 ...
##  $ FP066               : int  1 0 1 1 1 1 1 1 1 1 ...
##  $ FP067               : int  1 1 0 0 1 1 1 0 0 1 ...
##  $ FP068               : int  0 1 0 0 1 1 1 0 0 1 ...
##  $ FP069               : int  1 0 1 1 1 1 0 1 1 0 ...
##  $ FP070               : int  1 1 0 1 0 0 1 0 1 0 ...
##  $ FP071               : int  0 0 0 0 0 0 1 0 1 1 ...
##  $ FP072               : int  0 1 1 0 0 1 0 1 1 1 ...
##  $ FP073               : int  0 1 1 0 0 0 0 0 1 0 ...
##  $ FP074               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP075               : int  0 1 0 0 1 1 1 0 0 1 ...
##  $ FP076               : int  1 1 0 0 0 0 1 0 1 1 ...
##  $ FP077               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP078               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP079               : int  1 1 1 1 1 0 1 0 1 1 ...
##  $ FP080               : int  0 1 0 0 1 1 1 1 0 0 ...
##  $ FP081               : int  0 0 1 1 0 0 0 1 1 1 ...
##  $ FP082               : int  1 1 1 0 1 1 1 0 1 1 ...
##  $ FP083               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP084               : int  1 1 0 0 1 0 1 0 0 0 ...
##  $ FP085               : int  0 1 0 0 0 0 1 0 0 0 ...
##  $ FP086               : int  0 0 0 1 1 0 0 1 1 1 ...
##  $ FP087               : int  1 1 1 1 1 0 1 0 1 1 ...
##  $ FP088               : int  0 1 0 0 0 0 0 1 1 0 ...
##  $ FP089               : int  1 1 0 0 0 0 1 0 0 0 ...
##  $ FP090               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP091               : int  1 1 0 0 1 0 1 0 0 1 ...
##  $ FP092               : int  0 0 0 0 1 1 1 0 1 0 ...
##  $ FP093               : int  0 1 0 1 0 0 0 1 1 1 ...
##  $ FP094               : int  0 0 0 0 1 0 0 1 0 0 ...
##  $ FP095               : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ FP096               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP097               : int  1 1 0 0 0 0 1 0 1 0 ...
##  $ FP098               : int  0 0 1 0 0 0 0 1 0 0 ...
##  $ FP099               : int  0 0 0 0 0 0 0 0 1 0 ...
##   [list output truncated]
summary(Solubility_Train)
##      FP001            FP002            FP003            FP004       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.4932   Mean   :0.5394   Mean   :0.4364   Mean   :0.5846  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP005            FP006            FP007            FP008      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :1.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.5794   Mean   :0.4006   Mean   :0.3638   Mean   :0.326  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##      FP009            FP010            FP011            FP012       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2797   Mean   :0.1788   Mean   :0.2145   Mean   :0.1767  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP013            FP014            FP015            FP016       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.1661   Mean   :0.1609   Mean   :0.8601   Mean   :0.1462  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP017            FP018            FP019           FP020       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.1441   Mean   :0.1314   Mean   :0.122   Mean   :0.1199  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP021            FP022            FP023           FP024       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.1209   Mean   :0.1041   Mean   :0.123   Mean   :0.1125  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP025            FP026             FP027             FP028       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.1157   Mean   :0.08412   Mean   :0.09779   Mean   :0.1062  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##      FP029           FP030             FP031             FP032        
##  Min.   :0.000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.102   Mean   :0.09359   Mean   :0.08938   Mean   :0.07361  
##  3rd Qu.:0.000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP033            FP034             FP035             FP036        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.0694   Mean   :0.07992   Mean   :0.07256   Mean   :0.07571  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP037             FP038             FP039             FP040        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.07045   Mean   :0.08622   Mean   :0.07466   Mean   :0.06835  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP041             FP042             FP043             FP044        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06309   Mean   :0.05678   Mean   :0.06625   Mean   :0.05994  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP045             FP046            FP047           FP048       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.05573   Mean   :0.3155   Mean   :0.266   Mean   :0.1241  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP049           FP050            FP051            FP052        
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.122   Mean   :0.1125   Mean   :0.1094   Mean   :0.09148  
##  3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP053             FP054             FP055             FP056        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09359   Mean   :0.07571   Mean   :0.05363   Mean   :0.06519  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP057            FP058            FP059             FP060       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1199   Mean   :0.1136   Mean   :0.05468   Mean   :0.4816  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP061            FP062            FP063            FP064       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.4469   Mean   :0.4374   Mean   :0.4259   Mean   :0.4164  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP065            FP066            FP067            FP068       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.5931   Mean   :0.6099   Mean   :0.3796   Mean   :0.3617  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP069            FP070            FP071           FP072       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :1.0000  
##  Mean   :0.3617   Mean   :0.3554   Mean   :0.327   Mean   :0.6583  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP073            FP074            FP075            FP076       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.3102   Mean   :0.3249   Mean   :0.3386   Mean   :0.3281  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP077            FP078            FP079            FP080       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.3207   Mean   :0.3039   Mean   :0.6898   Mean   :0.3028  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP081            FP082           FP083            FP084      
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :1.000   Median :0.0000   Median :0.000  
##  Mean   :0.2787   Mean   :0.714   Mean   :0.2734   Mean   :0.286  
##  3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.000  
##      FP085            FP086            FP087            FP088       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.2555   Mean   :0.2692   Mean   :0.7266   Mean   :0.2629  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP089            FP090            FP091           FP092      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.000  
##  Mean   :0.2471   Mean   :0.2492   Mean   :0.225   Mean   :0.244  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.000  
##      FP093           FP094            FP095            FP096       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.244   Mean   :0.2313   Mean   :0.2198   Mean   :0.2177  
##  3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP097            FP098            FP099            FP100       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2355   Mean   :0.2376   Mean   :0.2271   Mean   :0.2313  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP101            FP102            FP103            FP104       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2366   Mean   :0.2019   Mean   :0.2187   Mean   :0.2229  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP105            FP106            FP107            FP108      
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.2156   Mean   :0.1914   Mean   :0.2114   Mean   :0.205  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##      FP109            FP110            FP111            FP112       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1767   Mean   :0.2061   Mean   :0.1966   Mean   :0.1945  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP113            FP114            FP115            FP116       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1956   Mean   :0.1556   Mean   :0.1788   Mean   :0.1924  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP117            FP118            FP119           FP120       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.1788   Mean   :0.1924   Mean   :0.163   Mean   :0.1661  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP121            FP122           FP123            FP124       
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.0000  
##  Mean   :0.1399   Mean   :0.164   Mean   :0.1672   Mean   :0.1619  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      FP125            FP126            FP127            FP128       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1556   Mean   :0.1483   Mean   :0.1399   Mean   :0.1483  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP129            FP130            FP131            FP132       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1388   Mean   :0.1052   Mean   :0.1262   Mean   :0.1251  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP133            FP134            FP135            FP136       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1262   Mean   :0.1272   Mean   :0.1262   Mean   :0.1209  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP137            FP138            FP139             FP140       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1157   Mean   :0.1115   Mean   :0.08202   Mean   :0.1115  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP141            FP142            FP143             FP144       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1167   Mean   :0.1094   Mean   :0.08097   Mean   :0.1041  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP145            FP146           FP147            FP148        
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.00000  
##  Mean   :0.1041   Mean   :0.103   Mean   :0.1052   Mean   :0.08728  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.00000  
##      FP149             FP150             FP151             FP152        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09043   Mean   :0.07886   Mean   :0.05573   Mean   :0.08202  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP153             FP154             FP155            FP156        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.07781   Mean   :0.03785   Mean   :0.0694   Mean   :0.07045  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP157             FP158             FP159             FP160        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06204   Mean   :0.05363   Mean   :0.07045   Mean   :0.06835  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP161             FP162            FP163            FP164       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.06625   Mean   :0.4953   Mean   :0.4763   Mean   :0.6278  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP165            FP166            FP167            FP168       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.3491   Mean   :0.3312   Mean   :0.3281   Mean   :0.6656  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP169            FP170           FP171            FP172       
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.0000  
##  Mean   :0.1861   Mean   :0.184   Mean   :0.1693   Mean   :0.1514  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      FP173           FP174            FP175            FP176      
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :0.000   Median :0.0000   Median :0.0000   Median :0.000  
##  Mean   :0.142   Mean   :0.1304   Mean   :0.1346   Mean   :0.122  
##  3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.000  
##      FP177            FP178            FP179             FP180       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1209   Mean   :0.1209   Mean   :0.09779   Mean   :0.1073  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP181             FP182             FP183             FP184        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09359   Mean   :0.09884   Mean   :0.07571   Mean   :0.08412  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP185             FP186             FP187             FP188        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.08517   Mean   :0.07676   Mean   :0.07256   Mean   :0.06835  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP189             FP190             FP191             FP192        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.07676   Mean   :0.07256   Mean   :0.07045   Mean   :0.06099  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP193             FP194             FP195             FP196        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06204   Mean   :0.05889   Mean   :0.06099   Mean   :0.05678  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP197             FP198             FP199             FP200        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.05258   Mean   :0.05678   Mean   :0.04732   Mean   :0.04942  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP201             FP202            FP203            FP204        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.05258   Mean   :0.2576   Mean   :0.1146   Mean   :0.09884  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP205             FP206             FP207             FP208       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.07781   Mean   :0.05994   Mean   :0.05678   Mean   :0.1125  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##    MolWeight         NumAtoms      NumNonHAtoms      NumBonds    
##  Min.   : 46.09   Min.   : 5.00   Min.   : 2.00   Min.   : 4.00  
##  1st Qu.:122.61   1st Qu.:17.00   1st Qu.: 8.00   1st Qu.:17.00  
##  Median :179.23   Median :22.00   Median :12.00   Median :23.00  
##  Mean   :201.65   Mean   :25.51   Mean   :13.16   Mean   :25.91  
##  3rd Qu.:264.34   3rd Qu.:31.00   3rd Qu.:17.00   3rd Qu.:31.50  
##  Max.   :665.81   Max.   :94.00   Max.   :47.00   Max.   :97.00  
##   NumNonHBonds    NumMultBonds     NumRotBonds      NumDblBonds   
##  Min.   : 1.00   Min.   : 0.000   Min.   : 0.000   Min.   :0.000  
##  1st Qu.: 8.00   1st Qu.: 1.000   1st Qu.: 0.000   1st Qu.:0.000  
##  Median :12.00   Median : 6.000   Median : 2.000   Median :1.000  
##  Mean   :13.56   Mean   : 6.148   Mean   : 2.251   Mean   :1.006  
##  3rd Qu.:18.00   3rd Qu.:10.000   3rd Qu.: 3.500   3rd Qu.:2.000  
##  Max.   :50.00   Max.   :25.000   Max.   :16.000   Max.   :7.000  
##  NumAromaticBonds  NumHydrogen      NumCarbon       NumNitrogen    
##  Min.   : 0.000   Min.   : 0.00   Min.   : 1.000   Min.   :0.0000  
##  1st Qu.: 0.000   1st Qu.: 7.00   1st Qu.: 6.000   1st Qu.:0.0000  
##  Median : 6.000   Median :11.00   Median : 9.000   Median :0.0000  
##  Mean   : 5.121   Mean   :12.35   Mean   : 9.893   Mean   :0.8128  
##  3rd Qu.: 6.000   3rd Qu.:16.00   3rd Qu.:12.000   3rd Qu.:1.0000  
##  Max.   :25.000   Max.   :47.00   Max.   :33.000   Max.   :6.0000  
##    NumOxygen        NumSulfer      NumChlorine        NumHalogen     
##  Min.   : 0.000   Min.   :0.000   Min.   : 0.0000   Min.   : 0.0000  
##  1st Qu.: 0.000   1st Qu.:0.000   1st Qu.: 0.0000   1st Qu.: 0.0000  
##  Median : 1.000   Median :0.000   Median : 0.0000   Median : 0.0000  
##  Mean   : 1.574   Mean   :0.164   Mean   : 0.5563   Mean   : 0.6982  
##  3rd Qu.: 2.000   3rd Qu.:0.000   3rd Qu.: 0.0000   3rd Qu.: 1.0000  
##  Max.   :13.000   Max.   :4.000   Max.   :10.0000   Max.   :10.0000  
##     NumRings     HydrophilicFactor   SurfaceArea1     SurfaceArea2   
##  Min.   :0.000   Min.   :-0.98500   Min.   :  0.00   Min.   :  0.00  
##  1st Qu.:0.000   1st Qu.:-0.76300   1st Qu.:  9.23   1st Qu.: 10.63  
##  Median :1.000   Median :-0.31400   Median : 29.10   Median : 33.12  
##  Mean   :1.402   Mean   :-0.02059   Mean   : 36.46   Mean   : 40.23  
##  3rd Qu.:2.000   3rd Qu.: 0.31300   3rd Qu.: 53.28   3rd Qu.: 60.66  
##  Max.   :7.000   Max.   :13.48300   Max.   :331.94   Max.   :331.94  
##  Log_Solubility_Class
##  Low :427            
##  Mid :283            
##  High:241            
##                      
##                      
## 
##################################
# Performing a general exploration of the test set
##################################
dim(Solubility_Test)
## [1] 316 229
str(Solubility_Test)
## 'data.frame':    316 obs. of  229 variables:
##  $ FP001               : int  1 1 0 0 1 1 1 0 1 0 ...
##  $ FP002               : int  0 0 1 0 1 0 0 0 0 1 ...
##  $ FP003               : int  0 1 0 1 0 0 0 0 1 0 ...
##  $ FP004               : int  1 1 0 0 1 1 1 1 1 0 ...
##  $ FP005               : int  0 0 1 0 1 0 0 0 0 1 ...
##  $ FP006               : int  0 1 0 1 1 0 0 0 0 0 ...
##  $ FP007               : int  0 0 0 0 0 0 0 1 1 0 ...
##  $ FP008               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP009               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP010               : int  1 0 1 0 0 0 0 0 0 0 ...
##  $ FP011               : int  0 1 0 0 1 0 0 0 0 0 ...
##  $ FP012               : int  0 1 0 0 0 1 0 1 0 0 ...
##  $ FP013               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP014               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP015               : int  1 1 0 1 1 1 1 1 1 1 ...
##  $ FP016               : int  0 1 0 0 0 0 0 1 0 0 ...
##  $ FP017               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP018               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP019               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP020               : int  0 0 0 0 0 1 0 0 0 0 ...
##  $ FP021               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP022               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP023               : int  0 0 0 0 0 0 1 0 0 0 ...
##  $ FP024               : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ FP025               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP026               : int  0 0 0 0 0 0 0 0 0 1 ...
##  $ FP027               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP028               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP029               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP030               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP031               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP032               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP033               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP034               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP035               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP036               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP037               : int  0 0 0 0 0 0 0 0 1 0 ...
##  $ FP038               : int  1 0 0 0 0 0 0 0 0 0 ...
##  $ FP039               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP040               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP041               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP042               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP043               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP044               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP045               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP046               : int  0 0 1 0 0 0 0 0 0 1 ...
##  $ FP047               : int  0 0 0 0 1 0 0 0 0 0 ...
##  $ FP048               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP049               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP050               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP051               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP052               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP053               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP054               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP055               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP056               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP057               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP058               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP059               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP060               : int  1 1 1 0 0 1 0 1 0 0 ...
##  $ FP061               : int  1 1 1 0 0 1 0 0 0 0 ...
##  $ FP062               : int  1 1 0 0 1 1 1 0 1 0 ...
##  $ FP063               : int  0 1 0 1 1 0 0 0 0 1 ...
##  $ FP064               : int  1 1 0 0 0 0 0 0 1 0 ...
##  $ FP065               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP066               : int  0 1 0 1 0 1 0 0 1 1 ...
##  $ FP067               : int  0 1 0 1 1 0 0 0 0 1 ...
##  $ FP068               : int  0 1 0 1 1 0 0 0 0 0 ...
##  $ FP069               : int  0 0 0 0 0 0 0 0 1 1 ...
##  $ FP070               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP071               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP072               : int  1 1 1 0 1 1 1 1 1 0 ...
##  $ FP073               : int  1 0 1 0 0 0 0 0 0 0 ...
##  $ FP074               : int  0 0 1 0 0 0 0 0 1 0 ...
##  $ FP075               : int  0 1 0 1 0 0 0 1 0 0 ...
##  $ FP076               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP077               : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ FP078               : int  0 0 1 0 0 0 0 0 0 0 ...
##  $ FP079               : int  0 0 1 1 1 0 0 0 0 1 ...
##  $ FP080               : int  1 1 0 1 0 0 0 1 0 0 ...
##  $ FP081               : int  0 0 0 1 0 0 0 0 1 0 ...
##  $ FP082               : int  0 0 1 0 1 0 0 0 0 1 ...
##  $ FP083               : int  0 1 0 1 1 0 0 0 0 0 ...
##  $ FP084               : int  0 0 0 1 1 0 0 1 0 1 ...
##  $ FP085               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP086               : int  0 0 0 1 0 0 0 0 0 0 ...
##  $ FP087               : int  0 0 1 1 1 0 0 1 0 1 ...
##  $ FP088               : int  1 0 0 0 0 0 0 1 1 0 ...
##  $ FP089               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP090               : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ FP091               : int  0 0 0 1 1 0 0 0 0 0 ...
##  $ FP092               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP093               : int  0 0 0 1 0 0 0 1 0 0 ...
##  $ FP094               : int  0 1 0 0 0 0 0 0 1 0 ...
##  $ FP095               : int  0 0 1 1 0 0 0 0 0 0 ...
##  $ FP096               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP097               : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ FP098               : int  1 1 0 0 0 1 0 0 0 0 ...
##  $ FP099               : int  0 0 0 0 0 0 0 0 0 0 ...
##   [list output truncated]
summary(Solubility_Test)
##      FP001            FP002            FP003           FP004       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :1.0000   Median :0.000   Median :1.0000  
##  Mean   :0.4684   Mean   :0.5854   Mean   :0.443   Mean   :0.5316  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP005            FP006            FP007            FP008       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.6171   Mean   :0.3513   Mean   :0.3544   Mean   :0.3608  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP009            FP010           FP011            FP012       
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :0.0000  
##  Mean   :0.2627   Mean   :0.193   Mean   :0.1741   Mean   :0.1677  
##  3rd Qu.:1.0000   3rd Qu.:0.000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.000   Max.   :1.0000   Max.   :1.0000  
##      FP013            FP014            FP015            FP016       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.1646   Mean   :0.1582   Mean   :0.8291   Mean   :0.1424  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP017            FP018             FP019            FP020       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.1487   Mean   :0.08544   Mean   :0.1139   Mean   :0.1076  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##      FP021            FP022            FP023             FP024       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1076   Mean   :0.1171   Mean   :0.08544   Mean   :0.0981  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP025             FP026            FP027             FP028        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.07911   Mean   :0.1171   Mean   :0.07911   Mean   :0.05696  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP029             FP030             FP031            FP032       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.05063   Mean   :0.08228   Mean   :0.0981   Mean   :0.1297  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##      FP033            FP034             FP035            FP036        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.1203   Mean   :0.06646   Mean   :0.0981   Mean   :0.06013  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP037             FP038             FP039             FP040        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.09494   Mean   :0.03165   Mean   :0.06329   Mean   :0.05696  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP041             FP042             FP043            FP044        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.06013   Mean   :0.06013   Mean   :0.0443   Mean   :0.06013  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP045             FP046            FP047            FP048       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.06329   Mean   :0.3259   Mean   :0.2975   Mean   :0.1139  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP049            FP050            FP051             FP052       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.00000   Median :0.0000  
##  Mean   :0.1076   Mean   :0.1139   Mean   :0.05696   Mean   :0.1044  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000  
##      FP053             FP054            FP055             FP056        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.06013   Mean   :0.0981   Mean   :0.09177   Mean   :0.06329  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP057            FP058            FP059            FP060       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1234   Mean   :0.1361   Mean   :0.0443   Mean   :0.4525  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP061            FP062            FP063            FP064       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.3924   Mean   :0.4272   Mean   :0.3576   Mean   :0.3892  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP065            FP066            FP067            FP068       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :1.0000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.5981   Mean   :0.6171   Mean   :0.3259   Mean   :0.2911  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP069            FP070            FP071            FP072       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.3734   Mean   :0.3323   Mean   :0.3449   Mean   :0.6456  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP073            FP074            FP075            FP076       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2911   Mean   :0.3259   Mean   :0.2563   Mean   :0.3165  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP077           FP078            FP079            FP080       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.307   Mean   :0.3101   Mean   :0.7278   Mean   :0.2627  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP081           FP082            FP083            FP084       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.000   Median :1.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.288   Mean   :0.7437   Mean   :0.2532   Mean   :0.2247  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP085           FP086            FP087            FP088       
##  Min.   :0.000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:1.0000   1st Qu.:0.0000  
##  Median :0.000   Median :0.0000   Median :1.0000   Median :0.0000  
##  Mean   :0.269   Mean   :0.2722   Mean   :0.7627   Mean   :0.2437  
##  3rd Qu.:1.000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:0.0000  
##  Max.   :1.000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP089            FP090            FP091           FP092       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.2532   Mean   :0.2278   Mean   :0.231   Mean   :0.2184  
##  3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP093            FP094          FP095            FP096       
##  Min.   :0.0000   Min.   :0.00   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00   Median :0.0000   Median :0.0000  
##  Mean   :0.2152   Mean   :0.25   Mean   :0.2057   Mean   :0.1867  
##  3rd Qu.:0.0000   3rd Qu.:0.25   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00   Max.   :1.0000   Max.   :1.0000  
##      FP097            FP098            FP099           FP100       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.000   Median :0.0000  
##  Mean   :0.2089   Mean   :0.2025   Mean   :0.212   Mean   :0.1804  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.000   Max.   :1.0000  
##      FP101            FP102            FP103            FP104       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1772   Mean   :0.1456   Mean   :0.2184   Mean   :0.1835  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP105            FP106            FP107            FP108       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.2152   Mean   :0.1361   Mean   :0.1962   Mean   :0.1804  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP109            FP110            FP111            FP112       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1741   Mean   :0.1646   Mean   :0.1804   Mean   :0.1772  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP113            FP114            FP115            FP116       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1646   Mean   :0.1772   Mean   :0.1582   Mean   :0.1487  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP117            FP118            FP119            FP120       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1709   Mean   :0.1171   Mean   :0.1677   Mean   :0.1551  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP121            FP122            FP123            FP124       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1076   Mean   :0.1361   Mean   :0.1456   Mean   :0.1329  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP125            FP126            FP127            FP128       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1203   Mean   :0.1139   Mean   :0.1487   Mean   :0.1076  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP129            FP130             FP131            FP132       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.1392   Mean   :0.08228   Mean   :0.1076   Mean   :0.1266  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##      FP133            FP134             FP135             FP136       
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.1361   Mean   :0.08544   Mean   :0.06329   Mean   :0.1013  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##      FP137             FP138             FP139             FP140        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.08861   Mean   :0.08228   Mean   :0.06329   Mean   :0.08861  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP141             FP142             FP143            FP144        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.06962   Mean   :0.09494   Mean   :0.0538   Mean   :0.09177  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP145             FP146             FP147             FP148        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06329   Mean   :0.09177   Mean   :0.06962   Mean   :0.07911  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP149             FP150             FP151             FP152       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.0000  
##  Mean   :0.08228   Mean   :0.06646   Mean   :0.03165   Mean   :0.0538  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.0000  
##      FP153             FP154             FP155             FP156        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.03481   Mean   :0.03165   Mean   :0.06646   Mean   :0.04747  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP157             FP158             FP159             FP160        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.05696   Mean   :0.07911   Mean   :0.03481   Mean   :0.03481  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP161             FP162            FP163            FP164       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :1.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.03481   Mean   :0.5316   Mean   :0.4525   Mean   :0.6551  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP165            FP166            FP167            FP168       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :1.0000  
##  Mean   :0.3196   Mean   :0.3386   Mean   :0.3006   Mean   :0.7152  
##  3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP169            FP170            FP171            FP172       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1867   Mean   :0.1551   Mean   :0.1297   Mean   :0.1487  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP173            FP174            FP175            FP176       
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.0000  
##  Mean   :0.1361   Mean   :0.1551   Mean   :0.1329   Mean   :0.1076  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.0000  
##      FP177            FP178            FP179            FP180        
##  Min.   :0.0000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.1013   Mean   :0.1076   Mean   :0.1392   Mean   :0.06962  
##  3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP181            FP182             FP183            FP184        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.0000   Median :0.00000  
##  Mean   :0.1044   Mean   :0.07595   Mean   :0.1329   Mean   :0.09494  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   Max.   :1.00000  
##      FP185            FP186             FP187             FP188        
##  Min.   :0.0000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.0000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.0981   Mean   :0.06013   Mean   :0.06646   Mean   :0.06962  
##  3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.0000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP189             FP190            FP191             FP192        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.04114   Mean   :0.0538   Mean   :0.05696   Mean   :0.06962  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP193             FP194             FP195             FP196        
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.00000   Median :0.00000   Median :0.00000  
##  Mean   :0.06962   Mean   :0.06646   Mean   :0.05063   Mean   :0.06962  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.00000   Max.   :1.00000  
##      FP197             FP198            FP199             FP200        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.00000  
##  Mean   :0.06329   Mean   :0.0443   Mean   :0.07278   Mean   :0.06329  
##  3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.00000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.00000  
##      FP201             FP202            FP203            FP204        
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.0000   Min.   :0.00000  
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000   1st Qu.:0.00000  
##  Median :0.00000   Median :0.0000   Median :0.0000   Median :0.00000  
##  Mean   :0.04114   Mean   :0.2658   Mean   :0.1361   Mean   :0.09494  
##  3rd Qu.:0.00000   3rd Qu.:1.0000   3rd Qu.:0.0000   3rd Qu.:0.00000  
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.0000   Max.   :1.00000  
##      FP205             FP206             FP207            FP208       
##  Min.   :0.00000   Min.   :0.00000   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:0.00000   1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.0000  
##  Median :0.00000   Median :0.00000   Median :0.0000   Median :0.0000  
##  Mean   :0.07911   Mean   :0.05063   Mean   :0.0443   Mean   :0.1361  
##  3rd Qu.:0.00000   3rd Qu.:0.00000   3rd Qu.:0.0000   3rd Qu.:0.0000  
##  Max.   :1.00000   Max.   :1.00000   Max.   :1.0000   Max.   :1.0000  
##    MolWeight         NumAtoms     NumNonHAtoms      NumBonds   NumNonHBonds 
##  Min.   : 56.07   Min.   : 5.0   Min.   : 3.00   Min.   : 4   Min.   : 2.0  
##  1st Qu.:121.91   1st Qu.:17.0   1st Qu.: 8.00   1st Qu.:16   1st Qu.: 8.0  
##  Median :170.11   Median :22.0   Median :11.00   Median :23   Median :12.0  
##  Mean   :194.12   Mean   :24.6   Mean   :12.71   Mean   :25   Mean   :13.1  
##  3rd Qu.:253.82   3rd Qu.:29.0   3rd Qu.:16.00   3rd Qu.:30   3rd Qu.:17.0  
##  Max.   :478.92   Max.   :68.0   Max.   :33.00   Max.   :71   Max.   :36.0  
##   NumMultBonds     NumRotBonds      NumDblBonds     NumAromaticBonds
##  Min.   : 0.000   Min.   : 0.000   Min.   :0.0000   Min.   : 0.000  
##  1st Qu.: 1.000   1st Qu.: 0.000   1st Qu.:0.0000   1st Qu.: 0.000  
##  Median : 6.000   Median : 1.000   Median :1.0000   Median : 6.000  
##  Mean   : 6.313   Mean   : 1.949   Mean   :0.8892   Mean   : 5.399  
##  3rd Qu.:10.000   3rd Qu.: 3.000   3rd Qu.:1.0000   3rd Qu.:10.000  
##  Max.   :27.000   Max.   :16.000   Max.   :6.0000   Max.   :27.000  
##   NumHydrogen     NumCarbon       NumNitrogen       NumOxygen    
##  Min.   : 0.0   Min.   : 1.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.: 7.0   1st Qu.: 6.000   1st Qu.:0.0000   1st Qu.:0.000  
##  Median :11.0   Median : 8.000   Median :0.0000   Median :1.000  
##  Mean   :11.9   Mean   : 9.785   Mean   :0.7089   Mean   :1.389  
##  3rd Qu.:15.0   3rd Qu.:12.000   3rd Qu.:1.0000   3rd Qu.:2.000  
##  Max.   :40.0   Max.   :24.000   Max.   :6.0000   Max.   :9.000  
##    NumSulfer       NumChlorine      NumHalogen        NumRings    
##  Min.   :0.0000   Min.   :0.000   Min.   :0.0000   Min.   :0.000  
##  1st Qu.:0.0000   1st Qu.:0.000   1st Qu.:0.0000   1st Qu.:1.000  
##  Median :0.0000   Median :0.000   Median :0.0000   Median :1.000  
##  Mean   :0.1013   Mean   :0.557   Mean   :0.7089   Mean   :1.399  
##  3rd Qu.:0.0000   3rd Qu.:0.000   3rd Qu.:1.0000   3rd Qu.:2.000  
##  Max.   :3.0000   Max.   :9.000   Max.   :9.0000   Max.   :6.000  
##  HydrophilicFactor  SurfaceArea1     SurfaceArea2    Log_Solubility_Class
##  Min.   :-0.9860   Min.   :  0.00   Min.   :  0.00   Low :143            
##  1st Qu.:-0.7670   1st Qu.:  9.23   1st Qu.:  9.23   Mid : 94            
##  Median :-0.3970   Median : 26.30   Median : 26.30   High: 79            
##  Mean   :-0.1022   Mean   : 32.76   Mean   : 35.04                       
##  3rd Qu.: 0.2140   3rd Qu.: 49.55   3rd Qu.: 52.32                       
##  Max.   : 5.0000   Max.   :201.85   Max.   :201.85
##################################
# Formulating a data type assessment summary
##################################
PDA <- Solubility_Train
(PDA.Summary <- data.frame(
  Column.Index=c(1:length(names(PDA))),
  Column.Name= names(PDA),
  Column.Type=sapply(PDA, function(x) class(x)),
  row.names=NULL)
)
##     Column.Index          Column.Name Column.Type
## 1              1                FP001     integer
## 2              2                FP002     integer
## 3              3                FP003     integer
## 4              4                FP004     integer
## 5              5                FP005     integer
## 6              6                FP006     integer
## 7              7                FP007     integer
## 8              8                FP008     integer
## 9              9                FP009     integer
## 10            10                FP010     integer
## 11            11                FP011     integer
## 12            12                FP012     integer
## 13            13                FP013     integer
## 14            14                FP014     integer
## 15            15                FP015     integer
## 16            16                FP016     integer
## 17            17                FP017     integer
## 18            18                FP018     integer
## 19            19                FP019     integer
## 20            20                FP020     integer
## 21            21                FP021     integer
## 22            22                FP022     integer
## 23            23                FP023     integer
## 24            24                FP024     integer
## 25            25                FP025     integer
## 26            26                FP026     integer
## 27            27                FP027     integer
## 28            28                FP028     integer
## 29            29                FP029     integer
## 30            30                FP030     integer
## 31            31                FP031     integer
## 32            32                FP032     integer
## 33            33                FP033     integer
## 34            34                FP034     integer
## 35            35                FP035     integer
## 36            36                FP036     integer
## 37            37                FP037     integer
## 38            38                FP038     integer
## 39            39                FP039     integer
## 40            40                FP040     integer
## 41            41                FP041     integer
## 42            42                FP042     integer
## 43            43                FP043     integer
## 44            44                FP044     integer
## 45            45                FP045     integer
## 46            46                FP046     integer
## 47            47                FP047     integer
## 48            48                FP048     integer
## 49            49                FP049     integer
## 50            50                FP050     integer
## 51            51                FP051     integer
## 52            52                FP052     integer
## 53            53                FP053     integer
## 54            54                FP054     integer
## 55            55                FP055     integer
## 56            56                FP056     integer
## 57            57                FP057     integer
## 58            58                FP058     integer
## 59            59                FP059     integer
## 60            60                FP060     integer
## 61            61                FP061     integer
## 62            62                FP062     integer
## 63            63                FP063     integer
## 64            64                FP064     integer
## 65            65                FP065     integer
## 66            66                FP066     integer
## 67            67                FP067     integer
## 68            68                FP068     integer
## 69            69                FP069     integer
## 70            70                FP070     integer
## 71            71                FP071     integer
## 72            72                FP072     integer
## 73            73                FP073     integer
## 74            74                FP074     integer
## 75            75                FP075     integer
## 76            76                FP076     integer
## 77            77                FP077     integer
## 78            78                FP078     integer
## 79            79                FP079     integer
## 80            80                FP080     integer
## 81            81                FP081     integer
## 82            82                FP082     integer
## 83            83                FP083     integer
## 84            84                FP084     integer
## 85            85                FP085     integer
## 86            86                FP086     integer
## 87            87                FP087     integer
## 88            88                FP088     integer
## 89            89                FP089     integer
## 90            90                FP090     integer
## 91            91                FP091     integer
## 92            92                FP092     integer
## 93            93                FP093     integer
## 94            94                FP094     integer
## 95            95                FP095     integer
## 96            96                FP096     integer
## 97            97                FP097     integer
## 98            98                FP098     integer
## 99            99                FP099     integer
## 100          100                FP100     integer
## 101          101                FP101     integer
## 102          102                FP102     integer
## 103          103                FP103     integer
## 104          104                FP104     integer
## 105          105                FP105     integer
## 106          106                FP106     integer
## 107          107                FP107     integer
## 108          108                FP108     integer
## 109          109                FP109     integer
## 110          110                FP110     integer
## 111          111                FP111     integer
## 112          112                FP112     integer
## 113          113                FP113     integer
## 114          114                FP114     integer
## 115          115                FP115     integer
## 116          116                FP116     integer
## 117          117                FP117     integer
## 118          118                FP118     integer
## 119          119                FP119     integer
## 120          120                FP120     integer
## 121          121                FP121     integer
## 122          122                FP122     integer
## 123          123                FP123     integer
## 124          124                FP124     integer
## 125          125                FP125     integer
## 126          126                FP126     integer
## 127          127                FP127     integer
## 128          128                FP128     integer
## 129          129                FP129     integer
## 130          130                FP130     integer
## 131          131                FP131     integer
## 132          132                FP132     integer
## 133          133                FP133     integer
## 134          134                FP134     integer
## 135          135                FP135     integer
## 136          136                FP136     integer
## 137          137                FP137     integer
## 138          138                FP138     integer
## 139          139                FP139     integer
## 140          140                FP140     integer
## 141          141                FP141     integer
## 142          142                FP142     integer
## 143          143                FP143     integer
## 144          144                FP144     integer
## 145          145                FP145     integer
## 146          146                FP146     integer
## 147          147                FP147     integer
## 148          148                FP148     integer
## 149          149                FP149     integer
## 150          150                FP150     integer
## 151          151                FP151     integer
## 152          152                FP152     integer
## 153          153                FP153     integer
## 154          154                FP154     integer
## 155          155                FP155     integer
## 156          156                FP156     integer
## 157          157                FP157     integer
## 158          158                FP158     integer
## 159          159                FP159     integer
## 160          160                FP160     integer
## 161          161                FP161     integer
## 162          162                FP162     integer
## 163          163                FP163     integer
## 164          164                FP164     integer
## 165          165                FP165     integer
## 166          166                FP166     integer
## 167          167                FP167     integer
## 168          168                FP168     integer
## 169          169                FP169     integer
## 170          170                FP170     integer
## 171          171                FP171     integer
## 172          172                FP172     integer
## 173          173                FP173     integer
## 174          174                FP174     integer
## 175          175                FP175     integer
## 176          176                FP176     integer
## 177          177                FP177     integer
## 178          178                FP178     integer
## 179          179                FP179     integer
## 180          180                FP180     integer
## 181          181                FP181     integer
## 182          182                FP182     integer
## 183          183                FP183     integer
## 184          184                FP184     integer
## 185          185                FP185     integer
## 186          186                FP186     integer
## 187          187                FP187     integer
## 188          188                FP188     integer
## 189          189                FP189     integer
## 190          190                FP190     integer
## 191          191                FP191     integer
## 192          192                FP192     integer
## 193          193                FP193     integer
## 194          194                FP194     integer
## 195          195                FP195     integer
## 196          196                FP196     integer
## 197          197                FP197     integer
## 198          198                FP198     integer
## 199          199                FP199     integer
## 200          200                FP200     integer
## 201          201                FP201     integer
## 202          202                FP202     integer
## 203          203                FP203     integer
## 204          204                FP204     integer
## 205          205                FP205     integer
## 206          206                FP206     integer
## 207          207                FP207     integer
## 208          208                FP208     integer
## 209          209            MolWeight     numeric
## 210          210             NumAtoms     integer
## 211          211         NumNonHAtoms     integer
## 212          212             NumBonds     integer
## 213          213         NumNonHBonds     integer
## 214          214         NumMultBonds     integer
## 215          215          NumRotBonds     integer
## 216          216          NumDblBonds     integer
## 217          217     NumAromaticBonds     integer
## 218          218          NumHydrogen     integer
## 219          219            NumCarbon     integer
## 220          220          NumNitrogen     integer
## 221          221            NumOxygen     integer
## 222          222            NumSulfer     integer
## 223          223          NumChlorine     integer
## 224          224           NumHalogen     integer
## 225          225             NumRings     integer
## 226          226    HydrophilicFactor     numeric
## 227          227         SurfaceArea1     numeric
## 228          228         SurfaceArea2     numeric
## 229          229 Log_Solubility_Class      factor

1.2 Data Quality Assessment


[A] No missing observations noted for any variable.

[B] Low variance observed for 127 variables with First.Second.Mode.Ratio>5.
     [B.1]-[B.33] FP013 to FP045 variables (factor)
     [B.34]-[B.45] FP048 to FP059 variables (factor)
     [B.46] FP114 variable (factor)
     [B.47]-[B.50] FP119 to FP122 variable (factor)
     [B.51]-[B.88] FP124 to FP161 variables (factor)
     [B.89]-[B.118] FP172 to FP201 variables (factor)
     [B.119]-[B.124] FP203 to FP208 variables (factor)
     [B.125] NumSulfer variable (numeric)
     [B.126] NumChlorine variable (numeric)
     [B.127] NumHalogen variable (numeric)

[C] Low variance observed for 4 variables with Unique.Count.Ratio<0.01.
     [C.1] NumDblBonds variable (numeric)
     [C.2] NumNitrogen variable (numeric)
     [C.3] NumSulfer variable (numeric)
     [C.4] NumRings variable (numeric)

[D] High skewness observed for 3 variables with Skewness>3 or Skewness<(-3).
     [D.1] NumSulfer variable (numeric)
     [D.2] NumChlorine variable (numeric)
     [D.3] HydrophilicFactor variable (numeric)

Code Chunk | Output
##################################
# Loading dataset
##################################
DQA <- Solubility_Train

##################################
# Formulating an overall data quality assessment summary
##################################
(DQA.Summary <- data.frame(
  Column.Index=c(1:length(names(DQA))),
  Column.Name= names(DQA), 
  Column.Type=sapply(DQA, function(x) class(x)), 
  Row.Count=sapply(DQA, function(x) nrow(DQA)),
  NA.Count=sapply(DQA,function(x)sum(is.na(x))),
  Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
  row.names=NULL)
)
##     Column.Index          Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 1              1                FP001     integer       951        0     1.000
## 2              2                FP002     integer       951        0     1.000
## 3              3                FP003     integer       951        0     1.000
## 4              4                FP004     integer       951        0     1.000
## 5              5                FP005     integer       951        0     1.000
## 6              6                FP006     integer       951        0     1.000
## 7              7                FP007     integer       951        0     1.000
## 8              8                FP008     integer       951        0     1.000
## 9              9                FP009     integer       951        0     1.000
## 10            10                FP010     integer       951        0     1.000
## 11            11                FP011     integer       951        0     1.000
## 12            12                FP012     integer       951        0     1.000
## 13            13                FP013     integer       951        0     1.000
## 14            14                FP014     integer       951        0     1.000
## 15            15                FP015     integer       951        0     1.000
## 16            16                FP016     integer       951        0     1.000
## 17            17                FP017     integer       951        0     1.000
## 18            18                FP018     integer       951        0     1.000
## 19            19                FP019     integer       951        0     1.000
## 20            20                FP020     integer       951        0     1.000
## 21            21                FP021     integer       951        0     1.000
## 22            22                FP022     integer       951        0     1.000
## 23            23                FP023     integer       951        0     1.000
## 24            24                FP024     integer       951        0     1.000
## 25            25                FP025     integer       951        0     1.000
## 26            26                FP026     integer       951        0     1.000
## 27            27                FP027     integer       951        0     1.000
## 28            28                FP028     integer       951        0     1.000
## 29            29                FP029     integer       951        0     1.000
## 30            30                FP030     integer       951        0     1.000
## 31            31                FP031     integer       951        0     1.000
## 32            32                FP032     integer       951        0     1.000
## 33            33                FP033     integer       951        0     1.000
## 34            34                FP034     integer       951        0     1.000
## 35            35                FP035     integer       951        0     1.000
## 36            36                FP036     integer       951        0     1.000
## 37            37                FP037     integer       951        0     1.000
## 38            38                FP038     integer       951        0     1.000
## 39            39                FP039     integer       951        0     1.000
## 40            40                FP040     integer       951        0     1.000
## 41            41                FP041     integer       951        0     1.000
## 42            42                FP042     integer       951        0     1.000
## 43            43                FP043     integer       951        0     1.000
## 44            44                FP044     integer       951        0     1.000
## 45            45                FP045     integer       951        0     1.000
## 46            46                FP046     integer       951        0     1.000
## 47            47                FP047     integer       951        0     1.000
## 48            48                FP048     integer       951        0     1.000
## 49            49                FP049     integer       951        0     1.000
## 50            50                FP050     integer       951        0     1.000
## 51            51                FP051     integer       951        0     1.000
## 52            52                FP052     integer       951        0     1.000
## 53            53                FP053     integer       951        0     1.000
## 54            54                FP054     integer       951        0     1.000
## 55            55                FP055     integer       951        0     1.000
## 56            56                FP056     integer       951        0     1.000
## 57            57                FP057     integer       951        0     1.000
## 58            58                FP058     integer       951        0     1.000
## 59            59                FP059     integer       951        0     1.000
## 60            60                FP060     integer       951        0     1.000
## 61            61                FP061     integer       951        0     1.000
## 62            62                FP062     integer       951        0     1.000
## 63            63                FP063     integer       951        0     1.000
## 64            64                FP064     integer       951        0     1.000
## 65            65                FP065     integer       951        0     1.000
## 66            66                FP066     integer       951        0     1.000
## 67            67                FP067     integer       951        0     1.000
## 68            68                FP068     integer       951        0     1.000
## 69            69                FP069     integer       951        0     1.000
## 70            70                FP070     integer       951        0     1.000
## 71            71                FP071     integer       951        0     1.000
## 72            72                FP072     integer       951        0     1.000
## 73            73                FP073     integer       951        0     1.000
## 74            74                FP074     integer       951        0     1.000
## 75            75                FP075     integer       951        0     1.000
## 76            76                FP076     integer       951        0     1.000
## 77            77                FP077     integer       951        0     1.000
## 78            78                FP078     integer       951        0     1.000
## 79            79                FP079     integer       951        0     1.000
## 80            80                FP080     integer       951        0     1.000
## 81            81                FP081     integer       951        0     1.000
## 82            82                FP082     integer       951        0     1.000
## 83            83                FP083     integer       951        0     1.000
## 84            84                FP084     integer       951        0     1.000
## 85            85                FP085     integer       951        0     1.000
## 86            86                FP086     integer       951        0     1.000
## 87            87                FP087     integer       951        0     1.000
## 88            88                FP088     integer       951        0     1.000
## 89            89                FP089     integer       951        0     1.000
## 90            90                FP090     integer       951        0     1.000
## 91            91                FP091     integer       951        0     1.000
## 92            92                FP092     integer       951        0     1.000
## 93            93                FP093     integer       951        0     1.000
## 94            94                FP094     integer       951        0     1.000
## 95            95                FP095     integer       951        0     1.000
## 96            96                FP096     integer       951        0     1.000
## 97            97                FP097     integer       951        0     1.000
## 98            98                FP098     integer       951        0     1.000
## 99            99                FP099     integer       951        0     1.000
## 100          100                FP100     integer       951        0     1.000
## 101          101                FP101     integer       951        0     1.000
## 102          102                FP102     integer       951        0     1.000
## 103          103                FP103     integer       951        0     1.000
## 104          104                FP104     integer       951        0     1.000
## 105          105                FP105     integer       951        0     1.000
## 106          106                FP106     integer       951        0     1.000
## 107          107                FP107     integer       951        0     1.000
## 108          108                FP108     integer       951        0     1.000
## 109          109                FP109     integer       951        0     1.000
## 110          110                FP110     integer       951        0     1.000
## 111          111                FP111     integer       951        0     1.000
## 112          112                FP112     integer       951        0     1.000
## 113          113                FP113     integer       951        0     1.000
## 114          114                FP114     integer       951        0     1.000
## 115          115                FP115     integer       951        0     1.000
## 116          116                FP116     integer       951        0     1.000
## 117          117                FP117     integer       951        0     1.000
## 118          118                FP118     integer       951        0     1.000
## 119          119                FP119     integer       951        0     1.000
## 120          120                FP120     integer       951        0     1.000
## 121          121                FP121     integer       951        0     1.000
## 122          122                FP122     integer       951        0     1.000
## 123          123                FP123     integer       951        0     1.000
## 124          124                FP124     integer       951        0     1.000
## 125          125                FP125     integer       951        0     1.000
## 126          126                FP126     integer       951        0     1.000
## 127          127                FP127     integer       951        0     1.000
## 128          128                FP128     integer       951        0     1.000
## 129          129                FP129     integer       951        0     1.000
## 130          130                FP130     integer       951        0     1.000
## 131          131                FP131     integer       951        0     1.000
## 132          132                FP132     integer       951        0     1.000
## 133          133                FP133     integer       951        0     1.000
## 134          134                FP134     integer       951        0     1.000
## 135          135                FP135     integer       951        0     1.000
## 136          136                FP136     integer       951        0     1.000
## 137          137                FP137     integer       951        0     1.000
## 138          138                FP138     integer       951        0     1.000
## 139          139                FP139     integer       951        0     1.000
## 140          140                FP140     integer       951        0     1.000
## 141          141                FP141     integer       951        0     1.000
## 142          142                FP142     integer       951        0     1.000
## 143          143                FP143     integer       951        0     1.000
## 144          144                FP144     integer       951        0     1.000
## 145          145                FP145     integer       951        0     1.000
## 146          146                FP146     integer       951        0     1.000
## 147          147                FP147     integer       951        0     1.000
## 148          148                FP148     integer       951        0     1.000
## 149          149                FP149     integer       951        0     1.000
## 150          150                FP150     integer       951        0     1.000
## 151          151                FP151     integer       951        0     1.000
## 152          152                FP152     integer       951        0     1.000
## 153          153                FP153     integer       951        0     1.000
## 154          154                FP154     integer       951        0     1.000
## 155          155                FP155     integer       951        0     1.000
## 156          156                FP156     integer       951        0     1.000
## 157          157                FP157     integer       951        0     1.000
## 158          158                FP158     integer       951        0     1.000
## 159          159                FP159     integer       951        0     1.000
## 160          160                FP160     integer       951        0     1.000
## 161          161                FP161     integer       951        0     1.000
## 162          162                FP162     integer       951        0     1.000
## 163          163                FP163     integer       951        0     1.000
## 164          164                FP164     integer       951        0     1.000
## 165          165                FP165     integer       951        0     1.000
## 166          166                FP166     integer       951        0     1.000
## 167          167                FP167     integer       951        0     1.000
## 168          168                FP168     integer       951        0     1.000
## 169          169                FP169     integer       951        0     1.000
## 170          170                FP170     integer       951        0     1.000
## 171          171                FP171     integer       951        0     1.000
## 172          172                FP172     integer       951        0     1.000
## 173          173                FP173     integer       951        0     1.000
## 174          174                FP174     integer       951        0     1.000
## 175          175                FP175     integer       951        0     1.000
## 176          176                FP176     integer       951        0     1.000
## 177          177                FP177     integer       951        0     1.000
## 178          178                FP178     integer       951        0     1.000
## 179          179                FP179     integer       951        0     1.000
## 180          180                FP180     integer       951        0     1.000
## 181          181                FP181     integer       951        0     1.000
## 182          182                FP182     integer       951        0     1.000
## 183          183                FP183     integer       951        0     1.000
## 184          184                FP184     integer       951        0     1.000
## 185          185                FP185     integer       951        0     1.000
## 186          186                FP186     integer       951        0     1.000
## 187          187                FP187     integer       951        0     1.000
## 188          188                FP188     integer       951        0     1.000
## 189          189                FP189     integer       951        0     1.000
## 190          190                FP190     integer       951        0     1.000
## 191          191                FP191     integer       951        0     1.000
## 192          192                FP192     integer       951        0     1.000
## 193          193                FP193     integer       951        0     1.000
## 194          194                FP194     integer       951        0     1.000
## 195          195                FP195     integer       951        0     1.000
## 196          196                FP196     integer       951        0     1.000
## 197          197                FP197     integer       951        0     1.000
## 198          198                FP198     integer       951        0     1.000
## 199          199                FP199     integer       951        0     1.000
## 200          200                FP200     integer       951        0     1.000
## 201          201                FP201     integer       951        0     1.000
## 202          202                FP202     integer       951        0     1.000
## 203          203                FP203     integer       951        0     1.000
## 204          204                FP204     integer       951        0     1.000
## 205          205                FP205     integer       951        0     1.000
## 206          206                FP206     integer       951        0     1.000
## 207          207                FP207     integer       951        0     1.000
## 208          208                FP208     integer       951        0     1.000
## 209          209            MolWeight     numeric       951        0     1.000
## 210          210             NumAtoms     integer       951        0     1.000
## 211          211         NumNonHAtoms     integer       951        0     1.000
## 212          212             NumBonds     integer       951        0     1.000
## 213          213         NumNonHBonds     integer       951        0     1.000
## 214          214         NumMultBonds     integer       951        0     1.000
## 215          215          NumRotBonds     integer       951        0     1.000
## 216          216          NumDblBonds     integer       951        0     1.000
## 217          217     NumAromaticBonds     integer       951        0     1.000
## 218          218          NumHydrogen     integer       951        0     1.000
## 219          219            NumCarbon     integer       951        0     1.000
## 220          220          NumNitrogen     integer       951        0     1.000
## 221          221            NumOxygen     integer       951        0     1.000
## 222          222            NumSulfer     integer       951        0     1.000
## 223          223          NumChlorine     integer       951        0     1.000
## 224          224           NumHalogen     integer       951        0     1.000
## 225          225             NumRings     integer       951        0     1.000
## 226          226    HydrophilicFactor     numeric       951        0     1.000
## 227          227         SurfaceArea1     numeric       951        0     1.000
## 228          228         SurfaceArea2     numeric       951        0     1.000
## 229          229 Log_Solubility_Class      factor       951        0     1.000
##################################
# Listing all predictors
##################################
DQA.Predictors <- DQA[,!names(DQA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DQA.Predictors.Numeric <- DQA.Predictors[,-(grep("FP", names(DQA.Predictors)))]

if (length(names(DQA.Predictors.Numeric))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Numeric))),
               " numeric predictor variable(s)."))
} else {
  print("There are no numeric predictor variables.")
}
## [1] "There are 20 numeric predictor variable(s)."
##################################
# Listing all factor predictors
##################################
DQA.Predictors.Factor <-as.data.frame(lapply(DQA.Predictors[(grep("FP", names(DQA.Predictors)))],factor))

if (length(names(DQA.Predictors.Factor))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Factor))),
               " factor predictor variable(s)."))
} else {
  print("There are no factor predictor variables.")
}
## [1] "There are 208 factor predictor variable(s)."
##################################
# Formulating a data quality assessment summary for factor predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {
  
  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = x[!(x %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return("x"),
           return(usm[tabsm == max(tabsm)]))
  }
  
  (DQA.Predictors.Factor.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Factor), 
  Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)), 
  Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
  First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
  Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
  First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  row.names=NULL)
  )
  
} 
##     Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1         FP001      factor            2                0                 1
## 2         FP002      factor            2                1                 0
## 3         FP003      factor            2                0                 1
## 4         FP004      factor            2                1                 0
## 5         FP005      factor            2                1                 0
## 6         FP006      factor            2                0                 1
## 7         FP007      factor            2                0                 1
## 8         FP008      factor            2                0                 1
## 9         FP009      factor            2                0                 1
## 10        FP010      factor            2                0                 1
## 11        FP011      factor            2                0                 1
## 12        FP012      factor            2                0                 1
## 13        FP013      factor            2                0                 1
## 14        FP014      factor            2                0                 1
## 15        FP015      factor            2                1                 0
## 16        FP016      factor            2                0                 1
## 17        FP017      factor            2                0                 1
## 18        FP018      factor            2                0                 1
## 19        FP019      factor            2                0                 1
## 20        FP020      factor            2                0                 1
## 21        FP021      factor            2                0                 1
## 22        FP022      factor            2                0                 1
## 23        FP023      factor            2                0                 1
## 24        FP024      factor            2                0                 1
## 25        FP025      factor            2                0                 1
## 26        FP026      factor            2                0                 1
## 27        FP027      factor            2                0                 1
## 28        FP028      factor            2                0                 1
## 29        FP029      factor            2                0                 1
## 30        FP030      factor            2                0                 1
## 31        FP031      factor            2                0                 1
## 32        FP032      factor            2                0                 1
## 33        FP033      factor            2                0                 1
## 34        FP034      factor            2                0                 1
## 35        FP035      factor            2                0                 1
## 36        FP036      factor            2                0                 1
## 37        FP037      factor            2                0                 1
## 38        FP038      factor            2                0                 1
## 39        FP039      factor            2                0                 1
## 40        FP040      factor            2                0                 1
## 41        FP041      factor            2                0                 1
## 42        FP042      factor            2                0                 1
## 43        FP043      factor            2                0                 1
## 44        FP044      factor            2                0                 1
## 45        FP045      factor            2                0                 1
## 46        FP046      factor            2                0                 1
## 47        FP047      factor            2                0                 1
## 48        FP048      factor            2                0                 1
## 49        FP049      factor            2                0                 1
## 50        FP050      factor            2                0                 1
## 51        FP051      factor            2                0                 1
## 52        FP052      factor            2                0                 1
## 53        FP053      factor            2                0                 1
## 54        FP054      factor            2                0                 1
## 55        FP055      factor            2                0                 1
## 56        FP056      factor            2                0                 1
## 57        FP057      factor            2                0                 1
## 58        FP058      factor            2                0                 1
## 59        FP059      factor            2                0                 1
## 60        FP060      factor            2                0                 1
## 61        FP061      factor            2                0                 1
## 62        FP062      factor            2                0                 1
## 63        FP063      factor            2                0                 1
## 64        FP064      factor            2                0                 1
## 65        FP065      factor            2                1                 0
## 66        FP066      factor            2                1                 0
## 67        FP067      factor            2                0                 1
## 68        FP068      factor            2                0                 1
## 69        FP069      factor            2                0                 1
## 70        FP070      factor            2                0                 1
## 71        FP071      factor            2                0                 1
## 72        FP072      factor            2                1                 0
## 73        FP073      factor            2                0                 1
## 74        FP074      factor            2                0                 1
## 75        FP075      factor            2                0                 1
## 76        FP076      factor            2                0                 1
## 77        FP077      factor            2                0                 1
## 78        FP078      factor            2                0                 1
## 79        FP079      factor            2                1                 0
## 80        FP080      factor            2                0                 1
## 81        FP081      factor            2                0                 1
## 82        FP082      factor            2                1                 0
## 83        FP083      factor            2                0                 1
## 84        FP084      factor            2                0                 1
## 85        FP085      factor            2                0                 1
## 86        FP086      factor            2                0                 1
## 87        FP087      factor            2                1                 0
## 88        FP088      factor            2                0                 1
## 89        FP089      factor            2                0                 1
## 90        FP090      factor            2                0                 1
## 91        FP091      factor            2                0                 1
## 92        FP092      factor            2                0                 1
## 93        FP093      factor            2                0                 1
## 94        FP094      factor            2                0                 1
## 95        FP095      factor            2                0                 1
## 96        FP096      factor            2                0                 1
## 97        FP097      factor            2                0                 1
## 98        FP098      factor            2                0                 1
## 99        FP099      factor            2                0                 1
## 100       FP100      factor            2                0                 1
## 101       FP101      factor            2                0                 1
## 102       FP102      factor            2                0                 1
## 103       FP103      factor            2                0                 1
## 104       FP104      factor            2                0                 1
## 105       FP105      factor            2                0                 1
## 106       FP106      factor            2                0                 1
## 107       FP107      factor            2                0                 1
## 108       FP108      factor            2                0                 1
## 109       FP109      factor            2                0                 1
## 110       FP110      factor            2                0                 1
## 111       FP111      factor            2                0                 1
## 112       FP112      factor            2                0                 1
## 113       FP113      factor            2                0                 1
## 114       FP114      factor            2                0                 1
## 115       FP115      factor            2                0                 1
## 116       FP116      factor            2                0                 1
## 117       FP117      factor            2                0                 1
## 118       FP118      factor            2                0                 1
## 119       FP119      factor            2                0                 1
## 120       FP120      factor            2                0                 1
## 121       FP121      factor            2                0                 1
## 122       FP122      factor            2                0                 1
## 123       FP123      factor            2                0                 1
## 124       FP124      factor            2                0                 1
## 125       FP125      factor            2                0                 1
## 126       FP126      factor            2                0                 1
## 127       FP127      factor            2                0                 1
## 128       FP128      factor            2                0                 1
## 129       FP129      factor            2                0                 1
## 130       FP130      factor            2                0                 1
## 131       FP131      factor            2                0                 1
## 132       FP132      factor            2                0                 1
## 133       FP133      factor            2                0                 1
## 134       FP134      factor            2                0                 1
## 135       FP135      factor            2                0                 1
## 136       FP136      factor            2                0                 1
## 137       FP137      factor            2                0                 1
## 138       FP138      factor            2                0                 1
## 139       FP139      factor            2                0                 1
## 140       FP140      factor            2                0                 1
## 141       FP141      factor            2                0                 1
## 142       FP142      factor            2                0                 1
## 143       FP143      factor            2                0                 1
## 144       FP144      factor            2                0                 1
## 145       FP145      factor            2                0                 1
## 146       FP146      factor            2                0                 1
## 147       FP147      factor            2                0                 1
## 148       FP148      factor            2                0                 1
## 149       FP149      factor            2                0                 1
## 150       FP150      factor            2                0                 1
## 151       FP151      factor            2                0                 1
## 152       FP152      factor            2                0                 1
## 153       FP153      factor            2                0                 1
## 154       FP154      factor            2                0                 1
## 155       FP155      factor            2                0                 1
## 156       FP156      factor            2                0                 1
## 157       FP157      factor            2                0                 1
## 158       FP158      factor            2                0                 1
## 159       FP159      factor            2                0                 1
## 160       FP160      factor            2                0                 1
## 161       FP161      factor            2                0                 1
## 162       FP162      factor            2                0                 1
## 163       FP163      factor            2                0                 1
## 164       FP164      factor            2                1                 0
## 165       FP165      factor            2                0                 1
## 166       FP166      factor            2                0                 1
## 167       FP167      factor            2                0                 1
## 168       FP168      factor            2                1                 0
## 169       FP169      factor            2                0                 1
## 170       FP170      factor            2                0                 1
## 171       FP171      factor            2                0                 1
## 172       FP172      factor            2                0                 1
## 173       FP173      factor            2                0                 1
## 174       FP174      factor            2                0                 1
## 175       FP175      factor            2                0                 1
## 176       FP176      factor            2                0                 1
## 177       FP177      factor            2                0                 1
## 178       FP178      factor            2                0                 1
## 179       FP179      factor            2                0                 1
## 180       FP180      factor            2                0                 1
## 181       FP181      factor            2                0                 1
## 182       FP182      factor            2                0                 1
## 183       FP183      factor            2                0                 1
## 184       FP184      factor            2                0                 1
## 185       FP185      factor            2                0                 1
## 186       FP186      factor            2                0                 1
## 187       FP187      factor            2                0                 1
## 188       FP188      factor            2                0                 1
## 189       FP189      factor            2                0                 1
## 190       FP190      factor            2                0                 1
## 191       FP191      factor            2                0                 1
## 192       FP192      factor            2                0                 1
## 193       FP193      factor            2                0                 1
## 194       FP194      factor            2                0                 1
## 195       FP195      factor            2                0                 1
## 196       FP196      factor            2                0                 1
## 197       FP197      factor            2                0                 1
## 198       FP198      factor            2                0                 1
## 199       FP199      factor            2                0                 1
## 200       FP200      factor            2                0                 1
## 201       FP201      factor            2                0                 1
## 202       FP202      factor            2                0                 1
## 203       FP203      factor            2                0                 1
## 204       FP204      factor            2                0                 1
## 205       FP205      factor            2                0                 1
## 206       FP206      factor            2                0                 1
## 207       FP207      factor            2                0                 1
## 208       FP208      factor            2                0                 1
##     First.Mode.Count Second.Mode.Count Unique.Count.Ratio
## 1                482               469              0.002
## 2                513               438              0.002
## 3                536               415              0.002
## 4                556               395              0.002
## 5                551               400              0.002
## 6                570               381              0.002
## 7                605               346              0.002
## 8                641               310              0.002
## 9                685               266              0.002
## 10               781               170              0.002
## 11               747               204              0.002
## 12               783               168              0.002
## 13               793               158              0.002
## 14               798               153              0.002
## 15               818               133              0.002
## 16               812               139              0.002
## 17               814               137              0.002
## 18               826               125              0.002
## 19               835               116              0.002
## 20               837               114              0.002
## 21               836               115              0.002
## 22               852                99              0.002
## 23               834               117              0.002
## 24               844               107              0.002
## 25               841               110              0.002
## 26               871                80              0.002
## 27               858                93              0.002
## 28               850               101              0.002
## 29               854                97              0.002
## 30               862                89              0.002
## 31               866                85              0.002
## 32               881                70              0.002
## 33               885                66              0.002
## 34               875                76              0.002
## 35               882                69              0.002
## 36               879                72              0.002
## 37               884                67              0.002
## 38               869                82              0.002
## 39               880                71              0.002
## 40               886                65              0.002
## 41               891                60              0.002
## 42               897                54              0.002
## 43               888                63              0.002
## 44               894                57              0.002
## 45               898                53              0.002
## 46               651               300              0.002
## 47               698               253              0.002
## 48               833               118              0.002
## 49               835               116              0.002
## 50               844               107              0.002
## 51               847               104              0.002
## 52               864                87              0.002
## 53               862                89              0.002
## 54               879                72              0.002
## 55               900                51              0.002
## 56               889                62              0.002
## 57               837               114              0.002
## 58               843               108              0.002
## 59               899                52              0.002
## 60               493               458              0.002
## 61               526               425              0.002
## 62               535               416              0.002
## 63               546               405              0.002
## 64               555               396              0.002
## 65               564               387              0.002
## 66               580               371              0.002
## 67               590               361              0.002
## 68               607               344              0.002
## 69               607               344              0.002
## 70               613               338              0.002
## 71               640               311              0.002
## 72               626               325              0.002
## 73               656               295              0.002
## 74               642               309              0.002
## 75               629               322              0.002
## 76               639               312              0.002
## 77               646               305              0.002
## 78               662               289              0.002
## 79               656               295              0.002
## 80               663               288              0.002
## 81               686               265              0.002
## 82               679               272              0.002
## 83               691               260              0.002
## 84               679               272              0.002
## 85               708               243              0.002
## 86               695               256              0.002
## 87               691               260              0.002
## 88               701               250              0.002
## 89               716               235              0.002
## 90               714               237              0.002
## 91               737               214              0.002
## 92               719               232              0.002
## 93               719               232              0.002
## 94               731               220              0.002
## 95               742               209              0.002
## 96               744               207              0.002
## 97               727               224              0.002
## 98               725               226              0.002
## 99               735               216              0.002
## 100              731               220              0.002
## 101              726               225              0.002
## 102              759               192              0.002
## 103              743               208              0.002
## 104              739               212              0.002
## 105              746               205              0.002
## 106              769               182              0.002
## 107              750               201              0.002
## 108              756               195              0.002
## 109              783               168              0.002
## 110              755               196              0.002
## 111              764               187              0.002
## 112              766               185              0.002
## 113              765               186              0.002
## 114              803               148              0.002
## 115              781               170              0.002
## 116              768               183              0.002
## 117              781               170              0.002
## 118              768               183              0.002
## 119              796               155              0.002
## 120              793               158              0.002
## 121              818               133              0.002
## 122              795               156              0.002
## 123              792               159              0.002
## 124              797               154              0.002
## 125              803               148              0.002
## 126              810               141              0.002
## 127              818               133              0.002
## 128              810               141              0.002
## 129              819               132              0.002
## 130              851               100              0.002
## 131              831               120              0.002
## 132              832               119              0.002
## 133              831               120              0.002
## 134              830               121              0.002
## 135              831               120              0.002
## 136              836               115              0.002
## 137              841               110              0.002
## 138              845               106              0.002
## 139              873                78              0.002
## 140              845               106              0.002
## 141              840               111              0.002
## 142              847               104              0.002
## 143              874                77              0.002
## 144              852                99              0.002
## 145              852                99              0.002
## 146              853                98              0.002
## 147              851               100              0.002
## 148              868                83              0.002
## 149              865                86              0.002
## 150              876                75              0.002
## 151              898                53              0.002
## 152              873                78              0.002
## 153              877                74              0.002
## 154              915                36              0.002
## 155              885                66              0.002
## 156              884                67              0.002
## 157              892                59              0.002
## 158              900                51              0.002
## 159              884                67              0.002
## 160              886                65              0.002
## 161              888                63              0.002
## 162              480               471              0.002
## 163              498               453              0.002
## 164              597               354              0.002
## 165              619               332              0.002
## 166              636               315              0.002
## 167              639               312              0.002
## 168              633               318              0.002
## 169              774               177              0.002
## 170              776               175              0.002
## 171              790               161              0.002
## 172              807               144              0.002
## 173              816               135              0.002
## 174              827               124              0.002
## 175              823               128              0.002
## 176              835               116              0.002
## 177              836               115              0.002
## 178              836               115              0.002
## 179              858                93              0.002
## 180              849               102              0.002
## 181              862                89              0.002
## 182              857                94              0.002
## 183              879                72              0.002
## 184              871                80              0.002
## 185              870                81              0.002
## 186              878                73              0.002
## 187              882                69              0.002
## 188              886                65              0.002
## 189              878                73              0.002
## 190              882                69              0.002
## 191              884                67              0.002
## 192              893                58              0.002
## 193              892                59              0.002
## 194              895                56              0.002
## 195              893                58              0.002
## 196              897                54              0.002
## 197              901                50              0.002
## 198              897                54              0.002
## 199              906                45              0.002
## 200              904                47              0.002
## 201              901                50              0.002
## 202              706               245              0.002
## 203              842               109              0.002
## 204              857                94              0.002
## 205              877                74              0.002
## 206              894                57              0.002
## 207              897                54              0.002
## 208              844               107              0.002
##     First.Second.Mode.Ratio
## 1                     1.028
## 2                     1.171
## 3                     1.292
## 4                     1.408
## 5                     1.378
## 6                     1.496
## 7                     1.749
## 8                     2.068
## 9                     2.575
## 10                    4.594
## 11                    3.662
## 12                    4.661
## 13                    5.019
## 14                    5.216
## 15                    6.150
## 16                    5.842
## 17                    5.942
## 18                    6.608
## 19                    7.198
## 20                    7.342
## 21                    7.270
## 22                    8.606
## 23                    7.128
## 24                    7.888
## 25                    7.645
## 26                   10.887
## 27                    9.226
## 28                    8.416
## 29                    8.804
## 30                    9.685
## 31                   10.188
## 32                   12.586
## 33                   13.409
## 34                   11.513
## 35                   12.783
## 36                   12.208
## 37                   13.194
## 38                   10.598
## 39                   12.394
## 40                   13.631
## 41                   14.850
## 42                   16.611
## 43                   14.095
## 44                   15.684
## 45                   16.943
## 46                    2.170
## 47                    2.759
## 48                    7.059
## 49                    7.198
## 50                    7.888
## 51                    8.144
## 52                    9.931
## 53                    9.685
## 54                   12.208
## 55                   17.647
## 56                   14.339
## 57                    7.342
## 58                    7.806
## 59                   17.288
## 60                    1.076
## 61                    1.238
## 62                    1.286
## 63                    1.348
## 64                    1.402
## 65                    1.457
## 66                    1.563
## 67                    1.634
## 68                    1.765
## 69                    1.765
## 70                    1.814
## 71                    2.058
## 72                    1.926
## 73                    2.224
## 74                    2.078
## 75                    1.953
## 76                    2.048
## 77                    2.118
## 78                    2.291
## 79                    2.224
## 80                    2.302
## 81                    2.589
## 82                    2.496
## 83                    2.658
## 84                    2.496
## 85                    2.914
## 86                    2.715
## 87                    2.658
## 88                    2.804
## 89                    3.047
## 90                    3.013
## 91                    3.444
## 92                    3.099
## 93                    3.099
## 94                    3.323
## 95                    3.550
## 96                    3.594
## 97                    3.246
## 98                    3.208
## 99                    3.403
## 100                   3.323
## 101                   3.227
## 102                   3.953
## 103                   3.572
## 104                   3.486
## 105                   3.639
## 106                   4.225
## 107                   3.731
## 108                   3.877
## 109                   4.661
## 110                   3.852
## 111                   4.086
## 112                   4.141
## 113                   4.113
## 114                   5.426
## 115                   4.594
## 116                   4.197
## 117                   4.594
## 118                   4.197
## 119                   5.135
## 120                   5.019
## 121                   6.150
## 122                   5.096
## 123                   4.981
## 124                   5.175
## 125                   5.426
## 126                   5.745
## 127                   6.150
## 128                   5.745
## 129                   6.205
## 130                   8.510
## 131                   6.925
## 132                   6.992
## 133                   6.925
## 134                   6.860
## 135                   6.925
## 136                   7.270
## 137                   7.645
## 138                   7.972
## 139                  11.192
## 140                   7.972
## 141                   7.568
## 142                   8.144
## 143                  11.351
## 144                   8.606
## 145                   8.606
## 146                   8.704
## 147                   8.510
## 148                  10.458
## 149                  10.058
## 150                  11.680
## 151                  16.943
## 152                  11.192
## 153                  11.851
## 154                  25.417
## 155                  13.409
## 156                  13.194
## 157                  15.119
## 158                  17.647
## 159                  13.194
## 160                  13.631
## 161                  14.095
## 162                   1.019
## 163                   1.099
## 164                   1.686
## 165                   1.864
## 166                   2.019
## 167                   2.048
## 168                   1.991
## 169                   4.373
## 170                   4.434
## 171                   4.907
## 172                   5.604
## 173                   6.044
## 174                   6.669
## 175                   6.430
## 176                   7.198
## 177                   7.270
## 178                   7.270
## 179                   9.226
## 180                   8.324
## 181                   9.685
## 182                   9.117
## 183                  12.208
## 184                  10.887
## 185                  10.741
## 186                  12.027
## 187                  12.783
## 188                  13.631
## 189                  12.027
## 190                  12.783
## 191                  13.194
## 192                  15.397
## 193                  15.119
## 194                  15.982
## 195                  15.397
## 196                  16.611
## 197                  18.020
## 198                  16.611
## 199                  20.133
## 200                  19.234
## 201                  18.020
## 202                   2.882
## 203                   7.725
## 204                   9.117
## 205                  11.851
## 206                  15.684
## 207                  16.611
## 208                   7.888
##################################
# Formulating a data quality assessment summary for numeric predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {
  
  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = na.omit(x)[!(na.omit(x) %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return(0.00001),
           return(usm[tabsm == max(tabsm)]))
  }
  
  (DQA.Predictors.Numeric.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Numeric), 
  Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)), 
  Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
  Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
  First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
  Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
  First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
  Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
  Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
  Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
  Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
  Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
  Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
  Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
  row.names=NULL)
  )  
  
}
##          Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 1          MolWeight     numeric          646              0.679
## 2           NumAtoms     integer           66              0.069
## 3       NumNonHAtoms     integer           36              0.038
## 4           NumBonds     integer           72              0.076
## 5       NumNonHBonds     integer           39              0.041
## 6       NumMultBonds     integer           25              0.026
## 7        NumRotBonds     integer           15              0.016
## 8        NumDblBonds     integer            8              0.008
## 9   NumAromaticBonds     integer           16              0.017
## 10       NumHydrogen     integer           41              0.043
## 11         NumCarbon     integer           28              0.029
## 12       NumNitrogen     integer            7              0.007
## 13         NumOxygen     integer           11              0.012
## 14         NumSulfer     integer            5              0.005
## 15       NumChlorine     integer           11              0.012
## 16        NumHalogen     integer           11              0.012
## 17          NumRings     integer            8              0.008
## 18 HydrophilicFactor     numeric          369              0.388
## 19      SurfaceArea1     numeric          252              0.265
## 20      SurfaceArea2     numeric          287              0.302
##    First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 1           102.200           116.230               16                14
## 2            22.000            24.000               73                51
## 3             8.000            11.000              104                73
## 4            23.000            19.000               69                56
## 5             8.000             7.000               82                66
## 6             0.000             7.000              158               122
## 7             0.000             1.000              272               186
## 8             0.000             1.000              427               268
## 9             0.000             6.000              400               302
## 10           12.000             8.000               83                79
## 11            6.000             7.000              105                97
## 12            0.000             1.000              546               191
## 13            0.000             2.000              325               218
## 14            0.000             1.000              830                96
## 15            0.000             1.000              750                81
## 16            0.000             1.000              685               107
## 17            1.000             0.000              323               260
## 18           -0.828            -0.158               21                20
## 19            0.000            20.230              218                76
## 20            0.000            20.230              211                75
##    First.Second.Mode.Ratio Minimum    Mean  Median Maximum Skewness Kurtosis
## 1                    1.143  46.090 201.654 179.230 665.810    0.988    3.945
## 2                    1.431   5.000  25.507  22.000  94.000    1.364    5.523
## 3                    1.425   2.000  13.161  12.000  47.000    0.993    4.129
## 4                    1.232   4.000  25.909  23.000  97.000    1.360    5.408
## 5                    1.242   1.000  13.563  12.000  50.000    0.969    3.842
## 6                    1.295   0.000   6.148   6.000  25.000    0.670    3.053
## 7                    1.462   0.000   2.251   2.000  16.000    1.577    6.437
## 8                    1.593   0.000   1.006   1.000   7.000    1.360    4.760
## 9                    1.325   0.000   5.121   6.000  25.000    0.796    3.241
## 10                   1.051   0.000  12.346  11.000  47.000    1.262    5.261
## 11                   1.082   1.000   9.893   9.000  33.000    0.927    3.616
## 12                   2.859   0.000   0.813   0.000   6.000    1.554    4.831
## 13                   1.491   0.000   1.574   1.000  13.000    1.772    8.494
## 14                   8.646   0.000   0.164   0.000   4.000    3.842   21.526
## 15                   9.259   0.000   0.556   0.000  10.000    3.178   13.780
## 16                   6.402   0.000   0.698   0.000  10.000    2.691   10.808
## 17                   1.242   0.000   1.402   1.000   7.000    1.034    3.875
## 18                   1.050  -0.985  -0.021  -0.314  13.483    3.404   27.504
## 19                   2.868   0.000  36.459  29.100 331.940    1.714    9.714
## 20                   2.813   0.000  40.234  33.120 331.940    1.475    7.485
##    Percentile25th Percentile75th
## 1         122.605        264.340
## 2          17.000         31.000
## 3           8.000         17.000
## 4          17.000         31.500
## 5           8.000         18.000
## 6           1.000         10.000
## 7           0.000          3.500
## 8           0.000          2.000
## 9           0.000          6.000
## 10          7.000         16.000
## 11          6.000         12.000
## 12          0.000          1.000
## 13          0.000          2.000
## 14          0.000          0.000
## 15          0.000          0.000
## 16          0.000          1.000
## 17          0.000          2.000
## 18         -0.763          0.313
## 19          9.230         53.280
## 20         10.630         60.660
##################################
# Identifying potential data quality issues
##################################

##################################
# Checking for missing observations
##################################
if ((nrow(DQA.Summary[DQA.Summary$NA.Count>0,]))>0){
  print(paste0("Missing observations noted for ",
               (nrow(DQA.Summary[DQA.Summary$NA.Count>0,])),
               " variable(s) with NA.Count>0 and Fill.Rate<1.0."))
  DQA.Summary[DQA.Summary$NA.Count>0,]
} else {
  print("No missing observations noted.")
}
## [1] "No missing observations noted."
##################################
# Checking for zero or near-zero variance predictors
##################################
if (length(names(DQA.Predictors.Factor))==0) {
  print("No factor predictors noted.")
} else if (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])),
               " factor variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance factor predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 124 factor variable(s) with First.Second.Mode.Ratio>5."
##     Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 13        FP013      factor            2                0                 1
## 14        FP014      factor            2                0                 1
## 15        FP015      factor            2                1                 0
## 16        FP016      factor            2                0                 1
## 17        FP017      factor            2                0                 1
## 18        FP018      factor            2                0                 1
## 19        FP019      factor            2                0                 1
## 20        FP020      factor            2                0                 1
## 21        FP021      factor            2                0                 1
## 22        FP022      factor            2                0                 1
## 23        FP023      factor            2                0                 1
## 24        FP024      factor            2                0                 1
## 25        FP025      factor            2                0                 1
## 26        FP026      factor            2                0                 1
## 27        FP027      factor            2                0                 1
## 28        FP028      factor            2                0                 1
## 29        FP029      factor            2                0                 1
## 30        FP030      factor            2                0                 1
## 31        FP031      factor            2                0                 1
## 32        FP032      factor            2                0                 1
## 33        FP033      factor            2                0                 1
## 34        FP034      factor            2                0                 1
## 35        FP035      factor            2                0                 1
## 36        FP036      factor            2                0                 1
## 37        FP037      factor            2                0                 1
## 38        FP038      factor            2                0                 1
## 39        FP039      factor            2                0                 1
## 40        FP040      factor            2                0                 1
## 41        FP041      factor            2                0                 1
## 42        FP042      factor            2                0                 1
## 43        FP043      factor            2                0                 1
## 44        FP044      factor            2                0                 1
## 45        FP045      factor            2                0                 1
## 48        FP048      factor            2                0                 1
## 49        FP049      factor            2                0                 1
## 50        FP050      factor            2                0                 1
## 51        FP051      factor            2                0                 1
## 52        FP052      factor            2                0                 1
## 53        FP053      factor            2                0                 1
## 54        FP054      factor            2                0                 1
## 55        FP055      factor            2                0                 1
## 56        FP056      factor            2                0                 1
## 57        FP057      factor            2                0                 1
## 58        FP058      factor            2                0                 1
## 59        FP059      factor            2                0                 1
## 114       FP114      factor            2                0                 1
## 119       FP119      factor            2                0                 1
## 120       FP120      factor            2                0                 1
## 121       FP121      factor            2                0                 1
## 122       FP122      factor            2                0                 1
## 124       FP124      factor            2                0                 1
## 125       FP125      factor            2                0                 1
## 126       FP126      factor            2                0                 1
## 127       FP127      factor            2                0                 1
## 128       FP128      factor            2                0                 1
## 129       FP129      factor            2                0                 1
## 130       FP130      factor            2                0                 1
## 131       FP131      factor            2                0                 1
## 132       FP132      factor            2                0                 1
## 133       FP133      factor            2                0                 1
## 134       FP134      factor            2                0                 1
## 135       FP135      factor            2                0                 1
## 136       FP136      factor            2                0                 1
## 137       FP137      factor            2                0                 1
## 138       FP138      factor            2                0                 1
## 139       FP139      factor            2                0                 1
## 140       FP140      factor            2                0                 1
## 141       FP141      factor            2                0                 1
## 142       FP142      factor            2                0                 1
## 143       FP143      factor            2                0                 1
## 144       FP144      factor            2                0                 1
## 145       FP145      factor            2                0                 1
## 146       FP146      factor            2                0                 1
## 147       FP147      factor            2                0                 1
## 148       FP148      factor            2                0                 1
## 149       FP149      factor            2                0                 1
## 150       FP150      factor            2                0                 1
## 151       FP151      factor            2                0                 1
## 152       FP152      factor            2                0                 1
## 153       FP153      factor            2                0                 1
## 154       FP154      factor            2                0                 1
## 155       FP155      factor            2                0                 1
## 156       FP156      factor            2                0                 1
## 157       FP157      factor            2                0                 1
## 158       FP158      factor            2                0                 1
## 159       FP159      factor            2                0                 1
## 160       FP160      factor            2                0                 1
## 161       FP161      factor            2                0                 1
## 172       FP172      factor            2                0                 1
## 173       FP173      factor            2                0                 1
## 174       FP174      factor            2                0                 1
## 175       FP175      factor            2                0                 1
## 176       FP176      factor            2                0                 1
## 177       FP177      factor            2                0                 1
## 178       FP178      factor            2                0                 1
## 179       FP179      factor            2                0                 1
## 180       FP180      factor            2                0                 1
## 181       FP181      factor            2                0                 1
## 182       FP182      factor            2                0                 1
## 183       FP183      factor            2                0                 1
## 184       FP184      factor            2                0                 1
## 185       FP185      factor            2                0                 1
## 186       FP186      factor            2                0                 1
## 187       FP187      factor            2                0                 1
## 188       FP188      factor            2                0                 1
## 189       FP189      factor            2                0                 1
## 190       FP190      factor            2                0                 1
## 191       FP191      factor            2                0                 1
## 192       FP192      factor            2                0                 1
## 193       FP193      factor            2                0                 1
## 194       FP194      factor            2                0                 1
## 195       FP195      factor            2                0                 1
## 196       FP196      factor            2                0                 1
## 197       FP197      factor            2                0                 1
## 198       FP198      factor            2                0                 1
## 199       FP199      factor            2                0                 1
## 200       FP200      factor            2                0                 1
## 201       FP201      factor            2                0                 1
## 203       FP203      factor            2                0                 1
## 204       FP204      factor            2                0                 1
## 205       FP205      factor            2                0                 1
## 206       FP206      factor            2                0                 1
## 207       FP207      factor            2                0                 1
## 208       FP208      factor            2                0                 1
##     First.Mode.Count Second.Mode.Count Unique.Count.Ratio
## 13               793               158              0.002
## 14               798               153              0.002
## 15               818               133              0.002
## 16               812               139              0.002
## 17               814               137              0.002
## 18               826               125              0.002
## 19               835               116              0.002
## 20               837               114              0.002
## 21               836               115              0.002
## 22               852                99              0.002
## 23               834               117              0.002
## 24               844               107              0.002
## 25               841               110              0.002
## 26               871                80              0.002
## 27               858                93              0.002
## 28               850               101              0.002
## 29               854                97              0.002
## 30               862                89              0.002
## 31               866                85              0.002
## 32               881                70              0.002
## 33               885                66              0.002
## 34               875                76              0.002
## 35               882                69              0.002
## 36               879                72              0.002
## 37               884                67              0.002
## 38               869                82              0.002
## 39               880                71              0.002
## 40               886                65              0.002
## 41               891                60              0.002
## 42               897                54              0.002
## 43               888                63              0.002
## 44               894                57              0.002
## 45               898                53              0.002
## 48               833               118              0.002
## 49               835               116              0.002
## 50               844               107              0.002
## 51               847               104              0.002
## 52               864                87              0.002
## 53               862                89              0.002
## 54               879                72              0.002
## 55               900                51              0.002
## 56               889                62              0.002
## 57               837               114              0.002
## 58               843               108              0.002
## 59               899                52              0.002
## 114              803               148              0.002
## 119              796               155              0.002
## 120              793               158              0.002
## 121              818               133              0.002
## 122              795               156              0.002
## 124              797               154              0.002
## 125              803               148              0.002
## 126              810               141              0.002
## 127              818               133              0.002
## 128              810               141              0.002
## 129              819               132              0.002
## 130              851               100              0.002
## 131              831               120              0.002
## 132              832               119              0.002
## 133              831               120              0.002
## 134              830               121              0.002
## 135              831               120              0.002
## 136              836               115              0.002
## 137              841               110              0.002
## 138              845               106              0.002
## 139              873                78              0.002
## 140              845               106              0.002
## 141              840               111              0.002
## 142              847               104              0.002
## 143              874                77              0.002
## 144              852                99              0.002
## 145              852                99              0.002
## 146              853                98              0.002
## 147              851               100              0.002
## 148              868                83              0.002
## 149              865                86              0.002
## 150              876                75              0.002
## 151              898                53              0.002
## 152              873                78              0.002
## 153              877                74              0.002
## 154              915                36              0.002
## 155              885                66              0.002
## 156              884                67              0.002
## 157              892                59              0.002
## 158              900                51              0.002
## 159              884                67              0.002
## 160              886                65              0.002
## 161              888                63              0.002
## 172              807               144              0.002
## 173              816               135              0.002
## 174              827               124              0.002
## 175              823               128              0.002
## 176              835               116              0.002
## 177              836               115              0.002
## 178              836               115              0.002
## 179              858                93              0.002
## 180              849               102              0.002
## 181              862                89              0.002
## 182              857                94              0.002
## 183              879                72              0.002
## 184              871                80              0.002
## 185              870                81              0.002
## 186              878                73              0.002
## 187              882                69              0.002
## 188              886                65              0.002
## 189              878                73              0.002
## 190              882                69              0.002
## 191              884                67              0.002
## 192              893                58              0.002
## 193              892                59              0.002
## 194              895                56              0.002
## 195              893                58              0.002
## 196              897                54              0.002
## 197              901                50              0.002
## 198              897                54              0.002
## 199              906                45              0.002
## 200              904                47              0.002
## 201              901                50              0.002
## 203              842               109              0.002
## 204              857                94              0.002
## 205              877                74              0.002
## 206              894                57              0.002
## 207              897                54              0.002
## 208              844               107              0.002
##     First.Second.Mode.Ratio
## 13                    5.019
## 14                    5.216
## 15                    6.150
## 16                    5.842
## 17                    5.942
## 18                    6.608
## 19                    7.198
## 20                    7.342
## 21                    7.270
## 22                    8.606
## 23                    7.128
## 24                    7.888
## 25                    7.645
## 26                   10.887
## 27                    9.226
## 28                    8.416
## 29                    8.804
## 30                    9.685
## 31                   10.188
## 32                   12.586
## 33                   13.409
## 34                   11.513
## 35                   12.783
## 36                   12.208
## 37                   13.194
## 38                   10.598
## 39                   12.394
## 40                   13.631
## 41                   14.850
## 42                   16.611
## 43                   14.095
## 44                   15.684
## 45                   16.943
## 48                    7.059
## 49                    7.198
## 50                    7.888
## 51                    8.144
## 52                    9.931
## 53                    9.685
## 54                   12.208
## 55                   17.647
## 56                   14.339
## 57                    7.342
## 58                    7.806
## 59                   17.288
## 114                   5.426
## 119                   5.135
## 120                   5.019
## 121                   6.150
## 122                   5.096
## 124                   5.175
## 125                   5.426
## 126                   5.745
## 127                   6.150
## 128                   5.745
## 129                   6.205
## 130                   8.510
## 131                   6.925
## 132                   6.992
## 133                   6.925
## 134                   6.860
## 135                   6.925
## 136                   7.270
## 137                   7.645
## 138                   7.972
## 139                  11.192
## 140                   7.972
## 141                   7.568
## 142                   8.144
## 143                  11.351
## 144                   8.606
## 145                   8.606
## 146                   8.704
## 147                   8.510
## 148                  10.458
## 149                  10.058
## 150                  11.680
## 151                  16.943
## 152                  11.192
## 153                  11.851
## 154                  25.417
## 155                  13.409
## 156                  13.194
## 157                  15.119
## 158                  17.647
## 159                  13.194
## 160                  13.631
## 161                  14.095
## 172                   5.604
## 173                   6.044
## 174                   6.669
## 175                   6.430
## 176                   7.198
## 177                   7.270
## 178                   7.270
## 179                   9.226
## 180                   8.324
## 181                   9.685
## 182                   9.117
## 183                  12.208
## 184                  10.887
## 185                  10.741
## 186                  12.027
## 187                  12.783
## 188                  13.631
## 189                  12.027
## 190                  12.783
## 191                  13.194
## 192                  15.397
## 193                  15.119
## 194                  15.982
## 195                  15.397
## 196                  16.611
## 197                  18.020
## 198                  16.611
## 199                  20.133
## 200                  19.234
## 201                  18.020
## 203                   7.725
## 204                   9.117
## 205                  11.851
## 206                  15.684
## 207                  16.611
## 208                   7.888
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])),
               " numeric variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance numeric predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 3 numeric variable(s) with First.Second.Mode.Ratio>5."
##    Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 14   NumSulfer     integer            5              0.005            0.000
## 15 NumChlorine     integer           11              0.012            0.000
## 16  NumHalogen     integer           11              0.012            0.000
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 14             1.000              830                96                   8.646
## 15             1.000              750                81                   9.259
## 16             1.000              685               107                   6.402
##    Minimum  Mean Median Maximum Skewness Kurtosis Percentile25th Percentile75th
## 14   0.000 0.164  0.000   4.000    3.842   21.526          0.000          0.000
## 15   0.000 0.556  0.000  10.000    3.178   13.780          0.000          0.000
## 16   0.000 0.698  0.000  10.000    2.691   10.808          0.000          1.000
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])),
               " numeric variable(s) with Unique.Count.Ratio<0.01."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,]
} else {
  print("No low variance numeric predictors due to low unique count ratio noted.")
}
## [1] "Low variance observed for 4 numeric variable(s) with Unique.Count.Ratio<0.01."
##    Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 8  NumDblBonds     integer            8              0.008            0.000
## 12 NumNitrogen     integer            7              0.007            0.000
## 14   NumSulfer     integer            5              0.005            0.000
## 17    NumRings     integer            8              0.008            1.000
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 8              1.000              427               268                   1.593
## 12             1.000              546               191                   2.859
## 14             1.000              830                96                   8.646
## 17             0.000              323               260                   1.242
##    Minimum  Mean Median Maximum Skewness Kurtosis Percentile25th Percentile75th
## 8    0.000 1.006  1.000   7.000    1.360    4.760          0.000          2.000
## 12   0.000 0.813  0.000   6.000    1.554    4.831          0.000          1.000
## 14   0.000 0.164  0.000   4.000    3.842   21.526          0.000          0.000
## 17   0.000 1.402  1.000   7.000    1.034    3.875          0.000          2.000
##################################
# Checking for skewed predictors
##################################
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])>0){
  print(paste0("High skewness observed for ",
  (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])),
  " numeric variable(s) with Skewness>3 or Skewness<(-3)."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                 as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),]
} else {
  print("No skewed numeric predictors noted.")
}
## [1] "High skewness observed for 3 numeric variable(s) with Skewness>3 or Skewness<(-3)."
##          Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 14         NumSulfer     integer            5              0.005
## 15       NumChlorine     integer           11              0.012
## 18 HydrophilicFactor     numeric          369              0.388
##    First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 14            0.000             1.000              830                96
## 15            0.000             1.000              750                81
## 18           -0.828            -0.158               21                20
##    First.Second.Mode.Ratio Minimum   Mean Median Maximum Skewness Kurtosis
## 14                   8.646   0.000  0.164  0.000   4.000    3.842   21.526
## 15                   9.259   0.000  0.556  0.000  10.000    3.178   13.780
## 18                   1.050  -0.985 -0.021 -0.314  13.483    3.404   27.504
##    Percentile25th Percentile75th
## 14          0.000          0.000
## 15          0.000          0.000
## 18         -0.763          0.313

1.3 Data Preprocessing

1.3.1 Outlier


[A] Outliers noted for 20 variables with the numeric data visualized through a boxplot including observations classified as suspected outliers using the IQR criterion. The IQR criterion means that all observations above the (75th percentile + 1.5 x IQR) or below the (25th percentile - 1.5 x IQR) are suspected outliers, where IQR is the difference between the third quartile (75th percentile) and first quartile (25th percentile). Outlier treatment for numerical stability remains optional depending on potential model requirements for the subsequent steps.
     [A.1] MolWeight variable (8 outliers detected)
     [A.2] NumAtoms variable (44 outliers detected)
     [A.3] NumNonHAtoms variable (15 outliers detected)
     [A.4] NumBonds variable (51 outliers detected)
     [A.5] NumNonHBonds variable (18 outliers detected)
     [A.6] NumMultBonds variable (6 outliers detected)
     [A.7] NumRotBonds variable (23 outliers detected)
     [A.8] NumDblBonds variable (3 outliers detected)
     [A.9] NumAromaticBonds variable (35 outliers detected)
     [A.10] NumHydrogen variable (32 outliers detected)
     [A.11] NumCarbon variable (35 outliers detected)
     [A.12] NumNitrogen variable (91 outliers detected)
     [A.13] NumOxygen variable (36 outliers detected)
     [A.14] NumSulfer variable (121 outliers detected)
     [A.15] NumChlorine variable (201 outliers detected)
     [A.16] NumHalogen variable (99 outliers detected)
     [A.17] NumRings variable (4 outliers detected)
     [A.18] HydrophilicFactor variable (53 outliers detected)
     [A.19] SurfaceArea1 variable (19 outliers detected)
     [A.20] SurfaceArea2 variable (12 outliers detected)

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Identifying outliers for the numeric predictors
##################################
OutlierCountList <- c()

for (i in 1:ncol(DPA.Predictors.Numeric)) {
  Outliers <- boxplot.stats(DPA.Predictors.Numeric[,i])$out
  OutlierCount <- length(Outliers)
  OutlierCountList <- append(OutlierCountList,OutlierCount)
  OutlierIndices <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
  boxplot(DPA.Predictors.Numeric[,i], 
          ylab = names(DPA.Predictors.Numeric)[i], 
          main = names(DPA.Predictors.Numeric)[i],
          horizontal=TRUE)
  mtext(paste0(OutlierCount, " Outlier(s) Detected"))
}

OutlierCountSummary <- as.data.frame(cbind(names(DPA.Predictors.Numeric),(OutlierCountList)))
names(OutlierCountSummary) <- c("NumericPredictors","OutlierCount")
OutlierCountSummary$OutlierCount <- as.numeric(as.character(OutlierCountSummary$OutlierCount))
NumericPredictorWithOutlierCount <- nrow(OutlierCountSummary[OutlierCountSummary$OutlierCount>0,])
print(paste0(NumericPredictorWithOutlierCount, " numeric variable(s) were noted with outlier(s)." ))
## [1] "20 numeric variable(s) were noted with outlier(s)."
##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA.Predictors.Numeric))
Data summary
Name DPA.Predictors.Numeric
Number of rows 951
Number of columns 20
_______________________
Column type frequency:
numeric 20
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA.Predictors.Numeric)
## [1] 951  20

1.3.2 Zero and Near-Zero Variance


[A] Low variance noted for 127 variables from the previous data quality assessment using a lower threshold.

[B] Low variance noted for 3 variables using a preprocessing summary from the caret package. The nearZeroVar method using both the freqCut and uniqueCut criteria set at 95/5 and 10, respectively, were applied on the dataset.
     [B.1] FP154 variable (factor)
     [B.2] FP199 variable (factor)
     [B.3] FP200 variable (factor)

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA))
Data summary
Name DPA
Number of rows 951
Number of columns 229
_______________________
Column type frequency:
factor 1
numeric 228
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 3 Low: 427, Mid: 283, Hig: 241

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP003 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP004 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP009 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP154 0 1 0.04 0.19 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP199 0 1 0.05 0.21 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP200 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
##################################
# Identifying columns with low variance
###################################
DPA_LowVariance <- nearZeroVar(DPA,
                               freqCut = 95/5,
                               uniqueCut = 10,
                               saveMetrics= TRUE)
(DPA_LowVariance[DPA_LowVariance$nzv,])
##       freqRatio percentUnique zeroVar  nzv
## FP154  25.41667     0.2103049   FALSE TRUE
## FP199  20.13333     0.2103049   FALSE TRUE
## FP200  19.23404     0.2103049   FALSE TRUE
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
  
  print("No low variance predictors noted.")
  
} else {

  print(paste0("Low variance observed for ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
  
  DPA_LowVarianceForRemoval <- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
  
  print(paste0("Low variance can be resolved by removing ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LowVarianceForRemoval) {
  DPA_LowVarianceRemovedVariable <- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LowVarianceRemovedVariable))
  }
  
  DPA %>%
  skim() %>%
  dplyr::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))

  ##################################
  # Filtering out columns with low variance
  #################################
  DPA_ExcludedLowVariance <- DPA[,!names(DPA) %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,])]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedLowVariance_Skimmed <- skim(DPA_ExcludedLowVariance))
}
## [1] "Low variance observed for 3 numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."
## [1] "Low variance can be resolved by removing 3 numeric variable(s)."
## [1] "Variable 1 for removal: FP154"
## [1] "Variable 2 for removal: FP199"
## [1] "Variable 3 for removal: FP200"
Data summary
Name DPA_ExcludedLowVariance
Number of rows 951
Number of columns 226
_______________________
Column type frequency:
factor 1
numeric 225
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 3 Low: 427, Mid: 283, Hig: 241

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP003 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP004 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP009 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_ExcludedLowVariance)
## [1] 951 226

1.3.3 Collinearity


[A] High correlation > 95% were noted for 2 variable pairs as confirmed using the preprocessing summaries from the caret and lares packages.
     [A.1] NumNonHAtoms and NumNonHBonds variables (numeric)
     [A.2] NumMultBonds and NumAromaticBonds variables (numeric)
     [A.3] NumAtoms and NumBonds variables (numeric)

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Visualizing pairwise correlation between predictors
##################################
DPA_CorrelationTest <- cor.mtest(DPA.Predictors.Numeric,
                       method = "pearson",
                       conf.level = .95)

corrplot(cor(DPA.Predictors.Numeric,
             method = "pearson",
             use="pairwise.complete.obs"), 
         method = "circle",
         type = "upper", 
         order = "original", 
         tl.col = "black", 
         tl.cex = 0.75,
         tl.srt = 90, 
         sig.level = 0.05, 
         p.mat = DPA_CorrelationTest$p,
         insig = "blank")

##################################
# Identifying the highly correlated variables
##################################
DPA_Correlation <-  cor(DPA.Predictors.Numeric, 
                        method = "pearson",
                        use="pairwise.complete.obs")
(DPA_HighlyCorrelatedCount <- sum(abs(DPA_Correlation[upper.tri(DPA_Correlation)]) > 0.95))
## [1] 3
if (DPA_HighlyCorrelatedCount == 0) {
  print("No highly correlated predictors noted.")
} else {
  print(paste0("High correlation observed for ",
               (DPA_HighlyCorrelatedCount),
               " pairs of numeric variable(s) with Correlation.Coefficient>0.95."))
  
  (DPA_HighlyCorrelatedPairs <- corr_cross(DPA.Predictors.Numeric,
  max_pvalue = 0.05, 
  top = DPA_HighlyCorrelatedCount,
  rm.na = TRUE,
  grid = FALSE
))
  
}
## [1] "High correlation observed for 3 pairs of numeric variable(s) with Correlation.Coefficient>0.95."

if (DPA_HighlyCorrelatedCount > 0) {
  DPA_HighlyCorrelated <- findCorrelation(DPA_Correlation, cutoff = 0.95)
  
  (DPA_HighlyCorrelatedForRemoval <- length(DPA_HighlyCorrelated))
  
  print(paste0("High correlation can be resolved by removing ",
               (DPA_HighlyCorrelatedForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_HighlyCorrelatedForRemoval) {
  DPA_HighlyCorrelatedRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_HighlyCorrelated[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_HighlyCorrelatedRemovedVariable))
  }
  
  ##################################
  # Filtering out columns with high correlation
  #################################
  DPA_ExcludedHighCorrelation <- DPA[,-DPA_HighlyCorrelated]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedHighCorrelation_Skimmed <- skim(DPA_ExcludedHighCorrelation))

}
## [1] "High correlation can be resolved by removing 3 numeric variable(s)."
## [1] "Variable 1 for removal: NumNonHAtoms"
## [1] "Variable 2 for removal: NumBonds"
## [1] "Variable 3 for removal: NumAromaticBonds"
Data summary
Name DPA_ExcludedHighCorrelati…
Number of rows 951
Number of columns 226
_______________________
Column type frequency:
factor 1
numeric 225
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 3 Low: 427, Mid: 283, Hig: 241

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP154 0 1 0.04 0.19 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP199 0 1 0.05 0.21 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP200 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumNonHBonds 0 1 13.56 7.57 1.00 8.00 12.00 18.00 50.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_ExcludedHighCorrelation)
## [1] 951 226

1.3.4 Linear Dependencies


[A] Linear dependencies noted for 2 subsets of variables using the preprocessing summary from the caret package applying the findLinearCombos method which utilizes the QR decomposition of a matrix to enumerate sets of linear combinations (if they exist).

[B] Subset 1
     [B.1] NumNonHBonds variable (numeric)
     [B.2] NumAtoms variable (numeric)
     [B.3] NumNonHAtoms variable (numeric)
     [B.3] NumBonds variable (numeric)

[C] Subset 2
     [C.1] NumHydrogen variable (numeric)
     [C.2] NumAtoms variable (numeric)
     [C.3] NumNonHAtoms variable (numeric)

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]

##################################
# Identifying the linearly dependent variables
##################################
DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)

(DPA_LinearlyDependentCount <- length(DPA_LinearlyDependent$linearCombos))
## [1] 2
if (DPA_LinearlyDependentCount == 0) {
  print("No linearly dependent predictors noted.")
} else {
  print(paste0("Linear dependency observed for ",
               (DPA_LinearlyDependentCount),
               " subset(s) of numeric variable(s)."))
  
  for (i in 1:DPA_LinearlyDependentCount) {
    DPA_LinearlyDependentSubset <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$linearCombos[[i]]]
    print(paste0("Linear dependent variable(s) for subset ",
                 i,
                 " include: ",
                 DPA_LinearlyDependentSubset))
  }
  
}
## [1] "Linear dependency observed for 2 subset(s) of numeric variable(s)."
## [1] "Linear dependent variable(s) for subset 1 include: NumNonHBonds"
## [2] "Linear dependent variable(s) for subset 1 include: NumAtoms"    
## [3] "Linear dependent variable(s) for subset 1 include: NumNonHAtoms"
## [4] "Linear dependent variable(s) for subset 1 include: NumBonds"    
## [1] "Linear dependent variable(s) for subset 2 include: NumHydrogen" 
## [2] "Linear dependent variable(s) for subset 2 include: NumAtoms"    
## [3] "Linear dependent variable(s) for subset 2 include: NumNonHAtoms"
##################################
# Identifying the linearly dependent variables for removal
##################################

if (DPA_LinearlyDependentCount > 0) {
  DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)
  
  DPA_LinearlyDependentForRemoval <- length(DPA_LinearlyDependent$remove)
  
  print(paste0("Linear dependency can be resolved by removing ",
               (DPA_LinearlyDependentForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LinearlyDependentForRemoval) {
  DPA_LinearlyDependentRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$remove[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LinearlyDependentRemovedVariable))
  }
  
  ##################################
  # Filtering out columns with linear dependency
  #################################
  DPA_ExcludedLinearlyDependent <- DPA[,-DPA_LinearlyDependent$remove]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedLinearlyDependent_Skimmed <- skim(DPA_ExcludedLinearlyDependent))

}
## [1] "Linear dependency can be resolved by removing 2 numeric variable(s)."
## [1] "Variable 1 for removal: NumNonHBonds"
## [1] "Variable 2 for removal: NumHydrogen"
Data summary
Name DPA_ExcludedLinearlyDepen…
Number of rows 951
Number of columns 227
_______________________
Column type frequency:
factor 1
numeric 226
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 3 Low: 427, Mid: 283, Hig: 241

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
FP001 0 1 0.49 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP002 0 1 0.54 0.50 0.00 0.00 1.00 1.00 1.00 ▇▁▁▁▇
FP003 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP004 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP005 0 1 0.58 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP006 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP007 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP008 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP009 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP010 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP011 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP012 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP013 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP014 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP015 0 1 0.86 0.35 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
FP016 0 1 0.15 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP017 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP018 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP019 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP020 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP021 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP022 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP023 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP024 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP025 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP026 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP027 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP028 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP029 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP030 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP031 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP032 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP033 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP034 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP035 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP036 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP037 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP038 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP039 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP040 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP041 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP042 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP043 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP044 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP045 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP046 0 1 0.32 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP047 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP048 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP049 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP050 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP051 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP052 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP053 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP054 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP055 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP056 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP057 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP058 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP059 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP060 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP061 0 1 0.45 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP062 0 1 0.44 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP063 0 1 0.43 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP064 0 1 0.42 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
FP065 0 1 0.59 0.49 0.00 0.00 1.00 1.00 1.00 ▆▁▁▁▇
FP066 0 1 0.61 0.49 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP067 0 1 0.38 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP068 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP069 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP070 0 1 0.36 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP071 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP072 0 1 0.66 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP073 0 1 0.31 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP074 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP075 0 1 0.34 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP076 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP077 0 1 0.32 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP078 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP079 0 1 0.69 0.46 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP080 0 1 0.30 0.46 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP081 0 1 0.28 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP082 0 1 0.71 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP083 0 1 0.27 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP084 0 1 0.29 0.45 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP085 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP086 0 1 0.27 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP087 0 1 0.73 0.45 0.00 0.00 1.00 1.00 1.00 ▃▁▁▁▇
FP088 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP089 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP090 0 1 0.25 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP091 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP092 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP093 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP094 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP095 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP096 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP097 0 1 0.24 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP098 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP099 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP100 0 1 0.23 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP101 0 1 0.24 0.43 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP102 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP103 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP104 0 1 0.22 0.42 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP105 0 1 0.22 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP106 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP107 0 1 0.21 0.41 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP108 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP109 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP110 0 1 0.21 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP111 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP112 0 1 0.19 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP113 0 1 0.20 0.40 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP114 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP115 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP116 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP117 0 1 0.18 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP118 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP119 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP120 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP121 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP122 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP123 0 1 0.17 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP124 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP125 0 1 0.16 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP126 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP127 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP128 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP129 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP130 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP131 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP132 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP133 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP134 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP135 0 1 0.13 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP136 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP137 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP138 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP139 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP140 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP141 0 1 0.12 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP142 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP143 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP144 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP145 0 1 0.10 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP146 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP147 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP148 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP149 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP150 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP151 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP152 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP153 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP154 0 1 0.04 0.19 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP155 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP156 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP157 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP158 0 1 0.05 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP159 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP160 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP161 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP162 0 1 0.50 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP163 0 1 0.48 0.50 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▇
FP164 0 1 0.63 0.48 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP165 0 1 0.35 0.48 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▅
FP166 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP167 0 1 0.33 0.47 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP168 0 1 0.67 0.47 0.00 0.00 1.00 1.00 1.00 ▅▁▁▁▇
FP169 0 1 0.19 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP170 0 1 0.18 0.39 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP171 0 1 0.17 0.38 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP172 0 1 0.15 0.36 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
FP173 0 1 0.14 0.35 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP174 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP175 0 1 0.13 0.34 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP176 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP177 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP178 0 1 0.12 0.33 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP179 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP180 0 1 0.11 0.31 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP181 0 1 0.09 0.29 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP182 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP183 0 1 0.08 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP184 0 1 0.08 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP185 0 1 0.09 0.28 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP186 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP187 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP188 0 1 0.07 0.25 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP189 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP190 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP191 0 1 0.07 0.26 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP192 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP193 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP194 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP195 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP196 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP197 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP198 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP199 0 1 0.05 0.21 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP200 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP201 0 1 0.05 0.22 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP202 0 1 0.26 0.44 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▃
FP203 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP204 0 1 0.10 0.30 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP205 0 1 0.08 0.27 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP206 0 1 0.06 0.24 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP207 0 1 0.06 0.23 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
FP208 0 1 0.11 0.32 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▁
MolWeight 0 1 201.65 97.91 46.09 122.60 179.23 264.34 665.81 ▇▆▂▁▁
NumAtoms 0 1 25.51 12.61 5.00 17.00 22.00 31.00 94.00 ▇▆▂▁▁
NumNonHAtoms 0 1 13.16 6.50 2.00 8.00 12.00 17.00 47.00 ▇▆▂▁▁
NumBonds 0 1 25.91 13.48 4.00 17.00 23.00 31.50 97.00 ▇▇▂▁▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumCarbon 0 1 9.89 5.29 1.00 6.00 9.00 12.00 33.00 ▇▇▃▁▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_ExcludedLinearlyDependent)
## [1] 951 227

1.3.5 Shape Transformation


[A] A number of numeric variables in the dataset were observed to be right-skewed which required shape transformation for data distribution stability. Considering that all numeric variables were strictly positive values, the BoxCox method from the caret package was used to transform their distributional shapes.

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Applying a Box-Cox transformation
##################################
DPA_BoxCox <- preProcess(DPA.Predictors.Numeric, method = c("BoxCox"))
DPA_BoxCoxTransformed <- predict(DPA_BoxCox, DPA.Predictors.Numeric)

##################################
# Gathering descriptive statistics
##################################
(DPA_BoxCoxTransformedSkimmed <- skim(DPA_BoxCoxTransformed))
Data summary
Name DPA_BoxCoxTransformed
Number of rows 951
Number of columns 20
_______________________
Column type frequency:
numeric 20
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 5.19 0.48 3.83 4.81 5.19 5.58 6.50 ▁▆▇▆▁
NumAtoms 0 1 3.13 0.48 1.61 2.83 3.09 3.43 4.54 ▁▃▇▃▁
NumNonHAtoms 0 1 2.46 0.50 0.69 2.08 2.48 2.83 3.85 ▁▃▇▇▁
NumBonds 0 1 4.39 0.96 1.60 3.81 4.36 4.97 7.48 ▁▅▇▃▁
NumNonHBonds 0 1 3.21 0.95 0.00 2.58 3.22 3.91 5.93 ▁▃▇▆▁
NumMultBonds 0 1 6.15 5.17 0.00 1.00 6.00 10.00 25.00 ▇▆▃▁▁
NumRotBonds 0 1 2.25 2.41 0.00 0.00 2.00 3.50 16.00 ▇▂▁▁▁
NumDblBonds 0 1 1.01 1.21 0.00 0.00 1.00 2.00 7.00 ▇▂▁▁▁
NumAromaticBonds 0 1 5.12 5.26 0.00 0.00 6.00 6.00 25.00 ▇▆▃▁▁
NumHydrogen 0 1 12.35 7.32 0.00 7.00 11.00 16.00 47.00 ▇▇▂▁▁
NumCarbon 0 1 3.54 1.34 0.00 2.62 3.52 4.25 7.62 ▂▇▇▃▁
NumNitrogen 0 1 0.81 1.19 0.00 0.00 0.00 1.00 6.00 ▇▂▁▁▁
NumOxygen 0 1 1.57 1.73 0.00 0.00 1.00 2.00 13.00 ▇▂▁▁▁
NumSulfer 0 1 0.16 0.49 0.00 0.00 0.00 0.00 4.00 ▇▁▁▁▁
NumChlorine 0 1 0.56 1.40 0.00 0.00 0.00 0.00 10.00 ▇▁▁▁▁
NumHalogen 0 1 0.70 1.47 0.00 0.00 0.00 1.00 10.00 ▇▁▁▁▁
NumRings 0 1 1.40 1.30 0.00 0.00 1.00 2.00 7.00 ▇▃▂▁▁
HydrophilicFactor 0 1 -0.02 1.13 -0.98 -0.76 -0.31 0.31 13.48 ▇▁▁▁▁
SurfaceArea1 0 1 36.46 35.29 0.00 9.23 29.10 53.28 331.94 ▇▂▁▁▁
SurfaceArea2 0 1 40.23 38.12 0.00 10.63 33.12 60.66 331.94 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA_BoxCoxTransformed)
## [1] 951  20

1.3.6 Centering and Scaling


[A] To maintain numerical stability during modelling, centering and scaling transformations were applied on the transformed numeric variables. The center method from the caret package was implemented which subtracts the average value of a numeric variable to all the values. As a result of centering, the variables had zero mean values. In addition, the scale method, also from the caret package, was applied which performs a center transformation with each value of the variable divided by its standard deviation. Scaling the data coerced the values to have a common standard deviation of one.

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Solubility_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,-(grep("FP", names(DPA.Predictors)))]

##################################
# Applying a Box-Cox transformation
##################################
DPA_BoxCox <- preProcess(DPA.Predictors.Numeric, method = c("BoxCox"))
DPA_BoxCoxTransformed <- predict(DPA_BoxCox, DPA.Predictors.Numeric)

##################################
# Applying a center and scale data transformation
##################################
DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaled <- preProcess(DPA_BoxCoxTransformed, method = c("center","scale"))
DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed <- predict(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaled, DPA_BoxCoxTransformed)

##################################
# Gathering descriptive statistics
##################################
(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformedSkimmed <- skim(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed))
Data summary
Name DPA.Predictors.Numeric_Bo…
Number of rows 951
Number of columns 20
_______________________
Column type frequency:
numeric 20
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 0 1 -2.84 -0.80 -0.01 0.80 2.72 ▁▆▇▆▁
NumAtoms 0 1 0 1 -3.16 -0.61 -0.07 0.64 2.95 ▁▃▇▃▁
NumNonHAtoms 0 1 0 1 -3.53 -0.76 0.06 0.75 2.79 ▁▃▇▇▁
NumBonds 0 1 0 1 -2.92 -0.61 -0.04 0.60 3.23 ▁▅▇▃▁
NumNonHBonds 0 1 0 1 -3.38 -0.67 0.01 0.74 2.86 ▁▃▇▆▁
NumMultBonds 0 1 0 1 -1.19 -1.00 -0.03 0.74 3.65 ▇▇▃▁▁
NumRotBonds 0 1 0 1 -0.93 -0.93 -0.10 0.52 5.71 ▇▂▁▁▁
NumDblBonds 0 1 0 1 -0.83 -0.83 -0.01 0.82 4.95 ▇▂▁▁▁
NumAromaticBonds 0 1 0 1 -0.97 -0.97 0.17 0.17 3.78 ▇▆▃▁▁
NumHydrogen 0 1 0 1 -1.69 -0.73 -0.18 0.50 4.74 ▇▇▂▁▁
NumCarbon 0 1 0 1 -2.64 -0.69 -0.01 0.54 3.06 ▂▇▇▃▁
NumNitrogen 0 1 0 1 -0.69 -0.69 -0.69 0.16 4.37 ▇▂▁▁▁
NumOxygen 0 1 0 1 -0.91 -0.91 -0.33 0.25 6.61 ▇▂▁▁▁
NumSulfer 0 1 0 1 -0.34 -0.34 -0.34 -0.34 7.86 ▇▁▁▁▁
NumChlorine 0 1 0 1 -0.40 -0.40 -0.40 -0.40 6.74 ▇▁▁▁▁
NumHalogen 0 1 0 1 -0.47 -0.47 -0.47 0.20 6.32 ▇▁▁▁▁
NumRings 0 1 0 1 -1.08 -1.08 -0.31 0.46 4.31 ▇▃▂▁▁
HydrophilicFactor 0 1 0 1 -0.86 -0.66 -0.26 0.30 11.99 ▇▁▁▁▁
SurfaceArea1 0 1 0 1 -1.03 -0.77 -0.21 0.48 8.37 ▇▂▁▁▁
SurfaceArea2 0 1 0 1 -1.06 -0.78 -0.19 0.54 7.65 ▇▂▁▁▁
###################################
# Verifying the data dimensions
###################################
dim(DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed)
## [1] 951  20

1.3.7 Pre-Processed Dataset


[A] 1267 rows (observations)
     [A.1] Train Set = 951 observations
     [A.2] Test Set = 316 observations

[B] 221 columns (variables)
     [B.1] 1/221 response = Class variable (factor)
            [B.1.1] Levels = Log_Solubility_Class=Low < Log_Solubility_Class=Mid < Log_Solubility_Class=High
     [B.2] 220/221 predictors = All remaining variables (205/220 factor + 15/220 numeric)

[C] Pre-processing actions applied:
     [C.1] Centering, scaling and shape transformation applied to improve data quality
     [C.2] No outlier treatment applied since the high values noted were contextually valid and sensible
     [C.3] 3 predictors removed due to zero or near-zero variance
     [C.4] 3 predictors removed due to high correlation
     [C.5] 2 predictors removed due to linear dependencies

Code Chunk | Output
##################################
# Creating the pre-modelling
# train set
##################################
Log_Solubility_Class <- DPA$Log_Solubility_Class 
PMA.Predictors.Factor   <- DPA.Predictors[,(grep("FP", names(DPA.Predictors)))]
PMA.Predictors.Factor   <- as.data.frame(lapply(PMA.Predictors.Factor,factor))
PMA.Predictors.Numeric  <- DPA.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed
PMA_BoxCoxTransformed_CenteredScaledTransformed <- cbind(Log_Solubility_Class,PMA.Predictors.Factor,PMA.Predictors.Numeric)

##################################
# Filtering out columns noted with data quality issues including
# zero and near-zero variance,
# high correlation and linear dependencies
# to create the pre-modelling dataset
##################################
PMA_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation <- PMA_BoxCoxTransformed_CenteredScaledTransformed[,!names(PMA_BoxCoxTransformed_CenteredScaledTransformed) %in% c("FP154","FP199","FP200","NumNonHBonds","NumHydrogen","NumNonHAtoms","NumAromaticBonds","NumAtoms")]

PMA_PreModelling_Train <- PMA_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation

##################################
# Gathering descriptive statistics
##################################
(PMA_PreModelling_Train_Skimmed <- skim(PMA_PreModelling_Train))
Data summary
Name PMA_PreModelling_Train
Number of rows 951
Number of columns 221
_______________________
Column type frequency:
factor 206
numeric 15
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 3 Low: 427, Mid: 283, Hig: 241
FP001 0 1 FALSE 2 0: 482, 1: 469
FP002 0 1 FALSE 2 1: 513, 0: 438
FP003 0 1 FALSE 2 0: 536, 1: 415
FP004 0 1 FALSE 2 1: 556, 0: 395
FP005 0 1 FALSE 2 1: 551, 0: 400
FP006 0 1 FALSE 2 0: 570, 1: 381
FP007 0 1 FALSE 2 0: 605, 1: 346
FP008 0 1 FALSE 2 0: 641, 1: 310
FP009 0 1 FALSE 2 0: 685, 1: 266
FP010 0 1 FALSE 2 0: 781, 1: 170
FP011 0 1 FALSE 2 0: 747, 1: 204
FP012 0 1 FALSE 2 0: 783, 1: 168
FP013 0 1 FALSE 2 0: 793, 1: 158
FP014 0 1 FALSE 2 0: 798, 1: 153
FP015 0 1 FALSE 2 1: 818, 0: 133
FP016 0 1 FALSE 2 0: 812, 1: 139
FP017 0 1 FALSE 2 0: 814, 1: 137
FP018 0 1 FALSE 2 0: 826, 1: 125
FP019 0 1 FALSE 2 0: 835, 1: 116
FP020 0 1 FALSE 2 0: 837, 1: 114
FP021 0 1 FALSE 2 0: 836, 1: 115
FP022 0 1 FALSE 2 0: 852, 1: 99
FP023 0 1 FALSE 2 0: 834, 1: 117
FP024 0 1 FALSE 2 0: 844, 1: 107
FP025 0 1 FALSE 2 0: 841, 1: 110
FP026 0 1 FALSE 2 0: 871, 1: 80
FP027 0 1 FALSE 2 0: 858, 1: 93
FP028 0 1 FALSE 2 0: 850, 1: 101
FP029 0 1 FALSE 2 0: 854, 1: 97
FP030 0 1 FALSE 2 0: 862, 1: 89
FP031 0 1 FALSE 2 0: 866, 1: 85
FP032 0 1 FALSE 2 0: 881, 1: 70
FP033 0 1 FALSE 2 0: 885, 1: 66
FP034 0 1 FALSE 2 0: 875, 1: 76
FP035 0 1 FALSE 2 0: 882, 1: 69
FP036 0 1 FALSE 2 0: 879, 1: 72
FP037 0 1 FALSE 2 0: 884, 1: 67
FP038 0 1 FALSE 2 0: 869, 1: 82
FP039 0 1 FALSE 2 0: 880, 1: 71
FP040 0 1 FALSE 2 0: 886, 1: 65
FP041 0 1 FALSE 2 0: 891, 1: 60
FP042 0 1 FALSE 2 0: 897, 1: 54
FP043 0 1 FALSE 2 0: 888, 1: 63
FP044 0 1 FALSE 2 0: 894, 1: 57
FP045 0 1 FALSE 2 0: 898, 1: 53
FP046 0 1 FALSE 2 0: 651, 1: 300
FP047 0 1 FALSE 2 0: 698, 1: 253
FP048 0 1 FALSE 2 0: 833, 1: 118
FP049 0 1 FALSE 2 0: 835, 1: 116
FP050 0 1 FALSE 2 0: 844, 1: 107
FP051 0 1 FALSE 2 0: 847, 1: 104
FP052 0 1 FALSE 2 0: 864, 1: 87
FP053 0 1 FALSE 2 0: 862, 1: 89
FP054 0 1 FALSE 2 0: 879, 1: 72
FP055 0 1 FALSE 2 0: 900, 1: 51
FP056 0 1 FALSE 2 0: 889, 1: 62
FP057 0 1 FALSE 2 0: 837, 1: 114
FP058 0 1 FALSE 2 0: 843, 1: 108
FP059 0 1 FALSE 2 0: 899, 1: 52
FP060 0 1 FALSE 2 0: 493, 1: 458
FP061 0 1 FALSE 2 0: 526, 1: 425
FP062 0 1 FALSE 2 0: 535, 1: 416
FP063 0 1 FALSE 2 0: 546, 1: 405
FP064 0 1 FALSE 2 0: 555, 1: 396
FP065 0 1 FALSE 2 1: 564, 0: 387
FP066 0 1 FALSE 2 1: 580, 0: 371
FP067 0 1 FALSE 2 0: 590, 1: 361
FP068 0 1 FALSE 2 0: 607, 1: 344
FP069 0 1 FALSE 2 0: 607, 1: 344
FP070 0 1 FALSE 2 0: 613, 1: 338
FP071 0 1 FALSE 2 0: 640, 1: 311
FP072 0 1 FALSE 2 1: 626, 0: 325
FP073 0 1 FALSE 2 0: 656, 1: 295
FP074 0 1 FALSE 2 0: 642, 1: 309
FP075 0 1 FALSE 2 0: 629, 1: 322
FP076 0 1 FALSE 2 0: 639, 1: 312
FP077 0 1 FALSE 2 0: 646, 1: 305
FP078 0 1 FALSE 2 0: 662, 1: 289
FP079 0 1 FALSE 2 1: 656, 0: 295
FP080 0 1 FALSE 2 0: 663, 1: 288
FP081 0 1 FALSE 2 0: 686, 1: 265
FP082 0 1 FALSE 2 1: 679, 0: 272
FP083 0 1 FALSE 2 0: 691, 1: 260
FP084 0 1 FALSE 2 0: 679, 1: 272
FP085 0 1 FALSE 2 0: 708, 1: 243
FP086 0 1 FALSE 2 0: 695, 1: 256
FP087 0 1 FALSE 2 1: 691, 0: 260
FP088 0 1 FALSE 2 0: 701, 1: 250
FP089 0 1 FALSE 2 0: 716, 1: 235
FP090 0 1 FALSE 2 0: 714, 1: 237
FP091 0 1 FALSE 2 0: 737, 1: 214
FP092 0 1 FALSE 2 0: 719, 1: 232
FP093 0 1 FALSE 2 0: 719, 1: 232
FP094 0 1 FALSE 2 0: 731, 1: 220
FP095 0 1 FALSE 2 0: 742, 1: 209
FP096 0 1 FALSE 2 0: 744, 1: 207
FP097 0 1 FALSE 2 0: 727, 1: 224
FP098 0 1 FALSE 2 0: 725, 1: 226
FP099 0 1 FALSE 2 0: 735, 1: 216
FP100 0 1 FALSE 2 0: 731, 1: 220
FP101 0 1 FALSE 2 0: 726, 1: 225
FP102 0 1 FALSE 2 0: 759, 1: 192
FP103 0 1 FALSE 2 0: 743, 1: 208
FP104 0 1 FALSE 2 0: 739, 1: 212
FP105 0 1 FALSE 2 0: 746, 1: 205
FP106 0 1 FALSE 2 0: 769, 1: 182
FP107 0 1 FALSE 2 0: 750, 1: 201
FP108 0 1 FALSE 2 0: 756, 1: 195
FP109 0 1 FALSE 2 0: 783, 1: 168
FP110 0 1 FALSE 2 0: 755, 1: 196
FP111 0 1 FALSE 2 0: 764, 1: 187
FP112 0 1 FALSE 2 0: 766, 1: 185
FP113 0 1 FALSE 2 0: 765, 1: 186
FP114 0 1 FALSE 2 0: 803, 1: 148
FP115 0 1 FALSE 2 0: 781, 1: 170
FP116 0 1 FALSE 2 0: 768, 1: 183
FP117 0 1 FALSE 2 0: 781, 1: 170
FP118 0 1 FALSE 2 0: 768, 1: 183
FP119 0 1 FALSE 2 0: 796, 1: 155
FP120 0 1 FALSE 2 0: 793, 1: 158
FP121 0 1 FALSE 2 0: 818, 1: 133
FP122 0 1 FALSE 2 0: 795, 1: 156
FP123 0 1 FALSE 2 0: 792, 1: 159
FP124 0 1 FALSE 2 0: 797, 1: 154
FP125 0 1 FALSE 2 0: 803, 1: 148
FP126 0 1 FALSE 2 0: 810, 1: 141
FP127 0 1 FALSE 2 0: 818, 1: 133
FP128 0 1 FALSE 2 0: 810, 1: 141
FP129 0 1 FALSE 2 0: 819, 1: 132
FP130 0 1 FALSE 2 0: 851, 1: 100
FP131 0 1 FALSE 2 0: 831, 1: 120
FP132 0 1 FALSE 2 0: 832, 1: 119
FP133 0 1 FALSE 2 0: 831, 1: 120
FP134 0 1 FALSE 2 0: 830, 1: 121
FP135 0 1 FALSE 2 0: 831, 1: 120
FP136 0 1 FALSE 2 0: 836, 1: 115
FP137 0 1 FALSE 2 0: 841, 1: 110
FP138 0 1 FALSE 2 0: 845, 1: 106
FP139 0 1 FALSE 2 0: 873, 1: 78
FP140 0 1 FALSE 2 0: 845, 1: 106
FP141 0 1 FALSE 2 0: 840, 1: 111
FP142 0 1 FALSE 2 0: 847, 1: 104
FP143 0 1 FALSE 2 0: 874, 1: 77
FP144 0 1 FALSE 2 0: 852, 1: 99
FP145 0 1 FALSE 2 0: 852, 1: 99
FP146 0 1 FALSE 2 0: 853, 1: 98
FP147 0 1 FALSE 2 0: 851, 1: 100
FP148 0 1 FALSE 2 0: 868, 1: 83
FP149 0 1 FALSE 2 0: 865, 1: 86
FP150 0 1 FALSE 2 0: 876, 1: 75
FP151 0 1 FALSE 2 0: 898, 1: 53
FP152 0 1 FALSE 2 0: 873, 1: 78
FP153 0 1 FALSE 2 0: 877, 1: 74
FP155 0 1 FALSE 2 0: 885, 1: 66
FP156 0 1 FALSE 2 0: 884, 1: 67
FP157 0 1 FALSE 2 0: 892, 1: 59
FP158 0 1 FALSE 2 0: 900, 1: 51
FP159 0 1 FALSE 2 0: 884, 1: 67
FP160 0 1 FALSE 2 0: 886, 1: 65
FP161 0 1 FALSE 2 0: 888, 1: 63
FP162 0 1 FALSE 2 0: 480, 1: 471
FP163 0 1 FALSE 2 0: 498, 1: 453
FP164 0 1 FALSE 2 1: 597, 0: 354
FP165 0 1 FALSE 2 0: 619, 1: 332
FP166 0 1 FALSE 2 0: 636, 1: 315
FP167 0 1 FALSE 2 0: 639, 1: 312
FP168 0 1 FALSE 2 1: 633, 0: 318
FP169 0 1 FALSE 2 0: 774, 1: 177
FP170 0 1 FALSE 2 0: 776, 1: 175
FP171 0 1 FALSE 2 0: 790, 1: 161
FP172 0 1 FALSE 2 0: 807, 1: 144
FP173 0 1 FALSE 2 0: 816, 1: 135
FP174 0 1 FALSE 2 0: 827, 1: 124
FP175 0 1 FALSE 2 0: 823, 1: 128
FP176 0 1 FALSE 2 0: 835, 1: 116
FP177 0 1 FALSE 2 0: 836, 1: 115
FP178 0 1 FALSE 2 0: 836, 1: 115
FP179 0 1 FALSE 2 0: 858, 1: 93
FP180 0 1 FALSE 2 0: 849, 1: 102
FP181 0 1 FALSE 2 0: 862, 1: 89
FP182 0 1 FALSE 2 0: 857, 1: 94
FP183 0 1 FALSE 2 0: 879, 1: 72
FP184 0 1 FALSE 2 0: 871, 1: 80
FP185 0 1 FALSE 2 0: 870, 1: 81
FP186 0 1 FALSE 2 0: 878, 1: 73
FP187 0 1 FALSE 2 0: 882, 1: 69
FP188 0 1 FALSE 2 0: 886, 1: 65
FP189 0 1 FALSE 2 0: 878, 1: 73
FP190 0 1 FALSE 2 0: 882, 1: 69
FP191 0 1 FALSE 2 0: 884, 1: 67
FP192 0 1 FALSE 2 0: 893, 1: 58
FP193 0 1 FALSE 2 0: 892, 1: 59
FP194 0 1 FALSE 2 0: 895, 1: 56
FP195 0 1 FALSE 2 0: 893, 1: 58
FP196 0 1 FALSE 2 0: 897, 1: 54
FP197 0 1 FALSE 2 0: 901, 1: 50
FP198 0 1 FALSE 2 0: 897, 1: 54
FP201 0 1 FALSE 2 0: 901, 1: 50
FP202 0 1 FALSE 2 0: 706, 1: 245
FP203 0 1 FALSE 2 0: 842, 1: 109
FP204 0 1 FALSE 2 0: 857, 1: 94
FP205 0 1 FALSE 2 0: 877, 1: 74
FP206 0 1 FALSE 2 0: 894, 1: 57
FP207 0 1 FALSE 2 0: 897, 1: 54
FP208 0 1 FALSE 2 0: 844, 1: 107

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 0 1 -2.84 -0.80 -0.01 0.80 2.72 ▁▆▇▆▁
NumBonds 0 1 0 1 -2.92 -0.61 -0.04 0.60 3.23 ▁▅▇▃▁
NumMultBonds 0 1 0 1 -1.19 -1.00 -0.03 0.74 3.65 ▇▇▃▁▁
NumRotBonds 0 1 0 1 -0.93 -0.93 -0.10 0.52 5.71 ▇▂▁▁▁
NumDblBonds 0 1 0 1 -0.83 -0.83 -0.01 0.82 4.95 ▇▂▁▁▁
NumCarbon 0 1 0 1 -2.64 -0.69 -0.01 0.54 3.06 ▂▇▇▃▁
NumNitrogen 0 1 0 1 -0.69 -0.69 -0.69 0.16 4.37 ▇▂▁▁▁
NumOxygen 0 1 0 1 -0.91 -0.91 -0.33 0.25 6.61 ▇▂▁▁▁
NumSulfer 0 1 0 1 -0.34 -0.34 -0.34 -0.34 7.86 ▇▁▁▁▁
NumChlorine 0 1 0 1 -0.40 -0.40 -0.40 -0.40 6.74 ▇▁▁▁▁
NumHalogen 0 1 0 1 -0.47 -0.47 -0.47 0.20 6.32 ▇▁▁▁▁
NumRings 0 1 0 1 -1.08 -1.08 -0.31 0.46 4.31 ▇▃▂▁▁
HydrophilicFactor 0 1 0 1 -0.86 -0.66 -0.26 0.30 11.99 ▇▁▁▁▁
SurfaceArea1 0 1 0 1 -1.03 -0.77 -0.21 0.48 8.37 ▇▂▁▁▁
SurfaceArea2 0 1 0 1 -1.06 -0.78 -0.19 0.54 7.65 ▇▂▁▁▁
###################################
# Verifying the data dimensions
# for the train set
###################################
dim(PMA_PreModelling_Train)
## [1] 951 221
##################################
# Formulating the test set
##################################
DPA_Test <- Solubility_Test
DPA_Test.Predictors <- DPA_Test[,!names(DPA_Test) %in% c("Log_Solubility_Class")]
DPA_Test.Predictors.Numeric <- DPA_Test.Predictors[,-(grep("FP", names(DPA_Test.Predictors)))]
DPA_Test_BoxCox <- preProcess(DPA_Test.Predictors.Numeric, method = c("BoxCox"))
DPA_Test_BoxCoxTransformed <- predict(DPA_Test_BoxCox, DPA_Test.Predictors.Numeric)
DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaled <- preProcess(DPA_Test_BoxCoxTransformed, method = c("center","scale"))
DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed <- predict(DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaled, DPA_Test_BoxCoxTransformed)

##################################
# Creating the pre-modelling
# test set
##################################
Log_Solubility_Class <- DPA_Test$Log_Solubility_Class 
PMA_Test.Predictors.Factor   <- DPA_Test.Predictors[,(grep("FP", names(DPA_Test.Predictors)))]
PMA_Test.Predictors.Factor   <- as.data.frame(lapply(PMA_Test.Predictors.Factor,factor))
PMA_Test.Predictors.Numeric  <- DPA_Test.Predictors.Numeric_BoxCoxTransformed_CenteredScaledTransformed
PMA_Test_BoxCoxTransformed_CenteredScaledTransformed <- cbind(Log_Solubility_Class,PMA_Test.Predictors.Factor,PMA_Test.Predictors.Numeric)
PMA_Test_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation <- PMA_Test_BoxCoxTransformed_CenteredScaledTransformed[,!names(PMA_Test_BoxCoxTransformed_CenteredScaledTransformed) %in% c("FP154","FP199","FP200","NumNonHBonds","NumHydrogen","NumNonHAtoms","NumAromaticBonds","NumAtoms")]

PMA_PreModelling_Test <- PMA_Test_BoxCoxTransformed_CenteredScaledTransformed_ExcludedLowVariance_ExcludedLinearlyDependent_ExcludedHighCorrelation

##################################
# Gathering descriptive statistics
##################################
(PMA_PreModelling_Test_Skimmed <- skim(PMA_PreModelling_Test))
Data summary
Name PMA_PreModelling_Test
Number of rows 316
Number of columns 221
_______________________
Column type frequency:
factor 206
numeric 15
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Log_Solubility_Class 0 1 FALSE 3 Low: 143, Mid: 94, Hig: 79
FP001 0 1 FALSE 2 0: 168, 1: 148
FP002 0 1 FALSE 2 1: 185, 0: 131
FP003 0 1 FALSE 2 0: 176, 1: 140
FP004 0 1 FALSE 2 1: 168, 0: 148
FP005 0 1 FALSE 2 1: 195, 0: 121
FP006 0 1 FALSE 2 0: 205, 1: 111
FP007 0 1 FALSE 2 0: 204, 1: 112
FP008 0 1 FALSE 2 0: 202, 1: 114
FP009 0 1 FALSE 2 0: 233, 1: 83
FP010 0 1 FALSE 2 0: 255, 1: 61
FP011 0 1 FALSE 2 0: 261, 1: 55
FP012 0 1 FALSE 2 0: 263, 1: 53
FP013 0 1 FALSE 2 0: 264, 1: 52
FP014 0 1 FALSE 2 0: 266, 1: 50
FP015 0 1 FALSE 2 1: 262, 0: 54
FP016 0 1 FALSE 2 0: 271, 1: 45
FP017 0 1 FALSE 2 0: 269, 1: 47
FP018 0 1 FALSE 2 0: 289, 1: 27
FP019 0 1 FALSE 2 0: 280, 1: 36
FP020 0 1 FALSE 2 0: 282, 1: 34
FP021 0 1 FALSE 2 0: 282, 1: 34
FP022 0 1 FALSE 2 0: 279, 1: 37
FP023 0 1 FALSE 2 0: 289, 1: 27
FP024 0 1 FALSE 2 0: 285, 1: 31
FP025 0 1 FALSE 2 0: 291, 1: 25
FP026 0 1 FALSE 2 0: 279, 1: 37
FP027 0 1 FALSE 2 0: 291, 1: 25
FP028 0 1 FALSE 2 0: 298, 1: 18
FP029 0 1 FALSE 2 0: 300, 1: 16
FP030 0 1 FALSE 2 0: 290, 1: 26
FP031 0 1 FALSE 2 0: 285, 1: 31
FP032 0 1 FALSE 2 0: 275, 1: 41
FP033 0 1 FALSE 2 0: 278, 1: 38
FP034 0 1 FALSE 2 0: 295, 1: 21
FP035 0 1 FALSE 2 0: 285, 1: 31
FP036 0 1 FALSE 2 0: 297, 1: 19
FP037 0 1 FALSE 2 0: 286, 1: 30
FP038 0 1 FALSE 2 0: 306, 1: 10
FP039 0 1 FALSE 2 0: 296, 1: 20
FP040 0 1 FALSE 2 0: 298, 1: 18
FP041 0 1 FALSE 2 0: 297, 1: 19
FP042 0 1 FALSE 2 0: 297, 1: 19
FP043 0 1 FALSE 2 0: 302, 1: 14
FP044 0 1 FALSE 2 0: 297, 1: 19
FP045 0 1 FALSE 2 0: 296, 1: 20
FP046 0 1 FALSE 2 0: 213, 1: 103
FP047 0 1 FALSE 2 0: 222, 1: 94
FP048 0 1 FALSE 2 0: 280, 1: 36
FP049 0 1 FALSE 2 0: 282, 1: 34
FP050 0 1 FALSE 2 0: 280, 1: 36
FP051 0 1 FALSE 2 0: 298, 1: 18
FP052 0 1 FALSE 2 0: 283, 1: 33
FP053 0 1 FALSE 2 0: 297, 1: 19
FP054 0 1 FALSE 2 0: 285, 1: 31
FP055 0 1 FALSE 2 0: 287, 1: 29
FP056 0 1 FALSE 2 0: 296, 1: 20
FP057 0 1 FALSE 2 0: 277, 1: 39
FP058 0 1 FALSE 2 0: 273, 1: 43
FP059 0 1 FALSE 2 0: 302, 1: 14
FP060 0 1 FALSE 2 0: 173, 1: 143
FP061 0 1 FALSE 2 0: 192, 1: 124
FP062 0 1 FALSE 2 0: 181, 1: 135
FP063 0 1 FALSE 2 0: 203, 1: 113
FP064 0 1 FALSE 2 0: 193, 1: 123
FP065 0 1 FALSE 2 1: 189, 0: 127
FP066 0 1 FALSE 2 1: 195, 0: 121
FP067 0 1 FALSE 2 0: 213, 1: 103
FP068 0 1 FALSE 2 0: 224, 1: 92
FP069 0 1 FALSE 2 0: 198, 1: 118
FP070 0 1 FALSE 2 0: 211, 1: 105
FP071 0 1 FALSE 2 0: 207, 1: 109
FP072 0 1 FALSE 2 1: 204, 0: 112
FP073 0 1 FALSE 2 0: 224, 1: 92
FP074 0 1 FALSE 2 0: 213, 1: 103
FP075 0 1 FALSE 2 0: 235, 1: 81
FP076 0 1 FALSE 2 0: 216, 1: 100
FP077 0 1 FALSE 2 0: 219, 1: 97
FP078 0 1 FALSE 2 0: 218, 1: 98
FP079 0 1 FALSE 2 1: 230, 0: 86
FP080 0 1 FALSE 2 0: 233, 1: 83
FP081 0 1 FALSE 2 0: 225, 1: 91
FP082 0 1 FALSE 2 1: 235, 0: 81
FP083 0 1 FALSE 2 0: 236, 1: 80
FP084 0 1 FALSE 2 0: 245, 1: 71
FP085 0 1 FALSE 2 0: 231, 1: 85
FP086 0 1 FALSE 2 0: 230, 1: 86
FP087 0 1 FALSE 2 1: 241, 0: 75
FP088 0 1 FALSE 2 0: 239, 1: 77
FP089 0 1 FALSE 2 0: 236, 1: 80
FP090 0 1 FALSE 2 0: 244, 1: 72
FP091 0 1 FALSE 2 0: 243, 1: 73
FP092 0 1 FALSE 2 0: 247, 1: 69
FP093 0 1 FALSE 2 0: 248, 1: 68
FP094 0 1 FALSE 2 0: 237, 1: 79
FP095 0 1 FALSE 2 0: 251, 1: 65
FP096 0 1 FALSE 2 0: 257, 1: 59
FP097 0 1 FALSE 2 0: 250, 1: 66
FP098 0 1 FALSE 2 0: 252, 1: 64
FP099 0 1 FALSE 2 0: 249, 1: 67
FP100 0 1 FALSE 2 0: 259, 1: 57
FP101 0 1 FALSE 2 0: 260, 1: 56
FP102 0 1 FALSE 2 0: 270, 1: 46
FP103 0 1 FALSE 2 0: 247, 1: 69
FP104 0 1 FALSE 2 0: 258, 1: 58
FP105 0 1 FALSE 2 0: 248, 1: 68
FP106 0 1 FALSE 2 0: 273, 1: 43
FP107 0 1 FALSE 2 0: 254, 1: 62
FP108 0 1 FALSE 2 0: 259, 1: 57
FP109 0 1 FALSE 2 0: 261, 1: 55
FP110 0 1 FALSE 2 0: 264, 1: 52
FP111 0 1 FALSE 2 0: 259, 1: 57
FP112 0 1 FALSE 2 0: 260, 1: 56
FP113 0 1 FALSE 2 0: 264, 1: 52
FP114 0 1 FALSE 2 0: 260, 1: 56
FP115 0 1 FALSE 2 0: 266, 1: 50
FP116 0 1 FALSE 2 0: 269, 1: 47
FP117 0 1 FALSE 2 0: 262, 1: 54
FP118 0 1 FALSE 2 0: 279, 1: 37
FP119 0 1 FALSE 2 0: 263, 1: 53
FP120 0 1 FALSE 2 0: 267, 1: 49
FP121 0 1 FALSE 2 0: 282, 1: 34
FP122 0 1 FALSE 2 0: 273, 1: 43
FP123 0 1 FALSE 2 0: 270, 1: 46
FP124 0 1 FALSE 2 0: 274, 1: 42
FP125 0 1 FALSE 2 0: 278, 1: 38
FP126 0 1 FALSE 2 0: 280, 1: 36
FP127 0 1 FALSE 2 0: 269, 1: 47
FP128 0 1 FALSE 2 0: 282, 1: 34
FP129 0 1 FALSE 2 0: 272, 1: 44
FP130 0 1 FALSE 2 0: 290, 1: 26
FP131 0 1 FALSE 2 0: 282, 1: 34
FP132 0 1 FALSE 2 0: 276, 1: 40
FP133 0 1 FALSE 2 0: 273, 1: 43
FP134 0 1 FALSE 2 0: 289, 1: 27
FP135 0 1 FALSE 2 0: 296, 1: 20
FP136 0 1 FALSE 2 0: 284, 1: 32
FP137 0 1 FALSE 2 0: 288, 1: 28
FP138 0 1 FALSE 2 0: 290, 1: 26
FP139 0 1 FALSE 2 0: 296, 1: 20
FP140 0 1 FALSE 2 0: 288, 1: 28
FP141 0 1 FALSE 2 0: 294, 1: 22
FP142 0 1 FALSE 2 0: 286, 1: 30
FP143 0 1 FALSE 2 0: 299, 1: 17
FP144 0 1 FALSE 2 0: 287, 1: 29
FP145 0 1 FALSE 2 0: 296, 1: 20
FP146 0 1 FALSE 2 0: 287, 1: 29
FP147 0 1 FALSE 2 0: 294, 1: 22
FP148 0 1 FALSE 2 0: 291, 1: 25
FP149 0 1 FALSE 2 0: 290, 1: 26
FP150 0 1 FALSE 2 0: 295, 1: 21
FP151 0 1 FALSE 2 0: 306, 1: 10
FP152 0 1 FALSE 2 0: 299, 1: 17
FP153 0 1 FALSE 2 0: 305, 1: 11
FP155 0 1 FALSE 2 0: 295, 1: 21
FP156 0 1 FALSE 2 0: 301, 1: 15
FP157 0 1 FALSE 2 0: 298, 1: 18
FP158 0 1 FALSE 2 0: 291, 1: 25
FP159 0 1 FALSE 2 0: 305, 1: 11
FP160 0 1 FALSE 2 0: 305, 1: 11
FP161 0 1 FALSE 2 0: 305, 1: 11
FP162 0 1 FALSE 2 1: 168, 0: 148
FP163 0 1 FALSE 2 0: 173, 1: 143
FP164 0 1 FALSE 2 1: 207, 0: 109
FP165 0 1 FALSE 2 0: 215, 1: 101
FP166 0 1 FALSE 2 0: 209, 1: 107
FP167 0 1 FALSE 2 0: 221, 1: 95
FP168 0 1 FALSE 2 1: 226, 0: 90
FP169 0 1 FALSE 2 0: 257, 1: 59
FP170 0 1 FALSE 2 0: 267, 1: 49
FP171 0 1 FALSE 2 0: 275, 1: 41
FP172 0 1 FALSE 2 0: 269, 1: 47
FP173 0 1 FALSE 2 0: 273, 1: 43
FP174 0 1 FALSE 2 0: 267, 1: 49
FP175 0 1 FALSE 2 0: 274, 1: 42
FP176 0 1 FALSE 2 0: 282, 1: 34
FP177 0 1 FALSE 2 0: 284, 1: 32
FP178 0 1 FALSE 2 0: 282, 1: 34
FP179 0 1 FALSE 2 0: 272, 1: 44
FP180 0 1 FALSE 2 0: 294, 1: 22
FP181 0 1 FALSE 2 0: 283, 1: 33
FP182 0 1 FALSE 2 0: 292, 1: 24
FP183 0 1 FALSE 2 0: 274, 1: 42
FP184 0 1 FALSE 2 0: 286, 1: 30
FP185 0 1 FALSE 2 0: 285, 1: 31
FP186 0 1 FALSE 2 0: 297, 1: 19
FP187 0 1 FALSE 2 0: 295, 1: 21
FP188 0 1 FALSE 2 0: 294, 1: 22
FP189 0 1 FALSE 2 0: 303, 1: 13
FP190 0 1 FALSE 2 0: 299, 1: 17
FP191 0 1 FALSE 2 0: 298, 1: 18
FP192 0 1 FALSE 2 0: 294, 1: 22
FP193 0 1 FALSE 2 0: 294, 1: 22
FP194 0 1 FALSE 2 0: 295, 1: 21
FP195 0 1 FALSE 2 0: 300, 1: 16
FP196 0 1 FALSE 2 0: 294, 1: 22
FP197 0 1 FALSE 2 0: 296, 1: 20
FP198 0 1 FALSE 2 0: 302, 1: 14
FP201 0 1 FALSE 2 0: 303, 1: 13
FP202 0 1 FALSE 2 0: 232, 1: 84
FP203 0 1 FALSE 2 0: 273, 1: 43
FP204 0 1 FALSE 2 0: 286, 1: 30
FP205 0 1 FALSE 2 0: 291, 1: 25
FP206 0 1 FALSE 2 0: 300, 1: 16
FP207 0 1 FALSE 2 0: 302, 1: 14
FP208 0 1 FALSE 2 0: 273, 1: 43

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
MolWeight 0 1 0 1 -2.46 -0.78 -0.06 0.81 2.18 ▁▇▇▇▃
NumBonds 0 1 0 1 -2.92 -0.67 0.03 0.57 2.55 ▁▂▇▃▂
NumMultBonds 0 1 0 1 -1.24 -1.04 -0.06 0.72 4.06 ▇▇▅▁▁
NumRotBonds 0 1 0 1 -0.82 -0.82 -0.40 0.44 5.94 ▇▁▁▁▁
NumDblBonds 0 1 0 1 -0.76 -0.76 0.09 0.09 4.35 ▇▁▁▁▁
NumCarbon 0 1 0 1 -2.71 -0.70 -0.21 0.56 2.23 ▁▂▇▅▂
NumNitrogen 0 1 0 1 -0.63 -0.63 -0.63 0.26 4.71 ▇▂▁▁▁
NumOxygen 0 1 0 1 -0.92 -0.92 -0.26 0.40 5.02 ▇▃▁▁▁
NumSulfer 0 1 0 1 -0.28 -0.28 -0.28 -0.28 8.06 ▇▁▁▁▁
NumChlorine 0 1 0 1 -0.40 -0.40 -0.40 -0.40 6.02 ▇▁▁▁▁
NumHalogen 0 1 0 1 -0.48 -0.48 -0.48 0.20 5.57 ▇▁▁▁▁
NumRings 0 1 0 1 -1.14 -0.32 -0.32 0.49 3.74 ▇▃▁▁▁
HydrophilicFactor 0 1 0 1 -0.90 -0.68 -0.30 0.32 5.19 ▇▂▁▁▁
SurfaceArea1 0 1 0 1 -1.04 -0.75 -0.21 0.53 5.37 ▇▃▁▁▁
SurfaceArea2 0 1 0 1 -1.05 -0.77 -0.26 0.52 5.00 ▇▃▁▁▁
###################################
# Verifying the data dimensions
# for the test set
###################################
dim(PMA_PreModelling_Test)
## [1] 316 221

1.4 Data Exploration


[A] Numeric variables which demonstrated differential relationships with the Log_Solubility_Class response variable include:
     [A.1] MolWeight variable (numeric)
     [A.2] NumCarbon variable (numeric)
     [A.3] NumChlorine variable (numeric)
     [A.4] NumHalogen variable (numeric)
     [A.5] NumMultBonds variable (numeric)

[B] Factor variables which demonstrated relatively better differentiation of the Log_Solubility_Class response variable between its 1 and 0 structure levels include:
     [B.1] FP207 variable (factor)
     [B.2] FP190 variable (factor)
     [B.3] FP197 variable (factor)
     [B.4] FP196 variable (factor)
     [B.5] FP193 variable (factor)
     [B.6] FP184 variable (factor)
     [B.7] FP172 variable (factor)
     [B.8] FP149 variable (factor)
     [B.9] FP112 variable (factor)
     [B.10] FP107 variable (factor)
     [B.11] FP089 variable (factor)
     [B.12] FP079 variable (factor)
     [B.13] FP076 variable (factor)
     [B.14] FP072 variable (factor)
     [B.15] FP071 variable (factor)
     [B.16] FP070 variable (factor)
     [B.17] FP065 variable (factor)
     [B.18] FP059 variable (factor)
     [B.19] FP054 variable (factor)
     [B.20] FP056 variable (factor)
     [B.21] FP053 variable (factor)
     [B.22] FP049 variable (factor)
     [B.23] FP044 variable (factor)
     [B.24] FP041 variable (factor)
     [B.25] FP039 variable (factor)
     [B.26] FP014 variable (factor)
     [B.27] FP013 variable (factor)

Code Chunk | Output
##################################
# Loading dataset
##################################
EDA <- PMA_PreModelling_Train

##################################
# Listing all predictors
##################################
EDA.Predictors <- EDA[,!names(EDA) %in% c("Log_Solubility_Class")]

##################################
# Listing all numeric predictors
##################################
EDA.Predictors.Numeric <- EDA.Predictors[,sapply(EDA.Predictors, is.numeric)]
ncol(EDA.Predictors.Numeric)
## [1] 15
names(EDA.Predictors.Numeric)
##  [1] "MolWeight"         "NumBonds"          "NumMultBonds"     
##  [4] "NumRotBonds"       "NumDblBonds"       "NumCarbon"        
##  [7] "NumNitrogen"       "NumOxygen"         "NumSulfer"        
## [10] "NumChlorine"       "NumHalogen"        "NumRings"         
## [13] "HydrophilicFactor" "SurfaceArea1"      "SurfaceArea2"
##################################
# Listing all factor predictors
##################################
EDA.Predictors.Factor <- EDA.Predictors[,sapply(EDA.Predictors, is.factor)]
ncol(EDA.Predictors.Factor)
## [1] 205
names(EDA.Predictors.Factor)
##   [1] "FP001" "FP002" "FP003" "FP004" "FP005" "FP006" "FP007" "FP008" "FP009"
##  [10] "FP010" "FP011" "FP012" "FP013" "FP014" "FP015" "FP016" "FP017" "FP018"
##  [19] "FP019" "FP020" "FP021" "FP022" "FP023" "FP024" "FP025" "FP026" "FP027"
##  [28] "FP028" "FP029" "FP030" "FP031" "FP032" "FP033" "FP034" "FP035" "FP036"
##  [37] "FP037" "FP038" "FP039" "FP040" "FP041" "FP042" "FP043" "FP044" "FP045"
##  [46] "FP046" "FP047" "FP048" "FP049" "FP050" "FP051" "FP052" "FP053" "FP054"
##  [55] "FP055" "FP056" "FP057" "FP058" "FP059" "FP060" "FP061" "FP062" "FP063"
##  [64] "FP064" "FP065" "FP066" "FP067" "FP068" "FP069" "FP070" "FP071" "FP072"
##  [73] "FP073" "FP074" "FP075" "FP076" "FP077" "FP078" "FP079" "FP080" "FP081"
##  [82] "FP082" "FP083" "FP084" "FP085" "FP086" "FP087" "FP088" "FP089" "FP090"
##  [91] "FP091" "FP092" "FP093" "FP094" "FP095" "FP096" "FP097" "FP098" "FP099"
## [100] "FP100" "FP101" "FP102" "FP103" "FP104" "FP105" "FP106" "FP107" "FP108"
## [109] "FP109" "FP110" "FP111" "FP112" "FP113" "FP114" "FP115" "FP116" "FP117"
## [118] "FP118" "FP119" "FP120" "FP121" "FP122" "FP123" "FP124" "FP125" "FP126"
## [127] "FP127" "FP128" "FP129" "FP130" "FP131" "FP132" "FP133" "FP134" "FP135"
## [136] "FP136" "FP137" "FP138" "FP139" "FP140" "FP141" "FP142" "FP143" "FP144"
## [145] "FP145" "FP146" "FP147" "FP148" "FP149" "FP150" "FP151" "FP152" "FP153"
## [154] "FP155" "FP156" "FP157" "FP158" "FP159" "FP160" "FP161" "FP162" "FP163"
## [163] "FP164" "FP165" "FP166" "FP167" "FP168" "FP169" "FP170" "FP171" "FP172"
## [172] "FP173" "FP174" "FP175" "FP176" "FP177" "FP178" "FP179" "FP180" "FP181"
## [181] "FP182" "FP183" "FP184" "FP185" "FP186" "FP187" "FP188" "FP189" "FP190"
## [190] "FP191" "FP192" "FP193" "FP194" "FP195" "FP196" "FP197" "FP198" "FP201"
## [199] "FP202" "FP203" "FP204" "FP205" "FP206" "FP207" "FP208"
##################################
# Formulating the box plots
##################################
featurePlot(x = EDA.Predictors.Numeric, 
            y = EDA$Log_Solubility_Class,
            plot = "box",
            scales = list(x = list(relation="free", rot = 90), 
                          y = list(relation="free")),
            adjust = 1.5, 
            pch = "|")

##################################
# Restructuring the dataset for
# for barchart analysis
##################################
Log_Solubility_Class <- DPA$Log_Solubility_Class
EDA.Bar.Source <- as.data.frame(cbind(Log_Solubility_Class,
                     EDA.Predictors.Factor))
ncol(EDA.Bar.Source)
## [1] 206
##################################
# Creating a function to formulate
# the proportions table
##################################
EDA.PropTable.Function <- function(FactorVar) {
  EDA.Bar.Source.FactorVar <- EDA.Bar.Source[,c("Log_Solubility_Class",
                                          FactorVar)]
  EDA.Bar.Source.FactorVar.Prop <- as.data.frame(prop.table(table(EDA.Bar.Source.FactorVar), 2))
  names(EDA.Bar.Source.FactorVar.Prop)[2] <- "Structure"
  EDA.Bar.Source.FactorVar.Prop$Variable <- rep(FactorVar,nrow(EDA.Bar.Source.FactorVar.Prop))
  
  return(EDA.Bar.Source.FactorVar.Prop)

}

EDA.Bar.Source.FactorVar.Prop.Group5 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[162]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[163]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[164]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[165]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[166]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[167]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[168]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[169]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[170]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[171]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[172]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[173]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[174]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[175]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[176]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[177]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[178]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[179]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[180]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[181]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[182]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[183]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[184]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[185]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[186]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[187]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[188]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[189]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[190]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[191]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[192]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[193]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[194]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[195]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[196]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[197]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[198]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[199]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[200]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[201]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[202]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[203]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[204]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[205]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[206]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group5[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group5[,2] | EDA.Bar.Source.FactorVar.Prop.Group5[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group5,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group5[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group4 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[122]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[123]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[124]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[125]),                          
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[126]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[127]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[128]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[129]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[130]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[131]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[132]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[133]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[134]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[135]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[136]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[137]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[138]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[139]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[140]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[141]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[142]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[143]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[144]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[145]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[146]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[147]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[148]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[149]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[150]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[151]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[152]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[153]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[154]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[155]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[156]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[157]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[158]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[159]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[160]),                          
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[161]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group4[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group4[,2] | EDA.Bar.Source.FactorVar.Prop.Group4[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group4,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group4[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group3 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[82]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[83]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[84]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[85]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[86]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[87]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[88]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[89]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[90]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[91]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[92]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[93]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[94]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[95]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[96]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[97]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[98]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[99]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[100]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[101]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[102]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[103]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[104]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[105]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[106]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[107]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[108]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[109]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[110]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[111]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[112]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[113]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[114]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[115]),                           
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[116]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[117]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[118]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[119]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[120]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[121]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group3[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group3[,2] | EDA.Bar.Source.FactorVar.Prop.Group3[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group3,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group3[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group2 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[42]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[43]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[44]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[45]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[46]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[47]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[48]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[49]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[50]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[51]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[52]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[53]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[54]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[55]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[56]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[57]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[58]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[59]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[60]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[61]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[62]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[63]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[64]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[65]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[66]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[67]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[68]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[69]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[70]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[71]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[72]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[73]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[74]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[75]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[76]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[77]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[78]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[79]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[80]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[81]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group2[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group2[,2] | EDA.Bar.Source.FactorVar.Prop.Group2[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group2,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group2[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

EDA.Bar.Source.FactorVar.Prop.Group1 <- rbind(EDA.PropTable.Function(names(EDA.Bar.Source)[2]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[3]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[4]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[5]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[6]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[7]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[8]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[9]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[10]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[11]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[12]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[13]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[14]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[15]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[16]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[17]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[18]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[19]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[20]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[21]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[22]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[23]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[24]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[25]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[26]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[27]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[28]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[29]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[30]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[31]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[32]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[33]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[34]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[35]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[36]),                            
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[37]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[38]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[39]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[40]),
                                              EDA.PropTable.Function(names(EDA.Bar.Source)[41]))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop.Group1[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop.Group1[,2] | EDA.Bar.Source.FactorVar.Prop.Group1[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop.Group1,
                                      groups = EDA.Bar.Source.FactorVar.Prop.Group1[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Structure",
                                      auto.key = list(adj = 1),
                                      layout=(c(9,5))))

1.5 Predictive Model Development

1.5.1 Penalized Multinomial Regression (PMR)


Penalized Multinomial Regression fits multinomial log-linear models via neural networks. The algorithm is structured as a neural network with a single output layer consisting of multiple neurons, each representing a different class of the response variable. The output layer applies a softmax function as an activation function ensuring that the output values of the neurons representing the different categories sum up to one and can be interpreted as probabilities for each category. During training, the model learns a set of weights for each feature, as well as a bias term for each class in the output layer. The weights and bias terms are estimated using maximum likelihood. The learned weights and biases are applied to new data to make predictions.

[A] The penalized multinomial regression model from the nnet package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] decay = decay made to vary across a range of 5 default values

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves decay=0.1000
     [C.2] Accuracy = 0.74338

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] FP063 (Structure=1) variable (factor)
     [D.3] FP072 (Structure=1) variable (factor)
     [D.4] FP159 (Structure=1) variable (factor)
     [D.5] NumBonds variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.76582

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_PMR <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_PMR$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_PMR)
## [1] 951 221
PMA_PreModelling_Test_PMR <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_PMR$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_PMR)
## [1] 316 221
##################################
# Creating consistent fold assignments 
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_PMR$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# used a range of default values

##################################
# Running the penalized multinomial regression model
# by setting the caret method to 'multinom'
##################################
set.seed(12345678)
PMR_Tune <- train(x = PMA_PreModelling_Train_PMR[,!names(PMA_PreModelling_Train_PMR) %in% c("Log_Solubility_Class")], 
                  y = PMA_PreModelling_Train_PMR$Log_Solubility_Class,
                  method = "multinom",
                  metric = "Accuracy",
                  preProc = c("center", "scale"),
                  tuneLength = 5,
                  trControl = KFold_Control)
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 505.883620
## iter  20 value 413.328456
## iter  30 value 358.647309
## iter  40 value 276.942588
## iter  50 value 221.746726
## iter  60 value 179.497085
## iter  70 value 121.420246
## iter  80 value 68.224963
## iter  90 value 26.570867
## iter 100 value 1.361644
## final  value 1.361644 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 506.746454
## iter  20 value 416.572349
## iter  30 value 368.019847
## iter  40 value 291.322544
## iter  50 value 242.920526
## iter  60 value 215.615404
## iter  70 value 187.705888
## iter  80 value 158.438328
## iter  90 value 146.387217
## iter 100 value 139.035184
## final  value 139.035184 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 505.970185
## iter  20 value 413.658170
## iter  30 value 359.624222
## iter  40 value 278.602815
## iter  50 value 224.530872
## iter  60 value 184.560341
## iter  70 value 136.674128
## iter  80 value 97.203549
## iter  90 value 81.013772
## iter 100 value 73.501426
## final  value 73.501426 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 505.892279
## iter  20 value 413.361482
## iter  30 value 358.745320
## iter  40 value 277.109441
## iter  50 value 222.032433
## iter  60 value 180.034498
## iter  70 value 123.230139
## iter  80 value 72.293945
## iter  90 value 37.565945
## iter 100 value 25.817226
## final  value 25.817226 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 505.884486
## iter  20 value 413.331759
## iter  30 value 358.657113
## iter  40 value 276.959281
## iter  50 value 221.775372
## iter  60 value 179.551165
## iter  70 value 121.604377
## iter  80 value 68.650683
## iter  90 value 25.992548
## iter 100 value 6.461506
## final  value 6.461506 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 507.630607
## iter  20 value 409.458792
## iter  30 value 358.641858
## iter  40 value 269.190428
## iter  50 value 216.578642
## iter  60 value 184.702556
## iter  70 value 120.985867
## iter  80 value 72.410253
## iter  90 value 26.107657
## iter 100 value 0.712041
## final  value 0.712041 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 508.659825
## iter  20 value 412.912286
## iter  30 value 366.226761
## iter  40 value 284.129808
## iter  50 value 237.595001
## iter  60 value 213.845170
## iter  70 value 183.211470
## iter  80 value 157.229017
## iter  90 value 142.490087
## iter 100 value 132.708791
## final  value 132.708791 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 507.733885
## iter  20 value 409.809474
## iter  30 value 359.442272
## iter  40 value 270.912293
## iter  50 value 219.220323
## iter  60 value 189.541363
## iter  70 value 133.406153
## iter  80 value 95.351869
## iter  90 value 75.969295
## iter 100 value 65.682436
## final  value 65.682436 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 507.640938
## iter  20 value 409.493915
## iter  30 value 358.722353
## iter  40 value 269.365273
## iter  50 value 216.849862
## iter  60 value 185.212430
## iter  70 value 122.430160
## iter  80 value 75.334310
## iter  90 value 40.914722
## iter 100 value 22.094036
## final  value 22.094036 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 507.631640
## iter  20 value 409.462305
## iter  30 value 358.649912
## iter  40 value 269.207939
## iter  50 value 216.605837
## iter  60 value 184.753822
## iter  70 value 121.132815
## iter  80 value 72.711631
## iter  90 value 27.743656
## iter 100 value 5.391679
## final  value 5.391679 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 481.386146
## iter  20 value 389.663015
## iter  30 value 345.471373
## iter  40 value 258.248758
## iter  50 value 206.864454
## iter  60 value 176.024762
## iter  70 value 94.708148
## iter  80 value 49.535232
## iter  90 value 5.319592
## iter 100 value 0.208084
## final  value 0.208084 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 482.266602
## iter  20 value 392.810558
## iter  30 value 352.575653
## iter  40 value 274.487806
## iter  50 value 229.992093
## iter  60 value 205.084371
## iter  70 value 171.359618
## iter  80 value 145.135964
## iter  90 value 134.397840
## iter 100 value 127.330662
## final  value 127.330662 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 481.474450
## iter  20 value 389.982406
## iter  30 value 346.221736
## iter  40 value 260.129150
## iter  50 value 209.848694
## iter  60 value 180.759434
## iter  70 value 112.198256
## iter  80 value 79.324621
## iter  90 value 67.522300
## iter 100 value 60.039099
## final  value 60.039099 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 481.394979
## iter  20 value 389.695001
## iter  30 value 345.546842
## iter  40 value 258.439822
## iter  50 value 207.171389
## iter  60 value 176.524293
## iter  70 value 96.731341
## iter  80 value 53.691236
## iter  90 value 23.245152
## iter 100 value 19.738764
## final  value 19.738764 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 481.387029
## iter  20 value 389.666214
## iter  30 value 345.478925
## iter  40 value 258.267895
## iter  50 value 206.895235
## iter  60 value 176.074998
## iter  70 value 94.913858
## iter  80 value 49.969866
## iter  90 value 7.934677
## iter 100 value 4.704094
## final  value 4.704094 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 522.796813
## iter  20 value 415.325711
## iter  30 value 353.211125
## iter  40 value 275.059244
## iter  50 value 221.953673
## iter  60 value 190.351810
## iter  70 value 121.597044
## iter  80 value 69.696086
## iter  90 value 23.422358
## iter 100 value 0.535975
## final  value 0.535975 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 523.903626
## iter  20 value 419.155111
## iter  30 value 360.584427
## iter  40 value 289.997789
## iter  50 value 243.917998
## iter  60 value 217.008915
## iter  70 value 191.079002
## iter  80 value 157.800319
## iter  90 value 144.589281
## iter 100 value 135.926395
## final  value 135.926395 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 522.907910
## iter  20 value 415.714704
## iter  30 value 353.979331
## iter  40 value 276.773025
## iter  50 value 224.733675
## iter  60 value 194.252734
## iter  70 value 138.021234
## iter  80 value 95.567319
## iter  90 value 78.352582
## iter 100 value 69.717679
## final  value 69.717679 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 522.807927
## iter  20 value 415.364672
## iter  30 value 353.288274
## iter  40 value 275.233176
## iter  50 value 222.239299
## iter  60 value 190.755151
## iter  70 value 124.050815
## iter  80 value 73.127712
## iter  90 value 36.809189
## iter 100 value 22.707720
## final  value 22.707720 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 522.797924
## iter  20 value 415.329608
## iter  30 value 353.218843
## iter  40 value 275.076663
## iter  50 value 221.982314
## iter  60 value 190.392306
## iter  70 value 121.873508
## iter  80 value 70.053815
## iter  90 value 24.994855
## iter 100 value 5.364738
## final  value 5.364738 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 508.454131
## iter  20 value 411.301316
## iter  30 value 353.438933
## iter  40 value 271.130395
## iter  50 value 218.917313
## iter  60 value 185.421935
## iter  70 value 115.565276
## iter  80 value 64.779114
## iter  90 value 17.969744
## iter 100 value 0.509584
## final  value 0.509584 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 509.485577
## iter  20 value 414.713898
## iter  30 value 364.588020
## iter  40 value 288.436159
## iter  50 value 241.345497
## iter  60 value 211.074621
## iter  70 value 181.198458
## iter  80 value 148.310519
## iter  90 value 135.430431
## iter 100 value 127.489563
## final  value 127.489563 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 508.557636
## iter  20 value 411.647868
## iter  30 value 354.548933
## iter  40 value 273.112464
## iter  50 value 221.792749
## iter  60 value 189.867746
## iter  70 value 122.312319
## iter  80 value 88.922239
## iter  90 value 69.659789
## iter 100 value 60.856064
## final  value 60.856064 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 508.464485
## iter  20 value 411.336025
## iter  30 value 353.550035
## iter  40 value 271.331648
## iter  50 value 219.213244
## iter  60 value 185.884623
## iter  70 value 116.356270
## iter  80 value 67.674482
## iter  90 value 40.816455
## iter 100 value 20.138752
## final  value 20.138752 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 508.455167
## iter  20 value 411.304787
## iter  30 value 353.450044
## iter  40 value 271.150551
## iter  50 value 218.946993
## iter  60 value 185.468402
## iter  70 value 115.651011
## iter  80 value 65.078380
## iter  90 value 18.270522
## iter 100 value 4.843812
## final  value 4.843812 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 501.929673
## iter  20 value 398.977170
## iter  30 value 340.927857
## iter  40 value 263.017974
## iter  50 value 214.026640
## iter  60 value 179.031009
## iter  70 value 109.310217
## iter  80 value 58.258791
## iter  90 value 10.650380
## iter 100 value 0.572691
## final  value 0.572691 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 502.978004
## iter  20 value 402.556229
## iter  30 value 348.734827
## iter  40 value 276.920555
## iter  50 value 233.986688
## iter  60 value 207.637438
## iter  70 value 177.165135
## iter  80 value 148.356094
## iter  90 value 136.758366
## iter 100 value 129.304895
## final  value 129.304895 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 502.034882
## iter  20 value 399.340649
## iter  30 value 341.746131
## iter  40 value 264.599231
## iter  50 value 216.525158
## iter  60 value 183.129042
## iter  70 value 130.043506
## iter  80 value 87.982971
## iter  90 value 73.456633
## iter 100 value 65.284530
## final  value 65.284530 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 501.940198
## iter  20 value 399.013575
## iter  30 value 341.010089
## iter  40 value 263.178303
## iter  50 value 214.283052
## iter  60 value 179.460441
## iter  70 value 117.229688
## iter  80 value 63.650219
## iter  90 value 32.240778
## iter 100 value 22.762218
## final  value 22.762218 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 501.930726
## iter  20 value 398.980811
## iter  30 value 340.936085
## iter  40 value 263.034029
## iter  50 value 214.052349
## iter  60 value 179.074160
## iter  70 value 109.511109
## iter  80 value 58.694358
## iter  90 value 13.790210
## iter 100 value 5.572783
## final  value 5.572783 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 501.143336
## iter  20 value 406.441399
## iter  30 value 355.187917
## iter  40 value 273.363698
## iter  50 value 216.786593
## iter  60 value 184.952734
## iter  70 value 116.338314
## iter  80 value 65.508686
## iter  90 value 24.954043
## iter 100 value 0.886655
## final  value 0.886655 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 502.089109
## iter  20 value 409.637376
## iter  30 value 361.938201
## iter  40 value 288.239185
## iter  50 value 239.094867
## iter  60 value 210.609096
## iter  70 value 187.673883
## iter  80 value 155.270855
## iter  90 value 143.900974
## iter 100 value 135.552363
## final  value 135.552363 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 501.238227
## iter  20 value 406.765728
## iter  30 value 355.894792
## iter  40 value 275.064751
## iter  50 value 219.616912
## iter  60 value 182.713184
## iter  70 value 133.767237
## iter  80 value 91.769542
## iter  90 value 76.867664
## iter 100 value 68.634698
## final  value 68.634698 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 501.152828
## iter  20 value 406.473881
## iter  30 value 355.258944
## iter  40 value 273.536289
## iter  50 value 217.077587
## iter  60 value 185.485013
## iter  70 value 118.142170
## iter  80 value 69.057876
## iter  90 value 44.053015
## iter 100 value 23.361684
## final  value 23.361684 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 939.313507 
## iter  10 value 501.144285
## iter  20 value 406.444648
## iter  30 value 355.195023
## iter  40 value 273.380982
## iter  50 value 216.815775
## iter  60 value 185.006190
## iter  70 value 116.503392
## iter  80 value 65.878970
## iter  90 value 26.680294
## iter 100 value 6.099040
## final  value 6.099040 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 492.217387
## iter  20 value 404.808601
## iter  30 value 360.648980
## iter  40 value 274.658084
## iter  50 value 221.524454
## iter  60 value 187.402881
## iter  70 value 123.087338
## iter  80 value 65.799108
## iter  90 value 12.475121
## iter 100 value 0.498507
## final  value 0.498507 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 493.018780
## iter  20 value 407.651745
## iter  30 value 372.450194
## iter  40 value 288.450825
## iter  50 value 241.296720
## iter  60 value 214.537918
## iter  70 value 190.744045
## iter  80 value 152.806967
## iter  90 value 140.282122
## iter 100 value 131.530285
## final  value 131.530285 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 492.297748
## iter  20 value 405.096975
## iter  30 value 361.399822
## iter  40 value 276.328799
## iter  50 value 224.090944
## iter  60 value 191.600687
## iter  70 value 137.583703
## iter  80 value 91.867051
## iter  90 value 75.063815
## iter 100 value 66.373491
## final  value 66.373491 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 492.225426
## iter  20 value 404.837480
## iter  30 value 360.724225
## iter  40 value 274.827562
## iter  50 value 221.788046
## iter  60 value 187.843571
## iter  70 value 124.772970
## iter  80 value 69.346265
## iter  90 value 32.297133
## iter 100 value 22.593491
## final  value 22.593491 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 492.218191
## iter  20 value 404.811489
## iter  30 value 360.656506
## iter  40 value 274.675056
## iter  50 value 221.550885
## iter  60 value 187.447174
## iter  70 value 123.258754
## iter  80 value 66.168405
## iter  90 value 15.026037
## iter 100 value 5.450970
## final  value 5.450970 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 488.821630
## iter  20 value 400.158597
## iter  30 value 350.103123
## iter  40 value 275.252711
## iter  50 value 224.997182
## iter  60 value 186.854839
## iter  70 value 121.841376
## iter  80 value 71.333767
## iter  90 value 19.982876
## iter 100 value 0.680711
## final  value 0.680711 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 489.684845
## iter  20 value 403.197612
## iter  30 value 356.977030
## iter  40 value 289.617342
## iter  50 value 245.377539
## iter  60 value 219.977990
## iter  70 value 190.792575
## iter  80 value 157.196733
## iter  90 value 145.541524
## iter 100 value 136.762372
## final  value 136.762372 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 488.908204
## iter  20 value 400.467079
## iter  30 value 350.825329
## iter  40 value 276.906424
## iter  50 value 227.650783
## iter  60 value 191.424036
## iter  70 value 135.319933
## iter  80 value 97.238759
## iter  90 value 79.820233
## iter 100 value 71.290124
## final  value 71.290124 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 488.830290
## iter  20 value 400.189492
## iter  30 value 350.175716
## iter  40 value 275.420626
## iter  50 value 225.269787
## iter  60 value 187.335303
## iter  70 value 123.233398
## iter  80 value 74.838626
## iter  90 value 39.168010
## iter 100 value 25.676625
## final  value 25.676625 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 940.412119 
## iter  10 value 488.822496
## iter  20 value 400.161687
## iter  30 value 350.110386
## iter  40 value 275.269528
## iter  50 value 225.024515
## iter  60 value 186.903141
## iter  70 value 121.984216
## iter  80 value 71.698819
## iter  90 value 22.648685
## iter 100 value 6.547673
## final  value 6.547673 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 521.286567
## iter  20 value 419.076477
## iter  30 value 355.170629
## iter  40 value 277.875625
## iter  50 value 227.435062
## iter  60 value 190.707427
## iter  70 value 127.428587
## iter  80 value 76.789155
## iter  90 value 33.394188
## iter 100 value 2.120937
## final  value 2.120937 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 522.308471
## iter  20 value 422.591737
## iter  30 value 363.814063
## iter  40 value 292.230872
## iter  50 value 248.249647
## iter  60 value 225.200512
## iter  70 value 191.196016
## iter  80 value 165.297831
## iter  90 value 151.493510
## iter 100 value 143.133939
## final  value 143.133939 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 521.389129
## iter  20 value 419.433696
## iter  30 value 356.070721
## iter  40 value 279.499633
## iter  50 value 230.044768
## iter  60 value 195.383504
## iter  70 value 140.441947
## iter  80 value 102.745390
## iter  90 value 83.305148
## iter 100 value 74.694684
## final  value 74.694684 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 521.296827
## iter  20 value 419.112257
## iter  30 value 355.261004
## iter  40 value 278.040165
## iter  50 value 227.702928
## iter  60 value 191.198932
## iter  70 value 128.900240
## iter  80 value 80.168467
## iter  90 value 44.922117
## iter 100 value 25.985200
## final  value 25.985200 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 941.510731 
## iter  10 value 521.287593
## iter  20 value 419.080056
## iter  30 value 355.179670
## iter  40 value 277.892101
## iter  50 value 227.461920
## iter  60 value 190.756837
## iter  70 value 127.578471
## iter  80 value 77.140360
## iter  90 value 34.827183
## iter 100 value 7.456146
## final  value 7.456146 
## stopped after 100 iterations
## # weights:  666 (442 variable)
## initial  value 1044.780287 
## iter  10 value 591.615430
## iter  20 value 469.910574
## iter  30 value 411.926966
## iter  40 value 327.688646
## iter  50 value 276.245078
## iter  60 value 249.640241
## iter  70 value 227.809290
## iter  80 value 191.001082
## iter  90 value 173.047854
## iter 100 value 162.821782
## final  value 162.821782 
## stopped after 100 iterations
##################################
# Reportingting the cross-validation results
# for the train set
##################################
PMR_Tune
## Penalized Multinomial Regression 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   decay  logLoss   AUC        prAUC      Accuracy   Kappa      Mean_F1  
##   0e+00  6.268653  0.8333238  0.4536161  0.6835610  0.5140285  0.6706793
##   1e-04  5.487383  0.8348603  0.5004770  0.6877387  0.5198066  0.6741649
##   1e-03  3.879741  0.8385638  0.6098625  0.6950744  0.5309883  0.6811589
##   1e-02  2.164788  0.8527698  0.6956716  0.7118960  0.5546841  0.6976960
##   1e-01  1.028097  0.8840758  0.7446643  0.7433879  0.6034366  0.7292788
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.6742287         0.8417692         0.6707438            0.8393936          
##   0.6768690         0.8436688         0.6749554            0.8415973          
##   0.6841549         0.8474496         0.6810874            0.8453742          
##   0.6979662         0.8546371         0.6987544            0.8538125          
##   0.7298753         0.8712734         0.7325479            0.8705616          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.6707438       0.6742287    0.2278537            0.7579989             
##   0.6749554       0.6768690    0.2292462            0.7602689             
##   0.6810874       0.6841549    0.2316915            0.7658022             
##   0.6987544       0.6979662    0.2372987            0.7763016             
##   0.7325479       0.7298753    0.2477960            0.8005744             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was decay = 0.1.
PMR_Tune$finalModel
## Call:
## nnet::multinom(formula = .outcome ~ ., data = dat, decay = param$decay)
## 
## Coefficients:
##      (Intercept)    FP001       FP002      FP003     FP004     FP005      FP006
## Mid    0.7702862 0.387247 -0.08392134 -0.2068101 -1.830839 -1.308756  0.6863685
## High  -2.9224515 1.420950 -1.13231633  1.0323685 -1.872285 -1.192009 -0.3291985
##           FP007       FP008     FP009     FP010     FP011      FP012
## Mid  -0.3442218  0.07348782 -1.141147 0.4793638 0.0192878  1.4249260
## High -1.1966302 -0.24356866 -1.183417 0.1619986 0.1026934 -0.1141841
##            FP013      FP014      FP015     FP016       FP017      FP018
## Mid  -0.87156436 -0.8627798 -0.4939584 0.3222238 -0.95075937 -0.7666128
## High -0.07512187 -1.3345855 -0.1376469 0.4533557 -0.08419407 -1.3269259
##          FP019       FP020     FP021      FP022       FP023       FP024
## Mid  1.2861265 -0.07260037 0.7386469 -0.4603497 -0.50936115  0.06489086
## High 0.3239464  0.13444672 0.9359778 -0.3007523  0.08821953 -1.19667058
##            FP025      FP026       FP027      FP028     FP029       FP030
## Mid  -0.18595219 -0.9682133 -0.76743001 -0.2283272  1.155501 -0.09440084
## High -0.09277032  0.5519762  0.04782863 -0.6150805 -0.817543 -0.19363888
##          FP031      FP032      FP033      FP034      FP035     FP036     FP037
## Mid  0.2043519 -0.3239928 -0.2998948  0.3517654 -1.0315493 0.1812509 0.6755704
## High 1.7565966 -1.0673350 -0.2366944 -0.6478395 -0.9004425 1.1611353 1.8950471
##           FP038      FP039       FP040      FP041     FP042      FP043
## Mid  -0.2216016 -0.0706278 -0.07973857  0.9444687 0.9801262 -0.5783072
## High  0.5247800 -0.4041910  0.27647855 -1.4018870 0.4757096  0.1388797
##          FP044     FP045     FP046      FP047       FP048     FP049      FP050
## Mid  0.2905172 0.5003461 0.4289552  0.1956553 -0.03288215 0.1313204 -0.7209036
## High 1.5469966 0.5081891 0.3308734 -1.1120280  0.23746535 0.3224293 -0.6020936
##           FP051     FP052    FP053      FP054      FP055      FP056
## Mid   0.4053661 0.2938679 1.128636 -0.2656152 -0.3029370  0.4400948
## High -0.5729887 0.6140839 0.374147 -0.7519996 -0.2920189 -1.0492325
##             FP057      FP058      FP059     FP060      FP061     FP062    FP063
## Mid  -0.403170642  0.5171627  0.1412360 0.4206273 -0.5244561 0.9615365 2.987642
## High  0.001902966 -0.3595172 -0.8636609 0.3368837 -0.7389476 1.2344888 2.672510
##            FP064    FP065       FP066       FP067     FP068      FP069
## Mid   0.06433782 1.091457  0.02104293 -0.38733209 -2.144903  0.3400739
## High -0.34613530 0.832384 -0.66983552  0.04653057  1.784919 -0.6669396
##          FP070      FP071    FP072      FP073        FP074    FP075     FP076
## Mid  0.3050364 0.06511125 2.316753 -0.3343082 -0.001637847 1.444371 0.9854032
## High 0.3145152 0.43246145 2.805560  0.5203168  0.648286759 1.833744 0.1342224
##           FP077      FP078      FP079      FP080      FP081      FP082
## Mid   0.1750215 -0.5312592 -0.4096345  1.5980629 -0.6842064  0.3845965
## High -0.3078430 -1.3787583 -0.8548013 -0.3773864 -1.8892356 -0.2637251
##           FP083      FP084       FP085      FP086       FP087     FP088
## Mid  -0.4486936 -0.3565204  0.08971201 -0.2881948 -0.05802898 1.0174955
## High -2.9175479  0.5610060 -1.66242110  0.6611248 -0.32998948 0.7176691
##           FP089      FP090    FP091     FP092     FP093       FP094      FP095
## Mid  -0.7951702  0.2283722 1.713320  1.933052 0.7479896  0.02050178 -1.0366739
## High -0.6465050 -0.6977186 1.010577 -1.937962 0.7301366 -0.47931258 -0.6788353
##          FP096      FP097     FP098      FP099      FP100       FP101
## Mid  0.2857435 -0.5144927  0.245868  0.5284689 0.02237789 -0.05640296
## High 0.3125885 -0.8006670 -1.181972 -0.8920963 0.55813777 -0.15348042
##           FP102     FP103     FP104      FP105        FP106      FP107
## Mid  -1.7373996 0.4491732 -1.447670 -0.5525368 -0.249729873 -0.4036078
## High  0.3858069 0.5011706 -2.635027 -0.7725175  0.001740566 -0.9096954
##           FP108     FP109      FP110      FP111     FP112     FP113     FP114
## Mid  -1.1407408 0.1663905 -0.4385522 -0.9104599 -1.048569 0.1991461 -1.264080
## High  0.8125672 0.7851773 -0.5094087 -1.7169448  1.605809 0.7741149 -2.312443
##          FP115      FP116     FP117      FP118   FP119      FP120      FP121
## Mid  0.4544520  1.5299058 0.4995241 -0.7274274 1.27883 -1.7535204  0.8199299
## High 0.5684876 -0.2530857 0.1910838  0.4281759 2.30713  0.1667666 -1.0936131
##          FP122      FP123      FP124     FP125      FP126      FP127
## Mid  0.9766721 -0.8912633 -0.4464019 0.8678230 -0.8477609  0.7767033
## High 1.3540896 -1.7860194  1.6381951 0.3824767 -1.3287580 -0.4767430
##            FP128     FP129     FP130     FP131      FP132      FP133
## Mid  -0.09607944 0.6653038 0.2882053 0.9669156 -0.6981534  0.1544506
## High -0.68602176 0.9339282 0.1102145 1.7452320 -0.6625415 -0.2076645
##            FP134     FP135     FP136      FP137      FP138      FP139
## Mid  -0.33605474 0.5891155 -2.101535  0.4966107 -1.5309557  0.3673071
## High  0.02854853 1.0787335  1.246948 -1.0326168  0.2761916 -0.7913198
##             FP140      FP141       FP142     FP143     FP144      FP145
## Mid   1.739704937 -2.2101801 -0.04835435 0.9877672 0.7522101 -0.3695825
## High -0.009863372 -0.7915654  0.56401524 0.5739642 0.4158787 -1.3881376
##           FP146     FP147      FP148      FP149      FP150      FP151     FP152
## Mid  -0.3529394 0.5681435 -0.4534573  0.3818418 -0.5439020 -0.7842198 1.0437007
## High  1.1306548 0.4560444 -0.5404217 -0.7123495  0.3410997  0.3708683 0.3964055
##           FP153      FP155      FP156      FP157      FP158    FP159     FP160
## Mid  -0.2217946 -1.1192872 -1.5614879 -1.5877514 -1.2051472 3.233232 -0.476313
## High  0.4689081  0.3261405  0.1907534 -0.1474891 -0.1902042 1.689629 -1.291519
##          FP161      FP162     FP163    FP164      FP165      FP166     FP167
## Mid  0.4217388 -0.5694841 0.4623746 1.122994  0.1091634  0.1250613 -1.213595
## High 0.8250906  0.2641386 1.5015764 1.953777 -1.1010819 -0.1057227 -1.145418
##          FP168      FP169     FP170     FP171      FP172     FP173     FP174
## Mid  0.7361837 -0.2747340 0.2763340 1.1457456 -0.2451987 0.1283694 -1.563702
## High 0.6127858 -0.2735982 0.5148641 0.5552398 -0.3743099 0.6830350 -1.351538
##            FP175      FP176      FP177      FP178     FP179      FP180
## Mid  -0.04063002 -0.6428712  0.3148494 -0.3371144 0.8376987  0.6959440
## High  1.16455022  0.7098259 -0.1740625 -0.9153921 0.2492426 -0.2914802
##           FP181      FP182       FP183     FP184     FP185      FP186
## Mid   0.3223045 -0.8096873 -0.08861724 0.9089379 0.7510516  0.1135708
## High -0.9167732 -0.1299087 -0.34243073 0.9982696 0.4894935 -1.0577079
##           FP187     FP188       FP189     FP190      FP191     FP192     FP193
## Mid  -0.6890491 0.2878383 -0.02618061 0.1416122 -0.1282181 0.8457766 0.2384319
## High  0.3843625 0.5303369  0.23909401 0.5542136  0.2742643 1.0899632 0.9086864
##          FP194       FP195      FP196      FP197       FP198      FP201
## Mid  0.1611417 -0.05072066 -1.2628212 -1.2426343 -0.36393309 -0.4367053
## High 0.7662758 -0.51170939 -0.2938505  0.2440656  0.08879696 -0.2120910
##           FP202      FP203       FP204      FP205      FP206      FP207
## Mid  -0.3494017  0.3831490  0.67174246 -0.4106869 -0.0963502 -0.2403326
## High  1.0076553 -0.4048149 -0.06073232 -0.3103634 -0.1330361 -0.2323437
##           FP208 MolWeight  NumBonds NumMultBonds NumRotBonds NumDblBonds
## Mid  -0.2492231 -3.726498 -2.124305   -2.2835259    -1.14839    2.209437
## High  0.3378366 -5.655681 -2.111696   -0.9108377    -2.23907   -1.609858
##       NumCarbon NumNitrogen  NumOxygen  NumSulfer NumChlorine  NumHalogen
## Mid  -0.3663732   0.7680388 -0.1071704 -0.6095681  -0.6983195 -0.74261052
## High -3.6450066  -0.1176069  3.4248677 -0.9895045   0.6590478  0.01551646
##        NumRings HydrophilicFactor SurfaceArea1 SurfaceArea2
## Mid  -0.3988221          1.981722    0.2966302   -0.1267327
## High  0.6023396          1.764594    1.2304715    0.3980592
## 
## Residual Deviance: 325.6436 
## AIC: 1209.644
PMR_Tune$results
##   decay  logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1 0e+00 6.268653 0.8333238 0.4536161 0.6835610 0.5140285 0.6706793
## 2 1e-04 5.487383 0.8348603 0.5004770 0.6877387 0.5198066 0.6741649
## 3 1e-03 3.879741 0.8385638 0.6098625 0.6950744 0.5309883 0.6811589
## 4 1e-02 2.164788 0.8527698 0.6956716 0.7118960 0.5546841 0.6976960
## 5 1e-01 1.028097 0.8840758 0.7446643 0.7433879 0.6034366 0.7292788
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.6742287        0.8417692           0.6707438           0.8393936
## 2        0.6768690        0.8436688           0.6749554           0.8415973
## 3        0.6841549        0.8474496           0.6810874           0.8453742
## 4        0.6979662        0.8546371           0.6987544           0.8538125
## 5        0.7298753        0.8712734           0.7325479           0.8705616
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.6707438   0.6742287           0.2278537              0.7579989
## 2      0.6749554   0.6768690           0.2292462              0.7602689
## 3      0.6810874   0.6841549           0.2316915              0.7658022
## 4      0.6987544   0.6979662           0.2372987              0.7763016
## 5      0.7325479   0.7298753           0.2477960              0.8005744
##   logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1 1.0045558 0.03088745 0.03932687 0.03461454 0.05276605 0.03157092
## 2 0.7902989 0.03076925 0.03165771 0.03879316 0.05921707 0.03706947
## 3 0.6570727 0.03128892 0.03633868 0.03892950 0.05951409 0.03829579
## 4 0.4276198 0.03028311 0.04816400 0.03799363 0.05893747 0.03638139
## 5 0.2209345 0.02857309 0.04603667 0.03643856 0.05693879 0.03717359
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1         0.03455499         0.01811754            0.02986873
## 2         0.04012566         0.01982767            0.03529035
## 3         0.04121621         0.01971138            0.03651634
## 4         0.03827321         0.02020328            0.03476195
## 5         0.04114348         0.01913026            0.03351310
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1            0.01934190       0.02986873    0.03455499            0.01153818
## 2            0.02124061       0.03529035    0.04012566            0.01293105
## 3            0.02092513       0.03651634    0.04121621            0.01297650
## 4            0.02086006       0.03476195    0.03827321            0.01266454
## 5            0.01925731       0.03351310    0.04114348            0.01214619
##   Mean_Balanced_AccuracySD
## 1               0.02583835
## 2               0.02958166
## 3               0.03008787
## 4               0.02895948
## 5               0.02993183
(PMR_Train_Accuracy <- PMR_Tune$results[PMR_Tune$results$decay==PMR_Tune$bestTune$decay,
                              c("Accuracy")])
## [1] 0.7433879
##################################
# Identifying and plotting the
# best model predictors
##################################
PMR_VarImp <- varImp(PMR_Tune, scale = TRUE)
plot(PMR_VarImp, 
     top=25, 
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Penalized Multinomial Regression",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
PMR_Test <- data.frame(PMR_Observed = PMA_PreModelling_Test_PMR$Log_Solubility_Class,
                      PMR_Predicted = predict(PMR_Tune, 
                      PMA_PreModelling_Test_PMR[,!names(PMA_PreModelling_Test_PMR) %in% c("Log_Solubility_Class")],
                      type = "raw"))

PMR_Test
##     PMR_Observed PMR_Predicted
## 1           High          High
## 2           High          High
## 3           High          High
## 4           High          High
## 5           High          High
## 6           High          High
## 7           High          High
## 8           High          High
## 9           High          High
## 10          High          High
## 11          High          High
## 12          High           Mid
## 13          High          High
## 14          High          High
## 15          High           Mid
## 16          High          High
## 17          High          High
## 18          High          High
## 19          High          High
## 20          High          High
## 21          High          High
## 22          High          High
## 23          High          High
## 24          High          High
## 25          High          High
## 26          High          High
## 27          High           Mid
## 28          High          High
## 29          High          High
## 30          High          High
## 31          High           Mid
## 32          High          High
## 33          High          High
## 34          High          High
## 35          High          High
## 36          High          High
## 37          High          High
## 38          High          High
## 39          High          High
## 40          High          High
## 41          High          High
## 42          High          High
## 43          High           Mid
## 44          High          High
## 45          High           Mid
## 46          High          High
## 47          High          High
## 48          High          High
## 49          High          High
## 50          High          High
## 51          High          High
## 52          High           Mid
## 53          High           Mid
## 54          High          High
## 55          High           Mid
## 56          High          High
## 57          High           Mid
## 58           Mid           Mid
## 59           Mid           Mid
## 60           Mid           Low
## 61           Mid           Mid
## 62           Mid           Mid
## 63           Mid          High
## 64           Mid          High
## 65           Mid           Mid
## 66           Mid           Mid
## 67           Mid           Low
## 68           Mid          High
## 69           Mid          High
## 70           Mid           Mid
## 71           Mid           Mid
## 72           Mid           Mid
## 73           Mid           Mid
## 74           Mid           Mid
## 75           Mid           Mid
## 76           Mid           Mid
## 77           Mid           Low
## 78           Mid           Mid
## 79           Mid           Mid
## 80           Mid           Mid
## 81           Mid           Mid
## 82           Mid          High
## 83           Mid           Mid
## 84           Mid           Mid
## 85           Mid           Mid
## 86           Mid          High
## 87           Mid           Low
## 88           Mid           Mid
## 89           Mid           Mid
## 90           Mid           Mid
## 91           Mid          High
## 92           Mid           Mid
## 93           Mid           Low
## 94           Mid           Mid
## 95           Mid           Mid
## 96           Mid           Mid
## 97           Mid          High
## 98           Mid           Mid
## 99           Mid          High
## 100          Mid           Mid
## 101          Mid          High
## 102          Mid           Mid
## 103          Mid           Mid
## 104          Mid           Mid
## 105          Mid           Low
## 106          Mid           Mid
## 107          Mid           Mid
## 108          Mid           Mid
## 109          Mid           Low
## 110          Mid           Low
## 111          Mid           Mid
## 112          Mid           Low
## 113          Mid           Mid
## 114          Mid           Low
## 115          Mid           Mid
## 116          Mid           Low
## 117          Mid           Low
## 118          Mid           Low
## 119          Low           Mid
## 120          Low           Low
## 121          Low           Mid
## 122          Low           Mid
## 123          Low           Low
## 124          Low           Low
## 125          Low          High
## 126          Low           Mid
## 127          Low           Low
## 128          Low           Mid
## 129          Low           Low
## 130          Low           Mid
## 131          Low           Low
## 132          Low           Low
## 133          Low           Low
## 134          Low           Low
## 135          Low           Low
## 136          Low           Low
## 137          Low           Mid
## 138          Low           Low
## 139          Low           Mid
## 140          Low           Mid
## 141          Low           Mid
## 142          Low           Low
## 143          Low           Low
## 144          Low           Mid
## 145          Low           Mid
## 146          Low           Low
## 147          Low          High
## 148          Low           Low
## 149          Low           Low
## 150          Low           Low
## 151          Low          High
## 152          Low           Low
## 153          Low           Low
## 154          Low           Low
## 155          Low           Mid
## 156          Low           Mid
## 157          Low           Low
## 158          Low           Low
## 159          Low           Low
## 160          Low           Low
## 161          Low           Low
## 162          Low           Low
## 163          Low           Low
## 164          Low           Low
## 165          Low           Low
## 166          Low           Low
## 167          Low           Low
## 168          Low           Low
## 169          Low           Low
## 170          Low           Low
## 171          Low           Low
## 172          Low           Low
## 173          Low           Low
## 174          Low           Low
## 175          Low           Low
## 176          Low           Low
## 177          Low           Low
## 178          Low           Low
## 179          Low           Low
## 180          Low           Low
## 181          Low           Low
## 182          Low           Mid
## 183          Low           Low
## 184          Low           Low
## 185          Low           Low
## 186          Low           Low
## 187          Low           Low
## 188          Low           Low
## 189          Low           Low
## 190          Low           Low
## 191          Low           Low
## 192          Low           Low
## 193          Low           Low
## 194          Low           Low
## 195          Low           Low
## 196          Low           Low
## 197          Low           Low
## 198          Low           Low
## 199          Low           Low
## 200          Low           Low
## 201          Low           Low
## 202          Low           Low
## 203          Low           Low
## 204          Low           Low
## 205          Low           Low
## 206          Low           Low
## 207          Low           Low
## 208          Low           Low
## 209          Low           Low
## 210          Low           Low
## 211          Low           Low
## 212          Low           Low
## 213          Low           Low
## 214          Low           Low
## 215          Low           Low
## 216          Low           Low
## 217         High          High
## 218         High          High
## 219         High          High
## 220         High          High
## 221         High           Mid
## 222         High          High
## 223         High          High
## 224         High          High
## 225         High           Mid
## 226         High          High
## 227         High          High
## 228         High           Mid
## 229         High          High
## 230         High           Mid
## 231         High           Mid
## 232         High          High
## 233         High          High
## 234         High           Mid
## 235         High          High
## 236         High           Mid
## 237         High           Mid
## 238          Mid           Mid
## 239          Mid           Mid
## 240          Mid           Mid
## 241          Mid          High
## 242          Mid           Mid
## 243          Mid           Mid
## 244          Mid           Low
## 245          Mid           Mid
## 246          Mid           Mid
## 247          Mid           Mid
## 248          Mid          High
## 249          Mid          High
## 250          Mid           Mid
## 251          Mid           Mid
## 252          Mid           Mid
## 253          Mid           Mid
## 254          Mid           Low
## 255          Mid           Low
## 256          Mid           Mid
## 257          Mid           Mid
## 258          Mid           Mid
## 259          Mid           Low
## 260          Mid           Mid
## 261          Mid           Mid
## 262          Mid           Mid
## 263          Mid           Mid
## 264          Mid           Mid
## 265          Mid          High
## 266          Mid           Mid
## 267          Mid           Low
## 268          Mid           Mid
## 269          Low           Mid
## 270          Low          High
## 271          Low           Low
## 272          Low           Low
## 273          Low           Low
## 274          Low           Low
## 275          Low           Low
## 276          Low           Low
## 277          Low           Low
## 278          Low           Mid
## 279          Low           Low
## 280          Low           Low
## 281          Low           Low
## 282          Low           Low
## 283          Low           Low
## 284          Low           Low
## 285          Low           Low
## 286          Low           Low
## 287          Low           Low
## 288          Low           Mid
## 289          Low           Low
## 290          Low           Low
## 291          Low           Low
## 292          Low           Low
## 293          Low           Low
## 294          Low           Low
## 295          Low           Low
## 296          Low           Low
## 297          Low           Low
## 298          Low           Low
## 299          Low           Low
## 300          Low           Low
## 301          Low           Low
## 302          Low           Low
## 303          Low           Low
## 304          Low           Low
## 305          Low           Low
## 306          Low           Low
## 307          Low           Low
## 308          Low           Low
## 309          Low           Low
## 310          Low           Low
## 311          Low           Low
## 312          Low           Low
## 313          Mid           Mid
## 314         High           Low
## 315          Low           Low
## 316          Mid           Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(PMR_Test_Accuracy <- Accuracy(y_pred = PMR_Test$PMR_Predicted,
                               y_true = PMR_Test$PMR_Observed))
## [1] 0.7658228

1.5.2 Linear Discriminant Analysis (LDA)


Linear Discriminant Analysis finds a linear combination of features that best separates the classes in a data set by projecting the data onto a lower-dimensional space that maximizes the separation between the classes. The algorithm searches for a set of linear discriminants that maximize the ratio of between-class variance to within-class variance by evaluating directions in the feature space that best separate the different classes of data. LDA assumes that the data has a Gaussian distribution and that the covariance matrices of the different classes are equal, in addition to the data being linearly separable by the presence of a linear decision boundary can accurately classify the different classes.

