1. Table of Contents


This project implements Recursive Feature Elimination in selecting informative predictors for a modelling problem using the Random Forest, Linear Discriminant Analysis, Naive Bayes, Logistic Regression, Support Vector Machine and K-Nearest Neighbors model structures in R. The resulting predictions derived from the candidate models applying Recursive Feature Elimination were evaluated in terms of their discrimination power using the area under the receiver operating characteristics curve (AUROC) metric. The AUROC values were compared to those of the baseline models which made use of the full data without any form of feature selection, or implemented a model-specific feature selection process. All results were consolidated in a Summary presented at the end of the document.

Feature selection is the process of reducing the number of input variables by eliminating redundant or unimportant features and narrowing down the set of features to those most relevant to the machine learning approach, resulting to simpler explainable models, shorter training times due to a more precise subset of features, reduction of variance, increase in precision estimates and more robust solution against the curse of high dimensionality. The algorithms applied in this study (mostly contained in the caret package) are wrapper feature selection methods which attempt to consider the task of selecting feature subsets as a search problem, whereby their quality is assessed with the preparation, evaluation, and comparison between different feature combinations.

1.1 Sample Data


The AlzheimerDisease dataset from the AppliedPredictiveModeling package was used for this illustrated example.

Preliminary dataset assessment:

[A] 333 rows (observations)
     [A.1] Train Set = 267 observations
     [A.2] Test Set = 66 observations

[B] 128 columns (variables)
     [B.1] 1/128 response = Class variable (factor)
            [B.1.1] Levels = Class=Control < Class=Impaired
     [B.2] 127/128 predictors = All remaining variables (3/127 factor + 124/127 numeric)

Code Chunk | Output
##################################
# Loading R libraries
##################################
library(AppliedPredictiveModeling)
library(caret)
library(rpart)
library(lattice)
library(dplyr)
library(tidyr)
library(moments)
library(skimr)
library(RANN)
library(pls)
library(corrplot)
library(tidyverse)
library(lares)
library(DMwR2)
library(gridExtra)
library(rattle)
library(rpart.plot)
library(RColorBrewer)
library(stats)
library(nnet)
library(elasticnet)
library(earth)
library(party)
library(kernlab)
library(randomForest)
library(Cubist)
library(pROC)
library(mda)
library(klaR)
library(pamr)

##################################
# Loading source and
# formulating the train set
##################################
data(AlzheimerDisease)
Alzheimer <- predictors
Alzheimer$Class <- diagnosis

##################################
# Decomposing the Genotype factor
# into binary dummy variables
##################################

## Decompose the genotype factor into binary dummy variables

Alzheimer$E2 <- Alzheimer$E3 <- Alzheimer$E4 <- 0
Alzheimer$E2[grepl("2", Alzheimer$Genotype)] <- 1
Alzheimer$E3[grepl("3", Alzheimer$Genotype)] <- 1
Alzheimer$E4[grepl("4", Alzheimer$Genotype)] <- 1
Alzheimer_Original <- Alzheimer

##################################
# Removing baseline predictors
##################################
Alzheimer <- Alzheimer[,!(names(Alzheimer) %in% c("Genotype", "age", "tau", "p_tau", "Ab_42", "male"))]

##################################
# Partitoning the data into
# train and test sets
##################################
set.seed(12345678)
Alzheimer_Train_Index <- createDataPartition(Alzheimer$Class,p=0.8)[[1]]
Alzheimer_Train <- Alzheimer[ Alzheimer_Train_Index, ]
Alzheimer_Test  <- Alzheimer[-Alzheimer_Train_Index, ]

##################################
# Performing a general exploration of the train set
##################################
dim(Alzheimer_Train)
## [1] 267 128
str(Alzheimer_Train)
## 'data.frame':    267 obs. of  128 variables:
##  $ ACE_CD143_Angiotensin_Converti  : num  2.003 1.562 1.521 2.401 0.431 ...
##  $ ACTH_Adrenocorticotropic_Hormon : num  -1.386 -1.386 -1.715 -0.968 -1.273 ...
##  $ AXL                             : num  1.098 0.683 -0.145 0.191 -0.222 ...
##  $ Adiponectin                     : num  -5.36 -5.02 -5.81 -4.78 -5.22 ...
##  $ Alpha_1_Antichymotrypsin        : num  1.74 1.46 1.19 2.13 1.31 ...
##  $ Alpha_1_Antitrypsin             : num  -12.6 -11.9 -13.6 -11.1 -12.1 ...
##  $ Alpha_1_Microglobulin           : num  -2.58 -3.24 -2.88 -2.34 -2.55 ...
##  $ Alpha_2_Macroglobulin           : num  -72.7 -154.6 -136.5 -144.9 -154.6 ...
##  $ Angiopoietin_2_ANG_2            : num  1.0647 0.7419 0.8329 0.9555 -0.0513 ...
##  $ Angiotensinogen                 : num  2.51 2.46 1.98 2.86 2.52 ...
##  $ Apolipoprotein_A_IV             : num  -1.43 -1.66 -1.66 -1.17 -1.39 ...
##  $ Apolipoprotein_A1               : num  -7.4 -7.05 -7.68 -6.73 -7.4 ...
##  $ Apolipoprotein_A2               : num  -0.2614 -0.8675 -0.6539 0.0953 -0.2744 ...
##  $ Apolipoprotein_B                : num  -4.62 -6.75 -3.98 -3.38 -2.96 ...
##  $ Apolipoprotein_CI               : num  -1.273 -1.273 -1.715 -0.755 -1.661 ...
##  $ Apolipoprotein_CIII             : num  -2.31 -2.34 -2.75 -1.51 -2.31 ...
##  $ Apolipoprotein_D                : num  2.08 1.34 1.34 1.63 1.92 ...
##  $ Apolipoprotein_E                : num  3.755 3.097 2.753 3.067 0.591 ...
##  $ Apolipoprotein_H                : num  -0.1573 -0.5754 -0.3448 0.6626 0.0972 ...
##  $ B_Lymphocyte_Chemoattractant_BL : num  2.3 1.67 1.67 2.3 2.48 ...
##  $ BMP_6                           : num  -2.2 -1.73 -2.06 -1.24 -1.88 ...
##  $ Beta_2_Microglobulin            : num  0.693 0.47 0.336 0.336 -0.545 ...
##  $ Betacellulin                    : int  34 53 49 67 51 41 42 58 32 43 ...
##  $ C_Reactive_Protein              : num  -4.07 -6.65 -8.05 -4.34 -7.56 ...
##  $ CD40                            : num  -0.796 -1.273 -1.242 -0.924 -1.784 ...
##  $ CD5L                            : num  0.0953 -0.6733 0.0953 0.3633 0.4055 ...
##  $ Calbindin                       : num  33.2 25.3 22.2 21.8 13.2 ...
##  $ Calcitonin                      : num  1.39 3.61 2.12 1.31 1.63 ...
##  $ CgA                             : num  398 466 348 443 138 ...
##  $ Clusterin_Apo_J                 : num  3.56 3.04 2.77 3.04 2.56 ...
##  $ Complement_3                    : num  -10.4 -16.1 -16.1 -12.8 -12 ...
##  $ Complement_Factor_H             : num  3.57 3.6 4.47 7.25 3.57 ...
##  $ Connective_Tissue_Growth_Factor : num  0.531 0.588 0.642 0.916 0.993 ...
##  $ Cortisol                        : num  10 12 10 11 13 4.9 13 12 6.8 12 ...
##  $ Creatine_Kinase_MB              : num  -1.71 -1.75 -1.38 -1.63 -1.67 ...
##  $ Cystatin_C                      : num  9.04 9.07 8.95 8.98 7.84 ...
##  $ EGF_R                           : num  -0.135 -0.37 -0.733 -0.621 -1.111 ...
##  $ EN_RAGE                         : num  -3.69 -3.82 -4.76 -2.36 -3.44 ...
##  $ ENA_78                          : num  -1.35 -1.36 -1.39 -1.34 -1.36 ...
##  $ Eotaxin_3                       : int  53 62 62 64 57 64 64 64 82 73 ...
##  $ FAS                             : num  -0.0834 -0.5276 -0.6349 -0.1278 -0.3285 ...
##  $ FSH_Follicle_Stimulation_Hormon : num  -0.652 -1.627 -1.563 -0.976 -1.683 ...
##  $ Fas_Ligand                      : num  3.1 2.98 1.36 4.04 2.41 ...
##  $ Fatty_Acid_Binding_Protein      : num  2.521 2.248 0.906 2.635 0.624 ...
##  $ Ferritin                        : num  3.33 3.93 3.18 2.69 1.85 ...
##  $ Fetuin_A                        : num  1.28 1.19 1.41 2.15 1.48 ...
##  $ Fibrinogen                      : num  -7.04 -8.05 -7.2 -6.98 -6.44 ...
##  $ GRO_alpha                       : num  1.38 1.37 1.41 1.4 1.4 ...
##  $ Gamma_Interferon_induced_Monokin: num  2.95 2.72 2.76 2.85 2.82 ...
##  $ Glutathione_S_Transferase_alpha : num  1.064 0.867 0.889 1.236 1.154 ...
##  $ HB_EGF                          : num  6.56 8.75 7.75 7.25 6.41 ...
##  $ HCC_4                           : num  -3.04 -4.07 -3.65 -3.15 -3.08 ...
##  $ Hepatocyte_Growth_Factor_HGF    : num  0.5878 0.5306 0.0953 0.5306 0.0953 ...
##  $ I_309                           : num  3.43 3.14 2.4 3.76 2.71 ...
##  $ ICAM_1                          : num  -0.1908 -0.462 -0.462 0.0972 -0.9351 ...
##  $ IGF_BP_2                        : num  5.61 5.35 5.18 5.42 5.06 ...
##  $ IL_11                           : num  5.12 4.94 4.67 7.07 6.1 ...
##  $ IL_13                           : num  1.28 1.27 1.27 1.31 1.28 ...
##  $ IL_16                           : num  4.19 2.88 2.62 4.74 2.67 ...
##  $ IL_17E                          : num  5.73 6.71 4.15 4.2 3.64 ...
##  $ IL_1alpha                       : num  -6.57 -8.05 -8.18 -6.94 -8.18 ...
##  $ IL_3                            : num  -3.24 -3.91 -4.65 -3 -3.86 ...
##  $ IL_4                            : num  2.48 2.4 1.82 2.71 1.21 ...
##  $ IL_5                            : num  1.099 0.693 -0.248 1.163 -0.4 ...
##  $ IL_6                            : num  0.2694 0.0962 0.1857 -0.072 0.1857 ...
##  $ IL_6_Receptor                   : num  0.6428 0.4312 0.0967 0.0967 -0.5173 ...
##  $ IL_7                            : num  4.81 3.71 1.01 4.29 2.78 ...
##  $ IL_8                            : num  1.71 1.68 1.69 1.76 1.71 ...
##  $ IP_10_Inducible_Protein_10      : num  6.24 5.69 5.05 6.37 5.48 ...
##  $ IgA                             : num  -6.81 -6.38 -6.32 -4.65 -5.81 ...
##  $ Insulin                         : num  -0.626 -0.943 -1.447 -0.3 -1.341 ...
##  $ Kidney_Injury_Molecule_1_KIM_1  : num  -1.2 -1.2 -1.19 -1.16 -1.12 ...
##  $ LOX_1                           : num  1.705 1.526 1.163 1.361 0.642 ...
##  $ Leptin                          : num  -1.529 -1.466 -1.662 -0.915 -1.361 ...
##  $ Lipoprotein_a                   : num  -4.27 -4.93 -5.84 -2.94 -4.51 ...
##  $ MCP_1                           : num  6.74 6.85 6.77 6.72 6.54 ...
##  $ MCP_2                           : num  1.981 1.809 0.401 2.221 2.334 ...
##  $ MIF                             : num  -1.24 -1.9 -2.3 -1.9 -2.04 ...
##  $ MIP_1alpha                      : num  4.97 3.69 4.05 6.45 4.6 ...
##  $ MIP_1beta                       : num  3.26 3.14 2.4 3.53 2.89 ...
##  $ MMP_2                           : num  4.48 3.78 2.87 3.69 2.92 ...
##  $ MMP_3                           : num  -2.21 -2.47 -2.3 -1.56 -3.04 ...
##  $ MMP10                           : num  -3.27 -3.65 -2.73 -2.62 -3.32 ...
##  $ MMP7                            : num  -3.774 -5.968 -4.03 -0.222 -1.922 ...
##  $ Myoglobin                       : num  -1.897 -0.755 -1.386 -1.772 -1.139 ...
##  $ NT_proBNP                       : num  4.55 4.22 4.25 4.47 4.19 ...
##  $ NrCAM                           : num  5 5.21 4.74 5.2 3.26 ...
##  $ Osteopontin                     : num  5.36 6 5.02 5.69 4.74 ...
##  $ PAI_1                           : num  1.0035 -0.0306 0.4384 0.2523 0.4384 ...
##  $ PAPP_A                          : num  -2.9 -2.81 -2.94 -2.94 -2.94 ...
##  $ PLGF                            : num  4.44 4.03 4.51 4.8 4.39 ...
##  $ PYY                             : num  3.22 3.14 2.89 3.66 3.33 ...
##  $ Pancreatic_polypeptide          : num  0.579 0.336 -0.892 0.262 -0.478 ...
##  $ Prolactin                       : num  0 -0.511 -0.139 0.182 -0.151 ...
##  $ Prostatic_Acid_Phosphatase      : num  -1.62 -1.74 -1.64 -1.7 -1.76 ...
##  $ Protein_S                       : num  -1.78 -2.46 -2.26 -1.66 -2.36 ...
##  $ Pulmonary_and_Activation_Regulat: num  -0.844 -2.303 -1.661 -0.562 -1.171 ...
##  $ RANTES                          : num  -6.21 -6.94 -6.65 -6.32 -6.5 ...
##  $ Resistin                        : num  -16.5 -16 -16.5 -11.1 -11.3 ...
##   [list output truncated]
summary(Alzheimer_Train)
##  ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
##  Min.   :-0.6756                Min.   :-2.207                 
##  1st Qu.: 0.9462                1st Qu.:-1.715                 
##  Median : 1.3013                Median :-1.561                 
##  Mean   : 1.3198                Mean   :-1.538                 
##  3rd Qu.: 1.7191                3rd Qu.:-1.347                 
##  Max.   : 2.8398                Max.   :-0.844                 
##       AXL           Adiponectin     Alpha_1_Antichymotrypsin
##  Min.   :-0.9230   Min.   :-6.725   Min.   :0.2624          
##  1st Qu.: 0.0000   1st Qu.:-5.669   1st Qu.:1.1314          
##  Median : 0.2804   Median :-5.185   Median :1.3610          
##  Mean   : 0.3093   Mean   :-5.201   Mean   :1.3605          
##  3rd Qu.: 0.6077   3rd Qu.:-4.780   3rd Qu.:1.5892          
##  Max.   : 1.5214   Max.   :-3.507   Max.   :2.3026          
##  Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
##  Min.   :-17.028     Min.   :-4.343        Min.   :-289.68      
##  1st Qu.:-14.071     1st Qu.:-3.270        1st Qu.:-186.64      
##  Median :-13.004     Median :-2.937        Median :-160.01      
##  Mean   :-13.052     Mean   :-2.932        Mean   :-158.61      
##  3rd Qu.:-12.096     3rd Qu.:-2.590        3rd Qu.:-134.62      
##  Max.   : -8.192     Max.   :-1.772        Max.   : -59.46      
##  Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
##  Min.   :-0.5447      Min.   :1.752   Min.   :-2.9565     Min.   :-8.680   
##  1st Qu.: 0.4700      1st Qu.:2.119   1st Qu.:-2.1203     1st Qu.:-7.763   
##  Median : 0.6419      Median :2.320   Median :-1.8326     Median :-7.470   
##  Mean   : 0.6730      Mean   :2.318   Mean   :-1.8544     Mean   :-7.483   
##  3rd Qu.: 0.8755      3rd Qu.:2.497   3rd Qu.:-1.6094     3rd Qu.:-7.209   
##  Max.   : 1.5261      Max.   :2.881   Max.   :-0.7765     Max.   :-6.166   
##  Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
##  Min.   :-1.8971   Min.   :-9.937   Min.   :-3.3242   Min.   :-3.689     
##  1st Qu.:-0.9676   1st Qu.:-6.630   1st Qu.:-1.8326   1st Qu.:-2.773     
##  Median :-0.6733   Median :-5.703   Median :-1.6094   Median :-2.526     
##  Mean   :-0.6354   Mean   :-5.578   Mean   :-1.5833   Mean   :-2.494     
##  3rd Qu.:-0.3147   3rd Qu.:-4.539   3rd Qu.:-1.3667   3rd Qu.:-2.207     
##  Max.   : 0.9555   Max.   :-2.153   Max.   :-0.2744   Max.   :-1.238     
##  Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H  
##  Min.   :0.470    Min.   :0.5911   Min.   :-2.23379  
##  1st Qu.:1.209    1st Qu.:2.3344   1st Qu.:-0.59782  
##  Median :1.411    Median :2.8181   Median :-0.37005  
##  Mean   :1.440    Mean   :2.8062   Mean   :-0.32122  
##  3rd Qu.:1.668    3rd Qu.:3.2863   3rd Qu.:-0.06112  
##  Max.   :2.272    Max.   :5.4442   Max.   : 0.92696  
##  B_Lymphocyte_Chemoattractant_BL     BMP_6         Beta_2_Microglobulin
##  Min.   :0.7318                  Min.   :-2.7612   Min.   :-0.54473    
##  1st Qu.:1.6731                  1st Qu.:-2.1516   1st Qu.:-0.04082    
##  Median :1.9805                  Median :-1.8774   Median : 0.18232    
##  Mean   :2.0175                  Mean   :-1.9114   Mean   : 0.16757    
##  3rd Qu.:2.3714                  3rd Qu.:-1.6753   3rd Qu.: 0.33647    
##  Max.   :4.0237                  Max.   :-0.8166   Max.   : 0.99325    
##   Betacellulin   C_Reactive_Protein      CD40              CD5L         
##  Min.   :10.00   Min.   :-8.517     Min.   :-1.8644   Min.   :-1.23787  
##  1st Qu.:42.00   1st Qu.:-6.645     1st Qu.:-1.3761   1st Qu.:-0.35667  
##  Median :51.00   Median :-5.843     Median :-1.2734   Median :-0.06188  
##  Mean   :51.01   Mean   :-5.874     Mean   :-1.2584   Mean   :-0.05310  
##  3rd Qu.:59.00   3rd Qu.:-5.083     3rd Qu.:-1.1238   3rd Qu.: 0.26236  
##  Max.   :82.00   Max.   :-2.937     Max.   :-0.5475   Max.   : 1.16315  
##    Calbindin       Calcitonin           CgA        Clusterin_Apo_J
##  Min.   :10.96   Min.   :-0.7134   Min.   :135.6   Min.   :1.872  
##  1st Qu.:19.77   1st Qu.: 0.9555   1st Qu.:278.0   1st Qu.:2.708  
##  Median :22.25   Median : 1.6487   Median :331.5   Median :2.890  
##  Mean   :22.43   Mean   : 1.6788   Mean   :333.3   Mean   :2.882  
##  3rd Qu.:24.80   3rd Qu.: 2.2824   3rd Qu.:392.1   3rd Qu.:3.045  
##  Max.   :33.78   Max.   : 3.8918   Max.   :535.4   Max.   :3.584  
##   Complement_3     Complement_Factor_H Connective_Tissue_Growth_Factor
##  Min.   :-23.387   Min.   :-0.8387     Min.   :0.1823                 
##  1st Qu.:-17.567   1st Qu.: 2.7531     1st Qu.:0.6419                 
##  Median :-15.524   Median : 3.6000     Median :0.7885                 
##  Mean   :-15.610   Mean   : 3.5541     Mean   :0.7739                 
##  3rd Qu.:-13.882   3rd Qu.: 4.2548     3rd Qu.:0.9163                 
##  Max.   : -9.563   Max.   : 7.6238     Max.   :1.4110                 
##     Cortisol     Creatine_Kinase_MB   Cystatin_C        EGF_R         
##  Min.   : 0.10   Min.   :-1.872     Min.   :7.432   Min.   :-1.36135  
##  1st Qu.: 9.80   1st Qu.:-1.724     1st Qu.:8.321   1st Qu.:-0.85727  
##  Median :12.00   Median :-1.671     Median :8.564   Median :-0.68354  
##  Mean   :11.98   Mean   :-1.674     Mean   :8.586   Mean   :-0.70130  
##  3rd Qu.:14.00   3rd Qu.:-1.626     3rd Qu.:8.839   3rd Qu.:-0.54612  
##  Max.   :29.00   Max.   :-1.384     Max.   :9.694   Max.   :-0.06112  
##     EN_RAGE            ENA_78         Eotaxin_3           FAS         
##  Min.   :-8.3774   Min.   :-1.405   Min.   :  7.00   Min.   :-1.5141  
##  1st Qu.:-4.1997   1st Qu.:-1.381   1st Qu.: 44.00   1st Qu.:-0.7133  
##  Median :-3.6497   Median :-1.374   Median : 59.00   Median :-0.5276  
##  Mean   :-3.6353   Mean   :-1.372   Mean   : 58.17   Mean   :-0.5291  
##  3rd Qu.:-3.1466   3rd Qu.:-1.364   3rd Qu.: 70.00   3rd Qu.:-0.3147  
##  Max.   :-0.3857   Max.   :-1.339   Max.   :107.00   Max.   : 0.3365  
##  FSH_Follicle_Stimulation_Hormon   Fas_Ligand      Fatty_Acid_Binding_Protein
##  Min.   :-2.11511                Min.   :-0.1536   Min.   :-1.0441           
##  1st Qu.:-1.46606                1st Qu.: 2.3415   1st Qu.: 0.7998           
##  Median :-1.13570                Median : 3.1015   Median : 1.3865           
##  Mean   :-1.14259                Mean   : 2.9680   Mean   : 1.3529           
##  3rd Qu.:-0.87620                3rd Qu.: 3.6950   3rd Qu.: 1.8847           
##  Max.   : 0.09715                Max.   : 7.6328   Max.   : 3.7055           
##     Ferritin         Fetuin_A       Fibrinogen       GRO_alpha    
##  Min.   :0.6077   Min.   :0.470   Min.   :-8.874   Min.   :1.271  
##  1st Qu.:2.2895   1st Qu.:1.099   1st Qu.:-7.717   1st Qu.:1.351  
##  Median :2.7749   Median :1.308   Median :-7.323   Median :1.382  
##  Mean   :2.7646   Mean   :1.350   Mean   :-7.356   Mean   :1.378  
##  3rd Qu.:3.2915   3rd Qu.:1.609   3rd Qu.:-7.013   3rd Qu.:1.406  
##  Max.   :4.6333   Max.   :2.251   Max.   :-5.843   Max.   :1.495  
##  Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
##  Min.   :2.393                    Min.   :0.5238                 
##  1st Qu.:2.707                    1st Qu.:0.8439                 
##  Median :2.783                    Median :0.9677                 
##  Mean   :2.786                    Mean   :0.9512                 
##  3rd Qu.:2.873                    3rd Qu.:1.0344                 
##  Max.   :3.065                    Max.   :1.3176                 
##      HB_EGF           HCC_4        Hepatocyte_Growth_Factor_HGF     I_309      
##  Min.   : 2.103   Min.   :-4.510   Min.   :-0.6349              Min.   :1.758  
##  1st Qu.: 5.786   1st Qu.:-3.730   1st Qu.: 0.0000              1st Qu.:2.708  
##  Median : 6.703   Median :-3.507   Median : 0.1823              Median :2.944  
##  Mean   : 6.833   Mean   :-3.500   Mean   : 0.1963              Mean   :2.958  
##  3rd Qu.: 7.865   3rd Qu.:-3.270   3rd Qu.: 0.4055              3rd Qu.:3.219  
##  Max.   :10.695   Max.   :-2.120   Max.   : 0.8755              Max.   :4.143  
##      ICAM_1           IGF_BP_2         IL_11           IL_13      
##  Min.   :-1.5332   Min.   :4.635   Min.   :1.755   Min.   :1.259  
##  1st Qu.:-0.8298   1st Qu.:5.179   1st Qu.:3.706   1st Qu.:1.274  
##  Median :-0.5903   Median :5.323   Median :4.805   Median :1.283  
##  Mean   :-0.5908   Mean   :5.317   Mean   :4.725   Mean   :1.284  
##  3rd Qu.:-0.3828   3rd Qu.:5.453   3rd Qu.:5.776   3rd Qu.:1.290  
##  Max.   : 0.5171   Max.   :5.948   Max.   :8.491   Max.   :1.321  
##      IL_16           IL_17E        IL_1alpha           IL_3       
##  Min.   :1.187   Min.   :1.052   Min.   :-8.517   Min.   :-5.915  
##  1st Qu.:2.521   1st Qu.:4.149   1st Qu.:-7.824   1st Qu.:-4.269  
##  Median :2.909   Median :4.749   Median :-7.524   Median :-3.912  
##  Mean   :2.929   Mean   :4.855   Mean   :-7.514   Mean   :-3.941  
##  3rd Qu.:3.351   3rd Qu.:5.631   3rd Qu.:-7.264   3rd Qu.:-3.631  
##  Max.   :4.937   Max.   :8.952   Max.   :-5.952   Max.   :-2.453  
##       IL_4             IL_5              IL_6         IL_6_Receptor     
##  Min.   :0.5306   Min.   :-1.4271   Min.   :-1.5343   Min.   :-0.67562  
##  1st Qu.:1.4586   1st Qu.:-0.1221   1st Qu.:-0.4127   1st Qu.:-0.12541  
##  Median :1.8083   Median : 0.1823   Median :-0.1599   Median : 0.09669  
##  Mean   :1.7732   Mean   : 0.1866   Mean   :-0.1540   Mean   : 0.09492  
##  3rd Qu.:2.1459   3rd Qu.: 0.4700   3rd Qu.: 0.1410   3rd Qu.: 0.35404  
##  Max.   :3.0445   Max.   : 1.9459   Max.   : 1.8138   Max.   : 0.83099  
##       IL_7             IL_8       IP_10_Inducible_Protein_10      IgA         
##  Min.   :0.5598   Min.   :1.574   Min.   :4.317              Min.   :-10.520  
##  1st Qu.:2.1548   1st Qu.:1.680   1st Qu.:5.398              1st Qu.: -6.645  
##  Median :2.7934   Median :1.705   Median :5.753              Median : -6.119  
##  Mean   :2.8392   Mean   :1.704   Mean   :5.755              Mean   : -6.121  
##  3rd Qu.:3.7055   3rd Qu.:1.728   3rd Qu.:6.064              3rd Qu.: -5.573  
##  Max.   :5.7056   Max.   :1.807   Max.   :7.501              Max.   : -4.200  
##     Insulin        Kidney_Injury_Molecule_1_KIM_1     LOX_1      
##  Min.   :-2.1692   Min.   :-1.256                 Min.   :0.000  
##  1st Qu.:-1.4466   1st Qu.:-1.204                 1st Qu.:1.030  
##  Median :-1.2462   Median :-1.183                 Median :1.281  
##  Mean   :-1.2329   Mean   :-1.185                 Mean   :1.283  
##  3rd Qu.:-1.0340   3rd Qu.:-1.164                 3rd Qu.:1.526  
##  Max.   :-0.1586   Max.   :-1.105                 Max.   :2.272  
##      Leptin        Lipoprotein_a        MCP_1           MCP_2       
##  Min.   :-2.1468   Min.   :-6.812   Min.   :5.826   Min.   :0.4006  
##  1st Qu.:-1.6996   1st Qu.:-5.308   1st Qu.:6.319   1st Qu.:1.5304  
##  Median :-1.5047   Median :-4.605   Median :6.494   Median :1.8528  
##  Mean   :-1.5042   Mean   :-4.417   Mean   :6.497   Mean   :1.8691  
##  3rd Qu.:-1.3295   3rd Qu.:-3.490   3rd Qu.:6.678   3rd Qu.:2.1821  
##  Max.   :-0.6206   Max.   :-1.386   Max.   :7.230   Max.   :4.0237  
##       MIF           MIP_1alpha       MIP_1beta         MMP_2        
##  Min.   :-2.847   Min.   :0.9346   Min.   :1.946   Min.   :0.09809  
##  1st Qu.:-2.120   1st Qu.:3.3377   1st Qu.:2.565   1st Qu.:2.33214  
##  Median :-1.897   Median :4.0495   Median :2.833   Median :2.81512  
##  Mean   :-1.864   Mean   :4.0489   Mean   :2.814   Mean   :2.87534  
##  3rd Qu.:-1.661   3rd Qu.:4.6857   3rd Qu.:3.045   3rd Qu.:3.55121  
##  Max.   :-0.844   Max.   :6.7959   Max.   :4.007   Max.   :5.35895  
##      MMP_3             MMP10             MMP7           Myoglobin      
##  Min.   :-4.4228   Min.   :-4.934   Min.   :-8.3975   Min.   :-3.1701  
##  1st Qu.:-2.7489   1st Qu.:-3.938   1st Qu.:-4.8199   1st Qu.:-2.0402  
##  Median :-2.4534   Median :-3.650   Median :-3.7735   Median :-1.4697  
##  Mean   :-2.4455   Mean   :-3.635   Mean   :-3.7894   Mean   :-1.3671  
##  3rd Qu.:-2.1203   3rd Qu.:-3.352   3rd Qu.:-2.7140   3rd Qu.:-0.7988  
##  Max.   :-0.5276   Max.   :-2.207   Max.   :-0.2222   Max.   : 1.7750  
##    NT_proBNP         NrCAM        Osteopontin        PAI_1         
##  Min.   :3.178   Min.   :2.639   Min.   :4.111   Min.   :-0.99085  
##  1st Qu.:4.350   1st Qu.:3.998   1st Qu.:4.963   1st Qu.:-0.16655  
##  Median :4.554   Median :4.394   Median :5.187   Median : 0.09396  
##  Mean   :4.552   Mean   :4.362   Mean   :5.204   Mean   : 0.07743  
##  3rd Qu.:4.775   3rd Qu.:4.749   3rd Qu.:5.442   3rd Qu.: 0.32005  
##  Max.   :5.886   Max.   :6.011   Max.   :6.308   Max.   : 1.16611  
##      PAPP_A            PLGF            PYY        Pancreatic_polypeptide
##  Min.   :-3.311   Min.   :2.485   Min.   :2.186   Min.   :-2.12026      
##  1st Qu.:-2.936   1st Qu.:3.638   1st Qu.:2.833   1st Qu.:-0.52763      
##  Median :-2.871   Median :3.871   Median :2.996   Median :-0.04082      
##  Mean   :-2.854   Mean   :3.912   Mean   :3.015   Mean   :-0.01323      
##  3rd Qu.:-2.749   3rd Qu.:4.205   3rd Qu.:3.178   3rd Qu.: 0.53063      
##  Max.   :-2.520   Max.   :5.170   Max.   :3.932   Max.   : 1.93152      
##    Prolactin        Prostatic_Acid_Phosphatase   Protein_S     
##  Min.   :-1.30933   Min.   :-1.934             Min.   :-3.338  
##  1st Qu.:-0.13926   1st Qu.:-1.717             1st Qu.:-2.464  
##  Median : 0.00000   Median :-1.690             Median :-2.259  
##  Mean   : 0.04495   Mean   :-1.685             Mean   :-2.240  
##  3rd Qu.: 0.25799   3rd Qu.:-1.654             3rd Qu.:-2.000  
##  Max.   : 0.99325   Max.   :-1.424             Max.   :-1.221  
##  Pulmonary_and_Activation_Regulat     RANTES          Resistin      
##  Min.   :-2.5133                  Min.   :-7.222   Min.   :-34.967  
##  1st Qu.:-1.8326                  1st Qu.:-6.725   1st Qu.:-21.468  
##  Median :-1.5141                  Median :-6.502   Median :-17.466  
##  Mean   :-1.4880                  Mean   :-6.511   Mean   :-17.641  
##  3rd Qu.:-1.1712                  3rd Qu.:-6.320   3rd Qu.:-13.501  
##  Max.   :-0.2744                  Max.   :-5.547   Max.   : -2.239  
##      S100b             SGOT              SHBG             SOD       
##  Min.   :0.1874   Min.   :-1.3471   Min.   :-4.135   Min.   :4.317  
##  1st Qu.:1.0012   1st Qu.:-0.6349   1st Qu.:-2.813   1st Qu.:5.094  
##  Median :1.2544   Median :-0.4005   Median :-2.489   Median :5.366  
##  Mean   :1.2505   Mean   :-0.4057   Mean   :-2.477   Mean   :5.336  
##  3rd Qu.:1.4996   3rd Qu.:-0.1985   3rd Qu.:-2.120   3rd Qu.:5.583  
##  Max.   :2.3726   Max.   : 0.7419   Max.   :-1.109   Max.   :6.317  
##  Serum_Amyloid_P     Sortilin     Stem_Cell_Factor   TGF_alpha     
##  Min.   :-7.506   Min.   :1.654   Min.   :2.251    Min.   : 6.843  
##  1st Qu.:-6.377   1st Qu.:3.343   1st Qu.:3.045    1st Qu.: 8.859  
##  Median :-6.032   Median :3.867   Median :3.296    Median : 9.919  
##  Mean   :-6.017   Mean   :3.852   Mean   :3.301    Mean   : 9.801  
##  3rd Qu.:-5.655   3rd Qu.:4.371   3rd Qu.:3.526    3rd Qu.:10.695  
##  Max.   :-4.646   Max.   :6.225   Max.   :4.277    Max.   :13.827  
##      TIMP_1          TNF_RII           TRAIL_R3       TTR_prealbumin 
##  Min.   : 1.742   Min.   :-1.6607   Min.   :-1.2107   Min.   :2.485  
##  1st Qu.:10.490   1st Qu.:-0.8210   1st Qu.:-0.7008   1st Qu.:2.773  
##  Median :11.565   Median :-0.5978   Median :-0.5317   Median :2.833  
##  Mean   :11.750   Mean   :-0.5939   Mean   :-0.5394   Mean   :2.854  
##  3rd Qu.:12.697   3rd Qu.:-0.3784   3rd Qu.:-0.3849   3rd Qu.:2.944  
##  Max.   :18.881   Max.   : 0.4700   Max.   : 0.2694   Max.   :3.332  
##  Tamm_Horsfall_Protein_THP Thrombomodulin    Thrombopoietin    
##  Min.   :-3.206            Min.   :-2.0377   Min.   :-1.53957  
##  1st Qu.:-3.137            1st Qu.:-1.6256   1st Qu.:-0.88645  
##  Median :-3.117            Median :-1.4920   Median :-0.75100  
##  Mean   :-3.116            Mean   :-1.5050   Mean   :-0.75419  
##  3rd Qu.:-3.096            3rd Qu.:-1.3406   3rd Qu.:-0.62887  
##  Max.   :-2.995            Max.   :-0.8166   Max.   : 0.09762  
##  Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
##  Min.   :1.508                   Min.   :-6.190             
##  1st Qu.:3.343                   1st Qu.:-4.962             
##  Median :3.810                   Median :-4.510             
##  Mean   :3.848                   Mean   :-4.499             
##  3rd Qu.:4.316                   3rd Qu.:-4.017             
##  Max.   :6.225                   Max.   :-1.715             
##  Thyroxine_Binding_Globulin Tissue_Factor      Transferrin   
##  Min.   :-2.4769            Min.   :-0.2107   Min.   :1.932  
##  1st Qu.:-1.7720            1st Qu.: 0.8329   1st Qu.:2.708  
##  Median :-1.5141            Median : 1.2238   Median :2.890  
##  Mean   :-1.4788            Mean   : 1.1702   Mean   :2.909  
##  3rd Qu.:-1.2379            3rd Qu.: 1.4816   3rd Qu.:3.091  
##  Max.   :-0.2107            Max.   : 2.4849   Max.   :3.761  
##  Trefoil_Factor_3_TFF3     VCAM_1           VEGF        Vitronectin      
##  Min.   :-4.744        Min.   :1.723   Min.   :11.83   Min.   :-1.42712  
##  1st Qu.:-4.135        1st Qu.:2.485   1st Qu.:15.77   1st Qu.:-0.51083  
##  Median :-3.863        Median :2.708   Median :17.08   Median :-0.30111  
##  Mean   :-3.876        Mean   :2.688   Mean   :16.99   Mean   :-0.28473  
##  3rd Qu.:-3.650        3rd Qu.:2.890   3rd Qu.:18.10   3rd Qu.:-0.03564  
##  Max.   :-2.957        Max.   :3.689   Max.   :22.38   Max.   : 0.53063  
##  von_Willebrand_Factor      Class           E4               E3        
##  Min.   :-4.991        Impaired: 73   Min.   :0.0000   Min.   :0.0000  
##  1st Qu.:-4.200        Control :194   1st Qu.:0.0000   1st Qu.:1.0000  
##  Median :-3.912                       Median :0.0000   Median :1.0000  
##  Mean   :-3.906                       Mean   :0.4007   Mean   :0.9176  
##  3rd Qu.:-3.612                       3rd Qu.:1.0000   3rd Qu.:1.0000  
##  Max.   :-2.957                       Max.   :1.0000   Max.   :1.0000  
##        E2       
##  Min.   :0.000  
##  1st Qu.:0.000  
##  Median :0.000  
##  Mean   :0.161  
##  3rd Qu.:0.000  
##  Max.   :1.000
##################################
# Performing a general exploration of the test set
##################################
dim(Alzheimer_Test)
## [1]  66 128
str(Alzheimer_Test)
## 'data.frame':    66 obs. of  128 variables:
##  $ ACE_CD143_Angiotensin_Converti  : num  1.681 1.602 1.301 1.562 0.831 ...
##  $ ACTH_Adrenocorticotropic_Hormon : num  -1.61 -1.51 -1.77 -1.56 -1.97 ...
##  $ AXL                             : num  0.6833 0.4495 -0.0201 0.5298 -0.2 ...
##  $ Adiponectin                     : num  -5.12 -5.57 -6.17 -6.07 -5.43 ...
##  $ Alpha_1_Antichymotrypsin        : num  1.281 1.163 1.253 0.875 1.253 ...
##  $ Alpha_1_Antitrypsin             : num  -15.5 -12.1 -14.5 -14 -13.3 ...
##  $ Alpha_1_Microglobulin           : num  -3.17 -2.36 -3.32 -3.19 -3.24 ...
##  $ Alpha_2_Macroglobulin           : num  -98.4 -144.9 -204.1 -125.8 -186.6 ...
##  $ Angiopoietin_2_ANG_2            : num  0.916 0.531 0.262 0.742 0 ...
##  $ Angiotensinogen                 : num  2.38 2.26 2.03 2.25 2.05 ...
##  $ Apolipoprotein_A_IV             : num  -2.12 -1.9 -2.04 -2.3 -1.9 ...
##  $ Apolipoprotein_A1               : num  -8.05 -7.14 -8.08 -7.9 -8.18 ...
##  $ Apolipoprotein_A2               : num  -1.238 -0.562 -0.844 -1.022 -1.022 ...
##  $ Apolipoprotein_B                : num  -6.52 -6.41 -5.56 -5.36 -5.94 ...
##  $ Apolipoprotein_CI               : num  -1.97 -1.51 -2.21 -1.9 -2.04 ...
##  $ Apolipoprotein_CIII             : num  -3 -1.97 -2.94 -2.83 -2.8 ...
##  $ Apolipoprotein_D                : num  1.44 1.48 1.39 1.16 1.25 ...
##  $ Apolipoprotein_E                : num  2.37 3.7 1.33 3.19 1.53 ...
##  $ Apolipoprotein_H                : num  -0.532 -0.125 -0.32 -0.517 -0.462 ...
##  $ B_Lymphocyte_Chemoattractant_BL : num  1.981 2.182 1.853 1.274 0.927 ...
##  $ BMP_6                           : num  -1.98 -1.88 -1.68 -2.65 -1.68 ...
##  $ Beta_2_Microglobulin            : num  0.642 0.182 -0.274 0.405 -0.223 ...
##  $ Betacellulin                    : int  52 59 51 46 51 42 61 46 32 46 ...
##  $ C_Reactive_Protein              : num  -6.21 -6.21 -6.12 -5.71 -6.93 ...
##  $ CD40                            : num  -1.12 -1.24 -1.45 -1.07 -1.41 ...
##  $ CD5L                            : num  -0.3285 0 -1.2379 -0.0408 -0.1054 ...
##  $ Calbindin                       : num  23.5 20.6 13.4 27.3 22.5 ...
##  $ Calcitonin                      : num  -0.151 4.111 2.303 3.091 1.281 ...
##  $ CgA                             : num  334 323 289 412 342 ...
##  $ Clusterin_Apo_J                 : num  2.83 3.04 2.56 3.14 2.48 ...
##  $ Complement_3                    : num  -13.2 -13 -17.3 -14.8 -19.2 ...
##  $ Complement_Factor_H             : num  3.1 4.68 3.78 2.52 3.3 ...
##  $ Connective_Tissue_Growth_Factor : num  0.531 0.693 0.956 0.588 0.875 ...
##  $ Cortisol                        : num  14 17 9.2 11 12 16 6.1 10 9.8 13 ...
##  $ Creatine_Kinase_MB              : num  -1.65 -1.63 -1.61 -1.59 -1.72 ...
##  $ Cystatin_C                      : num  9.58 8.33 7.91 8.99 8.47 ...
##  $ EGF_R                           : num  -0.422 -0.785 -0.976 -0.561 -0.767 ...
##  $ EN_RAGE                         : num  -2.94 -3.77 -3.24 -4.2 -4.27 ...
##  $ ENA_78                          : num  -1.37 -1.38 -1.36 -1.37 -1.39 ...
##  $ Eotaxin_3                       : int  44 70 70 36 39 76 44 62 82 36 ...
##  $ FAS                             : num  -0.478 -0.0726 -0.5798 -0.5276 -0.9416 ...
##  $ FSH_Follicle_Stimulation_Hormon : num  -0.59 -0.652 -1.559 -1.505 -1.361 ...
##  $ Fas_Ligand                      : num  2.537 2.792 2.073 0.288 3.867 ...
##  $ Fatty_Acid_Binding_Protein      : num  0.624 1.143 0.624 2.379 1.424 ...
##  $ Ferritin                        : num  3.14 2.52 1.9 4.29 1.69 ...
##  $ Fetuin_A                        : num  0.742 1.386 1.194 0.993 1.131 ...
##  $ Fibrinogen                      : num  -7.8 -7.06 -7.45 -7.8 -7.35 ...
##  $ GRO_alpha                       : num  1.37 1.35 1.37 1.37 1.38 ...
##  $ Gamma_Interferon_induced_Monokin: num  2.89 2.78 2.69 2.69 2.7 ...
##  $ Glutathione_S_Transferase_alpha : num  0.708 1.034 1.13 0.676 0.844 ...
##  $ HB_EGF                          : num  5.95 6.11 6.11 6.56 7.75 ...
##  $ HCC_4                           : num  -3.82 -3.24 -3.77 -3.54 -3.73 ...
##  $ Hepatocyte_Growth_Factor_HGF    : num  0.4055 0.1823 -0.0834 0.47 -0.1054 ...
##  $ I_309                           : num  3.37 3 2.83 3.14 2.83 ...
##  $ ICAM_1                          : num  -0.857 -1.111 -0.561 -0.357 -1.064 ...
##  $ IGF_BP_2                        : num  5.42 5.38 5.41 5.14 4.93 ...
##  $ IL_11                           : num  6.22 4.59 4.1 4.52 3.22 ...
##  $ IL_13                           : num  1.31 1.27 1.27 1.29 1.27 ...
##  $ IL_16                           : num  2.44 3.48 2.88 2.81 1.9 ...
##  $ IL_17E                          : num  4.7 3.64 5.73 4.8 4.15 ...
##  $ IL_1alpha                       : num  -7.6 -7.37 -7.85 -7.68 -8.33 ...
##  $ IL_3                            : num  -4.27 -4.02 -4.51 -3.58 -4.69 ...
##  $ IL_4                            : num  1.48 1.81 1.81 2.04 1.21 ...
##  $ IL_5                            : num  0.788 0.182 0 0.693 -0.371 ...
##  $ IL_6                            : num  -0.371 -1.534 0.422 -0.563 0.8 ...
##  $ IL_6_Receptor                   : num  0.5752 0.0967 -0.5322 -0.1586 0.0967 ...
##  $ IL_7                            : num  2.34 2.15 1.56 3.71 2.15 ...
##  $ IL_8                            : num  1.72 1.7 1.69 1.69 1.7 ...
##  $ IP_10_Inducible_Protein_10      : num  5.6 5.33 5.06 4.75 5.29 ...
##  $ IgA                             : num  -7.62 -5.36 -7.04 -5.6 -6.57 ...
##  $ Insulin                         : num  -1.485 -1.034 -1.569 -0.901 -1.865 ...
##  $ Kidney_Injury_Molecule_1_KIM_1  : num  -1.23 -1.16 -1.12 -1.21 -1.16 ...
##  $ LOX_1                           : num  1.224 1.131 0.588 1.308 1.308 ...
##  $ Leptin                          : num  -1.27 -1.54 -1.54 -1.36 -1.55 ...
##  $ Lipoprotein_a                   : num  -4.99 -4.2 -3.54 -4.87 -5.08 ...
##  $ MCP_1                           : num  6.78 6.38 6.61 6.41 6.78 ...
##  $ MCP_2                           : num  1.981 1.626 1.626 0.401 1.853 ...
##  $ MIF                             : num  -1.66 -1.61 -2.04 -1.97 -1.83 ...
##  $ MIP_1alpha                      : num  4.93 4.35 3.41 2.28 1.68 ...
##  $ MIP_1beta                       : num  3.22 2.77 2.83 2.48 2.77 ...
##  $ MMP_2                           : num  2.97 2.92 3.27 4.05 1.36 ...
##  $ MMP_3                           : num  -1.77 -1.97 -2.04 -2.04 -2.21 ...
##  $ MMP10                           : num  -4.07 -3.27 -3.02 -3.04 -4.07 ...
##  $ MMP7                            : num  -6.86 -3 -4.36 -3.35 -4.45 ...
##  $ Myoglobin                       : num  -1.139 -1.661 0.182 -1.897 -1.204 ...
##  $ NT_proBNP                       : num  4.11 4.52 4.44 4.61 4.51 ...
##  $ NrCAM                           : num  4.97 4.23 3.71 4.75 4.3 ...
##  $ Osteopontin                     : num  5.77 5.28 4.96 5.23 4.79 ...
##  $ PAI_1                           : num  0 -0.0957 0.4905 0.4905 -0.0957 ...
##  $ PAPP_A                          : num  -2.79 -3.03 -2.71 -3.15 -3.08 ...
##  $ PLGF                            : num  3.43 3.69 4.08 3.85 3.76 ...
##  $ PYY                             : num  2.83 3 2.94 2.89 2.83 ...
##  $ Pancreatic_polypeptide          : num  -0.821 0.262 -0.105 0.262 0.182 ...
##  $ Prolactin                       : num  -0.0408 0.7419 0.3365 0 -0.2485 ...
##  $ Prostatic_Acid_Phosphatase      : num  -1.74 -1.68 -1.68 -1.69 -1.69 ...
##  $ Protein_S                       : num  -2.7 -2.36 -2.36 -2.7 -2.58 ...
##  $ Pulmonary_and_Activation_Regulat: num  -1.11 -1.31 -1.97 -1.97 -1.39 ...
##  $ RANTES                          : num  -5.99 -6.73 -6.65 -6.57 -6.57 ...
##  $ Resistin                        : num  -13.5 -15.6 -18 -16 -24.4 ...
##   [list output truncated]
summary(Alzheimer_Test)
##  ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
##  Min.   :-0.5473                Min.   :-2.2073                
##  1st Qu.: 0.9462                1st Qu.:-1.7148                
##  Median : 1.3013                Median :-1.5374                
##  Mean   : 1.3105                Mean   :-1.5311                
##  3rd Qu.: 1.6320                3rd Qu.:-1.3863                
##  Max.   : 3.0890                Max.   :-0.7985                
##       AXL            Adiponectin     Alpha_1_Antichymotrypsin
##  Min.   :-0.73509   Min.   :-7.059   Min.   :0.1823          
##  1st Qu.:-0.08175   1st Qu.:-5.737   1st Qu.:1.0647          
##  Median : 0.28035   Median :-5.360   Median :1.3083          
##  Mean   : 0.25373   Mean   :-5.298   Mean   :1.3077          
##  3rd Qu.: 0.60768   3rd Qu.:-4.917   3rd Qu.:1.5686          
##  Max.   : 1.28634   Max.   :-3.474   Max.   :2.2192          
##  Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
##  Min.   :-18.17      Min.   :-4.135        Min.   :-238.64      
##  1st Qu.:-14.70      1st Qu.:-3.284        1st Qu.:-186.64      
##  Median :-13.59      Median :-3.006        Median :-162.93      
##  Mean   :-13.49      Mean   :-2.983        Mean   :-162.89      
##  3rd Qu.:-12.31      3rd Qu.:-2.674        3rd Qu.:-136.53      
##  Max.   :-10.06      Max.   :-1.897        Max.   : -50.17      
##  Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
##  Min.   :-0.05129     Min.   :1.710   Min.   :-2.749      Min.   :-8.568   
##  1st Qu.: 0.35372     1st Qu.:2.068   1st Qu.:-2.186      1st Qu.:-7.818   
##  Median : 0.55921     Median :2.276   Median :-1.897      Median :-7.497   
##  Mean   : 0.60278     Mean   :2.274   Mean   :-1.867      Mean   :-7.488   
##  3rd Qu.: 0.78846     3rd Qu.:2.430   3rd Qu.:-1.526      3rd Qu.:-7.176   
##  Max.   : 1.77495     Max.   :2.752   Max.   :-1.109      Max.   :-6.645   
##  Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
##  Min.   :-1.9661   Min.   :-8.192   Min.   :-2.847    Min.   :-3.863     
##  1st Qu.:-0.9416   1st Qu.:-6.748   1st Qu.:-1.897    1st Qu.:-2.781     
##  Median :-0.7032   Median :-5.819   Median :-1.609    Median :-2.557     
##  Mean   :-0.6902   Mean   :-5.649   Mean   :-1.625    Mean   :-2.523     
##  3rd Qu.:-0.3533   3rd Qu.:-4.603   3rd Qu.:-1.309    3rd Qu.:-2.231     
##  Max.   : 0.5306   Max.   :-2.339   Max.   :-0.462    Max.   :-1.386     
##  Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H 
##  Min.   :0.2624   Min.   :0.6626   Min.   :-1.1609  
##  1st Qu.:1.1314   1st Qu.:2.1526   1st Qu.:-0.5317  
##  Median :1.3863   Median :2.8181   Median :-0.2897  
##  Mean   :1.3943   Mean   :2.7160   Mean   :-0.3212  
##  3rd Qu.:1.6864   3rd Qu.:3.2363   3rd Qu.:-0.1032  
##  Max.   :2.6391   Max.   :4.6844   Max.   : 0.4402  
##  B_Lymphocyte_Chemoattractant_BL     BMP_6        Beta_2_Microglobulin
##  Min.   :0.7318                  Min.   :-2.669   Min.   :-0.51083    
##  1st Qu.:1.5304                  1st Qu.:-2.152   1st Qu.:-0.06188    
##  Median :1.8528                  Median :-1.964   Median : 0.18232    
##  Mean   :1.8766                  Mean   :-1.937   Mean   : 0.15566    
##  3rd Qu.:2.3714                  3rd Qu.:-1.675   3rd Qu.: 0.40547    
##  Max.   :2.9757                  Max.   :-1.181   Max.   : 0.83291    
##   Betacellulin   C_Reactive_Protein      CD40              CD5L         
##  Min.   :32.00   Min.   :-8.112     Min.   :-1.9390   Min.   :-1.96611  
##  1st Qu.:46.00   1st Qu.:-6.725     1st Qu.:-1.4420   1st Qu.:-0.36747  
##  Median :51.00   Median :-6.166     Median :-1.2574   Median :-0.05135  
##  Mean   :52.74   Mean   :-5.997     Mean   :-1.2773   Mean   :-0.08760  
##  3rd Qu.:59.75   3rd Qu.:-5.369     3rd Qu.:-1.1034   3rd Qu.: 0.24235  
##  Max.   :80.00   Max.   :-3.411     Max.   :-0.7766   Max.   : 0.91629  
##    Calbindin       Calcitonin           CgA        Clusterin_Apo_J
##  Min.   :10.81   Min.   :-0.7134   Min.   :166.6   Min.   :1.932  
##  1st Qu.:18.88   1st Qu.: 1.2014   1st Qu.:268.2   1st Qu.:2.565  
##  Median :21.06   Median : 1.6849   Median :324.7   Median :2.833  
##  Mean   :21.49   Mean   : 1.7250   Mean   :320.2   Mean   :2.845  
##  3rd Qu.:24.00   3rd Qu.: 2.2618   3rd Qu.:362.3   3rd Qu.:3.045  
##  Max.   :35.36   Max.   : 4.1109   Max.   :494.5   Max.   :3.761  
##   Complement_3    Complement_Factor_H Connective_Tissue_Growth_Factor
##  Min.   :-22.40   Min.   :0.2766      Min.   :0.09531                
##  1st Qu.:-17.50   1st Qu.:2.6019      1st Qu.:0.58779                
##  Median :-15.90   Median :3.3983      Median :0.74194                
##  Mean   :-15.91   Mean   :3.3897      Mean   :0.74507                
##  3rd Qu.:-14.34   3rd Qu.:4.2548      3rd Qu.:0.87547                
##  Max.   :-10.23   Max.   :6.5597      Max.   :1.41099                
##     Cortisol     Creatine_Kinase_MB   Cystatin_C        EGF_R        
##  Min.   : 0.10   Min.   :-1.872     Min.   :7.728   Min.   :-1.2694  
##  1st Qu.: 8.90   1st Qu.:-1.721     1st Qu.:8.301   1st Qu.:-0.8859  
##  Median :10.00   Median :-1.651     Median :8.544   Median :-0.6917  
##  Mean   :10.46   Mean   :-1.652     Mean   :8.576   Mean   :-0.6965  
##  3rd Qu.:12.00   3rd Qu.:-1.590     3rd Qu.:8.837   3rd Qu.:-0.5034  
##  Max.   :22.00   Max.   :-1.434     Max.   :9.694   Max.   : 0.1891  
##     EN_RAGE            ENA_78         Eotaxin_3           FAS         
##  Min.   :-8.3774   Min.   :-1.405   Min.   : 23.00   Min.   :-1.1087  
##  1st Qu.:-4.1836   1st Qu.:-1.382   1st Qu.: 43.00   1st Qu.:-0.7133  
##  Median :-3.6889   Median :-1.374   Median : 54.00   Median :-0.5798  
##  Mean   :-3.5986   Mean   :-1.376   Mean   : 55.55   Mean   :-0.5414  
##  3rd Qu.:-3.2189   3rd Qu.:-1.368   3rd Qu.: 64.00   3rd Qu.:-0.3355  
##  Max.   :-0.8675   Max.   :-1.353   Max.   :107.00   Max.   : 0.1823  
##  FSH_Follicle_Stimulation_Hormon   Fas_Ligand    Fatty_Acid_Binding_Protein
##  Min.   :-1.8101                 Min.   :0.288   Min.   :-0.4559           
##  1st Qu.:-1.2694                 1st Qu.:2.073   1st Qu.: 0.7998           
##  Median :-0.9763                 Median :2.665   Median : 1.1866           
##  Mean   :-1.0597                 Mean   :2.649   Mean   : 1.2884           
##  3rd Qu.:-0.8068                 3rd Qu.:3.162   3rd Qu.: 1.9192           
##  Max.   :-0.4757                 Max.   :5.377   Max.   : 3.2188           
##     Ferritin         Fetuin_A        Fibrinogen       GRO_alpha    
##  Min.   :0.8983   Min.   :0.5306   Min.   :-9.373   Min.   :1.271  
##  1st Qu.:2.1473   1st Qu.:1.0296   1st Qu.:-7.799   1st Qu.:1.351  
##  Median :2.6260   Median :1.3083   Median :-7.316   Median :1.372  
##  Mean   :2.7069   Mean   :1.3116   Mean   :-7.360   Mean   :1.378  
##  3rd Qu.:3.1672   3rd Qu.:1.6094   3rd Qu.:-6.970   3rd Qu.:1.398  
##  Max.   :4.9282   Max.   :2.2083   Max.   :-6.166   Max.   :1.514  
##  Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
##  Min.   :2.545                    Min.   :0.5661                 
##  1st Qu.:2.698                    1st Qu.:0.8257                 
##  Median :2.768                    Median :0.9493                 
##  Mean   :2.772                    Mean   :0.9440                 
##  3rd Qu.:2.829                    3rd Qu.:1.0457                 
##  Max.   :3.046                    Max.   :1.3102                 
##      HB_EGF           HCC_4        Hepatocyte_Growth_Factor_HGF     I_309      
##  Min.   : 3.521   Min.   :-4.343   Min.   :-0.61619             Min.   :2.041  
##  1st Qu.: 5.949   1st Qu.:-3.772   1st Qu.:-0.05661             1st Qu.:2.724  
##  Median : 6.980   Median :-3.540   Median : 0.18232             Median :2.944  
##  Mean   : 6.844   Mean   :-3.538   Mean   : 0.18076             Mean   :2.921  
##  3rd Qu.: 7.745   3rd Qu.:-3.352   3rd Qu.: 0.33647             3rd Qu.:3.135  
##  Max.   :10.359   Max.   :-2.489   Max.   : 1.09861             Max.   :3.689  
##      ICAM_1           IGF_BP_2         IL_11           IL_13      
##  Min.   :-1.4661   Min.   :4.718   Min.   :2.031   Min.   :1.232  
##  1st Qu.:-0.7671   1st Qu.:5.127   1st Qu.:3.960   1st Qu.:1.274  
##  Median :-0.5903   Median :5.255   Median :4.838   Median :1.283  
##  Mean   :-0.5958   Mean   :5.263   Mean   :4.651   Mean   :1.283  
##  3rd Qu.:-0.3574   3rd Qu.:5.402   3rd Qu.:5.482   3rd Qu.:1.292  
##  Max.   : 0.3602   Max.   :5.916   Max.   :8.692   Max.   :1.310  
##      IL_16            IL_17E        IL_1alpha           IL_3       
##  Min.   :0.9568   Min.   :1.582   Min.   :-8.468   Min.   :-5.521  
##  1st Qu.:2.4411   1st Qu.:3.637   1st Qu.:-7.849   1st Qu.:-4.324  
##  Median :2.8763   Median :4.723   Median :-7.562   Median :-3.963  
##  Mean   :2.8176   Mean   :4.774   Mean   :-7.549   Mean   :-3.976  
##  3rd Qu.:3.3514   3rd Qu.:5.415   3rd Qu.:-7.279   3rd Qu.:-3.576  
##  Max.   :4.1028   Max.   :8.081   Max.   :-6.377   Max.   :-3.079  
##       IL_4             IL_5               IL_6          IL_6_Receptor     
##  Min.   :0.5306   Min.   :-1.04982   Min.   :-1.53428   Min.   :-0.74560  
##  1st Qu.:1.4586   1st Qu.:-0.03062   1st Qu.:-0.40924   1st Qu.:-0.20131  
##  Median :1.7226   Median : 0.22234   Median :-0.07205   Median : 0.00000  
##  Mean   :1.7445   Mean   : 0.22853   Mean   :-0.05216   Mean   : 0.06213  
##  3rd Qu.:2.0669   3rd Qu.: 0.53063   3rd Qu.: 0.34805   3rd Qu.: 0.27297  
##  Max.   :2.7081   Max.   : 1.13140   Max.   : 1.00562   Max.   : 0.77048  
##       IL_7            IL_8       IP_10_Inducible_Protein_10      IgA        
##  Min.   :1.310   Min.   :1.615   Min.   :4.263              Min.   :-7.621  
##  1st Qu.:2.379   1st Qu.:1.684   1st Qu.:5.323              1st Qu.:-6.571  
##  Median :3.148   Median :1.702   Median :5.617              Median :-6.012  
##  Mean   :3.143   Mean   :1.704   Mean   :5.636              Mean   :-6.066  
##  3rd Qu.:3.706   3rd Qu.:1.725   3rd Qu.:5.917              3rd Qu.:-5.606  
##  Max.   :5.000   Max.   :1.836   Max.   :7.208              Max.   :-4.733  
##     Insulin        Kidney_Injury_Molecule_1_KIM_1     LOX_1       
##  Min.   :-2.0099   Min.   :-1.251                 Min.   :0.0000  
##  1st Qu.:-1.4466   1st Qu.:-1.209                 1st Qu.:0.9649  
##  Median :-1.2169   Median :-1.187                 Median :1.2238  
##  Mean   :-1.1998   Mean   :-1.188                 Mean   :1.2085  
##  3rd Qu.:-1.0105   3rd Qu.:-1.166                 3rd Qu.:1.4351  
##  Max.   :-0.5025   Max.   :-1.124                 Max.   :2.3979  
##      Leptin        Lipoprotein_a        MCP_1           MCP_2       
##  Min.   :-1.9471   Min.   :-6.571   Min.   :5.889   Min.   :0.4006  
##  1st Qu.:-1.6334   1st Qu.:-5.116   1st Qu.:6.318   1st Qu.:1.5304  
##  Median :-1.4294   Median :-4.657   Median :6.482   Median :1.8528  
##  Mean   :-1.4363   Mean   :-4.515   Mean   :6.480   Mean   :1.8104  
##  3rd Qu.:-1.2409   3rd Qu.:-4.017   3rd Qu.:6.627   3rd Qu.:2.0827  
##  Max.   :-0.8387   Max.   :-2.040   Max.   :7.065   Max.   :3.7545  
##       MIF           MIP_1alpha      MIP_1beta         MMP_2       
##  Min.   :-2.797   Min.   :1.008   Min.   :1.917   Min.   :0.6248  
##  1st Qu.:-2.120   1st Qu.:3.302   1st Qu.:2.485   1st Qu.:2.5513  
##  Median :-1.966   Median :3.736   Median :2.773   Median :2.9937  
##  Mean   :-1.932   Mean   :3.898   Mean   :2.784   Mean   :3.0347  
##  3rd Qu.:-1.715   3rd Qu.:4.686   3rd Qu.:3.079   3rd Qu.:3.4798  
##  Max.   :-1.109   Max.   :5.735   Max.   :3.784   Max.   :6.0996  
##      MMP_3            MMP10             MMP7           Myoglobin      
##  Min.   :-3.650   Min.   :-4.948   Min.   :-7.5346   Min.   :-3.2968  
##  1st Qu.:-2.852   1st Qu.:-4.075   1st Qu.:-4.9634   1st Qu.:-2.0217  
##  Median :-2.532   Median :-3.612   Median :-4.0302   Median :-1.5874  
##  Mean   :-2.490   Mean   :-3.676   Mean   :-4.0148   Mean   :-1.4165  
##  3rd Qu.:-2.120   3rd Qu.:-3.331   3rd Qu.:-3.1640   3rd Qu.:-0.7765  
##  Max.   :-1.171   Max.   :-2.900   Max.   :-0.1953   Max.   : 1.1314  
##    NT_proBNP         NrCAM        Osteopontin        PAI_1          
##  Min.   :3.611   Min.   :2.890   Min.   :4.078   Min.   :-0.990849  
##  1st Qu.:4.174   1st Qu.:3.871   1st Qu.:4.892   1st Qu.:-0.334043  
##  Median :4.477   Median :4.317   Median :5.168   Median : 0.000000  
##  Mean   :4.488   Mean   :4.291   Mean   :5.177   Mean   :-0.003947  
##  3rd Qu.:4.794   3rd Qu.:4.725   3rd Qu.:5.410   3rd Qu.: 0.303112  
##  Max.   :5.398   Max.   :5.690   Max.   :6.315   Max.   : 0.885785  
##      PAPP_A            PLGF            PYY        Pancreatic_polypeptide
##  Min.   :-3.152   Min.   :2.639   Min.   :2.398   Min.   :-1.609438     
##  1st Qu.:-2.971   1st Qu.:3.689   1st Qu.:2.833   1st Qu.:-0.506693     
##  Median :-2.841   Median :3.892   Median :2.996   Median : 0.138816     
##  Mean   :-2.845   Mean   :3.884   Mean   :2.976   Mean   :-0.005258     
##  3rd Qu.:-2.719   3rd Qu.:4.123   3rd Qu.:3.178   3rd Qu.: 0.470004     
##  Max.   :-2.488   Max.   :4.710   Max.   :3.738   Max.   : 1.504077     
##    Prolactin        Prostatic_Acid_Phosphatase   Protein_S     
##  Min.   :-0.38566   Min.   :-1.800             Min.   :-3.154  
##  1st Qu.:-0.16558   1st Qu.:-1.739             1st Qu.:-2.579  
##  Median : 0.00000   Median :-1.690             Median :-2.259  
##  Mean   : 0.05195   Mean   :-1.692             Mean   :-2.268  
##  3rd Qu.: 0.18232   3rd Qu.:-1.659             3rd Qu.:-1.924  
##  Max.   : 0.78846   Max.   :-1.540             Max.   :-1.547  
##  Pulmonary_and_Activation_Regulat     RANTES          Resistin      
##  Min.   :-2.4418                  Min.   :-7.236   Min.   :-30.156  
##  1st Qu.:-1.8326                  1st Qu.:-6.725   1st Qu.:-22.131  
##  Median :-1.5141                  Median :-6.571   Median :-18.014  
##  Mean   :-1.5007                  Mean   :-6.540   Mean   :-18.245  
##  3rd Qu.:-1.1712                  3rd Qu.:-6.392   3rd Qu.:-15.202  
##  Max.   :-0.4463                  Max.   :-5.843   Max.   : -6.594  
##      S100b             SGOT              SHBG             SOD       
##  Min.   :0.1874   Min.   :-1.8971   Min.   :-3.730   Min.   :4.382  
##  1st Qu.:0.9600   1st Qu.:-0.7498   1st Qu.:-3.052   1st Qu.:5.006  
##  Median :1.1571   Median :-0.4780   Median :-2.711   Median :5.313  
##  Mean   :1.1819   Mean   :-0.4898   Mean   :-2.686   Mean   :5.302  
##  3rd Qu.:1.3807   3rd Qu.:-0.2138   3rd Qu.:-2.343   3rd Qu.:5.547  
##  Max.   :2.1950   Max.   : 0.1823   Max.   :-1.561   Max.   :6.461  
##  Serum_Amyloid_P     Sortilin     Stem_Cell_Factor   TGF_alpha     
##  Min.   :-7.182   Min.   :1.508   Min.   :2.219    Min.   : 7.500  
##  1st Qu.:-6.438   1st Qu.:3.177   1st Qu.:3.045    1st Qu.: 9.062  
##  Median :-6.215   Median :3.867   Median :3.314    Median : 9.596  
##  Mean   :-6.083   Mean   :3.787   Mean   :3.267    Mean   : 9.776  
##  3rd Qu.:-5.607   3rd Qu.:4.371   3rd Qu.:3.466    3rd Qu.:10.612  
##  Max.   :-4.699   Max.   :5.681   Max.   :4.078    Max.   :13.083  
##      TIMP_1          TNF_RII           TRAIL_R3        TTR_prealbumin 
##  Min.   : 8.198   Min.   :-1.6607   Min.   :-1.30636   Min.   :2.485  
##  1st Qu.:10.530   1st Qu.:-0.8675   1st Qu.:-0.73332   1st Qu.:2.773  
##  Median :11.341   Median :-0.6541   Median :-0.55547   Median :2.890  
##  Mean   :11.520   Mean   :-0.6270   Mean   :-0.58640   Mean   :2.854  
##  3rd Qu.:12.352   3rd Qu.:-0.3320   3rd Qu.:-0.47065   3rd Qu.:2.944  
##  Max.   :16.547   Max.   : 0.4055   Max.   : 0.09622   Max.   :3.091  
##  Tamm_Horsfall_Protein_THP Thrombomodulin   Thrombopoietin   
##  Min.   :-3.206            Min.   :-2.054   Min.   :-1.5396  
##  1st Qu.:-3.144            1st Qu.:-1.675   1st Qu.:-0.8383  
##  Median :-3.126            Median :-1.534   Median :-0.7039  
##  Mean   :-3.123            Mean   :-1.533   Mean   :-0.7192  
##  3rd Qu.:-3.101            3rd Qu.:-1.341   3rd Qu.:-0.6289  
##  Max.   :-3.041            Max.   :-1.019   Max.   :-0.3029  
##  Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
##  Min.   :2.141                   Min.   :-6.190             
##  1st Qu.:3.283                   1st Qu.:-4.733             
##  Median :3.753                   Median :-4.269             
##  Mean   :3.770                   Mean   :-4.221             
##  3rd Qu.:4.316                   3rd Qu.:-3.828             
##  Max.   :5.681                   Max.   :-2.040             
##  Thyroxine_Binding_Globulin Tissue_Factor     Transferrin   
##  Min.   :-2.3026            Min.   :0.0000   Min.   :2.282  
##  1st Qu.:-1.7148            1st Qu.:0.7053   1st Qu.:2.708  
##  Median :-1.4919            Median :1.1473   Median :2.890  
##  Mean   :-1.4902            Mean   :1.1356   Mean   :2.900  
##  3rd Qu.:-1.2379            3rd Qu.:1.5149   3rd Qu.:3.135  
##  Max.   :-0.5978            Max.   :2.7081   Max.   :3.497  
##  Trefoil_Factor_3_TFF3     VCAM_1           VEGF        Vitronectin      
##  Min.   :-4.906        Min.   :2.028   Min.   :12.23   Min.   :-1.07881  
##  1st Qu.:-4.200        1st Qu.:2.420   1st Qu.:15.03   1st Qu.:-0.46204  
##  Median :-3.912        Median :2.674   Median :17.08   Median :-0.28106  
##  Mean   :-3.947        Mean   :2.644   Mean   :16.70   Mean   :-0.26833  
##  3rd Qu.:-3.772        3rd Qu.:2.833   3rd Qu.:18.19   3rd Qu.:-0.05394  
##  Max.   :-3.170        Max.   :3.466   Max.   :21.18   Max.   : 0.40547  
##  von_Willebrand_Factor      Class          E4              E3        
##  Min.   :-4.920        Impaired:18   Min.   :0.000   Min.   :0.0000  
##  1st Qu.:-4.269        Control :48   1st Qu.:0.000   1st Qu.:1.0000  
##  Median :-4.017                      Median :0.000   Median :1.0000  
##  Mean   :-4.014                      Mean   :0.303   Mean   :0.9848  
##  3rd Qu.:-3.730                      3rd Qu.:1.000   3rd Qu.:1.0000  
##  Max.   :-3.058                      Max.   :1.000   Max.   :1.0000  
##        E2         
##  Min.   :0.00000  
##  1st Qu.:0.00000  
##  Median :0.00000  
##  Mean   :0.06061  
##  3rd Qu.:0.00000  
##  Max.   :1.00000
##################################
# Formulating a data type assessment summary
##################################
PDA <- Alzheimer_Train
(PDA.Summary <- data.frame(
  Column.Index=c(1:length(names(PDA))),
  Column.Name= names(PDA), 
  Column.Type=sapply(PDA, function(x) class(x)), 
  row.names=NULL)
)
##     Column.Index                      Column.Name Column.Type
## 1              1   ACE_CD143_Angiotensin_Converti     numeric
## 2              2  ACTH_Adrenocorticotropic_Hormon     numeric
## 3              3                              AXL     numeric
## 4              4                      Adiponectin     numeric
## 5              5         Alpha_1_Antichymotrypsin     numeric
## 6              6              Alpha_1_Antitrypsin     numeric
## 7              7            Alpha_1_Microglobulin     numeric
## 8              8            Alpha_2_Macroglobulin     numeric
## 9              9             Angiopoietin_2_ANG_2     numeric
## 10            10                  Angiotensinogen     numeric
## 11            11              Apolipoprotein_A_IV     numeric
## 12            12                Apolipoprotein_A1     numeric
## 13            13                Apolipoprotein_A2     numeric
## 14            14                 Apolipoprotein_B     numeric
## 15            15                Apolipoprotein_CI     numeric
## 16            16              Apolipoprotein_CIII     numeric
## 17            17                 Apolipoprotein_D     numeric
## 18            18                 Apolipoprotein_E     numeric
## 19            19                 Apolipoprotein_H     numeric
## 20            20  B_Lymphocyte_Chemoattractant_BL     numeric
## 21            21                            BMP_6     numeric
## 22            22             Beta_2_Microglobulin     numeric
## 23            23                     Betacellulin     integer
## 24            24               C_Reactive_Protein     numeric
## 25            25                             CD40     numeric
## 26            26                             CD5L     numeric
## 27            27                        Calbindin     numeric
## 28            28                       Calcitonin     numeric
## 29            29                              CgA     numeric
## 30            30                  Clusterin_Apo_J     numeric
## 31            31                     Complement_3     numeric
## 32            32              Complement_Factor_H     numeric
## 33            33  Connective_Tissue_Growth_Factor     numeric
## 34            34                         Cortisol     numeric
## 35            35               Creatine_Kinase_MB     numeric
## 36            36                       Cystatin_C     numeric
## 37            37                            EGF_R     numeric
## 38            38                          EN_RAGE     numeric
## 39            39                           ENA_78     numeric
## 40            40                        Eotaxin_3     integer
## 41            41                              FAS     numeric
## 42            42  FSH_Follicle_Stimulation_Hormon     numeric
## 43            43                       Fas_Ligand     numeric
## 44            44       Fatty_Acid_Binding_Protein     numeric
## 45            45                         Ferritin     numeric
## 46            46                         Fetuin_A     numeric
## 47            47                       Fibrinogen     numeric
## 48            48                        GRO_alpha     numeric
## 49            49 Gamma_Interferon_induced_Monokin     numeric
## 50            50  Glutathione_S_Transferase_alpha     numeric
## 51            51                           HB_EGF     numeric
## 52            52                            HCC_4     numeric
## 53            53     Hepatocyte_Growth_Factor_HGF     numeric
## 54            54                            I_309     numeric
## 55            55                           ICAM_1     numeric
## 56            56                         IGF_BP_2     numeric
## 57            57                            IL_11     numeric
## 58            58                            IL_13     numeric
## 59            59                            IL_16     numeric
## 60            60                           IL_17E     numeric
## 61            61                        IL_1alpha     numeric
## 62            62                             IL_3     numeric
## 63            63                             IL_4     numeric
## 64            64                             IL_5     numeric
## 65            65                             IL_6     numeric
## 66            66                    IL_6_Receptor     numeric
## 67            67                             IL_7     numeric
## 68            68                             IL_8     numeric
## 69            69       IP_10_Inducible_Protein_10     numeric
## 70            70                              IgA     numeric
## 71            71                          Insulin     numeric
## 72            72   Kidney_Injury_Molecule_1_KIM_1     numeric
## 73            73                            LOX_1     numeric
## 74            74                           Leptin     numeric
## 75            75                    Lipoprotein_a     numeric
## 76            76                            MCP_1     numeric
## 77            77                            MCP_2     numeric
## 78            78                              MIF     numeric
## 79            79                       MIP_1alpha     numeric
## 80            80                        MIP_1beta     numeric
## 81            81                            MMP_2     numeric
## 82            82                            MMP_3     numeric
## 83            83                            MMP10     numeric
## 84            84                             MMP7     numeric
## 85            85                        Myoglobin     numeric
## 86            86                        NT_proBNP     numeric
## 87            87                            NrCAM     numeric
## 88            88                      Osteopontin     numeric
## 89            89                            PAI_1     numeric
## 90            90                           PAPP_A     numeric
## 91            91                             PLGF     numeric
## 92            92                              PYY     numeric
## 93            93           Pancreatic_polypeptide     numeric
## 94            94                        Prolactin     numeric
## 95            95       Prostatic_Acid_Phosphatase     numeric
## 96            96                        Protein_S     numeric
## 97            97 Pulmonary_and_Activation_Regulat     numeric
## 98            98                           RANTES     numeric
## 99            99                         Resistin     numeric
## 100          100                            S100b     numeric
## 101          101                             SGOT     numeric
## 102          102                             SHBG     numeric
## 103          103                              SOD     numeric
## 104          104                  Serum_Amyloid_P     numeric
## 105          105                         Sortilin     numeric
## 106          106                 Stem_Cell_Factor     numeric
## 107          107                        TGF_alpha     numeric
## 108          108                           TIMP_1     numeric
## 109          109                          TNF_RII     numeric
## 110          110                         TRAIL_R3     numeric
## 111          111                   TTR_prealbumin     numeric
## 112          112        Tamm_Horsfall_Protein_THP     numeric
## 113          113                   Thrombomodulin     numeric
## 114          114                   Thrombopoietin     numeric
## 115          115  Thymus_Expressed_Chemokine_TECK     numeric
## 116          116      Thyroid_Stimulating_Hormone     numeric
## 117          117       Thyroxine_Binding_Globulin     numeric
## 118          118                    Tissue_Factor     numeric
## 119          119                      Transferrin     numeric
## 120          120            Trefoil_Factor_3_TFF3     numeric
## 121          121                           VCAM_1     numeric
## 122          122                             VEGF     numeric
## 123          123                      Vitronectin     numeric
## 124          124            von_Willebrand_Factor     numeric
## 125          125                            Class      factor
## 126          126                               E4     numeric
## 127          127                               E3     numeric
## 128          128                               E2     numeric

1.2 Data Quality Assessment


[A] No missing observations noted for any variable.