[A] The linear discriminant analysis model from the MASS package was implemented through the caret package.

[B] The model does not contain any hyperparameter.

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] Accuracy = 0.72865

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.76899

Code Chunk | Output
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_LDA <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_LDA$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_LDA)
## [1] 951 221
PMA_PreModelling_Test_LDA <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_LDA$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_LDA)
## [1] 316 221
##################################
# Creating consistent fold assignments 
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_LDA$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# No hyperparameter tuning process conducted

##################################
# Running the linear discriminant analysis model
# by setting the caret method to 'lda'
##################################
set.seed(12345678)
LDA_Tune <- train(x = PMA_PreModelling_Train_LDA[,!names(PMA_PreModelling_Train_LDA) %in% c("Log_Solubility_Class")], 
                 y = PMA_PreModelling_Train_LDA$Log_Solubility_Class,
                 method = "lda",
                 preProc = c("center","scale"),
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
LDA_Tune
## Linear Discriminant Analysis 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results:
## 
##   logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##   0.8551144  0.8843082  0.7482794  0.7286501  0.5808144  0.7213929
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.7189133         0.8624052         0.7282928            0.8609278          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.7282928       0.7189133    0.2428834            0.7906592
LDA_Tune$finalModel
## Call:
## lda(x, y)
## 
## Prior probabilities of groups:
##       Low       Mid      High 
## 0.4490011 0.2975815 0.2534175 
## 
## Group means:
##            FP001       FP002        FP003       FP004       FP005       FP006
## Low  -0.04954059  0.28017515  0.007856301 -0.06481098  0.27311405 -0.16273792
## Mid   0.10902901  0.01658496 -0.003534440  0.06840558  0.02169575  0.06934358
## High -0.04025467 -0.51588520 -0.009769270  0.03450419 -0.50937592  0.20690812
##              FP007       FP008       FP009       FP010       FP011       FP012
## Low   0.0323329262  0.14386418  0.31583843 -0.09365294 -0.14025459 -0.02106485
## Mid   0.0002701702  0.08852866 -0.09565208  0.08674774 -0.07491005 -0.07402484
## High -0.0576042226 -0.35885318 -0.44727581  0.06406720  0.33646577  0.12424779
##           FP013      FP014      FP015        FP016      FP017       FP018
## Low   0.3525294  0.3395685 -0.1976220  0.030404859  0.1365611  0.13768398
## Mid  -0.1899409 -0.1781120  0.1382642 -0.053623483 -0.1183642  0.06064874
## High -0.4015634 -0.3924898  0.1877834  0.009097804 -0.1029648 -0.31516454
##             FP019       FP020       FP021        FP022       FP023       FP024
## Low  -0.007754077 -0.04457870  0.05287346 -0.003457511  0.11021758 -0.01513399
## Mid   0.005185959  0.04431530  0.07342152  0.133448185 -0.03028879  0.01295101
## High  0.007648815  0.02694553 -0.17989733 -0.150578751 -0.15971444  0.01160613
##             FP025       FP026       FP027       FP028       FP029       FP030
## Low  -0.046766898  0.06813605 -0.10840914 -0.03304107  0.02665863 -0.05594394
## Mid   0.069193318 -0.01026187  0.13465289 -0.12673102  0.16494312 -0.10288598
## High  0.001608949 -0.10867214  0.03395823  0.20735856 -0.24092173  0.21993690
##            FP031       FP032       FP033       FP034      FP035       FP036
## Low   0.03146379 -0.07556463 -0.06110273  0.05072117  0.1716135 -0.12678018
## Mid  -0.02840347  0.06991333  0.06058579  0.08314469 -0.1161756  0.11447091
## High -0.02239359  0.05178683  0.03711653 -0.18750160 -0.1676401  0.09020693
##            FP037        FP038       FP039       FP040       FP041       FP042
## Low   0.07241315 -0.048516283  0.17918499 -0.08519871  0.15461568 -0.03283123
## Mid  -0.05434673  0.007528016 -0.06890764  0.03718920 -0.05599678  0.13628659
## High -0.06448253  0.077120433 -0.23656070  0.10728344 -0.20819007 -0.10186792
##            FP043      FP044       FP045        FP046      FP047       FP048
## Low   0.06317712  0.2702580  0.11430896  0.192916006  0.1027778  0.03562711
## Mid  -0.02481643 -0.1928574 -0.04267312 -0.009685825  0.1095910  0.04162326
## High -0.08279493 -0.2523714 -0.15242087 -0.330431726 -0.3107898 -0.11200065
##           FP049       FP050       FP051       FP052       FP053       FP054
## Low   0.2711896  0.08856849  0.11478038 -0.03298863  0.21730247  0.16521618
## Mid  -0.1351073  0.01295101  0.05716494  0.14835698 -0.09075999 -0.08579001
## High -0.3218366 -0.17213228 -0.27049336 -0.11576299 -0.27843601 -0.19198646
##            FP055       FP056       FP057       FP058       FP059        FP060
## Low  -0.06129149  0.17220255  0.04189625  0.01112416  0.15084744 -0.134177171
## Mid   0.05993805 -0.07796857  0.06606136  0.06524187 -0.02290085 -0.009134416
## High  0.03821161 -0.21354930 -0.15180523 -0.09632143 -0.24037725  0.248459302
##            FP061       FP062       FP063        FP064       FP065        FP066
## Low  -0.01330222 -0.06975983 -0.08447482 -0.046553448  0.36098458 -0.002018379
## Mid   0.06057852  0.09401921  0.08199070  0.008294273 -0.04914397  0.010156404
## High -0.04756711  0.01319507  0.05339162  0.072742916 -0.58187830 -0.008350268
##            FP067       FP068       FP069      FP070       FP071       FP072
## Low  -0.03901753 -0.03145129  0.04161918  0.3288123  0.28619909 -0.25699328
## Mid   0.10605653  0.06344564 -0.02475532 -0.1371141 -0.09446362  0.07977886
## High -0.05540876 -0.01877766 -0.04467068 -0.4215750 -0.39615687  0.36165441
##            FP073         FP074       FP075      FP076       FP077       FP078
## Low  -0.13892731 -0.0486850322 -0.07210725  0.4980956  0.07048212  0.02157141
## Mid  -0.01364004  0.0003568214  0.08342687 -0.2395438 -0.01333500  0.09981503
## High  0.26216635  0.0858403664  0.02979250 -0.6012279 -0.10922017 -0.15543006
##            FP079       FP080       FP081       FP082       FP083        FP084
## Low   0.34639244 -0.05762649  0.07838924  0.33734517 -0.14043143 -0.031742701
## Mid  -0.04743907 -0.03615189 -0.05403156 -0.07078979  0.18723275  0.039528547
## High -0.55802620  0.14455393 -0.07544098 -0.51457625  0.02895168  0.009823878
##            FP085       FP086       FP087       FP088      FP089       FP090
## Low   0.30532425  0.10584011  0.30323360 -0.10767772  0.4204845  0.10598961
## Mid  -0.08350289 -0.08106582 -0.02083049 -0.02724107 -0.2368909 -0.01246604
## High -0.44291344 -0.09233236 -0.51280382  0.22277016 -0.4668330 -0.17315218
##             FP091      FP092       FP093        FP094       FP095       FP096
## Low   0.005121802  0.3533487  0.16804052  0.001219888 -0.04432336  0.05137200
## Mid   0.070343012 -0.1154491 -0.07433153  0.029581833 -0.01871684  0.03766248
## High -0.091676689 -0.4904889 -0.21044596 -0.036898552  0.10051013 -0.13524617
##           FP097       FP098       FP099       FP100         FP101       FP102
## Low   0.2946914 -0.05760012  0.17327514 -0.07094028 -0.0331847631  0.13290193
## Mid  -0.1136762  0.05597914 -0.02762812  0.12170912  0.0502275852 -0.01878986
## High -0.3886426  0.03632014 -0.27456317 -0.01722898 -0.0001847002 -0.21340910
##            FP103      FP104       FP105       FP106       FP107       FP108
## Low   0.12235122  0.1057947  0.16481555  0.09092851  0.27949701 -0.00321884
## Mid  -0.01620674  0.0247158 -0.06874443  0.04345375 -0.08489414  0.02599436
## High -0.19774881 -0.2164685 -0.21129280 -0.21213230 -0.39551943 -0.02482140
##            FP109       FP110       FP111      FP112       FP113       FP114
## Low   0.10168435 -0.06946341  0.02377356  0.3898869 -0.07974936  0.06165111
## Mid   0.06488128  0.08446396  0.11864596 -0.2145986 -0.01202162  0.08727404
## High -0.25635112  0.02389036 -0.18144447 -0.4387979  0.15541533 -0.21171609
##            FP115       FP116        FP117       FP118      FP119       FP120
## Low   0.02852821 -0.03068122  0.107945953 -0.05443201 -0.0227835 -0.05623436
## Mid   0.05909508  0.02277903 -0.005427792 -0.08472895  0.1422317 -0.07607813
## High -0.11993963  0.02761169 -0.184883224  0.19593677 -0.1266515  0.18897172
##            FP121        FP122       FP123       FP124       FP125        FP126
## Low   0.11663727  0.006041735  0.15436685 -0.03269777 -0.02874788 -0.002036287
## Mid  -0.04661987 -0.023105838 -0.05030893  0.03041381  0.02881816  0.099790899
## High -0.15191157  0.016427930 -0.21442829  0.02221924  0.01709464 -0.113573984
##            FP127       FP128       FP129        FP130        FP131       FP132
## Low  -0.06557830 -0.06131717  0.12681663  0.069437772  0.007894091 -0.12331459
## Mid   0.15703423  0.07991423 -0.05394273  0.002784506  0.088174009  0.11301506
## High -0.06821058  0.01479959 -0.16134817 -0.126298523 -0.117527061  0.08577622
##             FP133       FP134        FP135        FP136       FP137       FP138
## Low  -0.020302268  0.10305010  0.007894091 -0.011738754  0.09228709  0.07739663
## Mid  -0.007549145  0.06351145 -0.039456863  0.008428781 -0.03019007 -0.09587982
## High  0.044836002 -0.25716237  0.032346536  0.010900842 -0.12806140 -0.02454097
##            FP139       FP140       FP141       FP142       FP143       FP144
## Low   0.03393326 -0.05648327  0.12510155  0.03227952  0.04656681 -0.08010303
## Mid   0.06163448  0.10612273  0.05464945 -0.07863154  0.03995693 -0.09784255
## High -0.13249817 -0.02454097 -0.28582637  0.03514262 -0.12942671  0.25681924
##             FP145       FP146        FP147        FP148      FP149
## Low  -0.049444825  0.20785792 -0.022129579 -0.035388064  0.2479928
## Mid  -0.005326253 -0.09482594 -0.008728821  0.003763156 -0.1304328
## High  0.093860041 -0.25692776  0.049458866  0.058281038 -0.2862260
##              FP150       FP151       FP152       FP153       FP155       FP156
## Low  -0.0145471113 -0.01833621  0.05952448  0.07666591  0.18757927  0.08155977
## Mid   0.0220318460  0.11128036  0.08737641 -0.02664544 -0.09228155  0.04225839
## High -0.0000970785 -0.09818581 -0.20806837 -0.10454642 -0.22398619 -0.19412924
##            FP157       FP158       FP159       FP160       FP161       FP162
## Low   0.01464155 -0.07168155  0.07241315  0.00755913 -0.17210420  0.25056091
## Mid  -0.05208092  0.05993805  0.09746131  0.17714538 -0.02481643  0.03418225
## High  0.03521559  0.05662054 -0.24274675 -0.22141034  0.33407280 -0.48407919
##             FP163        FP164       FP165      FP166         FP167       FP168
## Low  -0.072162232  0.309635895 -0.03470786  0.1669255 -0.0403232212  0.33629878
## Mid   0.114524513 -0.004793811  0.08300102 -0.0130429  0.0613393521 -0.01024898
## High -0.006627237 -0.542978749 -0.03597109 -0.2804401 -0.0005851502 -0.58381377
##           FP169      FP170       FP171      FP172      FP173       FP174
## Low   0.3279270  0.1173360 -0.09542927  0.3613895  0.1501297  0.07871463
## Mid  -0.1785070 -0.0644986  0.01967689 -0.2152948 -0.0928301  0.01153595
## High -0.3713998 -0.1321550  0.14597401 -0.3874892 -0.1569894 -0.15301170
##            FP175         FP176       FP177        FP178       FP179       FP180
## Low   0.01047863 -0.0006016742  0.02415692  0.124664813  0.06495599 -0.05898743
## Mid   0.05080472  0.0051859590  0.08425364 -0.002403342  0.01575326  0.06444741
## High -0.07822452 -0.0050236991 -0.14173770 -0.218056969 -0.13358665  0.02883409
##            FP181       FP182       FP183      FP184       FP185        FP186
## Low   0.20122916 -0.03298749 -0.06484156  0.2620897  0.14784168 -0.024417623
## Mid  -0.05438204 -0.01150993  0.06106800 -0.1502220 -0.06457773  0.030201904
## High -0.29267524  0.07196253  0.04317470 -0.2879647 -0.18611163  0.007797453
##             FP187       FP188       FP189      FP190         FP191       FP192
## Low   0.009194087 -0.07592293  0.08109314  0.2167300 -0.0190530545  0.08761784
## Mid  -0.061716927  0.03718920 -0.02286417 -0.1161756  0.0008561968 -0.04810687
## High  0.056182636  0.09084875 -0.11683075 -0.2475768  0.0327524921 -0.09874928
##           FP193       FP194       FP195      FP196      FP197       FP198
## Low   0.2572220 -0.02131844 -0.14712681  0.2099093  0.1945447 -0.08340218
## Mid  -0.1692053  0.12505136  0.14374642 -0.1231442 -0.1721513 -0.10788352
## High -0.2570485 -0.10907288  0.09187929 -0.2273091 -0.1425386  0.27445547
##            FP201        FP202        FP203       FP204      FP205       FP206
## Low  -0.06764568  0.155187968  0.007780434  0.10033971  0.1640452  0.10262214
## Mid   0.04938574 -0.007328423  0.061681308  0.02399042 -0.0530136  0.01544173
## High  0.06186115 -0.266354020 -0.086215999 -0.20595163 -0.2284002 -0.19995711
##           FP207       FP208  MolWeight   NumBonds NumMultBonds NumRotBonds
## Low   0.2099093  0.01449529  0.6447051  0.5260887    0.4454402   0.2155584
## Mid  -0.1231442  0.05765667 -0.2055106 -0.2189291   -0.1400358  -0.0940740
## High -0.2273091 -0.09338725 -0.9009527 -0.6750329   -0.6247835  -0.2714543
##      NumDblBonds  NumCarbon NumNitrogen    NumOxygen   NumSulfer NumChlorine
## Low   0.07217700  0.6263249 -0.02976857 -0.034068396  0.11971764   0.3118792
## Mid   0.07068664 -0.2418994  0.09225615 -0.005066866  0.02589293  -0.1802282
## High -0.21088755 -0.8256564 -0.05559051  0.066311736 -0.24251923  -0.3409454
##      NumHalogen   NumRings HydrophilicFactor SurfaceArea1 SurfaceArea2
## Low   0.3385013  0.4841073       -0.24599149  -0.09225436  -0.04168274
## Mid  -0.1813798 -0.2058863        0.04475775   0.05481524   0.04393220
## High -0.3867617 -0.6159668        0.38328598   0.09908671   0.02226439
## 
## Coefficients of linear discriminants:
##                             LD1           LD2
## FP001              0.1855954975  0.2782018361
## FP002             -0.6135782677 -0.4869325572
## FP003             -0.1171296765  0.2016916568
## FP004             -0.3276237359  0.3723988172
## FP005             -0.2936812786  0.2790433472
## FP006             -0.1580868991 -0.2175967131
## FP007             -0.0024671682 -0.0531052007
## FP008             -0.0114845200  0.0486234793
## FP009             -0.7674538872  0.2480820903
## FP010              0.1154366294 -0.0432426384
## FP011              0.3240619951 -0.0116202499
## FP012              0.0605046035 -0.3412027772
## FP013              0.1884122341  0.2680885013
## FP014             -0.0462969588  0.0444996102
## FP015             -0.0282440198  0.1238226602
## FP016              0.0172486696  0.3033577070
## FP017             -0.0599993551  0.3802235691
## FP018             -0.2954880803  0.0525242137
## FP019             -0.0386691077  0.3187903994
## FP020             -0.1324525118  0.2354473790
## FP021              0.6284314259 -0.0210429906
## FP022             -0.1352122296  0.5295282694
## FP023             -0.1032436318 -0.0584782787
## FP024             -0.2204170676 -0.4382696029
## FP025              0.1372341200 -0.1474673058
## FP026             -0.1014806293  0.5139002537
## FP027             -0.0164945482 -0.0120253131
## FP028              0.0537229491  0.1577667611
## FP029             -0.1085851472 -0.4843880547
## FP030             -0.2624947116 -0.0926482262
## FP031              0.1500340973  0.1492848152
## FP032             -0.9195073885  0.0524921754
## FP033              0.4167652293  0.0301834284
## FP034             -0.1470831193 -0.4414241905
## FP035             -0.1031841333  0.2568278829
## FP036              0.0634733352  0.1734969095
## FP037              0.3485126869  0.0247010530
## FP038              0.0836556589  0.4071005230
## FP039             -0.0670826698 -0.2989192842
## FP040              0.1544857350  0.1037763013
## FP041             -0.1669929848 -0.1325106453
## FP042              0.4963774935 -1.1426948713
## FP043             -0.0221607335  0.3203933546
## FP044              0.3380786213  0.0427068101
## FP045              0.0827810467 -0.0329890878
## FP046             -0.2172569895 -0.4220620843
## FP047             -0.1718454009 -0.1607422030
## FP048              0.1461852427  0.2231997653
## FP049             -0.0176447529  0.0503995557
## FP050             -0.0931434874  0.1582041425
## FP051              0.0354933501 -0.2253910655
## FP052              0.0722163792 -0.2519097665
## FP053              0.0646839936 -0.3813563879
## FP054             -0.1323716151 -0.0691674024
## FP055             -0.0145772704 -0.0537440907
## FP056             -0.0829152405  0.0639150900
## FP057              0.0072998013  0.0276230491
## FP058             -0.2555640653 -1.5465719028
## FP059             -0.0496023904 -0.0516000115
## FP060             -0.0431722435  0.0677726623
## FP061             -0.0421944083  0.1879922798
## FP062              0.1911762556 -0.5138627958
## FP063              0.6170638075 -0.9438104915
## FP064             -0.0485679931 -0.2176115295
## FP065              0.2361246228 -0.0047075831
## FP066              0.2009884350 -0.0228432500
## FP067             -0.1848843296  0.1433143283
## FP068              0.2085167329  1.4370826730
## FP069             -0.0248422548 -0.2317096768
## FP070              0.1570116877 -0.1629412731
## FP071              0.1037472958 -0.0148156577
## FP072              0.9050845121 -0.4236605345
## FP073             -0.2472336591  0.1211136762
## FP074              0.0373990499  0.2345652156
## FP075              0.1627371376  0.1477369498
## FP076             -0.0900720530 -0.1772856585
## FP077              0.0825293086 -0.0626189573
## FP078             -0.3701972749 -0.0990982962
## FP079              0.0188915630  0.0813004368
## FP080              0.2367191350 -0.5356534951
## FP081             -0.1840646236 -0.1404042285
## FP082              0.0468484495 -0.1146665204
## FP083             -0.3268201299 -0.4028308542
## FP084             -0.1157856537  0.1816453336
## FP085             -0.4212018704 -0.1274480979
## FP086              0.1642584339  0.2062438606
## FP087             -0.2524432340 -0.0049795450
## FP088              0.1121031520 -0.1602929235
## FP089             -0.2718104483  0.1483257871
## FP090             -0.2332962895 -0.4034552206
## FP091              0.1835121283 -0.2996565065
## FP092             -0.1535174799 -1.2205602917
## FP093              0.1672121947  0.0544042666
## FP094             -0.0996185276 -0.0098894580
## FP095             -0.1414176215  0.4405669739
## FP096              0.0379191486 -0.0775166100
## FP097             -0.1618644555  0.0201784623
## FP098              0.0226275766 -0.2730961547
## FP099             -0.0330526481 -0.4996072094
## FP100             -0.0818768698  0.0261769809
## FP101              0.1724492218  0.1212551959
## FP102             -0.2353082012  0.3259076883
## FP103             -0.0053374563 -0.0230736405
## FP104             -0.3607892425  0.2197319343
## FP105             -0.0415106954  0.0777261527
## FP106             -0.1217208654 -0.0771176930
## FP107             -0.3038114911 -0.0147591123
## FP108              0.0767082077  0.3257432271
## FP109              0.3143162185 -0.1124442829
## FP110             -0.0822873456  0.6478144230
## FP111             -0.2441480479 -0.1939900091
## FP112              0.0885632775  0.7417263121
## FP113              0.0710511228 -0.0809268393
## FP114             -0.1023952832  0.1268063683
## FP115              0.0112473204  0.1233280683
## FP116              0.2770757404 -0.4403297692
## FP117             -0.1414265453 -0.2245772609
## FP118              0.0351017221  0.3271422127
## FP119              0.4823680409 -0.2265144752
## FP120             -0.2891043456  0.2153201378
## FP121              0.0604346998 -0.1780081694
## FP122              0.1466950066 -0.1662303538
## FP123             -0.1714631887  0.1224106829
## FP124              0.0572465164  0.2722374249
## FP125              0.0346221414 -0.1065088159
## FP126             -0.3052339685  0.1098611152
## FP127             -0.0546286185 -0.2124155884
## FP128              0.1186249305 -0.4714523999
## FP129              0.3429476397 -0.2287883429
## FP130              0.4350766274  0.1935100544
## FP131              0.1564367716 -0.3379911071
## FP132             -0.0554198107 -0.2642284074
## FP133             -0.0670602326 -0.2737920071
## FP134             -0.1138548201 -0.4255466088
## FP135             -0.0669922590 -0.0022719779
## FP136             -0.0704817851  0.5719667023
## FP137             -0.2273694282 -0.6811418848
## FP138             -0.0817266666  0.2407017835
## FP139             -0.6599087522 -0.4113917131
## FP140              0.3390361543 -0.3797609179
## FP141             -0.0157110418  0.8069698276
## FP142              0.0431823975  0.1581515595
## FP143              0.1912175717 -0.1589449467
## FP144              0.3429089023  0.4151530844
## FP145             -0.1327208994 -0.1566070750
## FP146              0.0261105424  0.3403575374
## FP147              0.0104200914 -0.2086773032
## FP148             -0.0297838977  0.0689044781
## FP149             -0.0836497227 -0.2472384587
## FP150              0.0770093157 -0.0579850055
## FP151              0.1896081228  0.3455125650
## FP152              0.0005548397 -0.0359204233
## FP153              0.0984136286  0.0572128331
## FP155              0.1386220303 -0.0596584384
## FP156             -0.2514664026  0.2890610365
## FP157             -0.1302727624  0.4084761545
## FP158              0.0854522628  0.2447924860
## FP159              0.2376086442 -0.3112956132
## FP160              0.0436486408 -0.3469338103
## FP161              0.0205020373  0.0458705176
## FP162              0.1478637597  0.1048445505
## FP163             -0.0209691151  0.5435913789
## FP164              0.6441035785 -0.0313349222
## FP165             -0.0606278508 -0.4344078523
## FP166              0.2679453479  0.3599876048
## FP167             -0.3708844139  0.0824426887
## FP168             -0.1062666415 -0.0753494208
## FP169              0.0021683192  0.1907321006
## FP170              0.0666590446 -0.2347615002
## FP171              0.1073628753 -0.2795321095
## FP172              0.1591663885  0.2416815793
## FP173             -0.0142068490  0.1558127331
## FP174             -0.0925937893 -0.0857224759
## FP175              0.0019426630 -0.0965043186
## FP176              0.0231708518  0.2232212267
## FP177              0.0155403650 -0.4574333046
## FP178             -0.0528423508 -0.1767720167
## FP179              0.1010153212 -0.4442764045
## FP180             -0.0198855626 -0.3545312903
## FP181             -0.1320664614  0.1880009963
## FP182             -0.0194297745  0.3387766786
## FP183              0.4956198693 -0.0520044682
## FP184              0.1669138567 -0.1447819271
## FP185              0.1012688500 -0.1857517411
## FP186             -0.0716929025 -0.2672587281
## FP187             -0.0864040983  0.6815932105
## FP188              0.0411310049  0.1027911502
## FP189             -0.0968876840  0.0521920066
## FP190             -0.0354150309  0.0746942187
## FP191              0.0799792683  0.0507282204
## FP192              0.1491260446 -0.0308715870
## FP193              0.0530831063  0.0570077188
## FP194             -0.3101909882  0.8111375836
## FP195              0.0290554102 -0.1295186830
## FP196             -0.1251573633  0.2522715907
## FP197             -0.1679138546  0.3592871293
## FP198              0.1095925029  0.0614155060
## FP201             -0.0714239011 -0.0965672142
## FP202              0.2117368015  0.0009925958
## FP203              0.0900593816  0.4340255873
## FP204             -0.2861469330 -0.2622159232
## FP205             -0.0034706009 -0.0166735602
## FP206              0.0027292033  0.0075908940
## FP207              0.0972664077  0.0504006067
## FP208              0.1102711753  0.9489645462
## MolWeight         -1.2293465238 -0.1713579830
## NumBonds          -0.9800961412  0.5929706982
## NumMultBonds       0.0656262346  0.7927019690
## NumRotBonds       -0.0824006362  0.5731691511
## NumDblBonds       -0.4805687676 -0.4069509523
## NumCarbon          0.2036708080 -0.9808406987
## NumNitrogen        0.9513847851  0.1426724194
## NumOxygen          1.7462489612  0.4590333732
## NumSulfer          0.7164459644 -0.0449795204
## NumChlorine       -0.1185379390 -0.1437736943
## NumHalogen         0.4085575775  0.3652486383
## NumRings           0.1069141579  0.4794606940
## HydrophilicFactor  0.0544416087  0.3018207102
## SurfaceArea1       1.1023992923 -0.2493095291
## SurfaceArea2      -2.2289539407 -0.4627203779
## 
## Proportion of trace:
##    LD1    LD2 
## 0.8843 0.1157
LDA_Tune$results
##   parameter   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1      none 0.8551144 0.8843082 0.7482794 0.7286501 0.5808144 0.7213929
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.7189133        0.8624052           0.7282928           0.8609278
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.7282928   0.7189133           0.2428834              0.7906592
##   logLossSD      AUCSD    prAUCSD AccuracySD   KappaSD  Mean_F1SD
## 1 0.1984679 0.02870558 0.04579126 0.04137414 0.0633381 0.04217894
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1         0.04339287         0.02070353            0.03963661
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1            0.02123518       0.03963661    0.04339287            0.01379138
##   Mean_Balanced_AccuracySD
## 1               0.03194615
(LDA_Train_Accuracy <- LDA_Tune$results$Accuracy)
## [1] 0.7286501
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
LDA_Test <- data.frame(LDA_Observed = PMA_PreModelling_Test_LDA$Log_Solubility_Class,
                      LDA_Predicted = predict(LDA_Tune, 
                      PMA_PreModelling_Test_LDA[,!names(PMA_PreModelling_Test_LDA) %in% c("Log_Solubility_Class")],
                      type = "raw"))

LDA_Test
##     LDA_Observed LDA_Predicted
## 1           High          High
## 2           High          High
## 3           High          High
## 4           High          High
## 5           High          High
## 6           High          High
## 7           High          High
## 8           High          High
## 9           High          High
## 10          High           Mid
## 11          High           Mid
## 12          High          High
## 13          High          High
## 14          High          High
## 15          High          High
## 16          High          High
## 17          High          High
## 18          High          High
## 19          High          High
## 20          High          High
## 21          High          High
## 22          High          High
## 23          High          High
## 24          High          High
## 25          High          High
## 26          High           Mid
## 27          High          High
## 28          High          High
## 29          High          High
## 30          High          High
## 31          High           Mid
## 32          High          High
## 33          High          High
## 34          High          High
## 35          High          High
## 36          High          High
## 37          High          High
## 38          High          High
## 39          High          High
## 40          High          High
## 41          High          High
## 42          High          High
## 43          High           Mid
## 44          High          High
## 45          High          High
## 46          High          High
## 47          High          High
## 48          High          High
## 49          High          High
## 50          High          High
## 51          High          High
## 52          High           Mid
## 53          High           Mid
## 54          High          High
## 55          High          High
## 56          High           Mid
## 57          High          High
## 58           Mid           Mid
## 59           Mid           Mid
## 60           Mid           Mid
## 61           Mid           Mid
## 62           Mid           Mid
## 63           Mid          High
## 64           Mid          High
## 65           Mid           Mid
## 66           Mid           Mid
## 67           Mid           Low
## 68           Mid           Mid
## 69           Mid           Mid
## 70           Mid           Mid
## 71           Mid           Mid
## 72           Mid           Mid
## 73           Mid           Mid
## 74           Mid           Mid
## 75           Mid           Mid
## 76           Mid           Mid
## 77           Mid           Mid
## 78           Mid           Mid
## 79           Mid          High
## 80           Mid           Mid
## 81           Mid           Mid
## 82           Mid          High
## 83           Mid           Low
## 84           Mid           Mid
## 85           Mid           Mid
## 86           Mid          High
## 87           Mid           Low
## 88           Mid           Mid
## 89           Mid           Mid
## 90           Mid           Mid
## 91           Mid           Mid
## 92           Mid           Mid
## 93           Mid           Mid
## 94           Mid           Mid
## 95           Mid          High
## 96           Mid           Mid
## 97           Mid           Mid
## 98           Mid           Low
## 99           Mid           Mid
## 100          Mid           Mid
## 101          Mid           Mid
## 102          Mid           Mid
## 103          Mid           Mid
## 104          Mid           Mid
## 105          Mid           Low
## 106          Mid           Mid
## 107          Mid           Low
## 108          Mid           Mid
## 109          Mid           Low
## 110          Mid           Low
## 111          Mid           Mid
## 112          Mid           Low
## 113          Mid           Mid
## 114          Mid           Low
## 115          Mid           Mid
## 116          Mid           Low
## 117          Mid           Low
## 118          Mid           Low
## 119          Low          High
## 120          Low           Low
## 121          Low           Mid
## 122          Low           Mid
## 123          Low           Low
## 124          Low           Mid
## 125          Low           Low
## 126          Low           Mid
## 127          Low           Low
## 128          Low           Low
## 129          Low           Low
## 130          Low           Mid
## 131          Low           Low
## 132          Low           Low
## 133          Low           Low
## 134          Low           Low
## 135          Low           Low
## 136          Low           Mid
## 137          Low           Mid
## 138          Low           Low
## 139          Low           Low
## 140          Low           Mid
## 141          Low           Mid
## 142          Low           Low
## 143          Low           Low
## 144          Low           Mid
## 145          Low           Mid
## 146          Low           Low
## 147          Low           Mid
## 148          Low           Low
## 149          Low           Low
## 150          Low           Low
## 151          Low          High
## 152          Low           Mid
## 153          Low           Mid
## 154          Low           Low
## 155          Low           Mid
## 156          Low          High
## 157          Low           Low
## 158          Low           Low
## 159          Low           Low
## 160          Low           Low
## 161          Low           Low
## 162          Low           Low
## 163          Low           Low
## 164          Low           Low
## 165          Low           Low
## 166          Low           Low
## 167          Low           Low
## 168          Low           Mid
## 169          Low           Low
## 170          Low           Low
## 171          Low           Low
## 172          Low           Low
## 173          Low           Low
## 174          Low           Low
## 175          Low           Low
## 176          Low           Low
## 177          Low           Low
## 178          Low           Low
## 179          Low           Low
## 180          Low           Low
## 181          Low           Low
## 182          Low           Low
## 183          Low           Low
## 184          Low           Low
## 185          Low           Low
## 186          Low           Low
## 187          Low           Low
## 188          Low           Low
## 189          Low           Low
## 190          Low           Low
## 191          Low           Low
## 192          Low           Low
## 193          Low           Low
## 194          Low           Low
## 195          Low           Low
## 196          Low           Low
## 197          Low           Low
## 198          Low           Low
## 199          Low           Low
## 200          Low           Low
## 201          Low           Low
## 202          Low           Low
## 203          Low           Low
## 204          Low           Low
## 205          Low           Low
## 206          Low           Low
## 207          Low           Low
## 208          Low           Low
## 209          Low           Low
## 210          Low           Low
## 211          Low           Low
## 212          Low           Low
## 213          Low           Low
## 214          Low           Low
## 215          Low           Low
## 216          Low           Low
## 217         High          High
## 218         High          High
## 219         High          High
## 220         High          High
## 221         High           Mid
## 222         High          High
## 223         High          High
## 224         High          High
## 225         High           Low
## 226         High           Mid
## 227         High          High
## 228         High           Mid
## 229         High          High
## 230         High           Mid
## 231         High           Mid
## 232         High          High
## 233         High          High
## 234         High           Mid
## 235         High          High
## 236         High           Mid
## 237         High           Low
## 238          Mid           Mid
## 239          Mid           Mid
## 240          Mid           Mid
## 241          Mid          High
## 242          Mid           Mid
## 243          Mid           Mid
## 244          Mid           Low
## 245          Mid           Mid
## 246          Mid          High
## 247          Mid           Mid
## 248          Mid          High
## 249          Mid          High
## 250          Mid           Mid
## 251          Mid           Mid
## 252          Mid           Mid
## 253          Mid           Mid
## 254          Mid           Low
## 255          Mid           Low
## 256          Mid           Mid
## 257          Mid           Mid
## 258          Mid           Mid
## 259          Mid           Low
## 260          Mid           Mid
## 261          Mid           Mid
## 262          Mid           Mid
## 263          Mid           Mid
## 264          Mid           Mid
## 265          Mid           Low
## 266          Mid           Mid
## 267          Mid           Mid
## 268          Mid           Mid
## 269          Low           Mid
## 270          Low           Low
## 271          Low           Low
## 272          Low           Low
## 273          Low           Low
## 274          Low           Low
## 275          Low           Mid
## 276          Low           Low
## 277          Low           Low
## 278          Low           Mid
## 279          Low           Low
## 280          Low           Low
## 281          Low           Mid
## 282          Low           Low
## 283          Low           Low
## 284          Low           Low
## 285          Low           Low
## 286          Low           Mid
## 287          Low           Low
## 288          Low           Mid
## 289          Low           Low
## 290          Low           Low
## 291          Low           Low
## 292          Low           Low
## 293          Low           Low
## 294          Low           Low
## 295          Low           Low
## 296          Low           Mid
## 297          Low           Low
## 298          Low           Low
## 299          Low           Low
## 300          Low           Low
## 301          Low           Low
## 302          Low           Low
## 303          Low           Low
## 304          Low           Low
## 305          Low           Low
## 306          Low           Low
## 307          Low           Low
## 308          Low           Low
## 309          Low           Low
## 310          Low           Low
## 311          Low           Low
## 312          Low           Low
## 313          Mid           Mid
## 314         High           Mid
## 315          Low           Low
## 316          Mid           Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(LDA_Test_Accuracy <- Accuracy(y_pred = LDA_Test$LDA_Predicted,
                               y_true = LDA_Test$LDA_Observed))
## [1] 0.7689873

1.5.3 Flexible Discriminant Analysis (FDA)


Flexible Discriminant Analysis, as a flexible extension of the linear discriminant analysis, uses optimal scoring to transform the response variable so that the data are in a better form for linear separation, and multiple adaptive regression splines to generate the discriminant surface. The algorithm is useful to model multivariate non-normality or non-linear relationships among variables within each group, allowing for a more accurate classification.

[A] The flexible discriminant analysis model from the earth and mda packages was implemented through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] degree = product degree held constant at a value of 1
     [B.2] nprune = number of terms made to vary across a range of values equal to 2 to 25

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves degree=1 and nprune=24
     [C.2] Accuracy = 0.77500

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] HydrophilicFactor variable (numeric)
     [D.3] SurfaceArea1 variable (numeric)
     [D.4] FP204 (Structure=1) variable (factor)
     [D.5] NumCarbon variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.81962

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_FDA <- PMA_PreModelling_Train
PMA_PreModelling_Test_FDA <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_FDA$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
FDA_Grid = expand.grid(degree = 1, nprune = 2:25)

##################################
# Running the flexible discriminant analysis model
# by setting the caret method to 'fda'
##################################
set.seed(12345678)
FDA_Tune <- train(x = PMA_PreModelling_Train_FDA[,!names(PMA_PreModelling_Train_FDA) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_FDA$Log_Solubility_Class,
                 method = "fda",
                 tuneGrid = FDA_Grid,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
FDA_Tune
## Flexible Discriminant Analysis 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   nprune  logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##    2      0.8231674  0.7965561  0.5553061  0.6351043  0.4301200  0.5975246
##    3      0.7048935  0.8433419  0.6347325  0.6698659  0.4850944  0.6391000
##    4      0.7039261  0.8559477  0.6675228  0.6981777  0.5308492  0.6761924
##    5      0.6657453  0.8678639  0.6943039  0.7182449  0.5620472  0.7014765
##    6      0.6527154  0.8721968  0.7303171  0.7182897  0.5638379  0.7024859
##    7      0.6324543  0.8802720  0.7420987  0.7256033  0.5729966  0.7099495
##    8      0.6156190  0.8852227  0.7471687  0.7351108  0.5881128  0.7195323
##    9      0.6036074  0.8897191  0.7534468  0.7277081  0.5761439  0.7131058
##   10      0.6023570  0.8913971  0.7608133  0.7329160  0.5849738  0.7199232
##   11      0.5928148  0.8948063  0.7662466  0.7382120  0.5932174  0.7240861
##   12      0.5886990  0.8964073  0.7732466  0.7308770  0.5828844  0.7203730
##   13      0.5937795  0.8952767  0.7690962  0.7298129  0.5810350  0.7184383
##   14      0.5992033  0.8955594  0.7692143  0.7423789  0.6005398  0.7319930
##   15      0.5843155  0.8993043  0.7719396  0.7497588  0.6118688  0.7388684
##   16      0.5786303  0.9028603  0.7756432  0.7540027  0.6189236  0.7439697
##   17      0.5708834  0.9060282  0.7819558  0.7613492  0.6294769  0.7504120
##   18      0.5781048  0.9058731  0.7800163  0.7550114  0.6193362  0.7425458
##   19      0.5809513  0.9070770  0.7842156  0.7539145  0.6178167  0.7421605
##   20      0.5828684  0.9070090  0.7876738  0.7665575  0.6373921  0.7575890
##   21      0.5723533  0.9097906  0.7892280  0.7676213  0.6394573  0.7584545
##   22      0.5686360  0.9114876  0.7938885  0.7718430  0.6458808  0.7617706
##   23      0.5676345  0.9127939  0.7965501  0.7697599  0.6428760  0.7591612
##   24      0.5628087  0.9136705  0.7967707  0.7750012  0.6510476  0.7639327
##   25      0.5647450  0.9128715  0.7937452  0.7728623  0.6475719  0.7622231
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.6121828         0.8117167         0.6043844            0.8221574          
##   0.6442423         0.8317477         0.6419145            0.8374190          
##   0.6760749         0.8468186         0.6806733            0.8490027          
##   0.6972497         0.8568982         0.7121769            0.8579751          
##   0.7000232         0.8581181         0.7098042            0.8576606          
##   0.7055748         0.8598443         0.7216178            0.8617824          
##   0.7153845         0.8653480         0.7312753            0.8666201          
##   0.7091029         0.8609402         0.7243510            0.8624097          
##   0.7157034         0.8639859         0.7329490            0.8648790          
##   0.7196614         0.8668516         0.7381707            0.8680859          
##   0.7160762         0.8633970         0.7337476            0.8629162          
##   0.7140920         0.8628846         0.7323319            0.8627332          
##   0.7277614         0.8691651         0.7450806            0.8691250          
##   0.7344479         0.8730607         0.7537232            0.8733708          
##   0.7396066         0.8756035         0.7595685            0.8755244          
##   0.7462604         0.8784979         0.7650799            0.8799218          
##   0.7384812         0.8751818         0.7550229            0.8766116          
##   0.7380207         0.8746363         0.7560109            0.8759758          
##   0.7526477         0.8805864         0.7721710            0.8816612          
##   0.7540366         0.8815574         0.7725000            0.8824380          
##   0.7582074         0.8835884         0.7744291            0.8848934          
##   0.7558491         0.8828200         0.7715304            0.8839638          
##   0.7605330         0.8857127         0.7773752            0.8868103          
##   0.7577368         0.8845098         0.7767343            0.8855541          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.6043844       0.6121828    0.2117014            0.7119498             
##   0.6419145       0.6442423    0.2232886            0.7379950             
##   0.6806733       0.6760749    0.2327259            0.7614468             
##   0.7121769       0.6972497    0.2394150            0.7770740             
##   0.7098042       0.7000232    0.2394299            0.7790706             
##   0.7216178       0.7055748    0.2418678            0.7827096             
##   0.7312753       0.7153845    0.2450369            0.7903663             
##   0.7243510       0.7091029    0.2425694            0.7850215             
##   0.7329490       0.7157034    0.2443053            0.7898446             
##   0.7381707       0.7196614    0.2460707            0.7932565             
##   0.7337476       0.7160762    0.2436257            0.7897366             
##   0.7323319       0.7140920    0.2432710            0.7884883             
##   0.7450806       0.7277614    0.2474596            0.7984632             
##   0.7537232       0.7344479    0.2499196            0.8037543             
##   0.7595685       0.7396066    0.2513342            0.8076050             
##   0.7650799       0.7462604    0.2537831            0.8123791             
##   0.7550229       0.7384812    0.2516705            0.8068315             
##   0.7560109       0.7380207    0.2513048            0.8063285             
##   0.7721710       0.7526477    0.2555192            0.8166171             
##   0.7725000       0.7540366    0.2558738            0.8177970             
##   0.7744291       0.7582074    0.2572810            0.8208979             
##   0.7715304       0.7558491    0.2565866            0.8193345             
##   0.7773752       0.7605330    0.2583337            0.8231229             
##   0.7767343       0.7577368    0.2576208            0.8211233             
## 
## Tuning parameter 'degree' was held constant at a value of 1
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were degree = 1 and nprune = 24.
FDA_Tune$finalModel
## Call:
## mda::fda(formula = .outcome ~ ., data = dat, weights = wts, method = earth::earth, 
##     degree = param$degree, nprune = param$nprune)
## 
## Dimension: 2 
## 
## Percent Between-Group Variance Explained:
##    v1    v2 
##  87.5 100.0 
## 
## Training Misclassification Error: 0.18297 ( N = 951 )
FDA_Tune$results
##    degree nprune   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1       1      2 0.8231674 0.7965561 0.5553061 0.6351043 0.4301200 0.5975246
## 2       1      3 0.7048935 0.8433419 0.6347325 0.6698659 0.4850944 0.6391000
## 3       1      4 0.7039261 0.8559477 0.6675228 0.6981777 0.5308492 0.6761924
## 4       1      5 0.6657453 0.8678639 0.6943039 0.7182449 0.5620472 0.7014765
## 5       1      6 0.6527154 0.8721968 0.7303171 0.7182897 0.5638379 0.7024859
## 6       1      7 0.6324543 0.8802720 0.7420987 0.7256033 0.5729966 0.7099495
## 7       1      8 0.6156190 0.8852227 0.7471687 0.7351108 0.5881128 0.7195323
## 8       1      9 0.6036074 0.8897191 0.7534468 0.7277081 0.5761439 0.7131058
## 9       1     10 0.6023570 0.8913971 0.7608133 0.7329160 0.5849738 0.7199232
## 10      1     11 0.5928148 0.8948063 0.7662466 0.7382120 0.5932174 0.7240861
## 11      1     12 0.5886990 0.8964073 0.7732466 0.7308770 0.5828844 0.7203730
## 12      1     13 0.5937795 0.8952767 0.7690962 0.7298129 0.5810350 0.7184383
## 13      1     14 0.5992033 0.8955594 0.7692143 0.7423789 0.6005398 0.7319930
## 14      1     15 0.5843155 0.8993043 0.7719396 0.7497588 0.6118688 0.7388684
## 15      1     16 0.5786303 0.9028603 0.7756432 0.7540027 0.6189236 0.7439697
## 16      1     17 0.5708834 0.9060282 0.7819558 0.7613492 0.6294769 0.7504120
## 17      1     18 0.5781048 0.9058731 0.7800163 0.7550114 0.6193362 0.7425458
## 18      1     19 0.5809513 0.9070770 0.7842156 0.7539145 0.6178167 0.7421605
## 19      1     20 0.5828684 0.9070090 0.7876738 0.7665575 0.6373921 0.7575890
## 20      1     21 0.5723533 0.9097906 0.7892280 0.7676213 0.6394573 0.7584545
## 21      1     22 0.5686360 0.9114876 0.7938885 0.7718430 0.6458808 0.7617706
## 22      1     23 0.5676345 0.9127939 0.7965501 0.7697599 0.6428760 0.7591612
## 23      1     24 0.5628087 0.9136705 0.7967707 0.7750012 0.6510476 0.7639327
## 24      1     25 0.5647450 0.9128715 0.7937452 0.7728623 0.6475719 0.7622231
##    Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1         0.6121828        0.8117167           0.6043844           0.8221574
## 2         0.6442423        0.8317477           0.6419145           0.8374190
## 3         0.6760749        0.8468186           0.6806733           0.8490027
## 4         0.6972497        0.8568982           0.7121769           0.8579751
## 5         0.7000232        0.8581181           0.7098042           0.8576606
## 6         0.7055748        0.8598443           0.7216178           0.8617824
## 7         0.7153845        0.8653480           0.7312753           0.8666201
## 8         0.7091029        0.8609402           0.7243510           0.8624097
## 9         0.7157034        0.8639859           0.7329490           0.8648790
## 10        0.7196614        0.8668516           0.7381707           0.8680859
## 11        0.7160762        0.8633970           0.7337476           0.8629162
## 12        0.7140920        0.8628846           0.7323319           0.8627332
## 13        0.7277614        0.8691651           0.7450806           0.8691250
## 14        0.7344479        0.8730607           0.7537232           0.8733708
## 15        0.7396066        0.8756035           0.7595685           0.8755244
## 16        0.7462604        0.8784979           0.7650799           0.8799218
## 17        0.7384812        0.8751818           0.7550229           0.8766116
## 18        0.7380207        0.8746363           0.7560109           0.8759758
## 19        0.7526477        0.8805864           0.7721710           0.8816612
## 20        0.7540366        0.8815574           0.7725000           0.8824380
## 21        0.7582074        0.8835884           0.7744291           0.8848934
## 22        0.7558491        0.8828200           0.7715304           0.8839638
## 23        0.7605330        0.8857127           0.7773752           0.8868103
## 24        0.7577368        0.8845098           0.7767343           0.8855541
##    Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1       0.6043844   0.6121828           0.2117014              0.7119498
## 2       0.6419145   0.6442423           0.2232886              0.7379950
## 3       0.6806733   0.6760749           0.2327259              0.7614468
## 4       0.7121769   0.6972497           0.2394150              0.7770740
## 5       0.7098042   0.7000232           0.2394299              0.7790706
## 6       0.7216178   0.7055748           0.2418678              0.7827096
## 7       0.7312753   0.7153845           0.2450369              0.7903663
## 8       0.7243510   0.7091029           0.2425694              0.7850215
## 9       0.7329490   0.7157034           0.2443053              0.7898446
## 10      0.7381707   0.7196614           0.2460707              0.7932565
## 11      0.7337476   0.7160762           0.2436257              0.7897366
## 12      0.7323319   0.7140920           0.2432710              0.7884883
## 13      0.7450806   0.7277614           0.2474596              0.7984632
## 14      0.7537232   0.7344479           0.2499196              0.8037543
## 15      0.7595685   0.7396066           0.2513342              0.8076050
## 16      0.7650799   0.7462604           0.2537831              0.8123791
## 17      0.7550229   0.7384812           0.2516705              0.8068315
## 18      0.7560109   0.7380207           0.2513048              0.8063285
## 19      0.7721710   0.7526477           0.2555192              0.8166171
## 20      0.7725000   0.7540366           0.2558738              0.8177970
## 21      0.7744291   0.7582074           0.2572810              0.8208979
## 22      0.7715304   0.7558491           0.2565866              0.8193345
## 23      0.7773752   0.7605330           0.2583337              0.8231229
## 24      0.7767343   0.7577368           0.2576208              0.8211233
##     logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1  0.09948687 0.04087009 0.03619624 0.03963242 0.06041235 0.04265308
## 2  0.07228017 0.02889036 0.06017162 0.03947035 0.06352563 0.04335516
## 3  0.11038894 0.03671996 0.06862930 0.04024586 0.06243504 0.04835711
## 4  0.09839783 0.02938232 0.05920073 0.04694960 0.07182258 0.05358417
## 5  0.08870837 0.02655585 0.04142467 0.04777716 0.07255334 0.05197150
## 6  0.08238747 0.02336353 0.03835266 0.03650564 0.05553718 0.04337315
## 7  0.08266054 0.02320992 0.04006196 0.03992764 0.06208000 0.04615102
## 8  0.07381815 0.02017468 0.03568617 0.03341162 0.05414991 0.04061509
## 9  0.07772130 0.02183655 0.03979534 0.03596252 0.05665629 0.04070263
## 10 0.09035717 0.02634528 0.05022428 0.03965763 0.06075621 0.04066830
## 11 0.10159460 0.02678698 0.04830454 0.04191946 0.06470356 0.04544607
## 12 0.09202283 0.02490803 0.04357916 0.04263748 0.06613300 0.04552389
## 13 0.10058720 0.02558479 0.04532034 0.04183650 0.06487482 0.04406681
## 14 0.09376399 0.02445959 0.04264515 0.04302226 0.06674575 0.04326361
## 15 0.09316035 0.02497500 0.04284854 0.05250267 0.08130657 0.05268271
## 16 0.09393848 0.02488505 0.04311412 0.05161431 0.07995923 0.05322248
## 17 0.09703986 0.02473156 0.04230966 0.04644660 0.07202234 0.05052868
## 18 0.09559186 0.02277604 0.03965171 0.04992044 0.07725553 0.05444959
## 19 0.09312121 0.02264733 0.03868544 0.04267094 0.06622318 0.04233906
## 20 0.08971567 0.02008386 0.03526441 0.03609107 0.05534650 0.03378561
## 21 0.08664476 0.01971627 0.03431745 0.03138547 0.04762940 0.03031535
## 22 0.09144519 0.01985911 0.03244006 0.03465673 0.05208536 0.03425770
## 23 0.09620443 0.02116479 0.03516026 0.03470007 0.05222981 0.03495379
## 24 0.09509037 0.02049175 0.03525880 0.03965186 0.06002964 0.03848172
##    Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1          0.04475433         0.01926660            0.04367160
## 2          0.04662095         0.02113372            0.04224597
## 3          0.04971564         0.01891130            0.05076823
## 4          0.05512604         0.02236497            0.05166574
## 5          0.05318712         0.02308890            0.05263360
## 6          0.04274462         0.01682433            0.04556430
## 7          0.04831790         0.01974605            0.04522588
## 8          0.04360315         0.01839926            0.03782123
## 9          0.04402350         0.01902869            0.03612402
## 10         0.04319868         0.01995639            0.03978912
## 11         0.04707342         0.02124146            0.04356573
## 12         0.04651388         0.02218031            0.04668381
## 13         0.04542620         0.02172764            0.04411720
## 14         0.04439086         0.02295166            0.04523679
## 15         0.05442588         0.02756405            0.05227698
## 16         0.05393760         0.02689334            0.05467782
## 17         0.04958206         0.02427961            0.05207827
## 18         0.05368056         0.02572243            0.05687184
## 19         0.04433031         0.02249381            0.04093264
## 20         0.03668609         0.01882653            0.03075766
## 21         0.03158621         0.01607152            0.03196202
## 22         0.03476541         0.01702988            0.03542179
## 23         0.03548338         0.01683543            0.03547790
## 24         0.03963436         0.01958777            0.03827923
##    Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1             0.02145219       0.04367160    0.04475433            0.01321081
## 2             0.02112615       0.04224597    0.04662095            0.01315678
## 3             0.01969298       0.05076823    0.04971564            0.01341529
## 4             0.02296701       0.05166574    0.05512604            0.01564987
## 5             0.02419160       0.05263360    0.05318712            0.01592572
## 6             0.01780218       0.04556430    0.04274462            0.01216855
## 7             0.01998599       0.04522588    0.04831790            0.01330921
## 8             0.01585955       0.03782123    0.04360315            0.01113721
## 9             0.01844127       0.03612402    0.04402350            0.01198751
## 10            0.02154928       0.03978912    0.04319868            0.01321921
## 11            0.02122751       0.04356573    0.04707342            0.01397315
## 12            0.02201389       0.04668381    0.04651388            0.01421249
## 13            0.02159015       0.04411720    0.04542620            0.01394550
## 14            0.02304081       0.04523679    0.04439086            0.01434075
## 15            0.02817419       0.05227698    0.05442588            0.01750089
## 16            0.02765826       0.05467782    0.05393760            0.01720477
## 17            0.02388479       0.05207827    0.04958206            0.01548220
## 18            0.02575125       0.05687184    0.05368056            0.01664015
## 19            0.02308966       0.04093264    0.04433031            0.01422365
## 20            0.02032225       0.03075766    0.03668609            0.01203036
## 21            0.01802909       0.03196202    0.03158621            0.01046182
## 22            0.01913991       0.03542179    0.03476541            0.01155224
## 23            0.01877573       0.03547790    0.03548338            0.01156669
## 24            0.02169021       0.03827923    0.03963436            0.01321729
##    Mean_Balanced_AccuracySD
## 1                0.03172452
## 2                0.03367686
## 3                0.03411836
## 4                0.03852057
## 5                0.03779744
## 6                0.02945849
## 7                0.03355106
## 8                0.03055172
## 9                0.03098711
## 10               0.03112161
## 11               0.03383014
## 12               0.03399820
## 13               0.03334019
## 14               0.03335832
## 15               0.04072363
## 16               0.04010936
## 17               0.03653263
## 18               0.03931677
## 19               0.03309588
## 20               0.02737749
## 21               0.02336610
## 22               0.02557241
## 23               0.02586424
## 24               0.02933889
(FDA_Train_Accuracy <- FDA_Tune$results[FDA_Tune$results$degree==FDA_Tune$bestTune$degree &
                              FDA_Tune$results$nprune==FDA_Tune$bestTune$nprune,
                              c("Accuracy")])
## [1] 0.7750012
##################################
# Identifying and plotting the
# best model predictors
##################################
FDA_VarImp <- varImp(FDA_Tune, scale = TRUE)
plot(FDA_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Flexible Discriminant Analysis",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
FDA_Test <- data.frame(FDA_Observed = PMA_PreModelling_Test_FDA$Log_Solubility_Class,
                      FDA_Predicted = predict(FDA_Tune,
                      PMA_PreModelling_Test_FDA[,!names(PMA_PreModelling_Test_FDA) %in% c("Log_Solubility_Class")],
                      type = "raw"))

FDA_Test
##     FDA_Observed FDA_Predicted
## 1           High          High
## 2           High          High
## 3           High          High
## 4           High          High
## 5           High          High
## 6           High          High
## 7           High          High
## 8           High          High
## 9           High          High
## 10          High          High
## 11          High          High
## 12          High           Mid
## 13          High          High
## 14          High          High
## 15          High          High
## 16          High          High
## 17          High          High
## 18          High          High
## 19          High          High
## 20          High           Mid
## 21          High          High
## 22          High          High
## 23          High          High
## 24          High          High
## 25          High          High
## 26          High          High
## 27          High          High
## 28          High          High
## 29          High           Low
## 30          High          High
## 31          High           Low
## 32          High          High
## 33          High          High
## 34          High          High
## 35          High          High
## 36          High           Mid
## 37          High          High
## 38          High          High
## 39          High          High
## 40          High          High
## 41          High          High
## 42          High           Mid
## 43          High           Mid
## 44          High          High
## 45          High          High
## 46          High          High
## 47          High          High
## 48          High          High
## 49          High          High
## 50          High           Mid
## 51          High          High
## 52          High           Mid
## 53          High          High
## 54          High          High
## 55          High           Mid
## 56          High          High
## 57          High           Mid
## 58           Mid           Mid
## 59           Mid           Mid
## 60           Mid           Mid
## 61           Mid           Mid
## 62           Mid          High
## 63           Mid          High
## 64           Mid          High
## 65           Mid          High
## 66           Mid           Low
## 67           Mid           Mid
## 68           Mid           Mid
## 69           Mid          High
## 70           Mid           Mid
## 71           Mid           Mid
## 72           Mid           Low
## 73           Mid           Mid
## 74           Mid           Low
## 75           Mid          High
## 76           Mid           Mid
## 77           Mid           Mid
## 78           Mid           Mid
## 79           Mid           Mid
## 80           Mid           Mid
## 81           Mid           Mid
## 82           Mid          High
## 83           Mid           Mid
## 84           Mid           Mid
## 85           Mid           Mid
## 86           Mid          High
## 87           Mid           Low
## 88           Mid           Mid
## 89           Mid           Mid
## 90           Mid           Mid
## 91           Mid           Mid
## 92           Mid           Mid
## 93           Mid           Mid
## 94           Mid           Mid
## 95           Mid           Mid
## 96           Mid           Mid
## 97           Mid           Low
## 98           Mid           Low
## 99           Mid           Mid
## 100          Mid           Mid
## 101          Mid           Mid
## 102          Mid           Mid
## 103          Mid           Mid
## 104          Mid           Mid
## 105          Mid           Low
## 106          Mid           Mid
## 107          Mid           Mid
## 108          Mid           Mid
## 109          Mid           Low
## 110          Mid           Low
## 111          Mid           Mid
## 112          Mid           Mid
## 113          Mid           Mid
## 114          Mid           Mid
## 115          Mid           Low
## 116          Mid           Low
## 117          Mid           Low
## 118          Mid           Mid
## 119          Low           Low
## 120          Low           Low
## 121          Low           Low
## 122          Low           Mid
## 123          Low           Low
## 124          Low           Low
## 125          Low           Low
## 126          Low           Low
## 127          Low           Low
## 128          Low           Low
## 129          Low           Mid
## 130          Low           Low
## 131          Low           Low
## 132          Low           Low
## 133          Low           Mid
## 134          Low           Low
## 135          Low           Low
## 136          Low           Low
## 137          Low           Low
## 138          Low           Low
## 139          Low           Low
## 140          Low           Mid
## 141          Low           Low
## 142          Low           Mid
## 143          Low           Low
## 144          Low           Mid
## 145          Low           Mid
## 146          Low           Mid
## 147          Low           Low
## 148          Low           Low
## 149          Low           Low
## 150          Low           Low
## 151          Low           Mid
## 152          Low           Low
## 153          Low           Low
## 154          Low           Low
## 155          Low           Low
## 156          Low           Low
## 157          Low           Low
## 158          Low           Low
## 159          Low           Low
## 160          Low           Low
## 161          Low           Low
## 162          Low           Low
## 163          Low           Low
## 164          Low           Low
## 165          Low           Low
## 166          Low           Low
## 167          Low           Low
## 168          Low           Low
## 169          Low           Low
## 170          Low           Low
## 171          Low           Low
## 172          Low           Low
## 173          Low           Low
## 174          Low           Low
## 175          Low           Low
## 176          Low           Low
## 177          Low           Low
## 178          Low           Low
## 179          Low           Low
## 180          Low           Low
## 181          Low           Low
## 182          Low           Low
## 183          Low           Low
## 184          Low           Low
## 185          Low           Low
## 186          Low           Low
## 187          Low           Low
## 188          Low           Low
## 189          Low           Low
## 190          Low           Low
## 191          Low           Low
## 192          Low           Low
## 193          Low           Low
## 194          Low           Low
## 195          Low           Low
## 196          Low           Low
## 197          Low           Low
## 198          Low           Low
## 199          Low           Low
## 200          Low           Low
## 201          Low           Low
## 202          Low           Low
## 203          Low           Low
## 204          Low           Low
## 205          Low           Low
## 206          Low           Low
## 207          Low           Low
## 208          Low           Low
## 209          Low           Low
## 210          Low           Low
## 211          Low           Low
## 212          Low           Low
## 213          Low           Low
## 214          Low           Low
## 215          Low           Low
## 216          Low           Low
## 217         High          High
## 218         High          High
## 219         High          High
## 220         High          High
## 221         High           Mid
## 222         High          High
## 223         High          High
## 224         High          High
## 225         High           Mid
## 226         High          High
## 227         High          High
## 228         High           Mid
## 229         High          High
## 230         High           Mid
## 231         High          High
## 232         High          High
## 233         High          High
## 234         High          High
## 235         High          High
## 236         High          High
## 237         High           Low
## 238          Mid           Mid
## 239          Mid          High
## 240          Mid           Mid
## 241          Mid          High
## 242          Mid          High
## 243          Mid          High
## 244          Mid           Mid
## 245          Mid           Mid
## 246          Mid          High
## 247          Mid           Mid
## 248          Mid           Mid
## 249          Mid           Mid
## 250          Mid           Mid
## 251          Mid           Mid
## 252          Mid           Mid
## 253          Mid           Mid
## 254          Mid           Low
## 255          Mid           Mid
## 256          Mid          High
## 257          Mid           Mid
## 258          Mid           Mid
## 259          Mid           Mid
## 260          Mid           Mid
## 261          Mid           Mid
## 262          Mid           Mid
## 263          Mid           Mid
## 264          Mid           Mid
## 265          Mid           Low
## 266          Mid           Mid
## 267          Mid           Mid
## 268          Mid           Mid
## 269          Low           Low
## 270          Low           Low
## 271          Low           Low
## 272          Low           Low
## 273          Low           Low
## 274          Low           Low
## 275          Low           Mid
## 276          Low           Low
## 277          Low           Low
## 278          Low           Mid
## 279          Low           Low
## 280          Low           Low
## 281          Low           Low
## 282          Low           Low
## 283          Low           Low
## 284          Low           Low
## 285          Low           Low
## 286          Low           Low
## 287          Low           Low
## 288          Low           Low
## 289          Low           Low
## 290          Low           Low
## 291          Low           Low
## 292          Low           Low
## 293          Low           Low
## 294          Low           Low
## 295          Low           Low
## 296          Low           Low
## 297          Low           Low
## 298          Low           Low
## 299          Low           Low
## 300          Low           Low
## 301          Low           Low
## 302          Low           Low
## 303          Low           Low
## 304          Low           Low
## 305          Low           Low
## 306          Low           Low
## 307          Low           Low
## 308          Low           Low
## 309          Low           Low
## 310          Low           Low
## 311          Low           Low
## 312          Low           Low
## 313          Mid           Mid
## 314         High           Mid
## 315          Low           Low
## 316          Mid           Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(FDA_Test_Accuracy <- Accuracy(y_pred = FDA_Test$FDA_Predicted,
                               y_true = FDA_Test$FDA_Observed))
## [1] 0.8196203

1.5.4 Mixture Discriminant Analysis (MDA)


Mixture Discriminant Analysis, as an improvement to the restrictions of the linear discriminant analysis towards having all classes coming from a single normal (or Gaussian) distribution, applies the assumption that each class is a Gaussian mixture of sub-classes. The algorithm treats each data point as having the probability of belonging to each class. Equality of covariance matrix among classes, is still assumed.

[A] The mixture discriminant analysis model from the mda package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] subclasses = number of subclasses per class made to vary across a range of values equal to 1 to 8

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves subclasses=6
     [C.2] Accuracy = 0.74344

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.71519

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_MDA <- PMA_PreModelling_Train
PMA_PreModelling_Test_MDA <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_MDA$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
MDA_Grid = expand.grid(subclasses = 1:8)

##################################
# Running the mixture discriminant analysis model
# by setting the caret method to 'mda'
##################################
set.seed(12345678)
MDA_Tune <- train(x = PMA_PreModelling_Train_MDA[,!names(PMA_PreModelling_Train_MDA) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_MDA$Log_Solubility_Class,
                 method = "mda",
                 tuneGrid = MDA_Grid,
                 tries = 40,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
MDA_Tune
## Mixture Discriminant Analysis 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   subclasses  logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##   1           0.8703527  0.8840328  0.7491824  0.7249985  0.5752189  0.7180853
##   2           1.4314632  0.8688693  0.7189988  0.7131707  0.5589285  0.7045055
##   3           2.0595434  0.8581014  0.7049035  0.6922689  0.5285097  0.6838840
##   4           2.2740159  0.8712859  0.6974792  0.7330198  0.5892480  0.7238572
##   5           2.5720199  0.8718619  0.6727550  0.7290305  0.5846168  0.7234769
##   6           2.9189561  0.8744312  0.6661658  0.7434488  0.6057253  0.7364177
##   7           3.2109649  0.8701668  0.6325790  0.7342656  0.5902093  0.7273326
##   8           3.6063295  0.8606245  0.5902870  0.7330467  0.5900236  0.7283174
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.7155190         0.8603738         0.7258070            0.8590583          
##   0.7042850         0.8563475         0.7085791            0.8534143          
##   0.6845145         0.8473993         0.6928273            0.8429228          
##   0.7254459         0.8664294         0.7303821            0.8641301          
##   0.7256188         0.8648123         0.7283093            0.8610513          
##   0.7372350         0.8719875         0.7437723            0.8692227          
##   0.7262013         0.8658409         0.7335805            0.8638550          
##   0.7294932         0.8662003         0.7331427            0.8628440          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.7258070       0.7155190    0.2416662            0.7879464             
##   0.7085791       0.7042850    0.2377236            0.7803162             
##   0.6928273       0.6845145    0.2307563            0.7659569             
##   0.7303821       0.7254459    0.2443399            0.7959376             
##   0.7283093       0.7256188    0.2430102            0.7952155             
##   0.7437723       0.7372350    0.2478163            0.8046113             
##   0.7335805       0.7262013    0.2447552            0.7960211             
##   0.7331427       0.7294932    0.2443489            0.7978467             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was subclasses = 6.
MDA_Tune$finalModel
## Call:
## mda::mda(formula = as.formula(".outcome ~ ."), data = dat, subclasses = param$subclasses, 
##     tries = 40)
## 
## Dimension: 17 
## 
## Percent Between-Group Variance Explained:
##     v1     v2     v3     v4     v5     v6     v7     v8     v9    v10    v11 
##  21.25  39.53  57.04  67.48  73.69  79.66  83.48  86.71  89.26  91.61  93.63 
##    v12    v13    v14    v15    v16    v17 
##  95.30  96.79  97.86  98.87  99.50 100.00 
## 
## Degrees of Freedom (per dimension): 221 
## 
## Training Misclassification Error: 0.08517 ( N = 951 )
## 
## Deviance: 904.276
MDA_Tune$results
##   subclasses   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1          1 0.8703527 0.8840328 0.7491824 0.7249985 0.5752189 0.7180853
## 2          2 1.4314632 0.8688693 0.7189988 0.7131707 0.5589285 0.7045055
## 3          3 2.0595434 0.8581014 0.7049035 0.6922689 0.5285097 0.6838840
## 4          4 2.2740159 0.8712859 0.6974792 0.7330198 0.5892480 0.7238572
## 5          5 2.5720199 0.8718619 0.6727550 0.7290305 0.5846168 0.7234769
## 6          6 2.9189561 0.8744312 0.6661658 0.7434488 0.6057253 0.7364177
## 7          7 3.2109649 0.8701668 0.6325790 0.7342656 0.5902093 0.7273326
## 8          8 3.6063295 0.8606245 0.5902870 0.7330467 0.5900236 0.7283174
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.7155190        0.8603738           0.7258070           0.8590583
## 2        0.7042850        0.8563475           0.7085791           0.8534143
## 3        0.6845145        0.8473993           0.6928273           0.8429228
## 4        0.7254459        0.8664294           0.7303821           0.8641301
## 5        0.7256188        0.8648123           0.7283093           0.8610513
## 6        0.7372350        0.8719875           0.7437723           0.8692227
## 7        0.7262013        0.8658409           0.7335805           0.8638550
## 8        0.7294932        0.8662003           0.7331427           0.8628440
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.7258070   0.7155190           0.2416662              0.7879464
## 2      0.7085791   0.7042850           0.2377236              0.7803162
## 3      0.6928273   0.6845145           0.2307563              0.7659569
## 4      0.7303821   0.7254459           0.2443399              0.7959376
## 5      0.7283093   0.7256188           0.2430102              0.7952155
## 6      0.7437723   0.7372350           0.2478163              0.8046113
## 7      0.7335805   0.7262013           0.2447552              0.7960211
## 8      0.7331427   0.7294932           0.2443489              0.7978467
##   logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1 0.2071882 0.02875117 0.04309919 0.04137979 0.06333215 0.03946820
## 2 0.3031995 0.02569702 0.04607195 0.03314219 0.05009314 0.03172107
## 3 0.3833903 0.02648458 0.04207273 0.04967806 0.07782410 0.04602288
## 4 0.4099364 0.02745111 0.04275287 0.03689183 0.05853830 0.03567472
## 5 0.5258283 0.02788445 0.03678231 0.04295809 0.06628696 0.04188057
## 6 0.7907319 0.03087419 0.05538568 0.02603226 0.04139184 0.02669914
## 7 0.6162988 0.02612881 0.04023668 0.03507430 0.05490946 0.03490828
## 8 0.7329378 0.02489811 0.03503678 0.03913776 0.06115327 0.03924767
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1         0.04168410         0.02121073            0.03527376
## 2         0.03331193         0.01674276            0.02872397
## 3         0.05136633         0.02717656            0.04153757
## 4         0.03985896         0.02055470            0.03246725
## 5         0.04219136         0.02314163            0.04314999
## 6         0.03134817         0.01454689            0.02343827
## 7         0.03842495         0.01814152            0.03074948
## 8         0.03972675         0.02131902            0.04015380
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1            0.02177393       0.03527376    0.04168410           0.013793262
## 2            0.01754450       0.02872397    0.03331193           0.011047397
## 3            0.02726463       0.04153757    0.05136633           0.016559352
## 4            0.01988305       0.03246725    0.03985896           0.012297278
## 5            0.02244001       0.04314999    0.04219136           0.014319365
## 6            0.01422668       0.02343827    0.03134817           0.008677421
## 7            0.01868891       0.03074948    0.03842495           0.011691433
## 8            0.02032141       0.04015380    0.03972675           0.013045919
##   Mean_Balanced_AccuracySD
## 1               0.03141383
## 2               0.02476206
## 3               0.03919795
## 4               0.03012209
## 5               0.03255895
## 6               0.02255665
## 7               0.02820524
## 8               0.03047643
(MDA_Train_Accuracy <- MDA_Tune$results[MDA_Tune$results$subclasses==MDA_Tune$bestTune$subclasses,
                              c("Accuracy")])
## [1] 0.7434488
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
MDA_Test <- data.frame(MDA_Observed = PMA_PreModelling_Test_MDA$Log_Solubility_Class,
                      MDA_Predicted = predict(MDA_Tune,
                      PMA_PreModelling_Test_MDA[,!names(PMA_PreModelling_Test_MDA) %in% c("Log_Solubility_Class")],
                      type = "raw"))

MDA_Test
##     MDA_Observed MDA_Predicted
## 1           High          High
## 2           High          High
## 3           High          High
## 4           High          High
## 5           High          High
## 6           High          High
## 7           High          High
## 8           High          High
## 9           High          High
## 10          High          High
## 11          High          High
## 12          High           Mid
## 13          High          High
## 14          High          High
## 15          High           Mid
## 16          High          High
## 17          High           Mid
## 18          High          High
## 19          High          High
## 20          High          High
## 21          High          High
## 22          High           Mid
## 23          High          High
## 24          High           Mid
## 25          High          High
## 26          High           Mid
## 27          High           Mid
## 28          High          High
## 29          High           Mid
## 30          High           Mid
## 31          High           Mid
## 32          High          High
## 33          High          High
## 34          High          High
## 35          High          High
## 36          High          High
## 37          High          High
## 38          High          High
## 39          High          High
## 40          High          High
## 41          High          High
## 42          High           Mid
## 43          High           Mid
## 44          High          High
## 45          High          High
## 46          High           Mid
## 47          High          High
## 48          High          High
## 49          High           Mid
## 50          High          High
## 51          High          High
## 52          High           Mid
## 53          High          High
## 54          High          High
## 55          High          High
## 56          High           Mid
## 57          High           Mid
## 58           Mid          High
## 59           Mid           Mid
## 60           Mid           Mid
## 61           Mid           Mid
## 62           Mid           Mid
## 63           Mid          High
## 64           Mid          High
## 65           Mid           Mid
## 66           Mid           Mid
## 67           Mid           Low
## 68           Mid          High
## 69           Mid          High
## 70           Mid           Mid
## 71           Mid           Mid
## 72           Mid           Low
## 73           Mid          High
## 74           Mid           Mid
## 75           Mid           Mid
## 76           Mid           Low
## 77           Mid           Low
## 78           Mid           Mid
## 79           Mid           Mid
## 80           Mid          High
## 81           Mid           Mid
## 82           Mid           Mid
## 83           Mid           Low
## 84           Mid           Mid
## 85           Mid          High
## 86           Mid          High
## 87           Mid           Low
## 88           Mid           Mid
## 89           Mid           Mid
## 90           Mid           Mid
## 91           Mid           Mid
## 92           Mid           Mid
## 93           Mid          High
## 94           Mid           Mid
## 95           Mid          High
## 96           Mid           Mid
## 97           Mid           Mid
## 98           Mid           Mid
## 99           Mid          High
## 100          Mid           Mid
## 101          Mid           Mid
## 102          Mid           Mid
## 103          Mid           Low
## 104          Mid           Mid
## 105          Mid           Mid
## 106          Mid           Mid
## 107          Mid           Low
## 108          Mid           Mid
## 109          Mid           Mid
## 110          Mid           Low
## 111          Mid           Low
## 112          Mid           Mid
## 113          Mid           Low
## 114          Mid           Low
## 115          Mid           Mid
## 116          Mid           Low
## 117          Mid           Low
## 118          Mid           Low
## 119          Low           Low
## 120          Low           Low
## 121          Low           Low
## 122          Low           Mid
## 123          Low           Low
## 124          Low           Mid
## 125          Low           Low
## 126          Low           Mid
## 127          Low           Low
## 128          Low           Low
## 129          Low           Low
## 130          Low           Mid
## 131          Low           Low
## 132          Low           Mid
## 133          Low           Low
## 134          Low           Low
## 135          Low           Mid
## 136          Low           Mid
## 137          Low           Mid
## 138          Low           Low
## 139          Low           Low
## 140          Low           Mid
## 141          Low           Mid
## 142          Low           Low
## 143          Low           Low
## 144          Low           Mid
## 145          Low           Mid
## 146          Low           Low
## 147          Low           Low
## 148          Low           Mid
## 149          Low           Low
## 150          Low           Low
## 151          Low          High
## 152          Low           Mid
## 153          Low          High
## 154          Low           Low
## 155          Low           Mid
## 156          Low           Mid
## 157          Low           Low
## 158          Low           Mid
## 159          Low           Low
## 160          Low           Low
## 161          Low           Low
## 162          Low           Low
## 163          Low           Low
## 164          Low           Low
## 165          Low           Mid
## 166          Low           Low
## 167          Low           Low
## 168          Low           Low
## 169          Low           Low
## 170          Low           Low
## 171          Low           Low
## 172          Low           Low
## 173          Low           Low
## 174          Low           Low
## 175          Low           Low
## 176          Low           Low
## 177          Low           Low
## 178          Low           Low
## 179          Low           Low
## 180          Low           Low
## 181          Low           Low
## 182          Low           Low
## 183          Low           Low
## 184          Low           Low
## 185          Low           Low
## 186          Low           Low
## 187          Low           Low
## 188          Low           Low
## 189          Low           Low
## 190          Low           Low
## 191          Low           Low
## 192          Low           Low
## 193          Low           Low
## 194          Low           Low
## 195          Low           Low
## 196          Low           Low
## 197          Low           Low
## 198          Low           Low
## 199          Low           Low
## 200          Low           Low
## 201          Low           Low
## 202          Low           Low
## 203          Low           Low
## 204          Low           Low
## 205          Low           Low
## 206          Low           Low
## 207          Low           Low
## 208          Low           Low
## 209          Low           Low
## 210          Low           Low
## 211          Low           Low
## 212          Low           Low
## 213          Low           Low
## 214          Low           Low
## 215          Low           Low
## 216          Low           Low
## 217         High          High
## 218         High          High
## 219         High          High
## 220         High          High
## 221         High           Mid
## 222         High          High
## 223         High          High
## 224         High           Mid
## 225         High           Low
## 226         High          High
## 227         High           Mid
## 228         High           Mid
## 229         High          High
## 230         High           Mid
## 231         High           Mid
## 232         High          High
## 233         High          High
## 234         High          High
## 235         High          High
## 236         High           Mid
## 237         High           Mid
## 238          Mid           Mid
## 239          Mid          High
## 240          Mid           Mid
## 241          Mid          High
## 242          Mid           Low
## 243          Mid           Mid
## 244          Mid           Low
## 245          Mid           Low
## 246          Mid          High
## 247          Mid           Mid
## 248          Mid           Mid
## 249          Mid          High
## 250          Mid           Mid
## 251          Mid           Mid
## 252          Mid           Mid
## 253          Mid           Low
## 254          Mid           Mid
## 255          Mid           Mid
## 256          Mid           Mid
## 257          Mid           Mid
## 258          Mid           Mid
## 259          Mid           Mid
## 260          Mid           Mid
## 261          Mid           Mid
## 262          Mid           Mid
## 263          Mid           Mid
## 264          Mid           Low
## 265          Mid           Low
## 266          Mid           Mid
## 267          Mid           Mid
## 268          Mid          High
## 269          Low           Low
## 270          Low           Mid
## 271          Low           Low
## 272          Low           Low
## 273          Low           Low
## 274          Low           Low
## 275          Low           Low
## 276          Low           Low
## 277          Low           Low
## 278          Low           Low
## 279          Low           Low
## 280          Low           Low
## 281          Low          High
## 282          Low           Low
## 283          Low           Low
## 284          Low           Low
## 285          Low           Low
## 286          Low           Low
## 287          Low           Low
## 288          Low           Low
## 289          Low           Low
## 290          Low           Low
## 291          Low           Mid
## 292          Low           Low
## 293          Low           Low
## 294          Low           Low
## 295          Low           Low
## 296          Low           Mid
## 297          Low           Low
## 298          Low           Low
## 299          Low           Low
## 300          Low           Low
## 301          Low           Low
## 302          Low           Low
## 303          Low           Low
## 304          Low           Low
## 305          Low           Low
## 306          Low           Low
## 307          Low           Low
## 308          Low           Low
## 309          Low           Low
## 310          Low           Low
## 311          Low           Low
## 312          Low           Low
## 313          Mid           Mid
## 314         High           Mid
## 315          Low           Low
## 316          Mid           Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(MDA_Test_Accuracy <- Accuracy(y_pred = MDA_Test$MDA_Predicted,
                               y_true = MDA_Test$MDA_Observed))
## [1] 0.7151899

1.5.5 Naive Bayes (NB)


Naive Bayes Classifier categorizes instances by applying Bayes Theorem in determining posterior probabilities as conditioned by the likelihood of features, and prior probabilities pertaining to both events and features. The algorithm naively assumes independence between features and assigns the same weight (degree of significance) to all given features. The class conditional probabilities and the prior probabilities are calculated to yield the posterior probability, and operates by returning the class, which has the maximum posterior probability out of a group of classes.

[A] The naive bayes model from the klaR package was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] fL = laplace correction held constant at a value of 2
     [B.2] adjust = bandwidth adjustment held constant at a value of FALSE
     [B.3] usekernel = distribution type made to vary across a range of levels equal to TRUE and FALSE

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves fL=2, adjust=FALSE and usekernel=FALSE
     [C.2] Accuracy = 0.64346

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.65506

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_NB <- PMA_PreModelling_Train
PMA_PreModelling_Test_NB <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_NB$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
NB_Grid = data.frame(usekernel = c(TRUE, FALSE), fL = 2, adjust = FALSE)