[B] Low variance observed for 2 variables with First.Second.Mode.Ratio>5.
     [B.1] E2 variable (factor)
     [B.2] E3 variable (factor)

[C] No low variance observed for any variable with Unique.Count.Ratio<0.01.

[D] No high skewness observed for any variable with Skewness>3 or Skewness<(-3).

Code Chunk | Output
##################################
# Loading dataset
##################################
DQA <- Alzheimer_Train

##################################
# Formulating an overall data quality assessment summary
##################################
(DQA.Summary <- data.frame(
  Column.Index=c(1:length(names(DQA))),
  Column.Name= names(DQA), 
  Column.Type=sapply(DQA, function(x) class(x)), 
  Row.Count=sapply(DQA, function(x) nrow(DQA)),
  NA.Count=sapply(DQA,function(x)sum(is.na(x))),
  Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
  row.names=NULL)
)
##     Column.Index                      Column.Name Column.Type Row.Count
## 1              1   ACE_CD143_Angiotensin_Converti     numeric       267
## 2              2  ACTH_Adrenocorticotropic_Hormon     numeric       267
## 3              3                              AXL     numeric       267
## 4              4                      Adiponectin     numeric       267
## 5              5         Alpha_1_Antichymotrypsin     numeric       267
## 6              6              Alpha_1_Antitrypsin     numeric       267
## 7              7            Alpha_1_Microglobulin     numeric       267
## 8              8            Alpha_2_Macroglobulin     numeric       267
## 9              9             Angiopoietin_2_ANG_2     numeric       267
## 10            10                  Angiotensinogen     numeric       267
## 11            11              Apolipoprotein_A_IV     numeric       267
## 12            12                Apolipoprotein_A1     numeric       267
## 13            13                Apolipoprotein_A2     numeric       267
## 14            14                 Apolipoprotein_B     numeric       267
## 15            15                Apolipoprotein_CI     numeric       267
## 16            16              Apolipoprotein_CIII     numeric       267
## 17            17                 Apolipoprotein_D     numeric       267
## 18            18                 Apolipoprotein_E     numeric       267
## 19            19                 Apolipoprotein_H     numeric       267
## 20            20  B_Lymphocyte_Chemoattractant_BL     numeric       267
## 21            21                            BMP_6     numeric       267
## 22            22             Beta_2_Microglobulin     numeric       267
## 23            23                     Betacellulin     integer       267
## 24            24               C_Reactive_Protein     numeric       267
## 25            25                             CD40     numeric       267
## 26            26                             CD5L     numeric       267
## 27            27                        Calbindin     numeric       267
## 28            28                       Calcitonin     numeric       267
## 29            29                              CgA     numeric       267
## 30            30                  Clusterin_Apo_J     numeric       267
## 31            31                     Complement_3     numeric       267
## 32            32              Complement_Factor_H     numeric       267
## 33            33  Connective_Tissue_Growth_Factor     numeric       267
## 34            34                         Cortisol     numeric       267
## 35            35               Creatine_Kinase_MB     numeric       267
## 36            36                       Cystatin_C     numeric       267
## 37            37                            EGF_R     numeric       267
## 38            38                          EN_RAGE     numeric       267
## 39            39                           ENA_78     numeric       267
## 40            40                        Eotaxin_3     integer       267
## 41            41                              FAS     numeric       267
## 42            42  FSH_Follicle_Stimulation_Hormon     numeric       267
## 43            43                       Fas_Ligand     numeric       267
## 44            44       Fatty_Acid_Binding_Protein     numeric       267
## 45            45                         Ferritin     numeric       267
## 46            46                         Fetuin_A     numeric       267
## 47            47                       Fibrinogen     numeric       267
## 48            48                        GRO_alpha     numeric       267
## 49            49 Gamma_Interferon_induced_Monokin     numeric       267
## 50            50  Glutathione_S_Transferase_alpha     numeric       267
## 51            51                           HB_EGF     numeric       267
## 52            52                            HCC_4     numeric       267
## 53            53     Hepatocyte_Growth_Factor_HGF     numeric       267
## 54            54                            I_309     numeric       267
## 55            55                           ICAM_1     numeric       267
## 56            56                         IGF_BP_2     numeric       267
## 57            57                            IL_11     numeric       267
## 58            58                            IL_13     numeric       267
## 59            59                            IL_16     numeric       267
## 60            60                           IL_17E     numeric       267
## 61            61                        IL_1alpha     numeric       267
## 62            62                             IL_3     numeric       267
## 63            63                             IL_4     numeric       267
## 64            64                             IL_5     numeric       267
## 65            65                             IL_6     numeric       267
## 66            66                    IL_6_Receptor     numeric       267
## 67            67                             IL_7     numeric       267
## 68            68                             IL_8     numeric       267
## 69            69       IP_10_Inducible_Protein_10     numeric       267
## 70            70                              IgA     numeric       267
## 71            71                          Insulin     numeric       267
## 72            72   Kidney_Injury_Molecule_1_KIM_1     numeric       267
## 73            73                            LOX_1     numeric       267
## 74            74                           Leptin     numeric       267
## 75            75                    Lipoprotein_a     numeric       267
## 76            76                            MCP_1     numeric       267
## 77            77                            MCP_2     numeric       267
## 78            78                              MIF     numeric       267
## 79            79                       MIP_1alpha     numeric       267
## 80            80                        MIP_1beta     numeric       267
## 81            81                            MMP_2     numeric       267
## 82            82                            MMP_3     numeric       267
## 83            83                            MMP10     numeric       267
## 84            84                             MMP7     numeric       267
## 85            85                        Myoglobin     numeric       267
## 86            86                        NT_proBNP     numeric       267
## 87            87                            NrCAM     numeric       267
## 88            88                      Osteopontin     numeric       267
## 89            89                            PAI_1     numeric       267
## 90            90                           PAPP_A     numeric       267
## 91            91                             PLGF     numeric       267
## 92            92                              PYY     numeric       267
## 93            93           Pancreatic_polypeptide     numeric       267
## 94            94                        Prolactin     numeric       267
## 95            95       Prostatic_Acid_Phosphatase     numeric       267
## 96            96                        Protein_S     numeric       267
## 97            97 Pulmonary_and_Activation_Regulat     numeric       267
## 98            98                           RANTES     numeric       267
## 99            99                         Resistin     numeric       267
## 100          100                            S100b     numeric       267
## 101          101                             SGOT     numeric       267
## 102          102                             SHBG     numeric       267
## 103          103                              SOD     numeric       267
## 104          104                  Serum_Amyloid_P     numeric       267
## 105          105                         Sortilin     numeric       267
## 106          106                 Stem_Cell_Factor     numeric       267
## 107          107                        TGF_alpha     numeric       267
## 108          108                           TIMP_1     numeric       267
## 109          109                          TNF_RII     numeric       267
## 110          110                         TRAIL_R3     numeric       267
## 111          111                   TTR_prealbumin     numeric       267
## 112          112        Tamm_Horsfall_Protein_THP     numeric       267
## 113          113                   Thrombomodulin     numeric       267
## 114          114                   Thrombopoietin     numeric       267
## 115          115  Thymus_Expressed_Chemokine_TECK     numeric       267
## 116          116      Thyroid_Stimulating_Hormone     numeric       267
## 117          117       Thyroxine_Binding_Globulin     numeric       267
## 118          118                    Tissue_Factor     numeric       267
## 119          119                      Transferrin     numeric       267
## 120          120            Trefoil_Factor_3_TFF3     numeric       267
## 121          121                           VCAM_1     numeric       267
## 122          122                             VEGF     numeric       267
## 123          123                      Vitronectin     numeric       267
## 124          124            von_Willebrand_Factor     numeric       267
## 125          125                            Class      factor       267
## 126          126                               E4     numeric       267
## 127          127                               E3     numeric       267
## 128          128                               E2     numeric       267
##     NA.Count Fill.Rate
## 1          0     1.000
## 2          0     1.000
## 3          0     1.000
## 4          0     1.000
## 5          0     1.000
## 6          0     1.000
## 7          0     1.000
## 8          0     1.000
## 9          0     1.000
## 10         0     1.000
## 11         0     1.000
## 12         0     1.000
## 13         0     1.000
## 14         0     1.000
## 15         0     1.000
## 16         0     1.000
## 17         0     1.000
## 18         0     1.000
## 19         0     1.000
## 20         0     1.000
## 21         0     1.000
## 22         0     1.000
## 23         0     1.000
## 24         0     1.000
## 25         0     1.000
## 26         0     1.000
## 27         0     1.000
## 28         0     1.000
## 29         0     1.000
## 30         0     1.000
## 31         0     1.000
## 32         0     1.000
## 33         0     1.000
## 34         0     1.000
## 35         0     1.000
## 36         0     1.000
## 37         0     1.000
## 38         0     1.000
## 39         0     1.000
## 40         0     1.000
## 41         0     1.000
## 42         0     1.000
## 43         0     1.000
## 44         0     1.000
## 45         0     1.000
## 46         0     1.000
## 47         0     1.000
## 48         0     1.000
## 49         0     1.000
## 50         0     1.000
## 51         0     1.000
## 52         0     1.000
## 53         0     1.000
## 54         0     1.000
## 55         0     1.000
## 56         0     1.000
## 57         0     1.000
## 58         0     1.000
## 59         0     1.000
## 60         0     1.000
## 61         0     1.000
## 62         0     1.000
## 63         0     1.000
## 64         0     1.000
## 65         0     1.000
## 66         0     1.000
## 67         0     1.000
## 68         0     1.000
## 69         0     1.000
## 70         0     1.000
## 71         0     1.000
## 72         0     1.000
## 73         0     1.000
## 74         0     1.000
## 75         0     1.000
## 76         0     1.000
## 77         0     1.000
## 78         0     1.000
## 79         0     1.000
## 80         0     1.000
## 81         0     1.000
## 82         0     1.000
## 83         0     1.000
## 84         0     1.000
## 85         0     1.000
## 86         0     1.000
## 87         0     1.000
## 88         0     1.000
## 89         0     1.000
## 90         0     1.000
## 91         0     1.000
## 92         0     1.000
## 93         0     1.000
## 94         0     1.000
## 95         0     1.000
## 96         0     1.000
## 97         0     1.000
## 98         0     1.000
## 99         0     1.000
## 100        0     1.000
## 101        0     1.000
## 102        0     1.000
## 103        0     1.000
## 104        0     1.000
## 105        0     1.000
## 106        0     1.000
## 107        0     1.000
## 108        0     1.000
## 109        0     1.000
## 110        0     1.000
## 111        0     1.000
## 112        0     1.000
## 113        0     1.000
## 114        0     1.000
## 115        0     1.000
## 116        0     1.000
## 117        0     1.000
## 118        0     1.000
## 119        0     1.000
## 120        0     1.000
## 121        0     1.000
## 122        0     1.000
## 123        0     1.000
## 124        0     1.000
## 125        0     1.000
## 126        0     1.000
## 127        0     1.000
## 128        0     1.000
##################################
# Listing all predictors
##################################
DQA.Predictors <- DQA[,!names(DQA) %in% c("Class")]

##################################
# Listing all numeric predictors
##################################
DQA.Predictors.Numeric <- DQA.Predictors[,!names(DQA.Predictors) %in% c("E2","E3","E4")]
DQA.Predictors.Numeric <- as.data.frame(sapply(DQA.Predictors.Numeric,function(x) as.numeric(x)))

if (length(names(DQA.Predictors.Numeric))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Numeric))),
               " numeric predictor variable(s)."))
} else {
  print("There are no numeric predictor variables.")
}
## [1] "There are 124 numeric predictor variable(s)."
##################################
# Listing all factor predictors
##################################
DQA.Predictors.Factor <- DQA.Predictors[,names(DQA.Predictors) %in% c("E2","E3","E4")]
DQA.Predictors.Factor <- as.data.frame(sapply(DQA.Predictors.Factor,function(x) as.factor(x)))

if (length(names(DQA.Predictors.Factor))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Factor))),
               " factor predictor variable(s)."))
} else {
  print("There are no factor predictor variables.")
}
## [1] "There are 3 factor predictor variable(s)."
##################################
# Formulating a data quality assessment summary for factor predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {
  
  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = x[!(x %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return("x"),
           return(usm[tabsm == max(tabsm)]))
  }
  
  (DQA.Predictors.Factor.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Factor), 
  Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)), 
  Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
  First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
  Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
  First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  row.names=NULL)
  )
  
} 
##   Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1          E4   character            2                0                 1
## 2          E3   character            2                1                 0
## 3          E2   character            2                0                 1
##   First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 1              160               107              0.007                   1.495
## 2              245                22              0.007                  11.136
## 3              224                43              0.007                   5.209
##################################
# Formulating a data quality assessment summary for numeric predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {
  
  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = na.omit(x)[!(na.omit(x) %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return(0.00001),
           return(usm[tabsm == max(tabsm)]))
  }
  
  (DQA.Predictors.Numeric.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Numeric), 
  Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)), 
  Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
  Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
  First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
  Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
  First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
  Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
  Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
  Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
  Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
  Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
  Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
  Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
  row.names=NULL)
  )  
  
}
##                          Column.Name Column.Type Unique.Count
## 1     ACE_CD143_Angiotensin_Converti     numeric           53
## 2    ACTH_Adrenocorticotropic_Hormon     numeric           32
## 3                                AXL     numeric           59
## 4                        Adiponectin     numeric           91
## 5           Alpha_1_Antichymotrypsin     numeric           65
## 6                Alpha_1_Antitrypsin     numeric           64
## 7              Alpha_1_Microglobulin     numeric           82
## 8              Alpha_2_Macroglobulin     numeric           47
## 9               Angiopoietin_2_ANG_2     numeric           36
## 10                   Angiotensinogen     numeric          135
## 11               Apolipoprotein_A_IV     numeric           53
## 12                 Apolipoprotein_A1     numeric           83
## 13                 Apolipoprotein_A2     numeric           85
## 14                  Apolipoprotein_B     numeric           83
## 15                 Apolipoprotein_CI     numeric           49
## 16               Apolipoprotein_CIII     numeric           82
## 17                  Apolipoprotein_D     numeric           63
## 18                  Apolipoprotein_E     numeric           79
## 19                  Apolipoprotein_H     numeric           82
## 20   B_Lymphocyte_Chemoattractant_BL     numeric           35
## 21                             BMP_6     numeric           42
## 22              Beta_2_Microglobulin     numeric           50
## 23                      Betacellulin     numeric           36
## 24                C_Reactive_Protein     numeric          135
## 25                              CD40     numeric           34
## 26                              CD5L     numeric           82
## 27                         Calbindin     numeric          139
## 28                        Calcitonin     numeric           93
## 29                               CgA     numeric          105
## 30                   Clusterin_Apo_J     numeric           31
## 31                      Complement_3     numeric           63
## 32               Complement_Factor_H     numeric           87
## 33   Connective_Tissue_Growth_Factor     numeric           26
## 34                          Cortisol     numeric           52
## 35                Creatine_Kinase_MB     numeric           32
## 36                        Cystatin_C     numeric          212
## 37                             EGF_R     numeric           59
## 38                           EN_RAGE     numeric           95
## 39                            ENA_78     numeric           39
## 40                         Eotaxin_3     numeric           42
## 41                               FAS     numeric           52
## 42   FSH_Follicle_Stimulation_Hormon     numeric           97
## 43                        Fas_Ligand     numeric           57
## 44        Fatty_Acid_Binding_Protein     numeric           84
## 45                          Ferritin     numeric           75
## 46                          Fetuin_A     numeric           67
## 47                        Fibrinogen     numeric           91
## 48                         GRO_alpha     numeric           25
## 49  Gamma_Interferon_induced_Monokin     numeric          209
## 50   Glutathione_S_Transferase_alpha     numeric           42
## 51                            HB_EGF     numeric           54
## 52                             HCC_4     numeric           53
## 53      Hepatocyte_Growth_Factor_HGF     numeric           44
## 54                             I_309     numeric           45
## 55                            ICAM_1     numeric           68
## 56                          IGF_BP_2     numeric          126
## 57                             IL_11     numeric           75
## 58                             IL_13     numeric           18
## 59                             IL_16     numeric           55
## 60                            IL_17E     numeric           44
## 61                         IL_1alpha     numeric           60
## 62                              IL_3     numeric           58
## 63                              IL_4     numeric           47
## 64                              IL_5     numeric           48
## 65                              IL_6     numeric           53
## 66                     IL_6_Receptor     numeric           53
## 67                              IL_7     numeric           46
## 68                              IL_8     numeric           56
## 69        IP_10_Inducible_Protein_10     numeric          211
## 70                               IgA     numeric           94
## 71                           Insulin     numeric           55
## 72    Kidney_Injury_Molecule_1_KIM_1     numeric           50
## 73                             LOX_1     numeric           67
## 74                            Leptin     numeric           82
## 75                     Lipoprotein_a     numeric          128
## 76                             MCP_1     numeric          219
## 77                             MCP_2     numeric           39
## 78                               MIF     numeric           43
## 79                        MIP_1alpha     numeric           49
## 80                         MIP_1beta     numeric           47
## 81                             MMP_2     numeric           48
## 82                             MMP_3     numeric           80
## 83                             MMP10     numeric           56
## 84                              MMP7     numeric           89
## 85                         Myoglobin     numeric          116
## 86                         NT_proBNP     numeric          111
## 87                             NrCAM     numeric          126
## 88                       Osteopontin     numeric          166
## 89                             PAI_1     numeric           70
## 90                            PAPP_A     numeric           34
## 91                              PLGF     numeric           86
## 92                               PYY     numeric           34
## 93            Pancreatic_polypeptide     numeric           81
## 94                         Prolactin     numeric           57
## 95        Prostatic_Acid_Phosphatase     numeric           43
## 96                         Protein_S     numeric           24
## 97  Pulmonary_and_Activation_Regulat     numeric           54
## 98                            RANTES     numeric           39
## 99                          Resistin     numeric           59
## 100                            S100b     numeric           35
## 101                             SGOT     numeric           75
## 102                             SHBG     numeric           92
## 103                              SOD     numeric          164
## 104                  Serum_Amyloid_P     numeric           74
## 105                         Sortilin     numeric           65
## 106                 Stem_Cell_Factor     numeric           44
## 107                        TGF_alpha     numeric           62
## 108                           TIMP_1     numeric           56
## 109                          TNF_RII     numeric           72
## 110                         TRAIL_R3     numeric           60
## 111                   TTR_prealbumin     numeric           16
## 112        Tamm_Horsfall_Protein_THP     numeric           60
## 113                   Thrombomodulin     numeric           35
## 114                   Thrombopoietin     numeric           54
## 115  Thymus_Expressed_Chemokine_TECK     numeric           37
## 116      Thyroid_Stimulating_Hormone     numeric           66
## 117       Thyroxine_Binding_Globulin     numeric           49
## 118                    Tissue_Factor     numeric           67
## 119                      Transferrin     numeric           30
## 120            Trefoil_Factor_3_TFF3     numeric           37
## 121                           VCAM_1     numeric           40
## 122                             VEGF     numeric          200
## 123                      Vitronectin     numeric           71
## 124            von_Willebrand_Factor     numeric           43
##     Unique.Count.Ratio First.Mode.Value Second.Mode.Value First.Mode.Count
## 1                0.199            1.157             1.107               14
## 2                0.120           -1.609            -1.715               20
## 3                0.221            0.191             0.530               29
## 4                0.341           -5.991            -4.200                7
## 5                0.243            1.194             1.099               12
## 6                0.240          -12.907           -13.310               11
## 7                0.307           -3.244            -3.270               13
## 8                0.176         -179.087          -194.947               21
## 9                0.135            0.531             0.642               23
## 10               0.506            2.262             2.107                9
## 11               0.199           -2.040            -1.772               30
## 12               0.311           -7.902            -7.452                8
## 13               0.318           -0.968            -0.755                9
## 14               0.311           -6.211            -7.289               11
## 15               0.184           -1.715            -1.661               23
## 16               0.307           -2.120            -2.207               17
## 17               0.236            1.308             1.386               11
## 18               0.296            2.720             4.024               11
## 19               0.307            0.097            -0.383               14
## 20               0.131            2.371             1.981               36
## 21               0.157           -1.675            -1.845               30
## 22               0.187            0.095             0.182               38
## 23               0.135           51.000            42.000               50
## 24               0.506           -5.745            -6.571                7
## 25               0.127           -1.242            -1.273               25
## 26               0.307            0.095             0.182               17
## 27               0.521           21.495            20.891                8
## 28               0.348            0.693             0.956               15
## 29               0.393          315.308           361.583                9
## 30               0.116            2.773             2.890               25
## 31               0.236          -16.545           -18.173               15
## 32               0.326            4.024             4.475               22
## 33               0.097            0.693             0.788               25
## 34               0.195           12.000            11.000               38
## 35               0.120           -1.671            -1.724               27
## 36               0.794            8.470             8.357                4
## 37               0.221           -0.590            -0.700               12
## 38               0.356           -4.200            -4.423               11
## 39               0.146           -1.368            -1.364               39
## 40               0.157           64.000            44.000               38
## 41               0.195           -0.713            -0.528               23
## 42               0.363           -1.064            -1.361               10
## 43               0.213            3.101             2.792               19
## 44               0.315            0.624             0.269                9
## 45               0.281            2.382             3.329                8
## 46               0.251            1.281             1.224               15
## 47               0.341           -6.571            -7.601                7
## 48               0.094            1.398             1.372               32
## 49               0.783            2.789             2.584                4
## 50               0.157            0.968             0.985               20
## 51               0.202            6.413             6.560               17
## 52               0.199           -3.576            -3.689               15
## 53               0.165            0.095             0.182               45
## 54               0.169            2.944             2.996               21
## 55               0.255           -0.489            -0.590               19
## 56               0.472            5.328             5.187                7
## 57               0.281            2.031             5.122               16
## 58               0.067            1.283             1.274               41
## 59               0.206            3.077             2.924               21
## 60               0.165            5.325             4.749               30
## 61               0.225           -7.264            -7.849               35
## 62               0.217           -3.912            -4.075               20
## 63               0.176            1.808             1.209               25
## 64               0.180            0.182             0.336               27
## 65               0.199            0.096            -0.242               19
## 66               0.199            0.273             0.000               26
## 67               0.172            2.155             3.476               33
## 68               0.210            1.676             1.691               15
## 69               0.790            5.687             5.050                3
## 70               0.352           -6.645            -6.502               11
## 71               0.206           -1.277            -1.341               19
## 72               0.187           -1.172            -1.144               11
## 73               0.251            1.281             1.131               13
## 74               0.307           -1.329            -1.466               17
## 75               0.479           -4.343            -4.423                8
## 76               0.820            6.213             6.293                4
## 77               0.146            1.530             1.853               32
## 78               0.161           -1.897            -2.120               29
## 79               0.184            5.359             3.690               21
## 80               0.176            2.944             2.833               22
## 81               0.180            2.332             3.266               36
## 82               0.300           -2.207            -2.120               18
## 83               0.210           -3.689            -3.963               14
## 84               0.333           -3.774            -3.345               24
## 85               0.434           -2.040            -1.609               11
## 86               0.416            4.466             4.554                8
## 87               0.472            4.489             3.912                6
## 88               0.622            5.288             5.187                6
## 89               0.262            0.094             0.177               25
## 90               0.127           -2.971            -2.902               26
## 91               0.322            3.738             3.714               10
## 92               0.127            2.833             2.996               38
## 93               0.303            0.182             0.336               14
## 94               0.213            0.095             0.182               32
## 95               0.161           -1.690            -1.710               26
## 96               0.090           -2.358            -2.259               36
## 97               0.202           -1.386            -1.772               16
## 98               0.146           -6.571            -6.502               28
## 99               0.221          -20.661           -23.322               14
## 100              0.131            0.946             1.055               22
## 101              0.281           -0.400             0.095               12
## 102              0.345           -2.207            -1.772               24
## 103              0.614            5.263             5.468                9
## 104              0.277           -6.032            -6.215               14
## 105              0.243            3.461             3.924               11
## 106              0.165            3.401             3.045               18
## 107              0.232           10.186            10.858               10
## 108              0.210           11.266            11.856               15
## 109              0.270           -0.755            -0.598                9
## 110              0.225           -0.683            -0.471               13
## 111              0.060            2.833             2.890               48
## 112              0.225           -3.096            -3.123               20
## 113              0.131           -1.579            -1.534               26
## 114              0.202           -0.886            -0.658               20
## 115              0.139            4.149             3.637               20
## 116              0.247           -6.190            -4.605               15
## 117              0.184           -1.715            -1.661               19
## 118              0.251            0.742             1.435                9
## 119              0.112            2.890             2.773               29
## 120              0.139           -4.017            -3.730               19
## 121              0.150            2.708             2.565               27
## 122              0.749           15.756            17.476                4
## 123              0.266            0.095             0.182               14
## 124              0.161           -4.269            -4.343               18
##     Second.Mode.Count First.Second.Mode.Ratio  Minimum     Mean   Median
## 1                  11                   1.273   -0.676    1.320    1.301
## 2                  19                   1.053   -2.207   -1.538   -1.561
## 3                  26                   1.115   -0.923    0.309    0.280
## 4                   6                   1.167   -6.725   -5.201   -5.185
## 5                  10                   1.200    0.262    1.361    1.361
## 6                  10                   1.100  -17.028  -13.052  -13.004
## 7                   8                   1.625   -4.343   -2.932   -2.937
## 8                  20                   1.050 -289.685 -158.615 -160.010
## 9                  20                   1.150   -0.545    0.673    0.642
## 10                  7                   1.286    1.752    2.318    2.320
## 11                 21                   1.429   -2.957   -1.854   -1.833
## 12                  7                   1.143   -8.680   -7.483   -7.470
## 13                  8                   1.125   -1.897   -0.635   -0.673
## 14                  9                   1.222   -9.937   -5.578   -5.703
## 15                 18                   1.278   -3.324   -1.583   -1.609
## 16                 15                   1.133   -3.689   -2.494   -2.526
## 17                 10                   1.100    0.470    1.440    1.411
## 18                 10                   1.100    0.591    2.806    2.818
## 19                  9                   1.556   -2.234   -0.321   -0.370
## 20                 30                   1.200    0.732    2.017    1.981
## 21                 29                   1.034   -2.761   -1.911   -1.877
## 22                 36                   1.056   -0.545    0.168    0.182
## 23                 31                   1.613   10.000   51.011   51.000
## 24                  6                   1.167   -8.517   -5.874   -5.843
## 25                 20                   1.250   -1.864   -1.258   -1.273
## 26                 16                   1.062   -1.238   -0.053   -0.062
## 27                  6                   1.333   10.961   22.433   22.249
## 28                 13                   1.154   -0.713    1.679    1.649
## 29                  8                   1.125  135.605  333.298  331.520
## 30                 21                   1.190    1.872    2.882    2.890
## 31                 13                   1.154  -23.387  -15.610  -15.524
## 32                 19                   1.158   -0.839    3.554    3.600
## 33                 24                   1.042    0.182    0.774    0.788
## 34                 34                   1.118    0.100   11.984   12.000
## 35                 24                   1.125   -1.872   -1.674   -1.671
## 36                  3                   1.333    7.432    8.586    8.564
## 37                 11                   1.091   -1.361   -0.701   -0.684
## 38                 10                   1.100   -8.377   -3.635   -3.650
## 39                 22                   1.773   -1.405   -1.372   -1.374
## 40                 26                   1.462    7.000   58.172   59.000
## 41                 19                   1.211   -1.514   -0.529   -0.528
## 42                  9                   1.111   -2.115   -1.143   -1.136
## 43                 14                   1.357   -0.154    2.968    3.101
## 44                  8                   1.125   -1.044    1.353    1.387
## 45                  7                   1.143    0.608    2.765    2.775
## 46                 12                   1.250    0.470    1.350    1.308
## 47                  6                   1.167   -8.874   -7.356   -7.323
## 48                 28                   1.143    1.271    1.378    1.382
## 49                  3                   1.333    2.393    2.786    2.783
## 50                 18                   1.111    0.524    0.951    0.968
## 51                 13                   1.308    2.103    6.833    6.703
## 52                 14                   1.071   -4.510   -3.500   -3.507
## 53                 27                   1.667   -0.635    0.196    0.182
## 54                 19                   1.105    1.758    2.958    2.944
## 55                 14                   1.357   -1.533   -0.591   -0.590
## 56                  6                   1.167    4.635    5.317    5.323
## 57                 10                   1.600    1.755    4.725    4.805
## 58                 38                   1.079    1.259    1.284    1.283
## 59                 20                   1.050    1.187    2.929    2.909
## 60                 25                   1.200    1.052    4.855    4.749
## 61                 26                   1.346   -8.517   -7.514   -7.524
## 62                 17                   1.176   -5.915   -3.941   -3.912
## 63                 20                   1.250    0.531    1.773    1.808
## 64                 26                   1.038   -1.427    0.187    0.182
## 65                 16                   1.188   -1.534   -0.154   -0.160
## 66                 24                   1.083   -0.676    0.095    0.097
## 67                 18                   1.833    0.560    2.839    2.793
## 68                 13                   1.154    1.574    1.704    1.705
## 69                  2                   1.500    4.317    5.755    5.753
## 70                 10                   1.100  -10.520   -6.121   -6.119
## 71                 16                   1.188   -2.169   -1.233   -1.246
## 72                 10                   1.100   -1.256   -1.185   -1.183
## 73                 12                   1.083    0.000    1.283    1.281
## 74                 15                   1.133   -2.147   -1.504   -1.505
## 75                  7                   1.143   -6.812   -4.417   -4.605
## 76                  3                   1.333    5.826    6.497    6.494
## 77                 24                   1.333    0.401    1.869    1.853
## 78                 25                   1.160   -2.847   -1.864   -1.897
## 79                 14                   1.500    0.935    4.049    4.050
## 80                 21                   1.048    1.946    2.814    2.833
## 81                 22                   1.636    0.098    2.875    2.815
## 82                 17                   1.059   -4.423   -2.446   -2.453
## 83                 13                   1.077   -4.934   -3.635   -3.650
## 84                 13                   1.846   -8.398   -3.789   -3.774
## 85                 10                   1.100   -3.170   -1.367   -1.470
## 86                  7                   1.143    3.178    4.552    4.554
## 87                  5                   1.200    2.639    4.362    4.394
## 88                  5                   1.200    4.111    5.204    5.187
## 89                 20                   1.250   -0.991    0.077    0.094
## 90                 25                   1.040   -3.311   -2.854   -2.871
## 91                  9                   1.111    2.485    3.912    3.871
## 92                 27                   1.407    2.186    3.015    2.996
## 93                 11                   1.273   -2.120   -0.013   -0.041
## 94                 30                   1.067   -1.309    0.045    0.000
## 95                 21                   1.238   -1.934   -1.685   -1.690
## 96                 30                   1.200   -3.338   -2.240   -2.259
## 97                 14                   1.143   -2.513   -1.488   -1.514
## 98                 22                   1.273   -7.222   -6.511   -6.502
## 99                 13                   1.077  -34.967  -17.641  -17.466
## 100                20                   1.100    0.187    1.251    1.254
## 101                10                   1.200   -1.347   -0.406   -0.400
## 102                11                   2.182   -4.135   -2.477   -2.489
## 103                 6                   1.500    4.317    5.336    5.366
## 104                12                   1.167   -7.506   -6.017   -6.032
## 105                10                   1.100    1.654    3.852    3.867
## 106                15                   1.200    2.251    3.301    3.296
## 107                 9                   1.111    6.843    9.801    9.919
## 108                13                   1.154    1.742   11.750   11.565
## 109                 8                   1.125   -1.661   -0.594   -0.598
## 110                12                   1.083   -1.211   -0.539   -0.532
## 111                47                   1.021    2.485    2.854    2.833
## 112                18                   1.111   -3.206   -3.116   -3.117
## 113                21                   1.238   -2.038   -1.505   -1.492
## 114                17                   1.176   -1.540   -0.754   -0.751
## 115                19                   1.053    1.508    3.848    3.810
## 116                14                   1.071   -6.190   -4.499   -4.510
## 117                18                   1.056   -2.477   -1.479   -1.514
## 118                 8                   1.125   -0.211    1.170    1.224
## 119                28                   1.036    1.932    2.909    2.890
## 120                18                   1.056   -4.744   -3.876   -3.863
## 121                24                   1.125    1.723    2.688    2.708
## 122                 3                   1.333   11.831   16.988   17.077
## 123                12                   1.167   -1.427   -0.285   -0.301
## 124                17                   1.059   -4.991   -3.906   -3.912
##     Maximum Skewness Kurtosis Percentile25th Percentile75th
## 1     2.840   -0.101    2.975          0.946          1.719
## 2    -0.844    0.028    2.746         -1.715         -1.347
## 3     1.521    0.038    2.866          0.000          0.608
## 4    -3.507    0.108    2.713         -5.669         -4.780
## 5     2.303    0.034    3.103          1.131          1.589
## 6    -8.192    0.164    3.586        -14.071        -12.096
## 7    -1.772    0.027    2.648         -3.270         -2.590
## 8   -59.456   -0.034    3.026       -186.641       -134.622
## 9     1.526   -0.168    3.639          0.470          0.875
## 10    2.881   -0.042    2.370          2.119          2.497
## 11   -0.777    0.046    3.028         -2.120         -1.609
## 12   -6.166   -0.016    3.085         -7.763         -7.209
## 13    0.956    0.279    2.957         -0.968         -0.315
## 14   -2.153   -0.032    2.767         -6.630         -4.539
## 15   -0.274    0.088    4.317         -1.833         -1.367
## 16   -1.238    0.245    3.246         -2.773         -2.207
## 17    2.272    0.001    2.732          1.209          1.668
## 18    5.444    0.064    3.288          2.334          3.286
## 19    0.927    0.097    4.888         -0.598         -0.061
## 20    4.024    0.050    3.410          1.673          2.371
## 21   -0.817    0.055    3.667         -2.152         -1.675
## 22    0.993   -0.022    2.906         -0.041          0.336
## 23   82.000   -0.026    3.431         42.000         59.000
## 24   -2.937    0.032    2.515         -6.645         -5.083
## 25   -0.547    0.157    3.504         -1.376         -1.124
## 26    1.163    0.095    2.918         -0.357          0.262
## 27   33.777   -0.042    3.250         19.771         24.795
## 28    3.892    0.109    2.731          0.956          2.282
## 29  535.397   -0.055    2.708        278.025        392.067
## 30    3.584   -0.186    3.336          2.708          3.045
## 31   -9.563   -0.028    2.547        -17.567        -13.882
## 32    7.624    0.065    3.873          2.753          4.255
## 33    1.411    0.015    3.002          0.642          0.916
## 34   29.000    0.586    5.953          9.800         14.000
## 35   -1.384    0.086    3.197         -1.724         -1.626
## 36    9.694    0.157    3.075          8.321          8.839
## 37   -0.061   -0.163    2.797         -0.857         -0.546
## 38   -0.386    0.068    6.513         -4.200         -3.147
## 39   -1.339    0.091    2.965         -1.381         -1.364
## 40  107.000    0.074    2.842         44.000         70.000
## 41    0.336   -0.085    2.755         -0.713         -0.315
## 42    0.097    0.114    2.612         -1.466         -0.876
## 43    7.633    0.000    4.024          2.341          3.695
## 44    3.706    0.037    3.003          0.800          1.885
## 45    4.633   -0.127    2.981          2.290          3.292
## 46    2.251    0.165    2.609          1.099          1.609
## 47   -5.843    0.006    3.171         -7.717         -7.013
## 48    1.495   -0.219    2.941          1.351          1.406
## 49    3.065   -0.158    2.829          2.707          2.873
## 50    1.318    0.044    2.589          0.844          1.034
## 51   10.695    0.020    2.900          5.786          7.865
## 52   -2.120    0.260    3.591         -3.730         -3.270
## 53    0.875   -0.055    2.708          0.000          0.405
## 54    4.143   -0.174    3.467          2.708          3.219
## 55    0.517   -0.040    2.979         -0.830         -0.383
## 56    5.948   -0.110    3.296          5.179          5.453
## 57    8.491    0.000    2.480          3.706          5.776
## 58    1.321    0.402    3.316          1.274          1.290
## 59    4.937    0.175    3.117          2.521          3.351
## 60    8.952   -0.012    3.326          4.149          5.631
## 61   -5.952    0.299    3.530         -7.824         -7.264
## 62   -2.453   -0.150    3.642         -4.269         -3.631
## 63    3.045    0.004    2.822          1.459          2.146
## 64    1.946   -0.045    3.687         -0.122          0.470
## 65    1.814    0.016    4.021         -0.413          0.141
## 66    0.831   -0.132    2.443         -0.125          0.354
## 67    5.706   -0.022    2.488          2.155          3.706
## 68    1.807   -0.145    3.470          1.680          1.728
## 69    7.501    0.293    3.317          5.398          6.064
## 70   -4.200   -0.607    6.399         -6.645         -5.573
## 71   -0.159   -0.025    3.691         -1.447         -1.034
## 72   -1.105    0.012    2.880         -1.204         -1.164
## 73    2.272   -0.020    3.061          1.030          1.526
## 74   -0.621    0.053    3.019         -1.700         -1.329
## 75   -1.386    0.344    2.390         -5.308         -3.490
## 76    7.230   -0.015    2.788          6.319          6.678
## 77    4.024    0.000    3.957          1.530          2.182
## 78   -0.844    0.160    3.034         -2.120         -1.661
## 79    6.796    0.151    2.810          3.338          4.686
## 80    4.007    0.206    3.001          2.565          3.045
## 81    5.359   -0.113    2.953          2.332          3.551
## 82   -0.528   -0.114    3.615         -2.749         -2.120
## 83   -2.207    0.240    3.361         -3.938         -3.352
## 84   -0.222   -0.035    2.703         -4.820         -2.714
## 85    1.775    0.704    3.638         -2.040         -0.799
## 86    5.886   -0.160    4.130          4.350          4.775
## 87    6.011   -0.244    3.244          3.998          4.749
## 88    6.308    0.031    3.223          4.963          5.442
## 89    1.166    0.045    2.750         -0.167          0.320
## 90   -2.520   -0.029    2.698         -2.936         -2.749
## 91    5.170   -0.092    3.011          3.638          4.205
## 92    3.932    0.166    3.434          2.833          3.178
## 93    1.932    0.076    2.690         -0.528          0.531
## 94    0.993   -0.045    4.693         -0.139          0.258
## 95   -1.424    0.193    5.276         -1.717         -1.654
## 96   -1.221    0.041    3.459         -2.464         -2.000
## 97   -0.274    0.244    2.621         -1.833         -1.171
## 98   -5.547    0.170    2.912         -6.725         -6.320
## 99   -2.239   -0.050    2.997        -21.468        -13.501
## 100   2.373   -0.007    2.971          1.001          1.500
## 101   0.742    0.142    3.370         -0.635         -0.198
## 102  -1.109   -0.066    2.965         -2.813         -2.120
## 103   6.317   -0.145    3.061          5.094          5.583
## 104  -4.646   -0.127    2.900         -6.377         -5.655
## 105   6.225    0.056    2.885          3.343          4.371
## 106   4.277    0.056    2.906          3.045          3.526
## 107  13.827   -0.021    2.809          8.859         10.695
## 108  18.881    0.157    6.004         10.490         12.697
## 109   0.470    0.044    3.110         -0.821         -0.378
## 110   0.269    0.070    3.256         -0.701         -0.385
## 111   3.332    0.226    3.255          2.773          2.944
## 112  -2.995    0.059    3.762         -3.137         -3.096
## 113  -0.817   -0.024    2.875         -1.626         -1.341
## 114   0.098    0.239    3.382         -0.886         -0.629
## 115   6.225    0.032    3.693          3.343          4.316
## 116  -1.715    0.024    3.719         -4.962         -4.017
## 117  -0.211    0.331    2.879         -1.772         -1.238
## 118   2.485   -0.180    2.887          0.833          1.482
## 119   3.761   -0.035    3.828          2.708          3.091
## 120  -2.957    0.151    2.781         -4.135         -3.650
## 121   3.689   -0.064    3.124          2.485          2.890
## 122  22.380    0.102    3.290         15.773         18.095
## 123   0.531   -0.038    2.760         -0.511         -0.036
## 124  -2.957   -0.124    2.625         -4.200         -3.612
##################################
# Identifying potential data quality issues
##################################

##################################
# Checking for missing observations
##################################
if ((nrow(DQA.Summary[DQA.Summary$NA.Count>0,]))>0){
  print(paste0("Missing observations noted for ",
               (nrow(DQA.Summary[DQA.Summary$NA.Count>0,])),
               " variable(s) with NA.Count>0 and Fill.Rate<1.0."))
  DQA.Summary[DQA.Summary$NA.Count>0,]
} else {
  print("No missing observations noted.")
}
## [1] "No missing observations noted."
##################################
# Checking for zero or near-zero variance predictors
##################################
if (length(names(DQA.Predictors.Factor))==0) {
  print("No factor predictors noted.")
} else if (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])),
               " factor variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance factor predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 2 factor variable(s) with First.Second.Mode.Ratio>5."
##   Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 2          E3   character            2                1                 0
## 3          E2   character            2                0                 1
##   First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 2              245                22              0.007                  11.136
## 3              224                43              0.007                   5.209
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])),
               " numeric variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance numeric predictors due to high first-second mode ratio noted.")
}
## [1] "No low variance numeric predictors due to high first-second mode ratio noted."
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])),
               " numeric variable(s) with Unique.Count.Ratio<0.01."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,]
} else {
  print("No low variance numeric predictors due to low unique count ratio noted.")
}
## [1] "No low variance numeric predictors due to low unique count ratio noted."
##################################
# Checking for skewed predictors
##################################
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])>0){
  print(paste0("High skewness observed for ",
  (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])),
  " numeric variable(s) with Skewness>3 or Skewness<(-3)."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                 as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),]
} else {
  print("No skewed numeric predictors noted.")
}
## [1] "No skewed numeric predictors noted."

1.3 Data Preprocessing

1.3.1 Outlier


[A] Few outliers noted for most variables with the numeric data visualized through a boxplot including observations classified as suspected outliers using the IQR criterion. The IQR criterion means that all observations above the (75th percentile + 1.5 x IQR) or below the (25th percentile - 1.5 x IQR) are suspected outliers, where IQR is the difference between the third quartile (75th percentile) and first quartile (25th percentile). Outlier treatment for numerical stability remains optional depending on potential model requirements for the subsequent steps. 6 variables were observed with at least 10 outliers listed as follows:
     [A.1] Apolipoprotein_CI variable (10 outliers detected)
     [A.2] Cortisol variable (11 outliers detected)
     [A.3] IL_17E variable (11 outliers detected)
     [A.4] IL6 variable (19 outliers detected)
     [A.5] MCP_2 variable (21 outliers detected)
     [A.6] Prostatic_Acid_Phospatase variable (10 outliers detected)

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Alzheimer_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,!names(DPA.Predictors) %in% c("E2","E3","E4")]
DPA.Predictors.Numeric <- as.data.frame(sapply(DPA.Predictors.Numeric,function(x) as.numeric(x)))

##################################
# Identifying outliers for the numeric predictors
##################################
OutlierCountList <- c()

for (i in 1:ncol(DPA.Predictors.Numeric)) {
  Outliers <- boxplot.stats(DPA.Predictors.Numeric[,i])$out
  OutlierCount <- length(Outliers)
  OutlierCountList <- append(OutlierCountList,OutlierCount)
  OutlierIndices <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
  boxplot(DPA.Predictors.Numeric[,i], 
          ylab = names(DPA.Predictors.Numeric)[i], 
          main = names(DPA.Predictors.Numeric)[i],
          horizontal=TRUE)
  mtext(paste0(OutlierCount, " Outlier(s) Detected"))
}

OutlierCountSummary <- as.data.frame(cbind(names(DPA.Predictors.Numeric),(OutlierCountList)))
names(OutlierCountSummary) <- c("NumericPredictors","OutlierCount")
OutlierCountSummary$OutlierCount <- as.numeric(as.character(OutlierCountSummary$OutlierCount))
NumericPredictorWithOutlierCount <- nrow(OutlierCountSummary[OutlierCountSummary$OutlierCount>0,])
print(paste0(NumericPredictorWithOutlierCount, " numeric variable(s) were noted with outlier(s)." ))
## [1] "105 numeric variable(s) were noted with outlier(s)."
##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA.Predictors.Numeric))
Data summary
Name DPA.Predictors.Numeric
Number of rows 267
Number of columns 124
_______________________
Column type frequency:
numeric 124
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
ACE_CD143_Angiotensin_Converti 0 1 1.32 0.54 -0.68 0.95 1.30 1.72 2.84 ▁▃▇▇▁
ACTH_Adrenocorticotropic_Hormon 0 1 -1.54 0.28 -2.21 -1.71 -1.56 -1.35 -0.84 ▂▆▇▆▂
AXL 0 1 0.31 0.45 -0.92 0.00 0.28 0.61 1.52 ▁▅▇▃▁
Adiponectin 0 1 -5.20 0.67 -6.73 -5.67 -5.18 -4.78 -3.51 ▂▆▇▅▁
Alpha_1_Antichymotrypsin 0 1 1.36 0.36 0.26 1.13 1.36 1.59 2.30 ▁▃▇▅▁
Alpha_1_Antitrypsin 0 1 -13.05 1.48 -17.03 -14.07 -13.00 -12.10 -8.19 ▁▅▇▂▁
Alpha_1_Microglobulin 0 1 -2.93 0.48 -4.34 -3.27 -2.94 -2.59 -1.77 ▁▅▇▇▂
Alpha_2_Macroglobulin 0 1 -158.61 40.93 -289.68 -186.64 -160.01 -134.62 -59.46 ▁▂▇▅▂
Angiopoietin_2_ANG_2 0 1 0.67 0.33 -0.54 0.47 0.64 0.88 1.53 ▁▂▇▆▂
Angiotensinogen 0 1 2.32 0.25 1.75 2.12 2.32 2.50 2.88 ▃▆▇▇▂
Apolipoprotein_A_IV 0 1 -1.85 0.38 -2.96 -2.12 -1.83 -1.61 -0.78 ▁▃▇▃▁
Apolipoprotein_A1 0 1 -7.48 0.44 -8.68 -7.76 -7.47 -7.21 -6.17 ▁▅▇▃▁
Apolipoprotein_A2 0 1 -0.64 0.50 -1.90 -0.97 -0.67 -0.31 0.96 ▁▇▇▃▁
Apolipoprotein_B 0 1 -5.58 1.48 -9.94 -6.63 -5.70 -4.54 -2.15 ▁▅▇▇▂
Apolipoprotein_CI 0 1 -1.58 0.41 -3.32 -1.83 -1.61 -1.37 -0.27 ▁▁▇▅▁
Apolipoprotein_CIII 0 1 -2.49 0.44 -3.69 -2.77 -2.53 -2.21 -1.24 ▁▅▇▅▁
Apolipoprotein_D 0 1 1.44 0.34 0.47 1.21 1.41 1.67 2.27 ▁▃▇▆▂
Apolipoprotein_E 0 1 2.81 0.78 0.59 2.33 2.82 3.29 5.44 ▁▅▇▂▁
Apolipoprotein_H 0 1 -0.32 0.39 -2.23 -0.60 -0.37 -0.06 0.93 ▁▁▇▆▁
B_Lymphocyte_Chemoattractant_BL 0 1 2.02 0.57 0.73 1.67 1.98 2.37 4.02 ▃▇▇▁▁
BMP_6 0 1 -1.91 0.31 -2.76 -2.15 -1.88 -1.68 -0.82 ▁▅▇▂▁
Beta_2_Microglobulin 0 1 0.17 0.30 -0.54 -0.04 0.18 0.34 0.99 ▂▃▇▃▁
Betacellulin 0 1 51.01 10.87 10.00 42.00 51.00 59.00 82.00 ▁▁▇▅▁
C_Reactive_Protein 0 1 -5.87 1.20 -8.52 -6.65 -5.84 -5.08 -2.94 ▃▆▇▆▂
CD40 0 1 -1.26 0.21 -1.86 -1.38 -1.27 -1.12 -0.55 ▁▆▇▃▁
CD5L 0 1 -0.05 0.45 -1.24 -0.36 -0.06 0.26 1.16 ▁▅▇▃▁
Calbindin 0 1 22.43 4.11 10.96 19.77 22.25 24.80 33.78 ▁▃▇▃▁
Calcitonin 0 1 1.68 0.87 -0.71 0.96 1.65 2.28 3.89 ▁▆▇▅▂
CgA 0 1 333.30 83.67 135.60 278.02 331.52 392.07 535.40 ▂▆▇▅▂
Clusterin_Apo_J 0 1 2.88 0.29 1.87 2.71 2.89 3.04 3.58 ▁▂▇▆▂
Complement_3 0 1 -15.61 2.46 -23.39 -17.57 -15.52 -13.88 -9.56 ▁▆▇▇▂
Complement_Factor_H 0 1 3.55 1.25 -0.84 2.75 3.60 4.25 7.62 ▁▃▇▅▁
Connective_Tissue_Growth_Factor 0 1 0.77 0.20 0.18 0.64 0.79 0.92 1.41 ▁▅▇▃▁
Cortisol 0 1 11.98 3.95 0.10 9.80 12.00 14.00 29.00 ▁▇▇▁▁
Creatine_Kinase_MB 0 1 -1.67 0.09 -1.87 -1.72 -1.67 -1.63 -1.38 ▃▅▇▂▁
Cystatin_C 0 1 8.59 0.40 7.43 8.32 8.56 8.84 9.69 ▁▅▇▃▁
EGF_R 0 1 -0.70 0.22 -1.36 -0.86 -0.68 -0.55 -0.06 ▁▃▇▅▁
EN_RAGE 0 1 -3.64 0.88 -8.38 -4.20 -3.65 -3.15 -0.39 ▁▁▇▆▁
ENA_78 0 1 -1.37 0.01 -1.41 -1.38 -1.37 -1.36 -1.34 ▁▅▇▅▁
Eotaxin_3 0 1 58.17 15.83 7.00 44.00 59.00 70.00 107.00 ▁▆▇▅▁
FAS 0 1 -0.53 0.30 -1.51 -0.71 -0.53 -0.31 0.34 ▁▃▇▆▁
FSH_Follicle_Stimulation_Hormon 0 1 -1.14 0.42 -2.12 -1.47 -1.14 -0.88 0.10 ▂▇▇▃▁
Fas_Ligand 0 1 2.97 1.09 -0.15 2.34 3.10 3.70 7.63 ▂▇▇▁▁
Fatty_Acid_Binding_Protein 0 1 1.35 0.78 -1.04 0.80 1.39 1.88 3.71 ▁▅▇▅▁
Ferritin 0 1 2.76 0.76 0.61 2.29 2.77 3.29 4.63 ▁▃▇▆▂
Fetuin_A 0 1 1.35 0.37 0.47 1.10 1.31 1.61 2.25 ▂▆▇▅▂
Fibrinogen 0 1 -7.36 0.57 -8.87 -7.72 -7.32 -7.01 -5.84 ▁▅▇▅▁
GRO_alpha 0 1 1.38 0.04 1.27 1.35 1.38 1.41 1.49 ▂▃▇▅▁
Gamma_Interferon_induced_Monokin 0 1 2.79 0.11 2.39 2.71 2.78 2.87 3.07 ▁▂▇▆▂
Glutathione_S_Transferase_alpha 0 1 0.95 0.16 0.52 0.84 0.97 1.03 1.32 ▁▃▇▅▂
HB_EGF 0 1 6.83 1.51 2.10 5.79 6.70 7.86 10.70 ▁▃▇▆▂
HCC_4 0 1 -3.50 0.36 -4.51 -3.73 -3.51 -3.27 -2.12 ▂▇▇▂▁
Hepatocyte_Growth_Factor_HGF 0 1 0.20 0.29 -0.63 0.00 0.18 0.41 0.88 ▁▃▇▅▂
I_309 0 1 2.96 0.37 1.76 2.71 2.94 3.22 4.14 ▁▅▇▃▁
ICAM_1 0 1 -0.59 0.33 -1.53 -0.83 -0.59 -0.38 0.52 ▁▅▇▃▁
IGF_BP_2 0 1 5.32 0.20 4.63 5.18 5.32 5.45 5.95 ▁▃▇▅▁
IL_11 0 1 4.72 1.45 1.75 3.71 4.81 5.78 8.49 ▃▆▇▅▁
IL_13 0 1 1.28 0.01 1.26 1.27 1.28 1.29 1.32 ▂▇▆▂▁
IL_16 0 1 2.93 0.66 1.19 2.52 2.91 3.35 4.94 ▁▆▇▃▁
IL_17E 0 1 4.85 1.34 1.05 4.15 4.75 5.63 8.95 ▁▆▇▃▁
IL_1alpha 0 1 -7.51 0.39 -8.52 -7.82 -7.52 -7.26 -5.95 ▂▇▇▂▁
IL_3 0 1 -3.94 0.50 -5.91 -4.27 -3.91 -3.63 -2.45 ▁▂▇▅▁
IL_4 0 1 1.77 0.51 0.53 1.46 1.81 2.15 3.04 ▂▅▇▅▂
IL_5 0 1 0.19 0.46 -1.43 -0.12 0.18 0.47 1.95 ▁▃▇▂▁
IL_6 0 1 -0.15 0.55 -1.53 -0.41 -0.16 0.14 1.81 ▂▆▇▂▁
IL_6_Receptor 0 1 0.09 0.32 -0.68 -0.13 0.10 0.35 0.83 ▂▆▇▆▂
IL_7 0 1 2.84 1.05 0.56 2.15 2.79 3.71 5.71 ▃▇▇▆▁
IL_8 0 1 1.70 0.04 1.57 1.68 1.71 1.73 1.81 ▁▂▇▆▁
IP_10_Inducible_Protein_10 0 1 5.75 0.51 4.32 5.40 5.75 6.06 7.50 ▁▆▇▂▁
IgA 0 1 -6.12 0.76 -10.52 -6.65 -6.12 -5.57 -4.20 ▁▁▂▇▂
Insulin 0 1 -1.23 0.34 -2.17 -1.45 -1.25 -1.03 -0.16 ▁▃▇▂▁
Kidney_Injury_Molecule_1_KIM_1 0 1 -1.18 0.03 -1.26 -1.20 -1.18 -1.16 -1.10 ▁▇▇▅▁
LOX_1 0 1 1.28 0.40 0.00 1.03 1.28 1.53 2.27 ▁▂▇▅▂
Leptin 0 1 -1.50 0.27 -2.15 -1.70 -1.50 -1.33 -0.62 ▂▇▇▂▁
Lipoprotein_a 0 1 -4.42 1.11 -6.81 -5.31 -4.61 -3.49 -1.39 ▂▇▅▅▁
MCP_1 0 1 6.50 0.26 5.83 6.32 6.49 6.68 7.23 ▂▅▇▅▁
MCP_2 0 1 1.87 0.65 0.40 1.53 1.85 2.18 4.02 ▂▆▇▂▁
MIF 0 1 -1.86 0.34 -2.85 -2.12 -1.90 -1.66 -0.84 ▁▃▇▃▁
MIP_1alpha 0 1 4.05 1.01 0.93 3.34 4.05 4.69 6.80 ▁▅▇▅▂
MIP_1beta 0 1 2.81 0.38 1.95 2.56 2.83 3.04 4.01 ▂▅▇▂▁
MMP_2 0 1 2.88 0.93 0.10 2.33 2.82 3.55 5.36 ▁▃▇▆▁
MMP_3 0 1 -2.45 0.57 -4.42 -2.75 -2.45 -2.12 -0.53 ▁▂▇▃▁
MMP10 0 1 -3.63 0.43 -4.93 -3.94 -3.65 -3.35 -2.21 ▁▆▇▃▁
MMP7 0 1 -3.79 1.55 -8.40 -4.82 -3.77 -2.71 -0.22 ▁▃▇▅▂
Myoglobin 0 1 -1.37 0.95 -3.17 -2.04 -1.47 -0.80 1.77 ▅▇▆▂▁
NT_proBNP 0 1 4.55 0.38 3.18 4.35 4.55 4.77 5.89 ▁▂▇▃▁
NrCAM 0 1 4.36 0.57 2.64 4.00 4.39 4.75 6.01 ▁▃▇▅▁
Osteopontin 0 1 5.20 0.39 4.11 4.96 5.19 5.44 6.31 ▁▅▇▃▁
PAI_1 0 1 0.08 0.41 -0.99 -0.17 0.09 0.32 1.17 ▂▃▇▅▂
PAPP_A 0 1 -2.85 0.14 -3.31 -2.94 -2.87 -2.75 -2.52 ▁▂▇▅▂
PLGF 0 1 3.91 0.41 2.48 3.64 3.87 4.20 5.17 ▁▃▇▆▁
PYY 0 1 3.02 0.29 2.19 2.83 3.00 3.18 3.93 ▁▅▇▃▁
Pancreatic_polypeptide 0 1 -0.01 0.72 -2.12 -0.53 -0.04 0.53 1.93 ▁▅▇▆▁
Prolactin 0 1 0.04 0.30 -1.31 -0.14 0.00 0.26 0.99 ▁▁▇▇▁
Prostatic_Acid_Phosphatase 0 1 -1.69 0.06 -1.93 -1.72 -1.69 -1.65 -1.42 ▁▂▇▂▁
Protein_S 0 1 -2.24 0.35 -3.34 -2.46 -2.26 -2.00 -1.22 ▁▃▇▃▁
Pulmonary_and_Activation_Regulat 0 1 -1.49 0.45 -2.51 -1.83 -1.51 -1.17 -0.27 ▂▇▇▃▂
RANTES 0 1 -6.51 0.32 -7.22 -6.73 -6.50 -6.32 -5.55 ▃▇▇▃▁
Resistin 0 1 -17.64 5.82 -34.97 -21.47 -17.47 -13.50 -2.24 ▁▃▇▆▁
S100b 0 1 1.25 0.34 0.19 1.00 1.25 1.50 2.37 ▁▆▇▅▁
SGOT 0 1 -0.41 0.35 -1.35 -0.63 -0.40 -0.20 0.74 ▁▅▇▂▁
SHBG 0 1 -2.48 0.58 -4.14 -2.81 -2.49 -2.12 -1.11 ▁▃▇▆▂
SOD 0 1 5.34 0.38 4.32 5.09 5.37 5.58 6.32 ▁▅▇▅▁
Serum_Amyloid_P 0 1 -6.02 0.56 -7.51 -6.38 -6.03 -5.65 -4.65 ▁▅▇▅▂
Sortilin 0 1 3.85 0.87 1.65 3.34 3.87 4.37 6.23 ▁▅▇▃▁
Stem_Cell_Factor 0 1 3.30 0.36 2.25 3.04 3.30 3.53 4.28 ▁▅▇▅▁
TGF_alpha 0 1 9.80 1.32 6.84 8.86 9.92 10.70 13.83 ▂▆▇▂▁
TIMP_1 0 1 11.75 1.90 1.74 10.49 11.56 12.70 18.88 ▁▁▇▅▁
TNF_RII 0 1 -0.59 0.33 -1.66 -0.82 -0.60 -0.38 0.47 ▁▃▇▃▁
TRAIL_R3 0 1 -0.54 0.24 -1.21 -0.70 -0.53 -0.38 0.27 ▁▆▇▂▁
TTR_prealbumin 0 1 2.85 0.14 2.48 2.77 2.83 2.94 3.33 ▂▅▇▃▁
Tamm_Horsfall_Protein_THP 0 1 -3.12 0.03 -3.21 -3.14 -3.12 -3.10 -2.99 ▁▇▇▂▁
Thrombomodulin 0 1 -1.51 0.22 -2.04 -1.63 -1.49 -1.34 -0.82 ▂▆▇▃▁
Thrombopoietin 0 1 -0.75 0.24 -1.54 -0.89 -0.75 -0.63 0.10 ▁▅▇▂▁
Thymus_Expressed_Chemokine_TECK 0 1 3.85 0.80 1.51 3.34 3.81 4.32 6.23 ▁▃▇▃▁
Thyroid_Stimulating_Hormone 0 1 -4.50 0.75 -6.19 -4.96 -4.51 -4.02 -1.71 ▂▇▆▁▁
Thyroxine_Binding_Globulin 0 1 -1.48 0.40 -2.48 -1.77 -1.51 -1.24 -0.21 ▂▇▇▃▁
Tissue_Factor 0 1 1.17 0.50 -0.21 0.83 1.22 1.48 2.48 ▁▅▇▆▁
Transferrin 0 1 2.91 0.27 1.93 2.71 2.89 3.09 3.76 ▁▂▇▅▁
Trefoil_Factor_3_TFF3 0 1 -3.88 0.34 -4.74 -4.14 -3.86 -3.65 -2.96 ▁▅▇▃▁
VCAM_1 0 1 2.69 0.32 1.72 2.48 2.71 2.89 3.69 ▁▃▇▃▁
VEGF 0 1 16.99 1.81 11.83 15.77 17.08 18.10 22.38 ▁▅▇▃▁
Vitronectin 0 1 -0.28 0.33 -1.43 -0.51 -0.30 -0.04 0.53 ▁▃▇▇▂
von_Willebrand_Factor 0 1 -3.91 0.38 -4.99 -4.20 -3.91 -3.61 -2.96 ▁▅▇▆▂
###################################
# Verifying the data dimensions
###################################
dim(DPA.Predictors.Numeric)
## [1] 267 124

1.3.2 Zero and Near-Zero Variance


[A] Low variance noted for 2 variables from the previous data quality assessment using a lower threshold.

[B] No low variance noted for any variable using a preprocessing summary from the caret package. The nearZeroVar method using both the freqCut and uniqueCut criteria set at 95/5 and 10, respectively, were applied on the dataset.

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- DPA.Predictors

##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA))
Data summary
Name DPA
Number of rows 267
Number of columns 127
_______________________
Column type frequency:
numeric 127
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
ACE_CD143_Angiotensin_Converti 0 1 1.32 0.54 -0.68 0.95 1.30 1.72 2.84 ▁▃▇▇▁
ACTH_Adrenocorticotropic_Hormon 0 1 -1.54 0.28 -2.21 -1.71 -1.56 -1.35 -0.84 ▂▆▇▆▂
AXL 0 1 0.31 0.45 -0.92 0.00 0.28 0.61 1.52 ▁▅▇▃▁
Adiponectin 0 1 -5.20 0.67 -6.73 -5.67 -5.18 -4.78 -3.51 ▂▆▇▅▁
Alpha_1_Antichymotrypsin 0 1 1.36 0.36 0.26 1.13 1.36 1.59 2.30 ▁▃▇▅▁
Alpha_1_Antitrypsin 0 1 -13.05 1.48 -17.03 -14.07 -13.00 -12.10 -8.19 ▁▅▇▂▁
Alpha_1_Microglobulin 0 1 -2.93 0.48 -4.34 -3.27 -2.94 -2.59 -1.77 ▁▅▇▇▂
Alpha_2_Macroglobulin 0 1 -158.61 40.93 -289.68 -186.64 -160.01 -134.62 -59.46 ▁▂▇▅▂
Angiopoietin_2_ANG_2 0 1 0.67 0.33 -0.54 0.47 0.64 0.88 1.53 ▁▂▇▆▂
Angiotensinogen 0 1 2.32 0.25 1.75 2.12 2.32 2.50 2.88 ▃▆▇▇▂
Apolipoprotein_A_IV 0 1 -1.85 0.38 -2.96 -2.12 -1.83 -1.61 -0.78 ▁▃▇▃▁
Apolipoprotein_A1 0 1 -7.48 0.44 -8.68 -7.76 -7.47 -7.21 -6.17 ▁▅▇▃▁
Apolipoprotein_A2 0 1 -0.64 0.50 -1.90 -0.97 -0.67 -0.31 0.96 ▁▇▇▃▁
Apolipoprotein_B 0 1 -5.58 1.48 -9.94 -6.63 -5.70 -4.54 -2.15 ▁▅▇▇▂
Apolipoprotein_CI 0 1 -1.58 0.41 -3.32 -1.83 -1.61 -1.37 -0.27 ▁▁▇▅▁
Apolipoprotein_CIII 0 1 -2.49 0.44 -3.69 -2.77 -2.53 -2.21 -1.24 ▁▅▇▅▁
Apolipoprotein_D 0 1 1.44 0.34 0.47 1.21 1.41 1.67 2.27 ▁▃▇▆▂
Apolipoprotein_E 0 1 2.81 0.78 0.59 2.33 2.82 3.29 5.44 ▁▅▇▂▁
Apolipoprotein_H 0 1 -0.32 0.39 -2.23 -0.60 -0.37 -0.06 0.93 ▁▁▇▆▁
B_Lymphocyte_Chemoattractant_BL 0 1 2.02 0.57 0.73 1.67 1.98 2.37 4.02 ▃▇▇▁▁
BMP_6 0 1 -1.91 0.31 -2.76 -2.15 -1.88 -1.68 -0.82 ▁▅▇▂▁
Beta_2_Microglobulin 0 1 0.17 0.30 -0.54 -0.04 0.18 0.34 0.99 ▂▃▇▃▁
Betacellulin 0 1 51.01 10.87 10.00 42.00 51.00 59.00 82.00 ▁▁▇▅▁
C_Reactive_Protein 0 1 -5.87 1.20 -8.52 -6.65 -5.84 -5.08 -2.94 ▃▆▇▆▂
CD40 0 1 -1.26 0.21 -1.86 -1.38 -1.27 -1.12 -0.55 ▁▆▇▃▁
CD5L 0 1 -0.05 0.45 -1.24 -0.36 -0.06 0.26 1.16 ▁▅▇▃▁
Calbindin 0 1 22.43 4.11 10.96 19.77 22.25 24.80 33.78 ▁▃▇▃▁
Calcitonin 0 1 1.68 0.87 -0.71 0.96 1.65 2.28 3.89 ▁▆▇▅▂
CgA 0 1 333.30 83.67 135.60 278.02 331.52 392.07 535.40 ▂▆▇▅▂
Clusterin_Apo_J 0 1 2.88 0.29 1.87 2.71 2.89 3.04 3.58 ▁▂▇▆▂
Complement_3 0 1 -15.61 2.46 -23.39 -17.57 -15.52 -13.88 -9.56 ▁▆▇▇▂
Complement_Factor_H 0 1 3.55 1.25 -0.84 2.75 3.60 4.25 7.62 ▁▃▇▅▁
Connective_Tissue_Growth_Factor 0 1 0.77 0.20 0.18 0.64 0.79 0.92 1.41 ▁▅▇▃▁
Cortisol 0 1 11.98 3.95 0.10 9.80 12.00 14.00 29.00 ▁▇▇▁▁
Creatine_Kinase_MB 0 1 -1.67 0.09 -1.87 -1.72 -1.67 -1.63 -1.38 ▃▅▇▂▁
Cystatin_C 0 1 8.59 0.40 7.43 8.32 8.56 8.84 9.69 ▁▅▇▃▁
EGF_R 0 1 -0.70 0.22 -1.36 -0.86 -0.68 -0.55 -0.06 ▁▃▇▅▁
EN_RAGE 0 1 -3.64 0.88 -8.38 -4.20 -3.65 -3.15 -0.39 ▁▁▇▆▁
ENA_78 0 1 -1.37 0.01 -1.41 -1.38 -1.37 -1.36 -1.34 ▁▅▇▅▁
Eotaxin_3 0 1 58.17 15.83 7.00 44.00 59.00 70.00 107.00 ▁▆▇▅▁
FAS 0 1 -0.53 0.30 -1.51 -0.71 -0.53 -0.31 0.34 ▁▃▇▆▁
FSH_Follicle_Stimulation_Hormon 0 1 -1.14 0.42 -2.12 -1.47 -1.14 -0.88 0.10 ▂▇▇▃▁
Fas_Ligand 0 1 2.97 1.09 -0.15 2.34 3.10 3.70 7.63 ▂▇▇▁▁
Fatty_Acid_Binding_Protein 0 1 1.35 0.78 -1.04 0.80 1.39 1.88 3.71 ▁▅▇▅▁
Ferritin 0 1 2.76 0.76 0.61 2.29 2.77 3.29 4.63 ▁▃▇▆▂
Fetuin_A 0 1 1.35 0.37 0.47 1.10 1.31 1.61 2.25 ▂▆▇▅▂
Fibrinogen 0 1 -7.36 0.57 -8.87 -7.72 -7.32 -7.01 -5.84 ▁▅▇▅▁
GRO_alpha 0 1 1.38 0.04 1.27 1.35 1.38 1.41 1.49 ▂▃▇▅▁
Gamma_Interferon_induced_Monokin 0 1 2.79 0.11 2.39 2.71 2.78 2.87 3.07 ▁▂▇▆▂
Glutathione_S_Transferase_alpha 0 1 0.95 0.16 0.52 0.84 0.97 1.03 1.32 ▁▃▇▅▂
HB_EGF 0 1 6.83 1.51 2.10 5.79 6.70 7.86 10.70 ▁▃▇▆▂
HCC_4 0 1 -3.50 0.36 -4.51 -3.73 -3.51 -3.27 -2.12 ▂▇▇▂▁
Hepatocyte_Growth_Factor_HGF 0 1 0.20 0.29 -0.63 0.00 0.18 0.41 0.88 ▁▃▇▅▂
I_309 0 1 2.96 0.37 1.76 2.71 2.94 3.22 4.14 ▁▅▇▃▁
ICAM_1 0 1 -0.59 0.33 -1.53 -0.83 -0.59 -0.38 0.52 ▁▅▇▃▁
IGF_BP_2 0 1 5.32 0.20 4.63 5.18 5.32 5.45 5.95 ▁▃▇▅▁
IL_11 0 1 4.72 1.45 1.75 3.71 4.81 5.78 8.49 ▃▆▇▅▁
IL_13 0 1 1.28 0.01 1.26 1.27 1.28 1.29 1.32 ▂▇▆▂▁
IL_16 0 1 2.93 0.66 1.19 2.52 2.91 3.35 4.94 ▁▆▇▃▁
IL_17E 0 1 4.85 1.34 1.05 4.15 4.75 5.63 8.95 ▁▆▇▃▁
IL_1alpha 0 1 -7.51 0.39 -8.52 -7.82 -7.52 -7.26 -5.95 ▂▇▇▂▁
IL_3 0 1 -3.94 0.50 -5.91 -4.27 -3.91 -3.63 -2.45 ▁▂▇▅▁
IL_4 0 1 1.77 0.51 0.53 1.46 1.81 2.15 3.04 ▂▅▇▅▂
IL_5 0 1 0.19 0.46 -1.43 -0.12 0.18 0.47 1.95 ▁▃▇▂▁
IL_6 0 1 -0.15 0.55 -1.53 -0.41 -0.16 0.14 1.81 ▂▆▇▂▁
IL_6_Receptor 0 1 0.09 0.32 -0.68 -0.13 0.10 0.35 0.83 ▂▆▇▆▂
IL_7 0 1 2.84 1.05 0.56 2.15 2.79 3.71 5.71 ▃▇▇▆▁
IL_8 0 1 1.70 0.04 1.57 1.68 1.71 1.73 1.81 ▁▂▇▆▁
IP_10_Inducible_Protein_10 0 1 5.75 0.51 4.32 5.40 5.75 6.06 7.50 ▁▆▇▂▁
IgA 0 1 -6.12 0.76 -10.52 -6.65 -6.12 -5.57 -4.20 ▁▁▂▇▂
Insulin 0 1 -1.23 0.34 -2.17 -1.45 -1.25 -1.03 -0.16 ▁▃▇▂▁
Kidney_Injury_Molecule_1_KIM_1 0 1 -1.18 0.03 -1.26 -1.20 -1.18 -1.16 -1.10 ▁▇▇▅▁
LOX_1 0 1 1.28 0.40 0.00 1.03 1.28 1.53 2.27 ▁▂▇▅▂
Leptin 0 1 -1.50 0.27 -2.15 -1.70 -1.50 -1.33 -0.62 ▂▇▇▂▁
Lipoprotein_a 0 1 -4.42 1.11 -6.81 -5.31 -4.61 -3.49 -1.39 ▂▇▅▅▁
MCP_1 0 1 6.50 0.26 5.83 6.32 6.49 6.68 7.23 ▂▅▇▅▁
MCP_2 0 1 1.87 0.65 0.40 1.53 1.85 2.18 4.02 ▂▆▇▂▁
MIF 0 1 -1.86 0.34 -2.85 -2.12 -1.90 -1.66 -0.84 ▁▃▇▃▁
MIP_1alpha 0 1 4.05 1.01 0.93 3.34 4.05 4.69 6.80 ▁▅▇▅▂
MIP_1beta 0 1 2.81 0.38 1.95 2.56 2.83 3.04 4.01 ▂▅▇▂▁
MMP_2 0 1 2.88 0.93 0.10 2.33 2.82 3.55 5.36 ▁▃▇▆▁
MMP_3 0 1 -2.45 0.57 -4.42 -2.75 -2.45 -2.12 -0.53 ▁▂▇▃▁
MMP10 0 1 -3.63 0.43 -4.93 -3.94 -3.65 -3.35 -2.21 ▁▆▇▃▁
MMP7 0 1 -3.79 1.55 -8.40 -4.82 -3.77 -2.71 -0.22 ▁▃▇▅▂
Myoglobin 0 1 -1.37 0.95 -3.17 -2.04 -1.47 -0.80 1.77 ▅▇▆▂▁
NT_proBNP 0 1 4.55 0.38 3.18 4.35 4.55 4.77 5.89 ▁▂▇▃▁
NrCAM 0 1 4.36 0.57 2.64 4.00 4.39 4.75 6.01 ▁▃▇▅▁
Osteopontin 0 1 5.20 0.39 4.11 4.96 5.19 5.44 6.31 ▁▅▇▃▁
PAI_1 0 1 0.08 0.41 -0.99 -0.17 0.09 0.32 1.17 ▂▃▇▅▂
PAPP_A 0 1 -2.85 0.14 -3.31 -2.94 -2.87 -2.75 -2.52 ▁▂▇▅▂
PLGF 0 1 3.91 0.41 2.48 3.64 3.87 4.20 5.17 ▁▃▇▆▁
PYY 0 1 3.02 0.29 2.19 2.83 3.00 3.18 3.93 ▁▅▇▃▁
Pancreatic_polypeptide 0 1 -0.01 0.72 -2.12 -0.53 -0.04 0.53 1.93 ▁▅▇▆▁
Prolactin 0 1 0.04 0.30 -1.31 -0.14 0.00 0.26 0.99 ▁▁▇▇▁
Prostatic_Acid_Phosphatase 0 1 -1.69 0.06 -1.93 -1.72 -1.69 -1.65 -1.42 ▁▂▇▂▁
Protein_S 0 1 -2.24 0.35 -3.34 -2.46 -2.26 -2.00 -1.22 ▁▃▇▃▁
Pulmonary_and_Activation_Regulat 0 1 -1.49 0.45 -2.51 -1.83 -1.51 -1.17 -0.27 ▂▇▇▃▂
RANTES 0 1 -6.51 0.32 -7.22 -6.73 -6.50 -6.32 -5.55 ▃▇▇▃▁
Resistin 0 1 -17.64 5.82 -34.97 -21.47 -17.47 -13.50 -2.24 ▁▃▇▆▁
S100b 0 1 1.25 0.34 0.19 1.00 1.25 1.50 2.37 ▁▆▇▅▁
SGOT 0 1 -0.41 0.35 -1.35 -0.63 -0.40 -0.20 0.74 ▁▅▇▂▁
SHBG 0 1 -2.48 0.58 -4.14 -2.81 -2.49 -2.12 -1.11 ▁▃▇▆▂
SOD 0 1 5.34 0.38 4.32 5.09 5.37 5.58 6.32 ▁▅▇▅▁
Serum_Amyloid_P 0 1 -6.02 0.56 -7.51 -6.38 -6.03 -5.65 -4.65 ▁▅▇▅▂
Sortilin 0 1 3.85 0.87 1.65 3.34 3.87 4.37 6.23 ▁▅▇▃▁
Stem_Cell_Factor 0 1 3.30 0.36 2.25 3.04 3.30 3.53 4.28 ▁▅▇▅▁
TGF_alpha 0 1 9.80 1.32 6.84 8.86 9.92 10.70 13.83 ▂▆▇▂▁
TIMP_1 0 1 11.75 1.90 1.74 10.49 11.56 12.70 18.88 ▁▁▇▅▁
TNF_RII 0 1 -0.59 0.33 -1.66 -0.82 -0.60 -0.38 0.47 ▁▃▇▃▁
TRAIL_R3 0 1 -0.54 0.24 -1.21 -0.70 -0.53 -0.38 0.27 ▁▆▇▂▁
TTR_prealbumin 0 1 2.85 0.14 2.48 2.77 2.83 2.94 3.33 ▂▅▇▃▁
Tamm_Horsfall_Protein_THP 0 1 -3.12 0.03 -3.21 -3.14 -3.12 -3.10 -2.99 ▁▇▇▂▁
Thrombomodulin 0 1 -1.51 0.22 -2.04 -1.63 -1.49 -1.34 -0.82 ▂▆▇▃▁
Thrombopoietin 0 1 -0.75 0.24 -1.54 -0.89 -0.75 -0.63 0.10 ▁▅▇▂▁
Thymus_Expressed_Chemokine_TECK 0 1 3.85 0.80 1.51 3.34 3.81 4.32 6.23 ▁▃▇▃▁
Thyroid_Stimulating_Hormone 0 1 -4.50 0.75 -6.19 -4.96 -4.51 -4.02 -1.71 ▂▇▆▁▁
Thyroxine_Binding_Globulin 0 1 -1.48 0.40 -2.48 -1.77 -1.51 -1.24 -0.21 ▂▇▇▃▁
Tissue_Factor 0 1 1.17 0.50 -0.21 0.83 1.22 1.48 2.48 ▁▅▇▆▁
Transferrin 0 1 2.91 0.27 1.93 2.71 2.89 3.09 3.76 ▁▂▇▅▁
Trefoil_Factor_3_TFF3 0 1 -3.88 0.34 -4.74 -4.14 -3.86 -3.65 -2.96 ▁▅▇▃▁
VCAM_1 0 1 2.69 0.32 1.72 2.48 2.71 2.89 3.69 ▁▃▇▃▁
VEGF 0 1 16.99 1.81 11.83 15.77 17.08 18.10 22.38 ▁▅▇▃▁
Vitronectin 0 1 -0.28 0.33 -1.43 -0.51 -0.30 -0.04 0.53 ▁▃▇▇▂
von_Willebrand_Factor 0 1 -3.91 0.38 -4.99 -4.20 -3.91 -3.61 -2.96 ▁▅▇▆▂
E4 0 1 0.40 0.49 0.00 0.00 0.00 1.00 1.00 ▇▁▁▁▆
E3 0 1 0.92 0.28 0.00 1.00 1.00 1.00 1.00 ▁▁▁▁▇
E2 0 1 0.16 0.37 0.00 0.00 0.00 0.00 1.00 ▇▁▁▁▂
##################################
# Identifying columns with low variance
###################################
DPA_LowVariance <- nearZeroVar(DPA,
                               freqCut = 95/5,
                               uniqueCut = 10,
                               saveMetrics= TRUE)
(DPA_LowVariance[DPA_LowVariance$nzv,])
## [1] freqRatio     percentUnique zeroVar       nzv          
## <0 rows> (or 0-length row.names)
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
  
  print("No low variance predictors noted.")
  