##################################
# Running the naive bayes model
# by setting the caret method to 'nb'
##################################
set.seed(12345678)
NB_Tune <- train(x = PMA_PreModelling_Train_NB[,!names(PMA_PreModelling_Train_NB) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_NB$Log_Solubility_Class,
                 method = "nb",
                 tuneGrid = NB_Grid,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
NB_Tune
## Naive Bayes 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   usekernel  logLoss   AUC        prAUC      Accuracy   Kappa      Mean_F1  
##   FALSE      3.224027  0.8205606  0.6408077  0.6434612  0.4593777  0.6286132
##    TRUE           NaN        NaN        NaN        NaN        NaN        NaN
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.6398324         0.8254896         0.632263             0.8219493          
##         NaN               NaN              NaN                   NaN          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.632263        0.6398324    0.2144871            0.732661              
##        NaN              NaN          NaN                 NaN              
## 
## Tuning parameter 'fL' was held constant at a value of 2
## Tuning
##  parameter 'adjust' was held constant at a value of FALSE
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were fL = 2, usekernel = FALSE and adjust
##  = FALSE.
NB_Tune$finalModel
## $apriori
## grouping
##       Low       Mid      High 
## 0.4490011 0.2975815 0.2534175 
## 
## $tables
## $tables$FP001
##         var
## grouping         0         1
##     Low  0.5313225 0.4686775
##     Mid  0.4529617 0.5470383
##     High 0.5265306 0.4734694
## 
## $tables$FP002
##         var
## grouping         0         1
##     Low  0.3225058 0.6774942
##     Mid  0.4529617 0.5470383
##     High 0.7142857 0.2857143
## 
## $tables$FP003
##         var
## grouping         0         1
##     Low  0.5591647 0.4408353
##     Mid  0.5644599 0.4355401
##     High 0.5673469 0.4326531
## 
## $tables$FP004
##         var
## grouping         0         1
##     Low  0.4477958 0.5522042
##     Mid  0.3832753 0.6167247
##     High 0.4000000 0.6000000
## 
## $tables$FP005
##         var
## grouping         0         1
##     Low  0.2877030 0.7122970
##     Mid  0.4111498 0.5888502
##     High 0.6693878 0.3306122
## 
## $tables$FP006
##         var
## grouping         0         1
##     Low  0.6774942 0.3225058
##     Mid  0.5644599 0.4355401
##     High 0.4979592 0.5020408
## 
## $tables$FP007
##         var
## grouping         0         1
##     Low  0.6194896 0.3805104
##     Mid  0.6341463 0.3658537
##     High 0.6612245 0.3387755
## 
## $tables$FP008
##         var
## grouping         0         1
##     Low  0.6055684 0.3944316
##     Mid  0.6306620 0.3693380
##     High 0.8367347 0.1632653
## 
## $tables$FP009
##         var
## grouping          0          1
##     Low  0.57772622 0.42227378
##     Mid  0.75958188 0.24041812
##     High 0.91428571 0.08571429
## 
## $tables$FP010
##         var
## grouping         0         1
##     Low  0.8538283 0.1461717
##     Mid  0.7839721 0.2160279
##     High 0.7918367 0.2081633
## 
## $tables$FP011
##         var
## grouping         0         1
##     Low  0.8399072 0.1600928
##     Mid  0.8118467 0.1881533
##     High 0.6448980 0.3551020
## 
## $tables$FP012
##         var
## grouping         0         1
##     Low  0.8283063 0.1716937
##     Mid  0.8466899 0.1533101
##     High 0.7714286 0.2285714
## 
## $tables$FP013
##         var
## grouping         0         1
##     Low  0.7006961 0.2993039
##     Mid  0.8989547 0.1010453
##     High 0.9755102 0.0244898
## 
## $tables$FP014
##         var
## grouping         0         1
##     Low  0.7122970 0.2877030
##     Mid  0.8989547 0.1010453
##     High 0.9755102 0.0244898
## 
## $tables$FP015
##         var
## grouping          0          1
##     Low  0.21113689 0.78886311
##     Mid  0.09756098 0.90243902
##     High 0.08163265 0.91836735
## 
## $tables$FP016
##         var
## grouping         0         1
##     Low  0.8399072 0.1600928
##     Mid  0.8675958 0.1324042
##     High 0.8448980 0.1551020
## 
## $tables$FP017
##         var
## grouping         0         1
##     Low  0.8051044 0.1948956
##     Mid  0.8919861 0.1080139
##     High 0.8857143 0.1142857
## 
## $tables$FP018
##         var
## grouping          0          1
##     Low  0.81902552 0.18097448
##     Mid  0.84320557 0.15679443
##     High 0.96734694 0.03265306
## 
## $tables$FP019
##         var
## grouping         0         1
##     Low  0.8770302 0.1229698
##     Mid  0.8710801 0.1289199
##     High 0.8693878 0.1306122
## 
## $tables$FP020
##         var
## grouping         0         1
##     Low  0.8909513 0.1090487
##     Mid  0.8606272 0.1393728
##     High 0.8653061 0.1346939
## 
## $tables$FP021
##         var
## grouping          0          1
##     Low  0.85846868 0.14153132
##     Mid  0.85017422 0.14982578
##     High 0.93061224 0.06938776
## 
## $tables$FP022
##         var
## grouping          0          1
##     Low  0.89327146 0.10672854
##     Mid  0.85017422 0.14982578
##     High 0.93469388 0.06530612
## 
## $tables$FP023
##         var
## grouping          0          1
##     Low  0.83758701 0.16241299
##     Mid  0.88153310 0.11846690
##     High 0.92244898 0.07755102
## 
## $tables$FP024
##         var
## grouping         0         1
##     Low  0.8886311 0.1113689
##     Mid  0.8780488 0.1219512
##     High 0.8775510 0.1224490
## 
## $tables$FP025
##         var
## grouping         0         1
##     Low  0.8955916 0.1044084
##     Mid  0.8571429 0.1428571
##     High 0.8775510 0.1224490
## 
## $tables$FP026
##         var
## grouping          0          1
##     Low  0.89327146 0.10672854
##     Mid  0.91289199 0.08710801
##     High 0.93877551 0.06122449
## 
## $tables$FP027
##         var
## grouping          0          1
##     Low  0.93039443 0.06960557
##     Mid  0.85714286 0.14285714
##     High 0.88571429 0.11428571
## 
## $tables$FP028
##         var
## grouping          0          1
##     Low  0.90023202 0.09976798
##     Mid  0.92682927 0.07317073
##     High 0.82448980 0.17551020
## 
## $tables$FP029
##         var
## grouping          0          1
##     Low  0.88631090 0.11368910
##     Mid  0.84320557 0.15679443
##     High 0.96326531 0.03673469
## 
## $tables$FP030
##         var
## grouping          0          1
##     Low  0.91879350 0.08120650
##     Mid  0.93031359 0.06968641
##     High 0.83673469 0.16326531
## 
## $tables$FP031
##         var
## grouping          0          1
##     Low  0.89791183 0.10208817
##     Mid  0.91289199 0.08710801
##     High 0.91020408 0.08979592
## 
## $tables$FP032
##         var
## grouping          0          1
##     Low  0.94199536 0.05800464
##     Mid  0.90243902 0.09756098
##     High 0.90612245 0.09387755
## 
## $tables$FP033
##         var
## grouping          0          1
##     Low  0.94199536 0.05800464
##     Mid  0.90940767 0.09059233
##     High 0.91428571 0.08571429
## 
## $tables$FP034
##         var
## grouping          0          1
##     Low  0.90255220 0.09744780
##     Mid  0.89198606 0.10801394
##     High 0.96326531 0.03673469
## 
## $tables$FP035
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     Mid  0.95121951 0.04878049
##     High 0.96326531 0.03673469
## 
## $tables$FP036
##         var
## grouping          0          1
##     Low  0.95359629 0.04640371
##     Mid  0.88850174 0.11149826
##     High 0.89387755 0.10612245
## 
## $tables$FP037
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     Mid  0.93728223 0.06271777
##     High 0.93877551 0.06122449
## 
## $tables$FP038
##         var
## grouping          0          1
##     Low  0.92343387 0.07656613
##     Mid  0.90592334 0.09407666
##     High 0.88571429 0.11428571
## 
## $tables$FP039
##         var
## grouping          0          1
##     Low  0.87470998 0.12529002
##     Mid  0.93728223 0.06271777
##     High 0.97959184 0.02040816
## 
## $tables$FP040
##         var
## grouping          0          1
##     Low  0.94895592 0.05104408
##     Mid  0.91637631 0.08362369
##     High 0.89795918 0.10204082
## 
## $tables$FP041
##         var
## grouping          0          1
##     Low  0.89559165 0.10440835
##     Mid  0.94425087 0.05574913
##     High 0.97959184 0.02040816
## 
## $tables$FP042
##         var
## grouping          0          1
##     Low  0.94663573 0.05336427
##     Mid  0.90592334 0.09407666
##     High 0.95918367 0.04081633
## 
## $tables$FP043
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     Mid  0.93379791 0.06620209
##     High 0.94693878 0.05306122
## 
## $tables$FP044
##         var
## grouping           0           1
##     Low  0.872389791 0.127610209
##     Mid  0.979094077 0.020905923
##     High 0.991836735 0.008163265
## 
## $tables$FP045
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     Mid  0.94773519 0.05226481
##     High 0.97142857 0.02857143
## 
## $tables$FP046
##         var
## grouping         0         1
##     Low  0.5939675 0.4060325
##     Mid  0.6864111 0.3135889
##     High 0.8326531 0.1673469
## 
## $tables$FP047
##         var
## grouping         0         1
##     Low  0.6867749 0.3132251
##     Mid  0.6829268 0.3170732
##     High 0.8653061 0.1346939
## 
## $tables$FP048
##         var
## grouping          0          1
##     Low  0.86078886 0.13921114
##     Mid  0.85714286 0.14285714
##     High 0.90612245 0.09387755
## 
## $tables$FP049
##         var
## grouping          0          1
##     Low  0.78654292 0.21345708
##     Mid  0.91637631 0.08362369
##     High 0.97551020 0.02448980
## 
## $tables$FP050
##         var
## grouping          0          1
##     Low  0.85614849 0.14385151
##     Mid  0.87804878 0.12195122
##     High 0.93469388 0.06530612
## 
## $tables$FP051
##         var
## grouping          0          1
##     Low  0.85150812 0.14849188
##     Mid  0.86759582 0.13240418
##     High 0.96734694 0.03265306
## 
## $tables$FP052
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     Mid  0.86062718 0.13937282
##     High 0.93469388 0.06530612
## 
## $tables$FP053
##         var
## grouping          0          1
##     Low  0.83990719 0.16009281
##     Mid  0.92682927 0.07317073
##     High 0.97959184 0.02040816
## 
## $tables$FP054
##         var
## grouping          0          1
##     Low  0.87703016 0.12296984
##     Mid  0.94076655 0.05923345
##     High 0.96734694 0.03265306
## 
## $tables$FP055
##         var
## grouping          0          1
##     Low  0.95591647 0.04408353
##     Mid  0.92682927 0.07317073
##     High 0.93061224 0.06938776
## 
## $tables$FP056
##         var
## grouping          0          1
##     Low  0.88863109 0.11136891
##     Mid  0.94773519 0.05226481
##     High 0.97959184 0.02040816
## 
## $tables$FP057
##         var
## grouping          0          1
##     Low  0.86310905 0.13689095
##     Mid  0.85365854 0.14634146
##     High 0.92244898 0.07755102
## 
## $tables$FP058
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     Mid  0.86062718 0.13937282
##     High 0.91020408 0.08979592
## 
## $tables$FP059
##         var
## grouping           0           1
##     Low  0.907192575 0.092807425
##     Mid  0.944250871 0.055749129
##     High 0.991836735 0.008163265
## 
## $tables$FP060
##         var
## grouping         0         1
##     Low  0.5846868 0.4153132
##     Mid  0.5226481 0.4773519
##     High 0.3959184 0.6040816
## 
## $tables$FP061
##         var
## grouping         0         1
##     Low  0.5591647 0.4408353
##     Mid  0.5226481 0.4773519
##     High 0.5755102 0.4244898
## 
## $tables$FP062
##         var
## grouping         0         1
##     Low  0.5962877 0.4037123
##     Mid  0.5156794 0.4843206
##     High 0.5551020 0.4448980
## 
## $tables$FP063
##         var
## grouping         0         1
##     Low  0.6148492 0.3851508
##     Mid  0.5331010 0.4668990
##     High 0.5469388 0.4530612
## 
## $tables$FP064
##         var
## grouping         0         1
##     Low  0.6055684 0.3944316
##     Mid  0.5783972 0.4216028
##     High 0.5469388 0.4530612
## 
## $tables$FP065
##         var
## grouping         0         1
##     Low  0.2320186 0.7679814
##     Mid  0.4320557 0.5679443
##     High 0.6897959 0.3102041
## 
## $tables$FP066
##         var
## grouping         0         1
##     Low  0.3921114 0.6078886
##     Mid  0.3867596 0.6132404
##     High 0.3959184 0.6040816
## 
## $tables$FP067
##         var
## grouping         0         1
##     Low  0.6380510 0.3619490
##     Mid  0.5679443 0.4320557
##     High 0.6448980 0.3551020
## 
## $tables$FP068
##         var
## grouping         0         1
##     Low  0.6519722 0.3480278
##     Mid  0.6062718 0.3937282
##     High 0.6448980 0.3551020
## 
## $tables$FP069
##         var
## grouping         0         1
##     Low  0.6171694 0.3828306
##     Mid  0.6480836 0.3519164
##     High 0.6571429 0.3428571
## 
## $tables$FP070
##         var
## grouping         0         1
##     Low  0.4872390 0.5127610
##     Mid  0.7073171 0.2926829
##     High 0.8408163 0.1591837
## 
## $tables$FP071
##         var
## grouping         0         1
##     Low  0.5382831 0.4617169
##     Mid  0.7142857 0.2857143
##     High 0.8530612 0.1469388
## 
## $tables$FP072
##         var
## grouping         0         1
##     Low  0.4640371 0.5359629
##     Mid  0.3066202 0.6933798
##     High 0.1755102 0.8244898
## 
## $tables$FP073
##         var
## grouping         0         1
##     Low  0.7517401 0.2482599
##     Mid  0.6933798 0.3066202
##     High 0.5673469 0.4326531
## 
## $tables$FP074
##         var
## grouping         0         1
##     Low  0.6960557 0.3039443
##     Mid  0.6724739 0.3275261
##     High 0.6326531 0.3673469
## 
## $tables$FP075
##         var
## grouping         0         1
##     Low  0.6937355 0.3062645
##     Mid  0.6202091 0.3797909
##     High 0.6448980 0.3551020
## 
## $tables$FP076
##         var
## grouping          0          1
##     Low  0.43851508 0.56148492
##     Mid  0.78048780 0.21951220
##     High 0.94693878 0.05306122
## 
## $tables$FP077
##         var
## grouping         0         1
##     Low  0.6450116 0.3549884
##     Mid  0.6829268 0.3170732
##     High 0.7265306 0.2734694
## 
## $tables$FP078
##         var
## grouping         0         1
##     Low  0.6844548 0.3155452
##     Mid  0.6480836 0.3519164
##     High 0.7632653 0.2367347
## 
## $tables$FP079
##         var
## grouping         0         1
##     Low  0.1531323 0.8468677
##     Mid  0.3344948 0.6655052
##     High 0.5673469 0.4326531
## 
## $tables$FP080
##         var
## grouping         0         1
##     Low  0.7215777 0.2784223
##     Mid  0.7108014 0.2891986
##     High 0.6285714 0.3714286
## 
## $tables$FP081
##         var
## grouping         0         1
##     Low  0.6844548 0.3155452
##     Mid  0.7421603 0.2578397
##     High 0.7510204 0.2489796
## 
## $tables$FP082
##         var
## grouping         0         1
##     Low  0.1368910 0.8631090
##     Mid  0.3205575 0.6794425
##     High 0.5183673 0.4816327
## 
## $tables$FP083
##         var
## grouping         0         1
##     Low  0.7865429 0.2134571
##     Mid  0.6411150 0.3588850
##     High 0.7102041 0.2897959
## 
## $tables$FP084
##         var
## grouping         0         1
##     Low  0.7262181 0.2737819
##     Mid  0.6933798 0.3066202
##     High 0.7061224 0.2938776
## 
## $tables$FP085
##         var
## grouping          0          1
##     Low  0.61020882 0.38979118
##     Mid  0.77700348 0.22299652
##     High 0.93061224 0.06938776
## 
## $tables$FP086
##         var
## grouping         0         1
##     Low  0.6821346 0.3178654
##     Mid  0.7630662 0.2369338
##     High 0.7673469 0.2326531
## 
## $tables$FP087
##         var
## grouping         0         1
##     Low  0.1415313 0.8584687
##     Mid  0.2857143 0.7142857
##     High 0.5020408 0.4979592
## 
## $tables$FP088
##         var
## grouping         0         1
##     Low  0.7819026 0.2180974
##     Mid  0.7456446 0.2543554
##     High 0.6367347 0.3632653
## 
## $tables$FP089
##         var
## grouping          0          1
##     Low  0.57076566 0.42923434
##     Mid  0.85017422 0.14982578
##     High 0.94693878 0.05306122
## 
## $tables$FP090
##         var
## grouping         0         1
##     Low  0.7030162 0.2969838
##     Mid  0.7526132 0.2473868
##     High 0.8204082 0.1795918
## 
## $tables$FP091
##         var
## grouping         0         1
##     Low  0.7703016 0.2296984
##     Mid  0.7421603 0.2578397
##     High 0.8081633 0.1918367
## 
## $tables$FP092
##         var
## grouping          0          1
##     Low  0.60324826 0.39675174
##     Mid  0.80139373 0.19860627
##     High 0.95918367 0.04081633
## 
## $tables$FP093
##         var
## grouping         0         1
##     Low  0.6821346 0.3178654
##     Mid  0.7839721 0.2160279
##     High 0.8408163 0.1591837
## 
## $tables$FP094
##         var
## grouping         0         1
##     Low  0.7656613 0.2343387
##     Mid  0.7526132 0.2473868
##     High 0.7795918 0.2204082
## 
## $tables$FP095
##         var
## grouping         0         1
##     Low  0.7958237 0.2041763
##     Mid  0.7839721 0.2160279
##     High 0.7346939 0.2653061
## 
## $tables$FP096
##         var
## grouping         0         1
##     Low  0.7587007 0.2412993
##     Mid  0.7630662 0.2369338
##     High 0.8326531 0.1673469
## 
## $tables$FP097
##         var
## grouping          0          1
##     Low  0.63805104 0.36194896
##     Mid  0.80836237 0.19163763
##     High 0.92244898 0.07755102
## 
## $tables$FP098
##         var
## grouping         0         1
##     Low  0.7842227 0.2157773
##     Mid  0.7351916 0.2648084
##     High 0.7428571 0.2571429
## 
## $tables$FP099
##         var
## grouping         0         1
##     Low  0.6983759 0.3016241
##     Mid  0.7804878 0.2195122
##     High 0.8816327 0.1183673
## 
## $tables$FP100
##         var
## grouping         0         1
##     Low  0.7958237 0.2041763
##     Mid  0.7142857 0.2857143
##     High 0.7714286 0.2285714
## 
## $tables$FP101
##         var
## grouping         0         1
##     Low  0.7749420 0.2250580
##     Mid  0.7386760 0.2613240
##     High 0.7591837 0.2408163
## 
## $tables$FP102
##         var
## grouping         0         1
##     Low  0.7424594 0.2575406
##     Mid  0.8013937 0.1986063
##     High 0.8775510 0.1224490
## 
## $tables$FP103
##         var
## grouping         0         1
##     Low  0.7285383 0.2714617
##     Mid  0.7839721 0.2160279
##     High 0.8571429 0.1428571
## 
## $tables$FP104
##         var
## grouping         0         1
##     Low  0.7308585 0.2691415
##     Mid  0.7630662 0.2369338
##     High 0.8612245 0.1387755
## 
## $tables$FP105
##         var
## grouping         0         1
##     Low  0.7146172 0.2853828
##     Mid  0.8083624 0.1916376
##     High 0.8653061 0.1346939
## 
## $tables$FP106
##         var
## grouping         0         1
##     Low  0.7703016 0.2296984
##     Mid  0.7874564 0.2125436
##     High 0.8857143 0.1142857
## 
## $tables$FP107
##         var
## grouping          0          1
##     Low  0.67285383 0.32714617
##     Mid  0.81881533 0.18118467
##     High 0.94285714 0.05714286
## 
## $tables$FP108
##         var
## grouping         0         1
##     Low  0.7935035 0.2064965
##     Mid  0.7804878 0.2195122
##     High 0.8000000 0.2000000
## 
## $tables$FP109
##         var
## grouping          0          1
##     Low  0.78190255 0.21809745
##     Mid  0.79442509 0.20557491
##     High 0.91428571 0.08571429
## 
## $tables$FP110
##         var
## grouping         0         1
##     Low  0.8190255 0.1809745
##     Mid  0.7560976 0.2439024
##     High 0.7795918 0.2204082
## 
## $tables$FP111
##         var
## grouping         0         1
##     Low  0.7911833 0.2088167
##     Mid  0.7526132 0.2473868
##     High 0.8693878 0.1306122
## 
## $tables$FP112
##         var
## grouping          0          1
##     Low  0.64965197 0.35034803
##     Mid  0.88501742 0.11498258
##     High 0.97142857 0.02857143
## 
## $tables$FP113
##         var
## grouping         0         1
##     Low  0.8329466 0.1670534
##     Mid  0.8048780 0.1951220
##     High 0.7387755 0.2612245
## 
## $tables$FP114
##         var
## grouping          0          1
##     Low  0.81902552 0.18097448
##     Mid  0.80836237 0.19163763
##     High 0.91428571 0.08571429
## 
## $tables$FP115
##         var
## grouping         0         1
##     Low  0.8074246 0.1925754
##     Mid  0.7944251 0.2055749
##     High 0.8612245 0.1387755
## 
## $tables$FP116
##         var
## grouping         0         1
##     Low  0.8167053 0.1832947
##     Mid  0.7944251 0.2055749
##     High 0.7918367 0.2081633
## 
## $tables$FP117
##         var
## grouping         0         1
##     Low  0.7772622 0.2227378
##     Mid  0.8188153 0.1811847
##     High 0.8857143 0.1142857
## 
## $tables$FP118
##         var
## grouping         0         1
##     Low  0.8259861 0.1740139
##     Mid  0.8362369 0.1637631
##     High 0.7265306 0.2734694
## 
## $tables$FP119
##         var
## grouping         0         1
##     Low  0.8422274 0.1577726
##     Mid  0.7804878 0.2195122
##     High 0.8775510 0.1224490
## 
## $tables$FP120
##         var
## grouping         0         1
##     Low  0.8515081 0.1484919
##     Mid  0.8571429 0.1428571
##     High 0.7591837 0.2408163
## 
## $tables$FP121
##         var
## grouping          0          1
##     Low  0.81670534 0.18329466
##     Mid  0.87108014 0.12891986
##     High 0.90612245 0.09387755
## 
## $tables$FP122
##         var
## grouping         0         1
##     Low  0.8306265 0.1693735
##     Mid  0.8397213 0.1602787
##     High 0.8244898 0.1755102
## 
## $tables$FP123
##         var
## grouping          0          1
##     Low  0.77262181 0.22737819
##     Mid  0.84668990 0.15331010
##     High 0.90612245 0.09387755
## 
## $tables$FP124
##         var
## grouping         0         1
##     Low  0.8468677 0.1531323
##     Mid  0.8222997 0.1777003
##     High 0.8244898 0.1755102
## 
## $tables$FP125
##         var
## grouping         0         1
##     Low  0.8515081 0.1484919
##     Mid  0.8292683 0.1707317
##     High 0.8326531 0.1673469
## 
## $tables$FP126
##         var
## grouping         0         1
##     Low  0.8491879 0.1508121
##     Mid  0.8118467 0.1881533
##     High 0.8857143 0.1142857
## 
## $tables$FP127
##         var
## grouping         0         1
##     Low  0.8793503 0.1206497
##     Mid  0.8013937 0.1986063
##     High 0.8775510 0.1224490
## 
## $tables$FP128
##         var
## grouping         0         1
##     Low  0.8700696 0.1299304
##     Mid  0.8188153 0.1811847
##     High 0.8408163 0.1591837
## 
## $tables$FP129
##         var
## grouping          0          1
##     Low  0.81438515 0.18561485
##     Mid  0.87456446 0.12543554
##     High 0.91020408 0.08979592
## 
## $tables$FP130
##         var
## grouping          0          1
##     Low  0.87006961 0.12993039
##     Mid  0.88850174 0.11149826
##     High 0.92653061 0.07346939
## 
## $tables$FP131
##         var
## grouping          0          1
##     Low  0.86774942 0.13225058
##     Mid  0.83972125 0.16027875
##     High 0.90612245 0.09387755
## 
## $tables$FP132
##         var
## grouping          0          1
##     Low  0.91183295 0.08816705
##     Mid  0.83275261 0.16724739
##     High 0.84081633 0.15918367
## 
## $tables$FP133
##         var
## grouping         0         1
##     Low  0.8770302 0.1229698
##     Mid  0.8710801 0.1289199
##     High 0.8530612 0.1469388
## 
## $tables$FP134
##         var
## grouping          0          1
##     Low  0.83526682 0.16473318
##     Mid  0.84668990 0.15331010
##     High 0.95102041 0.04897959
## 
## $tables$FP135
##         var
## grouping         0         1
##     Low  0.8677494 0.1322506
##     Mid  0.8815331 0.1184669
##     High 0.8571429 0.1428571
## 
## $tables$FP136
##         var
## grouping         0         1
##     Low  0.8793503 0.1206497
##     Mid  0.8710801 0.1289199
##     High 0.8693878 0.1306122
## 
## $tables$FP137
##         var
## grouping          0          1
##     Low  0.85150812 0.14849188
##     Mid  0.88850174 0.11149826
##     High 0.91836735 0.08163265
## 
## $tables$FP138
##         var
## grouping          0          1
##     Low  0.86078886 0.13921114
##     Mid  0.91289199 0.08710801
##     High 0.88979592 0.11020408
## 
## $tables$FP139
##         var
## grouping          0          1
##     Low  0.90487239 0.09512761
##     Mid  0.89547038 0.10452962
##     High 0.94693878 0.05306122
## 
## $tables$FP140
##         var
## grouping         0         1
##     Low  0.9025522 0.0974478
##     Mid  0.8501742 0.1498258
##     High 0.8897959 0.1102041
## 
## $tables$FP141
##         var
## grouping          0          1
##     Low  0.83990719 0.16009281
##     Mid  0.86062718 0.13937282
##     High 0.96734694 0.03265306
## 
## $tables$FP142
##         var
## grouping          0          1
##     Low  0.87703016 0.12296984
##     Mid  0.90940767 0.09059233
##     High 0.87346939 0.12653061
## 
## $tables$FP143
##         var
## grouping          0          1
##     Low  0.90255220 0.09744780
##     Mid  0.90243902 0.09756098
##     High 0.94693878 0.05306122
## 
## $tables$FP144
##         var
## grouping          0          1
##     Low  0.91647332 0.08352668
##     Mid  0.91986063 0.08013937
##     High 0.81224490 0.18775510
## 
## $tables$FP145
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     Mid  0.89198606 0.10801394
##     High 0.86122449 0.13877551
## 
## $tables$FP146
##         var
## grouping          0          1
##     Low  0.83062645 0.16937355
##     Mid  0.91986063 0.08013937
##     High 0.96734694 0.03265306
## 
## $tables$FP147
##         var
## grouping         0         1
##     Low  0.8979118 0.1020882
##     Mid  0.8919861 0.1080139
##     High 0.8734694 0.1265306
## 
## $tables$FP148
##         var
## grouping          0          1
##     Low  0.91879350 0.08120650
##     Mid  0.90592334 0.09407666
##     High 0.88979592 0.11020408
## 
## $tables$FP149
##         var
## grouping          0          1
##     Low  0.83526682 0.16473318
##     Mid  0.94076655 0.05923345
##     High 0.98367347 0.01632653
## 
## $tables$FP150
##         var
## grouping          0          1
##     Low  0.92111369 0.07888631
##     Mid  0.90940767 0.09059233
##     High 0.91428571 0.08571429
## 
## $tables$FP151
##         var
## grouping          0          1
##     Low  0.94431555 0.05568445
##     Mid  0.91289199 0.08710801
##     High 0.95918367 0.04081633
## 
## $tables$FP152
##         var
## grouping          0          1
##     Low  0.89791183 0.10208817
##     Mid  0.88850174 0.11149826
##     High 0.96734694 0.03265306
## 
## $tables$FP153
##         var
## grouping          0          1
##     Low  0.89791183 0.10208817
##     Mid  0.92334495 0.07665505
##     High 0.94285714 0.05714286
## 
## $tables$FP155
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     Mid  0.94773519 0.05226481
##     High 0.97959184 0.02040816
## 
## $tables$FP156
##         var
## grouping          0          1
##     Low  0.90487239 0.09512761
##     Mid  0.91289199 0.08710801
##     High 0.97142857 0.02857143
## 
## $tables$FP157
##         var
## grouping          0          1
##     Low  0.93039443 0.06960557
##     Mid  0.94425087 0.05574913
##     High 0.92244898 0.07755102
## 
## $tables$FP158
##         var
## grouping          0          1
##     Low  0.95823666 0.04176334
##     Mid  0.92682927 0.07317073
##     High 0.92653061 0.07346939
## 
## $tables$FP159
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     Mid  0.89895470 0.10104530
##     High 0.98367347 0.01632653
## 
## $tables$FP160
##         var
## grouping          0          1
##     Low  0.92575406 0.07424594
##     Mid  0.88153310 0.11846690
##     High 0.97959184 0.02040816
## 
## $tables$FP161
##         var
## grouping          0          1
##     Low  0.97215777 0.02784223
##     Mid  0.93379791 0.06620209
##     High 0.84489796 0.15510204
## 
## $tables$FP162
##         var
## grouping         0         1
##     Low  0.3805104 0.6194896
##     Mid  0.4878049 0.5121951
##     High 0.7428571 0.2571429
## 
## $tables$FP163
##         var
## grouping         0         1
##     Low  0.5591647 0.4408353
##     Mid  0.4668990 0.5331010
##     High 0.5265306 0.4734694
## 
## $tables$FP164
##         var
## grouping         0         1
##     Low  0.2250580 0.7749420
##     Mid  0.3763066 0.6236934
##     High 0.6326531 0.3673469
## 
## $tables$FP165
##         var
## grouping         0         1
##     Low  0.6658933 0.3341067
##     Mid  0.6097561 0.3902439
##     High 0.6653061 0.3346939
## 
## $tables$FP166
##         var
## grouping         0         1
##     Low  0.5893271 0.4106729
##     Mid  0.6724739 0.3275261
##     High 0.7959184 0.2040816
## 
## $tables$FP167
##         var
## grouping         0         1
##     Low  0.6890951 0.3109049
##     Mid  0.6411150 0.3588850
##     High 0.6693878 0.3306122
## 
## $tables$FP168
##         var
## grouping         0         1
##     Low  0.1786543 0.8213457
##     Mid  0.3414634 0.6585366
##     High 0.6081633 0.3918367
## 
## $tables$FP169
##         var
## grouping          0          1
##     Low  0.68445476 0.31554524
##     Mid  0.87804878 0.12195122
##     High 0.95102041 0.04897959
## 
## $tables$FP170
##         var
## grouping         0         1
##     Low  0.7679814 0.2320186
##     Mid  0.8362369 0.1637631
##     High 0.8612245 0.1387755
## 
## $tables$FP171
##         var
## grouping         0         1
##     Low  0.8631090 0.1368910
##     Mid  0.8188153 0.1811847
##     High 0.7714286 0.2285714
## 
## $tables$FP172
##         var
## grouping          0          1
##     Low  0.71693735 0.28306265
##     Mid  0.91986063 0.08013937
##     High 0.97959184 0.02040816
## 
## $tables$FP173
##         var
## grouping          0          1
##     Low  0.80278422 0.19721578
##     Mid  0.88501742 0.11498258
##     High 0.90612245 0.09387755
## 
## $tables$FP174
##         var
## grouping          0          1
##     Low  0.83990719 0.16009281
##     Mid  0.86062718 0.13937282
##     High 0.91428571 0.08571429
## 
## $tables$FP175
##         var
## grouping         0         1
##     Low  0.8584687 0.1415313
##     Mid  0.8432056 0.1567944
##     High 0.8857143 0.1142857
## 
## $tables$FP176
##         var
## grouping         0         1
##     Low  0.8747100 0.1252900
##     Mid  0.8710801 0.1289199
##     High 0.8734694 0.1265306
## 
## $tables$FP177
##         var
## grouping          0          1
##     Low  0.86774942 0.13225058
##     Mid  0.84668990 0.15331010
##     High 0.91836735 0.08163265
## 
## $tables$FP178
##         var
## grouping          0          1
##     Low  0.83526682 0.16473318
##     Mid  0.87456446 0.12543554
##     High 0.94285714 0.05714286
## 
## $tables$FP179
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     Mid  0.89198606 0.10801394
##     High 0.93469388 0.06530612
## 
## $tables$FP180
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     Mid  0.86759582 0.13240418
##     High 0.87755102 0.12244898
## 
## $tables$FP181
##         var
## grouping          0          1
##     Low  0.84454756 0.15545244
##     Mid  0.91637631 0.08362369
##     High 0.98367347 0.01632653
## 
## $tables$FP182
##         var
## grouping          0          1
##     Low  0.90719258 0.09280742
##     Mid  0.89895470 0.10104530
##     High 0.87346939 0.12653061
## 
## $tables$FP183
##         var
## grouping          0          1
##     Low  0.93735499 0.06264501
##     Mid  0.90243902 0.09756098
##     High 0.90612245 0.09387755
## 
## $tables$FP184
##         var
## grouping          0          1
##     Low  0.83990719 0.16009281
##     Mid  0.95121951 0.04878049
##     High 0.98775510 0.01224490
## 
## $tables$FP185
##         var
## grouping          0          1
##     Low  0.87006961 0.12993039
##     Mid  0.92682927 0.07317073
##     High 0.95918367 0.04081633
## 
## $tables$FP186
##         var
## grouping          0          1
##     Low  0.92575406 0.07424594
##     Mid  0.90940767 0.09059233
##     High 0.91428571 0.08571429
## 
## $tables$FP187
##         var
## grouping          0          1
##     Low  0.92111369 0.07888631
##     Mid  0.93728223 0.06271777
##     High 0.90612245 0.09387755
## 
## $tables$FP188
##         var
## grouping          0          1
##     Low  0.94663573 0.05336427
##     Mid  0.91637631 0.08362369
##     High 0.90204082 0.09795918
## 
## $tables$FP189
##         var
## grouping          0          1
##     Low  0.89791183 0.10208817
##     Mid  0.92334495 0.07665505
##     High 0.94693878 0.05306122
## 
## $tables$FP190
##         var
## grouping          0          1
##     Low  0.86774942 0.13225058
##     Mid  0.95121951 0.04878049
##     High 0.98367347 0.01632653
## 
## $tables$FP191
##         var
## grouping          0          1
##     Low  0.93039443 0.06960557
##     Mid  0.92334495 0.07665505
##     High 0.91428571 0.08571429
## 
## $tables$FP192
##         var
## grouping          0          1
##     Low  0.91415313 0.08584687
##     Mid  0.94425087 0.05574913
##     High 0.95510204 0.04489796
## 
## $tables$FP193
##         var
## grouping           0           1
##     Low  0.872389791 0.127610209
##     Mid  0.972125436 0.027874564
##     High 0.991836735 0.008163265
## 
## $tables$FP194
##         var
## grouping          0          1
##     Low  0.94199536 0.05800464
##     Mid  0.90592334 0.09407666
##     High 0.95918367 0.04081633
## 
## $tables$FP195
##         var
## grouping          0          1
##     Low  0.96983759 0.03016241
##     Mid  0.89895470 0.10104530
##     High 0.91020408 0.08979592
## 
## $tables$FP196
##         var
## grouping          0          1
##     Low  0.89095128 0.10904872
##     Mid  0.96515679 0.03484321
##     High 0.98775510 0.01224490
## 
## $tables$FP197
##         var
## grouping          0          1
##     Low  0.90023202 0.09976798
##     Mid  0.97909408 0.02090592
##     High 0.97142857 0.02857143
## 
## $tables$FP198
##         var
## grouping          0          1
##     Low  0.95823666 0.04176334
##     Mid  0.96167247 0.03832753
##     High 0.87346939 0.12653061
## 
## $tables$FP201
##         var
## grouping          0          1
##     Low  0.95823666 0.04176334
##     Mid  0.93031359 0.06968641
##     High 0.92653061 0.07346939
## 
## $tables$FP202
##         var
## grouping         0         1
##     Low  0.6728538 0.3271462
##     Mid  0.7421603 0.2578397
##     High 0.8530612 0.1469388
## 
## $tables$FP203
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     Mid  0.86062718 0.13937282
##     High 0.90612245 0.09387755
## 
## $tables$FP204
##         var
## grouping          0          1
##     Low  0.86774942 0.13225058
##     Mid  0.88850174 0.11149826
##     High 0.95510204 0.04489796
## 
## $tables$FP205
##         var
## grouping          0          1
##     Low  0.87470998 0.12529002
##     Mid  0.93031359 0.06968641
##     High 0.97551020 0.02448980
## 
## $tables$FP206
##         var
## grouping          0          1
##     Low  0.91183295 0.08816705
##     Mid  0.93031359 0.06968641
##     High 0.97959184 0.02040816
## 
## $tables$FP207
##         var
## grouping          0          1
##     Low  0.89095128 0.10904872
##     Mid  0.96515679 0.03484321
##     High 0.98775510 0.01224490
## 
## $tables$FP208
##         var
## grouping          0          1
##     Low  0.87935035 0.12064965
##     Mid  0.86411150 0.13588850
##     High 0.91020408 0.08979592
## 
## $tables$MolWeight
##            [,1]      [,2]
## Low   0.6447051 0.8127549
## Mid  -0.2055106 0.7535493
## High -0.9009527 0.7170859
## 
## $tables$NumBonds
##            [,1]      [,2]
## Low   0.5260887 0.9212852
## Mid  -0.2189291 0.8689442
## High -0.6750329 0.7470400
## 
## $tables$NumMultBonds
##            [,1]      [,2]
## Low   0.4454402 1.0735331
## Mid  -0.1400358 0.8162199
## High -0.6247835 0.6014728
## 
## $tables$NumRotBonds
##            [,1]      [,2]
## Low   0.2155584 1.1862560
## Mid  -0.0940740 0.8218105
## High -0.2714543 0.7070257
## 
## $tables$NumDblBonds
##             [,1]      [,2]
## Low   0.07217700 1.1166156
## Mid   0.07068664 0.9635389
## High -0.21088755 0.7710460
## 
## $tables$NumCarbon
##            [,1]      [,2]
## Low   0.6263249 0.8520677
## Mid  -0.2418994 0.8045988
## High -0.8256564 0.6763829
## 
## $tables$NumNitrogen
##             [,1]      [,2]
## Low  -0.02976857 1.0250998
## Mid   0.09225615 1.0510022
## High -0.05559051 0.8834496
## 
## $tables$NumOxygen
##              [,1]      [,2]
## Low  -0.034068396 1.0954990
## Mid  -0.005066866 0.8544102
## High  0.066311736 0.9817552
## 
## $tables$NumSulfer
##             [,1]      [,2]
## Low   0.11971764 1.2230290
## Mid   0.02589293 0.9222710
## High -0.24251923 0.4674415
## 
## $tables$NumChlorine
##            [,1]      [,2]
## Low   0.3118792 1.3422891
## Mid  -0.1802282 0.5542606
## High -0.3409454 0.2668185
## 
## $tables$NumHalogen
##            [,1]      [,2]
## Low   0.3385013 1.3025157
## Mid  -0.1813798 0.6177592
## High -0.3867617 0.3250965
## 
## $tables$NumRings
##            [,1]      [,2]
## Low   0.4841073 1.0815485
## Mid  -0.2058863 0.8005849
## High -0.6159668 0.5300818
## 
## $tables$HydrophilicFactor
##             [,1]      [,2]
## Low  -0.24599149 0.7233875
## Mid   0.04475775 0.8785500
## High  0.38328598 1.3656601
## 
## $tables$SurfaceArea1
##             [,1]      [,2]
## Low  -0.09225436 1.0302674
## Mid   0.05481524 0.9389079
## High  0.09908671 1.0049351
## 
## $tables$SurfaceArea2
##             [,1]      [,2]
## Low  -0.04168274 1.0668148
## Mid   0.04393220 0.9456058
## High  0.02226439 0.9389898
## 
## 
## $levels
## [1] "Low"  "Mid"  "High"
## 
## $call
## NaiveBayes.default(x = x, grouping = y, usekernel = FALSE, fL = param$fL)
## 
## $x
##       FP001 FP002 FP003 FP004 FP005 FP006 FP007 FP008 FP009 FP010 FP011 FP012
## X661      0     1     0     0     1     0     0     1     0     0     0     0
## X662      0     1     0     1     1     1     1     1     0     0     1     0
## X663      1     1     1     1     1     0     0     1     0     1     0     0
## X665      0     0     1     0     0     0     1     0     0     0     0     0
## X668      0     0     1     1     1     1     0     0     1     0     0     0
## X669      1     0     1     1     0     0     0     0     1     0     0     1
## X670      0     1     0     1     1     0     0     1     1     0     0     0
## X671      1     0     1     1     0     0     1     0     0     0     0     1
## X672      1     0     1     1     0     1     1     0     1     0     1     0
## X673      1     1     1     1     1     1     1     0     0     0     0     0
## X674      1     1     1     1     1     0     0     1     0     0     0     0
## X676      1     0     1     1     0     1     1     0     0     0     1     0
## X677      0     1     0     0     1     0     0     1     0     0     0     0
## X678      0     1     0     0     1     0     0     0     1     0     0     0
## X679      0     1     1     0     1     0     1     1     0     0     0     0
## X682      1     1     1     1     1     0     0     1     0     1     0     0
## X683      1     0     1     1     1     1     1     1     0     0     0     0
## X684      0     1     0     1     1     1     1     0     1     0     1     0
## X685      1     0     1     1     0     1     1     0     0     0     1     0
## X686      0     1     1     0     1     0     0     1     0     0     0     0
## X688      1     1     0     1     1     1     0     1     1     0     1     1
## X689      0     1     0     1     1     0     1     1     0     0     0     0
## X690      1     1     1     1     1     0     1     1     1     0     0     1
## X691      1     0     0     1     0     1     0     0     1     0     0     0
## X692      1     1     1     1     1     1     0     1     0     0     0     1
## X693      1     1     0     1     1     1     1     1     0     0     0     0
## X695      0     1     1     1     1     0     0     0     0     0     0     0
## X696      0     1     0     0     1     1     0     0     0     0     0     0
## X698      1     1     1     1     1     1     0     1     0     0     0     0
## X699      0     1     0     0     1     0     0     1     1     0     0     0
## X700      0     0     1     0     0     0     1     0     0     0     0     0
## X702      0     0     1     0     0     0     1     0     0     0     0     0
## X703      0     0     1     0     0     0     1     0     0     0     0     0
## X704      0     1     0     0     1     0     0     1     0     0     0     0
## X706      1     1     1     1     1     0     0     1     0     0     0     0
## X708      0     1     0     0     1     0     0     0     0     0     0     0
## X709      0     0     1     0     0     0     1     0     0     0     0     0
## X711      1     0     1     1     0     1     1     0     0     1     1     0
## X712      0     1     1     0     1     0     1     1     0     1     0     0
## X713      1     1     0     1     1     1     0     1     1     1     0     0
## X714      1     0     1     1     0     1     1     0     0     0     1     1
## X715      1     1     0     1     1     1     0     0     1     0     0     1
## X717      0     1     0     0     1     0     0     0     1     0     0     0
## X718      0     1     0     1     1     0     1     0     1     0     0     0
## X721      0     0     1     0     1     1     0     0     1     0     0     0
## X722      1     1     0     1     1     0     0     1     1     0     0     0
## X723      0     0     1     0     0     0     1     0     0     0     0     0
## X724      0     1     0     1     1     0     0     0     0     0     0     0
## X726      0     1     0     1     1     0     0     0     1     1     0     0
## X728      1     1     1     1     1     0     0     1     1     1     0     0
## X729      0     1     0     0     1     0     0     0     1     0     0     0
## X731      0     0     1     0     0     0     1     0     0     0     0     0
## X732      0     1     0     0     1     0     0     0     1     0     0     0
## X733      0     0     1     0     1     1     0     0     1     0     0     0
## X734      0     1     0     0     1     0     0     0     1     0     0     0
## X735      1     0     1     1     0     1     1     0     0     0     1     0
## X736      1     1     1     1     1     1     1     1     0     0     0     1
## X737      1     1     0     1     1     0     0     0     0     0     0     0
## X739      1     1     1     1     1     0     1     1     1     0     0     1
## X740      1     1     0     1     1     0     0     1     1     1     0     0
## X741      1     0     1     1     0     0     1     0     0     1     0     0
## X742      1     0     1     1     0     0     1     0     0     0     0     1
## X743      0     1     0     0     1     0     0     0     1     0     0     0
## X744      0     1     0     0     1     0     0     1     0     0     0     0
## X746      1     1     1     1     1     0     0     1     0     0     0     1
## X747      0     0     1     0     0     1     1     0     0     0     1     0
## X749      1     1     1     1     1     0     1     0     1     0     0     1
## X752      1     0     1     1     0     1     1     0     1     0     1     1
## X753      0     0     1     0     0     0     1     0     0     0     0     0
## X754      0     1     0     1     1     0     1     0     0     0     0     0
## X755      0     1     0     0     1     0     0     1     0     0     0     0
## X757      0     0     1     0     0     0     1     0     1     0     0     0
## X758      0     1     0     1     1     0     0     1     0     0     0     0
## X759      1     0     1     1     0     0     0     0     0     0     0     0
## X760      0     1     0     0     1     0     0     0     1     0     0     0
## X761      1     0     1     1     0     1     1     0     1     0     1     1
## X762      0     1     0     0     1     0     0     1     0     0     0     0
## X763      0     1     0     0     1     1     0     0     1     0     0     0
## X764      0     1     0     0     1     0     0     1     0     0     0     0
## X765      1     1     1     1     1     1     0     1     1     0     1     1
## X767      1     0     1     1     0     0     1     0     1     0     0     1
## X768      0     1     0     0     1     0     0     0     0     0     0     0
## X770      0     1     0     1     1     0     1     0     1     0     0     0
## X771      1     1     0     1     1     1     0     1     1     0     0     0
## X772      0     1     0     0     1     0     0     0     1     0     0     0
## X773      0     0     1     0     0     0     1     0     0     0     0     0
## X774      0     0     1     0     0     0     1     0     1     0     0     0
## X775      1     1     0     1     1     0     1     1     0     1     0     0
## X776      1     1     0     1     1     1     1     1     1     0     0     0
## X777      1     0     1     1     0     0     1     0     0     0     0     1
## X778      1     0     1     1     0     1     1     0     0     1     1     0
## X779      0     1     0     0     1     1     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     1     0     0     0
## X781      1     0     1     1     0     0     1     0     0     0     0     1
## X782      1     1     0     1     1     0     0     1     0     0     0     0
## X784      1     1     0     1     1     1     0     1     1     1     1     0
## X786      0     0     1     0     0     0     1     0     0     0     0     0
## X787      0     1     0     0     1     0     0     0     1     0     0     0
## X788      1     0     1     1     0     0     1     0     0     0     0     0
## X789      0     1     0     0     1     0     0     0     1     0     0     0
## X791      0     1     0     0     1     0     0     0     1     0     0     0
## X792      0     1     0     1     1     0     1     1     1     0     0     0
## X794      1     0     1     1     0     0     1     0     0     1     0     0
## X798      0     1     0     0     1     0     0     0     0     0     0     0
## X799      1     0     0     1     0     0     1     0     1     0     0     0
## X800      0     0     1     1     0     1     1     0     0     0     1     1
## X804      0     1     0     1     1     0     0     1     0     0     0     0
## X805      1     0     1     1     0     1     1     0     0     0     1     1
## X807      1     0     1     1     0     0     0     0     0     0     0     1
## X808      1     1     0     1     1     0     0     1     0     1     0     0
## X809      1     1     1     1     1     0     1     1     0     0     0     1
## X810      0     0     0     0     0     0     1     0     1     0     0     0
## X813      1     0     1     1     0     0     1     0     0     1     0     0
## X814      1     1     1     1     1     0     0     0     1     0     0     1
## X818      0     1     0     0     1     0     0     0     1     0     0     0
## X819      1     1     0     1     1     1     0     1     1     0     0     0
## X820      0     0     1     0     0     1     1     0     0     0     1     0
## X821      0     1     0     0     1     0     0     0     1     0     0     0
## X822      0     1     0     0     1     0     0     0     0     0     0     0
## X823      0     1     0     0     1     1     0     0     0     0     0     0
## X827      0     0     0     1     0     0     1     0     1     0     0     1
## X828      0     1     0     0     1     0     0     0     1     0     0     0
## X829      1     1     1     1     1     0     0     1     1     0     0     1
## X831      0     1     0     0     1     0     0     1     1     0     0     0
## X832      0     1     0     0     1     0     0     0     1     0     0     0
## X833      0     1     0     0     1     0     0     0     1     0     0     0
## X834      0     1     0     0     1     0     0     1     1     0     0     0
## X835      0     1     0     0     1     0     0     0     1     0     0     0
## X836      0     1     0     0     1     0     0     0     1     0     0     0
## X839      0     1     0     0     1     0     0     1     0     0     0     0
## X840      0     1     0     0     1     0     0     0     0     0     0     0
## X841      0     1     0     0     1     0     0     0     1     0     0     0
## X842      0     1     1     0     1     0     0     1     0     0     0     0
## X843      0     1     0     0     1     0     0     1     1     0     0     0
## X846      0     1     0     0     1     0     0     0     0     0     0     0
## X848      0     1     0     0     1     0     0     0     1     0     0     0
## X849      0     1     0     0     1     0     0     0     1     0     0     0
## X851      0     0     1     1     0     1     1     0     0     0     1     1
## X854      0     1     0     0     1     0     0     0     1     0     0     0
## X855      0     1     0     0     1     0     0     0     0     0     0     0
## X856      0     1     0     0     1     0     0     0     1     0     0     0
## X857      0     1     0     0     1     0     0     0     1     0     0     0
## X858      0     1     0     0     1     0     0     0     1     0     0     0
## X859      0     1     0     0     1     0     0     0     1     0     0     0
## X860      0     1     0     0     1     0     0     0     1     0     0     0
## X862      0     1     0     0     1     0     0     0     1     0     0     0
## X863      0     1     0     0     1     0     0     0     1     0     0     0
## X864      0     1     0     0     1     0     0     1     0     0     0     0
## X865      0     1     0     0     1     0     0     0     0     0     0     0
## X866      0     1     0     0     1     0     0     0     1     0     0     0
## X867      0     1     0     0     1     0     0     0     0     0     0     0
## X869      0     1     0     0     1     0     0     1     1     0     0     0
## X870      0     1     0     0     1     0     0     0     1     0     0     0
## X871      0     1     0     0     1     0     0     0     1     0     0     0
## X872      0     1     0     0     1     0     0     0     1     0     0     0
## X873      0     1     0     0     1     0     0     0     0     0     0     0
## X875      0     1     0     0     1     0     0     0     1     0     0     0
## X876      0     1     0     0     1     0     0     0     1     0     0     0
## X877      0     0     0     0     1     0     0     0     1     0     0     0
## X1190     0     1     0     1     1     0     0     0     0     0     0     0
## X1191     0     0     1     0     0     0     1     0     1     0     0     0
## X1192     1     0     1     1     0     1     1     0     0     0     1     0
## X1193     0     1     0     0     1     0     0     1     0     0     0     0
## X1194     1     0     1     1     0     1     1     0     0     0     1     1
## X1195     0     1     0     0     1     0     0     0     1     0     0     0
## X1197     0     1     1     0     1     0     1     1     0     0     0     0
## X1198     0     1     0     0     1     0     0     0     1     0     0     0
## X1199     0     0     1     1     1     1     0     0     0     0     0     0
## X1200     1     0     1     1     0     0     0     0     0     0     0     1
## X1201     1     1     0     1     1     0     0     1     0     0     0     1
## X1202     1     0     1     1     0     1     1     0     1     0     1     1
## X1203     0     0     0     0     0     0     1     0     0     0     0     0
## X1204     1     1     0     1     1     1     0     1     0     1     0     0
## X1205     1     1     0     1     1     1     0     1     1     1     0     0
## X1206     0     0     0     0     0     0     0     0     1     0     0     0
## X1207     0     1     1     1     1     0     0     0     0     0     0     0
## X1208     1     0     1     1     0     0     1     0     0     0     0     1
## X1209     0     0     0     0     1     0     0     0     1     1     0     0
## X1210     1     0     1     1     0     1     1     0     0     1     1     0
## X1212     0     1     1     0     1     1     1     1     0     1     1     0
## X1213     0     1     0     1     1     0     1     0     0     0     0     0
## X1215     1     0     1     1     0     1     1     0     1     0     1     1
## X1216     0     1     0     0     1     0     0     0     0     0     0     0
## X1217     0     1     0     0     1     1     0     1     1     0     1     0
## X1219     0     1     1     0     1     0     1     1     0     1     0     0
## X1220     1     1     0     1     1     1     1     1     1     0     1     0
## X1221     0     0     1     0     0     0     1     0     1     0     0     0
## X1222     0     1     0     0     1     0     1     1     0     0     0     0
## X1226     0     1     0     1     1     0     1     1     1     0     0     0
## X1228     1     1     0     1     1     0     0     1     0     0     0     1
## X1229     1     0     1     1     0     1     1     0     0     0     1     1
## X1230     1     1     0     1     1     0     0     1     0     0     0     1
## X1231     0     1     0     0     1     0     0     1     0     0     0     0
## X1233     1     0     1     1     0     1     1     0     0     0     1     0
## X1234     0     1     0     0     1     0     0     1     0     0     0     0
## X1236     1     0     1     1     0     0     1     0     0     0     0     1
## X1237     1     1     0     1     1     0     0     0     1     0     0     1
## X1239     1     0     1     1     0     0     0     0     1     0     0     1
## X1242     0     0     0     0     0     0     0     0     1     0     0     0
## X1244     0     1     0     0     1     0     0     0     1     0     0     0
## X1245     0     1     1     0     1     0     1     1     0     0     0     0
## X1246     1     1     1     1     1     0     1     1     0     1     0     0
## X1247     1     1     1     1     1     0     0     1     0     0     0     1
## X1249     1     1     1     1     1     0     0     1     1     0     0     1
## X1250     0     0     0     0     0     1     0     0     1     0     1     0
## X1251     0     0     0     0     1     0     0     1     1     0     0     0
## X1253     1     1     1     1     1     0     0     0     1     0     0     1
## X1254     0     1     0     0     1     0     0     0     1     0     0     0
## X1255     0     1     0     0     1     0     0     1     0     0     0     0
## X1256     0     1     0     0     1     0     1     1     0     0     0     0
## X1257     0     1     0     0     1     0     0     0     1     0     0     0
## X1259     0     0     0     1     0     0     1     0     1     0     0     1
## X1260     0     1     0     0     1     0     0     0     1     0     0     0
## X1262     1     1     1     1     1     0     0     1     1     0     0     1
## X1264     0     0     0     0     0     0     0     0     1     0     0     0
## X1265     0     1     0     0     1     0     0     0     1     0     0     0
## X1266     0     1     0     0     1     0     0     1     1     0     0     0
## X1267     1     1     0     1     1     0     0     1     0     1     0     0
## X1268     1     0     1     1     0     0     1     0     0     1     0     0
## X1273     0     1     0     0     1     0     0     0     1     0     0     0
## X1274     0     0     1     0     0     1     1     0     0     0     1     0
## X1275     0     0     0     0     0     0     1     0     1     0     0     0
## X1276     0     1     0     0     1     0     0     0     0     0     0     0
## X1277     0     1     0     0     1     0     0     0     1     0     0     0
## X1278     0     1     0     0     1     0     0     1     0     0     0     0
## X1279     0     1     0     0     1     0     0     0     0     0     0     0
## X1281     0     1     0     0     1     0     0     0     1     0     0     0
## X1282     0     1     0     0     1     0     0     0     1     0     0     0
## X1283     0     1     0     0     1     0     0     0     0     0     0     0
## X1284     0     1     0     0     1     0     0     0     0     0     0     0
## X1285     0     1     0     0     1     0     0     0     1     0     0     0
## X1288     0     1     0     0     1     0     0     0     1     0     0     0
## X1299     1     1     0     1     1     1     0     1     0     0     0     0
## X1301     1     0     1     1     0     1     1     0     0     0     1     0
## X1302     0     0     0     0     0     0     0     0     1     0     0     0
## X1307     1     1     1     1     1     0     0     0     1     0     0     1
## X1309     0     1     0     0     1     0     0     1     1     0     0     0
## X1310     0     0     0     0     0     0     1     0     1     0     0     0
## X447      1     1     0     1     1     0     0     0     1     1     0     0
## X448      1     1     0     1     1     1     1     1     1     1     1     0
## X451      0     0     1     0     0     0     1     0     0     0     0     0
## X452      0     1     0     0     1     0     0     1     1     0     0     0
## X453      0     1     0     0     1     0     0     0     0     1     0     0
## X454      1     1     0     1     1     1     0     1     0     0     0     0
## X455      1     1     1     1     1     0     0     1     1     1     0     0
## X456      1     1     1     1     1     1     1     0     0     0     0     1
## X458      1     1     0     1     1     1     0     1     0     0     0     0
## X459      1     0     1     1     0     0     1     0     0     0     0     0
## X460      0     0     0     0     0     0     1     0     0     0     0     0
## X461      1     1     0     1     1     0     0     1     1     1     0     0
## X462      0     1     1     0     1     0     0     0     0     0     0     0
## X463      0     1     0     1     1     1     0     1     0     0     0     0
## X464      0     0     0     0     0     0     0     0     1     0     0     0
## X465      0     1     0     1     1     1     1     1     0     0     1     0
## X466      1     1     0     1     1     0     0     0     1     1     0     0
## X468      1     0     1     1     0     1     1     0     0     0     1     1
## X471      1     1     1     1     1     1     1     1     0     0     0     0
## X472      0     0     1     0     0     0     1     0     1     0     0     0
## X473      0     0     0     0     0     0     1     0     0     0     0     0
## X476      1     1     0     1     1     0     0     1     0     1     0     0
## X477      1     1     1     1     1     1     0     1     0     0     0     0
## X478      0     0     0     0     0     0     1     0     0     0     0     0
## X479      0     0     1     0     0     0     1     0     0     0     0     0
## X480      0     1     0     0     1     0     0     0     0     0     0     0
## X482      0     0     1     0     0     0     0     0     1     0     0     0
## X483      0     0     1     0     0     0     0     0     1     0     0     0
## X484      0     1     0     0     1     1     0     0     0     0     0     0
## X486      1     0     1     1     0     0     1     0     0     0     0     1
## X487      1     1     1     1     1     0     0     1     0     0     0     1
## X488      1     1     1     1     1     0     1     1     0     1     0     1
## X489      1     1     0     1     1     0     0     1     1     1     0     0
## X490      1     1     1     1     1     0     0     1     1     0     0     1
## X491      0     0     1     0     0     0     1     0     1     0     0     0
## X492      1     0     1     1     0     1     1     0     0     0     0     0
## X493      1     0     1     1     0     0     1     0     0     1     0     0
## X494      1     0     0     1     1     1     0     0     1     1     0     0
## X495      0     1     0     1     1     1     1     1     0     0     1     0
## X496      1     0     0     1     1     1     0     0     0     0     0     0
## X497      0     1     0     0     1     0     0     0     0     0     0     0
## X498      0     1     0     0     1     0     0     1     1     1     0     0
## X499      0     1     0     0     1     0     0     1     0     0     0     0
## X501      1     1     0     1     1     0     0     0     1     0     0     0
## X502      0     1     0     0     1     0     0     1     0     0     0     0
## X503      0     1     1     1     1     1     1     1     0     0     1     0
## X505      1     1     1     1     1     1     0     0     1     0     0     0
## X506      1     1     0     1     1     1     0     1     0     0     0     0
## X507      0     1     0     1     1     1     0     1     0     0     0     0
## X508      1     1     0     1     1     1     0     1     1     1     1     0
## X509      1     1     1     1     1     1     0     1     0     1     1     0
## X510      1     1     0     1     1     1     0     0     1     0     1     0
## X513      0     0     1     0     0     0     1     0     1     0     0     0
## X514      1     1     0     1     1     1     0     1     0     0     0     0
## X515      0     1     0     0     1     0     0     0     0     1     0     0
## X516      0     1     0     1     1     0     0     1     0     0     0     0
## X518      1     1     1     1     1     1     0     0     0     0     0     0
## X521      1     1     0     1     1     1     0     1     0     0     0     0
## X523      1     1     1     1     1     0     0     1     0     0     0     1
## X524      1     1     1     1     1     1     1     0     1     0     0     0
## X525      1     0     1     1     0     1     1     0     0     0     0     0
## X526      0     0     1     0     0     1     1     0     0     0     1     0
## X530      0     1     1     1     1     0     0     0     0     0     0     0
## X531      1     1     1     1     1     1     0     1     0     1     0     0
## X532      0     0     1     1     1     1     0     0     0     0     0     0
## X533      1     1     0     1     1     1     0     1     1     0     1     0
## X534      1     1     1     1     1     1     1     1     0     0     0     0
## X535      0     1     0     0     1     0     0     0     1     0     0     0
## X536      0     1     0     0     1     1     1     1     0     0     1     0
## X538      1     1     0     1     1     0     0     1     0     1     0     0
## X539      0     1     0     0     1     1     1     1     0     0     1     0
## X542      1     0     1     1     0     1     1     0     0     0     1     0
## X543      0     0     1     0     0     0     1     0     1     0     0     0
## X544      1     1     1     1     1     1     1     1     0     1     1     0
## X545      0     0     1     0     0     0     1     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     1     0     0     0
## X548      0     1     1     1     1     0     0     1     0     0     0     0
## X549      0     1     0     0     1     0     0     0     1     0     0     0
## X551      0     0     0     0     0     0     0     0     1     0     0     0
## X552      1     1     0     1     1     0     0     1     0     0     0     1
## X553      1     1     1     1     1     1     0     0     0     0     0     1
## X554      0     0     1     0     1     1     0     0     1     0     0     0
## X556      1     1     0     1     1     0     0     1     0     1     0     0
## X557      1     1     1     1     1     1     0     1     1     0     0     0
## X558      0     1     0     1     1     0     0     0     0     0     0     0
## X559      0     0     1     0     0     0     1     0     0     0     0     0
## X560      0     1     0     0     1     0     0     1     0     0     0     0
## X561      0     1     0     0     1     0     0     0     1     0     0     0
## X562      0     1     1     0     1     0     0     1     0     0     0     0
## X563      1     1     0     1     1     0     0     1     0     1     0     0
## X565      0     0     1     0     0     0     1     0     0     0     0     0
## X566      0     1     0     0     1     1     0     0     1     0     0     0
## X567      1     1     1     1     1     1     0     1     1     0     0     0
## X568      1     1     1     1     1     1     0     0     1     0     0     0
## X569      1     1     1     1     1     0     0     1     1     0     0     1
## X571      1     1     0     1     1     1     0     1     1     0     0     1
## X572      1     1     1     1     1     1     1     1     0     0     0     1
## X574      0     0     1     0     0     0     1     0     0     0     0     0
## X576      1     1     0     1     1     1     0     1     0     0     0     0
## X577      1     1     0     1     1     1     0     0     0     0     0     0
## X579      1     1     0     1     1     1     0     1     0     0     0     0
## X580      1     1     0     1     1     0     0     1     1     1     0     0
## X582      1     0     1     1     0     0     1     0     0     0     0     0
## X583      0     1     0     0     1     0     0     1     0     0     0     0
## X584      1     1     0     1     1     0     1     1     0     0     0     1
## X586      1     1     1     1     1     0     0     1     0     0     0     1
## X587      0     1     0     0     1     0     0     0     0     0     0     0
## X588      1     0     1     1     0     1     1     0     0     0     0     0
## X589      1     0     1     1     0     1     1     0     0     1     1     0
## X591      0     1     0     1     1     1     1     1     0     0     1     0
## X592      0     1     1     0     1     0     1     1     0     0     0     0
## X593      0     1     0     0     1     1     0     1     1     0     1     0
## X594      1     0     1     1     0     0     1     0     0     0     0     1
## X595      1     0     1     1     0     0     0     0     1     0     0     1
## X596      1     1     1     1     1     1     1     1     0     0     0     0
## X597      0     1     0     1     1     0     1     1     0     0     0     0
## X598      1     0     0     1     0     0     1     0     0     1     0     0
## X599      0     1     0     0     1     0     0     1     0     0     0     0
## X600      1     1     1     1     1     0     0     1     0     0     0     1
## X603      1     0     1     1     0     0     1     0     0     1     0     0
## X604      1     0     1     1     0     1     1     0     0     0     0     0
## X605      1     0     1     1     0     0     1     0     0     0     0     0
## X606      1     1     1     1     1     0     1     1     0     0     0     1
## X608      0     1     0     0     1     0     0     0     1     0     0     0
## X609      1     1     0     1     1     1     0     1     0     0     0     0
## X611      0     0     0     0     0     0     1     0     0     0     0     0
## X612      1     1     0     1     1     1     0     0     1     0     0     0
## X613      0     1     0     0     1     0     0     1     1     0     0     0
## X614      0     1     0     0     1     0     0     1     1     0     0     0
## X616      0     0     1     0     0     0     1     0     0     0     0     0
## X617      1     1     1     1     1     0     0     0     0     0     0     0
## X619      1     1     0     1     1     1     0     1     1     0     1     0
## X620      0     1     0     0     1     0     0     0     1     0     0     0
## X621      1     1     0     1     1     1     0     1     0     1     0     0
## X622      0     1     0     0     1     0     0     0     0     0     0     0
## X623      1     1     0     1     1     1     0     1     1     0     1     0
## X625      1     1     1     1     1     0     0     0     1     0     0     0
## X628      1     0     1     1     0     1     1     0     1     0     1     0
## X629      1     0     1     1     0     1     1     0     0     1     1     0
## X630      0     1     0     1     1     1     1     1     0     0     0     0
## X631      0     0     1     0     0     0     1     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     1     0     0     0
## X633      1     1     0     1     1     0     1     0     1     1     0     0
## X635      1     1     0     1     1     1     1     1     0     0     0     0
## X636      1     0     1     1     0     1     1     0     1     0     1     0
## X637      1     0     1     1     0     0     1     0     0     0     0     0
## X638      1     1     1     1     1     0     0     1     0     1     0     0
## X639      1     1     0     1     1     1     0     1     0     0     0     0
## X641      1     1     1     1     1     0     1     0     0     1     0     0
## X648      1     1     0     1     1     1     0     1     1     1     1     0
## X650      1     1     1     1     1     1     0     0     0     0     1     0
## X651      1     1     1     1     1     0     1     0     0     0     0     0
## X653      1     0     1     1     0     1     1     0     0     1     1     0
## X654      1     1     1     1     1     0     1     1     0     0     0     1
## X655      0     1     1     0     1     0     1     1     0     0     0     0
## X656      0     1     0     0     1     0     0     0     1     0     0     0
## X657      1     1     1     1     1     1     1     1     0     0     0     1
## X1082     0     0     1     0     0     0     1     0     1     0     0     0
## X1083     0     1     0     0     1     1     0     1     0     0     1     0
## X1084     0     0     1     0     0     1     1     0     0     0     1     0
## X1086     0     1     0     0     1     0     0     0     1     0     0     0
## X1088     1     1     0     1     1     1     0     0     1     0     0     0
## X1089     0     1     1     0     1     1     1     1     0     0     1     0
## X1090     1     1     0     1     1     1     0     1     0     1     1     0
## X1091     0     1     1     0     1     0     1     1     0     1     0     0
## X1092     1     0     1     1     0     0     1     0     0     0     0     0
## X1093     1     0     1     1     0     0     0     0     1     0     0     0
## X1094     1     1     0     1     1     0     0     1     0     1     0     0
## X1095     1     1     0     1     1     1     0     1     0     0     0     0
## X1097     0     0     1     0     0     0     1     0     1     0     0     0
## X1098     1     0     1     1     0     1     1     0     0     0     0     0
## X1101     1     1     0     1     1     1     0     1     1     0     1     0
## X1103     1     1     0     1     1     1     1     1     0     1     1     0
## X1104     1     1     0     1     1     1     0     1     0     0     0     0
## X1105     1     0     0     1     1     1     0     0     0     0     0     0
## X1106     0     0     1     0     0     1     1     0     0     0     1     0
## X1108     0     1     0     0     1     0     0     1     0     0     0     0
## X1110     0     1     0     0     1     0     0     0     1     0     0     0
## X1112     1     1     0     1     1     1     0     1     0     0     0     0
## X1113     0     1     1     0     1     0     0     1     0     1     0     0
## X1115     1     1     0     1     1     1     0     1     0     0     1     0
## X1116     0     1     0     1     1     0     0     1     1     0     0     0
## X1117     1     1     0     1     1     1     0     1     0     1     0     0
## X1119     1     1     0     1     1     0     0     0     1     1     0     0
## X1120     1     0     1     1     0     1     1     0     0     0     1     0
## X1121     1     0     1     1     1     1     0     1     0     1     0     0
## X1122     1     0     1     1     0     1     1     0     0     0     1     0
## X1124     1     1     1     1     1     0     0     1     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     1     0     0     0
## X1126     0     1     0     0     1     0     0     0     1     0     0     0
## X1127     0     1     0     0     1     0     1     1     0     0     0     0
## X1128     1     1     1     1     1     1     0     0     1     0     0     0
## X1129     0     1     0     0     1     0     0     1     1     0     0     0
## X1130     1     1     0     1     1     0     0     1     1     1     0     0
## X1131     0     0     0     0     0     0     1     0     0     0     0     0
## X1133     1     1     0     1     1     1     0     0     1     0     1     0
## X1135     1     0     1     1     0     0     1     0     0     0     0     0
## X1136     0     1     0     0     1     0     0     1     1     0     0     0
## X1138     1     0     1     1     0     1     1     0     0     1     1     1
## X1139     1     0     1     1     0     1     1     0     0     0     1     0
## X1141     0     0     1     0     0     0     1     0     0     0     0     0
## X1142     0     1     0     0     1     0     0     0     1     0     0     0
## X1143     1     1     1     1     1     0     1     0     0     0     0     0
## X1144     0     1     0     1     1     1     1     1     0     1     1     0
## X1145     1     1     1     1     1     1     1     1     1     0     1     0
## X1146     1     0     1     1     0     1     1     0     0     0     1     1
## X1147     1     0     1     1     0     0     1     0     0     0     0     1
## X1149     1     1     1     1     1     1     0     0     1     0     0     1
## X1150     1     0     1     1     0     0     1     0     0     0     0     1
## X1151     1     0     1     1     0     0     1     0     0     0     0     1
## X1152     1     1     0     1     1     0     1     1     0     0     0     0
## X1153     0     0     0     0     1     0     0     0     1     0     0     0
## X1156     1     0     1     1     0     0     1     0     0     1     0     0
## X1158     1     1     0     1     1     0     1     1     0     1     0     0
## X1159     1     1     0     1     1     0     0     1     0     0     0     0
## X1160     1     1     1     1     1     0     0     1     0     1     0     1
##       FP013 FP014 FP015 FP016 FP017 FP018 FP019 FP020 FP021 FP022 FP023 FP024
## X661      0     0     1     0     0     0     1     0     0     0     0     1
## X662      0     0     1     1     0     1     0     0     0     0     0     0
## X663      0     0     1     0     1     0     0     0     0     0     0     0
## X665      0     0     1     0     1     0     0     0     0     0     1     0
## X668      1     0     1     1     0     0     1     0     0     0     0     1
## X669      0     0     1     1     0     0     0     0     1     0     0     0
## X670      1     1     1     0     0     0     1     0     0     0     0     0
## X671      0     0     1     1     0     0     0     0     0     0     0     0
## X672      0     0     1     0     1     0     0     0     1     0     1     0
## X673      0     0     1     0     1     0     0     0     0     1     0     0
## X674      0     0     1     0     1     0     0     0     0     0     0     0
## X676      0     0     1     0     1     0     0     0     0     0     1     0
## X677      0     0     1     0     0     0     0     0     0     0     0     0
## X678      1     1     0     0     0     0     0     0     0     0     0     0
## X679      0     0     1     0     0     0     0     0     0     0     0     0
## X682      0     0     1     0     0     1     0     1     0     0     0     0
## X683      0     0     1     0     0     0     1     0     0     0     0     1
## X684      1     1     1     1     0     1     0     0     0     0     0     0
## X685      0     0     1     0     1     0     0     0     0     0     0     0
## X686      0     0     1     0     0     0     0     0     0     0     0     0
## X688      1     1     1     0     0     0     0     1     0     0     0     0
## X689      0     0     1     1     0     1     0     0     0     0     0     0
## X690      0     0     1     1     0     1     0     0     1     0     0     0
## X691      0     0     1     0     0     0     0     0     1     0     0     0
## X692      0     0     1     1     0     0     0     0     0     0     0     0
## X693      0     0     1     0     0     0     0     0     0     0     0     0
## X695      0     0     1     1     1     1     0     1     0     0     0     0
## X696      0     0     0     0     0     0     1     0     0     1     0     1
## X698      0     0     1     0     0     1     0     0     0     0     0     0
## X699      1     1     1     0     0     0     0     0     0     0     0     0
## X700      0     0     1     0     0     0     0     0     0     0     0     0
## X702      0     0     1     0     1     0     0     0     0     0     0     0
## X703      0     0     1     0     1     0     0     0     0     0     0     0
## X704      0     0     1     0     0     0     0     0     0     0     0     0
## X706      0     0     1     0     0     1     0     1     0     0     1     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     1     0     1     0     0     0     0     0     0     0
## X711      0     0     1     0     1     0     0     0     0     0     0     0
## X712      0     0     1     0     0     0     0     0     0     0     0     0
## X713      0     0     1     0     0     0     0     0     1     1     0     0
## X714      0     0     1     1     1     0     0     0     0     0     1     0
## X715      1     1     1     1     0     0     0     0     1     1     0     0
## X717      1     1     0     0     0     0     0     0     0     0     0     0
## X718      1     1     1     1     0     1     0     0     0     0     0     0
## X721      1     0     1     0     0     0     1     0     0     0     0     1
## X722      0     0     1     0     0     0     0     1     1     0     0     0
## X723      0     0     1     0     0     0     0     0     0     0     1     0
## X724      0     0     0     0     0     1     0     0     0     0     0     0
## X726      1     1     0     0     0     1     0     0     0     0     0     0
## X728      1     1     1     0     0     0     0     0     0     0     0     0
## X729      1     1     0     0     0     0     0     0     0     0     0     0
## X731      0     0     1     0     0     0     0     0     0     0     0     0
## X732      1     1     0     0     0     0     0     0     0     0     0     0
## X733      1     0     1     0     0     0     1     0     0     0     0     1
## X734      1     1     0     0     0     0     0     0     0     0     0     0
## X735      0     0     1     0     1     0     0     0     0     0     1     0
## X736      0     0     1     1     0     0     0     0     0     1     0     0
## X737      0     0     1     0     0     1     0     0     0     0     0     0
## X739      1     1     1     0     1     1     0     1     0     0     1     0
## X740      1     1     1     0     0     1     1     1     0     0     0     0
## X741      0     0     1     0     0     0     0     0     0     0     0     0
## X742      0     0     1     0     0     0     0     1     0     0     0     0
## X743      1     1     0     0     0     0     0     0     0     0     0     0
## X744      0     0     1     0     0     0     0     0     0     0     0     0
## X746      0     0     1     1     1     0     0     0     0     0     0     0
## X747      0     0     1     0     0     0     0     0     0     0     0     0
## X749      1     1     1     1     0     1     0     0     0     0     0     0
## X752      0     0     1     0     1     0     0     0     1     0     1     0
## X753      0     0     1     0     1     0     0     0     0     0     0     0
## X754      0     0     1     1     1     1     0     0     0     0     0     0
## X755      0     0     1     0     0     0     0     0     0     0     0     0
## X757      0     0     1     0     0     0     0     0     1     0     0     0
## X758      0     0     1     0     0     1     0     0     0     0     0     0
## X759      0     0     1     1     0     0     0     0     0     0     0     0
## X760      1     1     0     0     0     0     0     0     0     0     0     0
## X761      0     0     1     0     1     0     0     0     1     0     1     0
## X762      0     0     1     0     0     0     0     0     0     0     0     0
## X763      1     1     0     0     0     0     0     0     0     1     0     0
## X764      0     0     1     0     0     0     0     0     0     0     0     0
## X765      1     1     1     0     0     0     0     0     0     0     0     0
## X767      0     0     1     0     1     0     0     0     1     0     1     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      1     1     1     1     0     1     0     0     0     0     0     0
## X771      0     0     1     0     0     0     0     0     1     0     0     0
## X772      1     1     0     0     0     0     0     0     0     0     0     0
## X773      0     0     1     0     0     0     0     0     0     0     1     0
## X774      0     0     1     0     0     0     0     0     1     0     0     0
## X775      0     0     1     0     0     0     0     0     0     0     0     0
## X776      1     1     1     0     0     1     0     1     0     0     0     0
## X777      0     0     1     1     0     0     0     0     0     0     0     0
## X778      0     0     1     0     1     0     0     0     0     0     0     0
## X779      0     0     0     0     0     0     0     0     0     1     0     0
## X780      0     0     1     0     0     0     0     0     1     0     0     0
## X781      0     0     1     0     1     0     0     1     0     0     1     0
## X782      0     0     1     0     0     0     0     0     0     0     0     0
## X784      1     1     1     0     0     1     0     0     0     0     0     0
## X786      0     0     1     0     0     0     0     0     0     0     0     0
## X787      1     1     0     0     0     0     0     0     0     0     0     0
## X788      0     0     1     0     1     0     0     0     0     0     1     0
## X789      1     1     0     0     0     0     0     0     0     0     0     0
## X791      1     1     0     0     0     0     0     0     0     0     0     0
## X792      0     0     1     1     0     1     0     0     1     0     0     0
## X794      0     0     1     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     1     0     0     0     0     1
## X799      0     0     1     0     1     0     0     0     1     0     1     0
## X800      0     0     1     0     1     0     0     0     0     0     0     0
## X804      0     0     1     0     0     1     0     1     0     0     0     0
## X805      0     0     1     1     1     0     0     0     0     0     1     0
## X807      0     0     1     1     0     0     0     0     0     0     0     0
## X808      0     0     1     0     0     1     1     1     0     0     1     0
## X809      0     0     1     1     0     0     0     0     0     0     0     0
## X810      0     0     1     0     1     0     0     0     1     0     1     0
## X813      0     0     1     0     0     0     0     0     0     0     0     0
## X814      1     1     1     0     0     1     0     0     0     0     0     0
## X818      1     1     0     0     0     0     0     0     0     0     0     0
## X819      1     1     1     0     0     0     0     0     0     1     0     0
## X820      0     0     1     0     0     0     0     0     0     0     0     0
## X821      1     1     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     1     0     0
## X827      0     0     1     0     1     0     0     0     1     0     0     0
## X828      1     1     0     0     0     0     0     0     0     0     0     0
## X829      0     0     1     1     0     0     0     0     1     0     0     0
## X831      1     1     1     0     0     0     0     0     1     0     0     0
## X832      1     1     0     0     0     0     0     0     0     0     0     0
## X833      1     1     0     0     0     0     0     0     0     0     0     0
## X834      1     1     1     0     0     0     0     0     1     0     0     0
## X835      1     1     0     0     0     0     0     0     0     0     0     0
## X836      1     1     0     0     0     0     0     0     0     0     0     0
## X839      0     0     1     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      1     1     0     0     0     0     0     0     0     0     0     0
## X842      0     0     1     0     0     0     0     0     0     0     0     0
## X843      1     1     1     0     0     0     0     0     1     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      1     1     0     0     0     0     0     0     0     0     0     0
## X849      1     1     0     0     0     0     0     0     0     0     0     0
## X851      0     0     1     1     1     0     0     0     0     0     1     0
## X854      1     1     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      1     1     0     0     0     0     0     0     0     0     0     0
## X857      1     1     0     0     0     0     0     0     0     0     0     0
## X858      1     1     0     0     0     0     0     0     0     0     0     0
## X859      1     1     0     0     0     0     0     0     0     0     0     0
## X860      1     1     0     0     0     0     0     0     0     0     0     0
## X862      1     1     0     0     0     0     0     0     0     0     0     0
## X863      1     1     0     0     0     0     0     0     0     0     0     0
## X864      0     0     1     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      1     1     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     1     0     0     0     1     0     1     0     0     1
## X870      1     1     0     0     0     0     0     0     0     0     0     0
## X871      1     1     0     0     0     0     0     0     0     0     0     0
## X872      1     1     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      1     1     0     0     0     0     0     0     0     0     0     0
## X876      1     1     0     0     0     0     0     0     0     0     0     0
## X877      1     1     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     1     0     0     0     0     0     0
## X1191     0     0     1     0     0     0     0     0     1     0     0     0
## X1192     0     0     1     0     1     0     0     0     0     0     1     0
## X1193     0     0     1     0     0     0     0     0     0     0     0     0
## X1194     0     0     1     1     1     0     0     0     0     0     1     0
## X1195     1     1     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     1     0     0     0     0     0     0     0     0     0
## X1198     1     1     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     1     0     0     0     1     1     0     0     0     1
## X1200     0     0     1     1     0     0     0     0     0     0     0     0
## X1201     0     0     1     0     0     1     0     1     0     0     0     0
## X1202     0     0     1     1     1     0     0     0     1     0     1     0
## X1203     0     0     1     0     0     0     0     0     0     0     0     0
## X1204     0     0     1     0     0     0     1     1     0     0     0     1
## X1205     0     0     1     0     0     0     1     0     1     1     0     1
## X1206     0     0     1     0     0     0     0     0     1     0     1     0
## X1207     0     0     1     1     0     1     0     0     0     0     0     0
## X1208     0     0     1     0     1     0     0     0     0     0     1     0
## X1209     1     1     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     1     0     1     0     0     0     0     0     0     0
## X1212     0     0     1     0     1     0     0     0     0     0     0     0
## X1213     0     0     1     1     0     1     0     0     0     0     0     0
## X1215     0     0     1     0     1     0     0     0     1     0     1     0
## X1216     0     0     0     0     0     0     1     0     0     0     0     1
## X1217     1     1     1     0     0     0     1     0     0     0     0     1
## X1219     0     0     1     0     0     0     0     0     0     0     0     0
## X1220     1     1     1     0     0     0     0     0     0     0     0     0
## X1221     0     0     1     0     0     0     0     0     1     0     0     0
## X1222     0     0     1     0     0     0     0     0     0     0     1     0
## X1226     0     0     1     1     0     1     0     0     1     0     0     0
## X1228     0     0     1     0     0     1     0     1     0     0     0     0
## X1229     0     0     1     1     1     0     0     0     0     0     1     0
## X1230     0     0     1     0     0     1     0     0     0     0     0     0
## X1231     0     0     1     0     0     0     0     0     0     0     0     0
## X1233     0     0     1     0     1     0     0     0     0     0     1     0
## X1234     0     0     1     0     0     0     0     0     0     0     0     0
## X1236     0     0     1     0     1     0     0     0     0     0     1     0
## X1237     1     1     1     0     0     0     1     1     0     0     0     1
## X1239     0     0     1     1     0     0     0     0     1     0     0     0
## X1242     0     0     1     0     0     0     0     0     1     0     0     0
## X1244     1     1     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     1     0     0     0     0     0     0     0     0     0
## X1246     0     0     1     0     0     0     0     0     0     0     0     0
## X1247     0     0     1     0     1     1     0     0     0     0     1     0
## X1249     0     0     1     1     0     1     0     0     1     0     0     0
## X1250     0     0     1     0     1     0     0     0     1     0     1     0
## X1251     1     1     1     0     0     0     0     0     0     0     0     0
## X1253     1     1     1     1     0     1     0     0     0     0     0     0
## X1254     1     1     0     0     0     0     0     0     0     0     0     0
## X1255     0     0     1     0     0     0     0     0     0     0     0     0
## X1256     0     0     1     0     0     0     0     0     0     0     0     0
## X1257     1     1     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     1     0     1     0     0     0     1     0     0     0
## X1260     1     1     0     0     0     0     0     0     0     0     0     0
## X1262     0     0     1     0     1     1     0     0     1     0     1     0
## X1264     0     0     1     0     1     0     0     0     1     0     1     0
## X1265     1     1     0     0     0     0     0     0     0     0     0     0
## X1266     1     1     1     0     0     0     0     0     1     0     0     0
## X1267     0     0     1     0     0     1     0     0     0     0     0     0
## X1268     0     0     1     0     0     0     0     0     0     0     0     0
## X1273     1     1     0     0     0     0     0     0     0     0     0     0
## X1274     0     0     1     0     0     0     0     0     0     0     0     0
## X1275     0     0     1     0     1     0     0     0     1     0     1     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     1     1     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     1     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     1     1     0     0     0     0     0     0     0     0     0     0
## X1282     1     1     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     1     1     0     0     0     0     0     0     0     0     0     0
## X1288     1     1     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     1     0     0     0     0     0     0     0     0     0
## X1301     0     0     1     0     1     0     0     0     0     0     1     0
## X1302     0     0     1     0     0     0     0     0     1     0     0     0
## X1307     1     1     1     1     0     0     1     0     0     0     0     1
## X1309     1     1     1     0     0     0     0     0     1     0     0     0
## X1310     0     0     1     0     1     0     0     0     1     0     0     0
## X447      1     1     1     1     0     1     0     0     0     0     0     0
## X448      1     1     1     0     1     0     0     0     0     0     0     0
## X451      0     0     1     0     0     0     0     0     0     0     1     0
## X452      1     1     1     0     0     0     0     0     1     0     0     0
## X453      0     0     0     0     0     0     1     0     0     0     0     1
## X454      0     0     1     0     0     0     1     1     0     1     0     1
## X455      1     1     1     0     0     1     0     0     0     0     0     0
## X456      0     0     1     1     0     0     0     0     0     1     0     0
## X458      0     0     1     0     0     1     1     1     0     1     0     1
## X459      0     0     1     0     0     0     0     0     0     0     0     0
## X460      0     0     1     0     0     0     0     0     0     0     1     0
## X461      1     1     1     0     0     0     0     0     0     0     0     0
## X462      0     0     1     0     0     0     1     0     0     0     0     1
## X463      0     0     1     1     0     1     0     0     0     0     0     0
## X464      0     0     1     0     0     0     0     0     1     0     0     0
## X465      0     0     1     0     1     1     1     1     0     0     0     1
## X466      1     1     1     1     0     1     0     0     0     0     0     0
## X468      0     0     1     1     0     0     0     0     0     0     0     0
## X471      0     0     1     0     0     0     0     0     0     1     0     0
## X472      0     0     1     0     0     0     0     0     1     0     0     0
## X473      0     0     1     0     0     0     0     0     0     0     0     0
## X476      0     0     1     0     0     0     0     0     0     0     0     0
## X477      0     0     1     0     0     0     0     0     0     1     0     0
## X478      0     0     1     0     0     0     0     0     0     0     1     0
## X479      0     0     1     0     0     0     0     0     0     0     1     0
## X480      0     0     0     0     0     0     1     0     0     0     0     1
## X482      0     0     1     0     0     0     0     0     1     0     0     0
## X483      0     0     1     0     0     0     0     0     1     0     0     0
## X484      0     0     0     0     0     0     0     0     0     1     0     0
## X486      0     0     1     1     0     0     0     0     0     0     0     0
## X487      0     0     1     1     0     1     0     0     0     0     0     0
## X488      0     0     1     1     0     0     0     0     0     0     0     0
## X489      1     1     1     0     0     0     0     0     0     0     0     0
## X490      0     0     1     1     0     1     0     1     1     0     0     0
## X491      0     0     1     0     0     0     0     0     1     0     0     0
## X492      0     0     1     0     0     0     0     1     0     0     1     0
## X493      0     0     1     0     0     0     0     0     0     0     0     0
## X494      1     1     1     0     0     0     1     0     0     1     0     1
## X495      0     0     1     0     1     1     1     1     0     0     1     1
## X496      0     0     1     0     0     0     1     0     0     0     0     1
## X497      0     0     0     0     0     0     1     0     0     0     0     1
## X498      1     1     1     0     0     0     0     0     0     0     0     0
## X499      0     0     1     0     0     0     0     0     0     0     0     0
## X501      1     1     1     0     0     1     0     1     0     0     0     0
## X502      0     0     1     0     0     0     0     0     0     0     0     0
## X503      0     0     1     0     1     1     0     1     0     0     0     0
## X505      1     1     1     0     0     0     0     0     0     1     0     0
## X506      0     0     1     0     0     0     1     0     0     1     0     1
## X507      0     0     1     0     0     1     1     1     0     0     0     1
## X508      1     1     1     0     0     0     0     0     0     0     0     0
## X509      0     0     1     0     1     0     0     0     0     0     0     0
## X510      0     0     1     0     0     1     0     0     1     0     0     0
## X513      0     0     1     0     1     0     0     0     1     0     0     0
## X514      0     0     1     0     0     0     1     0     0     1     0     0
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     1     0     0     1     0     1     0     0     1     0
## X518      0     0     1     0     0     1     0     1     0     1     0     0
## X521      0     0     1     0     0     0     1     1     0     1     0     1
## X523      0     0     1     1     0     0     0     0     0     0     1     0
## X524      1     1     1     0     0     0     0     0     0     1     0     0
## X525      0     0     1     0     0     0     0     0     0     0     1     0
## X526      0     0     1     0     0     0     0     0     0     0     0     0
## X530      0     0     1     1     0     1     0     0     0     0     0     0
## X531      0     0     1     0     1     0     0     0     0     0     0     0
## X532      0     0     1     0     0     0     1     1     0     0     0     1
## X533      1     1     1     0     0     1     0     0     0     0     0     0
## X534      0     0     1     0     0     0     0     0     0     0     0     0
## X535      1     1     0     0     0     0     0     0     0     0     0     0
## X536      0     0     1     0     1     0     1     0     0     0     1     1
## X538      0     0     1     0     0     1     0     0     0     0     0     0
## X539      0     0     1     0     1     0     1     0     0     0     1     1
## X542      0     0     1     0     1     0     0     0     0     0     1     0
## X543      0     0     1     0     0     0     0     0     1     0     0     0
## X544      0     0     1     0     1     0     0     0     0     0     0     0
## X545      0     0     1     0     0     0     0     0     0     0     0     0
## X546      0     0     1     0     0     0     0     0     1     0     0     0
## X548      0     0     1     0     0     1     0     1     0     0     1     0
## X549      1     1     0     0     0     0     0     0     0     0     0     0
## X551      0     0     1     0     0     0     0     0     1     0     0     0
## X552      0     0     1     0     0     1     0     1     0     0     0     0
## X553      0     0     1     1     0     0     0     0     0     1     0     0
## X554      1     0     1     0     0     0     1     0     0     0     0     1
## X556      0     0     1     0     0     1     0     0     0     0     0     0
## X557      1     1     1     0     0     1     0     1     0     1     0     0
## X558      0     0     0     0     0     0     1     0     0     0     0     1
## X559      0     0     1     0     0     0     0     0     0     0     0     0
## X560      0     0     1     0     0     0     0     0     0     0     0     0
## X561      1     1     0     0     0     0     0     0     0     0     0     0
## X562      0     0     1     0     0     0     0     0     0     0     0     0
## X563      0     0     1     0     0     0     0     0     0     0     0     0
## X565      0     0     1     0     0     0     0     0     0     0     1     0
## X566      1     1     0     0     0     0     0     0     0     1     0     0
## X567      0     0     1     0     0     0     0     0     1     1     0     0
## X568      1     1     1     0     0     0     0     0     0     1     0     0
## X569      0     0     1     0     0     1     0     1     1     0     0     0
## X571      1     1     1     0     0     0     0     1     0     1     0     0
## X572      0     0     1     1     0     0     0     0     0     1     0     0
## X574      0     0     1     0     0     0     0     0     0     0     1     0
## X576      0     0     1     0     0     0     1     1     0     1     0     0
## X577      0     0     1     0     0     1     0     0     0     0     0     0
## X579      0     0     1     0     0     0     1     0     0     1     0     1
## X580      1     1     1     0     0     0     0     0     0     0     0     0
## X582      0     0     1     0     0     0     0     0     0     0     0     0
## X583      0     0     1     0     0     0     0     0     0     0     0     0
## X584      0     0     1     1     1     1     0     0     0     0     1     0
## X586      0     0     1     1     0     0     0     0     0     0     0     0
## X587      0     0     0     0     0     0     1     0     0     0     0     1
## X588      0     0     1     0     1     0     0     0     0     0     0     0
## X589      0     0     1     0     1     0     0     0     0     0     0     0
## X591      0     0     1     0     1     1     1     1     0     0     1     1
## X592      0     0     1     0     0     0     0     0     0     0     0     0
## X593      1     1     1     0     0     0     1     0     0     0     0     1
## X594      0     0     1     0     0     0     0     1     0     0     0     0
## X595      0     0     1     1     0     0     0     0     1     0     0     0
## X596      0     0     1     0     0     0     0     0     0     0     0     0
## X597      0     0     1     0     0     1     0     0     0     0     1     0
## X598      0     0     1     0     0     0     0     0     0     0     1     0
## X599      0     0     1     0     0     0     0     0     0     0     0     0
## X600      0     0     1     1     0     1     0     0     0     0     0     0
## X603      0     0     1     0     0     0     0     0     0     0     0     0
## X604      0     0     1     0     1     0     0     0     0     0     1     0
## X605      0     0     1     0     1     0     0     0     0     0     1     0
## X606      0     0     1     1     0     0     0     0     0     0     0     0
## X608      1     1     0     0     0     0     0     0     0     0     0     0
## X609      0     0     1     0     0     0     1     0     0     1     0     1
## X611      0     0     1     0     0     0     0     0     0     0     0     0
## X612      1     1     1     0     0     0     0     1     0     1     0     0
## X613      1     1     1     0     0     0     0     0     0     0     0     0
## X614      1     1     1     0     0     0     0     0     0     0     0     0
## X616      0     0     1     0     0     0     0     0     0     0     0     0
## X617      0     0     1     1     0     1     0     0     0     0     0     0
## X619      0     0     1     0     0     0     0     0     1     1     0     0
## X620      1     1     0     0     0     0     0     0     0     0     0     0
## X621      0     0     1     0     0     0     0     0     0     1     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      1     1     1     0     0     0     0     0     0     1     0     0
## X625      1     1     1     0     0     1     1     0     0     0     0     1
## X628      0     0     1     0     1     0     0     0     1     0     1     0
## X629      0     0     1     0     1     0     0     0     0     0     0     0
## X630      0     0     1     1     0     1     0     0     0     0     0     0
## X631      0     0     1     0     0     0     0     0     0     0     0     0
## X632      0     0     1     0     0     0     0     0     1     0     0     0
## X633      1     1     1     1     0     1     0     0     0     0     0     0
## X635      0     0     1     1     0     0     0     0     0     0     0     0
## X636      0     0     1     0     1     0     0     0     1     0     1     0
## X637      0     0     1     0     1     0     0     0     0     0     1     0
## X638      0     0     1     0     0     0     0     0     0     0     0     0
## X639      0     0     1     0     0     0     1     0     0     1     0     1
## X641      0     0     1     0     1     1     0     0     0     0     0     0
## X648      1     1     1     0     0     0     0     0     0     1     0     0
## X650      0     0     1     1     0     1     1     0     0     0     0     1
## X651      0     0     1     0     1     1     0     0     0     0     0     0
## X653      0     0     1     0     1     0     0     0     0     0     0     0
## X654      0     0     1     1     0     1     0     0     0     0     0     0
## X655      0     0     1     0     0     0     0     0     0     0     0     0
## X656      1     1     0     0     0     0     0     0     0     0     0     0
## X657      0     0     1     1     0     0     0     0     0     1     0     0
## X1082     0     0     1     0     0     0     0     0     1     0     0     0
## X1083     0     0     1     0     0     0     0     0     0     0     0     0
## X1084     0     0     1     0     1     0     0     0     0     0     0     0
## X1086     1     1     0     0     0     0     0     0     0     0     0     0
## X1088     1     1     1     0     0     0     0     1     0     1     0     0
## X1089     0     0     1     0     0     0     0     0     0     0     0     0
## X1090     0     0     1     0     0     0     0     0     0     0     0     0
## X1091     0     0     1     0     0     0     0     0     0     0     0     0
## X1092     0     0     1     0     0     0     0     0     0     0     0     0
## X1093     0     0     1     0     0     0     0     0     0     0     0     0
## X1094     0     0     1     0     0     0     0     0     0     0     0     0
## X1095     0     0     1     0     0     0     0     0     0     0     0     0
## X1097     0     0     1     0     0     0     0     0     1     0     0     0
## X1098     0     0     1     0     1     0     0     0     0     0     1     0
## X1101     1     1     1     0     0     0     0     0     1     1     0     0
## X1103     0     0     1     1     0     1     0     0     0     0     1     0
## X1104     0     0     1     0     0     0     1     0     0     1     0     1
## X1105     0     0     1     0     0     1     1     0     0     0     0     1
## X1106     0     0     1     0     0     0     0     0     0     0     0     0
## X1108     0     0     1     0     0     0     0     0     0     0     0     0
## X1110     1     1     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     1     0     0     0     1     0     0     1     0     1
## X1113     0     0     1     0     0     0     0     0     0     0     0     0
## X1115     0     0     1     0     0     0     0     0     0     0     0     0
## X1116     1     1     1     0     0     1     0     1     0     0     0     0
## X1117     0     0     1     0     0     0     0     0     0     1     0     0
## X1119     1     1     1     1     0     1     0     0     0     0     0     0
## X1120     0     0     1     0     1     0     0     0     0     0     1     0
## X1121     0     0     1     1     0     0     1     0     0     0     0     1
## X1122     0     0     1     0     1     0     0     0     0     0     1     0
## X1124     0     0     1     0     0     0     0     0     0     0     1     0
## X1125     0     0     1     0     0     0     0     0     1     0     0     0
## X1126     1     1     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     1     0     0     0     0     0     0     0     0     0
## X1128     1     1     1     0     0     0     0     0     0     1     0     0
## X1129     1     1     1     0     0     0     0     0     0     0     0     0
## X1130     1     1     1     0     0     0     0     0     0     0     0     0
## X1131     0     0     1     0     0     0     0     0     0     0     0     0
## X1133     0     0     1     0     0     1     0     0     1     0     0     0
## X1135     0     0     1     0     0     0     0     0     0     0     0     0
## X1136     1     1     1     0     0     0     0     0     0     0     0     0
## X1138     0     0     1     0     1     0     0     0     0     0     1     0
## X1139     0     0     1     0     1     0     0     0     0     0     1     0
## X1141     0     0     1     0     1     0     0     0     0     0     1     0
## X1142     1     1     0     0     0     0     0     0     0     0     0     0
## X1143     0     0     1     0     1     1     0     0     0     0     0     0
## X1144     0     0     1     0     1     1     0     0     0     0     1     0
## X1145     1     1     1     0     0     0     0     0     0     1     0     0
## X1146     0     0     1     1     0     0     0     0     0     0     0     0
## X1147     0     0     1     1     0     0     0     0     0     0     0     0
## X1149     1     1     1     0     0     0     0     0     0     1     0     0
## X1150     0     0     1     1     0     0     0     0     0     0     0     0
## X1151     0     0     1     1     0     0     0     0     0     0     0     0
## X1152     0     0     1     1     0     1     0     0     0     0     1     0
## X1153     1     1     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     1     0     0     0     0     0     0     0     0     0
## X1158     0     0     1     0     0     1     0     0     0     0     0     0
## X1159     0     0     1     0     0     1     1     1     0     0     1     1
## X1160     0     0     1     1     1     1     0     0     0     0     0     0
##       FP025 FP026 FP027 FP028 FP029 FP030 FP031 FP032 FP033 FP034 FP035 FP036
## X661      0     1     0     0     0     0     0     0     0     0     0     0
## X662      0     0     0     1     0     0     0     0     0     0     0     0
## X663      1     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     0     0     0     0     0     0
## X668      0     0     0     0     0     1     0     0     0     1     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      0     1     0     0     0     0     0     0     0     0     0     0
## X671      0     0     0     0     0     0     1     0     0     0     0     0
## X672      0     0     0     1     0     0     0     0     0     0     1     0
## X673      0     0     1     1     0     0     0     0     0     1     0     0
## X674      0     0     0     0     0     0     0     0     0     0     1     0
## X676      0     0     0     1     0     0     0     0     0     0     1     0
## X677      0     1     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      1     0     0     0     1     0     0     0     0     0     0     0
## X683      0     1     0     0     1     1     0     0     0     1     0     0
## X684      0     0     0     0     0     1     0     0     0     0     0     0
## X685      0     0     0     1     0     0     0     0     0     0     1     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     0     0     0     1     0     0     0     0     0
## X689      0     0     0     0     0     0     0     0     0     0     0     0
## X690      0     0     0     0     0     0     1     0     0     0     0     0
## X691      0     0     1     0     0     0     0     0     0     0     0     0
## X692      0     0     1     0     0     1     0     0     0     0     0     0
## X693      0     1     1     1     0     0     0     0     0     0     0     0
## X695      0     0     0     0     1     0     0     0     0     0     0     0
## X696      0     0     0     0     0     0     0     0     0     0     0     0
## X698      0     0     1     0     1     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     1     0     0     0     0     0     0     0     0     0     0
## X706      0     0     0     0     1     0     1     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      1     0     0     1     0     0     0     0     0     0     1     0
## X712      0     0     0     0     0     0     0     1     1     0     0     0
## X713      1     0     0     0     0     0     0     0     0     0     0     0
## X714      0     0     0     1     0     0     1     0     0     0     1     0
## X715      0     0     0     0     0     0     0     0     0     1     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     0     0     0     0     0     0     0     0     0     0     0
## X721      0     0     0     1     0     0     0     0     0     1     0     0
## X722      0     0     0     0     0     0     0     0     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     0     0     0     0     0     1     1     0     0     0
## X728      1     0     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     0     0
## X733      0     0     0     0     0     1     0     0     0     1     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     0     0     0     0     0     0     0     0     1     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      0     0     0     0     1     0     0     0     0     0     0     0
## X740      1     1     0     0     1     0     0     0     0     0     0     0
## X741      1     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     0     0     1     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      0     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     1     0     0     0     0     0     0
## X749      0     0     0     0     0     0     1     0     0     0     0     0
## X752      0     0     0     1     0     1     1     0     0     0     1     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     0     0     0     0     0     0     0     0     0     0     0
## X755      0     1     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     1     0     0     0     0     0     0     0     0     0     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     0     0     0     0     0     0     0     0     0     0
## X761      0     0     0     1     0     1     1     0     0     0     1     0
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     0     0
## X764      0     1     0     0     0     0     0     0     0     0     0     0
## X765      0     0     0     0     0     0     1     0     0     0     0     0
## X767      0     0     0     0     0     0     1     0     0     0     1     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     0     0     0     0     0     0     0     0     0     0
## X771      0     0     1     0     0     0     0     0     0     0     0     1
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      1     0     0     0     0     0     0     0     0     0     0     0
## X776      0     0     1     1     1     1     0     0     0     0     0     0
## X777      0     0     0     0     0     0     0     0     0     0     0     0
## X778      1     0     1     1     0     1     0     0     0     0     1     1
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     0     0     0     0     0     1     0     0     0     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      1     0     0     1     0     0     0     1     1     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     0     0
## X788      0     0     0     0     0     0     0     0     0     0     1     0
## X789      0     0     0     0     0     0     0     0     0     0     0     0
## X791      0     0     0     0     0     0     0     0     0     0     0     0
## X792      0     0     0     0     0     0     0     0     0     0     0     0
## X794      1     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     0     0     0     0     0     0
## X799      0     0     0     0     0     0     1     0     0     0     0     0
## X800      0     0     0     1     0     0     0     0     0     0     1     0
## X804      0     1     0     0     0     0     0     0     0     0     0     0
## X805      0     0     0     1     0     0     1     0     0     0     1     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      1     1     0     0     1     0     0     0     0     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      1     0     0     0     0     0     0     0     0     0     0     0
## X814      0     0     0     0     1     0     1     0     0     0     1     0
## X818      0     0     0     0     0     0     0     0     0     0     0     0
## X819      0     0     1     0     0     0     0     0     0     1     0     0
## X820      0     0     0     0     0     1     0     0     0     0     0     0
## X821      0     0     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     0     0     0     0     0     0
## X829      0     0     0     0     0     0     0     0     0     0     0     0
## X831      0     0     0     0     0     0     0     0     0     0     0     0
## X832      0     0     0     0     0     0     0     0     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     0     0     0     0     0     0     0     0
## X836      0     0     0     0     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     0
## X851      0     0     0     1     0     0     0     0     0     0     1     0
## X854      0     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     0
## X857      0     0     0     0     0     0     0     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     0
## X860      0     0     0     0     0     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     1     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     0     0     0     0     0     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     0     0     0     0     0     0     1     0
## X1193     0     1     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     0     0     1     0     0     0     1     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     1     1     0     0     0     0     1     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     1     0     0     0     0     0     0     0
## X1202     0     0     0     1     0     0     1     0     0     0     1     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     0     0     0     0     0     0     0     0     1     0     1
## X1205     1     0     0     0     0     0     0     0     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     0     0     0     0     0     0     0
## X1208     0     0     0     0     0     0     1     0     0     0     1     0
## X1209     0     0     0     0     0     0     0     1     1     0     0     0
## X1210     1     0     0     1     0     0     0     0     0     0     1     0
## X1212     0     0     0     0     0     0     0     1     1     0     1     0
## X1213     0     0     0     0     0     0     0     0     0     0     0     0
## X1215     0     0     0     1     0     1     0     0     0     0     1     0
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     0     0     0     0     0     0     0     0     0     0
## X1219     0     0     0     0     0     0     0     1     1     0     0     0
## X1220     0     0     0     0     0     0     0     0     0     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     0     0     0     0     0     0     0     0
## X1226     0     0     0     0     0     0     0     0     0     0     0     0
## X1228     0     1     0     0     1     0     0     0     0     0     0     0
## X1229     0     0     0     1     0     0     1     0     0     0     1     0
## X1230     0     0     0     0     0     0     0     0     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     1     0     0     0     0     0     0     1     0
## X1234     0     1     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     0     0     0     1     0     0     0     1     0
## X1237     0     0     0     0     1     0     0     0     0     0     0     0
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     1     1     0     1     0
## X1247     0     0     0     0     0     0     1     0     0     0     1     0
## X1249     0     0     0     0     1     0     1     0     0     0     0     0
## X1250     0     0     0     1     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     1     0     0     0     0     0     0     0
## X1254     0     0     0     0     0     0     0     0     0     0     0     0
## X1255     0     1     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     0
## X1262     0     0     0     0     0     0     1     0     0     0     1     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     1     0     0     1     0     0     1     1     0     0     0
## X1268     1     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     1     0     0     0     0     0     0
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     1     0     0     0     0     0     0     0     0     1
## X1301     0     0     0     1     0     0     0     0     0     0     1     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     1     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      1     0     0     0     1     0     0     0     0     0     0     0
## X448      1     0     0     0     0     0     0     1     1     0     0     1
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     0     1     1     0     0     0
## X454      0     1     0     0     1     0     0     0     0     1     0     0
## X455      1     1     0     0     1     0     0     0     0     0     0     0
## X456      0     0     0     0     0     0     0     0     0     1     0     1
## X458      0     0     0     0     1     0     0     0     0     1     0     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      1     0     0     0     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     1     0     0     1     0     0     0     0     0     1
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     1     0     0     0     0     0     0     0
## X466      1     0     0     0     1     0     0     0     0     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      1     0     0     0     0     0     0     0     0     0     0     0
## X477      0     0     0     0     0     0     0     0     0     1     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     1     0     0     0     0     0
## X487      0     0     0     0     1     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     1     1     0     0     0
## X489      1     0     0     0     0     0     0     0     0     0     0     0
## X490      0     1     0     0     0     0     1     0     0     0     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     0     1     0     0     0     1     0     0     0     1     1
## X493      1     0     0     0     0     0     0     0     0     0     0     0
## X494      1     0     0     0     0     0     0     0     0     0     0     0
## X495      0     0     0     0     1     0     0     0     0     0     0     0
## X496      0     0     1     0     0     0     0     0     0     0     0     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     1     0     0     0     0     0     1     1     0     0     0
## X499      0     1     0     0     0     0     0     0     0     0     0     0
## X501      0     0     0     0     0     0     0     0     0     0     0     0
## X502      0     1     0     0     0     0     0     0     0     0     0     0
## X503      0     0     0     1     0     0     0     0     0     0     0     0
## X505      0     0     0     0     0     0     0     0     0     1     0     1
## X506      0     1     0     0     0     0     0     0     0     1     0     0
## X507      0     0     0     0     1     0     0     0     0     0     0     0
## X508      1     0     0     1     0     0     0     1     1     0     0     0
## X509      1     0     0     1     0     0     0     1     1     0     0     1
## X510      0     0     0     0     0     0     1     0     0     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     1     0     0     0     0     0     0     0     1     0     0
## X515      0     0     0     0     0     0     0     1     1     0     0     0
## X516      0     0     0     0     1     0     0     0     0     0     0     0
## X518      0     0     1     0     1     0     0     0     0     1     0     0
## X521      0     0     0     0     1     0     0     0     0     1     0     0
## X523      0     0     0     0     0     0     1     0     0     0     0     0
## X524      0     0     0     0     0     0     0     0     0     1     0     1
## X525      0     0     1     0     0     0     0     0     0     0     1     1
## X526      0     0     0     0     0     1     0     0     0     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     0     0
## X531      0     0     0     0     0     0     0     0     0     0     0     1
## X532      0     0     0     1     1     1     0     0     0     1     0     0
## X533      0     0     1     0     0     0     0     0     0     0     0     0
## X534      0     0     1     0     0     1     0     0     0     0     0     0
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      0     0     0     0     0     0     0     0     0     0     0     0
## X538      1     0     0     0     1     0     0     1     1     0     0     0
## X539      0     0     0     0     0     0     0     0     0     0     0     0
## X542      0     0     0     0     0     1     0     0     0     0     1     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     0     0     0     0     0     0     1     1     0     0     1
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     1     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     1     0     0     0     0     0     0     0
## X553      0     0     0     0     0     0     0     0     0     1     0     1
## X554      0     0     0     0     0     1     0     0     0     1     0     0
## X556      0     0     0     0     1     0     0     1     1     0     0     0
## X557      0     0     1     0     1     1     0     0     0     0     0     0
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     1     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     1     0     0     0     0     0     0     0     0     0     0
## X563      1     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     0
## X567      0     1     0     0     0     0     0     0     0     1     0     1
## X568      0     0     0     0     0     0     0     0     0     1     0     1
## X569      0     0     0     0     0     0     1     0     0     0     0     0
## X571      0     0     0     0     0     0     0     0     0     0     0     0
## X572      0     0     1     0     0     1     0     0     0     0     0     0
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      0     0     0     0     1     0     0     0     0     1     0     0
## X577      0     0     1     0     1     0     0     0     0     0     0     0
## X579      0     1     0     0     0     0     0     0     0     1     0     0
## X580      1     0     0     0     0     0     0     1     1     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     1     0     0     0     0     0     0     0     0     0     0
## X584      0     0     0     0     0     0     1     0     0     0     0     0
## X586      0     0     0     0     0     0     0     0     0     0     0     0
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      0     0     1     0     0     0     0     0     0     0     1     1
## X589      1     0     0     1     0     0     0     0     0     0     1     0
## X591      0     0     0     0     1     0     0     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     0     0     0     0     0     0     0     0     0     0
## X594      0     0     0     0     0     0     1     0     0     0     0     0
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     1     1     0     0     1     0     0     0     0     0     0
## X597      0     0     0     0     1     0     0     0     0     0     0     0
## X598      1     0     0     0     0     0     0     0     0     0     0     0
## X599      0     1     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     1     0     0     0     0     0     0     0
## X603      1     0     0     0     0     0     0     0     0     0     0     0
## X604      0     0     1     0     0     0     0     0     0     0     1     1
## X605      0     0     0     0     0     0     0     0     0     0     1     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     0     0     0     1     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     0     0     0     1     0     0
## X613      0     1     0     0     0     0     0     0     0     0     0     0
## X614      0     1     0     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     1     0
## X617      0     0     0     0     1     0     1     0     0     0     0     0
## X619      0     0     1     0     0     0     0     0     0     1     0     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     1     1     1     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     0     0     0     0     0     0     0     1     0     1
## X625      0     0     0     0     1     0     0     0     0     0     1     0
## X628      0     0     0     1     0     1     0     0     0     0     1     0
## X629      1     0     0     1     0     0     0     0     0     0     1     0
## X630      0     0     1     0     0     1     0     0     0     0     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     0     0     0     1     0     0     0     0     0     0     0
## X635      0     1     1     0     0     0     0     0     0     0     0     0
## X636      0     0     0     1     0     1     0     0     0     0     1     0
## X637      0     0     0     0     0     0     0     0     0     0     1     0
## X638      1     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     0     0     0     0     1     0     0
## X641      0     0     0     0     0     0     1     1     1     0     0     0
## X648      0     1     0     0     0     0     0     1     1     1     0     0
## X650      0     0     0     0     1     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     1     0     0     0     0     0
## X653      1     0     0     1     0     0     0     0     0     0     1     0
## X654      0     0     0     0     1     0     0     0     0     0     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     0     0     1     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     0     0     0     0     0     0     1     0     0
## X1089     0     0     0     1     0     0     0     0     0     0     0     0
## X1090     1     0     0     1     0     0     0     1     1     0     0     0
## X1091     0     0     0     0     0     0     0     1     1     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     0     0     0     0     0     0     1     0     0     0     0     0
## X1094     1     1     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     1     0     0     0     0     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     1     0     0     0     0     0     0     0     1     1
## X1101     0     0     1     0     0     0     0     0     0     1     0     0
## X1103     1     0     0     0     1     0     0     1     1     0     0     0
## X1104     0     0     0     0     0     0     0     0     0     1     0     0
## X1105     0     0     0     0     0     0     0     0     0     1     0     1
## X1106     0     0     0     0     0     1     0     0     0     0     0     0
## X1108     0     1     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     1     0     0     0     0     0     0     0     1     0     0
## X1113     0     0     0     0     0     0     0     1     1     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     0     1     0     0     0     0     0     0     0     0     0     0
## X1117     1     0     0     0     0     0     0     0     0     1     0     0
## X1119     1     0     0     0     1     0     0     0     0     0     0     0
## X1120     0     0     0     1     0     1     0     0     0     0     1     0
## X1121     1     0     1     0     0     1     0     0     0     0     0     0
## X1122     0     0     0     1     0     1     0     0     0     0     1     0
## X1124     0     0     0     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     1     0     1
## X1129     0     1     0     0     0     0     0     0     0     0     0     0
## X1130     1     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     1     0     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     1     0     0     0     0     0     0     0     0     0     0
## X1138     1     0     0     1     0     0     1     0     0     0     0     0
## X1139     0     0     0     1     0     1     0     0     0     0     1     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     0     0     0     0     0     0     1     0     0     0     0     0
## X1144     0     0     0     1     1     0     0     1     1     0     0     0
## X1145     0     0     1     0     0     0     0     0     0     1     0     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     0     0     0     0     0     0     0     0     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     1     0     0
## X1150     0     0     0     0     0     0     1     0     0     0     0     0
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     0     0     1     0     1     0     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     1     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     0     0     0     1     0     0     1     1     0     0     0
## X1159     0     0     0     0     1     0     1     0     0     0     0     0
## X1160     1     0     0     0     1     0     1     0     0     0     0     0
##       FP037 FP038 FP039 FP040 FP041 FP042 FP043 FP044 FP045 FP046 FP047 FP048
## X661      0     0     1     1     0     0     0     0     0     0     0     0
## X662      0     0     0     0     0     0     1     0     0     1     1     0
## X663      0     1     0     0     0     0     0     0     1     0     1     0
## X665      0     0     0     0     1     0     0     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      0     0     0     0     0     0     0     0     0     1     1     0
## X671      0     0     0     0     0     0     0     0     0     0     0     1
## X672      1     0     0     0     1     0     0     0     0     0     0     0
## X673      0     0     0     0     0     0     0     0     0     1     0     0
## X674      1     0     0     0     0     0     0     0     0     1     1     0
## X676      1     0     0     0     1     0     0     0     0     0     0     0
## X677      0     0     1     0     0     0     0     0     0     1     1     0
## X678      0     0     1     0     0     0     0     0     0     1     0     0
## X679      0     0     0     0     0     0     0     0     0     1     1     0
## X682      0     1     1     0     0     0     0     0     0     0     1     0
## X683      0     0     0     0     0     0     1     0     1     0     0     1
## X684      0     0     0     0     0     0     1     0     0     1     0     0
## X685      1     0     0     0     0     0     0     0     0     0     0     0
## X686      0     0     1     0     0     0     0     0     1     1     1     0
## X688      0     0     0     0     0     0     0     1     0     1     1     0
## X689      0     0     0     0     0     0     1     0     1     1     1     0
## X690      0     0     0     0     0     0     0     0     1     1     1     1
## X691      0     0     0     0     0     0     1     0     0     0     0     0
## X692      0     0     0     0     0     0     0     0     0     1     1     0
## X693      0     0     0     0     0     0     0     0     0     0     1     0
## X695      0     0     0     0     0     0     1     0     0     1     0     0
## X696      0     0     1     0     0     1     0     0     0     1     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     1     0     0     1     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     1
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     1     0     0     0     0     0     0     1     0     0
## X706      0     0     0     0     1     0     0     0     1     0     1     0
## X708      0     0     0     0     0     0     0     1     0     1     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     1     0     0     0     0     0     0     0     0     0     0
## X712      0     0     0     0     0     0     0     0     0     0     1     0
## X713      0     0     0     0     0     0     0     0     0     1     1     0
## X714      1     0     0     0     1     0     0     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     0     1     0     0
## X717      0     0     1     0     0     0     0     0     0     1     0     0
## X718      0     0     0     0     0     0     1     0     0     1     0     0
## X721      0     0     0     0     0     0     0     0     0     0     0     0
## X722      1     0     0     0     0     0     0     0     0     1     1     0
## X723      0     0     0     0     0     0     0     0     0     0     0     1
## X724      0     0     0     0     0     0     0     0     0     1     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     0
## X728      0     1     0     0     0     0     0     1     0     1     1     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     1
## X732      0     0     0     0     0     0     0     1     0     1     0     0
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      1     0     0     0     1     0     0     0     0     0     0     0
## X736      0     0     0     0     0     1     0     0     0     0     1     1
## X737      0     0     1     0     0     0     0     0     0     1     0     0
## X739      1     0     0     0     0     0     0     0     0     0     0     0
## X740      0     1     1     0     0     0     0     0     1     0     1     0
## X741      0     1     0     0     0     0     0     0     0     0     0     1
## X742      0     0     0     0     0     0     0     0     0     0     0     1
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     1     0     0     0     0     0     1     1     1     0
## X746      0     0     0     0     0     0     0     0     0     1     1     0
## X747      0     0     0     0     0     0     0     0     0     0     0     1
## X749      0     0     0     0     0     0     1     0     0     1     0     0
## X752      1     0     0     0     1     0     0     0     0     0     0     1
## X753      0     0     0     0     0     0     0     0     0     0     0     1
## X754      0     0     0     0     0     0     1     0     0     1     0     0
## X755      0     0     1     0     0     0     0     0     0     1     1     0
## X757      0     0     0     0     0     0     0     0     0     0     0     1
## X758      0     0     0     0     0     0     0     0     0     1     1     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     0     0     0     0     0     1     0     1     0     0
## X761      1     0     0     0     1     0     0     0     0     0     0     0
## X762      0     0     0     0     0     0     0     1     0     1     1     0
## X763      0     0     0     0     0     1     0     1     0     0     0     0
## X764      0     0     1     0     0     0     0     0     0     1     1     0
## X765      0     0     0     0     0     0     0     0     0     0     1     0
## X767      1     0     0     0     1     0     0     0     0     0     0     0
## X768      0     0     1     0     0     0     0     0     0     1     0     0
## X770      0     0     0     0     0     0     1     0     0     1     0     0
## X771      0     0     0     0     0     0     0     0     0     1     1     0
## X772      0     0     0     0     0     0     0     0     0     1     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     1
## X774      0     0     0     0     0     0     0     0     0     0     0     1
## X775      0     1     0     0     0     0     0     1     0     1     1     0
## X776      0     0     0     0     0     0     0     0     1     0     1     0
## X777      0     0     0     0     0     0     0     0     0     0     0     1
## X778      0     1     0     0     0     0     0     0     0     0     0     0
## X779      0     0     1     0     0     1     0     0     0     1     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     0     0     0     1     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     0     0     0     1     1     0
## X784      0     1     0     0     0     0     0     0     1     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     1
## X787      0     0     0     0     0     0     0     1     0     1     0     0
## X788      1     0     0     0     1     0     0     0     0     0     0     0
## X789      0     0     0     0     0     0     0     1     0     1     0     0
## X791      0     0     0     0     0     0     0     1     0     1     0     0
## X792      0     0     0     0     0     0     1     0     0     1     1     0
## X794      0     1     0     0     0     0     0     0     0     0     0     1
## X798      0     0     1     0     0     0     0     0     0     1     0     0
## X799      0     0     0     0     0     0     0     0     0     0     0     0
## X800      0     0     0     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     0     1     0
## X805      1     0     0     0     1     0     0     0     0     0     0     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     1     1     0     0     0     0     0     1     1     1     0
## X809      0     0     0     0     0     0     0     0     0     1     1     1
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     1     0     0     0     0     0     0     0     0     0     1
## X814      0     0     0     0     0     0     0     0     0     0     0     0
## X818      0     0     0     0     0     0     0     1     0     1     0     0
## X819      0     0     0     0     0     0     0     0     0     1     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     1
## X821      0     0     0     0     0     0     0     1     0     1     0     0
## X822      0     0     1     0     0     0     0     0     0     1     0     0
## X823      0     0     1     0     0     1     0     0     0     1     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     0     1     0     1     0     0
## X829      0     0     0     0     0     0     0     0     0     1     1     0
## X831      0     0     0     0     0     0     0     0     0     1     1     0
## X832      0     0     0     0     0     0     0     1     0     1     0     0
## X833      0     0     0     0     0     0     0     1     0     1     0     0
## X834      0     0     0     0     0     0     0     0     0     1     1     0
## X835      0     0     0     0     0     0     0     1     0     0     0     0
## X836      0     0     0     0     0     0     0     1     0     0     0     0
## X839      0     0     1     0     0     0     0     1     0     1     1     0
## X840      0     0     1     0     0     0     0     0     0     1     0     0
## X841      0     0     0     0     0     0     0     1     0     1     0     0
## X842      0     0     1     0     0     0     0     0     1     1     1     0
## X843      0     0     0     0     0     0     0     0     0     0     1     0
## X846      0     0     0     0     0     0     0     1     0     1     0     0
## X848      0     0     0     0     0     0     0     1     0     1     0     0
## X849      0     0     0     0     0     0     0     1     0     0     0     0
## X851      0     0     0     0     1     0     0     0     0     0     0     0
## X854      0     0     0     0     0     0     0     1     0     1     0     0
## X855      0     0     1     0     0     0     0     0     0     1     0     0
## X856      0     0     0     0     0     0     0     1     0     0     0     0
## X857      0     0     0     0     0     0     0     1     0     1     0     0
## X858      0     0     0     0     0     0     0     1     0     0     0     0
## X859      0     0     0     0     0     0     0     1     0     0     0     0
## X860      0     0     0     0     0     0     0     1     0     0     0     0
## X862      0     0     0     0     0     0     0     1     0     1     0     0
## X863      0     0     0     0     0     0     0     1     0     0     0     0
## X864      0     0     1     0     0     0     0     0     1     1     1     0
## X865      0     0     1     0     0     0     0     1     0     1     0     0
## X866      0     0     0     0     0     0     0     1     0     0     0     0
## X867      0     0     1     0     0     0     0     0     0     1     0     0
## X869      0     0     0     0     0     0     0     0     0     1     1     0
## X870      0     0     0     0     0     0     0     1     0     0     0     0
## X871      0     0     0     0     0     0     0     1     0     1     0     0
## X872      0     0     0     0     0     0     0     1     0     0     0     0
## X873      0     0     1     0     0     0     0     0     0     1     0     0
## X875      0     0     0     0     0     0     0     1     0     0     0     0
## X876      0     0     0     0     0     0     0     1     0     0     0     0
## X877      0     0     0     0     0     0     0     1     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     1     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     1
## X1192     1     0     0     0     1     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     1     0     0     0     1     0     0     0     0     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     1     0     0
## X1197     0     0     0     0     0     0     0     0     1     1     1     1
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     0     0     1     0     1     0     1     0
## X1202     1     0     0     0     1     0     0     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     0     0     1     0     0     0     0     0     1     1     0
## X1205     0     0     0     1     0     0     0     0     0     1     1     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     0     1     0     0     1     0     0
## X1208     1     0     0     0     1     0     0     0     0     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     1     0     0     0     0     0     0     0     0     0     0
## X1212     0     0     0     0     0     0     0     0     1     0     1     0
## X1213     0     0     0     0     0     0     1     0     0     1     0     0
## X1215     1     0     0     0     1     0     0     0     0     0     0     0
## X1216     0     0     1     0     0     0     0     0     0     1     0     0
## X1217     0     0     0     1     0     0     0     0     0     1     1     0
## X1219     0     0     0     0     0     0     0     0     0     0     1     0
## X1220     0     0     0     0     0     0     1     0     0     0     1     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     1
## X1222     0     0     0     0     0     0     1     0     1     1     1     0
## X1226     0     0     0     0     0     0     1     0     0     1     1     0
## X1228     0     0     0     0     0     0     0     0     0     0     0     0
## X1229     1     0     0     0     1     0     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     0     0     0     1     1     0
## X1231     0     0     0     0     0     0     0     0     1     1     1     0
## X1233     1     0     0     0     1     0     0     0     0     0     0     0
## X1234     0     0     1     0     0     0     0     0     0     1     0     0
## X1236     1     0     0     0     1     0     0     0     0     0     0     0
## X1237     0     0     0     0     0     0     0     0     0     0     0     0
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     1     0     1     0     0
## X1245     0     0     0     0     0     0     0     0     1     1     1     1
## X1246     1     0     1     0     0     0     0     0     1     0     1     0
## X1247     0     0     0     0     1     0     0     0     0     1     1     0
## X1249     0     0     0     0     0     0     0     0     0     0     1     0
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     1     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     0     0     0     0
## X1254     0     0     0     0     0     0     0     1     0     1     0     0
## X1255     0     0     1     0     0     0     0     0     0     1     0     0
## X1256     0     0     1     0     0     0     0     0     1     0     1     0
## X1257     0     0     0     0     0     0     0     1     0     1     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     1     0     0     0     0
## X1262     0     0     0     0     0     0     0     0     0     1     1     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     1     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     1     1     0
## X1267     0     0     0     0     0     0     0     0     0     1     1     0
## X1268     0     1     0     0     0     0     0     0     0     0     0     1
## X1273     0     0     0     0     0     0     0     1     0     1     0     0
## X1274     0     0     0     0     0     0     0     0     0     0     0     1
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     1     0     0     0     0     0     0     1     0     0
## X1277     0     0     0     0     0     0     0     1     0     0     0     0
## X1278     0     0     1     0     0     0     0     1     0     1     1     0
## X1279     0     0     1     0     0     0     0     0     0     1     0     0
## X1281     0     0     0     0     0     0     0     1     0     0     0     0
## X1282     0     0     0     0     0     0     0     1     0     1     0     0
## X1283     0     0     1     0     0     0     0     1     0     1     0     0
## X1284     0     0     1     0     0     0     0     0     0     1     0     0
## X1285     0     0     0     0     0     0     0     1     0     0     0     0
## X1288     0     0     0     0     0     0     0     1     0     0     0     0
## X1299     0     0     0     0     0     0     0     0     0     1     1     0
## X1301     1     0     0     0     1     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     1     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     1     0     0     0     0     0     0     0     0     0     0
## X448      1     0     0     0     1     0     1     0     0     0     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     1     0
## X453      0     0     1     1     0     0     0     0     0     1     0     0
## X454      0     0     0     0     0     1     0     0     0     0     1     0
## X455      0     1     0     0     0     0     0     0     0     0     0     0
## X456      0     0     0     0     1     0     0     0     0     1     0     0
## X458      0     0     0     1     0     1     0     0     0     0     1     0
## X459      1     0     0     0     0     0     0     0     0     0     0     1
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     1     1     0
## X462      0     0     0     1     0     0     0     0     1     0     0     0
## X463      0     0     0     0     0     0     0     0     0     1     1     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     1     0     0     0     0     0     0     1     0
## X466      0     1     0     0     0     0     0     0     0     1     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     1
## X471      0     0     0     0     0     1     0     0     0     0     1     0
## X472      0     0     0     0     0     0     0     0     0     0     0     1
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     1     1     0     0     0     0     0     1     1     1     0
## X477      0     0     0     0     0     0     0     0     0     1     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     1
## X480      0     0     1     1     0     0     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     1     0     1     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     1
## X487      0     0     0     0     0     0     1     0     0     0     1     0
## X488      0     0     0     0     0     0     0     0     0     0     1     1
## X489      0     0     0     0     0     0     0     0     0     1     1     0
## X490      0     0     0     0     0     0     0     0     1     1     1     0
## X491      0     0     0     0     0     0     0     0     0     0     0     1
## X492      0     0     0     0     1     0     0     0     0     0     0     0
## X493      0     1     0     0     0     0     0     0     0     0     0     1
## X494      0     0     0     0     0     1     0     0     0     0     0     0
## X495      0     0     1     1     0     0     1     0     0     0     0     0
## X496      0     0     0     1     0     0     0     0     0     0     0     0
## X497      0     0     1     1     0     0     0     0     0     1     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     1     1     0
## X501      0     0     0     0     0     0     0     0     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     1     1     0
## X503      0     0     0     0     0     0     1     0     0     1     1     0
## X505      0     0     0     0     0     0     0     0     0     0     0     0
## X506      0     0     0     1     0     1     0     0     0     0     1     0
## X507      0     0     0     1     0     1     0     0     0     0     0     0
## X508      0     1     0     0     0     0     0     0     1     0     0     0
## X509      1     0     0     0     1     0     1     0     0     1     1     0
## X510      0     0     0     0     0     0     0     0     0     1     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     1     0     0     0     0     1     0
## X515      0     0     1     0     0     0     0     0     0     1     0     0
## X516      0     0     0     0     0     0     0     0     1     0     1     0
## X518      0     0     0     0     0     0     0     0     0     1     0     0
## X521      0     0     0     0     0     1     0     0     0     0     1     0
## X523      0     0     0     0     0     0     0     0     0     1     1     0
## X524      0     0     0     0     0     0     0     0     0     0     0     0
## X525      0     0     0     0     1     0     0     0     0     0     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     1
## X530      0     0     0     0     0     0     0     0     0     1     0     0
## X531      0     0     0     0     0     0     0     0     1     0     1     0
## X532      0     0     0     0     0     0     0     0     0     0     0     0
## X533      0     0     0     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     0     0     0     1     1     1
## X535      0     0     0     0     0     0     0     0     0     1     0     0
## X536      0     0     1     1     0     0     1     0     0     1     0     0
## X538      0     0     0     0     0     0     0     0     0     0     1     0
## X539      0     0     1     1     0     0     1     0     0     1     0     0
## X542      1     0     0     0     1     0     0     0     0     0     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     1
## X544      1     0     0     0     1     0     1     0     0     1     1     0
## X545      0     0     0     0     0     0     1     0     0     0     0     1
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     1     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     0     0     1     0     1     0     1     0
## X553      0     0     0     0     0     0     0     0     0     1     0     0
## X554      0     0     0     0     0     0     1     0     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     1     1     0
## X557      0     0     0     0     0     1     1     0     0     0     0     0
## X558      0     0     0     0     0     0     0     0     0     1     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     1
## X560      0     0     0     0     0     0     0     0     0     1     1     0
## X561      0     0     0     0     0     0     0     0     0     1     0     0
## X562      0     0     0     0     0     0     0     0     1     1     1     0
## X563      0     1     0     0     0     0     0     0     0     1     1     0
## X565      0     0     0     0     0     0     0     0     0     0     0     1
## X566      0     0     0     0     0     1     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     0     0     0     0     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     1     1     1     0
## X571      0     0     0     0     0     1     0     0     0     0     0     0
## X572      0     0     0     0     0     1     0     0     0     0     1     1
## X574      0     0     0     0     1     0     0     0     0     0     0     0
## X576      0     0     0     0     0     1     0     0     0     0     1     0
## X577      0     0     1     0     0     0     0     0     0     1     0     0
## X579      0     0     0     1     0     0     0     0     0     1     0     0
## X580      0     0     0     0     0     0     0     0     0     0     0     0
## X582      1     0     0     0     0     0     0     0     0     0     0     1
## X583      0     0     0     0     0     0     0     0     0     0     1     0
## X584      0     0     0     0     1     0     1     0     0     1     1     0
## X586      0     0     0     0     0     0     0     0     0     1     1     0
## X587      0     0     1     1     0     0     0     0     0     1     0     0
## X588      0     0     0     0     0     0     0     0     0     0     0     1
## X589      0     1     0     0     0     0     0     0     0     0     0     0
## X591      0     0     1     1     0     0     1     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     1     1     1     0
## X593      0     0     0     0     0     0     0     0     0     1     1     0
## X594      0     0     0     0     0     0     0     0     0     0     0     1
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     0     0     0     0     0     1     1
## X597      0     0     0     0     0     0     1     0     0     1     1     0
## X598      0     1     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     0     0     0     0     0     0     0     0
## X603      0     1     0     0     0     0     0     0     0     0     0     1
## X604      0     0     0     0     0     0     0     0     0     0     0     1
## X605      1     0     0     0     1     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     0     1     1     1
## X608      0     0     0     0     0     0     0     0     0     1     0     0
## X609      0     0     0     1     0     1     0     0     0     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     0     0     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     1     1     0
## X614      0     0     0     0     0     0     0     0     0     1     1     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     1     0     0     0     0     0     0     1     0     0
## X619      0     0     0     0     0     0     0     0     1     1     1     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     0     0     1     1     0
## X622      0     0     1     0     0     0     0     0     0     1     0     0
## X623      0     0     0     0     0     0     0     0     0     1     1     0
## X625      1     0     0     0     0     0     0     0     0     0     0     0
## X628      1     0     0     0     1     0     0     0     0     0     0     0
## X629      0     1     0     0     0     0     0     0     0     0     0     0
## X630      0     0     0     0     0     0     0     0     1     1     1     0
## X631      0     0     0     0     0     0     0     0     0     0     0     1
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     1     0     0     0     0     0     0     0     0     0     0
## X635      0     0     0     0     0     0     0     0     0     0     1     0
## X636      1     0     0     0     1     0     0     0     0     0     0     0
## X637      1     0     0     0     1     0     0     0     0     0     0     0
## X638      0     1     0     0     0     0     0     0     0     1     1     0
## X639      0     0     0     1     0     1     0     0     0     0     1     0
## X641      0     0     0     0     0     0     0     0     0     1     0     1
## X648      0     0     0     0     0     0     0     0     0     1     1     0
## X650      0     0     0     0     0     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     0     0     0     1     0     1
## X653      0     1     0     0     0     0     0     0     0     0     0     0
## X654      0     0     0     0     0     0     1     0     0     0     1     1
## X655      0     0     0     0     0     0     0     0     0     1     1     0
## X656      0     0     1     0     0     0     0     0     0     1     0     0
## X657      0     0     0     0     0     1     0     0     0     0     1     1
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     1     1     1     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     1     0     0
## X1088     0     0     0     0     0     0     0     0     0     0     0     0
## X1089     0     0     1     0     0     0     0     0     1     1     0     0
## X1090     0     1     0     0     0     0     0     0     1     0     1     0
## X1091     0     0     0     0     0     0     0     0     1     0     1     1
## X1092     1     0     0     0     0     0     0     0     0     0     0     1
## X1093     0     0     0     0     0     0     0     0     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     1     0
## X1095     0     0     0     0     0     0     0     0     0     1     1     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     0     1     0     0     0     0     0     0     0
## X1101     0     0     0     0     0     0     0     0     0     0     0     0
## X1103     1     0     0     0     1     0     0     0     0     0     1     0
## X1104     0     0     0     1     0     1     0     0     0     1     1     0
## X1105     0     0     0     1     0     0     0     0     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     1
## X1108     0     0     0     0     0     0     0     0     0     0     1     0
## X1110     0     0     0     0     0     0     0     0     0     1     0     0
## X1112     0     0     0     1     0     1     0     0     0     0     1     0
## X1113     0     0     0     0     0     0     0     0     0     0     1     0
## X1115     0     0     0     0     0     0     0     0     0     1     1     0
## X1116     0     0     0     0     0     0     0     0     0     0     0     0
## X1117     0     0     0     0     0     0     0     0     0     1     1     0
## X1119     0     1     0     0     0     0     0     0     0     0     0     0
## X1120     1     0     0     0     1     0     0     0     0     0     0     0
## X1121     0     1     0     1     1     0     0     0     0     0     0     0
## X1122     1     0     0     0     1     0     0     0     0     0     0     0
## X1124     0     0     0     0     1     0     0     0     0     1     1     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     1     0     0
## X1127     0     0     0     0     0     0     0     0     1     1     1     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     1     0
## X1130     0     1     0     0     0     0     0     0     1     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     0     0     0     1     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     1
## X1136     0     0     0     0     0     0     0     0     0     0     1     0
## X1138     0     1     0     0     0     0     0     0     0     0     0     0
## X1139     1     0     0     0     1     0     0     0     0     0     0     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     1     0     0     0     0     0     0     0     0     1     0     0
## X1144     0     0     0     0     0     0     1     0     1     0     1     0
## X1145     0     0     0     0     0     0     0     0     0     0     0     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     1
## X1147     0     0     0     0     0     0     0     0     0     0     0     1
## X1149     0     0     0     0     0     0     0     0     0     1     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     1
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     0     0     0     0     0     0     0     0     1     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     1     0     0     0     0     0     0     0     0     0     1
## X1158     0     0     0     0     0     0     0     0     0     0     1     0
## X1159     0     0     1     1     0     0     0     0     0     0     0     0
## X1160     0     0     0     0     1     0     0     0     0     1     1     0
##       FP049 FP050 FP051 FP052 FP053 FP054 FP055 FP056 FP057 FP058 FP059 FP060
## X661      0     0     0     0     0     0     0     1     0     0     0     0
## X662      0     0     1     0     0     0     0     0     0     0     0     1
## X663      0     0     0     0     0     0     0     0     0     0     0     1
## X665      0     0     0     0     0     1     0     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      1     0     0     0     1     0     0     0     1     0     0     0
## X671      0     1     0     0     0     0     0     0     0     0     1     1
## X672      0     0     0     0     0     1     0     0     0     0     0     1
## X673      0     1     0     1     0     1     0     0     0     1     0     0
## X674      0     0     0     0     0     0     0     0     1     0     0     0
## X676      0     0     0     0     0     1     0     0     0     0     0     1
## X677      0     0     0     0     0     0     0     1     0     0     0     0
## X678      1     0     0     0     1     0     0     1     0     0     0     0
## X679      0     0     0     0     0     0     0     0     1     1     0     0
## X682      0     0     1     0     0     0     0     1     0     0     0     1
## X683      0     0     0     0     0     0     0     0     0     0     0     1
## X684      1     0     1     0     1     0     0     0     0     0     0     1
## X685      0     0     0     0     0     1     0     0     0     0     0     1
## X686      0     0     0     0     0     0     0     1     0     0     0     0
## X688      1     0     0     0     1     0     0     0     1     0     0     1
## X689      0     0     1     0     0     0     0     0     1     0     0     0
## X690      0     0     0     0     0     0     0     0     0     0     0     1
## X691      0     0     0     0     0     0     0     0     0     0     0     0
## X692      0     0     0     0     0     0     0     0     1     1     0     1
## X693      0     1     0     0     0     0     0     0     0     0     1     0
## X695      0     0     1     0     0     0     0     0     0     0     0     1
## X696      0     0     0     1     0     0     0     1     0     0     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     1
## X699      1     0     0     0     0     0     0     0     0     0     0     0
## X700      0     1     0     0     0     0     0     0     0     0     1     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     1     0     0     0     1     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     1     0     0     0     0
## X706      0     0     1     0     0     0     0     0     0     0     0     1
## X708      0     0     0     0     0     0     0     0     0     1     0     0
## X709      0     1     0     0     0     1     0     0     0     0     0     0
## X711      0     0     0     0     0     1     0     0     0     0     0     1
## X712      0     0     0     0     0     0     1     0     0     0     0     1
## X713      0     0     0     1     0     0     0     0     1     0     0     1
## X714      0     0     0     0     0     1     0     0     0     0     0     1
## X715      1     0     0     1     1     0     0     0     0     0     0     1
## X717      1     0     0     0     1     0     0     1     0     0     0     0
## X718      1     0     1     0     1     0     0     0     0     0     0     0
## X721      0     0     0     0     0     0     0     0     0     0     0     0
## X722      0     0     0     0     0     0     0     0     1     1     0     0
## X723      0     1     0     0     0     0     0     0     0     0     1     0
## X724      0     0     1     0     0     0     0     0     0     1     0     0
## X726      1     0     1     0     1     0     0     0     0     0     0     1
## X728      0     0     0     0     0     0     0     0     0     1     0     1
## X729      1     0     0     0     1     0     0     0     0     0     0     0
## X731      0     1     0     0     0     0     0     0     0     0     1     0
## X732      1     0     0     0     0     0     0     0     0     1     0     0
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      1     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     0     0     0     1     0     0     0     0     0     1
## X736      0     1     0     1     0     0     0     0     0     0     1     1
## X737      0     0     1     0     0     0     0     1     0     0     0     0
## X739      0     0     0     0     0     0     0     0     0     0     0     1
## X740      1     0     1     0     1     0     0     0     0     0     0     1
## X741      0     1     0     0     0     0     0     0     0     0     1     1
## X742      0     1     0     0     0     0     0     0     0     0     1     1
## X743      0     0     0     0     1     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     1     0     0     0     0
## X746      0     0     0     0     0     0     0     0     1     0     0     1
## X747      0     1     0     0     0     0     0     0     0     0     1     1
## X749      1     0     1     0     1     0     0     0     0     0     0     1
## X752      0     1     0     0     0     1     0     0     0     0     0     1
## X753      0     1     0     0     0     1     0     0     0     0     0     0
## X754      0     0     1     0     0     1     0     0     0     0     0     0
## X755      0     0     0     0     0     0     0     1     0     0     0     0
## X757      0     1     0     0     0     0     0     0     0     0     1     0
## X758      0     0     1     0     0     0     0     0     0     0     0     1
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      1     0     0     0     1     0     0     0     0     1     0     0
## X761      0     0     0     0     0     1     0     0     0     0     0     1
## X762      0     0     0     0     0     0     0     0     1     0     0     0
## X763      0     0     0     1     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     1     0     0     0     0
## X765      1     0     0     0     1     0     0     0     0     0     0     1
## X767      0     0     0     0     0     1     0     0     0     0     0     1
## X768      0     0     0     0     0     0     0     1     0     0     0     0
## X770      1     0     1     0     1     0     0     0     0     0     0     0
## X771      0     0     0     0     0     0     0     0     1     0     0     0
## X772      1     0     0     0     0     0     0     0     0     0     0     0
## X773      0     1     0     0     0     0     0     0     0     0     1     0
## X774      0     1     0     0     0     0     0     0     0     0     1     0
## X775      0     0     0     0     0     0     0     0     0     1     0     1
## X776      1     1     1     0     1     0     0     0     0     0     1     1
## X777      0     0     0     0     0     0     0     0     0     0     0     0
## X778      0     0     0     0     0     1     0     0     0     0     0     1
## X779      0     0     0     1     0     0     0     1     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     1     0     0     0     1     0     0     0     0     0     1
## X782      0     0     0     0     0     0     0     0     1     0     0     0
## X784      0     0     1     0     0     0     1     0     0     0     0     1
## X786      0     1     0     0     0     0     0     0     0     0     1     0
## X787      1     0     0     0     1     0     0     0     0     1     0     0
## X788      0     0     0     0     0     1     0     0     0     0     0     0
## X789      1     0     0     0     0     0     0     0     0     0     0     0
## X791      1     0     0     0     1     0     0     0     0     0     0     0
## X792      0     0     1     0     0     0     0     0     0     0     0     0
## X794      0     1     0     0     0     0     0     0     0     0     1     1
## X798      0     0     0     0     0     0     0     1     0     0     0     0
## X799      0     0     0     0     0     0     0     0     0     0     0     0
## X800      0     0     0     0     0     1     0     0     0     0     0     1
## X804      0     0     1     0     0     0     0     0     0     0     0     0
## X805      0     0     0     0     0     1     0     0     0     0     0     1
## X807      0     0     0     0     0     0     0     0     0     0     0     1
## X808      0     0     1     0     0     0     0     0     1     1     0     1
## X809      0     0     0     0     0     0     0     0     1     1     0     1
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     1     0     0     0     0     0     0     0     0     1     1
## X814      0     0     0     0     0     0     0     0     0     0     0     1
## X818      1     0     0     0     1     0     0     0     0     0     0     0
## X819      1     0     0     1     1     0     0     0     0     0     0     0
## X820      0     1     0     0     0     0     0     0     0     0     1     1
## X821      0     0     0     0     1     0     0     0     0     1     0     0
## X822      0     0     0     0     0     0     0     1     0     0     0     0
## X823      0     0     0     0     0     0     0     1     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     1
## X828      1     0     0     0     0     0     0     0     0     0     0     0
## X829      0     0     0     0     0     0     0     0     1     0     0     1
## X831      1     0     0     0     1     0     0     0     1     0     0     0
## X832      1     0     0     0     0     0     0     0     0     1     0     0
## X833      1     0     0     0     1     0     0     0     0     0     0     0
## X834      1     0     0     0     1     0     0     0     1     0     0     0
## X835      1     0     0     0     1     0     0     0     0     0     0     0
## X836      1     0     0     0     1     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     1     1     0     0     0
## X840      0     0     0     0     0     0     0     1     0     0     0     0
## X841      1     0     0     0     1     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     1     0     0     0     0
## X843      1     0     0     0     1     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     1     0     0
## X848      1     0     0     0     0     0     0     0     0     0     0     0
## X849      1     0     0     0     1     0     0     0     0     0     0     0
## X851      0     0     0     0     0     1     0     0     0     0     0     1
## X854      1     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     1     0     0     0     0
## X856      1     0     0     0     1     0     0     0     0     0     0     0
## X857      1     0     0     0     0     0     0     0     0     0     0     0
## X858      1     0     0     0     0     0     0     0     0     0     0     0
## X859      1     0     0     0     1     0     0     0     0     0     0     0
## X860      1     0     0     0     1     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     1     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     1     0     0     0     0
## X865      0     0     0     0     0     0     0     1     0     0     0     0
## X866      1     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     1     0     0     0     0
## X869      0     0     0     0     0     0     0     0     1     1     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      1     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     1     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     1     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     1     0     0     0     0     0     0     1     0     1
## X1191     0     1     0     0     0     0     0     0     0     0     1     0
## X1192     0     0     0     0     0     1     0     0     0     0     0     1
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     0     1     0     0     0     0     0     1
## X1195     1     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     1     1     0     0
## X1198     1     0     0     0     1     0     0     0     0     0     0     0
## X1199     0     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     1
## X1201     0     0     1     0     0     0     0     0     0     0     0     1
## X1202     0     0     0     0     0     1     0     0     0     0     0     1
## X1203     0     1     0     0     0     0     0     0     0     0     1     0
## X1204     0     0     0     0     0     0     0     0     1     0     0     1
## X1205     0     0     0     1     0     0     0     0     0     0     0     1
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     1     0     0     0     0     0     0     0     0     0
## X1208     0     0     0     0     0     1     0     0     0     0     0     1
## X1209     0     0     0     0     0     0     0     0     0     0     0     1
## X1210     0     0     0     0     0     1     0     0     0     0     0     1
## X1212     0     0     0     0     0     1     1     0     0     0     0     1
## X1213     0     0     1     0     0     0     0     0     0     0     0     0
## X1215     0     0     0     0     0     1     0     0     0     0     0     1
## X1216     0     0     0     0     0     0     0     1     0     0     0     0
## X1217     1     0     0     0     1     0     0     0     1     0     0     1
## X1219     0     0     0     0     0     0     1     0     0     0     0     1
## X1220     1     0     0     0     1     0     0     0     0     0     0     1
## X1221     0     1     0     0     0     0     0     0     0     0     1     0
## X1222     0     0     0     0     0     0     0     0     1     0     0     0
## X1226     0     0     1     0     0     0     0     0     0     0     0     0
## X1228     0     0     1     0     0     0     0     0     0     0     0     1
## X1229     0     0     0     0     0     1     0     0     0     0     0     1
## X1230     0     0     1     0     0     0     0     0     1     1     0     1
## X1231     0     0     0     0     0     0     0     0     1     1     0     0
## X1233     0     0     0     0     0     1     0     0     0     0     0     1
## X1234     0     0     0     0     0     0     0     1     0     0     0     0
## X1236     0     0     0     0     0     1     0     0     0     0     0     1
## X1237     0     0     0     0     0     0     0     0     0     0     0     1
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     1     0     0     0     1     0     0     0     0     1     0     0
## X1245     0     1     0     0     0     0     0     0     1     1     0     0
## X1246     0     0     0     0     0     0     1     1     0     0     0     1
## X1247     0     0     1     0     0     0     0     0     0     1     0     1
## X1249     0     0     1     0     0     0     0     0     0     0     0     1
## X1250     0     0     0     0     0     0     0     0     0     0     0     1
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     1     0     1     0     1     0     0     0     0     0     0     1
## X1254     1     0     0     0     1     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     1     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     1     0     0     0     1     0     0     0     0     0     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     1
## X1260     1     0     0     0     1     0     0     0     0     0     0     0
## X1262     0     0     1     0     0     0     0     0     0     1     0     1
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     1     0     0     0     1     0     0     0     0     0     0     0
## X1266     1     0     0     0     1     0     0     0     1     0     0     0
## X1267     0     0     1     0     0     0     1     0     0     0     0     1
## X1268     0     1     0     0     0     0     0     0     0     0     1     1
## X1273     0     0     0     0     0     0     0     0     0     1     0     0
## X1274     0     1     0     0     0     0     0     0     0     0     1     1
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     1     0     0     0     0
## X1277     1     0     0     0     1     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     1     1     0     0     0
## X1279     0     0     0     0     0     0     0     1     0     0     0     0
## X1281     1     0     0     0     0     0     0     0     0     0     0     0
## X1282     1     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     1     0     0     0     0
## X1284     0     0     0     0     0     0     0     1     0     0     0     0
## X1285     1     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     0     0     0     0     1     1     0     0
## X1301     0     0     0     0     0     1     0     0     0     0     0     1
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     0     0     0     0     1
## X1309     1     0     0     0     1     0     0     0     0     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      1     0     1     0     1     0     0     0     0     0     0     1
## X448      1     0     0     0     0     0     1     0     0     0     0     1
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      1     0     0     0     1     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     1     1     0     0     0     1
## X454      0     0     0     1     0     0     0     0     0     0     0     1
## X455      1     0     1     0     1     0     0     0     0     0     0     1
## X456      0     0     0     1     0     0     0     0     0     1     0     1
## X458      0     0     0     1     0     0     0     0     0     0     0     1
## X459      0     1     0     0     0     0     0     0     0     0     1     0
## X460      0     1     0     0     0     0     0     0     0     0     0     0
## X461      1     0     0     0     1     0     0     0     0     0     0     1
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     1     0     0     0     0     0     1     1     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     1     0     0     1     0     0     0     0     0     1
## X466      1     0     1     0     0     0     0     0     0     0     0     1
## X468      0     1     0     0     0     0     0     0     0     0     1     1
## X471      0     0     0     1     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     1     0     0     0     0     0     0     0     0     1     0
## X476      0     0     0     0     0     0     0     1     0     0     0     1
## X477      0     0     0     1     0     0     0     0     1     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     1     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     1     0     0     0     0     0     0     0     0
## X486      0     1     0     0     0     0     0     0     0     0     1     1
## X487      0     0     1     0     0     0     0     0     0     0     0     1
## X488      0     0     0     0     0     0     1     0     0     0     0     1
## X489      1     0     0     0     0     0     0     0     1     0     0     1
## X490      0     0     0     0     0     0     0     0     0     0     0     1
## X491      0     1     0     0     0     0     0     0     0     0     0     0
## X492      0     1     0     0     0     0     0     0     0     0     0     0
## X493      0     1     0     0     0     0     0     0     0     0     1     1
## X494      0     0     0     0     0     0     0     0     0     0     0     1
## X495      0     0     1     0     0     0     0     0     0     0     0     1
## X496      0     0     0     0     0     0     0     0     0     0     0     0
## X497      0     0     0     0     0     0     0     1     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     1
## X499      0     0     0     0     0     0     0     0     1     0     0     0
## X501      1     0     1     0     0     0     0     0     0     0     0     1
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     1     0     0     0     0     0     1     0     0     1
## X505      1     0     0     1     1     0     0     0     0     0     0     0
## X506      0     0     0     1     0     0     0     0     0     0     0     0
## X507      0     0     0     0     0     0     0     0     0     0     0     1
## X508      0     0     0     0     0     0     0     0     0     0     0     1
## X509      0     0     0     0     0     0     1     0     0     0     0     1
## X510      0     0     1     0     0     0     0     0     0     1     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     1     0     0     0     0     0     0     0     0
## X515      0     0     0     0     0     0     1     1     0     0     0     1
## X516      0     0     1     0     0     0     0     0     0     0     0     1
## X518      0     0     1     1     0     0     0     0     0     0     0     1
## X521      0     0     0     1     0     0     0     0     0     0     0     1
## X523      0     0     0     0     0     0     0     0     1     1     0     1
## X524      1     0     0     1     0     0     0     0     0     0     0     0
## X525      0     1     0     0     0     0     0     0     0     0     1     0
## X526      0     1     0     0     0     0     0     0     0     0     1     1
## X530      0     0     1     0     0     0     0     0     0     1     0     0
## X531      0     0     0     0     0     0     0     0     0     0     0     0
## X532      0     0     0     0     0     0     0     0     0     0     0     0
## X533      0     0     0     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     0     0     1     1     0     0
## X535      1     0     0     0     0     0     0     0     0     0     0     0
## X536      0     0     0     0     0     0     0     1     0     0     0     1
## X538      0     0     0     0     0     0     1     0     0     0     0     1
## X539      0     0     0     0     0     0     0     1     0     0     0     1
## X542      0     0     0     0     0     1     0     0     0     0     0     1
## X543      0     1     0     0     0     0     0     0     0     0     0     0
## X544      0     0     0     0     0     0     1     0     0     0     0     1
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     1     0     0     0     0     0     0     0     0     1
## X549      1     0     0     0     1     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     1     0     0     0     0     0     0     0     0     1
## X553      0     0     0     1     0     0     0     0     0     1     0     1
## X554      0     0     0     0     0     0     0     0     0     0     0     0
## X556      0     0     1     0     0     0     1     0     1     1     0     1
## X557      0     0     0     0     0     0     0     0     0     0     0     1
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     1     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      1     0     0     0     1     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     1     0     0     0
## X563      0     0     0     0     0     0     0     0     1     1     0     1
## X565      0     1     0     0     0     0     0     0     0     0     0     0
## X566      1     0     0     1     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     0     0     0     0     0
## X568      1     0     0     1     1     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     0     0     1
## X571      0     0     0     0     1     0     0     0     0     0     0     1
## X572      0     1     0     1     0     0     0     0     0     0     0     1
## X574      0     1     0     0     0     0     0     0     0     0     0     0
## X576      0     0     0     1     0     0     0     0     0     0     0     1
## X577      0     0     1     0     0     0     0     1     0     0     0     1
## X579      0     0     0     1     0     0     0     0     0     1     0     0
## X580      0     0     0     0     1     0     0     0     0     0     0     1
## X582      0     1     0     0     0     0     0     0     0     0     1     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     1     0     0     0     0     0     1     0     0     1
## X586      0     0     0     0     0     0     0     0     1     0     0     1
## X587      0     0     0     0     0     0     0     1     0     0     0     0
## X588      0     0     0     0     0     1     0     0     0     0     0     0
## X589      0     0     0     0     0     1     0     0     0     0     0     1
## X591      0     0     1     0     0     0     0     0     0     0     0     1
## X592      0     0     0     0     0     0     0     0     1     1     0     0
## X593      1     0     0     0     1     0     0     0     1     0     0     1
## X594      0     1     0     0     0     0     0     0     0     0     1     1
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     0     0     0     0     0     0     0
## X597      0     0     1     0     0     0     0     0     1     0     0     1
## X598      0     1     0     0     0     0     0     0     0     0     1     1
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     1     0     0     0     0     0     0     0     0     1
## X603      0     1     0     0     0     0     0     0     0     0     1     1
## X604      0     0     0     0     0     1     0     0     0     0     0     0
## X605      0     0     0     0     0     1     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     1     1     0     1
## X608      1     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     1     0     0     0     0     0     0     0     0
## X611      0     1     0     0     0     0     0     0     0     0     1     0
## X612      1     0     0     1     0     0     0     0     0     0     0     1
## X613      1     0     0     0     1     0     0     0     0     0     0     0
## X614      1     0     0     0     0     0     0     0     1     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     1     0     0     0     0     1     0     0     0     1
## X619      0     0     0     0     0     0     0     0     1     1     0     0
## X620      1     0     0     0     1     0     0     0     0     0     0     0
## X621      0     0     0     1     0     0     1     0     1     1     0     1
## X622      0     0     0     0     0     0     0     1     0     0     0     0
## X623      1     0     0     1     1     0     0     0     1     0     0     1
## X625      1     0     1     0     1     0     0     0     0     0     0     1
## X628      0     0     0     0     0     1     0     0     0     0     0     1
## X629      0     0     0     0     0     1     0     0     0     0     0     1
## X630      0     0     1     0     0     0     0     0     1     0     0     0
## X631      0     1     0     0     0     0     0     0     0     0     1     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     0     1     0     1     0     0     0     0     0     0     1
## X635      0     1     0     0     0     0     0     0     0     0     0     0
## X636      0     0     0     0     0     1     0     0     0     0     0     1
## X637      0     0     0     0     0     1     0     0     0     0     0     0
## X638      0     0     0     0     0     0     0     0     1     1     0     1
## X639      0     0     0     1     0     0     0     0     0     0     0     0
## X641      0     1     1     0     0     1     1     0     0     1     0     1
## X648      0     0     0     0     0     0     0     0     0     0     0     1
## X650      0     0     1     0     0     0     0     0     0     0     0     1
## X651      0     1     1     0     0     1     0     0     0     1     0     0
## X653      0     0     0     0     0     1     0     0     0     0     0     1
## X654      0     0     1     0     0     0     0     0     0     0     0     1
## X655      0     0     0     0     0     0     0     0     1     1     0     0
## X656      1     0     0     0     0     0     0     1     0     0     0     0
## X657      0     1     0     1     0     0     0     0     0     0     0     1
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     1     1     0     1
## X1084     0     0     0     0     0     1     0     0     0     0     0     1
## X1086     1     0     0     0     1     0     0     0     0     1     0     0
## X1088     1     0     0     1     1     0     0     0     0     0     0     1
## X1089     0     0     0     0     0     0     0     1     0     0     0     0
## X1090     0     0     0     0     0     0     1     0     0     0     0     1
## X1091     0     1     0     0     0     0     1     0     0     0     0     1
## X1092     0     1     0     0     0     0     0     0     0     0     0     0
## X1093     0     0     0     0     0     0     0     0     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     1
## X1095     0     0     0     0     0     0     0     0     1     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     0     0     1     0     0     0     0     0     0
## X1101     0     0     0     0     0     0     0     0     0     0     0     0
## X1103     0     0     0     0     0     0     1     0     0     0     0     1
## X1104     0     0     0     1     0     0     0     0     0     0     0     0
## X1105     0     0     0     0     0     0     0     0     0     0     0     0
## X1106     0     1     0     0     0     0     0     0     0     0     1     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     1     0     0     0     1     0     0     0     0     1     0     0
## X1112     0     0     0     1     0     0     0     0     0     0     0     0
## X1113     0     0     0     0     0     0     1     0     0     0     0     1
## X1115     0     0     0     0     0     0     0     0     1     1     0     1
## X1116     1     0     1     0     1     0     0     0     0     0     0     0
## X1117     0     0     0     1     0     0     0     0     1     0     0     1
## X1119     0     0     0     0     0     0     0     0     0     0     0     1
## X1120     0     0     0     0     0     1     0     0     0     0     0     1
## X1121     0     0     0     0     0     0     0     0     0     0     0     1
## X1122     0     0     0     0     0     1     0     0     0     0     0     1
## X1124     0     0     0     0     0     0     0     0     1     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     1     0     0     0     1     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     1     0     0     0
## X1128     1     0     0     1     1     0     0     0     0     0     0     0
## X1129     1     0     0     0     1     0     0     0     0     0     0     0
## X1130     1     0     0     0     0     0     0     0     0     0     0     1
## X1131     0     1     0     0     0     0     0     0     0     0     1     0
## X1133     0     0     1     0     0     0     0     0     0     1     0     0
## X1135     0     1     0     0     0     0     0     0     0     0     1     0
## X1136     1     0     0     0     1     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     1
## X1139     0     0     0     0     0     1     0     0     0     0     0     1
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     1     0     0     0     1     0     0     0     0     0     0     0
## X1143     0     0     1     0     0     1     0     0     0     1     0     0
## X1144     0     0     0     0     0     0     1     0     0     0     0     1
## X1145     0     0     0     0     0     0     0     0     0     0     0     0
## X1146     0     1     0     0     0     0     0     0     0     0     1     1
## X1147     0     0     0     0     0     0     0     0     0     0     0     0
## X1149     1     0     0     1     1     0     0     0     0     0     0     1
## X1150     0     1     0     0     0     0     0     0     0     0     1     1
## X1151     0     1     0     0     0     0     0     0     0     0     1     0
## X1152     0     1     1     0     0     0     0     0     0     0     0     1
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     1     0     0     0     0     0     0     0     0     1     1
## X1158     0     0     0     0     0     0     1     0     0     0     0     1
## X1159     0     0     0     0     0     0     0     0     0     0     0     1
## X1160     0     0     1     0     0     0     0     0     1     0     0     1
##       FP061 FP062 FP063 FP064 FP065 FP066 FP067 FP068 FP069 FP070 FP071 FP072
## X661      0     0     1     0     1     1     1     0     1     1     0     0
## X662      0     0     1     1     1     0     1     1     0     1     0     1
## X663      1     1     0     1     0     1     0     0     1     0     0     1
## X665      0     0     0     0     0     1     0     0     1     1     0     0
## X668      0     0     1     1     1     1     1     1     1     0     0     0
## X669      0     1     1     1     0     1     1     1     1     0     0     1
## X670      0     0     1     0     1     1     1     1     0     1     1     0
## X671      1     1     0     1     0     1     0     0     1     0     0     1
## X672      1     1     0     0     1     1     0     0     1     1     1     1
## X673      0     1     1     0     1     1     1     1     0     0     1     1
## X674      1     1     0     0     1     1     0     0     1     1     1     1
## X676      1     1     0     0     1     1     0     0     1     1     1     1
## X677      0     0     0     0     1     1     0     0     1     0     0     0
## X678      0     0     0     0     1     0     0     0     0     0     0     0
## X679      0     0     0     1     0     1     0     0     1     0     0     0
## X682      1     1     0     0     1     1     0     0     1     0     0     1
## X683      1     0     1     1     1     1     1     1     1     1     1     1
## X684      0     0     1     1     1     0     1     1     0     1     0     1
## X685      1     1     0     0     1     1     0     0     1     1     1     1
## X686      0     0     0     1     1     1     0     0     0     0     0     0
## X688      1     1     0     0     1     1     0     0     0     1     0     1
## X689      0     0     1     1     1     1     1     1     1     0     0     0
## X690      1     1     1     1     1     1     1     1     1     1     1     1
## X691      1     1     1     0     1     0     1     1     0     1     0     1
## X692      1     0     1     1     1     1     1     1     1     1     0     1
## X693      1     1     1     0     1     1     1     1     0     1     0     1
## X695      0     0     1     1     1     1     1     1     1     1     0     1
## X696      0     0     1     0     1     0     1     1     0     0     0     0
## X698      1     1     1     0     1     1     1     1     1     1     0     1
## X699      0     0     1     0     1     0     0     0     0     0     1     0
## X700      0     0     0     1     0     1     0     0     0     0     0     0
## X702      0     0     0     1     0     1     0     0     1     0     0     0
## X703      0     0     0     0     0     1     0     0     1     0     1     0
## X704      0     0     0     0     1     1     0     0     1     0     0     0
## X706      1     1     0     1     1     1     0     0     1     1     1     1
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     1     0     0     1     0     1     0
## X711      1     1     0     1     1     1     0     0     1     1     1     1
## X712      1     0     0     1     1     1     0     0     1     0     0     1
## X713      1     1     1     0     1     0     1     1     0     0     1     1
## X714      1     1     0     1     1     1     0     0     1     1     1     1
## X715      1     1     1     1     1     0     1     1     0     0     0     1
## X717      0     0     0     0     1     0     0     0     0     0     0     0
## X718      0     0     1     1     1     1     1     1     0     1     0     0
## X721      0     0     1     0     1     1     1     1     1     1     0     0
## X722      0     1     1     0     0     1     0     1     0     1     1     1
## X723      0     0     0     1     0     1     0     0     0     0     0     0
## X724      0     0     1     0     1     0     1     1     0     0     0     0
## X726      1     0     0     0     1     0     0     0     0     0     1     1
## X728      1     1     0     0     1     1     0     0     0     0     1     1
## X729      0     0     0     0     1     0     0     0     0     0     1     0
## X731      0     0     0     1     0     1     0     0     1     0     0     0
## X732      0     0     0     0     1     0     0     0     0     0     1     0
## X733      0     0     1     1     1     1     1     1     1     0     0     0
## X734      0     0     0     0     1     0     0     0     0     0     1     0
## X735      1     1     0     0     1     1     0     0     0     1     1     1
## X736      1     1     1     1     1     1     1     1     0     0     0     1
## X737      0     0     1     0     1     0     1     1     0     0     0     0
## X739      1     1     0     0     1     1     0     0     1     1     1     1
## X740      1     1     1     1     1     1     1     1     1     1     1     1
## X741      1     1     0     1     0     1     0     0     0     0     0     1
## X742      1     1     0     1     0     1     0     0     1     0     0     1
## X743      0     0     0     0     1     0     0     0     0     0     1     0
## X744      0     0     0     0     1     0     0     0     0     0     0     0
## X746      1     1     0     1     0     1     0     0     1     1     1     1
## X747      0     0     0     1     0     1     0     0     0     0     0     1
## X749      1     1     1     1     1     1     1     1     0     1     0     1
## X752      1     1     0     1     1     1     0     0     1     1     1     1
## X753      0     0     0     1     0     1     0     0     0     0     0     0
## X754      0     0     1     1     1     1     1     1     0     1     0     0
## X755      0     0     0     0     1     1     0     0     1     0     0     0
## X757      0     0     0     1     0     1     0     0     0     0     0     0
## X758      0     0     0     0     1     1     0     0     1     0     0     1
## X759      0     0     1     1     0     1     1     1     1     0     0     0
## X760      0     0     0     0     1     0     0     0     0     0     0     0
## X761      1     1     0     1     1     1     0     0     1     1     1     1
## X762      0     0     0     0     1     0     0     0     0     0     0     0
## X763      0     0     1     0     1     0     1     1     0     0     1     0
## X764      0     0     0     0     1     1     0     0     1     1     0     0
## X765      1     1     0     0     1     1     0     0     1     1     0     1
## X767      1     1     0     0     1     1     0     0     1     1     1     1
## X768      0     0     1     0     1     0     1     0     0     0     0     0
## X770      0     0     1     1     1     1     1     1     1     1     0     0
## X771      1     1     1     0     1     0     1     1     0     1     1     1
## X772      0     0     0     0     1     0     0     0     0     0     1     0
## X773      0     0     0     1     0     1     0     0     0     0     0     0
## X774      0     0     0     1     0     1     0     0     0     0     0     0
## X775      1     1     0     1     0     0     0     0     0     0     0     1
## X776      1     1     1     1     1     1     1     1     0     1     1     1
## X777      0     0     0     1     0     1     0     0     1     1     0     1
## X778      1     1     1     1     1     1     1     1     1     1     1     1
## X779      0     0     1     0     1     0     1     1     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     1     1     0
## X781      1     1     0     1     0     1     0     0     1     1     0     1
## X782      1     1     0     0     1     0     0     0     0     1     0     1
## X784      1     1     1     1     1     0     1     1     0     1     1     1
## X786      0     0     0     1     0     1     0     0     1     0     0     0
## X787      0     0     0     0     1     0     0     0     0     0     1     0
## X788      1     1     0     0     1     1     0     0     1     1     1     1
## X789      0     0     0     0     1     0     0     0     0     0     1     0
## X791      0     0     0     0     1     0     0     0     0     0     1     0
## X792      0     0     1     1     1     1     1     1     1     1     0     0
## X794      1     1     0     1     0     1     0     0     0     0     0     1
## X798      0     0     1     0     1     0     1     0     0     0     0     0
## X799      1     1     1     0     1     0     1     1     0     1     1     1
## X800      0     0     0     0     1     1     0     0     1     1     1     1
## X804      0     0     1     0     1     1     1     1     1     0     1     0
## X805      1     1     0     1     1     1     0     0     1     1     1     1
## X807      1     0     0     1     0     1     0     0     1     1     0     1
## X808      1     1     1     1     1     1     1     1     1     1     1     1
## X809      1     1     0     1     0     1     0     0     0     1     1     1
## X810      0     0     0     0     1     0     0     0     0     1     1     0
## X813      1     1     0     1     0     1     0     0     0     0     0     1
## X814      1     1     1     0     1     1     1     1     1     1     1     1
## X818      0     0     0     0     1     0     0     0     0     0     1     0
## X819      1     1     1     0     1     0     1     1     0     1     1     1
## X820      0     0     0     1     0     1     0     0     0     0     0     1
## X821      0     0     0     0     1     0     0     0     0     1     1     0
## X822      0     0     0     0     1     0     0     0     0     1     0     0
## X823      0     0     1     0     1     0     1     1     0     1     0     0
## X827      0     0     0     0     1     0     0     0     0     1     1     1
## X828      0     0     0     0     1     0     0     0     0     0     1     0
## X829      1     1     1     1     1     1     1     1     1     1     1     1
## X831      0     0     0     0     1     0     0     0     0     1     1     0
## X832      0     0     0     0     1     0     0     0     0     0     1     0
## X833      0     0     0     0     1     0     0     0     0     1     1     0
## X834      0     0     0     0     1     0     0     0     0     1     1     0
## X835      0     0     0     0     1     0     0     0     0     0     0     0
## X836      0     0     0     0     1     0     0     0     0     1     1     0
## X839      0     0     0     0     1     0     0     0     0     1     0     0
## X840      0     0     0     0     1     0     0     0     0     1     0     0
## X841      0     0     0     0     1     0     0     0     0     1     1     0
## X842      0     0     0     1     1     1     0     0     0     0     0     0
## X843      0     0     0     0     1     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     1     0     0     0     0     1     1     0
## X849      0     0     0     0     1     0     0     0     0     0     1     0
## X851      1     0     0     0     1     1     0     0     1     1     0     1
## X854      0     0     0     0     1     0     0     0     0     1     1     0
## X855      0     0     1     0     1     0     1     0     0     1     0     0
## X856      0     0     0     0     1     0     0     0     0     1     1     0
## X857      0     0     0     0     1     0     0     0     0     1     1     0
## X858      0     0     0     0     1     0     0     0     0     1     1     0
## X859      0     0     0     0     1     0     0     0     0     1     1     0
## X860      0     0     0     0     1     0     0     0     0     0     1     0
## X862      0     0     0     0     1     0     0     0     0     1     1     0
## X863      0     0     0     0     1     0     0     0     0     1     1     0
## X864      0     0     0     0     1     1     0     0     0     1     0     0
## X865      0     0     0     0     1     0     0     0     0     1     0     0
## X866      0     0     0     0     1     0     0     0     0     1     1     0
## X867      0     0     0     0     1     0     0     0     0     1     0     0
## X869      0     0     1     0     1     0     1     1     0     1     0     0
## X870      0     0     0     0     1     0     0     0     0     1     1     0
## X871      0     0     0     0     1     0     0     0     0     1     1     0
## X872      0     0     0     0     1     0     0     0     0     1     1     0
## X873      0     0     0     0     1     0     0     0     0     1     0     0
## X875      0     0     0     0     1     0     0     0     0     1     1     0
## X876      0     0     0     0     1     0     0     0     0     1     1     0
## X877      0     0     0     0     1     0     0     0     0     1     1     0
## X1190     0     0     0     0     1     0     0     0     0     0     0     1
## X1191     0     0     0     1     0     1     0     0     0     0     0     0
## X1192     1     1     0     0     1     1     0     0     1     1     1     1
## X1193     0     0     0     0     0     1     0     0     1     1     1     0
## X1194     1     1     0     1     1     1     0     0     1     1     1     1
## X1195     0     0     0     0     1     0     0     0     0     0     1     0
## X1197     0     0     0     1     0     1     0     0     0     0     0     0
## X1198     0     0     0     0     1     0     0     0     0     0     0     0
## X1199     0     0     1     0     1     1     1     1     1     1     0     0
## X1200     1     0     0     1     0     1     0     0     1     1     0     1
## X1201     1     1     1     0     1     1     1     1     1     1     1     1
## X1202     1     1     0     1     1     1     0     0     1     1     1     1
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     1     1     0     1     1     1     1     0     1     1     1
## X1205     1     1     1     0     1     0     1     1     0     0     1     1
## X1206     0     0     0     0     0     0     0     0     0     1     0     0
## X1207     0     0     1     1     1     1     1     1     1     1     0     0
## X1208     1     1     0     0     1     1     0     0     1     1     0     1
## X1209     0     0     0     0     1     0     0     0     0     1     1     1
## X1210     1     1     0     1     1     1     0     0     1     1     1     1
## X1212     1     0     0     0     1     1     0     0     0     1     1     1
## X1213     0     0     1     1     1     1     1     1     1     1     0     0
## X1215     1     1     0     1     1     1     0     0     1     1     1     1
## X1216     0     0     0     0     1     0     0     0     0     0     0     0
## X1217     0     0     1     0     1     0     0     0     0     1     1     1
## X1219     1     0     0     1     1     1     0     0     1     0     0     1
## X1220     1     1     1     1     1     0     0     1     0     0     0     1
## X1221     0     0     0     1     0     1     0     0     0     0     0     0
## X1222     0     0     1     1     1     1     0     1     1     0     0     0
## X1226     0     0     1     1     1     1     1     1     0     1     0     0
## X1228     1     0     0     0     1     1     0     0     1     1     1     1
## X1229     1     1     0     1     1     1     0     0     1     1     1     1
## X1230     1     1     1     0     1     0     1     1     0     0     0     1
## X1231     0     0     0     1     0     0     0     0     0     0     0     0
## X1233     1     1     0     0     1     1     0     0     1     1     1     1
## X1234     0     0     0     0     1     1     0     0     1     0     1     0
## X1236     1     1     0     0     1     1     0     0     1     1     1     1
## X1237     1     0     1     0     1     1     1     0     1     1     1     1
## X1239     0     1     1     1     0     1     1     1     1     0     0     1
## X1242     0     0     0     0     0     0     0     0     0     1     0     0
## X1244     0     0     0     0     1     0     0     0     0     0     0     0
## X1245     0     0     0     1     0     1     0     0     0     0     0     0
## X1246     1     1     0     0     1     1     0     0     0     1     1     1
## X1247     1     1     0     1     1     1     0     0     1     1     1     1
## X1249     1     1     0     1     1     1     0     0     1     1     1     1
## X1250     0     0     0     0     1     0     0     0     0     1     1     1
## X1251     0     0     1     0     1     0     0     0     0     1     1     0
## X1253     1     0     0     1     1     1     0     0     1     1     0     1
## X1254     0     0     0     0     1     0     0     0     0     0     0     0
## X1255     0     0     0     0     1     1     0     0     0     1     0     0
## X1256     0     0     0     0     1     0     0     0     0     1     0     0
## X1257     0     0     0     0     1     0     0     0     0     0     1     0
## X1259     0     0     0     0     1     0     0     0     0     1     1     1
## X1260     0     0     0     0     1     0     0     0     0     0     1     0
## X1262     1     1     0     1     1     1     0     0     1     1     1     1
## X1264     0     0     0     0     1     0     0     0     0     1     1     0
## X1265     0     0     0     0     1     0     0     0     0     1     1     0
## X1266     0     0     0     0     1     0     0     0     0     1     1     0
## X1267     1     0     0     0     1     1     0     0     1     1     1     1
## X1268     1     1     0     1     0     1     0     0     0     0     0     1
## X1273     0     0     0     0     1     0     0     0     0     1     1     0
## X1274     0     0     0     1     0     1     0     0     0     0     0     1
## X1275     0     0     0     0     1     0     0     0     0     1     1     0
## X1276     0     0     0     0     1     0     0     0     0     1     0     0
## X1277     0     0     0     0     1     0     0     0     0     1     1     0
## X1278     0     0     0     0     1     0     0     0     0     1     0     0
## X1279     0     0     0     0     1     0     0     0     0     1     0     0
## X1281     0     0     0     0     1     0     0     0     0     1     1     0
## X1282     0     0     0     0     1     0     0     0     0     1     1     0
## X1283     0     0     0     0     1     0     0     0     0     1     0     0
## X1284     0     0     0     0     1     0     0     0     0     1     0     0
## X1285     0     0     0     0     1     0     0     0     0     1     1     0
## X1288     0     0     0     0     1     0     0     0     0     1     1     0
## X1299     1     1     1     0     1     0     1     1     0     1     1     1
## X1301     1     1     0     0     1     1     0     0     1     1     1     1
## X1302     0     0     0     0     0     0     0     0     0     1     1     0
## X1307     1     0     1     1     1     1     1     0     1     1     1     1
## X1309     0     0     0     0     1     0     0     0     0     1     0     0
## X1310     0     0     0     0     1     0     0     0     0     1     1     0
## X447      1     1     0     1     1     0     0     0     0     0     1     1
## X448      1     1     1     0     1     1     1     1     1     1     1     1
## X451      0     0     0     1     0     1     0     0     1     0     0     0
## X452      0     0     0     1     1     0     0     0     0     0     0     0
## X453      0     0     1     0     1     0     1     0     0     0     0     1
## X454      1     0     1     0     1     1     1     1     1     1     0     1
## X455      1     1     0     0     1     1     0     0     1     0     1     1
## X456      1     1     1     0     1     1     1     1     0     0     1     1
## X458      1     0     1     0     1     1     1     1     0     0     0     1
## X459      0     1     0     1     0     1     0     0     1     0     0     1
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      1     1     0     0     1     0     0     0     0     0     0     1
## X462      0     0     0     1     0     1     0     0     0     0     0     0
## X463      0     0     1     1     1     0     1     1     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      1     0     1     0     1     1     0     0     0     1     0     1
## X466      1     1     1     1     1     0     1     1     0     1     1     1
## X468      1     1     1     1     0     1     1     1     0     0     0     1
## X471      0     1     1     1     1     1     1     1     0     0     0     1
## X472      0     0     0     1     0     1     0     0     1     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      1     1     0     1     1     0     0     0     0     0     0     1
## X477      1     1     1     0     1     1     1     1     1     1     1     1
## X478      0     0     0     1     0     0     0     0     0     1     0     0
## X479      0     0     0     1     0     1     0     0     0     0     0     0
## X480      0     0     1     0     1     0     1     0     0     0     0     0
## X482      0     0     0     0     0     1     0     0     1     0     0     0
## X483      0     0     0     0     0     1     0     0     1     0     0     0
## X484      0     0     1     0     1     0     1     1     0     0     0     0
## X486      1     1     0     1     0     1     0     0     1     0     0     1
## X487      1     1     1     1     1     1     0     1     1     0     0     1
## X488      1     1     0     1     1     1     0     0     0     0     0     1
## X489      1     1     0     0     1     0     0     0     0     0     1     1
## X490      1     1     1     1     1     1     1     1     1     1     1     1
## X491      0     0     0     1     0     1     0     0     0     0     0     0
## X492      1     1     1     0     1     1     1     1     1     1     1     1
## X493      1     1     0     1     0     1     0     0     0     0     0     1
## X494      1     1     1     0     1     0     1     1     0     1     1     1
## X495      1     0     1     0     1     1     1     1     0     1     0     1
## X496      0     0     1     0     1     0     1     1     0     0     0     0
## X497      0     0     1     0     1     0     1     0     0     0     0     0
## X498      0     0     0     0     1     1     0     0     1     0     1     1
## X499      0     0     0     0     0     1     0     0     1     0     1     0
## X501      1     1     1     0     1     1     1     1     0     1     1     1
## X502      0     0     0     0     0     1     0     0     1     0     0     0
## X503      1     0     1     1     1     1     1     1     1     1     1     1
## X505      0     1     1     0     1     1     1     1     0     0     0     1
## X506      1     0     1     0     1     1     1     1     0     1     0     1
## X507      1     0     1     1     1     1     1     1     1     1     1     1
## X508      1     1     1     1     1     0     1     1     0     1     1     1
## X509      1     1     1     0     1     1     1     1     1     1     1     1
## X510      0     1     1     0     1     0     1     1     0     0     1     1
## X513      0     0     0     1     0     1     0     0     1     0     0     0
## X514      1     0     1     0     1     1     1     1     1     1     1     1
## X515      1     0     0     0     1     0     0     0     0     0     0     1
## X516      0     0     0     1     1     1     0     0     0     0     0     1
## X518      1     1     1     0     1     1     1     1     1     1     0     1
## X521      1     0     1     0     1     1     1     1     1     1     0     1
## X523      1     1     0     1     0     1     0     0     0     0     0     1
## X524      0     1     1     1     1     1     1     1     0     0     1     1
## X525      1     1     1     1     1     1     1     1     0     1     1     1
## X526      0     0     0     1     0     1     0     0     0     0     0     1
## X530      0     0     1     1     1     1     1     1     1     0     0     0
## X531      1     1     1     1     0     1     1     1     1     0     0     1
## X532      0     0     1     1     1     1     1     1     1     1     0     0
## X533      1     0     1     0     1     0     1     1     0     1     1     1
## X534      1     1     1     1     1     1     1     1     0     0     0     1
## X535      0     0     0     0     1     0     0     0     0     0     1     0
## X536      0     0     1     0     1     0     1     1     0     1     0     1
## X538      1     1     0     0     1     0     0     0     0     1     1     1
## X539      0     0     1     0     1     0     1     1     0     1     0     1
## X542      1     1     0     1     1     1     0     0     1     1     1     1
## X543      0     0     0     1     0     1     0     0     0     0     0     0
## X544      1     1     1     0     1     1     1     1     1     1     1     1
## X545      0     0     1     1     0     1     0     1     1     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     1     1     0     0     1     0     0     1
## X549      0     0     0     0     1     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     1     1     0     1     1     1     1     1     1     1     1
## X553      1     1     1     0     1     1     1     1     0     0     1     1
## X554      0     0     1     1     1     1     1     1     1     1     0     0
## X556      1     1     0     0     1     0     0     0     0     0     1     1
## X557      1     1     1     1     1     1     1     1     1     0     1     1
## X558      0     0     1     0     1     0     1     0     0     0     0     0
## X559      0     0     0     1     0     1     0     0     1     0     0     0
## X560      0     0     0     0     0     1     0     0     1     0     1     0
## X561      0     0     0     0     1     0     0     0     0     0     0     0
## X562      0     0     0     1     0     1     0     0     1     0     1     0
## X563      1     1     0     0     0     0     0     0     0     1     0     1
## X565      0     0     0     1     0     1     0     0     0     0     0     0
## X566      0     0     1     0     1     0     1     1     0     0     1     0
## X567      1     1     1     0     1     1     1     1     1     1     1     1
## X568      0     1     1     0     1     1     1     1     0     0     0     1
## X569      1     1     1     1     1     1     1     1     1     1     1     1
## X571      1     1     1     0     1     1     1     1     0     1     1     1
## X572      1     1     1     1     1     1     1     1     0     0     0     1
## X574      0     0     0     0     0     1     0     0     0     0     0     0
## X576      1     0     1     0     1     1     1     1     0     0     0     1
## X577      1     1     1     0     1     1     1     1     0     0     0     1
## X579      1     1     1     0     1     1     1     1     0     0     1     1
## X580      1     1     0     0     1     0     0     0     0     1     1     1
## X582      0     1     0     1     0     1     0     0     1     0     0     1
## X583      0     0     0     0     0     1     0     0     1     0     1     0
## X584      1     1     1     0     1     0     1     1     0     1     0     1
## X586      1     1     1     1     1     1     1     1     1     1     1     1
## X587      0     0     1     0     1     0     1     0     0     0     0     0
## X588      1     1     1     1     1     1     1     1     1     1     1     1
## X589      1     1     0     1     1     1     0     0     1     1     1     1
## X591      1     0     1     0     1     1     1     1     0     1     0     1
## X592      0     0     0     1     0     1     0     0     0     0     0     0
## X593      0     0     1     1     1     0     1     1     0     1     1     1
## X594      1     1     0     1     0     1     0     0     1     0     0     1
## X595      0     0     1     1     0     1     1     1     1     0     0     0
## X596      1     1     1     1     1     1     1     1     1     0     0     1
## X597      0     0     1     1     1     1     0     1     1     0     0     1
## X598      1     1     0     1     0     0     0     0     0     0     0     1
## X599      0     0     0     0     0     1     0     0     1     0     0     0
## X600      1     0     0     1     1     1     0     0     1     1     1     1
## X603      1     1     0     1     0     1     0     0     0     0     0     1
## X604      1     1     1     1     1     1     1     1     1     1     1     1
## X605      1     1     0     0     1     1     0     0     1     1     1     1
## X606      1     1     0     1     0     1     0     0     0     0     0     1
## X608      0     0     0     0     1     0     0     0     0     0     1     0
## X609      1     0     1     0     1     0     1     1     0     0     0     1
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     1     1     0     1     1     1     1     1     0     1     1
## X613      0     0     0     0     1     1     0     0     0     0     0     0
## X614      0     0     0     0     1     1     0     0     0     0     1     0
## X616      0     0     0     1     0     1     0     0     1     0     0     0
## X617      1     1     1     1     1     1     1     1     1     0     0     1
## X619      1     0     1     1     1     0     1     1     0     1     1     1
## X620      0     0     0     0     1     0     0     0     0     0     1     0
## X621      1     1     1     0     1     0     1     1     0     0     1     1
## X622      0     0     0     0     1     0     0     0     0     0     0     0
## X623      1     1     1     0     1     0     1     1     0     1     1     1
## X625      1     1     1     0     1     1     1     1     1     1     0     1
## X628      1     1     0     1     1     1     0     0     1     1     1     1
## X629      1     1     0     1     1     1     0     0     1     1     1     1
## X630      0     0     1     1     1     1     1     1     0     0     0     0
## X631      0     0     0     1     0     1     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     1     0     1     1     0     0     0     0     0     1     1
## X635      1     1     1     0     1     1     1     1     0     1     0     1
## X636      1     1     0     1     1     1     0     0     1     1     1     1
## X637      1     1     0     0     1     1     0     0     1     1     1     1
## X638      1     1     0     0     0     1     0     0     0     0     0     1
## X639      1     0     1     0     1     0     1     1     0     0     0     1
## X641      1     1     1     1     1     1     1     1     0     1     1     1
## X648      1     1     1     0     1     1     1     1     1     1     1     1
## X650      1     0     1     1     1     1     1     0     0     0     0     1
## X651      1     1     1     1     1     1     1     1     0     1     1     1
## X653      1     1     0     1     1     1     0     0     1     1     1     1
## X654      1     1     1     1     1     1     0     1     1     0     0     1
## X655      0     0     0     1     0     1     0     0     1     0     0     0
## X656      0     0     0     0     1     0     0     0     0     0     0     0
## X657      1     1     1     1     1     1     1     1     0     0     0     1
## X1082     0     0     0     1     0     1     0     0     1     0     0     0
## X1083     0     0     0     1     0     0     0     0     0     0     0     1
## X1084     0     0     0     0     0     1     0     0     1     1     1     1
## X1086     0     0     0     0     1     0     0     0     0     0     0     0
## X1088     1     1     1     0     1     1     1     1     1     0     0     1
## X1089     0     0     1     1     1     1     1     1     0     0     0     0
## X1090     1     1     1     1     1     0     1     1     0     0     0     1
## X1091     1     0     0     1     1     1     0     0     0     0     1     1
## X1092     0     1     0     1     0     1     0     0     1     0     0     1
## X1093     1     1     1     0     1     1     1     1     1     1     1     1
## X1094     1     1     0     0     0     1     0     0     0     0     0     1
## X1095     1     1     1     0     1     0     1     1     0     0     0     1
## X1097     0     0     0     1     0     1     0     0     1     0     0     0
## X1098     1     1     1     1     1     1     1     1     0     1     1     1
## X1101     1     0     1     0     1     0     1     1     0     1     1     1
## X1103     1     1     0     0     1     0     0     0     0     1     1     1
## X1104     1     0     1     0     1     0     1     1     0     0     0     1
## X1105     0     0     1     0     1     0     1     1     0     0     0     0
## X1106     0     0     1     1     0     1     0     1     0     0     0     0
## X1108     0     0     0     0     0     1     0     0     1     0     0     0
## X1110     0     0     0     0     1     0     0     0     0     0     0     0
## X1112     1     0     1     0     1     1     1     1     0     0     0     1
## X1113     1     0     0     0     1     1     0     0     1     0     0     1
## X1115     1     1     0     0     0     0     0     0     0     0     0     1
## X1116     0     0     1     0     1     1     1     1     1     0     1     0
## X1117     1     1     1     0     1     1     1     1     0     0     1     1
## X1119     1     1     0     1     1     0     0     0     0     0     1     1
## X1120     1     1     0     1     1     1     0     0     1     1     1     1
## X1121     1     1     1     1     1     1     1     1     0     1     1     1
## X1122     1     1     0     1     1     1     0     0     1     1     1     1
## X1124     1     1     0     0     1     1     0     0     0     1     1     1
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     1     0     0     0     0     0     0     0
## X1127     0     0     0     0     1     0     0     0     0     0     0     0
## X1128     0     1     1     0     1     1     1     1     0     0     0     1
## X1129     0     0     0     0     1     1     0     0     0     0     0     0
## X1130     1     1     0     1     1     0     0     0     0     0     1     1
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     1     1     0     1     0     1     1     0     0     1     1
## X1135     0     1     0     1     0     1     0     0     0     0     0     1
## X1136     0     0     0     0     1     1     0     0     0     0     0     0
## X1138     1     1     1     0     1     1     1     1     1     1     1     1
## X1139     1     1     0     1     1     1     0     0     1     1     1     1
## X1141     0     0     0     1     0     1     0     0     1     0     0     0
## X1142     0     0     0     0     1     0     0     0     0     0     0     0
## X1143     1     1     1     1     1     1     1     1     0     1     1     1
## X1144     1     0     1     0     1     1     1     1     0     1     0     1
## X1145     1     1     1     1     1     1     1     1     0     1     1     1
## X1146     1     1     1     1     0     1     1     1     0     0     0     1
## X1147     0     1     1     1     0     1     1     1     1     0     0     1
## X1149     1     1     1     0     1     1     1     1     1     0     0     1
## X1150     1     1     0     1     0     1     0     0     1     0     0     1
## X1151     0     1     1     1     0     1     1     1     1     1     0     1
## X1152     1     1     1     0     1     0     1     1     0     1     0     1
## X1153     0     0     1     0     1     0     1     0     0     0     1     0
## X1156     1     1     0     1     0     1     0     0     0     0     0     1
## X1158     1     1     0     0     1     0     0     0     0     1     1     1
## X1159     1     1     0     0     1     1     0     0     0     1     0     1
## X1160     1     1     0     1     1     1     0     0     0     1     1     1
##       FP073 FP074 FP075 FP076 FP077 FP078 FP079 FP080 FP081 FP082 FP083 FP084
## X661      0     0     0     1     0     0     1     0     0     1     0     1
## X662      1     1     1     1     1     1     1     1     0     1     0     1
## X663      1     0     0     0     0     0     1     0     1     1     0     0
## X665      0     0     0     0     1     0     1     0     1     0     0     0
## X668      0     0     1     0     0     0     1     1     0     1     1     1
## X669      0     0     1     0     0     0     0     1     0     1     0     0
## X670      0     0     1     1     0     0     1     1     0     1     0     1
## X671      0     0     0     0     1     0     0     1     1     0     0     0
## X672      1     1     0     1     1     1     1     0     1     1     0     0
## X673      0     0     1     1     1     0     1     0     1     1     1     0
## X674      0     1     0     0     0     1     1     0     0     1     0     0
## X676      1     1     0     1     1     1     1     0     1     1     0     0
## X677      0     0     0     1     0     0     1     0     0     1     0     0
## X678      0     0     0     1     0     0     1     0     0     1     0     0
## X679      0     0     0     0     0     0     1     0     1     1     0     0
## X682      1     1     0     1     0     1     1     0     0     1     0     0
## X683      0     0     1     0     1     1     1     1     1     1     1     1
## X684      1     0     1     1     1     0     1     1     0     1     0     1
## X685      1     1     0     1     1     1     1     0     1     1     0     0
## X686      0     0     0     1     0     0     1     0     0     1     0     0
## X688      1     1     0     1     0     1     1     0     0     1     0     0
## X689      0     0     1     1     1     0     1     1     1     1     0     1
## X690      0     0     1     0     1     0     1     1     1     1     0     0
## X691      0     0     1     0     1     0     1     1     0     0     1     1
## X692      0     1     1     0     1     0     1     1     0     1     1     0
## X693      0     0     1     1     1     0     1     0     0     1     1     0
## X695      0     1     1     1     0     1     1     1     1     1     0     1
## X696      0     0     0     1     0     0     1     0     0     1     1     1
## X698      0     1     1     0     0     1     1     0     0     1     1     0
## X699      0     0     0     0     0     0     1     0     0     1     0     0
## X700      0     0     0     0     1     0     0     0     1     0     0     0
## X702      0     0     0     0     0     0     0     0     1     1     0     0
## X703      0     0     0     0     1     0     1     0     1     0     0     0
## X704      0     0     0     1     0     0     1     0     0     1     0     0
## X706      0     1     0     1     0     1     1     0     0     1     0     1
## X708      0     0     0     1     0     0     1     0     0     1     0     0
## X709      0     0     0     0     1     0     1     0     1     0     0     0
## X711      1     1     0     1     1     1     1     0     1     1     0     0
## X712      1     1     0     1     0     1     1     0     0     1     0     0
## X713      1     0     0     1     0     0     1     0     0     1     1     0
## X714      1     1     0     1     1     1     1     1     1     1     0     0
## X715      0     0     1     0     0     0     1     1     0     1     1     0
## X717      0     0     0     1     0     0     1     0     0     1     0     0
## X718      0     0     1     1     1     0     1     1     1     1     0     1
## X721      0     0     1     0     0     0     1     0     0     1     1     1
## X722      0     1     0     1     0     1     1     0     0     1     0     1
## X723      0     0     0     0     1     0     0     0     1     0     0     0
## X724      0     0     0     1     0     0     1     0     0     1     0     0
## X726      1     1     0     1     0     1     1     0     0     1     0     0
## X728      1     0     0     1     0     0     1     0     0     1     0     0
## X729      0     0     0     0     0     0     1     0     0     1     0     0
## X731      0     0     0     0     1     0     0     0     1     0     0     0
## X732      0     0     0     1     0     0     1     0     0     1     0     0
## X733      0     0     1     0     0     0     1     1     0     1     1     1
## X734      0     0     0     0     0     0     1     0     0     1     0     0
## X735      1     1     0     1     1     1     1     0     1     1     0     0
## X736      0     0     0     0     1     0     1     1     1     1     1     0
## X737      0     0     0     1     0     0     1     0     0     1     0     0
## X739      0     1     1     1     0     1     1     0     1     1     0     1
## X740      1     1     0     1     0     1     1     0     0     1     0     1
## X741      1     0     0     0     1     0     0     0     1     0     0     0
## X742      0     0     0     0     1     0     0     0     1     0     0     0
## X743      0     0     0     0     0     0     1     0     0     1     0     0
## X744      0     0     0     1     1     0     1     0     0     1     0     0
## X746      0     0     1     0     0     0     1     1     1     1     0     0
## X747      1     0     0     0     1     0     0     1     1     0     0     0
## X749      0     0     1     1     1     0     1     1     0     1     0     1
## X752      1     1     0     1     1     1     1     1     1     1     0     0
## X753      0     0     0     0     1     0     0     0     1     0     0     0
## X754      0     0     1     1     1     0     1     1     1     1     0     1
## X755      0     0     0     1     0     0     1     0     0     1     0     0
## X757      0     0     0     0     1     0     0     1     1     0     0     0
## X758      0     1     0     1     0     1     1     0     0     1     0     0
## X759      0     0     1     0     0     0     0     1     0     1     0     0
## X760      0     0     0     1     0     0     1     0     0     1     0     0
## X761      1     1     0     1     1     1     1     1     1     1     0     0
## X762      0     0     0     1     0     0     1     0     0     1     0     0
## X763      0     0     0     1     0     0     1     0     0     1     1     0
## X764      0     0     0     1     0     0     1     0     0     1     0     0
## X765      1     1     0     1     0     0     1     0     0     1     0     0
## X767      0     1     0     1     1     1     1     0     1     1     0     0
## X768      0     0     0     1     0     0     1     0     0     1     1     1
## X770      0     0     1     1     1     0     1     1     1     1     0     1
## X771      0     1     0     1     0     1     1     0     0     1     1     0
## X772      0     0     0     0     0     0     1     0     0     1     0     0
## X773      0     0     0     0     1     0     0     0     1     0     0     0
## X774      0     0     0     0     1     0     0     1     1     0     0     0
## X775      1     1     0     1     1     0     1     0     0     1     0     0
## X776      0     1     1     1     1     1     1     1     0     1     1     0
## X777      0     0     1     0     1     0     0     1     1     1     0     0
## X778      1     1     0     1     1     1     1     1     1     1     1     0
## X779      0     0     0     1     0     0     1     0     0     1     1     0
## X780      0     0     0     0     0     0     0     0     0     1     0     0
## X781      0     1     0     0     1     0     0     0     1     1     0     0
## X782      0     1     0     1     0     1     1     0     0     1     0     0
## X784      1     1     0     1     0     1     1     0     0     1     1     0
## X786      0     0     0     0     1     0     0     0     1     0     0     0
## X787      0     0     0     1     0     0     1     0     0     1     0     0
## X788      0     1     0     1     1     1     1     0     1     1     0     0
## X789      0     0     0     1     0     0     1     0     0     1     0     0
## X791      0     0     0     1     0     0     1     0     0     1     0     0
## X792      0     0     1     1     1     0     1     1     1     1     0     1
## X794      1     0     0     0     1     0     0     0     1     0     0     0
## X798      0     0     0     1     0     0     1     0     0     1     0     1
## X799      0     0     1     0     0     1     1     0     0     1     0     1
## X800      1     1     0     1     1     1     1     0     1     0     0     1
## X804      0     0     1     1     0     0     1     0     0     1     0     0
## X805      1     1     0     1     1     1     1     1     1     1     0     0
## X807      0     0     1     0     0     0     0     1     0     1     0     0
## X808      1     1     0     1     0     1     1     0     0     1     0     1
## X809      0     0     1     1     1     0     1     1     1     1     0     0
## X810      0     0     0     0     0     0     1     0     0     1     0     0
## X813      1     0     0     0     1     0     0     0     1     0     0     0
## X814      0     1     1     0     0     1     1     0     0     1     0     1
## X818      0     0     0     1     0     0     1     0     0     1     0     0
## X819      0     0     1     1     0     0     1     0     0     1     1     0
## X820      1     0     0     0     1     0     0     1     1     0     0     0
## X821      0     0     0     1     0     0     1     0     0     1     0     0
## X822      0     0     0     1     0     0     1     0     0     1     0     0
## X823      0     0     0     1     0     0     1     0     0     1     1     0
## X827      0     1     0     1     0     0     1     0     0     1     0     1
## X828      0     0     0     1     0     0     1     0     0     1     0     0
## X829      0     0     1     0     0     1     1     1     0     1     0     1
## X831      0     0     0     1     0     0     1     0     0     1     0     0
## X832      0     0     0     1     0     0     1     0     0     1     0     0
## X833      0     0     0     1     0     0     1     0     0     1     0     0
## X834      0     0     0     1     0     0     1     0     0     1     0     0
## X835      0     0     0     1     0     0     1     0     0     1     0     0
## X836      0     0     0     1     0     0     1     0     0     1     0     0
## X839      0     0     0     1     0     0     1     0     0     1     0     0
## X840      0     0     0     1     0     0     1     0     0     1     0     0
## X841      0     0     0     1     0     0     1     0     0     1     0     0
## X842      0     0     0     1     0     0     1     0     0     1     0     0
## X843      0     0     0     1     0     0     1     0     0     1     0     0
## X846      0     0     0     1     0     0     1     0     0     1     0     0
## X848      0     0     0     1     0     0     1     0     0     1     0     0
## X849      0     0     0     1     0     0     1     0     0     1     0     0
## X851      1     1     0     1     1     1     1     1     1     1     0     1
## X854      0     0     0     1     0     0     1     0     0     1     0     0
## X855      0     0     0     1     0     0     1     0     0     1     1     1
## X856      0     0     0     1     0     0     1     0     0     1     0     0
## X857      0     0     0     1     0     0     1     0     0     1     0     0
## X858      0     0     0     1     0     0     1     0     0     1     0     0
## X859      0     0     0     1     0     0     1     0     0     1     0     0
## X860      0     0     0     1     0     0     1     0     0     1     0     0
## X862      0     0     0     1     0     0     1     0     0     1     0     0
## X863      0     0     0     1     0     0     1     0     0     1     0     0
## X864      0     0     0     1     1     0     1     0     0     1     0     0
## X865      0     0     0     1     0     0     1     0     0     1     0     0
## X866      0     0     0     1     0     0     1     0     0     1     0     0
## X867      0     0     0     1     0     0     1     0     0     1     0     0
## X869      0     0     1     1     0     0     1     0     0     1     0     1
## X870      0     0     0     1     0     0     1     0     0     1     0     0
## X871      0     0     0     1     0     0     1     0     0     1     0     0
## X872      0     0     0     1     0     0     1     0     0     1     0     0
## X873      0     0     0     1     0     0     1     0     0     1     0     0
## X875      0     0     0     1     0     0     1     0     0     1     0     0
## X876      0     0     0     1     0     0     1     0     0     1     0     0
## X877      0     0     0     1     0     0     1     0     0     1     0     0
## X1190     0     1     0     1     0     1     1     0     0     1     0     0
## X1191     0     0     0     0     1     0     0     1     1     0     0     0
## X1192     1     1     0     1     1     1     1     0     1     1     0     0
## X1193     0     0     0     0     0     0     1     0     0     1     0     0
## X1194     1     1     0     1     1     1     1     1     1     1     0     0
## X1195     0     0     0     0     0     0     1     0     0     1     0     0
## X1197     0     0     0     0     1     0     1     0     1     0     0     0
## X1198     0     0     0     0     0     0     1     0     0     1     0     0
## X1199     0     0     1     0     0     0     1     0     0     1     1     1
## X1200     0     0     1     0     0     0     0     1     0     1     0     0
## X1201     0     1     1     1     1     1     1     1     1     1     0     1
## X1202     1     1     0     1     1     1     1     1     1     1     0     0
## X1203     0     0     0     0     1     0     0     0     0     0     0     0
## X1204     1     1     1     1     0     1     1     0     0     1     1     1
## X1205     1     0     0     1     0     0     1     0     0     1     1     1
## X1206     0     0     0     0     0     0     0     0     0     1     0     0
## X1207     0     0     1     1     0     0     1     1     1     1     0     1
## X1208     0     1     0     1     1     1     1     0     1     1     0     1
## X1209     1     1     0     0     0     1     1     0     0     1     0     0
## X1210     1     1     0     1     1     1     1     0     1     1     0     0
## X1212     1     1     0     1     1     1     1     0     1     1     0     0
## X1213     0     0     1     1     1     0     1     1     1     1     0     1
## X1215     1     1     0     1     1     1     1     1     1     1     0     1
## X1216     0     0     0     1     0     0     1     0     0     1     0     1
## X1217     1     1     0     1     0     0     1     0     0     1     0     1
## X1219     1     1     0     1     0     1     1     0     0     1     0     0
## X1220     1     1     1     1     1     1     1     1     0     1     0     1
## X1221     0     0     0     0     1     0     0     1     1     0     0     0
## X1222     0     0     1     1     1     0     1     1     1     1     0     0
## X1226     0     0     1     1     1     0     1     1     1     1     0     1
## X1228     0     1     1     0     0     1     1     0     0     1     0     0
## X1229     1     1     0     1     1     1     1     1     1     1     0     0
## X1230     0     0     0     1     0     1     1     0     0     1     0     1
## X1231     0     0     0     1     1     0     1     0     0     1     0     0
## X1233     1     1     0     1     1     1     1     0     1     1     0     0
## X1234     0     0     0     1     0     0     1     0     0     1     0     0
## X1236     0     1     0     1     1     1     1     0     1     1     0     0
## X1237     0     0     1     0     0     1     1     0     0     1     0     1
## X1239     0     0     1     0     0     0     0     1     0     1     0     0
## X1242     0     0     0     0     0     0     0     0     0     1     0     0
## X1244     0     0     0     1     0     0     1     0     0     1     0     0
## X1245     0     0     0     0     1     0     1     0     1     0     0     0
## X1246     1     1     0     1     1     1     1     0     1     1     0     0
## X1247     0     1     0     1     0     1     1     1     0     1     0     0
## X1249     0     1     1     1     0     1     1     1     0     1     0     1
## X1250     1     1     0     0     0     1     1     0     0     1     0     0
## X1251     0     0     1     0     0     0     1     0     0     1     0     0
## X1253     0     0     1     0     0     0     1     1     0     1     0     0
## X1254     0     0     0     1     0     0     1     0     0     1     0     0
## X1255     0     0     0     1     0     0     1     0     0     1     0     0
## X1256     0     0     0     1     1     0     1     0     0     1     0     0
## X1257     0     0     0     1     0     0     1     0     0     1     0     0
## X1259     0     1     0     1     0     0     1     0     0     1     0     1
## X1260     0     0     0     1     0     0     1     0     0     1     0     0
## X1262     0     1     0     1     0     1     1     1     0     1     0     0
## X1264     0     0     0     0     0     0     1     0     0     1     0     0
## X1265     0     0     0     1     0     0     1     0     0     1     0     0
## X1266     0     0     0     1     0     0     1     0     0     1     0     0
## X1267     1     1     0     1     0     1     1     0     0     1     0     0
## X1268     1     0     0     0     1     0     0     0     1     0     0     0
## X1273     0     0     0     1     0     0     1     0     0     1     0     0
## X1274     1     0     0     0     1     0     0     1     1     0     0     0
## X1275     0     0     0     1     0     0     1     0     0     1     0     0
## X1276     0     0     0     1     0     0     1     0     0     1     0     0
## X1277     0     0     0     1     0     0     1     0     0     1     0     0
## X1278     0     0     0     1     0     0     1     0     0     1     0     0
## X1279     0     0     0     1     0     0     1     0     0     1     0     0
## X1281     0     0     0     1     0     0     1     0     0     1     0     0
## X1282     0     0     0     1     0     0     1     0     0     1     0     0
## X1283     0     0     0     1     0     0     1     0     0     1     0     0
## X1284     0     0     0     1     0     0     1     0     0     1     0     0
## X1285     0     0     0     1     0     0     1     0     0     1     0     0
## X1288     0     0     0     1     0     0     1     0     0     1     0     0
## X1299     0     0     1     1     0     1     1     0     0     1     1     1
## X1301     1     1     0     1     1     1     1     0     1     1     0     0
## X1302     0     0     0     0     0     0     1     0     0     0     0     0
## X1307     0     0     1     0     0     1     1     1     0     1     0     1
## X1309     0     0     0     1     0     0     1     0     0     1     0     0
## X1310     0     0     0     0     0     0     1     0     0     1     0     0
## X447      1     1     0     0     0     1     1     1     0     1     0     0
## X448      1     1     1     1     0     1     1     0     0     1     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     1     1     0     1     0     0
## X453      1     1     0     1     0     1     1     0     0     1     0     1
## X454      0     0     1     1     0     1     1     0     0     1     1     1
## X455      1     1     0     0     0     1     1     0     0     1     0     0
## X456      0     1     0     1     1     0     1     1     0     1     1     1
## X458      0     1     1     1     0     1     1     0     0     1     1     1
## X459      0     1     0     0     1     0     0     0     1     0     0     0
## X460      0     0     0     0     1     0     1     0     0     0     0     0
## X461      1     0     0     0     0     0     1     0     0     1     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     1
## X463      0     0     1     1     1     0     1     1     0     1     1     1
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      1     1     0     1     1     1     1     0     0     1     0     1
## X466      1     0     1     0     0     1     1     1     0     1     0     1
## X468      0     0     1     0     1     0     0     1     1     0     1     0
## X471      0     1     0     0     0     0     1     0     0     1     1     0
## X472      0     0     0     0     1     0     0     0     1     0     0     0
## X473      0     0     0     0     1     0     0     0     0     0     0     0
## X476      1     0     0     1     0     0     1     0     0     1     0     0
## X477      0     0     1     1     0     1     1     0     0     1     1     1
## X478      0     0     0     0     1     0     0     0     0     0     0     0
## X479      0     0     0     0     1     0     0     0     1     0     0     0
## X480      0     0     0     1     0     0     1     0     0     1     0     1
## X482      0     0     0     0     0     0     0     0     0     1     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     1     0     0     1     0     0     1     1     0
## X486      0     0     0     0     1     0     0     1     1     0     0     0
## X487      0     1     1     0     1     1     1     1     0     1     0     0
## X488      1     1     0     0     1     1     1     1     1     1     0     0
## X489      1     0     0     0     0     0     1     0     0     1     0     0
## X490      0     0     1     0     0     0     1     1     1     1     0     0
## X491      0     0     0     0     1     0     0     1     1     0     0     0
## X492      0     0     1     1     1     1     1     0     0     1     1     1
## X493      1     0     0     0     1     0     0     0     1     0     0     0
## X494      1     0     0     0     0     0     1     0     0     1     1     1
## X495      1     1     1     1     1     1     1     1     0     1     0     1
## X496      0     0     1     1     0     0     1     0     0     1     1     1
## X497      0     0     0     1     0     0     1     0     0     1     0     1
## X498      1     1     0     0     0     1     1     0     0     1     0     0
## X499      0     0     0     0     0     0     1     0     0     1     0     0
## X501      0     0     1     0     0     1     1     0     0     1     0     1
## X502      0     0     0     0     0     0     1     0     0     1     0     0
## X503      1     1     0     1     0     1     1     0     0     1     0     1
## X505      0     0     0     0     0     0     1     0     0     1     1     0
## X506      0     0     1     1     0     0     1     0     0     1     1     1
## X507      0     1     1     1     0     1     1     0     0     1     1     1
## X508      1     1     0     0     0     1     1     0     0     1     1     0
## X509      1     1     1     1     0     1     1     0     0     1     1     0
## X510      0     0     0     1     0     1     1     0     0     1     1     1
## X513      0     0     0     0     1     0     0     1     1     0     0     0
## X514      0     0     1     0     0     0     1     0     0     1     1     1
## X515      1     1     0     1     0     1     1     0     0     1     0     0
## X516      0     1     0     0     0     1     1     0     0     1     0     0
## X518      0     1     1     0     0     1     1     0     0     1     1     0
## X521      0     0     1     1     0     1     1     0     0     1     1     1
## X523      0     0     0     0     0     0     1     1     0     1     0     0
## X524      0     0     0     0     0     0     1     0     0     1     1     0
## X525      0     0     1     0     1     1     1     0     0     1     1     1
## X526      1     0     0     0     1     0     0     1     1     0     0     0
## X530      0     0     1     0     0     0     1     1     0     1     0     0
## X531      1     0     0     0     0     0     1     0     1     1     1     0
## X532      0     0     1     0     0     0     1     1     0     1     1     1
## X533      0     0     1     1     0     1     1     0     0     1     1     1
## X534      0     0     1     0     1     0     1     1     1     1     1     0
## X535      0     0     0     0     0     0     1     0     0     1     0     0
## X536      1     1     1     1     1     0     1     1     0     1     0     1
## X538      1     1     0     1     0     1     1     0     0     1     0     1
## X539      1     1     1     1     1     0     1     1     0     1     0     1
## X542      1     1     0     1     1     1     1     1     1     1     0     0
## X543      0     0     0     0     1     0     0     1     1     0     0     0
## X544      1     1     1     1     0     1     1     0     0     1     1     0
## X545      0     0     1     0     1     0     0     1     1     1     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     1     0     0     0     1     1     0     0     1     0     0
## X549      0     0     0     0     0     0     1     0     0     1     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     1     1     1     1     1     1     1     1     1     0     1
## X553      0     1     1     1     1     0     1     1     0     1     1     1
## X554      0     0     1     0     0     0     1     1     0     1     1     1
## X556      1     1     0     1     0     1     1     0     0     1     0     0
## X557      0     1     1     0     1     1     1     1     0     1     1     0
## X558      0     0     1     0     0     0     1     0     0     1     0     1
## X559      0     0     0     0     1     0     0     0     1     0     0     0
## X560      0     0     0     0     0     0     1     0     0     1     0     0
## X561      0     0     0     0     0     0     1     0     0     1     0     0
## X562      0     0     0     0     0     0     1     0     0     1     0     0
## X563      1     0     0     1     0     0     1     0     0     1     0     0
## X565      0     0     0     0     1     0     0     0     1     0     0     0
## X566      0     0     0     0     0     0     1     0     0     1     1     0
## X567      0     0     1     0     0     0     1     0     0     1     1     0
## X568      0     0     0     0     0     0     1     0     0     1     1     0
## X569      0     0     1     0     0     0     1     1     1     1     0     0
## X571      0     0     0     0     0     0     1     0     0     1     1     0
## X572      0     0     1     0     1     0     1     1     1     1     1     0
## X574      0     0     0     0     1     0     1     0     1     0     0     0
## X576      0     0     1     1     0     1     1     0     0     1     1     1
## X577      0     1     1     1     0     1     1     0     0     1     1     0
## X579      0     1     0     0     0     0     1     0     0     1     1     1
## X580      1     1     0     0     0     1     1     0     0     1     0     0
## X582      0     1     0     0     1     0     0     0     1     0     0     0
## X583      0     0     0     0     0     0     1     0     0     1     0     0
## X584      0     1     1     1     1     1     1     1     0     1     0     1
## X586      0     0     1     0     0     1     1     1     0     1     0     1
## X587      0     0     0     1     0     0     1     0     0     1     0     1
## X588      0     0     1     0     1     1     1     0     1     1     1     1
## X589      1     1     0     1     1     1     1     0     1     1     0     0
## X591      1     1     1     1     1     1     1     1     0     1     0     1
## X592      0     0     0     0     1     0     1     0     1     0     0     0
## X593      1     1     1     1     0     0     1     1     0     1     0     1
## X594      0     0     0     0     1     0     0     0     1     0     0     0
## X595      0     0     1     0     0     0     0     1     0     1     0     0
## X596      0     0     1     0     1     0     1     1     1     1     1     0
## X597      0     1     1     1     1     0     1     1     1     1     0     1
## X598      1     0     0     0     1     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     1     0     0     1     0     0
## X600      0     1     1     0     0     1     1     1     0     1     0     1
## X603      1     0     0     0     1     0     0     0     1     0     0     0
## X604      0     0     1     0     1     1     1     0     1     1     1     1
## X605      0     1     0     1     1     1     1     0     1     1     0     0
## X606      0     0     0     0     1     0     1     1     1     1     0     0
## X608      0     0     0     0     0     0     1     0     0     1     0     0
## X609      0     0     1     1     0     0     1     0     0     1     1     1
## X611      0     0     0     0     1     0     0     0     0     0     0     0
## X612      0     0     1     0     0     0     1     0     0     1     1     0
## X613      0     0     0     0     0     0     1     0     0     1     0     0
## X614      0     0     0     0     0     0     1     0     0     1     0     0
## X616      0     0     0     0     0     0     0     0     1     1     0     0
## X617      0     1     1     1     0     1     1     1     0     1     0     0
## X619      0     0     1     1     0     1     1     0     0     1     1     1
## X620      0     0     0     0     0     0     1     0     0     1     0     0
## X621      1     1     0     1     0     1     1     0     0     1     1     0
## X622      0     0     0     1     0     0     1     0     0     1     0     0
## X623      1     0     1     1     0     1     1     0     0     1     1     1
## X625      0     1     1     0     0     1     1     0     0     1     0     1
## X628      1     1     0     1     1     1     1     1     1     1     0     0
## X629      1     1     0     1     1     1     1     0     1     1     0     0
## X630      0     0     1     1     1     0     1     1     1     1     1     1
## X631      0     0     0     0     1     0     0     0     1     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      1     1     0     0     1     1     1     1     0     1     0     0
## X635      0     0     1     0     1     0     1     1     0     1     1     1
## X636      1     1     0     1     1     1     1     1     1     1     0     0
## X637      0     1     0     1     1     1     1     0     1     1     0     0
## X638      1     1     0     1     0     0     1     0     0     1     0     0
## X639      0     0     1     1     0     0     1     0     0     1     1     1
## X641      1     1     1     1     1     1     1     0     1     1     0     1
## X648      1     1     1     1     0     1     1     0     0     1     1     0
## X650      0     1     1     0     0     1     1     1     0     1     1     1
## X651      0     0     1     1     1     1     1     0     1     1     0     1
## X653      1     1     0     1     1     1     1     0     1     1     0     0
## X654      0     1     1     0     1     1     1     1     1     1     0     0
## X655      0     0     0     0     0     0     1     0     1     1     0     0
## X656      0     0     0     1     0     0     1     0     0     1     0     0
## X657      0     0     0     0     1     0     1     1     1     1     1     0
## X1082     0     0     0     0     0     0     0     0     1     1     0     0
## X1083     1     1     0     1     0     0     1     0     0     1     0     0
## X1084     1     1     0     0     1     1     1     0     1     1     0     0
## X1086     0     0     0     0     0     0     1     0     0     0     0     0
## X1088     0     0     1     0     0     0     1     0     0     1     1     0
## X1089     0     0     0     0     0     0     1     0     0     1     1     1
## X1090     1     1     0     0     0     1     1     0     0     1     1     0
## X1091     1     1     0     0     1     1     1     0     1     1     0     0
## X1092     0     1     0     0     1     0     0     0     1     0     0     0
## X1093     0     0     1     0     0     1     0     0     0     1     0     1
## X1094     1     0     0     0     0     0     1     0     0     1     0     0
## X1095     0     0     1     0     0     1     1     0     0     1     1     1
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     1     1     1     1     1     0     0     1     1     1
## X1101     0     0     1     1     0     1     1     0     0     1     1     1
## X1103     1     1     0     1     0     1     1     1     0     1     0     1
## X1104     0     0     1     1     0     0     1     0     0     1     1     1
## X1105     0     0     1     1     0     0     1     0     0     1     1     1
## X1106     0     0     0     0     1     0     0     1     1     0     1     0
## X1108     0     0     0     0     0     0     1     0     0     1     0     0
## X1110     0     0     0     0     0     0     1     0     0     0     0     0
## X1112     0     0     1     1     0     0     1     0     0     1     1     1
## X1113     1     1     0     1     0     1     1     0     0     1     0     0
## X1115     1     1     0     1     0     0     1     0     0     1     0     0
## X1116     0     0     1     0     0     0     1     0     0     1     0     0
## X1117     1     0     0     0     0     0     1     0     0     1     1     0
## X1119     1     1     0     0     0     1     1     1     0     1     0     0
## X1120     1     1     0     1     1     1     1     1     1     1     0     0
## X1121     1     1     1     1     1     1     1     1     0     1     1     1
## X1122     1     1     0     1     1     1     1     1     1     1     0     0
## X1124     0     1     0     1     0     1     1     0     0     1     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     1     0     0     1     0     0
## X1127     0     0     0     0     1     0     1     0     0     1     0     0
## X1128     0     0     0     0     0     0     1     0     0     1     1     0
## X1129     0     0     0     0     0     0     1     0     0     1     0     0
## X1130     1     0     0     0     0     0     1     0     0     1     0     0
## X1131     0     0     0     0     1     0     1     0     0     0     0     0
## X1133     0     0     0     1     0     1     1     0     0     1     1     1
## X1135     0     0     0     0     1     0     0     0     1     0     0     0
## X1136     0     0     0     0     0     0     1     0     0     1     0     0
## X1138     1     1     0     1     0     1     1     0     1     1     1     1
## X1139     1     1     0     1     1     1     1     1     1     1     0     0
## X1141     0     0     0     0     0     0     0     0     1     0     0     0
## X1142     0     0     0     0     0     0     1     0     0     1     0     0
## X1143     0     1     1     1     1     1     1     0     1     1     0     1
## X1144     1     1     1     1     1     1     1     1     1     1     0     1
## X1145     0     0     1     1     0     1     1     0     0     1     1     1
## X1146     0     0     1     0     1     0     0     1     1     0     1     0
## X1147     0     0     1     0     1     0     0     1     1     1     0     0
## X1149     0     1     1     0     0     0     1     0     0     1     1     0
## X1150     0     0     0     0     1     0     0     1     1     0     0     0
## X1151     0     0     1     0     1     0     1     1     0     1     0     0
## X1152     0     1     1     1     1     0     1     1     0     1     0     1
## X1153     0     0     1     0     0     0     0     0     0     1     1     1
## X1156     1     0     0     0     1     0     0     0     1     0     0     0
## X1158     1     1     0     1     0     1     1     0     0     1     0     1
## X1159     0     1     0     1     0     1     1     0     0     1     0     1
## X1160     1     1     0     1     0     1     1     1     0     1     0     1
##       FP085 FP086 FP087 FP088 FP089 FP090 FP091 FP092 FP093 FP094 FP095 FP096
## X661      0     0     1     0     1     0     1     0     0     0     0     0
## X662      1     0     1     1     1     1     1     0     1     0     0     0
## X663      0     0     1     0     0     0     0     0     0     0     0     0
## X665      0     1     1     0     0     1     0     0     1     0     0     0
## X668      0     1     1     0     0     0     1     1     0     1     0     0
## X669      0     0     0     0     0     0     0     1     0     0     0     0
## X670      1     0     1     0     1     0     1     1     0     0     0     0
## X671      0     1     0     1     0     1     0     0     1     1     0     0
## X672      0     1     1     1     0     1     0     1     1     0     1     1
## X673      0     1     1     0     0     1     1     0     1     0     1     0
## X674      1     0     1     0     0     0     0     0     0     0     0     1
## X676      0     1     1     1     0     1     0     0     1     0     0     0
## X677      0     0     1     0     1     0     0     0     0     0     0     0
## X678      0     0     1     0     1     0     0     1     0     0     0     0
## X679      0     0     1     0     0     0     0     0     0     1     0     0
## X682      0     0     1     0     1     0     0     0     0     0     0     1
## X683      1     1     1     0     0     0     1     0     0     1     0     1
## X684      1     0     1     1     1     1     1     1     1     0     0     0
## X685      0     1     1     1     0     1     0     0     1     0     0     0
## X686      0     0     1     0     1     0     0     0     0     1     0     0
## X688      1     0     1     0     1     0     0     1     0     0     0     1
## X689      1     1     1     0     1     0     1     0     1     0     0     0
## X690      1     1     1     1     0     1     0     0     1     1     0     0
## X691      0     0     1     0     0     1     1     1     1     0     1     0
## X692      0     0     1     0     0     0     0     0     0     0     0     1
## X693      0     0     1     0     0     1     1     0     1     0     1     1
## X695      1     0     1     0     1     0     1     0     0     0     0     0
## X696      0     0     1     0     1     0     1     0     0     0     0     0
## X698      0     0     1     0     0     0     0     0     0     0     0     0
## X699      1     0     1     0     0     0     0     1     0     0     0     0
## X700      0     1     0     0     0     1     0     0     1     1     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     1     1     0     0     1     0     0     1     0     0     0
## X704      0     0     1     0     1     0     0     0     0     0     0     0
## X706      1     1     1     0     0     0     0     0     0     0     0     1
## X708      0     0     1     0     1     0     0     0     0     0     0     0
## X709      0     1     1     0     0     1     0     0     1     0     0     0
## X711      0     1     1     1     0     1     0     0     1     0     1     1
## X712      0     0     1     0     1     1     0     0     0     1     1     0
## X713      1     0     1     0     1     0     0     1     0     0     1     0
## X714      0     1     1     1     0     1     0     0     1     0     1     1
## X715      0     0     1     0     0     1     0     1     0     0     0     0
## X717      0     0     1     0     1     0     0     1     0     0     0     0
## X718      1     1     1     0     1     1     1     1     1     0     0     0
## X721      0     0     1     0     0     0     1     1     0     0     1     0
## X722      0     0     1     0     1     0     0     1     0     0     0     0
## X723      0     1     0     0     0     1     0     0     1     1     0     0
## X724      0     0     1     0     1     0     1     0     0     0     0     0
## X726      1     0     1     0     1     0     0     1     0     0     0     0
## X728      1     0     1     0     1     0     0     1     0     0     0     0
## X729      1     0     1     0     0     0     0     1     0     0     0     0
## X731      0     1     0     0     0     1     0     0     1     1     0     0
## X732      1     0     1     0     1     0     0     1     0     0     0     0
## X733      0     0     1     0     0     0     1     1     0     1     1     0
## X734      1     0     1     0     0     0     0     1     0     0     0     0
## X735      0     1     1     1     0     1     0     0     1     0     0     0
## X736      0     1     1     1     0     1     0     0     1     1     0     0
## X737      0     0     1     0     1     0     0     0     0     0     0     0
## X739      1     0     1     1     0     0     0     1     0     0     0     1
## X740      1     1     1     1     1     0     0     1     0     0     0     1
## X741      0     1     0     1     0     1     0     0     1     1     0     0
## X742      0     1     0     1     0     1     0     0     1     1     0     0
## X743      1     0     1     0     0     0     0     1     0     0     0     0
## X744      0     0     1     0     1     0     0     0     1     0     0     0
## X746      1     0     1     0     0     0     0     0     0     0     0     1
## X747      0     1     0     1     0     1     0     0     1     1     0     0
## X749      1     1     1     1     1     1     1     1     1     0     0     0
## X752      0     1     1     1     0     1     0     1     1     1     1     1
## X753      0     0     1     0     0     1     0     0     1     1     0     0
## X754      1     1     1     0     1     1     1     0     1     0     0     0
## X755      0     0     1     0     1     0     0     0     0     0     0     0
## X757      0     1     0     0     0     1     0     0     1     1     0     0
## X758      0     0     1     0     1     0     0     0     0     0     0     0
## X759      0     1     0     0     0     0     1     0     0     1     0     0
## X760      0     0     1     0     1     0     0     1     0     0     0     0
## X761      0     1     1     1     0     1     0     1     1     0     1     1
## X762      1     0     1     0     1     0     0     0     0     0     0     0
## X763      1     0     1     0     1     0     1     1     0     0     1     0
## X764      0     0     1     0     1     0     0     0     0     0     0     0
## X765      0     0     1     0     1     0     0     1     0     0     0     1
## X767      0     1     1     1     0     1     0     1     1     0     0     1
## X768      0     0     1     0     1     0     0     0     0     0     0     0
## X770      1     1     1     0     1     0     1     1     0     0     0     0
## X771      1     0     1     0     0     0     0     1     0     0     0     1
## X772      1     0     1     0     0     0     0     1     0     0     0     0
## X773      0     1     0     0     0     1     0     0     1     1     0     0
## X774      0     1     0     0     0     1     0     0     1     1     0     0
## X775      0     0     1     1     1     0     0     0     0     0     0     1
## X776      1     0     1     0     1     1     1     1     1     0     1     1
## X777      0     1     0     0     0     0     0     0     1     1     0     0
## X778      0     1     1     1     0     1     0     0     1     0     1     1
## X779      0     0     1     0     1     0     0     0     0     0     0     0
## X780      0     0     1     0     0     0     0     1     0     0     0     0
## X781      0     1     0     1     0     1     0     0     1     0     0     1
## X782      1     0     1     0     1     0     0     0     0     0     0     0
## X784      1     0     1     0     1     0     0     1     0     0     1     1
## X786      0     1     0     0     0     1     0     0     1     1     0     0
## X787      1     0     1     0     1     0     0     1     0     0     0     0
## X788      0     1     1     1     0     1     0     0     1     0     0     0
## X789      1     0     1     0     1     0     0     1     0     0     0     0
## X791      1     0     1     0     1     0     0     1     0     0     0     0
## X792      1     1     1     0     1     0     1     1     0     0     0     0
## X794      0     1     0     1     0     1     0     0     1     1     0     0
## X798      0     0     1     0     1     0     1     0     0     0     0     0
## X799      0     0     1     0     0     1     0     1     0     0     0     0
## X800      0     1     1     1     0     1     0     0     1     0     0     0
## X804      1     0     1     0     1     0     1     0     0     0     0     0
## X805      0     1     1     1     0     1     0     0     1     0     1     1
## X807      0     0     0     0     0     0     0     0     1     1     0     1
## X808      1     1     1     1     1     0     0     0     0     0     0     1
## X809      1     1     1     1     1     0     0     0     0     1     0     1
## X810      0     0     1     0     0     0     0     1     0     0     0     0
## X813      0     1     0     1     0     1     0     0     1     1     0     0
## X814      1     0     1     0     0     0     1     1     0     0     0     1
## X818      1     0     1     0     1     0     0     1     0     0     0     0
## X819      1     0     1     0     1     0     1     1     0     0     1     0
## X820      0     1     0     1     0     1     0     0     1     1     0     0
## X821      1     0     1     0     1     0     0     1     0     0     0     0
## X822      0     0     1     0     1     0     0     0     0     0     0     0
## X823      0     0     1     0     1     0     0     0     0     0     0     0
## X827      0     0     1     0     0     0     0     1     0     0     0     0
## X828      1     0     1     0     1     0     0     1     0     0     0     0
## X829      1     0     1     0     0     0     0     0     1     1     0     1
## X831      1     0     1     0     1     0     0     1     0     0     0     0
## X832      1     0     1     0     1     0     0     1     0     0     0     0
## X833      1     0     1     0     1     0     0     1     0     0     0     0
## X834      1     0     1     0     1     0     0     1     0     0     0     0
## X835      0     0     1     0     1     0     0     1     0     0     0     0
## X836      1     0     1     0     1     0     0     1     0     0     0     0
## X839      1     0     1     0     1     0     0     0     0     0     0     0
## X840      0     0     1     0     1     0     0     0     0     0     0     0
## X841      1     0     1     0     1     0     0     1     0     0     0     0
## X842      0     0     1     0     1     0     0     0     0     1     0     0
## X843      0     0     1     0     1     0     0     1     0     0     0     0
## X846      0     0     1     0     1     0     0     0     0     0     0     0
## X848      1     0     1     0     1     0     0     1     0     0     0     0
## X849      1     0     1     0     1     0     0     1     0     0     0     0
## X851      0     1     1     1     0     1     0     0     1     0     0     1
## X854      1     0     1     0     1     0     0     1     0     0     0     0
## X855      0     0     1     0     1     0     0     0     0     0     0     0
## X856      1     0     1     0     1     0     0     1     0     0     0     0
## X857      1     0     1     0     1     0     0     1     0     0     0     0
## X858      1     0     1     0     1     0     0     1     0     0     0     0
## X859      1     0     1     0     1     0     0     1     0     0     0     0
## X860      1     0     1     0     1     0     0     1     0     0     0     0
## X862      1     0     1     0     1     0     0     1     0     0     0     0
## X863      1     0     1     0     1     0     0     1     0     0     0     0
## X864      1     1     1     0     1     0     0     0     1     0     0     0
## X865      1     0     1     0     1     0     0     0     0     0     0     0
## X866      1     0     1     0     1     0     0     1     0     0     0     0
## X867      0     0     1     0     1     0     0     0     0     0     0     0
## X869      0     0     1     0     1     0     1     1     0     0     0     0
## X870      1     0     1     0     1     0     0     1     0     0     0     0
## X871      1     0     1     0     1     0     0     1     0     0     0     0
## X872      1     0     1     0     1     0     0     1     0     0     0     0
## X873      0     0     1     0     1     0     0     0     0     0     0     0
## X875      1     0     1     0     1     0     0     1     0     0     0     0
## X876      1     0     1     0     1     0     0     1     0     0     0     0
## X877      1     0     1     0     1     0     0     1     0     0     0     0
## X1190     0     0     1     0     1     0     0     0     0     0     0     0
## X1191     0     1     0     0     0     1     0     0     1     1     0     0
## X1192     0     1     1     1     0     1     0     0     1     0     0     0
## X1193     1     0     1     0     0     0     0     0     0     0     0     0
## X1194     0     1     1     1     0     1     0     0     1     0     0     1
## X1195     1     0     1     0     0     0     0     1     0     0     0     0
## X1197     0     1     1     0     0     0     0     0     0     1     0     0
## X1198     0     0     1     0     0     0     0     1     0     0     0     0
## X1199     0     0     1     0     0     0     1     0     0     0     1     0
## X1200     0     1     0     0     0     0     0     0     1     1     0     0
## X1201     1     1     1     0     1     0     0     0     0     0     0     1
## X1202     0     1     1     1     0     1     0     1     1     0     1     1
## X1203     0     0     1     0     0     1     0     0     1     0     0     0
## X1204     1     0     1     0     1     0     1     0     0     0     1     1
## X1205     1     0     1     0     1     0     1     1     0     0     1     0
## X1206     0     0     0     0     0     0     0     1     0     0     0     0
## X1207     1     1     1     0     1     0     1     0     0     0     0     0
## X1208     0     1     1     1     0     1     0     0     1     0     0     1
## X1209     1     0     1     0     0     0     0     1     0     0     0     0
## X1210     0     1     1     1     0     1     0     0     1     0     1     1
## X1212     1     1     1     1     0     1     0     0     1     0     1     0
## X1213     1     1     1     0     1     0     1     0     0     0     0     0
## X1215     0     1     1     1     0     1     0     1     1     0     1     1
## X1216     0     0     1     0     1     0     0     0     0     0     0     0
## X1217     1     0     1     0     1     0     1     1     0     0     0     0
## X1219     0     0     1     0     1     1     0     0     0     1     1     0
## X1220     0     0     1     1     1     1     0     1     1     0     0     0
## X1221     0     1     0     0     0     1     0     0     1     1     0     0
## X1222     1     1     1     0     1     0     0     0     0     0     0     0
## X1226     1     1     1     0     1     1     1     1     1     0     0     0
## X1228     1     0     1     0     0     0     0     0     0     0     0     1
## X1229     0     1     1     1     0     1     0     0     1     0     1     1
## X1230     1     0     1     0     1     0     0     0     0     0     0     0
## X1231     0     0     1     0     1     0     0     0     0     0     0     0
## X1233     0     1     1     1     0     1     0     0     1     0     0     0
## X1234     1     0     1     0     1     0     0     0     0     0     0     0
## X1236     0     1     1     1     0     1     0     0     1     0     0     1
## X1237     1     0     1     0     0     0     0     1     0     0     0     1
## X1239     0     0     0     0     0     0     0     1     0     0     0     0
## X1242     0     0     0     0     0     0     0     1     0     0     0     0
## X1244     0     0     1     0     1     0     0     1     0     0     0     0
## X1245     0     1     1     0     0     1     0     0     1     1     0     0
## X1246     1     1     1     1     1     1     0     0     1     0     0     0
## X1247     0     0     1     0     1     0     0     0     0     0     0     1
## X1249     1     0     1     0     0     0     0     1     1     1     0     1
## X1250     0     0     1     0     0     0     0     1     0     0     0     0
## X1251     1     0     1     0     0     0     1     1     0     0     0     0
## X1253     0     0     1     0     0     0     0     1     1     1     0     0
## X1254     0     0     1     0     1     0     0     1     0     0     0     0
## X1255     0     0     1     0     1     0     0     0     0     0     0     0
## X1256     0     0     1     0     1     0     0     0     1     0     0     0
## X1257     1     0     1     0     1     0     0     1     0     0     0     0
## X1259     0     0     1     0     0     0     0     1     0     0     0     0
## X1260     1     0     1     0     1     0     0     1     0     0     0     0
## X1262     0     0     1     0     1     0     0     1     0     0     0     1
## X1264     0     0     1     0     0     0     0     1     0     0     0     0
## X1265     1     0     1     0     1     0     0     1     0     0     0     0
## X1266     1     0     1     0     1     0     0     1     0     0     0     0
## X1267     1     0     1     0     1     0     0     0     0     0     1     1
## X1268     0     1     0     1     0     1     0     0     1     1     0     0
## X1273     1     0     1     0     1     0     0     1     0     0     0     0
## X1274     0     1     0     1     0     1     0     0     1     1     0     0
## X1275     0     0     1     0     0     0     0     1     0     0     0     0
## X1276     0     0     1     0     1     0     0     0     0     0     0     0
## X1277     1     0     1     0     1     0     0     1     0     0     0     0
## X1278     1     0     1     0     1     0     0     0     0     0     0     0
## X1279     0     0     1     0     1     0     0     0     0     0     0     0
## X1281     1     0     1     0     1     0     0     1     0     0     0     0
## X1282     1     0     1     0     1     0     0     1     0     0     0     0
## X1283     1     0     1     0     1     0     0     0     0     0     0     0
## X1284     0     0     1     0     1     0     0     0     0     0     0     0
## X1285     1     0     1     0     1     0     0     1     0     0     0     0
## X1288     1     0     1     0     1     0     0     1     0     0     0     0
## X1299     0     0     1     0     1     0     1     0     0     0     1     0
## X1301     0     1     1     1     0     1     0     0     1     0     0     0
## X1302     0     0     1     0     0     0     0     1     0     0     0     0
## X1307     1     0     1     0     0     0     0     1     1     1     0     1
## X1309     0     0     1     0     1     0     0     1     0     0     0     0
## X1310     0     0     1     0     0     0     0     1     0     0     0     0
## X447      1     0     1     1     0     0     0     1     0     0     0     1
## X448      1     0     1     0     0     0     1     1     0     0     1     1
## X451      0     1     0     0     0     0     0     0     0     1     0     0
## X452      0     0     1     0     0     0     0     1     0     0     0     0
## X453      0     0     1     0     1     0     0     0     0     0     0     0
## X454      0     0     1     0     1     0     1     0     0     0     1     1
## X455      1     0     1     0     0     0     0     1     0     0     0     1
## X456      0     1     1     1     0     0     0     0     1     0     0     0
## X458      0     0     1     0     1     0     1     0     0     0     1     1
## X459      0     1     0     1     0     1     0     0     1     1     0     0
## X460      0     0     1     0     0     1     0     0     1     0     0     0
## X461      0     0     1     0     0     0     0     1     0     0     0     0
## X462      0     0     1     0     0     0     0     0     0     1     0     0
## X463      0     0     1     0     1     1     1     0     1     0     0     0
## X464      0     0     0     0     0     0     0     1     0     0     0     0
## X465      0     0     1     0     1     0     1     0     0     0     0     0
## X466      1     0     1     1     0     0     0     1     0     0     0     1
## X468      0     1     0     1     0     1     0     0     1     1     0     0
## X471      0     0     1     1     0     0     0     0     0     1     0     0
## X472      0     1     0     0     0     0     0     1     0     1     0     0
## X473      0     0     1     0     0     1     0     0     1     0     0     0
## X476      0     0     1     1     1     0     0     0     0     0     0     0
## X477      1     0     1     0     0     0     1     0     0     0     0     1
## X478      0     0     0     0     0     1     0     0     0     0     0     0
## X479      0     0     0     0     0     1     0     0     0     1     0     0
## X480      0     0     1     0     1     0     1     0     0     0     0     0
## X482      0     0     0     0     0     0     0     1     0     0     0     0
## X483      0     0     0     0     0     0     0     1     0     0     0     0
## X484      0     0     1     0     1     0     1     0     0     0     1     0
## X486      0     1     0     1     0     1     0     0     1     1     0     0
## X487      0     1     1     1     0     1     0     0     0     1     0     1
## X488      0     1     1     1     0     0     0     0     0     1     0     1
## X489      1     0     1     0     0     0     0     1     0     0     0     0
## X490      1     0     1     1     0     0     0     0     1     1     0     0
## X491      0     1     0     0     0     1     0     0     0     1     0     0
## X492      0     1     1     0     0     1     1     0     1     0     0     1
## X493      0     1     0     1     0     1     0     0     1     1     0     0
## X494      1     0     1     0     0     0     1     1     0     0     1     0
## X495      0     0     1     0     1     1     1     0     1     0     0     0
## X496      1     0     1     0     0     0     1     0     0     0     0     0
## X497      0     0     1     0     1     0     0     0     0     0     0     0
## X498      1     0     1     0     0     0     0     1     0     0     0     0
## X499      1     0     1     0     0     0     0     0     0     0     0     0
## X501      1     0     1     0     0     0     1     1     0     0     0     1
## X502      0     0     1     0     0     0     0     0     0     0     0     0
## X503      1     0     1     0     0     1     1     0     1     1     1     0
## X505      0     0     1     0     0     0     0     1     0     0     0     0
## X506      0     0     1     0     1     0     1     0     0     0     1     0
## X507      1     0     1     0     1     0     1     0     0     0     1     1
## X508      1     0     1     0     0     0     0     1     0     0     1     1
## X509      1     0     1     0     0     0     1     0     0     0     1     1
## X510      0     0     1     0     0     0     1     1     0     0     0     0
## X513      0     1     0     0     0     0     0     0     0     0     0     0
## X514      1     0     1     0     1     0     1     0     0     0     1     1
## X515      0     0     1     0     1     0     0     0     0     0     1     0
## X516      0     0     1     0     0     0     0     0     0     0     0     0
## X518      0     0     1     0     0     0     1     0     0     0     1     1
## X521      0     0     1     0     1     0     1     0     0     0     1     1
## X523      0     0     1     0     0     0     0     0     0     1     0     0
## X524      1     0     1     1     0     0     0     1     0     1     0     0
## X525      0     0     1     0     0     1     1     0     1     1     1     1
## X526      0     1     0     1     0     1     0     0     1     1     0     0
## X530      0     1     1     0     0     0     0     0     0     1     0     0
## X531      0     0     1     0     0     0     0     0     0     0     1     0
## X532      0     0     1     0     0     0     1     0     0     1     1     0
## X533      1     0     1     0     0     0     1     1     0     0     1     1
## X534      0     1     1     0     0     0     1     0     0     1     1     1
## X535      1     0     1     0     0     0     0     1     0     0     0     0
## X536      0     0     1     0     1     1     1     0     1     0     0     0
## X538      1     0     1     0     1     0     0     0     0     0     1     1
## X539      0     0     1     0     1     1     1     0     1     0     0     0
## X542      0     1     1     1     0     1     0     0     1     0     1     1
## X543      0     1     0     0     0     1     0     0     1     1     0     0
## X544      1     1     1     0     0     0     1     0     0     0     1     1
## X545      0     1     0     0     0     1     0     0     1     1     0     0
## X546      0     0     0     0     0     0     0     1     0     0     0     0
## X548      0     0     1     0     0     0     0     0     0     0     0     0
## X549      0     0     1     0     0     0     0     1     0     0     0     0
## X551      0     0     0     0     0     0     0     1     0     0     0     0
## X552      1     1     1     0     1     0     0     0     0     0     0     1
## X553      0     1     1     1     0     0     0     0     0     0     0     0
## X554      0     0     1     0     0     0     1     1     0     1     1     0
## X556      1     0     1     0     1     0     0     0     0     0     0     1
## X557      1     1     1     0     0     1     1     1     0     1     1     0
## X558      0     0     1     0     1     0     0     0     0     0     0     0
## X559      0     1     0     0     0     0     0     0     0     1     0     0
## X560      1     0     1     0     0     0     0     0     0     0     0     0
## X561      0     0     1     0     0     0     0     1     0     0     0     0
## X562      1     1     1     0     0     0     0     0     0     1     0     0
## X563      0     0     1     0     1     0     0     0     0     0     0     0
## X565      0     1     0     0     0     1     0     0     1     1     0     0
## X566      1     0     1     0     0     0     0     1     0     0     0     0
## X567      1     0     1     0     0     0     1     1     0     0     1     1
## X568      0     0     1     0     0     0     0     1     0     0     0     0
## X569      1     0     1     1     0     1     0     0     1     1     0     0
## X571      1     0     1     0     0     0     0     1     0     0     0     0
## X572      0     1     1     1     0     1     1     0     1     1     1     0
## X574      0     1     1     0     0     1     0     0     1     0     0     0
## X576      0     0     1     0     1     0     1     0     0     0     1     1
## X577      0     0     1     0     1     0     0     0     0     0     0     0
## X579      1     0     1     0     1     0     0     0     0     0     0     0
## X580      1     0     1     0     0     0     0     1     0     0     1     1
## X582      0     1     0     1     0     1     0     0     1     1     0     0
## X583      1     0     1     0     0     0     0     0     0     0     0     0
## X584      1     0     1     1     0     1     1     0     1     0     0     0
## X586      1     0     1     0     0     0     0     0     1     1     0     1
## X587      0     0     1     0     1     0     0     0     0     0     0     0
## X588      0     1     1     0     0     1     1     0     1     1     1     0
## X589      0     1     1     1     0     1     0     0     1     0     1     1
## X591      0     0     1     0     1     1     1     0     1     0     0     0
## X592      0     0     1     0     0     0     0     0     0     1     0     0
## X593      1     0     1     1     1     0     1     1     0     0     0     0
## X594      0     1     0     1     0     1     0     0     1     1     0     0
## X595      0     1     0     0     0     0     0     1     1     1     0     0
## X596      0     1     1     0     0     0     1     0     0     1     1     1
## X597      1     1     1     0     1     0     0     0     0     0     0     0
## X598      0     0     0     1     0     1     0     0     1     0     0     0
## X599      0     0     1     0     0     0     0     0     0     0     0     0
## X600      1     0     1     0     0     0     0     0     0     1     0     1
## X603      0     1     0     1     0     1     0     0     1     1     0     0
## X604      0     1     1     0     0     1     1     0     1     1     1     0
## X605      0     1     1     1     0     1     0     0     1     0     0     1
## X606      0     1     1     1     0     0     0     0     0     1     0     0
## X608      1     0     1     0     0     0     0     1     0     0     0     0
## X609      0     0     1     0     1     0     1     0     0     0     1     0
## X611      0     0     1     0     0     1     0     0     1     0     0     0
## X612      1     0     1     0     0     0     1     1     0     0     0     0
## X613      0     0     1     0     0     0     0     1     0     0     0     0
## X614      1     0     1     0     0     0     0     1     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     1     0     0
## X617      0     1     1     0     1     0     0     0     0     1     0     0
## X619      1     0     1     0     1     0     1     1     0     0     1     1
## X620      1     0     1     0     0     0     0     1     0     0     0     0
## X621      1     0     1     0     1     0     0     0     0     0     1     0
## X622      0     0     1     0     1     0     0     0     0     0     0     0
## X623      1     0     1     0     1     0     1     1     0     0     1     0
## X625      0     0     1     0     1     0     1     1     0     0     0     0
## X628      0     1     1     1     0     1     0     1     1     0     1     1
## X629      0     1     1     1     0     1     0     0     1     0     1     1
## X630      1     1     1     0     1     0     1     0     1     0     0     0
## X631      0     1     0     0     0     1     0     0     1     1     0     0
## X632      0     0     0     0     0     0     0     1     0     0     0     0
## X633      1     0     1     1     0     0     0     1     0     0     0     1
## X635      0     0     1     0     0     1     1     0     1     0     1     1
## X636      0     1     1     1     0     1     0     1     1     0     1     1
## X637      0     1     1     1     0     1     0     0     1     0     0     0
## X638      0     0     1     0     1     0     0     0     0     0     0     1
## X639      0     0     1     0     1     0     1     0     0     0     1     0
## X641      0     1     1     0     1     0     1     0     0     1     0     1
## X648      1     0     1     0     1     0     1     1     0     0     1     1
## X650      0     0     1     0     1     0     1     0     0     1     0     1
## X651      0     1     1     0     1     0     1     0     0     1     0     0
## X653      0     1     1     1     0     1     0     0     1     0     1     1
## X654      0     1     1     1     0     1     0     0     0     1     0     1
## X655      0     0     1     0     0     0     0     0     0     1     0     0
## X656      0     0     1     0     1     0     0     1     0     0     0     0
## X657      0     1     1     1     0     1     0     0     1     1     0     0
## X1082     0     0     0     0     0     0     0     1     0     1     0     0
## X1083     0     0     1     1     1     0     0     0     0     0     0     0
## X1084     0     1     1     1     0     1     0     0     1     0     0     0
## X1086     0     0     1     0     0     0     0     1     0     0     0     0
## X1088     0     0     1     0     0     0     1     1     0     0     0     0
## X1089     0     1     1     0     1     0     1     0     0     1     1     0
## X1090     0     0     1     0     0     0     0     0     0     0     1     1
## X1091     1     1     1     0     0     1     0     0     1     1     1     0
## X1092     0     1     0     1     0     1     0     0     1     1     0     0
## X1093     0     0     1     0     0     0     1     1     0     0     0     0
## X1094     0     0     1     0     0     0     0     0     0     0     0     0
## X1095     1     0     1     0     0     0     0     0     0     0     0     0
## X1097     0     1     0     0     0     0     0     1     0     1     0     0
## X1098     0     0     1     0     0     1     1     0     1     1     1     1
## X1101     1     0     1     0     0     0     1     1     0     0     1     1
## X1103     1     0     1     1     0     0     0     0     0     0     1     1
## X1104     0     0     1     0     1     0     1     0     0     0     1     0
## X1105     1     0     1     0     0     0     1     0     0     0     0     0
## X1106     0     1     0     0     0     1     0     0     1     1     0     0
## X1108     0     0     1     0     0     0     0     0     0     0     0     0
## X1110     0     0     1     0     0     0     0     1     0     0     0     0
## X1112     0     0     1     0     1     0     1     0     0     0     1     0
## X1113     0     0     1     0     1     0     0     0     0     0     1     0
## X1115     0     0     1     0     1     0     0     0     0     0     0     0
## X1116     1     0     1     0     0     0     1     1     0     0     0     0
## X1117     1     0     1     0     0     0     0     0     0     0     1     0
## X1119     1     0     1     1     0     0     0     1     0     0     0     1
## X1120     0     1     1     1     0     1     0     0     1     0     1     1
## X1121     1     0     1     0     0     1     1     0     1     1     1     1
## X1122     0     1     1     1     0     1     0     0     1     0     1     1
## X1124     1     0     1     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     1     0     0     0     0
## X1126     0     0     1     0     0     0     0     1     0     0     0     0
## X1127     1     0     1     0     0     1     0     0     1     0     0     0
## X1128     0     0     1     0     0     0     0     1     0     0     0     0
## X1129     0     0     1     0     0     0     0     1     0     0     0     0
## X1130     1     0     1     1     0     0     0     1     0     0     0     0
## X1131     0     0     1     0     0     1     0     0     1     0     0     0
## X1133     0     0     1     0     0     0     1     1     0     0     0     0
## X1135     0     1     0     1     0     1     0     0     1     1     0     0
## X1136     0     0     1     0     0     0     0     1     0     0     0     0
## X1138     0     0     1     1     0     0     0     0     1     0     1     1
## X1139     0     1     1     1     0     1     0     0     1     0     1     1
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     1     0     0     0     0     1     0     0     0     0
## X1143     0     1     1     1     1     0     1     0     0     0     0     1
## X1144     1     1     1     0     0     1     0     0     1     0     1     1
## X1145     1     0     1     0     0     0     1     1     0     1     1     1
## X1146     0     1     0     1     0     1     0     0     1     1     0     0
## X1147     0     1     0     0     0     1     0     0     1     1     0     0
## X1149     0     0     1     0     0     0     0     1     0     0     0     0
## X1150     0     1     0     1     0     1     0     0     1     1     0     0
## X1151     0     0     1     0     0     1     0     0     1     1     0     0
## X1152     1     0     1     0     0     1     0     0     1     0     0     1
## X1153     1     0     1     0     0     0     0     1     0     0     0     0
## X1156     0     1     0     1     0     1     0     0     1     1     0     0
## X1158     1     0     1     1     1     0     0     0     0     0     1     1
## X1159     1     0     1     0     1     0     0     0     0     0     0     1
## X1160     1     0     1     0     1     0     0     0     0     1     1     1
##       FP097 FP098 FP099 FP100 FP101 FP102 FP103 FP104 FP105 FP106 FP107 FP108
## X661      1     0     0     0     1     0     0     1     0     0     0     0
## X662      1     0     0     0     1     1     0     1     1     1     0     0
## X663      0     1     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     1     0     0     0     0     0
## X668      0     0     0     0     1     1     0     1     0     1     1     0
## X669      0     0     0     1     0     1     0     0     0     0     1     0
## X670      1     0     0     0     1     1     1     1     0     1     1     0
## X671      0     1     0     0     0     0     1     1     1     0     0     1
## X672      1     0     1     0     0     0     1     0     0     0     0     0
## X673      0     0     0     1     0     0     1     0     1     0     0     0
## X674      1     0     1     0     0     0     0     0     0     0     0     0
## X676      1     0     1     0     0     0     1     0     1     0     0     0
## X677      1     0     0     0     0     0     0     0     0     0     0     0
## X678      1     0     0     0     0     0     0     0     0     0     1     0
## X679      0     0     1     0     0     0     0     0     0     0     0     0
## X682      1     1     0     0     0     0     0     0     0     0     0     1
## X683      0     0     1     1     1     1     1     1     1     1     0     1
## X684      1     0     0     0     1     1     0     1     1     1     1     0
## X685      1     0     1     0     0     0     1     0     1     0     0     0
## X686      1     0     0     0     0     0     0     0     0     0     0     0
## X688      1     1     1     0     0     0     0     0     0     0     1     1
## X689      1     0     0     0     1     1     1     0     1     1     0     0
## X690      0     0     0     1     0     1     0     0     1     0     1     1
## X691      0     0     1     1     1     1     0     1     1     1     1     0
## X692      0     0     1     1     0     1     0     0     0     1     0     1
## X693      0     0     1     1     0     1     0     0     1     1     0     0
## X695      1     0     0     0     1     1     1     1     0     1     0     1
## X696      1     0     0     0     1     0     0     0     0     0     0     0
## X698      0     1     1     1     0     0     0     0     0     0     0     1
## X699      0     0     0     0     0     0     0     0     0     0     1     0
## X700      0     0     0     0     0     0     1     1     1     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     1     0     1     0     0     0
## X704      1     0     0     0     0     0     0     0     0     0     0     0
## X706      1     1     0     0     0     0     1     0     0     0     0     1
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     1     0     1     0     0     0
## X711      1     1     1     0     0     0     1     0     1     0     0     0
## X712      0     0     0     0     0     0     1     0     0     0     0     0
## X713      0     1     1     0     0     0     0     0     0     0     0     0
## X714      1     1     1     0     0     0     1     0     1     0     0     1
## X715      0     1     0     1     0     0     0     0     0     0     1     1
## X717      1     0     0     0     0     0     0     0     0     0     0     0
## X718      1     0     0     0     1     1     0     1     1     1     1     0
## X721      0     0     0     0     1     0     0     1     0     1     1     0
## X722      0     0     1     0     1     1     0     0     0     0     0     0
## X723      0     0     0     0     0     0     1     0     1     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     0     0     0     0     0     0     0     0     1     1
## X728      0     1     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     1     0     1     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     1     0
## X733      0     0     0     0     1     0     0     1     0     1     1     0
## X734      0     0     0     0     0     0     0     0     0     0     1     0
## X735      1     0     1     0     0     0     1     0     1     0     0     0
## X736      0     1     0     0     0     0     1     1     1     0     0     1
## X737      1     0     0     0     0     0     0     0     0     0     0     0
## X739      1     0     1     0     0     0     0     0     0     0     1     1
## X740      1     1     0     1     1     1     0     0     0     0     1     1
## X741      0     1     0     0     0     0     1     1     1     0     0     0
## X742      0     1     0     0     0     0     1     1     1     0     0     1
## X743      0     0     0     0     0     0     0     0     0     0     1     0
## X744      1     0     0     0     0     0     0     0     0     0     0     0
## X746      0     1     0     0     0     0     0     0     0     0     0     1
## X747      0     0     0     0     0     0     1     1     1     0     0     0
## X749      1     1     0     0     1     1     1     1     1     1     1     1
## X752      1     1     1     0     0     0     1     0     1     0     0     1
## X753      0     0     0     0     0     0     1     0     1     0     0     0
## X754      1     0     0     0     1     1     1     1     1     1     0     0
## X755      1     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     1     1     1     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     1
## X759      0     0     0     0     0     1     0     0     0     1     0     0
## X760      0     0     0     0     0     0     0     0     0     0     1     0
## X761      1     1     1     0     0     0     1     0     0     0     0     1
## X762      1     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     1     0
## X764      1     0     0     0     0     0     0     0     0     0     0     0
## X765      0     1     1     0     0     0     0     0     0     0     0     1
## X767      1     1     1     0     0     0     1     0     1     0     1     1
## X768      1     0     0     0     1     0     0     0     0     0     0     0
## X770      1     0     0     0     1     1     1     1     1     1     1     0
## X771      1     0     0     1     0     0     0     0     0     0     1     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     1     1     1     0     0     0
## X774      0     0     0     0     0     0     1     1     1     0     0     0
## X775      0     1     0     0     0     0     0     0     0     0     0     0
## X776      0     0     1     1     0     1     0     1     1     1     1     1
## X777      0     0     1     0     0     1     0     1     1     1     0     0
## X778      1     1     1     1     0     0     1     0     1     0     0     0
## X779      1     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     1     0     0     0     0     0     0     1     1     0
## X781      0     1     1     0     0     0     1     0     1     0     0     1
## X782      1     0     0     0     0     0     0     0     0     0     0     0
## X784      0     1     0     0     0     0     0     0     0     0     0     1
## X786      0     0     0     0     0     0     1     1     1     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     1     0
## X788      1     0     1     0     0     0     1     0     1     0     0     0
## X789      0     0     0     0     0     0     0     0     0     0     1     0
## X791      0     0     0     0     0     0     0     0     0     0     1     0
## X792      1     0     1     0     1     1     1     1     1     1     0     0
## X794      0     1     0     0     0     0     1     1     1     0     0     0
## X798      1     0     0     0     1     0     0     1     0     0     0     0
## X799      1     0     1     1     1     1     0     0     0     1     1     0
## X800      1     0     1     0     0     0     1     0     1     0     0     0
## X804      0     0     0     0     0     1     0     0     0     0     0     0
## X805      1     1     1     0     0     0     1     0     1     0     0     1
## X807      0     0     1     0     0     1     0     0     0     1     0     1
## X808      1     1     0     1     1     1     0     0     0     0     0     1
## X809      0     1     0     0     0     0     0     0     1     0     0     1
## X810      1     0     1     0     0     0     0     0     0     1     1     0
## X813      0     1     0     0     0     0     1     1     1     0     0     0
## X814      0     1     1     1     1     1     0     1     0     1     1     1
## X818      0     0     0     0     0     0     0     0     0     0     1     0
## X819      0     0     0     1     0     0     0     0     0     1     1     0
## X820      0     0     0     0     0     0     1     1     1     0     0     0
## X821      0     0     0     0     0     0     0     0     0     0     1     0
## X822      1     0     0     0     0     0     0     0     0     0     0     0
## X823      1     0     0     0     0     0     0     0     0     0     0     0
## X827      1     0     1     0     0     0     0     0     0     1     1     0
## X828      0     0     0     0     0     0     0     0     0     0     1     0
## X829      1     0     1     1     1     1     0     0     0     1     1     1
## X831      0     0     0     0     0     0     0     0     0     0     1     0
## X832      0     0     0     0     0     0     0     0     0     0     1     0
## X833      0     0     0     0     0     0     0     0     0     0     1     0
## X834      0     0     0     0     0     0     0     0     0     0     1     0
## X835      0     0     0     0     0     0     0     0     0     0     1     0
## X836      0     0     0     0     0     0     0     0     0     0     1     0
## X839      1     0     0     0     0     0     0     0     0     0     0     0
## X840      1     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     1     0
## X842      1     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     1     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     1     0
## X849      0     0     0     0     0     0     0     0     0     0     1     0
## X851      1     1     1     0     0     0     1     1     1     0     0     0
## X854      0     0     0     0     0     0     0     0     0     0     1     0
## X855      1     0     0     0     1     0     0     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     1     0
## X857      0     0     0     0     0     0     0     0     0     0     1     0
## X858      0     0     0     0     0     0     0     0     0     0     1     0
## X859      0     0     0     0     0     0     0     0     0     0     1     0
## X860      0     0     0     0     0     0     0     0     0     0     1     0
## X862      0     0     0     0     0     0     0     0     0     0     1     0
## X863      0     0     0     0     0     0     0     0     0     0     1     0
## X864      1     0     0     0     0     0     1     0     0     0     0     0
## X865      1     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     1     0
## X867      1     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     1     0     1     1     0     1     0     1     0     0
## X870      0     0     0     0     0     0     0     0     0     0     1     0
## X871      0     0     0     0     0     0     0     0     0     0     1     0
## X872      0     0     0     0     0     0     0     0     0     0     1     0
## X873      1     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     1     0
## X876      0     0     0     0     0     0     0     0     0     0     1     0
## X877      0     0     0     0     0     0     0     0     0     0     1     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     1
## X1191     0     0     0     0     0     0     1     1     1     0     1     0
## X1192     1     0     1     0     0     0     1     0     1     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     1     1     1     0     0     0     1     0     1     0     0     1
## X1195     0     0     0     0     0     0     0     0     0     0     1     0
## X1197     0     0     0     0     0     0     0     0     1     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     0     1     0     0     1     0     1     0     0
## X1200     0     0     1     0     0     1     0     0     0     1     0     1
## X1201     1     1     0     0     1     1     0     1     0     0     0     1
## X1202     1     1     1     0     0     0     1     0     0     0     0     1
## X1203     0     0     0     0     0     0     0     1     1     0     0     0
## X1204     1     0     1     1     1     1     0     1     0     1     0     0
## X1205     0     1     1     0     1     0     0     0     0     1     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     1     0
## X1207     1     0     0     0     1     1     0     1     0     1     0     0
## X1208     1     1     1     0     0     0     1     0     1     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     1     0
## X1210     1     1     1     0     0     0     1     0     1     0     0     0
## X1212     1     0     1     0     0     0     1     0     1     0     0     0
## X1213     1     0     0     0     1     1     1     1     1     1     0     0
## X1215     1     1     1     0     0     0     1     1     0     0     0     0
## X1216     1     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     1     0     1     0     0     1     0     0     1     0
## X1219     0     0     0     0     0     0     1     0     0     0     0     0
## X1220     0     0     1     0     1     1     0     0     1     0     1     0
## X1221     0     0     0     0     0     0     1     1     1     0     0     0
## X1222     1     0     0     0     0     1     0     0     1     0     0     0
## X1226     1     0     1     0     1     1     0     1     1     1     0     0
## X1228     0     0     1     0     0     1     0     0     0     1     0     1
## X1229     1     1     1     0     0     0     1     0     1     0     0     1
## X1230     1     1     0     1     1     0     0     1     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     1     0     1     0     0     0     1     0     1     0     0     0
## X1234     1     0     0     0     0     0     0     0     0     0     0     0
## X1236     1     1     1     0     0     0     1     0     1     0     0     1
## X1237     0     0     1     1     1     1     0     0     0     1     1     1
## X1239     0     0     0     1     0     1     0     0     0     0     1     0
## X1242     0     0     0     0     0     0     0     0     0     1     1     0
## X1244     0     0     0     0     0     0     0     0     0     0     1     0
## X1245     0     0     0     0     0     0     1     0     1     0     0     0
## X1246     1     0     1     0     0     0     1     0     1     0     0     0
## X1247     0     1     1     0     0     0     0     0     0     0     0     1
## X1249     1     1     1     0     0     1     0     0     0     1     1     1
## X1250     1     0     1     0     0     0     0     0     0     1     1     0
## X1251     0     0     0     0     0     0     0     0     0     0     1     0
## X1253     0     0     1     0     0     1     0     0     0     1     1     1
## X1254     0     0     0     0     0     0     0     0     0     0     1     0
## X1255     1     0     0     0     0     0     0     0     0     0     0     0
## X1256     1     0     0     0     0     0     0     0     1     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     1     0
## X1259     1     0     1     0     0     0     0     0     0     1     1     0
## X1260     0     0     0     0     0     0     0     0     0     0     1     0
## X1262     0     1     1     0     0     0     0     0     0     0     1     1
## X1264     1     0     1     0     0     0     0     0     0     1     1     0
## X1265     0     0     0     0     0     0     0     0     0     0     1     0
## X1266     0     0     1     0     0     0     0     0     0     0     1     0
## X1267     0     0     1     0     0     1     0     0     0     1     0     1
## X1268     0     1     0     0     0     0     1     1     1     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     1     0
## X1274     0     0     0     0     0     0     1     1     1     0     0     0
## X1275     1     0     1     0     0     0     0     0     0     1     1     0
## X1276     1     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     1     0
## X1278     1     0     0     0     0     0     0     0     0     0     0     0
## X1279     1     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     1     0
## X1282     0     0     0     0     0     0     0     0     0     0     1     0
## X1283     1     0     0     0     0     0     0     0     0     0     0     0
## X1284     1     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     1     0
## X1288     0     0     0     0     0     0     0     0     0     0     1     0
## X1299     0     0     1     1     1     0     0     1     0     0     0     0
## X1301     1     0     1     0     0     0     1     0     1     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     1     0
## X1307     0     0     1     1     1     1     0     0     0     1     1     1
## X1309     0     0     1     0     0     0     0     0     0     0     1     0
## X1310     1     0     1     0     0     0     0     0     0     1     1     0
## X447      0     1     0     0     0     0     0     0     0     0     1     1
## X448      1     0     1     1     0     1     1     0     0     1     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     1     0
## X453      1     0     0     0     1     0     0     0     0     0     0     0
## X454      0     0     1     1     1     1     0     1     0     1     0     1
## X455      0     1     0     0     0     0     0     0     0     0     1     1
## X456      0     0     0     1     0     0     1     0     1     0     0     0
## X458      0     0     1     1     1     1     0     1     0     1     0     1
## X459      0     0     0     0     0     0     1     1     1     0     0     0
## X460      0     0     0     0     0     0     0     0     1     0     0     0
## X461      0     1     0     0     0     0     0     0     0     0     1     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     0     0     1     1     0     1     0     0     0     0
## X464      0     0     1     0     0     0     0     0     0     0     1     0
## X465      0     0     1     0     1     0     0     1     0     0     0     1
## X466      1     1     0     1     1     1     0     1     0     0     1     0
## X468      0     1     0     1     0     0     1     1     1     0     0     1
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     1     0
## X473      0     0     0     0     0     0     0     1     1     0     0     0
## X476      1     1     0     0     0     0     0     0     0     0     0     0
## X477      1     0     1     1     1     1     0     1     0     1     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     1     0     0     0     0     0
## X480      1     0     0     0     1     0     0     1     0     0     0     0
## X482      0     0     1     0     0     0     0     0     0     0     1     0
## X483      0     0     0     0     0     0     0     0     0     0     1     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     1     0     0     0     0     1     0     1     0     0     1
## X487      0     1     0     0     0     1     1     0     0     0     0     1
## X488      0     1     0     0     0     0     0     0     1     0     0     1
## X489      0     1     0     0     0     0     0     0     0     0     0     0
## X490      0     0     0     1     0     1     1     0     0     0     1     1
## X491      0     0     0     0     0     0     1     0     1     0     1     0
## X492      0     0     1     1     1     1     1     1     1     1     0     0
## X493      0     1     0     0     0     0     1     1     1     0     0     0
## X494      0     1     0     0     1     0     0     0     0     1     1     0
## X495      1     0     0     0     1     1     0     1     0     0     0     1
## X496      1     0     0     0     1     0     0     1     0     1     0     0
## X497      1     0     0     0     1     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     1     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      0     1     0     1     1     1     0     1     0     1     1     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      1     0     1     1     1     1     1     1     0     1     0     0
## X505      0     0     0     1     0     0     0     0     0     0     1     0
## X506      0     0     1     1     1     1     0     1     0     1     0     0
## X507      0     0     0     0     1     0     0     1     0     1     0     1
## X508      0     1     0     0     0     0     0     0     0     0     0     0
## X509      1     0     1     1     0     1     0     0     0     1     0     0
## X510      0     0     0     1     1     1     0     1     0     0     1     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     1     1     1     1     0     1     0     1     0     0
## X515      1     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     1
## X518      0     1     1     1     0     1     0     0     0     1     0     1
## X521      0     0     1     1     1     1     0     1     0     1     0     1
## X523      0     1     0     0     0     0     0     0     0     0     0     1
## X524      0     0     0     1     0     0     0     0     0     0     1     0
## X525      0     0     1     1     1     0     1     1     1     1     0     0
## X526      0     0     0     0     0     0     1     1     1     0     0     0
## X530      0     0     0     0     0     1     0     0     0     0     0     0
## X531      0     0     0     1     0     0     0     0     0     0     0     0
## X532      0     0     0     0     1     0     0     1     0     1     0     0
## X533      1     0     1     1     1     1     0     1     0     1     1     0
## X534      0     0     1     1     0     1     0     0     1     1     0     0
## X535      0     0     0     0     0     0     0     0     0     0     1     0
## X536      1     0     0     0     1     1     0     1     0     0     0     0
## X538      1     0     0     0     0     0     0     0     0     0     0     0
## X539      1     0     0     0     1     1     0     1     0     0     0     0
## X542      1     0     1     0     0     0     1     0     1     0     0     0
## X543      0     0     0     0     0     0     1     0     1     0     1     0
## X544      1     0     1     1     0     1     1     0     0     1     0     0
## X545      0     0     0     0     0     1     0     1     1     0     0     0
## X546      0     0     1     0     0     0     0     0     0     0     1     0
## X548      0     0     0     0     0     0     0     0     0     0     0     1
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     1     0     0     0     0     0     0     0     0     0
## X552      1     1     0     0     1     1     0     1     0     0     0     1
## X553      0     0     0     1     0     0     1     1     0     0     0     0
## X554      0     0     1     0     1     0     0     1     0     1     1     0
## X556      0     1     0     0     0     0     0     0     0     0     0     1
## X557      0     0     0     1     0     1     1     0     0     0     1     1
## X558      1     0     0     0     1     0     0     1     0     0     0     0
## X559      0     0     0     0     0     0     0     0     1     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     1     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     1     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     1     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     1     0
## X567      0     0     1     1     0     1     0     0     0     1     0     0
## X568      0     0     0     1     0     0     0     0     0     0     0     0
## X569      0     0     0     1     0     1     0     0     0     0     1     1
## X571      0     1     0     0     0     0     0     0     0     0     1     1
## X572      0     1     0     0     0     0     1     0     1     0     0     1
## X574      0     0     0     0     0     0     1     0     1     0     0     0
## X576      0     0     1     1     1     1     0     1     0     1     0     1
## X577      1     1     0     1     0     0     0     0     0     0     0     1
## X579      0     0     0     1     0     0     0     0     0     0     0     0
## X580      0     1     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     1     1     1     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      1     0     1     1     1     1     0     1     0     1     0     0
## X586      1     0     1     1     1     1     0     0     0     1     0     1
## X587      1     0     0     0     1     0     0     0     0     0     0     0
## X588      0     0     1     1     1     0     1     1     0     1     0     0
## X589      1     1     1     0     0     0     1     0     1     0     0     0
## X591      1     0     0     0     1     1     0     1     0     0     0     1
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     1     0     1     1     0     1     0     1     0     0
## X594      0     1     0     0     0     0     1     1     1     0     0     1
## X595      0     0     0     0     0     1     0     0     0     0     1     0
## X596      0     0     1     1     0     1     0     0     1     1     0     0
## X597      1     0     0     0     0     1     0     0     0     0     0     0
## X598      0     1     0     0     0     0     0     1     1     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      1     1     1     0     0     1     1     0     0     1     0     1
## X603      0     1     0     0     0     0     1     1     1     0     0     0
## X604      0     0     1     1     1     0     0     1     0     1     0     0
## X605      1     0     1     0     0     0     1     0     1     0     0     0
## X606      0     1     0     0     0     0     0     0     1     0     0     1
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     1     1     1     1     0     1     0     1     0     0
## X611      0     0     0     0     0     0     0     1     1     0     0     0
## X612      0     0     0     1     0     1     0     0     0     0     1     1
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     1     0
## X616      0     0     1     0     0     0     0     0     0     0     0     0
## X617      1     0     0     1     0     1     1     0     0     0     0     1
## X619      1     0     1     1     1     1     0     1     0     1     0     0
## X620      0     0     0     0     0     0     0     0     0     0     1     0
## X621      0     0     0     1     0     0     0     0     0     0     0     0
## X622      1     0     0     0     0     0     0     0     0     0     0     0
## X623      1     0     0     1     1     0     0     1     0     0     1     0
## X625      0     0     1     1     1     1     0     1     0     1     1     1
## X628      1     0     1     0     0     0     1     0     0     0     0     0
## X629      1     1     1     0     0     0     1     0     1     0     0     0
## X630      1     0     0     0     1     1     1     0     1     0     0     0
## X631      0     0     0     0     0     0     1     0     1     0     0     0
## X632      0     0     1     0     0     0     0     0     0     0     1     0
## X633      0     1     0     0     0     0     0     0     1     0     1     1
## X635      0     0     1     1     1     1     0     1     1     1     0     0
## X636      1     0     1     0     0     0     1     0     0     0     0     0
## X637      1     0     1     0     0     0     1     0     1     0     0     0
## X638      0     1     0     0     0     0     0     0     0     0     0     0
## X639      0     0     1     1     1     1     0     1     0     1     0     0
## X641      0     0     0     1     1     1     0     1     1     1     0     0
## X648      0     0     1     1     0     1     0     0     0     1     1     0
## X650      1     0     1     1     1     1     0     1     0     1     0     1
## X651      0     0     0     1     1     1     0     1     1     1     0     0
## X653      1     1     1     0     0     0     1     0     1     0     0     0
## X654      0     1     0     0     0     1     1     0     1     0     0     1
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      1     0     0     0     0     0     0     0     0     0     1     0
## X657      0     1     0     0     0     0     1     0     1     0     0     1
## X1082     0     0     1     0     0     0     0     0     0     0     1     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     0     0     0     0     0     1     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     1     0     1     0     0     0     0     1     1
## X1089     1     0     0     0     1     0     0     0     0     0     0     0
## X1090     0     1     0     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     0     0     0     1     0     1     0     0     0
## X1092     0     0     0     0     0     0     0     0     1     0     0     0
## X1093     0     0     1     1     1     1     0     1     0     1     1     0
## X1094     0     1     0     0     0     0     0     0     0     0     0     0
## X1095     1     0     0     1     1     0     0     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     1     0
## X1098     1     0     1     1     1     0     1     1     0     1     0     0
## X1101     1     0     1     1     1     1     0     1     0     1     1     0
## X1103     1     0     1     0     0     0     0     0     0     0     0     0
## X1104     0     0     1     1     1     1     0     0     0     1     0     0
## X1105     1     0     0     0     1     0     0     1     0     0     0     0
## X1106     0     0     0     0     0     0     1     1     1     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     1     1     1     1     0     1     0     1     0     0
## X1113     0     0     1     0     0     0     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     0     0     0     0     0     1     0     0     0     0     1     0
## X1117     0     1     0     0     0     0     0     0     0     0     0     0
## X1119     0     1     0     0     0     0     0     0     0     0     1     1
## X1120     1     0     1     0     0     0     1     0     1     0     0     0
## X1121     1     1     0     0     1     1     0     1     1     1     0     0
## X1122     1     0     1     0     0     0     1     0     0     0     0     0
## X1124     1     0     0     0     0     0     0     0     0     0     0     0
## X1125     0     0     1     0     0     0     0     0     0     0     1     0
## X1126     0     0     0     0     0     0     0     0     0     0     1     0
## X1127     1     0     0     0     0     0     0     0     1     0     0     0
## X1128     0     0     0     1     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     1     0
## X1130     0     1     0     0     0     0     0     0     0     0     1     0
## X1131     0     0     0     0     0     0     0     1     1     0     0     0
## X1133     0     0     0     1     1     1     0     1     0     0     0     0
## X1135     0     0     0     0     0     0     1     1     1     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     1     1     1     0     0     0     0     1     0     1     0     1
## X1139     1     0     1     0     0     0     1     0     1     0     0     0
## X1141     0     0     0     0     0     0     1     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     1     0
## X1143     0     0     0     1     1     1     0     1     0     1     0     0
## X1144     1     0     1     0     1     1     0     1     0     0     0     0
## X1145     1     0     1     1     1     1     0     1     0     1     1     0
## X1146     0     1     0     1     0     0     1     1     1     0     0     1
## X1147     0     0     0     1     0     1     1     0     1     0     0     0
## X1149     0     1     0     1     0     0     0     0     0     0     1     1
## X1150     0     1     0     0     0     0     1     1     1     0     0     1
## X1151     0     0     0     1     0     1     1     0     1     0     0     0
## X1152     1     1     0     1     1     1     0     1     1     0     0     0
## X1153     0     0     0     0     1     0     0     0     0     1     0     0
## X1156     0     1     0     0     0     0     1     1     1     0     0     0
## X1158     1     0     0     0     0     0     0     0     0     0     0     0
## X1159     1     1     0     0     0     0     0     1     0     0     0     1
## X1160     1     1     0     0     0     0     0     1     0     1     0     1
##       FP109 FP110 FP111 FP112 FP113 FP114 FP115 FP116 FP117 FP118 FP119 FP120
## X661      0     0     0     0     0     0     0     1     0     0     0     0
## X662      1     0     0     0     1     0     0     1     0     1     0     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     0     0     0     0     0     0
## X668      1     0     1     1     0     1     0     1     0     0     0     0
## X669      0     1     1     0     0     0     0     0     0     0     0     0
## X670      1     0     0     1     0     0     0     0     1     0     0     0
## X671      0     0     0     0     0     0     0     0     0     0     0     1
## X672      0     0     0     1     1     0     1     0     1     1     0     0
## X673      1     1     1     0     1     1     0     0     0     1     0     0
## X674      0     0     0     0     0     0     1     0     1     0     0     0
## X676      0     0     0     0     1     0     0     0     1     1     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     1     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     1     0
## X683      1     1     1     0     0     1     1     1     0     0     1     0
## X684      1     0     0     1     0     0     0     1     0     1     0     1
## X685      0     0     0     0     1     0     0     0     1     1     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     1     0     0     0     0     1     0     0     0
## X689      1     0     0     0     0     0     0     0     0     0     0     0
## X690      1     1     0     0     0     1     0     0     0     0     0     1
## X691      0     1     1     0     1     0     1     1     0     0     0     0
## X692      0     0     1     0     0     0     1     0     0     1     0     0
## X693      0     1     1     0     1     1     1     0     0     1     0     0
## X695      1     0     0     0     0     0     0     1     0     0     1     0
## X696      1     0     0     0     0     1     0     1     0     0     0     0
## X698      0     1     1     0     0     0     0     0     0     0     1     0
## X699      0     0     0     1     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     0     0     0     0     0     0     1     0     0     1     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     1     0     0     0     1     1     0     0
## X712      0     0     0     0     0     0     0     0     0     0     1     0
## X713      1     0     1     0     0     1     0     0     0     0     0     0
## X714      0     0     0     0     1     0     1     0     1     1     0     1
## X715      1     1     1     1     1     1     0     0     0     0     0     1
## X717      0     0     0     1     0     0     0     0     0     0     0     0
## X718      1     0     0     1     0     0     0     1     0     0     0     0
## X721      1     0     1     1     0     1     0     1     0     0     0     0
## X722      0     0     1     0     0     0     0     1     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      1     0     0     0     0     1     0     0     0     0     0     0
## X726      0     0     0     1     0     0     0     0     0     0     1     0
## X728      0     0     0     1     0     0     0     0     0     0     0     0
## X729      0     0     0     1     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     1     0     0     0     0     0     0     0     0
## X733      1     0     1     1     0     1     0     1     0     0     0     0
## X734      0     0     0     1     0     0     0     0     0     0     0     0
## X735      0     0     0     0     1     0     0     0     1     1     0     0
## X736      1     0     0     0     0     1     0     0     0     0     0     1
## X737      1     0     0     0     0     1     0     0     0     0     0     0
## X739      0     0     0     1     0     0     1     0     1     0     1     0
## X740      0     1     0     1     0     0     1     0     1     1     1     0
## X741      0     0     0     0     1     0     0     0     0     1     0     0
## X742      0     0     0     0     0     0     0     0     0     0     0     0
## X743      0     0     0     1     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     1     0     0     0
## X746      0     0     0     0     0     0     1     0     0     0     0     1
## X747      0     0     0     0     1     0     0     0     0     1     0     1
## X749      1     0     0     1     0     0     0     1     0     0     0     1
## X752      0     0     0     1     0     0     1     0     1     1     0     1
## X753      0     0     0     0     0     0     0     0     1     0     0     0
## X754      1     0     0     0     0     0     0     1     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     1     0
## X759      0     0     1     0     0     0     0     0     0     0     0     0
## X760      0     0     0     1     0     0     0     0     0     0     0     0
## X761      0     0     0     1     0     0     1     0     1     1     0     1
## X762      0     0     0     0     0     0     0     0     1     0     0     0
## X763      1     0     0     1     0     1     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      0     0     0     1     0     0     0     0     0     0     0     0
## X767      0     0     0     1     0     0     1     0     1     0     0     0
## X768      0     0     0     0     0     0     0     0     1     0     0     0
## X770      1     0     0     1     0     0     0     1     0     0     0     0
## X771      0     1     0     1     0     1     1     0     0     0     0     0
## X772      0     0     0     1     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     1     0     1     0     0     1     0     0
## X776      0     1     1     1     1     1     1     0     0     1     1     0
## X777      0     0     1     0     0     0     0     0     0     0     0     0
## X778      0     1     0     0     1     0     1     0     1     1     0     0
## X779      1     0     0     0     0     1     0     0     0     0     0     0
## X780      0     0     0     1     0     0     0     0     1     0     0     0
## X781      0     0     0     0     0     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     1     0     0     0     0     0
## X784      0     0     0     1     1     0     0     0     0     1     1     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     1     0     0     0     0     0     0     0     0
## X788      0     0     0     0     0     0     1     0     1     0     0     0
## X789      0     0     0     1     0     0     0     0     0     0     0     0
## X791      0     0     0     1     0     0     0     0     0     0     0     0
## X792      1     0     1     0     0     0     0     1     0     0     0     0
## X794      0     0     0     0     1     0     0     0     0     1     0     0
## X798      0     0     0     0     0     0     0     1     0     0     0     0
## X799      0     1     1     0     0     0     1     0     1     0     0     0
## X800      0     0     0     0     1     0     0     0     1     1     0     0
## X804      1     0     0     0     0     1     0     0     0     0     0     0
## X805      0     0     0     0     1     0     1     0     1     1     0     1
## X807      0     0     1     0     0     0     0     0     0     0     0     1
## X808      0     1     0     0     0     0     1     0     1     1     1     0
## X809      0     0     0     0     0     0     1     0     0     0     0     1
## X810      0     0     0     1     0     0     0     0     1     0     0     0
## X813      0     0     0     0     1     0     0     0     0     1     0     0
## X814      1     1     1     1     0     1     0     0     1     0     1     0
## X818      0     0     0     1     0     0     0     0     0     0     0     0
## X819      1     1     1     1     0     1     1     0     0     0     0     0
## X820      0     0     0     0     1     0     0     0     0     1     0     1
## X821      0     0     0     1     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      1     0     0     0     0     1     0     0     0     0     0     0
## X827      0     0     0     1     0     0     0     1     1     0     0     0
## X828      0     0     0     1     0     0     0     0     0     0     0     0
## X829      0     1     1     0     0     0     1     0     1     0     0     1
## X831      0     0     0     1     0     0     0     0     0     0     0     0
## X832      0     0     0     1     0     0     0     0     0     0     0     0
## X833      0     0     0     1     0     0     0     0     0     0     0     0
## X834      0     0     0     1     0     0     0     0     0     0     0     0
## X835      0     0     0     1     0     0     0     0     0     0     0     0
## X836      0     0     0     1     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     1     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     1     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     1     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     1     0     0     0     0     0     0     0     0
## X849      0     0     0     1     0     0     0     0     0     0     0     0
## X851      0     0     0     0     1     0     0     1     1     1     0     1
## X854      0     0     0     1     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     1     0     0     0
## X856      0     0     0     1     0     0     0     0     0     0     0     0
## X857      0     0     0     1     0     0     0     0     0     0     0     0
## X858      0     0     0     1     0     0     0     0     0     0     0     0
## X859      0     0     0     1     0     0     0     0     0     0     0     0
## X860      0     0     0     1     0     0     0     0     0     0     0     0
## X862      0     0     0     1     0     0     0     0     0     0     0     0
## X863      0     0     0     1     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     1     0     0     0
## X865      0     0     0     0     0     0     0     0     1     0     0     0
## X866      0     0     0     1     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     1     0     0     0     0     0     1     0     0     0
## X870      0     0     0     1     0     0     0     0     0     0     0     0
## X871      0     0     0     1     0     0     0     0     0     0     0     0
## X872      0     0     0     1     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     1     0     0     0     0     0     0     0     0
## X876      0     0     0     1     0     0     0     0     0     0     0     0
## X877      0     0     0     1     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     1     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     1     0     0     0     1     1     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     1     0     1     0     1     1     0     1
## X1195     0     0     0     1     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     1     0     0     0     0     0     0     0     0
## X1199     1     0     1     0     0     1     0     1     0     0     0     0
## X1200     0     0     1     0     0     0     0     0     0     0     0     1
## X1201     0     0     0     0     0     0     0     1     1     0     1     1
## X1202     0     0     0     1     1     0     1     0     1     1     0     1
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     1     1     0     0     1     1     1     0     0     0     0
## X1205     1     0     1     0     0     1     0     1     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     1     0     0     0     0     0     0     1     0     0     0     0
## X1208     0     0     0     0     0     0     1     0     1     0     0     0
## X1209     0     0     0     1     0     0     0     0     0     0     1     0
## X1210     0     0     0     0     1     0     0     0     1     1     0     0
## X1212     0     0     0     0     1     0     0     0     1     1     1     0
## X1213     1     0     0     0     0     0     0     1     0     0     0     0
## X1215     0     0     0     1     0     0     1     0     1     1     0     1
## X1216     0     0     0     0     0     0     0     0     1     0     0     0
## X1217     0     0     0     1     0     0     0     1     0     0     0     0
## X1219     0     0     0     0     0     0     0     0     0     0     1     0
## X1220     0     0     0     1     1     0     0     1     0     1     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     0     0     0     0     0     0     0     0
## X1226     1     0     1     0     0     0     0     1     0     0     0     0
## X1228     0     0     1     0     0     0     0     0     0     0     1     0
## X1229     0     0     0     0     1     0     1     0     1     1     0     1
## X1230     1     1     0     0     0     0     0     1     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     0     1     0     0     0     1     1     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     0     0     0     1     0     1     0     0     0
## X1237     0     1     1     1     0     0     0     1     0     0     1     0
## X1239     0     1     1     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     1     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     1     0     1     0
## X1247     0     0     0     0     0     0     0     0     0     0     1     1
## X1249     0     0     1     1     0     0     0     1     0     0     1     1
## X1250     0     0     0     1     0     0     0     0     1     0     0     0
## X1251     0     0     0     1     0     0     0     0     0     0     0     0
## X1253     0     0     1     1     0     0     0     0     0     0     0     1
## X1254     0     0     0     1     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     1     0     0     0     0     0     0     0     0
## X1259     0     0     0     1     0     0     0     1     1     0     0     0
## X1260     0     0     0     1     0     0     0     0     0     0     0     0
## X1262     0     0     0     0     0     0     0     0     0     0     1     1
## X1264     0     0     0     1     0     0     0     0     1     0     0     0
## X1265     0     0     0     1     0     0     0     0     0     0     0     0
## X1266     0     0     1     1     0     0     0     0     0     0     0     0
## X1267     0     0     1     0     0     0     0     0     0     0     1     0
## X1268     0     0     0     0     1     0     0     0     0     1     0     0
## X1273     0     0     0     1     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     1     0     0     0     0     1     0     1
## X1275     0     0     0     1     0     0     0     0     1     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     1     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     1     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     1     0     0     0     0     0     0     0     0
## X1282     0     0     0     1     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     1     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     1     0     0     0     0     0     0     0     0
## X1288     0     0     0     1     0     0     0     0     0     0     0     0
## X1299     0     1     1     0     0     0     1     0     1     0     0     0
## X1301     0     0     0     0     1     0     0     0     1     1     0     0
## X1302     0     0     0     1     0     0     0     0     0     0     0     0
## X1307     0     1     1     1     0     0     0     1     0     0     1     1
## X1309     0     0     1     1     0     0     0     0     0     0     0     0
## X1310     0     0     0     1     0     0     0     0     1     0     0     0
## X447      0     0     0     1     0     0     0     0     0     1     1     1
## X448      0     1     0     1     1     1     1     0     0     0     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     1     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     0     1     0     0     1     0
## X454      1     1     1     0     0     1     1     1     0     0     1     0
## X455      0     0     0     1     0     0     0     0     0     0     1     0
## X456      1     1     0     0     1     1     0     1     0     0     0     1
## X458      1     0     1     0     0     1     1     1     0     0     1     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     1     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     1     0     0     0
## X463      1     0     0     0     1     1     0     0     1     1     0     0
## X464      0     0     1     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     1     0     0     1     0     0     1     0
## X466      1     1     1     1     0     0     1     0     1     1     0     0
## X468      0     1     1     0     1     0     0     0     0     0     0     1
## X471      1     0     0     0     0     1     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     1     0     0     0
## X476      0     0     0     0     0     0     0     0     0     1     0     0
## X477      1     1     1     0     0     0     1     1     0     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     1     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      1     0     0     0     0     1     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     1
## X487      0     0     0     0     0     0     0     0     0     0     1     1
## X488      0     0     0     0     0     0     0     0     0     0     1     1
## X489      0     0     0     1     0     0     0     0     0     0     0     0
## X490      1     1     0     0     0     1     0     0     0     0     0     1
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     1     1     0     0     0     1     1     0     0     0     0
## X493      0     0     0     0     1     0     0     0     0     1     0     0
## X494      1     0     0     1     0     1     0     1     0     0     0     0
## X495      0     0     0     0     1     0     0     1     0     0     1     0
## X496      1     0     0     0     0     0     0     1     0     0     0     0
## X497      0     0     0     0     0     0     0     1     0     0     0     0
## X498      0     0     0     1     0     0     0     0     0     0     1     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      1     1     1     1     0     1     1     0     1     0     0     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      1     1     0     0     1     0     0     1     1     0     0     0
## X505      1     1     0     1     0     1     0     0     0     0     0     0
## X506      1     0     1     0     0     1     1     1     0     0     0     0
## X507      1     0     1     0     1     1     0     1     0     0     1     0
## X508      0     0     0     1     1     0     0     0     0     1     1     0
## X509      0     1     0     0     0     1     1     0     0     0     1     0
## X510      1     1     0     1     0     1     0     1     0     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      1     1     1     0     0     1     1     0     1     0     0     0
## X515      0     0     0     0     0     0     0     0     0     0     1     0
## X516      0     0     0     0     0     0     0     0     0     0     1     0
## X518      1     1     1     0     0     1     1     0     0     0     1     0
## X521      1     1     1     0     0     1     1     1     0     0     1     0
## X523      0     0     0     0     0     0     0     0     0     0     0     1
## X524      1     1     0     1     0     1     0     0     0     1     0     0
## X525      0     1     1     0     1     0     1     1     0     0     0     0
## X526      0     0     0     0     1     0     0     0     0     1     0     1
## X530      1     0     0     0     0     1     0     0     0     0     0     0
## X531      0     1     0     0     0     0     0     0     0     0     0     0
## X532      1     0     1     0     0     1     0     1     0     0     0     0
## X533      1     0     1     1     0     0     1     1     0     0     0     0
## X534      0     1     1     0     1     0     1     0     0     1     0     0
## X535      0     0     0     1     0     0     0     0     0     0     0     0
## X536      0     0     0     0     1     0     0     1     0     0     0     0
## X538      0     0     0     0     0     0     0     1     0     0     1     0
## X539      0     0     0     0     1     0     0     1     0     0     0     0
## X542      0     0     0     0     1     0     1     0     1     1     0     1
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      0     1     0     0     1     1     1     0     0     0     1     0
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     1     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     1     0
## X549      0     0     0     1     0     0     0     0     0     0     0     0
## X551      0     0     1     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     0     0     0     1     1     0     1     1
## X553      1     1     0     0     0     1     0     1     0     0     0     1
## X554      1     0     1     1     0     1     0     1     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     0     1     0
## X557      1     1     0     1     0     1     0     0     0     1     1     0
## X558      0     0     1     0     0     0     0     0     1     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     1     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      1     0     0     1     0     1     0     0     0     0     0     0
## X567      1     1     1     0     0     1     1     0     0     0     0     0
## X568      1     1     0     1     0     1     0     0     0     0     0     0
## X569      1     1     0     0     0     1     0     0     0     0     0     1
## X571      1     0     0     1     0     1     0     0     0     0     0     0
## X572      1     0     0     0     1     1     0     0     0     1     0     1
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      1     1     1     0     0     1     1     1     0     0     1     0
## X577      0     1     1     0     0     0     0     0     0     0     1     0
## X579      1     1     0     0     0     1     0     0     1     0     0     0
## X580      0     0     0     1     0     0     0     0     0     0     1     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      1     1     0     0     0     0     0     1     1     0     0     1
## X586      0     1     1     0     0     0     1     0     1     0     0     1
## X587      0     0     0     0     0     0     0     1     0     0     0     0
## X588      0     1     1     0     1     0     1     1     0     0     0     0
## X589      0     0     0     0     1     0     0     0     1     1     0     0
## X591      0     0     0     0     1     0     0     1     0     0     1     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     0     1     0     0     0     0     1     1     0     0
## X594      0     0     0     0     0     0     0     0     0     0     0     0
## X595      0     0     1     0     0     0     0     0     0     0     0     0
## X596      0     1     1     0     1     0     1     0     0     1     0     0
## X597      0     0     0     0     0     0     0     0     0     0     1     1
## X598      0     0     0     0     1     0     0     0     0     1     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     1     0     0     0     1     0     1     0     1     1
## X603      0     0     0     0     1     0     0     0     0     1     0     0
## X604      0     1     1     0     1     0     1     1     0     0     0     0
## X605      0     0     0     0     0     0     1     0     1     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     1
## X608      0     0     0     1     0     0     0     0     0     0     0     0
## X609      1     0     1     0     0     1     1     1     0     0     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     1     1     1     0     1     0     0     0     0     0     0
## X613      0     0     0     1     0     0     0     0     0     0     0     0
## X614      0     0     0     1     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     1     0     0     0     0     0     0     0     0     1     0
## X619      1     0     1     0     0     0     1     1     0     1     0     0
## X620      0     0     0     1     0     0     0     0     0     0     0     0
## X621      1     1     0     0     0     1     0     0     0     0     1     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      1     1     0     1     0     0     0     0     0     0     0     0
## X625      0     1     0     1     0     0     0     0     1     0     1     0
## X628      0     0     0     1     1     0     1     0     1     1     0     1
## X629      0     0     0     0     1     0     0     0     1     1     0     0
## X630      1     0     0     0     1     0     0     0     0     1     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     1     0     0     0     0     0     0     0     0     0
## X633      0     0     0     1     1     0     0     0     0     1     1     1
## X635      0     1     1     0     1     1     1     0     0     1     0     0
## X636      0     0     0     1     1     0     1     0     1     1     0     1
## X637      0     0     0     0     0     0     1     0     1     0     0     0
## X638      0     0     0     0     0     0     1     0     0     0     0     0
## X639      1     0     1     0     0     1     1     1     0     0     0     0
## X641      1     1     0     0     0     1     1     0     1     0     1     0
## X648      1     1     1     1     0     1     1     0     0     0     1     0
## X650      0     0     1     0     0     0     1     0     1     0     1     1
## X651      1     1     0     0     0     1     1     0     1     0     0     0
## X653      0     0     0     0     1     0     0     0     1     1     0     0
## X654      0     0     0     0     0     0     0     0     0     0     1     1
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     1     0     0     0     0     0     0     0     0
## X657      1     0     0     0     0     1     0     0     0     0     0     1
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     1     0     0
## X1084     0     0     0     0     1     0     0     0     0     1     0     0
## X1086     0     0     0     1     0     0     0     0     0     0     0     0
## X1088     1     1     1     1     0     1     0     0     0     0     0     0
## X1089     0     0     0     0     1     0     0     0     1     1     0     0
## X1090     0     0     0     0     1     0     0     0     0     1     1     0
## X1091     0     0     0     0     1     0     0     0     0     0     1     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     0     1     1     1     0     0     1     0     1     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     1     0     0     0     0     1     0     1     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     1     0     1     0     1     1     1     0     0     0
## X1101     1     0     1     1     0     0     1     1     0     0     0     0
## X1103     0     0     0     0     0     0     0     1     1     1     1     1
## X1104     1     0     1     0     0     1     1     1     0     0     0     0
## X1105     1     0     0     0     0     0     0     1     0     0     0     0
## X1106     0     0     0     0     1     0     0     0     0     1     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     1     0     0     0     0     0     0     0     0
## X1112     1     0     1     0     0     1     1     1     0     0     0     0
## X1113     0     0     0     0     0     0     0     0     0     0     1     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     1     0     0     1     0     1     0     0     0     0     0     0
## X1117     1     0     0     0     0     1     0     0     0     0     0     0
## X1119     0     0     0     1     0     0     0     0     0     1     1     1
## X1120     0     0     0     0     1     0     1     0     1     1     0     1
## X1121     1     0     1     0     0     1     1     1     0     1     0     0
## X1122     0     0     0     0     1     0     1     0     1     1     0     1
## X1124     0     0     0     0     0     0     1     0     0     0     0     0
## X1125     0     0     1     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     1     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     1     0     0     0
## X1128     1     1     0     1     0     1     0     0     0     0     0     0
## X1129     0     0     0     1     0     0     0     0     0     0     0     0
## X1130     0     0     0     1     0     0     0     0     0     1     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     1     0     1     0     1     0     1     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     1     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     1     1     1     0     1     0     0
## X1139     0     0     0     0     1     0     1     0     1     1     0     1
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     1     0     0     0     0     0     0     0     0
## X1143     1     1     0     0     0     1     1     0     1     0     0     0
## X1144     0     0     0     0     0     0     0     1     1     0     1     0
## X1145     1     1     1     1     0     0     1     1     0     1     0     0
## X1146     0     1     1     0     1     0     0     0     0     0     0     1
## X1147     0     1     1     0     0     0     0     0     0     0     0     0
## X1149     1     1     1     1     0     1     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     1
## X1151     0     1     1     0     0     1     0     0     0     0     0     0
## X1152     0     1     0     0     0     0     0     1     1     0     1     1
## X1153     0     0     0     1     0     0     0     0     1     0     0     0
## X1156     0     0     0     0     1     0     0     0     0     1     0     0
## X1158     0     0     0     0     0     0     0     1     0     0     1     0
## X1159     0     0     0     0     0     0     0     1     1     0     1     0
## X1160     0     0     0     0     0     0     1     1     0     0     1     1
##       FP121 FP122 FP123 FP124 FP125 FP126 FP127 FP128 FP129 FP130 FP131 FP132
## X661      0     0     0     0     0     0     0     0     0     0     0     0
## X662      1     0     0     0     0     1     0     0     0     0     1     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     1     0     0     0     0     0     0     0     0     0
## X668      1     0     0     0     0     0     1     0     0     0     1     0
## X669      1     0     1     0     0     0     0     0     0     0     0     0
## X670      1     0     0     0     0     0     1     0     0     1     1     0
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     1     1     0     0     0     0     0     1     0     0     0
## X673      0     1     0     0     0     0     1     0     0     0     0     0
## X674      0     0     0     0     1     0     0     0     1     0     0     0
## X676      0     0     1     0     0     0     0     0     1     0     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     1     0     0     0
## X682      0     0     0     1     0     0     0     0     0     0     0     0
## X683      1     0     0     1     0     1     1     1     0     1     1     0
## X684      1     1     0     0     0     0     0     0     0     0     1     0
## X685      0     1     0     0     0     0     0     0     1     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     1     0     0     0     0     1     0     0     0
## X689      1     0     0     1     0     0     0     0     0     0     1     0
## X690      1     0     0     0     1     0     0     1     0     0     0     0
## X691      1     1     0     0     0     1     1     0     0     0     0     0
## X692      0     0     0     0     0     0     0     0     0     1     0     0
## X693      0     1     0     0     1     1     1     0     0     1     0     0
## X695      1     0     0     1     0     1     0     0     0     0     1     0
## X696      0     0     0     0     0     0     0     0     0     0     1     1
## X698      0     0     0     1     0     0     0     0     1     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     1     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     0     1     1     1     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     1     0     0     0     0     0     0     1     0     0     0
## X712      0     0     1     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     1     0     0     0     0     0     0
## X714      0     1     1     0     1     0     0     0     1     0     0     0
## X715      0     0     1     0     0     0     0     0     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      1     0     0     1     0     0     0     0     0     0     1     0
## X721      0     0     0     0     0     0     1     0     0     0     1     0
## X722      1     0     1     1     0     1     0     0     0     0     0     0
## X723      0     0     1     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     0     0     0     1     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     0
## X728      0     0     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     0     0
## X733      0     0     0     0     0     0     1     0     0     0     1     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     1     1     0     0     0     0     0     1     0     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     1
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      0     0     1     1     1     0     0     0     1     0     0     0
## X740      1     0     0     1     0     0     0     1     0     0     0     0
## X741      0     1     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     1     0     0     0     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      0     0     0     0     0     0     0     0     0     0     0     0
## X747      0     1     0     0     0     0     0     0     0     0     0     0
## X749      1     0     0     0     0     0     0     0     0     0     1     0
## X752      0     1     1     0     1     0     0     0     1     0     0     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      1     0     0     1     0     0     0     0     0     0     1     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      1     0     0     0     0     0     0     0     0     1     0     0
## X760      0     0     0     0     0     0     0     0     0     0     0     0
## X761      0     1     1     0     1     0     0     0     1     0     0     0
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     0     1
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      0     0     0     0     0     0     0     0     1     0     0     0
## X767      0     0     1     0     0     0     0     0     1     0     0     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      1     0     0     1     0     0     0     0     0     0     1     0
## X771      0     0     1     0     0     1     0     1     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     1     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     0     0
## X776      0     1     0     1     1     1     1     1     0     1     0     0
## X777      0     0     0     0     0     0     0     0     0     1     0     0
## X778      0     1     0     0     0     0     0     1     1     0     0     0
## X779      0     0     0     0     0     0     0     0     0     0     0     1
## X780      0     0     1     0     0     0     0     0     0     0     0     0
## X781      0     0     1     1     0     0     0     0     1     0     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      0     0     0     0     0     0     0     0     0     0     0     1
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     0     0
## X788      0     0     1     0     0     0     0     0     1     0     0     0
## X789      0     0     0     0     0     0     0     0     0     0     0     0
## X791      0     0     0     0     0     0     0     0     0     0     0     0
## X792      1     0     0     1     0     0     0     0     0     0     1     0
## X794      0     1     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     0     0     0     0     0     0
## X799      1     0     1     0     1     0     0     1     0     1     0     0
## X800      0     1     0     0     0     0     0     0     1     0     0     0
## X804      1     0     0     1     0     0     1     0     0     0     1     0
## X805      0     1     1     0     1     0     0     0     1     0     0     0
## X807      0     0     0     0     0     0     0     0     0     1     0     0
## X808      1     0     1     1     0     0     0     1     0     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     1     0     0     0     0     0     1     0     0     0
## X813      0     1     0     0     0     0     0     0     0     0     0     0
## X814      1     0     0     0     0     1     0     1     1     1     1     0
## X818      0     0     0     0     0     0     0     0     0     0     0     0
## X819      0     0     0     0     1     1     1     1     0     0     0     0
## X820      0     1     0     0     0     0     0     0     0     0     0     0
## X821      0     0     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     1
## X827      0     0     1     0     0     0     0     0     1     0     0     0
## X828      0     0     0     0     0     0     0     0     0     0     0     0
## X829      1     0     0     0     1     1     0     1     0     1     0     0
## X831      0     0     1     0     0     0     0     0     0     0     0     0
## X832      0     0     0     0     0     0     0     0     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     0     0     0     0     0     0     0     0
## X836      0     0     0     0     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     1     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     0
## X851      0     0     1     0     0     0     0     0     1     0     0     0
## X854      0     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     0
## X857      0     0     0     0     0     0     0     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     0
## X860      0     0     0     0     0     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      1     0     0     0     0     0     1     0     1     1     1     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     1     1     0     0     0     0     0     1     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     1     1     0     1     0     0     0     1     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     1     0     0     1     0     0     0     1     0
## X1200     0     0     0     0     0     0     0     0     0     1     0     0
## X1201     1     0     0     1     1     0     0     0     0     0     0     0
## X1202     0     1     1     0     1     0     0     0     1     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     0     1     1     1     1     1     1     0     1     0     0
## X1205     0     0     0     0     0     1     1     0     0     0     0     0
## X1206     0     0     1     0     0     0     0     0     0     0     0     0
## X1207     1     0     0     1     0     0     0     0     0     0     0     0
## X1208     0     0     1     0     0     0     0     0     1     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     1     0     0     0     0     0     0     1     0     0     0
## X1212     0     1     1     0     0     0     0     0     1     0     0     0
## X1213     1     0     0     1     0     0     0     0     0     0     1     0
## X1215     0     1     1     0     1     0     0     0     1     0     0     0
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     0     0     0     1     1     0     1     0     1     0
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     1     0     0     0     0     1     0     0     1     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     1     0     1     1     0     0     0     0     0     0     0     0
## X1226     1     0     0     1     0     0     0     0     0     0     1     0
## X1228     0     0     0     1     0     0     0     0     0     1     0     0
## X1229     0     1     1     0     1     0     0     0     1     0     0     0
## X1230     0     0     0     0     0     1     0     1     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     1     0     0     0     0     0     1     0     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     1     0     0     0     0     0     1     0     0     0
## X1237     0     0     0     1     0     1     0     1     0     1     0     0
## X1239     1     0     1     0     0     0     0     0     0     0     0     0
## X1242     0     0     1     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     1     0     0     0
## X1247     0     0     1     0     0     0     0     0     1     0     0     0
## X1249     0     0     1     0     1     0     0     0     0     1     0     0
## X1250     0     0     1     0     0     0     0     0     1     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     0     1     0     0
## X1254     0     0     0     0     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     1     0     0     0     0     0     1     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     0
## X1262     0     0     1     0     0     0     0     0     1     0     0     0
## X1264     0     0     1     0     0     0     0     0     1     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     0     0     0     1     0     0     0     0     1     0     0
## X1268     0     1     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     0     0
## X1274     0     1     0     0     0     0     0     0     0     0     0     0
## X1275     0     0     1     0     0     0     0     0     1     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     1     1     1     1     1     0     0     0
## X1301     0     1     1     0     0     0     0     0     1     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     1     0     1     0     1     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     0     1     0     0     0     0     0     1     0     0     0
## X447      0     0     0     0     0     0     0     0     0     0     0     0
## X448      1     1     1     1     1     1     0     1     1     0     0     1
## X451      0     0     1     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     1     0     0     0     0     0     0
## X454      0     0     0     1     0     1     1     1     0     1     1     1
## X455      0     0     0     0     0     0     0     0     0     0     0     0
## X456      0     1     1     0     1     1     0     1     0     0     0     0
## X458      0     0     0     1     0     1     1     0     0     1     1     1
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     1     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      1     1     0     0     0     0     1     0     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     1     0     1     1     0     1     0     1     0
## X466      1     0     0     0     0     0     0     0     0     0     0     0
## X468      0     1     0     0     0     0     0     0     0     0     0     1
## X471      0     0     0     0     0     0     0     0     0     0     0     1
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      1     0     0     0     1     1     1     1     0     1     1     0
## X478      0     0     1     0     0     0     0     0     0     0     0     0
## X479      0     0     1     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     0     0     0     1     0
## X482      0     0     0     0     0     0     0     0     1     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     1
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      1     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      1     0     0     1     0     0     0     1     0     0     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      1     1     1     1     1     1     1     1     1     0     1     0
## X493      0     1     0     0     0     0     0     0     0     0     0     0
## X494      0     0     0     0     0     0     0     0     0     0     1     1
## X495      1     1     1     1     0     0     0     0     0     0     0     0
## X496      0     0     0     0     0     0     1     0     0     0     1     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      1     0     0     1     1     1     1     0     0     1     0     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      1     1     0     1     0     1     0     1     1     0     0     0
## X505      0     0     0     0     0     0     0     1     0     0     0     0
## X506      0     0     0     0     0     1     1     0     0     1     1     1
## X507      0     0     0     1     1     0     1     0     0     0     1     1
## X508      0     0     0     0     0     0     0     0     0     0     0     1
## X509      1     0     1     1     1     1     0     1     1     0     0     1
## X510      1     0     1     0     0     1     0     1     0     1     1     1
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     1     1     0     1     0     1     1     1
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     1     1     0     0     0     0     0     0     0     0
## X518      1     0     0     1     0     1     1     0     1     0     0     0
## X521      0     0     0     1     1     1     1     1     0     1     1     1
## X523      0     0     1     0     0     0     0     0     0     0     0     0
## X524      0     0     0     0     0     0     0     1     0     0     0     0
## X525      0     1     1     0     1     1     1     1     1     0     1     0
## X526      0     1     0     0     0     0     0     0     0     0     0     0
## X530      1     0     0     0     0     0     0     0     0     0     0     0
## X531      0     0     0     0     0     0     0     1     0     1     0     0
## X532      0     0     0     1     0     0     1     0     0     0     1     0
## X533      0     0     0     0     0     1     1     0     0     1     1     1
## X534      0     1     0     0     1     1     1     0     0     1     0     0
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      1     1     1     0     0     0     0     0     0     0     0     0
## X538      0     0     1     0     1     0     0     0     0     0     0     0
## X539      1     1     1     0     0     0     0     0     0     0     0     0
## X542      0     1     1     0     1     0     0     0     1     0     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     1     1     1     1     1     0     1     1     0     0     1
## X545      1     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     1     1     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     0     0     1     1     1     0     0     0     0     0     0
## X553      0     1     1     0     1     1     0     1     0     0     0     0
## X554      0     0     0     0     0     0     1     0     1     0     1     0
## X556      0     0     0     0     1     0     0     0     0     0     0     0
## X557      1     1     0     1     1     1     0     1     0     0     0     1
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     1     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     1
## X567      0     0     0     0     0     0     0     1     0     1     1     0
## X568      0     0     0     0     0     0     0     1     0     0     0     0
## X569      1     0     0     1     1     0     0     1     0     0     0     0
## X571      0     0     0     1     0     0     0     0     0     0     0     1
## X572      0     1     0     0     0     0     0     0     0     0     0     1
## X574      0     0     1     0     0     0     0     0     0     0     0     0
## X576      0     0     0     1     0     1     1     1     0     1     0     1
## X577      0     0     0     1     0     0     0     0     0     0     0     0
## X579      0     0     0     0     1     1     0     1     0     0     0     0
## X580      0     0     0     0     1     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      1     0     1     0     1     1     0     1     1     0     1     0
## X586      1     0     0     0     1     0     0     1     0     1     0     0
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      0     1     0     0     1     1     1     1     1     0     1     0
## X589      0     1     0     0     0     0     0     0     1     0     0     0
## X591      1     1     1     1     0     0     0     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      1     0     0     0     0     1     1     0     1     1     1     0
## X594      0     0     0     1     0     0     0     0     0     0     0     0
## X595      1     0     1     0     0     0     0     0     0     0     0     0
## X596      0     1     0     0     1     1     1     0     0     1     0     0
## X597      1     0     1     1     0     0     0     0     0     0     0     0
## X598      0     1     1     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     1     0     0     0     0     1     1     0     0
## X603      0     1     0     0     0     0     0     0     0     0     0     0
## X604      0     1     1     0     1     1     1     1     1     0     1     0
## X605      0     0     1     0     0     0     0     0     1     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     1     1     0     0     1     1     1
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     0     0     1     0     0     1     0     0     1     0     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     1     0     0     0
## X617      1     0     0     0     0     0     0     1     0     0     0     0
## X619      0     0     0     0     0     1     1     0     0     1     1     1
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     1     1     0     1     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     0     0     0     0     0     1     0     0     1     0
## X625      1     0     0     0     0     1     1     1     1     1     1     0
## X628      0     1     1     0     1     0     0     0     1     0     0     0
## X629      0     1     0     0     0     0     0     0     1     0     0     0
## X630      1     0     0     1     0     0     0     0     0     0     1     0
## X631      0     0     1     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     1     0     0     0     0     0     0     0     0     0     0
## X635      1     1     0     0     1     1     1     0     0     1     0     0
## X636      0     1     1     0     1     0     0     0     1     0     0     0
## X637      0     0     1     0     0     0     0     0     1     0     0     0
## X638      0     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     1     1     0     0     1     0     1
## X641      1     0     0     0     1     1     0     1     0     1     1     0
## X648      0     0     0     0     1     1     0     1     0     1     0     1
## X650      0     0     0     0     0     0     0     0     0     1     0     1
## X651      1     0     0     0     1     1     0     1     0     1     1     0
## X653      0     1     0     0     0     0     0     0     1     0     0     0
## X654      1     0     0     0     0     0     0     0     0     0     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     1
## X1082     0     0     0     0     0     0     0     0     1     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     1     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     1     0     0     1     0     0     1     0     0     1     0     0
## X1089     0     1     0     0     0     0     0     0     0     0     0     1
## X1090     0     0     0     0     0     0     0     0     0     0     0     1
## X1091     0     1     0     0     1     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     1     0     0     0     1     1     1     1     1     1     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     1     0     0     1     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     1     0     1     1     1     1     1     0     1     0
## X1101     0     0     0     0     0     1     1     0     0     1     1     1
## X1103     0     1     1     0     1     0     0     0     1     0     0     0
## X1104     0     0     0     0     0     1     1     0     0     1     0     1
## X1105     0     0     0     0     0     0     1     0     0     0     1     0
## X1106     0     1     0     0     0     0     0     0     0     0     0     1
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     1     1     0     0     1     1     1
## X1113     0     0     0     0     0     0     0     0     1     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     1     0     0     1     0     0     1     0     0     0     0     0
## X1117     0     0     0     1     0     1     0     0     0     0     0     0
## X1119     0     0     0     0     0     0     0     0     0     0     0     0
## X1120     0     1     1     0     1     0     0     0     1     0     0     0
## X1121     1     1     1     0     1     1     1     0     0     0     1     0
## X1122     0     1     1     0     1     0     0     0     1     0     0     0
## X1124     0     0     1     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     1     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     0
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     0     1     0     0     1     0     1     0     1     1     1
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     1     1     0     1     1     0     0     0     0     0     1
## X1139     0     1     1     0     1     0     0     0     1     0     0     0
## X1141     0     0     1     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     1     0     0     0     1     1     0     1     0     1     1     0
## X1144     1     1     1     1     0     0     0     0     1     0     0     0
## X1145     0     0     0     0     0     1     1     1     0     1     1     1
## X1146     0     1     0     0     0     0     0     0     0     0     0     1
## X1147     1     0     0     0     0     0     0     0     0     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     1     0     0     0     0     0     0     0     0     0     0     0
## X1152     1     0     1     0     0     0     0     1     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     1     0     0     0     0     0     0     0     0     0     0
## X1158     0     1     0     0     1     0     0     0     0     0     0     0
## X1159     0     0     1     1     1     0     0     0     0     0     0     0
## X1160     0     0     1     0     1     0     0     0     0     0     0     0
##       FP133 FP134 FP135 FP136 FP137 FP138 FP139 FP140 FP141 FP142 FP143 FP144
## X661      0     0     0     1     0     0     0     0     0     0     0     0
## X662      0     1     1     0     1     1     0     0     1     1     0     0
## X663      1     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     0     0     0     0     0     0     0     0     0
## X668      0     0     0     1     1     1     0     0     0     1     0     1
## X669      1     1     0     0     1     0     0     0     1     0     0     0
## X670      0     0     1     1     1     1     1     1     0     0     0     0
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     0     0     0     0     0     0     0     0     0     0     0
## X673      0     0     1     0     0     0     0     0     0     0     0     0
## X674      1     0     0     0     0     0     0     0     0     0     0     0
## X676      0     0     0     0     0     0     0     0     0     0     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      1     0     0     0     0     0     0     0     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     0     0
## X683      1     1     0     1     0     1     1     0     1     1     1     1
## X684      0     1     1     0     1     1     0     0     1     1     0     1
## X685      0     0     0     0     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     0     0     0     0     0     0     0     0     0
## X689      1     0     1     0     1     1     0     0     0     1     0     0
## X690      0     0     1     0     1     1     0     0     0     1     0     0
## X691      0     0     1     0     1     1     0     0     0     1     0     0
## X692      1     1     1     0     0     1     1     0     1     0     1     1
## X693      0     1     1     0     0     0     1     0     1     0     1     0
## X695      1     1     0     0     1     1     0     0     1     1     0     0
## X696      0     0     0     1     0     0     0     0     0     0     0     0
## X698      1     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      1     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      1     0     0     0     0     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     0     0     0     0     0     0     0     0
## X712      0     0     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     0     0     0     0     0     0     0
## X714      0     0     0     0     0     0     0     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     1     1     0     1     1     0     0     1     1     0     0
## X721      1     0     0     1     0     0     0     0     0     0     0     0
## X722      0     0     0     0     1     0     0     0     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     1     0     0     0     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     0
## X728      0     0     0     0     0     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     0     0     0     0     0     0     0     0
## X733      0     0     0     1     0     1     0     0     0     0     0     1
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     0     0     0     0     0     0     0     0     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     1     0     0     0     0     0     0     0     0     0     0
## X739      0     0     0     0     0     0     0     1     0     0     0     0
## X740      0     0     0     1     1     0     0     1     0     0     0     0
## X741      0     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     0     0     0     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      1     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     0     0     0     0     0     0     1
## X749      0     1     1     0     1     1     0     0     1     1     0     0
## X752      0     0     0     0     0     0     0     0     0     0     0     1
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     1     1     0     1     1     0     0     1     1     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      0     1     0     0     1     1     0     0     1     1     0     0
## X760      0     0     0     0     0     0     0     0     0     0     0     0
## X761      0     0     0     0     0     0     0     0     0     0     0     1
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      1     0     0     0     0     0     0     0     0     0     0     0
## X767      0     0     0     0     0     0     0     0     0     0     0     0
## X768      0     0     0     1     0     0     0     1     0     0     0     0
## X770      1     1     1     0     1     1     0     0     1     1     0     0
## X771      0     0     0     0     0     0     0     0     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     0     0
## X776      0     1     1     0     0     1     1     0     1     0     1     1
## X777      0     1     0     0     0     0     0     0     1     0     1     0
## X778      0     0     1     0     0     1     0     0     0     0     0     1
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      1     0     0     0     0     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      0     0     1     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     0     0     0     0     0     0     0     0
## X788      0     0     0     0     0     0     0     0     0     0     0     0
## X789      0     0     0     0     0     0     0     0     0     0     0     0
## X791      0     0     0     0     0     0     0     0     0     0     0     0
## X792      1     1     1     0     1     1     0     0     1     1     0     0
## X794      0     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     1     0     0     0     0     0     0     0     0
## X799      0     1     0     0     0     0     1     1     1     0     0     0
## X800      0     1     0     0     0     0     0     0     1     0     0     0
## X804      0     0     0     0     1     0     0     0     0     0     0     0
## X805      1     0     0     0     0     0     0     0     0     0     0     0
## X807      0     1     0     0     0     0     0     0     1     0     1     0
## X808      0     0     0     1     1     0     0     1     0     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     0     0     0     0
## X814      1     0     0     0     0     0     1     1     0     0     0     0
## X818      0     0     0     0     0     0     0     0     0     0     0     0
## X819      0     0     0     0     0     0     0     0     0     0     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     1
## X821      0     0     0     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     0     0     0     0     0     0
## X829      0     1     1     0     1     0     0     1     1     0     1     0
## X831      0     0     0     0     0     0     0     0     0     0     0     0
## X832      0     0     0     0     0     0     0     0     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     0     0     0     0     0     0     0     0
## X836      0     0     0     0     0     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     0     0     0     0     0     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     0
## X851      0     0     0     0     0     0     0     1     0     0     0     0
## X854      0     0     0     0     0     0     0     0     0     0     0     0
## X855      0     0     0     1     0     0     0     1     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     0
## X857      0     0     0     0     0     0     0     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     0
## X860      0     0     0     0     0     0     0     0     0     0     0     0
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     1     0     0     1     1     0     0     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     0     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     0     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     0     0     0     0     0     0     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     1     1     0     1     0     0     0     0     1     0     0     0
## X1200     0     1     0     0     0     0     0     0     1     1     1     0
## X1201     0     0     1     0     1     1     0     1     0     1     0     0
## X1202     0     0     0     0     0     0     0     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     1     0     1     0     0     1     0     1     0     1     0
## X1205     0     0     0     1     0     0     0     0     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     1     1     1     0     1     1     0     0     1     1     0     0
## X1208     0     1     0     0     0     0     0     1     1     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     0     0     0     0     0     0     0     0     0     0
## X1212     0     0     0     0     0     0     0     0     0     0     0     0
## X1213     1     1     1     0     1     1     0     0     1     1     0     0
## X1215     1     0     0     0     0     0     0     1     0     0     0     1
## X1216     0     1     0     0     0     0     0     1     1     0     0     0
## X1217     0     0     0     1     0     0     0     0     0     0     0     0
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     1     0     1     1     0     0     0     1     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     1     0     1     0     1     1     0     0     0     1     0     0
## X1226     0     1     1     0     1     1     0     0     1     1     0     0
## X1228     0     1     0     0     0     0     0     0     1     0     1     0
## X1229     1     0     0     0     0     0     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     0     0     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     0     0     0     0     0     0     0     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     0     0     0     0     0     0     0     0     0
## X1237     0     1     0     1     0     0     0     0     1     0     1     0
## X1239     1     1     0     0     1     0     0     0     1     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     0     0     0     0
## X1247     1     0     0     0     0     0     0     0     0     0     0     0
## X1249     0     1     0     0     0     0     0     0     1     0     1     0
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     1     0     0     0     0     0     0     1     0     1     0
## X1254     0     0     0     0     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     0     0     0     0     0     0
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     0
## X1262     1     0     0     0     0     0     0     0     0     0     0     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     0     0     0     0     0     0     0     0     0     1     0
## X1268     0     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     0     0     0     0     0     0     1
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     0     0     0     1     0     0     0     0
## X1301     0     0     0     0     0     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     1     0     1     0     0     0     0     1     0     1     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     0     0     0     0     0     0     0     0     0     0     0
## X448      1     0     0     0     1     0     0     0     0     1     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     1     0     0     0     0     0     0     0     0
## X454      0     1     0     1     0     0     1     0     1     0     1     0
## X455      0     0     0     0     0     0     0     0     0     0     0     0
## X456      0     0     0     0     0     0     0     0     0     0     0     0
## X458      0     1     0     1     0     0     1     0     1     0     1     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     0     0     0
## X462      0     1     0     0     0     0     0     1     1     0     0     0
## X463      0     0     1     0     1     1     0     1     0     1     0     1
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     1     0     0     0     0     0     0     0     0
## X466      0     1     0     0     1     1     0     1     1     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      1     1     0     0     0     0     1     0     1     0     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     1     0     0     0     0     0     0     0     0
## X482      1     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      0     0     1     0     1     1     0     0     0     1     0     0
## X488      0     0     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      0     0     1     0     1     0     0     0     0     1     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     0     0     0     1     0     0     0     0     0     0     0
## X493      0     0     0     0     0     0     0     0     0     0     0     0
## X494      0     0     0     1     0     0     0     0     0     0     0     0
## X495      0     0     1     1     1     1     0     0     0     1     0     0
## X496      0     1     0     1     0     0     0     0     1     0     0     0
## X497      0     0     0     1     0     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      0     0     0     0     1     0     1     1     0     0     1     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     1     0     1     0     0     1     0     0     0     0
## X505      0     0     0     0     0     0     0     0     0     0     0     0
## X506      0     1     0     1     0     0     1     0     1     0     1     0
## X507      0     0     0     1     0     0     0     0     0     0     0     0
## X508      0     0     1     0     0     0     0     0     0     0     0     0
## X509      1     0     0     0     1     0     0     0     0     1     0     0
## X510      0     0     0     0     0     0     1     0     0     0     0     0
## X513      1     0     0     0     0     0     0     0     0     0     0     0
## X514      0     1     0     1     0     0     1     1     1     0     1     0
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      1     0     0     0     1     0     0     0     0     1     0     0
## X521      0     1     0     1     0     0     1     0     1     0     1     0
## X523      0     0     0     0     0     0     0     0     0     0     0     0
## X524      0     0     1     0     0     0     0     0     0     0     0     0
## X525      0     0     0     0     0     0     0     0     0     0     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     1
## X530      0     0     0     0     1     1     0     0     0     1     0     0
## X531      1     0     0     0     0     0     1     0     0     0     1     0
## X532      1     1     0     1     0     1     0     0     1     0     0     1
## X533      0     1     0     0     0     0     1     0     1     0     1     0
## X534      0     1     1     0     0     1     1     0     1     0     1     1
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      0     0     1     1     1     1     0     0     0     1     0     0
## X538      0     0     0     0     0     0     0     0     0     0     0     0
## X539      0     0     1     1     1     1     0     0     0     1     0     0
## X542      0     0     0     0     0     0     0     0     0     0     0     1
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     0     0     0     1     0     0     0     0     1     0     0
## X545      0     0     1     0     1     1     0     0     0     1     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     1     0     1     1     0     1     0     1     0     0
## X553      0     1     0     0     0     0     0     0     1     0     0     0
## X554      1     0     0     1     0     1     0     0     0     0     0     1
## X556      0     0     0     0     0     0     0     0     0     0     0     0
## X557      0     0     1     0     1     1     0     0     0     1     0     1
## X558      0     1     0     1     0     0     0     1     1     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     0
## X567      0     1     0     0     0     0     1     0     1     0     1     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     1     0     1     1     0     0     0     1     0     0
## X571      0     0     0     0     0     0     0     0     0     0     0     0
## X572      0     0     1     0     0     1     0     0     0     1     0     1
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      0     1     0     1     0     0     1     0     1     0     1     0
## X577      0     0     0     0     0     0     0     0     0     0     0     0
## X579      0     0     0     0     0     0     0     1     0     0     0     0
## X580      0     0     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     1     0     1     1     0     1     0     1     0     0
## X586      0     1     0     0     0     0     1     1     1     0     1     0
## X587      0     0     0     1     0     0     0     0     0     0     0     0
## X588      0     1     0     0     0     0     0     0     1     0     0     0
## X589      0     0     0     0     0     0     0     0     0     0     0     0
## X591      0     0     1     1     1     1     0     0     0     1     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     1     1     0     1     1     1     0     0     0     0
## X594      0     0     0     0     0     0     0     0     0     0     0     0
## X595      0     1     0     0     1     1     0     0     1     1     0     0
## X596      0     1     1     0     0     1     1     0     1     0     1     1
## X597      1     0     1     0     1     1     0     0     0     1     0     0
## X598      0     0     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      1     1     0     0     0     0     0     1     0     0     1     0
## X603      0     0     0     0     0     0     0     0     0     0     0     0
## X604      0     1     0     0     0     0     0     0     1     0     0     0
## X605      0     0     0     0     0     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     1     0     1     0     0     1     0     1     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     1     0     0     0     1     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     0     0
## X616      1     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     0     0     1     1     0     0     0     1     0     0
## X619      0     1     1     0     0     0     1     0     1     0     1     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     0     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     0     0     0     0     0     0     0     0     0     0
## X625      1     0     0     1     0     0     1     1     0     0     0     0
## X628      0     0     0     0     0     0     0     0     0     0     0     1
## X629      0     0     0     0     0     0     0     0     0     0     0     0
## X630      0     0     1     0     1     1     0     0     0     1     0     1
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     0     0     0     0     0     0     0     0
## X635      0     1     1     0     0     1     1     0     1     1     1     0
## X636      0     0     0     0     0     0     0     0     0     0     0     1
## X637      0     0     0     0     0     0     0     0     0     0     0     0
## X638      0     0     0     0     0     0     0     0     0     0     0     0
## X639      0     1     0     1     0     0     1     0     1     0     1     0
## X641      0     0     0     0     0     0     1     1     0     0     0     0
## X648      0     1     0     0     0     0     1     0     1     0     1     0
## X650      0     1     0     1     0     0     1     1     1     0     1     0
## X651      0     0     0     0     0     0     1     1     0     0     0     0
## X653      0     0     0     0     0     0     0     0     0     0     0     0
## X654      0     0     1     0     1     1     0     0     0     1     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     1     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     1     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     0     0     0     1     0     0     0     1     0
## X1089     0     0     1     1     0     0     0     1     0     0     0     0
## X1090     0     0     1     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     0     0     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     1     0     0     0     0     0     1     1     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     0     0     0     1     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     0     0     0     0     0     0     0     0     0
## X1101     0     1     0     0     0     0     1     0     1     0     1     0
## X1103     0     0     0     0     0     0     0     0     0     0     0     0
## X1104     0     1     0     1     0     0     1     0     1     0     1     0
## X1105     0     1     0     1     0     0     0     0     1     0     0     0
## X1106     0     0     1     0     0     1     0     0     0     0     0     1
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     1     0     1     0     0     1     0     1     0     1     0
## X1113     1     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     1     0     0     0     1     0     0     0     0     1     0     0
## X1117     0     0     0     0     0     0     0     0     0     0     0     0
## X1119     0     0     0     0     0     0     0     0     0     0     0     0
## X1120     0     0     0     0     0     0     0     0     0     0     0     1
## X1121     0     0     1     1     1     1     0     0     0     1     0     1
## X1122     0     0     0     0     0     0     0     0     0     0     0     1
## X1124     0     0     0     0     0     0     0     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     0
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     1     0     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     0
## X1139     0     0     0     0     0     0     0     0     0     0     0     1
## X1141     1     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     0     0     0     0     0     0     1     1     0     0     0     0
## X1144     0     0     1     0     1     1     0     1     0     1     0     0
## X1145     0     1     1     0     0     0     1     0     1     0     1     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     1     1     0     1     1     0     0     1     1     0     0
## X1149     1     0     0     0     0     0     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     0     1     1     0     1     1     0     0     1     0     0     0
## X1152     0     0     1     0     1     1     0     1     0     1     0     0
## X1153     0     0     0     1     0     0     0     1     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     0     0     0     0     0     0     0     0     0     0     0
## X1159     0     0     0     0     0     0     0     1     0     0     0     0
## X1160     0     0     0     0     0     0     0     0     0     0     0     0
##       FP145 FP146 FP147 FP148 FP149 FP150 FP151 FP152 FP153 FP155 FP156 FP157
## X661      0     0     0     0     0     1     0     0     0     0     0     0
## X662      0     0     0     0     0     0     0     0     1     0     0     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     1     0     0     0     0     0     0     0     1     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     1     0     0     0     0     0     0     0     0     0     0
## X670      0     0     0     0     1     1     0     0     0     0     0     0
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     1     1     0     0     0     0     0     0     1     0     0
## X673      0     0     0     0     0     0     0     0     0     0     0     0
## X674      0     0     0     0     0     0     0     0     0     0     0     0
## X676      0     1     0     0     0     0     0     0     0     1     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     0     0
## X683      0     0     0     0     0     0     0     1     0     0     1     0
## X684      1     0     0     0     0     1     0     0     1     0     0     0
## X685      0     0     0     0     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     1     0     0     0     0     0     0     0     0     0
## X689      0     0     0     0     0     0     0     0     1     0     0     0
## X690      0     0     0     0     0     0     0     0     0     0     0     0
## X691      0     0     0     0     0     1     0     0     1     0     0     0
## X692      0     0     0     0     0     0     1     1     0     0     1     0
## X693      0     0     0     0     0     0     1     1     0     0     1     0
## X695      0     0     0     0     0     0     0     0     1     0     0     0
## X696      0     0     0     0     0     0     0     0     0     0     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     1     0     0     0     0     0     0     0     1     0     1
## X708      0     0     0     0     1     0     0     0     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     0     0     0     0     0     0     0     0
## X712      0     1     0     0     0     0     0     0     0     1     0     0
## X713      0     0     0     1     0     0     0     0     0     0     0     0
## X714      0     1     1     0     0     0     0     0     0     1     0     0
## X715      0     0     0     0     0     0     0     0     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     0     0     0     0     1     0     0     1     0     0     0
## X721      0     0     0     1     0     0     0     0     0     0     0     0
## X722      0     1     0     0     1     0     0     0     1     1     0     0
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     1     0     0     0     0     0     0     0     0     0
## X728      0     0     0     0     1     0     0     0     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     1     0     0     0     0     0     0     0
## X733      0     0     0     1     0     0     0     0     0     0     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     1     0     0     0     0     0     0     0     1     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     0     0     0     0     0     0     1     0     0     0     0
## X739      0     1     1     0     0     0     0     0     0     0     0     1
## X740      0     0     0     0     0     0     0     0     1     0     0     0
## X741      0     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     0     0     0     0     0     0     0     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      0     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     0     0     0     0     0     0     0
## X749      1     0     0     0     0     1     0     0     1     0     0     0
## X752      0     1     1     0     0     0     0     0     0     1     0     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     0     0     0     0     0     0     0     1     0     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      0     0     0     0     0     0     0     1     0     0     1     0
## X760      0     0     0     0     1     0     0     0     0     0     0     0
## X761      0     1     1     0     0     0     0     0     0     1     0     0
## X762      0     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     0     0     1     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      0     0     1     0     0     0     0     0     0     0     0     0
## X767      0     1     1     0     0     0     0     0     0     1     0     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     0     0     0     0     0     0     1     0     0     0
## X771      1     1     0     0     0     0     0     0     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     1     0     0     0     0     0     0     0
## X776      0     0     0     0     0     0     1     1     0     0     1     0
## X777      0     0     0     0     0     0     0     0     0     0     1     0
## X778      1     0     0     0     0     0     0     0     0     0     0     0
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     1     0     0     0     0     0     0     0     0     0     0
## X781      0     1     0     0     0     0     0     0     0     1     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     0
## X784      1     0     0     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     1     0     0     0     0     0     0     0
## X788      0     1     0     0     0     0     0     0     0     1     0     0
## X789      0     0     0     0     1     0     0     0     0     0     0     0
## X791      0     0     0     0     1     0     0     0     0     0     0     0
## X792      0     0     0     0     0     0     0     0     1     0     0     0
## X794      0     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     1     1     0     0     0     0     0     0
## X799      0     0     0     0     0     0     0     0     1     0     1     0
## X800      0     0     0     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     0     0     0
## X805      0     1     1     0     0     0     0     0     0     1     0     0
## X807      0     0     0     0     0     0     0     1     0     0     1     0
## X808      0     0     0     0     0     0     0     0     1     0     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     1     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     0     0     0     0
## X814      1     0     0     0     1     0     0     0     1     0     0     1
## X818      0     0     0     0     1     0     0     0     0     0     0     0
## X819      0     0     0     0     0     0     0     0     0     0     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     0
## X821      0     0     0     0     1     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     1     0     0     0     0     0     0     0     0     0     1
## X828      0     0     0     0     1     0     0     0     0     0     0     0
## X829      0     0     0     0     0     0     0     1     1     0     1     0
## X831      0     1     0     0     0     0     0     0     0     1     0     0
## X832      0     0     0     0     1     0     0     0     0     0     0     0
## X833      0     0     0     0     1     0     0     0     0     0     0     0
## X834      0     0     0     0     0     0     0     0     0     0     0     0
## X835      0     0     0     0     1     0     0     0     0     0     0     0
## X836      0     0     0     0     1     0     0     0     0     0     0     0
## X839      0     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     0     0     1     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     1     0     0     0     0     0     0     0     1     0     0
## X846      0     0     0     0     1     0     0     0     0     0     0     0
## X848      0     0     0     0     1     0     0     0     0     0     0     0
## X849      0     0     0     0     1     0     0     0     0     0     0     0
## X851      0     1     0     0     0     0     0     0     0     1     0     1
## X854      0     0     0     0     1     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     0     0     1     0     0     0     0     0     0     0
## X857      0     0     0     0     1     0     0     0     0     0     0     0
## X858      0     0     0     0     1     0     0     0     0     0     0     0
## X859      0     0     0     0     1     0     0     0     0     0     0     0
## X860      0     0     0     0     1     0     0     0     0     0     0     0
## X862      0     0     0     0     1     0     0     0     0     0     0     0
## X863      0     0     0     0     1     0     0     0     0     0     0     0
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     0     0     1     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     1     0     0     1     0     0     0
## X870      0     0     0     0     1     0     0     0     0     0     0     0
## X871      0     0     0     0     1     0     0     0     0     0     0     0
## X872      0     0     0     0     1     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     0     0     1     0     0     0     0     0     0     0
## X876      0     0     0     0     1     0     0     0     0     0     0     0
## X877      0     0     0     0     1     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     1     0     0     0     0     0     0     0     1     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     1     1     0     0     0     0     0     0     1     0     0
## X1195     0     0     0     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     1     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     1     0     0     1     0
## X1201     1     0     1     0     1     0     0     0     1     0     0     1
## X1202     0     1     1     0     0     0     0     0     0     1     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     1     1     0     1     0     1     0     1     1     0     1     0
## X1205     0     0     0     1     0     0     0     0     0     0     0     0
## X1206     0     1     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     1     0     0     1     0     0     0
## X1208     0     1     0     0     0     0     0     0     0     1     0     1
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     0     0     0     0     0     0     0     0     0     0
## X1212     0     0     0     0     0     0     0     0     0     0     0     0
## X1213     0     0     0     0     0     0     0     0     1     0     0     0
## X1215     0     1     1     0     0     0     0     0     0     1     0     1
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     0     0     0     0     0     0     0     0     0     0
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     0     0     1     0     0     0     1     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     1     0     0     0     0     0     0     0     1     0     0
## X1226     0     0     0     0     0     1     0     0     1     0     0     0
## X1228     0     0     0     0     0     0     0     1     0     0     1     0
## X1229     0     1     1     0     0     0     0     0     0     1     0     0
## X1230     0     0     0     0     1     0     0     0     0     0     0     1
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     1     0     0     0     0     0     0     0     1     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     1     0     0     0     0     0     0     0     1     0     0
## X1237     0     0     0     0     0     0     0     1     0     0     1     0
## X1239     0     1     0     0     0     0     0     0     0     0     0     0
## X1242     0     1     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     1     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     0     0     0     0     0     0     0     0     0     0     0
## X1247     0     1     0     0     0     0     0     0     0     1     0     0
## X1249     0     1     0     0     0     0     0     1     0     1     1     1
## X1250     0     1     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     1     0     0     1     0
## X1254     0     0     0     0     1     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     1     0     0     0     0     0     0     0
## X1259     0     1     0     0     0     0     0     0     0     0     0     1
## X1260     0     0     0     0     1     0     0     0     0     0     0     0
## X1262     0     1     0     0     0     0     0     0     0     0     0     0
## X1264     0     1     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     1     0     0     0     0     0     0     0
## X1266     0     0     0     0     0     0     0     0     0     0     0     0
## X1267     0     0     1     0     0     0     0     0     0     0     0     0
## X1268     0     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     0     0     1     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     0     0     0     0     0     0     0
## X1275     0     1     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     0     0     1     0     0     0     0     0     0     0
## X1278     0     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     0     0     1     0     0     0     0     0     0     0
## X1282     0     0     0     0     1     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     0     0     1     0     0     0     0     0     0     0
## X1288     0     0     0     0     1     0     0     0     0     0     0     0
## X1299     1     0     0     0     1     1     0     0     0     0     0     0
## X1301     0     1     0     0     0     0     0     0     0     1     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     1     0     0     1     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     0
## X1310     0     1     0     0     0     0     0     0     0     0     0     0
## X447      0     0     1     0     0     0     0     0     0     0     0     0
## X448      1     1     1     1     0     0     0     0     0     1     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     0     0     0     0     0     0
## X454      0     0     0     0     0     0     1     1     0     0     1     0
## X455      0     0     1     0     0     0     0     0     0     0     0     0
## X456      0     1     0     0     0     0     0     0     0     1     0     1
## X458      1     0     0     0     0     0     1     1     0     0     1     0
## X459      0     0     0     0     0     0     0     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     0     0     0     1     0     0     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     0     0     0     0     0     0     0     0
## X466      1     0     0     0     0     0     0     0     1     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      0     0     0     0     0     0     1     1     1     0     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     0     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     1     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      1     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      1     0     0     0     0     0     0     0     0     0     0     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     1     0     0     1     0     0     0     1     1     0     0
## X493      0     0     0     0     0     0     0     0     0     0     0     0
## X494      1     0     0     0     0     0     0     0     0     0     0     0
## X495      1     0     0     0     0     0     0     0     0     0     0     0
## X496      0     0     0     0     0     1     0     1     0     0     0     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      1     0     1     0     1     1     0     0     1     0     0     1
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     0     0     0     1     0     0     1     0     0     0
## X505      0     0     0     0     0     0     0     0     0     0     0     0
## X506      0     0     0     0     0     0     1     1     0     0     1     0
## X507      0     0     1     1     0     0     0     0     0     0     0     0
## X508      1     0     0     0     0     0     0     0     0     0     0     0
## X509      1     1     1     1     0     0     0     0     0     1     0     0
## X510      1     1     0     0     1     1     0     0     1     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     1     1     1     0     0     1     1
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      0     0     0     0     0     0     0     0     0     0     0     0
## X521      0     0     0     0     0     0     1     1     0     0     1     0
## X523      0     0     0     0     0     0     0     0     0     0     0     0
## X524      0     0     0     0     0     0     0     0     0     0     0     0
## X525      0     1     0     1     1     0     0     0     0     1     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     0     0
## X531      0     0     1     0     0     0     1     0     0     0     0     0
## X532      0     0     0     1     0     0     0     0     0     0     0     0
## X533      0     0     0     0     0     0     1     1     0     0     1     0
## X534      0     0     0     0     0     0     1     1     0     0     1     0
## X535      0     0     0     0     0     0     0     0     0     0     0     0
## X536      1     0     0     0     0     0     0     0     0     0     0     0
## X538      0     1     1     1     1     0     0     0     0     0     0     1
## X539      1     0     0     0     0     0     0     0     0     0     0     0
## X542      0     1     1     1     0     0     0     0     0     1     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      1     1     1     1     0     0     0     0     0     1     0     0
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     0     1     0     1     0     0     0     1     0     0     1
## X553      0     1     0     0     0     0     0     0     0     0     0     1
## X554      0     0     0     1     0     1     0     0     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     0     0     0
## X557      0     0     0     0     0     1     0     0     0     0     0     0
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     0     0     0     0     0     0     0     0
## X567      0     0     0     1     0     0     1     1     0     0     1     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     0     0     0
## X571      0     0     0     0     0     0     0     0     0     0     0     0
## X572      1     0     0     0     0     0     0     0     0     0     0     0
## X574      0     1     0     0     0     0     0     0     0     1     0     0
## X576      1     0     0     0     0     1     1     1     0     0     1     0
## X577      0     0     0     0     0     0     0     0     0     0     0     0
## X579      0     0     0     0     0     0     0     0     0     0     0     1
## X580      0     0     0     1     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     1     0     0     0     0     0     0     0     1     0     1
## X586      0     0     0     0     0     0     0     1     1     0     1     0
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      0     0     0     1     0     0     0     1     0     0     0     0
## X589      0     0     0     0     0     0     0     0     0     0     0     0
## X591      1     0     0     0     0     0     0     0     0     0     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      1     0     0     0     0     1     0     0     1     0     0     0
## X594      0     0     0     0     0     0     0     0     0     0     0     0
## X595      0     1     0     0     0     0     0     1     0     0     0     0
## X596      0     0     0     0     0     0     1     1     0     0     1     0
## X597      0     1     0     0     0     0     0     0     0     1     0     1
## X598      0     0     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     0     0     0     1     0     0     1     1
## X603      0     0     0     0     0     0     0     0     0     0     0     0
## X604      0     0     0     1     0     0     0     1     0     0     0     0
## X605      0     1     0     0     0     0     0     0     0     1     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     1     1     0     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     0     1     0     0     0     0     0     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     0     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      1     0     1     0     0     0     0     0     0     0     0     0
## X619      0     0     0     1     0     0     1     1     0     0     1     0
## X620      0     0     0     0     0     0     0     0     0     0     0     0
## X621      0     0     0     1     0     0     0     0     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      1     0     1     0     1     1     0     0     0     0     0     0
## X625      1     0     1     0     0     1     0     0     1     0     0     0
## X628      0     1     1     1     0     0     0     0     0     1     0     0
## X629      0     0     0     0     0     0     0     0     0     0     0     0
## X630      0     0     0     0     0     0     0     0     1     0     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     0     0     0     0     0     0     0     0
## X635      1     0     0     0     0     1     1     1     1     0     1     0
## X636      0     1     1     1     0     0     0     0     0     1     0     0
## X637      0     1     0     0     0     0     0     0     0     1     0     0
## X638      0     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     1     1     1     0     0     1     0
## X641      1     0     0     0     1     0     0     0     1     0     0     0
## X648      0     0     0     1     0     0     1     1     0     0     1     0
## X650      1     0     0     0     0     1     1     1     0     0     1     0
## X651      1     0     0     0     1     0     0     0     1     0     0     0
## X653      0     0     0     0     0     0     0     0     0     0     0     0
## X654      1     0     0     0     0     0     0     0     0     0     0     0
## X655      0     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     0     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     1     0     1     0     0     0     0     0     0     0     0     0
## X1089     0     0     0     0     0     0     0     0     0     0     0     0
## X1090     1     0     0     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     1     0     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     1     0     0     0     0     1     0     0     1     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     0     0     0     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     0     1     1     0     0     0     0     1     0     0
## X1101     0     0     0     1     0     0     1     1     0     0     1     0
## X1103     0     1     1     0     0     0     0     0     0     1     0     1
## X1104     0     0     0     0     0     0     1     1     0     0     1     0
## X1105     0     0     0     0     0     1     0     1     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     0     1     1     0     0     1     0
## X1113     0     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     0     1     0     0     0     0     0     0     0     0     0
## X1116     0     0     0     0     0     0     0     0     0     0     0     0
## X1117     0     0     0     1     0     0     0     0     0     0     0     0
## X1119     0     0     1     0     0     0     0     0     0     0     0     0
## X1120     0     1     1     1     0     0     0     0     0     1     0     0
## X1121     0     1     0     0     1     1     0     0     1     1     0     0
## X1122     0     1     1     1     0     0     0     0     0     1     0     0
## X1124     0     1     0     0     0     0     0     0     0     1     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     0
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     1     0     0     1     1     0     0     1     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     1     0     1     1     0     0     0     0     0     0     0     1
## X1139     0     1     1     1     0     0     0     0     0     1     0     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     0
## X1143     1     0     0     0     1     0     0     0     1     0     0     0
## X1144     0     0     1     0     0     0     0     0     1     0     0     1
## X1145     0     0     0     1     0     0     1     1     0     0     1     0
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     0     0     0     0     0     0     0     0     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     1     0     0     0     0     0     1     0     0     1
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     0     1     1     1     0     0     0     0     0     0     1
## X1159     0     0     1     0     0     0     0     0     0     0     0     1
## X1160     0     1     0     0     0     0     0     0     0     1     0     1
##       FP158 FP159 FP160 FP161 FP162 FP163 FP164 FP165 FP166 FP167 FP168 FP169
## X661      0     0     0     0     1     0     1     0     0     0     1     0
## X662      0     1     0     0     1     0     1     0     1     0     1     1
## X663      0     0     0     0     1     1     1     1     0     1     1     0
## X665      0     0     0     0     0     0     1     1     0     0     1     0
## X668      0     0     0     0     0     0     0     0     0     0     1     0
## X669      0     0     0     0     0     1     0     1     0     1     0     0
## X670      0     0     0     0     1     0     1     0     1     0     1     1
## X671      0     0     0     0     0     1     0     1     0     1     0     0
## X672      0     0     0     0     0     1     1     1     0     1     1     0
## X673      1     0     0     0     1     1     1     1     1     1     1     0
## X674      0     0     0     0     1     1     1     1     1     1     1     0
## X676      0     0     0     0     0     1     1     0     0     0     1     0
## X677      0     0     0     0     1     0     1     0     1     0     1     0
## X678      0     0     0     0     1     0     1     0     1     0     1     1
## X679      0     0     0     0     1     0     1     0     1     0     1     0
## X682      0     0     0     0     1     1     1     1     0     1     1     1
## X683      0     0     0     0     0     1     0     0     0     0     1     0
## X684      0     1     0     0     1     0     1     0     1     0     1     1
## X685      0     0     0     0     0     1     0     0     0     0     1     0
## X686      0     0     0     0     1     0     1     0     1     0     1     0
## X688      0     0     0     0     1     1     1     1     1     1     1     1
## X689      0     0     0     0     1     0     1     0     1     0     1     0
## X690      0     0     0     0     1     1     1     1     1     1     1     0
## X691      0     0     0     0     0     1     0     0     0     0     0     0
## X692      0     1     1     0     1     1     1     0     1     0     1     0
## X693      1     1     1     0     1     1     1     1     0     1     1     0
## X695      0     1     0     0     1     0     1     0     1     0     1     1
## X696      0     0     0     0     1     0     1     0     1     0     1     1
## X698      0     0     0     0     0     1     1     1     0     1     1     1
## X699      0     0     0     0     1     0     1     0     1     0     1     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     1     0     1     0     1     0     1     1
## X706      0     0     0     0     1     1     1     1     0     0     1     0
## X708      0     0     0     0     1     0     1     0     1     0     1     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     0     0     0     1     0     1     0     1     0     0
## X712      0     0     0     0     1     0     1     1     0     0     1     0
## X713      0     0     0     0     1     1     1     1     1     1     1     1
## X714      0     0     0     0     0     1     1     1     0     1     1     0
## X715      0     0     0     0     1     1     1     1     1     1     1     1
## X717      0     0     0     0     1     0     1     0     1     0     1     1
## X718      0     1     0     0     1     0     1     0     1     0     1     1
## X721      0     0     0     0     0     0     0     0     0     0     1     0
## X722      0     0     0     0     1     1     1     0     1     0     1     1
## X723      0     0     0     0     0     0     0     0     0     0     0     0
## X724      0     0     0     0     1     0     1     0     1     0     1     0
## X726      0     0     0     0     1     0     1     0     0     0     1     1
## X728      0     0     0     0     1     1     1     1     1     1     1     1
## X729      0     0     0     0     1     0     1     0     0     0     1     1
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     0     0     1     0     1     0     1     0     1     0
## X733      0     0     0     0     0     0     0     0     0     0     1     0
## X734      0     0     0     0     1     0     1     0     0     0     1     0
## X735      0     0     0     0     0     1     1     0     0     0     1     0
## X736      0     0     0     0     1     1     1     1     0     1     1     0
## X737      0     0     0     0     1     0     1     0     1     0     1     0
## X739      0     0     0     0     0     1     1     0     0     0     1     1
## X740      0     0     0     0     1     1     1     1     0     1     1     1
## X741      0     0     0     0     0     1     0     1     0     1     0     0
## X742      0     0     0     0     0     1     0     1     0     1     0     0
## X743      0     0     0     0     0     0     1     0     0     0     1     1
## X744      0     0     0     0     1     0     1     0     1     0     1     0
## X746      0     0     0     0     1     1     1     1     1     1     1     0
## X747      0     0     0     0     0     0     0     0     0     0     0     0
## X749      0     1     0     0     1     1     1     1     1     1     1     1
## X752      0     0     0     0     0     1     1     1     0     1     1     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     1     0     0     1     0     1     0     1     0     1     0
## X755      0     0     0     0     1     0     1     0     1     0     1     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     1     0     1     0     1     0     1     1
## X759      0     0     0     0     0     0     0     1     0     0     0     0
## X760      0     0     0     0     1     0     1     0     1     0     1     1
## X761      0     0     0     0     0     1     1     1     0     1     1     0
## X762      0     0     0     0     1     0     1     0     1     0     1     0
## X763      0     0     0     0     1     0     1     0     0     0     1     1
## X764      0     0     0     0     1     0     1     0     1     0     1     0
## X765      0     0     0     0     1     1     1     1     0     1     1     0
## X767      0     0     0     0     0     1     1     1     0     1     1     0
## X768      0     0     0     0     1     0     1     0     1     0     1     0
## X770      0     1     0     0     1     0     1     0     1     0     1     1
## X771      0     0     0     0     1     1     1     1     1     1     1     0
## X772      0     0     0     0     1     0     1     0     1     0     1     0
## X773      0     0     0     0     0     0     0     0     0     0     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     1     1     1     1     1     1     1     0
## X776      1     1     1     0     1     1     1     1     0     1     1     1
## X777      0     0     0     0     0     1     0     0     0     0     0     0
## X778      0     0     0     1     0     1     0     1     0     1     0     0
## X779      0     0     0     0     1     0     1     0     1     0     1     1
## X780      0     0     0     0     0     0     0     0     0     0     1     0
## X781      0     0     0     0     0     1     0     1     0     1     0     0
## X782      0     0     0     0     1     1     1     0     1     0     1     0
## X784      0     0     0     1     1     1     1     1     0     1     1     1
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     0     0     1     0     1     0     1     0     1     1
## X788      0     0     0     0     0     1     1     1     0     1     1     0
## X789      0     0     0     0     1     0     1     0     1     0     1     0
## X791      0     0     0     0     1     0     1     0     1     0     1     0
## X792      0     1     0     0     1     0     1     0     1     0     1     1
## X794      0     0     0     0     0     1     0     1     0     1     0     0
## X798      0     0     0     0     1     0     1     0     1     0     1     0
## X799      0     0     1     0     0     1     1     0     0     0     1     0
## X800      0     0     0     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     1     0     1     0     0     0     1     1
## X805      0     0     0     0     0     1     1     1     0     1     1     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     1     1     1     1     1     1     1     1
## X809      0     0     0     0     1     1     1     1     1     1     1     0
## X810      0     0     0     0     0     0     1     0     0     0     1     0
## X813      0     0     0     0     0     1     0     1     0     1     0     0
## X814      0     0     0     0     0     1     1     0     0     0     1     1
## X818      0     0     0     0     1     0     1     0     1     0     1     1
## X819      1     0     0     0     1     1     1     1     1     1     1     0
## X820      0     0     0     0     0     0     0     0     0     0     0     0
## X821      0     0     0     0     1     0     1     0     1     0     1     1
## X822      0     0     0     0     1     0     1     0     1     0     1     0
## X823      0     0     0     0     1     0     1     0     1     0     1     1
## X827      0     0     0     0     0     0     0     0     0     0     1     0
## X828      0     0     0     0     1     0     1     0     1     0     1     1
## X829      0     0     0     0     1     1     1     0     1     0     1     0
## X831      0     0     0     0     1     0     1     1     1     0     1     0
## X832      0     0     0     0     1     0     1     0     1     0     1     1
## X833      0     0     0     0     1     0     1     0     1     0     1     1
## X834      0     0     0     0     1     0     1     0     1     0     1     0
## X835      0     0     0     0     1     0     1     0     0     0     1     0
## X836      0     0     0     0     1     0     1     0     0     0     1     1
## X839      0     0     0     0     1     0     1     0     1     0     1     0
## X840      0     0     0     0     1     0     1     0     1     0     1     0
## X841      0     0     0     0     1     0     1     0     1     0     1     1
## X842      0     0     0     0     1     0     1     0     1     0     1     1
## X843      0     0     0     0     1     0     1     1     0     0     1     0
## X846      0     0     0     0     1     0     1     0     1     0     1     0
## X848      0     0     0     0     1     0     1     0     1     0     1     1
## X849      0     0     0     0     1     0     1     0     0     0     1     1
## X851      0     0     0     0     0     0     1     0     0     0     1     0
## X854      0     0     0     0     1     0     1     0     1     0     1     0
## X855      0     0     0     0     1     0     1     0     1     0     1     0
## X856      0     0     0     0     1     0     1     0     0     0     1     1
## X857      0     0     0     0     1     0     1     0     1     0     1     1
## X858      0     0     0     0     1     0     1     0     0     0     1     1
## X859      0     0     0     0     1     0     1     0     0     0     1     1
## X860      0     0     0     0     1     0     1     0     0     0     1     1
## X862      0     0     0     0     1     0     1     0     1     0     1     0
## X863      0     0     0     0     0     0     1     0     0     0     1     1
## X864      0     0     0     0     1     0     1     0     1     0     1     1
## X865      0     0     0     0     1     0     1     0     1     0     1     0
## X866      0     0     0     0     1     0     1     0     0     0     1     0
## X867      0     0     0     0     1     0     1     0     1     0     1     1
## X869      0     0     0     0     1     0     1     0     1     0     1     1
## X870      0     0     0     0     0     0     1     0     0     0     1     1
## X871      0     0     0     0     1     0     1     0     1     0     1     1
## X872      0     0     0     0     0     0     1     0     0     0     1     1
## X873      0     0     0     0     1     0     1     0     1     0     1     0
## X875      0     0     0     0     0     0     1     0     0     0     1     1
## X876      0     0     0     0     0     0     1     0     0     0     1     1
## X877      0     0     0     0     0     0     0     0     0     0     1     0
## X1190     0     0     0     0     1     0     1     0     1     0     1     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     0     0     1     1     0     0     0     1     0
## X1193     0     0     0     0     0     0     1     0     0     0     1     1
## X1194     0     0     0     0     0     1     1     1     0     1     1     0
## X1195     0     0     0     0     1     0     1     0     1     0     1     0
## X1197     0     0     0     0     1     0     1     0     1     0     1     0
## X1198     0     0     0     0     1     0     1     0     0     0     1     0
## X1199     0     1     1     0     0     0     0     0     0     0     1     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     1     1     1     0     0     0     1     1
## X1202     0     0     0     0     0     1     1     1     0     1     1     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     1     0     0     1     1     1     1     1     1     1     0
## X1205     0     0     0     0     1     1     1     1     1     1     1     1
## X1206     0     0     0     0     0     0     0     1     0     0     0     0
## X1207     0     1     0     0     1     0     1     0     1     0     1     0
## X1208     0     0     1     0     0     1     1     1     0     1     1     0
## X1209     0     0     0     0     0     0     0     0     0     0     1     0
## X1210     0     0     0     0     0     1     0     1     0     1     0     0
## X1212     0     0     0     0     1     0     1     0     0     0     1     1
## X1213     0     1     0     0     1     0     1     0     1     0     1     0
## X1215     0     0     0     0     0     1     1     1     0     1     1     0
## X1216     0     0     0     0     1     0     1     0     1     0     1     0
## X1217     0     0     0     0     1     0     1     0     1     0     1     0
## X1219     0     0     0     0     1     0     1     0     0     0     1     0
## X1220     0     0     0     0     1     1     1     1     0     1     1     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     1     0     1     0     1     0     1     0
## X1226     0     1     0     0     1     0     1     0     1     0     1     1
## X1228     0     1     1     0     1     0     1     0     0     0     1     1
## X1229     0     0     0     0     0     1     1     1     0     1     1     0
## X1230     0     0     0     0     1     1     1     0     1     0     1     0
## X1231     0     0     0     0     1     0     1     0     1     0     1     0
## X1233     0     0     0     0     0     1     1     1     0     1     1     0
## X1234     0     0     0     0     1     0     1     0     1     0     1     1
## X1236     0     0     0     0     0     1     1     1     0     1     1     0
## X1237     0     0     0     0     0     0     1     0     0     0     1     1
## X1239     0     0     0     0     0     1     0     1     0     1     0     0
## X1242     0     0     0     0     0     0     0     1     0     0     0     0
## X1244     0     0     0     0     1     0     1     0     1     0     1     0
## X1245     0     0     0     0     1     0     1     0     1     0     1     0
## X1246     0     0     0     0     1     1     1     0     0     0     1     1
## X1247     0     0     0     0     1     1     1     1     1     1     1     1
## X1249     0     0     0     0     1     1     1     0     0     0     1     1
## X1250     0     0     0     0     0     0     1     0     0     0     1     0
## X1251     0     0     0     0     0     0     0     0     0     0     1     0
## X1253     0     1     1     0     1     0     1     0     0     0     1     0
## X1254     0     0     0     0     1     0     1     0     1     0     1     1
## X1255     0     0     0     0     1     0     1     0     1     0     1     1
## X1256     0     0     0     0     1     0     1     0     0     0     1     0
## X1257     0     0     0     0     1     0     1     0     1     0     1     1
## X1259     0     0     0     0     0     0     0     0     0     0     1     0
## X1260     0     0     0     0     1     0     1     0     0     0     1     1
## X1262     0     0     0     0     1     1     1     1     1     1     1     1
## X1264     0     0     0     0     0     0     1     0     0     0     1     0
## X1265     0     0     0     0     1     0     1     0     0     0     1     1
## X1266     0     0     0     0     1     0     1     0     1     0     1     0
## X1267     0     0     0     0     1     1     1     0     1     0     1     1
## X1268     0     0     0     0     0     1     0     1     0     1     0     0
## X1273     0     0     0     0     1     0     1     0     1     0     1     1
## X1274     0     0     0     0     0     0     0     0     0     0     0     0
## X1275     0     0     0     0     0     0     1     0     0     0     1     0
## X1276     0     0     0     0     1     0     1     0     1     0     1     0
## X1277     0     0     0     0     1     0     1     0     0     0     1     1
## X1278     0     0     0     0     1     0     1     0     1     0     1     1
## X1279     0     0     0     0     1     0     1     0     1     0     1     0
## X1281     0     0     0     0     1     0     1     0     0     0     1     1
## X1282     0     0     0     0     1     0     1     0     1     0     1     1
## X1283     0     0     0     0     1     0     1     0     1     0     1     1
## X1284     0     0     0     0     1     0     1     0     1     0     1     1
## X1285     0     0     0     0     1     0     1     0     0     0     1     0
## X1288     0     0     0     0     0     0     1     0     0     0     1     1
## X1299     1     0     0     1     1     1     1     0     1     0     1     0
## X1301     0     0     0     0     0     1     1     0     0     0     1     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     1     0     0     0     1     1
## X1309     0     0     0     0     1     0     1     0     0     0     1     0
## X1310     0     0     0     0     0     0     0     0     0     0     1     0
## X447      0     0     0     0     1     1     1     1     0     1     1     1
## X448      0     0     0     1     1     1     1     1     0     1     1     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     1     0     1     0     0     0     1     0
## X453      0     0     0     0     1     0     1     0     1     0     1     0
## X454      0     1     1     0     1     1     1     0     0     0     1     1
## X455      0     0     0     0     1     1     1     1     0     1     1     1
## X456      0     0     0     0     1     1     1     1     1     1     1     0
## X458      0     1     1     0     1     1     1     0     0     0     1     0
## X459      0     0     0     0     0     1     0     1     0     1     0     0
## X460      0     0     0     0     0     0     1     0     0     0     0     0
## X461      0     0     0     0     1     1     1     1     1     1     1     1
## X462      0     0     0     0     1     0     1     0     1     0     1     0
## X463      0     0     0     0     1     0     1     0     1     0     1     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     1     0     1     0     0     0     1     0
## X466      0     1     0     0     1     1     1     1     1     1     1     0
## X468      0     0     0     0     0     1     0     1     0     1     0     0
## X471      0     0     0     0     1     1     1     1     0     1     1     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     1     1     1     1     1     1     1     0
## X477      0     0     0     0     1     1     1     0     1     0     1     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     1     0     1     0     1     0     1     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     1     0     1     0     0     0     1     0
## X486      0     0     0     0     0     1     0     1     0     1     0     0
## X487      0     0     0     0     1     1     1     1     0     1     1     0
## X488      0     0     0     0     1     1     1     1     0     1     1     0
## X489      0     0     0     0     1     1     1     1     1     1     1     0
## X490      0     0     0     0     1     1     1     1     1     1     1     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      1     0     0     0     0     1     1     0     0     0     1     0
## X493      0     0     0     0     0     1     0     1     0     1     0     0
## X494      0     0     0     0     0     1     0     1     0     1     1     0
## X495      0     0     0     0     1     0     1     0     0     0     1     1
## X496      0     0     1     0     0     0     1     0     0     0     1     0
## X497      0     0     0     0     1     0     1     0     1     0     1     0
## X498      0     0     0     0     0     0     1     0     0     0     1     1
## X499      0     0     0     0     1     0     1     0     1     0     1     0
## X501      1     0     0     0     1     1     1     0     0     0     1     1
## X502      0     0     0     0     1     0     1     0     1     0     1     1
## X503      0     0     0     0     1     0     1     0     1     0     1     0
## X505      0     0     0     0     1     1     1     1     0     1     1     0
## X506      0     1     1     0     1     1     1     0     0     0     1     0
## X507      0     0     0     0     0     0     1     0     0     0     1     1
## X508      0     0     0     1     0     1     1     1     0     1     1     1
## X509      0     0     0     1     1     1     1     1     1     1     1     0
## X510      0     0     0     0     1     1     1     0     1     0     1     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      0     1     1     0     1     1     1     0     0     0     1     0
## X515      0     0     0     0     1     0     1     0     1     0     1     0
## X516      0     0     0     0     1     0     1     0     0     0     1     0
## X518      1     0     0     0     1     1     1     1     1     1     1     1
## X521      1     1     1     0     1     1     1     0     0     0     1     1
## X523      0     0     0     0     1     1     1     1     1     1     1     0
## X524      0     0     0     0     1     1     1     1     0     1     1     1
## X525      1     0     0     0     0     1     1     0     0     0     1     0
## X526      0     0     0     0     0     0     0     0     0     0     0     0
## X530      0     0     0     0     1     0     1     0     1     0     1     0
## X531      0     0     0     0     1     1     1     1     0     1     1     0
## X532      0     1     1     0     0     0     0     0     0     0     1     0
## X533      0     1     1     0     0     1     1     0     0     0     1     1
## X534      1     1     1     0     1     1     1     1     1     1     1     0
## X535      0     0     0     0     1     0     1     0     1     0     1     0
## X536      0     0     0     0     1     0     1     0     1     0     1     0
## X538      0     0     0     0     1     1     1     0     0     0     1     1
## X539      0     0     0     0     1     0     1     0     1     0     1     0
## X542      0     0     0     0     0     1     1     1     0     1     1     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      0     0     0     1     1     1     1     1     1     1     1     0
## X545      0     0     0     0     0     0     0     0     0     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     1     0     1     0     0     0     1     0
## X549      0     0     0     0     1     0     1     0     0     0     1     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     0     1     1     1     0     0     0     1     1
## X553      0     0     0     0     1     1     1     1     1     1     1     0
## X554      0     0     0     0     0     0     0     0     0     0     1     0
## X556      0     0     0     0     1     1     1     1     1     1     1     0
## X557      0     0     0     0     0     1     1     1     0     1     1     1
## X558      0     1     1     0     1     0     1     0     1     0     1     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     1     0     1     0     1     0     1     0
## X561      0     0     0     0     1     0     1     0     1     0     1     1
## X562      0     0     0     0     1     0     1     0     1     0     1     0
## X563      0     0     0     0     1     1     1     1     1     1     1     0
## X565      0     0     0     0     0     0     0     0     0     0     0     0
## X566      0     0     0     0     1     0     1     0     0     0     1     1
## X567      0     0     0     0     0     1     1     1     0     1     1     1
## X568      0     0     0     0     1     1     1     1     0     1     1     0
## X569      0     0     0     0     1     1     1     1     1     1     1     0
## X571      0     0     0     0     0     1     1     1     0     1     1     1
## X572      0     0     0     0     1     1     1     1     0     1     1     0
## X574      0     0     0     0     0     0     1     0     0     0     1     0
## X576      0     1     1     0     1     1     1     0     0     0     1     0
## X577      0     0     0     0     1     1     1     1     1     1     1     0
## X579      0     0     0     0     1     1     1     1     1     1     1     0
## X580      0     0     0     0     0     1     1     1     0     1     1     1
## X582      0     0     0     0     0     1     0     1     0     1     0     0
## X583      0     0     0     0     1     0     1     0     0     0     1     1
## X584      0     0     0     0     1     1     1     0     1     0     1     0
## X586      0     0     0     0     1     1     1     0     1     0     1     0
## X587      0     0     0     0     1     0     1     0     1     0     1     0
## X588      0     0     1     0     0     1     0     0     0     0     1     0
## X589      0     0     0     0     0     1     0     1     0     1     0     0
## X591      0     0     0     0     1     0     1     0     0     0     1     1
## X592      0     0     0     0     1     0     1     0     1     0     1     0
## X593      0     0     0     0     1     0     1     0     1     0     1     0
## X594      0     0     0     0     0     1     0     1     0     1     0     0
## X595      0     0     0     0     0     0     0     1     0     0     0     0
## X596      1     1     1     0     1     1     1     1     0     1     1     0
## X597      0     0     0     0     1     0     1     0     1     0     1     0
## X598      0     0     0     0     0     1     0     1     0     1     0     0
## X599      0     0     0     0     0     0     1     0     0     0     1     1
## X600      0     0     0     0     1     1     1     0     0     0     1     1
## X603      0     0     0     0     0     1     0     1     0     1     0     0
## X604      0     0     1     0     0     1     0     0     0     0     1     0
## X605      0     0     0     0     0     1     1     0     0     0     1     0
## X606      0     0     0     0     1     1     1     1     1     1     1     0
## X608      0     0     0     0     1     0     1     0     1     0     1     0
## X609      0     1     1     0     1     1     1     0     1     0     1     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      1     0     0     0     1     1     1     1     0     1     1     1
## X613      0     0     0     0     1     0     1     0     1     0     1     1
## X614      0     0     0     0     1     0     1     0     1     0     1     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     0     0     1     1     1     1     1     1     1     0
## X619      0     1     1     0     1     1     1     0     1     0     1     1
## X620      0     0     0     0     1     0     1     0     0     0     1     1
## X621      0     0     0     0     1     1     1     1     1     1     1     0
## X622      0     0     0     0     1     0     1     0     1     0     1     0
## X623      0     0     0     1     1     1     1     0     1     0     1     1
## X625      0     0     0     0     1     1     1     1     0     1     1     0
## X628      0     0     0     0     0     1     1     1     0     1     1     0
## X629      0     0     0     0     0     1     0     1     0     1     0     0
## X630      0     0     0     0     1     0     1     0     1     0     1     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     1     1     1     1     0     1     1     1
## X635      1     1     1     0     1     1     1     1     0     1     1     0
## X636      0     0     0     1     0     1     1     1     0     1     1     0
## X637      0     0     0     0     0     1     1     0     0     0     1     0
## X638      0     0     0     0     1     1     1     1     1     1     1     1
## X639      0     1     1     0     1     1     1     0     0     0     1     0
## X641      0     0     0     0     1     1     1     0     1     0     1     0
## X648      0     1     1     0     1     1     1     1     1     1     1     1
## X650      0     1     1     0     1     1     1     0     0     0     1     1
## X651      0     0     0     0     1     1     1     0     1     0     1     0
## X653      0     0     0     0     0     1     0     1     0     1     0     0
## X654      0     0     0     0     1     1     1     1     0     1     1     0
## X655      0     0     0     0     1     0     1     0     1     0     1     0
## X656      0     0     0     0     1     0     1     0     1     0     1     0
## X657      0     0     0     0     1     1     1     1     0     1     1     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     1     0     1     0     1     0     1     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     1     0     1     0     1     0     1     0
## X1088     1     0     0     0     1     1     1     1     0     1     1     0
## X1089     0     0     0     0     1     0     1     0     1     0     1     0
## X1090     0     0     0     1     1     1     1     1     0     1     1     0
## X1091     0     0     0     0     1     0     1     0     0     0     1     1
## X1092     0     0     0     0     0     1     0     1     0     1     0     0
## X1093     1     0     0     0     0     1     0     0     0     0     1     0
## X1094     0     0     0     0     1     1     1     1     0     1     1     0
## X1095     0     0     0     0     1     1     1     0     1     0     1     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     1     0     0     0     0     1     1     0     0     0     1     0
## X1101     0     1     1     0     0     1     1     0     0     0     1     1
## X1103     0     0     0     1     1     1     1     0     0     0     1     0
## X1104     0     1     1     0     1     1     1     0     1     0     1     0
## X1105     0     0     1     0     0     0     1     0     0     0     1     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     0
## X1108     0     0     0     0     1     0     1     0     0     0     1     0
## X1110     0     0     0     0     1     0     1     0     1     0     1     0
## X1112     0     1     1     0     1     1     1     0     0     0     1     0
## X1113     0     0     0     0     1     0     1     0     0     0     1     0
## X1115     0     0     0     0     1     1     1     1     1     1     1     0
## X1116     0     0     0     0     1     0     1     0     0     0     1     1
## X1117     0     0     0     0     1     1     1     1     1     1     1     0
## X1119     0     0     0     0     0     1     1     1     0     1     1     1
## X1120     0     0     0     0     0     1     1     1     0     1     1     0
## X1121     0     0     0     0     0     1     1     1     0     1     1     0
## X1122     0     0     0     0     0     1     1     1     0     1     1     0
## X1124     0     0     0     0     1     1     1     0     1     0     1     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     1     0     1     0     1     0     1     1
## X1127     0     0     0     0     1     0     1     0     1     0     1     0
## X1128     0     0     0     0     1     1     1     1     0     1     1     0
## X1129     0     0     0     0     1     0     1     0     0     0     1     0
## X1130     0     0     0     0     1     1     1     1     0     1     1     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     1     1     1     0     1     0     1     0
## X1135     0     0     0     0     0     1     0     0     0     0     0     0
## X1136     0     0     0     0     1     0     1     0     0     0     1     0
## X1138     0     0     0     1     0     1     1     1     0     1     1     0
## X1139     0     0     0     0     0     1     1     1     0     1     1     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     1     0     1     0     0     0     1     0
## X1143     0     0     0     0     1     1     1     1     1     1     1     0
## X1144     0     0     0     0     1     0     1     0     0     0     1     0
## X1145     0     1     1     0     0     1     1     0     0     0     1     1
## X1146     0     0     0     0     0     1     0     1     0     1     0     0
## X1147     0     0     0     0     0     1     0     1     0     1     0     0
## X1149     0     0     0     0     1     1     1     1     1     1     1     1
## X1150     0     0     0     0     0     1     0     1     0     1     0     0
## X1151     0     0     0     0     0     1     0     1     0     1     0     0
## X1152     0     0     0     0     1     1     1     1     0     1     1     1
## X1153     0     0     0     0     0     0     0     0     0     0     1     0
## X1156     0     0     0     0     0     1     0     1     0     1     0     0
## X1158     0     0     0     1     1     1     1     0     0     0     1     1
## X1159     0     0     0     0     1     1     1     0     0     0     1     1
## X1160     0     0     0     0     1     1     1     1     1     1     1     0
##       FP170 FP171 FP172 FP173 FP174 FP175 FP176 FP177 FP178 FP179 FP180 FP181
## X661      0     0     0     0     0     0     1     0     0     1     0     0
## X662      1     0     0     1     0     0     0     0     1     0     0     0
## X663      0     1     0     0     0     0     0     0     0     0     1     0
## X665      1     0     0     1     0     0     0     0     0     1     0     0
## X668      0     0     1     0     0     0     1     1     0     0     0     0
## X669      0     1     0     0     0     0     0     0     0     0     0     0
## X670      1     0     1     0     0     0     1     0     0     1     0     0
## X671      0     0     0     0     0     1     0     0     1     0     0     0
## X672      1     0     0     1     1     0     0     0     0     0     0     1
## X673      1     0     0     1     0     0     0     1     0     0     0     0
## X674      0     0     0     1     1     0     0     0     0     0     0     0
## X676      1     0     0     1     1     0     0     0     0     0     0     1
## X677      0     0     0     0     0     0     0     0     0     1     0     0
## X678      0     0     1     0     0     0     0     0     0     0     0     0
## X679      0     0     0     0     0     0     0     0     0     0     0     0
## X682      0     1     0     0     0     0     0     0     0     0     1     0
## X683      0     0     0     0     0     1     1     1     1     1     0     0
## X684      1     0     1     0     0     0     0     0     1     0     0     0
## X685      1     0     0     1     1     0     0     0     0     0     0     1
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     1     0     0     0     0     0     0     0     0     1
## X689      1     0     0     0     0     0     0     0     1     0     0     0
## X690      0     0     0     0     0     1     0     0     1     0     0     0
## X691      1     1     0     0     0     0     0     1     0     0     0     0
## X692      0     1     0     0     0     0     0     1     0     0     0     0
## X693      1     0     0     1     0     0     0     1     0     1     0     0
## X695      0     1     0     0     0     0     0     0     0     0     0     0
## X696      0     0     0     0     0     0     1     0     0     0     0     0
## X698      0     0     0     0     0     0     0     1     0     0     0     0
## X699      0     0     1     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     1     0     0     1     0     0     0
## X702      0     1     0     0     0     0     0     0     0     0     0     0
## X703      1     0     0     1     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     1     0     0
## X706      0     0     0     0     1     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      1     0     0     1     0     0     0     0     0     0     0     0
## X711      1     1     0     1     0     0     0     0     0     0     1     1
## X712      0     0     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     0     0     1     0     0     1     0
## X714      1     0     0     1     1     0     0     0     0     0     0     1
## X715      0     0     1     0     0     0     0     1     0     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      1     0     1     0     0     0     0     0     1     0     0     0
## X721      0     1     1     0     0     0     1     1     0     0     0     0
## X722      0     0     0     0     1     0     0     0     0     0     0     0
## X723      0     0     0     0     0     1     0     0     1     0     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     0     1     0     0     0     0     0     0     0     0     0
## X728      0     1     0     0     0     0     0     0     0     0     1     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     1     0     0     1     0     0     0
## X732      0     0     1     0     0     0     0     0     0     0     0     0
## X733      0     0     1     0     0     0     1     1     0     0     0     0
## X734      0     0     1     0     0     0     0     0     0     0     0     0
## X735      1     0     0     1     1     0     0     0     0     0     0     1
## X736      0     0     0     0     0     1     0     0     1     0     0     0
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      1     0     1     1     1     0     0     0     0     0     0     1
## X740      0     0     1     0     0     0     0     0     0     1     1     0
## X741      0     0     0     0     0     1     0     0     1     0     1     0
## X742      0     0     0     0     0     1     0     0     1     0     0     0
## X743      0     0     1     0     0     0     0     0     0     0     0     0
## X744      1     0     0     0     0     0     0     0     0     0     0     0
## X746      0     1     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     1     0     0     1     0     0     0
## X749      1     0     1     0     0     0     0     0     1     0     0     0
## X752      1     0     0     1     1     1     0     0     1     0     0     1
## X753      1     0     0     1     0     1     0     0     0     0     0     0
## X754      1     0     0     1     0     0     0     0     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     1     0     0
## X757      0     0     0     0     0     1     0     0     1     0     0     0
## X758      0     0     0     0     0     0     0     0     0     1     0     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     1     0     0     0     0     0     0     0     0     0
## X761      1     0     0     1     1     0     0     0     0     0     0     1
## X762      1     0     0     0     0     0     0     0     0     0     0     0
## X763      0     0     1     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     1     0     0
## X765      0     1     0     0     0     0     0     0     0     0     0     0
## X767      1     0     1     1     1     0     0     0     0     0     0     1
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     1     0     0     0     0     0     1     0     0     0
## X771      0     1     1     0     1     0     0     1     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     1     0     0     1     0     0     0
## X774      0     0     0     0     0     1     0     0     1     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     1     0
## X776      1     0     1     1     0     0     0     1     0     0     0     0
## X777      0     0     0     0     0     1     0     0     1     0     0     0
## X778      1     1     0     1     0     0     0     1     0     0     1     1
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     1     0     0     0     0     0     0     0     0     1
## X781      0     1     0     0     0     0     0     0     1     0     0     0
## X782      0     0     0     0     1     0     0     0     0     0     0     0
## X784      0     1     0     0     0     0     0     0     0     0     1     0
## X786      0     0     0     0     0     1     0     0     1     0     0     0
## X787      0     0     1     0     0     0     0     0     0     0     0     0
## X788      1     0     0     1     1     0     0     0     0     1     0     1
## X789      0     0     1     0     0     0     0     0     0     0     0     0
## X791      0     0     1     0     0     0     0     0     0     0     0     0
## X792      0     0     0     0     0     0     0     0     1     0     0     0
## X794      0     0     0     0     0     1     0     0     1     0     1     0
## X798      0     0     0     0     0     0     1     0     0     0     0     0
## X799      1     1     0     1     1     0     0     0     0     0     0     0
## X800      1     0     0     1     0     0     0     0     0     0     0     1
## X804      0     0     0     0     0     0     0     0     0     1     0     0
## X805      1     0     0     1     1     0     0     0     0     0     0     1
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     0     0     0     0     0     1     1     0
## X809      0     0     0     0     0     1     0     0     1     0     0     0
## X810      1     0     1     1     0     0     0     0     0     0     0     1
## X813      0     0     0     0     0     1     0     0     1     0     1     0
## X814      0     1     1     0     1     0     1     0     0     0     0     0
## X818      0     0     1     0     0     0     0     0     0     0     0     0
## X819      0     0     1     0     0     0     0     1     0     0     0     0
## X820      0     0     0     0     0     1     0     0     1     0     0     0
## X821      0     0     1     0     0     0     0     0     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      1     0     1     1     0     0     0     0     0     0     0     1
## X828      0     0     1     0     0     0     0     0     0     0     0     0
## X829      0     1     0     0     1     0     0     0     0     0     0     0
## X831      0     0     1     0     0     0     0     0     0     0     0     0
## X832      0     0     1     0     0     0     0     0     0     0     0     0
## X833      0     0     1     0     0     0     0     0     0     0     0     0
## X834      0     1     1     0     0     0     0     0     0     0     0     0
## X835      0     0     1     0     0     0     0     0     0     0     0     0
## X836      0     0     1     0     0     0     0     0     0     0     0     0
## X839      1     0     0     0     0     0     0     0     0     0     0     0
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     1     0     0     0     0     0     0     0     0     0
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     1     0     0     0     0     0     0     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     1     0     0     0     0     0     0     0     0     0
## X849      0     0     1     0     0     0     0     0     0     0     0     0
## X851      1     0     0     1     0     0     0     0     0     0     0     1
## X854      0     0     1     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     1     0     0     0     0     0     0     0     0     0
## X857      0     0     1     0     0     0     0     0     0     0     0     0
## X858      0     0     1     0     0     0     0     0     0     0     0     0
## X859      0     0     1     0     0     0     0     0     0     0     0     0
## X860      0     0     1     0     0     0     0     0     0     0     0     0
## X862      0     0     1     0     0     0     0     0     0     0     0     0
## X863      0     0     1     0     0     0     0     0     0     0     0     0
## X864      1     0     0     0     0     0     0     0     0     1     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     0
## X866      0     0     1     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     0     1     0     0     0     0     0
## X870      0     0     1     0     0     0     0     0     0     0     0     0
## X871      0     0     1     0     0     0     0     0     0     0     0     0
## X872      0     0     1     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     1     0     0     0     0     0     0     0     0     0
## X876      0     0     1     0     0     0     0     0     0     0     0     0
## X877      0     0     1     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     1     0     0     1     0     0     0
## X1192     1     0     0     1     1     0     0     0     0     0     0     1
## X1193     0     0     0     0     0     0     0     0     0     1     0     0
## X1194     1     0     0     1     1     0     0     0     0     0     0     1
## X1195     0     0     1     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     1     0     0     1     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     1     0     0     0     0     1     1     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     1     0     0     1     1     0     0     0     0     0     0     0
## X1202     1     0     0     1     1     0     0     0     0     0     0     1
## X1203     1     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     0     0     0     0     0     1     1     0     0     0     0
## X1205     0     0     0     0     0     0     1     1     0     0     1     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     1     0     0     0     0     0     0     0     0     0     0
## X1208     1     0     0     1     1     0     0     0     0     0     0     1
## X1209     0     0     1     0     0     0     0     0     0     0     0     0
## X1210     1     1     0     1     0     0     0     0     0     0     1     1
## X1212     1     0     0     1     0     0     0     0     0     0     0     1
## X1213     0     0     0     0     0     0     0     0     1     0     0     0
## X1215     1     0     0     1     1     0     0     0     0     0     0     1
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     1     0     0     0     1     0     0     0     0     0
## X1219     0     1     0     0     0     0     0     0     0     0     0     0
## X1220     1     0     1     0     0     0     0     0     1     0     0     1
## X1221     0     0     0     0     0     1     0     0     1     0     0     0
## X1222     1     0     0     0     0     0     0     0     0     0     0     0
## X1226     1     0     0     0     0     0     0     0     1     0     0     0
## X1228     0     0     0     0     0     0     0     0     0     1     0     0
## X1229     1     0     0     1     1     0     0     0     0     0     0     1
## X1230     0     0     0     0     1     0     1     0     0     0     0     0
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     1     0     0     1     0     0     0     0     0     0     0     1
## X1234     0     0     0     0     0     0     0     0     0     1     0     0
## X1236     1     0     0     1     1     0     0     0     0     0     0     1
## X1237     0     0     1     0     0     0     1     0     0     0     0     0
## X1239     0     1     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     1     0     0     0     0     0     0     0     0     0
## X1245     0     0     0     0     0     1     0     0     1     0     0     0
## X1246     1     0     0     1     1     0     0     0     0     0     0     1
## X1247     0     0     0     1     0     0     0     0     0     0     0     1
## X1249     0     0     1     0     1     0     0     0     0     1     0     0
## X1250     0     0     1     1     0     0     0     0     0     0     0     1
## X1251     0     0     1     0     0     0     0     0     0     0     0     0
## X1253     0     0     1     0     0     0     0     0     0     0     0     0
## X1254     0     0     1     0     0     0     0     0     0     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     1     0     0
## X1256     1     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     1     0     0     0     0     0     0     0     0     0
## X1259     1     0     1     1     0     0     0     0     0     0     0     1
## X1260     0     0     1     0     0     0     0     0     0     0     0     0
## X1262     0     0     0     1     0     0     0     0     0     0     0     1
## X1264     0     0     1     1     0     0     0     0     0     0     0     1
## X1265     0     0     1     0     0     0     0     0     0     0     0     0
## X1266     0     1     1     0     0     0     0     0     0     0     0     0
## X1267     0     0     0     0     0     0     0     0     0     1     0     0
## X1268     0     0     0     0     0     1     0     0     1     0     1     0
## X1273     0     0     1     0     0     0     0     0     0     0     0     0
## X1274     0     0     0     0     0     1     0     0     1     0     0     0
## X1275     1     0     1     1     0     0     0     0     0     0     0     1
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     1     0     0     0     0     0     0     0     0     0
## X1278     1     0     0     0     0     0     0     0     0     0     0     0
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     1     0     0     0     0     0     0     0     0     0
## X1282     0     0     1     0     0     0     0     0     0     0     0     0
## X1283     0     0     0     0     0     0     0     0     0     0     0     0
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     1     0     0     0     0     0     0     0     0     0
## X1288     0     0     1     0     0     0     0     0     0     0     0     0
## X1299     0     0     0     0     1     0     0     0     0     0     0     1
## X1301     1     0     0     1     1     0     0     0     0     0     0     1
## X1302     0     0     0     1     0     0     0     0     0     0     0     0
## X1307     0     0     1     0     0     0     1     0     0     0     0     0
## X1309     0     1     1     0     0     0     0     0     0     0     0     0
## X1310     1     0     1     1     0     0     0     0     0     0     0     1
## X447      0     0     1     0     0     0     0     0     0     0     1     0
## X448      1     0     1     1     1     0     0     0     0     0     0     1
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     0     1     0     0     0     0     0
## X454      0     0     0     0     0     0     1     1     0     1     0     0
## X455      0     1     1     0     0     0     0     0     0     1     1     0
## X456      1     0     0     0     0     0     0     1     0     1     0     0
## X458      0     0     0     0     0     0     1     1     0     0     0     0
## X459      0     0     0     0     0     1     0     0     1     0     0     0
## X460      1     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     1     0     0     0     0     0     0     0     1     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      1     0     0     0     0     0     1     0     0     0     0     0
## X464      0     1     0     0     0     0     0     0     0     0     0     0
## X465      1     0     0     1     0     0     1     0     0     0     0     0
## X466      0     0     1     0     1     0     0     0     0     0     1     0
## X468      0     0     0     0     0     1     0     0     1     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      0     1     0     0     0     1     0     0     0     0     0     0
## X473      1     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     1     0
## X477      0     1     0     0     1     0     0     0     0     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     1     0     0     0     0     0     0
## X480      0     0     0     0     0     0     1     0     0     0     0     0
## X482      0     1     0     0     0     0     0     0     0     0     0     0
## X483      0     1     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     1     0     0     1     0     0     0
## X487      0     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     1     0     0     1     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     1     0
## X490      0     1     0     0     0     0     0     0     0     1     0     0
## X491      0     0     0     0     0     1     0     0     1     0     0     0
## X492      1     0     0     0     1     0     0     0     0     0     0     1
## X493      0     0     0     0     0     1     0     0     1     0     1     0
## X494      0     0     1     0     0     0     1     0     0     0     1     0
## X495      1     1     0     1     0     0     1     0     0     0     0     0
## X496      0     0     0     0     0     0     1     0     0     0     0     0
## X497      0     0     0     0     0     0     1     0     0     0     0     0
## X498      0     0     1     0     0     0     0     0     0     1     0     0
## X499      0     0     0     0     0     0     0     0     0     1     0     0
## X501      0     0     1     0     1     0     0     0     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     1     0     0
## X503      1     0     0     1     0     0     0     0     0     0     0     1
## X505      0     0     1     0     0     0     0     1     0     0     0     0
## X506      0     0     0     0     0     0     1     1     0     1     0     0
## X507      0     0     0     0     0     0     1     0     0     0     0     0
## X508      0     1     0     0     0     0     0     0     0     0     1     0
## X509      0     0     0     1     1     0     0     0     0     0     0     1
## X510      0     0     1     0     1     0     1     0     0     0     0     0
## X513      0     1     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     0     1     1     0     1     0     0
## X515      0     0     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      0     0     0     0     0     0     0     1     0     0     0     0
## X521      0     0     0     0     0     0     1     1     0     0     0     0
## X523      0     0     0     0     0     0     0     0     0     0     0     0
## X524      0     0     1     0     0     0     0     1     0     0     0     0
## X525      1     0     0     0     1     0     0     0     0     0     0     1
## X526      0     0     0     0     0     1     0     0     1     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     0     0
## X531      0     1     0     0     0     0     0     1     0     0     0     0
## X532      0     1     0     0     0     0     1     1     0     0     0     0
## X533      0     0     1     0     0     0     1     0     0     0     0     0
## X534      0     0     0     0     0     1     0     1     1     0     0     0
## X535      0     0     1     0     0     0     0     0     0     0     0     0
## X536      1     1     0     1     0     0     1     0     0     0     0     0
## X538      0     0     0     0     1     0     0     0     0     0     0     0
## X539      1     1     0     1     0     0     1     0     0     0     0     0
## X542      1     0     0     1     1     0     0     0     0     0     0     1
## X543      0     0     0     0     0     1     0     0     1     0     0     0
## X544      1     0     0     1     1     0     0     0     0     0     0     1
## X545      0     0     0     0     0     1     0     0     1     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      1     0     0     1     1     0     0     0     0     0     0     0
## X553      1     0     0     0     0     0     0     1     0     1     0     0
## X554      0     0     1     0     0     0     1     1     0     0     0     0
## X556      0     0     0     0     0     0     0     0     0     0     0     0
## X557      0     0     1     0     0     0     0     1     0     0     0     0
## X558      0     0     0     0     0     0     1     0     0     0     0     0
## X559      0     0     0     0     0     1     0     0     1     0     0     0
## X560      0     0     0     0     0     0     0     0     0     1     0     0
## X561      0     0     1     0     0     0     0     0     0     0     0     0
## X562      0     0     0     0     0     0     0     0     0     1     0     0
## X563      0     1     0     0     0     0     0     0     0     0     1     0
## X565      0     0     0     0     0     1     0     0     1     0     0     0
## X566      0     0     1     0     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     1     0     1     0     0
## X568      0     0     0     0     0     0     0     1     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     0     0     0
## X571      0     0     1     0     0     0     0     0     0     0     0     0
## X572      0     0     0     0     0     1     0     1     1     0     0     0
## X574      1     0     0     0     0     0     0     0     0     1     0     0
## X576      0     0     0     0     0     0     1     1     0     0     0     0
## X577      0     0     0     0     0     0     0     1     0     0     0     0
## X579      0     0     0     0     0     0     0     1     0     1     0     0
## X580      0     0     0     0     0     0     0     0     0     0     1     0
## X582      0     0     0     0     0     1     0     0     1     0     0     0
## X583      0     0     0     0     0     0     0     0     0     1     0     0
## X584      1     0     0     1     1     0     0     0     0     0     0     1
## X586      0     0     0     0     1     0     0     0     0     0     0     0
## X587      0     0     0     0     0     0     1     0     0     0     0     0
## X588      0     1     0     0     1     1     0     0     0     0     0     1
## X589      1     1     0     1     0     0     0     0     0     0     1     1
## X591      1     1     0     1     0     0     1     0     0     0     0     0
## X592      0     0     0     0     0     1     0     0     0     0     0     0
## X593      0     0     0     0     0     0     1     0     0     0     0     0
## X594      0     0     0     0     0     1     0     0     1     0     0     0
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     1     0     1     1     1     0     0
## X597      1     0     0     0     0     0     0     0     0     0     0     0
## X598      0     0     0     0     0     0     0     0     1     0     1     0
## X599      0     0     0     0     0     0     0     0     0     1     0     0
## X600      0     0     0     1     0     0     0     0     0     0     0     1
## X603      0     0     0     0     0     1     0     0     1     0     1     0
## X604      0     1     0     0     1     1     0     0     0     0     0     1
## X605      1     0     0     1     1     0     0     0     0     0     0     1
## X606      0     0     0     0     0     1     0     0     1     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     1     1     0     0     0     0
## X611      1     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     1     0     0     0     0     1     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     1     0     0
## X614      0     0     1     0     0     0     0     0     0     1     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     1     0     0     0     0     0     0     0     0     0     0
## X619      0     0     0     1     0     0     0     0     0     0     0     0
## X620      0     0     1     0     0     0     0     0     0     0     0     0
## X621      0     0     0     0     0     0     0     1     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     1     1     1     0     1     0     0     0     0     0
## X625      0     1     1     0     0     0     1     0     0     0     0     0
## X628      1     0     0     1     1     0     0     0     0     0     0     1
## X629      1     1     0     1     0     0     0     0     0     0     1     1
## X630      1     0     0     0     0     0     0     1     1     0     0     0
## X631      0     0     0     0     0     1     0     0     1     0     0     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     1     0     0     0     0     0     1     0     1     0
## X635      1     0     0     0     0     0     0     1     0     1     0     0
## X636      1     0     0     1     1     0     0     0     0     0     0     1
## X637      1     0     0     1     1     0     0     0     0     0     0     1
## X638      0     1     0     0     0     0     0     0     0     0     1     0
## X639      0     0     0     0     0     0     1     1     0     0     0     0
## X641      0     0     0     1     1     1     0     0     1     0     0     0
## X648      0     0     1     0     0     0     0     1     0     1     0     0
## X650      0     0     0     0     0     0     1     0     0     0     0     0
## X651      0     0     0     1     1     1     0     0     1     0     0     0
## X653      1     1     0     1     0     0     0     0     0     0     1     1
## X654      0     0     0     0     0     1     0     0     1     0     0     0
## X655      0     1     0     0     0     0     0     0     0     0     0     0
## X656      0     0     1     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     1     0     0     1     0     0     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     1     0     0     0     0     0     0     0     0     0     0
## X1084     1     1     0     1     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     1     0     0     0     0     1     0     0     0     0
## X1089     0     1     0     0     0     0     0     0     0     0     0     0
## X1090     0     1     0     0     0     0     0     0     0     0     1     0
## X1091     0     0     0     0     0     1     0     0     1     0     0     0
## X1092     0     0     0     0     0     1     0     0     1     0     0     0
## X1093     0     0     0     0     1     0     0     0     0     0     0     1
## X1094     0     0     0     0     0     0     0     0     0     1     1     0
## X1095     0     0     0     0     1     0     0     0     0     0     0     0
## X1097     0     1     0     0     0     0     0     0     0     0     0     0
## X1098     1     0     0     1     1     0     0     0     0     0     0     1
## X1101     0     1     1     1     0     0     0     0     0     0     0     0
## X1103     1     0     0     0     1     0     0     0     0     0     0     1
## X1104     0     0     0     0     0     0     1     1     0     0     0     0
## X1105     0     0     0     0     0     0     1     0     0     0     0     0
## X1106     0     0     0     0     0     1     0     0     1     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     1     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     0     1     1     0     1     0     0
## X1113     0     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     1     0     0     0     0     0     0     0     0     0     0
## X1116     0     0     1     0     0     0     0     0     0     1     0     0
## X1117     0     0     0     0     0     0     0     1     0     0     1     0
## X1119     0     0     1     0     0     0     0     0     0     0     1     0
## X1120     1     0     0     1     1     0     0     0     0     0     0     1
## X1121     1     0     0     0     1     0     1     0     0     0     1     0
## X1122     1     0     0     1     1     0     0     0     0     0     0     1
## X1124     0     0     0     0     1     0     0     0     0     1     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     1     0     0     0     0     0     0     0     0     0
## X1127     1     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     1     0     0     0     0
## X1129     0     0     1     0     0     0     0     0     0     1     0     0
## X1130     0     0     1     0     0     0     0     0     0     0     1     0
## X1131     1     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     1     0     1     0     0     0     0     0
## X1135     0     0     0     0     0     1     0     0     1     0     0     0
## X1136     0     0     0     0     0     0     0     0     0     1     0     0
## X1138     1     0     0     1     1     0     0     0     0     0     1     1
## X1139     1     0     0     1     1     0     0     0     0     0     0     1
## X1141     0     1     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     1     0     0     0     0     0     0     0     0     0
## X1143     0     0     0     1     1     0     0     0     0     0     0     0
## X1144     1     0     0     1     0     0     0     0     0     0     0     1
## X1145     0     0     1     1     1     0     0     0     0     0     0     0
## X1146     0     0     0     0     0     1     0     0     1     0     0     0
## X1147     0     0     0     0     0     1     0     0     1     0     0     0
## X1149     0     1     1     0     0     0     0     1     0     0     0     0
## X1150     0     0     0     0     0     1     0     0     1     0     0     0
## X1151     1     0     0     1     0     0     0     0     0     0     0     0
## X1152     1     0     0     0     0     0     0     0     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     1     0     0     1     0     1     0
## X1158     1     0     0     1     1     0     0     0     0     0     0     0
## X1159     0     0     0     0     1     0     0     0     0     0     0     0
## X1160     0     1     0     0     1     0     0     0     0     0     0     0
##       FP182 FP183 FP184 FP185 FP186 FP187 FP188 FP189 FP190 FP191 FP192 FP193
## X661      0     0     0     0     0     0     0     0     0     0     0     0
## X662      0     0     0     1     0     0     0     1     0     0     0     0
## X663      1     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     1     0     0     1     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     1     0
## X669      1     0     0     0     0     0     0     0     0     1     1     0
## X670      0     0     1     0     0     0     0     0     1     0     0     1
## X671      0     0     0     0     0     0     0     0     0     0     0     0
## X672      0     0     0     1     0     0     1     0     0     0     0     0
## X673      0     0     0     1     0     0     0     0     0     0     0     0
## X674      0     0     0     0     0     1     0     0     0     0     0     1
## X676      0     0     0     1     0     0     0     0     0     0     0     0
## X677      0     0     0     0     0     0     0     0     0     0     0     0
## X678      0     0     0     0     0     0     0     0     1     0     0     0
## X679      0     0     0     0     0     1     0     0     0     0     0     0
## X682      1     0     0     0     1     0     0     0     0     0     0     0
## X683      0     0     0     0     0     0     0     0     0     0     1     0
## X684      0     0     0     0     0     0     0     1     1     0     0     0
## X685      0     0     0     1     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     0     0     0     0     0     0
## X688      0     0     0     0     1     0     0     0     1     0     0     1
## X689      0     0     0     0     0     0     0     1     0     0     1     0
## X690      0     0     0     0     0     0     0     0     0     0     1     0
## X691      0     0     0     0     0     1     0     1     0     1     0     0
## X692      1     0     0     0     0     0     0     0     0     0     0     0
## X693      0     0     0     1     0     0     0     0     0     0     0     0
## X695      1     0     0     0     1     0     0     1     0     0     1     0
## X696      0     0     0     0     0     0     0     0     0     0     0     0
## X698      0     0     0     0     0     1     0     0     0     0     0     0
## X699      0     0     1     0     0     0     0     0     0     0     0     0
## X700      0     0     0     0     0     0     0     0     0     0     0     0
## X702      1     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     1     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     0     0     0     0     0     0
## X706      0     0     0     0     1     0     1     0     0     1     0     0
## X708      0     0     0     0     0     0     0     0     0     0     0     0
## X709      0     0     0     1     0     0     0     0     0     0     0     0
## X711      1     0     0     1     0     0     0     0     0     0     0     0
## X712      0     1     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     1     0     0     0     0     0     0
## X714      0     0     0     1     0     0     1     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     1     0     0     0
## X717      0     0     0     0     0     0     0     0     0     0     0     0
## X718      0     0     0     0     0     0     0     1     1     0     0     0
## X721      1     0     0     0     0     0     0     0     0     0     0     0
## X722      0     0     0     0     0     1     0     1     0     0     0     0
## X723      0     0     0     0     0     0     0     0     0     1     0     0
## X724      0     0     0     0     0     0     0     0     0     0     0     0
## X726      0     1     1     0     0     0     0     0     1     0     0     0
## X728      1     0     0     0     0     0     0     0     0     0     0     1
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     0     0     0     0
## X732      0     0     1     0     0     0     0     0     0     0     0     1
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      0     0     1     0     0     0     0     0     0     0     0     0
## X735      0     0     0     1     0     0     0     0     0     0     0     0
## X736      0     0     0     0     0     0     0     0     0     0     0     0
## X737      0     0     0     0     0     0     0     0     0     0     0     0
## X739      0     0     0     0     1     0     0     0     0     0     0     0
## X740      0     0     0     0     1     0     0     0     1     0     0     0
## X741      0     0     0     0     0     0     0     0     0     0     0     0
## X742      0     0     0     0     1     0     0     0     0     0     0     0
## X743      0     0     1     0     0     0     0     0     1     0     0     0
## X744      0     0     0     0     0     0     0     0     0     0     0     0
## X746      1     0     0     0     0     0     0     0     0     0     0     0
## X747      0     0     0     0     0     0     0     0     0     0     0     0
## X749      0     0     0     0     0     0     1     1     1     0     0     0
## X752      0     0     0     1     0     0     0     0     0     0     0     0
## X753      0     0     0     1     0     0     0     0     0     0     0     0
## X754      0     0     0     1     0     0     0     1     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     0     0     0
## X757      0     0     0     0     0     0     0     0     0     0     0     0
## X758      0     0     0     0     0     0     0     0     0     0     0     0
## X759      0     0     0     0     0     0     0     0     0     0     1     0
## X760      0     0     0     0     0     0     0     0     1     0     0     0
## X761      0     0     0     1     0     0     1     0     0     0     0     0
## X762      0     0     0     0     0     0     0     0     0     0     0     1
## X763      0     0     1     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     0     0     0
## X765      1     0     0     0     0     1     0     0     0     0     0     0
## X767      0     0     0     1     0     0     1     0     0     0     0     0
## X768      0     0     0     0     0     0     0     0     0     0     0     0
## X770      0     0     0     0     0     0     0     1     1     0     1     0
## X771      0     0     0     0     0     0     0     0     0     0     0     1
## X772      0     0     0     0     0     0     0     0     0     0     0     0
## X773      0     0     0     0     0     0     0     0     0     1     0     0
## X774      0     0     0     0     0     0     0     0     0     0     0     0
## X775      0     0     0     0     0     0     0     0     0     0     0     0
## X776      0     0     0     1     1     0     0     0     1     0     0     0
## X777      0     0     0     0     0     0     0     0     0     0     0     0
## X778      1     0     0     1     0     0     0     0     0     0     0     0
## X779      0     0     0     0     0     0     0     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      1     0     0     0     1     1     1     0     0     1     0     0
## X782      0     0     0     0     0     0     0     0     0     0     0     1
## X784      0     1     0     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     0     0     0     0
## X787      0     0     1     0     0     0     0     0     1     0     0     1
## X788      0     0     0     1     0     0     1     0     0     0     0     0
## X789      0     0     1     0     0     0     0     0     0     0     0     1
## X791      0     0     1     0     0     0     0     0     1     0     0     1
## X792      0     0     0     0     0     1     0     1     0     0     1     0
## X794      0     0     0     0     0     0     0     0     0     0     0     0
## X798      0     0     0     0     0     0     0     0     0     0     0     0
## X799      0     0     0     0     0     1     0     1     0     0     0     0
## X800      0     0     0     1     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     1     1     0
## X805      0     0     0     1     0     1     0     0     0     0     0     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     1     0     0     0     0     1     0     0
## X809      0     0     0     0     0     0     0     0     0     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     0     0     0     0
## X814      1     0     1     0     0     1     0     1     0     0     0     0
## X818      0     0     1     0     0     0     0     0     1     0     0     1
## X819      0     0     0     0     0     0     0     0     1     0     0     0
## X820      0     0     0     0     0     0     0     0     0     0     0     0
## X821      0     0     1     0     0     0     0     0     1     0     0     0
## X822      0     0     0     0     0     0     0     0     0     0     0     0
## X823      0     0     0     0     0     0     0     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     1     0     0     0     0     0     0     0     0     1
## X829      0     0     0     0     0     0     0     1     0     0     0     1
## X831      0     0     1     0     0     0     0     0     1     0     0     0
## X832      0     0     1     0     0     0     0     0     0     0     0     0
## X833      0     0     1     0     0     0     0     0     1     0     0     1
## X834      0     0     1     0     0     0     0     0     1     0     0     0
## X835      0     0     0     0     0     0     0     0     1     0     0     0
## X836      0     0     1     0     0     0     0     0     1     0     0     1
## X839      0     0     0     0     0     0     0     0     0     0     0     1
## X840      0     0     0     0     0     0     0     0     0     0     0     0
## X841      0     0     1     0     0     0     0     0     1     0     0     1
## X842      0     0     0     0     0     0     0     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     1     0     0     0
## X846      0     0     0     0     0     0     0     0     0     0     0     0
## X848      0     0     1     0     0     0     0     0     0     0     0     1
## X849      0     0     1     0     0     0     0     0     1     0     0     1
## X851      0     0     0     1     0     0     0     0     0     0     0     0
## X854      0     0     1     0     0     0     0     0     0     0     0     0
## X855      0     0     0     0     0     0     0     0     0     0     0     0
## X856      0     0     1     0     0     0     0     0     1     0     0     1
## X857      0     0     1     0     0     0     0     0     0     0     0     1
## X858      0     0     1     0     0     0     0     0     0     0     0     0
## X859      0     0     1     0     0     0     0     0     1     0     0     1
## X860      0     0     1     0     0     0     0     0     1     0     0     1
## X862      0     0     0     0     0     0     0     0     0     0     0     0
## X863      0     0     1     0     0     0     0     0     0     0     0     1
## X864      0     0     0     0     0     0     0     0     0     0     0     0
## X865      0     0     0     0     0     0     0     0     0     0     0     1
## X866      0     0     1     0     0     0     0     0     0     0     0     1
## X867      0     0     0     0     0     0     0     0     0     0     0     0
## X869      0     0     0     0     0     1     0     0     0     0     0     0
## X870      0     0     1     0     0     0     0     0     0     0     0     1
## X871      0     0     1     0     0     0     0     0     0     0     0     1
## X872      0     0     1     0     0     0     0     0     1     0     0     0
## X873      0     0     0     0     0     0     0     0     0     0     0     0
## X875      0     0     1     0     0     0     0     0     0     0     0     0
## X876      0     0     1     0     0     0     0     0     0     0     0     1
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     0     0     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     0     0     0     0
## X1192     0     0     0     1     0     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     0     1     0     0     1     0     0     0     0     0
## X1195     0     0     1     0     0     0     0     0     0     0     0     0
## X1197     0     0     0     0     0     0     0     0     0     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     1     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     0     1     0     0     1     0     0     0     0
## X1202     0     0     0     1     0     0     1     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     1     0     0     0     0     0     1     0     0     0     1
## X1205     0     0     0     0     0     1     0     0     0     0     0     0
## X1206     0     0     0     0     0     0     0     0     0     1     0     0
## X1207     1     0     0     0     0     0     0     1     0     0     1     0
## X1208     0     0     0     1     0     0     1     0     0     0     0     0
## X1209     0     1     0     0     0     0     0     0     0     0     0     0
## X1210     1     0     0     1     0     0     0     0     0     0     0     0
## X1212     0     1     0     1     0     0     0     0     0     0     0     0
## X1213     0     0     0     0     0     0     0     1     0     0     1     0
## X1215     0     0     0     1     0     0     0     0     0     0     0     0
## X1216     0     0     0     0     0     0     0     0     0     0     0     0
## X1217     0     0     1     0     0     1     0     0     1     0     0     0
## X1219     0     1     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     0     0     0     0     0     1     1     0     0     0
## X1221     0     0     0     0     0     0     0     0     0     0     0     0
## X1222     0     0     0     0     0     0     0     0     0     1     1     1
## X1226     0     0     0     0     0     1     0     1     0     0     0     0
## X1228     0     0     0     0     1     0     0     0     0     0     0     0
## X1229     0     0     0     1     0     1     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     0     0     0     0     0     1
## X1231     0     0     0     0     0     0     0     0     0     0     0     0
## X1233     0     0     0     1     0     0     1     0     0     0     0     0
## X1234     0     0     0     0     0     0     0     0     0     0     0     0
## X1236     0     0     0     1     0     0     1     0     0     0     0     0
## X1237     0     0     1     0     1     0     0     0     0     0     0     0
## X1239     1     0     0     0     0     0     0     0     0     0     1     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     0     0     1     0     0     0
## X1245     0     0     0     0     0     0     0     0     0     0     0     0
## X1246     0     1     0     1     0     0     0     0     0     0     0     0
## X1247     0     0     0     0     0     0     1     0     0     1     0     0
## X1249     0     0     0     0     0     0     0     0     0     0     0     1
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     1     0     0     0
## X1254     0     0     0     0     0     0     0     0     1     0     0     0
## X1255     0     0     0     0     0     0     0     0     0     0     0     0
## X1256     0     0     0     0     0     0     0     0     0     0     0     0
## X1257     0     0     1     0     0     0     0     0     1     0     0     1
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     1     0     0     0     0     0     1     0     0     1
## X1262     0     0     0     0     0     0     0     0     0     1     0     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     1     0     0     0     0     0     1     0     0     1
## X1266     0     0     1     0     0     1     0     0     1     0     0     0
## X1267     0     1     0     0     0     0     0     0     0     0     0     0
## X1268     0     0     0     0     0     0     0     0     0     0     0     0
## X1273     0     0     1     0     0     0     0     0     0     0     0     1
## X1274     0     0     0     0     0     0     0     0     0     0     0     0
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     0     0     0     0     0     0
## X1277     0     0     1     0     0     0     0     0     1     0     0     1
## X1278     0     0     0     0     0     0     0     0     0     0     0     1
## X1279     0     0     0     0     0     0     0     0     0     0     0     0
## X1281     0     0     1     0     0     0     0     0     0     0     0     1
## X1282     0     0     1     0     0     0     0     0     0     0     0     1
## X1283     0     0     0     0     0     0     0     0     0     0     0     1
## X1284     0     0     0     0     0     0     0     0     0     0     0     0
## X1285     0     0     1     0     0     0     0     0     0     0     0     0
## X1288     0     0     1     0     0     0     0     0     0     0     0     1
## X1299     0     0     0     0     0     0     0     0     0     0     0     0
## X1301     0     0     0     1     0     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     1     0     0     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     1     0     0     1     0     0     0
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     0     1     0     0     0     0     0     1     0     0     0
## X448      0     1     1     0     0     0     0     0     0     0     1     0
## X451      0     0     0     0     0     0     0     0     0     1     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     1     0     0     0     0     0     0     0     0     0     0
## X454      0     0     0     0     1     0     0     0     0     0     0     0
## X455      1     0     0     0     0     0     0     0     1     0     0     0
## X456      0     0     0     0     0     0     0     0     0     0     0     0
## X458      0     0     0     0     1     0     0     0     0     0     0     0
## X459      0     0     0     0     0     0     1     0     0     0     0     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     1     0     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     0     0     0     0     0     0     0     0     0     1     0
## X464      0     0     0     0     0     1     0     0     0     0     0     0
## X465      0     0     0     1     1     1     0     0     0     0     0     0
## X466      0     0     1     0     0     0     0     1     0     0     0     0
## X468      0     0     0     0     0     0     0     0     0     0     0     0
## X471      0     0     0     0     0     0     0     0     0     0     0     0
## X472      1     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     0     0     0     0     0     0
## X477      1     0     0     0     0     0     0     1     0     0     0     1
## X478      0     0     0     0     0     0     0     0     0     1     0     0
## X479      0     0     0     0     0     0     0     0     0     1     0     0
## X480      0     0     0     0     0     0     0     0     0     0     0     0
## X482      1     0     0     0     0     1     0     0     0     0     0     0
## X483      1     0     0     0     0     0     0     0     0     0     0     0
## X484      0     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     0     0     0     0
## X487      0     0     0     0     0     0     0     0     0     0     1     0
## X488      0     1     0     0     0     0     0     0     0     0     0     0
## X489      0     0     0     0     0     0     0     0     0     0     0     0
## X490      1     0     0     0     1     0     0     0     0     0     1     0
## X491      0     0     0     0     0     0     0     0     0     0     0     0
## X492      0     0     0     0     0     0     0     1     0     0     0     0
## X493      0     0     0     0     0     0     0     0     0     0     0     0
## X494      0     0     0     0     0     0     0     0     0     0     0     0
## X495      0     0     0     1     1     0     0     1     0     1     0     0
## X496      0     0     0     0     0     0     0     0     0     0     0     0
## X497      0     0     0     0     0     0     0     0     0     0     0     0
## X498      0     1     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     0     0     0     0     0     0
## X501      0     0     1     0     0     0     0     1     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     0     0     0
## X503      0     0     0     0     0     0     0     1     0     0     0     0
## X505      0     0     0     0     0     0     1     0     1     0     0     0
## X506      0     0     0     0     0     0     0     0     0     0     0     0
## X507      0     0     0     0     1     0     0     0     0     0     0     0
## X508      0     1     0     0     0     0     0     0     0     0     0     0
## X509      0     1     0     0     0     0     0     0     0     0     1     0
## X510      0     0     0     0     0     0     0     1     0     0     0     0
## X513      1     0     0     0     0     0     0     0     0     0     0     0
## X514      0     0     0     0     0     0     0     0     0     0     0     0
## X515      0     1     0     0     0     0     0     0     0     0     0     0
## X516      0     0     0     0     1     0     0     0     0     1     0     0
## X518      0     0     0     0     0     1     0     0     0     0     1     0
## X521      0     0     0     0     1     0     0     0     0     0     0     0
## X523      0     0     0     0     0     0     0     0     0     1     0     0
## X524      0     0     1     0     0     0     0     0     0     0     0     0
## X525      0     0     0     0     0     0     0     0     0     0     0     0
## X526      0     0     0     0     0     0     0     0     0     0     0     0
## X530      0     0     0     0     0     0     0     0     0     0     1     0
## X531      1     0     0     0     0     0     0     0     0     0     0     0
## X532      1     0     0     0     0     0     0     0     0     0     0     0
## X533      0     0     1     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     0     0     0     0     0     0
## X535      0     0     1     0     0     0     0     0     0     0     0     0
## X536      0     0     0     1     0     0     0     1     0     1     0     0
## X538      0     1     0     0     0     0     0     0     0     0     0     1
## X539      0     0     0     1     0     0     0     1     0     1     0     0
## X542      0     0     0     1     0     0     0     0     0     0     0     0
## X543      0     0     0     0     0     0     0     0     0     0     0     0
## X544      0     1     0     0     0     0     0     0     0     0     1     0
## X545      0     0     0     0     0     0     0     0     0     0     1     0
## X546      0     0     0     0     0     1     0     0     0     0     0     0
## X548      0     0     0     0     1     0     0     0     0     1     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     1     0     0     0     0     0     0
## X552      0     0     0     0     1     0     0     1     0     0     0     0
## X553      0     0     0     0     0     0     0     0     0     0     0     0
## X554      0     0     0     0     0     1     0     0     0     0     0     0
## X556      0     1     0     0     0     0     0     0     0     0     0     0
## X557      0     0     1     0     1     0     0     0     0     0     1     0
## X558      0     0     0     0     0     0     0     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     0     0     0     0
## X560      0     0     0     0     0     0     0     0     0     0     0     0
## X561      0     0     0     0     0     0     0     0     1     0     0     0
## X562      0     0     0     0     0     0     0     0     0     0     0     0
## X563      0     0     0     0     0     0     0     0     0     0     0     0
## X565      0     0     0     0     0     0     0     0     0     1     0     0
## X566      0     0     1     0     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     1     1     0     0     0     0     0
## X568      0     0     0     0     0     0     1     0     0     0     0     0
## X569      0     0     0     0     1     0     0     0     0     0     1     0
## X571      0     0     0     0     1     0     0     0     1     0     0     0
## X572      0     0     0     0     0     0     0     0     0     0     0     0
## X574      0     0     0     0     0     0     0     0     0     0     0     0
## X576      0     0     0     0     1     0     0     0     0     0     0     0
## X577      0     0     0     0     0     0     0     0     0     0     0     0
## X579      0     0     0     0     0     0     0     0     0     0     0     0
## X580      0     1     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     1     0     0     0     0     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     0     0     0     0     0     1     0     0     0     0
## X586      0     0     0     0     0     0     0     1     0     0     0     1
## X587      0     0     0     0     0     0     0     0     0     0     0     0
## X588      1     0     0     0     0     0     0     0     0     0     0     0
## X589      1     0     0     1     0     0     0     0     0     0     0     0
## X591      0     0     0     1     1     0     0     1     0     1     0     0
## X592      0     0     0     0     0     0     0     0     0     0     0     0
## X593      0     0     0     0     0     1     0     0     0     0     0     0
## X594      0     0     0     0     1     0     0     0     0     0     0     0
## X595      0     0     0     0     0     0     0     0     0     0     1     0
## X596      0     0     0     0     0     0     0     0     0     0     0     0
## X597      0     0     0     0     0     0     0     0     0     1     1     1
## X598      0     0     0     0     0     0     0     0     0     1     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     0     0     0     0     0     0     0     0     0     0
## X603      0     0     0     0     0     0     0     0     0     0     0     0
## X604      1     0     0     0     0     0     0     0     0     1     0     0
## X605      0     0     0     1     0     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     0     0     0     0     0     0
## X608      0     0     0     0     0     0     0     0     0     0     0     0
## X609      0     0     0     0     0     0     0     0     0     0     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     1     0     1     0     0     0     0     0     1     0
## X613      0     0     0     0     0     0     0     0     0     0     0     0
## X614      0     0     1     0     0     0     0     0     0     0     0     0
## X616      0     0     0     0     0     1     0     0     0     0     0     0
## X617      1     0     0     0     0     0     0     0     0     0     1     0
## X619      0     0     0     0     0     1     0     0     0     0     0     0
## X620      0     0     1     0     0     0     0     0     1     0     0     0
## X621      0     1     0     0     0     0     0     0     0     0     0     0
## X622      0     0     0     0     0     0     0     0     0     0     0     0
## X623      0     0     1     0     0     0     0     0     1     0     0     1
## X625      0     0     0     0     0     1     0     0     1     0     0     0
## X628      0     0     0     1     0     0     0     0     0     0     0     0
## X629      1     0     0     1     0     0     0     0     0     0     0     0
## X630      0     0     0     0     0     0     0     1     0     0     0     0
## X631      0     0     0     0     0     0     0     0     0     0     0     0
## X632      0     0     0     0     0     1     0     0     0     0     0     0
## X633      0     0     1     0     0     0     0     0     1     0     0     0
## X635      0     0     0     0     0     0     0     1     0     0     0     0
## X636      0     0     0     1     0     0     0     0     0     0     0     0
## X637      0     0     0     1     0     0     0     0     0     0     0     0
## X638      1     0     0     0     0     0     0     0     0     0     0     0
## X639      0     0     0     0     0     0     0     0     0     0     0     0
## X641      0     1     0     0     0     0     0     1     0     0     0     0
## X648      0     1     1     0     0     0     0     0     0     0     0     0
## X650      0     0     0     0     0     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     0     1     0     0     0     0
## X653      1     0     0     1     0     0     0     0     0     0     0     0
## X654      0     0     0     0     0     0     0     0     0     0     1     0
## X655      1     0     0     0     0     0     0     0     0     0     0     0
## X656      0     0     1     0     0     0     0     0     0     0     0     0
## X657      0     0     0     0     0     0     0     0     0     0     0     0
## X1082     0     0     0     0     0     1     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     0     0     0     0     0     0
## X1084     1     0     0     1     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     0     0     0     0     0     0
## X1088     0     0     0     0     1     0     0     0     1     0     1     0
## X1089     0     0     0     0     0     0     0     0     0     0     0     0
## X1090     0     1     0     0     0     0     0     0     0     0     0     0
## X1091     0     1     0     0     0     0     0     0     0     0     0     0
## X1092     0     0     0     0     0     0     0     0     0     0     0     0
## X1093     0     0     0     0     0     0     0     1     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     0     0     0     0     0     0     0     0     0     0     1
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     0     0     1     0     0     0     0     0     0     0     0
## X1101     0     0     1     0     0     0     0     0     0     0     0     0
## X1103     0     1     0     0     0     0     0     0     0     0     0     1
## X1104     0     0     0     0     0     0     0     0     0     0     0     0
## X1105     0     0     0     0     0     0     0     0     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     0     0     0     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     0     0     0     0     0     0
## X1112     0     0     0     0     0     0     0     0     0     0     0     0
## X1113     0     1     0     0     0     1     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     0     0     0     0     0     0
## X1116     0     0     0     0     0     0     0     0     1     1     1     0
## X1117     0     0     0     0     0     0     0     0     0     0     0     0
## X1119     0     0     1     0     0     0     0     0     0     0     0     0
## X1120     0     0     0     1     0     0     0     0     0     0     0     0
## X1121     0     0     0     0     0     0     0     1     0     0     0     1
## X1122     0     0     0     1     0     0     0     0     0     0     0     0
## X1124     0     0     0     0     0     0     0     0     0     0     0     1
## X1125     0     0     0     0     0     1     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     1     0     0     0
## X1127     0     0     0     0     0     0     0     0     0     0     0     0
## X1128     0     0     0     0     0     0     1     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     1     0     0     0
## X1130     0     0     1     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     0     0     0     0     0     0     0     1     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     0     1     0     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     0
## X1139     0     0     0     1     0     0     0     0     0     0     0     0
## X1141     1     0     0     0     0     0     0     0     0     1     0     0
## X1142     0     0     0     0     0     0     0     0     1     0     0     0
## X1143     0     0     0     0     0     0     1     1     0     0     0     0
## X1144     0     1     0     0     0     0     0     1     0     0     0     0
## X1145     0     0     1     0     0     0     0     0     0     0     0     1
## X1146     0     0     0     0     0     0     0     0     0     0     0     0
## X1147     0     0     0     0     0     0     0     0     0     0     1     0
## X1149     1     0     0     0     0     0     0     0     1     0     0     0
## X1150     0     0     0     0     0     0     0     0     0     0     0     0
## X1151     0     0     0     1     0     0     0     0     0     0     1     0
## X1152     0     0     0     0     0     0     0     1     0     1     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     0     0     0     0
## X1158     0     1     0     0     0     0     0     0     0     0     0     0
## X1159     0     0     0     0     1     0     0     0     0     0     0     0
## X1160     0     1     0     0     0     0     0     0     0     0     0     1
##       FP194 FP195 FP196 FP197 FP198 FP201 FP202 FP203 FP204 FP205 FP206 FP207
## X661      0     0     0     0     0     1     0     0     0     0     0     0
## X662      0     0     0     0     0     0     1     0     0     0     0     0
## X663      0     0     0     0     0     0     0     0     0     0     0     0
## X665      0     0     0     1     0     0     0     0     0     0     0     0
## X668      0     0     0     0     0     0     0     0     0     0     0     0
## X669      0     0     0     0     0     0     0     0     0     0     0     0
## X670      0     0     0     0     0     0     1     0     0     0     0     1
## X671      0     0     0     0     0     0     0     0     1     0     1     0
## X672      0     0     1     0     0     0     0     0     0     0     0     0
## X673      0     0     0     0     0     0     1     1     0     0     0     0
## X674      0     0     0     0     0     0     1     0     0     0     0     0
## X676      0     0     1     1     0     0     0     0     0     0     0     0
## X677      0     0     0     0     0     0     1     0     0     0     0     0
## X678      0     0     0     0     0     0     1     0     0     0     0     1
## X679      0     0     0     0     0     0     1     1     0     0     0     0
## X682      0     0     0     0     0     0     0     0     0     0     0     0
## X683      0     0     0     0     0     0     0     0     1     0     0     0
## X684      0     0     0     0     1     0     1     0     0     0     0     1
## X685      0     0     1     1     0     0     0     0     0     0     0     0
## X686      0     0     0     0     0     0     1     0     0     1     0     0
## X688      0     0     0     0     0     0     1     0     0     0     0     1
## X689      0     0     0     1     0     0     1     0     0     0     0     0
## X690      0     0     0     0     0     0     0     0     1     1     0     0
## X691      0     0     0     0     0     0     0     0     0     0     0     0
## X692      0     0     0     0     0     0     1     1     0     0     0     0
## X693      0     0     0     0     0     0     0     0     0     0     0     0
## X695      0     0     0     0     0     0     1     0     0     0     0     0
## X696      1     0     0     0     0     0     1     0     0     1     0     0
## X698      0     0     0     0     0     0     0     0     0     0     0     0
## X699      0     0     0     0     0     0     0     0     0     1     0     0
## X700      0     0     0     0     0     0     0     0     1     0     1     0
## X702      0     0     0     0     0     0     0     0     0     0     0     0
## X703      0     0     0     0     0     0     0     0     0     0     0     0
## X704      0     0     0     0     0     0     1     0     0     0     0     0
## X706      0     0     0     0     0     0     0     0     0     0     0     0
## X708      0     0     0     0     0     0     1     1     0     0     0     0
## X709      0     0     0     0     0     0     0     0     0     0     0     0
## X711      0     0     1     0     0     0     0     0     0     0     0     0
## X712      0     0     0     0     0     0     0     0     0     0     0     0
## X713      0     0     0     0     0     0     1     0     0     1     0     0
## X714      0     0     1     1     0     0     0     0     0     0     0     0
## X715      0     0     0     0     0     0     0     0     0     1     0     0
## X717      0     0     0     0     0     0     1     0     0     0     0     0
## X718      0     0     0     0     0     0     1     0     0     0     0     1
## X721      0     0     0     0     0     0     0     0     0     0     0     0
## X722      0     0     0     0     0     0     1     1     0     1     0     0
## X723      0     0     0     0     0     0     0     0     1     0     1     0
## X724      0     0     0     0     0     0     1     1     0     0     0     0
## X726      0     0     0     0     0     0     0     0     0     0     0     1
## X728      0     0     0     0     0     0     1     1     0     0     0     0
## X729      0     0     0     0     0     0     0     0     0     0     0     0
## X731      0     0     0     0     0     0     0     0     1     0     1     0
## X732      0     0     0     0     0     0     1     1     0     0     0     0
## X733      0     0     0     0     0     0     0     0     0     0     0     0
## X734      0     0     0     0     0     0     0     0     0     0     0     0
## X735      0     0     1     1     0     0     0     0     0     0     0     0
## X736      1     0     0     0     0     0     0     0     1     0     1     0
## X737      0     0     0     0     0     0     1     0     0     1     0     0
## X739      0     0     0     0     0     0     0     0     0     0     0     0
## X740      0     0     0     0     0     0     0     0     0     0     0     1
## X741      0     0     0     0     0     0     0     0     1     0     1     0
## X742      0     0     0     0     0     0     0     0     1     0     1     0
## X743      0     0     0     0     0     0     0     0     0     0     0     0
## X744      0     0     0     1     0     0     0     0     0     1     0     0
## X746      0     0     0     0     0     0     1     0     0     0     0     0
## X747      0     0     0     0     1     0     0     0     1     0     1     0
## X749      0     0     0     0     0     0     1     0     0     0     0     1
## X752      0     0     1     1     1     0     0     0     1     0     0     0
## X753      0     0     0     0     0     0     0     0     0     0     0     0
## X754      0     0     0     0     0     0     1     0     0     0     0     0
## X755      0     0     0     0     0     0     0     0     0     1     0     0
## X757      0     0     0     0     0     0     0     0     1     0     1     0
## X758      0     0     0     0     0     0     0     0     0     1     0     0
## X759      0     0     0     0     0     0     0     0     0     0     0     0
## X760      0     0     0     0     0     0     1     1     0     1     0     0
## X761      0     0     1     1     1     0     0     0     0     0     0     0
## X762      0     0     0     0     0     0     1     0     0     0     0     0
## X763      1     0     0     0     0     0     0     0     0     0     0     0
## X764      0     0     0     0     0     0     0     0     0     1     0     0
## X765      0     0     0     0     0     0     0     0     0     0     0     0
## X767      0     0     1     0     0     0     0     0     0     0     0     0
## X768      0     0     0     0     0     0     1     0     0     0     0     0
## X770      0     0     0     0     0     0     1     0     0     0     0     1
## X771      0     0     0     0     0     0     1     0     0     0     0     0
## X772      0     0     0     0     0     0     0     0     0     1     0     0
## X773      0     0     0     0     0     0     0     0     1     0     1     0
## X774      0     0     0     0     0     0     0     0     1     0     1     0
## X775      0     0     0     0     0     0     1     1     0     0     0     0
## X776      0     0     0     0     0     0     0     0     0     0     0     1
## X777      0     0     0     0     0     0     0     0     1     0     0     0
## X778      0     0     1     0     0     0     0     0     0     0     0     0
## X779      1     0     0     0     0     0     1     0     0     0     0     0
## X780      0     0     0     0     0     0     0     0     0     0     0     0
## X781      0     0     0     0     0     0     0     0     0     0     0     0
## X782      0     0     0     0     0     0     1     0     0     0     0     0
## X784      0     0     0     0     0     0     0     0     0     0     0     0
## X786      0     0     0     0     0     0     0     0     1     0     1     0
## X787      0     0     0     0     0     0     1     1     0     0     0     1
## X788      0     0     1     1     0     0     0     0     0     0     0     0
## X789      0     0     0     0     0     0     1     0     0     0     0     0
## X791      0     0     0     0     0     0     1     0     0     0     0     1
## X792      0     0     0     0     0     0     1     0     0     0     0     0
## X794      0     0     0     0     0     0     0     0     1     0     1     0
## X798      0     0     0     0     0     0     1     0     0     0     0     0
## X799      0     0     0     0     0     0     0     0     0     0     0     0
## X800      0     0     1     0     0     0     0     0     0     0     0     0
## X804      0     0     0     0     0     0     0     0     0     0     0     0
## X805      0     0     1     1     0     0     0     0     0     0     0     0
## X807      0     0     0     0     0     0     0     0     0     0     0     0
## X808      0     0     0     0     0     0     1     1     0     0     0     0
## X809      0     0     0     0     0     0     1     1     1     0     0     0
## X810      0     0     0     0     0     0     0     0     0     0     0     0
## X813      0     0     0     0     0     0     0     0     1     0     1     0
## X814      0     0     0     0     0     0     0     0     0     0     0     0
## X818      0     0     0     0     0     0     0     0     0     1     0     1
## X819      0     0     0     0     0     0     0     0     0     1     0     1
## X820      0     0     0     0     1     0     0     0     1     0     1     0
## X821      0     0     0     0     0     0     1     1     0     0     0     0
## X822      0     0     0     0     0     0     0     0     0     1     0     0
## X823      1     0     0     0     0     0     1     0     0     0     0     0
## X827      0     0     0     0     0     0     0     0     0     0     0     0
## X828      0     0     0     0     0     0     1     0     0     0     0     0
## X829      0     0     0     0     0     0     1     0     0     0     0     0
## X831      0     0     0     0     0     0     1     0     0     0     0     1
## X832      0     0     0     0     0     0     1     1     0     0     0     0
## X833      0     0     0     0     0     0     0     0     0     1     0     1
## X834      0     0     0     0     0     0     1     0     0     0     0     1
## X835      0     0     0     0     0     0     0     0     0     0     0     1
## X836      0     0     0     0     0     0     0     0     0     0     0     1
## X839      0     0     0     0     0     0     1     0     0     0     0     0
## X840      0     0     0     0     0     0     1     0     0     0     0     0
## X841      0     0     0     0     0     0     0     0     0     1     0     1
## X842      0     0     0     0     0     0     1     0     0     0     0     0
## X843      0     0     0     0     0     0     0     0     0     0     0     1
## X846      0     0     0     0     0     0     1     1     0     0     0     0
## X848      0     0     0     0     0     0     1     0     0     0     0     0
## X849      0     0     0     0     0     0     0     0     0     0     0     1
## X851      0     0     1     0     0     0     0     0     0     0     0     0
## X854      0     0     0     0     0     0     0     0     0     1     0     0
## X855      0     0     0     0     0     0     1     0     0     0     0     0
## X856      0     0     0     0     0     0     0     0     0     0     0     1
## X857      0     0     0     0     0     0     1     0     0     0     0     0
## X858      0     0     0     0     0     0     0     0     0     0     0     0
## X859      0     0     0     0     0     0     0     0     0     0     0     1
## X860      0     0     0     0     0     0     0     0     0     0     0     1
## X862      0     0     0     0     0     0     1     1     0     0     0     0
## X863      0     0     0     0     0     0     0     0     0     0     0     0
## X864      0     0     0     1     0     0     1     0     0     0     0     0
## X865      0     0     0     0     0     0     1     0     0     1     0     0
## X866      0     0     0     0     0     0     0     0     0     0     0     0
## X867      0     0     0     0     0     0     1     0     0     1     0     0
## X869      0     0     0     0     0     0     1     1     0     1     0     0
## X870      0     0     0     0     0     0     0     0     0     0     0     0
## X871      0     0     0     0     0     0     0     0     0     1     0     0
## X872      0     0     0     0     0     0     0     0     0     0     0     0
## X873      0     0     0     0     0     0     0     0     0     1     0     0
## X875      0     0     0     0     0     0     0     0     0     0     0     0
## X876      0     0     0     0     0     0     0     0     0     0     0     0
## X877      0     0     0     0     0     0     0     0     0     0     0     0
## X1190     0     0     0     0     0     0     1     1     0     0     0     0
## X1191     0     0     0     0     0     0     0     0     1     0     1     0
## X1192     0     0     1     1     0     0     0     0     0     0     0     0
## X1193     0     0     0     0     0     0     0     0     0     0     0     0
## X1194     0     0     1     1     0     0     0     0     0     0     0     0
## X1195     0     0     0     0     0     0     0     0     0     1     0     0
## X1197     0     0     0     0     0     0     1     1     1     0     0     0
## X1198     0     0     0     0     0     0     0     0     0     0     0     0
## X1199     0     0     0     0     0     0     0     0     0     0     0     0
## X1200     0     0     0     0     0     0     0     0     0     0     0     0
## X1201     0     0     0     1     0     0     0     0     0     0     0     0
## X1202     0     0     1     1     0     0     0     0     0     0     0     0
## X1203     0     0     0     0     0     0     0     0     0     0     0     0
## X1204     0     0     0     0     0     1     1     0     0     0     0     0
## X1205     0     0     0     0     0     1     0     0     0     1     0     0
## X1206     0     0     0     0     0     0     0     0     0     0     0     0
## X1207     0     0     0     0     0     0     1     0     0     0     0     0
## X1208     0     0     1     1     0     0     0     0     0     0     0     0
## X1209     0     0     0     0     0     0     0     0     0     0     0     0
## X1210     0     0     1     0     0     0     0     0     0     0     0     0
## X1212     0     0     1     1     0     0     0     0     0     0     0     0
## X1213     0     0     0     0     0     0     1     0     0     0     0     0
## X1215     0     0     1     1     1     0     0     0     0     0     0     0
## X1216     0     0     0     0     0     0     1     0     0     0     0     0
## X1217     0     0     0     0     0     0     1     0     0     0     0     1
## X1219     0     0     0     0     0     0     0     0     0     0     0     0
## X1220     0     0     0     0     0     0     0     0     0     0     0     1
## X1221     0     0     0     0     0     0     0     0     1     0     1     0
## X1222     0     0     0     1     0     0     1     0     0     0     0     0
## X1226     0     0     0     0     0     0     1     0     0     0     0     0
## X1228     0     0     0     0     0     0     0     0     0     0     0     0
## X1229     0     0     1     1     0     0     0     0     0     0     0     0
## X1230     0     0     0     0     0     0     1     1     0     0     0     0
## X1231     0     0     0     0     0     0     1     1     0     0     0     0
## X1233     0     0     1     0     0     0     0     0     0     0     0     0
## X1234     0     0     0     0     0     0     1     0     0     0     0     0
## X1236     0     0     1     1     0     0     0     0     0     0     0     0
## X1237     0     0     0     0     0     0     0     0     0     0     0     0
## X1239     0     0     0     0     0     0     0     0     0     0     0     0
## X1242     0     0     0     0     0     0     0     0     0     0     0     0
## X1244     0     0     0     0     0     0     1     1     0     0     0     1
## X1245     0     0     0     0     0     0     1     1     1     0     1     0
## X1246     0     0     1     1     0     0     0     0     0     0     0     0
## X1247     0     0     1     0     0     0     1     1     0     1     0     0
## X1249     0     0     0     0     0     0     0     0     0     0     0     0
## X1250     0     0     0     0     0     0     0     0     0     0     0     0
## X1251     0     0     0     0     0     0     0     0     0     0     0     0
## X1253     0     0     0     0     0     0     0     0     0     0     0     1
## X1254     0     0     0     0     0     0     0     0     0     1     0     0
## X1255     0     0     0     0     0     0     1     0     0     0     0     0
## X1256     0     0     0     1     0     0     0     0     0     0     0     0
## X1257     0     0     0     0     0     0     1     0     0     0     0     1
## X1259     0     0     0     0     0     0     0     0     0     0     0     0
## X1260     0     0     0     0     0     0     0     0     0     0     0     1
## X1262     0     0     1     0     0     0     1     1     0     1     0     0
## X1264     0     0     0     0     0     0     0     0     0     0     0     0
## X1265     0     0     0     0     0     0     0     0     0     0     0     1
## X1266     0     0     0     0     0     0     1     0     0     0     0     1
## X1267     0     0     0     0     0     0     0     0     0     1     0     0
## X1268     0     0     0     0     0     0     0     0     1     0     1     0
## X1273     0     0     0     0     0     0     1     1     0     0     0     0
## X1274     0     0     0     0     1     0     0     0     1     0     1     0
## X1275     0     0     0     0     0     0     0     0     0     0     0     0
## X1276     0     0     0     0     0     0     1     0     0     1     0     0
## X1277     0     0     0     0     0     0     0     0     0     0     0     1
## X1278     0     0     0     0     0     0     1     0     0     0     0     0
## X1279     0     0     0     0     0     0     1     0     0     0     0     0
## X1281     0     0     0     0     0     0     0     0     0     0     0     0
## X1282     0     0     0     0     0     0     0     0     0     1     0     0
## X1283     0     0     0     0     0     0     1     0     0     1     0     0
## X1284     0     0     0     0     0     0     1     0     0     0     0     0
## X1285     0     0     0     0     0     0     0     0     0     0     0     0
## X1288     0     0     0     0     0     0     0     0     0     0     0     0
## X1299     0     1     0     0     0     0     1     1     0     0     0     0
## X1301     0     0     1     1     0     0     0     0     0     0     0     0
## X1302     0     0     0     0     0     0     0     0     0     0     0     0
## X1307     0     0     0     0     0     0     0     0     0     0     0     0
## X1309     0     0     0     0     0     0     0     0     0     0     0     1
## X1310     0     0     0     0     0     0     0     0     0     0     0     0
## X447      0     0     0     0     0     0     0     0     0     0     0     1
## X448      0     0     0     0     0     0     0     0     0     0     0     0
## X451      0     0     0     0     0     0     0     0     0     0     0     0
## X452      0     0     0     0     0     0     0     0     0     0     0     0
## X453      0     0     0     0     0     1     0     0     0     1     0     0
## X454      1     0     0     0     0     0     0     0     0     0     0     0
## X455      0     0     0     0     0     0     0     0     0     0     0     1
## X456      0     0     0     1     0     0     1     1     0     0     0     0
## X458      1     0     0     0     0     1     0     0     0     0     0     0
## X459      0     0     0     0     0     0     0     0     1     0     1     0
## X460      0     0     0     0     0     0     0     0     0     0     0     0
## X461      0     0     0     0     0     0     0     0     0     1     0     0
## X462      0     0     0     0     0     0     0     0     0     0     0     0
## X463      0     1     0     0     0     0     1     1     0     0     0     0
## X464      0     0     0     0     0     0     0     0     0     0     0     0
## X465      0     0     0     0     0     0     0     0     0     0     0     0
## X466      0     0     0     0     0     0     0     0     0     1     0     0
## X468      0     0     0     0     0     0     0     0     1     0     1     0
## X471      1     0     0     0     0     0     0     0     0     0     0     0
## X472      0     0     0     0     0     0     0     0     0     0     0     0
## X473      0     0     0     0     0     0     0     0     0     0     0     0
## X476      0     0     0     0     0     0     1     0     0     1     0     0
## X477      0     1     0     0     0     0     1     0     0     0     0     0
## X478      0     0     0     0     0     0     0     0     0     0     0     0
## X479      0     0     0     0     0     0     0     0     0     0     0     0
## X480      0     0     0     0     0     1     0     0     0     0     0     0
## X482      0     0     0     0     0     0     0     0     0     0     0     0
## X483      0     0     0     0     0     0     0     0     0     0     0     0
## X484      1     0     0     0     0     0     0     0     0     0     0     0
## X486      0     0     0     0     0     0     0     0     1     0     1     0
## X487      0     0     0     0     0     0     0     0     0     0     0     0
## X488      0     0     0     0     0     0     0     0     1     0     0     0
## X489      0     0     0     0     0     0     1     0     0     0     0     0
## X490      0     0     0     0     0     0     0     0     0     1     0     0
## X491      0     0     0     0     0     0     0     0     1     0     1     0
## X492      0     1     1     1     0     0     0     0     0     0     0     0
## X493      0     0     0     0     0     0     0     0     1     0     1     0
## X494      1     0     0     0     0     0     0     0     0     0     0     0
## X495      0     0     0     0     0     1     0     0     0     0     0     0
## X496      0     1     0     0     0     1     0     0     0     0     0     0
## X497      0     0     0     0     0     1     1     0     0     0     0     0
## X498      0     0     0     0     0     0     0     0     0     0     0     0
## X499      0     0     0     0     0     0     1     0     0     0     0     0
## X501      0     0     0     0     0     0     0     0     0     0     0     0
## X502      0     0     0     0     0     0     0     0     0     1     0     0
## X503      0     0     0     0     0     0     1     0     0     0     0     0
## X505      0     0     0     0     0     0     0     0     0     0     0     1
## X506      1     0     0     0     0     1     0     0     0     0     0     0
## X507      1     0     0     0     0     1     0     0     0     0     0     0
## X508      0     0     0     0     0     0     0     0     0     0     0     0
## X509      0     0     0     0     0     0     0     0     0     1     0     0
## X510      1     0     0     0     0     0     1     1     0     0     0     0
## X513      0     0     0     0     0     0     0     0     0     0     0     0
## X514      1     0     0     0     0     0     0     0     0     0     0     0
## X515      0     0     0     0     0     0     0     0     0     1     0     0
## X516      0     0     0     0     0     0     0     0     0     0     0     0
## X518      0     0     0     0     0     0     0     0     0     1     0     0
## X521      1     0     0     0     0     0     0     0     0     0     0     0
## X523      0     0     0     0     0     0     1     1     0     0     0     0
## X524      0     0     0     0     0     0     0     0     0     0     0     0
## X525      0     1     0     1     0     0     0     0     0     0     0     0
## X526      0     0     0     0     1     0     0     0     1     0     1     0
## X530      0     0     0     0     0     0     1     1     0     0     0     0
## X531      0     0     0     0     0     0     0     0     0     0     0     0
## X532      0     0     0     0     0     0     0     0     0     0     0     0
## X533      0     1     0     0     0     0     0     0     0     0     0     0
## X534      0     0     0     0     0     0     1     1     1     0     0     0
## X535      0     0     0     0     0     0     1     0     0     0     0     0
## X536      0     0     0     0     0     1     1     0     0     0     0     0
## X538      0     0     0     0     0     0     0     0     0     0     0     0
## X539      0     0     0     0     0     1     1     0     0     0     0     0
## X542      0     0     1     1     1     0     0     0     0     0     0     0
## X543      0     0     0     0     0     0     0     0     1     0     1     0
## X544      0     0     1     0     0     0     0     0     0     1     0     0
## X545      0     0     0     0     0     0     0     0     1     0     0     0
## X546      0     0     0     0     0     0     0     0     0     0     0     0
## X548      0     0     0     0     0     0     0     0     0     0     0     0
## X549      0     0     0     0     0     0     0     0     0     0     0     0
## X551      0     0     0     0     0     0     0     0     0     0     0     0
## X552      0     0     0     1     0     0     0     0     0     0     0     0
## X553      0     0     0     0     0     0     1     1     0     0     0     0
## X554      0     0     0     0     0     0     0     0     0     0     0     0
## X556      0     0     0     0     0     0     1     1     0     0     0     0
## X557      1     0     0     0     0     0     0     0     0     0     0     0
## X558      0     0     0     0     0     0     1     0     0     0     0     0
## X559      0     0     0     0     0     0     0     0     1     0     0     0
## X560      0     0     0     0     0     0     0     0     0     1     0     0
## X561      0     0     0     0     0     0     0     0     0     1     0     0
## X562      0     0     0     0     0     0     1     0     0     0     0     0
## X563      0     0     0     0     0     0     1     1     0     0     0     0
## X565      0     0     0     0     0     0     0     0     1     0     0     0
## X566      1     0     0     0     0     0     0     0     0     0     0     0
## X567      0     0     0     0     0     0     0     0     0     0     0     0
## X568      0     0     0     0     0     0     0     0     0     0     0     0
## X569      0     0     0     0     0     0     0     0     0     1     0     0
## X571      1     0     0     0     0     0     0     0     0     0     0     0
## X572      1     0     0     0     0     0     0     0     1     0     1     0
## X574      0     0     0     1     0     0     0     0     0     0     0     0
## X576      1     0     0     0     0     0     0     0     0     0     0     0
## X577      0     0     0     0     0     0     1     0     0     1     0     0
## X579      0     0     0     0     0     0     1     1     0     0     0     0
## X580      0     0     0     0     0     0     0     0     0     0     0     0
## X582      0     0     0     0     0     0     0     0     1     0     1     0
## X583      0     0     0     0     0     0     0     0     0     0     0     0
## X584      0     0     0     0     0     0     1     0     0     0     0     0
## X586      0     0     0     0     0     0     1     0     0     0     0     0
## X587      0     0     0     0     0     1     1     0     0     0     0     0
## X588      0     1     0     0     0     0     0     0     0     0     0     0
## X589      0     0     1     0     0     0     0     0     0     0     0     0
## X591      0     0     0     0     0     1     0     0     0     0     0     0
## X592      0     0     0     0     0     0     1     1     0     0     0     0
## X593      0     0     0     0     0     0     1     0     0     0     0     0
## X594      0     0     0     0     0     0     0     0     1     0     1     0
## X595      0     0     0     0     0     0     0     0     0     0     0     0
## X596      0     0     0     0     0     0     0     0     1     0     0     0
## X597      0     0     0     0     0     0     1     0     0     0     0     0
## X598      0     0     0     0     0     0     0     0     0     0     0     0
## X599      0     0     0     0     0     0     0     0     0     0     0     0
## X600      0     0     1     0     0     0     0     0     0     0     0     0
## X603      0     0     0     0     0     0     0     0     1     0     1     0
## X604      0     1     0     0     0     0     0     0     0     0     0     0
## X605      0     0     1     1     0     0     0     0     0     0     0     0
## X606      0     0     0     0     0     0     1     1     1     0     0     0
## X608      0     0     0     0     0     0     1     0     0     0     0     0
## X609      1     0     0     0     0     1     0     0     0     0     0     0
## X611      0     0     0     0     0     0     0     0     0     0     0     0
## X612      0     0     0     0     0     0     0     0     0     0     0     0
## X613      0     0     0     0     0     0     0     0     0     1     0     0
## X614      0     0     0     0     0     0     1     0     0     0     0     0
## X616      0     0     0     0     0     0     0     0     0     0     0     0
## X617      0     0     0     0     0     0     1     0     0     1     0     0
## X619      0     1     0     0     0     0     1     1     0     0     0     0
## X620      0     0     0     0     0     0     0     0     0     0     0     1
## X621      0     0     0     0     0     0     1     1     0     0     0     0
## X622      0     0     0     0     0     0     1     0     0     0     0     0
## X623      0     1     0     0     0     0     1     0     0     0     0     1
## X625      0     0     0     0     0     0     0     0     0     0     0     1
## X628      0     0     1     1     1     0     0     0     0     0     0     0
## X629      0     0     1     0     0     0     0     0     0     0     0     0
## X630      0     0     0     1     0     0     1     0     0     0     0     0
## X631      0     0     0     0     0     0     0     0     1     0     1     0
## X632      0     0     0     0     0     0     0     0     0     0     0     0
## X633      0     0     0     0     0     0     0     0     0     0     0     1
## X635      0     0     0     0     0     0     0     0     0     0     0     0
## X636      0     0     1     1     1     0     0     0     0     0     0     0
## X637      0     0     1     1     0     0     0     0     0     0     0     0
## X638      0     0     0     0     0     0     1     1     0     1     0     0
## X639      1     0     0     0     0     1     0     0     0     0     0     0
## X641      0     0     0     0     0     0     1     1     1     0     0     0
## X648      0     0     0     0     0     0     0     0     0     1     0     0
## X650      0     0     0     0     0     0     0     0     0     0     0     0
## X651      0     0     0     0     0     0     1     1     1     0     0     0
## X653      0     0     1     0     0     0     0     0     0     0     0     0
## X654      0     0     0     0     0     0     0     0     1     0     0     0
## X655      0     0     0     0     0     0     1     1     0     0     0     0
## X656      0     0     0     0     0     0     1     0     0     1     0     0
## X657      1     0     0     0     0     0     0     0     1     0     1     0
## X1082     0     0     0     0     0     0     0     0     0     0     0     0
## X1083     0     0     0     0     0     0     1     1     0     0     0     0
## X1084     0     0     0     0     0     0     0     0     0     0     0     0
## X1086     0     0     0     0     0     0     1     1     0     0     0     0
## X1088     0     0     0     0     0     0     0     0     0     0     0     1
## X1089     0     0     0     0     0     0     1     0     0     0     0     0
## X1090     0     0     0     0     0     0     0     0     0     0     0     0
## X1091     0     0     0     0     0     0     0     0     1     0     1     0
## X1092     0     0     0     0     0     0     0     0     1     0     0     0
## X1093     0     0     1     0     0     0     0     0     0     0     0     0
## X1094     0     0     0     0     0     0     0     0     0     0     0     0
## X1095     0     1     0     0     0     0     1     0     0     0     0     0
## X1097     0     0     0     0     0     0     0     0     0     0     0     0
## X1098     0     1     0     0     0     0     0     0     0     0     0     0
## X1101     0     1     0     0     0     0     0     0     0     0     0     0
## X1103     0     0     0     0     0     0     0     0     0     0     0     0
## X1104     1     0     0     0     0     1     1     0     0     0     0     0
## X1105     0     1     0     0     0     1     0     0     0     0     0     0
## X1106     0     0     0     0     0     0     0     0     1     0     1     0
## X1108     0     0     0     0     0     0     0     0     0     0     0     0
## X1110     0     0     0     0     0     0     1     1     0     0     0     0
## X1112     1     0     0     0     0     1     0     0     0     0     0     0
## X1113     0     0     0     0     0     0     0     0     0     0     0     0
## X1115     0     0     0     0     0     0     1     1     0     0     0     0
## X1116     0     0     0     0     0     0     0     0     0     0     0     1
## X1117     0     0     0     0     0     0     1     0     0     0     0     0
## X1119     0     0     0     0     0     0     0     0     0     0     0     0
## X1120     0     0     1     1     1     0     0     0     0     0     0     0
## X1121     0     1     0     0     0     1     0     0     0     0     0     0
## X1122     0     0     1     0     1     0     0     0     0     0     0     0
## X1124     0     0     0     0     0     0     1     0     0     0     0     0
## X1125     0     0     0     0     0     0     0     0     0     0     0     0
## X1126     0     0     0     0     0     0     0     0     0     1     0     0
## X1127     0     0     0     1     0     0     1     0     0     0     0     0
## X1128     0     0     0     0     0     0     0     0     0     0     0     0
## X1129     0     0     0     0     0     0     0     0     0     0     0     1
## X1130     0     0     0     0     0     0     0     0     0     0     0     0
## X1131     0     0     0     0     0     0     0     0     0     0     0     0
## X1133     1     0     0     0     0     0     1     1     0     0     0     0
## X1135     0     0     0     0     0     0     0     0     1     0     1     0
## X1136     0     0     0     0     0     0     0     0     0     0     0     0
## X1138     0     0     0     0     0     0     0     0     0     0     0     0
## X1139     0     0     1     1     1     0     0     0     0     0     0     0
## X1141     0     0     0     0     0     0     0     0     0     0     0     0
## X1142     0     0     0     0     0     0     0     0     0     0     0     1
## X1143     0     0     0     0     0     0     1     1     0     0     0     0
## X1144     0     0     0     0     0     0     0     0     0     0     0     0
## X1145     0     1     0     0     0     0     0     0     0     0     0     0
## X1146     0     0     0     0     0     0     0     0     1     0     1     0
## X1147     0     0     0     0     0     0     0     0     1     0     0     0
## X1149     0     0     0     0     0     0     0     0     0     1     0     0
## X1150     0     0     0     0     0     0     0     0     1     0     1     0
## X1151     0     0     0     0     0     0     0     0     0     0     0     0
## X1152     0     0     0     0     0     0     0     0     0     0     0     0
## X1153     0     0     0     0     0     0     0     0     0     0     0     0
## X1156     0     0     0     0     0     0     0     0     1     0     1     0
## X1158     0     0     0     0     0     0     0     0     0     0     0     0
## X1159     0     0     0     0     0     0     0     0     0     0     0     0
## X1160     0     0     0     0     0     0     1     0     0     0     0     0
##       FP208    MolWeight    NumBonds NumMultBonds NumRotBonds  NumDblBonds
## X661      0  0.304017769  0.49840233   1.90489650  -0.9347280 -0.831341597
## X662      0  1.474751336  1.69828720   1.32482715   0.7260405 -0.831341597
## X663      0  0.284237960  0.69697444   0.16468846   0.7260405 -0.005212173
## X665      0 -0.579130036  0.20728011  -0.80209379  -0.5195359  0.820917251
## X668      0  0.508214019  0.56629095  -0.02866799   1.1412327 -0.831341597
## X669      0  0.846130172  0.56629095  -0.80209379   1.1412327  0.820917251
## X670      0  1.343679568  0.99793817   2.29160940  -0.5195359 -0.005212173
## X671      0  0.223329553  0.94039386  -0.99545024   3.2171934 -0.005212173
## X672      0  1.536294032  1.99292450  -0.41538089  -0.5195359  2.473176098
## X673      1  0.531725024  0.99793817   0.16468846  -0.1043438 -0.005212173
## X674      0  0.513009822  0.63244961   0.55140136  -0.1043438  1.647046674
## X676      0  0.981923863  1.69828720  -0.80209379  -0.9347280  0.820917251
## X677      0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X678      0 -0.211043577 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X679      1 -0.403319666  0.28325136  -0.02866799  -0.1043438 -0.831341597
## X682      0  0.513009822  0.63244961   1.13147070   0.3108484 -0.005212173
## X683      0  1.174798750  1.36999732   0.35804491   2.3868091  0.820917251
## X684      0  1.683069116  1.87027471   1.13147070   1.5564248 -0.831341597
## X685      0  0.996447520  1.78555525  -0.99545024  -0.9347280 -0.005212173
## X686      0 -0.294344540  0.12893412   0.93811425  -0.5195359 -0.831341597
## X688      0  0.880198541  0.63244961   1.32482715  -0.1043438 -0.005212173
## X689      0  0.923239370  1.46773946   1.13147070   0.7260405 -0.831341597
## X690      0  1.144391553  1.46773946   0.16468846   2.3868091 -0.005212173
## X691      0  1.836745684  0.88159159  -0.80209379   0.7260405  0.820917251
## X692      1  1.649573481  1.46773946   0.55140136   3.2171934  1.647046674
## X693      0  1.038577746  1.16359252   0.55140136   0.3108484  1.647046674
## X695      0  1.252510849  1.56220886   1.13147070   1.1412327 -0.831341597
## X696      0  0.158871193  0.28325136   1.90489650  -0.9347280 -0.831341597
## X698      0  0.792852769  1.31981693   0.16468846   0.7260405 -0.005212173
## X699      0 -0.094205025 -1.09071695   0.16468846  -0.9347280 -0.831341597
## X700      0 -0.771172819  0.04803954  -0.99545024   1.1412327 -0.831341597
## X702      0 -1.218301524 -0.12219740  -1.18880668  -0.1043438 -0.831341597
## X703      0 -0.982753213  0.04803954  -1.18880668  -0.9347280 -0.831341597
## X704      0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X706      0  0.636103875  0.82146772   0.55140136   0.3108484  1.647046674
## X708      1 -0.321429192 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X709      0 -0.982753213  0.04803954  -1.18880668  -0.9347280 -0.831341597
## X711      0  1.706734262  2.47286768  -0.99545024   0.7260405 -0.005212173
## X712      0  0.831678296  1.16359252   1.32482715   0.7260405 -0.005212173
## X713      0  0.929168040  0.56629095   1.32482715   0.3108484 -0.005212173
## X714      0  1.675379106  2.11068236  -0.22202444   0.7260405  3.299305521
## X715      0  0.750468797  0.12893412   0.35804491   0.3108484 -0.005212173
## X717      0  0.291891037 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X718      0  1.522316745  1.69828720   1.13147070   0.7260405 -0.831341597
## X721      0  0.508214019  0.56629095  -0.02866799   0.7260405 -0.831341597
## X722      1  1.257699471  1.10948462   1.71154005  -0.1043438  1.647046674
## X723      0 -0.982753213 -0.03559810  -0.99545024   1.1412327 -0.005212173
## X724      1  0.026037466  0.12893412   1.32482715  -0.1043438 -0.005212173
## X726      0  0.989629709  0.12893412   1.13147070  -0.1043438 -0.831341597
## X728      1  0.635848282  0.63244961   1.32482715   0.3108484 -0.005212173
## X729      0  1.163654675 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X731      0 -1.218301524 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X732      1  0.098097256 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X733      0  0.237099891  0.12893412  -0.02866799   0.7260405 -0.831341597
## X734      0  0.378611406 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X735      0  1.052782459  1.65364219  -0.60873734  -0.9347280  0.820917251
## X736      0  0.558425111  0.99793817   0.16468846   2.3868091 -0.005212173
## X737      0  0.060245711 -0.21200528   1.32482715  -0.5195359  0.820917251
## X739      0  1.400858350  1.26871571   0.55140136   0.3108484  1.647046674
## X740      0  1.430265786  1.26871571   2.29160940   0.7260405  0.820917251
## X741      0  0.223329553  0.94039386  -0.99545024   3.2171934 -0.005212173
## X742      0  0.072232210  0.75995351  -0.99545024   2.8020012 -0.005212173
## X743      0  0.378611406 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X744      0 -0.321429192  0.04803954   0.93811425  -0.9347280 -0.831341597
## X746      0  0.907820092  1.21665476   0.35804491   2.3868091  0.820917251
## X747      0  0.072790642  0.99793817  -1.18880668   3.2171934 -0.831341597
## X749      0  1.889098307  2.07194628   1.32482715   2.3868091 -0.005212173
## X752      0  2.027107324  2.54041376  -0.22202444   1.9716169  3.299305521
## X753      0 -0.982753213  0.04803954  -1.18880668  -0.1043438 -0.831341597
## X754      0  1.135094949  1.46773946   1.13147070  -0.1043438 -0.831341597
## X755      0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X757      0  0.475066868 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X758      0  0.201609653  0.49840233   1.13147070  -0.1043438 -0.831341597
## X759      0  1.039771029  0.82146772  -0.80209379   1.9716169  0.820917251
## X760      1  0.098097256 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X761      0  1.834687162  2.22396656  -0.22202444   0.7260405  3.299305521
## X762      0 -0.165345469  0.12893412   1.13147070  -0.9347280 -0.831341597
## X763      0  0.710001130  0.28325136   1.13147070  -0.5195359 -0.831341597
## X764      0 -0.115366351  0.35700394   0.93811425  -0.9347280 -0.831341597
## X765      0  1.803708352  1.05428349   1.32482715   1.1412327 -0.005212173
## X767      0  1.677549637  1.95260717  -0.02866799   0.3108484  4.125434945
## X768      0 -0.152986644  0.04803954   1.71154005  -0.9347280 -0.831341597
## X770      0  1.190653352  1.21665476   1.13147070   0.7260405 -0.831341597
## X771      0  1.188302449  0.20728011   0.74475780  -0.5195359  2.473176098
## X772      0  1.163654675 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X773      0 -0.737607576  0.20728011  -0.99545024   1.5564248 -0.005212173
## X774      0  0.147051515  0.12893412  -1.18880668   1.1412327 -0.831341597
## X775      1  0.719516934  0.75995351   1.51818360   1.1412327  0.820917251
## X776      0  2.101817743  2.14892180   1.90489650   2.3868091  2.473176098
## X777      0  1.162199568  1.26871571  -0.99545024   4.0475776 -0.005212173
## X778      0  1.978779123  2.70310385  -0.80209379   1.5564248  0.820917251
## X779      0  0.148236508  0.35700394   1.90489650  -0.9347280 -0.831341597
## X780      0  0.865295430 -1.37754378  -0.80209379  -0.9347280  0.820917251
## X781      0  1.135296034  1.82822307  -0.60873734   3.6323855  1.647046674
## X782      0  0.303418106  0.20728011   1.51818360  -0.9347280  0.820917251
## X784      0  2.675894881  0.88159159   1.32482715   1.1412327 -0.005212173
## X786      0 -0.945628244  0.12893412  -1.18880668   1.1412327 -0.831341597
## X787      1  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X788      0  1.327364381  2.03269881  -0.41538089  -0.5195359  2.473176098
## X789      0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X791      0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X792      0  1.398910560  1.36999732   1.13147070   0.7260405 -0.831341597
## X794      0  0.496130384  1.26871571  -0.99545024   4.0475776 -0.005212173
## X798      0  0.735984417  0.82146772   3.06503519  -0.5195359 -0.831341597
## X799      0  1.378795179  0.35700394  -0.60873734  -0.1043438  1.647046674
## X800      0  1.108515489  1.82822307  -1.18880668  -0.9347280 -0.831341597
## X804      0  1.017548306  1.41929339   1.51818360   0.7260405  0.820917251
## X805      0  1.956176482  2.60651481  -0.41538089   1.5564248  2.473176098
## X807      0  1.580162693  1.10948462  -0.80209379   4.0475776  0.820917251
## X808      1  1.380821445  1.46773946   2.48496584   1.1412327  1.647046674
## X809      1  1.147725526  1.31981693   1.51818360   2.8020012  0.820917251
## X810      0  1.317009930  0.04803954  -0.80209379  -0.9347280  0.820917251
## X813      0  0.953373701  1.82822307  -0.99545024   5.7083462 -0.005212173
## X814      0  1.355892859  1.16359252   0.35804491   0.7260405  0.820917251
## X818      0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X819      0  1.136435150  0.56629095   1.51818360  -0.1043438  0.820917251
## X820      0  0.364681635  1.31981693  -1.18880668   4.0475776 -0.831341597
## X821      1  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X822      0  0.242973688  0.42867850   2.48496584  -0.9347280 -0.831341597
## X823      0  0.627652706  0.82146772   2.87167874  -0.9347280 -0.831341597
## X827      0  1.560421390  0.56629095  -0.99545024  -0.9347280 -0.005212173
## X828      0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X829      0  1.630165630  1.16359252   0.55140136   1.9716169  1.647046674
## X831      0  1.184902006  0.28325136   1.32482715  -0.1043438 -0.005212173
## X832      1  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X833      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X834      0  1.198080407  0.42867850   1.13147070  -0.1043438 -0.831341597
## X835      0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X836      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X839      0  0.382560531  0.63244961   2.09825295  -0.9347280 -0.831341597
## X840      0  0.495036672  0.69697444   2.87167874  -0.9347280 -0.831341597
## X841      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X842      0  0.284137074  0.63244961   1.90489650  -0.5195359 -0.831341597
## X843      0  1.184902006  0.28325136   1.32482715  -0.1043438 -0.005212173
## X846      1  0.513371322  0.75995351   2.29160940  -0.1043438 -0.831341597
## X848      0  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X849      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X851      0  1.737322938  2.63904482  -0.99545024  -0.9347280 -0.005212173
## X854      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X855      0  0.823597252  0.99793817   3.64510454  -0.9347280 -0.831341597
## X856      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X857      0  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X858      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X859      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X860      0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X862      1  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X863      0  1.637655670 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X864      0  0.831600743  1.16359252   2.87167874  -0.9347280 -0.831341597
## X865      0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X866      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X867      0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X869      1  1.552263693  1.46773946   3.25839164   0.7260405 -0.831341597
## X870      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X871      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X872      0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X873      0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X875      0  1.811520606 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X876      0  1.811520606 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X877      0  2.120939599 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1190     1 -0.115977627  0.04803954   1.13147070  -0.1043438 -0.831341597
## X1191     0 -0.603559640 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X1192     0  1.080766715  1.82822307  -0.80209379  -0.9347280  0.820917251
## X1193     0 -0.403319666  0.28325136  -0.02866799  -0.9347280 -0.831341597
## X1194     0  1.675379106  2.11068236  -0.22202444   0.7260405  3.299305521
## X1195     0  0.016880687 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1197     1 -0.610215946  0.04803954  -0.02866799   0.3108484 -0.831341597
## X1198     0  0.563194962 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1199     0  0.611250316  0.82146772  -0.02866799   1.1412327 -0.831341597
## X1200     0  0.769013180  0.42867850  -0.99545024   2.3868091 -0.005212173
## X1201     0  1.574200229  1.74225056   1.32482715   0.3108484 -0.005212173
## X1202     0  2.035474501  2.33314222  -0.02866799   1.5564248  4.125434945
## X1203     0 -0.982753213  0.04803954  -1.18880668  -0.9347280 -0.831341597
## X1204     0  1.270551909  0.99793817   1.90489650  -0.1043438  2.473176098
## X1205     0  0.936481465  0.49840233   1.32482715   0.3108484 -0.005212173
## X1206     0  0.476723028 -1.70965649  -0.80209379  -0.5195359  0.820917251
## X1207     0  0.952788440  1.21665476   1.13147070   0.3108484 -0.831341597
## X1208     0  1.747037108  2.22396656  -0.41538089  -0.1043438  2.473176098
## X1209     0  0.815641020 -1.09071695  -0.02866799  -0.9347280 -0.831341597
## X1210     0  1.623602913  2.43853015  -0.99545024   0.7260405 -0.005212173
## X1212     0  1.038647958  1.56220886   0.16468846  -0.9347280 -0.831341597
## X1213     0  0.952788440  1.21665476   1.13147070   0.7260405 -0.831341597
## X1215     0  1.834687162  2.26079827  -0.41538089  -0.1043438  2.473176098
## X1216     0  0.049093577 -0.03559810   1.71154005  -0.9347280 -0.831341597
## X1217     0  1.269483899  0.88159159   2.29160940   0.3108484 -0.831341597
## X1219     0  0.847285078  1.26871571   1.13147070   1.1412327 -0.831341597
## X1220     0  1.532919242  1.65364219   1.32482715   1.5564248 -0.005212173
## X1221     0 -0.009904078 -0.12219740  -1.18880668   0.7260405 -0.831341597
## X1222     0  0.900780208  1.41929339   1.32482715   0.3108484 -0.005212173
## X1226     0  1.701175131  1.82822307   1.13147070   0.7260405 -0.831341597
## X1228     0  0.907670555  0.56629095   0.16468846   1.1412327 -0.005212173
## X1229     0  1.882368345  2.43853015  -0.22202444   1.1412327  3.299305521
## X1230     1  0.448387506  0.35700394   1.51818360  -0.5195359  0.820917251
## X1231     1  0.026494249  0.42867850   1.13147070   0.3108484 -0.831341597
## X1233     0  1.175127549  1.95260717  -0.80209379  -0.5195359  0.820917251
## X1234     0 -0.294344540  0.12893412   0.93811425  -0.9347280 -0.831341597
## X1236     0  1.327058775  1.87027471  -0.41538089  -0.1043438  1.647046674
## X1237     0  1.214275611 -0.03559810   0.16468846   0.7260405 -0.005212173
## X1239     0  1.095780590  0.56629095  -0.80209379   1.1412327  0.820917251
## X1242     0  0.771569118 -1.70965649  -0.80209379  -0.5195359  0.820917251
## X1244     1  0.098097256 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1245     1 -0.215143211  0.49840233  -0.02866799   1.1412327 -0.831341597
## X1246     0  0.815953602  1.16359252   1.13147070  -0.9347280 -0.005212173
## X1247     1  1.387244764  1.78555525   1.51818360   1.9716169  0.820917251
## X1249     0  1.459034034  1.05428349   0.55140136   1.5564248  1.647046674
## X1250     0  1.413034907  0.12893412  -0.80209379  -0.9347280  0.820917251
## X1251     0  0.812356063 -0.96037479   0.35804491  -0.9347280 -0.831341597
## X1253     0  1.341677499  0.75995351   0.16468846   2.3868091 -0.005212173
## X1254     0  0.447081835 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1255     0  0.137547205  0.42867850   1.90489650  -0.9347280 -0.831341597
## X1256     0  0.304417449  0.82146772   0.93811425  -0.9347280 -0.831341597
## X1257     0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1259     0  1.560421390  0.56629095  -0.99545024  -0.9347280 -0.005212173
## X1260     0  0.745867382 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1262     1  1.616540792  1.51536781   1.51818360   1.9716169  0.820917251
## X1264     0  1.518473204  0.04803954  -0.80209379  -0.9347280  0.820917251
## X1265     0  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1266     0  1.410804929  0.42867850   1.13147070  -0.1043438 -0.831341597
## X1267     0  1.745837809  1.69828720   2.48496584   1.5564248 -0.005212173
## X1268     0  0.737283220  1.56220886  -0.99545024   4.8779619 -0.005212173
## X1273     1  1.007095938 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1274     0  0.620626671  1.60829128  -1.18880668   4.8779619 -0.831341597
## X1275     0  1.471104074  0.42867850  -0.80209379  -0.9347280  0.820917251
## X1276     0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X1277     0  1.239163633 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1278     0  0.382560531  0.63244961   2.09825295  -0.9347280 -0.831341597
## X1279     0  0.495036672  0.69697444   2.87167874  -0.9347280 -0.831341597
## X1281     0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1282     0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1283     0  0.703248097  0.88159159   3.45174809  -0.9347280 -0.831341597
## X1284     0  0.495036672  0.69697444   2.87167874  -0.9347280 -0.831341597
## X1285     0  1.447932035 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1288     0  1.971974745 -0.03559810   1.13147070  -0.5195359 -0.831341597
## X1299     1  0.703000619  0.69697444   1.51818360  -0.1043438  0.820917251
## X1301     0  0.981923863  1.69828720  -0.80209379  -0.9347280  0.820917251
## X1302     0  0.998810596 -0.50369472  -1.18880668  -0.9347280 -0.831341597
## X1307     0  1.387897880  0.42867850   0.16468846   1.5564248 -0.005212173
## X1309     0  1.410804929  0.42867850   1.13147070  -0.1043438 -0.831341597
## X1310     0  1.712430972  0.20728011  -0.99545024  -0.9347280 -0.005212173
## X447      0  0.427774521 -0.40240913   0.16468846   0.3108484 -0.005212173
## X448      0  1.975155875  1.87027471   0.93811425  -0.1043438  3.299305521
## X451      0 -1.960986946 -0.96037479  -0.99545024  -0.5195359 -0.005212173
## X452      0 -0.455773295 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X453      0 -0.447297107 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X454      0  1.024063318  0.82146772   1.51818360   0.7260405  0.820917251
## X455      0  0.366815837  0.12893412   0.16468846   0.3108484 -0.005212173
## X456      1  0.392161232  0.63244961   0.35804491  -0.1043438  0.820917251
## X458      0  0.922422855  0.63244961   1.51818360   0.7260405  0.820917251
## X459      0 -0.489295914  0.28325136  -0.99545024   1.5564248 -0.005212173
## X460      0 -1.632068261 -0.72058540  -0.99545024  -0.9347280 -0.005212173
## X461      0 -0.289953121 -0.83728034   0.16468846  -0.5195359 -0.005212173
## X462      0 -0.983309595 -0.83728034  -0.22202444  -0.5195359 -0.831341597
## X463      1  0.808360205  1.16359252   1.32482715   1.1412327 -0.005212173
## X464      0  0.243179485 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X465      0  0.736065616  0.94039386   1.13147070   0.7260405 -0.831341597
## X466      0  0.630729830 -0.12219740   0.35804491  -0.1043438  0.820917251
## X468      0 -0.254497849  0.28325136  -0.99545024   1.9716169 -0.005212173
## X471      0 -0.390166117 -0.12219740   0.16468846  -0.1043438 -0.005212173
## X472      0 -1.089862985 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X473      0 -1.960986946 -0.83728034  -1.18880668  -0.9347280 -0.831341597
## X476      0  0.071003132  0.12893412   1.13147070  -0.1043438 -0.005212173
## X477      0  0.601744921  0.42867850   0.55140136  -0.5195359  1.647046674
## X478      0 -1.632068261 -0.83728034  -0.80209379   0.3108484  0.820917251
## X479      0 -1.960986946 -0.96037479  -0.99545024  -0.1043438 -0.005212173
## X480      0  0.002838576  0.04803954   1.90489650  -0.9347280 -0.831341597
## X482      0 -0.507220812 -0.72058540  -1.18880668  -0.5195359 -0.831341597
## X483      0 -0.725281754 -1.09071695  -1.18880668  -0.5195359 -0.831341597
## X484      0  0.048980624  0.28325136   1.13147070  -0.5195359 -0.831341597
## X486      0 -0.267476312  0.35700394  -0.99545024   1.9716169 -0.005212173
## X487      0  0.808360205  1.21665476   0.16468846   2.8020012 -0.005212173
## X488      0  0.158871193  0.35700394   0.16468846   1.1412327 -0.005212173
## X489      0  0.667472628 -0.83728034   0.16468846  -0.5195359 -0.005212173
## X490      0  0.948173754  1.16359252   0.16468846   1.1412327 -0.005212173
## X491      0 -1.089862985 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X492      0  0.566721151  0.75995351  -0.41538089  -0.5195359  2.473176098
## X493      0 -0.267476312  0.35700394  -0.99545024   1.9716169 -0.005212173
## X494      0  0.611681349 -0.72058540   0.16468846  -0.5195359 -0.005212173
## X495      0  1.226628531  1.65364219   1.13147070   0.7260405 -0.005212173
## X496      0 -0.190792410 -0.72058540   0.35804491  -0.9347280  0.820917251
## X497      0 -0.008626296  0.12893412   1.90489650  -0.9347280 -0.831341597
## X498      0 -0.289288562 -0.40240913  -0.02866799  -0.9347280 -0.831341597
## X499      0 -1.098274791 -0.50369472  -0.02866799  -0.9347280 -0.831341597
## X501      0  0.774201646 -0.03559810   0.35804491  -0.5195359  0.820917251
## X502      0 -1.098274791 -0.50369472  -0.02866799  -0.9347280 -0.831341597
## X503      0  1.239546173  1.82822307  -0.02866799  -0.5195359 -0.831341597
## X505      0 -0.123326972 -0.40240913   0.16468846  -0.5195359 -0.005212173
## X506      0  0.800109202  0.56629095   1.51818360   0.3108484  0.820917251
## X507      0  0.995515874  1.10948462   1.13147070   1.1412327 -0.831341597
## X508      0  1.827201901  0.04803954   0.16468846   0.3108484 -0.005212173
## X509      0  1.881712881  1.99292450   0.93811425  -0.1043438  3.299305521
## X510      1  0.433604324  0.04803954   0.55140136  -0.5195359  1.647046674
## X513      0 -0.364519110 -0.72058540  -1.18880668  -0.5195359 -0.831341597
## X514      0  0.823597252  0.63244961   1.32482715   0.3108484  0.820917251
## X515      0 -0.242509175 -0.21200528   0.93811425  -0.9347280 -0.831341597
## X516      0 -0.404021657 -0.03559810   0.16468846   0.3108484 -0.005212173
## X518      0  0.915283282  1.16359252   0.35804491   0.7260405  0.820917251
## X521      0  1.134223355  0.88159159   1.51818360   1.1412327  0.820917251
## X523      1 -0.043759055  0.12893412   0.35804491   0.7260405  0.820917251
## X524      0  0.399810034 -0.12219740   0.16468846  -0.1043438 -0.005212173
## X525      0  0.686767950  0.94039386  -0.41538089  -0.1043438  2.473176098
## X526      0 -0.459952245  0.42867850  -1.18880668   1.9716169 -0.831341597
## X530      1 -0.389468783  0.20728011  -0.02866799   0.3108484 -0.831341597
## X531      0  0.430503397  0.82146772   0.16468846   0.7260405 -0.005212173
## X532      0  0.486632405  0.63244961  -0.02866799   1.1412327 -0.831341597
## X533      0  1.033797758  0.04803954   0.93811425  -0.5195359  3.299305521
## X534      1  0.736309194  0.69697444   0.55140136   1.1412327  1.647046674
## X535      0 -0.421224013 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X536      0  1.024487502  1.46773946   1.13147070   0.3108484 -0.005212173
## X538      0  1.079045894  0.75995351   1.51818360  -0.5195359  0.820917251
## X539      0  1.024487502  1.46773946   1.13147070   0.3108484 -0.005212173
## X542      0  1.445796891  1.91172984  -0.41538089  -0.1043438  2.473176098
## X543      0 -0.832540404 -0.40240913  -1.18880668   0.3108484 -0.831341597
## X544      0  1.881712881  1.99292450   0.93811425  -0.1043438  3.299305521
## X545      0  0.061817968  1.05428349  -1.18880668   2.8020012 -0.831341597
## X546      0 -0.107436062 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X548      0 -0.404021657 -0.03559810   0.16468846  -0.1043438 -0.005212173
## X549      0  0.436794393 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X551      0  1.271995992 -2.92387959  -1.18880668  -0.9347280 -0.831341597
## X552      0  1.731140385  1.91172984   1.32482715   0.7260405 -0.005212173
## X553      1  0.558159799  0.49840233   0.35804491  -0.1043438  0.820917251
## X554      0  0.605379378  0.42867850   0.16468846   0.7260405 -0.831341597
## X556      1  0.362642398  0.28325136   1.32482715   0.3108484 -0.005212173
## X557      0  1.062383808  1.21665476   0.16468846   1.9716169 -0.005212173
## X558      0 -0.152364404 -0.72058540   0.74475780  -0.9347280 -0.831341597
## X559      0 -1.901900752 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X560      0 -0.839972199 -0.21200528  -0.02866799  -0.9347280 -0.831341597
## X561      0  0.128651681 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X562      0 -0.839972199 -0.21200528  -0.02866799  -0.5195359 -0.831341597
## X563      1  0.343414497  0.42867850   1.32482715   0.3108484 -0.005212173
## X565      0 -1.581515202 -0.60958681  -0.99545024   0.3108484 -0.005212173
## X566      0 -0.218737027 -0.96037479  -0.02866799  -0.9347280 -0.831341597
## X567      0  1.133955099  0.69697444   0.55140136   0.3108484  1.647046674
## X568      0  0.774201646 -0.40240913   0.16468846  -0.5195359 -0.005212173
## X569      0  0.842661605  0.99793817   0.16468846   1.1412327 -0.005212173
## X571      0  0.418526237 -0.30530231   0.16468846  -0.1043438 -0.005212173
## X572      0  0.687183627  1.10948462   0.16468846   2.8020012 -0.005212173
## X574      0 -1.303931995 -0.40240913  -0.99545024  -0.9347280 -0.005212173
## X576      0  0.922422855  0.63244961   1.51818360   0.7260405  0.820917251
## X577      0  0.232450944  0.28325136   1.13147070  -0.1043438 -0.005212173
## X579      1  0.232450944  0.28325136   1.13147070  -0.1043438 -0.005212173
## X580      0  1.609081003 -0.72058540   0.16468846  -0.5195359 -0.005212173
## X582      0 -0.293545411  0.49840233  -0.99545024   1.9716169 -0.005212173
## X583      0 -0.839972199 -0.21200528  -0.02866799  -0.9347280 -0.831341597
## X584      0  1.289745203  1.74225056   0.35804491  -0.9347280  0.820917251
## X586      0  1.058701570  0.75995351   0.55140136   1.1412327  1.647046674
## X587      0 -0.008626296  0.12893412   1.90489650  -0.9347280 -0.831341597
## X588      0  0.619596479  0.75995351  -0.60873734   0.7260405  1.647046674
## X589      0  1.706734262  2.47286768  -0.99545024   0.7260405 -0.005212173
## X591      0  1.226628531  1.65364219   1.13147070   0.7260405 -0.005212173
## X592      1 -0.839972199 -0.21200528  -0.02866799  -0.1043438 -0.831341597
## X593      0  1.072631922  0.94039386   2.09825295   0.7260405 -0.831341597
## X594      0 -0.267476312  0.35700394  -0.99545024   1.9716169 -0.005212173
## X595      0  0.453788004  0.12893412  -0.80209379   1.1412327  0.820917251
## X596      0  0.847208104  0.88159159   0.55140136   1.1412327  1.647046674
## X597      0  0.915506765  1.31981693   1.32482715   0.3108484 -0.005212173
## X598      0  0.049545329  0.63244961  -0.80209379   2.8020012  0.820917251
## X599      0 -0.839972199 -0.21200528  -0.02866799  -0.9347280 -0.831341597
## X600      0  0.966789467  0.99793817   0.35804491   0.7260405  0.820917251
## X603      0 -0.090698960  0.56629095  -0.99545024   2.3868091 -0.005212173
## X604      0  0.720253413  0.82146772  -0.41538089   1.1412327  2.473176098
## X605      0  1.066475255  1.56220886  -0.41538089  -0.9347280  2.473176098
## X606      1 -0.020037904  0.28325136   0.16468846   1.1412327 -0.005212173
## X608      0  0.563194962 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X609      0  0.686601657  0.35700394   1.51818360   0.3108484  0.820917251
## X611      0 -1.260676413 -0.21200528  -1.18880668  -0.9347280 -0.831341597
## X612      0  0.676599640  0.12893412   0.16468846  -0.1043438 -0.005212173
## X613      0 -0.105975307 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X614      0 -0.732339628 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X616      0 -1.532160955 -0.40240913  -1.18880668  -0.5195359 -0.831341597
## X617      0  0.854891424  1.21665476   1.13147070   1.1412327 -0.005212173
## X619      1  1.771027243  1.26871571   1.90489650   0.3108484  2.473176098
## X620      0  0.016880687 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X621      1  0.353099452  0.35700394   1.32482715  -0.1043438 -0.005212173
## X622      0 -0.706360421 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X623      0  1.205416250  0.69697444   1.51818360  -0.5195359  0.820917251
## X625      0  1.019887558  0.94039386   1.13147070   1.1412327 -0.005212173
## X628      0  1.622913686  2.03269881  -0.41538089  -0.1043438  2.473176098
## X629      0  1.623602913  2.43853015  -0.99545024   0.7260405 -0.005212173
## X630      0  0.816422389  1.31981693   1.13147070   0.7260405 -0.831341597
## X631      0 -1.020552429 -0.21200528  -0.99545024   0.7260405 -0.831341597
## X632      0  0.570417230 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X633      0  0.676516088  0.12893412   0.16468846   1.1412327 -0.005212173
## X635      0  1.141453232  1.26871571   0.55140136   0.3108484  1.647046674
## X636      0  1.633333725  1.95260717  -0.41538089  -0.1043438  2.473176098
## X637      0  0.967298146  1.60829128  -0.60873734  -0.9347280  1.647046674
## X638      1  0.719516934  0.75995351   1.51818360   0.7260405  0.820917251
## X639      0  0.686601657  0.35700394   1.51818360   0.3108484  0.820917251
## X641      1  1.226307769  1.41929339   1.51818360   1.1412327  0.820917251
## X648      0  1.412917599  1.05428349   1.71154005   0.3108484  1.647046674
## X650      0  0.752403196  0.28325136   1.13147070   0.3108484  0.820917251
## X651      1  1.121037974  1.36999732   1.51818360   1.1412327  0.820917251
## X653      0  1.623602913  2.43853015  -0.99545024   0.7260405 -0.005212173
## X654      0  1.017548306  1.51536781   0.16468846   3.6323855 -0.005212173
## X655      1 -0.610215946  0.04803954  -0.02866799  -0.1043438 -0.831341597
## X656      0 -0.211043577 -0.40240913   0.93811425  -0.9347280 -0.831341597
## X657      0  0.430503397  0.82146772   0.16468846   1.9716169 -0.005212173
## X1082     0 -1.089862985 -0.72058540  -1.18880668  -0.5195359 -0.831341597
## X1083     1  0.201609653  0.49840233   1.13147070   0.3108484 -0.831341597
## X1084     0 -0.293545411  0.56629095  -1.18880668  -0.5195359 -0.831341597
## X1086     1 -0.284112271 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1088     0  0.366912794  0.12893412   0.16468846  -0.1043438 -0.005212173
## X1089     0  0.094121874  0.56629095   0.74475780   0.3108484 -0.831341597
## X1090     0  0.014240641  0.04803954   0.16468846   0.3108484 -0.005212173
## X1091     0  0.159406860  0.63244961  -0.02866799   1.1412327 -0.831341597
## X1092     0 -0.489295914  0.28325136  -0.99545024   1.5564248 -0.005212173
## X1093     0  0.188446950 -0.60958681  -0.80209379  -0.9347280  0.820917251
## X1094     0 -0.580658068 -0.50369472   0.16468846  -0.5195359 -0.005212173
## X1095     0 -0.419242736 -0.60958681   0.35804491  -0.9347280  0.820917251
## X1097     0 -1.089862985 -0.72058540  -1.18880668  -0.1043438 -0.831341597
## X1098     0  0.784301940  1.05428349  -0.41538089  -0.1043438  2.473176098
## X1101     0  1.559218908  0.42867850   0.74475780  -0.5195359  2.473176098
## X1103     0  1.065435819  0.94039386   0.74475780  -0.9347280  2.473176098
## X1104     0  0.678353466  0.42867850   1.51818360   0.3108484  0.820917251
## X1105     0 -0.190792410 -0.72058540   0.35804491  -0.9347280  0.820917251
## X1106     0 -0.688575293  0.28325136  -1.18880668   1.5564248 -0.831341597
## X1108     0 -1.098274791 -0.50369472  -0.02866799  -0.9347280 -0.831341597
## X1110     1  0.260904394 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1112     0  0.800109202  0.56629095   1.51818360   0.3108484  0.820917251
## X1113     0  0.495127837  0.75995351   1.13147070  -0.1043438 -0.831341597
## X1115     1  0.343414497  0.42867850   1.32482715   0.3108484 -0.005212173
## X1116     0  0.184958063  0.20728011   0.16468846  -0.1043438 -0.005212173
## X1117     0 -0.362866384 -0.30530231   0.16468846  -0.1043438 -0.005212173
## X1119     0  0.729152370 -0.40240913   0.16468846   0.3108484 -0.005212173
## X1120     0  1.457427050  1.99292450  -0.60873734  -0.1043438  1.647046674
## X1121     0  1.086675495  1.16359252   0.55140136   0.3108484  1.647046674
## X1122     0  1.525264217  2.03269881  -0.41538089  -0.1043438  2.473176098
## X1124     0 -0.092028152 -0.12219740   0.55140136  -0.9347280  1.647046674
## X1125     0  0.083816857 -2.10721958  -1.18880668  -0.9347280 -0.831341597
## X1126     0 -0.421224013 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1127     0 -0.875243942 -0.30530231  -0.02866799  -0.9347280 -0.831341597
## X1128     0  0.361087352 -0.40240913   0.16468846  -0.5195359 -0.005212173
## X1129     0 -0.732339628 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X1130     0  0.594543822 -0.50369472   0.16468846  -0.1043438 -0.005212173
## X1131     0 -1.581515202 -0.50369472  -1.18880668  -0.9347280 -0.831341597
## X1133     1  0.813999190  0.04803954   0.55140136  -0.5195359  1.647046674
## X1135     0 -0.489295914  0.28325136  -0.99545024   1.9716169 -0.005212173
## X1136     0 -0.105975307 -0.83728034  -0.02866799  -0.9347280 -0.831341597
## X1138     0  2.722777775  3.22789945   0.16468846   0.3108484  4.951564368
## X1139     0  1.445796891  1.91172984  -0.41538089  -0.1043438  2.473176098
## X1141     0 -1.581515202 -0.60958681  -0.99545024  -0.1043438 -0.005212173
## X1142     0 -0.421224013 -1.22934392  -0.02866799  -0.9347280 -0.831341597
## X1143     1  1.213307444  1.31981693   1.71154005   1.1412327  1.647046674
## X1144     0  0.959436086  1.31981693   0.16468846  -0.9347280 -0.005212173
## X1145     0  0.991282387  0.56629095   0.55140136  -0.1043438  1.647046674
## X1146     0 -0.078774283  0.49840233  -0.99545024   2.3868091 -0.005212173
## X1147     0  0.254569455  0.69697444  -0.99545024   1.9716169 -0.005212173
## X1149     0  0.357292051  0.20728011   0.16468846   0.3108484 -0.005212173
## X1150     0 -0.090698960  0.56629095  -0.99545024   2.3868091 -0.005212173
## X1151     0  0.373978500  0.82146772  -0.99545024   0.7260405 -0.005212173
## X1152     0  0.959436086  1.21665476   0.55140136   0.3108484  1.647046674
## X1153     0  2.401813942 -1.53694587  -0.22202444  -0.9347280 -0.831341597
## X1156     0  0.072232210  0.75995351  -0.99545024   2.8020012 -0.005212173
## X1158     0  0.980480348  0.82146772   1.32482715  -0.5195359 -0.005212173
## X1159     0  0.381694291  0.20728011   1.13147070  -0.5195359  0.820917251
## X1160     0  1.705409579  1.56220886   2.09825295   1.1412327  3.299305521
##         NumCarbon NumNitrogen  NumOxygen  NumSulfer NumChlorine NumHalogen
## X661   0.85821946   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X662   1.80408084   1.8438701 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X663   0.70131917  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X665   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X668  -0.01199386   3.5299475 -0.9103405 -0.3360145   0.3168966  0.2049221
## X669   0.18177643   0.1577927 -0.3320280  1.7123815   1.0310404  0.8839497
## X670   1.29203392   2.6869088 -0.9103405 -0.3360145   1.0310404  0.8839497
## X671   0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X672   1.92274051  -0.6852460  1.4029096 -0.3360145  -0.3972472  0.2049221
## X673   0.85821946   1.0008314 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X674   0.85821946  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X676   1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X677   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X678   0.18177643  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X679   0.36423857  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X682   0.85821946  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X683   0.70131917   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X684   1.80408084   1.8438701 -0.3320280  1.7123815   0.3168966  0.2049221
## X685   1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X686   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X688   1.00853037  -0.6852460  0.8245970 -0.3360145   0.3168966  0.2049221
## X689   1.55615914   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X690   1.29203392   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X691   0.18177643   2.6869088  0.2462845 -0.3360145   3.8876154  3.6000599
## X692   0.85821946   0.1577927  1.4029096  5.8091734  -0.3972472 -0.4741055
## X693   0.85821946   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X695   1.55615914   1.0008314 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X696   0.70131917   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X698   1.15294194   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X699  -0.44251753   0.1577927 -0.9103405 -0.3360145   1.0310404  0.8839497
## X700  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X702  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X703  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X704   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X706   1.00853037  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X708   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X709  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X711   2.15069776  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X712   1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X713   0.85821946   0.1577927  0.2462845 -0.3360145  -0.3972472  1.5629772
## X714   2.03820634  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X715   0.36423857   0.1577927  0.2462845 -0.3360145   1.0310404  0.8839497
## X717   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X718   1.68198027   1.8438701 -0.9103405  1.7123815   0.3168966  0.2049221
## X721  -0.01199386   3.5299475 -0.9103405 -0.3360145   0.3168966  0.2049221
## X722   1.55615914   0.1577927 -0.3320280 -0.3360145  -0.3972472  1.5629772
## X723  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X724   0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X726   0.53699786  -0.6852460  0.2462845 -0.3360145   1.7451841  1.5629772
## X728   1.00853037  -0.6852460  0.2462845 -0.3360145  -0.3972472  0.2049221
## X729  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  1.5629772
## X731  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X732   0.53699786  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X733  -0.44251753   3.5299475 -0.9103405 -0.3360145   0.3168966  0.2049221
## X734  -0.68595798  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X735   1.68198027  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X736   0.85821946   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X737   0.36423857   0.1577927 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X739   1.29203392  -0.6852460  2.5595346 -0.3360145   0.3168966  0.2049221
## X740   1.55615914   0.1577927  1.4029096 -0.3360145   0.3168966  0.2049221
## X741   0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X742   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X743  -0.68595798  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X744   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X746   1.15294194  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X747   0.53699786  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X749   2.03820634   1.8438701  0.2462845  1.7123815   0.3168966  0.2049221
## X752   2.47218708  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X753  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X754   1.55615914   1.0008314 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X755   0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X757  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X758   0.85821946  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X759   0.18177643   1.0008314 -0.9103405  7.8575693  -0.3972472 -0.4741055
## X760   0.53699786  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X761   2.15069776  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X762   0.70131917  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X763   0.53699786   1.0008314 -0.9103405 -0.3360145   1.0310404  0.8839497
## X764   0.70131917  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X765   1.29203392  -0.6852460  0.8245970 -0.3360145  -0.3972472  0.8839497
## X767   2.03820634  -0.6852460  1.4029096 -0.3360145   0.3168966  0.2049221
## X768   0.53699786   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X770   1.29203392   1.0008314 -0.9103405  1.7123815   0.3168966  0.2049221
## X771   0.53699786   0.1577927  0.8245970 -0.3360145   1.7451841  1.5629772
## X772  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  1.5629772
## X773  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X774  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X775   1.15294194  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X776   2.03820634   1.8438701  1.9812221  1.7123815   0.3168966  0.2049221
## X777   0.53699786  -0.6852460 -0.3320280  5.8091734  -0.3972472 -0.4741055
## X778   2.36752103   0.1577927  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X779   0.85821946   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X780  -0.95516548  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X781   1.55615914  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X782   0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X784   1.00853037   0.1577927  1.4029096 -0.3360145  -0.3972472  1.5629772
## X786  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X787   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X788   2.03820634  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X789   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X791   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X792   1.42629884   1.0008314 -0.9103405  1.7123815  -0.3972472  1.5629772
## X794   0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X798   1.42629884   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X799   0.18177643   0.1577927  0.2462845  1.7123815   2.4593279  2.2420048
## X800   1.55615914  -0.6852460 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X804   1.55615914   1.8438701 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X805   2.47218708  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X807  -0.01199386  -0.6852460  1.4029096  7.8575693  -0.3972472 -0.4741055
## X808   1.80408084   0.1577927  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X809   1.55615914  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X810   0.18177643  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X813   1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X814   1.00853037   1.0008314  0.8245970 -0.3360145   1.0310404  0.8839497
## X818   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X819   0.85821946   1.0008314  0.2462845 -0.3360145   0.3168966  1.5629772
## X820   0.85821946  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X821   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X822   1.15294194  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X823   1.42629884   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X827   0.53699786  -0.6852460 -0.3320280 -0.3360145   3.8876154  3.6000599
## X828   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X829   0.85821946   0.1577927  1.4029096  3.7607774   0.3168966  0.2049221
## X831   0.85821946  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X832   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X833   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X834   0.85821946  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X835   0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X836   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X839   1.29203392  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X840   1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X841   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X842   1.15294194  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X843   0.85821946  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X846   1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X848   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X849   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X851   2.47218708  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X854   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X855   1.68198027   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X856   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X857   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X858   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X859   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X860   0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X862   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X863   0.53699786  -0.6852460 -0.9103405 -0.3360145   4.6017592  4.2790875
## X864   1.80408084  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X865   1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X866   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X867   1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X869   1.92274051   1.8438701 -0.9103405 -0.3360145  -0.3972472  1.5629772
## X870   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X871   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X872   0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X873   1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X875   0.53699786  -0.6852460 -0.9103405 -0.3360145   5.3159030  4.9581151
## X876   0.53699786  -0.6852460 -0.9103405 -0.3360145   5.3159030  4.9581151
## X877   0.53699786  -0.6852460 -0.9103405 -0.3360145   6.7441905  6.3161702
## X1190  0.53699786  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1191 -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1192  1.68198027  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1193  0.36423857  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1194  2.03820634  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1195 -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X1197  0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1198 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.8839497
## X1199  0.18177643   3.5299475 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1200 -0.44251753  -0.6852460  0.2462845  5.8091734  -0.3972472 -0.4741055
## X1201  1.80408084   0.1577927  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1202  2.26041072  -0.6852460  3.7161597 -0.3360145  -0.3972472  0.2049221
## X1203 -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1204  1.00853037   1.8438701  1.4029096  1.7123815  -0.3972472 -0.4741055
## X1205  0.70131917   1.0008314  0.2462845 -0.3360145  -0.3972472  1.5629772
## X1206 -1.25901822  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1207  1.29203392   1.0008314 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1208  2.15069776  -0.6852460  1.4029096  1.7123815  -0.3972472 -0.4741055
## X1209 -0.68595798  -0.6852460 -0.3320280 -0.3360145   3.1734717  2.9210324
## X1210  2.15069776  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X1212  1.68198027  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1213  1.29203392   1.0008314 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1215  2.15069776  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X1216  0.53699786  -0.6852460 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1217  1.29203392   1.0008314 -0.3320280 -0.3360145   1.0310404  0.8839497
## X1219  1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1220  1.80408084   0.1577927  0.2462845 -0.3360145   0.3168966  0.8839497
## X1221 -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1222  1.68198027   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1226  1.80408084   1.8438701 -0.9103405  1.7123815  -0.3972472  1.5629772
## X1228  0.18177643  -0.6852460  0.8245970  3.7607774  -0.3972472 -0.4741055
## X1229  2.36752103  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1230  0.85821946   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1231  0.85821946  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1233  1.80408084  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1234  0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1236  1.92274051  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1237 -0.44251753   0.1577927  0.8245970  1.7123815   1.7451841  1.5629772
## X1239  0.18177643   0.1577927 -0.3320280  1.7123815   1.7451841  1.5629772
## X1242 -1.25901822  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1244  0.53699786  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1245  0.53699786  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1246  1.42629884  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1247  2.03820634  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1249  0.85821946  -0.6852460  1.9812221  1.7123815   0.3168966  0.2049221
## X1250  0.18177643  -0.6852460 -0.3320280 -0.3360145   3.8876154  3.6000599
## X1251 -0.21915966   1.0008314 -0.9103405 -0.3360145   2.4593279  2.2420048
## X1253  0.36423857  -0.6852460  0.2462845  5.8091734   0.3168966  0.2049221
## X1254  0.53699786  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X1255  1.00853037  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1256  1.15294194  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1257  0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X1259  0.53699786  -0.6852460 -0.3320280 -0.3360145   3.8876154  3.6000599
## X1260  0.53699786  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X1262  1.80408084  -0.6852460  0.8245970 -0.3360145   1.0310404  0.8839497
## X1264  0.18177643  -0.6852460 -0.9103405 -0.3360145   4.6017592  4.2790875
## X1265  0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X1266  0.85821946  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1267  1.80408084  -0.6852460  3.1378471 -0.3360145  -0.3972472 -0.4741055
## X1268  1.15294194  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1273  0.53699786  -0.6852460 -0.9103405 -0.3360145   2.4593279  2.2420048
## X1274  1.15294194  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1275  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1276  1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1277  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1278  1.29203392  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1279  1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1281  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1282  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1283  1.68198027  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1284  1.42629884  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1285  0.53699786  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1288  0.53699786  -0.6852460 -0.9103405 -0.3360145   6.0300467  5.6371426
## X1299  1.00853037   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1301  1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1302 -0.68595798  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X1307 -0.01199386   0.1577927  0.8245970  1.7123815   1.7451841  1.5629772
## X1309  0.85821946  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X1310  0.18177643  -0.6852460 -0.9103405 -0.3360145   5.3159030  4.9581151
## X447  -0.21915966  -0.6852460  0.8245970 -0.3360145   1.0310404  0.8839497
## X448   1.80408084   1.0008314  3.7161597 -0.3360145   0.3168966  0.2049221
## X451  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X452  -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.8839497
## X453  -0.01199386   0.1577927 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X454   0.53699786   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X455   0.18177643  -0.6852460  0.8245970 -0.3360145   0.3168966  0.2049221
## X456   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X458   0.36423857   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X459  -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X460  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X461  -0.44251753  -0.6852460  0.2462845 -0.3360145   0.3168966  0.2049221
## X462  -0.68595798  -0.6852460 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X463   1.29203392   1.8438701 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X464  -2.04708364  -0.6852460 -0.9103405 -0.3360145   3.1734717  2.9210324
## X465   1.00853037   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X466  -0.01199386   0.1577927  0.8245970  1.7123815   0.3168966  0.2049221
## X468  -0.21915966   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X471  -0.01199386   0.1577927 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X472  -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X473  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X476   0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X477   0.18177643   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X478  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X479  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X480   0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X482  -0.95516548  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X483  -1.25901822  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X484   0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X486  -0.01199386  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X487   1.00853037   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X488   0.36423857  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X489  -0.44251753  -0.6852460  0.2462845 -0.3360145  -0.3972472  0.2049221
## X490   1.00853037   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X491  -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X492   0.53699786   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X493  -0.01199386  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X494  -0.68595798   1.0008314  0.2462845 -0.3360145   1.7451841  1.5629772
## X495   1.68198027   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X496  -0.68595798   2.6869088 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X497   0.70131917   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X498  -0.21915966  -0.6852460 -0.3320280 -0.3360145   0.3168966  0.2049221
## X499  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X501  -0.01199386   1.0008314  0.8245970 -0.3360145   1.0310404  0.8839497
## X502  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X503   1.68198027   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X505  -0.21915966   0.1577927 -0.3320280 -0.3360145   0.3168966  0.2049221
## X506   0.36423857   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X507   0.85821946   2.6869088  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X508  -0.01199386   0.1577927  0.8245970 -0.3360145  -0.3972472  0.8839497
## X509   1.92274051   1.0008314  3.7161597 -0.3360145  -0.3972472 -0.4741055
## X510   0.18177643   1.8438701 -0.3320280 -0.3360145   0.3168966  0.2049221
## X513  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X514   0.36423857   1.8438701  0.8245970  1.7123815  -0.3972472 -0.4741055
## X515   0.18177643  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X516   0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X518   0.85821946   1.8438701  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X521   0.53699786   2.6869088  1.4029096  1.7123815  -0.3972472 -0.4741055
## X523   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X524  -0.01199386   0.1577927 -0.3320280 -0.3360145   1.0310404  0.8839497
## X525   0.70131917   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X526  -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X530   0.18177643   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X531   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X532  -0.01199386   3.5299475 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X533  -0.44251753   1.8438701  1.4029096  3.7607774   0.3168966  0.2049221
## X534   0.36423857   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X535  -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X536   1.55615914   1.0008314 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X538   1.00853037  -0.6852460  3.1378471 -0.3360145  -0.3972472 -0.4741055
## X539   1.55615914   1.0008314 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X542   1.80408084  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X543  -0.68595798  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X544   1.92274051   1.0008314  3.7161597 -0.3360145  -0.3972472 -0.4741055
## X545   0.53699786   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X546  -2.04708364  -0.6852460 -0.9103405 -0.3360145   1.0310404  3.6000599
## X548   0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X549  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.8839497
## X551  -2.64432555  -0.6852460 -0.9103405 -0.3360145  -0.3972472  2.2420048
## X552   1.92274051   0.1577927  3.1378471 -0.3360145  -0.3972472 -0.4741055
## X553   0.53699786   0.1577927  0.2462845  1.7123815  -0.3972472 -0.4741055
## X554  -0.01199386   4.3729862 -0.9103405 -0.3360145   0.3168966  0.2049221
## X556   0.70131917  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X557   0.85821946   1.8438701  0.2462845 -0.3360145   0.3168966  0.2049221
## X558  -0.44251753   0.1577927 -0.9103405  3.7607774  -0.3972472 -0.4741055
## X559  -0.95516548  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X560  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X561  -0.68595798  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.8839497
## X562  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X563   0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X565  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X566  -0.68595798   0.1577927 -0.9103405 -0.3360145   1.0310404  0.8839497
## X567   0.36423857   1.0008314  0.8245970  1.7123815  -0.3972472  1.5629772
## X568  -0.21915966   0.1577927 -0.3320280 -0.3360145  -0.3972472  0.2049221
## X569   0.85821946   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X571  -0.21915966   0.1577927  0.2462845 -0.3360145   1.0310404  0.8839497
## X572   0.85821946   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X574  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X576   0.36423857   2.6869088  0.8245970  1.7123815  -0.3972472 -0.4741055
## X577   0.53699786   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X579   0.53699786   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X580  -0.44251753  -0.6852460  0.8245970 -0.3360145  -0.3972472  0.8839497
## X582   0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X583  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X584   1.80408084   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X586   0.53699786   0.1577927  1.4029096  1.7123815  -0.3972472 -0.4741055
## X587   0.70131917   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X588   0.36423857   1.0008314  0.2462845  1.7123815  -0.3972472 -0.4741055
## X589   2.15069776  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X591   1.68198027   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X592  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X593   1.15294194   1.8438701 -0.3320280 -0.3360145  -0.3972472  0.8839497
## X594  -0.01199386  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X595  -0.21915966   0.1577927 -0.9103405  3.7607774   0.3168966  0.2049221
## X596   0.53699786   1.0008314  0.8245970  1.7123815  -0.3972472 -0.4741055
## X597   1.55615914   0.1577927 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X598   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X599  -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X600   0.70131917  -0.6852460  1.9812221  1.7123815  -0.3972472 -0.4741055
## X603   0.18177643  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X604   0.53699786   1.0008314  0.2462845  1.7123815  -0.3972472 -0.4741055
## X605   1.55615914  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X606   0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X608  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.8839497
## X609   0.18177643   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X611  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X612  -0.01199386   1.0008314  0.2462845 -0.3360145   1.0310404  0.8839497
## X613  -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X614  -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X616  -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X617   1.29203392   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X619   1.00853037   1.8438701  1.4029096  3.7607774  -0.3972472  1.5629772
## X620  -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.7451841  1.5629772
## X621   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X622   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X623   1.00853037   1.0008314  0.2462845 -0.3360145   1.0310404  0.8839497
## X625   0.85821946   1.8438701  0.2462845 -0.3360145   0.3168966  0.2049221
## X628   1.92274051  -0.6852460  1.9812221 -0.3360145  -0.3972472  0.2049221
## X629   2.15069776  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X630   1.42629884   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X631  -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X632  -2.04708364  -0.6852460 -0.9103405 -0.3360145   3.8876154  3.6000599
## X633   0.18177643  -0.6852460  0.8245970 -0.3360145   1.0310404  0.8839497
## X635   0.85821946   1.8438701  0.8245970  1.7123815  -0.3972472 -0.4741055
## X636   1.80408084  -0.6852460  2.5595346 -0.3360145  -0.3972472  0.2049221
## X637   1.55615914  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X638   1.15294194  -0.6852460  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X639   0.18177643   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X641   1.55615914   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X648   1.00853037   1.0008314  1.4029096  1.7123815   0.3168966  0.2049221
## X650  -0.01199386   1.0008314  0.8245970  3.7607774  -0.3972472 -0.4741055
## X651   1.55615914   1.0008314  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X653   2.15069776  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X654   1.29203392   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X655   0.18177643  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X656   0.18177643  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X657   0.70131917   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1082 -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1083  0.85821946  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1084  0.18177643  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1086 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1088 -0.01199386   1.0008314  0.2462845 -0.3360145   0.3168966  0.2049221
## X1089  0.53699786   1.0008314 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1090 -0.01199386   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1091  0.53699786  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1092 -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1093 -0.95516548   1.0008314  0.2462845 -0.3360145   1.0310404  0.8839497
## X1094 -0.21915966  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1095 -0.21915966   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1097 -0.95516548  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1098  0.85821946   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1101 -0.21915966   1.8438701  1.4029096  3.7607774   1.7451841  1.5629772
## X1103  1.15294194  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1104  0.36423857   1.8438701  0.2462845  1.7123815  -0.3972472 -0.4741055
## X1105 -0.68595798   2.6869088 -0.9103405  1.7123815  -0.3972472 -0.4741055
## X1106 -0.21915966   0.1577927 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1108 -0.21915966  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1110 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1112  0.36423857   2.6869088  0.2462845  1.7123815  -0.3972472 -0.4741055
## X1113  1.00853037  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1115  0.85821946  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1116  0.18177643   1.0008314 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1117 -0.21915966   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1119 -0.21915966  -0.6852460  0.8245970 -0.3360145   1.7451841  1.5629772
## X1120  1.80408084  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X1121  0.85821946   3.5299475  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1122  1.92274051  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X1124  0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1125 -2.04708364  -0.6852460 -0.9103405 -0.3360145   1.7451841  3.6000599
## X1126 -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X1127 -0.01199386  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1128 -0.21915966   0.1577927 -0.3320280 -0.3360145  -0.3972472  0.2049221
## X1129 -0.44251753  -0.6852460 -0.9103405 -0.3360145   0.3168966  0.2049221
## X1130 -0.21915966  -0.6852460  0.2462845 -0.3360145   1.7451841  1.5629772
## X1131 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1133  0.18177643   1.8438701 -0.3320280 -0.3360145  -0.3972472  0.2049221
## X1135 -0.01199386  -0.6852460 -0.3320280 -0.3360145  -0.3972472 -0.4741055
## X1136 -0.44251753  -0.6852460 -0.9103405 -0.3360145  -0.3972472  0.2049221
## X1138  3.05604172   0.1577927  6.6077223 -0.3360145  -0.3972472 -0.4741055
## X1139  1.80408084  -0.6852460  1.9812221 -0.3360145  -0.3972472 -0.4741055
## X1141 -0.68595798  -0.6852460 -0.9103405 -0.3360145  -0.3972472 -0.4741055
## X1142 -0.68595798  -0.6852460 -0.9103405 -0.3360145   1.0310404  0.8839497
## X1143  1.55615914   1.0008314  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1144  1.29203392   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1145  0.18177643   1.8438701  0.8245970  1.7123815   0.3168966  0.2049221
## X1146 -0.01199386   0.1577927  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1147  0.18177643   0.1577927 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X1149  0.18177643   0.1577927  0.2462845 -0.3360145   0.3168966  0.2049221
## X1150  0.18177643  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1151  0.36423857   0.1577927 -0.3320280  1.7123815  -0.3972472 -0.4741055
## X1152  1.29203392   0.1577927  0.8245970 -0.3360145  -0.3972472 -0.4741055
## X1153 -1.25901822   0.1577927 -0.9103405 -0.3360145  -0.3972472  2.2420048
## X1156  0.36423857  -0.6852460  0.2462845 -0.3360145  -0.3972472 -0.4741055
## X1158  1.00853037  -0.6852460  2.5595346 -0.3360145  -0.3972472 -0.4741055
## X1159  0.53699786  -0.6852460  1.4029096 -0.3360145  -0.3972472 -0.4741055
## X1160  1.92274051  -0.6852460  3.7161597 -0.3360145  -0.3972472 -0.4741055
##         NumRings HydrophilicFactor SurfaceArea1 SurfaceArea2
## X661   1.2306033      -0.741919037 -0.302617991 -0.379138448
## X662   2.0005400      -0.310306393  0.445784255  1.054350614
## X663  -0.3092700      -0.274782719  0.023833878 -0.076964725
## X665  -0.3092700      -0.834280591 -1.033167401 -1.055357076
## X668  -0.3092700      -0.042990743  0.495375467  0.359508432
## X669  -1.0792067      -0.559860206 -0.457625954  0.141009550
## X670   2.0005400      -0.629131371  0.187343191  0.074384441
## X671  -1.0792067      -0.723269108 -0.287882317 -0.365498662
## X672   2.0005400       0.190577416  1.080835157  0.901427627
## X673   0.4606666       0.331784022  0.132367790  0.023497546
## X674   0.4606666      -0.698402536  0.418013175  0.287899555
## X676   2.0005400      -0.365368089  0.023833878 -0.076964725
## X677   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X678   0.4606666      -0.760568966 -1.033167401 -1.055357076
## X679  -0.3092700      -0.838721050 -1.033167401 -1.055357076
## X682   0.4606666      -0.260573249  0.285392103  0.165141479
## X683  -0.3092700      -0.115814276  1.359112705  1.378820142
## X684   2.0005400      -0.288992189 -0.136558273  0.515316758
## X685   2.0005400      -0.365368089  0.023833878 -0.076964725
## X686   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X688   1.2306033      -0.249028055  0.285392103  0.165141479
## X689   1.2306033      -0.773002252 -0.849538224 -0.885384357
## X690  -0.3092700      -0.689521618 -0.196067728 -0.280512302
## X691  -0.3092700       0.566240273  0.799723825  0.641222476
## X692  -0.3092700      -0.119366643  0.798306933  2.622401413
## X693   0.4606666       0.382405258  1.099821507  1.138812367
## X695   1.2306033      -0.705507271 -0.540089056  0.141796461
## X696   1.2306033       0.343329216  0.069457794 -0.034733848
## X698  -0.3092700      -0.295208832  0.053021849 -0.049947456
## X699  -0.3092700      -0.578510135 -0.359010285 -0.431336861
## X700  -1.0792067      -0.828952040 -1.033167401 -1.055357076
## X702  -1.0792067      -0.812966386 -1.033167401 -1.055357076
## X703  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X704   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X706   0.4606666      -0.708171547  0.084476847 -0.020831759
## X708   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X709  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X711   2.0005400       1.404598989  1.743657139  1.514955700
## X712   0.4606666       0.207451161  0.113381439  0.005923206
## X713   0.4606666       0.382405258  0.364738044  0.238586482
## X714   2.0005400       0.190577416  1.826120241  1.591286041
## X715  -0.3092700      -0.130911837  0.053021849 -0.049947456
## X717   0.4606666      -0.760568966 -1.033167401 -1.055357076
## X718   2.0005400      -0.683304975 -0.709832693 -0.015323383
## X721  -0.3092700       0.574233100  0.744465045  0.590073278
## X722   1.2306033      -0.676200240 -0.409735011 -0.478289201
## X723  -1.0792067      -0.821847305 -1.033167401 -1.055357076
## X724   0.4606666      -0.723269108 -0.332656097 -0.406942628
## X726   0.4606666      -0.157554593 -0.198334755 -0.282610731
## X728   0.4606666      -0.278335086  0.023833878 -0.076964725
## X729  -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X731  -1.0792067      -0.812966386 -1.033167401 -1.055357076
## X732   0.4606666      -0.778330804 -1.033167401 -1.055357076
## X733  -0.3092700       0.687908858  0.744465045  0.590073278
## X734  -0.3092700      -0.493253316 -1.033167401 -1.055357076
## X735   2.0005400      -0.376025191  0.023833878 -0.076964725
## X736  -0.3092700       0.331784022  0.449468173  0.317015252
## X737   0.4606666      -0.711723914 -0.682911749  0.110582335
## X739   1.2306033      -0.602488615  0.980519218  0.808572160
## X740   1.2306033      -0.263237525  0.908824493  0.742209354
## X741  -1.0792067      -0.252580422  0.023833878 -0.076964725
## X742  -1.0792067      -0.711723914 -0.287882317 -0.365498662
## X743  -0.3092700      -0.493253316 -1.033167401 -1.055357076
## X744   1.2306033      -0.842273418 -1.033167401 -1.055357076
## X746  -0.3092700      -0.680640699  0.457402767  0.324359752
## X747  -1.0792067      -0.294320740 -0.459892981 -0.524716935
## X749   2.0005400      -0.655774127  0.035452391  0.674535031
## X752   2.0005400       0.148837099  1.826120241  1.591286041
## X753  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X754   2.0005400      -0.737478578 -0.801647282 -0.100309743
## X755   0.4606666      -0.842273418 -1.033167401 -1.055357076
## X757  -1.0792067      -0.717052465 -1.033167401 -1.055357076
## X758   0.4606666      -0.791652182 -0.771609176 -0.813250873
## X759  -1.0792067      -0.525224623 -0.849538224  2.125336130
## X760   0.4606666      -0.778330804 -1.033167401 -1.055357076
## X761   2.0005400       0.189689324  1.826120241  1.591286041
## X762   1.2306033      -0.844937693 -1.033167401 -1.055357076
## X763   0.4606666       1.916139901  0.441533579  0.309670752
## X764   0.4606666      -0.844937693 -1.033167401 -1.055357076
## X765   0.4606666      -0.257020882  0.285392103  0.165141479
## X767   2.0005400      -0.703731087  0.679571401  0.530005758
## X768   1.2306033      -0.294320740 -0.585712972 -0.641179724
## X770   1.2306033      -0.689521618 -0.801647282 -0.100309743
## X771   0.4606666      -0.111373817  0.758917341  0.603450761
## X772  -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X773  -1.0792067      -0.828952040 -1.033167401 -1.055357076
## X774  -1.0792067      -0.734814302 -1.033167401 -1.055357076
## X775   0.4606666      -0.295208832  0.507560737  0.370787486
## X776   1.2306033       0.810465534  2.186010757  2.144221987
## X777  -1.0792067      -0.596271972 -0.549440542  1.640599114
## X778   2.0005400       2.044025128  2.568288163  2.278259116
## X779   1.2306033       0.285603245 -0.295816911 -0.372843162
## X780  -0.3092700      -0.371584732 -1.033167401 -1.055357076
## X781  -1.0792067      -0.737478578 -0.026324091 -0.123392458
## X782   1.2306033      -0.741919037 -0.065713683 -0.159852656
## X784   0.4606666       1.712766865  1.596017014  1.378295535
## X786  -1.0792067      -0.821847305 -1.033167401 -1.055357076
## X787   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X788   2.0005400      -0.788987906 -0.065713683 -0.159852656
## X789   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X791   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X792   1.2306033      -0.638900382 -0.801647282 -0.100309743
## X794  -1.0792067      -0.294320740  0.023833878 -0.076964725
## X798   2.0005400      -0.768561793 -0.302617991 -0.379138448
## X799   0.4606666      -0.465722469  0.026100905  0.588761760
## X800   2.7704767      -0.365368089 -0.459892981  0.138911121
## X804   0.4606666      -0.737478578 -0.240841509 -0.321956268
## X805   2.0005400       0.135515721  1.826120241  1.591286041
## X807  -1.0792067      -0.395563212  0.013065500  3.438427849
## X808   1.2306033      -0.310306393  0.908824493  0.742209354
## X809   0.4606666      -0.705507271  0.457402767  0.324359752
## X810   1.2306033      -0.525224623 -1.033167401 -1.055357076
## X813  -1.0792067      -0.353822894  0.023833878 -0.076964725
## X814   0.4606666      -0.578510135  0.589457083  0.446593220
## X818   0.4606666      -0.675312148 -1.033167401 -1.055357076
## X819   0.4606666       0.395726636  0.616094648  0.471249757
## X820  -1.0792067      -0.332508690 -0.459892981 -0.524716935
## X821   0.4606666      -0.675312148 -1.033167401 -1.055357076
## X822   2.0005400      -0.851154336 -1.033167401 -1.055357076
## X823   2.0005400       0.183472681 -0.295816911 -0.372843162
## X827   2.7704767      -0.533217450 -0.678094317 -0.726690691
## X828   0.4606666      -0.675312148 -1.033167401 -1.055357076
## X829   0.4606666      -0.515455613  0.597108298  2.216355472
## X831   0.4606666      -0.659326494 -1.033167401 -1.055357076
## X832   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X833   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X834   0.4606666      -0.659326494 -1.033167401 -1.055357076
## X835   0.4606666      -0.723269108 -1.033167401 -1.055357076
## X836   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X839   2.0005400      -0.852042428 -1.033167401 -1.055357076
## X840   2.0005400      -0.853818612 -1.033167401 -1.055357076
## X841   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X842   1.2306033      -0.851154336 -1.033167401 -1.055357076
## X843   0.4606666      -0.659326494 -1.033167401 -1.055357076
## X846   1.2306033      -0.853818612 -1.033167401 -1.055357076
## X848   0.4606666      -0.596271972 -1.033167401 -1.055357076
## X849   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X851   3.5404134      -0.408884590  0.063223470 -0.040504527
## X854   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X855   2.7704767      -0.407108406 -0.585712972 -0.641179724
## X856   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X857   0.4606666      -0.596271972 -1.033167401 -1.055357076
## X858   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X859   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X860   0.4606666      -0.633571830 -1.033167401 -1.055357076
## X862   0.4606666      -0.596271972 -1.033167401 -1.055357076
## X863   0.4606666      -0.533217450 -1.033167401 -1.055357076
## X864   2.7704767      -0.856482887 -1.033167401 -1.055357076
## X865   2.7704767      -0.855594796 -1.033167401 -1.055357076
## X866   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X867   2.7704767      -0.855594796 -1.033167401 -1.055357076
## X869   2.0005400      -0.672647872 -0.162912460 -0.249822784
## X870   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X871   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X872   0.4606666      -0.562524482 -1.033167401 -1.055357076
## X873   2.7704767      -0.855594796 -1.033167401 -1.055357076
## X875   0.4606666      -0.505686603 -1.033167401 -1.055357076
## X876   0.4606666      -0.505686603 -1.033167401 -1.055357076
## X877   0.4606666      -0.459505826 -1.033167401 -1.055357076
## X1190  0.4606666      -0.778330804 -0.771609176 -0.813250873
## X1191 -1.0792067      -0.717052465 -1.033167401 -1.055357076
## X1192  2.0005400      -0.376025191  0.023833878 -0.076964725
## X1193 -0.3092700      -0.838721050 -1.033167401 -1.055357076
## X1194  2.0005400      -0.311194485  1.736572680  1.508398110
## X1195 -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X1197 -0.3092700      -0.834280591 -1.033167401 -1.055357076
## X1198 -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X1199 -0.3092700       0.527164231  0.744465045  1.253701335
## X1200 -1.0792067      -0.446184448 -0.510050950  1.855163443
## X1201  2.7704767      -0.640676565  0.850165173  0.687912513
## X1202  2.0005400       0.201234518  2.571405325  2.281144456
## X1203 -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X1204  1.2306033       0.379740982  1.789281054  1.776996976
## X1205  0.4606666       0.425921759  0.730012749  0.576695796
## X1206 -1.0792067      -0.358263354 -1.033167401 -1.055357076
## X1207  1.2306033      -0.724157200 -0.801647282 -0.100309743
## X1208  2.7704767      -0.709059639  0.679571401  1.193633815
## X1209 -0.3092700       0.088446852 -0.459892981 -0.524716935
## X1210  2.0005400       0.738530094  1.170382718  0.984315558
## X1212  2.0005400       0.168375119  0.113381439  0.005923206
## X1213  1.2306033      -0.724157200 -0.801647282 -0.100309743
## X1215  2.7704767       0.189689324  1.603951608  1.385640035
## X1216  1.2306033      -0.778330804 -1.033167401 -0.314611768
## X1217  1.2306033      -0.257020882  0.270656429  0.151501693
## X1219  0.4606666       0.207451161  0.113381439  0.005923206
## X1220  1.2306033      -0.310306393  0.115648466  0.008021635
## X1221 -1.0792067      -0.717052465 -1.033167401 -1.055357076
## X1222  1.2306033      -0.814742570 -0.941352813 -0.970370717
## X1226  2.0005400      -0.640676565 -0.709832693 -0.015323383
## X1228 -0.3092700      -0.525224623 -0.248492725  1.433641590
## X1229  2.0005400       0.147949007  1.826120241  1.591286041
## X1230  1.2306033      -0.698402536  0.188193326  0.075171351
## X1231  0.4606666      -0.847601969 -1.033167401 -1.055357076
## X1233  2.0005400      -0.385794201  0.023833878 -0.076964725
## X1234  0.4606666      -0.842273418 -1.033167401 -1.055357076
## X1236  2.0005400      -0.753464232  0.195844542  0.082253548
## X1237 -0.3092700      -0.361815721  0.116781980  1.108122848
## X1239 -1.0792067      -0.525224623 -0.457625954  0.141009550
## X1242 -1.0792067      -0.322739679 -1.033167401 -1.055357076
## X1244  0.4606666      -0.778330804 -1.033167401 -1.055357076
## X1245 -0.3092700      -0.842273418 -1.033167401 -1.055357076
## X1246  2.0005400      -0.353822894  0.023833878 -0.076964725
## X1247  1.2306033      -0.757904691 -0.026324091 -0.123392458
## X1249  0.4606666      -0.538546001  0.607593298  1.562432648
## X1250  1.2306033      -0.055424029 -0.459892981 -0.524716935
## X1251 -0.3092700      -0.476379571  0.315146831  0.192683355
## X1253 -0.3092700      -0.514567521 -0.510050950  1.855163443
## X1254  0.4606666      -0.723269108 -1.033167401 -1.055357076
## X1255  1.2306033      -0.849378152 -1.033167401 -1.055357076
## X1256  2.0005400      -0.851154336 -1.033167401 -1.055357076
## X1257  0.4606666      -0.675312148 -1.033167401 -1.055357076
## X1259  2.7704767      -0.533217450 -0.678094317 -0.726690691
## X1260  0.4606666      -0.675312148 -1.033167401 -1.055357076
## X1262  1.2306033      -0.690409709 -0.026324091 -0.123392458
## X1264  1.2306033      -0.494141408 -1.033167401 -1.055357076
## X1265  0.4606666      -0.633571830 -1.033167401 -1.055357076
## X1266  0.4606666      -0.624690912 -1.033167401 -1.055357076
## X1267  1.2306033       0.840660658  1.955057394  1.967953982
## X1268 -1.0792067      -0.327180139  0.023833878 -0.076964725
## X1273  0.4606666      -0.633571830 -1.033167401 -1.055357076
## X1274 -1.0792067      -0.362703813 -0.459892981 -0.524716935
## X1275  2.0005400      -0.562524482 -1.033167401 -1.055357076
## X1276  2.7704767      -0.855594796 -1.033167401 -1.055357076
## X1277  0.4606666      -0.596271972 -1.033167401 -1.055357076
## X1278  2.0005400      -0.852042428 -1.033167401 -1.055357076
## X1279  2.0005400      -0.853818612 -1.033167401 -1.055357076
## X1281  0.4606666      -0.562524482 -1.033167401 -1.055357076
## X1282  0.4606666      -0.562524482 -1.033167401 -1.055357076
## X1283  2.7704767      -0.855594796 -1.033167401 -1.055357076
## X1284  2.0005400      -0.853818612 -1.033167401 -1.055357076
## X1285  0.4606666      -0.562524482 -1.033167401 -1.055357076
## X1288  0.4606666      -0.481708122 -1.033167401 -1.055357076
## X1299  1.2306033       0.321126919  0.616094648  0.471249757
## X1301  2.0005400      -0.365368089  0.023833878 -0.076964725
## X1302 -0.3092700      -0.411548865 -1.033167401 -1.055357076
## X1307 -0.3092700      -0.417765508  0.116781980  1.108122848
## X1309  0.4606666      -0.624690912 -1.033167401 -1.055357076
## X1310  1.2306033      -0.465722469 -1.033167401 -1.055357076
## X447  -0.3092700      -0.028781274  0.285392103  0.165141479
## X448   2.0005400       3.680778427  4.113550354  3.708600536
## X451  -1.0792067      -0.779218896 -1.033167401 -1.055357076
## X452  -0.3092700      -0.640676565 -1.033167401 -1.055357076
## X453   0.4606666      -0.164659328 -0.094618276 -0.186607621
## X454   0.4606666       1.129290512  2.004648607  1.976347696
## X455  -0.3092700      -0.129135654  0.285392103  0.165141479
## X456   0.4606666      -0.240147136  0.053021849 -0.049947456
## X458   0.4606666       1.175471289  2.004648607  1.976347696
## X459  -1.0792067      -0.749023772 -0.549440542 -0.607604866
## X460  -0.3092700      -0.799645008 -1.033167401 -1.055357076
## X461  -0.3092700      -0.039438376  0.023833878 -0.076964725
## X462  -0.3092700      -0.693962077 -1.033167401 -0.314611768
## X463   1.2306033      -0.310306393 -0.250192995 -0.330612286
## X464  -1.0792067      -0.218832932 -1.033167401 -1.055357076
## X465   1.2306033      -0.249028055  0.532214654  0.393607897
## X466   0.4606666      -0.042990743  0.647266268  1.240848459
## X468  -1.0792067       0.604428223  0.449468173  0.317015252
## X471  -0.3092700       0.527164231  0.187909948  0.074909048
## X472  -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X473  -0.3092700      -0.779218896 -1.033167401 -1.055357076
## X476   0.4606666      -0.252580422  0.023833878 -0.076964725
## X477   0.4606666      -0.076738234  0.850731929  0.908247520
## X478  -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X479  -1.0792067      -0.779218896 -1.033167401 -1.055357076
## X480   1.2306033      -0.723269108 -0.302617991 -0.379138448
## X482  -1.0792067      -0.574957768 -1.033167401 -1.055357076
## X483  -1.0792067      -0.527000807 -1.033167401 -1.055357076
## X484   0.4606666       1.948111208  0.441533579  0.309670752
## X486  -1.0792067      -0.683304975 -0.287882317 -0.365498662
## X487  -0.3092700      -0.670871689  0.065490497 -0.038406098
## X488  -0.3092700      -0.190413992  0.285392103  0.165141479
## X489  -0.3092700      -0.039438376  0.023833878 -0.076964725
## X490  -0.3092700      -0.670871689 -0.196067728 -0.280512302
## X491  -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X492   0.4606666      -0.157554593  0.850731929  0.688437121
## X493  -1.0792067      -0.164659328  0.023833878 -0.076964725
## X494  -0.3092700       1.517386655  1.126459073  0.943658503
## X495   2.0005400      -0.321851587  0.258754538  0.140484943
## X496   0.4606666       0.068908831  0.510111142  1.214880405
## X497   1.2306033      -0.785435539 -0.667892696 -0.717247762
## X498  -0.3092700      -0.124695194 -0.459892981 -0.524716935
## X499  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X501   0.4606666      -0.470162928  0.586056542  0.443445577
## X502  -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X503   3.5404134       0.208339253  0.297010616  0.175895926
## X505  -0.3092700      -0.087395336 -0.208536376 -0.292053660
## X506   0.4606666       1.178135565  1.743090382  1.734241492
## X507   0.4606666       1.766052376  1.956757664  1.712207992
## X508  -0.3092700       2.105303467  1.334458788  1.136189331
## X509   2.0005400       3.653247579  4.113550354  3.708600536
## X510   0.4606666       0.516507129  0.692890184  0.542334027
## X513  -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X514   0.4606666       1.178135565  1.750174841  1.740799082
## X515   0.4606666       0.470326352  0.113381439  0.005923206
## X516  -0.3092700      -0.760568966 -0.771609176 -0.813250873
## X518  -0.3092700       0.382405258  0.969467462  0.798342320
## X521   0.4606666       1.128402420  2.266206832  2.218453900
## X523  -0.3092700      -0.711723914 -0.287882317 -0.365498662
## X524  -0.3092700      -0.094500071 -0.208536376 -0.292053660
## X525   0.4606666       0.399279003  1.099821507  0.919001967
## X526  -1.0792067      -0.209952013 -0.459892981 -0.524716935
## X530  -0.3092700      -0.760568966 -0.941352813 -0.970370717
## X531  -0.3092700       0.364643421  0.364738044  0.238586482
## X532  -0.3092700       0.574233100  0.744465045  1.253701335
## X533   0.4606666       1.385060968  2.330250342  2.497544909
## X534  -0.3092700       0.485423914  1.099821507  1.138812367
## X535  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X536   2.0005400      -0.336061057 -0.002803688 -0.101621261
## X538   1.2306033       2.486294875  2.689290722  2.390262745
## X539   2.0005400      -0.336061057 -0.002803688 -0.101621261
## X542   2.0005400       0.207451161  1.564562016  1.349179838
## X543  -1.0792067      -0.693962077 -1.033167401 -1.055357076
## X544   2.0005400       3.653247579  4.113550354  3.708600536
## X545  -1.0792067      -0.778330804 -0.941352813 -0.970370717
## X546  -1.0792067      -0.192190176 -1.033167401 -1.055357076
## X548  -0.3092700      -0.760568966 -0.771609176 -0.813250873
## X549  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X551  -1.0792067      -0.141568940 -1.033167401 -1.055357076
## X552   2.7704767      -0.626467096  1.111723398  0.930018717
## X553   0.4606666      -0.185085441  0.053021849  0.613680600
## X554  -0.3092700       0.581337835  1.418622161  1.214093494
## X556   0.4606666      -0.240147136  0.285392103  0.165141479
## X557  -0.3092700       1.041369418  0.882186927  0.717552818
## X558   0.4606666      -0.039438376 -0.667892696  1.041235435
## X559  -1.0792067      -0.779218896 -1.033167401 -1.055357076
## X560  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X561  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X562  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X563   0.4606666      -0.294320740  0.023833878 -0.076964725
## X565  -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X566  -0.3092700       0.766949033 -0.295816911 -0.372843162
## X567  -0.3092700       0.512954761  1.099821507  1.138812367
## X568  -0.3092700      -0.087395336 -0.208536376 -0.292053660
## X569  -0.3092700      -0.659326494 -0.196067728 -0.280512302
## X571  -0.3092700       0.621301968  0.449468173  0.317015252
## X572  -0.3092700       1.032488500  0.790372339  0.632566458
## X574  -0.3092700      -0.812966386 -1.033167401 -1.055357076
## X576   0.4606666       1.175471289  2.004648607  1.976347696
## X577   0.4606666      -0.217056748  0.053021849 -0.049947456
## X579   0.4606666      -0.217056748  0.163822787  0.052613244
## X580  -0.3092700       0.686132674  0.597108298  0.453675417
## X582  -1.0792067      -0.760568966 -0.549440542 -0.607604866
## X583  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X584   4.3103501      -0.718828649 -0.104253140 -0.195525943
## X586   0.4606666      -0.533217450  0.597108298  1.552727415
## X587   1.2306033      -0.785435539 -0.667892696 -0.717247762
## X588  -0.3092700       0.472990628  0.616094648  1.312981944
## X589   2.0005400       1.404598989  1.743657139  1.514955700
## X591   2.0005400      -0.321851587  0.258754538  0.140484943
## X592  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X593   1.2306033      -0.217056748  0.410361960  0.280817358
## X594  -1.0792067      -0.683304975 -0.287882317 -0.365498662
## X595  -1.0792067      -0.555419747 -0.941352813  0.534989527
## X596  -0.3092700       0.447235964  1.099821507  1.138812367
## X597   1.2306033      -0.773002252 -0.679794587 -0.728264513
## X598  -1.0792067      -0.227713850  0.023833878 -0.076964725
## X599  -0.3092700      -0.828952040 -1.033167401 -1.055357076
## X600   0.4606666      -0.578510135  0.718960993  0.786276356
## X603  -1.0792067      -0.198406819  0.023833878 -0.076964725
## X604  -0.3092700       0.433914586  0.616094648  1.312981944
## X605   2.0005400      -0.737478578  0.418013175  0.287899555
## X606  -0.3092700      -0.711723914 -0.287882317 -0.365498662
## X608  -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X609   0.4606666       1.231421076  1.743090382  1.734241492
## X611  -0.3092700      -0.812966386 -1.033167401 -1.055357076
## X612  -0.3092700      -0.042990743  0.144836437  0.035038904
## X613  -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X614  -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X616  -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X617   0.4606666      -0.724157200 -0.196067728 -0.280512302
## X619   1.2306033       1.688788384  2.320898856  2.488888891
## X620  -0.3092700      -0.546538828 -1.033167401 -1.055357076
## X621   0.4606666       0.364643421  0.364738044  0.238586482
## X622   0.4606666      -0.834280591 -1.033167401 -1.055357076
## X623   1.2306033       0.353986318  0.714993696  0.562793706
## X625   0.4606666      -0.593607697  0.582372624  0.440035631
## X628   2.0005400       0.801584616  1.654109577  1.432067769
## X629   2.0005400       0.738530094  1.170382718  0.984315558
## X630   1.2306033      -0.353822894 -0.600448647 -0.654819510
## X631  -1.0792067      -0.821847305 -1.033167401 -1.055357076
## X632  -1.0792067      -0.192190176 -1.033167401 -1.055357076
## X633  -0.3092700      -0.100716714  0.285392103  0.165141479
## X635   0.4606666       0.395726636  1.191636095  1.223798726
## X636   2.0005400       1.494296267  2.227383997  1.962707910
## X637   2.0005400      -0.773002252 -0.065713683 -0.159852656
## X638   0.4606666      -0.295208832  0.507560737  0.370787486
## X639   0.4606666       1.231421076  1.743090382  1.734241492
## X641   1.2306033      -0.285439821  0.691189913  0.540760205
## X648   0.4606666       1.712766865  2.069542251  2.036415216
## X650   0.4606666       0.581337835  1.298469737  2.063432485
## X651   1.2306033      -0.705507271  0.117915493  0.010120064
## X653   2.0005400       0.738530094  1.170382718  0.984315558
## X654  -0.3092700      -0.689521618  0.065490497 -0.038406098
## X655  -0.3092700      -0.834280591 -1.033167401 -1.055357076
## X656   0.4606666      -0.760568966 -1.033167401 -1.055357076
## X657  -0.3092700       0.364643421  0.449468173  0.317015252
## X1082 -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X1083  0.4606666      -0.332508690 -0.459892981 -0.524716935
## X1084 -0.3092700      -0.242811412 -0.459892981 -0.524716935
## X1086 -0.3092700      -0.693962077 -1.033167401 -1.055357076
## X1088 -0.3092700      -0.066969224  0.144836437  0.035038904
## X1089  0.4606666       1.123073869  0.151637518  0.041334190
## X1090 -0.3092700       2.164805621  1.334458788  1.136189331
## X1091 -0.3092700       0.380629074  0.113381439  0.005923206
## X1092 -1.0792067      -0.749023772 -0.549440542 -0.607604866
## X1093 -0.3092700      -0.371584732  0.117915493  0.010120064
## X1094 -0.3092700      -0.124695194  0.023833878 -0.076964725
## X1095  0.4606666      -0.087395336  0.381740745  0.254324696
## X1097 -1.0792067      -0.662878862 -1.033167401 -1.055357076
## X1098  1.2306033       0.367307696  1.099821507  0.919001967
## X1101  0.4606666       2.036032302  2.320898856  2.488888891
## X1103  2.0005400       1.679019374  2.005215364  1.757061904
## X1104  0.4606666       1.180799840  1.377815677  1.396132178
## X1105  0.4606666       0.068908831  0.510111142  1.214880405
## X1106 -1.0792067       0.577785467 -0.295816911 -0.372843162
## X1108 -0.3092700      -0.821847305 -1.033167401 -1.055357076
## X1110 -0.3092700      -0.693962077 -1.033167401 -1.055357076
## X1112  0.4606666       1.178135565  1.743090382  1.734241492
## X1113  0.4606666       0.280274694  0.113381439  0.005923206
## X1115  0.4606666      -0.294320740  0.023833878 -0.076964725
## X1116 -0.3092700      -0.646005116 -0.591097161 -0.646163492
## X1117 -0.3092700       0.604428223  0.364738044  0.238586482
## X1119 -0.3092700      -0.005690885  0.285392103  0.165141479
## X1120  2.0005400       0.815794086  1.654109577  1.432067769
## X1121  1.2306033       0.407271830  1.810534431  1.576859345
## X1122  2.0005400       0.792703697  1.654109577  1.432067769
## X1124  0.4606666      -0.711723914 -0.065713683 -0.159852656
## X1125 -1.0792067      -0.192190176 -1.033167401 -1.055357076
## X1126 -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X1127  0.4606666      -0.828952040 -1.033167401 -1.055357076
## X1128 -0.3092700      -0.087395336 -0.208536376 -0.292053660
## X1129 -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X1130 -0.3092700      -0.028781274  0.023833878 -0.076964725
## X1131 -0.3092700      -0.799645008 -1.033167401 -1.055357076
## X1133  0.4606666       0.516507129  0.692890184  0.542334027
## X1135 -1.0792067      -0.749023772 -0.549440542 -0.607604866
## X1136 -0.3092700      -0.717052465 -1.033167401 -1.055357076
## X1138  2.0005400       3.944541710  5.512589313  5.003593308
## X1139  2.0005400       0.815794086  1.654109577  1.432067769
## X1141 -1.0792067      -0.799645008 -1.033167401 -1.055357076
## X1142 -0.3092700      -0.612257626 -1.033167401 -1.055357076
## X1143  1.2306033      -0.676200240  0.601642352  0.457872274
## X1144  2.7704767       0.270505683  0.466754253  0.333015770
## X1145  0.4606666       1.984522974  1.837171997  1.821326281
## X1146 -1.0792067       0.542261793  0.449468173  0.317015252
## X1147 -1.0792067      -0.646005116 -0.457625954  0.141009550
## X1149 -0.3092700      -0.129135654  0.053021849 -0.049947456
## X1150 -1.0792067      -0.698402536 -0.287882317 -0.365498662
## X1151 -0.3092700      -0.661990770 -0.457625954  0.141009550
## X1152  1.2306033      -0.689521618  0.065490497 -0.038406098
## X1153 -0.3092700       0.205674978 -0.585712972 -0.641179724
## X1156 -1.0792067      -0.227713850  0.023833878 -0.076964725
## X1158  1.2306033       1.724312059  2.005215364  1.757061904
## X1159  1.2306033      -0.633571830  0.456836011  0.323835145
## X1160  2.0005400       0.234093917  2.570838568  2.280619849
##  [ reached 'max' / getOption("max.print") -- omitted 497 rows ]
## 
## $usekernel
## [1] FALSE
## 
## $varnames
##   [1] "FP001"             "FP002"             "FP003"            
##   [4] "FP004"             "FP005"             "FP006"            
##   [7] "FP007"             "FP008"             "FP009"            
##  [10] "FP010"             "FP011"             "FP012"            
##  [13] "FP013"             "FP014"             "FP015"            
##  [16] "FP016"             "FP017"             "FP018"            
##  [19] "FP019"             "FP020"             "FP021"            
##  [22] "FP022"             "FP023"             "FP024"            
##  [25] "FP025"             "FP026"             "FP027"            
##  [28] "FP028"             "FP029"             "FP030"            
##  [31] "FP031"             "FP032"             "FP033"            
##  [34] "FP034"             "FP035"             "FP036"            
##  [37] "FP037"             "FP038"             "FP039"            
##  [40] "FP040"             "FP041"             "FP042"            
##  [43] "FP043"             "FP044"             "FP045"            
##  [46] "FP046"             "FP047"             "FP048"            
##  [49] "FP049"             "FP050"             "FP051"            
##  [52] "FP052"             "FP053"             "FP054"            
##  [55] "FP055"             "FP056"             "FP057"            
##  [58] "FP058"             "FP059"             "FP060"            
##  [61] "FP061"             "FP062"             "FP063"            
##  [64] "FP064"             "FP065"             "FP066"            
##  [67] "FP067"             "FP068"             "FP069"            
##  [70] "FP070"             "FP071"             "FP072"            
##  [73] "FP073"             "FP074"             "FP075"            
##  [76] "FP076"             "FP077"             "FP078"            
##  [79] "FP079"             "FP080"             "FP081"            
##  [82] "FP082"             "FP083"             "FP084"            
##  [85] "FP085"             "FP086"             "FP087"            
##  [88] "FP088"             "FP089"             "FP090"            
##  [91] "FP091"             "FP092"             "FP093"            
##  [94] "FP094"             "FP095"             "FP096"            
##  [97] "FP097"             "FP098"             "FP099"            
## [100] "FP100"             "FP101"             "FP102"            
## [103] "FP103"             "FP104"             "FP105"            
## [106] "FP106"             "FP107"             "FP108"            
## [109] "FP109"             "FP110"             "FP111"            
## [112] "FP112"             "FP113"             "FP114"            
## [115] "FP115"             "FP116"             "FP117"            
## [118] "FP118"             "FP119"             "FP120"            
## [121] "FP121"             "FP122"             "FP123"            
## [124] "FP124"             "FP125"             "FP126"            
## [127] "FP127"             "FP128"             "FP129"            
## [130] "FP130"             "FP131"             "FP132"            
## [133] "FP133"             "FP134"             "FP135"            
## [136] "FP136"             "FP137"             "FP138"            
## [139] "FP139"             "FP140"             "FP141"            
## [142] "FP142"             "FP143"             "FP144"            
## [145] "FP145"             "FP146"             "FP147"            
## [148] "FP148"             "FP149"             "FP150"            
## [151] "FP151"             "FP152"             "FP153"            
## [154] "FP155"             "FP156"             "FP157"            
## [157] "FP158"             "FP159"             "FP160"            
## [160] "FP161"             "FP162"             "FP163"            
## [163] "FP164"             "FP165"             "FP166"            
## [166] "FP167"             "FP168"             "FP169"            
## [169] "FP170"             "FP171"             "FP172"            
## [172] "FP173"             "FP174"             "FP175"            
## [175] "FP176"             "FP177"             "FP178"            
## [178] "FP179"             "FP180"             "FP181"            
## [181] "FP182"             "FP183"             "FP184"            
## [184] "FP185"             "FP186"             "FP187"            
## [187] "FP188"             "FP189"             "FP190"            
## [190] "FP191"             "FP192"             "FP193"            
## [193] "FP194"             "FP195"             "FP196"            
## [196] "FP197"             "FP198"             "FP201"            
## [199] "FP202"             "FP203"             "FP204"            
## [202] "FP205"             "FP206"             "FP207"            
## [205] "FP208"             "MolWeight"         "NumBonds"         
## [208] "NumMultBonds"      "NumRotBonds"       "NumDblBonds"      
## [211] "NumCarbon"         "NumNitrogen"       "NumOxygen"        
## [214] "NumSulfer"         "NumChlorine"       "NumHalogen"       
## [217] "NumRings"          "HydrophilicFactor" "SurfaceArea1"     
## [220] "SurfaceArea2"     
## 
## $xNames
##   [1] "FP001"             "FP002"             "FP003"            
##   [4] "FP004"             "FP005"             "FP006"            
##   [7] "FP007"             "FP008"             "FP009"            
##  [10] "FP010"             "FP011"             "FP012"            
##  [13] "FP013"             "FP014"             "FP015"            
##  [16] "FP016"             "FP017"             "FP018"            
##  [19] "FP019"             "FP020"             "FP021"            
##  [22] "FP022"             "FP023"             "FP024"            
##  [25] "FP025"             "FP026"             "FP027"            
##  [28] "FP028"             "FP029"             "FP030"            
##  [31] "FP031"             "FP032"             "FP033"            
##  [34] "FP034"             "FP035"             "FP036"            
##  [37] "FP037"             "FP038"             "FP039"            
##  [40] "FP040"             "FP041"             "FP042"            
##  [43] "FP043"             "FP044"             "FP045"            
##  [46] "FP046"             "FP047"             "FP048"            
##  [49] "FP049"             "FP050"             "FP051"            
##  [52] "FP052"             "FP053"             "FP054"            
##  [55] "FP055"             "FP056"             "FP057"            
##  [58] "FP058"             "FP059"             "FP060"            
##  [61] "FP061"             "FP062"             "FP063"            
##  [64] "FP064"             "FP065"             "FP066"            
##  [67] "FP067"             "FP068"             "FP069"            
##  [70] "FP070"             "FP071"             "FP072"            
##  [73] "FP073"             "FP074"             "FP075"            
##  [76] "FP076"             "FP077"             "FP078"            
##  [79] "FP079"             "FP080"             "FP081"            
##  [82] "FP082"             "FP083"             "FP084"            
##  [85] "FP085"             "FP086"             "FP087"            
##  [88] "FP088"             "FP089"             "FP090"            
##  [91] "FP091"             "FP092"             "FP093"            
##  [94] "FP094"             "FP095"             "FP096"            
##  [97] "FP097"             "FP098"             "FP099"            
## [100] "FP100"             "FP101"             "FP102"            
## [103] "FP103"             "FP104"             "FP105"            
## [106] "FP106"             "FP107"             "FP108"            
## [109] "FP109"             "FP110"             "FP111"            
## [112] "FP112"             "FP113"             "FP114"            
## [115] "FP115"             "FP116"             "FP117"            
## [118] "FP118"             "FP119"             "FP120"            
## [121] "FP121"             "FP122"             "FP123"            
## [124] "FP124"             "FP125"             "FP126"            
## [127] "FP127"             "FP128"             "FP129"            
## [130] "FP130"             "FP131"             "FP132"            
## [133] "FP133"             "FP134"             "FP135"            
## [136] "FP136"             "FP137"             "FP138"            
## [139] "FP139"             "FP140"             "FP141"            
## [142] "FP142"             "FP143"             "FP144"            
## [145] "FP145"             "FP146"             "FP147"            
## [148] "FP148"             "FP149"             "FP150"            
## [151] "FP151"             "FP152"             "FP153"            
## [154] "FP155"             "FP156"             "FP157"            
## [157] "FP158"             "FP159"             "FP160"            
## [160] "FP161"             "FP162"             "FP163"            
## [163] "FP164"             "FP165"             "FP166"            
## [166] "FP167"             "FP168"             "FP169"            
## [169] "FP170"             "FP171"             "FP172"            
## [172] "FP173"             "FP174"             "FP175"            
## [175] "FP176"             "FP177"             "FP178"            
## [178] "FP179"             "FP180"             "FP181"            
## [181] "FP182"             "FP183"             "FP184"            
## [184] "FP185"             "FP186"             "FP187"            
## [187] "FP188"             "FP189"             "FP190"            
## [190] "FP191"             "FP192"             "FP193"            
## [193] "FP194"             "FP195"             "FP196"            
## [196] "FP197"             "FP198"             "FP201"            
## [199] "FP202"             "FP203"             "FP204"            
## [202] "FP205"             "FP206"             "FP207"            
## [205] "FP208"             "MolWeight"         "NumBonds"         
## [208] "NumMultBonds"      "NumRotBonds"       "NumDblBonds"      
## [211] "NumCarbon"         "NumNitrogen"       "NumOxygen"        
## [214] "NumSulfer"         "NumChlorine"       "NumHalogen"       
## [217] "NumRings"          "HydrophilicFactor" "SurfaceArea1"     
## [220] "SurfaceArea2"     
## 
## $problemType
## [1] "Classification"
## 
## $tuneValue
##   fL usekernel adjust
## 1  2     FALSE  FALSE
## 
## $obsLevels
## [1] "Low"  "Mid"  "High"
## attr(,"ordered")
## [1] FALSE
## 
## $param
## list()
## 
## attr(,"class")
## [1] "NaiveBayes"
NB_Tune$results
##   usekernel fL adjust  logLoss       AUC     prAUC  Accuracy     Kappa
## 1     FALSE  2  FALSE 3.224027 0.8205606 0.6408077 0.6434612 0.4593777
## 2      TRUE  2  FALSE      NaN       NaN       NaN       NaN       NaN
##     Mean_F1 Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value
## 1 0.6286132        0.6398324        0.8254896            0.632263
## 2       NaN              NaN              NaN                 NaN
##   Mean_Neg_Pred_Value Mean_Precision Mean_Recall Mean_Detection_Rate
## 1           0.8219493       0.632263   0.6398324           0.2144871
## 2                 NaN            NaN         NaN                 NaN
##   Mean_Balanced_Accuracy logLossSD     AUCSD    prAUCSD AccuracySD    KappaSD
## 1               0.732661 0.8368251 0.0372749 0.04856058 0.05446968 0.07913488
## 2                    NaN        NA        NA         NA         NA         NA
##    Mean_F1SD Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1 0.05603901         0.05290333         0.02607198            0.05134728
## 2         NA                 NA                 NA                    NA
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1             0.0257573       0.05134728    0.05290333            0.01815656
## 2                    NA               NA            NA                    NA
##   Mean_Balanced_AccuracySD
## 1                0.0394039
## 2                       NA
(NB_Train_Accuracy <- NB_Tune$results[NB_Tune$results$usekernel==NB_Tune$bestTune$usekernel &
                                         NB_Tune$results$adjust==NB_Tune$bestTune$adjust,
                              c("Accuracy")])
## [1] 0.6434612
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
NB_Test <- data.frame(NB_Observed = PMA_PreModelling_Test_NB$Log_Solubility_Class,
                      NB_Predicted = predict(NB_Tune,
                      PMA_PreModelling_Test_NB[,!names(PMA_PreModelling_Test_NB) %in% c("Log_Solubility_Class")],
                      type = "raw"))