} else {

  print(paste0("Low variance observed for ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
  
  DPA_LowVarianceForRemoval <- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
  
  print(paste0("Low variance can be resolved by removing ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LowVarianceForRemoval) {
  DPA_LowVarianceRemovedVariable <- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LowVarianceRemovedVariable))
  }
  
  DPA %>%
  skim() %>%
  dplyr::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))

  ##################################
  # Filtering out columns with low variance
  #################################
  DPA_ExcludedLowVariance <- DPA[,!names(DPA) %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,])]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedLowVariance_Skimmed <- skim(DPA_ExcludedLowVariance))
}
## [1] "No low variance predictors noted."

1.3.3 Collinearity


[A] No high correlation > 95% were noted for any variable pair as confirmed using the preprocessing summaries from the caret and lares packages.

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Alzheimer_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,!names(DPA.Predictors) %in% c("E2","E3","E4")]
DPA.Predictors.Numeric <- as.data.frame(sapply(DPA.Predictors.Numeric,function(x) as.numeric(x)))

##################################
# Visualizing pairwise correlation between predictors
##################################
DPA_CorrelationTest <- cor.mtest(DPA.Predictors.Numeric,
                       method = "pearson",
                       conf.level = .95)

corrplot(cor(DPA.Predictors.Numeric,
             method = "pearson",
             use="pairwise.complete.obs"), 
         method = "circle",
         type = "upper", 
         order = "original", 
         tl.col = "black", 
         tl.cex = 0.75,
         tl.srt = 90, 
         sig.level = 0.05, 
         p.mat = DPA_CorrelationTest$p,
         insig = "blank")

##################################
# Identifying the highly correlated variables
##################################
DPA_Correlation <-  cor(DPA.Predictors.Numeric, 
                        method = "pearson",
                        use="pairwise.complete.obs")
(DPA_HighlyCorrelatedCount <- sum(abs(DPA_Correlation[upper.tri(DPA_Correlation)]) > 0.95))
## [1] 0
if (DPA_HighlyCorrelatedCount == 0) {
  print("No highly correlated predictors noted.")
} else {
  print(paste0("High correlation observed for ",
               (DPA_HighlyCorrelatedCount),
               " pairs of numeric variable(s) with Correlation.Coefficient>0.95."))
  
  (DPA_HighlyCorrelatedPairs <- corr_cross(DPA.Predictors.Numeric,
  max_pvalue = 0.05, 
  top = DPA_HighlyCorrelatedCount,
  rm.na = TRUE,
  grid = FALSE
))
  
}
## [1] "No highly correlated predictors noted."
if (DPA_HighlyCorrelatedCount > 0) {
  DPA_HighlyCorrelated <- findCorrelation(DPA_Correlation, cutoff = 0.95)
  
  (DPA_HighlyCorrelatedForRemoval <- length(DPA_HighlyCorrelated))
  
  print(paste0("High correlation can be resolved by removing ",
               (DPA_HighlyCorrelatedForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_HighlyCorrelatedForRemoval) {
  DPA_HighlyCorrelatedRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_HighlyCorrelated[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_HighlyCorrelatedRemovedVariable))
  }
  
  ##################################
  # Filtering out columns with high correlation
  #################################
  DPA_ExcludedHighCorrelation <- DPA[,-DPA_HighlyCorrelated]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedHighCorrelation_Skimmed <- skim(DPA_ExcludedHighCorrelation))

}

1.3.4 Linear Dependencies


[A] No linear dependencies noted for any subset of variables using the preprocessing summary from the caret package applying the findLinearCombos method which utilizes the QR decomposition of a matrix to enumerate sets of linear combinations (if they exist).

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- Alzheimer_Train

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("Class")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,!names(DPA.Predictors) %in% c("E2","E3","E4")]
DPA.Predictors.Numeric <- as.data.frame(sapply(DPA.Predictors.Numeric,function(x) as.numeric(x)))

##################################
# Identifying the linearly dependent variables
##################################
DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)

(DPA_LinearlyDependentCount <- length(DPA_LinearlyDependent$linearCombos))
## [1] 0
if (DPA_LinearlyDependentCount == 0) {
  print("No linearly dependent predictors noted.")
} else {
  print(paste0("Linear dependency observed for ",
               (DPA_LinearlyDependentCount),
               " subset(s) of numeric variable(s)."))
  
  for (i in 1:DPA_LinearlyDependentCount) {
    DPA_LinearlyDependentSubset <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$linearCombos[[i]]]
    print(paste0("Linear dependent variable(s) for subset ",
                 i,
                 " include: ",
                 DPA_LinearlyDependentSubset))
  }
  
}
## [1] "No linearly dependent predictors noted."
##################################
# Identifying the linearly dependent variables for removal
##################################

if (DPA_LinearlyDependentCount > 0) {
  DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)
  
  DPA_LinearlyDependentForRemoval <- length(DPA_LinearlyDependent$remove)
  
  print(paste0("Linear dependency can be resolved by removing ",
               (DPA_LinearlyDependentForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LinearlyDependentForRemoval) {
  DPA_LinearlyDependentRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$remove[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LinearlyDependentRemovedVariable))
  }
  
  ##################################
  # Filtering out columns with linear dependency
  #################################
  DPA_ExcludedLinearlyDependent <- DPA[,-DPA_LinearlyDependent$remove]
  
  ##################################
  # Gathering descriptive statistics
  ##################################
  (DPA_ExcludedLinearlyDependent_Skimmed <- skim(DPA_ExcludedLinearlyDependent))

}

1.3.5 Pre-Processed Dataset


[A] 333 rows (observations)
     [A.1] Train Set = 267 observations
     [A.2] Test Set = 66 observations

[B] 128 columns (variables)
     [B.1] 1/128 response = Class variable (factor)
            [B.1.1] Levels = Class=Control < Class=Impaired
     [B.2] 127/128 predictors = All remaining variables (3/127 factor + 124/127 numeric)

[C] No pre-processing actions applied:
     [C.1] No shape transformation applied since distributions were fairly normal
     [C.2] Centering and scaling may be necessary due to the differences in ranges for the numeric variables however, these will be selectively applied based on model requirements
     [C.2] No outlier treatment applied since the high values noted were minimal and contextually valid
     [C.3] No predictors removed due to zero or near-zero variance
     [C.4] No predictors removed due to high correlation
     [C.5] No predictors removed due to linear dependencies

Code Chunk | Output
##################################
# Creating the pre-modelling
# train set
##################################
PMA_PreModelling_Train <- Alzheimer_Train
PMA_PreModelling_Train$Class <- as.factor(PMA_PreModelling_Train$Class)
PMA_PreModelling_Train$E2 <- as.factor(PMA_PreModelling_Train$E2)
PMA_PreModelling_Train$E3 <- as.factor(PMA_PreModelling_Train$E3)
PMA_PreModelling_Train$E4 <- as.factor(PMA_PreModelling_Train$E4)

##################################
# Gathering descriptive statistics
##################################
(PMA_PreModelling_Train_Skimmed <- skim(PMA_PreModelling_Train))
Data summary
Name PMA_PreModelling_Train
Number of rows 267
Number of columns 128
_______________________
Column type frequency:
factor 4
numeric 124
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Class 0 1 FALSE 2 Con: 194, Imp: 73
E4 0 1 FALSE 2 0: 160, 1: 107
E3 0 1 FALSE 2 1: 245, 0: 22
E2 0 1 FALSE 2 0: 224, 1: 43

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
ACE_CD143_Angiotensin_Converti 0 1 1.32 0.54 -0.68 0.95 1.30 1.72 2.84 ▁▃▇▇▁
ACTH_Adrenocorticotropic_Hormon 0 1 -1.54 0.28 -2.21 -1.71 -1.56 -1.35 -0.84 ▂▆▇▆▂
AXL 0 1 0.31 0.45 -0.92 0.00 0.28 0.61 1.52 ▁▅▇▃▁
Adiponectin 0 1 -5.20 0.67 -6.73 -5.67 -5.18 -4.78 -3.51 ▂▆▇▅▁
Alpha_1_Antichymotrypsin 0 1 1.36 0.36 0.26 1.13 1.36 1.59 2.30 ▁▃▇▅▁
Alpha_1_Antitrypsin 0 1 -13.05 1.48 -17.03 -14.07 -13.00 -12.10 -8.19 ▁▅▇▂▁
Alpha_1_Microglobulin 0 1 -2.93 0.48 -4.34 -3.27 -2.94 -2.59 -1.77 ▁▅▇▇▂
Alpha_2_Macroglobulin 0 1 -158.61 40.93 -289.68 -186.64 -160.01 -134.62 -59.46 ▁▂▇▅▂
Angiopoietin_2_ANG_2 0 1 0.67 0.33 -0.54 0.47 0.64 0.88 1.53 ▁▂▇▆▂
Angiotensinogen 0 1 2.32 0.25 1.75 2.12 2.32 2.50 2.88 ▃▆▇▇▂
Apolipoprotein_A_IV 0 1 -1.85 0.38 -2.96 -2.12 -1.83 -1.61 -0.78 ▁▃▇▃▁
Apolipoprotein_A1 0 1 -7.48 0.44 -8.68 -7.76 -7.47 -7.21 -6.17 ▁▅▇▃▁
Apolipoprotein_A2 0 1 -0.64 0.50 -1.90 -0.97 -0.67 -0.31 0.96 ▁▇▇▃▁
Apolipoprotein_B 0 1 -5.58 1.48 -9.94 -6.63 -5.70 -4.54 -2.15 ▁▅▇▇▂
Apolipoprotein_CI 0 1 -1.58 0.41 -3.32 -1.83 -1.61 -1.37 -0.27 ▁▁▇▅▁
Apolipoprotein_CIII 0 1 -2.49 0.44 -3.69 -2.77 -2.53 -2.21 -1.24 ▁▅▇▅▁
Apolipoprotein_D 0 1 1.44 0.34 0.47 1.21 1.41 1.67 2.27 ▁▃▇▆▂
Apolipoprotein_E 0 1 2.81 0.78 0.59 2.33 2.82 3.29 5.44 ▁▅▇▂▁
Apolipoprotein_H 0 1 -0.32 0.39 -2.23 -0.60 -0.37 -0.06 0.93 ▁▁▇▆▁
B_Lymphocyte_Chemoattractant_BL 0 1 2.02 0.57 0.73 1.67 1.98 2.37 4.02 ▃▇▇▁▁
BMP_6 0 1 -1.91 0.31 -2.76 -2.15 -1.88 -1.68 -0.82 ▁▅▇▂▁
Beta_2_Microglobulin 0 1 0.17 0.30 -0.54 -0.04 0.18 0.34 0.99 ▂▃▇▃▁
Betacellulin 0 1 51.01 10.87 10.00 42.00 51.00 59.00 82.00 ▁▁▇▅▁
C_Reactive_Protein 0 1 -5.87 1.20 -8.52 -6.65 -5.84 -5.08 -2.94 ▃▆▇▆▂
CD40 0 1 -1.26 0.21 -1.86 -1.38 -1.27 -1.12 -0.55 ▁▆▇▃▁
CD5L 0 1 -0.05 0.45 -1.24 -0.36 -0.06 0.26 1.16 ▁▅▇▃▁
Calbindin 0 1 22.43 4.11 10.96 19.77 22.25 24.80 33.78 ▁▃▇▃▁
Calcitonin 0 1 1.68 0.87 -0.71 0.96 1.65 2.28 3.89 ▁▆▇▅▂
CgA 0 1 333.30 83.67 135.60 278.02 331.52 392.07 535.40 ▂▆▇▅▂
Clusterin_Apo_J 0 1 2.88 0.29 1.87 2.71 2.89 3.04 3.58 ▁▂▇▆▂
Complement_3 0 1 -15.61 2.46 -23.39 -17.57 -15.52 -13.88 -9.56 ▁▆▇▇▂
Complement_Factor_H 0 1 3.55 1.25 -0.84 2.75 3.60 4.25 7.62 ▁▃▇▅▁
Connective_Tissue_Growth_Factor 0 1 0.77 0.20 0.18 0.64 0.79 0.92 1.41 ▁▅▇▃▁
Cortisol 0 1 11.98 3.95 0.10 9.80 12.00 14.00 29.00 ▁▇▇▁▁
Creatine_Kinase_MB 0 1 -1.67 0.09 -1.87 -1.72 -1.67 -1.63 -1.38 ▃▅▇▂▁
Cystatin_C 0 1 8.59 0.40 7.43 8.32 8.56 8.84 9.69 ▁▅▇▃▁
EGF_R 0 1 -0.70 0.22 -1.36 -0.86 -0.68 -0.55 -0.06 ▁▃▇▅▁
EN_RAGE 0 1 -3.64 0.88 -8.38 -4.20 -3.65 -3.15 -0.39 ▁▁▇▆▁
ENA_78 0 1 -1.37 0.01 -1.41 -1.38 -1.37 -1.36 -1.34 ▁▅▇▅▁
Eotaxin_3 0 1 58.17 15.83 7.00 44.00 59.00 70.00 107.00 ▁▆▇▅▁
FAS 0 1 -0.53 0.30 -1.51 -0.71 -0.53 -0.31 0.34 ▁▃▇▆▁
FSH_Follicle_Stimulation_Hormon 0 1 -1.14 0.42 -2.12 -1.47 -1.14 -0.88 0.10 ▂▇▇▃▁
Fas_Ligand 0 1 2.97 1.09 -0.15 2.34 3.10 3.70 7.63 ▂▇▇▁▁
Fatty_Acid_Binding_Protein 0 1 1.35 0.78 -1.04 0.80 1.39 1.88 3.71 ▁▅▇▅▁
Ferritin 0 1 2.76 0.76 0.61 2.29 2.77 3.29 4.63 ▁▃▇▆▂
Fetuin_A 0 1 1.35 0.37 0.47 1.10 1.31 1.61 2.25 ▂▆▇▅▂
Fibrinogen 0 1 -7.36 0.57 -8.87 -7.72 -7.32 -7.01 -5.84 ▁▅▇▅▁
GRO_alpha 0 1 1.38 0.04 1.27 1.35 1.38 1.41 1.49 ▂▃▇▅▁
Gamma_Interferon_induced_Monokin 0 1 2.79 0.11 2.39 2.71 2.78 2.87 3.07 ▁▂▇▆▂
Glutathione_S_Transferase_alpha 0 1 0.95 0.16 0.52 0.84 0.97 1.03 1.32 ▁▃▇▅▂
HB_EGF 0 1 6.83 1.51 2.10 5.79 6.70 7.86 10.70 ▁▃▇▆▂
HCC_4 0 1 -3.50 0.36 -4.51 -3.73 -3.51 -3.27 -2.12 ▂▇▇▂▁
Hepatocyte_Growth_Factor_HGF 0 1 0.20 0.29 -0.63 0.00 0.18 0.41 0.88 ▁▃▇▅▂
I_309 0 1 2.96 0.37 1.76 2.71 2.94 3.22 4.14 ▁▅▇▃▁
ICAM_1 0 1 -0.59 0.33 -1.53 -0.83 -0.59 -0.38 0.52 ▁▅▇▃▁
IGF_BP_2 0 1 5.32 0.20 4.63 5.18 5.32 5.45 5.95 ▁▃▇▅▁
IL_11 0 1 4.72 1.45 1.75 3.71 4.81 5.78 8.49 ▃▆▇▅▁
IL_13 0 1 1.28 0.01 1.26 1.27 1.28 1.29 1.32 ▂▇▆▂▁
IL_16 0 1 2.93 0.66 1.19 2.52 2.91 3.35 4.94 ▁▆▇▃▁
IL_17E 0 1 4.85 1.34 1.05 4.15 4.75 5.63 8.95 ▁▆▇▃▁
IL_1alpha 0 1 -7.51 0.39 -8.52 -7.82 -7.52 -7.26 -5.95 ▂▇▇▂▁
IL_3 0 1 -3.94 0.50 -5.91 -4.27 -3.91 -3.63 -2.45 ▁▂▇▅▁
IL_4 0 1 1.77 0.51 0.53 1.46 1.81 2.15 3.04 ▂▅▇▅▂
IL_5 0 1 0.19 0.46 -1.43 -0.12 0.18 0.47 1.95 ▁▃▇▂▁
IL_6 0 1 -0.15 0.55 -1.53 -0.41 -0.16 0.14 1.81 ▂▆▇▂▁
IL_6_Receptor 0 1 0.09 0.32 -0.68 -0.13 0.10 0.35 0.83 ▂▆▇▆▂
IL_7 0 1 2.84 1.05 0.56 2.15 2.79 3.71 5.71 ▃▇▇▆▁
IL_8 0 1 1.70 0.04 1.57 1.68 1.71 1.73 1.81 ▁▂▇▆▁
IP_10_Inducible_Protein_10 0 1 5.75 0.51 4.32 5.40 5.75 6.06 7.50 ▁▆▇▂▁
IgA 0 1 -6.12 0.76 -10.52 -6.65 -6.12 -5.57 -4.20 ▁▁▂▇▂
Insulin 0 1 -1.23 0.34 -2.17 -1.45 -1.25 -1.03 -0.16 ▁▃▇▂▁
Kidney_Injury_Molecule_1_KIM_1 0 1 -1.18 0.03 -1.26 -1.20 -1.18 -1.16 -1.10 ▁▇▇▅▁
LOX_1 0 1 1.28 0.40 0.00 1.03 1.28 1.53 2.27 ▁▂▇▅▂
Leptin 0 1 -1.50 0.27 -2.15 -1.70 -1.50 -1.33 -0.62 ▂▇▇▂▁
Lipoprotein_a 0 1 -4.42 1.11 -6.81 -5.31 -4.61 -3.49 -1.39 ▂▇▅▅▁
MCP_1 0 1 6.50 0.26 5.83 6.32 6.49 6.68 7.23 ▂▅▇▅▁
MCP_2 0 1 1.87 0.65 0.40 1.53 1.85 2.18 4.02 ▂▆▇▂▁
MIF 0 1 -1.86 0.34 -2.85 -2.12 -1.90 -1.66 -0.84 ▁▃▇▃▁
MIP_1alpha 0 1 4.05 1.01 0.93 3.34 4.05 4.69 6.80 ▁▅▇▅▂
MIP_1beta 0 1 2.81 0.38 1.95 2.56 2.83 3.04 4.01 ▂▅▇▂▁
MMP_2 0 1 2.88 0.93 0.10 2.33 2.82 3.55 5.36 ▁▃▇▆▁
MMP_3 0 1 -2.45 0.57 -4.42 -2.75 -2.45 -2.12 -0.53 ▁▂▇▃▁
MMP10 0 1 -3.63 0.43 -4.93 -3.94 -3.65 -3.35 -2.21 ▁▆▇▃▁
MMP7 0 1 -3.79 1.55 -8.40 -4.82 -3.77 -2.71 -0.22 ▁▃▇▅▂
Myoglobin 0 1 -1.37 0.95 -3.17 -2.04 -1.47 -0.80 1.77 ▅▇▆▂▁
NT_proBNP 0 1 4.55 0.38 3.18 4.35 4.55 4.77 5.89 ▁▂▇▃▁
NrCAM 0 1 4.36 0.57 2.64 4.00 4.39 4.75 6.01 ▁▃▇▅▁
Osteopontin 0 1 5.20 0.39 4.11 4.96 5.19 5.44 6.31 ▁▅▇▃▁
PAI_1 0 1 0.08 0.41 -0.99 -0.17 0.09 0.32 1.17 ▂▃▇▅▂
PAPP_A 0 1 -2.85 0.14 -3.31 -2.94 -2.87 -2.75 -2.52 ▁▂▇▅▂
PLGF 0 1 3.91 0.41 2.48 3.64 3.87 4.20 5.17 ▁▃▇▆▁
PYY 0 1 3.02 0.29 2.19 2.83 3.00 3.18 3.93 ▁▅▇▃▁
Pancreatic_polypeptide 0 1 -0.01 0.72 -2.12 -0.53 -0.04 0.53 1.93 ▁▅▇▆▁
Prolactin 0 1 0.04 0.30 -1.31 -0.14 0.00 0.26 0.99 ▁▁▇▇▁
Prostatic_Acid_Phosphatase 0 1 -1.69 0.06 -1.93 -1.72 -1.69 -1.65 -1.42 ▁▂▇▂▁
Protein_S 0 1 -2.24 0.35 -3.34 -2.46 -2.26 -2.00 -1.22 ▁▃▇▃▁
Pulmonary_and_Activation_Regulat 0 1 -1.49 0.45 -2.51 -1.83 -1.51 -1.17 -0.27 ▂▇▇▃▂
RANTES 0 1 -6.51 0.32 -7.22 -6.73 -6.50 -6.32 -5.55 ▃▇▇▃▁
Resistin 0 1 -17.64 5.82 -34.97 -21.47 -17.47 -13.50 -2.24 ▁▃▇▆▁
S100b 0 1 1.25 0.34 0.19 1.00 1.25 1.50 2.37 ▁▆▇▅▁
SGOT 0 1 -0.41 0.35 -1.35 -0.63 -0.40 -0.20 0.74 ▁▅▇▂▁
SHBG 0 1 -2.48 0.58 -4.14 -2.81 -2.49 -2.12 -1.11 ▁▃▇▆▂
SOD 0 1 5.34 0.38 4.32 5.09 5.37 5.58 6.32 ▁▅▇▅▁
Serum_Amyloid_P 0 1 -6.02 0.56 -7.51 -6.38 -6.03 -5.65 -4.65 ▁▅▇▅▂
Sortilin 0 1 3.85 0.87 1.65 3.34 3.87 4.37 6.23 ▁▅▇▃▁
Stem_Cell_Factor 0 1 3.30 0.36 2.25 3.04 3.30 3.53 4.28 ▁▅▇▅▁
TGF_alpha 0 1 9.80 1.32 6.84 8.86 9.92 10.70 13.83 ▂▆▇▂▁
TIMP_1 0 1 11.75 1.90 1.74 10.49 11.56 12.70 18.88 ▁▁▇▅▁
TNF_RII 0 1 -0.59 0.33 -1.66 -0.82 -0.60 -0.38 0.47 ▁▃▇▃▁
TRAIL_R3 0 1 -0.54 0.24 -1.21 -0.70 -0.53 -0.38 0.27 ▁▆▇▂▁
TTR_prealbumin 0 1 2.85 0.14 2.48 2.77 2.83 2.94 3.33 ▂▅▇▃▁
Tamm_Horsfall_Protein_THP 0 1 -3.12 0.03 -3.21 -3.14 -3.12 -3.10 -2.99 ▁▇▇▂▁
Thrombomodulin 0 1 -1.51 0.22 -2.04 -1.63 -1.49 -1.34 -0.82 ▂▆▇▃▁
Thrombopoietin 0 1 -0.75 0.24 -1.54 -0.89 -0.75 -0.63 0.10 ▁▅▇▂▁
Thymus_Expressed_Chemokine_TECK 0 1 3.85 0.80 1.51 3.34 3.81 4.32 6.23 ▁▃▇▃▁
Thyroid_Stimulating_Hormone 0 1 -4.50 0.75 -6.19 -4.96 -4.51 -4.02 -1.71 ▂▇▆▁▁
Thyroxine_Binding_Globulin 0 1 -1.48 0.40 -2.48 -1.77 -1.51 -1.24 -0.21 ▂▇▇▃▁
Tissue_Factor 0 1 1.17 0.50 -0.21 0.83 1.22 1.48 2.48 ▁▅▇▆▁
Transferrin 0 1 2.91 0.27 1.93 2.71 2.89 3.09 3.76 ▁▂▇▅▁
Trefoil_Factor_3_TFF3 0 1 -3.88 0.34 -4.74 -4.14 -3.86 -3.65 -2.96 ▁▅▇▃▁
VCAM_1 0 1 2.69 0.32 1.72 2.48 2.71 2.89 3.69 ▁▃▇▃▁
VEGF 0 1 16.99 1.81 11.83 15.77 17.08 18.10 22.38 ▁▅▇▃▁
Vitronectin 0 1 -0.28 0.33 -1.43 -0.51 -0.30 -0.04 0.53 ▁▃▇▇▂
von_Willebrand_Factor 0 1 -3.91 0.38 -4.99 -4.20 -3.91 -3.61 -2.96 ▁▅▇▆▂
###################################
# Verifying the data dimensions
# for the train set
###################################
dim(PMA_PreModelling_Train)
## [1] 267 128
##################################
# Formulating the test set
##################################
PMA_PreModelling_Test <- Alzheimer_Test
PMA_PreModelling_Test$Class <- as.factor(PMA_PreModelling_Test$Class)
PMA_PreModelling_Test$E2 <- as.factor(PMA_PreModelling_Test$E2)
PMA_PreModelling_Test$E3 <- as.factor(PMA_PreModelling_Test$E3)
PMA_PreModelling_Test$E4 <- as.factor(PMA_PreModelling_Test$E4)

##################################
# Gathering descriptive statistics
##################################
(PMA_PreModelling_Test_Skimmed <- skim(PMA_PreModelling_Test))
Data summary
Name PMA_PreModelling_Test
Number of rows 66
Number of columns 128
_______________________
Column type frequency:
factor 4
numeric 124
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
Class 0 1 FALSE 2 Con: 48, Imp: 18
E4 0 1 FALSE 2 0: 46, 1: 20
E3 0 1 FALSE 2 1: 65, 0: 1
E2 0 1 FALSE 2 0: 62, 1: 4

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
ACE_CD143_Angiotensin_Converti 0 1 1.31 0.59 -0.55 0.95 1.30 1.63 3.09 ▁▃▇▃▁
ACTH_Adrenocorticotropic_Hormon 0 1 -1.53 0.25 -2.21 -1.71 -1.54 -1.39 -0.80 ▁▃▇▃▁
AXL 0 1 0.25 0.45 -0.74 -0.08 0.28 0.61 1.29 ▃▃▇▅▂
Adiponectin 0 1 -5.30 0.66 -7.06 -5.74 -5.36 -4.92 -3.47 ▁▅▇▃▁
Alpha_1_Antichymotrypsin 0 1 1.31 0.38 0.18 1.06 1.31 1.57 2.22 ▁▃▇▆▂
Alpha_1_Antitrypsin 0 1 -13.49 1.76 -18.17 -14.70 -13.59 -12.31 -10.06 ▁▃▇▆▃
Alpha_1_Microglobulin 0 1 -2.98 0.49 -4.14 -3.28 -3.01 -2.67 -1.90 ▂▅▇▅▂
Alpha_2_Macroglobulin 0 1 -162.89 40.98 -238.64 -186.64 -162.93 -136.53 -50.17 ▃▇▇▃▁
Angiopoietin_2_ANG_2 0 1 0.60 0.35 -0.05 0.35 0.56 0.79 1.77 ▃▇▅▁▁
Angiotensinogen 0 1 2.27 0.23 1.71 2.07 2.28 2.43 2.75 ▁▇▇▇▂
Apolipoprotein_A_IV 0 1 -1.87 0.38 -2.75 -2.19 -1.90 -1.53 -1.11 ▂▆▇▆▅
Apolipoprotein_A1 0 1 -7.49 0.42 -8.57 -7.82 -7.50 -7.18 -6.65 ▁▆▇▇▃
Apolipoprotein_A2 0 1 -0.69 0.48 -1.97 -0.94 -0.70 -0.35 0.53 ▁▃▇▅▁
Apolipoprotein_B 0 1 -5.65 1.34 -8.19 -6.75 -5.82 -4.60 -2.34 ▃▇▅▅▂
Apolipoprotein_CI 0 1 -1.63 0.45 -2.85 -1.90 -1.61 -1.31 -0.46 ▂▅▇▅▁
Apolipoprotein_CIII 0 1 -2.52 0.46 -3.86 -2.78 -2.56 -2.23 -1.39 ▁▂▇▃▂
Apolipoprotein_D 0 1 1.39 0.41 0.26 1.13 1.39 1.69 2.64 ▁▇▇▅▁
Apolipoprotein_E 0 1 2.72 0.88 0.66 2.15 2.82 3.24 4.68 ▂▅▇▅▂
Apolipoprotein_H 0 1 -0.32 0.33 -1.16 -0.53 -0.29 -0.10 0.44 ▂▅▇▆▂
B_Lymphocyte_Chemoattractant_BL 0 1 1.88 0.57 0.73 1.53 1.85 2.37 2.98 ▂▆▇▆▃
BMP_6 0 1 -1.94 0.35 -2.67 -2.15 -1.96 -1.68 -1.18 ▃▃▇▆▂
Beta_2_Microglobulin 0 1 0.16 0.31 -0.51 -0.06 0.18 0.41 0.83 ▂▇▇▆▂
Betacellulin 0 1 52.74 10.58 32.00 46.00 51.00 59.75 80.00 ▂▇▅▃▁
C_Reactive_Protein 0 1 -6.00 1.17 -8.11 -6.73 -6.17 -5.37 -3.41 ▃▇▇▃▃
CD40 0 1 -1.28 0.24 -1.94 -1.44 -1.26 -1.10 -0.78 ▂▃▅▇▂
CD5L 0 1 -0.09 0.49 -1.97 -0.37 -0.05 0.24 0.92 ▁▁▃▇▂
Calbindin 0 1 21.49 4.49 10.81 18.88 21.06 24.00 35.36 ▂▆▇▂▁
Calcitonin 0 1 1.73 0.89 -0.71 1.20 1.68 2.26 4.11 ▁▅▇▅▁
CgA 0 1 320.22 75.26 166.55 268.21 324.75 362.27 494.53 ▃▃▇▃▂
Clusterin_Apo_J 0 1 2.85 0.35 1.93 2.56 2.83 3.04 3.76 ▁▆▇▅▁
Complement_3 0 1 -15.91 2.60 -22.40 -17.50 -15.90 -14.34 -10.23 ▁▃▇▃▂
Complement_Factor_H 0 1 3.39 1.26 0.28 2.60 3.40 4.25 6.56 ▁▅▇▅▁
Connective_Tissue_Growth_Factor 0 1 0.75 0.22 0.10 0.59 0.74 0.88 1.41 ▁▃▇▃▁
Cortisol 0 1 10.46 3.85 0.10 8.90 10.00 12.00 22.00 ▁▂▇▂▁
Creatine_Kinase_MB 0 1 -1.65 0.10 -1.87 -1.72 -1.65 -1.59 -1.43 ▂▅▇▅▂
Cystatin_C 0 1 8.58 0.42 7.73 8.30 8.54 8.84 9.69 ▃▇▇▃▂
EGF_R 0 1 -0.70 0.26 -1.27 -0.89 -0.69 -0.50 0.19 ▂▆▇▁▁
EN_RAGE 0 1 -3.60 0.98 -8.38 -4.18 -3.69 -3.22 -0.87 ▁▁▅▇▁
ENA_78 0 1 -1.38 0.01 -1.41 -1.38 -1.37 -1.37 -1.35 ▂▂▆▇▂
Eotaxin_3 0 1 55.55 18.33 23.00 43.00 54.00 64.00 107.00 ▅▇▆▂▁
FAS 0 1 -0.54 0.30 -1.11 -0.71 -0.58 -0.34 0.18 ▃▇▇▅▂
FSH_Follicle_Stimulation_Hormon 0 1 -1.06 0.34 -1.81 -1.27 -0.98 -0.81 -0.48 ▂▂▅▇▃
Fas_Ligand 0 1 2.65 1.02 0.29 2.07 2.67 3.16 5.38 ▂▅▇▃▁
Fatty_Acid_Binding_Protein 0 1 1.29 0.79 -0.46 0.80 1.19 1.92 3.22 ▂▇▆▆▂
Ferritin 0 1 2.71 0.87 0.90 2.15 2.63 3.17 4.93 ▂▆▇▂▂
Fetuin_A 0 1 1.31 0.41 0.53 1.03 1.31 1.61 2.21 ▅▇▇▇▂
Fibrinogen 0 1 -7.36 0.63 -9.37 -7.80 -7.32 -6.97 -6.17 ▁▂▇▇▅
GRO_alpha 0 1 1.38 0.04 1.27 1.35 1.37 1.40 1.51 ▁▇▇▂▁
Gamma_Interferon_induced_Monokin 0 1 2.77 0.12 2.54 2.70 2.77 2.83 3.05 ▂▅▇▂▂
Glutathione_S_Transferase_alpha 0 1 0.94 0.17 0.57 0.83 0.95 1.05 1.31 ▃▅▇▇▂
HB_EGF 0 1 6.84 1.43 3.52 5.95 6.98 7.75 10.36 ▂▆▇▇▂
HCC_4 0 1 -3.54 0.35 -4.34 -3.77 -3.54 -3.35 -2.49 ▂▇▇▃▁
Hepatocyte_Growth_Factor_HGF 0 1 0.18 0.34 -0.62 -0.06 0.18 0.34 1.10 ▁▆▇▃▁
I_309 0 1 2.92 0.36 2.04 2.72 2.94 3.14 3.69 ▂▂▇▃▂
ICAM_1 0 1 -0.60 0.35 -1.47 -0.77 -0.59 -0.36 0.36 ▂▂▇▅▁
IGF_BP_2 0 1 5.26 0.22 4.72 5.13 5.25 5.40 5.92 ▁▅▇▂▁
IL_11 0 1 4.65 1.33 2.03 3.96 4.84 5.48 8.69 ▃▅▇▂▁
IL_13 0 1 1.28 0.01 1.23 1.27 1.28 1.29 1.31 ▁▁▇▇▃
IL_16 0 1 2.82 0.70 0.96 2.44 2.88 3.35 4.10 ▂▂▇▇▅
IL_17E 0 1 4.77 1.33 1.58 3.64 4.72 5.41 8.08 ▁▇▇▃▂
IL_1alpha 0 1 -7.55 0.44 -8.47 -7.85 -7.56 -7.28 -6.38 ▂▇▇▃▁
IL_3 0 1 -3.98 0.52 -5.52 -4.32 -3.96 -3.58 -3.08 ▁▃▇▇▆
IL_4 0 1 1.74 0.52 0.53 1.46 1.72 2.07 2.71 ▁▅▇▃▅
IL_5 0 1 0.23 0.44 -1.05 -0.03 0.22 0.53 1.13 ▁▂▇▇▂
IL_6 0 1 -0.05 0.52 -1.53 -0.41 -0.07 0.35 1.01 ▁▂▇▇▂
IL_6_Receptor 0 1 0.06 0.35 -0.75 -0.20 0.00 0.27 0.77 ▂▇▇▆▅
IL_7 0 1 3.14 0.85 1.31 2.38 3.15 3.71 5.00 ▁▇▅▆▂
IL_8 0 1 1.70 0.04 1.62 1.68 1.70 1.73 1.84 ▂▇▆▂▁
IP_10_Inducible_Protein_10 0 1 5.64 0.51 4.26 5.32 5.62 5.92 7.21 ▁▅▇▃▁
IgA 0 1 -6.07 0.64 -7.62 -6.57 -6.01 -5.61 -4.73 ▁▆▇▇▂
Insulin 0 1 -1.20 0.32 -2.01 -1.45 -1.22 -1.01 -0.50 ▂▆▇▇▃
Kidney_Injury_Molecule_1_KIM_1 0 1 -1.19 0.03 -1.25 -1.21 -1.19 -1.17 -1.12 ▃▇▇▇▂
LOX_1 0 1 1.21 0.45 0.00 0.96 1.22 1.44 2.40 ▁▃▇▃▁
Leptin 0 1 -1.44 0.25 -1.95 -1.63 -1.43 -1.24 -0.84 ▃▇▆▇▂
Lipoprotein_a 0 1 -4.51 0.91 -6.57 -5.12 -4.66 -4.02 -2.04 ▂▇▇▅▁
MCP_1 0 1 6.48 0.25 5.89 6.32 6.48 6.63 7.06 ▁▅▇▅▂
MCP_2 0 1 1.81 0.60 0.40 1.53 1.85 2.08 3.75 ▂▅▇▁▁
MIF 0 1 -1.93 0.31 -2.80 -2.12 -1.97 -1.71 -1.11 ▁▃▇▃▁
MIP_1alpha 0 1 3.90 1.04 1.01 3.30 3.74 4.69 5.74 ▁▂▇▆▅
MIP_1beta 0 1 2.78 0.39 1.92 2.48 2.77 3.08 3.78 ▃▆▇▆▁
MMP_2 0 1 3.03 0.95 0.62 2.55 2.99 3.48 6.10 ▁▃▇▁▁
MMP_3 0 1 -2.49 0.59 -3.65 -2.85 -2.53 -2.12 -1.17 ▃▆▇▅▂
MMP10 0 1 -3.68 0.44 -4.95 -4.07 -3.61 -3.33 -2.90 ▁▃▆▇▅
MMP7 0 1 -4.01 1.55 -7.53 -4.96 -4.03 -3.16 -0.20 ▂▃▇▂▁
Myoglobin 0 1 -1.42 0.91 -3.30 -2.02 -1.59 -0.78 1.13 ▂▇▆▃▁
NT_proBNP 0 1 4.49 0.39 3.61 4.17 4.48 4.79 5.40 ▂▇▇▆▂
NrCAM 0 1 4.29 0.58 2.89 3.87 4.32 4.72 5.69 ▂▆▇▆▁
Osteopontin 0 1 5.18 0.40 4.08 4.89 5.17 5.41 6.32 ▁▆▇▃▁
PAI_1 0 1 0.00 0.41 -0.99 -0.33 0.00 0.30 0.89 ▂▆▇▇▂
PAPP_A 0 1 -2.84 0.14 -3.15 -2.97 -2.84 -2.72 -2.49 ▂▇▇▆▁
PLGF 0 1 3.88 0.38 2.64 3.69 3.89 4.12 4.71 ▁▂▇▇▂
PYY 0 1 2.98 0.29 2.40 2.83 3.00 3.18 3.74 ▃▇▇▅▁
Pancreatic_polypeptide 0 1 -0.01 0.70 -1.61 -0.51 0.14 0.47 1.50 ▂▅▅▇▁
Prolactin 0 1 0.05 0.29 -0.39 -0.17 0.00 0.18 0.79 ▇▇▆▃▂
Prostatic_Acid_Phosphatase 0 1 -1.69 0.05 -1.80 -1.74 -1.69 -1.66 -1.54 ▂▇▇▂▁
Protein_S 0 1 -2.27 0.41 -3.15 -2.58 -2.26 -1.92 -1.55 ▃▅▇▇▆
Pulmonary_and_Activation_Regulat 0 1 -1.50 0.45 -2.44 -1.83 -1.51 -1.17 -0.45 ▃▇▆▇▂
RANTES 0 1 -6.54 0.29 -7.24 -6.73 -6.57 -6.39 -5.84 ▁▆▇▃▂
Resistin 0 1 -18.24 5.18 -30.16 -22.13 -18.01 -15.20 -6.59 ▂▅▇▅▂
S100b 0 1 1.18 0.37 0.19 0.96 1.16 1.38 2.20 ▁▃▇▂▁
SGOT 0 1 -0.49 0.37 -1.90 -0.75 -0.48 -0.21 0.18 ▁▁▆▇▅
SHBG 0 1 -2.69 0.49 -3.73 -3.05 -2.71 -2.34 -1.56 ▂▇▇▆▂
SOD 0 1 5.30 0.41 4.38 5.01 5.31 5.55 6.46 ▂▇▇▃▁
Serum_Amyloid_P 0 1 -6.08 0.52 -7.18 -6.44 -6.21 -5.61 -4.70 ▂▇▅▃▁
Sortilin 0 1 3.79 0.87 1.51 3.18 3.87 4.37 5.68 ▂▅▇▆▃
Stem_Cell_Factor 0 1 3.27 0.35 2.22 3.04 3.31 3.47 4.08 ▁▅▇▇▂
TGF_alpha 0 1 9.78 1.11 7.50 9.06 9.60 10.61 13.08 ▃▇▆▃▁
TIMP_1 0 1 11.52 1.64 8.20 10.53 11.34 12.35 16.55 ▅▇▇▃▁
TNF_RII 0 1 -0.63 0.36 -1.66 -0.87 -0.65 -0.33 0.41 ▁▅▇▅▁
TRAIL_R3 0 1 -0.59 0.23 -1.31 -0.73 -0.56 -0.47 0.10 ▁▃▇▂▁
TTR_prealbumin 0 1 2.85 0.14 2.48 2.77 2.89 2.94 3.09 ▁▃▅▇▅
Tamm_Horsfall_Protein_THP 0 1 -3.12 0.03 -3.21 -3.14 -3.13 -3.10 -3.04 ▁▅▇▃▂
Thrombomodulin 0 1 -1.53 0.25 -2.05 -1.68 -1.53 -1.34 -1.02 ▂▆▇▆▂
Thrombopoietin 0 1 -0.72 0.21 -1.54 -0.84 -0.70 -0.63 -0.30 ▁▁▆▇▃
Thymus_Expressed_Chemokine_TECK 0 1 3.77 0.73 2.14 3.28 3.75 4.32 5.68 ▃▆▇▅▂
Thyroid_Stimulating_Hormone 0 1 -4.22 0.79 -6.19 -4.73 -4.27 -3.83 -2.04 ▁▅▇▃▁
Thyroxine_Binding_Globulin 0 1 -1.49 0.40 -2.30 -1.71 -1.49 -1.24 -0.60 ▃▅▇▆▂
Tissue_Factor 0 1 1.14 0.54 0.00 0.71 1.15 1.51 2.71 ▂▆▇▂▁
Transferrin 0 1 2.90 0.29 2.28 2.71 2.89 3.14 3.50 ▃▃▇▅▃
Trefoil_Factor_3_TFF3 0 1 -3.95 0.34 -4.91 -4.20 -3.91 -3.77 -3.17 ▁▂▇▆▂
VCAM_1 0 1 2.64 0.32 2.03 2.42 2.67 2.83 3.47 ▅▃▇▃▁
VEGF 0 1 16.70 2.10 12.23 15.03 17.08 18.19 21.18 ▃▇▇▆▂
Vitronectin 0 1 -0.27 0.32 -1.08 -0.46 -0.28 -0.05 0.41 ▁▅▇▆▂
von_Willebrand_Factor 0 1 -4.01 0.38 -4.92 -4.27 -4.02 -3.73 -3.06 ▂▇▇▆▂
###################################
# Verifying the data dimensions
# for the test set
###################################
dim(PMA_PreModelling_Test)
## [1]  66 128