NB_Test
##     NB_Observed NB_Predicted
## 1          High         High
## 2          High         High
## 3          High         High
## 4          High         High
## 5          High         High
## 6          High         High
## 7          High         High
## 8          High         High
## 9          High         High
## 10         High         High
## 11         High         High
## 12         High          Mid
## 13         High         High
## 14         High         High
## 15         High          Mid
## 16         High          Mid
## 17         High         High
## 18         High         High
## 19         High         High
## 20         High          Mid
## 21         High         High
## 22         High         High
## 23         High         High
## 24         High         High
## 25         High         High
## 26         High          Mid
## 27         High         High
## 28         High         High
## 29         High          Low
## 30         High         High
## 31         High          Mid
## 32         High         High
## 33         High         High
## 34         High          Mid
## 35         High         High
## 36         High         High
## 37         High         High
## 38         High         High
## 39         High         High
## 40         High         High
## 41         High         High
## 42         High          Low
## 43         High          Mid
## 44         High         High
## 45         High         High
## 46         High         High
## 47         High         High
## 48         High         High
## 49         High         High
## 50         High         High
## 51         High         High
## 52         High          Mid
## 53         High          Mid
## 54         High         High
## 55         High         High
## 56         High          Mid
## 57         High         High
## 58          Mid         High
## 59          Mid          Mid
## 60          Mid          Mid
## 61          Mid          Mid
## 62          Mid         High
## 63          Mid          Mid
## 64          Mid         High
## 65          Mid          Mid
## 66          Mid          Low
## 67          Mid          Mid
## 68          Mid          Low
## 69          Mid          Mid
## 70          Mid          Mid
## 71          Mid          Mid
## 72          Mid          Mid
## 73          Mid         High
## 74          Mid          Low
## 75          Mid          Mid
## 76          Mid          Mid
## 77          Mid          Mid
## 78          Mid         High
## 79          Mid         High
## 80          Mid         High
## 81          Mid          Mid
## 82          Mid         High
## 83          Mid         High
## 84          Mid         High
## 85          Mid          Mid
## 86          Mid         High
## 87          Mid          Low
## 88          Mid          Mid
## 89          Mid          Mid
## 90          Mid         High
## 91          Mid          Mid
## 92          Mid          Mid
## 93          Mid          Low
## 94          Mid          Mid
## 95          Mid          Mid
## 96          Mid          Mid
## 97          Mid         High
## 98          Mid          Mid
## 99          Mid          Mid
## 100         Mid         High
## 101         Mid          Low
## 102         Mid          Mid
## 103         Mid          Mid
## 104         Mid         High
## 105         Mid         High
## 106         Mid          Mid
## 107         Mid          Low
## 108         Mid          Mid
## 109         Mid          Mid
## 110         Mid          Mid
## 111         Mid          Mid
## 112         Mid          Low
## 113         Mid          Mid
## 114         Mid          Mid
## 115         Mid          Low
## 116         Mid          Low
## 117         Mid          Low
## 118         Mid         High
## 119         Low          Mid
## 120         Low          Low
## 121         Low          Low
## 122         Low          Mid
## 123         Low          Low
## 124         Low         High
## 125         Low          Low
## 126         Low          Mid
## 127         Low         High
## 128         Low          Mid
## 129         Low         High
## 130         Low          Low
## 131         Low         High
## 132         Low          Low
## 133         Low          Low
## 134         Low          Mid
## 135         Low         High
## 136         Low          Mid
## 137         Low          Low
## 138         Low          Mid
## 139         Low         High
## 140         Low          Low
## 141         Low          Mid
## 142         Low          Low
## 143         Low          Low
## 144         Low          Mid
## 145         Low          Mid
## 146         Low          Mid
## 147         Low          Mid
## 148         Low          Low
## 149         Low         High
## 150         Low          Low
## 151         Low          Low
## 152         Low          Low
## 153         Low         High
## 154         Low         High
## 155         Low          Low
## 156         Low          Low
## 157         Low          Low
## 158         Low          Low
## 159         Low         High
## 160         Low          Low
## 161         Low          Low
## 162         Low          Low
## 163         Low          Mid
## 164         Low          Low
## 165         Low          Low
## 166         Low          Mid
## 167         Low          Low
## 168         Low          Mid
## 169         Low          Low
## 170         Low          Low
## 171         Low          Low
## 172         Low         High
## 173         Low          Low
## 174         Low          Mid
## 175         Low          Low
## 176         Low          Low
## 177         Low          Low
## 178         Low          Low
## 179         Low          Low
## 180         Low         High
## 181         Low          Low
## 182         Low          Low
## 183         Low          Mid
## 184         Low          Mid
## 185         Low          Low
## 186         Low          Low
## 187         Low          Low
## 188         Low          Low
## 189         Low          Low
## 190         Low          Low
## 191         Low          Low
## 192         Low          Low
## 193         Low          Low
## 194         Low          Low
## 195         Low          Mid
## 196         Low          Low
## 197         Low          Low
## 198         Low          Low
## 199         Low          Low
## 200         Low          Low
## 201         Low          Low
## 202         Low          Low
## 203         Low          Low
## 204         Low          Low
## 205         Low          Low
## 206         Low          Low
## 207         Low          Low
## 208         Low          Low
## 209         Low          Low
## 210         Low          Low
## 211         Low          Low
## 212         Low          Low
## 213         Low          Low
## 214         Low          Low
## 215         Low          Low
## 216         Low          Low
## 217        High         High
## 218        High         High
## 219        High         High
## 220        High         High
## 221        High          Mid
## 222        High         High
## 223        High         High
## 224        High         High
## 225        High          Mid
## 226        High          Mid
## 227        High         High
## 228        High         High
## 229        High         High
## 230        High          Mid
## 231        High         High
## 232        High          Mid
## 233        High         High
## 234        High          Mid
## 235        High          Mid
## 236        High          Mid
## 237        High          Mid
## 238         Mid          Mid
## 239         Mid          Mid
## 240         Mid         High
## 241         Mid         High
## 242         Mid          Mid
## 243         Mid         High
## 244         Mid          Mid
## 245         Mid          Low
## 246         Mid          Mid
## 247         Mid         High
## 248         Mid          Mid
## 249         Mid         High
## 250         Mid         High
## 251         Mid          Mid
## 252         Mid          Mid
## 253         Mid          Mid
## 254         Mid          Low
## 255         Mid          Mid
## 256         Mid          Mid
## 257         Mid          Mid
## 258         Mid          Mid
## 259         Mid          Low
## 260         Mid          Mid
## 261         Mid         High
## 262         Mid         High
## 263         Mid          Low
## 264         Mid          Mid
## 265         Mid          Low
## 266         Mid          Mid
## 267         Mid          Mid
## 268         Mid         High
## 269         Low          Mid
## 270         Low          Low
## 271         Low          Mid
## 272         Low          Mid
## 273         Low          Low
## 274         Low          Mid
## 275         Low          Mid
## 276         Low          Low
## 277         Low          Low
## 278         Low          Mid
## 279         Low          Low
## 280         Low          Mid
## 281         Low         High
## 282         Low          Low
## 283         Low          Low
## 284         Low          Mid
## 285         Low         High
## 286         Low          Low
## 287         Low         High
## 288         Low          Low
## 289         Low          Low
## 290         Low          Low
## 291         Low          Low
## 292         Low          Low
## 293         Low         High
## 294         Low          Low
## 295         Low          Low
## 296         Low          Low
## 297         Low          Low
## 298         Low          Low
## 299         Low          Low
## 300         Low          Low
## 301         Low          Low
## 302         Low          Low
## 303         Low          Low
## 304         Low          Low
## 305         Low          Low
## 306         Low          Low
## 307         Low          Low
## 308         Low          Low
## 309         Low          Low
## 310         Low          Low
## 311         Low          Low
## 312         Low          Low
## 313         Mid          Mid
## 314        High          Mid
## 315         Low          Low
## 316         Mid          Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(NB_Test_Accuracy <- Accuracy(y_pred = NB_Test$NB_Predicted,
                              y_true = NB_Test$NB_Observed))
## [1] 0.6550633