1.4 Data Exploration


[A] Numeric variables which demonstrated differential relationships with the Class response variable between its Control and Impaired levels include:
     [A.1] Fibrinogen variable (numeric)
     [A.2] GRO_alpha variable (numeric)
     [A.3] FAS variable (numeric)
     [A.4] Eotaxin_3 variable (numeric)
     [A.5] Creatine_Kinase_MB variable (numeric)
     [A.6] IGF_BP2 variable (numeric)
     [A.7] Gamma_Interferon_Induced_Monokin variable (numeric)
     [A.8] MCP_2 variable (numeric)
     [A.9] MIF variable (numeric)
     [A.10] Pancreatic_polypteptide variable (numeric)
     [A.11] PAI_1 variable (numeric)
     [A.12] NT_proBNP variable (numeric)
     [A.13] MMP10 variable (numeric)
     [A.14] MMP7 variable (numeric)
     [A.15] TRAIL_R3 variable (numeric)
     [A.16] Pulmonary_and_Activation_Regulat variable (numeric)
     [A.17] Resistin variable (numeric)
     [A.18] VEGF variable (numeric)
     [A.19] Thrombopoietin variable (numeric)
     [A.20] Thymus_Expressed_Chemokine_TECK variable (numeric)

[B] Factor variables which demonstrated relatively better differentiation of the Class response variable between its Control and Impaired levels include:
     [B.1] E2 variable (factor)
     [B.2] E4 variable (factor)

Code Chunk | Output
##################################
# Loading dataset
##################################
EDA <- PMA_PreModelling_Train

##################################
# Listing all predictors
##################################
EDA.Predictors <- EDA[,!names(EDA) %in% c("Class")]

##################################
# Listing all numeric predictors
##################################
EDA.Predictors.Numeric <- EDA.Predictors[,sapply(EDA.Predictors, is.numeric)]
ncol(EDA.Predictors.Numeric)
## [1] 124
names(EDA.Predictors.Numeric)
##   [1] "ACE_CD143_Angiotensin_Converti"   "ACTH_Adrenocorticotropic_Hormon" 
##   [3] "AXL"                              "Adiponectin"                     
##   [5] "Alpha_1_Antichymotrypsin"         "Alpha_1_Antitrypsin"             
##   [7] "Alpha_1_Microglobulin"            "Alpha_2_Macroglobulin"           
##   [9] "Angiopoietin_2_ANG_2"             "Angiotensinogen"                 
##  [11] "Apolipoprotein_A_IV"              "Apolipoprotein_A1"               
##  [13] "Apolipoprotein_A2"                "Apolipoprotein_B"                
##  [15] "Apolipoprotein_CI"                "Apolipoprotein_CIII"             
##  [17] "Apolipoprotein_D"                 "Apolipoprotein_E"                
##  [19] "Apolipoprotein_H"                 "B_Lymphocyte_Chemoattractant_BL" 
##  [21] "BMP_6"                            "Beta_2_Microglobulin"            
##  [23] "Betacellulin"                     "C_Reactive_Protein"              
##  [25] "CD40"                             "CD5L"                            
##  [27] "Calbindin"                        "Calcitonin"                      
##  [29] "CgA"                              "Clusterin_Apo_J"                 
##  [31] "Complement_3"                     "Complement_Factor_H"             
##  [33] "Connective_Tissue_Growth_Factor"  "Cortisol"                        
##  [35] "Creatine_Kinase_MB"               "Cystatin_C"                      
##  [37] "EGF_R"                            "EN_RAGE"                         
##  [39] "ENA_78"                           "Eotaxin_3"                       
##  [41] "FAS"                              "FSH_Follicle_Stimulation_Hormon" 
##  [43] "Fas_Ligand"                       "Fatty_Acid_Binding_Protein"      
##  [45] "Ferritin"                         "Fetuin_A"                        
##  [47] "Fibrinogen"                       "GRO_alpha"                       
##  [49] "Gamma_Interferon_induced_Monokin" "Glutathione_S_Transferase_alpha" 
##  [51] "HB_EGF"                           "HCC_4"                           
##  [53] "Hepatocyte_Growth_Factor_HGF"     "I_309"                           
##  [55] "ICAM_1"                           "IGF_BP_2"                        
##  [57] "IL_11"                            "IL_13"                           
##  [59] "IL_16"                            "IL_17E"                          
##  [61] "IL_1alpha"                        "IL_3"                            
##  [63] "IL_4"                             "IL_5"                            
##  [65] "IL_6"                             "IL_6_Receptor"                   
##  [67] "IL_7"                             "IL_8"                            
##  [69] "IP_10_Inducible_Protein_10"       "IgA"                             
##  [71] "Insulin"                          "Kidney_Injury_Molecule_1_KIM_1"  
##  [73] "LOX_1"                            "Leptin"                          
##  [75] "Lipoprotein_a"                    "MCP_1"                           
##  [77] "MCP_2"                            "MIF"                             
##  [79] "MIP_1alpha"                       "MIP_1beta"                       
##  [81] "MMP_2"                            "MMP_3"                           
##  [83] "MMP10"                            "MMP7"                            
##  [85] "Myoglobin"                        "NT_proBNP"                       
##  [87] "NrCAM"                            "Osteopontin"                     
##  [89] "PAI_1"                            "PAPP_A"                          
##  [91] "PLGF"                             "PYY"                             
##  [93] "Pancreatic_polypeptide"           "Prolactin"                       
##  [95] "Prostatic_Acid_Phosphatase"       "Protein_S"                       
##  [97] "Pulmonary_and_Activation_Regulat" "RANTES"                          
##  [99] "Resistin"                         "S100b"                           
## [101] "SGOT"                             "SHBG"                            
## [103] "SOD"                              "Serum_Amyloid_P"                 
## [105] "Sortilin"                         "Stem_Cell_Factor"                
## [107] "TGF_alpha"                        "TIMP_1"                          
## [109] "TNF_RII"                          "TRAIL_R3"                        
## [111] "TTR_prealbumin"                   "Tamm_Horsfall_Protein_THP"       
## [113] "Thrombomodulin"                   "Thrombopoietin"                  
## [115] "Thymus_Expressed_Chemokine_TECK"  "Thyroid_Stimulating_Hormone"     
## [117] "Thyroxine_Binding_Globulin"       "Tissue_Factor"                   
## [119] "Transferrin"                      "Trefoil_Factor_3_TFF3"           
## [121] "VCAM_1"                           "VEGF"                            
## [123] "Vitronectin"                      "von_Willebrand_Factor"
##################################
# Listing all factor predictors
##################################
EDA.Predictors.Factor <- EDA.Predictors[,sapply(EDA.Predictors, is.factor)]
ncol(EDA.Predictors.Factor)
## [1] 3
names(EDA.Predictors.Factor)
## [1] "E4" "E3" "E2"
##################################
# Formulating the box plots
##################################
featurePlot(x = EDA.Predictors.Numeric[1:124], 
            y = EDA$Class,
            plot = "box",
            scales = list(x = list(relation="free", rot = 90), 
                          y = list(relation="free")),
            adjust = 1.5, 
            pch = "|",
            layout=(c(4,4)))

##################################
# Restructuring the dataset for
# for barchart analysis
##################################
EDA.Bar.Source <- as.data.frame(cbind(EDA$Class,
                                      EDA.Predictors.Factor))
names(EDA.Bar.Source) <- c("Class",names(EDA.Predictors.Factor))
ncol(EDA.Bar.Source)
## [1] 4
##################################
# Creating a function to formulate
# the proportions table
##################################
EDA.PropTable.Function <- function(FactorVar) {
  EDA.Bar.Source.FactorVar <- EDA.Bar.Source[,c("Class",
                                                FactorVar)]
  EDA.Bar.Source.FactorVar.Prop <- as.data.frame(prop.table(table(EDA.Bar.Source.FactorVar), 2))
  names(EDA.Bar.Source.FactorVar.Prop)[2] <- "Class"
  EDA.Bar.Source.FactorVar.Prop$Variable <- rep(FactorVar,nrow(EDA.Bar.Source.FactorVar.Prop))

  return(EDA.Bar.Source.FactorVar.Prop)

}

EDA.Bar.Source.FactorVar.Prop <- rbind(EDA.PropTable.Function("E2"),
                                       EDA.PropTable.Function("E3"),
                                       EDA.PropTable.Function("E4"))

(EDA.Barchart.FactorVar <- barchart(EDA.Bar.Source.FactorVar.Prop[,3] ~
                                      EDA.Bar.Source.FactorVar.Prop[,2] | EDA.Bar.Source.FactorVar.Prop[,4],
                                      data=EDA.Bar.Source.FactorVar.Prop,
                                      groups = EDA.Bar.Source.FactorVar.Prop[,1],
                                      stack=TRUE,
                                      ylab = "Proportion",
                                      xlab = "Class",
                                      auto.key = list(adj=1, space="top", columns=2),
                                      layout=(c(3,1))))

1.5 Recursive Feature Elimination (RFE)

1.5.1 Random Forest Without RFE (RF_FULL)


Random Forest is an ensemble learning method made up of a large set of small decision trees called estimators, with each producing its own prediction. The random forest model aggregates the predictions of the estimators to produce a more accurate prediction. The algorithm involves bootstrap aggregating (where smaller subsets of the training data are repeatedly subsampled with replacement), random subspacing (where a subset of features are sampled and used to train each individual estimator), estimator training (where unpruned decision trees are formulated for each estimator) and inference by aggregating the predictions of all estimators.

[A] The random forest model from the randomForest package was implemented without recursive feature elimination through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mtry = number of randomly selected predictors held constant at a value of 11

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mtry=11
     [C.2] AUROC = 0.78268

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] MMP10 variable (numeric)
     [D.2] Crystatin_C variable (numeric)
     [D.3] MMP7 variable (numeric)
     [D.4] TRAIL_R3 variable (numeric)
     [D.5] Pancreatic_polypeptide variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.79803