1.5.6 Nearest Shrunken Centroids (NSC)


Nearest Shrunken Centroids involve first summarizing the training dataset into a set of centroids, then using the centroids to make predictions for new instances. The algorithm shrinks the centroids of each input variable towards the centroid of the entire training data set. Those variables that are shrunk down to the value of the data centroid can then be removed as they do not help to discriminate between the class labels. The centroids in the input feature space are different for each target label which then represents the model. Given new instances, the distance between a given row of data and each centroid is calculated and the closest centroid is used to assign a class label to the example.

[A] The nearest shrunken centroids model from the pamr package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] threshold = shrinkage threshold made to vary across a range of values equal to 0 to 25

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves threshold=1
     [C.2] Accuracy = 0.60452

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] NumMultBonds variable (numeric)
     [D.5] NumRings variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.63607

Code Chunk | Output
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_NSC <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_NSC$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_NSC)
## [1] 951 221
PMA_PreModelling_Test_NSC <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_NSC$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_NSC)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_NSC$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
NSC_Grid = data.frame(threshold = seq(0, 8, length = 9))

##################################
# Running the nearest shrunken centroids model
# by setting the caret method to 'pam'
##################################
set.seed(12345678)
NSC_Tune <- train(x = PMA_PreModelling_Train_NSC[,!names(PMA_PreModelling_Train_NSC) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_NSC$Log_Solubility_Class,
                 method = "pam",
                 tuneGrid = NSC_Grid,
                 metric = "Accuracy",
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)
## 1111111111
## 1
##################################
# Reporting the cross-validation results
# for the train set
##################################
NSC_Tune
## Nearest Shrunken Centroids 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   threshold  logLoss    AUC        prAUC      Accuracy   Kappa        Mean_F1  
##   0          1.0053088  0.7986117  0.6383621  0.5918682  0.377933196  0.5705143
##   1          0.8852013  0.7986907  0.6435073  0.6045224  0.390689052  0.5629779
##   2          0.8572315  0.7867513  0.6204747  0.5855622  0.354489788  0.5226695
##   3          0.8440090  0.7831023  0.6072123  0.5772620  0.331334495  0.4932871
##   4          0.8836407  0.7798191  0.5959490  0.5815176  0.320109872  0.4547332
##   5          0.9439966  0.7682432  0.5830754  0.5393650  0.211538787        NaN
##   6          0.9879275  0.7701367  0.5881594  0.4710398  0.048665101        NaN
##   7          1.0214083  0.7734845  0.5897285  0.4500637  0.002282919        NaN
##   8          1.0464494  0.7756318  0.5918340  0.4489999  0.000000000        NaN
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.5802349         0.7979792         0.5740786            0.7964560          
##   0.5835158         0.8016081         0.5677051            0.8084817          
##   0.5582769         0.7882126         0.5367218            0.8032933          
##   0.5417570         0.7782304         0.4902777            0.8054533          
##   0.5339216         0.7706006         0.4265496            0.8183140          
##   0.4605736         0.7316940               NaN            0.8164331          
##   0.3623889         0.6806491               NaN            0.8229237          
##   0.3347222         0.6673077               NaN            0.8182719          
##   0.3333333         0.6666667               NaN                  NaN          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.5740786       0.5802349    0.1972894            0.6891071             
##   0.5677051       0.5835158    0.2015075            0.6925619             
##   0.5367218       0.5582769    0.1951874            0.6732448             
##   0.4902777       0.5417570    0.1924207            0.6599937             
##   0.4265496       0.5339216    0.1938392            0.6522611             
##         NaN       0.4605736    0.1797883            0.5961338             
##         NaN       0.3623889    0.1570133            0.5215190             
##         NaN       0.3347222    0.1500212            0.5010150             
##         NaN       0.3333333    0.1496666            0.5000000             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was threshold = 1.
NSC_Tune$finalModel
## $y
##   [1] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [16] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [31] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [46] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [61] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [76] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [91] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [106] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [121] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [136] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [151] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [166] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [181] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [196] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [211] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [226] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Mid  Mid 
## [241] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [256] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Low 
## [271] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [286] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [301] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [316] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [331] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [346] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [361] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [376] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [391] Low  Low  Low  Low  Low  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [406] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Low  Low  Low  Low  Low  Low  Low 
## [421] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [436] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [451] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [466] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  High High Mid  Mid 
## [481] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [496] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [511] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [526] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [541] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [556] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [571] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [586] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [601] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [616] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [631] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  High High Mid  Mid  Mid 
## [646] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [661] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [676] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [691] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [706] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  High High High High High High
## [721] High High High High High High High High High High High High High High High
## [736] High High High High High High High High High High High High High High High
## [751] High High High High High High High High High High High High High High High
## [766] High High High High High High High High High High High High High High High
## [781] High High High High High High High High High High High High High High High
## [796] High High High High High High High High High High High High High High High
## [811] High High High High High High High High High High High High High High High
## [826] High High High High High High High High High High High High High High High
## [841] High High High High High High High High High High High High High High High
## [856] High High High High High High High High High High High High High High High
## [871] High High High High High High High High High High High High High High High
## [886] High High High High High High High High High High High High High High High
## [901] High High High High High High High High High High High High High High High
## [916] High High High High High High High High High High High High High High High
## [931] High High High High High High High High High High High High High High High
## [946] High High High High High High
## Levels: Low Mid High
## 
## $proby
## NULL
## 
## $yhat
##   [1] Low  Low  Mid  Mid  Low  Mid  Low  High Low  Low  Low  Low  Low  Low  Mid 
##  [16] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [31] High High High Low  Low  Low  High Low  Low  Low  Low  Low  Low  Low  Low 
##  [46] Low  High Low  Low  Low  Low  High Low  Low  Low  Low  Mid  Low  Low  Low 
##  [61] High High Low  Low  Low  High Low  Low  High Low  Low  High Low  Mid  Low 
##  [76] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  High High Low  Low  Mid 
##  [91] Low  Low  Low  Low  Low  Low  High Low  Low  Low  Low  Low  High Low  Low 
## [106] Low  Low  Low  Mid  Low  Low  Low  High Low  Low  Low  High Low  Low  Low 
## [121] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [136] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [151] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  High Low  Mid  Low  Low 
## [166] Mid  Low  Mid  High Low  Low  High Low  Low  High Low  Low  Low  Low  Low 
## [181] Low  Low  Low  Low  Low  Low  High Low  Low  Low  Low  Low  Low  Low  Low 
## [196] Low  Low  Mid  High Low  Mid  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [211] Low  Low  Low  Low  Low  Low  Low  Low  High Low  High Low  Low  Low  Low 
## [226] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [241] High Low  Low  Low  Low  Low  Low  High High Low  Mid  Low  High Low  Low 
## [256] High Mid  High High Low  Low  High High Low  High High Low  High Low  Mid 
## [271] Low  Low  High Low  High Low  Low  Mid  Low  Low  Mid  Low  Mid  Low  Low 
## [286] Low  Low  Low  Low  Low  High Low  Low  Mid  Low  Low  Mid  Low  Low  High
## [301] Mid  Mid  Mid  Low  Mid  Low  Low  Low  Low  Low  High Low  High High Mid 
## [316] Low  High Low  Low  Low  Low  Low  Low  High Mid  Low  Mid  Low  High Low 
## [331] Low  Low  Low  Low  Mid  High Low  Low  Low  Low  High Mid  Low  Low  Low 
## [346] Mid  Low  Low  Mid  Low  High Mid  Mid  Low  High Mid  Low  High Mid  Low 
## [361] Mid  Low  Low  High Low  Low  Low  High Low  Low  Low  Low  Low  Low  Low 
## [376] Low  Low  Low  High High Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [391] Low  Low  Mid  Low  Mid  High Low  High Low  Low  Low  Mid  Low  High Mid 
## [406] Mid  Mid  High Low  Low  Low  Low  Mid  High Mid  Low  Low  Low  Low  Low 
## [421] Mid  Low  Low  Low  Low  Low  High Low  Low  Low  Low  Low  High Low  High
## [436] Low  Low  Low  High Low  Low  Low  Low  High High Low  High Mid  Low  Low 
## [451] High Low  Low  Low  Low  Low  High Low  Low  Low  Low  Mid  Low  Low  High
## [466] High Low  Low  High Low  Low  Low  Low  Low  Low  Mid  Mid  High Low  High
## [481] Mid  Mid  Low  High Mid  High Mid  High High Low  High Mid  High Low  Mid 
## [496] Low  Mid  Low  High Mid  Mid  Low  High High Mid  Low  Mid  Mid  High High
## [511] Low  High Mid  Mid  Mid  High High High Mid  High High Mid  Low  Low  High
## [526] High High High High Low  High High Mid  Mid  Mid  Low  High Mid  High Low 
## [541] Mid  Low  High Mid  Mid  Low  High Mid  High Low  Low  High Low  Low  High
## [556] High Low  Mid  High Mid  Mid  High Low  Low  Mid  High High High Mid  High
## [571] Mid  Low  Mid  Mid  Low  Low  Mid  Low  High High High Low  High Low  Mid 
## [586] Mid  Mid  Mid  High High Low  Low  Low  Low  Mid  High Mid  Low  Low  Mid 
## [601] Low  Mid  Low  Low  Mid  Low  High Low  Low  High Low  Mid  Mid  Mid  Low 
## [616] Low  Low  High Mid  Mid  Mid  High High Mid  Mid  Mid  Low  Mid  High Mid 
## [631] Mid  High Mid  Low  Mid  Low  Low  Low  Mid  Low  High Mid  High High Low 
## [646] High High Mid  High High High High Mid  High High High Mid  High Mid  Mid 
## [661] Mid  High High Mid  Low  High High Low  Low  High Low  Low  Low  Mid  Mid 
## [676] High Low  High Mid  Low  High High Low  High High High Low  Mid  Low  High
## [691] High Mid  High Low  Low  Low  Low  High Low  Low  Mid  High Low  High Mid 
## [706] Mid  Mid  High Low  Mid  Low  Mid  Mid  Low  High High High High High High
## [721] High High High High High High High High High High High High High Mid  High
## [736] High Mid  High High High High High Mid  Mid  High High High High High High
## [751] High High High High High High Mid  High High High High High High High High
## [766] High Mid  High High High High High High High High High High High Mid  High
## [781] High High High High Mid  High Mid  Mid  High High High High High High High
## [796] High High High High High High Mid  Mid  Low  Low  Mid  High Mid  High High
## [811] Mid  High Mid  High Low  High Mid  Mid  High High High High High High Mid 
## [826] High Low  Mid  High High High Mid  Mid  High Mid  Mid  Mid  Mid  High High
## [841] High Mid  Mid  Mid  High Low  High Mid  Mid  Mid  Mid  High Mid  High High
## [856] Mid  High Mid  High Mid  Low  Mid  High High High Mid  High High Mid  Low 
## [871] High Mid  High High High High High High High High High High High Low  High
## [886] High High High High High Mid  Mid  High Mid  High High High High High High
## [901] High High High Mid  High High High High Mid  High High High High High High
## [916] High High High High Mid  High High High High High High High Low  High High
## [931] High High Mid  Mid  Mid  High High Low  High High Mid  High Low  Mid  Low 
## [946] Mid  Mid  Mid  High High High
## Levels: Low Mid High
## 
## $prob
##              Low         Mid         High
## 1   0.7764453127 0.207248682 1.630601e-02
## 2   0.9432003180 0.056058391 7.412915e-04
## 3   0.2927242160 0.487997757 2.192780e-01
## 4   0.3217539050 0.402775122 2.754710e-01
## 5   0.6191613241 0.323408321 5.743036e-02
## 6   0.2324834089 0.447145513 3.203711e-01
## 7   0.9967636049 0.003230878 5.516706e-06
## 8   0.0696509453 0.288480037 6.418690e-01
## 9   0.9480374682 0.049992194 1.970337e-03
## 10  0.6325734687 0.340294762 2.713177e-02
## 11  0.7668599844 0.220606130 1.253389e-02
## 12  0.8957154527 0.094553468 9.731079e-03
## 13  0.6802977084 0.290763357 2.893893e-02
## 14  0.9660161845 0.033235500 7.483158e-04
## 15  0.3297217458 0.519757142 1.505211e-01
## 16  0.7320439606 0.250913268 1.704277e-02
## 17  0.5604531271 0.415950378 2.359649e-02
## 18  0.9937905994 0.006181845 2.755535e-05
## 19  0.8196395066 0.148871186 3.148931e-02
## 20  0.7148148871 0.262803498 2.238162e-02
## 21  0.9911483884 0.008786075 6.553702e-05
## 22  0.9190251648 0.079389582 1.585253e-03
## 23  0.8264591955 0.169094388 4.446416e-03
## 24  0.5438145070 0.371974838 8.421065e-02
## 25  0.6051165331 0.380873133 1.401033e-02
## 26  0.6849122281 0.306792208 8.295564e-03
## 27  0.9121300047 0.086666806 1.203190e-03
## 28  0.7691150361 0.219229953 1.165501e-02
## 29  0.4807451379 0.458188116 6.106675e-02
## 30  0.8473849503 0.144323273 8.291777e-03
## 31  0.0466986553 0.271788638 6.815127e-01
## 32  0.0138729363 0.140840268 8.452868e-01
## 33  0.0760742887 0.301608588 6.223171e-01
## 34  0.7256760351 0.249507143 2.481682e-02
## 35  0.7919686162 0.201776962 6.254422e-03
## 36  0.6753088204 0.270244691 5.444649e-02
## 37  0.0760742887 0.301608588 6.223171e-01
## 38  0.8151940155 0.153268179 3.153781e-02
## 39  0.7378122881 0.239751622 2.243609e-02
## 40  0.8420402741 0.154193503 3.766223e-03
## 41  0.9312215169 0.064342050 4.436433e-03
## 42  0.8868960592 0.109740774 3.363166e-03
## 43  0.9312979417 0.066379625 2.322433e-03
## 44  0.9949801501 0.005011460 8.389417e-06
## 45  0.6228086196 0.324695382 5.249600e-02
## 46  0.9490673017 0.050291230 6.414682e-04
## 47  0.0396191127 0.254567810 7.058131e-01
## 48  0.6692642819 0.301232345 2.950337e-02
## 49  0.9800182670 0.019678784 3.029489e-04
## 50  0.9610222293 0.038012900 9.648705e-04
## 51  0.7999821542 0.183970436 1.604741e-02
## 52  0.0255906435 0.209479285 7.649301e-01
## 53  0.9784431423 0.021119159 4.376990e-04
## 54  0.5039085361 0.394611905 1.014796e-01
## 55  0.8617710830 0.128297677 9.931240e-03
## 56  0.9003680031 0.091603902 8.028095e-03
## 57  0.4399263783 0.505845218 5.422840e-02
## 58  0.7337331400 0.253357398 1.290946e-02
## 59  0.9745557761 0.025221611 2.226133e-04
## 60  0.9905012926 0.009466060 3.264744e-05
## 61  0.0597475899 0.268068293 6.721841e-01
## 62  0.0609824184 0.284424598 6.545930e-01
## 63  0.8879863216 0.104356114 7.657564e-03
## 64  0.7839033342 0.199711756 1.638491e-02
## 65  0.5980710048 0.356330242 4.559875e-02
## 66  0.0304790357 0.153118591 8.164024e-01
## 67  0.9957173879 0.004275714 6.898117e-06
## 68  0.9761815340 0.023071206 7.472596e-04
## 69  0.0481948241 0.244427801 7.073774e-01
## 70  0.9406061347 0.058745143 6.487221e-04
## 71  0.6891647776 0.283235977 2.759925e-02
## 72  0.0734896119 0.328981992 5.975284e-01
## 73  0.7104846670 0.266985114 2.253022e-02
## 74  0.1389841239 0.444121973 4.168939e-01
## 75  0.9748384845 0.024619838 5.416776e-04
## 76  0.9656627652 0.032643554 1.693680e-03
## 77  0.8277367702 0.161002596 1.126063e-02
## 78  0.9637722164 0.035493666 7.341178e-04
## 79  0.7495968237 0.232722981 1.768020e-02
## 80  0.9399224476 0.058209519 1.868033e-03
## 81  0.9773829848 0.022318598 2.984170e-04
## 82  0.7198775656 0.255422067 2.470037e-02
## 83  0.9924055054 0.007576551 1.794408e-05
## 84  0.9251228943 0.073876696 1.000410e-03
## 85  0.7754604223 0.207413269 1.712631e-02
## 86  0.0539903492 0.290126744 6.558829e-01
## 87  0.0767605880 0.331787670 5.914517e-01
## 88  0.7450450993 0.224312852 3.064205e-02
## 89  0.9933761733 0.006618767 5.059984e-06
## 90  0.2405990514 0.478040850 2.813601e-01
## 91  0.7819793862 0.175469406 4.255121e-02
## 92  0.7614679712 0.225570825 1.296120e-02
## 93  0.6011080650 0.310751889 8.814005e-02
## 94  0.3894860278 0.383630735 2.268832e-01
## 95  0.8101813936 0.179527140 1.029147e-02
## 96  0.9386807004 0.059421356 1.897943e-03
## 97  0.0360731732 0.244193558 7.197333e-01
## 98  0.9912073162 0.008696431 9.625305e-05
## 99  0.9350962592 0.062297303 2.606438e-03
## 100 0.9823209083 0.017364783 3.143084e-04
## 101 0.9889480162 0.010915389 1.365946e-04
## 102 0.9616515305 0.038175771 1.726990e-04
## 103 0.0832888176 0.299637223 6.170740e-01
## 104 0.8922691446 0.103493431 4.237424e-03
## 105 0.7511638496 0.237606908 1.122924e-02
## 106 0.7648913073 0.189497011 4.561168e-02
## 107 0.8589476570 0.137012073 4.040270e-03
## 108 0.9466036662 0.050529013 2.867320e-03
## 109 0.1887166438 0.463267885 3.480155e-01
## 110 0.9332955900 0.065977434 7.269755e-04
## 111 0.8367976897 0.155481046 7.721264e-03
## 112 0.9057886030 0.089594856 4.616541e-03
## 113 0.1429663351 0.348984470 5.080492e-01
## 114 0.9604122503 0.039151558 4.361918e-04
## 115 0.9929974490 0.006936214 6.633672e-05
## 116 0.9710299622 0.028789036 1.810023e-04
## 117 0.0443502131 0.178112848 7.775369e-01
## 118 0.9882665458 0.011598866 1.345881e-04
## 119 0.8569729278 0.135384467 7.642606e-03
## 120 0.8742860245 0.121839151 3.874825e-03
## 121 0.9394911084 0.057621079 2.887813e-03
## 122 0.9883389114 0.011498622 1.624664e-04
## 123 0.8785033502 0.120013579 1.483071e-03
## 124 0.9907530095 0.009202725 4.426550e-05
## 125 0.9815158392 0.018168549 3.156122e-04
## 126 0.9950452992 0.004918713 3.598811e-05
## 127 0.9875340966 0.012380808 8.509568e-05
## 128 0.9719124122 0.027275948 8.116398e-04
## 129 0.9938935549 0.006045164 6.128078e-05
## 130 0.9276565639 0.070313601 2.029835e-03
## 131 0.8773927573 0.117026918 5.580324e-03
## 132 0.9950452992 0.004918713 3.598811e-05
## 133 0.8421375671 0.150309489 7.552944e-03
## 134 0.9790344851 0.020703599 2.619155e-04
## 135 0.8331157128 0.151739802 1.514448e-02
## 136 0.9930654326 0.006868130 6.643752e-05
## 137 0.9927935396 0.007122512 8.394840e-05
## 138 0.9309514632 0.064706775 4.341762e-03
## 139 0.9868836655 0.012948223 1.681120e-04
## 140 0.9061695419 0.090984474 2.845984e-03
## 141 0.9956700843 0.004294878 3.503802e-05
## 142 0.9930654326 0.006868130 6.643752e-05
## 143 0.9908668110 0.009017725 1.154638e-04
## 144 0.9956700843 0.004294878 3.503802e-05
## 145 0.9927935396 0.007122512 8.394840e-05
## 146 0.9826721821 0.017066067 2.617507e-04
## 147 0.9921709744 0.007714027 1.149989e-04
## 148 0.9563285277 0.042945488 7.259848e-04
## 149 0.9593753536 0.039751815 8.728314e-04
## 150 0.9912698349 0.008615226 1.149393e-04
## 151 0.9322754665 0.065845449 1.879085e-03
## 152 0.9592494040 0.040423153 3.274434e-04
## 153 0.9907629374 0.009087003 1.500595e-04
## 154 0.9943693728 0.005583078 4.754952e-05
## 155 0.9909214949 0.008955605 1.229002e-04
## 156 0.9119078299 0.085085759 3.006411e-03
## 157 0.9912373489 0.008636112 1.265390e-04
## 158 0.9933416252 0.006569663 8.871179e-05
## 159 0.9870485071 0.012643883 3.076095e-04
## 160 0.6035977749 0.344496737 5.190549e-02
## 161 0.0692864852 0.325057750 6.056558e-01
## 162 0.9015515391 0.090538176 7.910285e-03
## 163 0.3761275660 0.464125576 1.597469e-01
## 164 0.9317909389 0.064343630 3.865431e-03
## 165 0.8637976128 0.127990629 8.211758e-03
## 166 0.2810675420 0.531649166 1.872833e-01
## 167 0.6522733629 0.298082547 4.964409e-02
## 168 0.2893418207 0.597083370 1.135748e-01
## 169 0.0995027822 0.393901125 5.065961e-01
## 170 0.9557778183 0.043631097 5.910846e-04
## 171 0.9705935953 0.028542962 8.634423e-04
## 172 0.0351727396 0.230779895 7.340474e-01
## 173 0.8918472756 0.107295519 8.572050e-04
## 174 0.8222267710 0.173307318 4.465911e-03
## 175 0.1364108021 0.361115625 5.024736e-01
## 176 0.8847299072 0.112973009 2.297084e-03
## 177 0.9434088909 0.055199731 1.391379e-03
## 178 0.7586387390 0.204313466 3.704780e-02
## 179 0.8171555015 0.152275561 3.056894e-02
## 180 0.9366158956 0.061167041 2.217064e-03
## 181 0.9006256128 0.097817583 1.556804e-03
## 182 0.9685883169 0.029976481 1.435202e-03
## 183 0.7713922950 0.213800083 1.480762e-02
## 184 0.9875144531 0.012399692 8.585506e-05
## 185 0.6702391892 0.291294525 3.846629e-02
## 186 0.9870589824 0.012811592 1.294257e-04
## 187 0.0622267661 0.310496226 6.272770e-01
## 188 0.9418629933 0.056771113 1.365894e-03
## 189 0.9740744295 0.025842019 8.355134e-05
## 190 0.6008069556 0.386834848 1.235820e-02
## 191 0.9433393584 0.053536025 3.124616e-03
## 192 0.8367874305 0.157317782 5.894787e-03
## 193 0.6248177744 0.328714038 4.646819e-02
## 194 0.8896561423 0.101394040 8.949818e-03
## 195 0.7795566409 0.206166155 1.427720e-02
## 196 0.9301601570 0.066660014 3.179829e-03
## 197 0.9018255767 0.095923613 2.250810e-03
## 198 0.2749775089 0.442465143 2.825573e-01
## 199 0.1696251520 0.378371533 4.520033e-01
## 200 0.9711662709 0.028127235 7.064938e-04
## 201 0.4026526858 0.495274811 1.020725e-01
## 202 0.9558115307 0.043317776 8.706932e-04
## 203 0.9644486664 0.035200609 3.507244e-04
## 204 0.9657054830 0.034149088 1.454286e-04
## 205 0.8773370970 0.112363919 1.029898e-02
## 206 0.8025637447 0.177209983 2.022627e-02
## 207 0.9310614197 0.068327034 6.115460e-04
## 208 0.9783039711 0.021248903 4.471259e-04
## 209 0.8402812176 0.151319130 8.399652e-03
## 210 0.8469803629 0.143077365 9.942273e-03
## 211 0.9927182212 0.007211335 7.044355e-05
## 212 0.9394911084 0.057621079 2.887813e-03
## 213 0.9913665340 0.008520562 1.129037e-04
## 214 0.9774874999 0.022382659 1.298410e-04
## 215 0.9172414118 0.079039534 3.719054e-03
## 216 0.9938935549 0.006045164 6.128078e-05
## 217 0.9899862154 0.009961224 5.256054e-05
## 218 0.9150935573 0.083783789 1.122654e-03
## 219 0.1111224607 0.326790838 5.620867e-01
## 220 0.9900347541 0.009842998 1.222483e-04
## 221 0.0617740224 0.202324551 7.359014e-01
## 222 0.9489857641 0.049386920 1.627316e-03
## 223 0.9159861057 0.081387856 2.626039e-03
## 224 0.9948708720 0.005083016 4.611249e-05
## 225 0.9418065358 0.056744608 1.448856e-03
## 226 0.8773927573 0.117026918 5.580324e-03
## 227 0.9930584726 0.006860573 8.095458e-05
## 228 0.9943693728 0.005583078 4.754952e-05
## 229 0.9675144761 0.031866669 6.188554e-04
## 230 0.9004992357 0.095474163 4.026601e-03
## 231 0.9885185215 0.011317636 1.638421e-04
## 232 0.9943213130 0.005609887 6.879970e-05
## 233 0.7457866578 0.244589505 9.623837e-03
## 234 0.8957154527 0.094553468 9.731079e-03
## 235 0.3964712142 0.369140282 2.343885e-01
## 236 0.9259306603 0.072674406 1.394934e-03
## 237 0.9807258628 0.019046799 2.273383e-04
## 238 0.9193838696 0.076289776 4.326355e-03
## 239 0.9066308923 0.089792742 3.576365e-03
## 240 0.9828112908 0.017067742 1.209674e-04
## 241 0.0057074699 0.097204311 8.970882e-01
## 242 0.6659946186 0.298895408 3.510997e-02
## 243 0.5626356611 0.364484235 7.288010e-02
## 244 0.6613784365 0.333146771 5.474793e-03
## 245 0.8953214444 0.101607356 3.071200e-03
## 246 0.6721981232 0.302244501 2.555738e-02
## 247 0.5528742023 0.438166237 8.959561e-03
## 248 0.0392123302 0.248070396 7.127173e-01
## 249 0.0353055280 0.252742955 7.119515e-01
## 250 0.8035210025 0.182070056 1.440894e-02
## 251 0.1002452752 0.450761701 4.489930e-01
## 252 0.7616741344 0.229444820 8.881046e-03
## 253 0.0363423268 0.225970037 7.376876e-01
## 254 0.7624158897 0.223062564 1.452155e-02
## 255 0.9251889005 0.073944987 8.661125e-04
## 256 0.0224447347 0.200477323 7.770779e-01
## 257 0.1792839865 0.604580608 2.161354e-01
## 258 0.0224145494 0.186687648 7.908978e-01
## 259 0.0154912056 0.169360861 8.151479e-01
## 260 0.6814832900 0.285787696 3.272901e-02
## 261 0.7032219763 0.291194248 5.583775e-03
## 262 0.0118025686 0.138174345 8.500231e-01
## 263 0.0066098578 0.106971923 8.864182e-01
## 264 0.7244282649 0.247547255 2.802448e-02
## 265 0.0527589011 0.273863039 6.733781e-01
## 266 0.0233341009 0.188510500 7.881554e-01
## 267 0.6100546315 0.336564869 5.338050e-02
## 268 0.0361335010 0.223211765 7.406547e-01
## 269 0.5022938114 0.442005665 5.570052e-02
## 270 0.3117496909 0.515810818 1.724395e-01
## 271 0.6934953448 0.280994161 2.551049e-02
## 272 0.7666992464 0.224488928 8.811826e-03
## 273 0.0282689022 0.224123707 7.476074e-01
## 274 0.7493321800 0.234536113 1.613171e-02
## 275 0.0325995322 0.214102108 7.532984e-01
## 276 0.6312047132 0.318586338 5.020895e-02
## 277 0.9058790654 0.091265879 2.855055e-03
## 278 0.2765414232 0.611789145 1.116694e-01
## 279 0.7561464257 0.222882330 2.097124e-02
## 280 0.7094722380 0.254580930 3.594683e-02
## 281 0.2612881720 0.552809569 1.859023e-01
## 282 0.9398537927 0.059226177 9.200302e-04
## 283 0.2493693072 0.524281787 2.263489e-01
## 284 0.9165695155 0.081898630 1.531855e-03
## 285 0.7447961388 0.237949897 1.725396e-02
## 286 0.5954873699 0.394537613 9.975017e-03
## 287 0.7030868270 0.282114460 1.479871e-02
## 288 0.6999463624 0.257457516 4.259612e-02
## 289 0.8923378078 0.105292388 2.369804e-03
## 290 0.8270623221 0.167840436 5.097242e-03
## 291 0.0144207344 0.143137620 8.424416e-01
## 292 0.5922201465 0.399228615 8.551239e-03
## 293 0.5928393645 0.342267524 6.489311e-02
## 294 0.3023080936 0.567578721 1.301132e-01
## 295 0.5614191348 0.419146415 1.943445e-02
## 296 0.6723363159 0.322520019 5.143665e-03
## 297 0.3132331629 0.516793971 1.699729e-01
## 298 0.8421904397 0.150372197 7.437363e-03
## 299 0.6441666070 0.326841776 2.899162e-02
## 300 0.0155778200 0.115341104 8.690811e-01
## 301 0.3889171953 0.507796854 1.032860e-01
## 302 0.2664302878 0.534964910 1.986048e-01
## 303 0.2566844102 0.588044166 1.552714e-01
## 304 0.9035610329 0.095671425 7.675426e-04
## 305 0.4470259699 0.522554835 3.041919e-02
## 306 0.8288324953 0.159009787 1.215772e-02
## 307 0.8980981796 0.097637752 4.264069e-03
## 308 0.8858072120 0.110506629 3.686159e-03
## 309 0.8980981796 0.097637752 4.264069e-03
## 310 0.9128209720 0.078287840 8.891188e-03
## 311 0.0421270398 0.261291791 6.965812e-01
## 312 0.9131605937 0.085333696 1.505710e-03
## 313 0.0983752740 0.329457064 5.721677e-01
## 314 0.0281706193 0.210214636 7.616147e-01
## 315 0.2868126676 0.573227791 1.399595e-01
## 316 0.6449132667 0.303174536 5.191220e-02
## 317 0.0168685720 0.178061741 8.050697e-01
## 318 0.9599899523 0.039523559 4.864883e-04
## 319 0.5685225950 0.401021940 3.045546e-02
## 320 0.6508580100 0.302730778 4.641121e-02
## 321 0.6819986480 0.300042470 1.795888e-02
## 322 0.8782387419 0.118324462 3.436796e-03
## 323 0.4802434372 0.466506134 5.325043e-02
## 324 0.0074208937 0.114230934 8.783482e-01
## 325 0.3063326187 0.534450474 1.592169e-01
## 326 0.8469685143 0.142399691 1.063179e-02
## 327 0.3190660556 0.533326891 1.476071e-01
## 328 0.6132182619 0.333560285 5.322145e-02
## 329 0.0148299866 0.160318087 8.248519e-01
## 330 0.7953110009 0.192134505 1.255449e-02
## 331 0.6760652193 0.314396643 9.538137e-03
## 332 0.5993236406 0.363151971 3.752439e-02
## 333 0.7522117924 0.237636575 1.015163e-02
## 334 0.8238293172 0.167386974 8.783709e-03
## 335 0.3913801639 0.521138279 8.748156e-02
## 336 0.1351862700 0.380672097 4.841416e-01
## 337 0.5429098630 0.446379554 1.071058e-02
## 338 0.6474967241 0.331548573 2.095470e-02
## 339 0.5382803026 0.424564449 3.715525e-02
## 340 0.7489855655 0.228368628 2.264581e-02
## 341 0.0488233228 0.268708803 6.824679e-01
## 342 0.3003574724 0.512534472 1.871081e-01
## 343 0.9505233832 0.049061889 4.147277e-04
## 344 0.7752053506 0.218732307 6.062342e-03
## 345 0.7561464257 0.222882330 2.097124e-02
## 346 0.3380873167 0.568400947 9.351174e-02
## 347 0.8151940155 0.153268179 3.153781e-02
## 348 0.9058790654 0.091265879 2.855055e-03
## 349 0.2067389800 0.526509540 2.667515e-01
## 350 0.9630965618 0.036417750 4.856882e-04
## 351 0.0406939918 0.246181310 7.131247e-01
## 352 0.2161418616 0.471995043 3.118631e-01
## 353 0.4257716451 0.534818435 3.940992e-02
## 354 0.9072489625 0.090837654 1.913384e-03
## 355 0.0450484317 0.234583862 7.203677e-01
## 356 0.1904952108 0.470208558 3.392962e-01
## 357 0.7910088163 0.204059524 4.931659e-03
## 358 0.0405778473 0.232828948 7.265932e-01
## 359 0.3819310569 0.543551019 7.451792e-02
## 360 0.9165307658 0.079297100 4.172134e-03
## 361 0.3297937356 0.510527430 1.596788e-01
## 362 0.7291405963 0.246423968 2.443544e-02
## 363 0.5411999392 0.445503639 1.329642e-02
## 364 0.0273220378 0.209609562 7.630684e-01
## 365 0.8675736350 0.128040675 4.385690e-03
## 366 0.7263260563 0.251136563 2.253738e-02
## 367 0.8107218221 0.178659402 1.061878e-02
## 368 0.0142265008 0.146569136 8.392044e-01
## 369 0.8208546913 0.172451450 6.693858e-03
## 370 0.9149704832 0.084730858 2.986587e-04
## 371 0.9129038444 0.082605964 4.490191e-03
## 372 0.6178032234 0.357871287 2.432549e-02
## 373 0.6249281404 0.323434494 5.163737e-02
## 374 0.9890128830 0.010934628 5.248897e-05
## 375 0.9590820099 0.040431373 4.866170e-04
## 376 0.9573087328 0.040010417 2.680851e-03
## 377 0.8171555015 0.152275561 3.056894e-02
## 378 0.8893560154 0.107414133 3.229851e-03
## 379 0.0338550241 0.236510947 7.296340e-01
## 380 0.0498225974 0.250561583 6.996158e-01
## 381 0.9338606968 0.064336518 1.802785e-03
## 382 0.5732975491 0.412518963 1.418349e-02
## 383 0.9483977193 0.047285043 4.317237e-03
## 384 0.9136495078 0.081717929 4.632563e-03
## 385 0.7101772263 0.260432997 2.938978e-02
## 386 0.5275477889 0.457406262 1.504595e-02
## 387 0.9064086941 0.091938710 1.652596e-03
## 388 0.9675300132 0.032362768 1.072184e-04
## 389 0.5414124804 0.438473142 2.011438e-02
## 390 0.9152340390 0.083407948 1.358013e-03
## 391 0.8171555015 0.152275561 3.056894e-02
## 392 0.5905595471 0.377490695 3.194976e-02
## 393 0.2645909018 0.533250707 2.021584e-01
## 394 0.9505102038 0.048082551 1.407245e-03
## 395 0.3784875071 0.542396549 7.911594e-02
## 396 0.0378588686 0.247492233 7.146489e-01
## 397 0.5339372412 0.369482596 9.658016e-02
## 398 0.0880474486 0.261757731 6.501948e-01
## 399 0.5906550552 0.342945350 6.639959e-02
## 400 0.8061283684 0.184778685 9.092947e-03
## 401 0.5658571209 0.369703578 6.443930e-02
## 402 0.1349856026 0.465283261 3.997311e-01
## 403 0.5320179938 0.411592683 5.638932e-02
## 404 0.0254366027 0.190730039 7.838334e-01
## 405 0.4263222744 0.446068624 1.276091e-01
## 406 0.1368187856 0.483090034 3.800912e-01
## 407 0.3476883115 0.556973633 9.533806e-02
## 408 0.0223176545 0.186588598 7.910937e-01
## 409 0.7742731540 0.214558899 1.116795e-02
## 410 0.9327184612 0.066875289 4.062494e-04
## 411 0.8465578205 0.146980271 6.461908e-03
## 412 0.5794723926 0.410367821 1.015979e-02
## 413 0.2872599276 0.615606909 9.713316e-02
## 414 0.0207283702 0.173071007 8.062006e-01
## 415 0.1549098967 0.504138403 3.409517e-01
## 416 0.6241245231 0.320769930 5.510555e-02
## 417 0.5541824755 0.433086513 1.273101e-02
## 418 0.6090364843 0.336514096 5.444942e-02
## 419 0.5411811403 0.374668487 8.415037e-02
## 420 0.9250559047 0.073410236 1.533859e-03
## 421 0.2709414176 0.606297530 1.227611e-01
## 422 0.8368731978 0.150921257 1.220555e-02
## 423 0.9102543298 0.079014519 1.073115e-02
## 424 0.8157261419 0.175910056 8.363802e-03
## 425 0.8923583785 0.095585853 1.205577e-02
## 426 0.7659285907 0.222266682 1.180473e-02
## 427 0.0328307236 0.220894413 7.462749e-01
## 428 0.8378029499 0.149916535 1.228052e-02
## 429 0.4964849977 0.429182298 7.433270e-02
## 430 0.5747733112 0.382008453 4.321824e-02
## 431 0.7750341420 0.205833205 1.913265e-02
## 432 0.8521112138 0.136917485 1.097130e-02
## 433 0.0292603772 0.227800862 7.429388e-01
## 434 0.7582348136 0.232717511 9.047675e-03
## 435 0.0404223709 0.250932228 7.086454e-01
## 436 0.6209429676 0.332337141 4.671989e-02
## 437 0.8393398599 0.146736441 1.392370e-02
## 438 0.9111131560 0.078567615 1.031923e-02
## 439 0.0090922638 0.116941065 8.739667e-01
## 440 0.7949201563 0.183789707 2.129014e-02
## 441 0.9041245931 0.093877575 1.997832e-03
## 442 0.8480531758 0.146254503 5.692322e-03
## 443 0.9330254482 0.066468253 5.062987e-04
## 444 0.0283072248 0.219786228 7.519065e-01
## 445 0.0947260157 0.370263557 5.350104e-01
## 446 0.8455294720 0.148441455 6.029073e-03
## 447 0.0478306944 0.253010603 6.991587e-01
## 448 0.2683606273 0.474571541 2.570678e-01
## 449 0.8388418408 0.156864430 4.293729e-03
## 450 0.5570289265 0.353325342 8.964573e-02
## 451 0.0496212302 0.250859072 6.995197e-01
## 452 0.8241297392 0.166439197 9.431064e-03
## 453 0.7843367103 0.205510821 1.015247e-02
## 454 0.9512877666 0.048276592 4.356411e-04
## 455 0.9364742609 0.062978112 5.476274e-04
## 456 0.7997566511 0.184859355 1.538399e-02
## 457 0.0809037456 0.325975858 5.931204e-01
## 458 0.8211179021 0.172721500 6.160598e-03
## 459 0.8895826522 0.107251085 3.166263e-03
## 460 0.6723311362 0.298159313 2.950955e-02
## 461 0.5776967039 0.412670578 9.632718e-03
## 462 0.2119330016 0.515154793 2.729122e-01
## 463 0.9573087328 0.040010417 2.680851e-03
## 464 0.8904377859 0.101225117 8.337097e-03
## 465 0.0184941326 0.175225853 8.062800e-01
## 466 0.0137106122 0.156753941 8.295354e-01
## 467 0.9102063903 0.080101746 9.691864e-03
## 468 0.8262858255 0.168838263 4.875911e-03
## 469 0.0707174686 0.382729549 5.465530e-01
## 470 0.8549496422 0.139931557 5.118801e-03
## 471 0.8723541336 0.124757928 2.887938e-03
## 472 0.5829622187 0.340166698 7.687108e-02
## 473 0.8664195986 0.129061443 4.518958e-03
## 474 0.9931894293 0.006790000 2.057027e-05
## 475 0.5392522308 0.421608426 3.913934e-02
## 476 0.1653288132 0.446509753 3.881614e-01
## 477 0.2748360324 0.553609475 1.715545e-01
## 478 0.0108310834 0.130969215 8.581997e-01
## 479 0.7551546540 0.228975731 1.586962e-02
## 480 0.0074312170 0.082615642 9.099531e-01
## 481 0.1629257806 0.472807506 3.642667e-01
## 482 0.3523050678 0.543075402 1.046195e-01
## 483 0.7826034651 0.207467122 9.929413e-03
## 484 0.0059926704 0.077172236 9.168351e-01
## 485 0.1706043658 0.490889216 3.385064e-01
## 486 0.0161179089 0.165021136 8.188610e-01
## 487 0.2700076950 0.553832515 1.761598e-01
## 488 0.0160372463 0.150992145 8.329706e-01
## 489 0.0306581007 0.262325681 7.070162e-01
## 490 0.6036832102 0.339349518 5.696727e-02
## 491 0.0154123391 0.156142454 8.284452e-01
## 492 0.2167222509 0.592988063 1.902897e-01
## 493 0.0008219878 0.033825233 9.653528e-01
## 494 0.4528066863 0.448931149 9.826216e-02
## 495 0.2050893113 0.634437632 1.604731e-01
## 496 0.8700827939 0.126105460 3.811746e-03
## 497 0.1003989903 0.463223190 4.363778e-01
## 498 0.5957473003 0.315686638 8.856606e-02
## 499 0.0085564665 0.079190855 9.122527e-01
## 500 0.1471755135 0.514929442 3.378950e-01
## 501 0.4309876451 0.489065353 7.994700e-02
## 502 0.8731520407 0.117674721 9.173239e-03
## 503 0.0080904830 0.096664430 8.952451e-01
## 504 0.0237845658 0.191700641 7.845148e-01
## 505 0.1532683295 0.534150526 3.125811e-01
## 506 0.5700557425 0.406759504 2.318475e-02
## 507 0.2089480879 0.617087054 1.739649e-01
## 508 0.1640561567 0.603507914 2.324359e-01
## 509 0.0157630284 0.159233739 8.250032e-01
## 510 0.0195820159 0.165350513 8.150675e-01
## 511 0.6642741664 0.314753336 2.097250e-02
## 512 0.0052374143 0.063561617 9.312010e-01
## 513 0.2610471177 0.601099624 1.378533e-01
## 514 0.2535295683 0.682881316 6.358912e-02
## 515 0.4327510228 0.474153255 9.309572e-02
## 516 0.0490340556 0.301949670 6.490163e-01
## 517 0.0139310587 0.152055542 8.340134e-01
## 518 0.0078549574 0.101767082 8.903780e-01
## 519 0.3938535610 0.519056538 8.708990e-02
## 520 0.0545444385 0.319303602 6.261520e-01
## 521 0.0135296257 0.158326379 8.281440e-01
## 522 0.4869035677 0.490560681 2.253575e-02
## 523 0.4227359226 0.368712123 2.085520e-01
## 524 0.6992129929 0.273938496 2.684851e-02
## 525 0.0303454110 0.202175710 7.674789e-01
## 526 0.0078186886 0.116967622 8.752137e-01
## 527 0.0226307283 0.196430433 7.809388e-01
## 528 0.0206252968 0.165099458 8.142752e-01
## 529 0.0177018423 0.138551440 8.437467e-01
## 530 0.6858440373 0.282982249 3.117371e-02
## 531 0.0070030859 0.110647268 8.823496e-01
## 532 0.0223877419 0.180394684 7.972176e-01
## 533 0.2245832977 0.664450184 1.109665e-01
## 534 0.4350322557 0.493586619 7.138112e-02
## 535 0.1942927926 0.583877307 2.218299e-01
## 536 0.5156177583 0.443706813 4.067543e-02
## 537 0.0089328935 0.116429444 8.746377e-01
## 538 0.2098090281 0.641266643 1.489243e-01
## 539 0.0194833937 0.327295913 6.532207e-01
## 540 0.5321522531 0.413357675 5.449007e-02
## 541 0.3193543131 0.590570389 9.007530e-02
## 542 0.5245102760 0.382760069 9.272966e-02
## 543 0.0089810945 0.090663705 9.003552e-01
## 544 0.2152956548 0.535299225 2.494051e-01
## 545 0.1527360772 0.616525608 2.307383e-01
## 546 0.8799612074 0.110137003 9.901790e-03
## 547 0.0164710777 0.144396500 8.391324e-01
## 548 0.1588151410 0.561522210 2.796626e-01
## 549 0.0171320415 0.144029816 8.388381e-01
## 550 0.8934779702 0.104345577 2.176452e-03
## 551 0.5443962477 0.332315908 1.232878e-01
## 552 0.0160842579 0.156004674 8.279111e-01
## 553 0.7503244554 0.231004431 1.867111e-02
## 554 0.4982956581 0.453592898 4.811144e-02
## 555 0.0126362303 0.156901847 8.304619e-01
## 556 0.0102808336 0.141700522 8.480186e-01
## 557 0.7335623370 0.231964036 3.447363e-02
## 558 0.2405499107 0.636117881 1.233322e-01
## 559 0.0112549593 0.120866028 8.678790e-01
## 560 0.4156737896 0.513370321 7.095589e-02
## 561 0.2121195890 0.593243529 1.946369e-01
## 562 0.0636382479 0.448984289 4.873775e-01
## 563 0.4964276920 0.385431660 1.181406e-01
## 564 0.5313355790 0.456257054 1.240737e-02
## 565 0.3805746576 0.521738727 9.768661e-02
## 566 0.0737875964 0.403490864 5.227215e-01
## 567 0.0153306127 0.161168784 8.235006e-01
## 568 0.0351586354 0.249892596 7.149488e-01
## 569 0.3243462634 0.623848385 5.180535e-02
## 570 0.0149679613 0.162047338 8.229847e-01
## 571 0.3798549238 0.552048880 6.809620e-02
## 572 0.7120052559 0.281296803 6.697941e-03
## 573 0.2910092646 0.452789439 2.562013e-01
## 574 0.2384652327 0.547384634 2.141501e-01
## 575 0.6857005124 0.290007580 2.429191e-02
## 576 0.4897168579 0.425297554 8.498559e-02
## 577 0.2922895398 0.592534419 1.151760e-01
## 578 0.7717882947 0.219424330 8.787375e-03
## 579 0.0131985169 0.151503092 8.352984e-01
## 580 0.0074909157 0.112606977 8.799021e-01
## 581 0.0148816137 0.130700267 8.544181e-01
## 582 0.9577309253 0.041880793 3.882815e-04
## 583 0.0103410833 0.089060059 9.005989e-01
## 584 0.7335623370 0.231964036 3.447363e-02
## 585 0.2102756601 0.606544072 1.831803e-01
## 586 0.1623809326 0.565720827 2.718982e-01
## 587 0.2259006732 0.515289186 2.588101e-01
## 588 0.3998776608 0.543802931 5.631941e-02
## 589 0.1126404517 0.436083961 4.512756e-01
## 590 0.0314784399 0.227753779 7.407678e-01
## 591 0.8211909329 0.169465589 9.343478e-03
## 592 0.5760360761 0.346394174 7.756975e-02
## 593 0.6803439349 0.293246943 2.640912e-02
## 594 0.6551895533 0.331528419 1.328203e-02
## 595 0.3601330732 0.603204844 3.666208e-02
## 596 0.0271138665 0.204550930 7.683352e-01
## 597 0.1964457324 0.544079085 2.594752e-01
## 598 0.5892318919 0.340983885 6.978422e-02
## 599 0.6005622220 0.340015806 5.942197e-02
## 600 0.3346674027 0.508383932 1.569487e-01
## 601 0.8417150830 0.151928143 6.356774e-03
## 602 0.2285961618 0.562458758 2.089451e-01
## 603 0.8856400044 0.110233363 4.126632e-03
## 604 0.6752395458 0.318210725 6.549729e-03
## 605 0.0453062827 0.509230873 4.454628e-01
## 606 0.6343375827 0.311761772 5.390064e-02
## 607 0.0256506889 0.194789477 7.795598e-01
## 608 0.5383789173 0.444382510 1.723857e-02
## 609 0.6789211865 0.275371758 4.570706e-02
## 610 0.2509389079 0.340756856 4.083042e-01
## 611 0.8363090038 0.162630753 1.060243e-03
## 612 0.2105588650 0.588734945 2.007062e-01
## 613 0.1486864210 0.607871388 2.434422e-01
## 614 0.2980320673 0.555214376 1.467536e-01
## 615 0.8393138571 0.145523461 1.516268e-02
## 616 0.6475658670 0.326555379 2.587875e-02
## 617 0.4781678929 0.444604801 7.722731e-02
## 618 0.0317594900 0.229142638 7.390979e-01
## 619 0.4362554183 0.488874552 7.487003e-02
## 620 0.2894590854 0.609702711 1.008382e-01
## 621 0.2282402130 0.628640669 1.431191e-01
## 622 0.0144076374 0.157839578 8.277528e-01
## 623 0.0287646393 0.207009643 7.642257e-01
## 624 0.2703811850 0.552478560 1.771403e-01
## 625 0.2001916686 0.505476767 2.943316e-01
## 626 0.2447245849 0.542873165 2.124022e-01
## 627 0.7878904847 0.188929946 2.317957e-02
## 628 0.2292754601 0.635116526 1.356080e-01
## 629 0.0234352644 0.188609408 7.879553e-01
## 630 0.2641285621 0.582496112 1.533753e-01
## 631 0.4886401309 0.495962278 1.539759e-02
## 632 0.0101383075 0.124463760 8.653979e-01
## 633 0.0682013150 0.566174421 3.656243e-01
## 634 0.6930417554 0.297718291 9.239953e-03
## 635 0.1514683074 0.617916385 2.306153e-01
## 636 0.9176690478 0.079903567 2.427385e-03
## 637 0.7838675609 0.202341812 1.379063e-02
## 638 0.5349043052 0.407304854 5.779084e-02
## 639 0.2263604184 0.537206931 2.364327e-01
## 640 0.5249950804 0.426691154 4.831377e-02
## 641 0.0077989212 0.121060601 8.711405e-01
## 642 0.1836073067 0.713267386 1.031253e-01
## 643 0.0099472862 0.134682166 8.553705e-01
## 644 0.2167214568 0.369237476 4.140411e-01
## 645 0.9508844552 0.048645920 4.696248e-04
## 646 0.0566531059 0.262889442 6.804575e-01
## 647 0.0088627571 0.128367087 8.627702e-01
## 648 0.4074554957 0.534081268 5.846324e-02
## 649 0.0080237921 0.093587763 8.983884e-01
## 650 0.0511566080 0.448807704 5.000357e-01
## 651 0.0328339676 0.219734389 7.474316e-01
## 652 0.0112206701 0.146627287 8.421520e-01
## 653 0.2323461147 0.674499049 9.315484e-02
## 654 0.0232142180 0.301525842 6.752599e-01
## 655 0.0061194817 0.105921244 8.879593e-01
## 656 0.0205078990 0.160255803 8.192363e-01
## 657 0.2792516427 0.493488132 2.272602e-01
## 658 0.0046746328 0.088407491 9.069179e-01
## 659 0.2936090513 0.660222184 4.616877e-02
## 660 0.4106398380 0.490526528 9.883363e-02
## 661 0.1499745623 0.489250809 3.607746e-01
## 662 0.1890152490 0.283512086 5.274727e-01
## 663 0.0156816973 0.154025138 8.302932e-01
## 664 0.1966346921 0.534548195 2.688171e-01
## 665 0.4703909797 0.392439065 1.371700e-01
## 666 0.0169178031 0.168124924 8.149573e-01
## 667 0.0048544047 0.093993914 9.011517e-01
## 668 0.5411121626 0.424376688 3.451115e-02
## 669 0.7934493436 0.192756901 1.379376e-02
## 670 0.0230802286 0.183261908 7.936579e-01
## 671 0.5879853418 0.374089210 3.792545e-02
## 672 0.7119087247 0.261064827 2.702645e-02
## 673 0.5603118045 0.347022090 9.266611e-02
## 674 0.3861134515 0.498820201 1.150663e-01
## 675 0.2499113878 0.582789084 1.672995e-01
## 676 0.0205571160 0.184971170 7.944717e-01
## 677 0.5587542866 0.358137159 8.310855e-02
## 678 0.0612587937 0.244634450 6.941068e-01
## 679 0.2043712651 0.716198946 7.942979e-02
## 680 0.4609395816 0.392665727 1.463947e-01
## 681 0.0171306910 0.165441890 8.174274e-01
## 682 0.0105460151 0.127944599 8.615094e-01
## 683 0.6777749347 0.280650083 4.157498e-02
## 684 0.0143041696 0.152646408 8.330494e-01
## 685 0.0766988907 0.303729228 6.195719e-01
## 686 0.0144493196 0.155344518 8.302062e-01
## 687 0.5304266993 0.396276132 7.329717e-02
## 688 0.4359090520 0.524936863 3.915409e-02
## 689 0.7520239672 0.236489374 1.148666e-02
## 690 0.0186636237 0.189221184 7.921152e-01
## 691 0.0163451180 0.162634955 8.210199e-01
## 692 0.2897296977 0.434058915 2.762114e-01
## 693 0.0064095735 0.100938908 8.926515e-01
## 694 0.7915600231 0.183477949 2.496203e-02
## 695 0.8175772495 0.173703987 8.718763e-03
## 696 0.5562938527 0.390475417 5.323073e-02
## 697 0.6752395458 0.318210725 6.549729e-03
## 698 0.0460135829 0.243845554 7.101409e-01
## 699 0.8386359448 0.149854261 1.150979e-02
## 700 0.7877266402 0.195908601 1.636476e-02
## 701 0.1113538964 0.537413948 3.512322e-01
## 702 0.1490976277 0.384944096 4.659583e-01
## 703 0.5036091208 0.437369149 5.902173e-02
## 704 0.0233691320 0.182276323 7.943545e-01
## 705 0.1879426651 0.556920275 2.551371e-01
## 706 0.4236761458 0.522958623 5.336523e-02
## 707 0.1112188920 0.659198795 2.295823e-01
## 708 0.0119827901 0.102919901 8.850973e-01
## 709 0.8086274828 0.184226155 7.146362e-03
## 710 0.2400118871 0.529544594 2.304435e-01
## 711 0.5626314800 0.364352110 7.301641e-02
## 712 0.4147832556 0.524106396 6.111035e-02
## 713 0.3408105120 0.537571276 1.216182e-01
## 714 0.6068220202 0.374203546 1.897443e-02
## 715 0.0007687289 0.041658545 9.575727e-01
## 716 0.0006114890 0.037684751 9.617038e-01
## 717 0.0010006486 0.041797442 9.572019e-01
## 718 0.0050393906 0.099532842 8.954278e-01
## 719 0.0004327323 0.031064449 9.685028e-01
## 720 0.0005082952 0.017327959 9.821637e-01
## 721 0.0065932316 0.110264275 8.831425e-01
## 722 0.0383198063 0.288275648 6.734045e-01
## 723 0.0371644474 0.291594566 6.712410e-01
## 724 0.0022852148 0.033756340 9.639584e-01
## 725 0.0015845543 0.046415344 9.520001e-01
## 726 0.0065312328 0.110929762 8.825390e-01
## 727 0.0107594784 0.146440634 8.427999e-01
## 728 0.0664601951 0.374777368 5.587624e-01
## 729 0.0901397464 0.436776710 4.730835e-01
## 730 0.0083715110 0.109213868 8.824146e-01
## 731 0.0188336265 0.165458157 8.157082e-01
## 732 0.0010503750 0.046976922 9.519727e-01
## 733 0.0979200010 0.411336260 4.907437e-01
## 734 0.1925833112 0.442469387 3.649473e-01
## 735 0.0470770854 0.306842959 6.460800e-01
## 736 0.0212656736 0.119934581 8.587997e-01
## 737 0.1669072043 0.493557053 3.395357e-01
## 738 0.0185121915 0.279245655 7.022422e-01
## 739 0.0017542647 0.055279288 9.429664e-01
## 740 0.0105395831 0.125179320 8.642811e-01
## 741 0.0022475254 0.057962237 9.397902e-01
## 742 0.0143726891 0.117717708 8.679096e-01
## 743 0.1687953102 0.485279513 3.459252e-01
## 744 0.2086920545 0.544653968 2.466540e-01
## 745 0.0202575281 0.147513610 8.322289e-01
## 746 0.0035169071 0.079784607 9.166985e-01
## 747 0.0011972666 0.038450878 9.603519e-01
## 748 0.0139449099 0.185956097 8.000990e-01
## 749 0.0028056368 0.063937280 9.332571e-01
## 750 0.0346167735 0.232193891 7.331893e-01
## 751 0.0021328709 0.058360158 9.395070e-01
## 752 0.0022416114 0.065680031 9.320784e-01
## 753 0.0116186907 0.126245057 8.621363e-01
## 754 0.0067629292 0.116234350 8.770027e-01
## 755 0.0011413859 0.030056093 9.688025e-01
## 756 0.0114305222 0.159253626 8.293159e-01
## 757 0.0946764408 0.482581792 4.227418e-01
## 758 0.1510231660 0.339619986 5.093568e-01
## 759 0.0123627547 0.137733038 8.499042e-01
## 760 0.0252996352 0.275069995 6.996304e-01
## 761 0.0013963610 0.042805971 9.557977e-01
## 762 0.0028206488 0.063466364 9.337130e-01
## 763 0.0617688577 0.377262733 5.609684e-01
## 764 0.0057930190 0.098236019 8.959710e-01
## 765 0.0151799720 0.151303356 8.335167e-01
## 766 0.0198711693 0.217168208 7.629606e-01
## 767 0.3394631426 0.412762438 2.477744e-01
## 768 0.0411750647 0.284390606 6.744343e-01
## 769 0.0044050985 0.082711866 9.128830e-01
## 770 0.0024451812 0.058674151 9.388807e-01
## 771 0.0116360419 0.149494179 8.388698e-01
## 772 0.0043661950 0.078149511 9.174843e-01
## 773 0.0036593997 0.064750546 9.315901e-01
## 774 0.0043908292 0.087313924 9.082952e-01
## 775 0.0021890031 0.047551723 9.502593e-01
## 776 0.1762669997 0.400072272 4.236607e-01
## 777 0.0021294245 0.046322921 9.515477e-01
## 778 0.0398250614 0.205863330 7.543116e-01
## 779 0.1872970463 0.492803927 3.198990e-01
## 780 0.0035309322 0.074295296 9.221738e-01
## 781 0.0019634040 0.069158259 9.288783e-01
## 782 0.0026106003 0.059751628 9.376378e-01
## 783 0.0753136120 0.351283842 5.734025e-01
## 784 0.0029051853 0.060828122 9.362667e-01
## 785 0.1583707637 0.485810977 3.558183e-01
## 786 0.0278371191 0.203012685 7.691502e-01
## 787 0.1513104762 0.505847408 3.428421e-01
## 788 0.3664390039 0.451370983 1.821900e-01
## 789 0.0892618694 0.388274710 5.224634e-01
## 790 0.0031276562 0.067558583 9.293138e-01
## 791 0.2121691606 0.282513076 5.053178e-01
## 792 0.0046677556 0.058500739 9.368315e-01
## 793 0.0374863203 0.262514534 6.999991e-01
## 794 0.0050428615 0.052864692 9.420924e-01
## 795 0.0017543806 0.047326463 9.509192e-01
## 796 0.0028816707 0.064846958 9.322714e-01
## 797 0.0426483912 0.225156969 7.321946e-01
## 798 0.0070891567 0.089186667 9.037242e-01
## 799 0.0038851733 0.086064859 9.100500e-01
## 800 0.0047253238 0.090597234 9.046774e-01
## 801 0.0044944416 0.078024538 9.174810e-01
## 802 0.2148970344 0.535980305 2.491227e-01
## 803 0.1705547153 0.597518529 2.319268e-01
## 804 0.7101978838 0.247998996 4.180312e-02
## 805 0.7677699088 0.207496898 2.473319e-02
## 806 0.1303489957 0.503239756 3.664112e-01
## 807 0.0047063960 0.068319469 9.269741e-01
## 808 0.1338134845 0.437293261 4.288933e-01
## 809 0.0052181572 0.074288442 9.204934e-01
## 810 0.0104967087 0.112987725 8.765156e-01
## 811 0.3213603160 0.459310273 2.193294e-01
## 812 0.0063565415 0.098218550 8.954249e-01
## 813 0.1180963314 0.528546176 3.533575e-01
## 814 0.0012315627 0.040354677 9.584138e-01
## 815 0.7220010072 0.231630737 4.636826e-02
## 816 0.0075941142 0.098933458 8.934724e-01
## 817 0.3565299710 0.515597354 1.278727e-01
## 818 0.0963899787 0.538016150 3.655939e-01
## 819 0.0035199725 0.059594166 9.368859e-01
## 820 0.0110422360 0.133258848 8.556989e-01
## 821 0.0182182304 0.157714843 8.240669e-01
## 822 0.0375611291 0.278728303 6.837106e-01
## 823 0.0086765963 0.117268776 8.740546e-01
## 824 0.0036504433 0.100950774 8.953988e-01
## 825 0.2187612236 0.614604168 1.666346e-01
## 826 0.0086430945 0.101371538 8.899854e-01
## 827 0.5873166742 0.342724887 6.995844e-02
## 828 0.2409984260 0.570909128 1.880924e-01
## 829 0.0205460647 0.139198479 8.402555e-01
## 830 0.0249653989 0.185011697 7.900229e-01
## 831 0.0051562343 0.099765099 8.950787e-01
## 832 0.3369400623 0.484722365 1.783376e-01
## 833 0.1418336404 0.482485863 3.756805e-01
## 834 0.0083431349 0.096528522 8.951283e-01
## 835 0.1249312170 0.527964908 3.471039e-01
## 836 0.1416773489 0.516259454 3.420632e-01
## 837 0.4009396199 0.496661976 1.023984e-01
## 838 0.1407702414 0.598699452 2.605303e-01
## 839 0.0891296653 0.408247593 5.026227e-01
## 840 0.0035404634 0.084711370 9.117482e-01
## 841 0.0095962390 0.107070951 8.833328e-01
## 842 0.1393887303 0.577638509 2.829728e-01
## 843 0.3667001929 0.524623366 1.086764e-01
## 844 0.1748567461 0.580912457 2.442308e-01
## 845 0.0132652801 0.131642398 8.550923e-01
## 846 0.5304766867 0.374004269 9.551904e-02
## 847 0.0083212565 0.111935951 8.797428e-01
## 848 0.1882179789 0.546610156 2.651719e-01
## 849 0.3440330250 0.494887278 1.610797e-01
## 850 0.3435996044 0.488143581 1.682568e-01
## 851 0.3450835587 0.429653341 2.252631e-01
## 852 0.0035367010 0.049026544 9.474368e-01
## 853 0.3681070653 0.480150619 1.517423e-01
## 854 0.0370960140 0.258414284 7.044897e-01
## 855 0.0024835101 0.042195811 9.553207e-01
## 856 0.1568505556 0.532790955 3.103585e-01
## 857 0.0897843101 0.359434642 5.507810e-01
## 858 0.3290326812 0.437420823 2.335465e-01
## 859 0.0121004871 0.124452205 8.634473e-01
## 860 0.3441030643 0.438540462 2.173565e-01
## 861 0.4458256815 0.426021275 1.281530e-01
## 862 0.2399667773 0.704562380 5.547084e-02
## 863 0.0095873935 0.118026654 8.723860e-01
## 864 0.0048155999 0.064829764 9.303546e-01
## 865 0.0523505136 0.444524623 5.031249e-01
## 866 0.2423082935 0.608039618 1.496521e-01
## 867 0.0080394089 0.105245008 8.867156e-01
## 868 0.0102766420 0.135065377 8.546580e-01
## 869 0.2030820902 0.642866904 1.540510e-01
## 870 0.6029682639 0.340131931 5.689981e-02
## 871 0.0122035708 0.146941996 8.408544e-01
## 872 0.1889018580 0.607825370 2.032728e-01
## 873 0.0144556237 0.139943981 8.456004e-01
## 874 0.0010218802 0.051327755 9.476504e-01
## 875 0.0078901604 0.122131756 8.699781e-01
## 876 0.0061022605 0.106158091 8.877396e-01
## 877 0.0043940889 0.068519369 9.270865e-01
## 878 0.0496743617 0.262905598 6.874200e-01
## 879 0.0511696660 0.295381543 6.534488e-01
## 880 0.0004597839 0.032905032 9.666352e-01
## 881 0.0015289714 0.058208506 9.402625e-01
## 882 0.0122027025 0.157818984 8.299783e-01
## 883 0.0045292351 0.091420838 9.040499e-01
## 884 0.5083167501 0.419871952 7.181130e-02
## 885 0.0135989287 0.096191148 8.902099e-01
## 886 0.0011986417 0.025848618 9.729527e-01
## 887 0.0022005938 0.061410847 9.363886e-01
## 888 0.0110589700 0.114397907 8.745431e-01
## 889 0.0363660234 0.233991883 7.296421e-01
## 890 0.0014527877 0.047312446 9.512348e-01
## 891 0.1450530115 0.456884151 3.980628e-01
## 892 0.1874995702 0.519799377 2.927011e-01
## 893 0.0061357888 0.091619721 9.022445e-01
## 894 0.3664390039 0.451370983 1.821900e-01
## 895 0.0054920837 0.093785285 9.007226e-01
## 896 0.0024409909 0.072082871 9.254761e-01
## 897 0.0033233915 0.070585823 9.260908e-01
## 898 0.0040349931 0.081522618 9.144424e-01
## 899 0.0047855926 0.072207791 9.230066e-01
## 900 0.0032900915 0.071046670 9.256632e-01
## 901 0.1057233570 0.433294201 4.609824e-01
## 902 0.0759738097 0.288980799 6.350454e-01
## 903 0.0076090667 0.110693417 8.816975e-01
## 904 0.1243465945 0.501115459 3.745379e-01
## 905 0.0412920664 0.407264961 5.514430e-01
## 906 0.0054254846 0.127155696 8.674188e-01
## 907 0.0210883759 0.297641982 6.812696e-01
## 908 0.0036272856 0.055413115 9.409596e-01
## 909 0.1146754301 0.553258666 3.320659e-01
## 910 0.0068639253 0.093281180 8.998549e-01
## 911 0.0045482724 0.059866029 9.355857e-01
## 912 0.0108657216 0.121384338 8.677499e-01
## 913 0.0058068391 0.092469166 9.017240e-01
## 914 0.0078637623 0.108981733 8.831545e-01
## 915 0.0017230239 0.035597784 9.626792e-01
## 916 0.0573551526 0.357394814 5.852500e-01
## 917 0.0061182890 0.085861888 9.080198e-01
## 918 0.0069728034 0.107096809 8.859304e-01
## 919 0.0017655123 0.056038788 9.421957e-01
## 920 0.2263180847 0.568030555 2.056514e-01
## 921 0.0132368269 0.231698387 7.550648e-01
## 922 0.0903765439 0.342500962 5.671225e-01
## 923 0.0046334787 0.068324474 9.270420e-01
## 924 0.0100116754 0.129584939 8.604034e-01
## 925 0.0058416203 0.086951387 9.072070e-01
## 926 0.0121101591 0.129245173 8.586447e-01
## 927 0.0113614614 0.171454207 8.171843e-01
## 928 0.4547381476 0.419403309 1.258585e-01
## 929 0.0085059349 0.096512675 8.949814e-01
## 930 0.0093663639 0.104624254 8.860094e-01
## 931 0.0436018997 0.328836870 6.275612e-01
## 932 0.0900512637 0.306190153 6.037586e-01
## 933 0.1141438423 0.515708769 3.701474e-01
## 934 0.3206249904 0.548015149 1.313599e-01
## 935 0.1673104595 0.537217626 2.954719e-01
## 936 0.0051605841 0.063672390 9.311670e-01
## 937 0.0071449519 0.111622094 8.812330e-01
## 938 0.7564343894 0.219180153 2.438546e-02
## 939 0.0098888218 0.123504745 8.666064e-01
## 940 0.0033706843 0.049524818 9.471045e-01
## 941 0.2285460856 0.486343239 2.851107e-01
## 942 0.0045493387 0.093179266 9.022714e-01
## 943 0.6225957015 0.324681430 5.272287e-02
## 944 0.1389685572 0.604352816 2.566786e-01
## 945 0.4654232602 0.346056002 1.885207e-01
## 946 0.2781426572 0.486200730 2.356566e-01
## 947 0.0787498050 0.506953693 4.142965e-01
## 948 0.1502072606 0.573983007 2.758097e-01
## 949 0.0122055426 0.134112863 8.536816e-01
## 950 0.0081979123 0.123910993 8.678911e-01
## 951 0.0082448737 0.105605556 8.861496e-01
## 
## $centroids
##                             Low           Mid          High
## FP001             -0.0495405931  0.1090290057 -0.0402546696
## FP002              0.2801751471  0.0165849639 -0.5158851975
## FP003              0.0078563015 -0.0035344404 -0.0097692701
## FP004             -0.0648109761  0.0684055754  0.0345041865
## FP005              0.2731140521  0.0216957451 -0.5093759174
## FP006             -0.1627379211  0.0693435844  0.2069081240
## FP007              0.0323329262  0.0002701702 -0.0576042226
## FP008              0.1438641781  0.0885286648 -0.3588531791
## FP009              0.3158384274 -0.0956520772 -0.4472758118
## FP010             -0.0936529426  0.0867477394  0.0640672042
## FP011             -0.1402545869 -0.0749100455  0.3364657738
## FP012             -0.0210648464 -0.0740248357  0.1242477922
## FP013              0.3525294156 -0.1899408956 -0.4015634316
## FP014              0.3395684771 -0.1781119853 -0.3924898252
## FP015             -0.1976219622  0.1382642134  0.1877834251
## FP016              0.0304048592 -0.0536234828  0.0090978040
## FP017              0.1365611023 -0.1183641883 -0.1029648357
## FP018              0.1376839830  0.0606487389 -0.3151645388
## FP019             -0.0077540769  0.0051859590  0.0076488151
## FP020             -0.0445786962  0.0443153029  0.0269455293
## FP021              0.0528734620  0.0734215166 -0.1798973339
## FP022             -0.0034575110  0.1334481845 -0.1505787512
## FP023              0.1102175774 -0.0302887859 -0.1597144362
## FP024             -0.0151339870  0.0129510086  0.0116061288
## FP025             -0.0467668980  0.0691933175  0.0016089486
## FP026              0.0681360502 -0.0102618675 -0.1086721367
## FP027             -0.1084091383  0.1346528946  0.0339582277
## FP028             -0.0330410659 -0.1267310204  0.2073585640
## FP029              0.0266586293  0.1649431170 -0.2409217295
## FP030             -0.0559439365 -0.1028859775  0.2199368984
## FP031              0.0314637892 -0.0284034730 -0.0223935897
## FP032             -0.0755646332  0.0699133333  0.0517868259
## FP033             -0.0611027270  0.0605857939  0.0371165343
## FP034              0.0507211678  0.0831446901 -0.1875016014
## FP035              0.1716134688 -0.1161755654 -0.1676401086
## FP036             -0.1267801812  0.1144709086  0.0902069304
## FP037              0.0724131488 -0.0543467273 -0.0644825340
## FP038             -0.0485162835  0.0075280165  0.0771204331
## FP039              0.1791849894 -0.0689076365 -0.2365607027
## FP040             -0.0851987139  0.0371891979  0.1072834351
## FP041              0.1546156832 -0.0559967849 -0.2081900689
## FP042             -0.0328312333  0.1362865919 -0.1018679207
## FP043              0.0631771150 -0.0248164337 -0.0827949268
## FP044              0.2702579940 -0.1928574044 -0.2523714440
## FP045              0.1143089560 -0.0426731214 -0.1524208750
## FP046              0.1929160057 -0.0096858247 -0.3304317263
## FP047              0.1027777588  0.1095909592 -0.3107898111
## FP048              0.0356271104  0.0416232557 -0.1120006536
## FP049              0.2711896254 -0.1351072812 -0.3218365538
## FP050              0.0885684851  0.0129510086 -0.1721322762
## FP051              0.1147803818  0.0571649374 -0.2704933623
## FP052             -0.0329886307  0.1483569779 -0.1157629852
## FP053              0.2173024748 -0.0907599935 -0.2784360108
## FP054              0.1652161806 -0.0857900077 -0.1919864604
## FP055             -0.0612914912  0.0599380542  0.0382116074
## FP056              0.1722025480 -0.0779685742 -0.2135493009
## FP057              0.0418962454  0.0660613571 -0.1518052317
## FP058              0.0111241582  0.0652418711 -0.0963214318
## FP059              0.1508474447 -0.0229008501 -0.2403772543
## FP060             -0.1341771708 -0.0091344161  0.2484593016
## FP061             -0.0133022161  0.0605785154 -0.0475671103
## FP062             -0.0697598332  0.0940192133  0.0131950681
## FP063             -0.0844748190  0.0819906984  0.0533916184
## FP064             -0.0465534477  0.0082942733  0.0727429162
## FP065              0.3609845772 -0.0491439703 -0.5818783024
## FP066             -0.0020183790  0.0101564044 -0.0083502682
## FP067             -0.0390175320  0.1060565259 -0.0554087580
## FP068             -0.0314512908  0.0634456422 -0.0187776580
## FP069              0.0416191755 -0.0247553163 -0.0446706780
## FP070              0.3288123264 -0.1371141337 -0.4215749524
## FP071              0.2861990861 -0.0944636164 -0.3961568727
## FP072             -0.2569932801  0.0797788596  0.3616544123
## FP073             -0.1389273057 -0.0136400374  0.2621663490
## FP074             -0.0486850322  0.0003568214  0.0858403664
## FP075             -0.0721072545  0.0834268735  0.0297925000
## FP076              0.4980955784 -0.2395438143 -0.6012278529
## FP077              0.0704821182 -0.0133349977 -0.1092201665
## FP078              0.0215714109  0.0998150277 -0.1554300635
## FP079              0.3463924370 -0.0474390705 -0.5580261977
## FP080             -0.0576264944 -0.0361518893  0.1445539328
## FP081              0.0783892425 -0.0540315582 -0.0754409775
## FP082              0.3373451696 -0.0707897921 -0.5145762500
## FP083             -0.1404314343  0.1872327477  0.0289516799
## FP084             -0.0317427006  0.0395285466  0.0098238775
## FP085              0.3053242542 -0.0835028923 -0.4429134357
## FP086              0.1058401125 -0.0810658241 -0.0923323645
## FP087              0.3032336017 -0.0208304868 -0.5128038180
## FP088             -0.1076777168 -0.0272410686  0.2227701556
## FP089              0.4204845046 -0.2368909117 -0.4668330103
## FP090              0.1059896126 -0.0124660380 -0.1731521819
## FP091              0.0051218023  0.0703430122 -0.0916766890
## FP092              0.3533487291 -0.1154490775 -0.4904888730
## FP093              0.1680405172 -0.0743315310 -0.2104459650
## FP094              0.0012198879  0.0295818332 -0.0368985516
## FP095             -0.0443233642 -0.0187168372  0.1005101304
## FP096              0.0513720002  0.0376624814 -0.1352461674
## FP097              0.2946913976 -0.1136762166 -0.3886425621
## FP098             -0.0576001198  0.0559791424  0.0363201404
## FP099              0.1732751361 -0.0276281220 -0.2745631725
## FP100             -0.0709402757  0.1217091201 -0.0172289761
## FP101             -0.0331847631  0.0502275852 -0.0001847002
## FP102              0.1329019255 -0.0187898594 -0.2134090953
## FP103              0.1223512151 -0.0162067364 -0.1977488069
## FP104              0.1057946875  0.0247158032 -0.2164684807
## FP105              0.1648155476 -0.0687444345 -0.2112927961
## FP106              0.0909285109  0.0434537458 -0.2121322996
## FP107              0.2794970133 -0.0848941402 -0.3955194316
## FP108             -0.0032188400  0.0259943560 -0.0248214028
## FP109              0.1016843506  0.0648812786 -0.2563511185
## FP110             -0.0694634130  0.0844639572  0.0238903629
## FP111              0.0237735643  0.1186459584 -0.1814444738
## FP112              0.3898869206 -0.2145986455 -0.4387979187
## FP113             -0.0797493581 -0.0120216185  0.1554153277
## FP114              0.0616511082  0.0872740433 -0.2117160889
## FP115              0.0285282062  0.0590950802 -0.1199396337
## FP116             -0.0306812229  0.0227790312  0.0276116861
## FP117              0.1079459529 -0.0054277915 -0.1848832236
## FP118             -0.0544320109 -0.0847289524  0.1959367726
## FP119             -0.0227834972  0.1422316930 -0.1266515179
## FP120             -0.0562343635 -0.0760781283  0.1889717158
## FP121              0.1166372655 -0.0466198703 -0.1519115730
## FP122              0.0060417352 -0.0231058378  0.0164279301
## FP123              0.1543668524 -0.0503089341 -0.2144282889
## FP124             -0.0326977684  0.0304138148  0.0222192427
## FP125             -0.0287478846  0.0288181575  0.0170946396
## FP126             -0.0020362867  0.0997908993 -0.1135739836
## FP127             -0.0655783019  0.1570342255 -0.0682105846
## FP128             -0.0613171651  0.0799142325  0.0147995920
## FP129              0.1268166278 -0.0539427273 -0.1613481670
## FP130              0.0694377724  0.0027845060 -0.1262985229
## FP131              0.0078940912  0.0881740094 -0.1175270607
## FP132             -0.1233145899  0.1130150563  0.0857762197
## FP133             -0.0203022685 -0.0075491446  0.0448360024
## FP134              0.1030500971  0.0635114509 -0.2571623738
## FP135              0.0078940912 -0.0394568627  0.0323465360
## FP136             -0.0117387541  0.0084287810  0.0109008422
## FP137              0.0922870893 -0.0301900697 -0.1280613999
## FP138              0.0773966331 -0.0958798158 -0.0245409729
## FP139              0.0339332602  0.0616344765 -0.1324981700
## FP140             -0.0564832745  0.1061227303 -0.0245409729
## FP141              0.1251015502  0.0546494492 -0.2858263736
## FP142              0.0322795178 -0.0786315376  0.0351426184
## FP143              0.0465668058  0.0399569321 -0.1294267131
## FP144             -0.0801030339 -0.0978425453  0.2568192356
## FP145             -0.0494448247 -0.0053262534  0.0938600409
## FP146              0.2078579157 -0.0948259367 -0.2569277589
## FP147             -0.0221295790 -0.0087288211  0.0494588655
## FP148             -0.0353880639  0.0037631561  0.0582810378
## FP149              0.2479928432 -0.1304327537 -0.2862260363
## FP150             -0.0145471113  0.0220318460 -0.0000970785
## FP151             -0.0183362123  0.1112803629 -0.0981858093
## FP152              0.0595244818  0.0873764120 -0.2080683748
## FP153              0.0766659123 -0.0266454363 -0.1045464153
## FP155              0.1875792705 -0.0922815457 -0.2239861869
## FP156              0.0815597691  0.0422583899 -0.1941292354
## FP157              0.0146415528 -0.0520809231  0.0352155942
## FP158             -0.0716815461  0.0599380542  0.0566205429
## FP159              0.0724131488  0.0974613140 -0.2427467484
## FP160              0.0075591303  0.1771453798 -0.2214103367
## FP161             -0.1721041991 -0.0248164337  0.3340727957
## FP162              0.2505609080  0.0341822504 -0.4840791892
## FP163             -0.0721622323  0.1145245134 -0.0066272370
## FP164              0.3096358948 -0.0047938109 -0.5429787494
## FP165             -0.0347078579  0.0830010210 -0.0359710938
## FP166              0.1669255120 -0.0130428989 -0.2804400550
## FP167             -0.0403232212  0.0613393521 -0.0005851502
## FP168              0.3362987807 -0.0102489808 -0.5838137668
## FP169              0.3279270138 -0.1785070432 -0.3713997580
## FP170              0.1173359826 -0.0644986000 -0.1321550239
## FP171             -0.0954292679  0.0196768916  0.1459740128
## FP172              0.3613894991 -0.2152947986 -0.3874891624
## FP173              0.1501296828 -0.0928300965 -0.1569894492
## FP174              0.0787146283  0.0115359455 -0.1530116964
## FP175              0.0104786270  0.0508047221 -0.0782245232
## FP176             -0.0006016742  0.0051859590 -0.0050236991
## FP177              0.0241569215  0.0842536392 -0.1417376987
## FP178              0.1246648132 -0.0024033416 -0.2180569691
## FP179              0.0649559914  0.0157532634 -0.1335866467
## FP180             -0.0589874279  0.0644474092  0.0288340867
## FP181              0.2012291565 -0.0543820416 -0.2926752367
## FP182             -0.0329874939 -0.0115099253  0.0719625259
## FP183             -0.0648415590  0.0610679976  0.0431746986
## FP184              0.2620896976 -0.1502219661 -0.2879646659
## FP185              0.1478416830 -0.0645777255 -0.1861116278
## FP186             -0.0244176229  0.0302019039  0.0077974530
## FP187              0.0091940870 -0.0617169270  0.0561826357
## FP188             -0.0759229295  0.0371891979  0.0908487465
## FP189              0.0810931354 -0.0228641665 -0.1168307455
## FP190              0.2167299638 -0.1161755654 -0.2475768030
## FP191             -0.0190530545  0.0008561968  0.0327524921
## FP192              0.0876178438 -0.0481068672 -0.0987492774
## FP193              0.2572219829 -0.1692052693 -0.2570485290
## FP194             -0.0213184372  0.1250513647 -0.1090728778
## FP195             -0.1471268054  0.1437464230  0.0918792871
## FP196              0.2099093138 -0.1231441547 -0.2273090506
## FP197              0.1945447303 -0.1721512518 -0.1425385709
## FP198             -0.0834021806 -0.1078835226  0.2744554689
## FP201             -0.0676456763  0.0493857448  0.0618611536
## FP202              0.1551879684 -0.0073284227 -0.2663540202
## FP203              0.0077804344  0.0616813081 -0.0862159987
## FP204              0.1003397095  0.0239904172 -0.2059516350
## FP205              0.1640452059 -0.0530136047 -0.2284002190
## FP206              0.1026221365  0.0154417343 -0.1999571083
## FP207              0.2099093138 -0.1231441547 -0.2273090506
## FP208              0.0144952907  0.0576566680 -0.0933872455
## MolWeight          0.6447051156 -0.2055105795 -0.9009526572
## NumBonds           0.5260886575 -0.2189290955 -0.6750328744
## NumMultBonds       0.4454402105 -0.1400358395 -0.6247835158
## NumRotBonds        0.2155583753 -0.0940739960 -0.2714542962
## NumDblBonds        0.0721770001  0.0706866433 -0.2108875482
## NumCarbon          0.6263248530 -0.2418993837 -0.8256563760
## NumNitrogen       -0.0297685707  0.0922561549 -0.0555905068
## NumOxygen         -0.0340683964 -0.0050668663  0.0663117361
## NumSulfer          0.1197176427  0.0258929341 -0.2425192273
## NumChlorine        0.3118792000 -0.1802282100 -0.3409453733
## NumHalogen         0.3385012880 -0.1813798078 -0.3867616779
## NumRings           0.4841073403 -0.2058863239 -0.6159668242
## HydrophilicFactor -0.2459914879  0.0447577535  0.3832859796
## SurfaceArea1      -0.0922543563  0.0548152435  0.0990867063
## SurfaceArea2      -0.0416827432  0.0439322001  0.0222643930
## attr(,"scaled:scale")
## y
##  Low  Mid High 
##  427  283  241 
## 
## $centroid.overall
##             FP001             FP002             FP003             FP004 
##     -4.705437e-16     -1.402958e-15      1.934217e-16      2.294172e-16 
##             FP005             FP006             FP007             FP008 
##     -6.214647e-16      9.907439e-16      5.334275e-17     -1.159012e-15 
##             FP009             FP010             FP011             FP012 
##     -4.640385e-17      6.791442e-16      1.633242e-15     -3.239596e-16 
##             FP013             FP014             FP015             FP016 
##     -3.102553e-15      1.393091e-15      9.418464e-16      1.322727e-16 
##             FP017             FP018             FP019             FP020 
##     -1.041810e-15      7.349807e-16     -8.597723e-17      3.003240e-17 
##             FP021             FP022             FP023             FP024 
##     -6.719343e-16     -5.159718e-16      7.218618e-16      1.539567e-16 
##             FP025             FP026             FP027             FP028 
##      9.313297e-17      3.960591e-16      1.052652e-15      2.733274e-16 
##             FP029             FP030             FP031             FP032 
##      1.552578e-16     -4.375840e-16      1.444157e-16      4.408366e-16 
##             FP033             FP034             FP035             FP036 
##     -1.088539e-16     -5.599904e-16     -7.623025e-16     -5.889386e-16 
##             FP037             FP038             FP039             FP040 
##     -3.302480e-16     -3.339343e-17      1.650589e-15     -4.930951e-16 
##             FP041             FP042             FP043             FP044 
##     -4.605691e-16     -2.959872e-17     -2.311519e-16      2.242997e-15 
##             FP045             FP046             FP047             FP048 
##     -5.824334e-16      6.767590e-16     -1.168770e-15     -3.003240e-17 
##             FP049             FP050             FP051             FP052 
##      1.516040e-15      2.675811e-16      1.824929e-15     -4.484260e-16 
##             FP053             FP054             FP055             FP056 
##      3.544474e-15     -5.811324e-16     -3.388132e-16      2.480546e-15 
##             FP057             FP058             FP059             FP060 
##      3.263449e-17      9.096456e-17      9.394612e-16     -1.858323e-16 
##             FP061             FP062             FP063             FP064 
##     -4.835542e-17      4.475587e-16     -6.871673e-16      2.346214e-16 
##             FP065             FP066             FP067             FP068 
##     -1.193056e-15      1.216475e-16      1.830133e-16      5.702903e-17 
##             FP069             FP070             FP071             FP072 
##      1.463673e-16     -2.798326e-15     -4.059253e-16      2.845814e-15 
##             FP073             FP074             FP075             FP076 
##     -1.244881e-15      4.247904e-16      3.881444e-17      2.500387e-15 
##             FP077             FP078             FP079             FP080 
##      1.773755e-16     -2.452465e-16      2.216543e-15     -9.141993e-16 
##             FP081             FP082             FP083             FP084 
##     -1.537399e-16      2.721564e-15     -1.080082e-15      1.494031e-16 
##             FP085             FP086             FP087             FP088 
##      2.658247e-15     -4.772658e-16      3.205335e-15     -6.761085e-16 
##             FP089             FP090             FP091             FP092 
##      3.053981e-15      7.472321e-16     -4.013716e-16     -4.147073e-15 
##             FP093             FP094             FP095             FP096 
##     -8.133685e-16      1.071192e-16      2.760379e-16     -7.285839e-17 
##             FP097             FP098             FP099             FP100 
##      1.474515e-16     -1.249001e-16     -1.209753e-15     -4.649059e-16 
##             FP101             FP102             FP103             FP104 
##     -4.039737e-16      5.848187e-16     -6.080206e-16      5.551115e-16 
##             FP105             FP106             FP107             FP108 
##     -6.364267e-16     -2.515349e-16      3.713176e-15     -1.448494e-16 
##             FP109             FP110             FP111             FP112 
##     -4.322714e-16      6.468350e-16     -2.294172e-16     -1.014813e-16 
##             FP113             FP114             FP115             FP116 
##      6.722053e-18      2.267067e-16     -1.387779e-16     -3.538836e-16 
##             FP117             FP118             FP119             FP120 
##      6.713380e-16      3.703635e-16     -1.642566e-16      7.003946e-16 
##             FP121             FP122             FP123             FP124 
##     -7.920097e-16      2.466560e-16      1.104694e-15     -2.550044e-16 
##             FP125             FP126             FP127             FP128 
##      1.130823e-16      3.947580e-16     -1.943974e-16      3.726403e-16 
##             FP129             FP130             FP131             FP132 
##      1.116837e-15     -3.095397e-16     -2.568475e-16      4.252241e-16 
##             FP133             FP134             FP135             FP136 
##     -2.671474e-16     -5.940344e-16     -9.757820e-19     -4.542807e-17 
##             FP137             FP138             FP139             FP140 
##     -4.975404e-16      4.098284e-16      9.028151e-16      3.577867e-16 
##             FP141             FP142             FP143             FP144 
##      1.451421e-15      9.887924e-17      4.093947e-16     -8.455693e-16 
##             FP145             FP146             FP147             FP148 
##     -6.356677e-16      4.588344e-16      1.076613e-16      5.798313e-16 
##             FP149             FP150             FP151             FP152 
##      1.992330e-15     -2.093594e-16     -4.627375e-16      7.657720e-16 
##             FP153             FP155             FP156             FP157 
##     -8.464366e-16      1.667937e-15     -1.018716e-15      2.547875e-17 
##             FP158             FP159             FP160             FP161 
##     -7.200187e-16     -1.192189e-15     -5.867702e-16      1.204332e-15 
##             FP162             FP163             FP164             FP165 
##     -2.772522e-15     -7.411606e-16      2.926045e-15      8.131516e-17 
##             FP166             FP167             FP168             FP169 
##     -2.318024e-16      7.153566e-16     -7.216450e-16      7.600257e-16 
##             FP170             FP171             FP172             FP173 
##     -7.988402e-16     -3.946496e-17     -4.204644e-15     -1.724207e-15 
##             FP174             FP175             FP176             FP177 
##      2.221530e-16      1.591609e-16     -1.883259e-16     -3.477036e-16 
##             FP178             FP179             FP180             FP181 
##     -8.611818e-16      9.161508e-17     -4.895173e-16      2.442057e-15 
##             FP182             FP183             FP184             FP185 
##      3.569194e-16     -5.906733e-16      8.999962e-16      3.469447e-17 
##             FP186             FP187             FP188             FP189 
##      1.147086e-16      2.629190e-16     -3.100818e-16      4.855057e-16 
##             FP190             FP191             FP192             FP193 
##     -1.207259e-15      1.779176e-16      3.508478e-16      1.484815e-15 
##             FP194             FP195             FP196             FP197 
##      3.686287e-18      3.113829e-16     -5.020940e-16     -4.578586e-16 
##             FP198             FP201             FP202             FP203 
##      5.053466e-16     -3.663519e-16      2.016616e-17     -7.578573e-17 
##             FP204             FP205             FP206             FP207 
##      3.733992e-16      8.880700e-16     -9.029236e-16     -1.758034e-15 
##             FP208         MolWeight          NumBonds      NumMultBonds 
##      1.240327e-16     -2.558717e-17     -1.849595e-15      8.025264e-16 
##       NumRotBonds       NumDblBonds         NumCarbon       NumNitrogen 
##      3.115455e-16     -1.962406e-16     -4.016969e-16     -2.404760e-16 
##         NumOxygen         NumSulfer       NumChlorine        NumHalogen 
##      1.578056e-16     -7.041893e-16     -2.754199e-15     -1.854203e-15 
##          NumRings HydrophilicFactor      SurfaceArea1      SurfaceArea2 
##     -8.287641e-16      5.627009e-17      2.384161e-16     -1.447410e-16 
## 
## $sd
##             FP001             FP002             FP003             FP004 
##          1.993552          1.943195          1.996058          1.994291 
##             FP005             FP006             FP007             FP008 
##          1.944985          1.983901          1.995429          1.973659 
##             FP009             FP010             FP011             FP012 
##          1.945605          1.992463          1.976252          1.993205 
##             FP013             FP014             FP015             FP016 
##          1.940743          1.944527          1.979840          1.995439 
##             FP017             FP018             FP019             FP020 
##          1.988426          1.978506          1.996061          1.995254 
##             FP021             FP022             FP023             FP024 
##          1.990529          1.990534          1.989959          1.995992 
##             FP025             FP026             FP027             FP028 
##          1.994879          1.993523          1.990577          1.987953 
##             FP029             FP030             FP031             FP032 
##          1.984432          1.987626          1.995679          1.993729 
##             FP033             FP034             FP035             FP036 
##          1.994523          1.989994          1.983804          1.989461 
##             FP037             FP038             FP039             FP040 
##          1.993936          1.994792          1.980934          1.992780 
##             FP041             FP042             FP043             FP044 
##          1.984672          1.991747          1.994224          1.965555 
##             FP045             FP046             FP047             FP048 
##          1.989906          1.973582          1.979517          1.993947 
##             FP049             FP050             FP051             FP052 
##          1.963124          1.990519          1.983262          1.990844 
##             FP053             FP054             FP055             FP056 
##          1.974150          1.984096          1.994519          1.982627 
##             FP057             FP058             FP059             FP060 
##          1.992106          1.994244          1.983472          1.984113 
##             FP061             FP062             FP063             FP064 
##          1.995211          1.993648          1.993112          1.994916 
##             FP065             FP066             FP067             FP068 
##          1.920569          1.996061          1.993674          1.995218 
##             FP069             FP070             FP071             FP072 
##          1.995351          1.945094          1.955581          1.963128 
##             FP073             FP074             FP075             FP076 
##          1.982902          1.994616          1.993763          1.878964 
##             FP077             FP078             FP079             FP080 
##          1.993424          1.991417          1.926821          1.992484 
##             FP081             FP082             FP083             FP084 
##          1.993542          1.934202          1.986268          1.995614 
##             FP085             FP086             FP087             FP088 
##          1.948010          1.991493          1.940395          1.987025 
##             FP089             FP090             FP091             FP092 
##          1.917158          1.989708          1.994274          1.933506 
##             FP093             FP094             FP095             FP096 
##          1.983203          1.995782          1.994307          1.992953 
##             FP097             FP098             FP099             FP100 
##          1.954583          1.994704          1.979508          1.992702 
##             FP101             FP102             FP103             FP104 
##          1.995462          1.986228          1.987678          1.987490 
##             FP105             FP106             FP107             FP108 
##          1.983523          1.988199          1.956802          1.995905 
##             FP109             FP110             FP111             FP112 
##          1.984723          1.993862          1.989659          1.928276 
##             FP113             FP114             FP115             FP116 
##          1.991556          1.988374          1.993552          1.995700 
##             FP117             FP118             FP119             FP120 
##          1.989095          1.989452          1.990903          1.989958 
##             FP121             FP122             FP123             FP124 
##          1.989751          1.995964          1.984442          1.995645 
##             FP125             FP126             FP127             FP128 
##          1.995739          1.992958          1.990837          1.994258 
##             FP129             FP130             FP131             FP132 
##          1.988701          1.992970          1.993155          1.989807 
##             FP133             FP134             FP135             FP136 
##          1.995729          1.984633          1.995707          1.996029 
##             FP137             FP138             FP139             FP140 
##          1.991943          1.993287          1.993027          1.993610 
##             FP141             FP142             FP143             FP144 
##          1.981642          1.994772          1.993229          1.984776 
##             FP145             FP146             FP147             FP148 
##          1.994412          1.976451          1.995654          1.995371 
##             FP149             FP150             FP151             FP152 
##          1.968943          1.995966          1.992935          1.988626 
##             FP153             FP155             FP156             FP157 
##          1.993266          1.980407          1.989516          1.995476 
##             FP158             FP159             FP160             FP161 
##          1.993985          1.985957          1.985109          1.974936 
##             FP162             FP163             FP164             FP165 
##          1.951019          1.992948          1.935228          1.994622 
##             FP166             FP167             FP168             FP169 
##          1.979671          1.995159          1.924811          1.948496 
##             FP170             FP171             FP172             FP173 
##          1.990133          1.991262          1.939106          1.986556 
##             FP174             FP175             FP176             FP177 
##          1.991690          1.994899          1.996079          1.992338 
##             FP178             FP179             FP180             FP181 
##          1.986505          1.992829          1.994577          1.975446 
##             FP182             FP183             FP184             FP185 
##          1.995163          1.994346          1.966295          1.986099 
##             FP186             FP187             FP188             FP189 
##          1.995808          1.995098          1.993532          1.992790 
##             FP190             FP191             FP192             FP193 
##          1.975512          1.995868          1.992770          1.968153 
##             FP194             FP195             FP196             FP197 
##          1.992134          1.987022          1.977173          1.980451 
##             FP198             FP201             FP202             FP203 
##          1.983137          1.994205          1.981546          1.994560 
##             FP204             FP205             FP206             FP207 
##          1.988319          1.982902          1.988576          1.977173 
##             FP208         MolWeight          NumBonds      NumMultBonds 
##          1.994434          1.766998          1.859496          1.893724 
##       NumRotBonds       NumDblBonds         NumCarbon       NumNitrogen 
##          1.974729          1.988493          1.791678          1.994223 
##         NumOxygen         NumSulfer       NumChlorine        NumHalogen 
##          1.995262          1.985235          1.953703          1.945111 
##          NumRings HydrophilicFactor      SurfaceArea1      SurfaceArea2 
##          1.882410          1.962972          1.992470          1.995344 
## 
## $threshold
## [1] 1
## 
## $nonzero
## [1] 159
## 
## $threshold.scale
##  Low  Mid High 
##    1    1    1 
## 
## $se.scale
## y
##        Low        Mid       High 
## 0.03592208 0.04982012 0.05565836 
## 
## $scale.sd
## [1] TRUE
## 
## $call
## pamr::pamr.train(data = list(x = t(x), y = y), threshold = param$threshold)
## 
## $hetero
## NULL
## 
## $norm.cent
## NULL
## 
## $prior
## 
##       Low       Mid      High 
## 0.4490011 0.2975815 0.2534175 
## 
## $offset
##       50% 
## 0.9950317 
## 
## $sign.contrast
## [1] "both"
## 
## $errors
## [1] 368
## 
## $gene.subset
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108
## [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## [145] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
## [163] 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
## [181] 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
## [199] 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
## [217] 217 218 219 220
## 
## $sample.subset
##   [1]   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18
##  [19]  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36
##  [37]  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54
##  [55]  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72
##  [73]  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90
##  [91]  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108
## [109] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [127] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
## [145] 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
## [163] 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
## [181] 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
## [199] 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
## [217] 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
## [235] 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
## [253] 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
## [271] 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
## [289] 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
## [307] 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
## [325] 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
## [343] 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
## [361] 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
## [379] 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
## [397] 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
## [415] 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
## [433] 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
## [451] 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
## [469] 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
## [487] 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
## [505] 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
## [523] 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
## [541] 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
## [559] 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
## [577] 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
## [595] 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
## [613] 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
## [631] 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
## [649] 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
## [667] 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
## [685] 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
## [703] 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
## [721] 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
## [739] 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
## [757] 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
## [775] 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
## [793] 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
## [811] 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
## [829] 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
## [847] 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
## [865] 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
## [883] 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
## [901] 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
## [919] 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
## [937] 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
## 
## $ngroup.survival
## [1] 2
## 
## $problem.type
## [1] "class"
## 
## $xData
##           FP001      FP002      FP003      FP004      FP005      FP006
## X1   -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X2   -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X3    1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X4   -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X5   -0.9859036 -1.0816660  1.1358733  0.8424278  0.8515806  1.2224933
## X6    1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X7   -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X8    1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X9    1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X10   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X11   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X12   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X13  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X14  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X15  -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X16   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X17   1.0132314 -1.0816660  1.1358733  0.8424278  0.8515806  1.2224933
## X18  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X19   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X20  -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X21   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X22  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X23   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X24   1.0132314 -1.0816660 -0.8794541  0.8424278 -1.1730522  1.2224933
## X25   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X26   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X27  -0.9859036  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X28  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X29   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X30  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X31  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X32  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X33  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X34  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X35   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X36  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X37  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X38   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X39  -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X40   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X41   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X42   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X43  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X44  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X45  -0.9859036 -1.0816660  1.1358733 -1.1857971  0.8515806  1.2224933
## X46   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X47  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X48  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X49  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X50   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X51  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X52  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X53  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X54  -0.9859036 -1.0816660  1.1358733 -1.1857971  0.8515806  1.2224933
## X55  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X56   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X57   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X58   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X59   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X60   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X61   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X62   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X63  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X64  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X65   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X66  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522  1.2224933
## X67   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X68   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X69  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X70  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X71  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X72  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X73  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X74   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X75  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X76   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X77  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X78  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X79  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X80   1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X81   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X82  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X83  -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X84   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X85  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X86  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X87  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X88   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X89   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X90   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X91   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X92  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X93  -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X94   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X95   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X96   1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X97  -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X98  -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X99   1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X100 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X101 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X102 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X103  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X104 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X105  1.0132314 -1.0816660 -0.8794541  0.8424278 -1.1730522 -0.8171403
## X106 -0.9859036 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X107 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X108  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X109  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X110  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X111  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X112 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X113  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X114  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X115 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X116  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X117 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522  1.2224933
## X118 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X119 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X120 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X121 -0.9859036 -1.0816660 -0.8794541  0.8424278 -1.1730522 -0.8171403
## X122 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X123  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X124 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X125 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X126 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X127 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X128 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X129 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X130 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X131 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X132 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X133 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X134 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X135 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X136 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X137 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X138 -0.9859036 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X139 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X140 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X141 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X142 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X143 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X144 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X145 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X146 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X147 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X148 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X149 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X150 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X151 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X152 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X153 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X154 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X155 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X156 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X157 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X158 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X159 -0.9859036 -1.0816660 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X160 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X161 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X162  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X163 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X164  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X165 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X166 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X167 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X168 -0.9859036 -1.0816660  1.1358733  0.8424278  0.8515806  1.2224933
## X169  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X170  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X171  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X172 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X173  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X174  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X175 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X176 -0.9859036  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X177  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X178 -0.9859036 -1.0816660 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X179  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X180 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806  1.2224933
## X181 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X182  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X183 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X184 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X185 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X186  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X187 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X188 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X189 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X190  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X191  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X192  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X193 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X194  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X195 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X196  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X197  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X198  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X199 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X200 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X201 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X202  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X203  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X204  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X205 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522  1.2224933
## X206 -0.9859036 -1.0816660 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X207  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X208 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X209 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X210 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X211 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X212 -0.9859036 -1.0816660 -0.8794541  0.8424278 -1.1730522 -0.8171403
## X213 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X214  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X215 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X216 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X217 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X218  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X219  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X220 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X221 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522  1.2224933
## X222 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X223 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X224 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X225 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X226 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X227 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X228 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X229 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X230 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X231 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X232 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X233  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X234  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X235 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X236  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X237 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X238 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X239  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X240  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X241 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X242 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X243 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X244  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X245  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X246  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X247  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X248  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X249 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X250  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X251 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X252 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X253 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X254 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X255  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X256  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X257  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X258 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X259 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X260  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X261  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X262 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X263 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X264 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X265 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X266 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X267 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X268  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X269  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X270  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X271  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X272  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X273 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X274  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X275  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X276  1.0132314 -1.0816660 -0.8794541  0.8424278  0.8515806  1.2224933
## X277 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X278  1.0132314 -1.0816660 -0.8794541  0.8424278  0.8515806  1.2224933
## X279 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X280 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X281 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X282  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X283 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X284 -0.9859036  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X285  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X286  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X287 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X288  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X289  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X290  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X291 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X292  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X293 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X294 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X295  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X296  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X297  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X298  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X299  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X300 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522  1.2224933
## X301 -0.9859036  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X302  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X303 -0.9859036 -1.0816660  1.1358733  0.8424278  0.8515806  1.2224933
## X304  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X305  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X306 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X307 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X308  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X309 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X310  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X311 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X312  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X313 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X314 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X315 -0.9859036  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X316 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X317 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X318  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X319  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X320 -0.9859036 -1.0816660  1.1358733 -1.1857971  0.8515806  1.2224933
## X321  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X322  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X323 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X324 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X325 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X326 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X327 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X328  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X329 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X330 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X331  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X332  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X333  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X334  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X335  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X336 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X337  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X338  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X339  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X340  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X341  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X342 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X343  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X344  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X345 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X346  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X347  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X348 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X349 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X350 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X351  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X352  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X353  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X354 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X355  1.0132314 -1.0816660 -0.8794541  0.8424278 -1.1730522 -0.8171403
## X356 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X357  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X358  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X359  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X360  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X361  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X362 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X363  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X364 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X365  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X366 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X367 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X368 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X369  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X370  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X371 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X372  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X373 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X374  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X375  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X376  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X377  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X378 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X379 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X380 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X381  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X382  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X383  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X384  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X385  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X386  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X387  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X388  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X389  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X390  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X391  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X392  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X393 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X394 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X395  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X396 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X397 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806  1.2224933
## X398 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522  1.2224933
## X399 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X400  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X401 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806  1.2224933
## X402  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X403 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X404  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X405  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X406  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X407  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X408 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X409  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X410  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X411  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X412  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X413  1.0132314 -1.0816660 -0.8794541  0.8424278  0.8515806  1.2224933
## X414 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522  1.2224933
## X415 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X416 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X417  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X418 -0.9859036  0.9235277  1.1358733 -1.1857971  0.8515806 -0.8171403
## X419  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X420 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X421  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X422  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X423  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X424  1.0132314 -1.0816660  1.1358733  0.8424278  0.8515806  1.2224933
## X425  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X426  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X427 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X428 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X429 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X430  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X431 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X432  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X433 -0.9859036 -1.0816660 -0.8794541 -1.1857971 -1.1730522 -0.8171403
## X434  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X435  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X436 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X437  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X438  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X439 -0.9859036 -1.0816660  1.1358733 -1.1857971 -1.1730522 -0.8171403
## X440 -0.9859036  0.9235277 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X441  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
## X442 -0.9859036  0.9235277 -0.8794541  0.8424278  0.8515806  1.2224933
## X443  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X444  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522  1.2224933
## X445  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X446  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806  1.2224933
## X447  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X448  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X449  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X450 -0.9859036 -1.0816660 -0.8794541 -1.1857971  0.8515806 -0.8171403
## X451  1.0132314 -1.0816660  1.1358733  0.8424278 -1.1730522 -0.8171403
## X452  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X453  1.0132314  0.9235277 -0.8794541  0.8424278  0.8515806 -0.8171403
## X454  1.0132314  0.9235277  1.1358733  0.8424278  0.8515806 -0.8171403
##           FP007      FP008      FP009      FP010      FP011     FP012
## X1   -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X2    1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X3   -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X4    1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X5   -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X6   -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X7   -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X8    1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X9    1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675 -0.462962
## X10   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X11  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X12   1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X13  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X14  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X15   1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X16  -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X17   1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X18   1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675 -0.462962
## X19   1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X20  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X21  -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675  2.157733
## X22   1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X23   1.3216339  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X24  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X25  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X26   1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X27  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X28  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X29  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X30  -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X31   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X32   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X33   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X34  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X35  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X36  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X37   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X38   1.3216339 -0.6950617 -0.6228265  2.1422621  1.9125675 -0.462962
## X39   1.3216339  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X40  -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X41   1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X42  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X43  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X44   1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X45  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X46  -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X47   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X48  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X49  -0.7558435 -0.6950617  1.6038953  2.1422621 -0.5223076 -0.462962
## X50  -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X51  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X52   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X53  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X54  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X55  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X56   1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X57   1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X58  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X59   1.3216339  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X60  -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X61   1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X62   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X63  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X64  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X65  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X66   1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X67   1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X68   1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675  2.157733
## X69   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X70   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X71  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X72   1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X73  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X74  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X75  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X76   1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675  2.157733
## X77  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X78  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X79  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X80  -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675  2.157733
## X81   1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X82  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X83   1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X84  -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X85  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X86   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X87   1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X88   1.3216339  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X89   1.3216339  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X90   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X91   1.3216339 -0.6950617 -0.6228265  2.1422621  1.9125675 -0.462962
## X92  -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X93  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X94   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X95  -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X96  -0.7558435  1.4372083  1.6038953  2.1422621  1.9125675 -0.462962
## X97   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X98  -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X99   1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X100 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X101 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X102  1.3216339  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X103  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X104 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X105  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X106  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X107 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X108  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X109 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X110 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X111  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X112  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X113  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X114 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X115 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X116 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X117  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X118 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X119 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X120 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X121  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X122 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X123 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X124 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X125 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X126 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X127 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X128 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X129 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X130 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X131 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X132 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X133 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X134 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X135 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X136 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X137 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X138  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X139 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X140 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X141 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X142 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X143 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X144 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X145 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X146 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X147 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X148 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X149 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X150 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X151 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X152 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X153 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X154 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X155 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X156 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X157 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X158 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X159 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X160 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X161  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X162  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X163 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X164  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X165 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X166  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X167 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X168 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X169 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X170 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X171  1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675  2.157733
## X172  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X173 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X174 -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X175 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X176 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X177  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X178 -0.7558435 -0.6950617  1.6038953  2.1422621 -0.5223076 -0.462962
## X179  1.3216339 -0.6950617 -0.6228265  2.1422621  1.9125675 -0.462962
## X180  1.3216339  1.4372083 -0.6228265  2.1422621  1.9125675 -0.462962
## X181  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X182  1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675  2.157733
## X183 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X184 -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X185  1.3216339  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X186  1.3216339  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X187  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X188  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X189  1.3216339  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X190 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X191  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X192 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X193 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X194  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X195 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X196  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X197 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X198 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X199 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X200 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X201  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X202  1.3216339  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X203 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X204 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X205 -0.7558435 -0.6950617  1.6038953 -0.4663054  1.9125675 -0.462962
## X206 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X207 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X208 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X209 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X210  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X211 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X212  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X213 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X214 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X215 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X216 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X217 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X218 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X219  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X220 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X221  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X222  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X223 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X224 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X225 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X226 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X227 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X228 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X229 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X230 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X231 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X232 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X233 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X234  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X235 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X236 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X237 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X238  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X239 -0.7558435 -0.6950617  1.6038953  2.1422621 -0.5223076 -0.462962
## X240  1.3216339  1.4372083  1.6038953  2.1422621  1.9125675 -0.462962
## X241  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X242 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X243 -0.7558435 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X244 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X245 -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X246  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X247 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X248  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X249  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X250 -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X251 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X252 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X253 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X254  1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X255 -0.7558435 -0.6950617  1.6038953  2.1422621 -0.5223076 -0.462962
## X256  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X257  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X258  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X259  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X260 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X261 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X262  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X263  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X264 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X265 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X266 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X267 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X268  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X269 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X270  1.3216339  1.4372083 -0.6228265  2.1422621 -0.5223076  2.157733
## X271 -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X272 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X273  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X274  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X275  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X276 -0.7558435 -0.6950617  1.6038953  2.1422621 -0.5223076 -0.462962
## X277  1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X278 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X279 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X280 -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X281 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X282 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X283 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X284  1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X285 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X286 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X287 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X288 -0.7558435  1.4372083  1.6038953  2.1422621  1.9125675 -0.462962
## X289 -0.7558435  1.4372083 -0.6228265  2.1422621  1.9125675 -0.462962
## X290 -0.7558435 -0.6950617  1.6038953 -0.4663054  1.9125675 -0.462962
## X291  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X292 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X293 -0.7558435 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X294 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X295 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X296 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X297 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X298  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X299  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X300  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X301 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X302 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X303 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X304 -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X305  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X306 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X307  1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X308 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X309  1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X310  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X311  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X312  1.3216339  1.4372083 -0.6228265  2.1422621  1.9125675 -0.462962
## X313  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X314 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X315 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X316 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X317 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X318 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X319 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X320 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X321 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X322 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X323 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X324  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X325 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X326 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X327 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X328 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X329  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X330 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X331 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X332 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X333 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X334 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076  2.157733
## X335  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X336  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X337 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X338 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X339 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X340 -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X341  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X342 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X343  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X344 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X345 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X346  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X347  1.3216339 -0.6950617 -0.6228265  2.1422621  1.9125675 -0.462962
## X348  1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X349  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X350 -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X351  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X352 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X353  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X354  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X355  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X356 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X357 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X358  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X359  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X360  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X361  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X362 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X363 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X364  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X365 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X366 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X367 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X368  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X369 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X370 -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X371 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X372 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X373 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X374 -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X375 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X376  1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675 -0.462962
## X377  1.3216339 -0.6950617 -0.6228265  2.1422621  1.9125675 -0.462962
## X378  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X379  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X380 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X381  1.3216339 -0.6950617  1.6038953  2.1422621 -0.5223076 -0.462962
## X382  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X383  1.3216339 -0.6950617  1.6038953 -0.4663054  1.9125675 -0.462962
## X384  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X385 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X386 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X387  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X388 -0.7558435  1.4372083  1.6038953  2.1422621  1.9125675 -0.462962
## X389 -0.7558435 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X390  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X391  1.3216339 -0.6950617 -0.6228265  2.1422621  1.9125675 -0.462962
## X392  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X393  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X394 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X395  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076  2.157733
## X396  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X397 -0.7558435  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X398  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X399 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X400 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X401  1.3216339  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X402 -0.7558435  1.4372083 -0.6228265  2.1422621  1.9125675 -0.462962
## X403  1.3216339  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X404  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X405 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X406 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X407 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X408  1.3216339 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X409  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X410 -0.7558435  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X411  1.3216339  1.4372083 -0.6228265  2.1422621  1.9125675 -0.462962
## X412 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X413 -0.7558435 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X414  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X415 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X416 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X417 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X418 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X419 -0.7558435  1.4372083 -0.6228265 -0.4663054  1.9125675 -0.462962
## X420 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X421 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X422 -0.7558435 -0.6950617  1.6038953  2.1422621 -0.5223076 -0.462962
## X423  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X424 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X425  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X426 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X427 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X428 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X429  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X430 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X431 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X432 -0.7558435  1.4372083  1.6038953  2.1422621 -0.5223076 -0.462962
## X433  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X434 -0.7558435 -0.6950617  1.6038953 -0.4663054  1.9125675 -0.462962
## X435  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X436 -0.7558435  1.4372083  1.6038953 -0.4663054 -0.5223076 -0.462962
## X437  1.3216339 -0.6950617 -0.6228265  2.1422621  1.9125675  2.157733
## X438  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675 -0.462962
## X439  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X440 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X441  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X442  1.3216339  1.4372083 -0.6228265  2.1422621  1.9125675 -0.462962
## X443  1.3216339  1.4372083  1.6038953 -0.4663054  1.9125675 -0.462962
## X444  1.3216339 -0.6950617 -0.6228265 -0.4663054  1.9125675  2.157733
## X445  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X446 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076  2.157733
## X447  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X448  1.3216339 -0.6950617 -0.6228265 -0.4663054 -0.5223076  2.157733
## X449  1.3216339  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X450 -0.7558435 -0.6950617  1.6038953 -0.4663054 -0.5223076 -0.462962
## X451  1.3216339 -0.6950617 -0.6228265  2.1422621 -0.5223076 -0.462962
## X452  1.3216339  1.4372083 -0.6228265  2.1422621 -0.5223076 -0.462962
## X453 -0.7558435  1.4372083 -0.6228265 -0.4663054 -0.5223076 -0.462962
## X454 -0.7558435  1.4372083 -0.6228265  2.1422621 -0.5223076  2.157733
##           FP013      FP014      FP015      FP016      FP017      FP018
## X1   -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X2   -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X3   -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X4   -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X5    2.2391315 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X6   -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X7    2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X8   -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X9   -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X10  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X11  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X12  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X13  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X14   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X15  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X16  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X17  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X18   2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X19  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X20  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X21   2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X22  -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X23  -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X24  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X25  -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X26  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X27  -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590  2.5692512
## X28  -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X29  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X30   2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X31  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X32  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X33  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X34  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X35  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X36  -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X37  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X38  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X39  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X40  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X41  -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590 -0.3888092
## X42   2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338 -0.3888092
## X43   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X44   2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X45   2.2391315 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X46  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X47  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X48  -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338  2.5692512
## X49   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338  2.5692512
## X50   2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X51   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X52  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X53   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X54   2.2391315 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X55   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X56  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X57  -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X58  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X59   2.2391315  2.2825867  0.4030145 -0.4135242  2.4362590  2.5692512
## X60   2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X61  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X62  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X63   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X64  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X65  -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590 -0.3888092
## X66  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X67   2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X68  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X69  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X70  -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590  2.5692512
## X71  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X72  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X73  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X74  -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X75   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X76  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X77  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X78   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X79  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X80   2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X81  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X82  -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X83   2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X84  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X85   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X86  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X87  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X88  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X89   2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X90  -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X91  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X92  -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X93  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X94  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X95  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X96   2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X97  -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X98   2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X99  -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X100  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X101  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X102 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X103 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X104 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X105 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X106 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X107 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X108 -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590 -0.3888092
## X109 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X110 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X111 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X112 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X113 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X114  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X115  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X116  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X117 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X118  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X119 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X120 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X121 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X122  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X123 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X124  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X125  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X126  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X127  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X128  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X129  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X130 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X131 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X132  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X133 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X134  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X135 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X136  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X137  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X138 -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590 -0.3888092
## X139  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X140 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X141  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X142  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X143  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X144  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X145  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X146  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X147  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X148 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X149 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X150  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X151 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X152 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X153  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X154  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X155  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X156 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X157  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X158  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X159  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X160 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338  2.5692512
## X161 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X162 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X163 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X164 -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590 -0.3888092
## X165  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X166 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X167  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X168 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X169 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X170 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X171 -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590 -0.3888092
## X172 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X173 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X174 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X175 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X176 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X177 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X178  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X179 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X180 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X181 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X182 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X183 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X184  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X185 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X186  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X187 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X188 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X189 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X190 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X191 -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590 -0.3888092
## X192 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X193 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X194 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X195 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X196 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X197  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X198 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X199 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X200  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X201 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X202 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X203 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X204 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X205 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X206  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X207  2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X208  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X209 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X210 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X211  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X212 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X213  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X214 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X215 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X216  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X217  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X218 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X219 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X220  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X221 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X222 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X223 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X224  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X225 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X226 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X227  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X228  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X229 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X230 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X231  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X232  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X233 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X234 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X235 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X236  2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338 -0.3888092
## X237  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X238 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X239  2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X240  2.2391315  2.2825867  0.4030145 -0.4135242  2.4362590 -0.3888092
## X241 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X242  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X243 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X244 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X245  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X246 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X247 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X248 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X249 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X250  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X251 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X252 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X253 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X254 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X255  2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X256 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X257 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X258 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X259 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X260 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X261 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X262 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X263 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X264 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X265 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X266 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X267 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X268 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X269 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X270 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X271  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X272 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X273 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X274 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X275 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X276  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X277 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X278 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X279 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X280  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X281 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X282  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X283 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X284 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X285  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X286 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X287 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X288  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X289 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X290 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X291 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X292 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X293 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X294 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X295 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X296 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X297 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X298  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X299 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X300 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X301 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X302 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X303 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X304  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X305 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X306  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X307 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X308 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X309 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X310 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X311 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X312 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X313 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X314 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X315 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X316  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X317 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X318 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X319 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X320  2.2391315 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X321 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X322  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X323 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X324 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X325 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X326  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X327 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X328 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X329 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X330  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X331 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X332  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X333 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X334  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X335 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X336 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X337 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X338 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X339 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X340  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X341 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X342 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X343 -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590  2.5692512
## X344 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X345 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X346 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X347 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X348 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X349 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X350  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X351 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X352 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X353 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X354 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X355 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X356 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X357 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X358 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X359 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X360 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X361 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X362  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X363 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X364 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X365  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X366  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X367  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X368 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X369 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X370 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X371  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X372 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X373 -0.4461321 -0.4376388 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X374  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X375  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X376 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X377 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X378 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X379 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X380 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X381  2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X382 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X383 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X384 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X385 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X386 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X387 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X388  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X389 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X390 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X391 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X392 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X393 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X394  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X395 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X396 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X397 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X398 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X399  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X400  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X401 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X402 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X403 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X404 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X405 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X406 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X407 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X408 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X409 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X410  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X411 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X412 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X413 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X414 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X415 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X416  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X417 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X418 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X419 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X420  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338  2.5692512
## X421 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X422  2.2391315  2.2825867  0.4030145  2.4156953 -0.4100338  2.5692512
## X423 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X424 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X425 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X426 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X427 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X428  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X429 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X430  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X431  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X432  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X433 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X434 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X435 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X436  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X437 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X438 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X439 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590 -0.3888092
## X440  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X441 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X442 -0.4461321 -0.4376388  0.4030145 -0.4135242  2.4362590  2.5692512
## X443  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X444 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X445 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X446  2.2391315  2.2825867  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X447 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X448 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338 -0.3888092
## X449 -0.4461321 -0.4376388  0.4030145  2.4156953 -0.4100338  2.5692512
## X450  2.2391315  2.2825867 -2.4786909 -0.4135242 -0.4100338 -0.3888092
## X451 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338 -0.3888092
## X452 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X453 -0.4461321 -0.4376388  0.4030145 -0.4135242 -0.4100338  2.5692512
## X454 -0.4461321 -0.4376388  0.4030145  2.4156953  2.4362590  2.5692512
##           FP019      FP020      FP021      FP022      FP023      FP024
## X1    2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X2   -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X3   -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X4   -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X5    2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X6   -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X7    2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X8   -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X9   -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X10  -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X11  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X12  -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X13  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X14  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X15  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X16  -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X17   2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X18  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X19  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X20  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X21  -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X22  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X23  -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X24  -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X25  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X26  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X27  -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X28   2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X29  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X30  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X31  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X32  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X33  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X34  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X35  -0.3725266  2.7082069 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X36  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X37  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X38  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X39  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X40  -0.3725266 -0.3688597  2.6947952  2.9320660 -0.3743531 -0.3558707
## X41  -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X42  -0.3725266 -0.3688597  2.6947952  2.9320660 -0.3743531 -0.3558707
## X43  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X44  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X45   2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X46  -0.3725266  2.7082069  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X47  -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X48  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X49  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X50  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X51  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X52  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X53  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X54   2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X55  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X56  -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X57  -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X58  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X59  -0.3725266  2.7082069 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X60   2.6815493  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X61  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X62  -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X63  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X64  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X65  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X66  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X67  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X68  -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X69  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X70  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X71  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X72  -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X73  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X74  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X75  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X76  -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X77  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X78  -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X79  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X80  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X81  -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X82  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X83  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X84  -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X85  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X86  -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X87  -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X88  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X89  -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X90  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X91  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X92  -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X93  -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X94  -0.3725266  2.7082069 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X95  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X96  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X97  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X98  -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X99  -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X100 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X101 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X102 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X103 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X104  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X105 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X106 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X107 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X108 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X109 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X110  2.6815493  2.7082069 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X111 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X112 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X113 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X114 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X115 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X116 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X117 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X118 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X119 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X120 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X121 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X122 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X123 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X124 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X125 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X126 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X127 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X128 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X129 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X130 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X131 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X132 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X133 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X134 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X135 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X136 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X137 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X138 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X139 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X140 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X141 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X142 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X143 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X144 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X145 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X146 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X147 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X148 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X149 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X150 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X151 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X152  2.6815493 -0.3688597  2.6947952 -0.3406978 -0.3743531  2.8070547
## X153 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X154 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X155 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X156 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X157 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X158 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X159 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X160 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X161 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X162 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X163 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X164 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X165 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X166 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X167 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X168  2.6815493  2.7082069 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X169 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X170 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X171 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X172 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X173  2.6815493  2.7082069 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X174  2.6815493 -0.3688597  2.6947952  2.9320660 -0.3743531  2.8070547
## X175 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X176 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X177 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X178 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X179 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X180 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X181 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X182 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X183  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X184  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X185 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X186 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X187 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X188 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X189 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X190 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X191 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X192 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X193 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X194 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X195 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X196 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X197  2.6815493  2.7082069 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X198 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X199 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X200 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X201 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X202 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X203 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X204 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X205 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X206 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X207 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X208 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X209 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X210 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X211 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X212 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X213 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X214 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X215 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X216 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X217 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X218 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X219 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X220 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X221 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X222 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X223 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X224 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X225 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X226 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X227 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X228 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X229 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X230 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X231 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X232 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X233 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X234 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X235 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X236  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X237 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X238 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X239 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X240 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X241 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X242 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X243  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X244  2.6815493  2.7082069 -0.3706955  2.9320660 -0.3743531  2.8070547
## X245 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X246 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X247  2.6815493  2.7082069 -0.3706955  2.9320660 -0.3743531  2.8070547
## X248 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X249 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X250 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X251  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X252 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X253 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X254  2.6815493  2.7082069 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X255 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X256 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X257 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X258 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X259 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X260 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X261 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X262 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X263 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X264  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X265 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X266 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X267 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X268 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X269 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X270 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X271 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X272 -0.3725266  2.7082069  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X273 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X274 -0.3725266  2.7082069 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X275 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X276  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X277  2.6815493  2.7082069 -0.3706955 -0.3406978  2.6684658  2.8070547
## X278  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X279  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X280 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X281 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X282 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X283 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X284 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X285 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X286  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X287  2.6815493  2.7082069 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X288 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X289 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X290 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X291 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X292  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X293 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X294 -0.3725266  2.7082069 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X295 -0.3725266  2.7082069 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X296  2.6815493  2.7082069 -0.3706955  2.9320660 -0.3743531  2.8070547
## X297 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X298 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X299 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X300 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X301 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X302 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X303  2.6815493  2.7082069 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X304 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X305 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X306 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X307  2.6815493 -0.3688597 -0.3706955 -0.3406978  2.6684658  2.8070547
## X308 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X309  2.6815493 -0.3688597 -0.3706955 -0.3406978  2.6684658  2.8070547
## X310 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X311 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X312 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X313 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X314 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X315 -0.3725266  2.7082069 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X316 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X317 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X318 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X319 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X320  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X321 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X322 -0.3725266  2.7082069 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X323  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X324 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X325 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X326 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X327 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X328 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X329 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X330 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X331 -0.3725266 -0.3688597  2.6947952  2.9320660 -0.3743531 -0.3558707
## X332 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X333 -0.3725266  2.7082069  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X334 -0.3725266  2.7082069 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X335 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X336 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X337  2.6815493  2.7082069 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X338 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X339  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X340 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X341 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X342 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X343 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X344 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X345  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X346 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X347 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X348  2.6815493  2.7082069 -0.3706955 -0.3406978  2.6684658  2.8070547
## X349 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X350  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X351 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X352 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X353 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X354 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X355 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X356 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X357 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X358 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X359 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X360 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X361 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X362 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X363  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X364 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X365 -0.3725266  2.7082069 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X366 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X367 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X368 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X369 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X370 -0.3725266 -0.3688597  2.6947952  2.9320660 -0.3743531 -0.3558707
## X371 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X372 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X373 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X374 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X375  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X376 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X377 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X378 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X379 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X380 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X381 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X382 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X383 -0.3725266 -0.3688597  2.6947952 -0.3406978  2.6684658 -0.3558707
## X384 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X385 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X386  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X387 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X388 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X389  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X390 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X391 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X392 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X393 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X394 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X395 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X396 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X397 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X398 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X399 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X400 -0.3725266  2.7082069 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X401 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X402 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X403 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X404 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X405 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X406 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X407 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X408 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X409 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X410 -0.3725266 -0.3688597  2.6947952  2.9320660 -0.3743531 -0.3558707
## X411 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X412  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X413  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X414 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X415 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X416 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X417  2.6815493 -0.3688597 -0.3706955  2.9320660 -0.3743531  2.8070547
## X418 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X419 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X420 -0.3725266  2.7082069 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X421 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X422 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X423 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X424  2.6815493 -0.3688597 -0.3706955 -0.3406978 -0.3743531  2.8070547
## X425 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X426 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X427 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X428 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X429 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X430 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X431 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X432 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X433 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X434 -0.3725266 -0.3688597  2.6947952 -0.3406978 -0.3743531 -0.3558707
## X435 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X436 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X437 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X438 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X439 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X440 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X441 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X442 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X443 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X444 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X445 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X446 -0.3725266 -0.3688597 -0.3706955  2.9320660 -0.3743531 -0.3558707
## X447 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X448 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X449 -0.3725266 -0.3688597 -0.3706955 -0.3406978  2.6684658 -0.3558707
## X450 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X451 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X452 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
## X453  2.6815493  2.7082069 -0.3706955 -0.3406978  2.6684658  2.8070547
## X454 -0.3725266 -0.3688597 -0.3706955 -0.3406978 -0.3743531 -0.3558707
##          FP025      FP026      FP027      FP028      FP029      FP030
## X1   -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X2   -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X3    2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X4   -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X5   -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X6   -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X7   -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X8   -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X9   -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X10  -0.361468 -0.3029057  3.0358039  2.8994814 -0.3368437 -0.3211537
## X11  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X12  -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X13  -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X14  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X15  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X16   2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X17  -0.361468  3.2978859 -0.3290557 -0.3445266  2.9656139  3.1104998
## X18  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X19  -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X20  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X21  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X22  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X23  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X24  -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X25  -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437  3.1104998
## X26  -0.361468  3.2978859  3.0358039  2.8994814 -0.3368437 -0.3211537
## X27  -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X28  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X29  -0.361468 -0.3029057  3.0358039 -0.3445266  2.9656139 -0.3211537
## X30  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X31  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X32  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X33  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X34  -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X35  -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X36  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X37  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X38   2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X39  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X40   2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X41  -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X42  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X43  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X44  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X45  -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X46  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X47  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X48  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X49  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X50   2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X51  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X52  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X53  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X54  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X55  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X56  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X57  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X58  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X59  -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X60   2.763587  3.2978859 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X61   2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X62  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X63  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X64  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X65  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X66  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X67  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X68  -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X69  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X70  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X71  -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X72  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X73  -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X74  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X75  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X76  -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X77  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X78  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X79  -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X80  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X81  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X82  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X83  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X84  -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X85  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X86  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X87  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X88   2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X89  -0.361468 -0.3029057  3.0358039  2.8994814  2.9656139  3.1104998
## X90  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X91   2.763587 -0.3029057  3.0358039  2.8994814 -0.3368437  3.1104998
## X92  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X93  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X94  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X95  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X96   2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X97  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X98  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X99  -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X100 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X101 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X102 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X103  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X104 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X105 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X106 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X107 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X108 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X109 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X110  2.763587  3.2978859 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X111 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X112 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X113  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X114 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X115 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X116 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X117 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X118 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X119 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X120 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X121 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X122 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X123 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X124 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X125 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X126 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X127 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X128 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X129 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X130 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X131 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X132 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X133 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X134 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X135 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X136 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X137 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X138 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X139 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X140 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X141 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X142 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X143 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X144 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X145 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X146 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X147 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X148 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X149 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X150 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X151 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X152 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X153 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X154 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X155 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X156 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X157 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X158 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X159 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X160 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X161 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X162 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X163 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X164 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X165 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X166 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X167 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X168 -0.361468 -0.3029057 -0.3290557  2.8994814  2.9656139 -0.3211537
## X169 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X170 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X171 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X172 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X173  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X174  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X175 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X176 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X177 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X178 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X179  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X180 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X181 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X182 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X183 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X184 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X185 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X186 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X187 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X188 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X189 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X190 -0.361468  3.2978859 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X191 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X192 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X193 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X194 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X195 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X196 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X197 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X198 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X199 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X200 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X201 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X202 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X203 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X204 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X205 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X206 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X207 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X208 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X209 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X210 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X211 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X212 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X213 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X214 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X215 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X216 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X217 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X218 -0.361468  3.2978859 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X219  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X220 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X221 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X222 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X223 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X224 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X225 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X226 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X227 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X228 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X229 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X230 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X231 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X232 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X233 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X234 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X235 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X236 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X237 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X238 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X239  2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X240  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X241 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X242 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X243 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X244 -0.361468  3.2978859 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X245  2.763587  3.2978859 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X246 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X247 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X248 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X249 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X250  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X251 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X252 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437  3.1104998
## X253 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X254 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X255  2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X256 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X257 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X258 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X259 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X260  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X261 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X262 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X263 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X264 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X265 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X266 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X267 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X268 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X269 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X270 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X271  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X272 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X273 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X274 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X275  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X276  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X277 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X278 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X279 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X280 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X281 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X282 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X283 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X284 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X285 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X286 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X287 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X288  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X289  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X290 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X291 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X292 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X293 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X294 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X295 -0.361468 -0.3029057  3.0358039 -0.3445266  2.9656139 -0.3211537
## X296 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X297 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X298 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X299 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X300 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X301 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X302 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X303 -0.361468 -0.3029057 -0.3290557  2.8994814  2.9656139  3.1104998
## X304 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X305 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437  3.1104998
## X306 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X307 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X308  2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X309 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X310 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X311 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X312  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X313 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X314 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X315 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X316 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X317 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X318 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X319 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X320 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X321 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X322 -0.361468 -0.3029057  3.0358039 -0.3445266  2.9656139  3.1104998
## X323 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X324 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X325 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X326 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X327 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X328  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X329 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X330 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X331 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X332 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X333 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X334 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X335 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437  3.1104998
## X336 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X337 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X338 -0.361468 -0.3029057  3.0358039 -0.3445266  2.9656139 -0.3211537
## X339 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X340  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X341 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X342 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X343 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X344 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X345 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X346 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X347  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X348 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X349 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X350 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X351 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X352 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X353 -0.361468  3.2978859  3.0358039 -0.3445266 -0.3368437  3.1104998
## X354 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X355  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X356 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X357 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X358  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X359 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X360 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X361 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X362 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X363 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X364 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X365 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X366 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X367 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X368 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X369 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X370 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X371 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X372 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X373 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X374 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X375 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X376 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X377  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X378 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437  3.1104998
## X379 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X380 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X381  2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X382 -0.361468  3.2978859  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X383 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X384 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X385  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X386 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X387 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X388 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X389 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X390 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X391  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X392 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X393 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X394 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X395 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X396 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X397 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X398 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X399 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X400 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X401 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X402  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X403 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X404 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X405 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X406  2.763587  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X407 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X408 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X409 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X410 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X411  2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X412 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X413 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X414 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437  3.1104998
## X415 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X416 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X417 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X418 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X419 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X420 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X421  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X422  2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X423 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X424  2.763587 -0.3029057  3.0358039 -0.3445266 -0.3368437  3.1104998
## X425 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X426 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X427 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X428 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X429 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X430 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X431 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X432  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X433 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X434 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X435 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X436 -0.361468  3.2978859 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X437  2.763587 -0.3029057 -0.3290557  2.8994814 -0.3368437 -0.3211537
## X438 -0.361468 -0.3029057 -0.3290557  2.8994814 -0.3368437  3.1104998
## X439 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X440 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X441 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X442 -0.361468 -0.3029057 -0.3290557  2.8994814  2.9656139 -0.3211537
## X443 -0.361468 -0.3029057  3.0358039 -0.3445266 -0.3368437 -0.3211537
## X444 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X445 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X446 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X447 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X448 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X449 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X450 -0.361468 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X451  2.763587 -0.3029057 -0.3290557 -0.3445266 -0.3368437 -0.3211537
## X452 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X453 -0.361468 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
## X454  2.763587 -0.3029057 -0.3290557 -0.3445266  2.9656139 -0.3211537
##           FP031      FP032      FP033      FP034      FP035      FP036
## X1   -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X2   -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X3   -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X4   -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X5   -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X6   -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X7   -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X8    3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X9   -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X10  -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X11  -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X12  -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X13  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X14  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X15  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X16  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X17  -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X18  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X19  -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X20  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X21   3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X22  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X23   3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X24  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X25  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X26  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X27  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X28  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X29  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X30  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X31  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X32  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X33  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X34  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X35   3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X36  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X37  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X38  -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X39  -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X40  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X41   3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X42  -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X43  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X44  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X45  -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X46  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X47  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X48  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X49  -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X50  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X51  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X52  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X53  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X54  -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X55  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X56  -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X57  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X58  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X59  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X60  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X61  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X62   3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X63  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X64  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X65  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X66  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X67   3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X68   3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X69  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X70  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X71  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X72  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X73  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X74  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X75  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X76   3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X77  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X78  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X79  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X80   3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X81   3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X82  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X83  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X84  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515  3.4922050
## X85  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X86  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X87  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X88  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X89  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X90  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X91  -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972  3.4922050
## X92  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X93  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X94   3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X95  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X96  -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X97  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X98  -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X99  -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X100 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X101 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X102 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X103 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X104 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X105  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X106 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X107 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X108  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X109 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X110 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X111 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X112 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X113 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X114  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X115 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X116 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X117 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X118 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X119 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X120 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X121 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X122 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X123 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X124 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X125 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X126 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X127 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X128 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X129 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X130 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X131 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X132 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X133 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X134 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X135 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X136 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X137 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X138 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X139 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X140 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X141 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X142 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X143 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X144 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X145 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X146 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X147 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X148 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X149 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X150 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X151 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X152 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X153 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X154 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X155 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X156 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X157 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X158 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X159 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X160 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X161 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X162 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X163 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X164  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X165 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X166 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X167 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X168 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X169 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X170 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X171  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X172 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X173 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X174 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X175 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X176 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X177  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X178 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X179 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X180 -0.3131281  3.5457693  3.6599168 -0.2945604  3.5733972 -0.2860509
## X181 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X182 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X183 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X184 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X185 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X186 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X187 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X188 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X189 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X190 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X191  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X192 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X193 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X194 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X195 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X196  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X197 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X198 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X199 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X200 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X201 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X202 -0.3131281  3.5457693  3.6599168 -0.2945604  3.5733972 -0.2860509
## X203  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X204  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X205 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X206 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X207 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X208 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X209 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X210 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X211 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X212 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X213 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X214  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X215 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X216 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X217 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X218 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X219 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X220 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X221 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X222 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X223 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X224 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X225 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X226 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X227 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X228 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X229 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X230 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X231 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X232 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X233 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515  3.4922050
## X234 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X235 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X236 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X237 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X238 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X239 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X240 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515  3.4922050
## X241 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X242 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X243 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X244 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X245 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X246 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X247 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X248 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X249 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X250 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X251 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X252 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515  3.4922050
## X253 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X254 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X255 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X256 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X257 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X258 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X259 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X260 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X261 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X262 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X263 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X264 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X265 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X266 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X267 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X268  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X269 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X270 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X271 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X272  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X273 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X274  3.1902229 -0.2817297 -0.2729429 -0.2945604  3.5733972  3.4922050
## X275 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X276 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X277 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X278 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X279 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X280 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X281 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X282 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X283 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X284 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X285 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X286 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X287 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X288 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X289 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515  3.4922050
## X290  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X291 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X292 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X293 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X294 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X295 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X296 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X297  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X298 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X299 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972  3.4922050
## X300 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X301 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X302 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515  3.4922050
## X303 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X304 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X305 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X306 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X307 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X308 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X309 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X310 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X311 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X312 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515  3.4922050
## X313 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X314 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X315 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X316 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X317 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X318 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X319 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X320 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X321 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X322 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X323 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X324 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X325 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X326 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X327 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X328 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X329 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X330 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X331 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X332 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X333  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X334 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X335 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X336 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X337 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X338 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X339 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X340 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X341 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X342 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X343  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X344 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X345 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X346 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972  3.4922050
## X347 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X348 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X349 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X350 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X351  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X352 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X353 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X354 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X355 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X356 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X357 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X358 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X359 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972  3.4922050
## X360 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X361 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X362 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X363 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X364 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X365 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X366 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X367 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X368 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X369  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X370 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X371 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X372 -0.3131281  3.5457693  3.6599168  3.3913200 -0.2795515 -0.2860509
## X373 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X374 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X375 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X376 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X377 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X378 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X379 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X380 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X381 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X382 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X383 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X384 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X385 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X386 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X387  3.1902229  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X388 -0.3131281  3.5457693  3.6599168  3.3913200 -0.2795515 -0.2860509
## X389 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X390  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X391 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X392 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X393 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X394 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X395 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X396 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X397 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X398 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X399 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X400 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X401 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X402 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X403 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X404 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X405  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X406 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X407 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X408 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X409 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972  3.4922050
## X410 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X411 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X412 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X413 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X414 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X415 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X416 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X417 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X418 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X419 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X420 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X421 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X422 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X423 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X424 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X425 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X426 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X427 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X428 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X429 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X430 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515  3.4922050
## X431 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X432 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X433 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X434  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X435 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X436 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X437  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X438 -0.3131281 -0.2817297 -0.2729429 -0.2945604  3.5733972 -0.2860509
## X439 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X440 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X441  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X442 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X443 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X444 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X445 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X446 -0.3131281 -0.2817297 -0.2729429  3.3913200 -0.2795515 -0.2860509
## X447  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X448 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X449  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X450 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X451 -0.3131281 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X452 -0.3131281  3.5457693  3.6599168 -0.2945604 -0.2795515 -0.2860509
## X453  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
## X454  3.1902229 -0.2817297 -0.2729429 -0.2945604 -0.2795515 -0.2860509
##           FP037      FP038      FP039      FP040      FP041      FP042
## X1   -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X2   -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X3   -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X4   -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X5   -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X6   -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X7   -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X8   -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X9    3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X10  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X11   3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X12   3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X13  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X14  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X15  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X16  -0.2751584  3.2536775  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X17  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X18  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X19   3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X20  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X21  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X22  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X23  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X24  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X25  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X26  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X27  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X28  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632  4.0735297
## X29  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X30  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X31  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X32  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X33  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X34  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X35  -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X36  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X37  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X38  -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X39  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X40  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X41   3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X42  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X43  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X44  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X45  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X46   3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X47  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X48  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X49  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X50  -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X51  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X52  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X53  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X54  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X55  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X56   3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X57  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X58  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X59   3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X60  -0.2751584  3.2536775  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X61  -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X62  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X63  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X64  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X65  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X66  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X67  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X68   3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X69  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X70  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X71  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X72  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X73  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X74  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X75  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X76   3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X77  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X78  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X79  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X80  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X81   3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X82  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X83  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X84  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X85  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X86  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X87  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X88  -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X89  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X90  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X91  -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X92  -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632  4.0735297
## X93  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X94  -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X95  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X96  -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X97  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X98  -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X99   3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X100 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X101 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X102 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X103 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X104 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X105 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X106 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X107 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X108  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X109 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X110 -0.2751584  3.2536775  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X111 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X112 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X113 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X114 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X115 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X116 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X117 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X118 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X119 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X120 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632  4.0735297
## X121 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X122 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X123 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X124 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X125 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X126 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X127 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X128 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X129 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X130 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X131 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X132 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X133 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X134 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X135 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X136 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X137 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X138 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X139 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X140 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X141 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X142 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X143 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X144 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X145 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X146 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X147 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X148 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X149 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X150 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X151 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X152 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X153 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X154 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X155 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X156 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X157 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X158 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X159 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X160 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X161 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X162  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X163 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X164  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X165 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X166 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X167 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X168 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X169 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X170 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X171  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X172 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X173 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X174 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X175 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X176 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X177  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X178 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X179 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X180 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X181 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X182  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X183 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X184 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X185 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X186 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X187 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X188 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X189 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X190 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X191  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X192 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X193 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X194  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X195 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X196  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X197 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X198 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X199 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X200 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X201 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X202  3.6304485 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X203 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X204 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X205 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X206 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X207 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X208 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X209 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X210 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X211 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X212 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X213 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X214 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X215 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X216 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X217 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X218 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X219 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X220 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X221 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X222 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X223 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X224 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X225 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X226 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X227 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X228 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X229 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X230 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X231 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X232 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X233 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X234  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X235 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X236 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X237 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X238 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X239 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X240  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X241 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X242 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X243 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X244 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X245 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X246 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X247 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632  4.0735297
## X248  3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X249 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X250 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X251 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X252 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X253 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X254 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X255 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X256 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X257 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X258 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X259 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X260 -0.2751584  3.2536775  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X261 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X262 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X263 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X264 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X265 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X266 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X267 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X268 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X269 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X270 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X271 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X272 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X273 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X274 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X275 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X276 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X277 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X278 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X279 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X280 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X281 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X282 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X283 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X284 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X285 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X286 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632  4.0735297
## X287 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632  4.0735297
## X288 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X289  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X290 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X291 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X292 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X293 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X294 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X295 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X296 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X297 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X298 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X299 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X300 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X301 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X302 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X303 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X304 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X305 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X306 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X307 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X308 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X309 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X310  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X311 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X312  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X313 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X314 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X315 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X316 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X317 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X318 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X319 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X320 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X321 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X322 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X323 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X324 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X325 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X326 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X327 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X328 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X329 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X330 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X331 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X332 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X333 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X334 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X335 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X336 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X337 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X338 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X339 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X340 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X341  3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X342 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X343 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X344 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X345 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X346 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X347 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X348 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X349 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X350 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X351 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X352 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X353 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X354 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X355 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X356 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X357 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X358 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X359 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X360  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X361 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X362 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X363 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632  4.0735297
## X364 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X365 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X366 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X367 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X368 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X369 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X370 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X371 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X372 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X373 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X374 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X375  3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X376  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X377 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X378 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X379 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X380 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X381 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X382 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X383  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X384  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X385 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X386 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632  4.0735297
## X387 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X388 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X389 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X390 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X391 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X392 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X393 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X394 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X395 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632  4.0735297
## X396 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X397 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X398 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X399 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X400 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X401 -0.2751584 -0.3070214  3.5187119 -0.2707144 -0.2593632 -0.2452292
## X402 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X403 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X404  3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X405 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X406 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X407 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X408 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X409 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X410 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X411  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X412 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632  4.0735297
## X413 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632 -0.2452292
## X414 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X415 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X416 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X417 -0.2751584 -0.3070214 -0.2838961  3.6900455 -0.2593632  4.0735297
## X418 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X419 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X420 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X421 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X422 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X423  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X424 -0.2751584  3.2536775 -0.2838961  3.6900455  3.8515432 -0.2452292
## X425  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X426 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X427 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X428 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X429 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X430 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X431 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X432 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X433 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X434 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X435 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X436 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X437 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X438  3.6304485 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
## X439 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X440 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X441  3.6304485 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X442 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X443 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X444 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X445 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X446 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X447 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X448 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X449 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X450 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X451 -0.2751584  3.2536775 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X452 -0.2751584 -0.3070214 -0.2838961 -0.2707144 -0.2593632 -0.2452292
## X453 -0.2751584 -0.3070214  3.5187119  3.6900455 -0.2593632 -0.2452292
## X454 -0.2751584 -0.3070214 -0.2838961 -0.2707144  3.8515432 -0.2452292
##           FP043      FP044      FP045      FP046      FP047      FP048
## X1   -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X2    3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X3   -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X4   -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X5   -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X6   -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X7   -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X8   -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X9   -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X10  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X11  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X12  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X13  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X14  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X15  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X16  -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X17   3.7523881 -0.2523714  4.1140710 -0.6784872 -0.6017334  2.6555412
## X18   3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X19  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X20  -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X21  -0.2662167  3.9582469 -0.2428127  1.4723173  1.6601181 -0.3761751
## X22   3.7523881 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X23  -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181  2.6555412
## X24   3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X25  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X26  -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X27   3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X28  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X29  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X30   3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X31  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X32  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X33  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X34  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X35  -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X36  -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X37  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X38  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X39  -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X40  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X41  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X42  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X43  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X44   3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X45  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X46  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X47  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X48  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X49  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X50  -0.2662167  3.9582469 -0.2428127  1.4723173  1.6601181 -0.3761751
## X51  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X52  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X53  -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X54  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X55  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X56  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X57  -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181  2.6555412
## X58  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X59  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X60  -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X61  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X62  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X63  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X64  -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X65  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X66  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X67   3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X68  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X69  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X70   3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X71  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X72  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X73  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X74  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X75  -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X76  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X77  -0.2662167  3.9582469 -0.2428127  1.4723173  1.6601181 -0.3761751
## X78  -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X79  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X80  -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X81  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X82  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X83   3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X84  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X85  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X86  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X87  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X88  -0.2662167  3.9582469 -0.2428127  1.4723173  1.6601181 -0.3761751
## X89  -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X90  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X91  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X92  -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X93  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X94  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X95  -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X96  -0.2662167 -0.2523714  4.1140710 -0.6784872 -0.6017334 -0.3761751
## X97  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X98  -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X99  -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X100 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X101 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X102  3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X103 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X104 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X105 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X106 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X107 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X108 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X109 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X110 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X111 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181  2.6555412
## X112 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X113 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X114 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X115 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X116 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X117 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X118 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X119 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X120 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X121 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X122 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X123 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X124 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X125 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X126 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X127 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X128 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X129 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X130 -0.2662167  3.9582469 -0.2428127  1.4723173  1.6601181 -0.3761751
## X131 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X132 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X133 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X134 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X135 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X136 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X137 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X138 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X139 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X140 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X141 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X142 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X143 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X144 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X145 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X146 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X147 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X148 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X149 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X150 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X151 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X152 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X153 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X154 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X155 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X156 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X157 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X158 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X159 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X160 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X161 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X162 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X163 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X164 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X165 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X166 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181  2.6555412
## X167 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X168 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X169 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X170  3.7523881 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X171 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X172 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X173 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X174 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X175 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X176  3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X177 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X178 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X179 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X180 -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X181  3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X182 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X183 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X184 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X185 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X186  3.7523881 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X187 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X188  3.7523881 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X189  3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X190 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X191 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X192 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X193 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X194 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X195 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X196 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X197 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X198 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X199 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X200 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X201 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181  2.6555412
## X202 -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X203 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X204 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X205 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X206  3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X207 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X208 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X209 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X210 -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X211 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X212 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X213 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X214 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X215 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X216 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X217 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X218 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X219 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X220 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X221 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X222 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X223 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X224 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X225 -0.2662167  3.9582469 -0.2428127  1.4723173  1.6601181 -0.3761751
## X226 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X227 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X228 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X229 -0.2662167  3.9582469 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X230 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X231 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X232 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X233 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X234 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X235 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X236 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X237 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X238 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X239 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X240  3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X241 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X242 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X243 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X244 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X245 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X246 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X247 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X248 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X249 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X250 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X251 -0.2662167 -0.2523714  4.1140710 -0.6784872 -0.6017334 -0.3761751
## X252 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X253 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X254 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X255 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X256 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X257 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X258 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X259 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X260 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X261 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X262 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X263 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X264 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X265 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X266 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X267 -0.2662167  3.9582469 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X268 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X269  3.7523881 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X270 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181  2.6555412
## X271 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X272 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X273 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X274 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X275 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X276 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X277  3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X278 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X279 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X280 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X281 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X282 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X283 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X284  3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X285 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X286 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X287 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X288 -0.2662167 -0.2523714  4.1140710 -0.6784872 -0.6017334 -0.3761751
## X289  3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X290 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X291 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X292 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X293 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X294 -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X295 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X296 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X297 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X298 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X299 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X300 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X301 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X302 -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X303 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X304 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X305 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181  2.6555412
## X306 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X307  3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X308 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X309  3.7523881 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X310 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X311 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X312  3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X313  3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X314 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X315 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X316 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X317 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X318  3.7523881 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X319 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X320  3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X321 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X322  3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X323 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X324 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X325 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X326 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X327 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X328 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X329 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X330 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X331 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X332 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X333 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X334 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X335 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181  2.6555412
## X336 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X337 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X338 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X339 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X340 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X341 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X342 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X343  3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X344 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X345 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X346 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X347 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X348  3.7523881 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X349 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X350 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X351 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X352 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X353 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181  2.6555412
## X354  3.7523881 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X355 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X356 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X357 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X358 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X359 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X360 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X361 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181  2.6555412
## X362 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X363 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X364 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X365 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X366 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X367 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X368 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X369 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X370 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X371 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X372 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X373 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X374 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X375 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X376 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X377 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X378 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X379 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X380 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X381 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X382 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X383 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X384 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X385 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X386 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X387 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334  2.6555412
## X388 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X389 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X390 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334  2.6555412
## X391 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X392  3.7523881 -0.2523714 -0.2428127 -0.6784872  1.6601181  2.6555412
## X393 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X394 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X395 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181  2.6555412
## X396 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X397 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X398 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X399 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X400 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X401 -0.2662167 -0.2523714  4.1140710  1.4723173 -0.6017334 -0.3761751
## X402 -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X403 -0.2662167 -0.2523714  4.1140710 -0.6784872  1.6601181  2.6555412
## X404 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X405 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X406 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X407 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X408 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X409 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X410 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X411 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X412 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X413 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X414 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X415 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X416 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X417 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X418 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X419 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X420 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X421 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X422 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X423 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X424 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X425 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X426 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
## X427 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X428 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X429 -0.2662167 -0.2523714  4.1140710  1.4723173  1.6601181 -0.3761751
## X430 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X431 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X432 -0.2662167 -0.2523714  4.1140710 -0.6784872 -0.6017334 -0.3761751
## X433 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X434 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X435 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X436 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X437 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X438 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X439 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X440 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X441 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X442  3.7523881 -0.2523714  4.1140710 -0.6784872  1.6601181 -0.3761751
## X443 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X444 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X445 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X446 -0.2662167 -0.2523714 -0.2428127  1.4723173 -0.6017334 -0.3761751
## X447 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X448 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X449 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X450 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X451 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334  2.6555412
## X452 -0.2662167 -0.2523714 -0.2428127 -0.6784872  1.6601181 -0.3761751
## X453 -0.2662167 -0.2523714 -0.2428127 -0.6784872 -0.6017334 -0.3761751
## X454 -0.2662167 -0.2523714 -0.2428127  1.4723173  1.6601181 -0.3761751
##           FP049      FP050      FP051     FP052      FP053      FP054
## X1   -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X2   -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X3   -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X4   -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X5   -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X6   -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X7    2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X8   -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X9   -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X10  -0.3725266  2.8070547 -0.3502245  3.149697 -0.3211537  3.4922050
## X11  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X12  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X13  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X14   2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X15  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X16  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X17  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X18   2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X19  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X20  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X21   2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X22  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X23  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X24  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X25  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X26  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X27  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X28  -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X29  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X30   2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X31  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X32  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X33  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537  3.4922050
## X34  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X35  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X36  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X37  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537  3.4922050
## X38  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X39  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X40  -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X41  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X42   2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X43   2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X44   2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X45  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X46  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X47  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X48  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X49   2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X50  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X51   2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X52  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X53   2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X54  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X55   2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X56  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X57  -0.3725266  2.8070547 -0.3502245  3.149697 -0.3211537 -0.2860509
## X58  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X59  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X60   2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X61  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X62  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X63  -0.3725266 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X64  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X65  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X66  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X67   2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X68  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537  3.4922050
## X69  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537  3.4922050
## X70  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537  3.4922050
## X71  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X72  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X73  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X74  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X75   2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X76  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X77  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X78  -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X79  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X80   2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X81  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X82  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X83   2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X84  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X85   2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X86  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X87  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X88  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X89   2.6815493  2.8070547  2.8523090 -0.317157  3.1104998 -0.2860509
## X90  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X91  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X92  -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X93  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X94  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537  3.4922050
## X95  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X96  -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X97  -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X98   2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X99  -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X100  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X101  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X102 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X103 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X104 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X105 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X106 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X107 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X108 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X109 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X110 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X111 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X112 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X113 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X114 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X115  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X116  2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X117 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X118 -0.3725266 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X119 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X120 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X121 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X122  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X123 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X124  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X125  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X126  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X127  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X128  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X129  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X130 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X131 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X132  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X133 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X134  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X135 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X136  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X137  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X138 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X139  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X140 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X141  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X142  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X143  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X144  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X145  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X146 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X147 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X148 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X149 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X150  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X151 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X152 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X153 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X154  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X155 -0.3725266 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X156 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X157 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X158 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X159 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X160 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X161 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X162 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X163 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X164 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X165  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X166 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X167  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X168 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X169 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X170 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X171 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X172 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X173 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X174 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X175 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X176 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X177 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X178 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X179 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X180 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X181 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X182 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X183 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X184  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X185 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X186  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X187 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X188 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X189 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X190 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X191 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X192 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X193 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X194 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X195 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X196 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X197 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X198 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X199 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X200  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X201 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X202 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X203 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X204 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X205 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X206 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X207  2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X208  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X209 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X210 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X211  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X212 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X213  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X214 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X215 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X216  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X217  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X218 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X219 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X220 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X221 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X222 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X223 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X224  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X225 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X226 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X227  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X228  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X229 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X230 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X231  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X232 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X233 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X234 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X235 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X236 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X237  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X238 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X239  2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X240  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X241 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X242  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X243 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X244 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X245  2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X246 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X247 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X248 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X249 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X250  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X251 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X252 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X253 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X254 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537  3.4922050
## X255  2.6815493 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X256 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X257 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X258 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X259 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X260 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X261 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X262 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X263 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X264 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X265 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X266 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X267 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X268 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X269 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X270 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X271  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X272 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X273 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X274 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X275 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X276 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X277 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X278 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X279 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X280 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X281 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X282  2.6815493 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X283 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X284 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X285  2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X286 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X287 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X288 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X289 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X290 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X291 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X292 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X293 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X294 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X295 -0.3725266 -0.3558707  2.8523090  3.149697 -0.3211537 -0.2860509
## X296 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X297 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X298  2.6815493 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X299 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X300 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X301 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X302 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X303 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X304 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X305 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X306  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X307 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X308 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X309 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X310 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X311 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X312 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X313 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X314 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X315 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X316  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X317 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X318 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X319 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X320 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X321 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X322 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X323 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X324 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X325 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X326  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X327 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X328 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X329 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X330  2.6815493 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X331 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X332  2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X333 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X334 -0.3725266 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X335 -0.3725266  2.8070547 -0.3502245  3.149697 -0.3211537 -0.2860509
## X336 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X337 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X338 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X339 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X340 -0.3725266 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X341 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X342 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X343 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X344 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X345 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X346 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X347 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X348 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X349 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X350  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X351 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X352 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X353 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X354 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X355 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X356 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X357 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X358 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X359 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X360 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X361 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X362  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X363 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X364 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X365  2.6815493 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X366  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X367  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X368 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X369 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X370 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X371  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X372 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X373 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X374  2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X375  2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X376 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X377 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X378 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X379 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X380 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X381  2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X382 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X383 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X384 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X385 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X386 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X387 -0.3725266  2.8070547  2.8523090 -0.317157 -0.3211537  3.4922050
## X388 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X389 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X390 -0.3725266  2.8070547  2.8523090 -0.317157 -0.3211537  3.4922050
## X391 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X392 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X393 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X394  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X395 -0.3725266  2.8070547 -0.3502245  3.149697 -0.3211537 -0.2860509
## X396 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X397 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X398 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X399  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X400  2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X401 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X402 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X403 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X404 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X405 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X406 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X407 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X408 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X409 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X410 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X411 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X412 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X413 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X414 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X415 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X416  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X417 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X418 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X419 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X420  2.6815493 -0.3558707  2.8523090 -0.317157  3.1104998 -0.2860509
## X421 -0.3725266 -0.3558707 -0.3502245  3.149697 -0.3211537 -0.2860509
## X422 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X423 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X424 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X425 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X426 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X427 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X428  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X429 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X430  2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X431  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X432  2.6815493 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X433 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X434 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
## X435 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X436  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X437 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X438 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537  3.4922050
## X439 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X440  2.6815493 -0.3558707 -0.3502245 -0.317157  3.1104998 -0.2860509
## X441 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537  3.4922050
## X442 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X443 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X444 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X445 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X446  2.6815493 -0.3558707 -0.3502245  3.149697  3.1104998 -0.2860509
## X447 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X448 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X449 -0.3725266  2.8070547  2.8523090 -0.317157 -0.3211537 -0.2860509
## X450 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X451 -0.3725266  2.8070547 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X452 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X453 -0.3725266 -0.3558707 -0.3502245 -0.317157 -0.3211537 -0.2860509
## X454 -0.3725266 -0.3558707  2.8523090 -0.317157 -0.3211537 -0.2860509
##           FP055      FP056      FP057      FP058      FP059      FP060
## X1   -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X2   -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X3   -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X4   -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X5   -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X6   -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X7   -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X8   -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X9   -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X10  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X11  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X12  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X13  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X14  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X15  -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X16  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X17  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X18  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X19  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X20  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X21  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X22  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X23  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X24  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X25  -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X26  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X27  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X28  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X29  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X30  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X31  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X32  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X33  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X34  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X35  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X36  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X37  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X38  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X39   4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X40  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X41  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X42  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X43  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X44  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X45  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X46  -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X47  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X48  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X49  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X50  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X51  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X52  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X53  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X54  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X55  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X56  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X57  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X58  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X59  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X60  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X61  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X62  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X63  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X64  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X65  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X66  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X67  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X68  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X69  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X70  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X71  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X72  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X73  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X74  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X75  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X76  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X77  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X78  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X79  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X80  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X81  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X82  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X83  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X84  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X85  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X86  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X87  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X88  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X89  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X90  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X91  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X92  -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X93  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X94  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X95  -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X96   4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X97  -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X98  -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X99  -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X100 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X101 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X102 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X103 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X104 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X105 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X106 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X107 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X108 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X109 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X110 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X111 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X112 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X113 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X114 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X115 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X116 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X117 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X118 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X119 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X120 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X121 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X122 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X123 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X124 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X125 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X126 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X127 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X128 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X129 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X130 -0.2379224  3.7846575  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X131 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X132 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X133 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X134 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X135 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X136 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X137 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X138 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X139 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X140 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X141 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X142 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X143 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X144 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X145 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X146 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X147 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X148 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X149 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X150 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X151 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X152 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X153 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X154 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X155 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X156 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X157 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X158 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X159 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X160 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X161 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X162 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X163 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X164 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X165 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X166 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X167 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X168 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X169 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X170 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X171 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X172 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X173 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X174 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X175 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X176 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X177 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X178 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X179 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X180  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X181 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X182 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X183 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X184 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X185  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X186 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X187 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X188 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X189 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X190 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X191 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X192 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X193 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X194 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X195 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X196 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X197 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X198 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X199 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X200 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X201 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X202  4.1986310  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X203 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X204 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X205 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X206 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X207 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X208 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X209 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X210 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X211 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X212 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X213 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X214 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X215 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X216 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X217 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X218  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X219 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X220 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X221 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X222 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X223 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X224 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X225 -0.2379224  3.7846575  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X226 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X227 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X228 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X229 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X230 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X231 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X232 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X233 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X234 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X235 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X236 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X237 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X238 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X239 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X240  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X241 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X242 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X243  4.1986310  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X244 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X245 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X246 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X247 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X248 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X249 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X250 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X251 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X252 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X253 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X254 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X255 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X256 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X257 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X258 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X259 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X260 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X261 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X262 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X263 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X264 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X265 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X266 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X267 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X268 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X269 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X270  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X271 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X272 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X273 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X274 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X275 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X276 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X277 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X278 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X279 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X280 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X281 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X282 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X283 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X284 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X285 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X286 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X287 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X288 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X289  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X290 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X291 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X292 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X293  4.1986310  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X294 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X295 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X296 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X297 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X298 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X299 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X300 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X301 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X302 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X303 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X304 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X305 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X306 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X307 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X308  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X309 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X310 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X311 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X312  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X313 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X314 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X315 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X316 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X317 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X318 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X319 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X320 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X321  4.1986310 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X322 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X323 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X324 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X325 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X326 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X327 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X328 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X329 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X330 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X331 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X332 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X333 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X334 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X335 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X336 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X337 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X338 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X339 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X340 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X341 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X342 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X343 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X344 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X345 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X346 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X347 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X348 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X349 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X350 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X351 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X352 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X353 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X354 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X355 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X356 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X357 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X358 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X359 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X360 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X361 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X362 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X363 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X364 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X365 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X366 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X367 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X368 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X369 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X370 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X371 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X372  4.1986310 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X373 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X374 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X375 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X376 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X377 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X378 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X379 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X380 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X381 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X382 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X383 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X384 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X385 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X386 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X387  4.1986310 -0.2639469 -0.3688597  2.7923732 -0.2403773  1.0369606
## X388 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X389 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X390 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X391 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X392 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X393 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773 -0.9633427
## X394 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X395 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X396 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X397 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X398 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X399 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X400 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X401 -0.2379224  3.7846575 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X402  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X403  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X404 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X405 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X406 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X407 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X408 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X409 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X410 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X411  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X412 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X413 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X414 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X415 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X416 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X417 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X418  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X419 -0.2379224 -0.2639469  2.7082069  2.7923732 -0.2403773  1.0369606
## X420 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X421 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
## X422 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X423 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X424 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X425 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X426 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X427 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X428 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X429 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773 -0.9633427
## X430 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X431 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X432 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X433 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X434 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X435 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X436 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X437 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X438 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X439 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X440 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X441 -0.2379224 -0.2639469 -0.3688597  2.7923732 -0.2403773 -0.9633427
## X442  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X443 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X444 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X445 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X446 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X447 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X448 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529 -0.9633427
## X449 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X450 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773 -0.9633427
## X451 -0.2379224 -0.2639469 -0.3688597 -0.3577418  4.1557529  1.0369606
## X452  4.1986310 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X453 -0.2379224 -0.2639469 -0.3688597 -0.3577418 -0.2403773  1.0369606
## X454 -0.2379224 -0.2639469  2.7082069 -0.3577418 -0.2403773  1.0369606
##          FP061      FP062      FP063      FP064      FP065      FP066
## X1   -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X2   -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183 -1.2496793
## X3    1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X4   -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X5   -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X6   -0.898407  1.1334484  1.1604872  1.1832335 -1.2065786  0.7993638
## X7   -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X8    1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X9    1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X10  -0.898407  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X11   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X12   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X13  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X14  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X15  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X16   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X17   1.111911 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X18  -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183 -1.2496793
## X19   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X20  -0.898407 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X21   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X22  -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X23   1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X24   1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X25   1.111911 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X26   1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X27  -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X28  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X29   1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X30  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X31  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X32  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X33  -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X34  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X35   1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X36  -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X37  -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X38   1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X39   1.111911 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X40   1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X41   1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X42   1.111911  1.1334484  1.1604872  1.1832335  0.8279183 -1.2496793
## X43  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X44  -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X45  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X46  -0.898407  1.1334484  1.1604872 -0.8442531 -1.2065786  0.7993638
## X47  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X48  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X49   1.111911 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X50   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X51  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X52  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X53  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X54  -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X55  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X56   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X57   1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X58  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X59   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X60   1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X61   1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X62   1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X63  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X64  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X65   1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X66  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X67   1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X68   1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X69  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X70  -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X71  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X72  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X73  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X74  -0.898407 -0.8813356  1.1604872  1.1832335 -1.2065786  0.7993638
## X75  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X76   1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X77  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X78  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X79  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X80   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X81   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X82  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X83  -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X84   1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X85  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X86  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X87  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X88   1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786 -1.2496793
## X89   1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X90  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X91   1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X92  -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X93  -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X94   1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X95   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X96   1.111911  1.1334484  1.1604872  1.1832335  0.8279183 -1.2496793
## X97  -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X98  -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X99   1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X100 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X101 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X102 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X103  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X104 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X105  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X106 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X107 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X108  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X109  1.111911 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X110  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X111  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X112 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X113  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X114  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X115 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X116  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X117 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X118 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X119 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X120 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X121 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X122 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X123  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X124 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X125 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X126 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X127 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X128 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X129 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X130 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X131 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X132 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X133 -0.898407 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X134 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X135 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X136 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X137 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X138  1.111911 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X139 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X140 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X141 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X142 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X143 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X144 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X145 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X146 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X147 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X148 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X149 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X150 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X151 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X152 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X153 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X154 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X155 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X156 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X157 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X158 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X159 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X160 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X161 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X162  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X163 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X164  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X165 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X166 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X167 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X168 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X169  1.111911 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X170  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X171  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X172 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X173  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X174  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X175 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X176 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X177  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X178 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X179  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X180  1.111911 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X181 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X182  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X183 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X184 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X185  1.111911 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X186  1.111911  1.1334484  1.1604872  1.1832335  0.8279183 -1.2496793
## X187 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X188 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X189 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X190  1.111911 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X191  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X192  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X193 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786 -1.2496793
## X194  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X195 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X196  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X197  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X198 -0.898407  1.1334484  1.1604872  1.1832335 -1.2065786  0.7993638
## X199 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X200 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X201 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X202  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X203  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X204  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X205 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X206 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X207  1.111911 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X208 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X209 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X210 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X211 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X212 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X213 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X214  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X215 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X216 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X217 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X218  1.111911 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X219  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X220 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X221 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X222 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X223 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X224 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X225 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X226 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X227 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X228 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X229 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X230 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X231 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X232 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X233  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X234  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X235 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X236  1.111911 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X237 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X238 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X239  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183 -1.2496793
## X240  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X241 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X242 -0.898407 -0.8813356 -0.8608009  1.1832335  0.8279183 -1.2496793
## X243 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X244  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X245  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X246  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X247  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X248 -0.898407  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X249 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X250  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X251 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X252 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183 -1.2496793
## X253 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X254  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X255  1.111911  1.1334484  1.1604872  1.1832335  0.8279183 -1.2496793
## X256  1.111911  1.1334484  1.1604872  1.1832335 -1.2065786  0.7993638
## X257 -0.898407  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X258 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X259 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X260  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183 -1.2496793
## X261  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X262 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786 -1.2496793
## X263 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X264 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X265 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X266 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X267 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X268  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X269  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X270  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X271  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X272  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X273 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X274  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X275  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X276  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X277  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X278 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X279 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X280 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X281 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X282  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X283 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X284  1.111911 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X285 -0.898407  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X286  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X287  1.111911 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X288  1.111911  1.1334484  1.1604872  1.1832335  0.8279183 -1.2496793
## X289  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X290 -0.898407  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X291 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X292  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X293  1.111911 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X294 -0.898407 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X295  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X296  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X297  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X298 -0.898407  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X299  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X300 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X301 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X302  1.111911  1.1334484  1.1604872  1.1832335 -1.2065786  0.7993638
## X303 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X304  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X305  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X306 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X307 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X308  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X309 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X310  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X311 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X312  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X313 -0.898407 -0.8813356  1.1604872  1.1832335 -1.2065786  0.7993638
## X314 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X315 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X316 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X317 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X318  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X319  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X320 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X321  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X322  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X323 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X324 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X325 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X326 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X327 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X328  1.111911  1.1334484 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X329 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X330 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X331  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X332 -0.898407  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X333  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X334  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X335  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X336 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X337  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X338  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X339  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X340  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X341 -0.898407  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X342 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X343  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X344  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X345 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X346  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X347  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X348  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X349 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X350 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183 -1.2496793
## X351  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X352 -0.898407 -0.8813356  1.1604872  1.1832335 -1.2065786  0.7993638
## X353  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X354 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X355  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786 -1.2496793
## X356 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X357  1.111911 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X358  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X359  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X360  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X361  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X362 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X363  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X364 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X365  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X366 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X367 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X368 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X369  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X370  1.111911 -0.8813356  1.1604872  1.1832335  0.8279183 -1.2496793
## X371 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X372  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X373 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X374  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X375  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X376  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X377  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X378 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X379 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X380 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X381  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183 -1.2496793
## X382  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X383  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X384  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X385  1.111911  1.1334484 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X386  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X387  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X388  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X389  1.111911 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X390  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X391  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X392  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X393 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X394 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X395  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X396 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X397 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786 -1.2496793
## X398 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X399 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X400  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X401 -0.898407 -0.8813356  1.1604872  1.1832335  0.8279183  0.7993638
## X402  1.111911  1.1334484  1.1604872  1.1832335  0.8279183 -1.2496793
## X403  1.111911 -0.8813356 -0.8608009  1.1832335  0.8279183  0.7993638
## X404 -0.898407  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X405  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X406  1.111911  1.1334484 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X407  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X408 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X409  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X410  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X411  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X412  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X413 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X414 -0.898407 -0.8813356  1.1604872  1.1832335 -1.2065786  0.7993638
## X415 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786  0.7993638
## X416 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X417  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X418  1.111911 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X419  1.111911  1.1334484 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X420 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X421  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X422  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183 -1.2496793
## X423  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X424  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X425  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X426  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X427 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X428 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X429 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X430 -0.898407  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X431 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X432  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183 -1.2496793
## X433 -0.898407 -0.8813356 -0.8608009 -0.8442531 -1.2065786 -1.2496793
## X434 -0.898407  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X435 -0.898407  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X436 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183  0.7993638
## X437  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X438  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
## X439 -0.898407 -0.8813356 -0.8608009  1.1832335 -1.2065786  0.7993638
## X440 -0.898407 -0.8813356 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X441  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X442  1.111911 -0.8813356  1.1604872 -0.8442531  0.8279183  0.7993638
## X443  1.111911  1.1334484  1.1604872  1.1832335  0.8279183  0.7993638
## X444  1.111911  1.1334484  1.1604872  1.1832335 -1.2065786  0.7993638
## X445 -0.898407  1.1334484  1.1604872  1.1832335 -1.2065786  0.7993638
## X446  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183  0.7993638
## X447  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X448 -0.898407  1.1334484  1.1604872  1.1832335 -1.2065786  0.7993638
## X449  1.111911  1.1334484  1.1604872 -0.8442531  0.8279183 -1.2496793
## X450 -0.898407 -0.8813356  1.1604872 -0.8442531  0.8279183 -1.2496793
## X451  1.111911  1.1334484 -0.8608009  1.1832335 -1.2065786  0.7993638
## X452  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183 -1.2496793
## X453  1.111911  1.1334484 -0.8608009 -0.8442531  0.8279183  0.7993638
## X454  1.111911  1.1334484 -0.8608009  1.1832335  0.8279183  0.7993638
##           FP067      FP068      FP069      FP070      FP071      FP072
## X1    1.2777443 -0.7524132  1.3276594  1.3459950 -0.6967256 -1.3871296
## X2    1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X3   -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X4   -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256 -1.3871296
## X5    1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X6    1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X7    1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761 -1.3871296
## X8   -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X9   -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X10   1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X11  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X12  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X13  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X14  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X15  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X16  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X17   1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X18   1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X19  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X20  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X21  -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256  0.7201551
## X22   1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X23   1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X24   1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X25   1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X26   1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X27   1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X28   1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X29   1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X30  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X31  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X32  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X33  -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761 -1.3871296
## X34  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X35  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X36  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X37  -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761 -1.3871296
## X38  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X39  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X40   1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X41  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X42   1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X43  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X44   1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X45   1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X46  -0.7818063  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X47  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X48   1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X49  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X50  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X51  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X52  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X53  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X54   1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X55  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X56  -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X57   1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X58   1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X59  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X60   1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X61  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X62  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X63  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X64  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X65  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X66  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X67   1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X68  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X69  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X70   1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X71  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X72  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X73  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X74   1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X75  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X76  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X77  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X78   1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X79  -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256 -1.3871296
## X80  -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X81  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X82   1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X83   1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X84   1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X85  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X86  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X87  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X88  -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X89   1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X90  -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X91   1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X92   1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X93  -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X94  -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X95  -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256  0.7201551
## X96   1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X97  -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X98  -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X99  -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X100 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X101 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X102  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X103 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X104  1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X105  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X106 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X107  1.2777443  1.3276594  1.3276594 -0.7421636  1.4337761 -1.3871296
## X108 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X109 -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X110  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X111 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X112 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X113 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X114  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X115 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X116  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X117 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X118 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X119 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X120  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X121 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X122 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X123  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X124 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X125 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X126 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X127 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X128 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X129 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X130 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X131 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X132 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X133 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X134 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X135 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X136 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X137 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X138 -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X139 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X140  1.2777443 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X141 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X142 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X143 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X144 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X145 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X146 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X147 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X148 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X149 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X150 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X151 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X152  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X153 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X154 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X155 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X156 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X157 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X158 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X159 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X160 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X161 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X162 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X163 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761 -1.3871296
## X164 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X165 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X166 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X167 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X168  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X169 -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X170  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X171 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X172 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X173  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X174  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X175 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X176  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X177 -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X178 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X179 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X180 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X181  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X182 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X183 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X184 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X185 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X186 -0.7818063  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X187 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X188 -0.7818063  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X189  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X190 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X191 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X192  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X193 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X194 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X195 -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761 -1.3871296
## X196 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X197  1.2777443 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X198  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X199 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X200 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X201 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X202 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X203 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X204 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X205 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X206 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X207 -0.7818063 -0.7524132  1.3276594  1.3459950 -0.6967256  0.7201551
## X208 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X209 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X210 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X211 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X212 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X213 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X214 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X215 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X216 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X217 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X218 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X219 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X220 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X221 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X222 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X223 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X224 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X225 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X226 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X227 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X228 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X229 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X230 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X231 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X232 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X233  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X234 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X235 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X236  1.2777443 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X237 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X238 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761 -1.3871296
## X239 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X240  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X241 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X242 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X243  1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X244  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X245 -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761  0.7201551
## X246  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X247  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X248 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X249 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X250 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X251 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X252  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X253 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X254 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256  0.7201551
## X255  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X256  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X257  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X258 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X259 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X260 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X261  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X262 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256 -1.3871296
## X263 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X264  1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X265 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X266 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X267  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X268 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X269 -0.7818063  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X270 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X271 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X272  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X273 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X274  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X275 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X276  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X277  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X278  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X279  1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X280 -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761  0.7201551
## X281 -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761 -1.3871296
## X282  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X283 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X284  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X285  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X286  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X287  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X288  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X289  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X290  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X291 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X292  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X293 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X294 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X295  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X296  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X297 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X298  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X299  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X300 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X301  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X302  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X303  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X304  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X305  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X306 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X307  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X308 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X309  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X310 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X311 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X312  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X313 -0.7818063  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X314 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X315 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X316 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X317 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X318  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X319  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X320  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256 -1.3871296
## X321 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X322  1.2777443  1.3276594  1.3276594 -0.7421636  1.4337761  0.7201551
## X323  1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X324 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X325 -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761 -1.3871296
## X326 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X327 -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761 -1.3871296
## X328 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256  0.7201551
## X329 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X330  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X331  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X332  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X333  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X334  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X335  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X336 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X337  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X338  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X339  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X340 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X341 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X342 -0.7818063 -0.7524132  1.3276594 -0.7421636  1.4337761 -1.3871296
## X343  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X344  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X345  1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X346  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X347 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X348  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X349 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X350  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X351 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X352  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X353  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X354 -0.7818063  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X355 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X356 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X357 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X358 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X359  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X360 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X361 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X362 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X363  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X364 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X365  1.2777443  1.3276594  1.3276594 -0.7421636  1.4337761  0.7201551
## X366 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X367 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X368 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X369  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X370  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X371 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X372  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X373 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X374  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X375  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X376 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X377 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X378  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X379 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X380 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X381 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X382  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X383 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X384 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X385 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X386  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X387  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X388  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X389  1.2777443 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X390  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X391 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X392 -0.7818063  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X393 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X394 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X395  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X396 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X397 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X398 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X399 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X400  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X401  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X402  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X403 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X404 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X405  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X406 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X407  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X408 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X409  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X410  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X411 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X412  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X413  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X414 -0.7818063  1.3276594 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X415 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X416 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X417  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X418 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X419 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X420  1.2777443  1.3276594  1.3276594 -0.7421636  1.4337761 -1.3871296
## X421  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X422 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X423 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X424  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X425 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X426 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X427 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X428 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X429 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X430  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X431 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X432 -0.7818063 -0.7524132 -0.7524132 -0.7421636  1.4337761  0.7201551
## X433 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X434  1.2777443  1.3276594 -0.7524132 -0.7421636  1.4337761  0.7201551
## X435 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X436 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X437  1.2777443  1.3276594  1.3276594  1.3459950  1.4337761  0.7201551
## X438 -0.7818063 -0.7524132  1.3276594  1.3459950  1.4337761  0.7201551
## X439 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256 -1.3871296
## X440 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256 -1.3871296
## X441  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X442  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X443  1.2777443  1.3276594 -0.7524132  1.3459950  1.4337761  0.7201551
## X444  1.2777443  1.3276594 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X445  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X446  1.2777443  1.3276594  1.3276594 -0.7421636 -0.6967256  0.7201551
## X447 -0.7818063 -0.7524132  1.3276594 -0.7421636 -0.6967256  0.7201551
## X448  1.2777443  1.3276594  1.3276594  1.3459950 -0.6967256  0.7201551
## X449  1.2777443  1.3276594 -0.7524132  1.3459950 -0.6967256  0.7201551
## X450  1.2777443 -0.7524132 -0.7524132 -0.7421636  1.4337761 -1.3871296
## X451 -0.7818063 -0.7524132 -0.7524132 -0.7421636 -0.6967256  0.7201551
## X452 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
## X453 -0.7818063 -0.7524132 -0.7524132  1.3459950 -0.6967256  0.7201551
## X454 -0.7818063 -0.7524132 -0.7524132  1.3459950  1.4337761  0.7201551
##           FP073      FP074      FP075      FP076      FP077      FP078
## X1   -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X2    1.4904330  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X3    1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X4   -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X5   -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X6   -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X7   -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X8   -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X9    1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X10  -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X11  -0.6702404  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X12   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X13  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X14  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X15  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X16   1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X17  -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809  1.5126959
## X18   1.4904330 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X19   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X20  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X21   1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X22  -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X23  -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X24  -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X25  -0.6702404  1.4406544  1.3969116 -0.6983906  1.4545809 -0.6603763
## X26  -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X27  -0.6702404  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X28  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X29  -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603  1.5126959
## X30  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X31  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X32  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X33  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X34  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X35  -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X36  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X37  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X38   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X39   1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X40   1.4904330 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X41   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X42  -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X43  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X44  -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X45  -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X46  -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X47  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X48  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X49   1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X50   1.4904330 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X51  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X52  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X53  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X54  -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X55  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X56   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X57  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X58  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X59  -0.6702404  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X60   1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X61   1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X62  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X63  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X64  -0.6702404 -0.6933991 -0.7151122  1.4303578  1.4545809 -0.6603763
## X65  -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X66   1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X67  -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X68   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X69  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X70  -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X71  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X72  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X73  -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X74  -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X75  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X76   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X77  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X78  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X79  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X80   1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X81  -0.6702404  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X82  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X83  -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X84  -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X85  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X86  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X87  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X88   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809 -0.6603763
## X89  -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X90  -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X91   1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X92  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X93  -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X94  -0.6702404  1.4406544 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X95  -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X96   1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X97  -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X98  -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X99  -0.6702404  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X100 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X101 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X102 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X103  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X104 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X105 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X106  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X107 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X108  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X109 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X110  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X111 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X112 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X113  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X114 -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603  1.5126959
## X115 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X116 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X117  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X118 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X119 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X120 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X121 -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X122 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X123 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X124 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X125 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X126 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X127 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X128 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X129 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X130 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X131 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X132 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X133 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X134 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X135 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X136 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X137 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X138  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X139 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X140 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X141 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X142 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X143 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X144 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X145 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X146 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X147 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X148 -0.6702404 -0.6933991 -0.7151122  1.4303578  1.4545809 -0.6603763
## X149 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X150 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X151 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X152 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X153 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X154 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X155 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X156 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X157 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X158 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X159 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X160 -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X161 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X162  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X163 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X164  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X165 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X166 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X167 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X168 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X169 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X170 -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X171  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X172 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X173  1.4904330  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X174  1.4904330 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X175 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X176 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X177 -0.6702404  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X178  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X179  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X180  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X181 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X182  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X183 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X184  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X185  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X186  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X187 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X188 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X189 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X190 -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603  1.5126959
## X191  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X192 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603  1.5126959
## X193 -0.6702404 -0.6933991 -0.7151122  1.4303578  1.4545809 -0.6603763
## X194  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X195 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X196 -0.6702404  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X197 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X198 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X199 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X200 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X201 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X202  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X203 -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X204 -0.6702404  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X205  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X206 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X207 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X208 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X209 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X210 -0.6702404 -0.6933991 -0.7151122  1.4303578  1.4545809 -0.6603763
## X211 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X212 -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X213 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X214 -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X215 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X216 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X217 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X218  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X219  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X220 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X221  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X222 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X223 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X224 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X225 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X226 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X227 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X228 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X229 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X230 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X231 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X232 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X233 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X234  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X235 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X236 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X237 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X238 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X239  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X240  1.4904330  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X241 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X242 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X243  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X244 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X245  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X246 -0.6702404  1.4406544 -0.7151122  1.4303578  1.4545809 -0.6603763
## X247 -0.6702404  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X248 -0.6702404  1.4406544 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X249 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X250  1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X251 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X252 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X253 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X254  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X255  1.4904330 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X256 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X257 -0.6702404  1.4406544 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X258 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X259 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X260  1.4904330 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X261 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X262 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X263 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X264 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X265 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X266 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X267 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X268 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X269 -0.6702404  1.4406544  1.3969116 -0.6983906  1.4545809  1.5126959
## X270  1.4904330  1.4406544 -0.7151122 -0.6983906  1.4545809  1.5126959
## X271  1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X272 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X273 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X274 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809  1.5126959
## X275  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X276  1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X277  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X278 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X279 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X280  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X281 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X282 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X283 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X284  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X285 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X286 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X287 -0.6702404  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X288  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X289  1.4904330  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X290 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603  1.5126959
## X291 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X292 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X293  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X294 -0.6702404  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X295 -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603  1.5126959
## X296 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X297 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X298 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X299 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809  1.5126959
## X300  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X301 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X302  1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X303 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X304 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X305 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X306 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X307  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809 -0.6603763
## X308  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X309  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809 -0.6603763
## X310  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X311 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X312  1.4904330  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X313 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X314 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X315 -0.6702404  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X316 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X317 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X318 -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X319 -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809 -0.6603763
## X320 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X321  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X322 -0.6702404  1.4406544  1.3969116 -0.6983906  1.4545809  1.5126959
## X323 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X324 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X325 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X326 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X327 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X328  1.4904330 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X329 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X330 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X331 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X332 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X333 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X334 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X335 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X336 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X337 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X338 -0.6702404  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X339 -0.6702404  1.4406544 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X340  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X341 -0.6702404  1.4406544 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X342 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X343 -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X344 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X345 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X346 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809  1.5126959
## X347  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X348  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X349 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X350  1.4904330  1.4406544  1.3969116  1.4303578 -0.6867603 -0.6603763
## X351 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X352 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X353 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X354 -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809 -0.6603763
## X355  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X356 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X357 -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603  1.5126959
## X358  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X359 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809  1.5126959
## X360 -0.6702404  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X361 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X362 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X363 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X364 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X365 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X366 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X367 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X368 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X369 -0.6702404  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X370 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X371 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X372  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X373 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X374  1.4904330 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X375 -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603  1.5126959
## X376  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X377  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X378 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809 -0.6603763
## X379 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X380 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X381  1.4904330  1.4406544 -0.7151122 -0.6983906  1.4545809  1.5126959
## X382 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X383  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X384 -0.6702404  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X385  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X386 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X387  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X388  1.4904330  1.4406544  1.3969116  1.4303578 -0.6867603  1.5126959
## X389 -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603  1.5126959
## X390 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809  1.5126959
## X391  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X392 -0.6702404  1.4406544  1.3969116 -0.6983906  1.4545809  1.5126959
## X393 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X394 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X395 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X396 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X397  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X398  1.4904330  1.4406544 -0.7151122 -0.6983906  1.4545809  1.5126959
## X399 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X400 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X401 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X402  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X403  1.4904330  1.4406544 -0.7151122 -0.6983906  1.4545809  1.5126959
## X404 -0.6702404  1.4406544 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X405 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X406  1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X407 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603  1.5126959
## X408 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X409 -0.6702404 -0.6933991  1.3969116  1.4303578  1.4545809  1.5126959
## X410 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X411  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X412 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X413 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X414 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X415 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X416 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X417 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603 -0.6603763
## X418  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X419  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603 -0.6603763
## X420 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X421  1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X422  1.4904330  1.4406544 -0.7151122 -0.6983906 -0.6867603  1.5126959
## X423  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X424  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X425  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X426 -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X427 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X428 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X429 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X430 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X431 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X432  1.4904330 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X433 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X434 -0.6702404 -0.6933991 -0.7151122  1.4303578 -0.6867603  1.5126959
## X435 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X436 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X437  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X438  1.4904330  1.4406544 -0.7151122  1.4303578  1.4545809  1.5126959
## X439 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X440 -0.6702404 -0.6933991 -0.7151122 -0.6983906 -0.6867603 -0.6603763
## X441 -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X442  1.4904330  1.4406544  1.3969116  1.4303578  1.4545809  1.5126959
## X443 -0.6702404 -0.6933991  1.3969116  1.4303578 -0.6867603  1.5126959
## X444 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X445 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X446 -0.6702404  1.4406544  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X447 -0.6702404 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X448 -0.6702404 -0.6933991  1.3969116 -0.6983906  1.4545809 -0.6603763
## X449 -0.6702404  1.4406544  1.3969116  1.4303578  1.4545809 -0.6603763
## X450 -0.6702404 -0.6933991  1.3969116 -0.6983906 -0.6867603 -0.6603763
## X451  1.4904330 -0.6933991 -0.7151122 -0.6983906  1.4545809 -0.6603763
## X452  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X453 -0.6702404  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
## X454  1.4904330  1.4406544 -0.7151122  1.4303578 -0.6867603  1.5126959
##           FP079      FP080      FP081      FP082      FP083      FP084
## X1    0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X2    0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X3    0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X4    0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X5    0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X6   -1.4904330  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X7    0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X8   -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X9    0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X10   0.6702404 -0.6587354  1.6080912  0.6325882  1.6293857 -0.6325882
## X11   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X12   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X13   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X14   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X15   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X16   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X17   0.6702404  1.5164639  1.6080912  0.6325882  1.6293857  1.5791449
## X18   0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X19   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X20   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X21   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X22   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X23   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X24   0.6702404  1.5164639 -0.6212014 -1.5791449  1.6293857  1.5791449
## X25   0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857 -0.6325882
## X26   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X27   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X28   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X29   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X30   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X31  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X32  -1.4904330 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X33   0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X34   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X35   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X36   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X37   0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X38   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X39   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X40   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X41   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X42   0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857 -0.6325882
## X43   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X44   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X45   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X46   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X47  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X48   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X49   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X50   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X51   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X52  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X53   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X54   0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X55   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X56   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X57   0.6702404  1.5164639  1.6080912  0.6325882  1.6293857 -0.6325882
## X58   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X59   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829  1.5791449
## X60   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X61  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X62  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X63   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X64   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X65   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X66  -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X67   0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X68   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X69  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X70   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X71   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X72  -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X73   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X74  -1.4904330  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X75   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X76   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X77   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X78   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X79   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X80   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X81   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X82   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X83   0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X84   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X85   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X86  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X87  -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X88   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X89   0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857 -0.6325882
## X90  -1.4904330  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X91   0.6702404  1.5164639  1.6080912  0.6325882  1.6293857 -0.6325882
## X92   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X93  -1.4904330 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X94  -1.4904330 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X95   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X96   0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X97  -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X98   0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X99   0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X100  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X101  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X102  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X103 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X104  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X105  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X106  0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829  1.5791449
## X107  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X108  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X109 -1.4904330  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X110  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X111  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X112  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X113 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X114  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X115  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X116  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X117 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X118  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X119  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X120  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X121  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X122  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X123  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X124  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X125  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X126  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X127  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X128  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X129  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X130  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X131  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X132  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X133  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X134  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X135  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X136  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X137  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X138  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X139  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X140  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X141  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X142  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X143  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X144  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X145  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X146  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X147  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X148  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X149  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X150  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X151  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X152  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X153  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X154  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X155  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X156  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X157  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X158  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X159  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X160  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X161 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X162  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X163  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X164  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X165  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X166  0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X167  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X168  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X169 -1.4904330  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X170  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X171  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X172 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X173  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X174  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X175 -1.4904330 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X176  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X177  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829  1.5791449
## X178  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X179  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X180  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X181  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X182  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X183  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X184  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X185  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X186  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X187 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X188  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X189  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X190  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X191  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X192  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X193  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X194  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X195  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X196  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X197  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X198 -1.4904330  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X199 -1.4904330 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X200  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X201  0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X202  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X203  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X204  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X205  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X206  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X207  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X208  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X209  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X210  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X211  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X212  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X213  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X214  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X215  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X216  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X217  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X218  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X219 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X220  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X221 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X222  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X223  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X224  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X225  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X226  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X227  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X228  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X229  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X230  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X231  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X232  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X233  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X234  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X235  0.6702404 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X236  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X237  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X238  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X239  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X240  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X241 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X242  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X243  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X244  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X245  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X246  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X247  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X248 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X249  0.6702404 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X250  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X251 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829  1.5791449
## X252  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X253 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X254  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X255  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X256 -1.4904330  1.5164639  1.6080912 -1.5791449  1.6293857 -0.6325882
## X257  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X258 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X259 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X260  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X261  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X262 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X263 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X264  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X265 -1.4904330 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X266 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X267  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X268 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X269  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X270  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X271  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X272  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X273 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X274  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X275 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X276  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X277  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X278  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X279  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X280  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X281  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X282  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X283  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X284  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X285  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X286  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X287  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X288  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X289  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X290  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X291 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X292  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X293  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X294  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X295  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X296  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X297  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X298  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X299  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X300 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X301  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X302  0.6702404 -0.6587354  1.6080912  0.6325882  1.6293857 -0.6325882
## X303  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X304  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X305  0.6702404  1.5164639  1.6080912  0.6325882  1.6293857 -0.6325882
## X306  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X307  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X308  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X309  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X310  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X311 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X312  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X313 -1.4904330  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X314 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X315  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X316  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X317 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X318  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X319  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X320  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X321  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X322  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857 -0.6325882
## X323  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X324 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X325  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X326  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X327  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X328  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X329 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X330  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X331  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X332  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X333  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X334  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X335  0.6702404  1.5164639  1.6080912  0.6325882  1.6293857 -0.6325882
## X336  0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X337  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X338  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X339  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X340  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X341 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X342  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X343  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X344  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X345  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X346  0.6702404 -0.6587354  1.6080912  0.6325882  1.6293857  1.5791449
## X347  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X348  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X349  0.6702404 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X350  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X351 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X352 -1.4904330  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X353  0.6702404  1.5164639  1.6080912  0.6325882  1.6293857 -0.6325882
## X354  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X355 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X356  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X357  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X358 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X359  0.6702404 -0.6587354  1.6080912  0.6325882  1.6293857  1.5791449
## X360  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X361  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X362  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X363  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X364 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X365  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X366  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X367  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X368 -1.4904330 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X369  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X370  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X371  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X372  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X373  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X374  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X375  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X376  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X377  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X378  0.6702404  1.5164639  1.6080912  0.6325882  1.6293857  1.5791449
## X379 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X380 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X381  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X382  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X383  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X384  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X385  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X386  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X387  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829  1.5791449
## X388  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X389  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X390  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829  1.5791449
## X391  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X392  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X393  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X394  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X395  0.6702404  1.5164639  1.6080912  0.6325882  1.6293857 -0.6325882
## X396 -1.4904330 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X397  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X398  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X399  0.6702404 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X400  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X401  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X402  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X403  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829 -0.6325882
## X404 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X405 -1.4904330 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X406  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X407  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X408 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X409  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X410  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X411  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X412  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X413  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X414 -1.4904330  1.5164639  1.6080912 -1.5791449  1.6293857 -0.6325882
## X415  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X416  0.6702404 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X417  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X418  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X419  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X420  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X421  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X422  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X423  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X424  0.6702404  1.5164639 -0.6212014  0.6325882  1.6293857  1.5791449
## X425  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X426  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X427 -1.4904330 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X428  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X429  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X430  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X431  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X432  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X433  0.6702404 -0.6587354 -0.6212014 -1.5791449 -0.6130829 -0.6325882
## X434  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X435 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X436  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X437  0.6702404 -0.6587354  1.6080912  0.6325882  1.6293857  1.5791449
## X438  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X439 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X440  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X441  0.6702404 -0.6587354  1.6080912  0.6325882 -0.6130829  1.5791449
## X442  0.6702404  1.5164639  1.6080912  0.6325882 -0.6130829  1.5791449
## X443  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X444 -1.4904330  1.5164639  1.6080912 -1.5791449  1.6293857 -0.6325882
## X445 -1.4904330  1.5164639  1.6080912  0.6325882 -0.6130829 -0.6325882
## X446  0.6702404 -0.6587354 -0.6212014  0.6325882  1.6293857 -0.6325882
## X447 -1.4904330  1.5164639  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X448  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829 -0.6325882
## X449  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
## X450 -1.4904330 -0.6587354 -0.6212014  0.6325882  1.6293857  1.5791449
## X451 -1.4904330 -0.6587354  1.6080912 -1.5791449 -0.6130829 -0.6325882
## X452  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X453  0.6702404 -0.6587354 -0.6212014  0.6325882 -0.6130829  1.5791449
## X454  0.6702404  1.5164639 -0.6212014  0.6325882 -0.6130829  1.5791449
##          FP085      FP086      FP087      FP088      FP089      FP090
## X1   -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X2    1.706024 -0.6065954  0.6130829  1.6736342  1.7445930  1.7347883
## X3   -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X4   -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X5   -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X6   -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X7    1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X8   -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X9   -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X10  -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X11   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X12  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X13  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X14  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X15  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X16  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X17   1.706024  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X18   1.706024 -0.6065954  0.6130829  1.6736342  1.7445930  1.7347883
## X19  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X20  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X21   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X22   1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X23   1.706024  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X24  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X25  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X26  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X27   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X28  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X29  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X30   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X31  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X32  -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X33  -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X34  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X35   1.706024  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X36  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X37  -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X38  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X39  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X40   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X41  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X42  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X43  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X44   1.706024  1.6468118  0.6130829 -0.5968738  1.7445930  1.7347883
## X45  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X46  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X47  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X48  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X49   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X50   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X51   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X52  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X53   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X54  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X55   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X56  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X57  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X58  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X59   1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X60   1.706024  1.6468118  0.6130829  1.6736342  1.7445930 -0.5758331
## X61  -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X62  -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X63   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X64  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X65   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X66  -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X67   1.706024  1.6468118  0.6130829  1.6736342  1.7445930  1.7347883
## X68  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X69  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X70   1.706024  1.6468118  0.6130829 -0.5968738  1.7445930  1.7347883
## X71  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X72  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X73  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X74  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X75  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X76  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X77   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X78   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X79  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X80  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X81  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X82  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X83   1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X84   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X85   1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X86  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X87  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X88  -0.585542 -0.6065954  0.6130829  1.6736342  1.7445930 -0.5758331
## X89   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X90  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X91  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X92  -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X93  -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X94  -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X95   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X96   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X97  -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X98   1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X99  -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X100  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X101  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X102  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X103 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X104 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X105 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X106 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X107  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X108 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X109 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X110  1.706024  1.6468118  0.6130829  1.6736342  1.7445930 -0.5758331
## X111  1.706024  1.6468118  0.6130829  1.6736342  1.7445930 -0.5758331
## X112 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X113 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X114  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X115  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X116  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X117 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X118  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X119 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X120 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X121 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X122  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X123  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X124  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X125  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X126  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X127  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X128 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X129  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X130  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X131 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X132  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X133 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X134 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X135 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X136  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X137  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X138 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X139  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X140 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X141  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X142  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X143  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X144  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X145  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X146  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X147  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X148  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X149  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X150  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X151 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X152 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X153  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X154  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X155  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X156 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X157  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X158  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X159  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X160 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X161 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X162 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X163  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X164 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X165  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X166 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X167 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X168 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X169 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X170  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X171 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X172 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X173  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X174  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X175 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X176  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X177 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X178  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X179 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X180  1.706024  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X181  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X182 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X183 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X184  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X185 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X186 -0.585542 -0.6065954  0.6130829  1.6736342  1.7445930  1.7347883
## X187 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X188  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X189  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930  1.7347883
## X190  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X191 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X192  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X193 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X194 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X195  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X196 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X197  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X198 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X199 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X200 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X201 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X202  1.706024  1.6468118  0.6130829  1.6736342  1.7445930  1.7347883
## X203 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X204  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X205 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X206  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X207 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X208 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X209 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X210 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X211  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X212 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X213  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X214 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X215 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X216  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X217  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X218  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X219 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X220  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X221 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X222 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X223 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X224  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X225  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X226 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X227  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X228  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X229  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X230 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X231  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X232  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X233 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X234 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X235 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X236  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X237 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X238 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X239  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X240  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X241 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X242 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X243 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X244 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X245  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X246 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969 -0.5758331
## X247 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X248 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X249 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X250 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X251 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X252 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X253 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X254 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X255  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X256 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X257 -0.585542 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X258 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X259 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X260 -0.585542 -0.6065954  0.6130829  1.6736342  1.7445930 -0.5758331
## X261  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X262 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X263 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X264 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X265 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X266 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X267 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X268 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X269 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X270 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969 -0.5758331
## X271  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X272  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X273 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X274 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X275 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X276  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X277 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X278  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X279 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X280  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X281  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X282  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X283 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X284  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X285 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X286 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X287  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X288  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X289  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X290 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X291 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X292  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X293 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X294 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X295 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X296 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X297 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X298  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X299 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X300 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X301 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X302 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X303 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X304  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X305 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X306  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X307 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X308  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X309 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X310 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X311 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X312  1.706024  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X313 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X314 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X315 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X316 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X317 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X318  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X319 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969 -0.5758331
## X320 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X321  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X322  1.706024  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X323 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X324 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X325  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X326 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X327  1.706024  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X328 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X329 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X330  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X331  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X332 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X333  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969  1.7347883
## X334  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X335 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X336 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X337 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X338 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X339  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X340  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X341 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X342  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X343  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969  1.7347883
## X344  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X345 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X346 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X347 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X348 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930  1.7347883
## X349 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X350  1.706024 -0.6065954  0.6130829  1.6736342  1.7445930 -0.5758331
## X351 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X352 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X353 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X354  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X355 -0.585542 -0.6065954 -1.6293857  1.6736342 -0.5725969  1.7347883
## X356 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X357  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X358 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X359 -0.585542  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X360 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X361 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969 -0.5758331
## X362  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X363 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X364 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X365  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X366 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X367  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X368 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X369 -0.585542  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X370  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X371  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X372  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X373 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X374  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X375 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X376 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X377 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X378  1.706024  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X379 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X380 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X381  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X382 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X383 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X384 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X385 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X386 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X387 -0.585542  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X388  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X389 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X390 -0.585542  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X391 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X392 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X393 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X394 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X395 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X396 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X397 -0.585542 -0.6065954  0.6130829  1.6736342  1.7445930 -0.5758331
## X398 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X399 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X400 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X401 -0.585542  1.6468118  0.6130829 -0.5968738  1.7445930 -0.5758331
## X402 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X403  1.706024  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X404 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X405 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X406 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X407  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X408 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X409 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X410  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X411  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X412 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X413  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X414 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X415 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X416 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X417 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X418 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X419 -0.585542 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X420  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X421  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X422  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X423 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X424  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X425 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X426  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X427 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X428 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X429  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X430 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X431 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X432  1.706024 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X433 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X434 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X435 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X436 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X437 -0.585542 -0.6065954  0.6130829  1.6736342 -0.5725969 -0.5758331
## X438 -0.585542  1.6468118  0.6130829  1.6736342 -0.5725969  1.7347883
## X439 -0.585542 -0.6065954 -1.6293857 -0.5968738 -0.5725969 -0.5758331
## X440 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X441 -0.585542  1.6468118  0.6130829  1.6736342  1.7445930 -0.5758331
## X442  1.706024  1.6468118  0.6130829 -0.5968738 -0.5725969  1.7347883
## X443  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X444 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X445 -0.585542  1.6468118 -1.6293857 -0.5968738 -0.5725969  1.7347883
## X446 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X447 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X448 -0.585542 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X449  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969  1.7347883
## X450  1.706024 -0.6065954  0.6130829 -0.5968738 -0.5725969 -0.5758331
## X451 -0.585542  1.6468118 -1.6293857  1.6736342 -0.5725969  1.7347883
## X452  1.706024 -0.6065954  0.6130829  1.6736342  1.7445930 -0.5758331
## X453  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
## X454  1.706024 -0.6065954  0.6130829 -0.5968738  1.7445930 -0.5758331
##           FP091      FP092      FP093      FP094      FP095      FP096
## X1    1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X2    1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X3   -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X4   -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X5    1.8548056  1.7595110 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X6   -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X7    1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X8   -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X9   -0.5385731  1.7595110  1.7595110 -0.5483075  1.8832169  1.8948413
## X10   1.8548056 -0.5677421  1.7595110 -0.5483075  1.8832169 -0.5271937
## X11  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X12  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X13  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X14  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X15  -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X16  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X17   1.8548056 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X18   1.8548056  1.7595110  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X19  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X20  -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X21  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X22   1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X23  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X24   1.8548056  1.7595110  1.7595110 -0.5483075  1.8832169 -0.5271937
## X25  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X26   1.8548056 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X27   1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X28   1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X29  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X30  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X31  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X32  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X33  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X34  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X35  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X36  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X37  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X38  -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X39  -0.5385731 -0.5677421 -0.5677421  1.8218763  1.8832169 -0.5271937
## X40  -0.5385731  1.7595110 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X41  -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X42  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X43  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X44   1.8548056  1.7595110  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X45   1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X46  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X47  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X48   1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X49  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X50  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X51  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X52  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X53  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X54   1.8548056  1.7595110 -0.5677421  1.8218763  1.8832169 -0.5271937
## X55  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X56  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X57  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X58  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X59  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X60  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X61  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X62  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X63  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X64  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X65  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X66  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X67   1.8548056  1.7595110  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X68  -0.5385731  1.7595110  1.7595110  1.8218763  1.8832169  1.8948413
## X69  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X70   1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X71  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X72  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X73  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X74   1.8548056 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X75  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X76  -0.5385731  1.7595110  1.7595110 -0.5483075  1.8832169  1.8948413
## X77  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X78   1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X79  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X80  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X81  -0.5385731  1.7595110  1.7595110 -0.5483075 -0.5304479  1.8948413
## X82  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X83   1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X84  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X85  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X86  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X87  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X88  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X89   1.8548056  1.7595110  1.7595110 -0.5483075  1.8832169  1.8948413
## X90  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X91  -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X92  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X93  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X94  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X95  -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X96  -0.5385731  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X97  -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X98  -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X99  -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X100 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X101 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X102  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X103 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X104  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X105 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X106 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X107  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X108 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X109 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479  1.8948413
## X110 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X111 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X112 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X113 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X114  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X115 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X116  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X117 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X118 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X119 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X120 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X121 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X122 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X123 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479  1.8948413
## X124 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X125 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X126 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X127 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X128 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X129 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X130 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X131 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X132 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X133 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X134 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X135 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X136 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X137 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X138 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X139 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X140 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X141 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X142 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X143 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X144 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X145 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X146 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X147 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X148 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X149 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X150 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X151 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X152  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X153 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X154 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X155 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X156 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X157 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X158 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X159 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X160 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X161 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X162 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X163 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X164 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X165 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X166 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X167 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X168  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X169 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X170 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X171 -0.5385731  1.7595110  1.7595110 -0.5483075  1.8832169  1.8948413
## X172 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X173  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X174  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X175 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X176  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X177 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X178 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X179 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X180 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169 -0.5271937
## X181  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X182 -0.5385731  1.7595110  1.7595110 -0.5483075  1.8832169  1.8948413
## X183 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X184  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X185 -0.5385731 -0.5677421 -0.5677421  1.8218763  1.8832169 -0.5271937
## X186 -0.5385731  1.7595110  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X187 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X188 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X189  1.8548056  1.7595110  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X190 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X191 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X192 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X193 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X194 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X195 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X196 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X197 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X198 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X199 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X200 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X201 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X202 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X203 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X204 -0.5385731  1.7595110  1.7595110  1.8218763 -0.5304479  1.8948413
## X205 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X206  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X207 -0.5385731  1.7595110  1.7595110  1.8218763 -0.5304479 -0.5271937
## X208 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X209 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X210 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X211 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X212 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X213 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X214 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X215 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X216 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X217 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X218 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X219 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X220 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X221 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X222 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X223 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X224 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X225 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X226 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X227 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X228 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X229 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X230 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X231 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X232 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X233  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X234 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X235 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X236 -0.5385731  1.7595110  1.7595110  1.8218763 -0.5304479  1.8948413
## X237 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X238 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X239 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X240  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X241 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X242 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X243 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X244  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X245 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X246 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X247  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X248 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X249 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X250 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X251 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X252  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X253 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X254  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X255 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X256 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X257 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X258 -0.5385731  1.7595110 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X259 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X260 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X261  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X262 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X263 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X264  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X265 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X266 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X267  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X268 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X269 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X270 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X271 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X272 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X273 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X274  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X275 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X276  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X277  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X278  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X279 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X280 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X281 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X282  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X283 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X284  1.8548056 -0.5677421  1.7595110  1.8218763  1.8832169 -0.5271937
## X285 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X286  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X287  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X288 -0.5385731  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X289  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X290  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X291 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X292  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X293 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X294 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X295  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X296  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X297 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X298 -0.5385731  1.7595110 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X299  1.8548056 -0.5677421  1.7595110  1.8218763  1.8832169  1.8948413
## X300 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X301 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X302 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X303  1.8548056 -0.5677421 -0.5677421  1.8218763  1.8832169 -0.5271937
## X304  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X305  1.8548056 -0.5677421 -0.5677421  1.8218763  1.8832169  1.8948413
## X306 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X307  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X308 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X309  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X310 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X311 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X312  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X313 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X314 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X315 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X316 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X317 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X318 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X319 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X320  1.8548056  1.7595110 -0.5677421  1.8218763  1.8832169 -0.5271937
## X321 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X322  1.8548056  1.7595110 -0.5677421  1.8218763  1.8832169 -0.5271937
## X323 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X324 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X325 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X326 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X327 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X328 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X329 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X330 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X331  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X332 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X333 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X334 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X335  1.8548056 -0.5677421  1.7595110  1.8218763  1.8832169 -0.5271937
## X336 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X337  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X338 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X339 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X340 -0.5385731  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X341 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X342 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X343  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X344 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479  1.8948413
## X345 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X346  1.8548056 -0.5677421  1.7595110  1.8218763  1.8832169 -0.5271937
## X347 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X348  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X349 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X350  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X351 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X352 -0.5385731  1.7595110  1.7595110  1.8218763 -0.5304479 -0.5271937
## X353  1.8548056 -0.5677421 -0.5677421  1.8218763  1.8832169  1.8948413
## X354 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X355 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X356 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X357 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X358 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X359  1.8548056 -0.5677421  1.7595110  1.8218763  1.8832169 -0.5271937
## X360 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X361 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X362 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X363  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X364 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X365  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X366 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X367 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X368 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X369 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X370  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X371 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X372 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X373 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X374  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X375  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X376 -0.5385731  1.7595110  1.7595110 -0.5483075  1.8832169  1.8948413
## X377 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X378  1.8548056 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X379 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X380 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X381 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X382  1.8548056 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X383 -0.5385731  1.7595110  1.7595110 -0.5483075  1.8832169  1.8948413
## X384 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X385 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X386  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X387  1.8548056 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X388  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X389  1.8548056 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X390  1.8548056 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X391 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X392 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479  1.8948413
## X393 -0.5385731 -0.5677421 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X394 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X395 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X396 -0.5385731  1.7595110 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X397 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X398 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X399 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X400  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X401  1.8548056 -0.5677421 -0.5677421  1.8218763  1.8832169 -0.5271937
## X402 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X403 -0.5385731 -0.5677421  1.7595110  1.8218763  1.8832169 -0.5271937
## X404 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X405  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X406 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X407 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X408 -0.5385731  1.7595110 -0.5677421  1.8218763 -0.5304479 -0.5271937
## X409  1.8548056 -0.5677421  1.7595110  1.8218763  1.8832169  1.8948413
## X410  1.8548056  1.7595110 -0.5677421 -0.5483075  1.8832169  1.8948413
## X411 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X412  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X413  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X414 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X415 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X416 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X417  1.8548056 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X418 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X419 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X420  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X421 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169 -0.5271937
## X422 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X423 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X424  1.8548056 -0.5677421  1.7595110  1.8218763  1.8832169  1.8948413
## X425 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X426 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X427 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X428 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X429 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X430 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X431 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X432 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X433 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479 -0.5271937
## X434  1.8548056  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X435 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X436 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X437 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X438 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X439 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X440 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X441  1.8548056 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X442 -0.5385731 -0.5677421  1.7595110 -0.5483075  1.8832169  1.8948413
## X443  1.8548056  1.7595110 -0.5677421  1.8218763  1.8832169  1.8948413
## X444 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X445 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X446 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X447 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X448 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X449 -0.5385731 -0.5677421  1.7595110 -0.5483075 -0.5304479  1.8948413
## X450 -0.5385731  1.7595110 -0.5677421 -0.5483075 -0.5304479 -0.5271937
## X451 -0.5385731 -0.5677421  1.7595110  1.8218763 -0.5304479 -0.5271937
## X452 -0.5385731 -0.5677421 -0.5677421 -0.5483075  1.8832169  1.8948413
## X453 -0.5385731 -0.5677421 -0.5677421 -0.5483075 -0.5304479  1.8948413
## X454 -0.5385731 -0.5677421 -0.5677421  1.8218763  1.8832169  1.8948413
##           FP097     FP098      FP099      FP100      FP101      FP102
## X1    1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X2    1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X3   -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X4   -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X5   -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X6   -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X7    1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X8   -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X9    1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X10  -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X11   1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X12   1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X13   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X14   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X15  -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X16   1.8005896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X17  -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X18   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X19   1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X20   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X21   1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X22   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X23  -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X24  -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X25  -0.5547896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X26  -0.5547896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X27   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X28   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X29  -0.5547896  1.790137  1.8436919  1.8218763 -0.5564094 -0.5026912
## X30  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X31  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X32  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X33  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X34   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X35   1.8005896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X36  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X37  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X38   1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X39  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X40  -0.5547896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X41   1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X42  -0.5547896  1.790137 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X43   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X44   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X45  -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X46  -0.5547896 -0.558029  1.8436919 -0.5483075  1.7953478  1.9872011
## X47  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X48  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X49  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X50  -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X51  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X52  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X53  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X54  -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X55  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X56   1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X57  -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X58   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X59   1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X60   1.8005896  1.790137 -0.5418196  1.8218763  1.7953478  1.9872011
## X61  -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X62  -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X63  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X64   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X65  -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X66  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X67   1.8005896  1.790137 -0.5418196 -0.5483075  1.7953478  1.9872011
## X68   1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X69  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X70   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X71   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X72  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X73  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X74  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X75  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X76   1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X77   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X78  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X79   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X80  -0.5547896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X81   1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X82   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X83   1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X84   1.8005896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X85  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X86  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X87  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X88  -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X89  -0.5547896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X90  -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094  1.9872011
## X91   1.8005896  1.790137  1.8436919  1.8218763 -0.5564094 -0.5026912
## X92   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X93  -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X94  -0.5547896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X95   1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X96  -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X97  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X98  -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X99   1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X100 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X101 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X102  1.8005896 -0.558029  1.8436919 -0.5483075  1.7953478  1.9872011
## X103 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X104  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X105  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X106  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X107 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X108  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X109 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094  1.9872011
## X110  1.8005896  1.790137 -0.5418196  1.8218763  1.7953478  1.9872011
## X111 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X112  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X113 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X114 -0.5547896  1.790137  1.8436919  1.8218763  1.7953478  1.9872011
## X115 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X116 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X117 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X118 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X119  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X120  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X121  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X122 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X123  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X124 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X125 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X126 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X127 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X128 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X129 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X130  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X131  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X132 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X133  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X134 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X135 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X136 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X137 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X138  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X139 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X140  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X141 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X142 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X143 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X144 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X145 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X146 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X147 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X148  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X149  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X150 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X151  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X152 -0.5547896 -0.558029  1.8436919 -0.5483075  1.7953478  1.9872011
## X153 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X154 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X155 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X156  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X157 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X158 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X159 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X160 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X161 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X162  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X163 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X164  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X165 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X166 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X167 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X168 -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X169 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094  1.9872011
## X170  1.8005896  1.790137 -0.5418196 -0.5483075  1.7953478  1.9872011
## X171  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X172 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X173  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X174 -0.5547896  1.790137  1.8436919 -0.5483075  1.7953478 -0.5026912
## X175 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X176  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X177  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X178 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X179  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X180  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X181  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X182  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X183  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X184 -0.5547896 -0.558029  1.8436919 -0.5483075  1.7953478 -0.5026912
## X185 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X186 -0.5547896 -0.558029  1.8436919 -0.5483075  1.7953478  1.9872011
## X187 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X188  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X189  1.8005896 -0.558029  1.8436919 -0.5483075  1.7953478  1.9872011
## X190 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094  1.9872011
## X191  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X192  1.8005896  1.790137 -0.5418196  1.8218763  1.7953478 -0.5026912
## X193 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X194  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X195  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X196  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X197 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X198 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X199 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X200 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X201 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X202  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X203 -0.5547896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X204  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094  1.9872011
## X205  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X206 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X207 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094  1.9872011
## X208 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X209  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X210  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X211 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X212  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X213 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X214 -0.5547896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X215  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X216 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X217 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X218 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094  1.9872011
## X219 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X220 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X221 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X222  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X223  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X224 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X225  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X226  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X227 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X228 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X229  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X230  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X231 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X232 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X233 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478 -0.5026912
## X234  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X235 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X236 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X237 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X238  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X239 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X240  1.8005896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X241 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X242 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X243  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X244 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X245 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X246 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X247 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X248 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X249 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X250 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X251 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X252 -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X253 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X254 -0.5547896 -0.558029  1.8436919 -0.5483075  1.7953478 -0.5026912
## X255  1.8005896  1.790137 -0.5418196  1.8218763  1.7953478  1.9872011
## X256 -0.5547896  1.790137 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X257 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X258 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X259 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X260  1.8005896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X261  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X262 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X263 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X264  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X265 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X266 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X267 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X268 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X269 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X270 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X271 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X272 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X273 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X274 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X275 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X276 -0.5547896  1.790137 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X277  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X278  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X279  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X280 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X281 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X282 -0.5547896  1.790137 -0.5418196  1.8218763  1.7953478  1.9872011
## X283 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X284  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X285 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X286 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X287 -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X288 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X289  1.8005896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X290 -0.5547896 -0.558029 -0.5418196  1.8218763  1.7953478  1.9872011
## X291 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X292 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X293  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X294 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X295 -0.5547896  1.790137  1.8436919  1.8218763 -0.5564094  1.9872011
## X296 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X297 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X298 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X299 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478 -0.5026912
## X300 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X301 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X302 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X303 -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X304  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X305 -0.5547896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X306 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X307  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X308  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X309  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X310  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X311 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X312  1.8005896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X313 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X314 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X315 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X316 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X317 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X318  1.8005896  1.790137 -0.5418196 -0.5483075  1.7953478  1.9872011
## X319 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X320 -0.5547896 -0.558029  1.8436919 -0.5483075  1.7953478 -0.5026912
## X321 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X322 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X323  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X324 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X325 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X326 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X327 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X328 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X329 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X330 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X331 -0.5547896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X332 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X333 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X334 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X335 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X336 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X337 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X338  1.8005896  1.790137 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X339 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X340 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X341 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X342 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X343  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X344  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X345  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X346 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478 -0.5026912
## X347  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X348  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X349 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X350 -0.5547896 -0.558029  1.8436919 -0.5483075  1.7953478  1.9872011
## X351 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X352 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X353 -0.5547896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X354  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X355 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X356 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X357  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094  1.9872011
## X358 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X359 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478 -0.5026912
## X360  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X361 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X362 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X363 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X364 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X365 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X366 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X367 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X368 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X369  1.8005896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X370  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X371 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X372 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X373  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X374  1.8005896 -0.558029 -0.5418196  1.8218763  1.7953478 -0.5026912
## X375 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X376  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X377  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X378  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478  1.9872011
## X379 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X380 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X381 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X382 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X383  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X384  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X385 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X386 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X387 -0.5547896 -0.558029 -0.5418196  1.8218763  1.7953478  1.9872011
## X388 -0.5547896 -0.558029  1.8436919  1.8218763 -0.5564094  1.9872011
## X389  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X390 -0.5547896 -0.558029 -0.5418196  1.8218763  1.7953478  1.9872011
## X391  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X392 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X393 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X394  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X395 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X396 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X397 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X398 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X399 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X400 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X401  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X402 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X403 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X404 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X405 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X406 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X407  1.8005896 -0.558029 -0.5418196  1.8218763  1.7953478 -0.5026912
## X408 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X409  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478 -0.5026912
## X410  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X411  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X412 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X413  1.8005896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X414 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X415 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X416 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X417 -0.5547896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X418 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X419 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X420 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094  1.9872011
## X421 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X422 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X423  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X424  1.8005896  1.790137 -0.5418196 -0.5483075  1.7953478  1.9872011
## X425  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X426  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X427 -0.5547896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X428 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X429  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X430 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X431 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X432 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X433 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X434 -0.5547896 -0.558029 -0.5418196  1.8218763  1.7953478  1.9872011
## X435 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X436 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X437  1.8005896  1.790137  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X438  1.8005896 -0.558029  1.8436919 -0.5483075 -0.5564094 -0.5026912
## X439 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X440 -0.5547896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X441 -0.5547896 -0.558029 -0.5418196  1.8218763  1.7953478  1.9872011
## X442  1.8005896 -0.558029  1.8436919 -0.5483075  1.7953478  1.9872011
## X443  1.8005896 -0.558029  1.8436919  1.8218763  1.7953478  1.9872011
## X444 -0.5547896  1.790137 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X445 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X446 -0.5547896  1.790137 -0.5418196  1.8218763 -0.5564094 -0.5026912
## X447 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X448 -0.5547896 -0.558029 -0.5418196  1.8218763 -0.5564094  1.9872011
## X449  1.8005896  1.790137 -0.5418196  1.8218763  1.7953478  1.9872011
## X450 -0.5547896 -0.558029 -0.5418196 -0.5483075  1.7953478 -0.5026912
## X451 -0.5547896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X452  1.8005896 -0.558029 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X453  1.8005896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
## X454  1.8005896  1.790137 -0.5418196 -0.5483075 -0.5564094 -0.5026912
##           FP103      FP104     FP105      FP106      FP107      FP108     FP109
## X1   -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X2   -0.5288211  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X3   -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X4    1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X5   -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X6   -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X7    1.8890101  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X8    1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X9    1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X10   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074  2.157733
## X11  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X12   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X13  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X14  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X15  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X16  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X17   1.8890101  1.8660610  1.906619  2.0544663 -0.5174149  1.9679549  2.157733
## X18  -0.5288211  1.8660610  1.906619  2.0544663  1.9306527 -0.5076074  2.157733
## X19   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X20  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X21  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X22   1.8890101 -0.5353247  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X23  -0.5288211 -0.5353247  1.906619 -0.4862326  1.9306527  1.9679549  2.157733
## X24  -0.5288211  1.8660610  1.906619  2.0544663  1.9306527 -0.5076074 -0.462962
## X25  -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X26  -0.5288211 -0.5353247  1.906619  2.0544663 -0.5174149 -0.5076074 -0.462962
## X27   1.8890101  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549  2.157733
## X28  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X29  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X30  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X31   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X32  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X33   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X34  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X35   1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X36  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X37   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X38   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X39   1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X40  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X41   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X42  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X43  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X44  -0.5288211  1.8660610  1.906619  2.0544663  1.9306527 -0.5076074  2.157733
## X45  -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X46  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X47   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X48  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X49  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X50  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X51  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X52   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X53  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X54  -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X55  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X56   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X57   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149  1.9679549  2.157733
## X58  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X59  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X60  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X61   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X62   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X63  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X64  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X65  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X66   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X67   1.8890101  1.8660610  1.906619  2.0544663  1.9306527  1.9679549  2.157733
## X68   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X69   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X70   1.8890101  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X71  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X72   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X73  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X74  -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X75  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X76   1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X77  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X78  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X79  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X80  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X81   1.8890101 -0.5353247  1.906619 -0.4862326  1.9306527  1.9679549 -0.462962
## X82  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X83   1.8890101  1.8660610  1.906619  2.0544663  1.9306527 -0.5076074  2.157733
## X84  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X85  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X86   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X87   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X88  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X89  -0.5288211  1.8660610  1.906619  2.0544663  1.9306527  1.9679549 -0.462962
## X90  -0.5288211  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074 -0.462962
## X91   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X92  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X93  -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X94   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X95  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X96  -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X97   1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X98  -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X99   1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X100 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X101 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X102  1.8890101  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X103  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X104 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X105 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X106  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X107 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X108  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X109 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X110 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X111 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X112 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X113  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X114 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527  1.9679549  2.157733
## X115 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X116 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X117  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X118 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X119 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X120 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X121 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X122 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X123 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527  1.9679549 -0.462962
## X124 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X125 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X126 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X127 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X128 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X129 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X130 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X131 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X132 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X133 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X134 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X135 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X136 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X137 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X138  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X139 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X140 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X141 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X142 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X143 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X144 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X145 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X146 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X147 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X148  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X149 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X150 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X151 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X152 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X153 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X154 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X155 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X156 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X157 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X158 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X159 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X160 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X161  1.8890101  1.8660610  1.906619 -0.4862326  1.9306527 -0.5076074 -0.462962
## X162  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X163 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X164  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X165 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X166 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X167 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X168 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X169 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X170 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X171  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X172 -0.5288211  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X173 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X174 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X175 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X176 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X177  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X178 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X179  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X180  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X181  1.8890101  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X182  1.8890101  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X183 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X184 -0.5288211  1.8660610 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X185  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X186 -0.5288211 -0.5353247  1.906619 -0.4862326  1.9306527 -0.5076074 -0.462962
## X187  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X188 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X189 -0.5288211  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X190 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X191  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X192 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X193 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X194  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X195 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X196  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X197 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527  1.9679549 -0.462962
## X198 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X199 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X200 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X201  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X202  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X203 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X204 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527  1.9679549 -0.462962
## X205 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X206 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X207 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527  1.9679549 -0.462962
## X208 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X209 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X210 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X211 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X212 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X213 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X214 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X215 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X216 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X217 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X218 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X219  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X220 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X221  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X222 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X223 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X224 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X225 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X226 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X227 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X228 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X229 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X230 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X231 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X232 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X233 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X234  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X235 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X236 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527  1.9679549 -0.462962
## X237 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X238 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X239 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X240  1.8890101 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X241 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X242 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X243 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X244 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549  2.157733
## X245 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X246  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074  2.157733
## X247 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549  2.157733
## X248  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X249 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X250 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X251 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X252 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X253 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X254 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X255 -0.5288211  1.8660610 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X256  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X257 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X258 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X259 -0.5288211  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X260 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X261 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X262 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X263  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X264 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X265 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X266 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X267 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X268  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X269  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X270 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X271 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X272  1.8890101 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X273  1.8890101 -0.5353247  1.906619 -0.4862326  1.9306527 -0.5076074 -0.462962
## X274  1.8890101  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074 -0.462962
## X275  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X276 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X277 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X278 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X279 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X280 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X281 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X282 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X283 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X284  1.8890101  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X285 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X286 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X287 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549  2.157733
## X288 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X289 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X290 -0.5288211  1.8660610 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X291 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X292 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X293 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X294 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X295 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549  2.157733
## X296 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549  2.157733
## X297 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X298 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X299  1.8890101  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074 -0.462962
## X300  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X301 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X302 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X303 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X304 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X305 -0.5288211 -0.5353247  1.906619  2.0544663 -0.5174149 -0.5076074 -0.462962
## X306 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X307 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X308 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X309 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X310  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X311  1.8890101 -0.5353247  1.906619 -0.4862326  1.9306527 -0.5076074 -0.462962
## X312  1.8890101 -0.5353247 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X313 -0.5288211  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X314 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X315 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X316 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X317 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X318 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X319  1.8890101  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X320 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X321 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X322  1.8890101 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X323 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X324 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X325 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X326 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X327 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X328 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X329 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X330 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X331 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X332 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X333 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X334 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X335  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549  2.157733
## X336  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X337 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549  2.157733
## X338 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X339 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X340 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X341  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X342 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X343 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X344 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X345 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X346  1.8890101  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X347  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X348 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X349 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X350 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X351  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X352 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X353 -0.5288211 -0.5353247  1.906619  2.0544663 -0.5174149 -0.5076074 -0.462962
## X354 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X355 -0.5288211  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X356 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X357  1.8890101 -0.5353247 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X358  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X359 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X360  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X361 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X362 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X363 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X364 -0.5288211  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X365 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X366 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X367 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X368 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X369  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X370 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X371 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X372 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X373 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X374 -0.5288211  1.8660610 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X375 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527  1.9679549 -0.462962
## X376  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X377  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X378  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074  2.157733
## X379  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X380 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X381 -0.5288211 -0.5353247  1.906619 -0.4862326  1.9306527  1.9679549 -0.462962
## X382 -0.5288211  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074 -0.462962
## X383  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X384  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X385 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X386 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X387 -0.5288211  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X388 -0.5288211 -0.5353247 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X389 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X390 -0.5288211  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X391  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X392  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X393 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X394 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X395  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149  1.9679549  2.157733
## X396 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X397 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X398  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X399 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X400 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X401 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X402 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X403  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X404 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X405 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074 -0.462962
## X406 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X407 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X408 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X409  1.8890101  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X410 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X411 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X412 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X413 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X414  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X415 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X416 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X417 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X418 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X419 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X420 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074  2.157733
## X421 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X422 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549 -0.462962
## X423  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X424 -0.5288211  1.8660610  1.906619  2.0544663 -0.5174149 -0.5076074  2.157733
## X425  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X426 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X427 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X428 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X429 -0.5288211 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X430 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X431 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X432 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X433 -0.5288211  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X434 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074  2.157733
## X435  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X436 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X437 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
## X438  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X439  1.8890101 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X440 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527 -0.5076074 -0.462962
## X441 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149 -0.5076074  2.157733
## X442 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X443 -0.5288211  1.8660610 -0.523937  2.0544663  1.9306527 -0.5076074  2.157733
## X444  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X445  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X446 -0.5288211 -0.5353247 -0.523937 -0.4862326  1.9306527  1.9679549  2.157733
## X447  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149  1.9679549 -0.462962
## X448  1.8890101 -0.5353247  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X449 -0.5288211  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X450 -0.5288211 -0.5353247 -0.523937  2.0544663 -0.5174149 -0.5076074 -0.462962
## X451  1.8890101  1.8660610  1.906619 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X452 -0.5288211 -0.5353247 -0.523937 -0.4862326 -0.5174149 -0.5076074 -0.462962
## X453 -0.5288211  1.8660610 -0.523937 -0.4862326 -0.5174149  1.9679549 -0.462962
## X454 -0.5288211  1.8660610 -0.523937  2.0544663 -0.5174149  1.9679549 -0.462962
##           FP110      FP111      FP112      FP113      FP114      FP115
## X1   -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X2   -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X3   -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X4   -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X5   -0.5092442  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X6    1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X7   -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X8   -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X9   -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863  2.1422621
## X10   1.9616295  2.0202142 -0.4911827  2.0269629  2.3280830 -0.4663054
## X11  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X12  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X13  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X14  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X15  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X16  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X17   1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X18  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X19  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X20  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X21  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X22  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X23   1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X24   1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863  2.1422621
## X25  -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X26   1.9616295  2.0202142 -0.4911827  2.0269629  2.3280830  2.1422621
## X27  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X28  -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X29   1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X30  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X31  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X32  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X33  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X34  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X35  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X36  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X37  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X38  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X39  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X40  -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X41  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X42   1.9616295  2.0202142  2.0337617  2.0269629  2.3280830 -0.4663054
## X43  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X44  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X45  -0.5092442  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X46  -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X47  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X48  -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X49  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X50  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X51  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X52  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X53  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X54  -0.5092442  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X55  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X56  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X57  -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X58  -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X59  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863  2.1422621
## X60   1.9616295 -0.4944765  2.0337617 -0.4928302 -0.4290863  2.1422621
## X61  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X62  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X63  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X64  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X65  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X66  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X67  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X68  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863  2.1422621
## X69  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X70  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X71  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X72  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X73  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X74  -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X75  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X76  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863  2.1422621
## X77  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X78  -0.5092442 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X79  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X80  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X81  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863  2.1422621
## X82  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X83  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X84   1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830  2.1422621
## X85  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X86  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X87  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X88  -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X89   1.9616295  2.0202142  2.0337617  2.0269629  2.3280830  2.1422621
## X90  -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X91   1.9616295 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X92  -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X93  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X94  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X95  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X96  -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863 -0.4663054
## X97  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X98  -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X99  -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X100 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X101 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X102 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X103 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X104 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X105  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X106 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X107 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X108 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X109 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X110  1.9616295 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X111 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X112 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X113 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X114  1.9616295  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X115 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X116  1.9616295  2.0202142  2.0337617 -0.4928302  2.3280830  2.1422621
## X117 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X118 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X119 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X120 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X121 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X122 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X123  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X124 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X125 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X126 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X127 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X128 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X129 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X130 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X131 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X132 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X133 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X134 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X135 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X136 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X137 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X138 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X139 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X140 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X141 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X142 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X143 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X144 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X145 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X146 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X147 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X148 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X149 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X150 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X151 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X152 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X153 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X154 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X155 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X156 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X157 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X158 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X159 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X160 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X161 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X162 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X163 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X164 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X165 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X166 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X167 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X168 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X169 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X170 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X171 -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863  2.1422621
## X172 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X173  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X174 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X175 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X176 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X177 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X178 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X179 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X180 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X181 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X182 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863  2.1422621
## X183 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X184 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X185 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X186 -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863 -0.4663054
## X187 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X188 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X189 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X190 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X191 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X192  1.9616295 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X193 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X194 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X195 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X196 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X197  1.9616295  2.0202142  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X198  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X199 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X200 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X201 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X202 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X203 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X204 -0.5092442  2.0202142  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X205 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X206 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X207 -0.5092442  2.0202142  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X208 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X209 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X210 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X211 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X212 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X213 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X214 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X215 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X216 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X217 -0.5092442  2.0202142  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X218 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X219 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X220 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X221 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X222 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X223 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X224 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X225 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X226 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X227 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X228 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X229 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X230 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X231 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X232 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X233  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X234 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X235 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X236  1.9616295  2.0202142  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X237 -0.5092442  2.0202142  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X238 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X239 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X240  1.9616295 -0.4944765  2.0337617  2.0269629  2.3280830  2.1422621
## X241 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X242 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X243 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X244  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X245 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X246  1.9616295 -0.4944765 -0.4911827  2.0269629  2.3280830 -0.4663054
## X247 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X248 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X249 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X250 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X251 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X252 -0.5092442 -0.4944765 -0.4911827  2.0269629  2.3280830 -0.4663054
## X253 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X254 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X255  1.9616295  2.0202142  2.0337617 -0.4928302 -0.4290863  2.1422621
## X256  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X257 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X258 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X259 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X260 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X261  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X262 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X263 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X264 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X265 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X266 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X267 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X268 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X269 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X270 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X271 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X272  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X273 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X274  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X275 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X276 -0.5092442 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X277 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X278 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X279 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X280 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X281 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X282  1.9616295  2.0202142  2.0337617 -0.4928302  2.3280830  2.1422621
## X283 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X284  1.9616295 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X285  1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X286 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X287 -0.5092442  2.0202142 -0.4911827  2.0269629  2.3280830 -0.4663054
## X288 -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863 -0.4663054
## X289  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830  2.1422621
## X290  1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X291 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X292  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X293 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X294 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X295  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X296  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X297 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X298  1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X299  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863  2.1422621
## X300 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X301 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X302  1.9616295 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X303 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X304 -0.5092442  2.0202142  2.0337617 -0.4928302 -0.4290863  2.1422621
## X305  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863  2.1422621
## X306 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X307 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X308 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X309 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X310 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X311 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X312  1.9616295 -0.4944765 -0.4911827  2.0269629  2.3280830  2.1422621
## X313 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X314 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X315 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X316 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X317 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X318 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X319  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X320 -0.5092442  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X321 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X322  1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X323 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X324 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X325 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X326 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X327 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X328 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X329 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X330 -0.5092442 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X331  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X332  1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X333  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X334 -0.5092442 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X335 -0.5092442 -0.4944765 -0.4911827  2.0269629  2.3280830 -0.4663054
## X336 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X337  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X338  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X339  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X340 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X341 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X342 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X343  1.9616295 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X344  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X345 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X346  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863  2.1422621
## X347 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X348 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X349 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X350 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X351 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X352 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X353  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863  2.1422621
## X354 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X355 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X356 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X357 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X358 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X359  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863  2.1422621
## X360 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X361 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X362 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X363 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X364 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X365  1.9616295  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X366 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X367 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X368 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X369  1.9616295 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X370 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X371 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X372  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X373 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X374  1.9616295 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X375  1.9616295 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X376 -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863  2.1422621
## X377 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X378 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X379 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X380 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X381 -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863 -0.4663054
## X382  1.9616295  2.0202142 -0.4911827  2.0269629  2.3280830  2.1422621
## X383 -0.5092442 -0.4944765  2.0337617  2.0269629 -0.4290863  2.1422621
## X384 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X385 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X386 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X387  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830  2.1422621
## X388  1.9616295  2.0202142  2.0337617 -0.4928302  2.3280830  2.1422621
## X389 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X390  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830  2.1422621
## X391 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X392 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X393 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X394 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X395 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X396 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X397 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X398 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X399 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X400  1.9616295  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X401 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X402 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X403 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X404 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X405  1.9616295  2.0202142  2.0337617 -0.4928302 -0.4290863  2.1422621
## X406 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X407  1.9616295 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X408 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X409  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863  2.1422621
## X410 -0.5092442  2.0202142  2.0337617 -0.4928302 -0.4290863  2.1422621
## X411 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X412 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X413 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X414 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X415 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X416 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X417 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X418 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X419 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X420 -0.5092442 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X421 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X422 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X423 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X424 -0.5092442  2.0202142 -0.4911827 -0.4928302  2.3280830  2.1422621
## X425 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X426 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
## X427 -0.5092442  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X428 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X429 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X430  1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X431 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X432 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X433 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X434  1.9616295 -0.4944765  2.0337617 -0.4928302  2.3280830 -0.4663054
## X435 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X436 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X437 -0.5092442 -0.4944765 -0.4911827 -0.4928302  2.3280830  2.1422621
## X438 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863  2.1422621
## X439 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X440 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X441  1.9616295 -0.4944765 -0.4911827 -0.4928302  2.3280830  2.1422621
## X442 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X443  1.9616295  2.0202142  2.0337617 -0.4928302 -0.4290863  2.1422621
## X444  1.9616295  2.0202142 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X445  1.9616295  2.0202142 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X446  1.9616295  2.0202142  2.0337617 -0.4928302  2.3280830 -0.4663054
## X447 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X448  1.9616295  2.0202142 -0.4911827 -0.4928302  2.3280830 -0.4663054
## X449  1.9616295 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X450 -0.5092442 -0.4944765  2.0337617 -0.4928302 -0.4290863 -0.4663054
## X451 -0.5092442 -0.4944765 -0.4911827  2.0269629 -0.4290863 -0.4663054
## X452 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X453 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863 -0.4663054
## X454 -0.5092442 -0.4944765 -0.4911827 -0.4928302 -0.4290863  2.1422621
##           FP116      FP117      FP118      FP119      FP120      FP121
## X1    2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X2    2.0475127 -0.4663054  2.0475127 -0.4410429 -0.4461321  2.4786909
## X3   -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X4   -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X5    2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X6   -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X7   -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X8   -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X9   -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X10  -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X11  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X12  -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X13  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X14  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X15  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X16  -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X17   2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X18   2.0475127 -0.4663054  2.0475127 -0.4410429  2.2391315  2.4786909
## X19  -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X20  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X21  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X22  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X23  -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315  2.4786909
## X24   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X25  -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X26  -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X27   2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X28   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X29  -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X30  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X31  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X32  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X33  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X34  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X35   2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X36  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X37  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X38  -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X39  -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X40  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X41  -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X42  -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X43  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X44   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X45   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X46   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X47  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X48  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X49  -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X50  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X51  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X52  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X53  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X54   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X55  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X56  -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X57  -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X58  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X59  -0.4878839  2.1422621 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X60  -0.4878839  2.1422621  2.0475127  2.2649688 -0.4461321  2.4786909
## X61  -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X62  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X63  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X64  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X65  -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X66  -0.4878839 -0.4663054  2.0475127 -0.4410429  2.2391315 -0.4030145
## X67   2.0475127 -0.4663054 -0.4878839 -0.4410429  2.2391315  2.4786909
## X68  -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X69  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X70   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X71  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X72  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X73  -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X74  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X75  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X76  -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X77  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X78  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X79  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X80  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X81  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X82  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X83   2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X84  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X85  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X86  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X87  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X88  -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X89  -0.4878839 -0.4663054  2.0475127  2.2649688 -0.4461321 -0.4030145
## X90  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X91  -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X92  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X93  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X94  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X95  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X96  -0.4878839 -0.4663054  2.0475127  2.2649688 -0.4461321 -0.4030145
## X97  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X98  -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X99  -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X100 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X101 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X102  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X103 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X104  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X105 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X106 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X107 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X108 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X109 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X110 -0.4878839  2.1422621  2.0475127  2.2649688 -0.4461321  2.4786909
## X111 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X112 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X113 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X114 -0.4878839  2.1422621 -0.4878839  2.2649688 -0.4461321  2.4786909
## X115 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X116 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X117 -0.4878839 -0.4663054  2.0475127 -0.4410429  2.2391315 -0.4030145
## X118 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X119 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X120 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X121  2.0475127  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X122 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X123 -0.4878839  2.1422621 -0.4878839 -0.4410429  2.2391315  2.4786909
## X124 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X125 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X126 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X127 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X128 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X129 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X130 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X131 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X132 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X133 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X134 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X135 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X136 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X137 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X138  2.0475127  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X139 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X140 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X141 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X142 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X143 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X144 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X145 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X146 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X147 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X148 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X149 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X150 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X151 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X152 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X153 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X154 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X155 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X156 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X157 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X158 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X159 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X160 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X161 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X162 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X163 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X164 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X165 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X166 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X167 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X168  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X169 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X170  2.0475127  2.1422621 -0.4878839  2.2649688  2.2391315  2.4786909
## X171 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X172 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X173  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X174  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X175 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X176  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X177 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X178 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X179 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X180 -0.4878839  2.1422621  2.0475127  2.2649688 -0.4461321 -0.4030145
## X181  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X182 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X183 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X184  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X185 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X186  2.0475127 -0.4663054  2.0475127 -0.4410429 -0.4461321  2.4786909
## X187 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X188 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X189  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X190 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X191 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X192  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X193 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X194 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X195 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X196 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X197  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X198 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X199 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X200 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X201 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X202 -0.4878839  2.1422621 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X203 -0.4878839 -0.4663054 -0.4878839  2.2649688  2.2391315 -0.4030145
## X204  2.0475127 -0.4663054 -0.4878839  2.2649688  2.2391315 -0.4030145
## X205 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X206 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X207 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X208 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X209 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X210 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X211 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X212  2.0475127  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X213 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X214 -0.4878839 -0.4663054 -0.4878839  2.2649688  2.2391315 -0.4030145
## X215 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X216 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X217 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X218 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X219 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X220 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X221 -0.4878839 -0.4663054  2.0475127 -0.4410429  2.2391315 -0.4030145
## X222 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X223 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X224 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X225 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X226 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X227 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X228 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X229 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X230 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X231 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X232 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X233 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X234 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X235 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X236  2.0475127 -0.4663054 -0.4878839  2.2649688  2.2391315 -0.4030145
## X237 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X238 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X239 -0.4878839 -0.4663054  2.0475127  2.2649688  2.2391315 -0.4030145
## X240 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X241 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X242 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X243  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X244  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X245 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X246  2.0475127 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X247  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X248 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X249 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X250 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X251 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X252 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321  2.4786909
## X253 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X254  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X255 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321  2.4786909
## X256 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X257 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X258 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X259 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X260 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X261  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X262 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X263 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X264  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X265 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X266 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X267 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X268 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X269 -0.4878839 -0.4663054 -0.4878839  2.2649688  2.2391315  2.4786909
## X270 -0.4878839 -0.4663054 -0.4878839  2.2649688  2.2391315 -0.4030145
## X271 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X272 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315  2.4786909
## X273 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X274  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X275 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X276  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X277  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X278  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X279  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X280 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X281 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X282 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X283 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X284  2.0475127  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X285 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X286  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X287  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X288 -0.4878839 -0.4663054  2.0475127  2.2649688 -0.4461321 -0.4030145
## X289 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X290  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X291 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X292 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X293 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X294 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X295 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X296  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X297 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X298 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X299  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X300 -0.4878839 -0.4663054  2.0475127 -0.4410429  2.2391315 -0.4030145
## X301 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X302 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X303  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X304  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X305 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X306 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X307  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X308  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X309  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X310 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X311 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X312 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X313 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X314 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X315 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X316 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X317 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X318  2.0475127  2.1422621 -0.4878839  2.2649688  2.2391315  2.4786909
## X319  2.0475127 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X320  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X321 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X322 -0.4878839 -0.4663054  2.0475127  2.2649688 -0.4461321  2.4786909
## X323 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X324 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X325 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X326 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X327 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X328 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X329 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X330 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X331 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X332 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X333 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315  2.4786909
## X334 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X335 -0.4878839 -0.4663054  2.0475127 -0.4410429  2.2391315 -0.4030145
## X336 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X337  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X338 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X339 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X340 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X341 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X342 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X343  2.0475127  2.1422621 -0.4878839 -0.4410429  2.2391315  2.4786909
## X344 -0.4878839  2.1422621 -0.4878839 -0.4410429  2.2391315  2.4786909
## X345  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X346  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X347 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X348  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X349 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X350 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321  2.4786909
## X351 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X352 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X353 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X354 -0.4878839 -0.4663054 -0.4878839  2.2649688  2.2391315  2.4786909
## X355 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X356 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X357 -0.4878839  2.1422621 -0.4878839  2.2649688  2.2391315 -0.4030145
## X358 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X359  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X360 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X361 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X362 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X363  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X364 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X365 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X366 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X367 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X368 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X369 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321  2.4786909
## X370  2.0475127 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X371 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X372 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X373 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X374 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X375 -0.4878839  2.1422621 -0.4878839  2.2649688 -0.4461321  2.4786909
## X376 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X377 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X378 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321  2.4786909
## X379 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X380 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X381 -0.4878839 -0.4663054  2.0475127  2.2649688  2.2391315 -0.4030145
## X382 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321  2.4786909
## X383 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X384 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X385 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X386  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X387 -0.4878839  2.1422621 -0.4878839  2.2649688 -0.4461321  2.4786909
## X388 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X389 -0.4878839  2.1422621 -0.4878839  2.2649688  2.2391315 -0.4030145
## X390 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X391 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X392 -0.4878839 -0.4663054 -0.4878839  2.2649688  2.2391315  2.4786909
## X393 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X394 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X395 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X396 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X397 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X398 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X399 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X400 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X401 -0.4878839  2.1422621  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X402 -0.4878839 -0.4663054  2.0475127  2.2649688 -0.4461321 -0.4030145
## X403 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X404 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X405 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X406 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X407 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X408 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X409  2.0475127  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X410  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X411  2.0475127  2.1422621  2.0475127  2.2649688  2.2391315 -0.4030145
## X412  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X413  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X414 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X415 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X416 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X417  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X418 -0.4878839 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X419 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X420 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X421 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X422 -0.4878839 -0.4663054  2.0475127  2.2649688  2.2391315 -0.4030145
## X423 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X424  2.0475127 -0.4663054  2.0475127 -0.4410429 -0.4461321  2.4786909
## X425 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X426 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X427 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X428 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X429 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X430 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X431 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X432 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X433 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X434  2.0475127 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X435 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X436 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X437  2.0475127 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X438 -0.4878839  2.1422621  2.0475127 -0.4410429  2.2391315 -0.4030145
## X439 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X440 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X441 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X442  2.0475127  2.1422621 -0.4878839  2.2649688 -0.4461321  2.4786909
## X443  2.0475127 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X444 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X445 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X446 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X447 -0.4878839 -0.4663054 -0.4878839 -0.4410429  2.2391315 -0.4030145
## X448 -0.4878839 -0.4663054 -0.4878839 -0.4410429 -0.4461321  2.4786909
## X449  2.0475127  2.1422621 -0.4878839  2.2649688  2.2391315  2.4786909
## X450 -0.4878839  2.1422621 -0.4878839 -0.4410429 -0.4461321 -0.4030145
## X451 -0.4878839 -0.4663054  2.0475127 -0.4410429 -0.4461321 -0.4030145
## X452  2.0475127 -0.4663054 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X453  2.0475127  2.1422621 -0.4878839  2.2649688 -0.4461321 -0.4030145
## X454  2.0475127 -0.4663054 -0.4878839  2.2649688  2.2391315 -0.4030145
##           FP122      FP123     FP124      FP125      FP126      FP127
## X1   -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X2   -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459 -0.4030145
## X3   -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X4   -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X5   -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X6   -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X7   -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X8   -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X9    2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X10   2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X11  -0.4427415 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X12  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X13  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X14  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X15  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X16  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X17  -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459  2.4786909
## X18   2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X19   2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X20  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X21  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X22  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X23  -0.4427415 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X24   2.2562790 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X25  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X26   2.2562790 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X27  -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459 -0.4030145
## X28  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X29  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X30  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X31  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X32  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X33  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X34  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X35  -0.4427415  2.2306713  2.273738  2.3280830 -0.4170024 -0.4030145
## X36  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X37  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X38   2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X39  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X40  -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459 -0.4030145
## X41   2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X42  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X43  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X44  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X45  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X46  -0.4427415  2.2306713  2.273738 -0.4290863  2.3955459 -0.4030145
## X47  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X48  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X49  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X50  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X51  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X52  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X53  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X54  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X55  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X56   2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X57  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X58  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X59  -0.4427415  2.2306713  2.273738  2.3280830 -0.4170024 -0.4030145
## X60  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X61   2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X62  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X63  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X64  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X65  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X66   2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X67  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X68   2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X69  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X70  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X71  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X72  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X73  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X74  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X75  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X76   2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X77  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X78  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X79  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X80  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X81  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X82  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X83  -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X84  -0.4427415  2.2306713 -0.439342 -0.4290863  2.3955459 -0.4030145
## X85  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X86  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X87  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X88  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X89   2.2562790 -0.4478242  2.273738  2.3280830  2.3955459  2.4786909
## X90  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X91   2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X92  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X93  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X94  -0.4427415  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X95  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X96  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X97  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X98  -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X99  -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X100 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X101 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X102 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X103  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X104 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X105 -0.4427415  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X106  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X107 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024  2.4786909
## X108  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X109 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X110 -0.4427415  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X111 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X112 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X113  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X114 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459 -0.4030145
## X115 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X116 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X117  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X118 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X119 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X120 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X121 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X122 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X123 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X124 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X125 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X126 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X127 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X128 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X129 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X130 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X131 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X132 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X133 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X134 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X135 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X136 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X137 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X138 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X139 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X140 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X141 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X142 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X143 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X144 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X145 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X146 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X147 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X148 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X149 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X150 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X151 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X152 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X153 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X154 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X155 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X156 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X157 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X158 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X159 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X160 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X161 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X162  2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X163 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X164  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X165 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X166 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X167 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X168 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024  2.4786909
## X169 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X170 -0.4427415 -0.4478242  2.273738  2.3280830 -0.4170024 -0.4030145
## X171  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X172 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X173 -0.4427415  2.2306713  2.273738  2.3280830  2.3955459  2.4786909
## X174 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X175 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X176 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X177 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X178 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X179  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X180  2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X181 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X182  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X183 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X184 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X185 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X186 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459 -0.4030145
## X187 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X188 -0.4427415  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X189 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X190 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X191  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X192 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459 -0.4030145
## X193 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X194 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X195 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X196 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X197 -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459 -0.4030145
## X198 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X199 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X200 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X201 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X202 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X203 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X204 -0.4427415  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X205 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X206 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X207 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X208 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X209 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X210 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X211 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X212 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X213 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X214 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X215 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X216 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X217 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X218 -0.4427415 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X219  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X220 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X221  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X222 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X223 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X224 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X225 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X226 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X227 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X228 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X229 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X230 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X231 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X232 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X233 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X234  2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X235 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X236 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459 -0.4030145
## X237 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X238 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X239 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X240  2.2562790  2.2306713  2.273738  2.3280830  2.3955459 -0.4030145
## X241 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X242 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X243 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459 -0.4030145
## X244 -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459  2.4786909
## X245 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X246  2.2562790  2.2306713 -0.439342  2.3280830  2.3955459 -0.4030145
## X247 -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459  2.4786909
## X248 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X249 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X250 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X251 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X252  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X253 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X254 -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459  2.4786909
## X255 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X256  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X257 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X258 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X259 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X260 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X261 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X262 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X263 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X264 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X265 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X266 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X267 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X268 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X269 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X270 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X271 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X272 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X273 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X274  2.2562790  2.2306713  2.273738  2.3280830  2.3955459  2.4786909
## X275  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X276 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X277  2.2562790  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X278 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X279 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X280 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X281 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X282 -0.4427415 -0.4478242  2.273738  2.3280830  2.3955459  2.4786909
## X283 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X284  2.2562790 -0.4478242  2.273738 -0.4290863  2.3955459 -0.4030145
## X285 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X286 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X287 -0.4427415 -0.4478242  2.273738  2.3280830 -0.4170024  2.4786909
## X288 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X289 -0.4427415  2.2306713  2.273738  2.3280830  2.3955459 -0.4030145
## X290 -0.4427415  2.2306713 -0.439342 -0.4290863  2.3955459 -0.4030145
## X291 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X292 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X293 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X294 -0.4427415  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X295 -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459  2.4786909
## X296 -0.4427415 -0.4478242  2.273738  2.3280830  2.3955459  2.4786909
## X297 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X298 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X299  2.2562790  2.2306713 -0.439342  2.3280830  2.3955459  2.4786909
## X300  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X301 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X302 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X303 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024  2.4786909
## X304 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X305  2.2562790 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X306 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X307  2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X308 -0.4427415  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X309  2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X310  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X311 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X312  2.2562790  2.2306713  2.273738  2.3280830  2.3955459 -0.4030145
## X313 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X314 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X315 -0.4427415  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X316 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X317 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X318 -0.4427415 -0.4478242  2.273738  2.3280830  2.3955459 -0.4030145
## X319  2.2562790  2.2306713 -0.439342  2.3280830  2.3955459 -0.4030145
## X320 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X321 -0.4427415 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X322  2.2562790 -0.4478242  2.273738  2.3280830  2.3955459 -0.4030145
## X323 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X324 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X325 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X326 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X327 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X328 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X329 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X330 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X331 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X332 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X333 -0.4427415 -0.4478242  2.273738  2.3280830 -0.4170024 -0.4030145
## X334 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X335  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X336 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X337 -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459  2.4786909
## X338 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X339 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X340 -0.4427415 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X341 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X342 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X343 -0.4427415  2.2306713 -0.439342  2.3280830  2.3955459 -0.4030145
## X344 -0.4427415 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X345 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X346  2.2562790 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X347  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X348  2.2562790  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X349 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X350 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X351 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X352 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X353  2.2562790 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X354 -0.4427415  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X355  2.2562790  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X356 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X357 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X358  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X359  2.2562790  2.2306713 -0.439342  2.3280830  2.3955459  2.4786909
## X360 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X361 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X362 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X363 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X364 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X365 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024  2.4786909
## X366 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X367 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X368 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X369 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X370 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X371 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X372 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X373 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X374 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X375 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X376  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X377  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X378 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024 -0.4030145
## X379 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X380 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X381  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X382  2.2562790 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X383  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X384 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X385 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X386 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X387 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X388 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X389 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X390 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X391  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X392 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X393 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X394 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X395 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X396 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X397 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X398  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X399 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X400 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024  2.4786909
## X401  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X402 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X403  2.2562790 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X404 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X405 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459  2.4786909
## X406 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X407 -0.4427415 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X408 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X409  2.2562790  2.2306713 -0.439342  2.3280830  2.3955459  2.4786909
## X410 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X411  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X412 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X413 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024  2.4786909
## X414  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X415 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X416 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X417 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X418 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X419 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X420 -0.4427415 -0.4478242  2.273738 -0.4290863 -0.4170024  2.4786909
## X421 -0.4427415 -0.4478242  2.273738 -0.4290863  2.3955459 -0.4030145
## X422 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X423  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X424  2.2562790  2.2306713 -0.439342  2.3280830  2.3955459  2.4786909
## X425  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X426 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X427 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X428 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X429 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X430 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X431 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X432 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X433 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X434 -0.4427415  2.2306713 -0.439342 -0.4290863  2.3955459 -0.4030145
## X435 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X436 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X437  2.2562790  2.2306713 -0.439342  2.3280830  2.3955459 -0.4030145
## X438  2.2562790  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
## X439 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X440 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X441 -0.4427415 -0.4478242 -0.439342  2.3280830  2.3955459 -0.4030145
## X442  2.2562790  2.2306713  2.273738 -0.4290863 -0.4170024 -0.4030145
## X443 -0.4427415 -0.4478242 -0.439342 -0.4290863  2.3955459  2.4786909
## X444  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X445 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X446 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X447 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X448 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X449 -0.4427415  2.2306713 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X450 -0.4427415 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X451  2.2562790 -0.4478242 -0.439342 -0.4290863 -0.4170024 -0.4030145
## X452  2.2562790 -0.4478242 -0.439342  2.3280830 -0.4170024 -0.4030145
## X453 -0.4427415  2.2306713  2.273738  2.3280830 -0.4170024 -0.4030145
## X454 -0.4427415  2.2306713 -0.439342  2.3280830 -0.4170024 -0.4030145
##           FP128      FP129      FP130      FP131      FP132      FP133
## X1   -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X2   -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X3   -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X4   -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X5   -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X6   -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X7   -0.4170024 -0.4012514  2.9156563  2.6301555 -0.3779927 -0.3798059
## X8   -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X9   -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X10  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X11  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X12  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X13  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X14  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X15  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X16  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X17   2.3955459 -0.4012514  2.9156563  2.6301555 -0.3779927  2.6301555
## X18  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X19  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X20  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X21  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X22  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X23   2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X24  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X25  -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927  2.6301555
## X26  -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X27  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X28  -0.4170024 -0.4012514 -0.3426153  2.6301555  2.6427722 -0.3798059
## X29  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X30  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X31  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X32  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X33  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X34  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X35  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X36  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X37  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X38  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X39  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X40  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X41  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X42  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X43  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X44  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X45  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X46  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X47  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X48  -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X49  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X50  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X51  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X52  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X53  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X54  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X55  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X56  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X57  -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X58  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X59  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X60   2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X61  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X62  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X63  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X64  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X65  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X66  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X67  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X68  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X69  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X70  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X71  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X72  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X73  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X74  -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X75  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X76  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X77  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X78  -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X79  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X80  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X81  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X82  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X83  -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X84   2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X85  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X86  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X87  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X88  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X89   2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X90  -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X91   2.3955459  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X92  -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X93  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X94  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X95  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X96  -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X97  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X98  -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X99  -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X100 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X101 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X102 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X103 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X104 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X105  2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X106 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X107 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X108 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X109 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X110  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X111 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X112 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X113 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X114  2.3955459  2.4895825  2.9156563  2.6301555 -0.3779927  2.6301555
## X115 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X116  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X117 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X118 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X119 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X120 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X121 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X122 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X123  2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X124 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X125 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X126 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X127 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X128 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X129 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X130 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X131 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X132 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X133 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X134 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X135 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X136 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X137 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X138 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X139 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X140 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X141 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X142 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X143 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X144 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X145 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X146 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X147 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X148 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X149 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X150 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X151 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X152 -0.4170024  2.4895825  2.9156563  2.6301555 -0.3779927 -0.3798059
## X153 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X154 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X155 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X156 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X157 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X158 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X159 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X160 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X161 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X162 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X163 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X164 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X165 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X166 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X167 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X168 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X169 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X170 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X171 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X172 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X173  2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X174 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X175 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X176 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X177 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X178 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X179 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X180 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X181 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X182 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X183 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X184 -0.4170024  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X185 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X186 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X187 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X188 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X189 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X190 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X191 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X192  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X193 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X194 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X195 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X196 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X197  2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X198 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X199 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X200 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X201 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X202 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X203 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X204 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X205 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X206 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X207 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X208 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X209 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X210 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X211 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X212 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X213 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X214 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X215 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X216 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X217 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X218 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X219 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X220 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X221 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X222 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X223 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X224 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X225 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X226 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X227 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X228 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X229 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X230 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X231 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X232 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X233  2.3955459  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X234 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X235 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X236  2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X237 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X238 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X239 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X240  2.3955459  2.4895825 -0.3426153 -0.3798059  2.6427722  2.6301555
## X241 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X242 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X243 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X244  2.3955459 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X245 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X246  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X247 -0.4170024 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X248 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X249 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X250 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X251 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X252 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X253 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X254 -0.4170024  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X255 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X256 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X257 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X258 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X259 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X260 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X261  2.3955459 -0.4012514  2.9156563  2.6301555 -0.3779927  2.6301555
## X262 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X263 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X264 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X265 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X266 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X267 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X268 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X269 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X270 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X271 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X272  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X273 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X274  2.3955459  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X275 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X276 -0.4170024 -0.4012514 -0.3426153  2.6301555  2.6427722 -0.3798059
## X277 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X278 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X279 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X280 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X281 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X282 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X283 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X284  2.3955459  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X285  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X286 -0.4170024 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X287 -0.4170024 -0.4012514 -0.3426153  2.6301555  2.6427722 -0.3798059
## X288 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X289  2.3955459  2.4895825 -0.3426153 -0.3798059  2.6427722  2.6301555
## X290  2.3955459 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X291 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X292  2.3955459 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X293 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X294 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X295 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X296  2.3955459 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X297 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X298  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X299  2.3955459  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X300 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X301 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X302  2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927  2.6301555
## X303 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927  2.6301555
## X304 -0.4170024 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X305 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X306 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X307 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X308 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X309 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X310 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X311 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X312  2.3955459  2.4895825 -0.3426153 -0.3798059  2.6427722  2.6301555
## X313 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X314 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X315 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X316 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X317 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X318 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X319  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X320 -0.4170024  2.4895825 -0.3426153  2.6301555 -0.3779927  2.6301555
## X321 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X322  2.3955459 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X323 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X324 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X325 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X326 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X327 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X328 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X329 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X330 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X331  2.3955459 -0.4012514  2.9156563  2.6301555 -0.3779927 -0.3798059
## X332  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X333  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X334 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X335 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X336 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X337  2.3955459 -0.4012514  2.9156563 -0.3798059  2.6427722 -0.3798059
## X338 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X339  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X340 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X341 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X342 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X343  2.3955459  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X344  2.3955459 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X345 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X346  2.3955459  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X347 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X348 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X349 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X350 -0.4170024  2.4895825  2.9156563  2.6301555 -0.3779927 -0.3798059
## X351 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X352 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X353 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X354 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X355 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X356 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X357 -0.4170024  2.4895825  2.9156563 -0.3798059 -0.3779927  2.6301555
## X358 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X359  2.3955459  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X360 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X361 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X362 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X363 -0.4170024 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X364 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X365 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X366 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X367 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X368 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X369  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X370 -0.4170024 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X371 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X372  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X373 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X374  2.3955459 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X375  2.3955459  2.4895825  2.9156563  2.6301555 -0.3779927  2.6301555
## X376 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X377 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X378 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X379 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X380 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X381 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X382 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X383 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X384 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X385 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X386 -0.4170024 -0.4012514  2.9156563 -0.3798059  2.6427722 -0.3798059
## X387  2.3955459 -0.4012514  2.9156563  2.6301555 -0.3779927 -0.3798059
## X388  2.3955459 -0.4012514  2.9156563 -0.3798059  2.6427722 -0.3798059
## X389 -0.4170024 -0.4012514  2.9156563 -0.3798059  2.6427722 -0.3798059
## X390  2.3955459 -0.4012514  2.9156563  2.6301555 -0.3779927 -0.3798059
## X391 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X392 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X393 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X394 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X395 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X396 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X397 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X398 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X399 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X400 -0.4170024 -0.4012514  2.9156563 -0.3798059 -0.3779927 -0.3798059
## X401 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X402 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X403 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X404 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X405  2.3955459  2.4895825  2.9156563 -0.3798059 -0.3779927  2.6301555
## X406 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X407  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X408 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X409  2.3955459  2.4895825 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X410 -0.4170024 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X411 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X412 -0.4170024 -0.4012514  2.9156563 -0.3798059  2.6427722 -0.3798059
## X413 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X414 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X415 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X416 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X417 -0.4170024 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X418 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X419 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X420 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X421 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X422 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X423 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X424 -0.4170024 -0.4012514 -0.3426153  2.6301555 -0.3779927 -0.3798059
## X425 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X426 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X427 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X428 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X429 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X430  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X431 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X432 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X433 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X434  2.3955459 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X435 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X436 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X437 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X438 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X439 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X440 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X441  2.3955459 -0.4012514  2.9156563  2.6301555 -0.3779927 -0.3798059
## X442 -0.4170024  2.4895825 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X443  2.3955459 -0.4012514  2.9156563  2.6301555  2.6427722 -0.3798059
## X444 -0.4170024 -0.4012514 -0.3426153 -0.3798059  2.6427722 -0.3798059
## X445 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X446 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927  2.6301555
## X447 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X448 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X449  2.3955459 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X450 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X451 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X452 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X453 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
## X454 -0.4170024 -0.4012514 -0.3426153 -0.3798059 -0.3779927 -0.3798059
##           FP134      FP135      FP136     FP137      FP138      FP139
## X1   -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X2    2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X3   -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X4   -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X5   -0.3816148 -0.3798059  2.6947952  2.763587  2.8219347 -0.2987526
## X6    2.6176881 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X7   -0.3816148  2.6301555  2.6947952  2.763587  2.8219347  3.3437313
## X8   -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X9   -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X10  -0.3816148  2.6301555 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X11  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X12  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X13  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X14  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X15  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X16  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X17   2.6176881 -0.3798059  2.6947952 -0.361468  2.8219347  3.3437313
## X18   2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X19  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X20  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X21  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X22  -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X23  -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X24  -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X25   2.6176881  2.6301555 -0.3706955 -0.361468  2.8219347  3.3437313
## X26   2.6176881  2.6301555 -0.3706955 -0.361468 -0.3539942  3.3437313
## X27   2.6176881 -0.3798059 -0.3706955  2.763587  2.8219347 -0.2987526
## X28  -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X29  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X30  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X31  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X32  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X33  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X34  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X35  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X36  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X37  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X38  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X39  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X40  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X41  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X42  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X43  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X44   2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X45  -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X46  -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X47  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X48  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X49  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X50  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X51  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X52  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X53  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X54  -0.3816148 -0.3798059  2.6947952 -0.361468  2.8219347 -0.2987526
## X55  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X56  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X57  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X58   2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X59  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X60  -0.3816148 -0.3798059  2.6947952  2.763587 -0.3539942 -0.2987526
## X61  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X62  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X63  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X64  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X65  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X66  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X67   2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X68  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X69  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X70   2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X71  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X72  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X73  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X74   2.6176881 -0.3798059 -0.3706955  2.763587  2.8219347 -0.2987526
## X75  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X76  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X77  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X78  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X79  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X80  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X81  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X82  -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X83   2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X84  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X85  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X86  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X87  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X88  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X89   2.6176881  2.6301555 -0.3706955 -0.361468  2.8219347  3.3437313
## X90   2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X91  -0.3816148  2.6301555 -0.3706955 -0.361468  2.8219347 -0.2987526
## X92  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X93  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X94  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X95  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X96  -0.3816148  2.6301555 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X97  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X98  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X99  -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X100 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X101 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X102  2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X103 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X104 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X105  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X106  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X107 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X108 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X109  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X110 -0.3816148 -0.3798059  2.6947952  2.763587 -0.3539942 -0.2987526
## X111 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X112 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X113 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X114 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X115 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X116 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X117 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X118 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X119 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X120 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X121 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X122 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X123  2.6176881  2.6301555 -0.3706955  2.763587 -0.3539942 -0.2987526
## X124 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X125 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X126 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X127 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X128 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X129 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X130 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X131 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X132 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X133 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X134 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X135 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X136 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X137 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X138 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X139 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X140 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X141 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X142 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X143 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X144 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X145 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X146 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X147 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X148 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X149 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X150 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X151 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X152 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X153 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X154 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X155 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X156 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X157 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X158 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X159 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X160 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X161 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X162 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X163 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X164 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X165 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X166 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X167 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X168  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X169  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X170 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X171 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X172 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X173  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X174 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X175 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X176  2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X177  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X178 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X179 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X180 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X181  2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X182 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X183  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X184 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X185 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X186 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X187 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X188 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X189  2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X190  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X191 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X192 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X193 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X194 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X195 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X196 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X197  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X198  2.6176881 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X199 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X200 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X201 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X202 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X203 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X204  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X205 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X206 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X207  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X208 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X209 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X210 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X211 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X212 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X213 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X214 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X215 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X216 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X217 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X218 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X219 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X220 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X221 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X222 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X223 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X224 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X225 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X226 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X227 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X228 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X229 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X230 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X231 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X232 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X233 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X234 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X235 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X236  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X237 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X238 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X239 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X240 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X241 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X242 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X243 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X244  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X245 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X246 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X247  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X248 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X249 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X250 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X251  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X252 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X253 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X254 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X255  2.6176881 -0.3798059 -0.3706955  2.763587  2.8219347 -0.2987526
## X256 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X257 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X258 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X259 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X260 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X261  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X262 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X263 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X264 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X265 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X266 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X267 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X268 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X269 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X270 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X271 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X272 -0.3816148  2.6301555 -0.3706955  2.763587 -0.3539942 -0.2987526
## X273 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X274 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X275 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X276 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X277 -0.3816148  2.6301555  2.6947952  2.763587  2.8219347 -0.2987526
## X278  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X279 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X280 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X281 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X282 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942  3.3437313
## X283 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X284 -0.3816148  2.6301555 -0.3706955  2.763587 -0.3539942 -0.2987526
## X285 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X286  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X287 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X288 -0.3816148  2.6301555 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X289 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X290 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X291 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X292  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X293 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X294 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X295 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X296  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X297 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X298 -0.3816148  2.6301555 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X299 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X300 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X301 -0.3816148 -0.3798059 -0.3706955  2.763587  2.8219347 -0.2987526
## X302 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X303  2.6176881 -0.3798059  2.6947952 -0.361468  2.8219347 -0.2987526
## X304  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X305  2.6176881  2.6301555 -0.3706955 -0.361468  2.8219347  3.3437313
## X306 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X307 -0.3816148  2.6301555  2.6947952  2.763587  2.8219347 -0.2987526
## X308 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X309 -0.3816148  2.6301555  2.6947952  2.763587  2.8219347 -0.2987526
## X310 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X311 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X312 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X313 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X314 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X315 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X316 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X317 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X318 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X319  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X320 -0.3816148 -0.3798059  2.6947952 -0.361468  2.8219347 -0.2987526
## X321 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X322 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X323  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X324 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X325 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X326 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X327 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X328 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X329 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X330 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X331  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X332 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X333 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X334 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X335 -0.3816148  2.6301555 -0.3706955 -0.361468  2.8219347 -0.2987526
## X336 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X337  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X338 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X339 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X340 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X341 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X342 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X343 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X344  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X345 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X346  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X347 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X348 -0.3816148  2.6301555  2.6947952  2.763587  2.8219347 -0.2987526
## X349 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X350 -0.3816148  2.6301555  2.6947952 -0.361468  2.8219347  3.3437313
## X351 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X352  2.6176881 -0.3798059 -0.3706955  2.763587  2.8219347 -0.2987526
## X353  2.6176881  2.6301555 -0.3706955 -0.361468  2.8219347  3.3437313
## X354 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X355 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X356 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X357  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X358 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X359  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X360 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X361 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X362 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X363  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X364 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X365 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X366 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X367 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X368 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X369 -0.3816148 -0.3798059 -0.3706955  2.763587  2.8219347 -0.2987526
## X370  2.6176881  2.6301555 -0.3706955 -0.361468 -0.3539942  3.3437313
## X371 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X372 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X373 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X374 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X375 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X376 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X377 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X378 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X379 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X380 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X381 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X382  2.6176881  2.6301555 -0.3706955 -0.361468  2.8219347  3.3437313
## X383 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X384 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X385 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X386  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X387 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X388  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X389  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X390 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X391 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X392 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X393 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X394 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X395 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X396 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X397 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X398 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X399 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X400 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X401 -0.3816148  2.6301555  2.6947952 -0.361468 -0.3539942 -0.2987526
## X402 -0.3816148  2.6301555 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X403 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X404 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X405 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X406 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X407 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X408 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X409 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X410  2.6176881 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X411 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X412  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X413  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X414 -0.3816148  2.6301555 -0.3706955 -0.361468  2.8219347 -0.2987526
## X415 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X416 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X417  2.6176881 -0.3798059  2.6947952 -0.361468 -0.3539942  3.3437313
## X418 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X419 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X420 -0.3816148 -0.3798059 -0.3706955  2.763587 -0.3539942 -0.2987526
## X421 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X422 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X423 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X424 -0.3816148  2.6301555  2.6947952  2.763587  2.8219347 -0.2987526
## X425 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X426 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X427 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X428 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X429 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X430 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X431 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X432 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X433 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X434 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X435 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X436 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X437 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X438 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X439 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X440 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X441 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942  3.3437313
## X442 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X443  2.6176881  2.6301555 -0.3706955 -0.361468 -0.3539942  3.3437313
## X444 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X445  2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X446 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X447 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X448  2.6176881  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X449 -0.3816148  2.6301555 -0.3706955  2.763587  2.8219347 -0.2987526
## X450 -0.3816148 -0.3798059  2.6947952 -0.361468 -0.3539942 -0.2987526
## X451 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X452 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X453 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
## X454 -0.3816148 -0.3798059 -0.3706955 -0.361468 -0.3539942 -0.2987526
##           FP140      FP141      FP142      FP143      FP144      FP145
## X1   -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X2   -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X3   -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X4   -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X5   -0.3539942 -0.3633234  2.8523090 -0.2966615  2.9320660 -0.3406978
## X6   -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X7    2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X8   -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X9   -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X10  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X11  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X12  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X13  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X14  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X15  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X16  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X17  -0.3539942  2.7494745  2.8523090  3.3673007  2.9320660 -0.3406978
## X18  -0.3539942  2.7494745  2.8523090 -0.2966615  2.9320660  2.9320660
## X19  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X20  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X21  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X22  -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X23  -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X24  -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X25  -0.3539942  2.7494745 -0.3502245  3.3673007  2.9320660 -0.3406978
## X26  -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X27  -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X28  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X29  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X30  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X31  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X32  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X33  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X34  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X35  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X36  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X37  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X38  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X39  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X40  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X41  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X42  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X43  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X44  -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X45  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X46  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X47  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X48  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X49  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X50  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X51  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X52  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X53  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X54  -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X55  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X56  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X57  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X58  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X59   2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X60   2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X61  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X62  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X63  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X64  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X65  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X66  -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X67  -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978  2.9320660
## X68  -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X69  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X70  -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X71  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X72  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X73  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X74  -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X75  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X76  -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X77  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X78  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X79  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X80  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X81  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X82   2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X83  -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X84  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X85  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X86  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X87  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X88  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X89  -0.3539942  2.7494745 -0.3502245  3.3673007  2.9320660 -0.3406978
## X90  -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X91  -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660  2.9320660
## X92  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X93  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X94  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X95  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X96  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X97  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X98  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X99  -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X100 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X101 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X102 -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X103 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X104 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X105  2.8219347  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X106 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X107 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X108 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X109 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X110  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X111 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X112 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X113 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X114  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X115 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X116 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X117 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X118 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X119 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X120 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X121 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X122 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X123  2.8219347  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X124 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X125 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X126 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X127 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X128 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X129 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X130 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X131 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X132 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X133 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X134 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X135 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X136 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X137 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X138  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X139 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X140  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X141 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X142 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X143 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X144 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X145 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X146 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X147 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X148 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X149 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X150 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X151 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X152  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X153 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X154 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X155 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X156 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X157 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X158 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X159 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X160 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X161 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X162 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X163 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X164 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X165 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X166 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X167 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X168 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X169 -0.3539942  2.7494745  2.8523090  3.3673007 -0.3406978 -0.3406978
## X170  2.8219347 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X171 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X172 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X173 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978  2.9320660
## X174 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X175 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X176 -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X177  2.8219347  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X178 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X179 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X180 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X181 -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X182  2.8219347 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X183  2.8219347  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X184 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X185 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X186 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X187 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X188 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X189 -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X190 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X191 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X192 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X193 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X194 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X195 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X196 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X197 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X198 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X199 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X200 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X201 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X202 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X203 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X204 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X205 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X206 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X207 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X208 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X209 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X210 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X211 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X212 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X213 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X214 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X215 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X216 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X217 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X218 -0.3539942 -0.3633234 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X219 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X220 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X221 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X222 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X223 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X224 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X225 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X226 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X227 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X228 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X229 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X230 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X231 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X232 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X233  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X234 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X235 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X236 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X237 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X238 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X239 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X240 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X241 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X242 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X243 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X244 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X245 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X246 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X247 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978  2.9320660
## X248 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X249 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X250 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X251  2.8219347  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X252  2.8219347 -0.3633234  2.8523090 -0.2966615  2.9320660 -0.3406978
## X253 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X254 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X255  2.8219347  2.7494745 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X256 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X257 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X258 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X259 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X260 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X261 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X262 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X263 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X264 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X265 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X266 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X267 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X268 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X269 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X270 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X271 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X272 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X273 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X274 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X275 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X276 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X277 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X278 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X279 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X280 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X281 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X282  2.8219347 -0.3633234 -0.3502245  3.3673007 -0.3406978  2.9320660
## X283 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X284  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X285 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X286 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X287 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X288 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X289 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X290 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X291 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X292  2.8219347  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X293 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X294 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X295 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X296 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X297 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X298 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X299 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X300 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X301 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X302 -0.3539942 -0.3633234 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X303 -0.3539942  2.7494745 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X304 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X305 -0.3539942  2.7494745 -0.3502245  3.3673007  2.9320660 -0.3406978
## X306 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X307 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X308 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X309 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X310 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X311 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X312 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X313 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X314 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X315 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X316 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X317 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X318  2.8219347 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X319 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X320 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X321 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X322 -0.3539942 -0.3633234  2.8523090 -0.2966615  2.9320660 -0.3406978
## X323  2.8219347  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X324 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X325 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X326 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X327 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X328 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X329 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X330 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X331 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X332 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X333 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X334 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X335 -0.3539942 -0.3633234  2.8523090 -0.2966615  2.9320660  2.9320660
## X336 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X337 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978  2.9320660
## X338 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X339  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X340 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X341 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X342 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X343  2.8219347 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X344  2.8219347  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X345 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X346 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X347 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X348 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X349 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X350  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X351 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X352 -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X353 -0.3539942  2.7494745 -0.3502245  3.3673007  2.9320660 -0.3406978
## X354 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X355 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X356 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X357  2.8219347 -0.3633234 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X358 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X359 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X360 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X361 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X362 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X363 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X364 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X365 -0.3539942 -0.3633234 -0.3502245  3.3673007 -0.3406978  2.9320660
## X366 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X367 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X368 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X369 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X370 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X371 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X372 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X373 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X374 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X375  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X376 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X377 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X378 -0.3539942 -0.3633234  2.8523090 -0.2966615  2.9320660 -0.3406978
## X379 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X380 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X381 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X382 -0.3539942  2.7494745  2.8523090  3.3673007 -0.3406978  2.9320660
## X383 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X384 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X385 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X386 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X387  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X388 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X389  2.8219347  2.7494745 -0.3502245  3.3673007 -0.3406978  2.9320660
## X390  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X391 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X392 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978  2.9320660
## X393 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X394 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X395 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X396 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X397 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X398 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X399 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X400 -0.3539942 -0.3633234 -0.3502245  3.3673007 -0.3406978  2.9320660
## X401  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X402 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X403 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X404 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X405  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X406 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X407  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X408 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X409 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X410 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X411 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X412 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X413 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X414 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X415 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X416 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X417 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X418 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X419 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X420 -0.3539942 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X421 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X422 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X423 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X424 -0.3539942 -0.3633234  2.8523090 -0.2966615  2.9320660 -0.3406978
## X425 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X426 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X427 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X428 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X429 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X430 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X431 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X432 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X433 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X434 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X435 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X436 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X437 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X438 -0.3539942 -0.3633234 -0.3502245 -0.2966615  2.9320660 -0.3406978
## X439 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X440 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X441  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978  2.9320660
## X442  2.8219347 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X443 -0.3539942  2.7494745 -0.3502245  3.3673007 -0.3406978 -0.3406978
## X444 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X445 -0.3539942  2.7494745  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X446 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X447 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X448 -0.3539942  2.7494745 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X449  2.8219347 -0.3633234  2.8523090 -0.2966615 -0.3406978 -0.3406978
## X450  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X451 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X452 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X453  2.8219347 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
## X454 -0.3539942 -0.3633234 -0.3502245 -0.2966615 -0.3406978 -0.3406978
##          FP146      FP147      FP148      FP149     FP150      FP151      FP152
## X1   -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X2   -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X3   -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X4    2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X5   -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X6    2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X7   -0.338774 -0.3426153 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X8   -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X9    2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X10  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X11  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X12   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X13  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X14  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X15  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X16  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X17  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X18  -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X19  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X20  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X21  -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X22  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X23  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X24  -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X25  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X26  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X27  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X28  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X29  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X30  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X31  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X32  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X33  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X34  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X35   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X36  -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X37  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X38  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X39   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X40  -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X41   2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X42  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X43  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X44  -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X45  -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X46   2.948717 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X47  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X48  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X49  -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X50  -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X51  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X52  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X53  -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X54  -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X55  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X56   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X57  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X58  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X59   2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X60  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X61  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X62  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X63  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X64  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X65  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X66  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X67  -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X68   2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X69  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X70  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X71  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X72  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X73  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X74  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X75  -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X76   2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X77  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X78  -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X79  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X80  -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X81   2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X82  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X83  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X84   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X85  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X86  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X87  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X88  -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X89  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X90  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X91  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X92  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X93   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X94   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X95  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X96  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X97  -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X98  -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X99   2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X100 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X101 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X102 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X103 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X104 -0.338774 -0.3426153 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X105 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X106 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X107 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X108  2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X109 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X110 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X111 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X112  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X113 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X114 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X115 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X116 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X117 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X118 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X119 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X120 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X121  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X122 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X123 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X124  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X125 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X126 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X127 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X128 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X129 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X130 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X131 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X132 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X133 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X134  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X135 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X136 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X137 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X138  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X139 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X140 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X141 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X142 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X143 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X144 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X145 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X146 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X147 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X148 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X149 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X150 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X151 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X152 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X153 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X154 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X155 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X156 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X157 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X158 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X159 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X160 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X161 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X162  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X163 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X164  2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X165 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X166 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X167 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X168 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X169 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X170 -0.338774  2.9156563 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X171  2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X172 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X173  2.948717 -0.3426153  3.2321563 -0.3151467  3.415804 -0.2428127  3.3437313
## X174 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X175  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X176 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X177  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X178 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X179 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X180 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X181 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X182  2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X183 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X184 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X185 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X186 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X187 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X188  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X189 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X190 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X191  2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X192 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X193 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X194  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X195 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X196  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X197 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X198  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X199  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X200 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X201 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X202 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X203  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X204  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X205  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X206 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X207 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X208 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X209 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X210 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X211 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X212  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X213 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X214  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X215  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X216 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X217 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X218 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X219 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X220 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X221 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X222  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X223 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X224 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X225 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X226 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X227 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X228 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X229 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X230 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X231 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X232 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X233 -0.338774 -0.3426153 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X234  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X235 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X236 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X237 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X238  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X239 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X240  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X241 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X242 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X243 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X244 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X245 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X246  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X247 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X248 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X249 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X250 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X251 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X252 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X253 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X254 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X255 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X256 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X257 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X258 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X259 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X260 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X261 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X262 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X263 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X264 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X265 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X266 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X267 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X268 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X269 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X270 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X271 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X272 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X273 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X274  2.948717 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X275 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X276 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X277 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X278 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127  3.3437313
## X279 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X280 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X281 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X282 -0.338774  2.9156563 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X283 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X284 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X285 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X286 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X287 -0.338774  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X288 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X289  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X290  2.948717 -0.3426153 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X291 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X292 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804  4.1140710  3.3437313
## X293 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X294 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X295 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X296 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X297 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X298 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X299  2.948717 -0.3426153  3.2321563  3.1697891 -0.292449 -0.2428127 -0.2987526
## X300 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X301 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X302 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449  4.1140710 -0.2987526
## X303 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X304 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X305 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X306 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X307 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X308  2.948717  2.9156563  3.2321563  3.1697891 -0.292449 -0.2428127 -0.2987526
## X309 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X310  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X311 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X312  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X313 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X314 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X315 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X316 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X317 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X318 -0.338774  2.9156563 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X319  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X320 -0.338774 -0.3426153  3.2321563 -0.3151467  3.415804 -0.2428127 -0.2987526
## X321 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X322 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X323 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X324 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X325 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X326 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X327 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X328 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X329 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X330 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X331 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449  4.1140710  3.3437313
## X332 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X333 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X334 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X335 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X336  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X337 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804  4.1140710  3.3437313
## X338 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X339 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X340 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X341 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X342 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X343  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X344 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X345 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X346 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127  3.3437313
## X347 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X348 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X349 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X350 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X351 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X352  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X353 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X354  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X355 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X356 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X357 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127  3.3437313
## X358 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X359 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127  3.3437313
## X360  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X361 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X362 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X363 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X364 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X365 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X366 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X367 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X368 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X369 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X370 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449  4.1140710  3.3437313
## X371 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X372 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X373 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X374 -0.338774  2.9156563 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X375 -0.338774  2.9156563 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X376  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X377 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X378 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X379 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X380 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X381 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X382 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804  4.1140710  3.3437313
## X383  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X384  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X385 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X386 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804  4.1140710  3.3437313
## X387 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X388 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449  4.1140710  3.3437313
## X389 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804  4.1140710  3.3437313
## X390 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X391 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X392 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X393 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X394 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X395 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X396 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X397 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X398 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X399 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X400 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X401 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X402 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X403 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X404 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X405 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127 -0.2987526
## X406 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X407 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X408 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X409  2.948717 -0.3426153  3.2321563  3.1697891 -0.292449 -0.2428127 -0.2987526
## X410 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449  4.1140710  3.3437313
## X411  2.948717  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X412 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X413 -0.338774 -0.3426153 -0.3090656 -0.3151467  3.415804 -0.2428127  3.3437313
## X414 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X415 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X416 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X417 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449  4.1140710  3.3437313
## X418 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X419 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X420 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X421 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X422 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X423  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X424  2.948717 -0.3426153 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X425  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X426  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X427 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X428 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X429 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X430 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X431 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X432 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X433 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X434  2.948717 -0.3426153 -0.3090656  3.1697891  3.415804 -0.2428127 -0.2987526
## X435 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X436 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X437 -0.338774  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X438  2.948717  2.9156563  3.2321563 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X439 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X440 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X441 -0.338774 -0.3426153 -0.3090656  3.1697891 -0.292449 -0.2428127 -0.2987526
## X442 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X443 -0.338774 -0.3426153  3.2321563 -0.3151467 -0.292449  4.1140710  3.3437313
## X444 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X445 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X446 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X447 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X448 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X449 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X450 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X451 -0.338774 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X452 -0.338774  2.9156563  3.2321563  3.1697891 -0.292449 -0.2428127 -0.2987526
## X453 -0.338774  2.9156563 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
## X454  2.948717 -0.3426153 -0.3090656 -0.3151467 -0.292449 -0.2428127 -0.2987526
##           FP153      FP155      FP156      FP157      FP158      FP159
## X1   -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X2    3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X3   -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X4   -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X5   -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X6   -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X7   -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X8   -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X9   -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X10  -0.2903271 -0.2729429 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X11  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X12  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X13  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X14  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X15  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X16  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X17  -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X18   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X19  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X20  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X21  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X22   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X23  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X24   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X25  -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X26  -0.2903271 -0.2729429  3.6304485 -0.2570485  4.1986310  3.6304485
## X27   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X28  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X29  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X30  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X31  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X32  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X33  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X34  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X35  -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X36  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X37  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X38  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X39  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X40  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X41  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X42  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X43  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X44   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X45  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X46   3.4407687  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X47  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X48  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X49  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X50  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X51  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X52  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X53  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X54  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X55  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X56  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X57  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X58  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X59  -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X60   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X61  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X62  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X63  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X64  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X65  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X66  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X67   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X68  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X69  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X70   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X71  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X72  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X73  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X74  -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X75  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X76  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X77  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X78  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X79  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X80  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X81  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X82  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X83   3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X84  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X85  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X86  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X87  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X88  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X89  -0.2903271 -0.2729429  3.6304485 -0.2570485  4.1986310  3.6304485
## X90  -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X91  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X92  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X93  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X94  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X95  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X96  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X97  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X98  -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X99  -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X100 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X101 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X102  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X103 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X104 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X105  3.4407687 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X106 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X107 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X108 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X109 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X110  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X111 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X112 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X113 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X114  3.4407687 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X115 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X116 -0.2903271 -0.2729429 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X117 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X118 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X119 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X120 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X121 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X122 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X123  3.4407687 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X124 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X125 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X126 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X127 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X128 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X129 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X130 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X131 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X132 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X133 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X134 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X135 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X136 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X137 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X138 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X139 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X140 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X141 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X142 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X143 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X144 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X145 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X146 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X147 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X148 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X149 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X150 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X151 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X152  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X153 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X154 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X155 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X156 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X157 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X158 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X159 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X160 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X161 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X162 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X163 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X164 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X165 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X166 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X167 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X168 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X169 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X170  3.4407687 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X171 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X172 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X173  3.4407687 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X174 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X175 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X176  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X177 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X178 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X179 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X180 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X181  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X182 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X183 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X184 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X185 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X186  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X187 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X188 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X189  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X190 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X191 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X192 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X193 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X194 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X195 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X196 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X197 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X198 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X199 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X200 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X201 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X202 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X203 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X204 -0.2903271  3.6599168  3.6304485  3.8862252 -0.2379224 -0.2751584
## X205 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X206 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X207 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X208 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X209 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X210 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X211 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X212 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X213 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X214 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X215 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X216 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X217 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X218 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X219 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X220 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X221 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X222 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X223 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X224 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X225 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X226 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X227 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X228 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X229 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X230 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X231 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X232 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X233 -0.2903271 -0.2729429 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X234 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X235 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X236 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X237 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X238 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X239 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X240 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X241 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X242 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X243 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X244 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X245 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X246 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X247 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X248 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X249 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X250 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X251 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X252 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X253 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X254 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X255  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X256 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X257 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X258 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X259 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X260 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X261  3.4407687 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X262 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X263 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X264 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X265 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X266 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X267 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X268 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X269 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X270 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X271 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X272 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X273 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X274  3.4407687  3.6599168 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X275 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X276 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X277 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X278 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X279 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X280 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X281 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X282  3.4407687 -0.2729429 -0.2751584  3.8862252  4.1986310 -0.2751584
## X283 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X284  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X285 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X286 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X287 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X288 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X289 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X290  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X291 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X292 -0.2903271 -0.2729429  3.6304485  3.8862252 -0.2379224  3.6304485
## X293 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X294 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X295 -0.2903271 -0.2729429 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X296 -0.2903271 -0.2729429  3.6304485 -0.2570485  4.1986310  3.6304485
## X297 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X298 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X299 -0.2903271  3.6599168 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X300 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X301 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X302 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X303 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X304 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X305 -0.2903271 -0.2729429  3.6304485 -0.2570485  4.1986310  3.6304485
## X306 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X307 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X308 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X309 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X310 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X311 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X312 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X313 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X314 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X315 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X316 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X317 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X318  3.4407687 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X319 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X320 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X321 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X322 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X323 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224  3.6304485
## X324 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X325 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X326 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X327 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X328 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X329 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X330 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X331 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X332 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X333 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X334 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X335 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X336 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X337 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X338 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X339 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X340 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X341 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X342 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X343 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X344  3.4407687 -0.2729429  3.6304485 -0.2570485 -0.2379224 -0.2751584
## X345 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X346 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X347 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X348 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X349 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X350  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X351 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X352 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X353 -0.2903271 -0.2729429  3.6304485 -0.2570485  4.1986310  3.6304485
## X354 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X355 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X356 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X357 -0.2903271 -0.2729429  3.6304485  3.8862252 -0.2379224 -0.2751584
## X358 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X359 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X360 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X361 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X362 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X363 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X364 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X365 -0.2903271 -0.2729429 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X366 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X367 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X368 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X369 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X370 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X371 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X372 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X373 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X374 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X375  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X376 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X377 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X378  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X379 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X380 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X381 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X382  3.4407687 -0.2729429  3.6304485 -0.2570485  4.1986310  3.6304485
## X383 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X384 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X385 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X386 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X387  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X388 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X389 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X390  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X391 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X392 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X393 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X394 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X395 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X396 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X397 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X398 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X399 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X400 -0.2903271 -0.2729429 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X401 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X402 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X403 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X404 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X405  3.4407687 -0.2729429 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X406 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X407 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X408 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X409 -0.2903271  3.6599168 -0.2751584 -0.2570485  4.1986310 -0.2751584
## X410 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X411 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X412 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X413 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X414 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X415 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X416 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X417 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X418 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X419 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X420 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X421 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X422 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X423 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X424  3.4407687  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X425 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X426 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X427 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X428 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X429 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X430 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X431 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X432 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X433 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X434  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X435 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X436 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X437 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X438 -0.2903271  3.6599168 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X439 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X440 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X441  3.4407687 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X442  3.4407687 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X443 -0.2903271 -0.2729429  3.6304485 -0.2570485 -0.2379224  3.6304485
## X444 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X445 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X446 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X447 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X448 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X449  3.4407687 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X450 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X451 -0.2903271 -0.2729429 -0.2751584 -0.2570485 -0.2379224 -0.2751584
## X452 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X453 -0.2903271 -0.2729429 -0.2751584  3.8862252 -0.2379224 -0.2751584
## X454 -0.2903271  3.6599168 -0.2751584  3.8862252 -0.2379224 -0.2751584
##           FP160      FP161      FP162      FP163      FP164      FP165
## X1   -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X2   -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X3   -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X4   -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371  1.3647334
## X5   -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X6   -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X7   -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X8   -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X9   -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X10  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X11  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X12  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X13  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X14  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X15  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X16  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X17  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X18  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X19  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X20  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X21  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X22  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X23  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X24  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X25   3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X26   3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X27  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X28  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X29  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X30  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X31  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X32  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X33  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X34  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X35  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X36  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X37  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X38  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X39  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371  1.3647334
## X40  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X41  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X42  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X43  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X44  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X45  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X46  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X47  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X48  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X49  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X50  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X51  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X52  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X53  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X54  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X55  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X56  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X57  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X58  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X59  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X60  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X61  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X62  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X63  -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X64  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X65  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X66  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X67  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X68  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X69  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X70  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X71  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X72  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X73  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X74  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474  1.3647334
## X75  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X76  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X77  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X78  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X79  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X80  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X81  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X82  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X83  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X84  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X85  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X86  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X87  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X88  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X89   3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X90  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X91  -0.2707144  3.7523881 -0.9900597  1.0479417 -1.2979474  1.3647334
## X92  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X93  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X94  -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X95  -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X96  -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371  1.3647334
## X97  -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X98  -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X99  -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X100 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X101 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X102 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X103 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X104 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X105  3.6900455 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X106 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X107 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X108 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X109 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X110 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X111 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X112 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X113 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X114 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X115 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X116 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X117 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X118 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X119 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X120 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X121 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X122 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X123 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X124 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371  1.3647334
## X125 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X126 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X127 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X128 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X129 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X130 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X131 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X132 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X133 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X134 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371  1.3647334
## X135 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X136 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X137 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X138 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X139 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X140 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X141 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X142 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X143 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X144 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X145 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X146 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X147 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X148 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X149 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X150 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X151 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X152 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X153 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X154 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X155 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X156 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X157 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X158 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X159 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X160 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X161 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X162 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X163 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X164 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X165 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X166 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X167 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X168  3.6900455 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X169 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X170 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X171 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X172 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X173 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X174 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X175 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474  1.3647334
## X176 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X177  3.6900455 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X178 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X179 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X180 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X181 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X182 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X183 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X184 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X185 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X186 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X187 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X188 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X189 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X190  3.6900455 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X191 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X192 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X193 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X194 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X195 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X196 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X197 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X198 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X199 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474  1.3647334
## X200 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X201 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X202 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X203 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X204 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X205 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X206 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X207  3.6900455 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X208 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X209 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X210 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X211 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X212 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X213 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X214 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X215 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X216 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X217 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X218 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X219 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X220 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X221 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X222 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X223 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X224 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X225 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X226 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X227 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X228 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X229 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X230 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X231 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X232 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X233 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371 -0.7319733
## X234 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X235 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X236 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X237 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X238 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X239 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X240 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371  1.3647334
## X241 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X242 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X243 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X244  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X245 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X246 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X247  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X248 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X249 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X250 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X251 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X252 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X253 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X254 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X255 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X256 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X257 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X258 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X259 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X260 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X261 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X262 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X263 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X264 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X265 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X266 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X267 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X268 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X269 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X270 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X271 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X272 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X273 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X274 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X275 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X276 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X277 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X278  3.6900455 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X279 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X280 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X281 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X282 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X283 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X284 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X285 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X286  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X287 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X288 -0.2707144  3.7523881 -0.9900597  1.0479417  0.7696371  1.3647334
## X289 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371  1.3647334
## X290 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X291 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X292  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X293 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X294 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X295 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X296  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X297 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X298 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X299 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X300 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X301 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X302 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X303  3.6900455 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X304  3.6900455 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X305  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X306 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X307 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X308 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X309 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X310 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X311 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X312 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371  1.3647334
## X313 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X314 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X315 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X316 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X317 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X318 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X319 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X320 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X321 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X322 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X323  3.6900455 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X324 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X325 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X326 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X327 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X328 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X329 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X330 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X331 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X332 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X333 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X334 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X335 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X336 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X337  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X338 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X339 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X340 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X341 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X342 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X343 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X344 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X345 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X346  3.6900455 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X347 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X348 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X349 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X350 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X351 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X352 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474  1.3647334
## X353  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X354 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X355 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X356 -0.2707144 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X357 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X358 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X359  3.6900455 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X360 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X361 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X362 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X363  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X364 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X365 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X366 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X367 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X368 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X369 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X370  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X371 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X372 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X373 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X374 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371 -0.7319733
## X375 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X376 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X377 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X378 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X379 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X380 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X381 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X382  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X383 -0.2707144  3.7523881 -0.9900597  1.0479417  0.7696371  1.3647334
## X384 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X385 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X386  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X387 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X388  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X389  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X390 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X391 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X392 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X393 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X394 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X395 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X396 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X397 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X398 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X399 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X400 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X401 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X402 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371  1.3647334
## X403 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X404 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X405 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X406 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X407 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X408 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X409 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X410  3.6900455 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X411 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371 -0.7319733
## X412  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X413  3.6900455 -0.2662167 -0.9900597 -0.9532482  0.7696371 -0.7319733
## X414 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X415 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X416 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X417  3.6900455 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X418 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X419 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X420 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X421 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X422 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X423 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X424 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X425 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X426 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X427 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X428 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X429 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X430 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X431 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X432 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X433 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X434 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X435 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474 -0.7319733
## X436 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X437 -0.2707144  3.7523881 -0.9900597  1.0479417  0.7696371  1.3647334
## X438 -0.2707144 -0.2662167 -0.9900597  1.0479417  0.7696371  1.3647334
## X439 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X440 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X441 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X442 -0.2707144 -0.2662167  1.0089780 -0.9532482  0.7696371 -0.7319733
## X443  3.6900455 -0.2662167 -0.9900597  1.0479417  0.7696371 -0.7319733
## X444 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X445 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X446 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X447 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X448 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X449 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
## X450 -0.2707144 -0.2662167 -0.9900597 -0.9532482 -1.2979474 -0.7319733
## X451 -0.2707144 -0.2662167 -0.9900597  1.0479417 -1.2979474  1.3647334
## X452 -0.2707144  3.7523881  1.0089780  1.0479417  0.7696371 -0.7319733
## X453 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371 -0.7319733
## X454 -0.2707144 -0.2662167  1.0089780  1.0479417  0.7696371  1.3647334
##           FP166      FP167      FP168      FP169      FP170      FP171
## X1   -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X2    1.4201847 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X3   -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X4   -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X5   -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X6   -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X7    1.4201847 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X8   -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X9   -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X10   1.4201847  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X11   1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X12  -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X13   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X14   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X15   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X16  -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349  2.2139721
## X17  -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X18   1.4201847 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X19  -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X20   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X21   1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X22   1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X23   1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X24  -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669  2.2139721
## X25   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X26  -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X27   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349  2.2139721
## X28   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X29  -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X30   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X31  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X32  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X33  -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X34   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X35  -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X36   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X37  -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X38  -0.7033934  1.4303578 -1.4101322 -0.4779558  2.1046669  2.2139721
## X39  -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X40   1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X41  -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X42   1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X43   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X44   1.4201847 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X45  -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X46   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X47  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X48   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X49  -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X50   1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349  2.2139721
## X51  -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X52  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X53   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X54  -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X55  -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X56  -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X57  -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X58   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X59  -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X60  -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X61  -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X62  -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X63  -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X64   1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X65   1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X66  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X67   1.4201847  1.4303578  0.7084077  2.0900438  2.1046669 -0.4512019
## X68  -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X69  -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X70   1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X71   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X72  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X73   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X74  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X75   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X76  -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X77   1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X78  -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X79   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X80  -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X81  -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X82   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X83   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X84   1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X85   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X86  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X87  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X88   1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X89  -0.7033934  1.4303578  0.7084077  2.0900438  2.1046669 -0.4512019
## X90  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X91  -0.7033934  1.4303578 -1.4101322 -0.4779558  2.1046669  2.2139721
## X92   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X93  -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X94  -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X95   1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X96  -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349  2.2139721
## X97  -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X98   1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X99  -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X100  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X101  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X102  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X103 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X104  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X105 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669  2.2139721
## X106 -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X107 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X108 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X109 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X110  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X111  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X112 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X113 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X114 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349  2.2139721
## X115  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X116  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X117 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X118  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X119  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X120  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X121 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X122  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X123  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X124  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X125  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X126  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X127  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X128 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X129 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X130  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X131  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X132  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X133  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X134 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X135  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X136  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X137 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X138 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X139  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X140  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X141 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X142  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X143 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X144 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X145 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X146  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X147 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X148  1.4201847 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X149  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X150 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X151  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X152  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X153 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X154  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X155 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X156  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X157 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X158 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X159 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X160  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X161 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X162 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X163 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X164 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X165  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X166  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X167 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X168 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X169 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X170 -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X171 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X172 -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X173  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X174  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X175 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X176  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X177 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X178 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X179 -0.7033934  1.4303578 -1.4101322 -0.4779558  2.1046669  2.2139721
## X180 -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X181  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X182 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X183  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X184  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X185 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X186 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X187 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X188  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X189  1.4201847 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X190 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X191 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X192  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X193  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X194 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X195  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X196 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X197 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X198 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X199 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X200  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X201  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X202 -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X203  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X204 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X205 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X206 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X207 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X208  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X209  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X210 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X211  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X212 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X213 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X214  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X215 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X216 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X217  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X218  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X219 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X220  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X221 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X222 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X223  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X224 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X225  1.4201847 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X226  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X227 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X228  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X229  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X230  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X231 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X232 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X233  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X234 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X235 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X236 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X237 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X238 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X239 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X240 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X241 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X242 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X243  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X244 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X245 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349  2.2139721
## X246  1.4201847  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X247 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X248 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X249 -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X250  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X251  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X252  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X253 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X254 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X255  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X256 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X257 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X258 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X259 -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X260  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X261  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X262 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X263 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X264  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X265 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X266 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X267 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X268 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X269 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X270 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X271  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X272  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X273 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X274 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X275 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X276 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X277 -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669  2.2139721
## X278 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X279  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X280 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X281  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X282 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X283  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X284  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X285 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X286 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X287 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X288 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349  2.2139721
## X289  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X290  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X291 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X292 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X293  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X294 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X295  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X296 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X297  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X298 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X299 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X300 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X301  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X302 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X303 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X304 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X305  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X306  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X307  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669  2.2139721
## X308 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X309  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669  2.2139721
## X310 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X311 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X312  1.4201847  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X313 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X314 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X315 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X316 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X317 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X318 -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X319  1.4201847  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X320 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X321  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X322 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X323  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X324 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X325  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X326  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X327  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X328  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X329 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X330 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X331 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X332 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X333  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X334 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X335 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X336 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X337 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X338  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X339  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X340 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X341 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X342 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X343  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X344  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X345  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X346 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X347 -0.7033934  1.4303578 -1.4101322 -0.4779558  2.1046669  2.2139721
## X348 -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669  2.2139721
## X349  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X350  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X351 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X352 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X353 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X354  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X355 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X356 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X357 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X358 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X359 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X360 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X361  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X362  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X363  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X364 -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X365 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X366  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X367  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X368 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X369  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X370  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X371 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X372  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X373  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X374  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X375 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X376 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X377 -0.7033934  1.4303578 -1.4101322 -0.4779558  2.1046669  2.2139721
## X378  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X379 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X380 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X381 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X382 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X383 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X384 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X385  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349  2.2139721
## X386 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X387  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X388  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X389 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X390  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X391 -0.7033934  1.4303578 -1.4101322 -0.4779558  2.1046669  2.2139721
## X392 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X393  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X394  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X395 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X396 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X397  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X398 -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669  2.2139721
## X399  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X400 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X401  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349  2.2139721
## X402 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X403 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X404 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X405 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X406 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X407  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X408 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X409 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X410 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349  2.2139721
## X411 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X412  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X413 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X414 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X415 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X416  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X417 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X418 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X419  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
## X420 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X421  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X422 -0.7033934  1.4303578  0.7084077  2.0900438 -0.4746349 -0.4512019
## X423 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X424 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X425 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X426  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X427 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X428  1.4201847 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X429  1.4201847 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X430 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X431 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X432 -0.7033934  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X433 -0.7033934 -0.6983906 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X434  1.4201847 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X435 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X436 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X437 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X438 -0.7033934  1.4303578  0.7084077 -0.4779558  2.1046669 -0.4512019
## X439 -0.7033934 -0.6983906 -1.4101322 -0.4779558 -0.4746349  2.2139721
## X440 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X441  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X442 -0.7033934 -0.6983906  0.7084077 -0.4779558  2.1046669 -0.4512019
## X443 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X444 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X445 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X446  1.4201847  1.4303578  0.7084077  2.0900438 -0.4746349  2.2139721
## X447 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X448 -0.7033934  1.4303578 -1.4101322 -0.4779558  2.1046669 -0.4512019
## X449 -0.7033934  1.4303578  0.7084077  2.0900438  2.1046669 -0.4512019
## X450 -0.7033934 -0.6983906  0.7084077 -0.4779558 -0.4746349 -0.4512019
## X451 -0.7033934  1.4303578 -1.4101322 -0.4779558 -0.4746349 -0.4512019
## X452 -0.7033934 -0.6983906  0.7084077  2.0900438  2.1046669 -0.4512019
## X453 -0.7033934 -0.6983906  0.7084077  2.0900438 -0.4746349 -0.4512019
## X454  1.4201847  1.4303578  0.7084077 -0.4779558 -0.4746349  2.2139721
##           FP172      FP173      FP174      FP175      FP176      FP177
## X1   -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X2   -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X3   -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X4   -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X5    2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X6   -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X7    2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X8   -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X9   -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X10  -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X11  -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X12  -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X13  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X14   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X15  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X16  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X17  -0.4221979 -0.4065307 -0.3870166  2.5343493  2.6815493  2.6947952
## X18   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X19  -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X20  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X21   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X22  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X23  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X24  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X25  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X26  -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X27  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X28  -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X29  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X30   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X31  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X32  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X33  -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X34  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X35  -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X36  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X37  -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X38  -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X39  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X40  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X41  -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X42   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X43  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X44   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X45   2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X46  -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X47  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X48  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X49   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X50  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X51  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X52  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X53   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X54   2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X55   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X56  -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X57  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X58  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X59   2.3660671  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X60   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X61  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X62  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X63   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X64  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X65  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X66  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X67   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X68  -0.4221979  2.4572522  2.5811513  2.5343493 -0.3725266 -0.3706955
## X69  -0.4221979  2.4572522 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X70  -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X71  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X72  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X73  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X74  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X75   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X76  -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X77  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X78   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X79  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X80  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X81   2.3660671  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X82  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X83   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X84   2.3660671 -0.4065307  2.5811513 -0.3941637 -0.3725266  2.6947952
## X85  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X86  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X87  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X88  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X89   2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X90  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X91  -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X92  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X93   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X94  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X95  -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X96  -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X97  -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X98   2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X99  -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X100  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X101  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X102 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X103 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X104 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X105 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X106 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X107 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X108 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X109 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X110 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X111 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X112  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X113 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X114  2.3660671 -0.4065307  2.5811513 -0.3941637  2.6815493 -0.3706955
## X115  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X116  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X117 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X118  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X119 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X120 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X121  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X122  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X123 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X124  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X125  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X126  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X127  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X128  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X129  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X130 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X131 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X132  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X133 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X134  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X135 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X136  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X137  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X138 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X139  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X140 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X141  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X142  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X143  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X144  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X145  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X146  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X147  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X148 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X149 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X150  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X151 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X152 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X153  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X154  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X155  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X156 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X157  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X158  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X159  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X160 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X161 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X162 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X163 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X164 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X165  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X166 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X167 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X168 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X169 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X170 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X171 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X172 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X173 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X174 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X175 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X176 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X177 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X178  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X179 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X180 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X181 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X182 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X183 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X184  2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X185 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X186  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X187 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X188 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X189 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X190 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X191 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X192 -0.4221979 -0.4065307  2.5811513 -0.3941637  2.6815493 -0.3706955
## X193 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X194 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X195 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X196 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X197  2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X198 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X199 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X200  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X201 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X202 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X203 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X204  2.3660671 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X205  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X206  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X207  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X208  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X209 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X210 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X211  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X212  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X213  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X214 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X215  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X216  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X217  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X218 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X219 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X220  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X221 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X222  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X223 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X224  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X225 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X226 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X227  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X228  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X229 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X230 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X231  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X232  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X233 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X234 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X235 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X236  2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X237  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X238  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X239  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X240  2.3660671  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X241 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X242 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X243 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X244 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X245  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X246 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X247 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X248 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X249 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X250  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X251 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X252 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X253 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X254 -0.4221979  2.4572522 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X255  2.3660671 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X256 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X257 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X258 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X259 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X260 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X261 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X262 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X263 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X264 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X265 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X266 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X267 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X268 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X269 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X270 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X271 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X272 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X273 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X274 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X275 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X276  2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X277 -0.4221979  2.4572522 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X278 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X279 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X280  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X281 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X282  2.3660671 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X283 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X284 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X285  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X286 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X287 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X288 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X289 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X290  2.3660671 -0.4065307  2.5811513 -0.3941637  2.6815493 -0.3706955
## X291 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X292 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X293 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X294 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X295 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X296 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X297 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X298  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X299 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X300 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X301 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X302 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X303 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X304  2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X305 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266  2.6947952
## X306  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X307 -0.4221979  2.4572522 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X308 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X309 -0.4221979  2.4572522 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X310 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X311 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X312 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X313 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X314 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X315 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X316 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X317 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X318 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X319 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X320  2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X321 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X322  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X323 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X324 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X325 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X326  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X327 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X328 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X329 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X330  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X331 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X332 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X333 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X334  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X335 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266  2.6947952
## X336 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X337 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X338 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X339 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X340 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X341 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X342 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X343 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X344 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X345 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X346 -0.4221979 -0.4065307  2.5811513  2.5343493 -0.3725266 -0.3706955
## X347 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X348 -0.4221979  2.4572522 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X349 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X350 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X351 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X352 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X353 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266  2.6947952
## X354 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X355 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X356 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X357 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X358 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X359 -0.4221979 -0.4065307  2.5811513  2.5343493 -0.3725266 -0.3706955
## X360 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X361 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X362 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X363 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X364 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X365  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X366 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X367  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X368 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X369 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X370 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X371  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X372 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X373 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X374  2.3660671  2.4572522  2.5811513 -0.3941637  2.6815493 -0.3706955
## X375  2.3660671 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X376 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X377 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X378 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X379 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X380 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X381  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X382 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X383 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X384 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X385 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X386 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X387 -0.4221979  2.4572522  2.5811513  2.5343493 -0.3725266 -0.3706955
## X388  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X389 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X390 -0.4221979  2.4572522  2.5811513  2.5343493 -0.3725266 -0.3706955
## X391 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X392 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X393 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X394  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X395 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X396 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X397 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X398 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X399 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X400  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X401 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X402 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X403 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X404 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X405 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X406 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X407 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X408 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X409 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X410  2.3660671  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X411 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X412 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X413 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493 -0.3706955
## X414 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X415 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X416 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X417 -0.4221979 -0.4065307 -0.3870166 -0.3941637  2.6815493  2.6947952
## X418 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X419 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X420  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X421 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X422  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X423 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X424 -0.4221979 -0.4065307  2.5811513 -0.3941637  2.6815493 -0.3706955
## X425 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X426 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X427 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X428  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X429 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X430 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X431  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X432  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X433 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X434 -0.4221979 -0.4065307  2.5811513 -0.3941637  2.6815493 -0.3706955
## X435 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X436 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X437 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X438 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X439 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X440  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X441 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X442 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X443  2.3660671  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X444 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X445 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X446  2.3660671 -0.4065307 -0.3870166 -0.3941637 -0.3725266  2.6947952
## X447 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X448 -0.4221979  2.4572522 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X449 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X450 -0.4221979 -0.4065307 -0.3870166 -0.3941637 -0.3725266 -0.3706955
## X451 -0.4221979 -0.4065307 -0.3870166  2.5343493 -0.3725266 -0.3706955
## X452 -0.4221979  2.4572522  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X453 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
## X454 -0.4221979 -0.4065307  2.5811513 -0.3941637 -0.3725266 -0.3706955
##           FP178      FP179      FP180      FP181     FP182      FP183
## X1   -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X2    2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X3   -0.3706955 -0.3290557  2.8835355 -0.3211537  3.017853 -0.2860509
## X4   -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X5   -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X6   -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X7   -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X8    2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X9   -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X10  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X11  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X12  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X13  -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X14  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X15  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X16  -0.3706955 -0.3290557  2.8835355 -0.3211537  3.017853 -0.2860509
## X17   2.6947952  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X18   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X19  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X20  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X21  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X22   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X23   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X24  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X25  -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X26  -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X27  -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X28  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X29  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X30  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X31   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X32  -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X33  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X34  -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X35  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X36  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X37  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X38  -0.3706955 -0.3290557  2.8835355  3.1104998  3.017853 -0.2860509
## X39  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X40  -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X41  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X42  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X43  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X44   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X45  -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X46  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X47   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X48  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X49  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X50  -0.3706955 -0.3290557  2.8835355 -0.3211537  3.017853 -0.2860509
## X51  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X52   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X53  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X54  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X55  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X56  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X57   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X58  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X59  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X60  -0.3706955  3.0358039  2.8835355 -0.3211537 -0.331013 -0.2860509
## X61   2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X62   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X63  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X64  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X65  -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X66   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X67   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X68   2.6947952 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X69  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X70  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X71  -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X72   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X73  -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X74  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X75  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X76  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X77  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X78  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X79  -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X80  -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X81  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X82  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X83   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X84  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X85  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X86   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X87   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X88  -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X89  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X90   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X91  -0.3706955 -0.3290557  2.8835355  3.1104998  3.017853 -0.2860509
## X92  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X93  -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X94   2.6947952 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X95  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X96  -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013  3.4922050
## X97   2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X98  -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X99  -0.3706955  3.0358039 -0.3464318  3.1104998 -0.331013 -0.2860509
## X100 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X101 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X102  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X103  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X104 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X105 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X106 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X107 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X108 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X109 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X110 -0.3706955  3.0358039  2.8835355 -0.3211537 -0.331013 -0.2860509
## X111  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X112 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X113  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X114 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X115 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X116 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X117  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X118 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X119 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X120 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X121 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X122 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X123 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X124 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X125 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X126 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X127 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X128 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X129 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X130 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X131 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X132 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X133 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X134 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X135 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X136 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X137 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X138 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X139 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X140 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X141 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X142 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X143 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X144 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X145 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X146 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X147 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X148 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X149 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X150 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X151 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X152 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X153 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X154 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X155 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X156 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X157 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X158 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X159 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X160 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X161  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X162 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X163 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X164 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X165 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X166  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X167 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X168 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X169 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X170 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X171 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X172 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X173 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X174 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X175 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X176 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X177 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X178 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X179 -0.3706955 -0.3290557  2.8835355  3.1104998  3.017853 -0.2860509
## X180 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013  3.4922050
## X181  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X182 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X183 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X184 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X185 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X186  2.6947952 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X187  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X188 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X189  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X190 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X191 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X192 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X193 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X194 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X195 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X196 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X197 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X198 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X199 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X200 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X201  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X202 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013  3.4922050
## X203 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X204 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X205 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X206 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X207 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X208 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X209 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X210 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X211 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X212 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X213 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X214 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X215 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X216 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X217 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X218 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013  3.4922050
## X219  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X220 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X221  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X222 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X223 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X224 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X225 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X226 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X227 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X228 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X229 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X230 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X231 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X232 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X233 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X234 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X235 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X236 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X237 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X238 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X239 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X240 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013  3.4922050
## X241 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X242 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X243 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X244 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X245 -0.3706955  3.0358039  2.8835355 -0.3211537  3.017853 -0.2860509
## X246 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X247 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X248  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X249 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X250 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X251 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X252 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X253 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X254 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X255 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X256  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X257 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X258 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X259 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X260 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X261 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X262 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X263 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X264 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X265 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X266 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X267 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X268  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X269 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X270  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X271 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X272 -0.3706955  3.0358039 -0.3464318 -0.3211537  3.017853 -0.2860509
## X273  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X274 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X275  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X276 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X277 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X278 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X279 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X280 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013  3.4922050
## X281 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X282 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X283 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X284 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X285 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X286 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X287 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X288 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013  3.4922050
## X289 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013  3.4922050
## X290 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X291 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X292 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X293 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X294 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X295 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X296 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X297 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X298 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X299 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X300  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X301 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X302 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X303 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X304 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X305  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X306 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X307 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X308 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X309 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X310 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X311  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X312 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013  3.4922050
## X313  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X314 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X315 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X316 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X317 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X318 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X319 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X320 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X321 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X322 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X323 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X324  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X325 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X326 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X327 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X328 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X329  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X330 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X331 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X332 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X333 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X334 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X335  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X336 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X337 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X338 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X339 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X340 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013  3.4922050
## X341  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X342 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X343 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X344 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X345 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X346 -0.3706955 -0.3290557 -0.3464318  3.1104998  3.017853 -0.2860509
## X347 -0.3706955 -0.3290557  2.8835355  3.1104998  3.017853 -0.2860509
## X348 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X349 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X350 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X351  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X352 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X353  2.6947952  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X354 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X355  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X356 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X357 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X358  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X359 -0.3706955 -0.3290557 -0.3464318  3.1104998  3.017853 -0.2860509
## X360 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X361  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X362 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X363 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X364 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X365 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X366 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X367 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X368 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X369 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X370 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X371 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X372 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X373 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X374 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X375 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X376 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X377 -0.3706955 -0.3290557  2.8835355  3.1104998  3.017853 -0.2860509
## X378  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X379  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X380 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X381  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X382 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X383 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X384 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X385 -0.3706955 -0.3290557  2.8835355 -0.3211537  3.017853 -0.2860509
## X386 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X387  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X388 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013  3.4922050
## X389 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X390  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X391 -0.3706955 -0.3290557  2.8835355  3.1104998  3.017853 -0.2860509
## X392  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X393 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X394 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X395  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X396 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X397 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X398 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X399 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X400 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X401 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X402 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013  3.4922050
## X403  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X404  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X405 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X406 -0.3706955  3.0358039  2.8835355 -0.3211537 -0.331013 -0.2860509
## X407 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X408 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X409 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X410 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X411 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013  3.4922050
## X412 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X413 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X414  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X415 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X416 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X417 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X418 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X419 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X420 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X421 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X422 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X423 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X424 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X425 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X426 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X427 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X428 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X429 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X430 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X431 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X432 -0.3706955 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X433 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X434 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X435  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X436 -0.3706955  3.0358039 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X437 -0.3706955 -0.3290557  2.8835355  3.1104998 -0.331013 -0.2860509
## X438 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013 -0.2860509
## X439 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X440 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X441 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X442 -0.3706955 -0.3290557 -0.3464318  3.1104998 -0.331013  3.4922050
## X443 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X444  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X445  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X446 -0.3706955 -0.3290557 -0.3464318 -0.3211537  3.017853 -0.2860509
## X447  2.6947952 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X448 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X449 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X450 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X451  2.6947952 -0.3290557  2.8835355 -0.3211537 -0.331013 -0.2860509
## X452 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
## X453 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013 -0.2860509
## X454 -0.3706955 -0.3290557 -0.3464318 -0.3211537 -0.331013  3.4922050
##           FP184      FP185      FP186      FP187      FP188      FP189
## X1   -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X2   -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X3   -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X4   -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X5   -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X6   -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X7    3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X8   -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X9   -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X10  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X11  -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X12  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X13  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X14  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X15  -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X16  -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X17  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X18  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X19  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X20  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X21  -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X22  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X23  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X24  -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144  3.4662300
## X25  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X26  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X27  -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144  3.4662300
## X28  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X29  -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X30   3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X31  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X32  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X33  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X34  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X35  -0.3029057 -0.3049681  3.4662300 -0.2795515  3.6900455 -0.2881945
## X36  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X37  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X38  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X39  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X40  -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X41  -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X42  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X43  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X44  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X45  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X46  -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144  3.4662300
## X47  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X48  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X49   3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X50  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X51  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X52  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X53   3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X54  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X55   3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X56  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X57  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X58  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X59  -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X60  -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X61  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X62  -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X63   3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X64  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X65  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X66  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X67  -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455  3.4662300
## X68  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X69  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X70  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X71  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X72  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X73  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X74  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X75  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X76  -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X77  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X78   3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X79  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X80  -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X81  -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X82  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X83  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X84  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X85  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X86  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X87  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X88  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X89  -0.3029057  3.2755834  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X90  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X91  -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X92  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X93  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X94  -0.3029057 -0.3049681  3.4662300  3.5733972  3.6900455 -0.2881945
## X95  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X96  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X97  -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X98   3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X99  -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X100  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X101  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X102 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144  3.4662300
## X103 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X104 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X105 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144  3.4662300
## X106 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X107 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X108 -0.3029057  3.2755834 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X109 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X110 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X111 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X112 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X113 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X114  3.2978859 -0.3049681 -0.2881945  3.5733972 -0.2707144  3.4662300
## X115  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X116 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X117 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X118  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X119 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X120 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X121 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X122  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X123 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X124  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X125  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X126  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X127  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X128 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X129  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X130 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X131 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X132  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X133 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X134 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X135 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X136  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X137  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X138 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X139  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X140 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X141  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X142  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X143  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X144  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X145  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X146 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X147  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X148 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X149 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X150  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X151 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X152 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X153  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X154  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X155  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X156 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X157  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X158  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X159 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X160 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X161 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X162 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X163 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X164 -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X165  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X166 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X167 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X168 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X169 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X170 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144  3.4662300
## X171 -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X172 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X173 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X174 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X175 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X176 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X177 -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X178 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X179 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X180 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X181 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X182 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X183 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X184  3.2978859 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X185 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X186 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X187 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X188 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X189 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144  3.4662300
## X190 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X191 -0.3029057  3.2755834 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X192 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X193 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X194 -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X195 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X196 -0.3029057  3.2755834 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X197  3.2978859 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X198 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X199 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X200 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X201 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X202 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X203 -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X204 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X205 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X206 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X207 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X208 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X209 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X210 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X211  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X212 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X213  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X214 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X215 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X216  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X217  3.2978859 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X218 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X219 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X220  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X221 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X222 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X223 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X224  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X225 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X226 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X227  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X228  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X229 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X230 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X231  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X232  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X233 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X234 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X235 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X236  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X237 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X238 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X239  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X240  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X241 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X242 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X243 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X244 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X245 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X246 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X247 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X248 -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X249 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X250 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X251 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X252 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X253 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X254 -0.3029057  3.2755834  3.4662300  3.5733972 -0.2707144 -0.2881945
## X255  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X256 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X257 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X258 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X259 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X260 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X261 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X262 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X263 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X264 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X265 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X266 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X267 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X268 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X269 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X270 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X271 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X272 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X273 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X274 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X275 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X276 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X277 -0.3029057  3.2755834  3.4662300 -0.2795515 -0.2707144  3.4662300
## X278 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X279 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X280 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X281 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X282  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X283 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X284 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X285 -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X286 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X287 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X288 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X289 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X290 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X291 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X292 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X293 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X294 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X295 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X296 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X297 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X298  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X299 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X300 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X301 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X302 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X303 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X304  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X305 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X306  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X307 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X308 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X309 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X310 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X311 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X312 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X313 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X314 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X315 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X316 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X317 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X318 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144  3.4662300
## X319 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X320 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X321 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X322  3.2978859 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X323 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X324 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X325 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X326 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X327 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X328 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X329 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X330  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X331 -0.3029057 -0.3049681 -0.2881945  3.5733972  3.6900455 -0.2881945
## X332 -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X333 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X334 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X335 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X336 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X337 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X338 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X339 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X340 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X341 -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X342 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X343 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X344 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X345 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X346 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X347 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X348 -0.3029057  3.2755834  3.4662300 -0.2795515 -0.2707144  3.4662300
## X349 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X350 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X351 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X352 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X353 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X354 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X355 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X356 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X357 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X358 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X359 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X360 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X361 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X362 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X363 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X364 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X365  3.2978859 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X366 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X367  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X368 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X369 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X370 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X371  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X372 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X373 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X374  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X375 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X376 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X377 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X378 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X379 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X380 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X381  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X382 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X383 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X384 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X385 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X386 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X387 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X388  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X389 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X390 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X391 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X392 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X393 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X394  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X395 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X396 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X397 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X398 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X399 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X400 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X401 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X402 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X403 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X404 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X405 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X406 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X407 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X408 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X409 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X410  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X411 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X412 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X413 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X414 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X415 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X416 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X417 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X418 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X419 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X420 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X421 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X422  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X423 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X424 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X425 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X426 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X427 -0.3029057 -0.3049681 -0.2881945  3.5733972 -0.2707144 -0.2881945
## X428 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X429 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X430 -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455 -0.2881945
## X431 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X432  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X433 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X434 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X435 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X436 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X437 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X438 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X439 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X440 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X441 -0.3029057 -0.3049681 -0.2881945 -0.2795515  3.6900455  3.4662300
## X442 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X443  3.2978859 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X444 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X445 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X446 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X447 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X448 -0.3029057  3.2755834 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X449 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144  3.4662300
## X450 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X451 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X452 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
## X453 -0.3029057 -0.3049681  3.4662300 -0.2795515 -0.2707144 -0.2881945
## X454 -0.3029057 -0.3049681 -0.2881945 -0.2795515 -0.2707144 -0.2881945
##           FP190      FP191      FP192      FP193      FP194      FP195
## X1   -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X2   -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X3   -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X4   -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X5   -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X6   -0.2795515  3.6304485  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X7    3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X8   -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X9   -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X10  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X11  -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X12  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X13  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X14   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X15  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X16  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X17  -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X18   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X19  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X20  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X21   3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X22  -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X23  -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X24  -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X25  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X26  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X27  -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X28  -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X29  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X30  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X31  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X32  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X33  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X34  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X35  -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X36  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X37  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X38  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X39  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X40  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X41  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X42   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X43  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X44   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X45  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X46  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X47  -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X48  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X49   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X50  -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X51  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X52  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X53  -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X54  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X55  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X56  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X57  -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X58  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X59  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X60   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X61  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X62  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X63   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X64  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X65  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X66  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X67   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X68  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X69  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X70  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X71  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X72  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X73  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X74  -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X75   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X76  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X77  -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X78  -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X79  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X80  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X81  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X82  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X83   3.5733972 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X84  -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X85  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X86  -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X87  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X88  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X89   3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X90  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X91  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X92  -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X93  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X94  -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X95  -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X96  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X97  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X98   3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X99  -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X100 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X101  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X102 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X103 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X104 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X105 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X106 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X107 -0.2795515  3.6304485  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X108 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X109 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X110 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X111 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X112 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X113 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X114 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X115  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X116  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X117 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X118  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X119 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X120 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X121 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X122 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X123 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X124  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X125 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X126  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X127  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X128  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X129  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X130 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X131 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X132  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X133 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X134  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X135 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X136 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X137  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X138 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X139 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X140 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X141  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X142 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X143 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X144  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X145  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X146 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X147 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X148 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X149 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X150 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X151 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X152 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X153 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X154 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X155  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X156 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X157 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X158 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X159 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X160 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X161 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X162 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X163 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X164 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X165 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X166 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X167 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X168 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X169 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X170 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X171 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X172 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X173 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X174 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X175 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X176 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X177 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X178 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X179 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X180 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X181 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X182 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X183 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X184  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X185 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X186  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X187 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X188 -0.2795515  3.6304485  3.9217804  3.8862252 -0.2500081 -0.2547181
## X189 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X190 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X191 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X192 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X193 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X194 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X195 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X196 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X197 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X198 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X199 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X200  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X201 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X202 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X203 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X204 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X205 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X206 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X207  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X208  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X209 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X210 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X211  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X212 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X213  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X214 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X215 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X216  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X217  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X218 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X219 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X220 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X221 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X222 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X223 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X224  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X225 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X226 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X227 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X228 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X229 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X230 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X231 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X232 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X233 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X234 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X235 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X236 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X237  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X238 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X239  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X240 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X241 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X242 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X243 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X244 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X245  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X246 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X247 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X248 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X249 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X250  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X251 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X252 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081  3.9217804
## X253 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X254 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X255 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X256 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X257 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X258 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X259 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X260 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X261 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081  3.9217804
## X262 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X263 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X264 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X265 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X266 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X267 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X268 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X269 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X270 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X271 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X272 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X273 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X274 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X275 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X276 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X277 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X278 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X279 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X280 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X281 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X282 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X283 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X284 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X285  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X286 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X287 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X288 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X289 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X290 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X291 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X292 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X293 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X294 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X295 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X296 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X297 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X298 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X299 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X300 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X301 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X302 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X303 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X304 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X305 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X306 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X307 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X308 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X309 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X310 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X311 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X312 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X313 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X314 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X315 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X316 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X317 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X318 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X319 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X320 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X321 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X322 -0.2795515 -0.2751584  3.9217804 -0.2570485  3.9956648 -0.2547181
## X323 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X324 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X325 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X326  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X327 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X328 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X329 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X330 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X331 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X332 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X333 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X334  3.5733972 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X335 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X336 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X337 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X338 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X339 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X340 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X341 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X342 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X343 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X344 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X345 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X346 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X347 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X348 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X349 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X350 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X351 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X352 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X353 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X354 -0.2795515  3.6304485  3.9217804  3.8862252 -0.2500081 -0.2547181
## X355 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X356 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X357 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X358 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X359 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X360 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X361 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X362 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X363 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X364 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X365 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X366 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X367 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X368 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X369 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X370 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X371  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X372 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X373 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X374  3.5733972 -0.2751584 -0.2547181  3.8862252 -0.2500081  3.9217804
## X375  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X376 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X377 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X378 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X379 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X380 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X381  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X382 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X383 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X384 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X385 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X386 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X387 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X388 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X389 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X390 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X391 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X392 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X393 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X394 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X395 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X396 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X397 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X398 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X399 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X400  3.5733972 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X401 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X402 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X403 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X404 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X405 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X406 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X407 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081  3.9217804
## X408 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X409 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X410 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X411 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X412 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X413 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081  3.9217804
## X414 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X415 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X416 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X417 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X418 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X419 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X420  3.5733972  3.6304485  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X421 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X422 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X423 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X424 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081  3.9217804
## X425 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X426 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
## X427 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X428  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X429 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X430 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X431  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X432 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X433 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X434 -0.2795515 -0.2751584 -0.2547181 -0.2570485  3.9956648 -0.2547181
## X435 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X436 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X437 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X438 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X439 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X440  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X441 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X442 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X443 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081  3.9217804
## X444 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X445 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X446  3.5733972 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X447 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X448 -0.2795515 -0.2751584  3.9217804 -0.2570485 -0.2500081 -0.2547181
## X449 -0.2795515  3.6304485 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X450 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X451 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X452 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X453 -0.2795515 -0.2751584 -0.2547181 -0.2570485 -0.2500081 -0.2547181
## X454 -0.2795515 -0.2751584 -0.2547181  3.8862252 -0.2500081 -0.2547181
##           FP196      FP197      FP198      FP201      FP202      FP203
## X1   -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X2   -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X3   -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X4   -0.2452292  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X5   -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X6   -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X7   -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X8   -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X9    4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X10  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X11  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X12   4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X13  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X14  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X15  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X16  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X17  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X18  -0.2452292 -0.2354475  4.0735297 -0.2354475  1.6966445 -0.3596075
## X19   4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X20  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X21  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X22  -0.2452292  4.2427646 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X23  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X24  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X25  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X26  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X27  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X28  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X29  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X30  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X31  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X32  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X33  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X34  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X35  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X36  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X37  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X38   4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X39  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X40  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X41   4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X42  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X43  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X44  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X45  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X46  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X47  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X48  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X49  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X50  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X51  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X52  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X53  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X54  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X55  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X56   4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X57  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X58  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X59  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X60  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X61  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X62  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X63  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X64  -0.2452292  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X65  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X66  -0.2452292 -0.2354475  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X67  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X68   4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X69  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X70  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X71  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X72  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X73  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X74  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X75  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X76   4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X77  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X78  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X79  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X80  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X81   4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X82  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X83  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X84  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X85  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X86  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X87  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X88  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X89  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X90  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X91   4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X92  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X93  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X94  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X95  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X96  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X97  -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X98  -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X99   4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X100 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X101 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X102 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X103 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X104 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X105 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X106  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X107 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X108  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X109 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X110 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X111 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X112 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X113 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X114 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X115 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X116 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X117 -0.2452292 -0.2354475  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X118 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X119 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X120 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X121 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X122 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X123 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X124 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X125 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X126 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X127 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X128 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X129 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X130 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X131 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X132 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X133 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X134 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X135 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X136 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X137 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X138  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X139 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X140 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X141 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X142 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X143 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X144 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X145 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X146 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X147 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X148 -0.2452292  4.2427646 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X149 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X150 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X151 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X152 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X153 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X154 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X155 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X156 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X157 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X158 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X159 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X160 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X161 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X162  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X163 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X164  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X165 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X166 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X167 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X168 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X169 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X170 -0.2452292  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X171  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X172 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X173 -0.2452292 -0.2354475 -0.2452292  4.2427646  1.6966445 -0.3596075
## X174 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X175 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X176 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X177  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X178 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X179  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X180  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X181 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X182  4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X183 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X184 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X185 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X186 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X187 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X188 -0.2452292  4.2427646 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X189 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X190 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X191  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X192 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X193 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X194  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X195 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X196  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X197 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X198 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X199 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X200 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X201 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X202  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X203  4.0735297 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X204 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X205 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X206 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X207 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X208 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X209 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X210 -0.2452292  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X211 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X212 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X213 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X214  4.0735297 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X215 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X216 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X217 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X218 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X219 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X220 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X221 -0.2452292 -0.2354475  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X222 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X223 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X224 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X225 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X226 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X227 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X228 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X229 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X230 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X231 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X232 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X233 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X234  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X235 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X236 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X237 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X238 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X239 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X240 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X241 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X242 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X243 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X244 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X245 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X246 -0.2452292  4.2427646 -0.2452292 -0.2354475  1.6966445  2.7778855
## X247 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X248 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X249 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X250 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X251 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X252 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X253 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X254 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X255 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X256 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X257 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X258 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X259 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X260 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X261 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X262 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X263 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X264 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X265 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X266 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X267 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X268 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X269 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X270 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X271 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X272 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X273 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X274  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X275 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X276 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X277 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X278 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X279 -0.2452292 -0.2354475 -0.2452292  4.2427646  1.6966445 -0.3596075
## X280 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X281 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X282 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X283 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X284 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X285 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X286 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X287 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X288 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X289 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X290 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X291 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X292 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X293 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X294 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X295 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X296 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X297 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X298 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X299 -0.2452292  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X300 -0.2452292 -0.2354475  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X301 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X302 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X303 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X304 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X305 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X306 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X307 -0.2452292 -0.2354475 -0.2452292  4.2427646  1.6966445 -0.3596075
## X308 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X309 -0.2452292 -0.2354475 -0.2452292  4.2427646  1.6966445 -0.3596075
## X310  4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X311 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X312  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X313 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X314 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X315 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X316 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X317 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X318 -0.2452292  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X319 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X320 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X321 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X322 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X323 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X324 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X325 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X326 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X327 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X328 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X329 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X330 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X331 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X332 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X333 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X334 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X335 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X336 -0.2452292  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X337 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X338 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X339 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X340 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X341 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X342 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X343 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X344 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X345 -0.2452292 -0.2354475 -0.2452292  4.2427646  1.6966445 -0.3596075
## X346 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X347  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X348 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X349 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X350 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X351 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X352 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X353 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X354 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X355 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X356 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X357  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X358 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X359 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X360  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X361 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X362 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X363 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X364 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X365 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X366 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X367 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X368 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X369 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X370 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X371 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X372 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X373 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X374 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X375 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X376  4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X377  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X378 -0.2452292  4.2427646 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X379 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X380 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X381 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X382 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X383  4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X384  4.0735297  4.2427646 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X385 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X386 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X387 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X388 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X389 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X390 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X391  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X392 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X393 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X394 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X395 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X396 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X397 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X398 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X399 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X400 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X401 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X402 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X403 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X404 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X405  4.0735297 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X406 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X407 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X408 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X409 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X410 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X411 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X412 -0.2452292 -0.2354475 -0.2452292  4.2427646  1.6966445 -0.3596075
## X413 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X414 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X415 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X416 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X417 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X418 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X419 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X420 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X421 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X422 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X423  4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X424 -0.2452292 -0.2354475 -0.2452292  4.2427646 -0.5887789 -0.3596075
## X425  4.0735297 -0.2354475  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X426 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X427 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X428 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X429 -0.2452292  4.2427646 -0.2452292 -0.2354475  1.6966445 -0.3596075
## X430 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X431 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X432 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X433 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X434 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X435 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X436 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X437 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X438  4.0735297  4.2427646  4.0735297 -0.2354475 -0.5887789 -0.3596075
## X439 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X440 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X441 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445  2.7778855
## X442 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X443 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X444 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X445 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X446 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X447 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X448 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X449 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X450 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X451 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X452 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X453 -0.2452292 -0.2354475 -0.2452292 -0.2354475 -0.5887789 -0.3596075
## X454 -0.2452292 -0.2354475 -0.2452292 -0.2354475  1.6966445 -0.3596075
##          FP204      FP205      FP206      FP207      FP208    MolWeight
## X1   -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.304017769
## X2   -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.474751336
## X3   -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.284237960
## X4   -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.579130036
## X5   -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.508214019
## X6   -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.846130172
## X7   -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.343679568
## X8    3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.223329553
## X9   -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.536294032
## X10  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.531725024
## X11  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.513009822
## X12  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.981923863
## X13  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.294344540
## X14  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707 -0.211043577
## X15  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.403319666
## X16  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.513009822
## X17   3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.174798750
## X18  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.683069116
## X19  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.996447520
## X20  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.294344540
## X21  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.880198541
## X22  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.923239370
## X23   3.017853  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.144391553
## X24  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.836745684
## X25  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.649573481
## X26  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.038577746
## X27  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.252510849
## X28  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.158871193
## X29  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.792852769
## X30  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.094205025
## X31   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.771172819
## X32  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.218301524
## X33  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.982753213
## X34  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.294344540
## X35  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.636103875
## X36  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.321429192
## X37  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.982753213
## X38  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.706734262
## X39  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.831678296
## X40  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.929168040
## X41  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.675379106
## X42  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.750468797
## X43  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.291891037
## X44  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.522316745
## X45  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.508214019
## X46  -0.331013  3.4407687 -0.2523714 -0.2452292  2.8070547  1.257699471
## X47   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.982753213
## X48  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.026037466
## X49  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.989629709
## X50  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.635848282
## X51  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.163654675
## X52   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -1.218301524
## X53  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.098097256
## X54  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.237099891
## X55  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.378611406
## X56  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.052782459
## X57   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.558425111
## X58  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.060245711
## X59  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.400858350
## X60  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.430265786
## X61   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.223329553
## X62   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.072232210
## X63  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.378611406
## X64  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.321429192
## X65  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.907820092
## X66   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.072790642
## X67  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.889098307
## X68   3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  2.027107324
## X69  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.982753213
## X70  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.135094949
## X71  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.294344540
## X72   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.475066868
## X73  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.201609653
## X74  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.039771029
## X75  -0.331013  3.4407687 -0.2523714 -0.2452292  2.8070547  0.098097256
## X76  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.834687162
## X77  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.165345469
## X78  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.710001130
## X79  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.115366351
## X80  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.803708352
## X81  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.677549637
## X82  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.152986644
## X83  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.190653352
## X84  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.188302449
## X85  -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.163654675
## X86   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.737607576
## X87   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.147051515
## X88  -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.719516934
## X89  -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  2.101817743
## X90   3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.162199568
## X91  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.978779123
## X92  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.148236508
## X93  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.865295430
## X94  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.135296034
## X95  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.303418106
## X96  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  2.675894881
## X97   3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.945628244
## X98  -0.331013 -0.2903271 -0.2523714  4.0735297  2.8070547  0.447081835
## X99  -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.327364381
## X100 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.447081835
## X101 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.447081835
## X102 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.398910560
## X103  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.496130384
## X104 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.735984417
## X105 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.378795179
## X106 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.108515489
## X107 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.017548306
## X108 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.956176482
## X109 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.580162693
## X110 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.380821445
## X111  3.017853 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.147725526
## X112 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.317009930
## X113  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.953373701
## X114 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.355892859
## X115 -0.331013  3.4407687 -0.2523714  4.0735297 -0.3558707  0.745867382
## X116 -0.331013  3.4407687 -0.2523714  4.0735297 -0.3558707  1.136435150
## X117  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.364681635
## X118 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.745867382
## X119 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.242973688
## X120 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.627652706
## X121 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.560421390
## X122 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.745867382
## X123 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.630165630
## X124 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.184902006
## X125 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.447081835
## X126 -0.331013  3.4407687 -0.2523714  4.0735297 -0.3558707  1.007095938
## X127 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.198080407
## X128 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.447081835
## X129 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.007095938
## X130 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.382560531
## X131 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.495036672
## X132 -0.331013  3.4407687 -0.2523714  4.0735297 -0.3558707  1.007095938
## X133 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.284137074
## X134 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.184902006
## X135 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.513371322
## X136 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.239163633
## X137 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.007095938
## X138 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.737322938
## X139 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.007095938
## X140 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.823597252
## X141 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.447932035
## X142 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.239163633
## X143 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X144 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.447932035
## X145 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.007095938
## X146 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.239163633
## X147 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.637655670
## X148 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.831600743
## X149 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.703248097
## X150 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X151 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.703248097
## X152 -0.331013  3.4407687 -0.2523714 -0.2452292  2.8070547  1.552263693
## X153 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X154 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X155 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X156 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.703248097
## X157 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.811520606
## X158 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.811520606
## X159 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  2.120939599
## X160 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.115977627
## X161  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.603559640
## X162 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.080766715
## X163 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.403319666
## X164 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.675379106
## X165 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.016880687
## X166  3.017853 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.610215946
## X167 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.563194962
## X168 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.611250316
## X169 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.769013180
## X170 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.574200229
## X171 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  2.035474501
## X172 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.982753213
## X173 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.270551909
## X174 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.936481465
## X175 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.476723028
## X176 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.952788440
## X177 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.747037108
## X178 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.815641020
## X179 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.623602913
## X180 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.038647958
## X181 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.952788440
## X182 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.834687162
## X183 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.049093577
## X184 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.269483899
## X185 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.847285078
## X186 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.532919242
## X187  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.009904078
## X188 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.900780208
## X189 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.701175131
## X190 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.907670555
## X191 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.882368345
## X192 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.448387506
## X193 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.026494249
## X194 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.175127549
## X195 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.294344540
## X196 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.327058775
## X197 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.214275611
## X198 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.095780590
## X199 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.771569118
## X200 -0.331013 -0.2903271 -0.2523714  4.0735297  2.8070547  0.098097256
## X201  3.017853 -0.2903271  3.9582469 -0.2452292  2.8070547 -0.215143211
## X202 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.815953602
## X203 -0.331013  3.4407687 -0.2523714 -0.2452292  2.8070547  1.387244764
## X204 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.459034034
## X205 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.413034907
## X206 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.812356063
## X207 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.341677499
## X208 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.447081835
## X209 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.137547205
## X210 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.304417449
## X211 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.745867382
## X212 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.560421390
## X213 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.745867382
## X214 -0.331013  3.4407687 -0.2523714 -0.2452292  2.8070547  1.616540792
## X215 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.518473204
## X216 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.007095938
## X217 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.410804929
## X218 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.745837809
## X219  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.737283220
## X220 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.007095938
## X221  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.620626671
## X222 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.471104074
## X223 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.703248097
## X224 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.239163633
## X225 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.382560531
## X226 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.495036672
## X227 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X228 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X229 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.703248097
## X230 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.495036672
## X231 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.447932035
## X232 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.971974745
## X233 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.703000619
## X234 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.981923863
## X235 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.998810596
## X236 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.387897880
## X237 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.410804929
## X238 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.712430972
## X239 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.427774521
## X240 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.975155875
## X241 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.960986946
## X242 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.455773295
## X243 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.447297107
## X244 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.024063318
## X245 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.366815837
## X246 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.392161232
## X247 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.922422855
## X248  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.489295914
## X249 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.632068261
## X250 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.289953121
## X251 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.983309595
## X252 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.808360205
## X253 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.243179485
## X254 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.736065616
## X255 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.630729830
## X256  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.254497849
## X257 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.390166117
## X258 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.089862985
## X259 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.960986946
## X260 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.071003132
## X261 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.601744921
## X262 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.632068261
## X263 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.960986946
## X264 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.002838576
## X265 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.507220812
## X266 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.725281754
## X267 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.048980624
## X268  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.267476312
## X269 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.808360205
## X270  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.158871193
## X271 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.667472628
## X272 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.948173754
## X273  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -1.089862985
## X274 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.566721151
## X275  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.267476312
## X276 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.611681349
## X277 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.226628531
## X278 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.190792410
## X279 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.008626296
## X280 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.289288562
## X281 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.098274791
## X282 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.774201646
## X283 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -1.098274791
## X284 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.239546173
## X285 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707 -0.123326972
## X286 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.800109202
## X287 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.995515874
## X288 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.827201901
## X289 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.881712881
## X290 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.433604324
## X291 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.364519110
## X292 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.823597252
## X293 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.242509175
## X294 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.404021657
## X295 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.915283282
## X296 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.134223355
## X297 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.043759055
## X298 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.399810034
## X299 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.686767950
## X300  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.459952245
## X301 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.389468783
## X302 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.430503397
## X303 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.486632405
## X304 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.033797758
## X305  3.017853 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.736309194
## X306 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.421224013
## X307 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.024487502
## X308 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.079045894
## X309 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.024487502
## X310 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.445796891
## X311  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.832540404
## X312 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.881712881
## X313  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.061817968
## X314 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.107436062
## X315 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.404021657
## X316 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.436794393
## X317 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.271995992
## X318 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.731140385
## X319 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.558159799
## X320 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.605379378
## X321 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.362642398
## X322 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.062383808
## X323 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.152364404
## X324  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.901900752
## X325 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.839972199
## X326 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.128651681
## X327 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.839972199
## X328 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.343414497
## X329  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.581515202
## X330 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.218737027
## X331 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.133955099
## X332 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.774201646
## X333 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.842661605
## X334 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.418526237
## X335  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.687183627
## X336 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.303931995
## X337 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.922422855
## X338 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.232450944
## X339 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.232450944
## X340 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.609081003
## X341  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.293545411
## X342 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.839972199
## X343 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.289745203
## X344 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.058701570
## X345 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.008626296
## X346 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.619596479
## X347 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.706734262
## X348 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.226628531
## X349 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.839972199
## X350 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.072631922
## X351  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.267476312
## X352 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.453788004
## X353  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.847208104
## X354 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.915506765
## X355 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.049545329
## X356 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.839972199
## X357 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.966789467
## X358  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.090698960
## X359 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.720253413
## X360 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.066475255
## X361  3.017853 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.020037904
## X362 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.563194962
## X363 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.686601657
## X364 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.260676413
## X365 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.676599640
## X366 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.105975307
## X367 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.732339628
## X368 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.532160955
## X369 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.854891424
## X370 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.771027243
## X371 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.016880687
## X372 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.353099452
## X373 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.706360421
## X374 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.205416250
## X375 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  1.019887558
## X376 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.622913686
## X377 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.623602913
## X378 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.816422389
## X379  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -1.020552429
## X380 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.570417230
## X381 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.676516088
## X382 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.141453232
## X383 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.633333725
## X384 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.967298146
## X385 -0.331013  3.4407687 -0.2523714 -0.2452292  2.8070547  0.719516934
## X386 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.686601657
## X387  3.017853 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.226307769
## X388 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  1.412917599
## X389 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.752403196
## X390  3.017853 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.121037974
## X391 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.623602913
## X392  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.017548306
## X393 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.610215946
## X394 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.211043577
## X395  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.430503397
## X396 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.089862985
## X397 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.201609653
## X398 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.293545411
## X399 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547 -0.284112271
## X400 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.366912794
## X401 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.094121874
## X402 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.014240641
## X403  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.159406860
## X404  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.489295914
## X405 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.188446950
## X406 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.580658068
## X407 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.419242736
## X408 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.089862985
## X409 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.784301940
## X410 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.559218908
## X411 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.065435819
## X412 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.678353466
## X413 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.190792410
## X414  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.688575293
## X415 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.098274791
## X416 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.260904394
## X417 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.800109202
## X418 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.495127837
## X419 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.343414497
## X420 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707  0.184958063
## X421 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.362866384
## X422 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.729152370
## X423 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.457427050
## X424 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.086675495
## X425 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.525264217
## X426 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.092028152
## X427 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.083816857
## X428 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707 -0.421224013
## X429 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.875243942
## X430 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.361087352
## X431 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707 -0.732339628
## X432 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.594543822
## X433 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.581515202
## X434 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  0.813999190
## X435  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.489295914
## X436 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -0.105975307
## X437 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  2.722777775
## X438 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.445796891
## X439 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707 -1.581515202
## X440 -0.331013 -0.2903271 -0.2523714  4.0735297 -0.3558707 -0.421224013
## X441 -0.331013 -0.2903271 -0.2523714 -0.2452292  2.8070547  1.213307444
## X442 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.959436086
## X443 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.991282387
## X444  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.078774283
## X445  3.017853 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.254569455
## X446 -0.331013  3.4407687 -0.2523714 -0.2452292 -0.3558707  0.357292051
## X447  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707 -0.090698960
## X448 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.373978500
## X449 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.959436086
## X450 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  2.401813942
## X451  3.017853 -0.2903271  3.9582469 -0.2452292 -0.3558707  0.072232210
## X452 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.980480348
## X453 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  0.381694291
## X454 -0.331013 -0.2903271 -0.2523714 -0.2452292 -0.3558707  1.705409579
##         NumBonds NumMultBonds NumRotBonds  NumDblBonds   NumCarbon NumNitrogen
## X1    0.49840233   1.90489650  -0.9347280 -0.831341597  0.85821946   1.0008314
## X2    1.69828720   1.32482715   0.7260405 -0.831341597  1.80408084   1.8438701
## X3    0.69697444   0.16468846   0.7260405 -0.005212173  0.70131917  -0.6852460
## X4    0.20728011  -0.80209379  -0.5195359  0.820917251  0.18177643  -0.6852460
## X5    0.56629095  -0.02866799   1.1412327 -0.831341597 -0.01199386   3.5299475
## X6    0.56629095  -0.80209379   1.1412327  0.820917251  0.18177643   0.1577927
## X7    0.99793817   2.29160940  -0.5195359 -0.005212173  1.29203392   2.6869088
## X8    0.94039386  -0.99545024   3.2171934 -0.005212173  0.53699786  -0.6852460
## X9    1.99292450  -0.41538089  -0.5195359  2.473176098  1.92274051  -0.6852460
## X10   0.99793817   0.16468846  -0.1043438 -0.005212173  0.85821946   1.0008314
## X11   0.63244961   0.55140136  -0.1043438  1.647046674  0.85821946  -0.6852460
## X12   1.69828720  -0.80209379  -0.9347280  0.820917251  1.55615914  -0.6852460
## X13   0.12893412   0.93811425  -0.9347280 -0.831341597  0.53699786  -0.6852460
## X14  -0.40240913   0.93811425  -0.9347280 -0.831341597  0.18177643  -0.6852460
## X15   0.28325136  -0.02866799  -0.1043438 -0.831341597  0.36423857  -0.6852460
## X16   0.63244961   1.13147070   0.3108484 -0.005212173  0.85821946  -0.6852460
## X17   1.36999732   0.35804491   2.3868091  0.820917251  0.70131917   2.6869088
## X18   1.87027471   1.13147070   1.5564248 -0.831341597  1.80408084   1.8438701
## X19   1.78555525  -0.99545024  -0.9347280 -0.005212173  1.55615914  -0.6852460
## X20   0.12893412   0.93811425  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X21   0.63244961   1.32482715  -0.1043438 -0.005212173  1.00853037  -0.6852460
## X22   1.46773946   1.13147070   0.7260405 -0.831341597  1.55615914   1.0008314
## X23   1.46773946   0.16468846   2.3868091 -0.005212173  1.29203392   0.1577927
## X24   0.88159159  -0.80209379   0.7260405  0.820917251  0.18177643   2.6869088
## X25   1.46773946   0.55140136   3.2171934  1.647046674  0.85821946   0.1577927
## X26   1.16359252   0.55140136   0.3108484  1.647046674  0.85821946   1.0008314
## X27   1.56220886   1.13147070   1.1412327 -0.831341597  1.55615914   1.0008314
## X28   0.28325136   1.90489650  -0.9347280 -0.831341597  0.70131917   1.0008314
## X29   1.31981693   0.16468846   0.7260405 -0.005212173  1.15294194   0.1577927
## X30  -1.09071695   0.16468846  -0.9347280 -0.831341597 -0.44251753   0.1577927
## X31   0.04803954  -0.99545024   1.1412327 -0.831341597 -0.01199386  -0.6852460
## X32  -0.12219740  -1.18880668  -0.1043438 -0.831341597 -0.44251753  -0.6852460
## X33   0.04803954  -1.18880668  -0.9347280 -0.831341597 -0.21915966  -0.6852460
## X34   0.12893412   0.93811425  -0.9347280 -0.831341597  0.53699786  -0.6852460
## X35   0.82146772   0.55140136   0.3108484  1.647046674  1.00853037  -0.6852460
## X36  -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X37   0.04803954  -1.18880668  -0.9347280 -0.831341597 -0.21915966  -0.6852460
## X38   2.47286768  -0.99545024   0.7260405 -0.005212173  2.15069776  -0.6852460
## X39   1.16359252   1.32482715   0.7260405 -0.005212173  1.42629884  -0.6852460
## X40   0.56629095   1.32482715   0.3108484 -0.005212173  0.85821946   0.1577927
## X41   2.11068236  -0.22202444   0.7260405  3.299305521  2.03820634  -0.6852460
## X42   0.12893412   0.35804491   0.3108484 -0.005212173  0.36423857   0.1577927
## X43  -0.40240913   0.93811425  -0.9347280 -0.831341597  0.18177643  -0.6852460
## X44   1.69828720   1.13147070   0.7260405 -0.831341597  1.68198027   1.8438701
## X45   0.56629095  -0.02866799   0.7260405 -0.831341597 -0.01199386   3.5299475
## X46   1.10948462   1.71154005  -0.1043438  1.647046674  1.55615914   0.1577927
## X47  -0.03559810  -0.99545024   1.1412327 -0.005212173 -0.21915966  -0.6852460
## X48   0.12893412   1.32482715  -0.1043438 -0.005212173  0.53699786   1.0008314
## X49   0.12893412   1.13147070  -0.1043438 -0.831341597  0.53699786  -0.6852460
## X50   0.63244961   1.32482715   0.3108484 -0.005212173  1.00853037  -0.6852460
## X51  -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X52  -0.12219740  -1.18880668   0.7260405 -0.831341597 -0.44251753  -0.6852460
## X53  -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X54   0.12893412  -0.02866799   0.7260405 -0.831341597 -0.44251753   3.5299475
## X55  -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X56   1.65364219  -0.60873734  -0.9347280  0.820917251  1.68198027  -0.6852460
## X57   0.99793817   0.16468846   2.3868091 -0.005212173  0.85821946   0.1577927
## X58  -0.21200528   1.32482715  -0.5195359  0.820917251  0.36423857   0.1577927
## X59   1.26871571   0.55140136   0.3108484  1.647046674  1.29203392  -0.6852460
## X60   1.26871571   2.29160940   0.7260405  0.820917251  1.55615914   0.1577927
## X61   0.94039386  -0.99545024   3.2171934 -0.005212173  0.53699786  -0.6852460
## X62   0.75995351  -0.99545024   2.8020012 -0.005212173  0.36423857  -0.6852460
## X63  -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X64   0.04803954   0.93811425  -0.9347280 -0.831341597  0.53699786  -0.6852460
## X65   1.21665476   0.35804491   2.3868091  0.820917251  1.15294194  -0.6852460
## X66   0.99793817  -1.18880668   3.2171934 -0.831341597  0.53699786  -0.6852460
## X67   2.07194628   1.32482715   2.3868091 -0.005212173  2.03820634   1.8438701
## X68   2.54041376  -0.22202444   1.9716169  3.299305521  2.47218708  -0.6852460
## X69   0.04803954  -1.18880668  -0.1043438 -0.831341597 -0.21915966  -0.6852460
## X70   1.46773946   1.13147070  -0.1043438 -0.831341597  1.55615914   1.0008314
## X71   0.12893412   0.93811425  -0.9347280 -0.831341597  0.53699786  -0.6852460
## X72  -0.12219740  -1.18880668   0.7260405 -0.831341597 -0.44251753  -0.6852460
## X73   0.49840233   1.13147070  -0.1043438 -0.831341597  0.85821946  -0.6852460
## X74   0.82146772  -0.80209379   1.9716169  0.820917251  0.18177643   1.0008314
## X75  -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X76   2.22396656  -0.22202444   0.7260405  3.299305521  2.15069776  -0.6852460
## X77   0.12893412   1.13147070  -0.9347280 -0.831341597  0.70131917  -0.6852460
## X78   0.28325136   1.13147070  -0.5195359 -0.831341597  0.53699786   1.0008314
## X79   0.35700394   0.93811425  -0.9347280 -0.831341597  0.70131917  -0.6852460
## X80   1.05428349   1.32482715   1.1412327 -0.005212173  1.29203392  -0.6852460
## X81   1.95260717  -0.02866799   0.3108484  4.125434945  2.03820634  -0.6852460
## X82   0.04803954   1.71154005  -0.9347280 -0.831341597  0.53699786   0.1577927
## X83   1.21665476   1.13147070   0.7260405 -0.831341597  1.29203392   1.0008314
## X84   0.20728011   0.74475780  -0.5195359  2.473176098  0.53699786   0.1577927
## X85  -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X86   0.20728011  -0.99545024   1.5564248 -0.005212173 -0.01199386  -0.6852460
## X87   0.12893412  -1.18880668   1.1412327 -0.831341597 -0.21915966  -0.6852460
## X88   0.75995351   1.51818360   1.1412327  0.820917251  1.15294194  -0.6852460
## X89   2.14892180   1.90489650   2.3868091  2.473176098  2.03820634   1.8438701
## X90   1.26871571  -0.99545024   4.0475776 -0.005212173  0.53699786  -0.6852460
## X91   2.70310385  -0.80209379   1.5564248  0.820917251  2.36752103   0.1577927
## X92   0.35700394   1.90489650  -0.9347280 -0.831341597  0.85821946   0.1577927
## X93  -1.37754378  -0.80209379  -0.9347280  0.820917251 -0.95516548  -0.6852460
## X94   1.82822307  -0.60873734   3.6323855  1.647046674  1.55615914  -0.6852460
## X95   0.20728011   1.51818360  -0.9347280  0.820917251  0.85821946  -0.6852460
## X96   0.88159159   1.32482715   1.1412327 -0.005212173  1.00853037   0.1577927
## X97   0.12893412  -1.18880668   1.1412327 -0.831341597 -0.21915966  -0.6852460
## X98  -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X99   2.03269881  -0.41538089  -0.5195359  2.473176098  2.03820634  -0.6852460
## X100 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X101 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X102  1.36999732   1.13147070   0.7260405 -0.831341597  1.42629884   1.0008314
## X103  1.26871571  -0.99545024   4.0475776 -0.005212173  0.85821946  -0.6852460
## X104  0.82146772   3.06503519  -0.5195359 -0.831341597  1.42629884   1.0008314
## X105  0.35700394  -0.60873734  -0.1043438  1.647046674  0.18177643   0.1577927
## X106  1.82822307  -1.18880668  -0.9347280 -0.831341597  1.55615914  -0.6852460
## X107  1.41929339   1.51818360   0.7260405  0.820917251  1.55615914   1.8438701
## X108  2.60651481  -0.41538089   1.5564248  2.473176098  2.47218708  -0.6852460
## X109  1.10948462  -0.80209379   4.0475776  0.820917251 -0.01199386  -0.6852460
## X110  1.46773946   2.48496584   1.1412327  1.647046674  1.80408084   0.1577927
## X111  1.31981693   1.51818360   2.8020012  0.820917251  1.55615914  -0.6852460
## X112  0.04803954  -0.80209379  -0.9347280  0.820917251  0.18177643  -0.6852460
## X113  1.82822307  -0.99545024   5.7083462 -0.005212173  1.42629884  -0.6852460
## X114  1.16359252   0.35804491   0.7260405  0.820917251  1.00853037   1.0008314
## X115 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X116  0.56629095   1.51818360  -0.1043438  0.820917251  0.85821946   1.0008314
## X117  1.31981693  -1.18880668   4.0475776 -0.831341597  0.85821946  -0.6852460
## X118 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X119  0.42867850   2.48496584  -0.9347280 -0.831341597  1.15294194  -0.6852460
## X120  0.82146772   2.87167874  -0.9347280 -0.831341597  1.42629884   0.1577927
## X121  0.56629095  -0.99545024  -0.9347280 -0.005212173  0.53699786  -0.6852460
## X122 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X123  1.16359252   0.55140136   1.9716169  1.647046674  0.85821946   0.1577927
## X124  0.28325136   1.32482715  -0.1043438 -0.005212173  0.85821946  -0.6852460
## X125 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X126 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X127  0.42867850   1.13147070  -0.1043438 -0.831341597  0.85821946  -0.6852460
## X128 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X129 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X130  0.63244961   2.09825295  -0.9347280 -0.831341597  1.29203392  -0.6852460
## X131  0.69697444   2.87167874  -0.9347280 -0.831341597  1.42629884  -0.6852460
## X132 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X133  0.63244961   1.90489650  -0.5195359 -0.831341597  1.15294194  -0.6852460
## X134  0.28325136   1.32482715  -0.1043438 -0.005212173  0.85821946  -0.6852460
## X135  0.75995351   2.29160940  -0.1043438 -0.831341597  1.42629884  -0.6852460
## X136 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X137 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X138  2.63904482  -0.99545024  -0.9347280 -0.005212173  2.47218708  -0.6852460
## X139 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X140  0.99793817   3.64510454  -0.9347280 -0.831341597  1.68198027   0.1577927
## X141 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X142 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X143 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X144 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X145 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X146 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X147 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X148  1.16359252   2.87167874  -0.9347280 -0.831341597  1.80408084  -0.6852460
## X149  0.88159159   3.45174809  -0.9347280 -0.831341597  1.68198027  -0.6852460
## X150 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X151  0.88159159   3.45174809  -0.9347280 -0.831341597  1.68198027  -0.6852460
## X152  1.46773946   3.25839164   0.7260405 -0.831341597  1.92274051   1.8438701
## X153 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X154 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X155 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X156  0.88159159   3.45174809  -0.9347280 -0.831341597  1.68198027  -0.6852460
## X157 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X158 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X159 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X160  0.04803954   1.13147070  -0.1043438 -0.831341597  0.53699786  -0.6852460
## X161 -0.12219740  -1.18880668   0.7260405 -0.831341597 -0.44251753  -0.6852460
## X162  1.82822307  -0.80209379  -0.9347280  0.820917251  1.68198027  -0.6852460
## X163  0.28325136  -0.02866799  -0.9347280 -0.831341597  0.36423857  -0.6852460
## X164  2.11068236  -0.22202444   0.7260405  3.299305521  2.03820634  -0.6852460
## X165 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X166  0.04803954  -0.02866799   0.3108484 -0.831341597  0.18177643  -0.6852460
## X167 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X168  0.82146772  -0.02866799   1.1412327 -0.831341597  0.18177643   3.5299475
## X169  0.42867850  -0.99545024   2.3868091 -0.005212173 -0.44251753  -0.6852460
## X170  1.74225056   1.32482715   0.3108484 -0.005212173  1.80408084   0.1577927
## X171  2.33314222  -0.02866799   1.5564248  4.125434945  2.26041072  -0.6852460
## X172  0.04803954  -1.18880668  -0.9347280 -0.831341597 -0.21915966  -0.6852460
## X173  0.99793817   1.90489650  -0.1043438  2.473176098  1.00853037   1.8438701
## X174  0.49840233   1.32482715   0.3108484 -0.005212173  0.70131917   1.0008314
## X175 -1.70965649  -0.80209379  -0.5195359  0.820917251 -1.25901822  -0.6852460
## X176  1.21665476   1.13147070   0.3108484 -0.831341597  1.29203392   1.0008314
## X177  2.22396656  -0.41538089  -0.1043438  2.473176098  2.15069776  -0.6852460
## X178 -1.09071695  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X179  2.43853015  -0.99545024   0.7260405 -0.005212173  2.15069776  -0.6852460
## X180  1.56220886   0.16468846  -0.9347280 -0.831341597  1.68198027  -0.6852460
## X181  1.21665476   1.13147070   0.7260405 -0.831341597  1.29203392   1.0008314
## X182  2.26079827  -0.41538089  -0.1043438  2.473176098  2.15069776  -0.6852460
## X183 -0.03559810   1.71154005  -0.9347280 -0.831341597  0.53699786  -0.6852460
## X184  0.88159159   2.29160940   0.3108484 -0.831341597  1.29203392   1.0008314
## X185  1.26871571   1.13147070   1.1412327 -0.831341597  1.42629884  -0.6852460
## X186  1.65364219   1.32482715   1.5564248 -0.005212173  1.80408084   0.1577927
## X187 -0.12219740  -1.18880668   0.7260405 -0.831341597 -0.44251753  -0.6852460
## X188  1.41929339   1.32482715   0.3108484 -0.005212173  1.68198027   0.1577927
## X189  1.82822307   1.13147070   0.7260405 -0.831341597  1.80408084   1.8438701
## X190  0.56629095   0.16468846   1.1412327 -0.005212173  0.18177643  -0.6852460
## X191  2.43853015  -0.22202444   1.1412327  3.299305521  2.36752103  -0.6852460
## X192  0.35700394   1.51818360  -0.5195359  0.820917251  0.85821946   0.1577927
## X193  0.42867850   1.13147070   0.3108484 -0.831341597  0.85821946  -0.6852460
## X194  1.95260717  -0.80209379  -0.5195359  0.820917251  1.80408084  -0.6852460
## X195  0.12893412   0.93811425  -0.9347280 -0.831341597  0.53699786  -0.6852460
## X196  1.87027471  -0.41538089  -0.1043438  1.647046674  1.92274051  -0.6852460
## X197 -0.03559810   0.16468846   0.7260405 -0.005212173 -0.44251753   0.1577927
## X198  0.56629095  -0.80209379   1.1412327  0.820917251  0.18177643   0.1577927
## X199 -1.70965649  -0.80209379  -0.5195359  0.820917251 -1.25901822  -0.6852460
## X200 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X201  0.49840233  -0.02866799   1.1412327 -0.831341597  0.53699786  -0.6852460
## X202  1.16359252   1.13147070  -0.9347280 -0.005212173  1.42629884  -0.6852460
## X203  1.78555525   1.51818360   1.9716169  0.820917251  2.03820634  -0.6852460
## X204  1.05428349   0.55140136   1.5564248  1.647046674  0.85821946  -0.6852460
## X205  0.12893412  -0.80209379  -0.9347280  0.820917251  0.18177643  -0.6852460
## X206 -0.96037479   0.35804491  -0.9347280 -0.831341597 -0.21915966   1.0008314
## X207  0.75995351   0.16468846   2.3868091 -0.005212173  0.36423857  -0.6852460
## X208 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X209  0.42867850   1.90489650  -0.9347280 -0.831341597  1.00853037  -0.6852460
## X210  0.82146772   0.93811425  -0.9347280 -0.831341597  1.15294194  -0.6852460
## X211 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X212  0.56629095  -0.99545024  -0.9347280 -0.005212173  0.53699786  -0.6852460
## X213 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X214  1.51536781   1.51818360   1.9716169  0.820917251  1.80408084  -0.6852460
## X215  0.04803954  -0.80209379  -0.9347280  0.820917251  0.18177643  -0.6852460
## X216 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X217  0.42867850   1.13147070  -0.1043438 -0.831341597  0.85821946  -0.6852460
## X218  1.69828720   2.48496584   1.5564248 -0.005212173  1.80408084  -0.6852460
## X219  1.56220886  -0.99545024   4.8779619 -0.005212173  1.15294194  -0.6852460
## X220 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X221  1.60829128  -1.18880668   4.8779619 -0.831341597  1.15294194  -0.6852460
## X222  0.42867850  -0.80209379  -0.9347280  0.820917251  0.53699786  -0.6852460
## X223  0.88159159   3.45174809  -0.9347280 -0.831341597  1.68198027  -0.6852460
## X224 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X225  0.63244961   2.09825295  -0.9347280 -0.831341597  1.29203392  -0.6852460
## X226  0.69697444   2.87167874  -0.9347280 -0.831341597  1.42629884  -0.6852460
## X227 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X228 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X229  0.88159159   3.45174809  -0.9347280 -0.831341597  1.68198027  -0.6852460
## X230  0.69697444   2.87167874  -0.9347280 -0.831341597  1.42629884  -0.6852460
## X231 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X232 -0.03559810   1.13147070  -0.5195359 -0.831341597  0.53699786  -0.6852460
## X233  0.69697444   1.51818360  -0.1043438  0.820917251  1.00853037   1.0008314
## X234  1.69828720  -0.80209379  -0.9347280  0.820917251  1.55615914  -0.6852460
## X235 -0.50369472  -1.18880668  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X236  0.42867850   0.16468846   1.5564248 -0.005212173 -0.01199386   0.1577927
## X237  0.42867850   1.13147070  -0.1043438 -0.831341597  0.85821946  -0.6852460
## X238  0.20728011  -0.99545024  -0.9347280 -0.005212173  0.18177643  -0.6852460
## X239 -0.40240913   0.16468846   0.3108484 -0.005212173 -0.21915966  -0.6852460
## X240  1.87027471   0.93811425  -0.1043438  3.299305521  1.80408084   1.0008314
## X241 -0.96037479  -0.99545024  -0.5195359 -0.005212173 -0.95516548  -0.6852460
## X242 -0.83728034  -0.02866799  -0.9347280 -0.831341597 -0.44251753  -0.6852460
## X243 -0.40240913   0.93811425  -0.9347280 -0.831341597 -0.01199386   0.1577927
## X244  0.82146772   1.51818360   0.7260405  0.820917251  0.53699786   2.6869088
## X245  0.12893412   0.16468846   0.3108484 -0.005212173  0.18177643  -0.6852460
## X246  0.63244961   0.35804491  -0.1043438  0.820917251  0.70131917   0.1577927
## X247  0.63244961   1.51818360   0.7260405  0.820917251  0.36423857   2.6869088
## X248  0.28325136  -0.99545024   1.5564248 -0.005212173 -0.01199386  -0.6852460
## X249 -0.72058540  -0.99545024  -0.9347280 -0.005212173 -0.68595798  -0.6852460
## X250 -0.83728034   0.16468846  -0.5195359 -0.005212173 -0.44251753  -0.6852460
## X251 -0.83728034  -0.22202444  -0.5195359 -0.831341597 -0.68595798  -0.6852460
## X252  1.16359252   1.32482715   1.1412327 -0.005212173  1.29203392   1.8438701
## X253 -2.10721958  -1.18880668  -0.9347280 -0.831341597 -2.04708364  -0.6852460
## X254  0.94039386   1.13147070   0.7260405 -0.831341597  1.00853037   1.0008314
## X255 -0.12219740   0.35804491  -0.1043438  0.820917251 -0.01199386   0.1577927
## X256  0.28325136  -0.99545024   1.9716169 -0.005212173 -0.21915966   0.1577927
## X257 -0.12219740   0.16468846  -0.1043438 -0.005212173 -0.01199386   0.1577927
## X258 -0.72058540  -1.18880668  -0.1043438 -0.831341597 -0.95516548  -0.6852460
## X259 -0.83728034  -1.18880668  -0.9347280 -0.831341597 -0.95516548  -0.6852460
## X260  0.12893412   1.13147070  -0.1043438 -0.005212173  0.53699786  -0.6852460
## X261  0.42867850   0.55140136  -0.5195359  1.647046674  0.18177643   1.0008314
## X262 -0.83728034  -0.80209379   0.3108484  0.820917251 -0.68595798  -0.6852460
## X263 -0.96037479  -0.99545024  -0.1043438 -0.005212173 -0.95516548  -0.6852460
## X264  0.04803954   1.90489650  -0.9347280 -0.831341597  0.53699786   1.0008314
## X265 -0.72058540  -1.18880668  -0.5195359 -0.831341597 -0.95516548  -0.6852460
## X266 -1.09071695  -1.18880668  -0.5195359 -0.831341597 -1.25901822  -0.6852460
## X267  0.28325136   1.13147070  -0.5195359 -0.831341597  0.53699786   1.0008314
## X268  0.35700394  -0.99545024   1.9716169 -0.005212173 -0.01199386  -0.6852460
## X269  1.21665476   0.16468846   2.8020012 -0.005212173  1.00853037   0.1577927
## X270  0.35700394   0.16468846   1.1412327 -0.005212173  0.36423857  -0.6852460
## X271 -0.83728034   0.16468846  -0.5195359 -0.005212173 -0.44251753  -0.6852460
## X272  1.16359252   0.16468846   1.1412327 -0.005212173  1.00853037   0.1577927
## X273 -0.72058540  -1.18880668  -0.1043438 -0.831341597 -0.95516548  -0.6852460
## X274  0.75995351  -0.41538089  -0.5195359  2.473176098  0.53699786   1.0008314
## X275  0.35700394  -0.99545024   1.9716169 -0.005212173 -0.01199386  -0.6852460
## X276 -0.72058540   0.16468846  -0.5195359 -0.005212173 -0.68595798   1.0008314
## X277  1.65364219   1.13147070   0.7260405 -0.005212173  1.68198027   1.0008314
## X278 -0.72058540   0.35804491  -0.9347280  0.820917251 -0.68595798   2.6869088
## X279  0.12893412   1.90489650  -0.9347280 -0.831341597  0.70131917   0.1577927
## X280 -0.40240913  -0.02866799  -0.9347280 -0.831341597 -0.21915966  -0.6852460
## X281 -0.50369472  -0.02866799  -0.9347280 -0.831341597 -0.21915966  -0.6852460
## X282 -0.03559810   0.35804491  -0.5195359  0.820917251 -0.01199386   1.0008314
## X283 -0.50369472  -0.02866799  -0.9347280 -0.831341597 -0.21915966  -0.6852460
## X284  1.82822307  -0.02866799  -0.5195359 -0.831341597  1.68198027   1.0008314
## X285 -0.40240913   0.16468846  -0.5195359 -0.005212173 -0.21915966   0.1577927
## X286  0.56629095   1.51818360   0.3108484  0.820917251  0.36423857   2.6869088
## X287  1.10948462   1.13147070   1.1412327 -0.831341597  0.85821946   2.6869088
## X288  0.04803954   0.16468846   0.3108484 -0.005212173 -0.01199386   0.1577927
## X289  1.99292450   0.93811425  -0.1043438  3.299305521  1.92274051   1.0008314
## X290  0.04803954   0.55140136  -0.5195359  1.647046674  0.18177643   1.8438701
## X291 -0.72058540  -1.18880668  -0.5195359 -0.831341597 -0.95516548  -0.6852460
## X292  0.63244961   1.32482715   0.3108484  0.820917251  0.36423857   1.8438701
## X293 -0.21200528   0.93811425  -0.9347280 -0.831341597  0.18177643  -0.6852460
## X294 -0.03559810   0.16468846   0.3108484 -0.005212173  0.18177643  -0.6852460
## X295  1.16359252   0.35804491   0.7260405  0.820917251  0.85821946   1.8438701
## X296  0.88159159   1.51818360   1.1412327  0.820917251  0.53699786   2.6869088
## X297  0.12893412   0.35804491   0.7260405  0.820917251  0.36423857  -0.6852460
## X298 -0.12219740   0.16468846  -0.1043438 -0.005212173 -0.01199386   0.1577927
## X299  0.94039386  -0.41538089  -0.1043438  2.473176098  0.70131917   1.0008314
## X300  0.42867850  -1.18880668   1.9716169 -0.831341597 -0.01199386  -0.6852460
## X301  0.20728011  -0.02866799   0.3108484 -0.831341597  0.18177643   0.1577927
## X302  0.82146772   0.16468846   0.7260405 -0.005212173  0.70131917   0.1577927
## X303  0.63244961  -0.02866799   1.1412327 -0.831341597 -0.01199386   3.5299475
## X304  0.04803954   0.93811425  -0.5195359  3.299305521 -0.44251753   1.8438701
## X305  0.69697444   0.55140136   1.1412327  1.647046674  0.36423857   1.0008314
## X306 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X307  1.46773946   1.13147070   0.3108484 -0.005212173  1.55615914   1.0008314
## X308  0.75995351   1.51818360  -0.5195359  0.820917251  1.00853037  -0.6852460
## X309  1.46773946   1.13147070   0.3108484 -0.005212173  1.55615914   1.0008314
## X310  1.91172984  -0.41538089  -0.1043438  2.473176098  1.80408084  -0.6852460
## X311 -0.40240913  -1.18880668   0.3108484 -0.831341597 -0.68595798  -0.6852460
## X312  1.99292450   0.93811425  -0.1043438  3.299305521  1.92274051   1.0008314
## X313  1.05428349  -1.18880668   2.8020012 -0.831341597  0.53699786   0.1577927
## X314 -2.10721958  -1.18880668  -0.9347280 -0.831341597 -2.04708364  -0.6852460
## X315 -0.03559810   0.16468846  -0.1043438 -0.005212173  0.18177643  -0.6852460
## X316 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X317 -2.92387959  -1.18880668  -0.9347280 -0.831341597 -2.64432555  -0.6852460
## X318  1.91172984   1.32482715   0.7260405 -0.005212173  1.92274051   0.1577927
## X319  0.49840233   0.35804491  -0.1043438  0.820917251  0.53699786   0.1577927
## X320  0.42867850   0.16468846   0.7260405 -0.831341597 -0.01199386   4.3729862
## X321  0.28325136   1.32482715   0.3108484 -0.005212173  0.70131917  -0.6852460
## X322  1.21665476   0.16468846   1.9716169 -0.005212173  0.85821946   1.8438701
## X323 -0.72058540   0.74475780  -0.9347280 -0.831341597 -0.44251753   0.1577927
## X324 -0.72058540  -1.18880668  -0.1043438 -0.831341597 -0.95516548  -0.6852460
## X325 -0.21200528  -0.02866799  -0.9347280 -0.831341597 -0.01199386  -0.6852460
## X326 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X327 -0.21200528  -0.02866799  -0.5195359 -0.831341597 -0.01199386  -0.6852460
## X328  0.42867850   1.32482715   0.3108484 -0.005212173  0.85821946  -0.6852460
## X329 -0.60958681  -0.99545024   0.3108484 -0.005212173 -0.68595798  -0.6852460
## X330 -0.96037479  -0.02866799  -0.9347280 -0.831341597 -0.68595798   0.1577927
## X331  0.69697444   0.55140136   0.3108484  1.647046674  0.36423857   1.0008314
## X332 -0.40240913   0.16468846  -0.5195359 -0.005212173 -0.21915966   0.1577927
## X333  0.99793817   0.16468846   1.1412327 -0.005212173  0.85821946   0.1577927
## X334 -0.30530231   0.16468846  -0.1043438 -0.005212173 -0.21915966   0.1577927
## X335  1.10948462   0.16468846   2.8020012 -0.005212173  0.85821946   1.0008314
## X336 -0.40240913  -0.99545024  -0.9347280 -0.005212173 -0.44251753  -0.6852460
## X337  0.63244961   1.51818360   0.7260405  0.820917251  0.36423857   2.6869088
## X338  0.28325136   1.13147070  -0.1043438 -0.005212173  0.53699786   0.1577927
## X339  0.28325136   1.13147070  -0.1043438 -0.005212173  0.53699786   0.1577927
## X340 -0.72058540   0.16468846  -0.5195359 -0.005212173 -0.44251753  -0.6852460
## X341  0.49840233  -0.99545024   1.9716169 -0.005212173  0.18177643  -0.6852460
## X342 -0.21200528  -0.02866799  -0.9347280 -0.831341597 -0.01199386  -0.6852460
## X343  1.74225056   0.35804491  -0.9347280  0.820917251  1.80408084   1.0008314
## X344  0.75995351   0.55140136   1.1412327  1.647046674  0.53699786   0.1577927
## X345  0.12893412   1.90489650  -0.9347280 -0.831341597  0.70131917   0.1577927
## X346  0.75995351  -0.60873734   0.7260405  1.647046674  0.36423857   1.0008314
## X347  2.47286768  -0.99545024   0.7260405 -0.005212173  2.15069776  -0.6852460
## X348  1.65364219   1.13147070   0.7260405 -0.005212173  1.68198027   1.0008314
## X349 -0.21200528  -0.02866799  -0.1043438 -0.831341597 -0.01199386  -0.6852460
## X350  0.94039386   2.09825295   0.7260405 -0.831341597  1.15294194   1.8438701
## X351  0.35700394  -0.99545024   1.9716169 -0.005212173 -0.01199386  -0.6852460
## X352  0.12893412  -0.80209379   1.1412327  0.820917251 -0.21915966   0.1577927
## X353  0.88159159   0.55140136   1.1412327  1.647046674  0.53699786   1.0008314
## X354  1.31981693   1.32482715   0.3108484 -0.005212173  1.55615914   0.1577927
## X355  0.63244961  -0.80209379   2.8020012  0.820917251  0.36423857  -0.6852460
## X356 -0.21200528  -0.02866799  -0.9347280 -0.831341597 -0.01199386  -0.6852460
## X357  0.99793817   0.35804491   0.7260405  0.820917251  0.70131917  -0.6852460
## X358  0.56629095  -0.99545024   2.3868091 -0.005212173  0.18177643  -0.6852460
## X359  0.82146772  -0.41538089   1.1412327  2.473176098  0.53699786   1.0008314
## X360  1.56220886  -0.41538089  -0.9347280  2.473176098  1.55615914  -0.6852460
## X361  0.28325136   0.16468846   1.1412327 -0.005212173  0.36423857  -0.6852460
## X362 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X363  0.35700394   1.51818360   0.3108484  0.820917251  0.18177643   2.6869088
## X364 -0.21200528  -1.18880668  -0.9347280 -0.831341597 -0.44251753  -0.6852460
## X365  0.12893412   0.16468846  -0.1043438 -0.005212173 -0.01199386   1.0008314
## X366 -0.83728034  -0.02866799  -0.9347280 -0.831341597 -0.44251753  -0.6852460
## X367 -0.83728034  -0.02866799  -0.9347280 -0.831341597 -0.44251753  -0.6852460
## X368 -0.40240913  -1.18880668  -0.5195359 -0.831341597 -0.68595798  -0.6852460
## X369  1.21665476   1.13147070   1.1412327 -0.005212173  1.29203392   0.1577927
## X370  1.26871571   1.90489650   0.3108484  2.473176098  1.00853037   1.8438701
## X371 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X372  0.35700394   1.32482715  -0.1043438 -0.005212173  0.70131917   0.1577927
## X373 -0.40240913   0.93811425  -0.9347280 -0.831341597  0.18177643  -0.6852460
## X374  0.69697444   1.51818360  -0.5195359  0.820917251  1.00853037   1.0008314
## X375  0.94039386   1.13147070   1.1412327 -0.005212173  0.85821946   1.8438701
## X376  2.03269881  -0.41538089  -0.1043438  2.473176098  1.92274051  -0.6852460
## X377  2.43853015  -0.99545024   0.7260405 -0.005212173  2.15069776  -0.6852460
## X378  1.31981693   1.13147070   0.7260405 -0.831341597  1.42629884   1.0008314
## X379 -0.21200528  -0.99545024   0.7260405 -0.831341597 -0.21915966  -0.6852460
## X380 -2.10721958  -1.18880668  -0.9347280 -0.831341597 -2.04708364  -0.6852460
## X381  0.12893412   0.16468846   1.1412327 -0.005212173  0.18177643  -0.6852460
## X382  1.26871571   0.55140136   0.3108484  1.647046674  0.85821946   1.8438701
## X383  1.95260717  -0.41538089  -0.1043438  2.473176098  1.80408084  -0.6852460
## X384  1.60829128  -0.60873734  -0.9347280  1.647046674  1.55615914  -0.6852460
## X385  0.75995351   1.51818360   0.7260405  0.820917251  1.15294194  -0.6852460
## X386  0.35700394   1.51818360   0.3108484  0.820917251  0.18177643   2.6869088
## X387  1.41929339   1.51818360   1.1412327  0.820917251  1.55615914   1.0008314
## X388  1.05428349   1.71154005   0.3108484  1.647046674  1.00853037   1.0008314
## X389  0.28325136   1.13147070   0.3108484  0.820917251 -0.01199386   1.0008314
## X390  1.36999732   1.51818360   1.1412327  0.820917251  1.55615914   1.0008314
## X391  2.43853015  -0.99545024   0.7260405 -0.005212173  2.15069776  -0.6852460
## X392  1.51536781   0.16468846   3.6323855 -0.005212173  1.29203392   0.1577927
## X393  0.04803954  -0.02866799  -0.1043438 -0.831341597  0.18177643  -0.6852460
## X394 -0.40240913   0.93811425  -0.9347280 -0.831341597  0.18177643  -0.6852460
## X395  0.82146772   0.16468846   1.9716169 -0.005212173  0.70131917   0.1577927
## X396 -0.72058540  -1.18880668  -0.5195359 -0.831341597 -0.95516548  -0.6852460
## X397  0.49840233   1.13147070   0.3108484 -0.831341597  0.85821946  -0.6852460
## X398  0.56629095  -1.18880668  -0.5195359 -0.831341597  0.18177643  -0.6852460
## X399 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X400  0.12893412   0.16468846  -0.1043438 -0.005212173 -0.01199386   1.0008314
## X401  0.56629095   0.74475780   0.3108484 -0.831341597  0.53699786   1.0008314
## X402  0.04803954   0.16468846   0.3108484 -0.005212173 -0.01199386   0.1577927
## X403  0.63244961  -0.02866799   1.1412327 -0.831341597  0.53699786  -0.6852460
## X404  0.28325136  -0.99545024   1.5564248 -0.005212173 -0.01199386  -0.6852460
## X405 -0.60958681  -0.80209379  -0.9347280  0.820917251 -0.95516548   1.0008314
## X406 -0.50369472   0.16468846  -0.5195359 -0.005212173 -0.21915966  -0.6852460
## X407 -0.60958681   0.35804491  -0.9347280  0.820917251 -0.21915966   0.1577927
## X408 -0.72058540  -1.18880668  -0.1043438 -0.831341597 -0.95516548  -0.6852460
## X409  1.05428349  -0.41538089  -0.1043438  2.473176098  0.85821946   1.0008314
## X410  0.42867850   0.74475780  -0.5195359  2.473176098 -0.21915966   1.8438701
## X411  0.94039386   0.74475780  -0.9347280  2.473176098  1.15294194  -0.6852460
## X412  0.42867850   1.51818360   0.3108484  0.820917251  0.36423857   1.8438701
## X413 -0.72058540   0.35804491  -0.9347280  0.820917251 -0.68595798   2.6869088
## X414  0.28325136  -1.18880668   1.5564248 -0.831341597 -0.21915966   0.1577927
## X415 -0.50369472  -0.02866799  -0.9347280 -0.831341597 -0.21915966  -0.6852460
## X416 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X417  0.56629095   1.51818360   0.3108484  0.820917251  0.36423857   2.6869088
## X418  0.75995351   1.13147070  -0.1043438 -0.831341597  1.00853037  -0.6852460
## X419  0.42867850   1.32482715   0.3108484 -0.005212173  0.85821946  -0.6852460
## X420  0.20728011   0.16468846  -0.1043438 -0.005212173  0.18177643   1.0008314
## X421 -0.30530231   0.16468846  -0.1043438 -0.005212173 -0.21915966   0.1577927
## X422 -0.40240913   0.16468846   0.3108484 -0.005212173 -0.21915966  -0.6852460
## X423  1.99292450  -0.60873734  -0.1043438  1.647046674  1.80408084  -0.6852460
## X424  1.16359252   0.55140136   0.3108484  1.647046674  0.85821946   3.5299475
## X425  2.03269881  -0.41538089  -0.1043438  2.473176098  1.92274051  -0.6852460
## X426 -0.12219740   0.55140136  -0.9347280  1.647046674  0.36423857  -0.6852460
## X427 -2.10721958  -1.18880668  -0.9347280 -0.831341597 -2.04708364  -0.6852460
## X428 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X429 -0.30530231  -0.02866799  -0.9347280 -0.831341597 -0.01199386  -0.6852460
## X430 -0.40240913   0.16468846  -0.5195359 -0.005212173 -0.21915966   0.1577927
## X431 -0.83728034  -0.02866799  -0.9347280 -0.831341597 -0.44251753  -0.6852460
## X432 -0.50369472   0.16468846  -0.1043438 -0.005212173 -0.21915966  -0.6852460
## X433 -0.50369472  -1.18880668  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X434  0.04803954   0.55140136  -0.5195359  1.647046674  0.18177643   1.8438701
## X435  0.28325136  -0.99545024   1.9716169 -0.005212173 -0.01199386  -0.6852460
## X436 -0.83728034  -0.02866799  -0.9347280 -0.831341597 -0.44251753  -0.6852460
## X437  3.22789945   0.16468846   0.3108484  4.951564368  3.05604172   0.1577927
## X438  1.91172984  -0.41538089  -0.1043438  2.473176098  1.80408084  -0.6852460
## X439 -0.60958681  -0.99545024  -0.1043438 -0.005212173 -0.68595798  -0.6852460
## X440 -1.22934392  -0.02866799  -0.9347280 -0.831341597 -0.68595798  -0.6852460
## X441  1.31981693   1.71154005   1.1412327  1.647046674  1.55615914   1.0008314
## X442  1.31981693   0.16468846  -0.9347280 -0.005212173  1.29203392   0.1577927
## X443  0.56629095   0.55140136  -0.1043438  1.647046674  0.18177643   1.8438701
## X444  0.49840233  -0.99545024   2.3868091 -0.005212173 -0.01199386   0.1577927
## X445  0.69697444  -0.99545024   1.9716169 -0.005212173  0.18177643   0.1577927
## X446  0.20728011   0.16468846   0.3108484 -0.005212173  0.18177643   0.1577927
## X447  0.56629095  -0.99545024   2.3868091 -0.005212173  0.18177643  -0.6852460
## X448  0.82146772  -0.99545024   0.7260405 -0.005212173  0.36423857   0.1577927
## X449  1.21665476   0.55140136   0.3108484  1.647046674  1.29203392   0.1577927
## X450 -1.53694587  -0.22202444  -0.9347280 -0.831341597 -1.25901822   0.1577927
## X451  0.75995351  -0.99545024   2.8020012 -0.005212173  0.36423857  -0.6852460
## X452  0.82146772   1.32482715  -0.5195359 -0.005212173  1.00853037  -0.6852460
## X453  0.20728011   1.13147070  -0.5195359  0.820917251  0.53699786  -0.6852460
## X454  1.56220886   2.09825295   1.1412327  3.299305521  1.92274051  -0.6852460
##       NumOxygen  NumSulfer NumChlorine NumHalogen   NumRings HydrophilicFactor
## X1   -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.741919037
## X2   -0.3320280  1.7123815  -0.3972472 -0.4741055  2.0005400      -0.310306393
## X3    0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.274782719
## X4   -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.834280591
## X5   -0.9103405 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.042990743
## X6   -0.3320280  1.7123815   1.0310404  0.8839497 -1.0792067      -0.559860206
## X7   -0.9103405 -0.3360145   1.0310404  0.8839497  2.0005400      -0.629131371
## X8    0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.723269108
## X9    1.4029096 -0.3360145  -0.3972472  0.2049221  2.0005400       0.190577416
## X10  -0.3320280 -0.3360145  -0.3972472 -0.4741055  0.4606666       0.331784022
## X11   0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.698402536
## X12   0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.365368089
## X13  -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.842273418
## X14  -0.9103405 -0.3360145   0.3168966  0.2049221  0.4606666      -0.760568966
## X15  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.838721050
## X16   0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.260573249
## X17   0.8245970  1.7123815  -0.3972472 -0.4741055 -0.3092700      -0.115814276
## X18  -0.3320280  1.7123815   0.3168966  0.2049221  2.0005400      -0.288992189
## X19   0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.365368089
## X20  -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.842273418
## X21   0.8245970 -0.3360145   0.3168966  0.2049221  1.2306033      -0.249028055
## X22  -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.773002252
## X23   0.2462845 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.689521618
## X24   0.2462845 -0.3360145   3.8876154  3.6000599 -0.3092700       0.566240273
## X25   1.4029096  5.8091734  -0.3972472 -0.4741055 -0.3092700      -0.119366643
## X26   0.8245970  1.7123815  -0.3972472 -0.4741055  0.4606666       0.382405258
## X27  -0.3320280  1.7123815  -0.3972472 -0.4741055  1.2306033      -0.705507271
## X28  -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033       0.343329216
## X29   0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.295208832
## X30  -0.9103405 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.578510135
## X31  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.828952040
## X32  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.812966386
## X33  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.821847305
## X34  -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.842273418
## X35   0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.708171547
## X36  -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.842273418
## X37  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.821847305
## X38   1.9812221 -0.3360145  -0.3972472 -0.4741055  2.0005400       1.404598989
## X39   0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666       0.207451161
## X40   0.2462845 -0.3360145  -0.3972472  1.5629772  0.4606666       0.382405258
## X41   2.5595346 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.190577416
## X42   0.2462845 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.130911837
## X43  -0.9103405 -0.3360145  -0.3972472  0.2049221  0.4606666      -0.760568966
## X44  -0.9103405  1.7123815   0.3168966  0.2049221  2.0005400      -0.683304975
## X45  -0.9103405 -0.3360145   0.3168966  0.2049221 -0.3092700       0.574233100
## X46  -0.3320280 -0.3360145  -0.3972472  1.5629772  1.2306033      -0.676200240
## X47  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.821847305
## X48  -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.723269108
## X49   0.2462845 -0.3360145   1.7451841  1.5629772  0.4606666      -0.157554593
## X50   0.2462845 -0.3360145  -0.3972472  0.2049221  0.4606666      -0.278335086
## X51  -0.9103405 -0.3360145  -0.3972472  1.5629772 -0.3092700      -0.546538828
## X52  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.812966386
## X53  -0.9103405 -0.3360145   0.3168966  0.2049221  0.4606666      -0.778330804
## X54  -0.9103405 -0.3360145   0.3168966  0.2049221 -0.3092700       0.687908858
## X55  -0.9103405 -0.3360145   2.4593279  2.2420048 -0.3092700      -0.493253316
## X56   0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.376025191
## X57   0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700       0.331784022
## X58  -0.9103405  1.7123815  -0.3972472 -0.4741055  0.4606666      -0.711723914
## X59   2.5595346 -0.3360145   0.3168966  0.2049221  1.2306033      -0.602488615
## X60   1.4029096 -0.3360145   0.3168966  0.2049221  1.2306033      -0.263237525
## X61   0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.252580422
## X62   0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.711723914
## X63  -0.9103405 -0.3360145   2.4593279  2.2420048 -0.3092700      -0.493253316
## X64  -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.842273418
## X65   1.4029096 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.680640699
## X66  -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.294320740
## X67   0.2462845  1.7123815   0.3168966  0.2049221  2.0005400      -0.655774127
## X68   2.5595346 -0.3360145  -0.3972472  0.2049221  2.0005400       0.148837099
## X69  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.821847305
## X70  -0.9103405  1.7123815  -0.3972472 -0.4741055  2.0005400      -0.737478578
## X71  -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.842273418
## X72  -0.9103405 -0.3360145  -0.3972472  0.2049221 -1.0792067      -0.717052465
## X73  -0.3320280 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.791652182
## X74  -0.9103405  7.8575693  -0.3972472 -0.4741055 -1.0792067      -0.525224623
## X75  -0.9103405 -0.3360145   0.3168966  0.2049221  0.4606666      -0.778330804
## X76   2.5595346 -0.3360145  -0.3972472  0.2049221  2.0005400       0.189689324
## X77  -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.844937693
## X78  -0.9103405 -0.3360145   1.0310404  0.8839497  0.4606666       1.916139901
## X79  -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.844937693
## X80   0.8245970 -0.3360145  -0.3972472  0.8839497  0.4606666      -0.257020882
## X81   1.4029096 -0.3360145   0.3168966  0.2049221  2.0005400      -0.703731087
## X82  -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.294320740
## X83  -0.9103405  1.7123815   0.3168966  0.2049221  1.2306033      -0.689521618
## X84   0.8245970 -0.3360145   1.7451841  1.5629772  0.4606666      -0.111373817
## X85  -0.9103405 -0.3360145  -0.3972472  1.5629772 -0.3092700      -0.546538828
## X86  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.828952040
## X87  -0.9103405 -0.3360145  -0.3972472  0.2049221 -1.0792067      -0.734814302
## X88   0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.295208832
## X89   1.9812221  1.7123815   0.3168966  0.2049221  1.2306033       0.810465534
## X90  -0.3320280  5.8091734  -0.3972472 -0.4741055 -1.0792067      -0.596271972
## X91   2.5595346 -0.3360145  -0.3972472 -0.4741055  2.0005400       2.044025128
## X92  -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033       0.285603245
## X93  -0.9103405 -0.3360145   3.8876154  3.6000599 -0.3092700      -0.371584732
## X94   0.8245970 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.737478578
## X95   0.2462845 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.741919037
## X96   1.4029096 -0.3360145  -0.3972472  1.5629772  0.4606666       1.712766865
## X97  -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.821847305
## X98  -0.9103405 -0.3360145   1.0310404  0.8839497  0.4606666      -0.723269108
## X99   0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.788987906
## X100 -0.9103405 -0.3360145   1.0310404  0.8839497  0.4606666      -0.723269108
## X101 -0.9103405 -0.3360145   1.0310404  0.8839497  0.4606666      -0.723269108
## X102 -0.9103405  1.7123815  -0.3972472  1.5629772  1.2306033      -0.638900382
## X103  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.294320740
## X104 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.768561793
## X105  0.2462845  1.7123815   2.4593279  2.2420048  0.4606666      -0.465722469
## X106 -0.3320280  1.7123815  -0.3972472 -0.4741055  2.7704767      -0.365368089
## X107 -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.737478578
## X108  2.5595346 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.135515721
## X109  1.4029096  7.8575693  -0.3972472 -0.4741055 -1.0792067      -0.395563212
## X110  1.4029096 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.310306393
## X111  1.4029096 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.705507271
## X112 -0.9103405 -0.3360145   3.8876154  3.6000599  1.2306033      -0.525224623
## X113  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.353822894
## X114  0.8245970 -0.3360145   1.0310404  0.8839497  0.4606666      -0.578510135
## X115 -0.9103405 -0.3360145   1.7451841  1.5629772  0.4606666      -0.675312148
## X116  0.2462845 -0.3360145   0.3168966  1.5629772  0.4606666       0.395726636
## X117 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.332508690
## X118 -0.9103405 -0.3360145   1.7451841  1.5629772  0.4606666      -0.675312148
## X119 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.851154336
## X120 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.183472681
## X121 -0.3320280 -0.3360145   3.8876154  3.6000599  2.7704767      -0.533217450
## X122 -0.9103405 -0.3360145   1.7451841  1.5629772  0.4606666      -0.675312148
## X123  1.4029096  3.7607774   0.3168966  0.2049221  0.4606666      -0.515455613
## X124 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.659326494
## X125 -0.9103405 -0.3360145   1.0310404  0.8839497  0.4606666      -0.723269108
## X126 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X127 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.659326494
## X128 -0.9103405 -0.3360145   1.0310404  0.8839497  0.4606666      -0.723269108
## X129 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X130 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.852042428
## X131 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.853818612
## X132 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X133 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.851154336
## X134 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.659326494
## X135 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.853818612
## X136 -0.9103405 -0.3360145   3.1734717  2.9210324  0.4606666      -0.596271972
## X137 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X138  0.8245970 -0.3360145  -0.3972472 -0.4741055  3.5404134      -0.408884590
## X139 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X140 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.407108406
## X141 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X142 -0.9103405 -0.3360145   3.1734717  2.9210324  0.4606666      -0.596271972
## X143 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X144 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X145 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X146 -0.9103405 -0.3360145   3.1734717  2.9210324  0.4606666      -0.596271972
## X147 -0.9103405 -0.3360145   4.6017592  4.2790875  0.4606666      -0.533217450
## X148 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.856482887
## X149 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.855594796
## X150 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X151 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.855594796
## X152 -0.9103405 -0.3360145  -0.3972472  1.5629772  2.0005400      -0.672647872
## X153 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X154 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X155 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X156 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.855594796
## X157 -0.9103405 -0.3360145   5.3159030  4.9581151  0.4606666      -0.505686603
## X158 -0.9103405 -0.3360145   5.3159030  4.9581151  0.4606666      -0.505686603
## X159 -0.9103405 -0.3360145   6.7441905  6.3161702  0.4606666      -0.459505826
## X160 -0.3320280 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.778330804
## X161 -0.9103405 -0.3360145   0.3168966  0.2049221 -1.0792067      -0.717052465
## X162  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.376025191
## X163 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.838721050
## X164  2.5595346 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.311194485
## X165 -0.9103405 -0.3360145   1.7451841  1.5629772 -0.3092700      -0.546538828
## X166 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.834280591
## X167 -0.9103405 -0.3360145  -0.3972472  0.8839497 -0.3092700      -0.612257626
## X168 -0.9103405  1.7123815  -0.3972472 -0.4741055 -0.3092700       0.527164231
## X169  0.2462845  5.8091734  -0.3972472 -0.4741055 -1.0792067      -0.446184448
## X170  2.5595346 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.640676565
## X171  3.7161597 -0.3360145  -0.3972472  0.2049221  2.0005400       0.201234518
## X172 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.821847305
## X173  1.4029096  1.7123815  -0.3972472 -0.4741055  1.2306033       0.379740982
## X174  0.2462845 -0.3360145  -0.3972472  1.5629772  0.4606666       0.425921759
## X175 -0.9103405 -0.3360145   3.1734717  2.9210324 -1.0792067      -0.358263354
## X176 -0.9103405  1.7123815  -0.3972472 -0.4741055  1.2306033      -0.724157200
## X177  1.4029096  1.7123815  -0.3972472 -0.4741055  2.7704767      -0.709059639
## X178 -0.3320280 -0.3360145   3.1734717  2.9210324 -0.3092700       0.088446852
## X179  1.4029096 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.738530094
## X180  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.168375119
## X181 -0.9103405  1.7123815  -0.3972472 -0.4741055  1.2306033      -0.724157200
## X182  2.5595346 -0.3360145  -0.3972472  0.2049221  2.7704767       0.189689324
## X183 -0.9103405  1.7123815  -0.3972472 -0.4741055  1.2306033      -0.778330804
## X184 -0.3320280 -0.3360145   1.0310404  0.8839497  1.2306033      -0.257020882
## X185  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666       0.207451161
## X186  0.2462845 -0.3360145   0.3168966  0.8839497  1.2306033      -0.310306393
## X187 -0.9103405 -0.3360145  -0.3972472  0.2049221 -1.0792067      -0.717052465
## X188 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.814742570
## X189 -0.9103405  1.7123815  -0.3972472  1.5629772  2.0005400      -0.640676565
## X190  0.8245970  3.7607774  -0.3972472 -0.4741055 -0.3092700      -0.525224623
## X191  2.5595346 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.147949007
## X192  0.2462845 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.698402536
## X193 -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.847601969
## X194  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.385794201
## X195 -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.842273418
## X196  0.8245970 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.753464232
## X197  0.8245970  1.7123815   1.7451841  1.5629772 -0.3092700      -0.361815721
## X198 -0.3320280  1.7123815   1.7451841  1.5629772 -1.0792067      -0.525224623
## X199 -0.9103405 -0.3360145   3.8876154  3.6000599 -1.0792067      -0.322739679
## X200 -0.9103405 -0.3360145   0.3168966  0.2049221  0.4606666      -0.778330804
## X201 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.842273418
## X202  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.353822894
## X203  0.8245970 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.757904691
## X204  1.9812221  1.7123815   0.3168966  0.2049221  0.4606666      -0.538546001
## X205 -0.3320280 -0.3360145   3.8876154  3.6000599  1.2306033      -0.055424029
## X206 -0.9103405 -0.3360145   2.4593279  2.2420048 -0.3092700      -0.476379571
## X207  0.2462845  5.8091734   0.3168966  0.2049221 -0.3092700      -0.514567521
## X208 -0.9103405 -0.3360145   1.0310404  0.8839497  0.4606666      -0.723269108
## X209 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.849378152
## X210 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.851154336
## X211 -0.9103405 -0.3360145   1.7451841  1.5629772  0.4606666      -0.675312148
## X212 -0.3320280 -0.3360145   3.8876154  3.6000599  2.7704767      -0.533217450
## X213 -0.9103405 -0.3360145   1.7451841  1.5629772  0.4606666      -0.675312148
## X214  0.8245970 -0.3360145   1.0310404  0.8839497  1.2306033      -0.690409709
## X215 -0.9103405 -0.3360145   4.6017592  4.2790875  1.2306033      -0.494141408
## X216 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X217 -0.9103405 -0.3360145   3.1734717  2.9210324  0.4606666      -0.624690912
## X218  3.1378471 -0.3360145  -0.3972472 -0.4741055  1.2306033       0.840660658
## X219  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.327180139
## X220 -0.9103405 -0.3360145   2.4593279  2.2420048  0.4606666      -0.633571830
## X221 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.362703813
## X222 -0.9103405 -0.3360145   3.8876154  3.6000599  2.0005400      -0.562524482
## X223 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.855594796
## X224 -0.9103405 -0.3360145   3.1734717  2.9210324  0.4606666      -0.596271972
## X225 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.852042428
## X226 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.853818612
## X227 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X228 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X229 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.855594796
## X230 -0.9103405 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.853818612
## X231 -0.9103405 -0.3360145   3.8876154  3.6000599  0.4606666      -0.562524482
## X232 -0.9103405 -0.3360145   6.0300467  5.6371426  0.4606666      -0.481708122
## X233  0.2462845 -0.3360145  -0.3972472 -0.4741055  1.2306033       0.321126919
## X234  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.365368089
## X235 -0.9103405 -0.3360145   3.8876154  3.6000599 -0.3092700      -0.411548865
## X236  0.8245970  1.7123815   1.7451841  1.5629772 -0.3092700      -0.417765508
## X237 -0.9103405 -0.3360145   3.1734717  2.9210324  0.4606666      -0.624690912
## X238 -0.9103405 -0.3360145   5.3159030  4.9581151  1.2306033      -0.465722469
## X239  0.8245970 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.028781274
## X240  3.7161597 -0.3360145   0.3168966  0.2049221  2.0005400       3.680778427
## X241 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.779218896
## X242 -0.9103405 -0.3360145   0.3168966  0.8839497 -0.3092700      -0.640676565
## X243 -0.3320280 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.164659328
## X244  0.8245970  1.7123815  -0.3972472 -0.4741055  0.4606666       1.129290512
## X245  0.8245970 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.129135654
## X246  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.240147136
## X247  0.8245970  1.7123815  -0.3972472 -0.4741055  0.4606666       1.175471289
## X248 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.749023772
## X249 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.799645008
## X250  0.2462845 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.039438376
## X251 -0.9103405  1.7123815  -0.3972472 -0.4741055 -0.3092700      -0.693962077
## X252 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.310306393
## X253 -0.9103405 -0.3360145   3.1734717  2.9210324 -1.0792067      -0.218832932
## X254  0.2462845 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.249028055
## X255  0.8245970  1.7123815   0.3168966  0.2049221  0.4606666      -0.042990743
## X256  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067       0.604428223
## X257 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -0.3092700       0.527164231
## X258 -0.9103405 -0.3360145   0.3168966  0.2049221 -1.0792067      -0.662878862
## X259 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.779218896
## X260  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.252580422
## X261  0.8245970  1.7123815  -0.3972472 -0.4741055  0.4606666      -0.076738234
## X262 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.799645008
## X263 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.779218896
## X264 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.723269108
## X265 -0.9103405 -0.3360145   1.0310404  0.8839497 -1.0792067      -0.574957768
## X266 -0.9103405 -0.3360145   1.0310404  0.8839497 -1.0792067      -0.527000807
## X267 -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666       1.948111208
## X268  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.683304975
## X269  0.8245970 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.670871689
## X270  0.8245970 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.190413992
## X271  0.2462845 -0.3360145  -0.3972472  0.2049221 -0.3092700      -0.039438376
## X272  0.2462845 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.670871689
## X273 -0.9103405 -0.3360145   0.3168966  0.2049221 -1.0792067      -0.662878862
## X274  0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.157554593
## X275  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.164659328
## X276  0.2462845 -0.3360145   1.7451841  1.5629772 -0.3092700       1.517386655
## X277  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.321851587
## X278 -0.9103405  1.7123815  -0.3972472 -0.4741055  0.4606666       0.068908831
## X279 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.785435539
## X280 -0.3320280 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.124695194
## X281 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.821847305
## X282  0.8245970 -0.3360145   1.0310404  0.8839497  0.4606666      -0.470162928
## X283 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.821847305
## X284  0.2462845 -0.3360145  -0.3972472 -0.4741055  3.5404134       0.208339253
## X285 -0.3320280 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.087395336
## X286  0.2462845  1.7123815  -0.3972472 -0.4741055  0.4606666       1.178135565
## X287  0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666       1.766052376
## X288  0.8245970 -0.3360145  -0.3972472  0.8839497 -0.3092700       2.105303467
## X289  3.7161597 -0.3360145  -0.3972472 -0.4741055  2.0005400       3.653247579
## X290 -0.3320280 -0.3360145   0.3168966  0.2049221  0.4606666       0.516507129
## X291 -0.9103405 -0.3360145  -0.3972472  0.2049221 -1.0792067      -0.662878862
## X292  0.8245970  1.7123815  -0.3972472 -0.4741055  0.4606666       1.178135565
## X293  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666       0.470326352
## X294 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.760568966
## X295  0.8245970 -0.3360145  -0.3972472 -0.4741055 -0.3092700       0.382405258
## X296  1.4029096  1.7123815  -0.3972472 -0.4741055  0.4606666       1.128402420
## X297  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.711723914
## X298 -0.3320280 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.094500071
## X299  0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666       0.399279003
## X300 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.209952013
## X301 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.760568966
## X302  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700       0.364643421
## X303 -0.9103405  1.7123815  -0.3972472 -0.4741055 -0.3092700       0.574233100
## X304  1.4029096  3.7607774   0.3168966  0.2049221  0.4606666       1.385060968
## X305  0.8245970  1.7123815  -0.3972472 -0.4741055 -0.3092700       0.485423914
## X306 -0.9103405 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.612257626
## X307 -0.3320280 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.336061057
## X308  3.1378471 -0.3360145  -0.3972472 -0.4741055  1.2306033       2.486294875
## X309 -0.3320280 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.336061057
## X310  1.9812221 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.207451161
## X311 -0.9103405 -0.3360145   0.3168966  0.2049221 -1.0792067      -0.693962077
## X312  3.7161597 -0.3360145  -0.3972472 -0.4741055  2.0005400       3.653247579
## X313 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.778330804
## X314 -0.9103405 -0.3360145   1.0310404  3.6000599 -1.0792067      -0.192190176
## X315 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.760568966
## X316 -0.9103405 -0.3360145  -0.3972472  0.8839497 -0.3092700      -0.612257626
## X317 -0.9103405 -0.3360145  -0.3972472  2.2420048 -1.0792067      -0.141568940
## X318  3.1378471 -0.3360145  -0.3972472 -0.4741055  2.7704767      -0.626467096
## X319  0.2462845  1.7123815  -0.3972472 -0.4741055  0.4606666      -0.185085441
## X320 -0.9103405 -0.3360145   0.3168966  0.2049221 -0.3092700       0.581337835
## X321  0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.240147136
## X322  0.2462845 -0.3360145   0.3168966  0.2049221 -0.3092700       1.041369418
## X323 -0.9103405  3.7607774  -0.3972472 -0.4741055  0.4606666      -0.039438376
## X324 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.779218896
## X325 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.828952040
## X326 -0.9103405 -0.3360145   0.3168966  0.8839497 -0.3092700      -0.612257626
## X327 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.828952040
## X328  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.294320740
## X329 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.799645008
## X330 -0.9103405 -0.3360145   1.0310404  0.8839497 -0.3092700       0.766949033
## X331  0.8245970  1.7123815  -0.3972472  1.5629772 -0.3092700       0.512954761
## X332 -0.3320280 -0.3360145  -0.3972472  0.2049221 -0.3092700      -0.087395336
## X333  0.2462845 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.659326494
## X334  0.2462845 -0.3360145   1.0310404  0.8839497 -0.3092700       0.621301968
## X335  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700       1.032488500
## X336 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.812966386
## X337  0.8245970  1.7123815  -0.3972472 -0.4741055  0.4606666       1.175471289
## X338  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.217056748
## X339  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.217056748
## X340  0.8245970 -0.3360145  -0.3972472  0.8839497 -0.3092700       0.686132674
## X341 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.760568966
## X342 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.828952040
## X343  0.2462845 -0.3360145  -0.3972472 -0.4741055  4.3103501      -0.718828649
## X344  1.4029096  1.7123815  -0.3972472 -0.4741055  0.4606666      -0.533217450
## X345 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.785435539
## X346  0.2462845  1.7123815  -0.3972472 -0.4741055 -0.3092700       0.472990628
## X347  1.9812221 -0.3360145  -0.3972472 -0.4741055  2.0005400       1.404598989
## X348  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.321851587
## X349 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.828952040
## X350 -0.3320280 -0.3360145  -0.3972472  0.8839497  1.2306033      -0.217056748
## X351  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.683304975
## X352 -0.9103405  3.7607774   0.3168966  0.2049221 -1.0792067      -0.555419747
## X353  0.8245970  1.7123815  -0.3972472 -0.4741055 -0.3092700       0.447235964
## X354 -0.3320280 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.773002252
## X355  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.227713850
## X356 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.828952040
## X357  1.9812221  1.7123815  -0.3972472 -0.4741055  0.4606666      -0.578510135
## X358  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.198406819
## X359  0.2462845  1.7123815  -0.3972472 -0.4741055 -0.3092700       0.433914586
## X360  0.8245970 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.737478578
## X361  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.711723914
## X362 -0.9103405 -0.3360145  -0.3972472  0.8839497 -0.3092700      -0.612257626
## X363  0.2462845  1.7123815  -0.3972472 -0.4741055  0.4606666       1.231421076
## X364 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.812966386
## X365  0.2462845 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.042990743
## X366 -0.9103405 -0.3360145  -0.3972472  0.2049221 -0.3092700      -0.717052465
## X367 -0.9103405 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.717052465
## X368 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.799645008
## X369  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.724157200
## X370  1.4029096  3.7607774  -0.3972472  1.5629772  1.2306033       1.688788384
## X371 -0.9103405 -0.3360145   1.7451841  1.5629772 -0.3092700      -0.546538828
## X372  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666       0.364643421
## X373 -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.834280591
## X374  0.2462845 -0.3360145   1.0310404  0.8839497  1.2306033       0.353986318
## X375  0.2462845 -0.3360145   0.3168966  0.2049221  0.4606666      -0.593607697
## X376  1.9812221 -0.3360145  -0.3972472  0.2049221  2.0005400       0.801584616
## X377  1.4029096 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.738530094
## X378 -0.9103405 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.353822894
## X379 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.821847305
## X380 -0.9103405 -0.3360145   3.8876154  3.6000599 -1.0792067      -0.192190176
## X381  0.8245970 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.100716714
## X382  0.8245970  1.7123815  -0.3972472 -0.4741055  0.4606666       0.395726636
## X383  2.5595346 -0.3360145  -0.3972472  0.2049221  2.0005400       1.494296267
## X384  0.2462845 -0.3360145  -0.3972472 -0.4741055  2.0005400      -0.773002252
## X385  0.8245970 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.295208832
## X386  0.2462845  1.7123815  -0.3972472 -0.4741055  0.4606666       1.231421076
## X387  0.8245970 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.285439821
## X388  1.4029096  1.7123815   0.3168966  0.2049221  0.4606666       1.712766865
## X389  0.8245970  3.7607774  -0.3972472 -0.4741055  0.4606666       0.581337835
## X390  0.2462845 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.705507271
## X391  1.4029096 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.738530094
## X392  0.8245970 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.689521618
## X393 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.834280591
## X394 -0.9103405 -0.3360145   0.3168966  0.2049221  0.4606666      -0.760568966
## X395  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700       0.364643421
## X396 -0.9103405 -0.3360145   0.3168966  0.2049221 -1.0792067      -0.662878862
## X397 -0.3320280 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.332508690
## X398 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.242811412
## X399 -0.9103405 -0.3360145  -0.3972472  0.2049221 -0.3092700      -0.693962077
## X400  0.2462845 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.066969224
## X401 -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666       1.123073869
## X402  0.8245970 -0.3360145  -0.3972472 -0.4741055 -0.3092700       2.164805621
## X403  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700       0.380629074
## X404 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.749023772
## X405  0.2462845 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.371584732
## X406  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.124695194
## X407  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.087395336
## X408 -0.9103405 -0.3360145   0.3168966  0.2049221 -1.0792067      -0.662878862
## X409  0.8245970 -0.3360145  -0.3972472 -0.4741055  1.2306033       0.367307696
## X410  1.4029096  3.7607774   1.7451841  1.5629772  0.4606666       2.036032302
## X411  2.5595346 -0.3360145  -0.3972472 -0.4741055  2.0005400       1.679019374
## X412  0.2462845  1.7123815  -0.3972472 -0.4741055  0.4606666       1.180799840
## X413 -0.9103405  1.7123815  -0.3972472 -0.4741055  0.4606666       0.068908831
## X414 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067       0.577785467
## X415 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.821847305
## X416 -0.9103405 -0.3360145  -0.3972472  0.2049221 -0.3092700      -0.693962077
## X417  0.2462845  1.7123815  -0.3972472 -0.4741055  0.4606666       1.178135565
## X418  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666       0.280274694
## X419  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.294320740
## X420 -0.9103405 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.646005116
## X421  0.2462845 -0.3360145  -0.3972472 -0.4741055 -0.3092700       0.604428223
## X422  0.8245970 -0.3360145   1.7451841  1.5629772 -0.3092700      -0.005690885
## X423  1.9812221 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.815794086
## X424  0.8245970 -0.3360145  -0.3972472 -0.4741055  1.2306033       0.407271830
## X425  1.9812221 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.792703697
## X426  0.2462845 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.711723914
## X427 -0.9103405 -0.3360145   1.7451841  3.6000599 -1.0792067      -0.192190176
## X428 -0.9103405 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.612257626
## X429 -0.9103405 -0.3360145  -0.3972472 -0.4741055  0.4606666      -0.828952040
## X430 -0.3320280 -0.3360145  -0.3972472  0.2049221 -0.3092700      -0.087395336
## X431 -0.9103405 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.717052465
## X432  0.2462845 -0.3360145   1.7451841  1.5629772 -0.3092700      -0.028781274
## X433 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -0.3092700      -0.799645008
## X434 -0.3320280 -0.3360145  -0.3972472  0.2049221  0.4606666       0.516507129
## X435 -0.3320280 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.749023772
## X436 -0.9103405 -0.3360145  -0.3972472  0.2049221 -0.3092700      -0.717052465
## X437  6.6077223 -0.3360145  -0.3972472 -0.4741055  2.0005400       3.944541710
## X438  1.9812221 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.815794086
## X439 -0.9103405 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.799645008
## X440 -0.9103405 -0.3360145   1.0310404  0.8839497 -0.3092700      -0.612257626
## X441  0.8245970 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.676200240
## X442  0.8245970 -0.3360145  -0.3972472 -0.4741055  2.7704767       0.270505683
## X443  0.8245970  1.7123815   0.3168966  0.2049221  0.4606666       1.984522974
## X444  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067       0.542261793
## X445 -0.3320280  1.7123815  -0.3972472 -0.4741055 -1.0792067      -0.646005116
## X446  0.2462845 -0.3360145   0.3168966  0.2049221 -0.3092700      -0.129135654
## X447  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.698402536
## X448 -0.3320280  1.7123815  -0.3972472 -0.4741055 -0.3092700      -0.661990770
## X449  0.8245970 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.689521618
## X450 -0.9103405 -0.3360145  -0.3972472  2.2420048 -0.3092700       0.205674978
## X451  0.2462845 -0.3360145  -0.3972472 -0.4741055 -1.0792067      -0.227713850
## X452  2.5595346 -0.3360145  -0.3972472 -0.4741055  1.2306033       1.724312059
## X453  1.4029096 -0.3360145  -0.3972472 -0.4741055  1.2306033      -0.633571830
## X454  3.7161597 -0.3360145  -0.3972472 -0.4741055  2.0005400       0.234093917
##      SurfaceArea1 SurfaceArea2
## X1   -0.302617991 -0.379138448
## X2    0.445784255  1.054350614
## X3    0.023833878 -0.076964725
## X4   -1.033167401 -1.055357076
## X5    0.495375467  0.359508432
## X6   -0.457625954  0.141009550
## X7    0.187343191  0.074384441
## X8   -0.287882317 -0.365498662
## X9    1.080835157  0.901427627
## X10   0.132367790  0.023497546
## X11   0.418013175  0.287899555
## X12   0.023833878 -0.076964725
## X13  -1.033167401 -1.055357076
## X14  -1.033167401 -1.055357076
## X15  -1.033167401 -1.055357076
## X16   0.285392103  0.165141479
## X17   1.359112705  1.378820142
## X18  -0.136558273  0.515316758
## X19   0.023833878 -0.076964725
## X20  -1.033167401 -1.055357076
## X21   0.285392103  0.165141479
## X22  -0.849538224 -0.885384357
## X23  -0.196067728 -0.280512302
## X24   0.799723825  0.641222476
## X25   0.798306933  2.622401413
## X26   1.099821507  1.138812367
## X27  -0.540089056  0.141796461
## X28   0.069457794 -0.034733848
## X29   0.053021849 -0.049947456
## X30  -0.359010285 -0.431336861
## X31  -1.033167401 -1.055357076
## X32  -1.033167401 -1.055357076
## X33  -1.033167401 -1.055357076
## X34  -1.033167401 -1.055357076
## X35   0.084476847 -0.020831759
## X36  -1.033167401 -1.055357076
## X37  -1.033167401 -1.055357076
## X38   1.743657139  1.514955700
## X39   0.113381439  0.005923206
## X40   0.364738044  0.238586482
## X41   1.826120241  1.591286041
## X42   0.053021849 -0.049947456
## X43  -1.033167401 -1.055357076
## X44  -0.709832693 -0.015323383
## X45   0.744465045  0.590073278
## X46  -0.409735011 -0.478289201
## X47  -1.033167401 -1.055357076
## X48  -0.332656097 -0.406942628
## X49  -0.198334755 -0.282610731
## X50   0.023833878 -0.076964725
## X51  -1.033167401 -1.055357076
## X52  -1.033167401 -1.055357076
## X53  -1.033167401 -1.055357076
## X54   0.744465045  0.590073278
## X55  -1.033167401 -1.055357076
## X56   0.023833878 -0.076964725
## X57   0.449468173  0.317015252
## X58  -0.682911749  0.110582335
## X59   0.980519218  0.808572160
## X60   0.908824493  0.742209354
## X61   0.023833878 -0.076964725
## X62  -0.287882317 -0.365498662
## X63  -1.033167401 -1.055357076
## X64  -1.033167401 -1.055357076
## X65   0.457402767  0.324359752
## X66  -0.459892981 -0.524716935
## X67   0.035452391  0.674535031
## X68   1.826120241  1.591286041
## X69  -1.033167401 -1.055357076
## X70  -0.801647282 -0.100309743
## X71  -1.033167401 -1.055357076
## X72  -1.033167401 -1.055357076
## X73  -0.771609176 -0.813250873
## X74  -0.849538224  2.125336130
## X75  -1.033167401 -1.055357076
## X76   1.826120241  1.591286041
## X77  -1.033167401 -1.055357076
## X78   0.441533579  0.309670752
## X79  -1.033167401 -1.055357076
## X80   0.285392103  0.165141479
## X81   0.679571401  0.530005758
## X82  -0.585712972 -0.641179724
## X83  -0.801647282 -0.100309743
## X84   0.758917341  0.603450761
## X85  -1.033167401 -1.055357076
## X86  -1.033167401 -1.055357076
## X87  -1.033167401 -1.055357076
## X88   0.507560737  0.370787486
## X89   2.186010757  2.144221987
## X90  -0.549440542  1.640599114
## X91   2.568288163  2.278259116
## X92  -0.295816911 -0.372843162
## X93  -1.033167401 -1.055357076
## X94  -0.026324091 -0.123392458
## X95  -0.065713683 -0.159852656
## X96   1.596017014  1.378295535
## X97  -1.033167401 -1.055357076
## X98  -1.033167401 -1.055357076
## X99  -0.065713683 -0.159852656
## X100 -1.033167401 -1.055357076
## X101 -1.033167401 -1.055357076
## X102 -0.801647282 -0.100309743
## X103  0.023833878 -0.076964725
## X104 -0.302617991 -0.379138448
## X105  0.026100905  0.588761760
## X106 -0.459892981  0.138911121
## X107 -0.240841509 -0.321956268
## X108  1.826120241  1.591286041
## X109  0.013065500  3.438427849
## X110  0.908824493  0.742209354
## X111  0.457402767  0.324359752
## X112 -1.033167401 -1.055357076
## X113  0.023833878 -0.076964725
## X114  0.589457083  0.446593220
## X115 -1.033167401 -1.055357076
## X116  0.616094648  0.471249757
## X117 -0.459892981 -0.524716935
## X118 -1.033167401 -1.055357076
## X119 -1.033167401 -1.055357076
## X120 -0.295816911 -0.372843162
## X121 -0.678094317 -0.726690691
## X122 -1.033167401 -1.055357076
## X123  0.597108298  2.216355472
## X124 -1.033167401 -1.055357076
## X125 -1.033167401 -1.055357076
## X126 -1.033167401 -1.055357076
## X127 -1.033167401 -1.055357076
## X128 -1.033167401 -1.055357076
## X129 -1.033167401 -1.055357076
## X130 -1.033167401 -1.055357076
## X131 -1.033167401 -1.055357076
## X132 -1.033167401 -1.055357076
## X133 -1.033167401 -1.055357076
## X134 -1.033167401 -1.055357076
## X135 -1.033167401 -1.055357076
## X136 -1.033167401 -1.055357076
## X137 -1.033167401 -1.055357076
## X138  0.063223470 -0.040504527
## X139 -1.033167401 -1.055357076
## X140 -0.585712972 -0.641179724
## X141 -1.033167401 -1.055357076
## X142 -1.033167401 -1.055357076
## X143 -1.033167401 -1.055357076
## X144 -1.033167401 -1.055357076
## X145 -1.033167401 -1.055357076
## X146 -1.033167401 -1.055357076
## X147 -1.033167401 -1.055357076
## X148 -1.033167401 -1.055357076
## X149 -1.033167401 -1.055357076
## X150 -1.033167401 -1.055357076
## X151 -1.033167401 -1.055357076
## X152 -0.162912460 -0.249822784
## X153 -1.033167401 -1.055357076
## X154 -1.033167401 -1.055357076
## X155 -1.033167401 -1.055357076
## X156 -1.033167401 -1.055357076
## X157 -1.033167401 -1.055357076
## X158 -1.033167401 -1.055357076
## X159 -1.033167401 -1.055357076
## X160 -0.771609176 -0.813250873
## X161 -1.033167401 -1.055357076
## X162  0.023833878 -0.076964725
## X163 -1.033167401 -1.055357076
## X164  1.736572680  1.508398110
## X165 -1.033167401 -1.055357076
## X166 -1.033167401 -1.055357076
## X167 -1.033167401 -1.055357076
## X168  0.744465045  1.253701335
## X169 -0.510050950  1.855163443
## X170  0.850165173  0.687912513
## X171  2.571405325  2.281144456
## X172 -1.033167401 -1.055357076
## X173  1.789281054  1.776996976
## X174  0.730012749  0.576695796
## X175 -1.033167401 -1.055357076
## X176 -0.801647282 -0.100309743
## X177  0.679571401  1.193633815
## X178 -0.459892981 -0.524716935
## X179  1.170382718  0.984315558
## X180  0.113381439  0.005923206
## X181 -0.801647282 -0.100309743
## X182  1.603951608  1.385640035
## X183 -1.033167401 -0.314611768
## X184  0.270656429  0.151501693
## X185  0.113381439  0.005923206
## X186  0.115648466  0.008021635
## X187 -1.033167401 -1.055357076
## X188 -0.941352813 -0.970370717
## X189 -0.709832693 -0.015323383
## X190 -0.248492725  1.433641590
## X191  1.826120241  1.591286041
## X192  0.188193326  0.075171351
## X193 -1.033167401 -1.055357076
## X194  0.023833878 -0.076964725
## X195 -1.033167401 -1.055357076
## X196  0.195844542  0.082253548
## X197  0.116781980  1.108122848
## X198 -0.457625954  0.141009550
## X199 -1.033167401 -1.055357076
## X200 -1.033167401 -1.055357076
## X201 -1.033167401 -1.055357076
## X202  0.023833878 -0.076964725
## X203 -0.026324091 -0.123392458
## X204  0.607593298  1.562432648
## X205 -0.459892981 -0.524716935
## X206  0.315146831  0.192683355
## X207 -0.510050950  1.855163443
## X208 -1.033167401 -1.055357076
## X209 -1.033167401 -1.055357076
## X210 -1.033167401 -1.055357076
## X211 -1.033167401 -1.055357076
## X212 -0.678094317 -0.726690691
## X213 -1.033167401 -1.055357076
## X214 -0.026324091 -0.123392458
## X215 -1.033167401 -1.055357076
## X216 -1.033167401 -1.055357076
## X217 -1.033167401 -1.055357076
## X218  1.955057394  1.967953982
## X219  0.023833878 -0.076964725
## X220 -1.033167401 -1.055357076
## X221 -0.459892981 -0.524716935
## X222 -1.033167401 -1.055357076
## X223 -1.033167401 -1.055357076
## X224 -1.033167401 -1.055357076
## X225 -1.033167401 -1.055357076
## X226 -1.033167401 -1.055357076
## X227 -1.033167401 -1.055357076
## X228 -1.033167401 -1.055357076
## X229 -1.033167401 -1.055357076
## X230 -1.033167401 -1.055357076
## X231 -1.033167401 -1.055357076
## X232 -1.033167401 -1.055357076
## X233  0.616094648  0.471249757
## X234  0.023833878 -0.076964725
## X235 -1.033167401 -1.055357076
## X236  0.116781980  1.108122848
## X237 -1.033167401 -1.055357076
## X238 -1.033167401 -1.055357076
## X239  0.285392103  0.165141479
## X240  4.113550354  3.708600536
## X241 -1.033167401 -1.055357076
## X242 -1.033167401 -1.055357076
## X243 -0.094618276 -0.186607621
## X244  2.004648607  1.976347696
## X245  0.285392103  0.165141479
## X246  0.053021849 -0.049947456
## X247  2.004648607  1.976347696
## X248 -0.549440542 -0.607604866
## X249 -1.033167401 -1.055357076
## X250  0.023833878 -0.076964725
## X251 -1.033167401 -0.314611768
## X252 -0.250192995 -0.330612286
## X253 -1.033167401 -1.055357076
## X254  0.532214654  0.393607897
## X255  0.647266268  1.240848459
## X256  0.449468173  0.317015252
## X257  0.187909948  0.074909048
## X258 -1.033167401 -1.055357076
## X259 -1.033167401 -1.055357076
## X260  0.023833878 -0.076964725
## X261  0.850731929  0.908247520
## X262 -1.033167401 -1.055357076
## X263 -1.033167401 -1.055357076
## X264 -0.302617991 -0.379138448
## X265 -1.033167401 -1.055357076
## X266 -1.033167401 -1.055357076
## X267  0.441533579  0.309670752
## X268 -0.287882317 -0.365498662
## X269  0.065490497 -0.038406098
## X270  0.285392103  0.165141479
## X271  0.023833878 -0.076964725
## X272 -0.196067728 -0.280512302
## X273 -1.033167401 -1.055357076
## X274  0.850731929  0.688437121
## X275  0.023833878 -0.076964725
## X276  1.126459073  0.943658503
## X277  0.258754538  0.140484943
## X278  0.510111142  1.214880405
## X279 -0.667892696 -0.717247762
## X280 -0.459892981 -0.524716935
## X281 -1.033167401 -1.055357076
## X282  0.586056542  0.443445577
## X283 -1.033167401 -1.055357076
## X284  0.297010616  0.175895926
## X285 -0.208536376 -0.292053660
## X286  1.743090382  1.734241492
## X287  1.956757664  1.712207992
## X288  1.334458788  1.136189331
## X289  4.113550354  3.708600536
## X290  0.692890184  0.542334027
## X291 -1.033167401 -1.055357076
## X292  1.750174841  1.740799082
## X293  0.113381439  0.005923206
## X294 -0.771609176 -0.813250873
## X295  0.969467462  0.798342320
## X296  2.266206832  2.218453900
## X297 -0.287882317 -0.365498662
## X298 -0.208536376 -0.292053660
## X299  1.099821507  0.919001967
## X300 -0.459892981 -0.524716935
## X301 -0.941352813 -0.970370717
## X302  0.364738044  0.238586482
## X303  0.744465045  1.253701335
## X304  2.330250342  2.497544909
## X305  1.099821507  1.138812367
## X306 -1.033167401 -1.055357076
## X307 -0.002803688 -0.101621261
## X308  2.689290722  2.390262745
## X309 -0.002803688 -0.101621261
## X310  1.564562016  1.349179838
## X311 -1.033167401 -1.055357076
## X312  4.113550354  3.708600536
## X313 -0.941352813 -0.970370717
## X314 -1.033167401 -1.055357076
## X315 -0.771609176 -0.813250873
## X316 -1.033167401 -1.055357076
## X317 -1.033167401 -1.055357076
## X318  1.111723398  0.930018717
## X319  0.053021849  0.613680600
## X320  1.418622161  1.214093494
## X321  0.285392103  0.165141479
## X322  0.882186927  0.717552818
## X323 -0.667892696  1.041235435
## X324 -1.033167401 -1.055357076
## X325 -1.033167401 -1.055357076
## X326 -1.033167401 -1.055357076
## X327 -1.033167401 -1.055357076
## X328  0.023833878 -0.076964725
## X329 -1.033167401 -1.055357076
## X330 -0.295816911 -0.372843162
## X331  1.099821507  1.138812367
## X332 -0.208536376 -0.292053660
## X333 -0.196067728 -0.280512302
## X334  0.449468173  0.317015252
## X335  0.790372339  0.632566458
## X336 -1.033167401 -1.055357076
## X337  2.004648607  1.976347696
## X338  0.053021849 -0.049947456
## X339  0.163822787  0.052613244
## X340  0.597108298  0.453675417
## X341 -0.549440542 -0.607604866
## X342 -1.033167401 -1.055357076
## X343 -0.104253140 -0.195525943
## X344  0.597108298  1.552727415
## X345 -0.667892696 -0.717247762
## X346  0.616094648  1.312981944
## X347  1.743657139  1.514955700
## X348  0.258754538  0.140484943
## X349 -1.033167401 -1.055357076
## X350  0.410361960  0.280817358
## X351 -0.287882317 -0.365498662
## X352 -0.941352813  0.534989527
## X353  1.099821507  1.138812367
## X354 -0.679794587 -0.728264513
## X355  0.023833878 -0.076964725
## X356 -1.033167401 -1.055357076
## X357  0.718960993  0.786276356
## X358  0.023833878 -0.076964725
## X359  0.616094648  1.312981944
## X360  0.418013175  0.287899555
## X361 -0.287882317 -0.365498662
## X362 -1.033167401 -1.055357076
## X363  1.743090382  1.734241492
## X364 -1.033167401 -1.055357076
## X365  0.144836437  0.035038904
## X366 -1.033167401 -1.055357076
## X367 -1.033167401 -1.055357076
## X368 -1.033167401 -1.055357076
## X369 -0.196067728 -0.280512302
## X370  2.320898856  2.488888891
## X371 -1.033167401 -1.055357076
## X372  0.364738044  0.238586482
## X373 -1.033167401 -1.055357076
## X374  0.714993696  0.562793706
## X375  0.582372624  0.440035631
## X376  1.654109577  1.432067769
## X377  1.170382718  0.984315558
## X378 -0.600448647 -0.654819510
## X379 -1.033167401 -1.055357076
## X380 -1.033167401 -1.055357076
## X381  0.285392103  0.165141479
## X382  1.191636095  1.223798726
## X383  2.227383997  1.962707910
## X384 -0.065713683 -0.159852656
## X385  0.507560737  0.370787486
## X386  1.743090382  1.734241492
## X387  0.691189913  0.540760205
## X388  2.069542251  2.036415216
## X389  1.298469737  2.063432485
## X390  0.117915493  0.010120064
## X391  1.170382718  0.984315558
## X392  0.065490497 -0.038406098
## X393 -1.033167401 -1.055357076
## X394 -1.033167401 -1.055357076
## X395  0.449468173  0.317015252
## X396 -1.033167401 -1.055357076
## X397 -0.459892981 -0.524716935
## X398 -0.459892981 -0.524716935
## X399 -1.033167401 -1.055357076
## X400  0.144836437  0.035038904
## X401  0.151637518  0.041334190
## X402  1.334458788  1.136189331
## X403  0.113381439  0.005923206
## X404 -0.549440542 -0.607604866
## X405  0.117915493  0.010120064
## X406  0.023833878 -0.076964725
## X407  0.381740745  0.254324696
## X408 -1.033167401 -1.055357076
## X409  1.099821507  0.919001967
## X410  2.320898856  2.488888891
## X411  2.005215364  1.757061904
## X412  1.377815677  1.396132178
## X413  0.510111142  1.214880405
## X414 -0.295816911 -0.372843162
## X415 -1.033167401 -1.055357076
## X416 -1.033167401 -1.055357076
## X417  1.743090382  1.734241492
## X418  0.113381439  0.005923206
## X419  0.023833878 -0.076964725
## X420 -0.591097161 -0.646163492
## X421  0.364738044  0.238586482
## X422  0.285392103  0.165141479
## X423  1.654109577  1.432067769
## X424  1.810534431  1.576859345
## X425  1.654109577  1.432067769
## X426 -0.065713683 -0.159852656
## X427 -1.033167401 -1.055357076
## X428 -1.033167401 -1.055357076
## X429 -1.033167401 -1.055357076
## X430 -0.208536376 -0.292053660
## X431 -1.033167401 -1.055357076
## X432  0.023833878 -0.076964725
## X433 -1.033167401 -1.055357076
## X434  0.692890184  0.542334027
## X435 -0.549440542 -0.607604866
## X436 -1.033167401 -1.055357076
## X437  5.512589313  5.003593308
## X438  1.654109577  1.432067769
## X439 -1.033167401 -1.055357076
## X440 -1.033167401 -1.055357076
## X441  0.601642352  0.457872274
## X442  0.466754253  0.333015770
## X443  1.837171997  1.821326281
## X444  0.449468173  0.317015252
## X445 -0.457625954  0.141009550
## X446  0.053021849 -0.049947456
## X447 -0.287882317 -0.365498662
## X448 -0.457625954  0.141009550
## X449  0.065490497 -0.038406098
## X450 -0.585712972 -0.641179724
## X451  0.023833878 -0.076964725
## X452  2.005215364  1.757061904
## X453  0.456836011  0.323835145
## X454  2.570838568  2.280619849
##  [ reached 'max' / getOption("max.print") -- omitted 497 rows ]
## 
## $yData
##   [1] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [16] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [31] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [46] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [61] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [76] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
##  [91] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [106] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [121] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [136] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [151] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [166] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [181] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [196] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [211] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [226] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Mid  Mid 
## [241] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [256] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Low 
## [271] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [286] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [301] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [316] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [331] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [346] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [361] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [376] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [391] Low  Low  Low  Low  Low  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [406] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Low  Low  Low  Low  Low  Low  Low 
## [421] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [436] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [451] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low 
## [466] Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  Low  High High Mid  Mid 
## [481] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [496] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [511] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [526] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [541] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [556] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [571] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [586] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [601] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [616] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [631] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  High High Mid  Mid  Mid 
## [646] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [661] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [676] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [691] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid 
## [706] Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  Mid  High High High High High High
## [721] High High High High High High High High High High High High High High High
## [736] High High High High High High High High High High High High High High High
## [751] High High High High High High High High High High High High High High High
## [766] High High High High High High High High High High High High High High High
## [781] High High High High High High High High High High High High High High High
## [796] High High High High High High High High High High High High High High High
## [811] High High High High High High High High High High High High High High High
## [826] High High High High High High High High High High High High High High High
## [841] High High High High High High High High High High High High High High High
## [856] High High High High High High High High High High High High High High High
## [871] High High High High High High High High High High High High High High High
## [886] High High High High High High High High High High High High High High High
## [901] High High High High High High High High High High High High High High High
## [916] High High High High High High High High High High High High High High High
## [931] High High High High High High High High High High High High High High High
## [946] High High High High High High
## Levels: Low Mid High
## 
## $xNames
##   [1] "FP001"             "FP002"             "FP003"            
##   [4] "FP004"             "FP005"             "FP006"            
##   [7] "FP007"             "FP008"             "FP009"            
##  [10] "FP010"             "FP011"             "FP012"            
##  [13] "FP013"             "FP014"             "FP015"            
##  [16] "FP016"             "FP017"             "FP018"            
##  [19] "FP019"             "FP020"             "FP021"            
##  [22] "FP022"             "FP023"             "FP024"            
##  [25] "FP025"             "FP026"             "FP027"            
##  [28] "FP028"             "FP029"             "FP030"            
##  [31] "FP031"             "FP032"             "FP033"            
##  [34] "FP034"             "FP035"             "FP036"            
##  [37] "FP037"             "FP038"             "FP039"            
##  [40] "FP040"             "FP041"             "FP042"            
##  [43] "FP043"             "FP044"             "FP045"            
##  [46] "FP046"             "FP047"             "FP048"            
##  [49] "FP049"             "FP050"             "FP051"            
##  [52] "FP052"             "FP053"             "FP054"            
##  [55] "FP055"             "FP056"             "FP057"            
##  [58] "FP058"             "FP059"             "FP060"            
##  [61] "FP061"             "FP062"             "FP063"            
##  [64] "FP064"             "FP065"             "FP066"            
##  [67] "FP067"             "FP068"             "FP069"            
##  [70] "FP070"             "FP071"             "FP072"            
##  [73] "FP073"             "FP074"             "FP075"            
##  [76] "FP076"             "FP077"             "FP078"            
##  [79] "FP079"             "FP080"             "FP081"            
##  [82] "FP082"             "FP083"             "FP084"            
##  [85] "FP085"             "FP086"             "FP087"            
##  [88] "FP088"             "FP089"             "FP090"            
##  [91] "FP091"             "FP092"             "FP093"            
##  [94] "FP094"             "FP095"             "FP096"            
##  [97] "FP097"             "FP098"             "FP099"            
## [100] "FP100"             "FP101"             "FP102"            
## [103] "FP103"             "FP104"             "FP105"            
## [106] "FP106"             "FP107"             "FP108"            
## [109] "FP109"             "FP110"             "FP111"            
## [112] "FP112"             "FP113"             "FP114"            
## [115] "FP115"             "FP116"             "FP117"            
## [118] "FP118"             "FP119"             "FP120"            
## [121] "FP121"             "FP122"             "FP123"            
## [124] "FP124"             "FP125"             "FP126"            
## [127] "FP127"             "FP128"             "FP129"            
## [130] "FP130"             "FP131"             "FP132"            
## [133] "FP133"             "FP134"             "FP135"            
## [136] "FP136"             "FP137"             "FP138"            
## [139] "FP139"             "FP140"             "FP141"            
## [142] "FP142"             "FP143"             "FP144"            
## [145] "FP145"             "FP146"             "FP147"            
## [148] "FP148"             "FP149"             "FP150"            
## [151] "FP151"             "FP152"             "FP153"            
## [154] "FP155"             "FP156"             "FP157"            
## [157] "FP158"             "FP159"             "FP160"            
## [160] "FP161"             "FP162"             "FP163"            
## [163] "FP164"             "FP165"             "FP166"            
## [166] "FP167"             "FP168"             "FP169"            
## [169] "FP170"             "FP171"             "FP172"            
## [172] "FP173"             "FP174"             "FP175"            
## [175] "FP176"             "FP177"             "FP178"            
## [178] "FP179"             "FP180"             "FP181"            
## [181] "FP182"             "FP183"             "FP184"            
## [184] "FP185"             "FP186"             "FP187"            
## [187] "FP188"             "FP189"             "FP190"            
## [190] "FP191"             "FP192"             "FP193"            
## [193] "FP194"             "FP195"             "FP196"            
## [196] "FP197"             "FP198"             "FP201"            
## [199] "FP202"             "FP203"             "FP204"            
## [202] "FP205"             "FP206"             "FP207"            
## [205] "FP208"             "MolWeight"         "NumBonds"         
## [208] "NumMultBonds"      "NumRotBonds"       "NumDblBonds"      
## [211] "NumCarbon"         "NumNitrogen"       "NumOxygen"        
## [214] "NumSulfer"         "NumChlorine"       "NumHalogen"       
## [217] "NumRings"          "HydrophilicFactor" "SurfaceArea1"     
## [220] "SurfaceArea2"     
## 
## $problemType
## [1] "Classification"
## 
## $tuneValue
##   threshold
## 2         1
## 
## $obsLevels
## [1] "Low"  "Mid"  "High"
## attr(,"ordered")
## [1] FALSE
## 
## $param
## list()
## 
## attr(,"class")
## [1] "pamrtrained"
NSC_Tune$results
##   threshold   logLoss       AUC     prAUC  Accuracy       Kappa   Mean_F1
## 1         0 1.0053088 0.7986117 0.6383621 0.5918682 0.377933196 0.5705143
## 2         1 0.8852013 0.7986907 0.6435073 0.6045224 0.390689052 0.5629779
## 3         2 0.8572315 0.7867513 0.6204747 0.5855622 0.354489788 0.5226695
## 4         3 0.8440090 0.7831023 0.6072123 0.5772620 0.331334495 0.4932871
## 5         4 0.8836407 0.7798191 0.5959490 0.5815176 0.320109872 0.4547332
## 6         5 0.9439966 0.7682432 0.5830754 0.5393650 0.211538787       NaN
## 7         6 0.9879275 0.7701367 0.5881594 0.4710398 0.048665101       NaN
## 8         7 1.0214083 0.7734845 0.5897285 0.4500637 0.002282919       NaN
## 9         8 1.0464494 0.7756318 0.5918340 0.4489999 0.000000000       NaN
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.5802349        0.7979792           0.5740786           0.7964560
## 2        0.5835158        0.8016081           0.5677051           0.8084817
## 3        0.5582769        0.7882126           0.5367218           0.8032933
## 4        0.5417570        0.7782304           0.4902777           0.8054533
## 5        0.5339216        0.7706006           0.4265496           0.8183140
## 6        0.4605736        0.7316940                 NaN           0.8164331
## 7        0.3623889        0.6806491                 NaN           0.8229237
## 8        0.3347222        0.6673077                 NaN           0.8182719
## 9        0.3333333        0.6666667                 NaN                 NaN
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.5740786   0.5802349           0.1972894              0.6891071
## 2      0.5677051   0.5835158           0.2015075              0.6925619
## 3      0.5367218   0.5582769           0.1951874              0.6732448
## 4      0.4902777   0.5417570           0.1924207              0.6599937
## 5      0.4265496   0.5339216           0.1938392              0.6522611
## 6            NaN   0.4605736           0.1797883              0.5961338
## 7            NaN   0.3623889           0.1570133              0.5215190
## 8            NaN   0.3347222           0.1500212              0.5010150
## 9            NaN   0.3333333           0.1496666              0.5000000
##     logLossSD      AUCSD    prAUCSD  AccuracySD     KappaSD  Mean_F1SD
## 1 0.207410713 0.04290616 0.04831082 0.062898945 0.091107862 0.06225442
## 2 0.160335415 0.04468868 0.04816844 0.064720949 0.093096077 0.06389466
## 3 0.118359061 0.04923520 0.05411279 0.047645975 0.070128289 0.05208052
## 4 0.078031415 0.05194093 0.06036538 0.052120079 0.076003967 0.05758974
## 5 0.041695972 0.05181450 0.06214396 0.045984727 0.068208081         NA
## 6 0.019107473 0.04162677 0.05106245 0.015787366 0.026066562         NA
## 7 0.009566838 0.03703778 0.03915760 0.016053493 0.033424310         NA
## 8 0.004578527 0.03677434 0.03719562 0.004328825 0.007219223         NA
## 9 0.001852537 0.03673222 0.03689563 0.003549913 0.000000000         NA
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1        0.060730826        0.029931070            0.06030153
## 2        0.062306543        0.030007758            0.06403451
## 3        0.047085461        0.022639261            0.06377230
## 4        0.050369597        0.023883501            0.09473380
## 5        0.044777490        0.021528870            0.10469447
## 6        0.016122287        0.008886446                    NA
## 7        0.020138495        0.009648278                    NA
## 8        0.004392052        0.002027101                    NA
## 9        0.000000000        0.000000000                    NA
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1           0.031847546       0.06030153   0.060730826           0.020966315
## 2           0.033986775       0.06403451   0.062306543           0.021573650
## 3           0.026874143       0.06377230   0.047085461           0.015881992
## 4           0.031500874       0.09473380   0.050369597           0.017373360
## 5           0.034130618       0.10469447   0.044777490           0.015328242
## 6           0.025491242               NA   0.016122287           0.005262455
## 7           0.003801667               NA   0.020138495           0.005351164
## 8                    NA               NA   0.004392052           0.001442942
## 9                    NA               NA   0.000000000           0.001183304
##   Mean_Balanced_AccuracySD
## 1              0.045195187
## 2              0.046063039
## 3              0.034689195
## 4              0.036866243
## 5              0.032857538
## 6              0.012108669
## 7              0.014867820
## 8              0.003209577
## 9              0.000000000
(NSC_Train_Accuracy <- NSC_Tune$results[NSC_Tune$results$threshold==NSC_Tune$bestTune$threshold,
                              c("Accuracy")])
## [1] 0.6045224
##################################
# Identifying and plotting the
# best model predictors
##################################
NSC_VarImp <- varImp(NSC_Tune, scale = TRUE)
plot(NSC_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Nearest Shrunken Centroids",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
NSC_Test <- data.frame(NSC_Observed = PMA_PreModelling_Test_NSC$Log_Solubility_Class,
                      NSC_Predicted = predict(NSC_Tune,
                      PMA_PreModelling_Test_NSC[,!names(PMA_PreModelling_Test_NSC) %in% c("Log_Solubility_Class")],
                      type = "raw"))

NSC_Test
##     NSC_Observed NSC_Predicted
## 1           High          High
## 2           High          High
## 3           High           Mid
## 4           High          High
## 5           High           Mid
## 6           High          High
## 7           High          High
## 8           High          High
## 9           High          High
## 10          High           Mid
## 11          High           Mid
## 12          High           Low
## 13          High          High
## 14          High          High
## 15          High           Mid
## 16          High           Mid
## 17          High          High
## 18          High          High
## 19          High          High
## 20          High           Mid
## 21          High          High
## 22          High          High
## 23          High          High
## 24          High           Mid
## 25          High          High
## 26          High           Mid
## 27          High          High
## 28          High          High
## 29          High           Low
## 30          High          High
## 31          High           Low
## 32          High          High
## 33          High          High
## 34          High           Mid
## 35          High           Mid
## 36          High          High
## 37          High          High
## 38          High          High
## 39          High           Mid
## 40          High          High
## 41          High          High
## 42          High           Low
## 43          High           Mid
## 44          High          High
## 45          High          High
## 46          High          High
## 47          High          High
## 48          High          High
## 49          High          High
## 50          High           Mid
## 51          High          High
## 52          High          High
## 53          High           Mid
## 54          High          High
## 55          High          High
## 56          High           Mid
## 57          High          High
## 58           Mid          High
## 59           Mid           Mid
## 60           Mid           Low
## 61           Mid          High
## 62           Mid          High
## 63           Mid          High
## 64           Mid          High
## 65           Mid           Mid
## 66           Mid           Low
## 67           Mid           Mid
## 68           Mid           Low
## 69           Mid           Mid
## 70           Mid           Low
## 71           Mid          High
## 72           Mid           Mid
## 73           Mid          High
## 74           Mid           Low
## 75           Mid           Mid
## 76           Mid          High
## 77           Mid           Mid
## 78           Mid          High
## 79           Mid           Mid
## 80           Mid           Mid
## 81           Mid           Mid
## 82           Mid          High
## 83           Mid          High
## 84           Mid          High
## 85           Mid           Mid
## 86           Mid          High
## 87           Mid           Low
## 88           Mid           Low
## 89           Mid          High
## 90           Mid          High
## 91           Mid           Mid
## 92           Mid           Mid
## 93           Mid           Low
## 94           Mid           Mid
## 95           Mid           Mid
## 96           Mid           Mid
## 97           Mid           Mid
## 98           Mid           Mid
## 99           Mid           Mid
## 100          Mid          High
## 101          Mid          High
## 102          Mid           Mid
## 103          Mid           Mid
## 104          Mid           Mid
## 105          Mid          High
## 106          Mid          High
## 107          Mid           Low
## 108          Mid           Low
## 109          Mid           Mid
## 110          Mid           Low
## 111          Mid           Mid
## 112          Mid           Low
## 113          Mid           Mid
## 114          Mid           Low
## 115          Mid           Low
## 116          Mid           Low
## 117          Mid           Low
## 118          Mid          High
## 119          Low           Low
## 120          Low           Low
## 121          Low           Low
## 122          Low           Mid
## 123          Low           Low
## 124          Low          High
## 125          Low           Low
## 126          Low           Mid
## 127          Low          High
## 128          Low           Mid
## 129          Low          High
## 130          Low           Low
## 131          Low           Mid
## 132          Low           Low
## 133          Low           Low
## 134          Low           Low
## 135          Low          High
## 136          Low           Mid
## 137          Low           Low
## 138          Low           Mid
## 139          Low          High
## 140          Low           Low
## 141          Low           Low
## 142          Low           Low
## 143          Low           Low
## 144          Low           Low
## 145          Low           Low
## 146          Low           Low
## 147          Low           Low
## 148          Low           Low
## 149          Low          High
## 150          Low           Low
## 151          Low           Low
## 152          Low           Low
## 153          Low          High
## 154          Low           Mid
## 155          Low           Low
## 156          Low           Low
## 157          Low           Low
## 158          Low           Low
## 159          Low          High
## 160          Low           Low
## 161          Low           Low
## 162          Low           Low
## 163          Low           Mid
## 164          Low           Low
## 165          Low           Low
## 166          Low           Mid
## 167          Low           Low
## 168          Low           Low
## 169          Low           Low
## 170          Low           Low
## 171          Low           Mid
## 172          Low          High
## 173          Low           Low
## 174          Low          High
## 175          Low           Low
## 176          Low           Low
## 177          Low           Low
## 178          Low           Low
## 179          Low           Low
## 180          Low          High
## 181          Low           Low
## 182          Low           Low
## 183          Low           Mid
## 184          Low          High
## 185          Low           Low
## 186          Low           Low
## 187          Low           Low
## 188          Low           Low
## 189          Low           Low
## 190          Low           Low
## 191          Low           Low
## 192          Low           Low
## 193          Low           Low
## 194          Low           Low
## 195          Low           Low
## 196          Low           Low
## 197          Low           Low
## 198          Low           Low
## 199          Low           Low
## 200          Low           Low
## 201          Low           Low
## 202          Low           Low
## 203          Low           Low
## 204          Low           Low
## 205          Low           Low
## 206          Low           Low
## 207          Low           Low
## 208          Low           Low
## 209          Low           Low
## 210          Low           Low
## 211          Low           Low
## 212          Low           Low
## 213          Low           Low
## 214          Low           Low
## 215          Low           Low
## 216          Low           Low
## 217         High          High
## 218         High          High
## 219         High          High
## 220         High          High
## 221         High           Mid
## 222         High          High
## 223         High          High
## 224         High          High
## 225         High           Low
## 226         High           Mid
## 227         High          High
## 228         High           Mid
## 229         High          High
## 230         High           Mid
## 231         High          High
## 232         High          High
## 233         High          High
## 234         High           Mid
## 235         High          High
## 236         High           Mid
## 237         High           Mid
## 238          Mid           Mid
## 239          Mid           Mid
## 240          Mid           Mid
## 241          Mid          High
## 242          Mid          High
## 243          Mid          High
## 244          Mid           Low
## 245          Mid           Low
## 246          Mid           Mid
## 247          Mid          High
## 248          Mid           Mid
## 249          Mid          High
## 250          Mid          High
## 251          Mid           Mid
## 252          Mid           Mid
## 253          Mid           Mid
## 254          Mid           Low
## 255          Mid           Mid
## 256          Mid           Mid
## 257          Mid           Mid
## 258          Mid           Mid
## 259          Mid           Low
## 260          Mid          High
## 261          Mid          High
## 262          Mid           Mid
## 263          Mid          High
## 264          Mid           Low
## 265          Mid           Low
## 266          Mid           Low
## 267          Mid           Mid
## 268          Mid          High
## 269          Low           Mid
## 270          Low           Low
## 271          Low           Mid
## 272          Low           Low
## 273          Low           Low
## 274          Low           Low
## 275          Low           Mid
## 276          Low           Low
## 277          Low           Low
## 278          Low           Mid
## 279          Low           Low
## 280          Low           Mid
## 281          Low          High
## 282          Low           Low
## 283          Low           Low
## 284          Low           Low
## 285          Low          High
## 286          Low           Low
## 287          Low          High
## 288          Low           Low
## 289          Low           Low
## 290          Low           Low
## 291          Low           Low
## 292          Low           Low
## 293          Low          High
## 294          Low           Low
## 295          Low           Low
## 296          Low           Low
## 297          Low           Low
## 298          Low           Low
## 299          Low           Low
## 300          Low           Low
## 301          Low           Low
## 302          Low           Low
## 303          Low           Low
## 304          Low           Low
## 305          Low           Low
## 306          Low           Low
## 307          Low           Low
## 308          Low           Low
## 309          Low           Low
## 310          Low           Low
## 311          Low           Low
## 312          Low           Low
## 313          Mid           Mid
## 314         High           Low
## 315          Low           Low
## 316          Mid           Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(NSC_Test_Accuracy <- Accuracy(y_pred = NSC_Test$NSC_Predicted,
                              y_true = NSC_Test$NSC_Observed))
## [1] 0.6360759

1.5.7 Averaged Neural Network (AVNN)


Averaged Neural Networks implement fitting of the same neural network model using different random number seeds. All the resulting models are used for prediction by averaging the model scores and translating to predicted classes. Neural networks are comprised of node layers, containing an input layer, one or more hidden layers, and an output layer. Each node, or artificial neuron, connects to another and has an associated weight and threshold. If the output of any individual node is above the specified threshold value, that node is activated, sending data to the next layer of the network. Otherwise, no data is passed along to the next layer of the network.

[A] The averaged neural network model from the nnet package was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] size = number of hidden units made to vary across a range of values equal to 1 to 13
     [B.2] decay = weight decay made to vary across a range of values equal to 0.00 to 0.10
     [B.3] bag = bagging held constant at a value of FALSE

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves size=5, decay=0 and bag=FALSE
     [C.2] Accuracy = 0.67296

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.65822

Code Chunk | Output
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_AVNN <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_AVNN$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_AVNN)
## [1] 951 221
PMA_PreModelling_Test_AVNN <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_AVNN$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_AVNN)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_AVNN$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
AVNN_Grid = expand.grid(decay = c(0.00, 0.01, 0.10), 
                        size = c(1, 5, 9, 13), 
                        bag = FALSE)
maxSize <- max(AVNN_Grid$size)

##################################
# Running the averaged neural network model
# by setting the caret method to 'avNNet'
##################################
set.seed(12345678)
AVNN_Tune <- train(x = PMA_PreModelling_Train_AVNN[,!names(PMA_PreModelling_Train_AVNN) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_AVNN$Log_Solubility_Class,
                 method = "avNNet",
                 tuneGrid = AVNN_Grid,
                 metric = "Accuracy",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control,
                 maxit = 5,
                 repeats = 10,
                 allowParallel = FALSE,
                 MaxNWts = 10*(maxSize * (length(PMA_PreModelling_Train_AVNN) + 1) + maxSize + 1),
                 trace = FALSE)

##################################
# Reporting the cross-validation results
# for the train set
##################################
AVNN_Tune
## Model Averaged Neural Network 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   decay  size  logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##   0.00    1    0.8743301  0.7916644  0.6159023  0.6184602  0.3870841        NaN
##   0.00    5    0.7296976  0.8246721  0.6642682  0.6729680  0.4811186  0.5957249
##   0.00    9    0.7529018  0.8196216  0.6686448  0.6581196  0.4520066  0.5653505
##   0.00   13    0.7713276  0.8160298  0.6630645  0.6403240  0.4194198  0.5494161
##   0.01    1    0.8527143  0.7921062  0.6217329  0.6255424  0.3935409  0.4754874
##   0.01    5    0.7546137  0.8202957  0.6619866  0.6551059  0.4540184  0.5539830
##   0.01    9    0.7637712  0.8188823  0.6628303  0.6613331  0.4559582  0.5782255
##   0.01   13    0.7597509  0.8313850  0.6804986  0.6645472  0.4593961  0.5736998
##   0.10    1    0.8636663  0.7955220  0.6182132  0.5982479  0.3494394  0.5284185
##   0.10    5    0.7576092  0.8131087  0.6477432  0.6666739  0.4682212  0.5909508
##   0.10    9    0.7475943  0.8236217  0.6693355  0.6393055  0.4189232  0.5470570
##   0.10   13    0.7959497  0.8081472  0.6494537  0.6288116  0.3956828  0.5342739
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.5736665         0.7964324         0.4406714            0.8461139          
##   0.6386059         0.8271879         0.6341100            0.8674043          
##   0.6185619         0.8158697         0.6496467            0.8585254          
##   0.5911098         0.8058184         0.6177253            0.8514954          
##   0.5794171         0.7983556         0.6090909            0.8536804          
##   0.6203362         0.8193767         0.6884385            0.8644528          
##   0.6193824         0.8173641         0.5730730            0.8658935          
##   0.6204659         0.8182370         0.6284561            0.8693794          
##   0.5414457         0.7853702         0.6390245            0.8311334          
##   0.6299002         0.8218824         0.6521677            0.8580581          
##   0.5838415         0.8083322         0.6361331            0.8519042          
##   0.5751526         0.7971639         0.5875691            0.8491083          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.4406714       0.5736665    0.2061534            0.6850495             
##   0.6341100       0.6386059    0.2243227            0.7328969             
##   0.6496467       0.6185619    0.2193732            0.7172158             
##   0.6177253       0.5911098    0.2134413            0.6984641             
##   0.6090909       0.5794171    0.2085141            0.6888864             
##   0.6884385       0.6203362    0.2183686            0.7198564             
##   0.5730730       0.6193824    0.2204444            0.7183733             
##   0.6284561       0.6204659    0.2215157            0.7193514             
##   0.6390245       0.5414457    0.1994160            0.6634079             
##   0.6521677       0.6299002    0.2222246            0.7258913             
##   0.6361331       0.5838415    0.2131018            0.6960868             
##   0.5875691       0.5751526    0.2096039            0.6861582             
## 
## Tuning parameter 'bag' was held constant at a value of FALSE
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were size = 5, decay = 0 and bag = FALSE.
AVNN_Tune$finalModel
## Model Averaged Neural Network with 10 Repeats  
## 
## a 220-5-3 network with 1123 weights
## options were -
AVNN_Tune$results
##    decay size   bag   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1   0.00    1 FALSE 0.8743301 0.7916644 0.6159023 0.6184602 0.3870841       NaN
## 5   0.01    1 FALSE 0.8527143 0.7921062 0.6217329 0.6255424 0.3935409 0.4754874
## 9   0.10    1 FALSE 0.8636663 0.7955220 0.6182132 0.5982479 0.3494394 0.5284185
## 2   0.00    5 FALSE 0.7296976 0.8246721 0.6642682 0.6729680 0.4811186 0.5957249
## 6   0.01    5 FALSE 0.7546137 0.8202957 0.6619866 0.6551059 0.4540184 0.5539830
## 10  0.10    5 FALSE 0.7576092 0.8131087 0.6477432 0.6666739 0.4682212 0.5909508
## 3   0.00    9 FALSE 0.7529018 0.8196216 0.6686448 0.6581196 0.4520066 0.5653505
## 7   0.01    9 FALSE 0.7637712 0.8188823 0.6628303 0.6613331 0.4559582 0.5782255
## 11  0.10    9 FALSE 0.7475943 0.8236217 0.6693355 0.6393055 0.4189232 0.5470570
## 4   0.00   13 FALSE 0.7713276 0.8160298 0.6630645 0.6403240 0.4194198 0.5494161
## 8   0.01   13 FALSE 0.7597509 0.8313850 0.6804986 0.6645472 0.4593961 0.5736998
## 12  0.10   13 FALSE 0.7959497 0.8081472 0.6494537 0.6288116 0.3956828 0.5342739
##    Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1         0.5736665        0.7964324           0.4406714           0.8461139
## 5         0.5794171        0.7983556           0.6090909           0.8536804
## 9         0.5414457        0.7853702           0.6390245           0.8311334
## 2         0.6386059        0.8271879           0.6341100           0.8674043
## 6         0.6203362        0.8193767           0.6884385           0.8644528
## 10        0.6299002        0.8218824           0.6521677           0.8580581
## 3         0.6185619        0.8158697           0.6496467           0.8585254
## 7         0.6193824        0.8173641           0.5730730           0.8658935
## 11        0.5838415        0.8083322           0.6361331           0.8519042
## 4         0.5911098        0.8058184           0.6177253           0.8514954
## 8         0.6204659        0.8182370           0.6284561           0.8693794
## 12        0.5751526        0.7971639           0.5875691           0.8491083
##    Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1       0.4406714   0.5736665           0.2061534              0.6850495
## 5       0.6090909   0.5794171           0.2085141              0.6888864
## 9       0.6390245   0.5414457           0.1994160              0.6634079
## 2       0.6341100   0.6386059           0.2243227              0.7328969
## 6       0.6884385   0.6203362           0.2183686              0.7198564
## 10      0.6521677   0.6299002           0.2222246              0.7258913
## 3       0.6496467   0.6185619           0.2193732              0.7172158
## 7       0.5730730   0.6193824           0.2204444              0.7183733
## 11      0.6361331   0.5838415           0.2131018              0.6960868
## 4       0.6177253   0.5911098           0.2134413              0.6984641
## 8       0.6284561   0.6204659           0.2215157              0.7193514
## 12      0.5875691   0.5751526           0.2096039              0.6861582
##     logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1  0.06182060 0.03818877 0.05330993 0.04715826 0.08542407         NA
## 5  0.05796163 0.03523217 0.04786735 0.06254090 0.12554122         NA
## 9  0.04738598 0.03519045 0.04714663 0.06949372 0.12503326 0.07296465
## 2  0.05194405 0.02829588 0.04855106 0.04252893 0.06283645 0.05825960
## 6  0.05208844 0.02895720 0.03681862 0.03381334 0.04977224 0.03527784
## 10 0.04294212 0.02402278 0.03643602 0.03161813 0.04938901 0.03548599
## 3  0.04755711 0.02898232 0.03321211 0.03176787 0.04924431 0.05328903
## 7  0.05487524 0.03705808 0.05632455 0.02928235 0.04713396 0.04310652
## 11 0.04420828 0.02997049 0.04128367 0.04625483 0.07993394 0.06612313
## 4  0.06075696 0.03041349 0.04355976 0.04751680 0.07886839 0.05342062
## 8  0.05268121 0.02324128 0.04527397 0.02751443 0.04653444 0.03975306
## 12 0.05354993 0.02549944 0.03480287 0.04296635 0.07646580 0.05941717
##    Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1          0.06601282         0.02727416            0.01262238
## 5          0.08707831         0.04157705                    NA
## 9          0.09291523         0.03917346            0.06879317
## 2          0.04243563         0.01901505            0.11646707
## 6          0.03246272         0.01592494            0.10715731
## 10         0.03271050         0.01646549            0.06796995
## 3          0.03406656         0.01544643            0.07992946
## 7          0.03109855         0.01602722            0.11369947
## 11         0.06397997         0.02540251            0.12982590
## 4          0.06168335         0.02325369            0.09749658
## 8          0.03455672         0.01565608            0.10240891
## 12         0.05171240         0.02565866            0.09043070
##    Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1             0.02634704       0.01262238    0.06601282           0.015719418
## 5             0.02880085               NA    0.08707831           0.020846966
## 9             0.03919715       0.06879317    0.09291523           0.023164574
## 2             0.02335260       0.11646707    0.04243563           0.014176309
## 6             0.02224323       0.10715731    0.03246272           0.011271115
## 10            0.02844367       0.06796995    0.03271050           0.010539376
## 3             0.01951320       0.07992946    0.03406656           0.010589289
## 7             0.01849106       0.11369947    0.03109855           0.009760783
## 11            0.02716153       0.12982590    0.06397997           0.015418278
## 4             0.02867818       0.09749658    0.06168335           0.015838932
## 8             0.01788874       0.10240891    0.03455672           0.009171477
## 12            0.02256365       0.09043070    0.05171240           0.014322115
##    Mean_Balanced_AccuracySD
## 1                0.04632515
## 5                0.06415712
## 9                0.06580491
## 2                0.03064781
## 6                0.02397790
## 10               0.02417231
## 3                0.02459656
## 7                0.02314419
## 11               0.04422533
## 4                0.04218772
## 8                0.02497062
## 12               0.03844077
(AVNN_Train_Accuracy <- AVNN_Tune$results[AVNN_Tune$results$decay==AVNN_Tune$bestTune$decay &
                              AVNN_Tune$results$size==AVNN_Tune$bestTune$size,
                              c("Accuracy")])
## [1] 0.672968
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
AVNN_Test <- data.frame(AVNN_Observed = PMA_PreModelling_Test_AVNN$Log_Solubility_Class,
                      AVNN_Predicted = predict(AVNN_Tune,
                      PMA_PreModelling_Test_AVNN[,!names(PMA_PreModelling_Test_AVNN) %in% c("Log_Solubility_Class")],
                      type = "raw"))

AVNN_Test
##     AVNN_Observed AVNN_Predicted
## 1            High           High
## 2            High           High
## 3            High           High
## 4            High           High
## 5            High           High
## 6            High           High
## 7            High           High
## 8            High           High
## 9            High           High
## 10           High           High
## 11           High           High
## 12           High            Low
## 13           High           High
## 14           High           High
## 15           High           High
## 16           High           High
## 17           High           High
## 18           High           High
## 19           High           High
## 20           High           High
## 21           High           High
## 22           High           High
## 23           High           High
## 24           High           High
## 25           High           High
## 26           High           High
## 27           High           High
## 28           High           High
## 29           High            Low
## 30           High           High
## 31           High            Low
## 32           High           High
## 33           High           High
## 34           High           High
## 35           High           High
## 36           High           High
## 37           High           High
## 38           High           High
## 39           High           High
## 40           High           High
## 41           High           High
## 42           High            Low
## 43           High           High
## 44           High           High
## 45           High           High
## 46           High           High
## 47           High           High
## 48           High           High
## 49           High           High
## 50           High           High
## 51           High           High
## 52           High           High
## 53           High           High
## 54           High           High
## 55           High           High
## 56           High           High
## 57           High           High
## 58            Mid           High
## 59            Mid           High
## 60            Mid           High
## 61            Mid           High
## 62            Mid           High
## 63            Mid           High
## 64            Mid           High
## 65            Mid           High
## 66            Mid            Low
## 67            Mid           High
## 68            Mid            Low
## 69            Mid           High
## 70            Mid            Low
## 71            Mid           High
## 72            Mid            Low
## 73            Mid            Low
## 74            Mid            Low
## 75            Mid           High
## 76            Mid           High
## 77            Mid           High
## 78            Mid           High
## 79            Mid           High
## 80            Mid           High
## 81            Mid           High
## 82            Mid            Low
## 83            Mid           High
## 84            Mid           High
## 85            Mid            Low
## 86            Mid           High
## 87            Mid            Low
## 88            Mid            Low
## 89            Mid           High
## 90            Mid            Low
## 91            Mid           High
## 92            Mid           High
## 93            Mid            Low
## 94            Mid           High
## 95            Mid           High
## 96            Mid           High
## 97            Mid            Mid
## 98            Mid            Low
## 99            Mid           High
## 100           Mid           High
## 101           Mid           High
## 102           Mid            Mid
## 103           Mid            Low
## 104           Mid           High
## 105           Mid           High
## 106           Mid            Low
## 107           Mid            Low
## 108           Mid            Low
## 109           Mid            Low
## 110           Mid            Low
## 111           Mid            Low
## 112           Mid            Low
## 113           Mid            Low
## 114           Mid            Low
## 115           Mid            Low
## 116           Mid            Low
## 117           Mid            Low
## 118           Mid           High
## 119           Low            Low
## 120           Low            Low
## 121           Low            Low
## 122           Low           High
## 123           Low            Low
## 124           Low           High
## 125           Low            Low
## 126           Low            Low
## 127           Low            Low
## 128           Low            Low
## 129           Low            Low
## 130           Low            Low
## 131           Low            Low
## 132           Low            Low
## 133           Low            Low
## 134           Low            Low
## 135           Low           High
## 136           Low            Low
## 137           Low            Low
## 138           Low            Low
## 139           Low            Low
## 140           Low            Low
## 141           Low            Low
## 142           Low            Low
## 143           Low            Low
## 144           Low            Low
## 145           Low            Low
## 146           Low            Low
## 147           Low            Low
## 148           Low            Low
## 149           Low            Low
## 150           Low            Low
## 151           Low            Low
## 152           Low            Low
## 153           Low           High
## 154           Low            Low
## 155           Low            Low
## 156           Low            Low
## 157           Low            Low
## 158           Low            Low
## 159           Low            Low
## 160           Low            Low
## 161           Low            Low
## 162           Low            Low
## 163           Low            Low
## 164           Low            Low
## 165           Low            Low
## 166           Low            Low
## 167           Low            Low
## 168           Low            Low
## 169           Low            Low
## 170           Low            Low
## 171           Low            Low
## 172           Low            Low
## 173           Low            Low
## 174           Low            Low
## 175           Low            Low
## 176           Low            Low
## 177           Low            Low
## 178           Low            Low
## 179           Low            Low
## 180           Low           High
## 181           Low            Low
## 182           Low            Low
## 183           Low            Low
## 184           Low            Low
## 185           Low            Low
## 186           Low            Low
## 187           Low            Low
## 188           Low            Low
## 189           Low            Low
## 190           Low            Low
## 191           Low            Low
## 192           Low            Low
## 193           Low            Low
## 194           Low            Low
## 195           Low            Low
## 196           Low            Low
## 197           Low            Low
## 198           Low            Low
## 199           Low            Low
## 200           Low            Low
## 201           Low            Low
## 202           Low            Low
## 203           Low            Low
## 204           Low            Low
## 205           Low            Low
## 206           Low            Low
## 207           Low            Low
## 208           Low            Low
## 209           Low            Low
## 210           Low            Low
## 211           Low            Low
## 212           Low            Low
## 213           Low            Low
## 214           Low            Low
## 215           Low            Low
## 216           Low            Low
## 217          High           High
## 218          High           High
## 219          High           High
## 220          High           High
## 221          High           High
## 222          High           High
## 223          High           High
## 224          High           High
## 225          High            Low
## 226          High            Low
## 227          High           High
## 228          High           High
## 229          High           High
## 230          High            Low
## 231          High            Low
## 232          High           High
## 233          High           High
## 234          High           High
## 235          High           High
## 236          High           High
## 237          High           High
## 238           Mid            Low
## 239           Mid           High
## 240           Mid           High
## 241           Mid           High
## 242           Mid           High
## 243           Mid           High
## 244           Mid            Low
## 245           Mid            Low
## 246           Mid           High
## 247           Mid           High
## 248           Mid           High
## 249           Mid           High
## 250           Mid            Low
## 251           Mid           High
## 252           Mid           High
## 253           Mid           High
## 254           Mid            Low
## 255           Mid           High
## 256           Mid            Low
## 257           Mid           High
## 258           Mid            Low
## 259           Mid            Low
## 260           Mid           High
## 261           Mid            Low
## 262           Mid            Low
## 263           Mid           High
## 264           Mid            Low
## 265           Mid            Low
## 266           Mid            Low
## 267           Mid            Low
## 268           Mid           High
## 269           Low            Low
## 270           Low            Low
## 271           Low           High
## 272           Low            Low
## 273           Low            Low
## 274           Low            Low
## 275           Low            Low
## 276           Low            Low
## 277           Low            Low
## 278           Low            Low
## 279           Low            Low
## 280           Low            Low
## 281           Low           High
## 282           Low            Low
## 283           Low            Low
## 284           Low            Low
## 285           Low            Low
## 286           Low            Low
## 287           Low            Low
## 288           Low            Low
## 289           Low            Low
## 290           Low            Low
## 291           Low            Low
## 292           Low            Low
## 293           Low            Low
## 294           Low            Low
## 295           Low            Low
## 296           Low            Low
## 297           Low            Low
## 298           Low            Low
## 299           Low            Low
## 300           Low            Low
## 301           Low            Low
## 302           Low            Low
## 303           Low            Low
## 304           Low            Low
## 305           Low            Low
## 306           Low            Low
## 307           Low            Low
## 308           Low            Low
## 309           Low            Low
## 310           Low            Low
## 311           Low            Low
## 312           Low            Low
## 313           Mid           High
## 314          High            Low
## 315           Low            Low
## 316           Mid            Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(AVNN_Test_Accuracy <- Accuracy(y_pred = AVNN_Test$AVNN_Predicted,
                                y_true = AVNN_Test$AVNN_Observed))
## [1] 0.6582278

1.5.8 Support Vector Machine - Radial Basis Function Kernel (SVM_R)


Support Vector Machine plots each observation in an N-dimensional space corresponding to the number of features in the data set and finds a hyperplane that maximally separates the different classes by a maximally large margin (which is defined as the distance between the hyperplane and the closest data points from each class). The algorithm applies kernel transformation by mapping non-linearly separable data using the similarities between the points in a high-dimensional feature space for improved discrimination.

[A] The support vector machine (radial basis function kernel) model from the kernlab package was implemented through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] sigma = sigma held constant at a value of 0.00285
     [B.2] C = cost made to vary across a range of 14 default values

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves sigma=0.00285 and C=8
     [C.2] Accuracy = 0.79802

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.79114

Code Chunk | Output
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_SVM_R <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_SVM_R$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_SVM_R)
## [1] 951 221
PMA_PreModelling_Test_SVM_R <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_SVM_R$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_SVM_R)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_SVM_R$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# used a range of default values

##################################
# Running the support vector machine (radial basis function kernel) model
# by setting the caret method to 'svmRadial'
##################################
set.seed(12345678)
SVM_R_Tune <- train(x = PMA_PreModelling_Train_SVM_R[,!names(PMA_PreModelling_Train_SVM_R) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_SVM_R$Log_Solubility_Class,
                 method = "svmRadial",
                 tuneLength = 14,
                 metric = "Accuracy",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_R_Tune
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   C        logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##      0.25  0.6334423  0.8689748  0.7194482  0.7023115  0.5371923  0.6886849
##      0.50  0.5725928  0.8907098  0.7600585  0.7212379  0.5660314  0.7089492
##      1.00  0.5331090  0.9035696  0.7838100  0.7518216  0.6139046  0.7411611
##      2.00  0.5118222  0.9091475  0.7937931  0.7633569  0.6320557  0.7535229
##      4.00  0.4951963  0.9144035  0.8006117  0.7864376  0.6678594  0.7767546
##      8.00  0.4791068  0.9221485  0.8115407  0.7980168  0.6856740  0.7881976
##     16.00  0.4805208  0.9215547  0.8125939  0.7928644  0.6782327  0.7815636
##     32.00  0.4821513  0.9207821  0.8071511  0.7834344  0.6637563  0.7717154
##     64.00  0.4798816  0.9213063  0.8099530  0.7813072  0.6604966  0.7704117
##    128.00  0.4738832  0.9240360  0.8150784  0.7728856  0.6476486  0.7611360
##    256.00  0.4680732  0.9256462  0.8176965  0.7812626  0.6605779  0.7683309
##    512.00  0.4670243  0.9275979  0.8204870  0.7854736  0.6669789  0.7717478
##   1024.00  0.4668307  0.9274744  0.8191998  0.7886093  0.6720220  0.7753791
##   2048.00  0.4660341  0.9276946  0.8196551  0.7886203  0.6720784  0.7755116
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.6841728         0.8477694         0.7014227            0.8493309          
##   0.7030356         0.8568140         0.7237266            0.8589960          
##   0.7368545         0.8724838         0.7536193            0.8749749          
##   0.7508730         0.8782335         0.7623762            0.8804365          
##   0.7763841         0.8897518         0.7833933            0.8927348          
##   0.7878551         0.8955247         0.7930046            0.8987511          
##   0.7813813         0.8942936         0.7859441            0.8959220          
##   0.7707860         0.8896925         0.7770926            0.8911737          
##   0.7679817         0.8886472         0.7768166            0.8897177          
##   0.7600439         0.8843750         0.7671500            0.8858450          
##   0.7675481         0.8887752         0.7744510            0.8905710          
##   0.7702521         0.8910541         0.7788597            0.8932930          
##   0.7747190         0.8926772         0.7819394            0.8947361          
##   0.7744188         0.8927925         0.7829020            0.8947657          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.7014227       0.6841728    0.2341038            0.7659711             
##   0.7237266       0.7030356    0.2404126            0.7799248             
##   0.7536193       0.7368545    0.2506072            0.8046692             
##   0.7623762       0.7508730    0.2544523            0.8145533             
##   0.7833933       0.7763841    0.2621459            0.8330679             
##   0.7930046       0.7878551    0.2660056            0.8416899             
##   0.7859441       0.7813813    0.2642881            0.8378374             
##   0.7770926       0.7707860    0.2611448            0.8302393             
##   0.7768166       0.7679817    0.2604357            0.8283145             
##   0.7671500       0.7600439    0.2576285            0.8222095             
##   0.7744510       0.7675481    0.2604209            0.8281617             
##   0.7788597       0.7702521    0.2618245            0.8306531             
##   0.7819394       0.7747190    0.2628698            0.8336981             
##   0.7829020       0.7744188    0.2628734            0.8336056             
## 
## Tuning parameter 'sigma' was held constant at a value of 0.002858301
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.002858301 and C = 8.
SVM_R_Tune$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 8 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.00285830098890164 
## 
## Number of Support Vectors : 612 
## 
## Objective Function Value : -941.4835 -179.1601 -709.4411 
## Training error : 0.030494 
## Probability model included.
SVM_R_Tune$results
##          sigma       C   logLoss       AUC     prAUC  Accuracy     Kappa
## 1  0.002858301    0.25 0.6334423 0.8689748 0.7194482 0.7023115 0.5371923
## 2  0.002858301    0.50 0.5725928 0.8907098 0.7600585 0.7212379 0.5660314
## 3  0.002858301    1.00 0.5331090 0.9035696 0.7838100 0.7518216 0.6139046
## 4  0.002858301    2.00 0.5118222 0.9091475 0.7937931 0.7633569 0.6320557
## 5  0.002858301    4.00 0.4951963 0.9144035 0.8006117 0.7864376 0.6678594
## 6  0.002858301    8.00 0.4791068 0.9221485 0.8115407 0.7980168 0.6856740
## 7  0.002858301   16.00 0.4805208 0.9215547 0.8125939 0.7928644 0.6782327
## 8  0.002858301   32.00 0.4821513 0.9207821 0.8071511 0.7834344 0.6637563
## 9  0.002858301   64.00 0.4798816 0.9213063 0.8099530 0.7813072 0.6604966
## 10 0.002858301  128.00 0.4738832 0.9240360 0.8150784 0.7728856 0.6476486
## 11 0.002858301  256.00 0.4680732 0.9256462 0.8176965 0.7812626 0.6605779
## 12 0.002858301  512.00 0.4670243 0.9275979 0.8204870 0.7854736 0.6669789
## 13 0.002858301 1024.00 0.4668307 0.9274744 0.8191998 0.7886093 0.6720220
## 14 0.002858301 2048.00 0.4660341 0.9276946 0.8196551 0.7886203 0.6720784
##      Mean_F1 Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value
## 1  0.6886849        0.6841728        0.8477694           0.7014227
## 2  0.7089492        0.7030356        0.8568140           0.7237266
## 3  0.7411611        0.7368545        0.8724838           0.7536193
## 4  0.7535229        0.7508730        0.8782335           0.7623762
## 5  0.7767546        0.7763841        0.8897518           0.7833933
## 6  0.7881976        0.7878551        0.8955247           0.7930046
## 7  0.7815636        0.7813813        0.8942936           0.7859441
## 8  0.7717154        0.7707860        0.8896925           0.7770926
## 9  0.7704117        0.7679817        0.8886472           0.7768166
## 10 0.7611360        0.7600439        0.8843750           0.7671500
## 11 0.7683309        0.7675481        0.8887752           0.7744510
## 12 0.7717478        0.7702521        0.8910541           0.7788597
## 13 0.7753791        0.7747190        0.8926772           0.7819394
## 14 0.7755116        0.7744188        0.8927925           0.7829020
##    Mean_Neg_Pred_Value Mean_Precision Mean_Recall Mean_Detection_Rate
## 1            0.8493309      0.7014227   0.6841728           0.2341038
## 2            0.8589960      0.7237266   0.7030356           0.2404126
## 3            0.8749749      0.7536193   0.7368545           0.2506072
## 4            0.8804365      0.7623762   0.7508730           0.2544523
## 5            0.8927348      0.7833933   0.7763841           0.2621459
## 6            0.8987511      0.7930046   0.7878551           0.2660056
## 7            0.8959220      0.7859441   0.7813813           0.2642881
## 8            0.8911737      0.7770926   0.7707860           0.2611448
## 9            0.8897177      0.7768166   0.7679817           0.2604357
## 10           0.8858450      0.7671500   0.7600439           0.2576285
## 11           0.8905710      0.7744510   0.7675481           0.2604209
## 12           0.8932930      0.7788597   0.7702521           0.2618245
## 13           0.8947361      0.7819394   0.7747190           0.2628698
## 14           0.8947657      0.7829020   0.7744188           0.2628734
##    Mean_Balanced_Accuracy  logLossSD      AUCSD    prAUCSD AccuracySD
## 1               0.7659711 0.09339648 0.03468015 0.04633665 0.05447632
## 2               0.7799248 0.07984859 0.02883467 0.03856222 0.06064653
## 3               0.8046692 0.07213086 0.02504415 0.03649587 0.04456283
## 4               0.8145533 0.06624518 0.02353704 0.03813585 0.04235807
## 5               0.8330679 0.05959703 0.02132218 0.03310646 0.04170888
## 6               0.8416899 0.05510115 0.02002718 0.02903684 0.03773073
## 7               0.8378374 0.05420583 0.02034707 0.03249035 0.03445460
## 8               0.8302393 0.05770925 0.02060820 0.03455509 0.03048716
## 9               0.8283145 0.05720643 0.01891486 0.03079520 0.03249443
## 10              0.8222095 0.05414976 0.01708929 0.02985041 0.02791027
## 11              0.8281617 0.05299575 0.01628181 0.03036527 0.03244138
## 12              0.8306531 0.05420690 0.01706101 0.03131832 0.03613351
## 13              0.8336981 0.05285324 0.01668703 0.03160307 0.03096756
## 14              0.8336056 0.05415747 0.01712255 0.03249465 0.03168511
##       KappaSD  Mean_F1SD Mean_SensitivitySD Mean_SpecificitySD
## 1  0.08409044 0.05337911         0.05426422         0.02840416
## 2  0.09315091 0.06124440         0.06221827         0.03020477
## 3  0.06880439 0.04601586         0.04779523         0.02243608
## 4  0.06585164 0.04455160         0.04548224         0.02186434
## 5  0.06572357 0.04810153         0.04847195         0.02169854
## 6  0.05983365 0.04362341         0.04322383         0.01986295
## 7  0.05564077 0.03886324         0.04102731         0.01924360
## 8  0.04852055 0.03491912         0.03553032         0.01632531
## 9  0.05087227 0.03556612         0.03664403         0.01653544
## 10 0.04328130 0.03145730         0.03272197         0.01321027
## 11 0.04965883 0.03425632         0.03539463         0.01535187
## 12 0.05490551 0.03780197         0.03838928         0.01677832
## 13 0.04707027 0.03247373         0.03400901         0.01430045
## 14 0.04796210 0.03342970         0.03470549         0.01457028
##    Mean_Pos_Pred_ValueSD Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD
## 1             0.04764490            0.02928670       0.04764490    0.05426422
## 2             0.05384587            0.03176220       0.05384587    0.06221827
## 3             0.04144067            0.02343898       0.04144067    0.04779523
## 4             0.04201510            0.02129843       0.04201510    0.04548224
## 5             0.04439903            0.01986004       0.04439903    0.04847195
## 6             0.04356920            0.01784381       0.04356920    0.04322383
## 7             0.03687719            0.01646975       0.03687719    0.04102731
## 8             0.03568480            0.01472081       0.03568480    0.03553032
## 9             0.03574066            0.01642710       0.03574066    0.03664403
## 10            0.03082723            0.01410300       0.03082723    0.03272197
## 11            0.03372772            0.01717814       0.03372772    0.03539463
## 12            0.03789028            0.01921067       0.03789028    0.03838928
## 13            0.03078889            0.01647518       0.03078889    0.03400901
## 14            0.03350426            0.01665767       0.03350426    0.03470549
##    Mean_Detection_RateSD Mean_Balanced_AccuracySD
## 1            0.018158775               0.04122482
## 2            0.020215509               0.04611720
## 3            0.014854278               0.03499167
## 4            0.014119357               0.03359874
## 5            0.013902961               0.03504914
## 6            0.012576909               0.03149055
## 7            0.011484866               0.03003873
## 8            0.010162386               0.02579808
## 9            0.010831476               0.02653767
## 10           0.009303424               0.02291174
## 11           0.010813793               0.02531002
## 12           0.012044505               0.02754040
## 13           0.010322521               0.02410125
## 14           0.010561702               0.02459817
(SVM_R_Train_Accuracy <- SVM_R_Tune$results[SVM_R_Tune$results$C==SVM_R_Tune$bestTune$C,
                              c("Accuracy")])
## [1] 0.7980168
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
SVM_R_Test <- data.frame(SVM_R_Observed = PMA_PreModelling_Test_SVM_R$Log_Solubility_Class,
                      SVM_R_Predicted = predict(SVM_R_Tune,
                      PMA_PreModelling_Test_SVM_R[,!names(PMA_PreModelling_Test_SVM_R) %in% c("Log_Solubility_Class")],
                      type = "raw"))

SVM_R_Test
##     SVM_R_Observed SVM_R_Predicted
## 1             High            High
## 2             High            High
## 3             High            High
## 4             High            High
## 5             High            High
## 6             High            High
## 7             High            High
## 8             High            High
## 9             High            High
## 10            High            High
## 11            High            High
## 12            High             Mid
## 13            High            High
## 14            High            High
## 15            High            High
## 16            High            High
## 17            High            High
## 18            High            High
## 19            High            High
## 20            High            High
## 21            High            High
## 22            High            High
## 23            High            High
## 24            High            High
## 25            High            High
## 26            High            High
## 27            High            High
## 28            High            High
## 29            High             Mid
## 30            High            High
## 31            High             Low
## 32            High            High
## 33            High            High
## 34            High            High
## 35            High            High
## 36            High            High
## 37            High            High
## 38            High            High
## 39            High            High
## 40            High            High
## 41            High            High
## 42            High             Low
## 43            High             Mid
## 44            High            High
## 45            High            High
## 46            High            High
## 47            High            High
## 48            High            High
## 49            High             Mid
## 50            High            High
## 51            High            High
## 52            High             Mid
## 53            High             Mid
## 54            High            High
## 55            High            High
## 56            High            High
## 57            High            High
## 58             Mid            High
## 59             Mid             Mid
## 60             Mid             Mid
## 61             Mid             Mid
## 62             Mid             Mid
## 63             Mid            High
## 64             Mid            High
## 65             Mid             Mid
## 66             Mid             Mid
## 67             Mid             Low
## 68             Mid            High
## 69             Mid            High
## 70             Mid             Mid
## 71             Mid            High
## 72             Mid             Mid
## 73             Mid             Mid
## 74             Mid             Low
## 75             Mid            High
## 76             Mid             Low
## 77             Mid             Mid
## 78             Mid             Mid
## 79             Mid             Mid
## 80             Mid            High
## 81             Mid             Mid
## 82             Mid            High
## 83             Mid             Low
## 84             Mid             Mid
## 85             Mid             Mid
## 86             Mid            High
## 87             Mid             Low
## 88             Mid             Mid
## 89             Mid             Mid
## 90             Mid             Mid
## 91             Mid             Mid
## 92             Mid             Mid
## 93             Mid             Mid
## 94             Mid             Mid
## 95             Mid            High
## 96             Mid             Mid
## 97             Mid             Low
## 98             Mid             Mid
## 99             Mid            High
## 100            Mid             Mid
## 101            Mid             Mid
## 102            Mid             Mid
## 103            Mid             Mid
## 104            Mid             Mid
## 105            Mid             Low
## 106            Mid             Mid
## 107            Mid             Mid
## 108            Mid             Mid
## 109            Mid             Low
## 110            Mid             Low
## 111            Mid             Mid
## 112            Mid             Low
## 113            Mid             Mid
## 114            Mid             Mid
## 115            Mid             Mid
## 116            Mid             Low
## 117            Mid             Low
## 118            Mid             Low
## 119            Low             Mid
## 120            Low             Mid
## 121            Low             Low
## 122            Low             Mid
## 123            Low             Low
## 124            Low             Mid
## 125            Low             Low
## 126            Low             Mid
## 127            Low             Low
## 128            Low             Low
## 129            Low             Low
## 130            Low             Mid
## 131            Low             Low
## 132            Low             Low
## 133            Low             Low
## 134            Low             Low
## 135            Low             Mid
## 136            Low             Low
## 137            Low             Mid
## 138            Low             Low
## 139            Low             Low
## 140            Low             Mid
## 141            Low             Mid
## 142            Low             Low
## 143            Low             Low
## 144            Low             Low
## 145            Low             Mid
## 146            Low             Low
## 147            Low             Low
## 148            Low             Mid
## 149            Low             Low
## 150            Low             Low
## 151            Low             Mid
## 152            Low             Low
## 153            Low             Low
## 154            Low             Low
## 155            Low             Low
## 156            Low             Low
## 157            Low             Low
## 158            Low             Low
## 159            Low             Low
## 160            Low             Low
## 161            Low             Low
## 162            Low             Low
## 163            Low             Low
## 164            Low             Low
## 165            Low             Low
## 166            Low             Low
## 167            Low             Low
## 168            Low             Low
## 169            Low             Low
## 170            Low             Low
## 171            Low             Low
## 172            Low             Low
## 173            Low             Low
## 174            Low             Low
## 175            Low             Low
## 176            Low             Low
## 177            Low             Low
## 178            Low             Low
## 179            Low             Low
## 180            Low             Low
## 181            Low             Low
## 182            Low             Low
## 183            Low             Low
## 184            Low             Low
## 185            Low             Low
## 186            Low             Low
## 187            Low             Low
## 188            Low             Low
## 189            Low             Low
## 190            Low             Low
## 191            Low             Low
## 192            Low             Low
## 193            Low             Low
## 194            Low             Low
## 195            Low             Low
## 196            Low             Low
## 197            Low             Low
## 198            Low             Low
## 199            Low             Low
## 200            Low             Low
## 201            Low             Low
## 202            Low             Low
## 203            Low             Low
## 204            Low             Low
## 205            Low             Low
## 206            Low             Low
## 207            Low             Low
## 208            Low             Low
## 209            Low             Low
## 210            Low             Low
## 211            Low             Low
## 212            Low             Low
## 213            Low             Low
## 214            Low             Low
## 215            Low             Low
## 216            Low             Low
## 217           High            High
## 218           High            High
## 219           High            High
## 220           High            High
## 221           High             Mid
## 222           High            High
## 223           High            High
## 224           High            High
## 225           High             Low
## 226           High            High
## 227           High            High
## 228           High            High
## 229           High            High
## 230           High             Mid
## 231           High             Mid
## 232           High            High
## 233           High            High
## 234           High            High
## 235           High            High
## 236           High             Mid
## 237           High             Mid
## 238            Mid             Mid
## 239            Mid             Mid
## 240            Mid             Mid
## 241            Mid            High
## 242            Mid             Mid
## 243            Mid             Mid
## 244            Mid             Low
## 245            Mid             Mid
## 246            Mid            High
## 247            Mid             Mid
## 248            Mid            High
## 249            Mid            High
## 250            Mid             Mid
## 251            Mid             Mid
## 252            Mid             Mid
## 253            Mid             Mid
## 254            Mid             Low
## 255            Mid             Mid
## 256            Mid            High
## 257            Mid             Mid
## 258            Mid             Mid
## 259            Mid             Low
## 260            Mid             Mid
## 261            Mid             Mid
## 262            Mid             Mid
## 263            Mid             Mid
## 264            Mid             Mid
## 265            Mid             Low
## 266            Mid             Mid
## 267            Mid             Low
## 268            Mid             Mid
## 269            Low             Low
## 270            Low             Low
## 271            Low             Mid
## 272            Low             Low
## 273            Low             Low
## 274            Low             Low
## 275            Low             Low
## 276            Low             Low
## 277            Low             Low
## 278            Low             Mid
## 279            Low             Low
## 280            Low             Low
## 281            Low             Low
## 282            Low             Low
## 283            Low             Low
## 284            Low             Low
## 285            Low             Low
## 286            Low             Low
## 287            Low             Low
## 288            Low             Low
## 289            Low             Low
## 290            Low             Low
## 291            Low             Low
## 292            Low             Low
## 293            Low             Low
## 294            Low             Low
## 295            Low             Low
## 296            Low             Low
## 297            Low             Low
## 298            Low             Low
## 299            Low             Low
## 300            Low             Low
## 301            Low             Low
## 302            Low             Low
## 303            Low             Low
## 304            Low             Low
## 305            Low             Low
## 306            Low             Low
## 307            Low             Low
## 308            Low             Low
## 309            Low             Low
## 310            Low             Low
## 311            Low             Low
## 312            Low             Low
## 313            Mid             Mid
## 314           High             Low
## 315            Low             Low
## 316            Mid             Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(SVM_R_Test_Accuracy <- Accuracy(y_pred = SVM_R_Test$SVM_R_Predicted, 
                                 y_true = SVM_R_Test$SVM_R_Observed))
## [1] 0.7911392

1.5.9 Support Vector Machine - Polynomial Kernel (SVM_P)


Support Vector Machine plots each observation in an N-dimensional space corresponding to the number of features in the data set and finds a hyperplane that maximally separates the different classes by a maximally large margin (which is defined as the distance between the hyperplane and the closest data points from each class). The algorithm applies kernel transformation by mapping non-linearly separable data using the similarities between the points in a high-dimensional feature space for improved discrimination.