Code Chunk | Output
##################################
# Converting all predictors to numeric
# for both train and test data
##################################
for (i in 1:ncol(PMA_PreModelling_Train)){
  if (names(PMA_PreModelling_Train)[i]!="Class"){
    PMA_PreModelling_Train[,i] <- as.numeric(PMA_PreModelling_Train[,i])
  }
}
summary(PMA_PreModelling_Train)
##  ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
##  Min.   :-0.6756                Min.   :-2.207                 
##  1st Qu.: 0.9462                1st Qu.:-1.715                 
##  Median : 1.3013                Median :-1.561                 
##  Mean   : 1.3198                Mean   :-1.538                 
##  3rd Qu.: 1.7191                3rd Qu.:-1.347                 
##  Max.   : 2.8398                Max.   :-0.844                 
##       AXL           Adiponectin     Alpha_1_Antichymotrypsin
##  Min.   :-0.9230   Min.   :-6.725   Min.   :0.2624          
##  1st Qu.: 0.0000   1st Qu.:-5.669   1st Qu.:1.1314          
##  Median : 0.2804   Median :-5.185   Median :1.3610          
##  Mean   : 0.3093   Mean   :-5.201   Mean   :1.3605          
##  3rd Qu.: 0.6077   3rd Qu.:-4.780   3rd Qu.:1.5892          
##  Max.   : 1.5214   Max.   :-3.507   Max.   :2.3026          
##  Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
##  Min.   :-17.028     Min.   :-4.343        Min.   :-289.68      
##  1st Qu.:-14.071     1st Qu.:-3.270        1st Qu.:-186.64      
##  Median :-13.004     Median :-2.937        Median :-160.01      
##  Mean   :-13.052     Mean   :-2.932        Mean   :-158.61      
##  3rd Qu.:-12.096     3rd Qu.:-2.590        3rd Qu.:-134.62      
##  Max.   : -8.192     Max.   :-1.772        Max.   : -59.46      
##  Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
##  Min.   :-0.5447      Min.   :1.752   Min.   :-2.9565     Min.   :-8.680   
##  1st Qu.: 0.4700      1st Qu.:2.119   1st Qu.:-2.1203     1st Qu.:-7.763   
##  Median : 0.6419      Median :2.320   Median :-1.8326     Median :-7.470   
##  Mean   : 0.6730      Mean   :2.318   Mean   :-1.8544     Mean   :-7.483   
##  3rd Qu.: 0.8755      3rd Qu.:2.497   3rd Qu.:-1.6094     3rd Qu.:-7.209   
##  Max.   : 1.5261      Max.   :2.881   Max.   :-0.7765     Max.   :-6.166   
##  Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
##  Min.   :-1.8971   Min.   :-9.937   Min.   :-3.3242   Min.   :-3.689     
##  1st Qu.:-0.9676   1st Qu.:-6.630   1st Qu.:-1.8326   1st Qu.:-2.773     
##  Median :-0.6733   Median :-5.703   Median :-1.6094   Median :-2.526     
##  Mean   :-0.6354   Mean   :-5.578   Mean   :-1.5833   Mean   :-2.494     
##  3rd Qu.:-0.3147   3rd Qu.:-4.539   3rd Qu.:-1.3667   3rd Qu.:-2.207     
##  Max.   : 0.9555   Max.   :-2.153   Max.   :-0.2744   Max.   :-1.238     
##  Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H  
##  Min.   :0.470    Min.   :0.5911   Min.   :-2.23379  
##  1st Qu.:1.209    1st Qu.:2.3344   1st Qu.:-0.59782  
##  Median :1.411    Median :2.8181   Median :-0.37005  
##  Mean   :1.440    Mean   :2.8062   Mean   :-0.32122  
##  3rd Qu.:1.668    3rd Qu.:3.2863   3rd Qu.:-0.06112  
##  Max.   :2.272    Max.   :5.4442   Max.   : 0.92696  
##  B_Lymphocyte_Chemoattractant_BL     BMP_6         Beta_2_Microglobulin
##  Min.   :0.7318                  Min.   :-2.7612   Min.   :-0.54473    
##  1st Qu.:1.6731                  1st Qu.:-2.1516   1st Qu.:-0.04082    
##  Median :1.9805                  Median :-1.8774   Median : 0.18232    
##  Mean   :2.0175                  Mean   :-1.9114   Mean   : 0.16757    
##  3rd Qu.:2.3714                  3rd Qu.:-1.6753   3rd Qu.: 0.33647    
##  Max.   :4.0237                  Max.   :-0.8166   Max.   : 0.99325    
##   Betacellulin   C_Reactive_Protein      CD40              CD5L         
##  Min.   :10.00   Min.   :-8.517     Min.   :-1.8644   Min.   :-1.23787  
##  1st Qu.:42.00   1st Qu.:-6.645     1st Qu.:-1.3761   1st Qu.:-0.35667  
##  Median :51.00   Median :-5.843     Median :-1.2734   Median :-0.06188  
##  Mean   :51.01   Mean   :-5.874     Mean   :-1.2584   Mean   :-0.05310  
##  3rd Qu.:59.00   3rd Qu.:-5.083     3rd Qu.:-1.1238   3rd Qu.: 0.26236  
##  Max.   :82.00   Max.   :-2.937     Max.   :-0.5475   Max.   : 1.16315  
##    Calbindin       Calcitonin           CgA        Clusterin_Apo_J
##  Min.   :10.96   Min.   :-0.7134   Min.   :135.6   Min.   :1.872  
##  1st Qu.:19.77   1st Qu.: 0.9555   1st Qu.:278.0   1st Qu.:2.708  
##  Median :22.25   Median : 1.6487   Median :331.5   Median :2.890  
##  Mean   :22.43   Mean   : 1.6788   Mean   :333.3   Mean   :2.882  
##  3rd Qu.:24.80   3rd Qu.: 2.2824   3rd Qu.:392.1   3rd Qu.:3.045  
##  Max.   :33.78   Max.   : 3.8918   Max.   :535.4   Max.   :3.584  
##   Complement_3     Complement_Factor_H Connective_Tissue_Growth_Factor
##  Min.   :-23.387   Min.   :-0.8387     Min.   :0.1823                 
##  1st Qu.:-17.567   1st Qu.: 2.7531     1st Qu.:0.6419                 
##  Median :-15.524   Median : 3.6000     Median :0.7885                 
##  Mean   :-15.610   Mean   : 3.5541     Mean   :0.7739                 
##  3rd Qu.:-13.882   3rd Qu.: 4.2548     3rd Qu.:0.9163                 
##  Max.   : -9.563   Max.   : 7.6238     Max.   :1.4110                 
##     Cortisol     Creatine_Kinase_MB   Cystatin_C        EGF_R         
##  Min.   : 0.10   Min.   :-1.872     Min.   :7.432   Min.   :-1.36135  
##  1st Qu.: 9.80   1st Qu.:-1.724     1st Qu.:8.321   1st Qu.:-0.85727  
##  Median :12.00   Median :-1.671     Median :8.564   Median :-0.68354  
##  Mean   :11.98   Mean   :-1.674     Mean   :8.586   Mean   :-0.70130  
##  3rd Qu.:14.00   3rd Qu.:-1.626     3rd Qu.:8.839   3rd Qu.:-0.54612  
##  Max.   :29.00   Max.   :-1.384     Max.   :9.694   Max.   :-0.06112  
##     EN_RAGE            ENA_78         Eotaxin_3           FAS         
##  Min.   :-8.3774   Min.   :-1.405   Min.   :  7.00   Min.   :-1.5141  
##  1st Qu.:-4.1997   1st Qu.:-1.381   1st Qu.: 44.00   1st Qu.:-0.7133  
##  Median :-3.6497   Median :-1.374   Median : 59.00   Median :-0.5276  
##  Mean   :-3.6353   Mean   :-1.372   Mean   : 58.17   Mean   :-0.5291  
##  3rd Qu.:-3.1466   3rd Qu.:-1.364   3rd Qu.: 70.00   3rd Qu.:-0.3147  
##  Max.   :-0.3857   Max.   :-1.339   Max.   :107.00   Max.   : 0.3365  
##  FSH_Follicle_Stimulation_Hormon   Fas_Ligand      Fatty_Acid_Binding_Protein
##  Min.   :-2.11511                Min.   :-0.1536   Min.   :-1.0441           
##  1st Qu.:-1.46606                1st Qu.: 2.3415   1st Qu.: 0.7998           
##  Median :-1.13570                Median : 3.1015   Median : 1.3865           
##  Mean   :-1.14259                Mean   : 2.9680   Mean   : 1.3529           
##  3rd Qu.:-0.87620                3rd Qu.: 3.6950   3rd Qu.: 1.8847           
##  Max.   : 0.09715                Max.   : 7.6328   Max.   : 3.7055           
##     Ferritin         Fetuin_A       Fibrinogen       GRO_alpha    
##  Min.   :0.6077   Min.   :0.470   Min.   :-8.874   Min.   :1.271  
##  1st Qu.:2.2895   1st Qu.:1.099   1st Qu.:-7.717   1st Qu.:1.351  
##  Median :2.7749   Median :1.308   Median :-7.323   Median :1.382  
##  Mean   :2.7646   Mean   :1.350   Mean   :-7.356   Mean   :1.378  
##  3rd Qu.:3.2915   3rd Qu.:1.609   3rd Qu.:-7.013   3rd Qu.:1.406  
##  Max.   :4.6333   Max.   :2.251   Max.   :-5.843   Max.   :1.495  
##  Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
##  Min.   :2.393                    Min.   :0.5238                 
##  1st Qu.:2.707                    1st Qu.:0.8439                 
##  Median :2.783                    Median :0.9677                 
##  Mean   :2.786                    Mean   :0.9512                 
##  3rd Qu.:2.873                    3rd Qu.:1.0344                 
##  Max.   :3.065                    Max.   :1.3176                 
##      HB_EGF           HCC_4        Hepatocyte_Growth_Factor_HGF     I_309      
##  Min.   : 2.103   Min.   :-4.510   Min.   :-0.6349              Min.   :1.758  
##  1st Qu.: 5.786   1st Qu.:-3.730   1st Qu.: 0.0000              1st Qu.:2.708  
##  Median : 6.703   Median :-3.507   Median : 0.1823              Median :2.944  
##  Mean   : 6.833   Mean   :-3.500   Mean   : 0.1963              Mean   :2.958  
##  3rd Qu.: 7.865   3rd Qu.:-3.270   3rd Qu.: 0.4055              3rd Qu.:3.219  
##  Max.   :10.695   Max.   :-2.120   Max.   : 0.8755              Max.   :4.143  
##      ICAM_1           IGF_BP_2         IL_11           IL_13      
##  Min.   :-1.5332   Min.   :4.635   Min.   :1.755   Min.   :1.259  
##  1st Qu.:-0.8298   1st Qu.:5.179   1st Qu.:3.706   1st Qu.:1.274  
##  Median :-0.5903   Median :5.323   Median :4.805   Median :1.283  
##  Mean   :-0.5908   Mean   :5.317   Mean   :4.725   Mean   :1.284  
##  3rd Qu.:-0.3828   3rd Qu.:5.453   3rd Qu.:5.776   3rd Qu.:1.290  
##  Max.   : 0.5171   Max.   :5.948   Max.   :8.491   Max.   :1.321  
##      IL_16           IL_17E        IL_1alpha           IL_3       
##  Min.   :1.187   Min.   :1.052   Min.   :-8.517   Min.   :-5.915  
##  1st Qu.:2.521   1st Qu.:4.149   1st Qu.:-7.824   1st Qu.:-4.269  
##  Median :2.909   Median :4.749   Median :-7.524   Median :-3.912  
##  Mean   :2.929   Mean   :4.855   Mean   :-7.514   Mean   :-3.941  
##  3rd Qu.:3.351   3rd Qu.:5.631   3rd Qu.:-7.264   3rd Qu.:-3.631  
##  Max.   :4.937   Max.   :8.952   Max.   :-5.952   Max.   :-2.453  
##       IL_4             IL_5              IL_6         IL_6_Receptor     
##  Min.   :0.5306   Min.   :-1.4271   Min.   :-1.5343   Min.   :-0.67562  
##  1st Qu.:1.4586   1st Qu.:-0.1221   1st Qu.:-0.4127   1st Qu.:-0.12541  
##  Median :1.8083   Median : 0.1823   Median :-0.1599   Median : 0.09669  
##  Mean   :1.7732   Mean   : 0.1866   Mean   :-0.1540   Mean   : 0.09492  
##  3rd Qu.:2.1459   3rd Qu.: 0.4700   3rd Qu.: 0.1410   3rd Qu.: 0.35404  
##  Max.   :3.0445   Max.   : 1.9459   Max.   : 1.8138   Max.   : 0.83099  
##       IL_7             IL_8       IP_10_Inducible_Protein_10      IgA         
##  Min.   :0.5598   Min.   :1.574   Min.   :4.317              Min.   :-10.520  
##  1st Qu.:2.1548   1st Qu.:1.680   1st Qu.:5.398              1st Qu.: -6.645  
##  Median :2.7934   Median :1.705   Median :5.753              Median : -6.119  
##  Mean   :2.8392   Mean   :1.704   Mean   :5.755              Mean   : -6.121  
##  3rd Qu.:3.7055   3rd Qu.:1.728   3rd Qu.:6.064              3rd Qu.: -5.573  
##  Max.   :5.7056   Max.   :1.807   Max.   :7.501              Max.   : -4.200  
##     Insulin        Kidney_Injury_Molecule_1_KIM_1     LOX_1      
##  Min.   :-2.1692   Min.   :-1.256                 Min.   :0.000  
##  1st Qu.:-1.4466   1st Qu.:-1.204                 1st Qu.:1.030  
##  Median :-1.2462   Median :-1.183                 Median :1.281  
##  Mean   :-1.2329   Mean   :-1.185                 Mean   :1.283  
##  3rd Qu.:-1.0340   3rd Qu.:-1.164                 3rd Qu.:1.526  
##  Max.   :-0.1586   Max.   :-1.105                 Max.   :2.272  
##      Leptin        Lipoprotein_a        MCP_1           MCP_2       
##  Min.   :-2.1468   Min.   :-6.812   Min.   :5.826   Min.   :0.4006  
##  1st Qu.:-1.6996   1st Qu.:-5.308   1st Qu.:6.319   1st Qu.:1.5304  
##  Median :-1.5047   Median :-4.605   Median :6.494   Median :1.8528  
##  Mean   :-1.5042   Mean   :-4.417   Mean   :6.497   Mean   :1.8691  
##  3rd Qu.:-1.3295   3rd Qu.:-3.490   3rd Qu.:6.678   3rd Qu.:2.1821  
##  Max.   :-0.6206   Max.   :-1.386   Max.   :7.230   Max.   :4.0237  
##       MIF           MIP_1alpha       MIP_1beta         MMP_2        
##  Min.   :-2.847   Min.   :0.9346   Min.   :1.946   Min.   :0.09809  
##  1st Qu.:-2.120   1st Qu.:3.3377   1st Qu.:2.565   1st Qu.:2.33214  
##  Median :-1.897   Median :4.0495   Median :2.833   Median :2.81512  
##  Mean   :-1.864   Mean   :4.0489   Mean   :2.814   Mean   :2.87534  
##  3rd Qu.:-1.661   3rd Qu.:4.6857   3rd Qu.:3.045   3rd Qu.:3.55121  
##  Max.   :-0.844   Max.   :6.7959   Max.   :4.007   Max.   :5.35895  
##      MMP_3             MMP10             MMP7           Myoglobin      
##  Min.   :-4.4228   Min.   :-4.934   Min.   :-8.3975   Min.   :-3.1701  
##  1st Qu.:-2.7489   1st Qu.:-3.938   1st Qu.:-4.8199   1st Qu.:-2.0402  
##  Median :-2.4534   Median :-3.650   Median :-3.7735   Median :-1.4697  
##  Mean   :-2.4455   Mean   :-3.635   Mean   :-3.7894   Mean   :-1.3671  
##  3rd Qu.:-2.1203   3rd Qu.:-3.352   3rd Qu.:-2.7140   3rd Qu.:-0.7988  
##  Max.   :-0.5276   Max.   :-2.207   Max.   :-0.2222   Max.   : 1.7750  
##    NT_proBNP         NrCAM        Osteopontin        PAI_1         
##  Min.   :3.178   Min.   :2.639   Min.   :4.111   Min.   :-0.99085  
##  1st Qu.:4.350   1st Qu.:3.998   1st Qu.:4.963   1st Qu.:-0.16655  
##  Median :4.554   Median :4.394   Median :5.187   Median : 0.09396  
##  Mean   :4.552   Mean   :4.362   Mean   :5.204   Mean   : 0.07743  
##  3rd Qu.:4.775   3rd Qu.:4.749   3rd Qu.:5.442   3rd Qu.: 0.32005  
##  Max.   :5.886   Max.   :6.011   Max.   :6.308   Max.   : 1.16611  
##      PAPP_A            PLGF            PYY        Pancreatic_polypeptide
##  Min.   :-3.311   Min.   :2.485   Min.   :2.186   Min.   :-2.12026      
##  1st Qu.:-2.936   1st Qu.:3.638   1st Qu.:2.833   1st Qu.:-0.52763      
##  Median :-2.871   Median :3.871   Median :2.996   Median :-0.04082      
##  Mean   :-2.854   Mean   :3.912   Mean   :3.015   Mean   :-0.01323      
##  3rd Qu.:-2.749   3rd Qu.:4.205   3rd Qu.:3.178   3rd Qu.: 0.53063      
##  Max.   :-2.520   Max.   :5.170   Max.   :3.932   Max.   : 1.93152      
##    Prolactin        Prostatic_Acid_Phosphatase   Protein_S     
##  Min.   :-1.30933   Min.   :-1.934             Min.   :-3.338  
##  1st Qu.:-0.13926   1st Qu.:-1.717             1st Qu.:-2.464  
##  Median : 0.00000   Median :-1.690             Median :-2.259  
##  Mean   : 0.04495   Mean   :-1.685             Mean   :-2.240  
##  3rd Qu.: 0.25799   3rd Qu.:-1.654             3rd Qu.:-2.000  
##  Max.   : 0.99325   Max.   :-1.424             Max.   :-1.221  
##  Pulmonary_and_Activation_Regulat     RANTES          Resistin      
##  Min.   :-2.5133                  Min.   :-7.222   Min.   :-34.967  
##  1st Qu.:-1.8326                  1st Qu.:-6.725   1st Qu.:-21.468  
##  Median :-1.5141                  Median :-6.502   Median :-17.466  
##  Mean   :-1.4880                  Mean   :-6.511   Mean   :-17.641  
##  3rd Qu.:-1.1712                  3rd Qu.:-6.320   3rd Qu.:-13.501  
##  Max.   :-0.2744                  Max.   :-5.547   Max.   : -2.239  
##      S100b             SGOT              SHBG             SOD       
##  Min.   :0.1874   Min.   :-1.3471   Min.   :-4.135   Min.   :4.317  
##  1st Qu.:1.0012   1st Qu.:-0.6349   1st Qu.:-2.813   1st Qu.:5.094  
##  Median :1.2544   Median :-0.4005   Median :-2.489   Median :5.366  
##  Mean   :1.2505   Mean   :-0.4057   Mean   :-2.477   Mean   :5.336  
##  3rd Qu.:1.4996   3rd Qu.:-0.1985   3rd Qu.:-2.120   3rd Qu.:5.583  
##  Max.   :2.3726   Max.   : 0.7419   Max.   :-1.109   Max.   :6.317  
##  Serum_Amyloid_P     Sortilin     Stem_Cell_Factor   TGF_alpha     
##  Min.   :-7.506   Min.   :1.654   Min.   :2.251    Min.   : 6.843  
##  1st Qu.:-6.377   1st Qu.:3.343   1st Qu.:3.045    1st Qu.: 8.859  
##  Median :-6.032   Median :3.867   Median :3.296    Median : 9.919  
##  Mean   :-6.017   Mean   :3.852   Mean   :3.301    Mean   : 9.801  
##  3rd Qu.:-5.655   3rd Qu.:4.371   3rd Qu.:3.526    3rd Qu.:10.695  
##  Max.   :-4.646   Max.   :6.225   Max.   :4.277    Max.   :13.827  
##      TIMP_1          TNF_RII           TRAIL_R3       TTR_prealbumin 
##  Min.   : 1.742   Min.   :-1.6607   Min.   :-1.2107   Min.   :2.485  
##  1st Qu.:10.490   1st Qu.:-0.8210   1st Qu.:-0.7008   1st Qu.:2.773  
##  Median :11.565   Median :-0.5978   Median :-0.5317   Median :2.833  
##  Mean   :11.750   Mean   :-0.5939   Mean   :-0.5394   Mean   :2.854  
##  3rd Qu.:12.697   3rd Qu.:-0.3784   3rd Qu.:-0.3849   3rd Qu.:2.944  
##  Max.   :18.881   Max.   : 0.4700   Max.   : 0.2694   Max.   :3.332  
##  Tamm_Horsfall_Protein_THP Thrombomodulin    Thrombopoietin    
##  Min.   :-3.206            Min.   :-2.0377   Min.   :-1.53957  
##  1st Qu.:-3.137            1st Qu.:-1.6256   1st Qu.:-0.88645  
##  Median :-3.117            Median :-1.4920   Median :-0.75100  
##  Mean   :-3.116            Mean   :-1.5050   Mean   :-0.75419  
##  3rd Qu.:-3.096            3rd Qu.:-1.3406   3rd Qu.:-0.62887  
##  Max.   :-2.995            Max.   :-0.8166   Max.   : 0.09762  
##  Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
##  Min.   :1.508                   Min.   :-6.190             
##  1st Qu.:3.343                   1st Qu.:-4.962             
##  Median :3.810                   Median :-4.510             
##  Mean   :3.848                   Mean   :-4.499             
##  3rd Qu.:4.316                   3rd Qu.:-4.017             
##  Max.   :6.225                   Max.   :-1.715             
##  Thyroxine_Binding_Globulin Tissue_Factor      Transferrin   
##  Min.   :-2.4769            Min.   :-0.2107   Min.   :1.932  
##  1st Qu.:-1.7720            1st Qu.: 0.8329   1st Qu.:2.708  
##  Median :-1.5141            Median : 1.2238   Median :2.890  
##  Mean   :-1.4788            Mean   : 1.1702   Mean   :2.909  
##  3rd Qu.:-1.2379            3rd Qu.: 1.4816   3rd Qu.:3.091  
##  Max.   :-0.2107            Max.   : 2.4849   Max.   :3.761  
##  Trefoil_Factor_3_TFF3     VCAM_1           VEGF        Vitronectin      
##  Min.   :-4.744        Min.   :1.723   Min.   :11.83   Min.   :-1.42712  
##  1st Qu.:-4.135        1st Qu.:2.485   1st Qu.:15.77   1st Qu.:-0.51083  
##  Median :-3.863        Median :2.708   Median :17.08   Median :-0.30111  
##  Mean   :-3.876        Mean   :2.688   Mean   :16.99   Mean   :-0.28473  
##  3rd Qu.:-3.650        3rd Qu.:2.890   3rd Qu.:18.10   3rd Qu.:-0.03564  
##  Max.   :-2.957        Max.   :3.689   Max.   :22.38   Max.   : 0.53063  
##  von_Willebrand_Factor      Class           E4              E3       
##  Min.   :-4.991        Impaired: 73   Min.   :1.000   Min.   :1.000  
##  1st Qu.:-4.200        Control :194   1st Qu.:1.000   1st Qu.:2.000  
##  Median :-3.912                       Median :1.000   Median :2.000  
##  Mean   :-3.906                       Mean   :1.401   Mean   :1.918  
##  3rd Qu.:-3.612                       3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :-2.957                       Max.   :2.000   Max.   :2.000  
##        E2       
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :1.000  
##  Mean   :1.161  
##  3rd Qu.:1.000  
##  Max.   :2.000
for (i in 1:ncol(PMA_PreModelling_Test)){
  if (names(PMA_PreModelling_Test)[i]!="Class"){
    PMA_PreModelling_Test[,i] <- as.numeric(PMA_PreModelling_Test[,i])
  }
}
summary(PMA_PreModelling_Test)
##  ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
##  Min.   :-0.5473                Min.   :-2.2073                
##  1st Qu.: 0.9462                1st Qu.:-1.7148                
##  Median : 1.3013                Median :-1.5374                
##  Mean   : 1.3105                Mean   :-1.5311                
##  3rd Qu.: 1.6320                3rd Qu.:-1.3863                
##  Max.   : 3.0890                Max.   :-0.7985                
##       AXL            Adiponectin     Alpha_1_Antichymotrypsin
##  Min.   :-0.73509   Min.   :-7.059   Min.   :0.1823          
##  1st Qu.:-0.08175   1st Qu.:-5.737   1st Qu.:1.0647          
##  Median : 0.28035   Median :-5.360   Median :1.3083          
##  Mean   : 0.25373   Mean   :-5.298   Mean   :1.3077          
##  3rd Qu.: 0.60768   3rd Qu.:-4.917   3rd Qu.:1.5686          
##  Max.   : 1.28634   Max.   :-3.474   Max.   :2.2192          
##  Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
##  Min.   :-18.17      Min.   :-4.135        Min.   :-238.64      
##  1st Qu.:-14.70      1st Qu.:-3.284        1st Qu.:-186.64      
##  Median :-13.59      Median :-3.006        Median :-162.93      
##  Mean   :-13.49      Mean   :-2.983        Mean   :-162.89      
##  3rd Qu.:-12.31      3rd Qu.:-2.674        3rd Qu.:-136.53      
##  Max.   :-10.06      Max.   :-1.897        Max.   : -50.17      
##  Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
##  Min.   :-0.05129     Min.   :1.710   Min.   :-2.749      Min.   :-8.568   
##  1st Qu.: 0.35372     1st Qu.:2.068   1st Qu.:-2.186      1st Qu.:-7.818   
##  Median : 0.55921     Median :2.276   Median :-1.897      Median :-7.497   
##  Mean   : 0.60278     Mean   :2.274   Mean   :-1.867      Mean   :-7.488   
##  3rd Qu.: 0.78846     3rd Qu.:2.430   3rd Qu.:-1.526      3rd Qu.:-7.176   
##  Max.   : 1.77495     Max.   :2.752   Max.   :-1.109      Max.   :-6.645   
##  Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
##  Min.   :-1.9661   Min.   :-8.192   Min.   :-2.847    Min.   :-3.863     
##  1st Qu.:-0.9416   1st Qu.:-6.748   1st Qu.:-1.897    1st Qu.:-2.781     
##  Median :-0.7032   Median :-5.819   Median :-1.609    Median :-2.557     
##  Mean   :-0.6902   Mean   :-5.649   Mean   :-1.625    Mean   :-2.523     
##  3rd Qu.:-0.3533   3rd Qu.:-4.603   3rd Qu.:-1.309    3rd Qu.:-2.231     
##  Max.   : 0.5306   Max.   :-2.339   Max.   :-0.462    Max.   :-1.386     
##  Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H 
##  Min.   :0.2624   Min.   :0.6626   Min.   :-1.1609  
##  1st Qu.:1.1314   1st Qu.:2.1526   1st Qu.:-0.5317  
##  Median :1.3863   Median :2.8181   Median :-0.2897  
##  Mean   :1.3943   Mean   :2.7160   Mean   :-0.3212  
##  3rd Qu.:1.6864   3rd Qu.:3.2363   3rd Qu.:-0.1032  
##  Max.   :2.6391   Max.   :4.6844   Max.   : 0.4402  
##  B_Lymphocyte_Chemoattractant_BL     BMP_6        Beta_2_Microglobulin
##  Min.   :0.7318                  Min.   :-2.669   Min.   :-0.51083    
##  1st Qu.:1.5304                  1st Qu.:-2.152   1st Qu.:-0.06188    
##  Median :1.8528                  Median :-1.964   Median : 0.18232    
##  Mean   :1.8766                  Mean   :-1.937   Mean   : 0.15566    
##  3rd Qu.:2.3714                  3rd Qu.:-1.675   3rd Qu.: 0.40547    
##  Max.   :2.9757                  Max.   :-1.181   Max.   : 0.83291    
##   Betacellulin   C_Reactive_Protein      CD40              CD5L         
##  Min.   :32.00   Min.   :-8.112     Min.   :-1.9390   Min.   :-1.96611  
##  1st Qu.:46.00   1st Qu.:-6.725     1st Qu.:-1.4420   1st Qu.:-0.36747  
##  Median :51.00   Median :-6.166     Median :-1.2574   Median :-0.05135  
##  Mean   :52.74   Mean   :-5.997     Mean   :-1.2773   Mean   :-0.08760  
##  3rd Qu.:59.75   3rd Qu.:-5.369     3rd Qu.:-1.1034   3rd Qu.: 0.24235  
##  Max.   :80.00   Max.   :-3.411     Max.   :-0.7766   Max.   : 0.91629  
##    Calbindin       Calcitonin           CgA        Clusterin_Apo_J
##  Min.   :10.81   Min.   :-0.7134   Min.   :166.6   Min.   :1.932  
##  1st Qu.:18.88   1st Qu.: 1.2014   1st Qu.:268.2   1st Qu.:2.565  
##  Median :21.06   Median : 1.6849   Median :324.7   Median :2.833  
##  Mean   :21.49   Mean   : 1.7250   Mean   :320.2   Mean   :2.845  
##  3rd Qu.:24.00   3rd Qu.: 2.2618   3rd Qu.:362.3   3rd Qu.:3.045  
##  Max.   :35.36   Max.   : 4.1109   Max.   :494.5   Max.   :3.761  
##   Complement_3    Complement_Factor_H Connective_Tissue_Growth_Factor
##  Min.   :-22.40   Min.   :0.2766      Min.   :0.09531                
##  1st Qu.:-17.50   1st Qu.:2.6019      1st Qu.:0.58779                
##  Median :-15.90   Median :3.3983      Median :0.74194                
##  Mean   :-15.91   Mean   :3.3897      Mean   :0.74507                
##  3rd Qu.:-14.34   3rd Qu.:4.2548      3rd Qu.:0.87547                
##  Max.   :-10.23   Max.   :6.5597      Max.   :1.41099                
##     Cortisol     Creatine_Kinase_MB   Cystatin_C        EGF_R        
##  Min.   : 0.10   Min.   :-1.872     Min.   :7.728   Min.   :-1.2694  
##  1st Qu.: 8.90   1st Qu.:-1.721     1st Qu.:8.301   1st Qu.:-0.8859  
##  Median :10.00   Median :-1.651     Median :8.544   Median :-0.6917  
##  Mean   :10.46   Mean   :-1.652     Mean   :8.576   Mean   :-0.6965  
##  3rd Qu.:12.00   3rd Qu.:-1.590     3rd Qu.:8.837   3rd Qu.:-0.5034  
##  Max.   :22.00   Max.   :-1.434     Max.   :9.694   Max.   : 0.1891  
##     EN_RAGE            ENA_78         Eotaxin_3           FAS         
##  Min.   :-8.3774   Min.   :-1.405   Min.   : 23.00   Min.   :-1.1087  
##  1st Qu.:-4.1836   1st Qu.:-1.382   1st Qu.: 43.00   1st Qu.:-0.7133  
##  Median :-3.6889   Median :-1.374   Median : 54.00   Median :-0.5798  
##  Mean   :-3.5986   Mean   :-1.376   Mean   : 55.55   Mean   :-0.5414  
##  3rd Qu.:-3.2189   3rd Qu.:-1.368   3rd Qu.: 64.00   3rd Qu.:-0.3355  
##  Max.   :-0.8675   Max.   :-1.353   Max.   :107.00   Max.   : 0.1823  
##  FSH_Follicle_Stimulation_Hormon   Fas_Ligand    Fatty_Acid_Binding_Protein
##  Min.   :-1.8101                 Min.   :0.288   Min.   :-0.4559           
##  1st Qu.:-1.2694                 1st Qu.:2.073   1st Qu.: 0.7998           
##  Median :-0.9763                 Median :2.665   Median : 1.1866           
##  Mean   :-1.0597                 Mean   :2.649   Mean   : 1.2884           
##  3rd Qu.:-0.8068                 3rd Qu.:3.162   3rd Qu.: 1.9192           
##  Max.   :-0.4757                 Max.   :5.377   Max.   : 3.2188           
##     Ferritin         Fetuin_A        Fibrinogen       GRO_alpha    
##  Min.   :0.8983   Min.   :0.5306   Min.   :-9.373   Min.   :1.271  
##  1st Qu.:2.1473   1st Qu.:1.0296   1st Qu.:-7.799   1st Qu.:1.351  
##  Median :2.6260   Median :1.3083   Median :-7.316   Median :1.372  
##  Mean   :2.7069   Mean   :1.3116   Mean   :-7.360   Mean   :1.378  
##  3rd Qu.:3.1672   3rd Qu.:1.6094   3rd Qu.:-6.970   3rd Qu.:1.398  
##  Max.   :4.9282   Max.   :2.2083   Max.   :-6.166   Max.   :1.514  
##  Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
##  Min.   :2.545                    Min.   :0.5661                 
##  1st Qu.:2.698                    1st Qu.:0.8257                 
##  Median :2.768                    Median :0.9493                 
##  Mean   :2.772                    Mean   :0.9440                 
##  3rd Qu.:2.829                    3rd Qu.:1.0457                 
##  Max.   :3.046                    Max.   :1.3102                 
##      HB_EGF           HCC_4        Hepatocyte_Growth_Factor_HGF     I_309      
##  Min.   : 3.521   Min.   :-4.343   Min.   :-0.61619             Min.   :2.041  
##  1st Qu.: 5.949   1st Qu.:-3.772   1st Qu.:-0.05661             1st Qu.:2.724  
##  Median : 6.980   Median :-3.540   Median : 0.18232             Median :2.944  
##  Mean   : 6.844   Mean   :-3.538   Mean   : 0.18076             Mean   :2.921  
##  3rd Qu.: 7.745   3rd Qu.:-3.352   3rd Qu.: 0.33647             3rd Qu.:3.135  
##  Max.   :10.359   Max.   :-2.489   Max.   : 1.09861             Max.   :3.689  
##      ICAM_1           IGF_BP_2         IL_11           IL_13      
##  Min.   :-1.4661   Min.   :4.718   Min.   :2.031   Min.   :1.232  
##  1st Qu.:-0.7671   1st Qu.:5.127   1st Qu.:3.960   1st Qu.:1.274  
##  Median :-0.5903   Median :5.255   Median :4.838   Median :1.283  
##  Mean   :-0.5958   Mean   :5.263   Mean   :4.651   Mean   :1.283  
##  3rd Qu.:-0.3574   3rd Qu.:5.402   3rd Qu.:5.482   3rd Qu.:1.292  
##  Max.   : 0.3602   Max.   :5.916   Max.   :8.692   Max.   :1.310  
##      IL_16            IL_17E        IL_1alpha           IL_3       
##  Min.   :0.9568   Min.   :1.582   Min.   :-8.468   Min.   :-5.521  
##  1st Qu.:2.4411   1st Qu.:3.637   1st Qu.:-7.849   1st Qu.:-4.324  
##  Median :2.8763   Median :4.723   Median :-7.562   Median :-3.963  
##  Mean   :2.8176   Mean   :4.774   Mean   :-7.549   Mean   :-3.976  
##  3rd Qu.:3.3514   3rd Qu.:5.415   3rd Qu.:-7.279   3rd Qu.:-3.576  
##  Max.   :4.1028   Max.   :8.081   Max.   :-6.377   Max.   :-3.079  
##       IL_4             IL_5               IL_6          IL_6_Receptor     
##  Min.   :0.5306   Min.   :-1.04982   Min.   :-1.53428   Min.   :-0.74560  
##  1st Qu.:1.4586   1st Qu.:-0.03062   1st Qu.:-0.40924   1st Qu.:-0.20131  
##  Median :1.7226   Median : 0.22234   Median :-0.07205   Median : 0.00000  
##  Mean   :1.7445   Mean   : 0.22853   Mean   :-0.05216   Mean   : 0.06213  
##  3rd Qu.:2.0669   3rd Qu.: 0.53063   3rd Qu.: 0.34805   3rd Qu.: 0.27297  
##  Max.   :2.7081   Max.   : 1.13140   Max.   : 1.00562   Max.   : 0.77048  
##       IL_7            IL_8       IP_10_Inducible_Protein_10      IgA        
##  Min.   :1.310   Min.   :1.615   Min.   :4.263              Min.   :-7.621  
##  1st Qu.:2.379   1st Qu.:1.684   1st Qu.:5.323              1st Qu.:-6.571  
##  Median :3.148   Median :1.702   Median :5.617              Median :-6.012  
##  Mean   :3.143   Mean   :1.704   Mean   :5.636              Mean   :-6.066  
##  3rd Qu.:3.706   3rd Qu.:1.725   3rd Qu.:5.917              3rd Qu.:-5.606  
##  Max.   :5.000   Max.   :1.836   Max.   :7.208              Max.   :-4.733  
##     Insulin        Kidney_Injury_Molecule_1_KIM_1     LOX_1       
##  Min.   :-2.0099   Min.   :-1.251                 Min.   :0.0000  
##  1st Qu.:-1.4466   1st Qu.:-1.209                 1st Qu.:0.9649  
##  Median :-1.2169   Median :-1.187                 Median :1.2238  
##  Mean   :-1.1998   Mean   :-1.188                 Mean   :1.2085  
##  3rd Qu.:-1.0105   3rd Qu.:-1.166                 3rd Qu.:1.4351  
##  Max.   :-0.5025   Max.   :-1.124                 Max.   :2.3979  
##      Leptin        Lipoprotein_a        MCP_1           MCP_2       
##  Min.   :-1.9471   Min.   :-6.571   Min.   :5.889   Min.   :0.4006  
##  1st Qu.:-1.6334   1st Qu.:-5.116   1st Qu.:6.318   1st Qu.:1.5304  
##  Median :-1.4294   Median :-4.657   Median :6.482   Median :1.8528  
##  Mean   :-1.4363   Mean   :-4.515   Mean   :6.480   Mean   :1.8104  
##  3rd Qu.:-1.2409   3rd Qu.:-4.017   3rd Qu.:6.627   3rd Qu.:2.0827  
##  Max.   :-0.8387   Max.   :-2.040   Max.   :7.065   Max.   :3.7545  
##       MIF           MIP_1alpha      MIP_1beta         MMP_2       
##  Min.   :-2.797   Min.   :1.008   Min.   :1.917   Min.   :0.6248  
##  1st Qu.:-2.120   1st Qu.:3.302   1st Qu.:2.485   1st Qu.:2.5513  
##  Median :-1.966   Median :3.736   Median :2.773   Median :2.9937  
##  Mean   :-1.932   Mean   :3.898   Mean   :2.784   Mean   :3.0347  
##  3rd Qu.:-1.715   3rd Qu.:4.686   3rd Qu.:3.079   3rd Qu.:3.4798  
##  Max.   :-1.109   Max.   :5.735   Max.   :3.784   Max.   :6.0996  
##      MMP_3            MMP10             MMP7           Myoglobin      
##  Min.   :-3.650   Min.   :-4.948   Min.   :-7.5346   Min.   :-3.2968  
##  1st Qu.:-2.852   1st Qu.:-4.075   1st Qu.:-4.9634   1st Qu.:-2.0217  
##  Median :-2.532   Median :-3.612   Median :-4.0302   Median :-1.5874  
##  Mean   :-2.490   Mean   :-3.676   Mean   :-4.0148   Mean   :-1.4165  
##  3rd Qu.:-2.120   3rd Qu.:-3.331   3rd Qu.:-3.1640   3rd Qu.:-0.7765  
##  Max.   :-1.171   Max.   :-2.900   Max.   :-0.1953   Max.   : 1.1314  
##    NT_proBNP         NrCAM        Osteopontin        PAI_1          
##  Min.   :3.611   Min.   :2.890   Min.   :4.078   Min.   :-0.990849  
##  1st Qu.:4.174   1st Qu.:3.871   1st Qu.:4.892   1st Qu.:-0.334043  
##  Median :4.477   Median :4.317   Median :5.168   Median : 0.000000  
##  Mean   :4.488   Mean   :4.291   Mean   :5.177   Mean   :-0.003947  
##  3rd Qu.:4.794   3rd Qu.:4.725   3rd Qu.:5.410   3rd Qu.: 0.303112  
##  Max.   :5.398   Max.   :5.690   Max.   :6.315   Max.   : 0.885785  
##      PAPP_A            PLGF            PYY        Pancreatic_polypeptide
##  Min.   :-3.152   Min.   :2.639   Min.   :2.398   Min.   :-1.609438     
##  1st Qu.:-2.971   1st Qu.:3.689   1st Qu.:2.833   1st Qu.:-0.506693     
##  Median :-2.841   Median :3.892   Median :2.996   Median : 0.138816     
##  Mean   :-2.845   Mean   :3.884   Mean   :2.976   Mean   :-0.005258     
##  3rd Qu.:-2.719   3rd Qu.:4.123   3rd Qu.:3.178   3rd Qu.: 0.470004     
##  Max.   :-2.488   Max.   :4.710   Max.   :3.738   Max.   : 1.504077     
##    Prolactin        Prostatic_Acid_Phosphatase   Protein_S     
##  Min.   :-0.38566   Min.   :-1.800             Min.   :-3.154  
##  1st Qu.:-0.16558   1st Qu.:-1.739             1st Qu.:-2.579  
##  Median : 0.00000   Median :-1.690             Median :-2.259  
##  Mean   : 0.05195   Mean   :-1.692             Mean   :-2.268  
##  3rd Qu.: 0.18232   3rd Qu.:-1.659             3rd Qu.:-1.924  
##  Max.   : 0.78846   Max.   :-1.540             Max.   :-1.547  
##  Pulmonary_and_Activation_Regulat     RANTES          Resistin      
##  Min.   :-2.4418                  Min.   :-7.236   Min.   :-30.156  
##  1st Qu.:-1.8326                  1st Qu.:-6.725   1st Qu.:-22.131  
##  Median :-1.5141                  Median :-6.571   Median :-18.014  
##  Mean   :-1.5007                  Mean   :-6.540   Mean   :-18.245  
##  3rd Qu.:-1.1712                  3rd Qu.:-6.392   3rd Qu.:-15.202  
##  Max.   :-0.4463                  Max.   :-5.843   Max.   : -6.594  
##      S100b             SGOT              SHBG             SOD       
##  Min.   :0.1874   Min.   :-1.8971   Min.   :-3.730   Min.   :4.382  
##  1st Qu.:0.9600   1st Qu.:-0.7498   1st Qu.:-3.052   1st Qu.:5.006  
##  Median :1.1571   Median :-0.4780   Median :-2.711   Median :5.313  
##  Mean   :1.1819   Mean   :-0.4898   Mean   :-2.686   Mean   :5.302  
##  3rd Qu.:1.3807   3rd Qu.:-0.2138   3rd Qu.:-2.343   3rd Qu.:5.547  
##  Max.   :2.1950   Max.   : 0.1823   Max.   :-1.561   Max.   :6.461  
##  Serum_Amyloid_P     Sortilin     Stem_Cell_Factor   TGF_alpha     
##  Min.   :-7.182   Min.   :1.508   Min.   :2.219    Min.   : 7.500  
##  1st Qu.:-6.438   1st Qu.:3.177   1st Qu.:3.045    1st Qu.: 9.062  
##  Median :-6.215   Median :3.867   Median :3.314    Median : 9.596  
##  Mean   :-6.083   Mean   :3.787   Mean   :3.267    Mean   : 9.776  
##  3rd Qu.:-5.607   3rd Qu.:4.371   3rd Qu.:3.466    3rd Qu.:10.612  
##  Max.   :-4.699   Max.   :5.681   Max.   :4.078    Max.   :13.083  
##      TIMP_1          TNF_RII           TRAIL_R3        TTR_prealbumin 
##  Min.   : 8.198   Min.   :-1.6607   Min.   :-1.30636   Min.   :2.485  
##  1st Qu.:10.530   1st Qu.:-0.8675   1st Qu.:-0.73332   1st Qu.:2.773  
##  Median :11.341   Median :-0.6541   Median :-0.55547   Median :2.890  
##  Mean   :11.520   Mean   :-0.6270   Mean   :-0.58640   Mean   :2.854  
##  3rd Qu.:12.352   3rd Qu.:-0.3320   3rd Qu.:-0.47065   3rd Qu.:2.944  
##  Max.   :16.547   Max.   : 0.4055   Max.   : 0.09622   Max.   :3.091  
##  Tamm_Horsfall_Protein_THP Thrombomodulin   Thrombopoietin   
##  Min.   :-3.206            Min.   :-2.054   Min.   :-1.5396  
##  1st Qu.:-3.144            1st Qu.:-1.675   1st Qu.:-0.8383  
##  Median :-3.126            Median :-1.534   Median :-0.7039  
##  Mean   :-3.123            Mean   :-1.533   Mean   :-0.7192  
##  3rd Qu.:-3.101            3rd Qu.:-1.341   3rd Qu.:-0.6289  
##  Max.   :-3.041            Max.   :-1.019   Max.   :-0.3029  
##  Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
##  Min.   :2.141                   Min.   :-6.190             
##  1st Qu.:3.283                   1st Qu.:-4.733             
##  Median :3.753                   Median :-4.269             
##  Mean   :3.770                   Mean   :-4.221             
##  3rd Qu.:4.316                   3rd Qu.:-3.828             
##  Max.   :5.681                   Max.   :-2.040             
##  Thyroxine_Binding_Globulin Tissue_Factor     Transferrin   
##  Min.   :-2.3026            Min.   :0.0000   Min.   :2.282  
##  1st Qu.:-1.7148            1st Qu.:0.7053   1st Qu.:2.708  
##  Median :-1.4919            Median :1.1473   Median :2.890  
##  Mean   :-1.4902            Mean   :1.1356   Mean   :2.900  
##  3rd Qu.:-1.2379            3rd Qu.:1.5149   3rd Qu.:3.135  
##  Max.   :-0.5978            Max.   :2.7081   Max.   :3.497  
##  Trefoil_Factor_3_TFF3     VCAM_1           VEGF        Vitronectin      
##  Min.   :-4.906        Min.   :2.028   Min.   :12.23   Min.   :-1.07881  
##  1st Qu.:-4.200        1st Qu.:2.420   1st Qu.:15.03   1st Qu.:-0.46204  
##  Median :-3.912        Median :2.674   Median :17.08   Median :-0.28106  
##  Mean   :-3.947        Mean   :2.644   Mean   :16.70   Mean   :-0.26833  
##  3rd Qu.:-3.772        3rd Qu.:2.833   3rd Qu.:18.19   3rd Qu.:-0.05394  
##  Max.   :-3.170        Max.   :3.466   Max.   :21.18   Max.   : 0.40547  
##  von_Willebrand_Factor      Class          E4              E3       
##  Min.   :-4.920        Impaired:18   Min.   :1.000   Min.   :1.000  
##  1st Qu.:-4.269        Control :48   1st Qu.:1.000   1st Qu.:2.000  
##  Median :-4.017                      Median :1.000   Median :2.000  
##  Mean   :-4.014                      Mean   :1.303   Mean   :1.985  
##  3rd Qu.:-3.730                      3rd Qu.:2.000   3rd Qu.:2.000  
##  Max.   :-3.058                      Max.   :2.000   Max.   :2.000  
##        E2       
##  Min.   :1.000  
##  1st Qu.:1.000  
##  Median :1.000  
##  Mean   :1.061  
##  3rd Qu.:1.000  
##  Max.   :2.000
##################################
# Formulating a function to summarize
# model performance metrics
##################################
FiveMetricsSummary <- function(...) c(twoClassSummary(...), defaultSummary(...))

##################################
# Creating consistent fold assignments 
# for the Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(PMA_PreModelling_Train$Class ,
                             k = 10,
                             returnTrain=TRUE)

##################################
# Creating a range of
# variable subsets for evaluation
##################################
VariableSubset <- seq(1, length(names(PMA_PreModelling_Train))-2, by=20)

##################################
# Formulating the controls for the 
# recursive feature elimination process
##################################
KFold_RFEControl <- rfeControl(method = "cv",
                               saveDetails = TRUE,
                               index = KFold_Indices,
                               returnResamp = "final")

##################################
# Formulating the controls for the 
# model training process
##################################
KFold_TrainControl <- trainControl(method = "cv",
                                   summaryFunction = FiveMetricsSummary,
                                   classProbs = TRUE,
                                   index = KFold_Indices)

##################################
# Running the random forest model
# by setting the caret method to 'rf'
##################################
set.seed(12345678)
RF_FULL_Tune <- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                        y = PMA_PreModelling_Train$Class,
                        method = "rf",
                        metric = "ROC",
                        tuneGrid = data.frame(mtry = floor(sqrt(length(names(PMA_PreModelling_Train) %in% c("Class"))))),
                        ntree = 100,
                        trControl = KFold_TrainControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
RF_FULL_Tune
## Random Forest 
## 
## 267 samples
## 127 predictors
##   2 classes: 'Impaired', 'Control' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ... 
## Resampling results:
## 
##   ROC        Sens       Spec       Accuracy   Kappa    
##   0.7826833  0.3035714  0.9589474  0.7797517  0.3094392
## 
## Tuning parameter 'mtry' was held constant at a value of 11
RF_FULL_Tune$finalModel
## 
## Call:
##  randomForest(x = x, y = y, ntree = 100, mtry = param$mtry) 
##                Type of random forest: classification
##                      Number of trees: 100
## No. of variables tried at each split: 11
## 
##         OOB estimate of  error rate: 23.22%
## Confusion matrix:
##          Impaired Control class.error
## Impaired       22      51  0.69863014
## Control        11     183  0.05670103
RF_FULL_Tune$results
##   mtry       ROC      Sens      Spec  Accuracy     Kappa     ROCSD   SensSD
## 1   11 0.7826833 0.3035714 0.9589474 0.7797517 0.3094392 0.1152203 0.191404
##       SpecSD AccuracySD  KappaSD
## 1 0.03201935 0.06273494 0.225028
(RF_FULL_Train_ROCCurveAUC <- RF_FULL_Tune$results[,c("ROC")])
## [1] 0.7826833
##################################
# Identifying and plotting the
# best model predictors
##################################
RF_FULL_VarImp <- varImp(RF_FULL_Tune, scale = TRUE)
plot(RF_FULL_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Random Forest",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
RF_FULL_Test <- data.frame(RF_FULL_Observed = PMA_PreModelling_Test$Class,
                      RF_FULL_Predicted = predict(RF_FULL_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
RF_FULL_Test_ROC <- roc(response = RF_FULL_Test$RF_FULL_Observed,
                        predictor = RF_FULL_Test$RF_FULL_Predicted.Impaired,
                        levels = rev(levels(RF_FULL_Test$RF_FULL_Observed)))

(RF_FULL_Test_ROCCurveAUC <- auc(RF_FULL_Test_ROC)[1])
## [1] 0.7980324

1.5.2 Linear Discriminant Analysis Without RFE (LDA_FULL)


Linear Discriminant Analysis finds a linear combination of features that best separates the classes in a data set by projecting the data onto a lower-dimensional space that maximizes the separation between the classes. The algorithm searches for a set of linear discriminants that maximize the ratio of between-class variance to within-class variance by evaluating directions in the feature space that best separate the different classes of data. LDA assumes that the data has a Gaussian distribution and that the covariance matrices of the different classes are equal, in addition to the data being linearly separable by the presence of a linear decision boundary can accurately classify the different classes.

[A] The linear discriminant analysis model from the MASS package was implemented without recursive feature elimination through the caret package.

[B] The model does not contain any hyperparameter.

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] AUROC = 0.80151

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.77199

Code Chunk | Output
##################################
# Running the linear discriminant analysis model
# by setting the caret method to 'lda'
##################################
set.seed(12345678)
LDA_FULL_Tune <- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                         y = PMA_PreModelling_Train$Class,
                         method = "lda",
                         metric = "ROC",
                         tol = 1.0e-12,
                         trControl = KFold_TrainControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
LDA_FULL_Tune
## Linear Discriminant Analysis 
## 
## 267 samples
## 127 predictors
##   2 classes: 'Impaired', 'Control' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ... 
## Resampling results:
## 
##   ROC        Sens       Spec       Accuracy   Kappa    
##   0.8015132  0.6428571  0.8142105  0.7675417  0.4377465
(LDA_FULL_Train_ROCCurveAUC <- LDA_FULL_Tune$results[,c("ROC")])
## [1] 0.8015132
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
LDA_FULL_Test <- data.frame(LDA_FULL_Observed = PMA_PreModelling_Test$Class,
                      LDA_FULL_Predicted = predict(LDA_FULL_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
LDA_FULL_Test_ROC <- roc(response = LDA_FULL_Test$LDA_FULL_Observed,
                        predictor = LDA_FULL_Test$LDA_FULL_Predicted.Impaired,
                        levels = rev(levels(LDA_FULL_Test$LDA_FULL_Observed)))

(LDA_FULL_Test_ROCCurveAUC <- auc(LDA_FULL_Test_ROC)[1])
## [1] 0.7719907

1.5.3 Naive Bayes Without RFE (NB_FULL)


Naive Bayes Classifier categorizes instances by applying Bayes Theorem in determining posterior probabilities as conditioned by the likelihood of features, and prior probabilities pertaining to both events and features. The algorithm naively assumes independence between features and assigns the same weight (degree of significance) to all given features.