[A] The support vector machine (polynomial kernel) model from the kernlab package was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] degree = polynomial degree made to vary across a range of values equal to 1 to 2
     [B.2] scale = scale made to vary across a range of values equal to 0.001 to 0.010
     [B.3] C = cost made to vary across a range of values equal to 0.25 to 32.00

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves degree=2, scale=0.010 and C=1
     [C.2] Accuracy = 0.79597

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.78797

Code Chunk | Output
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_SVM_P <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_SVM_P$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_SVM_P)
## [1] 951 221
PMA_PreModelling_Test_SVM_P <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_SVM_P$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_SVM_P)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_SVM_P$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
SVM_P_Grid = expand.grid(degree = 1:2, 
                       scale = c(0.01, 0.005, 0.001), 
                       C = 2^(-2:5))

##################################
# Running the support vector machine (polynomial kernel) model
# by setting the caret method to 'svmPoly'
##################################
set.seed(12345678)
SVM_P_Tune <- train(x = PMA_PreModelling_Train_SVM_P[,!names(PMA_PreModelling_Train_SVM_P) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_SVM_P$Log_Solubility_Class,
                 method = "svmPoly",
                 tuneGrid = SVM_P_Grid,
                 metric = "Accuracy",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_P_Tune
## Support Vector Machines with Polynomial Kernel 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   degree  scale  C      logLoss    AUC        prAUC      Accuracy   Kappa    
##   1       0.001   0.25  0.7425358  0.8362126  0.6805526  0.6361131  0.4493588
##   1       0.001   0.50  0.6790601  0.8472631  0.6892398  0.6476043  0.4620013
##   1       0.001   1.00  0.6074072  0.8719809  0.7220562  0.7002506  0.5348414
##   1       0.001   2.00  0.5638024  0.8895648  0.7511967  0.7212596  0.5671169
##   1       0.001   4.00  0.5404136  0.8983201  0.7653866  0.7265118  0.5741199
##   1       0.001   8.00  0.5213522  0.9052265  0.7766254  0.7549900  0.6180651
##   1       0.001  16.00  0.5206046  0.9067964  0.7752507  0.7613394  0.6290659
##   1       0.001  32.00  0.5280919  0.9045401  0.7732186  0.7603642  0.6274367
##   1       0.005   0.25  0.5887799  0.8799167  0.7344352  0.7170598  0.5595619
##   1       0.005   0.50  0.5551921  0.8947722  0.7595126  0.7244172  0.5711617
##   1       0.005   1.00  0.5368922  0.9003932  0.7684109  0.7370276  0.5905210
##   1       0.005   2.00  0.5185553  0.9061931  0.7766261  0.7571505  0.6218207
##   1       0.005   4.00  0.5235077  0.9061557  0.7744450  0.7582587  0.6246277
##   1       0.005   8.00  0.5261044  0.9044746  0.7729243  0.7550894  0.6189175
##   1       0.005  16.00  0.5314598  0.9032831  0.7740152  0.7486952  0.6110584
##   1       0.005  32.00  0.5249288  0.9081205  0.7811437  0.7707358  0.6443087
##   1       0.010   0.25  0.5546393  0.8944241  0.7590873  0.7212817  0.5662198
##   1       0.010   0.50  0.5357205  0.9003240  0.7694477  0.7391552  0.5939715
##   1       0.010   1.00  0.5184350  0.9064958  0.7772667  0.7550233  0.6185161
##   1       0.010   2.00  0.5218201  0.9063104  0.7750827  0.7593115  0.6262870
##   1       0.010   4.00  0.5305254  0.9041721  0.7728925  0.7635221  0.6321139
##   1       0.010   8.00  0.5294425  0.9044233  0.7746450  0.7507783  0.6142788
##   1       0.010  16.00  0.5231705  0.9081176  0.7822007  0.7707139  0.6446323
##   1       0.010  32.00  0.5402305  0.9010681  0.7675077  0.7634222  0.6329205
##   2       0.001   0.25  0.6708145  0.8509589  0.6936269  0.6529010  0.4692013
##   2       0.001   0.50  0.6028213  0.8749020  0.7275914  0.7023334  0.5373749
##   2       0.001   1.00  0.5528551  0.8941762  0.7609881  0.7212708  0.5667906
##   2       0.001   2.00  0.5357778  0.9001432  0.7693027  0.7444520  0.6019296
##   2       0.001   4.00  0.5146052  0.9072263  0.7824361  0.7623591  0.6304446
##   2       0.001   8.00  0.5070388  0.9109772  0.7854211  0.7718549  0.6462392
##   2       0.001  16.00  0.5003080  0.9133160  0.7906196  0.7833459  0.6634169
##   2       0.001  32.00  0.4989230  0.9168384  0.8010330  0.7844427  0.6657529
##   2       0.005   0.25  0.5435039  0.8993897  0.7721435  0.7476220  0.6074272
##   2       0.005   0.50  0.5212181  0.9063795  0.7831133  0.7633898  0.6322581
##   2       0.005   1.00  0.5070836  0.9128024  0.7937546  0.7717889  0.6459466
##   2       0.005   2.00  0.4921505  0.9180085  0.8024260  0.7938832  0.6797238
##   2       0.005   4.00  0.4860238  0.9200755  0.8045043  0.7938946  0.6800484
##   2       0.005   8.00  0.4965847  0.9162563  0.7976748  0.7876013  0.6705312
##   2       0.005  16.00  0.4954733  0.9148149  0.7945286  0.7844763  0.6661521
##   2       0.005  32.00  0.4891914  0.9176457  0.7988817  0.7749799  0.6513036
##   2       0.010   0.25  0.5229100  0.9051278  0.7801677  0.7601764  0.6277482
##   2       0.010   0.50  0.5051421  0.9133305  0.7930368  0.7875236  0.6694848
##   2       0.010   1.00  0.4925652  0.9188195  0.8029170  0.7959670  0.6833765
##   2       0.010   2.00  0.4960478  0.9174846  0.8035097  0.7854848  0.6669011
##   2       0.010   4.00  0.4980684  0.9156226  0.7970502  0.7823262  0.6625245
##   2       0.010   8.00  0.4955305  0.9162287  0.7970276  0.7781266  0.6560209
##   2       0.010  16.00  0.4885723  0.9195064  0.8028522  0.7802541  0.6594150
##   2       0.010  32.00  0.4871701  0.9202634  0.8052654  0.7854846  0.6677958
##   Mean_F1    Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value
##   0.6190158  0.6332736         0.8229397         0.6219501          
##   0.6334887  0.6373437         0.8261137         0.6362706          
##   0.6823725  0.6806229         0.8477132         0.6914818          
##   0.7088966  0.7046823         0.8578552         0.7186652          
##   0.7133931  0.7080915         0.8597870         0.7251696          
##   0.7409558  0.7382863         0.8740976         0.7472157          
##   0.7460150  0.7452266         0.8786879         0.7513209          
##   0.7478188  0.7459778         0.8776105         0.7547906          
##   0.7004053  0.6964683         0.8554155         0.7090943          
##   0.7103820  0.7057052         0.8590559         0.7213368          
##   0.7233435  0.7194052         0.8652580         0.7335939          
##   0.7419863  0.7395774         0.8757621         0.7479651          
##   0.7436928  0.7432268         0.8771803         0.7514185          
##   0.7426587  0.7394076         0.8746624         0.7501237          
##   0.7395223  0.7375711         0.8725188         0.7473544          
##   0.7608432  0.7583548         0.8831014         0.7685075          
##   0.7072083  0.7021522         0.8574052         0.7195617          
##   0.7259649  0.7221828         0.8664405         0.7344094          
##   0.7399236  0.7375522         0.8747556         0.7459336          
##   0.7446456  0.7439794         0.8778428         0.7510897          
##   0.7510732  0.7480782         0.8791840         0.7590235          
##   0.7411606  0.7392973         0.8737871         0.7475077          
##   0.7613747  0.7597066         0.8831640         0.7682054          
##   0.7508179  0.7486921         0.8799351         0.7585597          
##   0.6385967  0.6414221         0.8283276         0.6414030          
##   0.6867832  0.6833688         0.8479230         0.6971314          
##   0.7090174  0.7041322         0.8575365         0.7208983          
##   0.7315480  0.7272411         0.8687400         0.7412446          
##   0.7502264  0.7475626         0.8783424         0.7568466          
##   0.7616240  0.7601642         0.8839516         0.7682715          
##   0.7726163  0.7712056         0.8891871         0.7795315          
##   0.7761365  0.7764421         0.8896868         0.7818337          
##   0.7380429  0.7323240         0.8704357         0.7511184          
##   0.7548104  0.7504577         0.8785584         0.7657603          
##   0.7627776  0.7628599         0.8827217         0.7690667          
##   0.7866682  0.7862027         0.8934553         0.7908440          
##   0.7843056  0.7846380         0.8943604         0.7884124          
##   0.7763498  0.7758442         0.8921344         0.7806474          
##   0.7718833  0.7714791         0.8914351         0.7758663          
##   0.7622841  0.7610597         0.8864001         0.7671518          
##   0.7523773  0.7493000         0.8769521         0.7613541          
##   0.7774189  0.7774172         0.8901691         0.7826842          
##   0.7856146  0.7860837         0.8956675         0.7884064          
##   0.7748329  0.7741325         0.8903693         0.7804796          
##   0.7703455  0.7689738         0.8897980         0.7752653          
##   0.7658243  0.7644513         0.8877132         0.7711418          
##   0.7688450  0.7677080         0.8886923         0.7746540          
##   0.7749172  0.7734593         0.8915191         0.7811386          
##   Mean_Neg_Pred_Value  Mean_Precision  Mean_Recall  Mean_Detection_Rate
##   0.8197082            0.6219501       0.6332736    0.2120377          
##   0.8219626            0.6362706       0.6373437    0.2158681          
##   0.8495213            0.6914818       0.6806229    0.2334169          
##   0.8586745            0.7186652       0.7046823    0.2404199          
##   0.8621211            0.7251696       0.7080915    0.2421706          
##   0.8771376            0.7472157       0.7382863    0.2516633          
##   0.8805829            0.7513209       0.7452266    0.2537798          
##   0.8794252            0.7547906       0.7459778    0.2534547          
##   0.8578335            0.7090943       0.6964683    0.2390199          
##   0.8609942            0.7213368       0.7057052    0.2414724          
##   0.8677792            0.7335939       0.7194052    0.2456759          
##   0.8784552            0.7479651       0.7395774    0.2523835          
##   0.8793537            0.7514185       0.7432268    0.2527529          
##   0.8764167            0.7501237       0.7394076    0.2516965          
##   0.8722246            0.7473544       0.7375711    0.2495651          
##   0.8842522            0.7685075       0.7583548    0.2569119          
##   0.8594827            0.7195617       0.7021522    0.2404272          
##   0.8683551            0.7344094       0.7221828    0.2463851          
##   0.8773719            0.7459336       0.7375522    0.2516744          
##   0.8797295            0.7510897       0.7439794    0.2531038          
##   0.8809587            0.7590235       0.7480782    0.2545074          
##   0.8732368            0.7475077       0.7392973    0.2502594          
##   0.8841539            0.7682054       0.7597066    0.2569046          
##   0.8811924            0.7585597       0.7486921    0.2544741          
##   0.8245001            0.6414030       0.6414221    0.2176337          
##   0.8500846            0.6971314       0.6833688    0.2341111          
##   0.8587832            0.7208983       0.7041322    0.2404236          
##   0.8714169            0.7412446       0.7272411    0.2481507          
##   0.8803486            0.7568466       0.7475626    0.2541197          
##   0.8847508            0.7682715       0.7601642    0.2572850          
##   0.8912327            0.7795315       0.7712056    0.2611153          
##   0.8910789            0.7818337       0.7764421    0.2614809          
##   0.8721360            0.7511184       0.7323240    0.2492073          
##   0.8801517            0.7657603       0.7504577    0.2544633          
##   0.8847371            0.7690667       0.7628599    0.2572630          
##   0.8955905            0.7908440       0.7862027    0.2646277          
##   0.8963814            0.7884124       0.7846380    0.2646315          
##   0.8930943            0.7806474       0.7758442    0.2625338          
##   0.8916326            0.7758663       0.7714791    0.2614921          
##   0.8868220            0.7671518       0.7610597    0.2583266          
##   0.8781346            0.7613541       0.7493000    0.2533921          
##   0.8934054            0.7826842       0.7774172    0.2625079          
##   0.8974927            0.7884064       0.7860837    0.2653223          
##   0.8921558            0.7804796       0.7741325    0.2618283          
##   0.8903869            0.7752653       0.7689738    0.2607754          
##   0.8883907            0.7711418       0.7644513    0.2593755          
##   0.8893625            0.7746540       0.7677080    0.2600847          
##   0.8918068            0.7811386       0.7734593    0.2618282          
##   Mean_Balanced_Accuracy
##   0.7281066             
##   0.7317287             
##   0.7641680             
##   0.7812687             
##   0.7839393             
##   0.8061920             
##   0.8119573             
##   0.8117942             
##   0.7759419             
##   0.7823805             
##   0.7923316             
##   0.8076697             
##   0.8102035             
##   0.8070350             
##   0.8050450             
##   0.8207281             
##   0.7797787             
##   0.7943116             
##   0.8061539             
##   0.8109111             
##   0.8136311             
##   0.8065422             
##   0.8214353             
##   0.8143136             
##   0.7348748             
##   0.7656459             
##   0.7808343             
##   0.7979906             
##   0.8129525             
##   0.8220579             
##   0.8301964             
##   0.8330645             
##   0.8013799             
##   0.8145081             
##   0.8227908             
##   0.8398290             
##   0.8394992             
##   0.8339893             
##   0.8314571             
##   0.8237299             
##   0.8131260             
##   0.8337932             
##   0.8408756             
##   0.8322509             
##   0.8293859             
##   0.8260823             
##   0.8282002             
##   0.8324892             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were degree = 2, scale = 0.01 and C = 1.
SVM_P_Tune$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 1 
## 
## Polynomial kernel function. 
##  Hyperparameters : degree =  2  scale =  0.01  offset =  1 
## 
## Number of Support Vectors : 590 
## 
## Objective Function Value : -100.055 -18.6953 -79.9307 
## Training error : 0.02734 
## Probability model included.
SVM_P_Tune$results
##    degree scale     C   logLoss       AUC     prAUC  Accuracy     Kappa
## 1       1 0.001  0.25 0.7425358 0.8362126 0.6805526 0.6361131 0.4493588
## 2       1 0.001  0.50 0.6790601 0.8472631 0.6892398 0.6476043 0.4620013
## 3       1 0.001  1.00 0.6074072 0.8719809 0.7220562 0.7002506 0.5348414
## 4       1 0.001  2.00 0.5638024 0.8895648 0.7511967 0.7212596 0.5671169
## 5       1 0.001  4.00 0.5404136 0.8983201 0.7653866 0.7265118 0.5741199
## 6       1 0.001  8.00 0.5213522 0.9052265 0.7766254 0.7549900 0.6180651
## 7       1 0.001 16.00 0.5206046 0.9067964 0.7752507 0.7613394 0.6290659
## 8       1 0.001 32.00 0.5280919 0.9045401 0.7732186 0.7603642 0.6274367
## 9       1 0.005  0.25 0.5887799 0.8799167 0.7344352 0.7170598 0.5595619
## 10      1 0.005  0.50 0.5551921 0.8947722 0.7595126 0.7244172 0.5711617
## 11      1 0.005  1.00 0.5368922 0.9003932 0.7684109 0.7370276 0.5905210
## 12      1 0.005  2.00 0.5185553 0.9061931 0.7766261 0.7571505 0.6218207
## 13      1 0.005  4.00 0.5235077 0.9061557 0.7744450 0.7582587 0.6246277
## 14      1 0.005  8.00 0.5261044 0.9044746 0.7729243 0.7550894 0.6189175
## 15      1 0.005 16.00 0.5314598 0.9032831 0.7740152 0.7486952 0.6110584
## 16      1 0.005 32.00 0.5249288 0.9081205 0.7811437 0.7707358 0.6443087
## 17      1 0.010  0.25 0.5546393 0.8944241 0.7590873 0.7212817 0.5662198
## 18      1 0.010  0.50 0.5357205 0.9003240 0.7694477 0.7391552 0.5939715
## 19      1 0.010  1.00 0.5184350 0.9064958 0.7772667 0.7550233 0.6185161
## 20      1 0.010  2.00 0.5218201 0.9063104 0.7750827 0.7593115 0.6262870
## 21      1 0.010  4.00 0.5305254 0.9041721 0.7728925 0.7635221 0.6321139
## 22      1 0.010  8.00 0.5294425 0.9044233 0.7746450 0.7507783 0.6142788
## 23      1 0.010 16.00 0.5231705 0.9081176 0.7822007 0.7707139 0.6446323
## 24      1 0.010 32.00 0.5402305 0.9010681 0.7675077 0.7634222 0.6329205
## 25      2 0.001  0.25 0.6708145 0.8509589 0.6936269 0.6529010 0.4692013
## 26      2 0.001  0.50 0.6028213 0.8749020 0.7275914 0.7023334 0.5373749
## 27      2 0.001  1.00 0.5528551 0.8941762 0.7609881 0.7212708 0.5667906
## 28      2 0.001  2.00 0.5357778 0.9001432 0.7693027 0.7444520 0.6019296
## 29      2 0.001  4.00 0.5146052 0.9072263 0.7824361 0.7623591 0.6304446
## 30      2 0.001  8.00 0.5070388 0.9109772 0.7854211 0.7718549 0.6462392
## 31      2 0.001 16.00 0.5003080 0.9133160 0.7906196 0.7833459 0.6634169
## 32      2 0.001 32.00 0.4989230 0.9168384 0.8010330 0.7844427 0.6657529
## 33      2 0.005  0.25 0.5435039 0.8993897 0.7721435 0.7476220 0.6074272
## 34      2 0.005  0.50 0.5212181 0.9063795 0.7831133 0.7633898 0.6322581
## 35      2 0.005  1.00 0.5070836 0.9128024 0.7937546 0.7717889 0.6459466
## 36      2 0.005  2.00 0.4921505 0.9180085 0.8024260 0.7938832 0.6797238
## 37      2 0.005  4.00 0.4860238 0.9200755 0.8045043 0.7938946 0.6800484
## 38      2 0.005  8.00 0.4965847 0.9162563 0.7976748 0.7876013 0.6705312
## 39      2 0.005 16.00 0.4954733 0.9148149 0.7945286 0.7844763 0.6661521
## 40      2 0.005 32.00 0.4891914 0.9176457 0.7988817 0.7749799 0.6513036
## 41      2 0.010  0.25 0.5229100 0.9051278 0.7801677 0.7601764 0.6277482
## 42      2 0.010  0.50 0.5051421 0.9133305 0.7930368 0.7875236 0.6694848
## 43      2 0.010  1.00 0.4925652 0.9188195 0.8029170 0.7959670 0.6833765
## 44      2 0.010  2.00 0.4960478 0.9174846 0.8035097 0.7854848 0.6669011
## 45      2 0.010  4.00 0.4980684 0.9156226 0.7970502 0.7823262 0.6625245
## 46      2 0.010  8.00 0.4955305 0.9162287 0.7970276 0.7781266 0.6560209
## 47      2 0.010 16.00 0.4885723 0.9195064 0.8028522 0.7802541 0.6594150
## 48      2 0.010 32.00 0.4871701 0.9202634 0.8052654 0.7854846 0.6677958
##      Mean_F1 Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value
## 1  0.6190158        0.6332736        0.8229397           0.6219501
## 2  0.6334887        0.6373437        0.8261137           0.6362706
## 3  0.6823725        0.6806229        0.8477132           0.6914818
## 4  0.7088966        0.7046823        0.8578552           0.7186652
## 5  0.7133931        0.7080915        0.8597870           0.7251696
## 6  0.7409558        0.7382863        0.8740976           0.7472157
## 7  0.7460150        0.7452266        0.8786879           0.7513209
## 8  0.7478188        0.7459778        0.8776105           0.7547906
## 9  0.7004053        0.6964683        0.8554155           0.7090943
## 10 0.7103820        0.7057052        0.8590559           0.7213368
## 11 0.7233435        0.7194052        0.8652580           0.7335939
## 12 0.7419863        0.7395774        0.8757621           0.7479651
## 13 0.7436928        0.7432268        0.8771803           0.7514185
## 14 0.7426587        0.7394076        0.8746624           0.7501237
## 15 0.7395223        0.7375711        0.8725188           0.7473544
## 16 0.7608432        0.7583548        0.8831014           0.7685075
## 17 0.7072083        0.7021522        0.8574052           0.7195617
## 18 0.7259649        0.7221828        0.8664405           0.7344094
## 19 0.7399236        0.7375522        0.8747556           0.7459336
## 20 0.7446456        0.7439794        0.8778428           0.7510897
## 21 0.7510732        0.7480782        0.8791840           0.7590235
## 22 0.7411606        0.7392973        0.8737871           0.7475077
## 23 0.7613747        0.7597066        0.8831640           0.7682054
## 24 0.7508179        0.7486921        0.8799351           0.7585597
## 25 0.6385967        0.6414221        0.8283276           0.6414030
## 26 0.6867832        0.6833688        0.8479230           0.6971314
## 27 0.7090174        0.7041322        0.8575365           0.7208983
## 28 0.7315480        0.7272411        0.8687400           0.7412446
## 29 0.7502264        0.7475626        0.8783424           0.7568466
## 30 0.7616240        0.7601642        0.8839516           0.7682715
## 31 0.7726163        0.7712056        0.8891871           0.7795315
## 32 0.7761365        0.7764421        0.8896868           0.7818337
## 33 0.7380429        0.7323240        0.8704357           0.7511184
## 34 0.7548104        0.7504577        0.8785584           0.7657603
## 35 0.7627776        0.7628599        0.8827217           0.7690667
## 36 0.7866682        0.7862027        0.8934553           0.7908440
## 37 0.7843056        0.7846380        0.8943604           0.7884124
## 38 0.7763498        0.7758442        0.8921344           0.7806474
## 39 0.7718833        0.7714791        0.8914351           0.7758663
## 40 0.7622841        0.7610597        0.8864001           0.7671518
## 41 0.7523773        0.7493000        0.8769521           0.7613541
## 42 0.7774189        0.7774172        0.8901691           0.7826842
## 43 0.7856146        0.7860837        0.8956675           0.7884064
## 44 0.7748329        0.7741325        0.8903693           0.7804796
## 45 0.7703455        0.7689738        0.8897980           0.7752653
## 46 0.7658243        0.7644513        0.8877132           0.7711418
## 47 0.7688450        0.7677080        0.8886923           0.7746540
## 48 0.7749172        0.7734593        0.8915191           0.7811386
##    Mean_Neg_Pred_Value Mean_Precision Mean_Recall Mean_Detection_Rate
## 1            0.8197082      0.6219501   0.6332736           0.2120377
## 2            0.8219626      0.6362706   0.6373437           0.2158681
## 3            0.8495213      0.6914818   0.6806229           0.2334169
## 4            0.8586745      0.7186652   0.7046823           0.2404199
## 5            0.8621211      0.7251696   0.7080915           0.2421706
## 6            0.8771376      0.7472157   0.7382863           0.2516633
## 7            0.8805829      0.7513209   0.7452266           0.2537798
## 8            0.8794252      0.7547906   0.7459778           0.2534547
## 9            0.8578335      0.7090943   0.6964683           0.2390199
## 10           0.8609942      0.7213368   0.7057052           0.2414724
## 11           0.8677792      0.7335939   0.7194052           0.2456759
## 12           0.8784552      0.7479651   0.7395774           0.2523835
## 13           0.8793537      0.7514185   0.7432268           0.2527529
## 14           0.8764167      0.7501237   0.7394076           0.2516965
## 15           0.8722246      0.7473544   0.7375711           0.2495651
## 16           0.8842522      0.7685075   0.7583548           0.2569119
## 17           0.8594827      0.7195617   0.7021522           0.2404272
## 18           0.8683551      0.7344094   0.7221828           0.2463851
## 19           0.8773719      0.7459336   0.7375522           0.2516744
## 20           0.8797295      0.7510897   0.7439794           0.2531038
## 21           0.8809587      0.7590235   0.7480782           0.2545074
## 22           0.8732368      0.7475077   0.7392973           0.2502594
## 23           0.8841539      0.7682054   0.7597066           0.2569046
## 24           0.8811924      0.7585597   0.7486921           0.2544741
## 25           0.8245001      0.6414030   0.6414221           0.2176337
## 26           0.8500846      0.6971314   0.6833688           0.2341111
## 27           0.8587832      0.7208983   0.7041322           0.2404236
## 28           0.8714169      0.7412446   0.7272411           0.2481507
## 29           0.8803486      0.7568466   0.7475626           0.2541197
## 30           0.8847508      0.7682715   0.7601642           0.2572850
## 31           0.8912327      0.7795315   0.7712056           0.2611153
## 32           0.8910789      0.7818337   0.7764421           0.2614809
## 33           0.8721360      0.7511184   0.7323240           0.2492073
## 34           0.8801517      0.7657603   0.7504577           0.2544633
## 35           0.8847371      0.7690667   0.7628599           0.2572630
## 36           0.8955905      0.7908440   0.7862027           0.2646277
## 37           0.8963814      0.7884124   0.7846380           0.2646315
## 38           0.8930943      0.7806474   0.7758442           0.2625338
## 39           0.8916326      0.7758663   0.7714791           0.2614921
## 40           0.8868220      0.7671518   0.7610597           0.2583266
## 41           0.8781346      0.7613541   0.7493000           0.2533921
## 42           0.8934054      0.7826842   0.7774172           0.2625079
## 43           0.8974927      0.7884064   0.7860837           0.2653223
## 44           0.8921558      0.7804796   0.7741325           0.2618283
## 45           0.8903869      0.7752653   0.7689738           0.2607754
## 46           0.8883907      0.7711418   0.7644513           0.2593755
## 47           0.8893625      0.7746540   0.7677080           0.2600847
## 48           0.8918068      0.7811386   0.7734593           0.2618282
##    Mean_Balanced_Accuracy  logLossSD      AUCSD    prAUCSD AccuracySD
## 1               0.7281066 0.11203738 0.03159725 0.03363159 0.04756966
## 2               0.7317287 0.09170327 0.03246884 0.03905730 0.05604862
## 3               0.7641680 0.07077823 0.02896322 0.03548006 0.04939319
## 4               0.7812687 0.06718182 0.02578268 0.03519441 0.04510048
## 5               0.7839393 0.06173775 0.02304760 0.02916857 0.05030513
## 6               0.8061920 0.06299235 0.02377123 0.03167562 0.04129201
## 7               0.8119573 0.06004884 0.02079446 0.02828920 0.02498795
## 8               0.8117942 0.06083120 0.02142383 0.03097518 0.03485542
## 9               0.7759419 0.06992890 0.02719634 0.03503258 0.04994670
## 10              0.7823805 0.06464405 0.02373698 0.03038672 0.04214880
## 11              0.7923316 0.06002189 0.02269008 0.02898261 0.04853983
## 12              0.8076697 0.05914432 0.02147841 0.02846344 0.03153359
## 13              0.8102035 0.05929851 0.02090097 0.02998032 0.02881504
## 14              0.8070350 0.06180020 0.02130408 0.02998603 0.03893205
## 15              0.8050450 0.06166499 0.02367902 0.03126658 0.03915183
## 16              0.8207281 0.05961107 0.02586995 0.04182988 0.04643554
## 17              0.7797787 0.06636716 0.02409976 0.03163091 0.04419462
## 18              0.7943116 0.05993194 0.02262492 0.02954995 0.04531006
## 19              0.8061539 0.05989286 0.02154595 0.02869937 0.03633519
## 20              0.8109111 0.06066658 0.02101719 0.03008695 0.02902439
## 21              0.8136311 0.06109132 0.02095346 0.02978613 0.03603258
## 22              0.8065422 0.06181175 0.02404170 0.03308943 0.04155930
## 23              0.8214353 0.06284607 0.02625529 0.04243295 0.05208644
## 24              0.8143136 0.06190866 0.02707084 0.04166313 0.03507656
## 25              0.7348748 0.09444896 0.03381130 0.04112873 0.05389647
## 26              0.7656459 0.07233227 0.02886136 0.03662107 0.03944701
## 27              0.7808343 0.06682785 0.02568283 0.03726046 0.04451356
## 28              0.7979906 0.06521996 0.02315212 0.03144387 0.03960056
## 29              0.8129525 0.06413662 0.02303732 0.03065523 0.03482007
## 30              0.8220579 0.06364747 0.02243233 0.03175675 0.03145995
## 31              0.8301964 0.06018744 0.02246488 0.03482926 0.03603469
## 32              0.8330645 0.05887333 0.01965952 0.02949126 0.04017956
## 33              0.8013799 0.06937193 0.02462615 0.03573916 0.04713319
## 34              0.8145081 0.06882613 0.02434751 0.03825952 0.03732159
## 35              0.8227908 0.06169660 0.02312955 0.03760458 0.04476669
## 36              0.8398290 0.05904747 0.02072440 0.02854056 0.04219298
## 37              0.8394992 0.05235123 0.01925323 0.02582048 0.03183334
## 38              0.8339893 0.04978836 0.01982786 0.02815681 0.03263686
## 39              0.8314571 0.05510444 0.01930415 0.03030358 0.02867393
## 40              0.8237299 0.05363204 0.01893952 0.02850532 0.03286777
## 41              0.8131260 0.06001501 0.02369771 0.03592135 0.03843723
## 42              0.8337932 0.05570737 0.02168253 0.03080143 0.03780976
## 43              0.8408756 0.05349713 0.02106130 0.02909710 0.03428818
## 44              0.8322509 0.05040863 0.02115380 0.02995862 0.03208969
## 45              0.8293859 0.05062179 0.02046420 0.03062647 0.02704053
## 46              0.8260823 0.05140931 0.01862226 0.02834773 0.02930213
## 47              0.8282002 0.05298321 0.01824371 0.02655759 0.03002569
## 48              0.8324892 0.05464176 0.01681435 0.02618757 0.02982383
##       KappaSD  Mean_F1SD Mean_SensitivitySD Mean_SpecificitySD
## 1  0.06713840 0.04924902         0.04889938         0.02131838
## 2  0.08052394 0.05410488         0.05734557         0.02563990
## 3  0.07258124 0.04670572         0.04872986         0.02279265
## 4  0.06943577 0.04311920         0.04704110         0.02295396
## 5  0.07793674 0.05079642         0.05286966         0.02560929
## 6  0.06627568 0.04335030         0.04696194         0.02249393
## 7  0.04105966 0.02425001         0.02796966         0.01519852
## 8  0.05609072 0.03689666         0.03919916         0.01961988
## 9  0.07624502 0.05124561         0.05248159         0.02428110
## 10 0.06474086 0.04075972         0.04415903         0.02113157
## 11 0.07581025 0.04929428         0.05285777         0.02504795
## 12 0.05008363 0.03145923         0.03456208         0.01703259
## 13 0.04583353 0.02749620         0.02969385         0.01657791
## 14 0.06183235 0.03967509         0.04212588         0.02112656
## 15 0.06036889 0.03720484         0.03986864         0.02021339
## 16 0.07198785 0.04661118         0.04689059         0.02411376
## 17 0.06784464 0.04196409         0.04501298         0.02217260
## 18 0.07151526 0.04547932         0.04946004         0.02385480
## 19 0.05811002 0.03610832         0.03972918         0.02007204
## 20 0.04609126 0.02678352         0.03005923         0.01655740
## 21 0.05793078 0.03740218         0.04049491         0.02008933
## 22 0.06469313 0.04145417         0.04378894         0.02165525
## 23 0.08047311 0.05190361         0.05270628         0.02664515
## 24 0.05479826 0.03407617         0.03550924         0.01870176
## 25 0.07707566 0.05136516         0.05398904         0.02445426
## 26 0.05739063 0.03917950         0.03989507         0.01733810
## 27 0.06800761 0.04177914         0.04559070         0.02238668
## 28 0.06176729 0.03889292         0.04180155         0.02068392
## 29 0.05460124 0.03512348         0.03800816         0.01827443
## 30 0.04969829 0.03208632         0.03402048         0.01713731
## 31 0.05689965 0.03952996         0.03969747         0.01914245
## 32 0.06372303 0.04308429         0.04495287         0.02148215
## 33 0.07268974 0.04771433         0.05032509         0.02382511
## 34 0.05814158 0.03783524         0.03903950         0.01979393
## 35 0.06892386 0.04835596         0.04622343         0.02270695
## 36 0.06646599 0.04624995         0.04662680         0.02241891
## 37 0.05047028 0.03357232         0.03519402         0.01746133
## 38 0.05194108 0.03625313         0.03713244         0.01771763
## 39 0.04516475 0.03085405         0.03179159         0.01534250
## 40 0.05108864 0.03445427         0.03561056         0.01657163
## 41 0.05951370 0.04053915         0.03985838         0.02006602
## 42 0.05947871 0.04370039         0.04267770         0.01958177
## 43 0.05359589 0.03600022         0.03612086         0.01818240
## 44 0.05098948 0.03453106         0.03594599         0.01748561
## 45 0.04188207 0.02772156         0.02723265         0.01402455
## 46 0.04545975 0.03113288         0.03189860         0.01462027
## 47 0.04666991 0.03035173         0.03263908         0.01527392
## 48 0.04553172 0.03011769         0.03186441         0.01423882
##    Mean_Pos_Pred_ValueSD Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD
## 1             0.04393771            0.02271913       0.04393771    0.04889938
## 2             0.04687656            0.02878184       0.04687656    0.05734557
## 3             0.04193029            0.02739505       0.04193029    0.04872986
## 4             0.03453651            0.02470730       0.03453651    0.04704110
## 5             0.04373199            0.02629015       0.04373199    0.05286966
## 6             0.03792046            0.02144670       0.03792046    0.04696194
## 7             0.02121717            0.01402806       0.02121717    0.02796966
## 8             0.03612888            0.01811871       0.03612888    0.03919916
## 9             0.04848427            0.02658025       0.04848427    0.05248159
## 10            0.03269214            0.02308580       0.03269214    0.04415903
## 11            0.04082948            0.02529125       0.04082948    0.05285777
## 12            0.02755761            0.01714574       0.02755761    0.03456208
## 13            0.02891446            0.01694895       0.02891446    0.02969385
## 14            0.03836089            0.02080556       0.03836089    0.04212588
## 15            0.03422169            0.02126567       0.03422169    0.03986864
## 16            0.04566633            0.02425741       0.04566633    0.04689059
## 17            0.03504069            0.02464169       0.03504069    0.04501298
## 18            0.03915199            0.02421925       0.03915199    0.04946004
## 19            0.03145720            0.01977395       0.03145720    0.03972918
## 20            0.02720257            0.01714314       0.02720257    0.03005923
## 21            0.03527073            0.01928942       0.03527073    0.04049491
## 22            0.03782536            0.02187290       0.03782536    0.04378894
## 23            0.05047465            0.02745587       0.05047465    0.05270628
## 24            0.03323774            0.01912312       0.03323774    0.03550924
## 25            0.04442154            0.02764838       0.04442154    0.05398904
## 26            0.03754248            0.02161952       0.03754248    0.03989507
## 27            0.03230636            0.02422449       0.03230636    0.04559070
## 28            0.03433824            0.02132121       0.03433824    0.04180155
## 29            0.02985580            0.01829318       0.02985580    0.03800816
## 30            0.03030130            0.01651486       0.03030130    0.03402048
## 31            0.03934189            0.01798786       0.03934189    0.03969747
## 32            0.04010872            0.01995044       0.04010872    0.04495287
## 33            0.04201258            0.02473946       0.04201258    0.05032509
## 34            0.03582966            0.01899962       0.03582966    0.03903950
## 35            0.04794865            0.02199566       0.04794865    0.04622343
## 36            0.04523386            0.02067656       0.04523386    0.04662680
## 37            0.03195678            0.01622477       0.03195678    0.03519402
## 38            0.03695144            0.01589624       0.03695144    0.03713244
## 39            0.03090573            0.01433311       0.03090573    0.03179159
## 40            0.03298102            0.01699123       0.03298102    0.03561056
## 41            0.04006822            0.01914242       0.04006822    0.03985838
## 42            0.04250912            0.01818273       0.04250912    0.04267770
## 43            0.03608676            0.01762340       0.03608676    0.03612086
## 44            0.03406100            0.01628540       0.03406100    0.03594599
## 45            0.03125222            0.01428522       0.03125222    0.02723265
## 46            0.03242301            0.01512473       0.03242301    0.03189860
## 47            0.02970765            0.01622939       0.02970765    0.03263908
## 48            0.02928603            0.01610761       0.02928603    0.03186441
##    Mean_Detection_RateSD Mean_Balanced_AccuracySD
## 1            0.015856553               0.03479562
## 2            0.018682873               0.04122375
## 3            0.016464398               0.03555559
## 4            0.015033494               0.03483441
## 5            0.016768376               0.03911531
## 6            0.013764002               0.03458068
## 7            0.008329318               0.02138733
## 8            0.011618472               0.02928719
## 9            0.016648899               0.03814813
## 10           0.014049599               0.03248328
## 11           0.016179944               0.03881310
## 12           0.010511198               0.02565941
## 13           0.009605013               0.02297742
## 14           0.012977350               0.03150216
## 15           0.013050609               0.02992589
## 16           0.015478513               0.03539326
## 17           0.014731540               0.03345409
## 18           0.015103353               0.03651004
## 19           0.012111729               0.02975154
## 20           0.009674795               0.02314951
## 21           0.012010861               0.03014258
## 22           0.013853099               0.03259111
## 23           0.017362146               0.03959276
## 24           0.011692186               0.02691402
## 25           0.017965489               0.03902765
## 26           0.013149005               0.02840638
## 27           0.014837854               0.03386316
## 28           0.013200187               0.03112120
## 29           0.011606689               0.02796863
## 30           0.010486649               0.02543323
## 31           0.012011565               0.02932902
## 32           0.013393185               0.03315921
## 33           0.015711064               0.03693143
## 34           0.012440529               0.02936411
## 35           0.014922231               0.03443098
## 36           0.014064328               0.03442881
## 37           0.010611114               0.02621934
## 38           0.010878954               0.02734570
## 39           0.009557976               0.02345554
## 40           0.010955922               0.02601269
## 41           0.012812412               0.02987678
## 42           0.012603254               0.03105748
## 43           0.011429394               0.02705262
## 44           0.010696563               0.02660245
## 45           0.009013509               0.02049623
## 46           0.009767377               0.02318021
## 47           0.010008565               0.02382181
## 48           0.009941278               0.02297285
(SVM_P_Train_Accuracy <- SVM_P_Tune$results[SVM_P_Tune$results$degree==SVM_P_Tune$bestTune$degree &
                                                 SVM_P_Tune$results$scale==SVM_P_Tune$bestTune$scale &
                                                 SVM_P_Tune$results$C==SVM_P_Tune$bestTune$C,
                              c("Accuracy")])
## [1] 0.795967
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
SVM_P_Test <- data.frame(SVM_P_Observed = PMA_PreModelling_Test_SVM_P$Log_Solubility_Class,
                      SVM_P_Predicted = predict(SVM_P_Tune,
                      PMA_PreModelling_Test_SVM_P[,!names(PMA_PreModelling_Test_SVM_P) %in% c("Log_Solubility_Class")],
                      type = "raw"))

SVM_P_Test
##     SVM_P_Observed SVM_P_Predicted
## 1             High            High
## 2             High            High
## 3             High            High
## 4             High            High
## 5             High            High
## 6             High            High
## 7             High            High
## 8             High            High
## 9             High            High
## 10            High            High
## 11            High            High
## 12            High             Mid
## 13            High            High
## 14            High            High
## 15            High            High
## 16            High            High
## 17            High            High
## 18            High            High
## 19            High            High
## 20            High            High
## 21            High            High
## 22            High            High
## 23            High            High
## 24            High            High
## 25            High            High
## 26            High            High
## 27            High            High
## 28            High            High
## 29            High             Low
## 30            High            High
## 31            High             Mid
## 32            High            High
## 33            High            High
## 34            High            High
## 35            High            High
## 36            High            High
## 37            High            High
## 38            High            High
## 39            High            High
## 40            High            High
## 41            High            High
## 42            High             Low
## 43            High             Mid
## 44            High            High
## 45            High            High
## 46            High            High
## 47            High            High
## 48            High            High
## 49            High            High
## 50            High            High
## 51            High            High
## 52            High             Mid
## 53            High             Mid
## 54            High            High
## 55            High            High
## 56            High            High
## 57            High            High
## 58             Mid            High
## 59             Mid             Mid
## 60             Mid             Mid
## 61             Mid             Mid
## 62             Mid             Mid
## 63             Mid            High
## 64             Mid            High
## 65             Mid             Mid
## 66             Mid             Mid
## 67             Mid             Low
## 68             Mid            High
## 69             Mid            High
## 70             Mid             Mid
## 71             Mid            High
## 72             Mid             Mid
## 73             Mid             Mid
## 74             Mid             Low
## 75             Mid            High
## 76             Mid             Low
## 77             Mid             Mid
## 78             Mid             Mid
## 79             Mid             Mid
## 80             Mid            High
## 81             Mid             Mid
## 82             Mid            High
## 83             Mid             Low
## 84             Mid             Mid
## 85             Mid             Mid
## 86             Mid            High
## 87             Mid             Low
## 88             Mid             Mid
## 89             Mid             Mid
## 90             Mid             Mid
## 91             Mid             Mid
## 92             Mid             Mid
## 93             Mid             Mid
## 94             Mid             Mid
## 95             Mid            High
## 96             Mid             Mid
## 97             Mid             Low
## 98             Mid             Mid
## 99             Mid            High
## 100            Mid             Mid
## 101            Mid             Mid
## 102            Mid             Mid
## 103            Mid             Mid
## 104            Mid            High
## 105            Mid             Low
## 106            Mid             Mid
## 107            Mid             Mid
## 108            Mid             Low
## 109            Mid             Low
## 110            Mid             Mid
## 111            Mid             Mid
## 112            Mid             Low
## 113            Mid             Mid
## 114            Mid             Mid
## 115            Mid             Mid
## 116            Mid             Low
## 117            Mid             Low
## 118            Mid             Low
## 119            Low             Mid
## 120            Low             Low
## 121            Low             Low
## 122            Low             Mid
## 123            Low             Low
## 124            Low             Mid
## 125            Low             Low
## 126            Low             Mid
## 127            Low             Low
## 128            Low             Mid
## 129            Low             Low
## 130            Low             Mid
## 131            Low             Low
## 132            Low             Low
## 133            Low             Low
## 134            Low             Low
## 135            Low             Mid
## 136            Low             Low
## 137            Low             Mid
## 138            Low             Low
## 139            Low             Low
## 140            Low             Mid
## 141            Low             Mid
## 142            Low             Mid
## 143            Low             Low
## 144            Low             Low
## 145            Low             Mid
## 146            Low             Low
## 147            Low             Low
## 148            Low             Mid
## 149            Low             Low
## 150            Low             Low
## 151            Low             Mid
## 152            Low             Low
## 153            Low             Low
## 154            Low             Low
## 155            Low             Low
## 156            Low             Low
## 157            Low             Low
## 158            Low             Mid
## 159            Low             Low
## 160            Low             Low
## 161            Low             Low
## 162            Low             Low
## 163            Low             Low
## 164            Low             Low
## 165            Low             Low
## 166            Low             Low
## 167            Low             Low
## 168            Low             Low
## 169            Low             Low
## 170            Low             Low
## 171            Low             Low
## 172            Low             Low
## 173            Low             Low
## 174            Low             Low
## 175            Low             Low
## 176            Low             Low
## 177            Low             Low
## 178            Low             Low
## 179            Low             Low
## 180            Low             Low
## 181            Low             Low
## 182            Low             Low
## 183            Low             Low
## 184            Low             Low
## 185            Low             Low
## 186            Low             Low
## 187            Low             Low
## 188            Low             Low
## 189            Low             Low
## 190            Low             Low
## 191            Low             Low
## 192            Low             Low
## 193            Low             Low
## 194            Low             Low
## 195            Low             Low
## 196            Low             Low
## 197            Low             Low
## 198            Low             Low
## 199            Low             Low
## 200            Low             Low
## 201            Low             Low
## 202            Low             Low
## 203            Low             Low
## 204            Low             Low
## 205            Low             Low
## 206            Low             Low
## 207            Low             Low
## 208            Low             Low
## 209            Low             Low
## 210            Low             Low
## 211            Low             Low
## 212            Low             Low
## 213            Low             Low
## 214            Low             Low
## 215            Low             Low
## 216            Low             Low
## 217           High            High
## 218           High            High
## 219           High            High
## 220           High            High
## 221           High             Mid
## 222           High            High
## 223           High            High
## 224           High            High
## 225           High             Mid
## 226           High            High
## 227           High            High
## 228           High            High
## 229           High            High
## 230           High             Mid
## 231           High             Mid
## 232           High            High
## 233           High            High
## 234           High            High
## 235           High            High
## 236           High             Mid
## 237           High             Mid
## 238            Mid             Mid
## 239            Mid             Mid
## 240            Mid             Mid
## 241            Mid            High
## 242            Mid             Mid
## 243            Mid             Mid
## 244            Mid             Low
## 245            Mid             Mid
## 246            Mid            High
## 247            Mid             Mid
## 248            Mid            High
## 249            Mid            High
## 250            Mid             Mid
## 251            Mid             Mid
## 252            Mid             Mid
## 253            Mid             Mid
## 254            Mid             Low
## 255            Mid             Mid
## 256            Mid            High
## 257            Mid             Mid
## 258            Mid             Mid
## 259            Mid             Low
## 260            Mid             Mid
## 261            Mid             Mid
## 262            Mid             Mid
## 263            Mid             Mid
## 264            Mid             Mid
## 265            Mid             Low
## 266            Mid             Mid
## 267            Mid             Low
## 268            Mid             Mid
## 269            Low             Low
## 270            Low             Low
## 271            Low             Mid
## 272            Low             Low
## 273            Low             Low
## 274            Low             Low
## 275            Low             Low
## 276            Low             Low
## 277            Low             Low
## 278            Low             Low
## 279            Low             Low
## 280            Low             Low
## 281            Low             Low
## 282            Low             Low
## 283            Low             Low
## 284            Low             Low
## 285            Low             Low
## 286            Low             Low
## 287            Low             Low
## 288            Low             Low
## 289            Low             Low
## 290            Low             Low
## 291            Low             Low
## 292            Low             Low
## 293            Low             Low
## 294            Low             Low
## 295            Low             Low
## 296            Low             Low
## 297            Low             Low
## 298            Low             Low
## 299            Low             Low
## 300            Low             Low
## 301            Low             Low
## 302            Low             Low
## 303            Low             Low
## 304            Low             Low
## 305            Low             Low
## 306            Low             Low
## 307            Low             Low
## 308            Low             Low
## 309            Low             Low
## 310            Low             Low
## 311            Low             Low
## 312            Low             Low
## 313            Mid             Mid
## 314           High             Low
## 315            Low             Low
## 316            Mid             Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(SVM_P_Test_Accuracy <- Accuracy(y_pred = SVM_P_Test$SVM_P_Predicted, 
                                 y_true = SVM_P_Test$SVM_P_Observed))
## [1] 0.7879747

1.5.10 K-Nearest Neighbors (KNN)


K-Nearest Neighbors use proximity to make predictions about the class grouping of an individual data point. The algorithm examines the labels of a chosen number of data points surrounding a target data point given a distance-based similarity metric, in order to make a prediction about the class that the data point falls into. The process involves setting a value for the chosen number of neighbors, calculating the distance between the target point across all instances, sorting the calculated distances, obtaining the labels of the top entries and returning the prediction for the target point.

[A] The k-nearest neighbors model was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] k = number of neighbors made to vary across a range of values equal to 1 to 15

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves k=1
     [C.2] Accuracy = 0.69096

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.66772

Code Chunk | Output
##################################
# Transforming factor predictors
# as required by the nature of the model
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_KNN <- as.data.frame(lapply(PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in%
                                                                            c("Log_Solubility_Class")], 
                                                   function(x) as.numeric(as.character(x))))
PMA_PreModelling_Train_KNN$Log_Solubility_Class <- PMA_PreModelling_Train$Log_Solubility_Class
dim(PMA_PreModelling_Train_KNN)
## [1] 951 221
PMA_PreModelling_Test_KNN <- as.data.frame(lapply(PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in%
                                                                          c("Log_Solubility_Class")],
                                                  function(x) as.numeric(as.character(x))))
PMA_PreModelling_Test_KNN$Log_Solubility_Class <- PMA_PreModelling_Test$Log_Solubility_Class
dim(PMA_PreModelling_Test_KNN)
## [1] 316 221
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_KNN$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
KNN_Grid = data.frame(k = 1:15)

##################################
# Running the k-nearest neighbors model
# by setting the caret method to 'knn'
##################################
set.seed(12345678)
KNN_Tune <- train(x = PMA_PreModelling_Train_KNN[,!names(PMA_PreModelling_Train_KNN) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_KNN$Log_Solubility_Class,
                 method = "knn",
                 tuneGrid = KNN_Grid,
                 metric = "Accuracy",                 
                 preProc = c("center", "scale"),
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
KNN_Tune
## k-Nearest Neighbors 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## Pre-processing: centered (220), scaled (220) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   k   logLoss     AUC        prAUC      Accuracy   Kappa      Mean_F1  
##    1  10.6737099  0.7627248  0.1523593  0.6909644  0.5248443  0.6763654
##    2   6.2928497  0.8097714  0.2987438  0.6687911  0.4915505  0.6567407
##    3   4.1839502  0.8265499  0.3974905  0.6740440  0.5012030  0.6623557
##    4   2.8594322  0.8384589  0.4527443  0.6803257  0.5095334  0.6655584
##    5   2.0527741  0.8426648  0.4961141  0.6728024  0.4992849  0.6578326
##    6   1.6635028  0.8414875  0.5242414  0.6665976  0.4895226  0.6530404
##    7   1.5021258  0.8419778  0.5486772  0.6591839  0.4798950  0.6467301
##    8   1.2420356  0.8423114  0.5581320  0.6475826  0.4624104  0.6333724
##    9   1.0754032  0.8446039  0.5839178  0.6653784  0.4893441  0.6518878
##   10   0.9844257  0.8424898  0.5936362  0.6549069  0.4727168  0.6429190
##   11   0.9569513  0.8410814  0.6044349  0.6496986  0.4657898  0.6390634
##   12   0.9311503  0.8384058  0.6030785  0.6486240  0.4632526  0.6350665
##   13   0.8988341  0.8400084  0.6143793  0.6496657  0.4644401  0.6353063
##   14   0.9010341  0.8398405  0.6178245  0.6580541  0.4775989  0.6432050
##   15   0.9058148  0.8372564  0.6196570  0.6559593  0.4735149  0.6416489
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.6796973         0.8457523         0.6774015            0.8437005          
##   0.6610423         0.8337863         0.6571927            0.8318572          
##   0.6709135         0.8368506         0.6610606            0.8352393          
##   0.6737182         0.8397940         0.6640249            0.8388702          
##   0.6676559         0.8368113         0.6565718            0.8356550          
##   0.6616797         0.8332811         0.6536380            0.8320344          
##   0.6557045         0.8306276         0.6461644            0.8281643          
##   0.6424980         0.8253458         0.6321612            0.8225189          
##   0.6610590         0.8341057         0.6514759            0.8315761          
##   0.6509016         0.8277650         0.6445294            0.8259942          
##   0.6469238         0.8257566         0.6413118            0.8230785          
##   0.6442150         0.8247755         0.6365916            0.8235268          
##   0.6437033         0.8253088         0.6373804            0.8240103          
##   0.6514827         0.8301041         0.6455826            0.8283774          
##   0.6483081         0.8282646         0.6451923            0.8270225          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.6774015       0.6796973    0.2303215            0.7627248             
##   0.6571927       0.6610423    0.2229304            0.7474143             
##   0.6610606       0.6709135    0.2246813            0.7538820             
##   0.6640249       0.6737182    0.2267752            0.7567561             
##   0.6565718       0.6676559    0.2242675            0.7522336             
##   0.6536380       0.6616797    0.2221992            0.7474804             
##   0.6461644       0.6557045    0.2197280            0.7431661             
##   0.6321612       0.6424980    0.2158609            0.7339219             
##   0.6514759       0.6610590    0.2217928            0.7475823             
##   0.6445294       0.6509016    0.2183023            0.7393333             
##   0.6413118       0.6469238    0.2165662            0.7363402             
##   0.6365916       0.6442150    0.2162080            0.7344953             
##   0.6373804       0.6437033    0.2165552            0.7345061             
##   0.6455826       0.6514827    0.2193514            0.7407934             
##   0.6451923       0.6483081    0.2186531            0.7382863             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 1.
KNN_Tune$finalModel
## 1-nearest neighbor model
## Training set outcome distribution:
## 
##  Low  Mid High 
##  427  283  241
KNN_Tune$results
##     k    logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1   1 10.6737099 0.7627248 0.1523593 0.6909644 0.5248443 0.6763654
## 2   2  6.2928497 0.8097714 0.2987438 0.6687911 0.4915505 0.6567407
## 3   3  4.1839502 0.8265499 0.3974905 0.6740440 0.5012030 0.6623557
## 4   4  2.8594322 0.8384589 0.4527443 0.6803257 0.5095334 0.6655584
## 5   5  2.0527741 0.8426648 0.4961141 0.6728024 0.4992849 0.6578326
## 6   6  1.6635028 0.8414875 0.5242414 0.6665976 0.4895226 0.6530404
## 7   7  1.5021258 0.8419778 0.5486772 0.6591839 0.4798950 0.6467301
## 8   8  1.2420356 0.8423114 0.5581320 0.6475826 0.4624104 0.6333724
## 9   9  1.0754032 0.8446039 0.5839178 0.6653784 0.4893441 0.6518878
## 10 10  0.9844257 0.8424898 0.5936362 0.6549069 0.4727168 0.6429190
## 11 11  0.9569513 0.8410814 0.6044349 0.6496986 0.4657898 0.6390634
## 12 12  0.9311503 0.8384058 0.6030785 0.6486240 0.4632526 0.6350665
## 13 13  0.8988341 0.8400084 0.6143793 0.6496657 0.4644401 0.6353063
## 14 14  0.9010341 0.8398405 0.6178245 0.6580541 0.4775989 0.6432050
## 15 15  0.9058148 0.8372564 0.6196570 0.6559593 0.4735149 0.6416489
##    Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1         0.6796973        0.8457523           0.6774015           0.8437005
## 2         0.6610423        0.8337863           0.6571927           0.8318572
## 3         0.6709135        0.8368506           0.6610606           0.8352393
## 4         0.6737182        0.8397940           0.6640249           0.8388702
## 5         0.6676559        0.8368113           0.6565718           0.8356550
## 6         0.6616797        0.8332811           0.6536380           0.8320344
## 7         0.6557045        0.8306276           0.6461644           0.8281643
## 8         0.6424980        0.8253458           0.6321612           0.8225189
## 9         0.6610590        0.8341057           0.6514759           0.8315761
## 10        0.6509016        0.8277650           0.6445294           0.8259942
## 11        0.6469238        0.8257566           0.6413118           0.8230785
## 12        0.6442150        0.8247755           0.6365916           0.8235268
## 13        0.6437033        0.8253088           0.6373804           0.8240103
## 14        0.6514827        0.8301041           0.6455826           0.8283774
## 15        0.6483081        0.8282646           0.6451923           0.8270225
##    Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1       0.6774015   0.6796973           0.2303215              0.7627248
## 2       0.6571927   0.6610423           0.2229304              0.7474143
## 3       0.6610606   0.6709135           0.2246813              0.7538820
## 4       0.6640249   0.6737182           0.2267752              0.7567561
## 5       0.6565718   0.6676559           0.2242675              0.7522336
## 6       0.6536380   0.6616797           0.2221992              0.7474804
## 7       0.6461644   0.6557045           0.2197280              0.7431661
## 8       0.6321612   0.6424980           0.2158609              0.7339219
## 9       0.6514759   0.6610590           0.2217928              0.7475823
## 10      0.6445294   0.6509016           0.2183023              0.7393333
## 11      0.6413118   0.6469238           0.2165662              0.7363402
## 12      0.6365916   0.6442150           0.2162080              0.7344953
## 13      0.6373804   0.6437033           0.2165552              0.7345061
## 14      0.6455826   0.6514827           0.2193514              0.7407934
## 15      0.6451923   0.6483081           0.2186531              0.7382863
##    logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1  1.4961915 0.03432577 0.01597257 0.04331918 0.06604091 0.04370119
## 2  1.4006746 0.03735790 0.01578613 0.04531882 0.06822881 0.04341126
## 3  0.9243300 0.03436191 0.03448663 0.05370407 0.08035512 0.05286920
## 4  1.1054249 0.03477873 0.02800168 0.03614390 0.05304843 0.03531431
## 5  0.6858583 0.03118997 0.04057520 0.04762937 0.07125187 0.04802260
## 6  0.5986646 0.02458701 0.02209462 0.04051384 0.06046828 0.03947920
## 7  0.5259159 0.02425272 0.02324487 0.03418856 0.04871695 0.03292711
## 8  0.4929138 0.02660966 0.03509589 0.03951216 0.05834668 0.03896802
## 9  0.3952281 0.02820862 0.03682023 0.05120634 0.07593751 0.05001877
## 10 0.3909030 0.03030350 0.05129978 0.04309240 0.06190314 0.03953886
## 11 0.3180238 0.03039304 0.04821833 0.03746356 0.05413363 0.03609534
## 12 0.3267534 0.03068468 0.04497559 0.05024105 0.07435455 0.04941595
## 13 0.2764924 0.03198023 0.04433573 0.05018315 0.07378559 0.04942128
## 14 0.2778600 0.03471338 0.04815878 0.05180801 0.07585442 0.05043523
## 15 0.2704995 0.03296372 0.04502635 0.05658539 0.08289007 0.05420621
##    Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1          0.04765761         0.02134400            0.04135296
## 2          0.04740568         0.02222685            0.04118442
## 3          0.05364060         0.02637412            0.05308741
## 4          0.03513614         0.01704800            0.03678329
## 5          0.04802770         0.02328897            0.04957638
## 6          0.04295661         0.01934655            0.03921750
## 7          0.03084609         0.01613415            0.03143797
## 8          0.04074256         0.01899430            0.03613987
## 9          0.04941343         0.02554215            0.04960760
## 10         0.03831481         0.02038562            0.03981215
## 11         0.03536315         0.01735382            0.03568248
## 12         0.04901883         0.02424114            0.05069786
## 13         0.04736192         0.02405194            0.05077322
## 14         0.04904318         0.02430644            0.05149403
## 15         0.05264087         0.02666672            0.05710902
##    Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1             0.02260072       0.04135296    0.04765761            0.01443973
## 2             0.02445799       0.04118442    0.04740568            0.01510627
## 3             0.02799472       0.05308741    0.05364060            0.01790136
## 4             0.01903050       0.03678329    0.03513614            0.01204797
## 5             0.02521781       0.04957638    0.04802770            0.01587646
## 6             0.02216083       0.03921750    0.04295661            0.01350461
## 7             0.01725220       0.03143797    0.03084609            0.01139619
## 8             0.02051145       0.03613987    0.04074256            0.01317072
## 9             0.02616908       0.04960760    0.04941343            0.01706878
## 10            0.02260778       0.03981215    0.03831481            0.01436413
## 11            0.01922152       0.03568248    0.03536315            0.01248785
## 12            0.02656742       0.05069786    0.04901883            0.01674702
## 13            0.02599543       0.05077322    0.04736192            0.01672772
## 14            0.02705760       0.05149403    0.04904318            0.01726934
## 15            0.02984155       0.05710902    0.05264087            0.01886180
##    Mean_Balanced_AccuracySD
## 1                0.03432577
## 2                0.03472169
## 3                0.03987352
## 4                0.02597765
## 5                0.03546604
## 6                0.03099549
## 7                0.02315893
## 8                0.02959851
## 9                0.03730545
## 10               0.02928290
## 11               0.02623552
## 12               0.03655520
## 13               0.03563522
## 14               0.03657283
## 15               0.03958705
(KNN_Train_Accuracy <- KNN_Tune$results[KNN_Tune$results$k==KNN_Tune$bestTune$k,
                              c("Accuracy")])
## [1] 0.6909644
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
KNN_Test <- data.frame(KNN_Observed = PMA_PreModelling_Test_KNN$Log_Solubility_Class,
                      KNN_Predicted = predict(KNN_Tune,
                      PMA_PreModelling_Test_KNN[,!names(PMA_PreModelling_Test_KNN) %in% c("Log_Solubility_Class")],
                      type = "raw"))

KNN_Test
##     KNN_Observed KNN_Predicted
## 1           High          High
## 2           High          High
## 3           High          High
## 4           High          High
## 5           High          High
## 6           High          High
## 7           High          High
## 8           High          High
## 9           High          High
## 10          High          High
## 11          High          High
## 12          High          High
## 13          High           Mid
## 14          High          High
## 15          High          High
## 16          High          High
## 17          High          High
## 18          High          High
## 19          High           Mid
## 20          High          High
## 21          High          High
## 22          High          High
## 23          High          High
## 24          High           Mid
## 25          High          High
## 26          High          High
## 27          High          High
## 28          High          High
## 29          High           Mid
## 30          High           Low
## 31          High           Low
## 32          High          High
## 33          High          High
## 34          High          High
## 35          High          High
## 36          High          High
## 37          High           Mid
## 38          High          High
## 39          High          High
## 40          High          High
## 41          High          High
## 42          High          High
## 43          High           Mid
## 44          High          High
## 45          High          High
## 46          High          High
## 47          High          High
## 48          High          High
## 49          High           Mid
## 50          High          High
## 51          High           Mid
## 52          High           Mid
## 53          High          High
## 54          High          High
## 55          High          High
## 56          High           Mid
## 57          High          High
## 58           Mid          High
## 59           Mid           Mid
## 60           Mid           Mid
## 61           Mid          High
## 62           Mid           Mid
## 63           Mid          High
## 64           Mid          High
## 65           Mid           Mid
## 66           Mid           Mid
## 67           Mid           Mid
## 68           Mid           Low
## 69           Mid          High
## 70           Mid           Low
## 71           Mid           Low
## 72           Mid           Mid
## 73           Mid           Mid
## 74           Mid           Mid
## 75           Mid          High
## 76           Mid           Mid
## 77           Mid           Mid
## 78           Mid           Mid
## 79           Mid           Mid
## 80           Mid          High
## 81           Mid          High
## 82           Mid          High
## 83           Mid          High
## 84           Mid           Mid
## 85           Mid           Low
## 86           Mid          High
## 87           Mid           Mid
## 88           Mid          High
## 89           Mid           Low
## 90           Mid           Mid
## 91           Mid           Mid
## 92           Mid           Mid
## 93           Mid           Low
## 94           Mid           Mid
## 95           Mid          High
## 96           Mid           Mid
## 97           Mid           Low
## 98           Mid           Mid
## 99           Mid          High
## 100          Mid           Mid
## 101          Mid           Low
## 102          Mid           Low
## 103          Mid          High
## 104          Mid           Low
## 105          Mid           Low
## 106          Mid          High
## 107          Mid           Mid
## 108          Mid           Mid
## 109          Mid           Low
## 110          Mid           Low
## 111          Mid           Mid
## 112          Mid           Mid
## 113          Mid           Mid
## 114          Mid           Mid
## 115          Mid           Mid
## 116          Mid           Low
## 117          Mid           Low
## 118          Mid           Low
## 119          Low          High
## 120          Low           Mid
## 121          Low           Low
## 122          Low          High
## 123          Low           Low
## 124          Low           Mid
## 125          Low          High
## 126          Low          High
## 127          Low           Low
## 128          Low           Low
## 129          Low           Low
## 130          Low           Low
## 131          Low           Low
## 132          Low           Mid
## 133          Low           Low
## 134          Low          High
## 135          Low          High
## 136          Low           Low
## 137          Low           Mid
## 138          Low           Low
## 139          Low           Low
## 140          Low           Mid
## 141          Low           Mid
## 142          Low           Low
## 143          Low           Low
## 144          Low           Mid
## 145          Low           Mid
## 146          Low          High
## 147          Low           Low
## 148          Low           Mid
## 149          Low           Low
## 150          Low           Low
## 151          Low          High
## 152          Low           Mid
## 153          Low           Low
## 154          Low           Low
## 155          Low           Low
## 156          Low           Low
## 157          Low           Low
## 158          Low           Low
## 159          Low           Low
## 160          Low           Mid
## 161          Low           Low
## 162          Low           Low
## 163          Low           Low
## 164          Low           Low
## 165          Low           Low
## 166          Low           Low
## 167          Low           Low
## 168          Low           Low
## 169          Low           Low
## 170          Low          High
## 171          Low           Low
## 172          Low           Low
## 173          Low           Low
## 174          Low           Low
## 175          Low           Low
## 176          Low           Low
## 177          Low           Low
## 178          Low           Low
## 179          Low           Low
## 180          Low           Low
## 181          Low           Low
## 182          Low           Low
## 183          Low           Low
## 184          Low           Low
## 185          Low           Low
## 186          Low           Low
## 187          Low           Low
## 188          Low          High
## 189          Low           Low
## 190          Low           Low
## 191          Low           Low
## 192          Low           Low
## 193          Low           Low
## 194          Low           Low
## 195          Low           Low
## 196          Low          High
## 197          Low           Low
## 198          Low           Low
## 199          Low           Mid
## 200          Low           Low
## 201          Low           Low
## 202          Low           Low
## 203          Low           Low
## 204          Low           Low
## 205          Low           Low
## 206          Low           Low
## 207          Low           Low
## 208          Low           Low
## 209          Low           Low
## 210          Low           Low
## 211          Low           Low
## 212          Low           Low
## 213          Low           Low
## 214          Low           Low
## 215          Low           Low
## 216          Low           Low
## 217         High          High
## 218         High          High
## 219         High          High
## 220         High          High
## 221         High           Mid
## 222         High          High
## 223         High          High
## 224         High          High
## 225         High           Low
## 226         High          High
## 227         High           Mid
## 228         High           Low
## 229         High          High
## 230         High           Mid
## 231         High           Mid
## 232         High           Mid
## 233         High          High
## 234         High          High
## 235         High          High
## 236         High           Mid
## 237         High          High
## 238          Mid           Low
## 239          Mid          High
## 240          Mid          High
## 241          Mid          High
## 242          Mid          High
## 243          Mid          High
## 244          Mid           Low
## 245          Mid           Low
## 246          Mid          High
## 247          Mid           Mid
## 248          Mid          High
## 249          Mid           Mid
## 250          Mid           Mid
## 251          Mid           Mid
## 252          Mid           Mid
## 253          Mid           Mid
## 254          Mid           Mid
## 255          Mid           Mid
## 256          Mid          High
## 257          Mid          High
## 258          Mid           Mid
## 259          Mid           Mid
## 260          Mid           Mid
## 261          Mid           Mid
## 262          Mid          High
## 263          Mid           Mid
## 264          Mid          High
## 265          Mid           Low
## 266          Mid           Mid
## 267          Mid           Low
## 268          Mid          High
## 269          Low           Low
## 270          Low          High
## 271          Low          High
## 272          Low          High
## 273          Low           Low
## 274          Low           Mid
## 275          Low           Mid
## 276          Low           Low
## 277          Low           Mid
## 278          Low           Mid
## 279          Low           Low
## 280          Low           Low
## 281          Low           Low
## 282          Low           Low
## 283          Low           Low
## 284          Low           Low
## 285          Low           Low
## 286          Low           Mid
## 287          Low           Low
## 288          Low           Low
## 289          Low           Low
## 290          Low           Low
## 291          Low           Low
## 292          Low           Low
## 293          Low           Mid
## 294          Low           Low
## 295          Low           Low
## 296          Low           Mid
## 297          Low           Low
## 298          Low           Low
## 299          Low           Low
## 300          Low           Low
## 301          Low           Low
## 302          Low           Low
## 303          Low           Low
## 304          Low           Mid
## 305          Low           Low
## 306          Low           Low
## 307          Low           Low
## 308          Low           Low
## 309          Low           Low
## 310          Low           Low
## 311          Low           Low
## 312          Low           Low
## 313          Mid           Mid
## 314         High           Low
## 315          Low           Low
## 316          Mid           Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(KNN_Test_Accuracy <- Accuracy(y_pred = KNN_Test$KNN_Predicted, 
                               y_true = KNN_Test$KNN_Observed))
## [1] 0.6677215

1.5.11 Classification and Regression Trees (CART)


Classification and Regression Trees construct binary trees for both both nominal and continuous input attributes using Gini Index as its splitting criteria. The algorithm handles missing values by surrogating tests to approximate outcomes. In the pruning phase, CART uses pre-pruning technique called Cost-Complexity pruning to remove redundant branches from the decision tree to improve the accuracy. In the first stage, a sequence of increasingly smaller trees are built on the training data. In the second stage, one of these tree is chosen as the pruned tree, based on its classification accuracy on a pruning set, adopting a cross-validated method in its pruning technique.

[A] The classification and regression trees model from the rpart package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] cp = complexity parameter threshold made to vary across a range of values equal to 0.001 to 0.020

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves cp=0.010
     [C.2] Accuracy = 0.74878

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] SurfaceArea1 variable (numeric)
     [D.5] SurfaceArea2 variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.79746

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_CART <- PMA_PreModelling_Train
PMA_PreModelling_Test_CART <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_CART$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
CART_Grid = data.frame(cp = c(0.001, 0.005, 0.010, 0.015, 0.020))

##################################
# Running the classification and regression trees model
# by setting the caret method to 'rpart'
##################################
set.seed(12345678)
CART_Tune <- train(x = PMA_PreModelling_Train_CART[,!names(PMA_PreModelling_Train_CART) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_CART$Log_Solubility_Class,
                 method = "rpart",
                 tuneGrid = CART_Grid,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
CART_Tune
## CART 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   cp     logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##   0.001  1.1931473  0.8769405  0.5963782  0.7422466  0.6006186  0.7269625
##   0.005  1.0020605  0.8671585  0.5598576  0.7465792  0.6044978  0.7290207
##   0.010  0.7870737  0.8494554  0.5583493  0.7487843  0.6056158  0.7306626
##   0.015  0.7790256  0.8271679  0.5247305  0.7319637  0.5771922  0.7127630
##   0.020  0.7959575  0.8190378  0.4606715  0.7182790  0.5550326  0.6972130
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.7271813         0.8695811         0.7310609            0.8706938          
##   0.7268683         0.8696300         0.7423965            0.8752360          
##   0.7255223         0.8688406         0.7469902            0.8762166          
##   0.7050844         0.8583185         0.7371771            0.8685147          
##   0.6893675         0.8511574         0.7240875            0.8616398          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.7310609       0.7271813    0.2474155            0.7983812             
##   0.7423965       0.7268683    0.2488597            0.7982491             
##   0.7469902       0.7255223    0.2495948            0.7971815             
##   0.7371771       0.7050844    0.2439879            0.7817014             
##   0.7240875       0.6893675    0.2394263            0.7702624             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.01.
CART_Tune$finalModel
## n= 951 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 951 524 Low (0.44900105 0.29758149 0.25341746)  
##     2) NumCarbon>=0.08489128 424 102 Low (0.75943396 0.20754717 0.03301887)  
##       4) SurfaceArea1< -0.5808955 119   3 Low (0.97478992 0.02521008 0.00000000) *
##       5) SurfaceArea1>=-0.5808955 305  99 Low (0.67540984 0.27868852 0.04590164)  
##        10) MolWeight>=0.6824776 188  35 Low (0.81382979 0.15425532 0.03191489) *
##        11) MolWeight< 0.6824776 117  61 Mid (0.45299145 0.47863248 0.06837607)  
##          22) FP178=1 19   1 Low (0.94736842 0.05263158 0.00000000) *
##          23) FP178=0 98  43 Mid (0.35714286 0.56122449 0.08163265)  
##            46) MolWeight>=-0.2744138 84  43 Mid (0.41666667 0.48809524 0.09523810)  
##              92) SurfaceArea1< 0.4297734 53  23 Low (0.56603774 0.33962264 0.09433962) *
##              93) SurfaceArea1>=0.4297734 31   8 Mid (0.16129032 0.74193548 0.09677419) *
##            47) MolWeight< -0.2744138 14   0 Mid (0.00000000 1.00000000 0.00000000) *
##     3) NumCarbon< 0.08489128 527 300 High (0.19924099 0.37001898 0.43074004)  
##       6) MolWeight>=-0.738762 281 140 Mid (0.26690391 0.50177936 0.23131673)  
##        12) MolWeight>=0.3719905 59  17 Low (0.71186441 0.23728814 0.05084746)  
##          24) SurfaceArea1< 1.444976 50   9 Low (0.82000000 0.14000000 0.04000000) *
##          25) SurfaceArea1>=1.444976 9   2 Mid (0.11111111 0.77777778 0.11111111) *
##        13) MolWeight< 0.3719905 222  95 Mid (0.14864865 0.57207207 0.27927928)  
##          26) NumOxygen< 1.113753 205  81 Mid (0.16097561 0.60487805 0.23414634)  
##            52) FP072=0 71  31 Mid (0.33802817 0.56338028 0.09859155)  
##             104) FP172=1 13   2 Low (0.84615385 0.15384615 0.00000000) *
##             105) FP172=0 58  20 Mid (0.22413793 0.65517241 0.12068966) *
##            53) FP072=1 134  50 Mid (0.06716418 0.62686567 0.30597015)  
##             106) FP028=0 121  40 Mid (0.07438017 0.66942149 0.25619835) *
##             107) FP028=1 13   3 High (0.00000000 0.23076923 0.76923077) *
##          27) NumOxygen>=1.113753 17   3 High (0.00000000 0.17647059 0.82352941) *
##       7) MolWeight< -0.738762 246  84 High (0.12195122 0.21951220 0.65853659)  
##        14) SurfaceArea1< -0.9872601 67  35 Mid (0.44776119 0.47761194 0.07462687)  
##          28) NumBonds>=-0.6650861 28   0 Low (1.00000000 0.00000000 0.00000000) *
##          29) NumBonds< -0.6650861 39   7 Mid (0.05128205 0.82051282 0.12820513) *
##        15) SurfaceArea1>=-0.9872601 179  22 High (0.00000000 0.12290503 0.87709497) *
CART_Tune$results
##      cp   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1 0.001 1.1931473 0.8769405 0.5963782 0.7422466 0.6006186 0.7269625
## 2 0.005 1.0020605 0.8671585 0.5598576 0.7465792 0.6044978 0.7290207
## 3 0.010 0.7870737 0.8494554 0.5583493 0.7487843 0.6056158 0.7306626
## 4 0.015 0.7790256 0.8271679 0.5247305 0.7319637 0.5771922 0.7127630
## 5 0.020 0.7959575 0.8190378 0.4606715 0.7182790 0.5550326 0.6972130
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.7271813        0.8695811           0.7310609           0.8706938
## 2        0.7268683        0.8696300           0.7423965           0.8752360
## 3        0.7255223        0.8688406           0.7469902           0.8762166
## 4        0.7050844        0.8583185           0.7371771           0.8685147
## 5        0.6893675        0.8511574           0.7240875           0.8616398
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.7310609   0.7271813           0.2474155              0.7983812
## 2      0.7423965   0.7268683           0.2488597              0.7982491
## 3      0.7469902   0.7255223           0.2495948              0.7971815
## 4      0.7371771   0.7050844           0.2439879              0.7817014
## 5      0.7240875   0.6893675           0.2394263              0.7702624
##   logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1 0.3926889 0.02582871 0.06647314 0.03753312 0.05828855 0.04459024
## 2 0.3131879 0.02965215 0.12221479 0.03219736 0.05090059 0.03761941
## 3 0.2784351 0.03408637 0.11088151 0.03307568 0.05359542 0.04073305
## 4 0.1940552 0.03330220 0.09615239 0.04535231 0.07158641 0.04958019
## 5 0.1951355 0.03313475 0.07615704 0.04711549 0.07514746 0.05418514
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1         0.04229818         0.01840686            0.04823586
## 2         0.03910158         0.01704983            0.03841794
## 3         0.04333930         0.01760820            0.03175899
## 4         0.05052005         0.02289770            0.04634280
## 5         0.05588823         0.02337378            0.04926607
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1            0.01814324       0.04823586    0.04229818            0.01251104
## 2            0.01591432       0.03841794    0.03910158            0.01073245
## 3            0.01527999       0.03175899    0.04333930            0.01102523
## 4            0.02414552       0.04634280    0.05052005            0.01511744
## 5            0.02448534       0.04926607    0.05588823            0.01570516
##   Mean_Balanced_AccuracySD
## 1               0.03027497
## 2               0.02798101
## 3               0.03033345
## 4               0.03662156
## 5               0.03956813
(CART_Train_Accuracy <- CART_Tune$results[CART_Tune$results$cp==CART_Tune$bestTune$cp,
                              c("Accuracy")])
## [1] 0.7487843
##################################
# Identifying and plotting the
# best model predictors
##################################
CART_VarImp <- varImp(CART_Tune, scale = TRUE)
plot(CART_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Classification and Regression Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
CART_Test <- data.frame(CART_Observed = PMA_PreModelling_Test_CART$Log_Solubility_Class,
                      CART_Predicted = predict(CART_Tune,
                      PMA_PreModelling_Test_CART[,!names(PMA_PreModelling_Test_CART) %in% c("Log_Solubility_Class")],
                      type = "raw"))

CART_Test
##     CART_Observed CART_Predicted
## 1            High           High
## 2            High           High
## 3            High           High
## 4            High           High
## 5            High           High
## 6            High           High
## 7            High           High
## 8            High           High
## 9            High           High
## 10           High           High
## 11           High           High
## 12           High            Low
## 13           High           High
## 14           High           High
## 15           High           High
## 16           High            Mid
## 17           High           High
## 18           High           High
## 19           High           High
## 20           High            Mid
## 21           High           High
## 22           High           High
## 23           High           High
## 24           High           High
## 25           High           High
## 26           High           High
## 27           High           High
## 28           High           High
## 29           High            Low
## 30           High           High
## 31           High            Low
## 32           High           High
## 33           High           High
## 34           High           High
## 35           High           High
## 36           High            Mid
## 37           High           High
## 38           High           High
## 39           High           High
## 40           High           High
## 41           High           High
## 42           High            Low
## 43           High            Mid
## 44           High           High
## 45           High           High
## 46           High           High
## 47           High           High
## 48           High           High
## 49           High            Mid
## 50           High            Mid
## 51           High           High
## 52           High            Mid
## 53           High           High
## 54           High           High
## 55           High            Mid
## 56           High           High
## 57           High            Mid
## 58            Mid            Mid
## 59            Mid            Mid
## 60            Mid            Low
## 61            Mid            Mid
## 62            Mid            Mid
## 63            Mid            Mid
## 64            Mid           High
## 65            Mid           High
## 66            Mid            Low
## 67            Mid            Low
## 68            Mid            Mid
## 69            Mid           High
## 70            Mid            Mid
## 71            Mid            Low
## 72            Mid            Low
## 73            Mid            Mid
## 74            Mid            Low
## 75            Mid           High
## 76            Mid            Mid
## 77            Mid            Mid
## 78            Mid            Mid
## 79            Mid            Mid
## 80            Mid            Mid
## 81            Mid            Mid
## 82            Mid           High
## 83            Mid           High
## 84            Mid            Mid
## 85            Mid           High
## 86            Mid            Mid
## 87            Mid            Low
## 88            Mid            Mid
## 89            Mid            Mid
## 90            Mid            Mid
## 91            Mid            Mid
## 92            Mid            Mid
## 93            Mid            Mid
## 94            Mid           High
## 95            Mid            Mid
## 96            Mid            Mid
## 97            Mid            Mid
## 98            Mid            Low
## 99            Mid            Mid
## 100           Mid            Mid
## 101           Mid            Mid
## 102           Mid            Mid
## 103           Mid            Mid
## 104           Mid            Mid
## 105           Mid            Mid
## 106           Mid            Low
## 107           Mid            Mid
## 108           Mid            Mid
## 109           Mid            Mid
## 110           Mid            Low
## 111           Mid            Mid
## 112           Mid            Mid
## 113           Mid            Mid
## 114           Mid            Low
## 115           Mid            Mid
## 116           Mid            Low
## 117           Mid            Low
## 118           Mid            Low
## 119           Low            Low
## 120           Low            Low
## 121           Low            Mid
## 122           Low            Mid
## 123           Low            Low
## 124           Low            Mid
## 125           Low            Low
## 126           Low            Low
## 127           Low            Low
## 128           Low            Low
## 129           Low            Mid
## 130           Low            Low
## 131           Low            Low
## 132           Low            Low
## 133           Low            Low
## 134           Low            Low
## 135           Low            Low
## 136           Low            Low
## 137           Low            Low
## 138           Low            Low
## 139           Low            Low
## 140           Low            Mid
## 141           Low            Low
## 142           Low            Mid
## 143           Low            Low
## 144           Low            Low
## 145           Low            Low
## 146           Low            Low
## 147           Low            Low
## 148           Low            Low
## 149           Low            Low
## 150           Low            Low
## 151           Low            Low
## 152           Low            Low
## 153           Low            Low
## 154           Low            Low
## 155           Low            Low
## 156           Low            Low
## 157           Low            Low
## 158           Low            Low
## 159           Low            Mid
## 160           Low            Low
## 161           Low            Low
## 162           Low            Low
## 163           Low            Low
## 164           Low            Low
## 165           Low            Low
## 166           Low            Low
## 167           Low            Low
## 168           Low            Low
## 169           Low            Low
## 170           Low            Low
## 171           Low            Low
## 172           Low            Low
## 173           Low            Low
## 174           Low            Low
## 175           Low            Low
## 176           Low            Low
## 177           Low            Low
## 178           Low            Low
## 179           Low            Low
## 180           Low            Low
## 181           Low            Low
## 182           Low            Low
## 183           Low            Low
## 184           Low            Low
## 185           Low            Low
## 186           Low            Low
## 187           Low            Low
## 188           Low            Low
## 189           Low            Low
## 190           Low            Low
## 191           Low            Low
## 192           Low            Low
## 193           Low            Low
## 194           Low            Low
## 195           Low            Low
## 196           Low            Low
## 197           Low            Low
## 198           Low            Low
## 199           Low            Low
## 200           Low            Low
## 201           Low            Low
## 202           Low            Low
## 203           Low            Low
## 204           Low            Low
## 205           Low            Low
## 206           Low            Low
## 207           Low            Low
## 208           Low            Low
## 209           Low            Low
## 210           Low            Low
## 211           Low            Low
## 212           Low            Low
## 213           Low            Low
## 214           Low            Low
## 215           Low            Low
## 216           Low            Low
## 217          High           High
## 218          High           High
## 219          High           High
## 220          High           High
## 221          High            Mid
## 222          High           High
## 223          High           High
## 224          High           High
## 225          High            Mid
## 226          High           High
## 227          High           High
## 228          High            Mid
## 229          High           High
## 230          High            Mid
## 231          High           High
## 232          High            Mid
## 233          High           High
## 234          High           High
## 235          High            Mid
## 236          High           High
## 237          High            Low
## 238           Mid            Mid
## 239           Mid           High
## 240           Mid            Mid
## 241           Mid           High
## 242           Mid            Mid
## 243           Mid            Mid
## 244           Mid            Mid
## 245           Mid            Low
## 246           Mid            Mid
## 247           Mid            Mid
## 248           Mid            Mid
## 249           Mid            Mid
## 250           Mid            Mid
## 251           Mid            Mid
## 252           Mid           High
## 253           Mid            Mid
## 254           Mid            Mid
## 255           Mid            Mid
## 256           Mid           High
## 257           Mid            Mid
## 258           Mid            Low
## 259           Mid            Mid
## 260           Mid            Mid
## 261           Mid            Mid
## 262           Mid            Low
## 263           Mid            Mid
## 264           Mid            Low
## 265           Mid            Low
## 266           Mid            Mid
## 267           Mid            Low
## 268           Mid            Low
## 269           Low            Low
## 270           Low            Low
## 271           Low            Mid
## 272           Low            Low
## 273           Low            Low
## 274           Low            Low
## 275           Low            Mid
## 276           Low            Low
## 277           Low            Low
## 278           Low            Low
## 279           Low            Low
## 280           Low            Low
## 281           Low            Low
## 282           Low            Low
## 283           Low            Low
## 284           Low            Low
## 285           Low            Low
## 286           Low            Low
## 287           Low            Low
## 288           Low            Low
## 289           Low            Low
## 290           Low            Low
## 291           Low            Low
## 292           Low            Low
## 293           Low            Low
## 294           Low            Low
## 295           Low            Low
## 296           Low            Low
## 297           Low            Low
## 298           Low            Low
## 299           Low            Low
## 300           Low            Low
## 301           Low            Low
## 302           Low            Low
## 303           Low            Low
## 304           Low            Low
## 305           Low            Low
## 306           Low            Low
## 307           Low            Low
## 308           Low            Low
## 309           Low            Low
## 310           Low            Low
## 311           Low            Low
## 312           Low            Low
## 313           Mid            Mid
## 314          High            Low
## 315           Low            Low
## 316           Mid            Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(CART_Test_Accuracy <- Accuracy(y_pred = CART_Test$CART_Predicted, 
                               y_true = CART_Test$CART_Observed))
## [1] 0.7974684

1.5.12 Conditional Inference Trees (CTREE)


Conditional Inference Trees use recursive partitioning of features based on the value of correlations in conditional inference framework - compensating against overfitting and a selection bias towards features with many possible splits or missing values thus avoiding biasing and vulnerability to the errors making the method more flexible for the problems in the data. The algorithm applies a significance test which is a permutation test that selects input features to split and recurse, calculating the p-value in the process. The distribution of the test statistic under the null hypothesis is obtained by calculating all possible values of the test statistic under rearrangements of the classes on the observed data points.

[A] The conditional inference trees model from the party package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mincriterion = 1-p-value threshold made to vary across a range of values equal to 0.75 to 0.99

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mincriterion=0.75
     [C.2] Accuracy = 0.73185

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] NumCarbon variable (numeric)
     [D.2] MolWeight variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] NumRings variable (numeric)
     [D.5] NumMultBonds variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.79430

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_CTREE <- PMA_PreModelling_Train
PMA_PreModelling_Test_CTREE <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_CTREE$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
CTREE_Grid = data.frame(mincriterion = sort(c(0.95, seq(0.75, 0.99, length = 2))))

##################################
# Running the conditional inference trees model
# by setting the caret method to 'ctree'
##################################
set.seed(12345678)
CTREE_Tune <- train(x = PMA_PreModelling_Train_CTREE[,!names(PMA_PreModelling_Train_CTREE) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_CTREE$Log_Solubility_Class,
                 method = "ctree",
                 tuneGrid = CTREE_Grid,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
CTREE_Tune
## Conditional Inference Tree 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   mincriterion  logLoss    AUC        prAUC      Accuracy   Kappa    
##   0.75          0.9299039  0.8782359  0.6305546  0.7318519  0.5816893
##   0.95          0.8082372  0.8739128  0.6346791  0.7224113  0.5657826
##   0.99          0.7949996  0.8667851  0.6256556  0.7192308  0.5592964
##   Mean_F1    Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value
##   0.7061496  0.7107353         0.8624620         0.7179074          
##   0.6941214  0.6966903         0.8572185         0.7141345          
##   0.6924343  0.6886095         0.8547227         0.7174026          
##   Mean_Neg_Pred_Value  Mean_Precision  Mean_Recall  Mean_Detection_Rate
##   0.8698998            0.7179074       0.7107353    0.2439506          
##   0.8657959            0.7141345       0.6966903    0.2408038          
##   0.8640532            0.7174026       0.6886095    0.2397436          
##   Mean_Balanced_Accuracy
##   0.7865987             
##   0.7769544             
##   0.7716661             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mincriterion = 0.75.
CTREE_Tune$finalModel
## 
##   Conditional inference tree with 28 terminal nodes
## 
## Response:  .outcome 
## Inputs:  FP001, FP002, FP003, FP004, FP005, FP006, FP007, FP008, FP009, FP010, FP011, FP012, FP013, FP014, FP015, FP016, FP017, FP018, FP019, FP020, FP021, FP022, FP023, FP024, FP025, FP026, FP027, FP028, FP029, FP030, FP031, FP032, FP033, FP034, FP035, FP036, FP037, FP038, FP039, FP040, FP041, FP042, FP043, FP044, FP045, FP046, FP047, FP048, FP049, FP050, FP051, FP052, FP053, FP054, FP055, FP056, FP057, FP058, FP059, FP060, FP061, FP062, FP063, FP064, FP065, FP066, FP067, FP068, FP069, FP070, FP071, FP072, FP073, FP074, FP075, FP076, FP077, FP078, FP079, FP080, FP081, FP082, FP083, FP084, FP085, FP086, FP087, FP088, FP089, FP090, FP091, FP092, FP093, FP094, FP095, FP096, FP097, FP098, FP099, FP100, FP101, FP102, FP103, FP104, FP105, FP106, FP107, FP108, FP109, FP110, FP111, FP112, FP113, FP114, FP115, FP116, FP117, FP118, FP119, FP120, FP121, FP122, FP123, FP124, FP125, FP126, FP127, FP128, FP129, FP130, FP131, FP132, FP133, FP134, FP135, FP136, FP137, FP138, FP139, FP140, FP141, FP142, FP143, FP144, FP145, FP146, FP147, FP148, FP149, FP150, FP151, FP152, FP153, FP155, FP156, FP157, FP158, FP159, FP160, FP161, FP162, FP163, FP164, FP165, FP166, FP167, FP168, FP169, FP170, FP171, FP172, FP173, FP174, FP175, FP176, FP177, FP178, FP179, FP180, FP181, FP182, FP183, FP184, FP185, FP186, FP187, FP188, FP189, FP190, FP191, FP192, FP193, FP194, FP195, FP196, FP197, FP198, FP201, FP202, FP203, FP204, FP205, FP206, FP207, FP208, MolWeight, NumBonds, NumMultBonds, NumRotBonds, NumDblBonds, NumCarbon, NumNitrogen, NumOxygen, NumSulfer, NumChlorine, NumHalogen, NumRings, HydrophilicFactor, SurfaceArea1, SurfaceArea2 
## Number of observations:  951 
## 
## 1) MolWeight <= 0.2222905; criterion = 1, statistic = 385.056
##   2) NumCarbon <= 0.1817764; criterion = 1, statistic = 133.298
##     3) FP072 == {0}; criterion = 1, statistic = 99.39
##       4) FP063 == {0}; criterion = 1, statistic = 49.64
##         5) NumCarbon <= -0.9551655; criterion = 1, statistic = 64.15
##           6) NumCarbon <= -2.047084; criterion = 0.958, statistic = 17.099
##             7)*  weights = 18 
##           6) NumCarbon > -2.047084
##             8)*  weights = 32 
##         5) NumCarbon > -0.9551655
##           9) NumBonds <= -0.7205854; criterion = 0.998, statistic = 20.067
##             10) FP172 == {0}; criterion = 0.992, statistic = 16.941
##               11)*  weights = 17 
##             10) FP172 == {1}
##               12)*  weights = 8 
##           9) NumBonds > -0.7205854
##             13)*  weights = 40 
##       4) FP063 == {1}
##         14) MolWeight <= -0.946357; criterion = 1, statistic = 28.548
##           15)*  weights = 27 
##         14) MolWeight > -0.946357
##           16)*  weights = 33 
##     3) FP072 == {1}
##       17) NumCarbon <= -0.685958; criterion = 1, statistic = 97.13
##         18) FP104 == {1}; criterion = 1, statistic = 31.286
##           19)*  weights = 25 
##         18) FP104 == {0}
##           20)*  weights = 126 
##       17) NumCarbon > -0.685958
##         21) FP059 == {1}; criterion = 1, statistic = 38.172
##           22)*  weights = 18 
##         21) FP059 == {0}
##           23) NumCarbon <= -0.2191597; criterion = 0.998, statistic = 22.847
##             24) NumChlorine <= -0.3972472; criterion = 0.993, statistic = 20.745
##               25) FP178 == {0}; criterion = 0.838, statistic = 14.258
##                 26)*  weights = 79 
##               25) FP178 == {1}
##                 27)*  weights = 14 
##             24) NumChlorine > -0.3972472
##               28)*  weights = 7 
##           23) NumCarbon > -0.2191597
##             29)*  weights = 51 
##   2) NumCarbon > 0.1817764
##     30) HydrophilicFactor <= -0.7783308; criterion = 0.991, statistic = 18.067
##       31)*  weights = 25 
##     30) HydrophilicFactor > -0.7783308
##       32)*  weights = 22 
## 1) MolWeight > 0.2222905
##   33) HydrophilicFactor <= 1.849533; criterion = 1, statistic = 56.391
##     34) MolWeight <= 0.6620108; criterion = 1, statistic = 43.012
##       35) NumOxygen <= 0.2462845; criterion = 1, statistic = 45.056
##         36) FP075 == {0}; criterion = 0.966, statistic = 14.284
##           37) FP171 == {1}; criterion = 0.987, statistic = 16.099
##             38)*  weights = 10 
##           37) FP171 == {0}
##             39)*  weights = 48 
##         36) FP075 == {1}
##           40) FP008 == {0}; criterion = 0.833, statistic = 11.176
##             41)*  weights = 28 
##           40) FP008 == {1}
##             42)*  weights = 8 
##       35) NumOxygen > 0.2462845
##         43)*  weights = 32 
##     34) MolWeight > 0.6620108
##       44) FP042 == {0}; criterion = 0.999, statistic = 25.325
##         45) FP140 == {1}; criterion = 0.992, statistic = 20.479
##           46)*  weights = 44 
##         45) FP140 == {0}
##           47) FP036 == {1}; criterion = 0.859, statistic = 14.553
##             48)*  weights = 10 
##           47) FP036 == {0}
##             49) FP186 == {0}; criterion = 0.926, statistic = 15.913
##               50) FP029 == {0}; criterion = 0.918, statistic = 12.581
##                 51)*  weights = 154 
##               50) FP029 == {1}
##                 52)*  weights = 19 
##             49) FP186 == {1}
##               53)*  weights = 15 
##       44) FP042 == {1}
##         54)*  weights = 20 
##   33) HydrophilicFactor > 1.849533
##     55)*  weights = 21
CTREE_Tune$results
##   mincriterion   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1         0.75 0.9299039 0.8782359 0.6305546 0.7318519 0.5816893 0.7061496
## 2         0.95 0.8082372 0.8739128 0.6346791 0.7224113 0.5657826 0.6941214
## 3         0.99 0.7949996 0.8667851 0.6256556 0.7192308 0.5592964 0.6924343
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.7107353        0.8624620           0.7179074           0.8698998
## 2        0.6966903        0.8572185           0.7141345           0.8657959
## 3        0.6886095        0.8547227           0.7174026           0.8640532
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.7179074   0.7107353           0.2439506              0.7865987
## 2      0.7141345   0.6966903           0.2408038              0.7769544
## 3      0.7174026   0.6886095           0.2397436              0.7716661
##   logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1 0.3415735 0.02500537 0.08304812 0.05478428 0.08461822 0.05842740
## 2 0.2488583 0.02548413 0.09593237 0.05749373 0.08853568 0.05781397
## 3 0.1928018 0.02262195 0.09394902 0.05115262 0.07730964 0.05334228
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1         0.06329530         0.02641177            0.05867052
## 2         0.06478196         0.02748015            0.06438939
## 3         0.05274447         0.02362171            0.06370703
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1            0.02950585       0.05867052    0.06329530            0.01826143
## 2            0.03266375       0.06438939    0.06478196            0.01916458
## 3            0.02886486       0.06370703    0.05274447            0.01705087
##   Mean_Balanced_AccuracySD
## 1               0.04478143
## 2               0.04600230
## 3               0.03803450
(CTREE_Train_Accuracy <- CTREE_Tune$results[CTREE_Tune$results$mincriterion==CTREE_Tune$bestTune$mincriterion,
                              c("Accuracy")])
## [1] 0.7318519
##################################
# Identifying and plotting the
# best model predictors
##################################
CTREE_VarImp <- varImp(CTREE_Tune, scale = TRUE)
plot(CTREE_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Conditional Inference Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
CTREE_Test <- data.frame(CTREE_Observed = PMA_PreModelling_Test_CTREE$Log_Solubility_Class,
                      CTREE_Predicted = predict(CTREE_Tune,
                      PMA_PreModelling_Test_CTREE[,!names(PMA_PreModelling_Test_CTREE) %in% c("Log_Solubility_Class")],
                      type = "raw"))

CTREE_Test
##     CTREE_Observed CTREE_Predicted
## 1             High            High
## 2             High            High
## 3             High            High
## 4             High            High
## 5             High            High
## 6             High            High
## 7             High            High
## 8             High            High
## 9             High            High
## 10            High            High
## 11            High            High
## 12            High             Low
## 13            High            High
## 14            High            High
## 15            High            High
## 16            High             Mid
## 17            High            High
## 18            High            High
## 19            High            High
## 20            High             Mid
## 21            High            High
## 22            High            High
## 23            High            High
## 24            High            High
## 25            High            High
## 26            High            High
## 27            High            High
## 28            High            High
## 29            High             Low
## 30            High            High
## 31            High             Low
## 32            High            High
## 33            High            High
## 34            High            High
## 35            High            High
## 36            High            High
## 37            High            High
## 38            High            High
## 39            High            High
## 40            High            High
## 41            High            High
## 42            High             Mid
## 43            High             Mid
## 44            High            High
## 45            High             Mid
## 46            High            High
## 47            High            High
## 48            High            High
## 49            High             Mid
## 50            High             Mid
## 51            High            High
## 52            High             Mid
## 53            High             Mid
## 54            High             Mid
## 55            High             Mid
## 56            High             Mid
## 57            High             Mid
## 58             Mid             Mid
## 59             Mid             Mid
## 60             Mid             Low
## 61             Mid            High
## 62             Mid             Mid
## 63             Mid            High
## 64             Mid             Mid
## 65             Mid             Mid
## 66             Mid             Low
## 67             Mid             Low
## 68             Mid             Mid
## 69             Mid             Mid
## 70             Mid             Mid
## 71             Mid             Low
## 72             Mid             Mid
## 73             Mid             Mid
## 74             Mid             Mid
## 75             Mid             Mid
## 76             Mid             Low
## 77             Mid             Mid
## 78             Mid             Mid
## 79             Mid             Mid
## 80             Mid             Mid
## 81             Mid             Mid
## 82             Mid             Mid
## 83             Mid             Mid
## 84             Mid             Mid
## 85             Mid             Mid
## 86             Mid             Mid
## 87             Mid             Low
## 88             Mid             Low
## 89             Mid             Mid
## 90             Mid             Mid
## 91             Mid             Mid
## 92             Mid             Low
## 93             Mid             Mid
## 94             Mid             Mid
## 95             Mid             Mid
## 96             Mid             Mid
## 97             Mid             Mid
## 98             Mid             Mid
## 99             Mid             Mid
## 100            Mid             Mid
## 101            Mid             Mid
## 102            Mid             Mid
## 103            Mid             Low
## 104            Mid             Mid
## 105            Mid             Mid
## 106            Mid             Low
## 107            Mid             Low
## 108            Mid             Mid
## 109            Mid             Low
## 110            Mid             Low
## 111            Mid             Mid
## 112            Mid             Mid
## 113            Mid             Mid
## 114            Mid             Low
## 115            Mid             Low
## 116            Mid             Low
## 117            Mid             Low
## 118            Mid             Mid
## 119            Low             Low
## 120            Low             Low
## 121            Low             Low
## 122            Low             Mid
## 123            Low             Low
## 124            Low             Mid
## 125            Low             Low
## 126            Low             Low
## 127            Low             Low
## 128            Low             Mid
## 129            Low             Mid
## 130            Low             Low
## 131            Low             Low
## 132            Low             Low
## 133            Low             Low
## 134            Low             Low
## 135            Low             Low
## 136            Low             Mid
## 137            Low             Low
## 138            Low             Low
## 139            Low             Low
## 140            Low             Mid
## 141            Low             Low
## 142            Low             Mid
## 143            Low             Low
## 144            Low             Mid
## 145            Low             Low
## 146            Low             Low
## 147            Low             Low
## 148            Low             Low
## 149            Low             Low
## 150            Low             Low
## 151            Low             Low
## 152            Low             Low
## 153            Low             Low
## 154            Low             Low
## 155            Low             Low
## 156            Low             Mid
## 157            Low             Low
## 158            Low             Low
## 159            Low             Low
## 160            Low             Low
## 161            Low             Low
## 162            Low             Low
## 163            Low             Low
## 164            Low             Low
## 165            Low             Low
## 166            Low             Low
## 167            Low             Low
## 168            Low             Low
## 169            Low             Low
## 170            Low             Low
## 171            Low             Low
## 172            Low             Low
## 173            Low             Low
## 174            Low             Low
## 175            Low             Low
## 176            Low             Low
## 177            Low             Low
## 178            Low             Low
## 179            Low             Low
## 180            Low             Low
## 181            Low             Low
## 182            Low             Low
## 183            Low             Low
## 184            Low             Mid
## 185            Low             Low
## 186            Low             Low
## 187            Low             Low
## 188            Low             Low
## 189            Low             Low
## 190            Low             Low
## 191            Low             Low
## 192            Low             Low
## 193            Low             Low
## 194            Low             Low
## 195            Low             Low
## 196            Low             Low
## 197            Low             Low
## 198            Low             Low
## 199            Low             Low
## 200            Low             Low
## 201            Low             Low
## 202            Low             Low
## 203            Low             Low
## 204            Low             Low
## 205            Low             Low
## 206            Low             Low
## 207            Low             Low
## 208            Low             Low
## 209            Low             Low
## 210            Low             Low
## 211            Low             Low
## 212            Low             Low
## 213            Low             Low
## 214            Low             Low
## 215            Low             Low
## 216            Low             Low
## 217           High            High
## 218           High            High
## 219           High            High
## 220           High            High
## 221           High             Mid
## 222           High            High
## 223           High            High
## 224           High            High
## 225           High             Low
## 226           High            High
## 227           High            High
## 228           High             Mid
## 229           High            High
## 230           High             Mid
## 231           High            High
## 232           High            High
## 233           High             Mid
## 234           High             Mid
## 235           High             Mid
## 236           High             Mid
## 237           High             Low
## 238            Mid             Mid
## 239            Mid             Mid
## 240            Mid             Mid
## 241            Mid            High
## 242            Mid             Mid
## 243            Mid             Mid
## 244            Mid             Mid
## 245            Mid             Mid
## 246            Mid            High
## 247            Mid             Mid
## 248            Mid             Mid
## 249            Mid             Mid
## 250            Mid             Mid
## 251            Mid             Mid
## 252            Mid             Mid
## 253            Mid             Mid
## 254            Mid             Mid
## 255            Mid             Mid
## 256            Mid             Mid
## 257            Mid             Low
## 258            Mid             Mid
## 259            Mid             Mid
## 260            Mid             Mid
## 261            Mid             Mid
## 262            Mid             Low
## 263            Mid             Mid
## 264            Mid             Low
## 265            Mid             Low
## 266            Mid             Mid
## 267            Mid             Low
## 268            Mid             Mid
## 269            Low             Low
## 270            Low             Low
## 271            Low             Low
## 272            Low             Low
## 273            Low             Low
## 274            Low             Low
## 275            Low             Mid
## 276            Low             Low
## 277            Low             Low
## 278            Low             Mid
## 279            Low             Low
## 280            Low             Low
## 281            Low             Low
## 282            Low             Low
## 283            Low             Low
## 284            Low             Low
## 285            Low             Low
## 286            Low             Low
## 287            Low             Low
## 288            Low             Low
## 289            Low             Low
## 290            Low             Low
## 291            Low             Low
## 292            Low             Low
## 293            Low             Low
## 294            Low             Low
## 295            Low             Low
## 296            Low             Low
## 297            Low             Low
## 298            Low             Low
## 299            Low             Low
## 300            Low             Low
## 301            Low             Low
## 302            Low             Low
## 303            Low             Low
## 304            Low             Low
## 305            Low             Low
## 306            Low             Low
## 307            Low             Low
## 308            Low             Low
## 309            Low             Low
## 310            Low             Low
## 311            Low             Low
## 312            Low             Low
## 313            Mid             Mid
## 314           High             Low
## 315            Low             Low
## 316            Mid             Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(CTREE_Test_Accuracy <- Accuracy(y_pred = CTREE_Test$CTREE_Predicted, 
                               y_true = CTREE_Test$CTREE_Observed))
## [1] 0.7943038

1.5.13 C5.0 Decision Trees (C50)


C5.0 Decision Trees generate multi-branch trees in a situation where one or more nominal inputs are given, using an information-based criterion (Entropy and Information Gain) as an attribute selection measure to build decision trees. For overfitting avoidance, the algorithm applies a pessimistic pruning approach called Rule-post pruning, to remove unreliable branches from the decision tree to reduce the size of the tree without any loss of its predictive accuracy. The Rule-post pruning starts off by converting a decision tree to an equivalent set of rules, then based on statistical confidence estimations for error rate it evaluates the rules with the aim of simplifying them without affecting the accuracy, adopting the Binomial Confidence Limit method. In a case of handling missing values, the algorithm allows to whether estimate missing values as a function of other attributes or apportions the case probabilistically among the results.

[A] The C5.0 decision trees model from the C50 and plyr packages was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] trials = number of boosting iterations made to vary across a range of values equal to 1 to 100
     [B.2] model = model type made to vary across a range of levels equal to TREE and RULES
     [B.3] winnow = winnow made to vary across a range of levels equal to TRUE and FALSE

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves trials=100, method=TREE and winnow=TRUE
     [C.2] Accuracy = 0.80650

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] NumOxygen variable (numeric)
     [D.2] HydrophilicFactor variable (numeric)
     [D.3] NumHalogen variable (numeric)
     [D.4] NumUltBonds variable (numeric)
     [D.5] FP059 variable (factor)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.79746

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_C50 <- PMA_PreModelling_Train
PMA_PreModelling_Test_C50 <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_C50$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
C50_Grid = expand.grid(trials = c(1:9, (1:10)*10),
                       model = c("tree", "rules"),
                       winnow = c(TRUE, FALSE))

##################################
# Running the C5.0 decision trees model
# by setting the caret method to 'C5.0'
##################################
set.seed(12345678)
C50_Tune <- train(x = PMA_PreModelling_Train_C50[,!names(PMA_PreModelling_Train_C50) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_C50$Log_Solubility_Class,
                 method = "C5.0",
                 tuneGrid = C50_Grid,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
C50_Tune
## C5.0 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   model  winnow  trials  logLoss    AUC        prAUC      Accuracy   Kappa    
##   rules  FALSE     1     4.3998216  0.8408083  0.5156719  0.7381915  0.5947229
##   rules  FALSE     2     4.4180247  0.8634563  0.2667234  0.7433987  0.5991622
##   rules  FALSE     3     3.0815338  0.8835409  0.3741605  0.7613615  0.6264783
##   rules  FALSE     4     2.3265626  0.8984500  0.4398827  0.7812514  0.6574573
##   rules  FALSE     5     1.8862805  0.9043791  0.4875171  0.7781488  0.6530764
##   rules  FALSE     6     1.4758932  0.9117815  0.5293323  0.7781488  0.6524744
##   rules  FALSE     7     1.3129158  0.9131539  0.5546080  0.7760762  0.6488931
##   rules  FALSE     8     1.1476519  0.9136152  0.5831336  0.7707685  0.6401249
##   rules  FALSE     9     1.0102236  0.9163227  0.6027160  0.7749797  0.6468697
##   rules  FALSE    10     0.9796198  0.9159229  0.6197572  0.7802212  0.6548122
##   rules  FALSE    20     0.6737258  0.9247341  0.7281327  0.7845091  0.6609854
##   rules  FALSE    30     0.5654788  0.9296457  0.7613622  0.7950028  0.6782596
##   rules  FALSE    40     0.5621567  0.9303461  0.7860606  0.7950142  0.6778542
##   rules  FALSE    50     0.5606451  0.9315716  0.7940533  0.8002557  0.6861108
##   rules  FALSE    60     0.4633390  0.9328656  0.8009159  0.7960559  0.6798741
##   rules  FALSE    70     0.4630926  0.9332206  0.8086730  0.7992250  0.6848068
##   rules  FALSE    80     0.4631011  0.9333377  0.8109600  0.8023386  0.6895699
##   rules  FALSE    90     0.4635094  0.9333083  0.8128360  0.8023722  0.6893981
##   rules  FALSE   100     0.4638961  0.9336327  0.8177924  0.8045108  0.6928865
##   rules   TRUE     1     4.5949501  0.8413849  0.5298497  0.7476110  0.6082290
##   rules   TRUE     2     4.8098674  0.8566663  0.2560095  0.7381364  0.5884582
##   rules   TRUE     3     3.5992989  0.8745340  0.3351453  0.7622823  0.6287036
##   rules   TRUE     4     2.7092183  0.8897535  0.3883074  0.7685533  0.6380081
##   rules   TRUE     5     2.1942160  0.8964537  0.4317708  0.7676339  0.6359801
##   rules   TRUE     6     1.7167324  0.9050112  0.4744267  0.7791692  0.6549972
##   rules   TRUE     7     1.5182003  0.9080220  0.4938592  0.7727977  0.6453724
##   rules   TRUE     8     1.3485439  0.9108548  0.5283318  0.7844660  0.6636506
##   rules   TRUE     9     1.2197820  0.9107392  0.5442087  0.7781388  0.6529197
##   rules   TRUE    10     1.1547306  0.9112995  0.5704581  0.7854185  0.6644813
##   rules   TRUE    20     0.7120869  0.9228715  0.6836373  0.7833903  0.6608088
##   rules   TRUE    30     0.5768641  0.9252306  0.7386287  0.7939506  0.6774290
##   rules   TRUE    40     0.5452365  0.9252018  0.7587722  0.7897284  0.6713428
##   rules   TRUE    50     0.5451507  0.9256279  0.7723910  0.7897177  0.6705840
##   rules   TRUE    60     0.5444175  0.9270822  0.7837442  0.7928649  0.6755764
##   rules   TRUE    70     0.5457853  0.9265074  0.7859145  0.7918454  0.6739786
##   rules   TRUE    80     0.5466714  0.9260918  0.7894437  0.7970644  0.6822153
##   rules   TRUE    90     0.5497657  0.9255103  0.7892020  0.7981392  0.6838235
##   rules   TRUE   100     0.5498533  0.9260822  0.7938398  0.7981171  0.6836508
##   tree   FALSE     1     0.7612018  0.8580351  0.5288793  0.7339152  0.5870632
##   tree   FALSE     2     5.2014199  0.8494950  0.2814721  0.7518099  0.6123568
##   tree   FALSE     3     3.4814254  0.8724411  0.3721631  0.7529738  0.6162606
##   tree   FALSE     4     2.4881127  0.8870553  0.4376884  0.7644641  0.6331428
##   tree   FALSE     5     1.8707244  0.8977838  0.4913879  0.7612619  0.6297120
##   tree   FALSE     6     1.5303403  0.9022829  0.5379048  0.7769860  0.6528794
##   tree   FALSE     7     1.4253875  0.9050179  0.5722072  0.7717339  0.6459715
##   tree   FALSE     8     1.0424061  0.9139393  0.6067340  0.7823379  0.6610352
##   tree   FALSE     9     0.9417560  0.9147496  0.6339689  0.7876239  0.6695055
##   tree   FALSE    10     0.9063859  0.9161953  0.6527033  0.7791690  0.6557818
##   tree   FALSE    20     0.6989894  0.9216524  0.7457930  0.7907596  0.6746213
##   tree   FALSE    30     0.5631850  0.9254035  0.7815907  0.7970759  0.6837073
##   tree   FALSE    40     0.4945231  0.9271021  0.7926199  0.7980954  0.6858351
##   tree   FALSE    50     0.4934000  0.9284288  0.8058008  0.8001897  0.6887982
##   tree   FALSE    60     0.4603809  0.9291503  0.8140329  0.7991811  0.6874140
##   tree   FALSE    70     0.4587198  0.9299012  0.8177462  0.8044336  0.6951426
##   tree   FALSE    80     0.4583668  0.9301982  0.8197170  0.8044336  0.6952564
##   tree   FALSE    90     0.4587226  0.9299374  0.8215848  0.8023173  0.6920721
##   tree   FALSE   100     0.4579943  0.9301044  0.8223640  0.8023061  0.6920681
##   tree    TRUE     1     0.7165793  0.8699032  0.5773924  0.7444860  0.6035460
##   tree    TRUE     2     4.9776117  0.8570899  0.2739288  0.7643757  0.6313036
##   tree    TRUE     3     3.5283332  0.8775094  0.3342130  0.7549790  0.6188641
##   tree    TRUE     4     2.4300910  0.8937930  0.4063116  0.7707477  0.6431457
##   tree    TRUE     5     1.8553249  0.8994602  0.4501029  0.7613510  0.6289163
##   tree    TRUE     6     1.5176863  0.9050496  0.4863684  0.7749475  0.6493903
##   tree    TRUE     7     1.3827044  0.9065018  0.5236694  0.7781495  0.6547263
##   tree    TRUE     8     1.2785617  0.9103441  0.5552439  0.7896962  0.6722063
##   tree    TRUE     9     1.1479034  0.9115481  0.5947708  0.7823386  0.6612019
##   tree    TRUE    10     1.0829792  0.9120167  0.6207333  0.7875796  0.6697041
##   tree    TRUE    20     0.7791523  0.9189332  0.7212392  0.7949818  0.6805427
##   tree    TRUE    30     0.5806222  0.9227834  0.7622756  0.7959460  0.6821497
##   tree    TRUE    40     0.5116859  0.9241585  0.7804611  0.8001789  0.6888465
##   tree    TRUE    50     0.5090894  0.9240593  0.7911353  0.8044228  0.6948172
##   tree    TRUE    60     0.4752511  0.9254364  0.8036675  0.8043561  0.6950834
##   tree    TRUE    70     0.4754358  0.9256619  0.8060710  0.8043673  0.6954467
##   tree    TRUE    80     0.4768183  0.9254681  0.8072215  0.8043451  0.6950472
##   tree    TRUE    90     0.4778953  0.9252003  0.8067785  0.8054087  0.6966916
##   tree    TRUE   100     0.4775511  0.9248092  0.8087300  0.8065057  0.6984037
##   Mean_F1    Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value
##   0.7188424  0.7214393         0.8687339         0.7203882          
##   0.7090655  0.7242612         0.8677124         0.7230738          
##   0.7302637  0.7428591         0.8766258         0.7477161          
##   0.7541111  0.7614754         0.8865482         0.7672533          
##   0.7486633  0.7595351         0.8854277         0.7622445          
##   0.7454670  0.7587167         0.8847086         0.7679882          
##   0.7452348  0.7559019         0.8833580         0.7600896          
##   0.7372250  0.7483993         0.8804983         0.7547927          
##   0.7401911  0.7516943         0.8833135         0.7594778          
##   0.7477664  0.7571904         0.8853735         0.7670104          
##   0.7502744  0.7608254         0.8873458         0.7720503          
##   0.7617496  0.7729525         0.8935281         0.7844215          
##   0.7612514  0.7726297         0.8930333         0.7845901          
##   0.7687550  0.7778862         0.8957174         0.7910687          
##   0.7650901  0.7740144         0.8939344         0.7855420          
##   0.7677491  0.7769947         0.8957019         0.7888818          
##   0.7717573  0.7801706         0.8969807         0.7923013          
##   0.7715202  0.7802301         0.8968301         0.7923813          
##   0.7739996  0.7830079         0.8980171         0.7948244          
##   0.7330151  0.7342882         0.8716971         0.7384755          
##   0.7011406  0.7136512         0.8635145         0.7163039          
##   0.7384643  0.7454747         0.8773243         0.7470665          
##   0.7427568  0.7499286         0.8803161         0.7523172          
##   0.7393418  0.7474752         0.8794501         0.7512590          
##   0.7567587  0.7618785         0.8858145         0.7652025          
##   0.7481535  0.7553904         0.8830292         0.7554946          
##   0.7598361  0.7671112         0.8894069         0.7681894          
##   0.7511560  0.7588127         0.8853224         0.7626148          
##   0.7602687  0.7666261         0.8892511         0.7711765          
##   0.7553661  0.7630853         0.8880986         0.7666583          
##   0.7656344  0.7734862         0.8938739         0.7774451          
##   0.7601058  0.7693790         0.8923107         0.7721930          
##   0.7607054  0.7684056         0.8915919         0.7733129          
##   0.7636601  0.7717375         0.8933773         0.7768433          
##   0.7633156  0.7717744         0.8924521         0.7763256          
##   0.7688645  0.7768142         0.8953182         0.7816894          
##   0.7714522  0.7784610         0.8955948         0.7838052          
##   0.7699093  0.7776120         0.8956587         0.7848725          
##   0.7154348  0.7195978         0.8642325         0.7179639          
##   0.7299613  0.7330113         0.8718755         0.7348175          
##   0.7380388  0.7384485         0.8738620         0.7408057          
##   0.7461220  0.7480311         0.8793593         0.7498875          
##   0.7485117  0.7484156         0.8783481         0.7537901          
##   0.7631329  0.7625242         0.8854308         0.7693010          
##   0.7593001  0.7584048         0.8839338         0.7639114          
##   0.7663096  0.7669054         0.8884837         0.7697555          
##   0.7733934  0.7733247         0.8911952         0.7774483          
##   0.7630225  0.7623790         0.8868278         0.7670768          
##   0.7736599  0.7738698         0.8940395         0.7787467          
##   0.7817821  0.7802971         0.8962296         0.7895580          
##   0.7835157  0.7817797         0.8973943         0.7905321          
##   0.7841804  0.7825591         0.8982879         0.7918669          
##   0.7831516  0.7820273         0.8979750         0.7900428          
##   0.7879936  0.7864944         0.9001727         0.7955738          
##   0.7880524  0.7868727         0.9003108         0.7948079          
##   0.7865102  0.7855207         0.8991656         0.7937685          
##   0.7875018  0.7854756         0.8990609         0.7951182          
##   0.7338431  0.7332680         0.8695933         0.7407179          
##   0.7442697  0.7439494         0.8784015         0.7535392          
##   0.7402033  0.7403878         0.8745296         0.7477666          
##   0.7561681  0.7551551         0.8826139         0.7632724          
##   0.7461051  0.7454499         0.8785112         0.7525808          
##   0.7580654  0.7585219         0.8850253         0.7639635          
##   0.7633805  0.7634924         0.8867043         0.7691997          
##   0.7749586  0.7738115         0.8921545         0.7823281          
##   0.7685066  0.7672597         0.8886616         0.7745327          
##   0.7731251  0.7721831         0.8918562         0.7789794          
##   0.7789619  0.7788408         0.8954313         0.7852555          
##   0.7802228  0.7805548         0.8958470         0.7856744          
##   0.7856427  0.7857361         0.8979090         0.7923134          
##   0.7884630  0.7888025         0.8994876         0.7945402          
##   0.7882304  0.7892416         0.8998804         0.7925585          
##   0.7884690  0.7896754         0.9002030         0.7920092          
##   0.7884395  0.7890206         0.8998804         0.7922908          
##   0.7896140  0.7899942         0.9003612         0.7939276          
##   0.7905062  0.7908474         0.9010173         0.7951369          
##   Mean_Neg_Pred_Value  Mean_Precision  Mean_Recall  Mean_Detection_Rate
##   0.8693989            0.7203882       0.7214393    0.2460638          
##   0.8811055            0.7230738       0.7242612    0.2477996          
##   0.8892817            0.7477161       0.7428591    0.2537872          
##   0.8980195            0.7672533       0.7614754    0.2604171          
##   0.8972404            0.7622445       0.7595351    0.2593829          
##   0.8995631            0.7679882       0.7587167    0.2593829          
##   0.8972547            0.7600896       0.7559019    0.2586921          
##   0.8958753            0.7547927       0.7483993    0.2569228          
##   0.8986540            0.7594778       0.7516943    0.2583266          
##   0.9008506            0.7670104       0.7571904    0.2600737          
##   0.9040818            0.7720503       0.7608254    0.2615030          
##   0.9091187            0.7844215       0.7729525    0.2650009          
##   0.9093315            0.7845901       0.7726297    0.2650047          
##   0.9112929            0.7910687       0.7778862    0.2667519          
##   0.9084173            0.7855420       0.7740144    0.2653520          
##   0.9104146            0.7888818       0.7769947    0.2664083          
##   0.9120000            0.7923013       0.7801706    0.2674462          
##   0.9120312            0.7923813       0.7802301    0.2674574          
##   0.9130942            0.7948244       0.7830079    0.2681703          
##   0.8735208            0.7384755       0.7342882    0.2492037          
##   0.8787375            0.7163039       0.7136512    0.2460455          
##   0.8857836            0.7470665       0.7454747    0.2540941          
##   0.8899802            0.7523172       0.7499286    0.2561844          
##   0.8908735            0.7512590       0.7474752    0.2558780          
##   0.8946273            0.7652025       0.7618785    0.2597231          
##   0.8917583            0.7554946       0.7553904    0.2575992          
##   0.8980060            0.7681894       0.7671112    0.2614887          
##   0.8962528            0.7626148       0.7588127    0.2593796          
##   0.8991277            0.7711765       0.7666261    0.2618062          
##   0.8993577            0.7666583       0.7630853    0.2611301          
##   0.9050358            0.7774451       0.7734862    0.2646502          
##   0.9033862            0.7721930       0.7693790    0.2632428          
##   0.9034367            0.7733129       0.7684056    0.2632392          
##   0.9050674            0.7768433       0.7717375    0.2642883          
##   0.9042940            0.7763256       0.7717744    0.2639485          
##   0.9068977            0.7816894       0.7768142    0.2656881          
##   0.9068596            0.7838052       0.7784610    0.2660464          
##   0.9079962            0.7848725       0.7776120    0.2660390          
##   0.8678523            0.7179639       0.7195978    0.2446384          
##   0.8790552            0.7348175       0.7330113    0.2506033          
##   0.8761280            0.7408057       0.7384485    0.2509913          
##   0.8837889            0.7498875       0.7480311    0.2548214          
##   0.8802015            0.7537901       0.7484156    0.2537540          
##   0.8887356            0.7693010       0.7625242    0.2589953          
##   0.8850949            0.7639114       0.7584048    0.2572446          
##   0.8921189            0.7697555       0.7669054    0.2607793          
##   0.8942573            0.7774483       0.7733247    0.2625413          
##   0.8905381            0.7670768       0.7623790    0.2597230          
##   0.8967414            0.7787467       0.7738698    0.2635865          
##   0.8997388            0.7895580       0.7802971    0.2656920          
##   0.8997383            0.7905321       0.7817797    0.2660318          
##   0.9015820            0.7918669       0.7825591    0.2667299          
##   0.9008834            0.7900428       0.7820273    0.2663937          
##   0.9040457            0.7955738       0.7864944    0.2681445          
##   0.9040138            0.7948079       0.7868727    0.2681445          
##   0.9026830            0.7937685       0.7855207    0.2674391          
##   0.9022665            0.7951182       0.7854756    0.2674354          
##   0.8702088            0.7407179       0.7332680    0.2481620          
##   0.8849721            0.7535392       0.7439494    0.2547919          
##   0.8770798            0.7477666       0.7403878    0.2516597          
##   0.8855146            0.7632724       0.7551551    0.2569159          
##   0.8804118            0.7525808       0.7454499    0.2537837          
##   0.8884618            0.7639635       0.7585219    0.2583158          
##   0.8892814            0.7691997       0.7634924    0.2593832          
##   0.8957470            0.7823281       0.7738115    0.2632321          
##   0.8913391            0.7745327       0.7672597    0.2607795          
##   0.8943265            0.7789794       0.7721831    0.2625265          
##   0.8990249            0.7852555       0.7788408    0.2649939          
##   0.8994597            0.7856744       0.7805548    0.2653153          
##   0.9014763            0.7923134       0.7857361    0.2667263          
##   0.9041016            0.7945402       0.7888025    0.2681409          
##   0.9040420            0.7925585       0.7892416    0.2681187          
##   0.9037795            0.7920092       0.7896754    0.2681224          
##   0.9037091            0.7922908       0.7890206    0.2681150          
##   0.9043179            0.7939276       0.7899942    0.2684696          
##   0.9049415            0.7951369       0.7908474    0.2688352          
##   Mean_Balanced_Accuracy
##   0.7950866             
##   0.7959868             
##   0.8097425             
##   0.8240118             
##   0.8224814             
##   0.8217127             
##   0.8196299             
##   0.8144488             
##   0.8175039             
##   0.8212819             
##   0.8240856             
##   0.8332403             
##   0.8328315             
##   0.8368018             
##   0.8339744             
##   0.8363483             
##   0.8385756             
##   0.8385301             
##   0.8405125             
##   0.8029927             
##   0.7885829             
##   0.8113995             
##   0.8151223             
##   0.8134626             
##   0.8238465             
##   0.8192098             
##   0.8282591             
##   0.8220675             
##   0.8279386             
##   0.8255920             
##   0.8336800             
##   0.8308448             
##   0.8299987             
##   0.8325574             
##   0.8321133             
##   0.8360662             
##   0.8370279             
##   0.8366353             
##   0.7919152             
##   0.8024434             
##   0.8061552             
##   0.8136952             
##   0.8133818             
##   0.8239775             
##   0.8211693             
##   0.8276946             
##   0.8322599             
##   0.8246034             
##   0.8339547             
##   0.8382633             
##   0.8395870             
##   0.8404235             
##   0.8400011             
##   0.8433335             
##   0.8435918             
##   0.8423432             
##   0.8422682             
##   0.8014307             
##   0.8111755             
##   0.8074587             
##   0.8188845             
##   0.8119806             
##   0.8217736             
##   0.8250984             
##   0.8329830             
##   0.8279607             
##   0.8320196             
##   0.8371361             
##   0.8382009             
##   0.8418226             
##   0.8441450             
##   0.8445610             
##   0.8449392             
##   0.8444505             
##   0.8451777             
##   0.8459323             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were trials = 100, model = tree and
##  winnow = TRUE.
C50_Tune$finalModel
## 
## Call:
## (function (x, y, trials = 1, rules = FALSE, weights = NULL, control
##  1.23060333905164, -0.309270049682714, -1.07920674404989,
##  2.00054003341881, 2.00054
## 
## Classification Tree
## Number of samples: 951 
## Number of predictors: 220 
## 
## Number of boosting iterations: 100 
## Average tree size: 80.2 
## 
## Non-standard options: attempt to group attributes, winnowing
C50_Tune$results
##    model winnow trials   logLoss       AUC     prAUC  Accuracy     Kappa
## 39 rules  FALSE      1 4.3998216 0.8408083 0.5156719 0.7381915 0.5947229
## 58 rules   TRUE      1 4.5949501 0.8413849 0.5298497 0.7476110 0.6082290
## 1   tree  FALSE      1 0.7612018 0.8580351 0.5288793 0.7339152 0.5870632
## 20  tree   TRUE      1 0.7165793 0.8699032 0.5773924 0.7444860 0.6035460
## 40 rules  FALSE      2 4.4180247 0.8634563 0.2667234 0.7433987 0.5991622
## 59 rules   TRUE      2 4.8098674 0.8566663 0.2560095 0.7381364 0.5884582
## 2   tree  FALSE      2 5.2014199 0.8494950 0.2814721 0.7518099 0.6123568
## 21  tree   TRUE      2 4.9776117 0.8570899 0.2739288 0.7643757 0.6313036
## 41 rules  FALSE      3 3.0815338 0.8835409 0.3741605 0.7613615 0.6264783
## 60 rules   TRUE      3 3.5992989 0.8745340 0.3351453 0.7622823 0.6287036
## 3   tree  FALSE      3 3.4814254 0.8724411 0.3721631 0.7529738 0.6162606
## 22  tree   TRUE      3 3.5283332 0.8775094 0.3342130 0.7549790 0.6188641
## 42 rules  FALSE      4 2.3265626 0.8984500 0.4398827 0.7812514 0.6574573
## 61 rules   TRUE      4 2.7092183 0.8897535 0.3883074 0.7685533 0.6380081
## 4   tree  FALSE      4 2.4881127 0.8870553 0.4376884 0.7644641 0.6331428
## 23  tree   TRUE      4 2.4300910 0.8937930 0.4063116 0.7707477 0.6431457
## 43 rules  FALSE      5 1.8862805 0.9043791 0.4875171 0.7781488 0.6530764
## 62 rules   TRUE      5 2.1942160 0.8964537 0.4317708 0.7676339 0.6359801
## 5   tree  FALSE      5 1.8707244 0.8977838 0.4913879 0.7612619 0.6297120
## 24  tree   TRUE      5 1.8553249 0.8994602 0.4501029 0.7613510 0.6289163
## 44 rules  FALSE      6 1.4758932 0.9117815 0.5293323 0.7781488 0.6524744
## 63 rules   TRUE      6 1.7167324 0.9050112 0.4744267 0.7791692 0.6549972
## 6   tree  FALSE      6 1.5303403 0.9022829 0.5379048 0.7769860 0.6528794
## 25  tree   TRUE      6 1.5176863 0.9050496 0.4863684 0.7749475 0.6493903
## 45 rules  FALSE      7 1.3129158 0.9131539 0.5546080 0.7760762 0.6488931
## 64 rules   TRUE      7 1.5182003 0.9080220 0.4938592 0.7727977 0.6453724
## 7   tree  FALSE      7 1.4253875 0.9050179 0.5722072 0.7717339 0.6459715
## 26  tree   TRUE      7 1.3827044 0.9065018 0.5236694 0.7781495 0.6547263
## 46 rules  FALSE      8 1.1476519 0.9136152 0.5831336 0.7707685 0.6401249
## 65 rules   TRUE      8 1.3485439 0.9108548 0.5283318 0.7844660 0.6636506
## 8   tree  FALSE      8 1.0424061 0.9139393 0.6067340 0.7823379 0.6610352
## 27  tree   TRUE      8 1.2785617 0.9103441 0.5552439 0.7896962 0.6722063
## 47 rules  FALSE      9 1.0102236 0.9163227 0.6027160 0.7749797 0.6468697
## 66 rules   TRUE      9 1.2197820 0.9107392 0.5442087 0.7781388 0.6529197
## 9   tree  FALSE      9 0.9417560 0.9147496 0.6339689 0.7876239 0.6695055
## 28  tree   TRUE      9 1.1479034 0.9115481 0.5947708 0.7823386 0.6612019
## 48 rules  FALSE     10 0.9796198 0.9159229 0.6197572 0.7802212 0.6548122
## 67 rules   TRUE     10 1.1547306 0.9112995 0.5704581 0.7854185 0.6644813
## 10  tree  FALSE     10 0.9063859 0.9161953 0.6527033 0.7791690 0.6557818
## 29  tree   TRUE     10 1.0829792 0.9120167 0.6207333 0.7875796 0.6697041
## 49 rules  FALSE     20 0.6737258 0.9247341 0.7281327 0.7845091 0.6609854
## 68 rules   TRUE     20 0.7120869 0.9228715 0.6836373 0.7833903 0.6608088
## 11  tree  FALSE     20 0.6989894 0.9216524 0.7457930 0.7907596 0.6746213
## 30  tree   TRUE     20 0.7791523 0.9189332 0.7212392 0.7949818 0.6805427
## 50 rules  FALSE     30 0.5654788 0.9296457 0.7613622 0.7950028 0.6782596
## 69 rules   TRUE     30 0.5768641 0.9252306 0.7386287 0.7939506 0.6774290
## 12  tree  FALSE     30 0.5631850 0.9254035 0.7815907 0.7970759 0.6837073
## 31  tree   TRUE     30 0.5806222 0.9227834 0.7622756 0.7959460 0.6821497
## 51 rules  FALSE     40 0.5621567 0.9303461 0.7860606 0.7950142 0.6778542
## 70 rules   TRUE     40 0.5452365 0.9252018 0.7587722 0.7897284 0.6713428
## 13  tree  FALSE     40 0.4945231 0.9271021 0.7926199 0.7980954 0.6858351
## 32  tree   TRUE     40 0.5116859 0.9241585 0.7804611 0.8001789 0.6888465
## 52 rules  FALSE     50 0.5606451 0.9315716 0.7940533 0.8002557 0.6861108
## 71 rules   TRUE     50 0.5451507 0.9256279 0.7723910 0.7897177 0.6705840
## 14  tree  FALSE     50 0.4934000 0.9284288 0.8058008 0.8001897 0.6887982
## 33  tree   TRUE     50 0.5090894 0.9240593 0.7911353 0.8044228 0.6948172
## 53 rules  FALSE     60 0.4633390 0.9328656 0.8009159 0.7960559 0.6798741
## 72 rules   TRUE     60 0.5444175 0.9270822 0.7837442 0.7928649 0.6755764
## 15  tree  FALSE     60 0.4603809 0.9291503 0.8140329 0.7991811 0.6874140
## 34  tree   TRUE     60 0.4752511 0.9254364 0.8036675 0.8043561 0.6950834
## 54 rules  FALSE     70 0.4630926 0.9332206 0.8086730 0.7992250 0.6848068
## 73 rules   TRUE     70 0.5457853 0.9265074 0.7859145 0.7918454 0.6739786
## 16  tree  FALSE     70 0.4587198 0.9299012 0.8177462 0.8044336 0.6951426
## 35  tree   TRUE     70 0.4754358 0.9256619 0.8060710 0.8043673 0.6954467
## 55 rules  FALSE     80 0.4631011 0.9333377 0.8109600 0.8023386 0.6895699
## 74 rules   TRUE     80 0.5466714 0.9260918 0.7894437 0.7970644 0.6822153
## 17  tree  FALSE     80 0.4583668 0.9301982 0.8197170 0.8044336 0.6952564
## 36  tree   TRUE     80 0.4768183 0.9254681 0.8072215 0.8043451 0.6950472
## 56 rules  FALSE     90 0.4635094 0.9333083 0.8128360 0.8023722 0.6893981
## 75 rules   TRUE     90 0.5497657 0.9255103 0.7892020 0.7981392 0.6838235
## 18  tree  FALSE     90 0.4587226 0.9299374 0.8215848 0.8023173 0.6920721
## 37  tree   TRUE     90 0.4778953 0.9252003 0.8067785 0.8054087 0.6966916
## 57 rules  FALSE    100 0.4638961 0.9336327 0.8177924 0.8045108 0.6928865
## 76 rules   TRUE    100 0.5498533 0.9260822 0.7938398 0.7981171 0.6836508
## 19  tree  FALSE    100 0.4579943 0.9301044 0.8223640 0.8023061 0.6920681
## 38  tree   TRUE    100 0.4775511 0.9248092 0.8087300 0.8065057 0.6984037
##      Mean_F1 Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value
## 39 0.7188424        0.7214393        0.8687339           0.7203882
## 58 0.7330151        0.7342882        0.8716971           0.7384755
## 1  0.7154348        0.7195978        0.8642325           0.7179639
## 20 0.7338431        0.7332680        0.8695933           0.7407179
## 40 0.7090655        0.7242612        0.8677124           0.7230738
## 59 0.7011406        0.7136512        0.8635145           0.7163039
## 2  0.7299613        0.7330113        0.8718755           0.7348175
## 21 0.7442697        0.7439494        0.8784015           0.7535392
## 41 0.7302637        0.7428591        0.8766258           0.7477161
## 60 0.7384643        0.7454747        0.8773243           0.7470665
## 3  0.7380388        0.7384485        0.8738620           0.7408057
## 22 0.7402033        0.7403878        0.8745296           0.7477666
## 42 0.7541111        0.7614754        0.8865482           0.7672533
## 61 0.7427568        0.7499286        0.8803161           0.7523172
## 4  0.7461220        0.7480311        0.8793593           0.7498875
## 23 0.7561681        0.7551551        0.8826139           0.7632724
## 43 0.7486633        0.7595351        0.8854277           0.7622445
## 62 0.7393418        0.7474752        0.8794501           0.7512590
## 5  0.7485117        0.7484156        0.8783481           0.7537901
## 24 0.7461051        0.7454499        0.8785112           0.7525808
## 44 0.7454670        0.7587167        0.8847086           0.7679882
## 63 0.7567587        0.7618785        0.8858145           0.7652025
## 6  0.7631329        0.7625242        0.8854308           0.7693010
## 25 0.7580654        0.7585219        0.8850253           0.7639635
## 45 0.7452348        0.7559019        0.8833580           0.7600896
## 64 0.7481535        0.7553904        0.8830292           0.7554946
## 7  0.7593001        0.7584048        0.8839338           0.7639114
## 26 0.7633805        0.7634924        0.8867043           0.7691997
## 46 0.7372250        0.7483993        0.8804983           0.7547927
## 65 0.7598361        0.7671112        0.8894069           0.7681894
## 8  0.7663096        0.7669054        0.8884837           0.7697555
## 27 0.7749586        0.7738115        0.8921545           0.7823281
## 47 0.7401911        0.7516943        0.8833135           0.7594778
## 66 0.7511560        0.7588127        0.8853224           0.7626148
## 9  0.7733934        0.7733247        0.8911952           0.7774483
## 28 0.7685066        0.7672597        0.8886616           0.7745327
## 48 0.7477664        0.7571904        0.8853735           0.7670104
## 67 0.7602687        0.7666261        0.8892511           0.7711765
## 10 0.7630225        0.7623790        0.8868278           0.7670768
## 29 0.7731251        0.7721831        0.8918562           0.7789794
## 49 0.7502744        0.7608254        0.8873458           0.7720503
## 68 0.7553661        0.7630853        0.8880986           0.7666583
## 11 0.7736599        0.7738698        0.8940395           0.7787467
## 30 0.7789619        0.7788408        0.8954313           0.7852555
## 50 0.7617496        0.7729525        0.8935281           0.7844215
## 69 0.7656344        0.7734862        0.8938739           0.7774451
## 12 0.7817821        0.7802971        0.8962296           0.7895580
## 31 0.7802228        0.7805548        0.8958470           0.7856744
## 51 0.7612514        0.7726297        0.8930333           0.7845901
## 70 0.7601058        0.7693790        0.8923107           0.7721930
## 13 0.7835157        0.7817797        0.8973943           0.7905321
## 32 0.7856427        0.7857361        0.8979090           0.7923134
## 52 0.7687550        0.7778862        0.8957174           0.7910687
## 71 0.7607054        0.7684056        0.8915919           0.7733129
## 14 0.7841804        0.7825591        0.8982879           0.7918669
## 33 0.7884630        0.7888025        0.8994876           0.7945402
## 53 0.7650901        0.7740144        0.8939344           0.7855420
## 72 0.7636601        0.7717375        0.8933773           0.7768433
## 15 0.7831516        0.7820273        0.8979750           0.7900428
## 34 0.7882304        0.7892416        0.8998804           0.7925585
## 54 0.7677491        0.7769947        0.8957019           0.7888818
## 73 0.7633156        0.7717744        0.8924521           0.7763256
## 16 0.7879936        0.7864944        0.9001727           0.7955738
## 35 0.7884690        0.7896754        0.9002030           0.7920092
## 55 0.7717573        0.7801706        0.8969807           0.7923013
## 74 0.7688645        0.7768142        0.8953182           0.7816894
## 17 0.7880524        0.7868727        0.9003108           0.7948079
## 36 0.7884395        0.7890206        0.8998804           0.7922908
## 56 0.7715202        0.7802301        0.8968301           0.7923813
## 75 0.7714522        0.7784610        0.8955948           0.7838052
## 18 0.7865102        0.7855207        0.8991656           0.7937685
## 37 0.7896140        0.7899942        0.9003612           0.7939276
## 57 0.7739996        0.7830079        0.8980171           0.7948244
## 76 0.7699093        0.7776120        0.8956587           0.7848725
## 19 0.7875018        0.7854756        0.8990609           0.7951182
## 38 0.7905062        0.7908474        0.9010173           0.7951369
##    Mean_Neg_Pred_Value Mean_Precision Mean_Recall Mean_Detection_Rate
## 39           0.8693989      0.7203882   0.7214393           0.2460638
## 58           0.8735208      0.7384755   0.7342882           0.2492037
## 1            0.8678523      0.7179639   0.7195978           0.2446384
## 20           0.8702088      0.7407179   0.7332680           0.2481620
## 40           0.8811055      0.7230738   0.7242612           0.2477996
## 59           0.8787375      0.7163039   0.7136512           0.2460455
## 2            0.8790552      0.7348175   0.7330113           0.2506033
## 21           0.8849721      0.7535392   0.7439494           0.2547919
## 41           0.8892817      0.7477161   0.7428591           0.2537872
## 60           0.8857836      0.7470665   0.7454747           0.2540941
## 3            0.8761280      0.7408057   0.7384485           0.2509913
## 22           0.8770798      0.7477666   0.7403878           0.2516597
## 42           0.8980195      0.7672533   0.7614754           0.2604171
## 61           0.8899802      0.7523172   0.7499286           0.2561844
## 4            0.8837889      0.7498875   0.7480311           0.2548214
## 23           0.8855146      0.7632724   0.7551551           0.2569159
## 43           0.8972404      0.7622445   0.7595351           0.2593829
## 62           0.8908735      0.7512590   0.7474752           0.2558780
## 5            0.8802015      0.7537901   0.7484156           0.2537540
## 24           0.8804118      0.7525808   0.7454499           0.2537837
## 44           0.8995631      0.7679882   0.7587167           0.2593829
## 63           0.8946273      0.7652025   0.7618785           0.2597231
## 6            0.8887356      0.7693010   0.7625242           0.2589953
## 25           0.8884618      0.7639635   0.7585219           0.2583158
## 45           0.8972547      0.7600896   0.7559019           0.2586921
## 64           0.8917583      0.7554946   0.7553904           0.2575992
## 7            0.8850949      0.7639114   0.7584048           0.2572446
## 26           0.8892814      0.7691997   0.7634924           0.2593832
## 46           0.8958753      0.7547927   0.7483993           0.2569228
## 65           0.8980060      0.7681894   0.7671112           0.2614887
## 8            0.8921189      0.7697555   0.7669054           0.2607793
## 27           0.8957470      0.7823281   0.7738115           0.2632321
## 47           0.8986540      0.7594778   0.7516943           0.2583266
## 66           0.8962528      0.7626148   0.7588127           0.2593796
## 9            0.8942573      0.7774483   0.7733247           0.2625413
## 28           0.8913391      0.7745327   0.7672597           0.2607795
## 48           0.9008506      0.7670104   0.7571904           0.2600737
## 67           0.8991277      0.7711765   0.7666261           0.2618062
## 10           0.8905381      0.7670768   0.7623790           0.2597230
## 29           0.8943265      0.7789794   0.7721831           0.2625265
## 49           0.9040818      0.7720503   0.7608254           0.2615030
## 68           0.8993577      0.7666583   0.7630853           0.2611301
## 11           0.8967414      0.7787467   0.7738698           0.2635865
## 30           0.8990249      0.7852555   0.7788408           0.2649939
## 50           0.9091187      0.7844215   0.7729525           0.2650009
## 69           0.9050358      0.7774451   0.7734862           0.2646502
## 12           0.8997388      0.7895580   0.7802971           0.2656920
## 31           0.8994597      0.7856744   0.7805548           0.2653153
## 51           0.9093315      0.7845901   0.7726297           0.2650047
## 70           0.9033862      0.7721930   0.7693790           0.2632428
## 13           0.8997383      0.7905321   0.7817797           0.2660318
## 32           0.9014763      0.7923134   0.7857361           0.2667263
## 52           0.9112929      0.7910687   0.7778862           0.2667519
## 71           0.9034367      0.7733129   0.7684056           0.2632392
## 14           0.9015820      0.7918669   0.7825591           0.2667299
## 33           0.9041016      0.7945402   0.7888025           0.2681409
## 53           0.9084173      0.7855420   0.7740144           0.2653520
## 72           0.9050674      0.7768433   0.7717375           0.2642883
## 15           0.9008834      0.7900428   0.7820273           0.2663937
## 34           0.9040420      0.7925585   0.7892416           0.2681187
## 54           0.9104146      0.7888818   0.7769947           0.2664083
## 73           0.9042940      0.7763256   0.7717744           0.2639485
## 16           0.9040457      0.7955738   0.7864944           0.2681445
## 35           0.9037795      0.7920092   0.7896754           0.2681224
## 55           0.9120000      0.7923013   0.7801706           0.2674462
## 74           0.9068977      0.7816894   0.7768142           0.2656881
## 17           0.9040138      0.7948079   0.7868727           0.2681445
## 36           0.9037091      0.7922908   0.7890206           0.2681150
## 56           0.9120312      0.7923813   0.7802301           0.2674574
## 75           0.9068596      0.7838052   0.7784610           0.2660464
## 18           0.9026830      0.7937685   0.7855207           0.2674391
## 37           0.9043179      0.7939276   0.7899942           0.2684696
## 57           0.9130942      0.7948244   0.7830079           0.2681703
## 76           0.9079962      0.7848725   0.7776120           0.2660390
## 19           0.9022665      0.7951182   0.7854756           0.2674354
## 38           0.9049415      0.7951369   0.7908474           0.2688352
##    Mean_Balanced_Accuracy  logLossSD      AUCSD    prAUCSD AccuracySD
## 39              0.7950866 1.26197292 0.02669086 0.09802544 0.03601103
## 58              0.8029927 1.42608709 0.03859823 0.09759662 0.04788411
## 1               0.7919152 0.11298617 0.02319332 0.06391725 0.04703561
## 20              0.8014307 0.12378294 0.03124258 0.08747079 0.04510927
## 40              0.7959868 0.79123527 0.03095378 0.02873823 0.03790043
## 59              0.7885829 1.60850325 0.04764474 0.02176659 0.04641712
## 2               0.8024434 1.14224005 0.02841643 0.02395132 0.02611790
## 21              0.8111755 1.21361607 0.03075393 0.02761228 0.04314238
## 41              0.8097425 0.84725158 0.03169843 0.03880580 0.04292380
## 60              0.8113995 0.92456808 0.03873293 0.02244063 0.05748607
## 3               0.8061552 0.91393923 0.02419156 0.03577088 0.03900525
## 22              0.8074587 0.86795870 0.02616879 0.02755225 0.03218430
## 42              0.8240118 0.67823542 0.02484804 0.04041327 0.03911873
## 61              0.8151223 0.88467750 0.03756622 0.02366588 0.05025326
## 4               0.8136952 1.07636245 0.02652924 0.04696199 0.03348309
## 23              0.8188845 1.02892289 0.03234949 0.03394537 0.03179387
## 43              0.8224814 0.71032458 0.02929515 0.03767629 0.04457132
## 62              0.8134626 0.95573818 0.03696961 0.02507496 0.05118487
## 5               0.8133818 0.81233673 0.02271256 0.04472605 0.02881786
## 24              0.8119806 0.83323784 0.02796773 0.03933952 0.03808827
## 44              0.8217127 0.81123557 0.03076724 0.03411326 0.03653517
## 63              0.8238465 0.78699215 0.03190682 0.03110031 0.05358059
## 6               0.8239775 0.53103294 0.02324888 0.04311010 0.03326740
## 25              0.8217736 0.55146716 0.02142596 0.03575684 0.04391405
## 45              0.8196299 0.74317410 0.02960763 0.04738621 0.04015206
## 64              0.8192098 0.77447976 0.03328976 0.02843041 0.05174070
## 7               0.8211693 0.53648250 0.02304708 0.04414994 0.03694958
## 26              0.8250984 0.51399150 0.02196270 0.04115841 0.03932364
## 46              0.8144488 0.64032969 0.02986305 0.03767369 0.04293496
## 65              0.8282591 0.75735530 0.02920705 0.04512639 0.05158321
## 8               0.8276946 0.41620745 0.01957757 0.03645547 0.02956640
## 27              0.8329830 0.37231302 0.01937400 0.04947941 0.04143746
## 47              0.8175039 0.56445215 0.02621782 0.04087433 0.04149547
## 66              0.8220675 0.65434929 0.02936644 0.05130687 0.04671978
## 9               0.8322599 0.42568041 0.02176166 0.04983952 0.03292870
## 28              0.8279607 0.27674193 0.01634298 0.05463534 0.04083135
## 48              0.8212819 0.53956070 0.02695111 0.04451928 0.04240813
## 67              0.8279386 0.62139226 0.02712088 0.05678654 0.04053112
## 10              0.8246034 0.34536482 0.02046931 0.05467356 0.03096991
## 29              0.8320196 0.27355919 0.01836861 0.05939741 0.03394859
## 49              0.8240856 0.19126673 0.02267987 0.04145159 0.03283956
## 68              0.8255920 0.34092223 0.02390603 0.04359462 0.03934078
## 11              0.8339547 0.23870358 0.01820133 0.04038751 0.03361482
## 30              0.8371361 0.28610752 0.02176013 0.05348774 0.03984109
## 50              0.8332403 0.16930340 0.02119816 0.04415982 0.02822802
## 69              0.8336800 0.24547200 0.02257303 0.04101625 0.03407537
## 12              0.8382633 0.17440513 0.02117677 0.04024213 0.03387861
## 31              0.8382009 0.19440650 0.02329260 0.05031692 0.03898263
## 51              0.8328315 0.16979768 0.02034757 0.04623790 0.02941640
## 70              0.8308448 0.16656247 0.02204785 0.04486236 0.03064868
## 13              0.8395870 0.10666364 0.02087640 0.04045236 0.03431305
## 32              0.8418226 0.15859947 0.02473230 0.04889511 0.03882464
## 52              0.8368018 0.16850286 0.02000001 0.04458278 0.03104739
## 71              0.8299987 0.16604304 0.02174263 0.04724990 0.03524275
## 14              0.8404235 0.10598279 0.02112343 0.03616615 0.03297653
## 33              0.8441450 0.15394959 0.02236615 0.04204374 0.04086161
## 53              0.8339744 0.05355855 0.02075354 0.04387413 0.02644225
## 72              0.8325574 0.16485136 0.02110227 0.04750782 0.03765784
## 15              0.8400011 0.05691464 0.02085727 0.03909196 0.03362917
## 34              0.8445610 0.06235584 0.02121055 0.03953007 0.03499119
## 54              0.8363483 0.05280377 0.01984033 0.03796261 0.02683736
## 73              0.8321133 0.16318648 0.02083087 0.04743096 0.03837482
## 16              0.8433335 0.05688378 0.02028938 0.03795597 0.03434247
## 35              0.8449392 0.06479120 0.02251565 0.04070193 0.03496574
## 55              0.8385756 0.05361756 0.02025390 0.03917335 0.02388150
## 74              0.8360662 0.16357333 0.02143230 0.04760397 0.03828301
## 17              0.8435918 0.05553278 0.02013439 0.03862265 0.03676637
## 36              0.8444505 0.06402896 0.02213748 0.03993299 0.03809449
## 56              0.8385301 0.05421114 0.02055659 0.03813419 0.03386591
## 75              0.8370279 0.16351521 0.02071554 0.04596348 0.03472007
## 18              0.8423432 0.05452993 0.01944429 0.03680870 0.03766831
## 37              0.8451777 0.06229369 0.02157639 0.03943625 0.03570780
## 57              0.8405125 0.05645153 0.02128895 0.03637219 0.03312976
## 76              0.8366353 0.16413906 0.02023852 0.04497487 0.03416900
## 19              0.8422682 0.05519652 0.01928457 0.03581795 0.03801585
## 38              0.8459323 0.06219288 0.02172015 0.03904607 0.03186940
##       KappaSD  Mean_F1SD Mean_SensitivitySD Mean_SpecificitySD
## 39 0.05681019 0.03231878         0.03553743         0.02043570
## 58 0.07741820 0.05301456         0.05747477         0.02608765
## 1  0.07259861 0.04215800         0.04422135         0.02471356
## 20 0.07325270 0.04587470         0.05118658         0.02575565
## 40 0.05897585 0.04143273         0.03892247         0.01994807
## 59 0.07420306 0.05091137         0.04966577         0.02538739
## 2  0.04197639 0.02783233         0.02767560         0.01450477
## 21 0.07137913 0.04434360         0.04906163         0.02539443
## 41 0.07150787 0.05766053         0.05151418         0.02513552
## 60 0.09158259 0.06309030         0.06559085         0.03056202
## 3  0.06091862 0.04216714         0.04345022         0.01968626
## 22 0.05240311 0.03423822         0.03949676         0.01840562
## 42 0.06292152 0.04695760         0.04253062         0.02146795
## 61 0.08019233 0.05562762         0.05576423         0.02736503
## 4  0.05389728 0.03689599         0.03744603         0.01841025
## 23 0.05148164 0.03357490         0.03864443         0.01806187
## 43 0.07063384 0.05376721         0.04872523         0.02404839
## 62 0.08117403 0.05895070         0.05832880         0.02728834
## 5  0.04356640 0.02870308         0.02930024         0.01407153
## 24 0.06144942 0.04153050         0.04590405         0.02110094
## 44 0.05808361 0.04365785         0.03878096         0.02002653
## 63 0.08419551 0.05772150         0.05903101         0.02786987
## 6  0.05230480 0.03495291         0.03615650         0.01738068
## 25 0.07080877 0.04756108         0.05284732         0.02429335
## 45 0.06358966 0.04721183         0.04259365         0.02183474
## 64 0.08115259 0.05864413         0.05842842         0.02649490
## 7  0.05669116 0.04140594         0.03981165         0.01777890
## 26 0.06400060 0.04112696         0.04580184         0.02301963
## 46 0.06782447 0.05085826         0.04583890         0.02263279
## 65 0.08135553 0.05865305         0.05987012         0.02688737
## 8  0.04758259 0.03345913         0.03332935         0.01666064
## 27 0.06623226 0.04635240         0.04983387         0.02273009
## 47 0.06659430 0.04937063         0.04567289         0.02250221
## 66 0.07394266 0.05216378         0.05349885         0.02447847
## 9  0.05244165 0.03694905         0.03746286         0.01779907
## 28 0.06487480 0.04453446         0.04680196         0.02253662
## 48 0.06720153 0.04795510         0.04538641         0.02240869
## 67 0.06486168 0.04697991         0.04837299         0.02142834
## 10 0.05063378 0.03652414         0.03843379         0.01732146
## 29 0.05343940 0.03704541         0.03846528         0.01842703
## 49 0.05434132 0.04035819         0.03750883         0.01951654
## 68 0.06368415 0.04714171         0.04658493         0.02209463
## 11 0.05374641 0.03709858         0.03985227         0.01817060
## 30 0.06457622 0.04568555         0.04891991         0.02273416
## 50 0.04674867 0.03567855         0.03244568         0.01712072
## 69 0.05590175 0.03966224         0.03971091         0.02029143
## 12 0.05472849 0.03602606         0.04012441         0.01907227
## 31 0.06318344 0.04399889         0.04637035         0.02263779
## 51 0.04886837 0.03917129         0.03403019         0.01790093
## 70 0.05017704 0.03481374         0.03608776         0.01786600
## 13 0.05503915 0.03620261         0.03949596         0.01907581
## 32 0.06270098 0.04232729         0.04651123         0.02207138
## 52 0.05090403 0.03800110         0.03622761         0.01812598
## 71 0.05803373 0.04102427         0.04352206         0.02041654
## 14 0.05265098 0.03509411         0.03800652         0.01787709
## 33 0.06619306 0.04363211         0.04766010         0.02324298
## 53 0.04376784 0.03078488         0.03125676         0.01602651
## 72 0.06198902 0.04421170         0.04610647         0.02172040
## 15 0.05367297 0.03433603         0.03769064         0.01856734
## 34 0.05707647 0.03936320         0.04228419         0.02020516
## 54 0.04487682 0.03214675         0.03178551         0.01676148
## 73 0.06266156 0.04545189         0.04548052         0.02188426
## 16 0.05470377 0.03577270         0.03924258         0.01857432
## 35 0.05650342 0.03827086         0.04068216         0.01983203
## 55 0.03997911 0.02917812         0.02923586         0.01472537
## 74 0.06242672 0.04452347         0.04509391         0.02179653
## 17 0.05865926 0.03910252         0.04206211         0.01993961
## 36 0.06179229 0.04169803         0.04409802         0.02180000
## 56 0.05579638 0.04175139         0.03973470         0.01980127
## 75 0.05710499 0.04036985         0.04179570         0.02021548
## 18 0.05994552 0.04024507         0.04363568         0.02012205
## 37 0.05792360 0.04034217         0.04232331         0.02039560
## 57 0.05453309 0.04028715         0.03959932         0.01950015
## 76 0.05652595 0.04087210         0.04222306         0.02014606
## 19 0.06018135 0.03949784         0.04245921         0.02017025
## 38 0.05214303 0.03684885         0.03937103         0.01847994
##    Mean_Pos_Pred_ValueSD Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD
## 39            0.02998882            0.02037896       0.02998882    0.03553743
## 58            0.04621281            0.02389567       0.04621281    0.05747477
## 1             0.04421817            0.02761719       0.04421817    0.04422135
## 20            0.03707760            0.02375484       0.03707760    0.05118658
## 40            0.04872877            0.02163241       0.04872877    0.03892247
## 59            0.05285215            0.02442831       0.05285215    0.04966577
## 2             0.02884807            0.01474110       0.02884807    0.02767560
## 21            0.03366092            0.02331849       0.03366092    0.04906163
## 41            0.06346844            0.02000355       0.06346844    0.05151418
## 60            0.06564681            0.02948169       0.06564681    0.06559085
## 3             0.04114222            0.02025977       0.04114222    0.04345022
## 22            0.02567741            0.01661003       0.02567741    0.03949676
## 42            0.04921213            0.01873079       0.04921213    0.04253062
## 61            0.05575595            0.02523662       0.05575595    0.05576423
## 4             0.03637348            0.01674801       0.03637348    0.03744603
## 23            0.02687098            0.01665253       0.02687098    0.03864443
## 43            0.05720195            0.02076561       0.05720195    0.04872523
## 62            0.05796352            0.02486537       0.05796352    0.05832880
## 5             0.02806396            0.01560642       0.02806396    0.02930024
## 24            0.03682452            0.01896888       0.03682452    0.04590405
## 44            0.05058806            0.01885442       0.05058806    0.03878096
## 63            0.05767832            0.02770519       0.05767832    0.05903101
## 6             0.03178277            0.01722287       0.03178277    0.03615650
## 25            0.04109856            0.02195430       0.04109856    0.05284732
## 45            0.04895866            0.01905854       0.04895866    0.04259365
## 64            0.05905129            0.02548676       0.05905129    0.05842842
## 7             0.04232212            0.01833095       0.04232212    0.03981165
## 26            0.03554257            0.02007458       0.03554257    0.04580184
## 46            0.05813749            0.02122548       0.05813749    0.04583890
## 65            0.05659038            0.02514076       0.05659038    0.05987012
## 8             0.03173899            0.01406662       0.03173899    0.03332935
## 27            0.04023332            0.02002117       0.04023332    0.04983387
## 47            0.05495988            0.02065135       0.05495988    0.04567289
## 66            0.05251775            0.02370868       0.05251775    0.05349885
## 9             0.03599456            0.01616990       0.03599456    0.03746286
## 28            0.04029730            0.02019486       0.04029730    0.04680196
## 48            0.05412289            0.02171586       0.05412289    0.04538641
## 67            0.04761735            0.02027254       0.04761735    0.04837299
## 10            0.03354942            0.01431345       0.03354942    0.03843379
## 29            0.03485871            0.01688737       0.03485871    0.03846528
## 49            0.04097016            0.01497465       0.04097016    0.03750883
## 68            0.04347144            0.01774646       0.04347144    0.04658493
## 11            0.03245246            0.01653287       0.03245246    0.03985227
## 30            0.03940775            0.01825548       0.03940775    0.04891991
## 50            0.03297852            0.01256155       0.03297852    0.03244568
## 69            0.03621938            0.01510933       0.03621938    0.03971091
## 12            0.02795957            0.01682372       0.02795957    0.04012441
## 31            0.03912607            0.01838976       0.03912607    0.04637035
## 51            0.03697999            0.01222440       0.03697999    0.03403019
## 70            0.03474357            0.01436200       0.03474357    0.03608776
## 13            0.03129475            0.01760070       0.03129475    0.03949596
## 32            0.03533804            0.01920214       0.03533804    0.04651123
## 52            0.04032433            0.01422718       0.04032433    0.03622761
## 71            0.03942945            0.01629676       0.03942945    0.04352206
## 14            0.03068234            0.01692120       0.03068234    0.03800652
## 33            0.03717437            0.02022177       0.03717437    0.04766010
## 53            0.03326150            0.01282258       0.03326150    0.03125676
## 72            0.04315935            0.01707980       0.04315935    0.04610647
## 15            0.02863923            0.01745733       0.02863923    0.03769064
## 34            0.03387076            0.01649211       0.03387076    0.04228419
## 54            0.03312521            0.01209076       0.03312521    0.03178551
## 73            0.04381869            0.01726375       0.04381869    0.04548052
## 16            0.02999139            0.01766678       0.02999139    0.03924258
## 35            0.03432975            0.01734009       0.03432975    0.04068216
## 55            0.02903226            0.01068754       0.02903226    0.02923586
## 74            0.04341918            0.01778236       0.04341918    0.04509391
## 17            0.03278455            0.01869577       0.03278455    0.04206211
## 36            0.03694346            0.01835932       0.03694346    0.04409802
## 56            0.04183194            0.01490998       0.04183194    0.03973470
## 75            0.03882325            0.01582891       0.03882325    0.04179570
## 18            0.03412265            0.01915699       0.03412265    0.04363568
## 37            0.03578768            0.01681694       0.03578768    0.04232331
## 57            0.03930587            0.01421304       0.03930587    0.03959932
## 76            0.03816803            0.01513668       0.03816803    0.04222306
## 19            0.03323493            0.01972288       0.03323493    0.04245921
## 38            0.03126924            0.01475714       0.03126924    0.03937103
##    Mean_Detection_RateSD Mean_Balanced_AccuracySD
## 39           0.012003678               0.02787560
## 58           0.015961369               0.04162310
## 1            0.015678538               0.03441792
## 20           0.015036422               0.03833590
## 40           0.012633475               0.02932242
## 59           0.015472372               0.03738377
## 2            0.008705966               0.02105694
## 21           0.014380794               0.03712823
## 41           0.014307935               0.03820438
## 60           0.019162025               0.04798675
## 3            0.013001750               0.03148697
## 22           0.010728100               0.02878821
## 42           0.013039576               0.03190957
## 61           0.016751086               0.04145610
## 4            0.011161028               0.02787689
## 23           0.010597957               0.02811383
## 43           0.014857106               0.03629726
## 62           0.017061623               0.04269599
## 5            0.009605952               0.02152923
## 24           0.012696089               0.03342150
## 44           0.012178389               0.02929842
## 63           0.017860196               0.04338575
## 6            0.011089134               0.02666623
## 25           0.014638016               0.03844684
## 45           0.013384019               0.03212669
## 64           0.017246901               0.04235836
## 7            0.012316528               0.02871649
## 26           0.013107879               0.03423313
## 46           0.014311654               0.03417123
## 65           0.017194403               0.04319774
## 8            0.009855465               0.02490594
## 27           0.013812488               0.03606707
## 47           0.013831823               0.03402589
## 66           0.015573260               0.03882129
## 9            0.010976234               0.02756638
## 28           0.013610449               0.03435514
## 48           0.014136045               0.03384677
## 67           0.013510372               0.03468727
## 10           0.010323305               0.02779532
## 29           0.011316196               0.02821434
## 49           0.010946521               0.02841790
## 68           0.013113592               0.03413647
## 11           0.011204942               0.02892509
## 30           0.013280363               0.03573198
## 50           0.009409341               0.02470851
## 69           0.011358458               0.02982153
## 12           0.011292869               0.02948154
## 31           0.012994211               0.03432725
## 51           0.009805466               0.02585427
## 70           0.010216228               0.02681321
## 13           0.011437682               0.02914796
## 32           0.012941546               0.03415708
## 52           0.010349130               0.02702831
## 71           0.011747583               0.03174223
## 14           0.010992176               0.02781760
## 33           0.013620538               0.03537388
## 53           0.008814084               0.02353351
## 72           0.012552612               0.03374083
## 15           0.011209723               0.02803043
## 34           0.011663730               0.03111150
## 54           0.008945785               0.02415665
## 73           0.012791607               0.03350722
## 16           0.011447490               0.02880981
## 35           0.011655246               0.03009497
## 55           0.007960499               0.02177688
## 74           0.012761005               0.03328343
## 17           0.012255457               0.03089021
## 36           0.012698163               0.03282599
## 56           0.011288635               0.02965750
## 75           0.011573356               0.03084121
## 18           0.012556103               0.03176118
## 37           0.011902598               0.03118768
## 57           0.011043255               0.02943416
## 76           0.011389665               0.03103702
## 19           0.012671950               0.03117779
## 38           0.010623134               0.02876715
(C50_Train_Accuracy <- C50_Tune$results[C50_Tune$results$trials==C50_Tune$bestTune$trials & 
                                             C50_Tune$results$model==C50_Tune$bestTune$model &
                                             C50_Tune$results$winnow==C50_Tune$bestTune$winnow,
                              c("Accuracy")])
## [1] 0.8065057
##################################
# Identifying and plotting the
# best model predictors
##################################
C50_VarImp <- varImp(C50_Tune, scale = TRUE)
plot(C50_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : C5.0 Decision Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
C50_Test <- data.frame(C50_Observed = PMA_PreModelling_Test_C50$Log_Solubility_Class,
                      C50_Predicted = predict(C50_Tune,
                      PMA_PreModelling_Test_C50[,!names(PMA_PreModelling_Test_C50) %in% c("Log_Solubility_Class")],
                      type = "raw"))

C50_Test
##     C50_Observed C50_Predicted
## 1           High          High
## 2           High          High
## 3           High          High
## 4           High          High
## 5           High          High
## 6           High          High
## 7           High          High
## 8           High          High
## 9           High          High
## 10          High          High
## 11          High          High
## 12          High           Mid
## 13          High          High
## 14          High          High
## 15          High          High
## 16          High          High
## 17          High          High
## 18          High          High
## 19          High          High
## 20          High          High
## 21          High          High
## 22          High           Mid
## 23          High          High
## 24          High          High
## 25          High          High
## 26          High          High
## 27          High           Mid
## 28          High          High
## 29          High           Mid
## 30          High           Mid
## 31          High           Low
## 32          High          High
## 33          High          High
## 34          High          High
## 35          High          High
## 36          High          High
## 37          High          High
## 38          High          High
## 39          High          High
## 40          High          High
## 41          High          High
## 42          High           Low
## 43          High           Mid
## 44          High          High
## 45          High          High
## 46          High          High
## 47          High          High
## 48          High          High
## 49          High          High
## 50          High          High
## 51          High           Mid
## 52          High           Mid
## 53          High           Mid
## 54          High          High
## 55          High           Mid
## 56          High           Low
## 57          High           Mid
## 58           Mid          High
## 59           Mid           Mid
## 60           Mid           Mid
## 61           Mid          High
## 62           Mid           Mid
## 63           Mid          High
## 64           Mid           Mid
## 65           Mid           Mid
## 66           Mid           Mid
## 67           Mid           Mid
## 68           Mid          High
## 69           Mid           Low
## 70           Mid           Mid
## 71           Mid           Mid
## 72           Mid           Low
## 73           Mid           Mid
## 74           Mid           Mid
## 75           Mid          High
## 76           Mid           Mid
## 77           Mid           Mid
## 78           Mid           Mid
## 79           Mid           Mid
## 80           Mid           Mid
## 81           Mid          High
## 82           Mid          High
## 83           Mid           Low
## 84           Mid           Mid
## 85           Mid           Low
## 86           Mid           Mid
## 87           Mid           Mid
## 88           Mid           Mid
## 89           Mid           Mid
## 90           Mid           Mid
## 91           Mid           Mid
## 92           Mid           Mid
## 93           Mid           Mid
## 94           Mid          High
## 95           Mid           Mid
## 96           Mid           Mid
## 97           Mid           Low
## 98           Mid           Low
## 99           Mid          High
## 100          Mid           Mid
## 101          Mid           Mid
## 102          Mid           Mid
## 103          Mid           Mid
## 104          Mid           Mid
## 105          Mid           Low
## 106          Mid           Low
## 107          Mid           Low
## 108          Mid           Mid
## 109          Mid           Low
## 110          Mid           Mid
## 111          Mid           Low
## 112          Mid           Mid
## 113          Mid           Low
## 114          Mid           Low
## 115          Mid           Mid
## 116          Mid           Low
## 117          Mid           Mid
## 118          Mid           Low
## 119          Low           Low
## 120          Low           Mid
## 121          Low           Low
## 122          Low           Mid
## 123          Low           Low
## 124          Low           Low
## 125          Low           Low
## 126          Low           Mid
## 127          Low           Low
## 128          Low           Low
## 129          Low           Low
## 130          Low           Low
## 131          Low           Low
## 132          Low           Low
## 133          Low           Low
## 134          Low           Low
## 135          Low           Low
## 136          Low           Low
## 137          Low           Low
## 138          Low           Low
## 139          Low           Low
## 140          Low           Mid
## 141          Low           Low
## 142          Low           Mid
## 143          Low           Low
## 144          Low           Low
## 145          Low           Mid
## 146          Low           Mid
## 147          Low           Low
## 148          Low           Low
## 149          Low           Low
## 150          Low           Low
## 151          Low          High
## 152          Low           Low
## 153          Low           Low
## 154          Low           Low
## 155          Low           Low
## 156          Low           Low
## 157          Low           Low
## 158          Low           Low
## 159          Low           Low
## 160          Low           Low
## 161          Low           Low
## 162          Low           Low
## 163          Low           Low
## 164          Low           Low
## 165          Low           Low
## 166          Low           Low
## 167          Low           Low
## 168          Low           Low
## 169          Low           Low
## 170          Low           Low
## 171          Low           Low
## 172          Low           Low
## 173          Low           Low
## 174          Low           Low
## 175          Low           Low
## 176          Low           Low
## 177          Low           Low
## 178          Low           Low
## 179          Low           Low
## 180          Low           Low
## 181          Low           Low
## 182          Low           Low
## 183          Low           Low
## 184          Low           Low
## 185          Low           Low
## 186          Low           Low
## 187          Low           Low
## 188          Low           Low
## 189          Low           Low
## 190          Low           Low
## 191          Low           Low
## 192          Low           Low
## 193          Low           Low
## 194          Low           Low
## 195          Low           Low
## 196          Low           Low
## 197          Low           Low
## 198          Low           Low
## 199          Low           Low
## 200          Low           Low
## 201          Low           Low
## 202          Low           Low
## 203          Low           Low
## 204          Low           Low
## 205          Low           Low
## 206          Low           Low
## 207          Low           Low
## 208          Low           Low
## 209          Low           Low
## 210          Low           Low
## 211          Low           Low
## 212          Low           Low
## 213          Low           Low
## 214          Low           Low
## 215          Low           Low
## 216          Low           Low
## 217         High          High
## 218         High          High
## 219         High          High
## 220         High          High
## 221         High          High
## 222         High          High
## 223         High          High
## 224         High          High
## 225         High           Mid
## 226         High          High
## 227         High          High
## 228         High          High
## 229         High          High
## 230         High           Mid
## 231         High          High
## 232         High           Mid
## 233         High          High
## 234         High          High
## 235         High          High
## 236         High           Mid
## 237         High           Mid
## 238          Mid           Mid
## 239          Mid           Mid
## 240          Mid          High
## 241          Mid          High
## 242          Mid           Mid
## 243          Mid           Mid
## 244          Mid          High
## 245          Mid           Mid
## 246          Mid          High
## 247          Mid           Mid
## 248          Mid          High
## 249          Mid           Mid
## 250          Mid           Mid
## 251          Mid           Mid
## 252          Mid          High
## 253          Mid           Mid
## 254          Mid           Low
## 255          Mid           Mid
## 256          Mid           Mid
## 257          Mid           Mid
## 258          Mid           Mid
## 259          Mid           Mid
## 260          Mid           Mid
## 261          Mid           Mid
## 262          Mid           Mid
## 263          Mid           Mid
## 264          Mid           Mid
## 265          Mid           Low
## 266          Mid           Mid
## 267          Mid           Low
## 268          Mid           Mid
## 269          Low           Low
## 270          Low           Low
## 271          Low           Low
## 272          Low           Mid
## 273          Low           Low
## 274          Low           Low
## 275          Low           Low
## 276          Low           Low
## 277          Low           Low
## 278          Low           Mid
## 279          Low           Low
## 280          Low           Low
## 281          Low           Low
## 282          Low           Low
## 283          Low           Low
## 284          Low           Low
## 285          Low           Low
## 286          Low           Low
## 287          Low           Low
## 288          Low           Low
## 289          Low           Low
## 290          Low           Low
## 291          Low           Low
## 292          Low           Low
## 293          Low           Low
## 294          Low           Low
## 295          Low           Low
## 296          Low           Low
## 297          Low           Low
## 298          Low           Low
## 299          Low           Low
## 300          Low           Low
## 301          Low           Low
## 302          Low           Low
## 303          Low           Low
## 304          Low           Low
## 305          Low           Low
## 306          Low           Low
## 307          Low           Low
## 308          Low           Low
## 309          Low           Low
## 310          Low           Low
## 311          Low           Low
## 312          Low           Low
## 313          Mid           Mid
## 314         High           Low
## 315          Low           Low
## 316          Mid           Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(C50_Test_Accuracy <- Accuracy(y_pred = C50_Test$C50_Predicted, 
                               y_true = C50_Test$C50_Observed))
## [1] 0.7974684

1.5.14 Random Forest (RF)


Random Forest is an ensemble learning method made up of a large set of small decision trees called estimators, with each producing its own prediction. The random forest model aggregates the predictions of the estimators to produce a more accurate prediction. The algorithm involves bootstrap aggregating (where smaller subsets of the training data are repeatedly subsampled with replacement), random subspacing (where a subset of features are sampled and used to train each individual estimator), estimator training (where unpruned decision trees are formulated for each estimator) and inference by aggregating the predictions of all estimators.

[A] The random forest model from the randomForest package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mtry = number of randomly selected predictors made to vary across a range of values equal to 25 to 125

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mtry=125
     [C.2] Accuracy = 0.82131

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] HydroPhilicFactor variable (numeric)
     [D.4] NumBonds variable (numeric)
     [D.5] SurfaceArea1 variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.83861

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_RF <- PMA_PreModelling_Train
PMA_PreModelling_Test_RF <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_RF$Log_Solubility_Class,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
RF_Grid = data.frame(mtry = c(25,75,125))

##################################
# Running the random forest model
# by setting the caret method to 'rf'
##################################
set.seed(12345678)
RF_Tune <- train(x = PMA_PreModelling_Train_RF[,!names(PMA_PreModelling_Train_RF) %in% c("Log_Solubility_Class")],
                 y = PMA_PreModelling_Train_RF$Log_Solubility_Class,
                 method = "rf",
                 tuneGrid = RF_Grid,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
RF_Tune
## Random Forest 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results across tuning parameters:
## 
##   mtry  logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##    25   0.4462239  0.9380318  0.8130727  0.8191933  0.7174161  0.8056486
##    75   0.4360232  0.9400867  0.8104672  0.8192042  0.7169067  0.8045893
##   125   0.4366238  0.9399228  0.7952400  0.8213097  0.7204875  0.8077254
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.8026215         0.9064782         0.8132709            0.9113003          
##   0.8008399         0.9058877         0.8151338            0.9123177          
##   0.8035951         0.9070571         0.8162022            0.9126181          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.8132709       0.8026215    0.2730644            0.8545499             
##   0.8151338       0.8008399    0.2730681            0.8533638             
##   0.8162022       0.8035951    0.2737699            0.8553261             
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 125.
RF_Tune$finalModel
## 
## Call:
##  randomForest(x = x, y = y, mtry = param$mtry) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 125
## 
##         OOB estimate of  error rate: 18.51%
## Confusion matrix:
##      Low Mid High class.error
## Low  395  32    0  0.07494145
## Mid   67 186   30  0.34275618
## High   4  43  194  0.19502075
RF_Tune$results
##   mtry   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1   25 0.4462239 0.9380318 0.8130727 0.8191933 0.7174161 0.8056486
## 2   75 0.4360232 0.9400867 0.8104672 0.8192042 0.7169067 0.8045893
## 3  125 0.4366238 0.9399228 0.7952400 0.8213097 0.7204875 0.8077254
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.8026215        0.9064782           0.8132709           0.9113003
## 2        0.8008399        0.9058877           0.8151338           0.9123177
## 3        0.8035951        0.9070571           0.8162022           0.9126181
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.8132709   0.8026215           0.2730644              0.8545499
## 2      0.8151338   0.8008399           0.2730681              0.8533638
## 3      0.8162022   0.8035951           0.2737699              0.8553261
##    logLossSD      AUCSD    prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1 0.06222865 0.02113626 0.04061799 0.04214814 0.06770662 0.04558738
## 2 0.06639577 0.02070023 0.04274670 0.04277842 0.06845144 0.04760295
## 3 0.06832290 0.02130083 0.04130356 0.04102100 0.06495421 0.04549251
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1         0.04846113         0.02303450            0.04169781
## 2         0.04886793         0.02293834            0.04370933
## 3         0.04612283         0.02135576            0.04288773
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1            0.02082675       0.04169781    0.04846113            0.01404938
## 2            0.02082426       0.04370933    0.04886793            0.01425947
## 3            0.02006362       0.04288773    0.04612283            0.01367367
##   Mean_Balanced_AccuracySD
## 1               0.03567161
## 2               0.03584598
## 3               0.03367716
(RF_Train_Accuracy <- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
                              c("Accuracy")])
## [1] 0.8213097
##################################
# Identifying and plotting the
# best model predictors
##################################
RF_VarImp <- varImp(RF_Tune, scale = TRUE)
plot(RF_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Random Forest",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
RF_Test <- data.frame(RF_Observed = PMA_PreModelling_Test_RF$Log_Solubility_Class,
                      RF_Predicted = predict(RF_Tune,
                      PMA_PreModelling_Test_RF[,!names(PMA_PreModelling_Test_RF) %in% c("Log_Solubility_Class")],
                      type = "raw"))

RF_Test
##     RF_Observed RF_Predicted
## 1          High         High
## 2          High         High
## 3          High         High
## 4          High         High
## 5          High         High
## 6          High         High
## 7          High         High
## 8          High         High
## 9          High         High
## 10         High         High
## 11         High         High
## 12         High          Mid
## 13         High         High
## 14         High         High
## 15         High         High
## 16         High         High
## 17         High         High
## 18         High         High
## 19         High         High
## 20         High         High
## 21         High         High
## 22         High         High
## 23         High         High
## 24         High         High
## 25         High         High
## 26         High         High
## 27         High         High
## 28         High         High
## 29         High          Mid
## 30         High         High
## 31         High          Low
## 32         High         High
## 33         High         High
## 34         High         High
## 35         High         High
## 36         High         High
## 37         High         High
## 38         High         High
## 39         High         High
## 40         High         High
## 41         High         High
## 42         High          Low
## 43         High          Mid
## 44         High         High
## 45         High         High
## 46         High         High
## 47         High         High
## 48         High         High
## 49         High         High
## 50         High         High
## 51         High          Mid
## 52         High          Mid
## 53         High          Mid
## 54         High         High
## 55         High          Mid
## 56         High         High
## 57         High          Mid
## 58          Mid          Mid
## 59          Mid          Mid
## 60          Mid          Mid
## 61          Mid          Mid
## 62          Mid          Mid
## 63          Mid         High
## 64          Mid          Mid
## 65          Mid          Mid
## 66          Mid          Mid
## 67          Mid          Mid
## 68          Mid          Mid
## 69          Mid         High
## 70          Mid          Mid
## 71          Mid          Low
## 72          Mid          Mid
## 73          Mid          Mid
## 74          Mid          Low
## 75          Mid         High
## 76          Mid          Mid
## 77          Mid          Mid
## 78          Mid          Mid
## 79          Mid          Mid
## 80          Mid          Mid
## 81          Mid          Mid
## 82          Mid         High
## 83          Mid          Low
## 84          Mid          Mid
## 85          Mid          Mid
## 86          Mid          Mid
## 87          Mid          Low
## 88          Mid          Mid
## 89          Mid          Mid
## 90          Mid          Mid
## 91          Mid          Mid
## 92          Mid          Mid
## 93          Mid          Mid
## 94          Mid          Mid
## 95          Mid          Mid
## 96          Mid          Mid
## 97          Mid          Mid
## 98          Mid          Low
## 99          Mid         High
## 100         Mid          Mid
## 101         Mid          Mid
## 102         Mid          Mid
## 103         Mid          Mid
## 104         Mid          Mid
## 105         Mid          Mid
## 106         Mid          Low
## 107         Mid          Mid
## 108         Mid          Mid
## 109         Mid          Mid
## 110         Mid          Mid
## 111         Mid          Low
## 112         Mid          Mid
## 113         Mid          Low
## 114         Mid          Mid
## 115         Mid          Low
## 116         Mid          Low
## 117         Mid          Low
## 118         Mid          Low
## 119         Low          Low
## 120         Low          Mid
## 121         Low          Low
## 122         Low          Mid
## 123         Low          Low
## 124         Low          Mid
## 125         Low          Low
## 126         Low          Low
## 127         Low          Low
## 128         Low          Low
## 129         Low          Low
## 130         Low          Low
## 131         Low          Low
## 132         Low          Low
## 133         Low          Low
## 134         Low          Low
## 135         Low          Low
## 136         Low          Low
## 137         Low          Low
## 138         Low          Low
## 139         Low          Low
## 140         Low          Mid
## 141         Low          Low
## 142         Low          Mid
## 143         Low          Low
## 144         Low          Low
## 145         Low          Mid
## 146         Low          Low
## 147         Low          Low
## 148         Low          Low
## 149         Low          Low
## 150         Low          Low
## 151         Low          Low
## 152         Low          Low
## 153         Low          Low
## 154         Low          Low
## 155         Low          Low
## 156         Low          Low
## 157         Low          Low
## 158         Low          Low
## 159         Low          Low
## 160         Low          Low
## 161         Low          Low
## 162         Low          Low
## 163         Low          Low
## 164         Low          Low
## 165         Low          Low
## 166         Low          Low
## 167         Low          Low
## 168         Low          Low
## 169         Low          Low
## 170         Low          Low
## 171         Low          Low
## 172         Low          Low
## 173         Low          Low
## 174         Low          Low
## 175         Low          Low
## 176         Low          Low
## 177         Low          Low
## 178         Low          Low
## 179         Low          Low
## 180         Low          Low
## 181         Low          Low
## 182         Low          Low
## 183         Low          Low
## 184         Low          Low
## 185         Low          Low
## 186         Low          Low
## 187         Low          Low
## 188         Low          Low
## 189         Low          Low
## 190         Low          Low
## 191         Low          Low
## 192         Low          Low
## 193         Low          Low
## 194         Low          Low
## 195         Low          Low
## 196         Low          Low
## 197         Low          Low
## 198         Low          Low
## 199         Low          Low
## 200         Low          Low
## 201         Low          Low
## 202         Low          Low
## 203         Low          Low
## 204         Low          Low
## 205         Low          Low
## 206         Low          Low
## 207         Low          Low
## 208         Low          Low
## 209         Low          Low
## 210         Low          Low
## 211         Low          Low
## 212         Low          Low
## 213         Low          Low
## 214         Low          Low
## 215         Low          Low
## 216         Low          Low
## 217        High         High
## 218        High         High
## 219        High         High
## 220        High         High
## 221        High          Mid
## 222        High         High
## 223        High         High
## 224        High         High
## 225        High          Mid
## 226        High         High
## 227        High         High
## 228        High          Mid
## 229        High         High
## 230        High          Mid
## 231        High         High
## 232        High         High
## 233        High         High
## 234        High         High
## 235        High         High
## 236        High          Mid
## 237        High          Low
## 238         Mid          Mid
## 239         Mid          Mid
## 240         Mid          Mid
## 241         Mid         High
## 242         Mid         High
## 243         Mid          Mid
## 244         Mid          Mid
## 245         Mid          Mid
## 246         Mid         High
## 247         Mid          Mid
## 248         Mid         High
## 249         Mid          Mid
## 250         Mid          Mid
## 251         Mid          Mid
## 252         Mid         High
## 253         Mid          Mid
## 254         Mid          Low
## 255         Mid          Mid
## 256         Mid         High
## 257         Mid          Mid
## 258         Mid          Mid
## 259         Mid          Mid
## 260         Mid          Mid
## 261         Mid          Mid
## 262         Mid          Mid
## 263         Mid          Mid
## 264         Mid          Mid
## 265         Mid          Low
## 266         Mid          Mid
## 267         Mid          Low
## 268         Mid          Low
## 269         Low          Low
## 270         Low          Low
## 271         Low          Low
## 272         Low          Low
## 273         Low          Low
## 274         Low          Low
## 275         Low          Low
## 276         Low          Low
## 277         Low          Low
## 278         Low          Low
## 279         Low          Low
## 280         Low          Low
## 281         Low          Low
## 282         Low          Low
## 283         Low          Low
## 284         Low          Low
## 285         Low          Low
## 286         Low          Low
## 287         Low          Low
## 288         Low          Low
## 289         Low          Low
## 290         Low          Low
## 291         Low          Low
## 292         Low          Low
## 293         Low          Low
## 294         Low          Low
## 295         Low          Low
## 296         Low          Low
## 297         Low          Low
## 298         Low          Low
## 299         Low          Low
## 300         Low          Low
## 301         Low          Low
## 302         Low          Low
## 303         Low          Low
## 304         Low          Low
## 305         Low          Low
## 306         Low          Low
## 307         Low          Low
## 308         Low          Low
## 309         Low          Low
## 310         Low          Low
## 311         Low          Low
## 312         Low          Low
## 313         Mid          Mid
## 314        High          Low
## 315         Low          Low
## 316         Mid          Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(RF_Test_Accuracy <- Accuracy(y_pred = RF_Test$RF_Predicted, 
                              y_true = RF_Test$RF_Observed))
## [1] 0.8386076

1.5.15 Bagged Trees (BTREE)


Bagged Trees combine bootstrapping and decision trees to construct an ensemble. The modeling process involves generating bootstrap samples of the original data, training an unpruned decision tree for each bootstrap subset of the data and implementing an ensemble voting for all the individual decision tree predictions to formulate the final prediction. The bootstrap aggregation (bagging) mechanism improves the model performance by reducing variance. Although the individual decision trees in the model are identically distributed, they are not necessarily independent and share similar structure. This similarity, known as tree correlation, is an essential factor that prevents further reduction of variance.

[A] The bagged trees model from the ipred, plyr and e1071 packages was implemented through the caret package.

[B] The model does not contain any hyperparameter.

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] Accuracy = 0.81078

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MolWeight variable (numeric)
     [D.2] NumCarbon variable (numeric)
     [D.3] NumBonds variable (numeric)
     [D.4] SurfaceArea1 variable (numeric)
     [D.5] HydrophilicFactor variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] Accuracy = 0.81329

Code Chunk | Output
##################################
# Creating a local object
# for the train and test sets
##################################
PMA_PreModelling_Train_BTREE <- PMA_PreModelling_Train
PMA_PreModelling_Test_BTREE <- PMA_PreModelling_Test

##################################
# Creating consistent fold assignments 
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train_BTREE$Log_Solubility,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices,
                              summaryFunction = multiClassSummary,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# No hyperparameter tuning process conducted

##################################
# Running the bagged trees model
# by setting the caret method to 'treebag'
##################################
set.seed(12345678)
BTREE_Tune <- train(x = PMA_PreModelling_Train_BTREE[,!names(PMA_PreModelling_Train_BTREE) %in% c("Log_Solubility_Class")], 
                 y = PMA_PreModelling_Train_BTREE$Log_Solubility_Class,
                 method = "treebag",
                 nbagg = 50,
                 metric = "Accuracy",
                 trControl = KFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
BTREE_Tune
## Bagged CART 
## 
## 951 samples
## 220 predictors
##   3 classes: 'Low', 'Mid', 'High' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 856, 855, 856, 855, 857, 856, ... 
## Resampling results:
## 
##   logLoss    AUC        prAUC      Accuracy   Kappa      Mean_F1  
##   0.6081849  0.9326071  0.7041064  0.8107827  0.7035657  0.7971691
##   Mean_Sensitivity  Mean_Specificity  Mean_Pos_Pred_Value  Mean_Neg_Pred_Value
##   0.7925209         0.9012913         0.8079533            0.9070897          
##   Mean_Precision  Mean_Recall  Mean_Detection_Rate  Mean_Balanced_Accuracy
##   0.8079533       0.7925209    0.2702609            0.8469061
BTREE_Tune$finalModel
## 
## Bagging classification trees with 50 bootstrap replications
BTREE_Tune$results
##   parameter   logLoss       AUC     prAUC  Accuracy     Kappa   Mean_F1
## 1      none 0.6081849 0.9326071 0.7041064 0.8107827 0.7035657 0.7971691
##   Mean_Sensitivity Mean_Specificity Mean_Pos_Pred_Value Mean_Neg_Pred_Value
## 1        0.7925209        0.9012913           0.8079533           0.9070897
##   Mean_Precision Mean_Recall Mean_Detection_Rate Mean_Balanced_Accuracy
## 1      0.8079533   0.7925209           0.2702609              0.8469061
##   logLossSD      AUCSD   prAUCSD AccuracySD    KappaSD  Mean_F1SD
## 1 0.2935258 0.02255702 0.0409326 0.05142226 0.08239393 0.05664061
##   Mean_SensitivitySD Mean_SpecificitySD Mean_Pos_Pred_ValueSD
## 1          0.0597361         0.02729944            0.04719834
##   Mean_Neg_Pred_ValueSD Mean_PrecisionSD Mean_RecallSD Mean_Detection_RateSD
## 1            0.02549526       0.04719834     0.0597361            0.01714075
##   Mean_Balanced_AccuracySD
## 1               0.04345743
(BTREE_Train_Accuracy <- BTREE_Tune$results$Accuracy)
## [1] 0.8107827
##################################
# Identifying and plotting the
# best model predictors
##################################
BTREE_VarImp <- varImp(BTREE_Tune, scale = TRUE)
plot(BTREE_VarImp, 
     top=25, 
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Bagged Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
BTREE_Test <- data.frame(BTREE_Observed = PMA_PreModelling_Test_BTREE$Log_Solubility_Class,
                      BTREE_Predicted = predict(BTREE_Tune, 
                      PMA_PreModelling_Test_BTREE[,!names(PMA_PreModelling_Test_BTREE) %in% c("Log_Solubility_Class")],
                      type = "raw"))

BTREE_Test
##     BTREE_Observed BTREE_Predicted
## 1             High            High
## 2             High            High
## 3             High            High
## 4             High            High
## 5             High            High
## 6             High            High
## 7             High            High
## 8             High            High
## 9             High            High
## 10            High            High
## 11            High            High
## 12            High             Mid
## 13            High            High
## 14            High            High
## 15            High            High
## 16            High            High
## 17            High            High
## 18            High            High
## 19            High            High
## 20            High            High
## 21            High            High
## 22            High            High
## 23            High            High
## 24            High            High
## 25            High            High
## 26            High            High
## 27            High            High
## 28            High            High
## 29            High             Mid
## 30            High            High
## 31            High             Low
## 32            High            High
## 33            High            High
## 34            High            High
## 35            High            High
## 36            High            High
## 37            High            High
## 38            High            High
## 39            High            High
## 40            High            High
## 41            High            High
## 42            High            High
## 43            High             Mid
## 44            High            High
## 45            High            High
## 46            High            High
## 47            High            High
## 48            High            High
## 49            High            High
## 50            High            High
## 51            High            High
## 52            High             Mid
## 53            High             Mid
## 54            High             Mid
## 55            High             Mid
## 56            High            High
## 57            High             Mid
## 58             Mid             Mid
## 59             Mid             Mid
## 60             Mid             Mid
## 61             Mid             Mid
## 62             Mid             Mid
## 63             Mid            High
## 64             Mid             Mid
## 65             Mid             Mid
## 66             Mid             Mid
## 67             Mid             Mid
## 68             Mid             Mid
## 69             Mid            High
## 70             Mid             Mid
## 71             Mid             Low
## 72             Mid             Low
## 73             Mid             Mid
## 74             Mid             Mid
## 75             Mid            High
## 76             Mid             Mid
## 77             Mid             Mid
## 78             Mid             Mid
## 79             Mid             Mid
## 80             Mid            High
## 81             Mid             Mid
## 82             Mid            High
## 83             Mid            High
## 84             Mid             Mid
## 85             Mid             Mid
## 86             Mid             Mid
## 87             Mid             Low
## 88             Mid             Mid
## 89             Mid             Mid
## 90             Mid             Mid
## 91             Mid             Mid
## 92             Mid             Mid
## 93             Mid             Low
## 94             Mid            High
## 95             Mid             Mid
## 96             Mid             Mid
## 97             Mid             Mid
## 98             Mid             Low
## 99             Mid            High
## 100            Mid             Mid
## 101            Mid             Mid
## 102            Mid             Mid
## 103            Mid             Mid
## 104            Mid             Mid
## 105            Mid             Mid
## 106            Mid             Low
## 107            Mid             Mid
## 108            Mid             Mid
## 109            Mid             Low
## 110            Mid             Low
## 111            Mid             Low
## 112            Mid             Mid
## 113            Mid             Low
## 114            Mid             Mid
## 115            Mid             Mid
## 116            Mid             Low
## 117            Mid             Low
## 118            Mid             Low
## 119            Low             Low
## 120            Low             Mid
## 121            Low             Mid
## 122            Low             Mid
## 123            Low             Low
## 124            Low             Mid
## 125            Low             Low
## 126            Low             Low
## 127            Low             Low
## 128            Low             Low
## 129            Low             Low
## 130            Low             Low
## 131            Low             Low
## 132            Low             Low
## 133            Low             Low
## 134            Low             Low
## 135            Low             Low
## 136            Low             Low
## 137            Low             Low
## 138            Low             Low
## 139            Low             Low
## 140            Low             Mid
## 141            Low             Low
## 142            Low             Mid
## 143            Low             Low
## 144            Low             Low
## 145            Low             Mid
## 146            Low             Mid
## 147            Low             Low
## 148            Low             Low
## 149            Low             Low
## 150            Low             Low
## 151            Low             Low
## 152            Low             Low
## 153            Low             Low
## 154            Low             Low
## 155            Low             Low
## 156            Low             Low
## 157            Low             Low
## 158            Low             Low
## 159            Low             Low
## 160            Low             Low
## 161            Low             Low
## 162            Low             Low
## 163            Low             Low
## 164            Low             Low
## 165            Low             Low
## 166            Low             Low
## 167            Low             Low
## 168            Low             Low
## 169            Low             Low
## 170            Low             Low
## 171            Low             Low
## 172            Low             Low
## 173            Low             Low
## 174            Low             Low
## 175            Low             Low
## 176            Low             Low
## 177            Low             Low
## 178            Low             Low
## 179            Low             Low
## 180            Low             Low
## 181            Low             Low
## 182            Low             Low
## 183            Low             Low
## 184            Low             Low
## 185            Low             Low
## 186            Low             Low
## 187            Low             Low
## 188            Low             Low
## 189            Low             Low
## 190            Low             Low
## 191            Low             Low
## 192            Low             Low
## 193            Low             Low
## 194            Low             Low
## 195            Low             Low
## 196            Low             Low
## 197            Low             Low
## 198            Low             Low
## 199            Low             Low
## 200            Low             Low
## 201            Low             Low
## 202            Low             Low
## 203            Low             Low
## 204            Low             Low
## 205            Low             Low
## 206            Low             Low
## 207            Low             Low
## 208            Low             Low
## 209            Low             Low
## 210            Low             Low
## 211            Low             Low
## 212            Low             Low
## 213            Low             Low
## 214            Low             Low
## 215            Low             Low
## 216            Low             Low
## 217           High            High
## 218           High            High
## 219           High            High
## 220           High            High
## 221           High             Mid
## 222           High            High
## 223           High            High
## 224           High            High
## 225           High             Mid
## 226           High            High
## 227           High            High
## 228           High             Mid
## 229           High            High
## 230           High             Mid
## 231           High            High
## 232           High             Mid
## 233           High            High
## 234           High            High
## 235           High            High
## 236           High             Mid
## 237           High             Low
## 238            Mid             Mid
## 239            Mid             Mid
## 240            Mid             Mid
## 241            Mid            High
## 242            Mid             Mid
## 243            Mid             Mid
## 244            Mid             Mid
## 245            Mid             Mid
## 246            Mid            High
## 247            Mid             Mid
## 248            Mid            High
## 249            Mid             Mid
## 250            Mid             Mid
## 251            Mid             Low
## 252            Mid            High
## 253            Mid             Mid
## 254            Mid             Low
## 255            Mid             Mid
## 256            Mid            High
## 257            Mid             Low
## 258            Mid             Mid
## 259            Mid             Mid
## 260            Mid             Mid
## 261            Mid             Mid
## 262            Mid             Mid
## 263            Mid             Mid
## 264            Mid             Mid
## 265            Mid             Low
## 266            Mid             Mid
## 267            Mid             Low
## 268            Mid             Mid
## 269            Low             Low
## 270            Low             Low
## 271            Low             Low
## 272            Low             Mid
## 273            Low             Low
## 274            Low             Low
## 275            Low             Mid
## 276            Low             Low
## 277            Low             Low
## 278            Low             Low
## 279            Low             Low
## 280            Low             Low
## 281            Low             Low
## 282            Low             Low
## 283            Low             Low
## 284            Low             Low
## 285            Low             Low
## 286            Low             Low
## 287            Low             Low
## 288            Low             Low
## 289            Low             Low
## 290            Low             Low
## 291            Low             Low
## 292            Low             Low
## 293            Low             Low
## 294            Low             Low
## 295            Low             Low
## 296            Low             Low
## 297            Low             Low
## 298            Low             Low
## 299            Low             Low
## 300            Low             Low
## 301            Low             Low
## 302            Low             Low
## 303            Low             Low
## 304            Low             Low
## 305            Low             Low
## 306            Low             Low
## 307            Low             Low
## 308            Low             Low
## 309            Low             Low
## 310            Low             Low
## 311            Low             Low
## 312            Low             Low
## 313            Mid             Mid
## 314           High             Low
## 315            Low             Low
## 316            Mid             Low
##################################
# Reporting the independent evaluation results
# for the test set
##################################
(BTREE_Test_Accuracy <- Accuracy(y_pred = BTREE_Test$BTREE_Predicted, 
                                 y_true = BTREE_Test$BTREE_Observed))
## [1] 0.8132911

1.6 Consolidated Findings


[A] The models which demonstrated the best and most consistent Accuracy metrics are as follows:
     [A.1] RF: Random Forest (randomForest package)
            [A.2.1] Cross-Validation Accuracy = 0.82131
            [A.2.2] Test Accuracy = 0.83861
     [A.2] BTREE: Bagged Trees (ipred, plyr and e1071 packages)
            [A.2.1] Cross-Validation Accuracy = 0.81078
            [A.2.2] Test Accuracy = 0.81329
     [A.3] C50: C5.0 Decision Trees (C50 and plyr packages)
            [A.3.1] Cross-Validation Accuracy = 0.80650
            [A.3.2] Test Accuracy = 0.79746

Code Chunk | Output
##################################
# Consolidating all evaluation results
# for the train and test sets
# using the ROC Curve AUC metric
##################################
Model <- c('PMR','LDA','FDA','MDA','NB','NSC','AVNN','SVM_R','SVM_P','KNN','CART','CTREE','C50','RF','BTREE',
           'PMR','LDA','FDA','MDA','NB','NSC','AVNN','SVM_R','SVM_P','KNN','CART','CTREE','C50','RF','BTREE')

Set <- c(rep('Cross-Validation',15),rep('Test',15))

Accuracy <- c(PMR_Train_Accuracy,LDA_Train_Accuracy,FDA_Train_Accuracy,MDA_Train_Accuracy,NB_Train_Accuracy,
               NSC_Train_Accuracy,AVNN_Train_Accuracy,SVM_R_Train_Accuracy,SVM_P_Train_Accuracy,KNN_Train_Accuracy,
               CART_Train_Accuracy,CTREE_Train_Accuracy,C50_Train_Accuracy,RF_Train_Accuracy,BTREE_Train_Accuracy,
               PMR_Test_Accuracy,LDA_Test_Accuracy,FDA_Test_Accuracy,MDA_Test_Accuracy,NB_Test_Accuracy,
               NSC_Test_Accuracy,AVNN_Test_Accuracy,SVM_R_Test_Accuracy,SVM_P_Test_Accuracy,KNN_Test_Accuracy,
               CART_Test_Accuracy,CTREE_Test_Accuracy,C50_Test_Accuracy,RF_Test_Accuracy,BTREE_Test_Accuracy)

Accuracy_Summary <- as.data.frame(cbind(Model,Set,Accuracy))

Accuracy_Summary$Accuracy <- as.numeric(as.character(Accuracy_Summary$Accuracy))
Accuracy_Summary$Set <- factor(Accuracy_Summary$Set,
                                        levels = c("Cross-Validation",
                                                   "Test"))
Accuracy_Summary$Model <- factor(Accuracy_Summary$Model,
                                        levels = c("PMR",
                                                   "LDA",
                                                   "FDA",
                                                   "MDA",
                                                   "NB",
                                                   "NSC",
                                                   "AVNN",
                                                   "SVM_R",
                                                   "SVM_P",
                                                   "KNN",
                                                   "CART",
                                                   "CTREE",
                                                   "C50",
                                                   "RF",
                                                   "BTREE"))

print(Accuracy_Summary, row.names=FALSE)
##  Model              Set  Accuracy
##    PMR Cross-Validation 0.7433879
##    LDA Cross-Validation 0.7286501
##    FDA Cross-Validation 0.7750012
##    MDA Cross-Validation 0.7434488
##     NB Cross-Validation 0.6434612
##    NSC Cross-Validation 0.6045224
##   AVNN Cross-Validation 0.6729680
##  SVM_R Cross-Validation 0.7980168
##  SVM_P Cross-Validation 0.7959670
##    KNN Cross-Validation 0.6909644
##   CART Cross-Validation 0.7487843
##  CTREE Cross-Validation 0.7318519
##    C50 Cross-Validation 0.8065057
##     RF Cross-Validation 0.8213097
##  BTREE Cross-Validation 0.8107827
##    PMR             Test 0.7658228
##    LDA             Test 0.7689873
##    FDA             Test 0.8196203
##    MDA             Test 0.7151899
##     NB             Test 0.6550633
##    NSC             Test 0.6360759
##   AVNN             Test 0.6582278
##  SVM_R             Test 0.7911392
##  SVM_P             Test 0.7879747
##    KNN             Test 0.6677215
##   CART             Test 0.7974684
##  CTREE             Test 0.7943038
##    C50             Test 0.7974684
##     RF             Test 0.8386076
##  BTREE             Test 0.8132911
(Accuracy_Plot <- dotplot(Model ~ Accuracy,
                           data = Accuracy_Summary,
                           groups = Set,
                           main = "Classification Model Performance Comparison",
                           ylab = "Model",
                           xlab = "Accuracy",
                           auto.key = list(adj=1, space="top", columns=2),
                           type=c("p", "h"),       
                           origin = 0,
                           alpha = 0.45,
                           pch = 16,
                           cex = 2))

2. Summary



3. References


[Book] Applied Predictive Modeling by Max Kuhn and Kjell Johnson
[Book] An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
[Book] An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
[Book] Multivariate Data Visualization with R by Deepayan Sarkar
[Book] Machine Learning by Samuel Jackson
[Book] Data Modeling Methods by Jacob Larget
[Book] Regression Modeling Strategies by Frank Harrel
[Book] Pattern Recognition and Neural Networks by Brian Ripley
[Book] Modern Applied Statistics with S by William Venables and Brian Ripley
[R Package] AppliedPredictiveModeling by Max Kuhn
[R Package] caret by Max Kuhn
[R Package] rpart by Terry Therneau and Beth Atkinson
[R Package] lattice by Deepayan Sarkar
[R Package] dplyr by Hadley Wickham
[R Package] moments by Lukasz Komsta and Frederick
[R Package] skimr by Elin Waring
[R Package] RANN by Sunil Arya, David Mount, Samuel Kemp and Gregory Jefferis
[R Package] corrplot by Taiyun Wei
[R Package] tidyverse by Hadley Wickham
[R Package] lares by Bernardo Lares
[R Package] DMwR2 by Luis Torgo
[R Package] gridExtra by Baptiste Auguie and Anton Antonov
[R Package] rattle by Graham Williams
[R Package] rpart.plot by Stephen Milborrow
[R Package] RColorBrewer by Erich Neuwirth
[R Package] stats by R Core Team
[R Package] pls by Kristian Hovde Liland
[R Package] nnet by Brian Ripley
[R Package] elasticnet by Hui Zou
[R Package] earth by Stephen Milborrow
[R Package] party by Torsten Hothorn
[R Package] kernlab by Alexandros Karatzoglou
[R Package] randomForest by Andy Liaw
[R Package] pROC by Xavier Robin
[R Package] mda by Trevor Hastie
[R Package] klaR by Christian Roever, Nils Raabe, Karsten Luebke, Uwe Ligges, Gero Szepannek, Marc Zentgraf and David Meyer
[R Package] pamr by Trevor Hastie, Rob Tibshirani, Balasubramanian Narasimhan and Gil Chu
[R Package] C50 by Max Kuhn
[R Package] MLmetrics by Yachen Yan
[R Package] ordinalNet by Michael Wurm, Paul Rathouz and Bret Hanlon
[Article] The caret Package by Max Kuhn
[Article] A Short Introduction to the caret Package by Max Kuhn
[Article] Caret Package – A Practical Guide to Machine Learning in R by Selva Prabhakaran
[Article] Tuning Machine Learning Models Using the Caret R Package by Jason Brownlee
[Article] Lattice Graphs by Alboukadel Kassambara
[Article] A Tour of Machine Learning Algorithms by Jason Brownlee
[Article] Decision Tree Algorithm Examples In Data Mining by Software Testing Help Team
[Article] 4 Types of Classification Tasks in Machine Learning by Jason Brownlee
[Article] Spot-Check Classification Machine Learning Algorithms in Python with scikit-learn by Jason Brownlee
[Article] Feature Engineering and Selection: A Practical Approach for Predictive Models by Max Kuhn and Kjell Johnson
[Article] An Introduction to Naive Bayes Algorithm for Beginners by Turing Team
[Article] Machine Learning Tutorial: A Step-by-Step Guide for Beginners by Mayank Banoula
[Article] Nearest Shrunken Centroids With Python by Jason Brownlee
[Article] Discriminant Analysis Essentials in R by Alboukadel Kassambara
[Article] Linear Discriminant Analysis, Explained by Xiaozhou Yang
[Article] Flexible Discriminant Analysis by BCCVL Team
[Article] Classification Tree by BCCVL Team
[Article] Random Forest by BCCVL Team
[Article] Boosted Regression Tree by BCCVL Team
[Article] Artificial Neural Network by BCCVL Team
[Article] Generalized Linear Model by BCCVL Team
[Article] Generalized Boosting Model by BCCVL Team
[Article] Conditional Inference Trees in R Programming by Geeks for Geeks Team
[Article] C5.0: An Informal Tutorial by RuleQuest Team
[Article] What is Nearest Shrunken Centroid Classification? by Rob Tibshirani
[Article] K-Nearest Neighbors Algorithm by IBM Team
[Publication] The Origins of Logistic Regression by JS Cramer (Econometrics eJournal)
[Publication] The Use of Multiple Measurements in Taxonomic Problems by Ronald Fisher (Annals of Human Genetics)
[Publication] Flexible Discriminant Analysis by Optimal Scoring by Trevor Hastie, Robert Tibshirani and Andreas Buja (Journal of the American Statistical Association)
[Publication] Discriminant Analysis by Gaussian Mixtures by Trevor Hastie and Robert Tibshirani (Journal of the Royal Statistical Society)
[Publication] Who Discovered Bayes’s Theorem? by Stephen Stigler (The American Statistician)
[Publication] Diagnosis of Multiple Cancer Types by Shrunken Centroids of Gene Expression by Robert Tibshirani, Trevor Hastie, Balasubramanian Narasimhan and Gilbert Chu (Proceedings of the National Academy of Sciences of the United States of America)
[Publication] A Training Algorithm for Optimal Margin Classifiers by Bernhard Boser, Isabelle Guyon and Vladimir Vapnik (Proceedings of the Fifth Annual Workshop on Computational Learning Theory)
[Publication] Nearest Neighbor Pattern Classification Thomas Cover and Peter Hart (IEEE Transactions on Information Theory)
[Publication] Classification and Regression Trees by Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone (Computer Science)
[Publication] Unbiased Recursive Partitioning: A Conditional Inference Framework by Torsten Hothorn, Kurt Hornik and Achim Zeileis (Journal of Computational and Graphical Statistics)
[Publication] C4.5: Programs for Machine Learning by Ross Quinlan (Machine Learning)
[Publication] Random Forest by Leo Breiman (Machine Learning)
[Publication] Bagging Predictors by Leo Breiman (Machine Learning)
[Course] Applied Data Mining and Statistical Learning by Penn State Eberly College of Science
[Course] Regression Methods by Penn State Eberly College of Science
[Course] Applied Regression Analysis by Penn State Eberly College of Science
[Course] Applied Data Mining and Statistical Learning by Penn State Eberly College of Science