[A] The naive bayes model from the klaR package was implemented without recursive feature elimination through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] fL = laplace correction held constant at a value of 0
     [B.2] adjust = bandwidth adjustment held constant at a value of TRUE
     [B.3] usekernel = distribution type made to vary across a range of levels equal to TRUE and FALSE

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves fL=0, adjust=TRUE and usekernel=TRUE
     [C.2] AUROC = 0.73904

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.68055

Code Chunk | Output
##################################
# Running the naive bayes model
# by setting the caret method to 'nb'
##################################
set.seed(12345678)
NB_FULL_Tune <- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                        y = PMA_PreModelling_Train$Class,
                        method = "nb",
                        metric = "ROC",
                        trControl = KFold_TrainControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
NB_FULL_Tune
## Naive Bayes 
## 
## 267 samples
## 127 predictors
##   2 classes: 'Impaired', 'Control' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ... 
## Resampling results across tuning parameters:
## 
##   usekernel  ROC        Sens       Spec       Accuracy   Kappa    
##   FALSE      0.7333788  0.6089286  0.7363158  0.7006410  0.3162972
##    TRUE      0.7390414  0.5821429  0.7518421  0.7043549  0.3064041
## 
## Tuning parameter 'fL' was held constant at a value of 0
## Tuning
##  parameter 'adjust' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = TRUE and adjust
##  = 1.
NB_FULL_Tune$finalModel
## $apriori
## grouping
##  Impaired   Control 
## 0.2734082 0.7265918 
## 
## $tables
## $tables$ACE_CD143_Angiotensin_Converti
## $tables$ACE_CD143_Angiotensin_Converti$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1998
## 
##        x                 y            
##  Min.   :-0.2455   Min.   :0.0003209  
##  1st Qu.: 0.5589   1st Qu.:0.0490299  
##  Median : 1.3633   Median :0.3461303  
##  Mean   : 1.3633   Mean   :0.3101593  
##  3rd Qu.: 2.1677   3rd Qu.:0.5461595  
##  Max.   : 2.9721   Max.   :0.6280039  
## 
## $tables$ACE_CD143_Angiotensin_Converti$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1681
## 
##        x                  y            
##  Min.   :-1.17998   Min.   :0.0001371  
##  1st Qu.:-0.04894   1st Qu.:0.0089598  
##  Median : 1.08210   Median :0.1029867  
##  Mean   : 1.08210   Mean   :0.2206013  
##  3rd Qu.: 2.21314   3rd Qu.:0.4099024  
##  Max.   : 3.34418   Max.   :0.7151786  
## 
## 
## $tables$ACTH_Adrenocorticotropic_Hormon
## $tables$ACTH_Adrenocorticotropic_Hormon$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1143
## 
##        x                 y            
##  Min.   :-2.5502   Min.   :0.0005475  
##  1st Qu.:-2.0438   1st Qu.:0.0692909  
##  Median :-1.5374   Median :0.3840751  
##  Mean   :-1.5374   Mean   :0.4926815  
##  3rd Qu.:-1.0310   3rd Qu.:0.9225221  
##  Max.   :-0.5246   Max.   :1.2602537  
## 
## $tables$ACTH_Adrenocorticotropic_Hormon$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08486
## 
##        x                 y            
##  Min.   :-2.4619   Min.   :0.0003137  
##  1st Qu.:-1.9937   1st Qu.:0.0895963  
##  Median :-1.5256   Median :0.2980905  
##  Mean   :-1.5256   Mean   :0.5329992  
##  3rd Qu.:-1.0575   3rd Qu.:1.0765004  
##  Max.   :-0.5894   Max.   :1.3565983  
## 
## 
## $tables$AXL
## $tables$AXL$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1452
## 
##        x                  y            
##  Min.   :-0.73867   Min.   :0.0004204  
##  1st Qu.:-0.06473   1st Qu.:0.0589901  
##  Median : 0.60921   Median :0.2320519  
##  Mean   : 0.60921   Mean   :0.3702070  
##  3rd Qu.: 1.28315   3rd Qu.:0.6513799  
##  Max.   : 1.95709   Max.   :1.0520134  
## 
## $tables$AXL$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1448
## 
##        x                 y            
##  Min.   :-1.3574   Min.   :0.0001591  
##  1st Qu.:-0.5580   1st Qu.:0.0344729  
##  Median : 0.2415   Median :0.2151028  
##  Mean   : 0.2415   Mean   :0.3121146  
##  3rd Qu.: 1.0409   3rd Qu.:0.6337831  
##  Max.   : 1.8403   Max.   :0.8436302  
## 
## 
## $tables$Adiponectin
## $tables$Adiponectin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2539
## 
##        x                y            
##  Min.   :-7.264   Min.   :0.0002521  
##  1st Qu.:-6.170   1st Qu.:0.0394325  
##  Median :-5.076   Median :0.2066845  
##  Mean   :-5.076   Mean   :0.2280610  
##  3rd Qu.:-3.982   3rd Qu.:0.3942500  
##  Max.   :-2.888   Max.   :0.5531403  
## 
## $tables$Adiponectin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2047
## 
##        x                y            
##  Min.   :-7.340   Min.   :0.0002675  
##  1st Qu.:-6.228   1st Qu.:0.0422054  
##  Median :-5.116   Median :0.1469090  
##  Mean   :-5.116   Mean   :0.2244105  
##  3rd Qu.:-4.004   3rd Qu.:0.4158256  
##  Max.   :-2.892   Max.   :0.6303057  
## 
## 
## $tables$Alpha_1_Antichymotrypsin
## $tables$Alpha_1_Antichymotrypsin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.137
## 
##        x                   y            
##  Min.   :-0.005415   Min.   :0.0004458  
##  1st Qu.: 0.674305   1st Qu.:0.0430018  
##  Median : 1.354025   Median :0.2037227  
##  Mean   : 1.354025   Mean   :0.3670632  
##  3rd Qu.: 2.033745   3rd Qu.:0.7057813  
##  Max.   : 2.713465   Max.   :1.0974955  
## 
## $tables$Alpha_1_Antichymotrypsin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1039
## 
##        x                  y            
##  Min.   :-0.04928   Min.   :0.0002224  
##  1st Qu.: 0.60377   1st Qu.:0.0337927  
##  Median : 1.25683   Median :0.1887951  
##  Mean   : 1.25683   Mean   :0.3820623  
##  3rd Qu.: 1.90988   3rd Qu.:0.7159872  
##  Max.   : 2.56294   Max.   :1.1195436  
## 
## 
## $tables$Alpha_1_Antitrypsin
## $tables$Alpha_1_Antitrypsin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4782
## 
##        x                 y            
##  Min.   :-17.980   Min.   :0.0001293  
##  1st Qu.:-15.174   1st Qu.:0.0145127  
##  Median :-12.369   Median :0.0298018  
##  Mean   :-12.369   Mean   :0.0889250  
##  3rd Qu.: -9.563   3rd Qu.:0.1573948  
##  Max.   : -6.757   Max.   :0.2894396  
## 
## $tables$Alpha_1_Antitrypsin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4461
## 
##        x                 y            
##  Min.   :-18.367   Min.   :5.246e-05  
##  1st Qu.:-15.545   1st Qu.:6.361e-03  
##  Median :-12.723   Median :4.263e-02  
##  Mean   :-12.723   Mean   :8.842e-02  
##  3rd Qu.: -9.901   3rd Qu.:1.639e-01  
##  Max.   : -7.079   Max.   :2.904e-01  
## 
## 
## $tables$Alpha_1_Microglobulin
## $tables$Alpha_1_Microglobulin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1673
## 
##        x                y            
##  Min.   :-4.414   Min.   :0.0003698  
##  1st Qu.:-3.643   1st Qu.:0.0406102  
##  Median :-2.872   Median :0.2123210  
##  Mean   :-2.872   Mean   :0.3237022  
##  3rd Qu.:-2.102   3rd Qu.:0.6327584  
##  Max.   :-1.331   Max.   :0.8444216  
## 
## $tables$Alpha_1_Microglobulin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1525
## 
##        x                y            
##  Min.   :-4.800   Min.   :0.0001505  
##  1st Qu.:-3.929   1st Qu.:0.0220770  
##  Median :-3.057   Median :0.1808985  
##  Mean   :-3.057   Mean   :0.2863190  
##  3rd Qu.:-2.186   3rd Qu.:0.5640564  
##  Max.   :-1.315   Max.   :0.8166444  
## 
## 
## $tables$Alpha_2_Macroglobulin
## $tables$Alpha_2_Macroglobulin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 11.24
## 
##        x                 y            
##  Min.   :-287.01   Min.   :5.480e-06  
##  1st Qu.:-221.69   1st Qu.:6.888e-04  
##  Median :-156.37   Median :1.894e-03  
##  Mean   :-156.37   Mean   :3.820e-03  
##  3rd Qu.: -91.06   3rd Qu.:6.271e-03  
##  Max.   : -25.74   Max.   :1.127e-02  
## 
## $tables$Alpha_2_Macroglobulin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 11.74
## 
##        x                y            
##  Min.   :-324.9   Min.   :1.956e-06  
##  1st Qu.:-251.7   1st Qu.:2.978e-04  
##  Median :-178.5   Median :2.373e-03  
##  Mean   :-178.5   Mean   :3.409e-03  
##  3rd Qu.:-105.3   3rd Qu.:6.138e-03  
##  Max.   : -32.1   Max.   :9.772e-03  
## 
## 
## $tables$Angiopoietin_2_ANG_2
## $tables$Angiopoietin_2_ANG_2$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.0982
## 
##        x                 y            
##  Min.   :-0.3459   Min.   :0.0006234  
##  1st Qu.: 0.1670   1st Qu.:0.0781865  
##  Median : 0.6798   Median :0.3461658  
##  Mean   : 0.6798   Mean   :0.4864897  
##  3rd Qu.: 1.1927   3rd Qu.:0.8349924  
##  Max.   : 1.7056   Max.   :1.3554703  
## 
## $tables$Angiopoietin_2_ANG_2$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1062
## 
##        x                 y            
##  Min.   :-0.8633   Min.   :0.0002621  
##  1st Qu.:-0.1863   1st Qu.:0.0253269  
##  Median : 0.4907   Median :0.1522265  
##  Mean   : 0.4907   Mean   :0.3685663  
##  3rd Qu.: 1.1676   3rd Qu.:0.7120418  
##  Max.   : 1.8446   Max.   :1.1408102  
## 
## 
## $tables$Angiotensinogen
## $tables$Angiotensinogen$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.0834
## 
##        x               y           
##  Min.   :1.501   Min.   :0.001466  
##  1st Qu.:1.879   1st Qu.:0.164862  
##  Median :2.257   Median :0.614044  
##  Mean   :2.257   Mean   :0.660034  
##  3rd Qu.:2.635   3rd Qu.:1.031014  
##  Max.   :3.013   Max.   :1.736671  
## 
## $tables$Angiotensinogen$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07902
## 
##        x               y            
##  Min.   :1.515   Min.   :0.0004946  
##  1st Qu.:1.915   1st Qu.:0.1122796  
##  Median :2.316   Median :0.5063013  
##  Mean   :2.316   Mean   :0.6224036  
##  3rd Qu.:2.717   3rd Qu.:1.1729522  
##  Max.   :3.118   Max.   :1.4049536  
## 
## 
## $tables$Apolipoprotein_A_IV
## $tables$Apolipoprotein_A_IV$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1366
## 
##        x                 y            
##  Min.   :-3.3662   Min.   :0.0004478  
##  1st Qu.:-2.7071   1st Qu.:0.0523803  
##  Median :-2.0480   Median :0.2231518  
##  Mean   :-2.0480   Mean   :0.3785438  
##  3rd Qu.:-1.3889   3rd Qu.:0.6980312  
##  Max.   :-0.7298   Max.   :1.1139157  
## 
## $tables$Apolipoprotein_A_IV$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1196
## 
##        x                 y            
##  Min.   :-3.2593   Min.   :0.0001936  
##  1st Qu.:-2.5489   1st Qu.:0.0360635  
##  Median :-1.8385   Median :0.1920540  
##  Mean   :-1.8385   Mean   :0.3512108  
##  3rd Qu.:-1.1281   3rd Qu.:0.6808012  
##  Max.   :-0.4176   Max.   :0.9538399  
## 
## 
## $tables$Apolipoprotein_A1
## $tables$Apolipoprotein_A1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1467
## 
##        x                y            
##  Min.   :-9.009   Min.   :0.0004379  
##  1st Qu.:-8.289   1st Qu.:0.0620870  
##  Median :-7.570   Median :0.2576626  
##  Mean   :-7.570   Mean   :0.3468466  
##  3rd Qu.:-6.851   3rd Qu.:0.5742760  
##  Max.   :-6.131   Max.   :1.0401170  
## 
## $tables$Apolipoprotein_A1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1383
## 
##        x                y            
##  Min.   :-9.095   Min.   :0.0001704  
##  1st Qu.:-8.259   1st Qu.:0.0355649  
##  Median :-7.423   Median :0.1598424  
##  Mean   :-7.423   Mean   :0.2984869  
##  3rd Qu.:-6.587   3rd Qu.:0.5933218  
##  Max.   :-5.751   Max.   :0.9106778  
## 
## 
## $tables$Apolipoprotein_A2
## $tables$Apolipoprotein_A2$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1786
## 
##        x                 y            
##  Min.   :-2.0498   Min.   :0.0005364  
##  1st Qu.:-1.3021   1st Qu.:0.0568856  
##  Median :-0.5543   Median :0.3095466  
##  Mean   :-0.5543   Mean   :0.3336677  
##  3rd Qu.: 0.1934   3rd Qu.:0.5957716  
##  Max.   : 0.9412   Max.   :0.7381188  
## 
## $tables$Apolipoprotein_A2$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1456
## 
##        x                 y            
##  Min.   :-2.3338   Min.   :0.0001587  
##  1st Qu.:-1.4023   1st Qu.:0.0297244  
##  Median :-0.4708   Median :0.1432504  
##  Mean   :-0.4708   Mean   :0.2678557  
##  3rd Qu.: 0.4607   3rd Qu.:0.4799477  
##  Max.   : 1.3922   Max.   :0.8396120  
## 
## 
## $tables$Apolipoprotein_B
## $tables$Apolipoprotein_B$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.6047
## 
##        x                  y            
##  Min.   :-10.7466   Min.   :0.0001139  
##  1st Qu.: -8.1446   1st Qu.:0.0153891  
##  Median : -5.5425   Median :0.0825055  
##  Mean   : -5.5425   Mean   :0.0958876  
##  3rd Qu.: -2.9405   3rd Qu.:0.1620245  
##  Max.   : -0.3385   Max.   :0.2459914  
## 
## $tables$Apolipoprotein_B$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4484
## 
##        x                  y            
##  Min.   :-11.2822   Min.   :8.705e-05  
##  1st Qu.: -8.6635   1st Qu.:8.308e-03  
##  Median : -6.0448   Median :5.663e-02  
##  Mean   : -6.0448   Mean   :9.528e-02  
##  3rd Qu.: -3.4261   3rd Qu.:1.984e-01  
##  Max.   : -0.8073   Max.   :2.739e-01  
## 
## 
## $tables$Apolipoprotein_CI
## $tables$Apolipoprotein_CI$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1594
## 
##        x                  y            
##  Min.   :-3.15171   Min.   :0.0003823  
##  1st Qu.:-2.34815   1st Qu.:0.0367549  
##  Median :-1.54458   Median :0.1789952  
##  Mean   :-1.54458   Mean   :0.3104953  
##  3rd Qu.:-0.74102   3rd Qu.:0.5826321  
##  Max.   : 0.06255   Max.   :0.9612227  
## 
## $tables$Apolipoprotein_CI$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1045
## 
##        x                  y            
##  Min.   :-3.63779   Min.   :0.0002209  
##  1st Qu.:-2.71856   1st Qu.:0.0149817  
##  Median :-1.79934   Median :0.0685845  
##  Mean   :-1.79934   Mean   :0.2714330  
##  3rd Qu.:-0.88011   3rd Qu.:0.4132861  
##  Max.   : 0.03912   Max.   :1.1961881  
## 
## 
## $tables$Apolipoprotein_CIII
## $tables$Apolipoprotein_CIII$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1455
## 
##        x                 y            
##  Min.   :-3.9768   Min.   :0.0004594  
##  1st Qu.:-3.2303   1st Qu.:0.0769950  
##  Median :-2.4838   Median :0.1626602  
##  Mean   :-2.4838   Mean   :0.3342151  
##  3rd Qu.:-1.7373   3rd Qu.:0.6342758  
##  Max.   :-0.9907   Max.   :1.0259670  
## 
## $tables$Apolipoprotein_CIII$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1236
## 
##        x                 y            
##  Min.   :-4.0596   Min.   :0.0001868  
##  1st Qu.:-3.2615   1st Qu.:0.0384294  
##  Median :-2.4634   Median :0.1446462  
##  Mean   :-2.4634   Mean   :0.3126263  
##  3rd Qu.:-1.6653   3rd Qu.:0.5920527  
##  Max.   :-0.8672   Max.   :1.0140099  
## 
## 
## $tables$Apolipoprotein_D
## $tables$Apolipoprotein_D$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1309
## 
##        x                y            
##  Min.   :0.3494   Min.   :0.0005284  
##  1st Qu.:0.9282   1st Qu.:0.0738700  
##  Median :1.5070   Median :0.3572737  
##  Mean   :1.5070   Mean   :0.4310411  
##  3rd Qu.:2.0859   3rd Qu.:0.8265433  
##  Max.   :2.6647   Max.   :1.0110736  
## 
## $tables$Apolipoprotein_D$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09731
## 
##        x                y            
##  Min.   :0.1781   Min.   :0.0002366  
##  1st Qu.:0.7445   1st Qu.:0.0418393  
##  Median :1.3109   Median :0.3065151  
##  Mean   :1.3109   Mean   :0.4405095  
##  3rd Qu.:1.8773   3rd Qu.:0.7824477  
##  Max.   :2.4437   Max.   :1.2350084  
## 
## 
## $tables$Apolipoprotein_E
## $tables$Apolipoprotein_E$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.253
## 
##        x                y            
##  Min.   :-0.168   Min.   :0.0002411  
##  1st Qu.: 1.285   1st Qu.:0.0352925  
##  Median : 2.738   Median :0.0701342  
##  Mean   : 2.738   Mean   :0.1716987  
##  3rd Qu.: 4.191   3rd Qu.:0.2939771  
##  Max.   : 5.645   Max.   :0.5674180  
## 
## $tables$Apolipoprotein_E$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2394
## 
##        x                y            
##  Min.   :0.2702   Min.   :0.0000961  
##  1st Qu.:1.7432   1st Qu.:0.0092534  
##  Median :3.2163   Median :0.1030462  
##  Mean   :3.2163   Mean   :0.1693809  
##  3rd Qu.:4.6894   3rd Qu.:0.3008762  
##  Max.   :6.1624   Max.   :0.5303439  
## 
## 
## $tables$Apolipoprotein_H
## $tables$Apolipoprotein_H$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1461
## 
##        x                 y            
##  Min.   :-1.5024   Min.   :0.0004265  
##  1st Qu.:-0.8516   1st Qu.:0.0521460  
##  Median :-0.2007   Median :0.2722437  
##  Mean   :-0.2007   Mean   :0.3833466  
##  3rd Qu.: 0.4501   3rd Qu.:0.7306001  
##  Max.   : 1.1010   Max.   :0.9663690  
## 
## $tables$Apolipoprotein_H$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1182
## 
##        x                 y            
##  Min.   :-2.5885   Min.   :0.0000088  
##  1st Qu.:-1.6210   1st Qu.:0.0062752  
##  Median :-0.6534   Median :0.0534011  
##  Mean   :-0.6534   Mean   :0.2578794  
##  3rd Qu.: 0.3141   3rd Qu.:0.4458639  
##  Max.   : 1.2817   Max.   :1.1064203  
## 
## 
## $tables$B_Lymphocyte_Chemoattractant_BL
## $tables$B_Lymphocyte_Chemoattractant_BL$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1786
## 
##        x                y            
##  Min.   :0.2631   Min.   :0.0003411  
##  1st Qu.:1.2047   1st Qu.:0.0344897  
##  Median :2.1462   Median :0.2154676  
##  Mean   :2.1462   Mean   :0.2649772  
##  3rd Qu.:3.0878   3rd Qu.:0.4189822  
##  Max.   :4.0294   Max.   :0.7283596  
## 
## $tables$B_Lymphocyte_Chemoattractant_BL$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1635
## 
##        x                y            
##  Min.   :0.2412   Min.   :0.0001404  
##  1st Qu.:1.3095   1st Qu.:0.0158056  
##  Median :2.3778   Median :0.1517980  
##  Mean   :2.3778   Mean   :0.2335554  
##  3rd Qu.:3.4460   3rd Qu.:0.4260135  
##  Max.   :4.5143   Max.   :0.7412313  
## 
## 
## $tables$BMP_6
## $tables$BMP_6$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.09284
## 
##        x                 y            
##  Min.   :-3.0397   Min.   :0.0006598  
##  1st Qu.:-2.4143   1st Qu.:0.0449987  
##  Median :-1.7889   Median :0.1859826  
##  Mean   :-1.7889   Mean   :0.3989581  
##  3rd Qu.:-1.1635   3rd Qu.:0.6880575  
##  Max.   :-0.5381   Max.   :1.3759981  
## 
## $tables$BMP_6$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09612
## 
##        x                 y            
##  Min.   :-3.0495   Min.   :0.0002386  
##  1st Qu.:-2.4461   1st Qu.:0.0385815  
##  Median :-1.8426   Median :0.1396934  
##  Mean   :-1.8426   Mean   :0.4134594  
##  3rd Qu.:-1.2391   3rd Qu.:0.9163731  
##  Max.   :-0.6357   Max.   :1.2639152  
## 
## 
## $tables$Beta_2_Microglobulin
## $tables$Beta_2_Microglobulin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1171
## 
##        x                 y            
##  Min.   :-0.8960   Min.   :0.0005716  
##  1st Qu.:-0.3551   1st Qu.:0.0654314  
##  Median : 0.1858   Median :0.2969428  
##  Mean   : 0.1858   Mean   :0.4612902  
##  3rd Qu.: 0.7267   3rd Qu.:0.7188823  
##  Max.   : 1.2675   Max.   :1.4159783  
## 
## $tables$Beta_2_Microglobulin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08836
## 
##        x                 y            
##  Min.   :-0.8098   Min.   :0.0005204  
##  1st Qu.:-0.2928   1st Qu.:0.0601380  
##  Median : 0.2243   Median :0.3259995  
##  Mean   : 0.2243   Mean   :0.4825685  
##  3rd Qu.: 0.7413   3rd Qu.:0.8538544  
##  Max.   : 1.2583   Max.   :1.4796700  
## 
## 
## $tables$Betacellulin
## $tables$Betacellulin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 4.15
## 
##        x               y            
##  Min.   :19.55   Min.   :1.471e-05  
##  1st Qu.:38.28   1st Qu.:1.810e-03  
##  Median :57.00   Median :1.038e-02  
##  Mean   :57.00   Mean   :1.332e-02  
##  3rd Qu.:75.72   3rd Qu.:2.312e-02  
##  Max.   :94.45   Max.   :3.913e-02  
## 
## $tables$Betacellulin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 3.417
## 
##        x                 y            
##  Min.   :-0.2524   Min.   :6.710e-06  
##  1st Qu.:22.8738   1st Qu.:5.619e-04  
##  Median :46.0000   Median :3.704e-03  
##  Mean   :46.0000   Mean   :1.079e-02  
##  3rd Qu.:69.1262   3rd Qu.:2.256e-02  
##  Max.   :92.2524   Max.   :3.570e-02  
## 
## 
## $tables$C_Reactive_Protein
## $tables$C_Reactive_Protein$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.434
## 
##        x                y            
##  Min.   :-9.483   Min.   :0.0001462  
##  1st Qu.:-7.632   1st Qu.:0.0194985  
##  Median :-5.781   Median :0.1182317  
##  Mean   :-5.781   Mean   :0.1348031  
##  3rd Qu.:-3.930   3rd Qu.:0.2385781  
##  Max.   :-2.079   Max.   :0.3138492  
## 
## $tables$C_Reactive_Protein$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3559
## 
##        x                y            
##  Min.   :-9.585   Min.   :0.0001076  
##  1st Qu.:-7.656   1st Qu.:0.0271541  
##  Median :-5.727   Median :0.1112364  
##  Mean   :-5.727   Mean   :0.1293551  
##  3rd Qu.:-3.798   3rd Qu.:0.2300748  
##  Max.   :-1.870   Max.   :0.3024495  
## 
## 
## $tables$CD40
## $tables$CD40$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.07961
## 
##        x                 y            
##  Min.   :-2.0840   Min.   :0.0007637  
##  1st Qu.:-1.6785   1st Qu.:0.0782203  
##  Median :-1.2730   Median :0.3599145  
##  Mean   :-1.2730   Mean   :0.6152694  
##  3rd Qu.:-0.8675   3rd Qu.:1.1323779  
##  Max.   :-0.4620   Max.   :1.8693612  
## 
## $tables$CD40$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05743
## 
##        x                 y            
##  Min.   :-2.0367   Min.   :0.0004012  
##  1st Qu.:-1.6213   1st Qu.:0.0553619  
##  Median :-1.2059   Median :0.2193892  
##  Mean   :-1.2059   Mean   :0.6006770  
##  3rd Qu.:-0.7905   3rd Qu.:1.0452844  
##  Max.   :-0.3752   Max.   :2.2195996  
## 
## 
## $tables$CD5L
## $tables$CD5L$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.172
## 
##        x                 y            
##  Min.   :-1.6871   Min.   :0.0004209  
##  1st Qu.:-0.9073   1st Qu.:0.0656876  
##  Median :-0.1274   Median :0.2613718  
##  Mean   :-0.1274   Mean   :0.3199414  
##  3rd Qu.: 0.6524   3rd Qu.:0.5479588  
##  Max.   : 1.4322   Max.   :0.8452315  
## 
## $tables$CD5L$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.133
## 
##        x                  y            
##  Min.   :-1.63693   Min.   :0.0002106  
##  1st Qu.:-0.83715   1st Qu.:0.0421442  
##  Median :-0.03736   Median :0.1637532  
##  Mean   :-0.03736   Mean   :0.3119687  
##  3rd Qu.: 0.76242   3rd Qu.:0.5640367  
##  Max.   : 1.56221   Max.   :0.9668307  
## 
## 
## $tables$Calbindin
## $tables$Calbindin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 1.699
## 
##        x                y            
##  Min.   : 8.134   Min.   :3.704e-05  
##  1st Qu.:15.819   1st Qu.:4.408e-03  
##  Median :23.504   Median :2.335e-02  
##  Mean   :23.504   Mean   :3.247e-02  
##  3rd Qu.:31.189   3rd Qu.:6.288e-02  
##  Max.   :38.874   Max.   :8.151e-02  
## 
## $tables$Calbindin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 1.104
## 
##        x               y            
##  Min.   : 7.65   Min.   :2.206e-05  
##  1st Qu.:14.87   1st Qu.:6.150e-03  
##  Median :22.09   Median :1.696e-02  
##  Mean   :22.09   Mean   :3.456e-02  
##  3rd Qu.:29.31   3rd Qu.:6.251e-02  
##  Max.   :36.52   Max.   :1.082e-01  
## 
## 
## $tables$Calcitonin
## $tables$Calcitonin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.3538
## 
##        x                  y            
##  Min.   :-1.77474   Min.   :0.0001725  
##  1st Qu.:-0.09275   1st Qu.:0.0146715  
##  Median : 1.58923   Median :0.1004850  
##  Mean   : 1.58923   Mean   :0.1483381  
##  3rd Qu.: 3.27122   3rd Qu.:0.2647752  
##  Max.   : 4.95321   Max.   :0.4215435  
## 
## $tables$Calcitonin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2686
## 
##        x                  y            
##  Min.   :-1.51917   Min.   :0.0001713  
##  1st Qu.:-0.02852   1st Qu.:0.0196753  
##  Median : 1.46212   Median :0.1068481  
##  Mean   : 1.46212   Mean   :0.1673803  
##  3rd Qu.: 2.95276   3rd Qu.:0.3258038  
##  Max.   : 4.44340   Max.   :0.4272822  
## 
## 
## $tables$CgA
## $tables$CgA$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 30.97
## 
##        x                y            
##  Min.   : 45.03   Min.   :1.981e-06  
##  1st Qu.:190.12   1st Qu.:1.969e-04  
##  Median :335.20   Median :1.248e-03  
##  Mean   :335.20   Mean   :1.720e-03  
##  3rd Qu.:480.29   3rd Qu.:3.088e-03  
##  Max.   :625.37   Max.   :4.645e-03  
## 
## $tables$CgA$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 26.56
## 
##        x                y            
##  Min.   : 55.93   Min.   :1.718e-06  
##  1st Qu.:195.71   1st Qu.:3.215e-04  
##  Median :335.50   Median :1.210e-03  
##  Mean   :335.50   Mean   :1.785e-03  
##  3rd Qu.:475.29   3rd Qu.:3.252e-03  
##  Max.   :615.08   Max.   :4.497e-03  
## 
## 
## $tables$Clusterin_Apo_J
## $tables$Clusterin_Apo_J$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1155
## 
##        x               y            
##  Min.   :1.525   Min.   :0.0005269  
##  1st Qu.:2.127   1st Qu.:0.0219539  
##  Median :2.728   Median :0.1830742  
##  Mean   :2.728   Mean   :0.4150646  
##  3rd Qu.:3.329   3rd Qu.:0.8290506  
##  Max.   :3.930   Max.   :1.2069046  
## 
## $tables$Clusterin_Apo_J$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.0788
## 
##        x               y            
##  Min.   :1.724   Min.   :0.0002915  
##  1st Qu.:2.248   1st Qu.:0.0430777  
##  Median :2.772   Median :0.2921669  
##  Mean   :2.772   Mean   :0.4761093  
##  3rd Qu.:3.296   3rd Qu.:0.7752340  
##  Max.   :3.820   Max.   :1.5112165  
## 
## 
## $tables$Complement_3
## $tables$Complement_3$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.9024
## 
##        x                 y            
##  Min.   :-23.309   Min.   :6.925e-05  
##  1st Qu.:-19.196   1st Qu.:6.933e-03  
##  Median :-15.082   Median :4.532e-02  
##  Mean   :-15.082   Mean   :6.066e-02  
##  3rd Qu.:-10.969   3rd Qu.:1.205e-01  
##  Max.   : -6.855   Max.   :1.458e-01  
## 
## $tables$Complement_3$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.7662
## 
##        x                 y            
##  Min.   :-25.686   Min.   :2.994e-05  
##  1st Qu.:-21.269   1st Qu.:2.573e-03  
##  Median :-16.853   Median :4.057e-02  
##  Mean   :-16.853   Mean   :5.649e-02  
##  3rd Qu.:-12.436   3rd Qu.:1.164e-01  
##  Max.   : -8.019   Max.   :1.468e-01  
## 
## 
## $tables$Complement_Factor_H
## $tables$Complement_Factor_H$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4561
## 
##        x                 y            
##  Min.   :-0.6365   Min.   :0.0001334  
##  1st Qu.: 1.6432   1st Qu.:0.0101982  
##  Median : 3.9228   Median :0.0677571  
##  Mean   : 3.9228   Mean   :0.1094477  
##  3rd Qu.: 6.2025   3rd Qu.:0.2231480  
##  Max.   : 8.4821   Max.   :0.2975106  
## 
## $tables$Complement_Factor_H$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.344
## 
##        x                 y            
##  Min.   :-1.8708   Min.   :0.0000668  
##  1st Qu.: 0.7609   1st Qu.:0.0058281  
##  Median : 3.3926   Median :0.0287327  
##  Mean   : 3.3926   Mean   :0.0948090  
##  3rd Qu.: 6.0243   3rd Qu.:0.1687079  
##  Max.   : 8.6560   Max.   :0.3761700  
## 
## 
## $tables$Connective_Tissue_Growth_Factor
## $tables$Connective_Tissue_Growth_Factor$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.07808
## 
##        x                y            
##  Min.   :0.1022   Min.   :0.0008546  
##  1st Qu.:0.4484   1st Qu.:0.1082344  
##  Median :0.7946   Median :0.5578172  
##  Mean   :0.7946   Mean   :0.7206807  
##  3rd Qu.:1.1408   3rd Qu.:1.3365230  
##  Max.   :1.4870   Max.   :1.8357463  
## 
## $tables$Connective_Tissue_Growth_Factor$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.06372
## 
##        x                   y            
##  Min.   :-0.008838   Min.   :0.0003616  
##  1st Qu.: 0.393908   1st Qu.:0.0417111  
##  Median : 0.796654   Median :0.2894073  
##  Mean   : 0.796654   Mean   :0.6195177  
##  3rd Qu.: 1.199401   3rd Qu.:1.2846006  
##  Max.   : 1.602147   Max.   :1.8366601  
## 
## 
## $tables$Cortisol
## $tables$Cortisol$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 1.139
## 
##        x                 y            
##  Min.   : 0.5829   Min.   :5.413e-05  
##  1st Qu.: 8.5415   1st Qu.:3.530e-03  
##  Median :16.5000   Median :9.513e-03  
##  Mean   :16.5000   Mean   :3.135e-02  
##  3rd Qu.:24.4585   3rd Qu.:4.559e-02  
##  Max.   :32.4171   Max.   :1.342e-01  
## 
## $tables$Cortisol$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 1.095
## 
##        x                y            
##  Min.   :-3.185   Min.   :6.292e-05  
##  1st Qu.: 3.933   1st Qu.:5.135e-03  
##  Median :11.050   Median :1.130e-02  
##  Mean   :11.050   Mean   :3.506e-02  
##  3rd Qu.:18.167   3rd Qu.:6.465e-02  
##  Max.   :25.285   Max.   :1.183e-01  
## 
## 
## $tables$Creatine_Kinase_MB
## $tables$Creatine_Kinase_MB$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.02774
## 
##        x                y           
##  Min.   :-1.955   Min.   :0.002195  
##  1st Qu.:-1.810   1st Qu.:0.178288  
##  Median :-1.666   Median :0.807714  
##  Mean   :-1.666   Mean   :1.724376  
##  3rd Qu.:-1.521   3rd Qu.:3.478317  
##  Max.   :-1.376   Max.   :5.171466  
## 
## $tables$Creatine_Kinase_MB$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.02971
## 
##        x                y           
##  Min.   :-1.961   Min.   :0.000774  
##  1st Qu.:-1.794   1st Qu.:0.209347  
##  Median :-1.628   Median :0.920239  
##  Mean   :-1.628   Mean   :1.497037  
##  3rd Qu.:-1.461   3rd Qu.:2.710941  
##  Max.   :-1.294   Max.   :4.648178  
## 
## 
## $tables$Cystatin_C
## $tables$Cystatin_C$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1319
## 
##        x               y            
##  Min.   :7.037   Min.   :0.0004624  
##  1st Qu.:7.712   1st Qu.:0.0413703  
##  Median :8.387   Median :0.2488927  
##  Mean   :8.387   Mean   :0.3695760  
##  3rd Qu.:9.062   3rd Qu.:0.6297262  
##  Max.   :9.737   Max.   :1.2524724  
## 
## $tables$Cystatin_C$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1193
## 
##        x                y            
##  Min.   : 7.258   Min.   :0.0003623  
##  1st Qu.: 7.956   1st Qu.:0.0677002  
##  Median : 8.655   Median :0.2241862  
##  Mean   : 8.655   Mean   :0.3571722  
##  3rd Qu.: 9.353   3rd Qu.:0.6483143  
##  Max.   :10.052   Max.   :0.9827179  
## 
## 
## $tables$EGF_R
## $tables$EGF_R$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.08218
## 
##        x                 y            
##  Min.   :-1.3578   Min.   :0.0007425  
##  1st Qu.:-0.9720   1st Qu.:0.0600108  
##  Median :-0.5862   Median :0.5140964  
##  Mean   :-0.5862   Mean   :0.6467050  
##  3rd Qu.:-0.2004   3rd Qu.:1.2028013  
##  Max.   : 0.1854   Max.   :1.7124077  
## 
## $tables$EGF_R$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07095
## 
##        x                  y            
##  Min.   :-1.57421   Min.   :0.0003276  
##  1st Qu.:-1.16130   1st Qu.:0.0531100  
##  Median :-0.74840   Median :0.4011749  
##  Mean   :-0.74840   Mean   :0.6042781  
##  3rd Qu.:-0.33550   3rd Qu.:1.1115689  
##  Max.   : 0.07741   Max.   :1.8027229  
## 
## 
## $tables$EN_RAGE
## $tables$EN_RAGE$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2748
## 
##        x                 y            
##  Min.   :-5.9404   Min.   :0.0002402  
##  1st Qu.:-4.5765   1st Qu.:0.0310972  
##  Median :-3.2127   Median :0.0838398  
##  Mean   :-3.2127   Mean   :0.1829350  
##  3rd Qu.:-1.8488   3rd Qu.:0.3608164  
##  Max.   :-0.4849   Max.   :0.5219322  
## 
## $tables$EN_RAGE$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2507
## 
##        x                 y            
##  Min.   :-9.1295   Min.   :0.0000000  
##  1st Qu.:-6.7555   1st Qu.:0.0008659  
##  Median :-4.3815   Median :0.0118944  
##  Mean   :-4.3815   Mean   :0.1051017  
##  3rd Qu.:-2.0076   3rd Qu.:0.1614620  
##  Max.   : 0.3664   Max.   :0.4752559  
## 
## 
## $tables$ENA_78
## $tables$ENA_78$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.004593
## 
##        x                y           
##  Min.   :-1.412   Min.   : 0.01553  
##  1st Qu.:-1.392   1st Qu.: 1.83256  
##  Median :-1.372   Median :10.87818  
##  Mean   :-1.372   Mean   :12.46437  
##  3rd Qu.:-1.352   3rd Qu.:20.66792  
##  Max.   :-1.332   Max.   :33.23027  
## 
## $tables$ENA_78$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.003951
## 
##        x                y           
##  Min.   :-1.417   Min.   : 0.01232  
##  1st Qu.:-1.395   1st Qu.: 1.90271  
##  Median :-1.372   Median : 6.30877  
##  Mean   :-1.372   Mean   :11.15043  
##  3rd Qu.:-1.350   3rd Qu.:21.48475  
##  Max.   :-1.328   Max.   :30.60726  
## 
## 
## $tables$Eotaxin_3
## $tables$Eotaxin_3$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 4.556
## 
##        x                 y            
##  Min.   :  9.332   Min.   :1.337e-05  
##  1st Qu.: 37.166   1st Qu.:1.129e-03  
##  Median : 65.000   Median :5.511e-03  
##  Mean   : 65.000   Mean   :8.964e-03  
##  3rd Qu.: 92.834   3rd Qu.:1.491e-02  
##  Max.   :120.668   Max.   :2.988e-02  
## 
## $tables$Eotaxin_3$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 4.684
## 
##        x                 y            
##  Min.   : -7.052   Min.   :4.901e-06  
##  1st Qu.: 22.224   1st Qu.:4.092e-04  
##  Median : 51.500   Median :4.572e-03  
##  Mean   : 51.500   Mean   :8.523e-03  
##  3rd Qu.: 80.776   3rd Qu.:1.856e-02  
##  Max.   :110.052   Max.   :2.364e-02  
## 
## 
## $tables$FAS
## $tables$FAS$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.112
## 
##        x                 y            
##  Min.   :-1.3860   Min.   :0.0005482  
##  1st Qu.:-0.8713   1st Qu.:0.0744882  
##  Median :-0.3567   Median :0.4050701  
##  Mean   :-0.3567   Mean   :0.4847868  
##  3rd Qu.: 0.1580   3rd Qu.:0.8069833  
##  Max.   : 0.6726   Max.   :1.3560508  
## 
## $tables$FAS$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08631
## 
##        x                 y            
##  Min.   :-1.7731   Min.   :0.0002668  
##  1st Qu.:-1.2412   1st Qu.:0.0228707  
##  Median :-0.7094   Median :0.3094483  
##  Mean   :-0.7094   Mean   :0.4691546  
##  3rd Qu.:-0.1776   3rd Qu.:0.8467171  
##  Max.   : 0.3542   Max.   :1.4115039  
## 
## 
## $tables$FSH_Follicle_Stimulation_Hormon
## $tables$FSH_Follicle_Stimulation_Hormon$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.168
## 
##        x                y            
##  Min.   :-2.619   Min.   :0.0003642  
##  1st Qu.:-1.814   1st Qu.:0.0437196  
##  Median :-1.009   Median :0.1807169  
##  Mean   :-1.009   Mean   :0.3099351  
##  3rd Qu.:-0.204   3rd Qu.:0.5836509  
##  Max.   : 0.601   Max.   :0.8823118  
## 
## $tables$FSH_Follicle_Stimulation_Hormon$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1266
## 
##        x                 y            
##  Min.   :-2.4537   Min.   :0.0001905  
##  1st Qu.:-1.7819   1st Qu.:0.0381262  
##  Median :-1.1101   Median :0.3300939  
##  Mean   :-1.1101   Mean   :0.3713992  
##  3rd Qu.:-0.4383   3rd Qu.:0.7256807  
##  Max.   : 0.2335   Max.   :0.8698906  
## 
## 
## $tables$Fas_Ligand
## $tables$Fas_Ligand$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.3972
## 
##        x                 y            
##  Min.   :-0.9036   Min.   :0.0001532  
##  1st Qu.: 1.5284   1st Qu.:0.0075761  
##  Median : 3.9604   Median :0.0323509  
##  Mean   : 3.9604   Mean   :0.1025914  
##  3rd Qu.: 6.3924   3rd Qu.:0.1765223  
##  Max.   : 8.8244   Max.   :0.3745872  
## 
## $tables$Fas_Ligand$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3209
## 
##        x                 y            
##  Min.   :-1.1164   Min.   :0.0000717  
##  1st Qu.: 0.8362   1st Qu.:0.0099146  
##  Median : 2.7888   Median :0.0732924  
##  Mean   : 2.7888   Mean   :0.1277836  
##  3rd Qu.: 4.7414   3rd Qu.:0.2410426  
##  Max.   : 6.6940   Max.   :0.3644452  
## 
## 
## $tables$Fatty_Acid_Binding_Protein
## $tables$Fatty_Acid_Binding_Protein$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.3218
## 
##        x                 y            
##  Min.   :-1.1366   Min.   :0.0001909  
##  1st Qu.: 0.3152   1st Qu.:0.0229681  
##  Median : 1.7671   Median :0.1194680  
##  Mean   : 1.7671   Mean   :0.1718472  
##  3rd Qu.: 3.2189   3rd Qu.:0.3272007  
##  Max.   : 4.6708   Max.   :0.4306972  
## 
## $tables$Fatty_Acid_Binding_Protein$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2219
## 
##        x                 y            
##  Min.   :-1.7098   Min.   :0.0001066  
##  1st Qu.:-0.3112   1st Qu.:0.0178705  
##  Median : 1.0873   Median :0.0844530  
##  Mean   : 1.0873   Mean   :0.1784060  
##  3rd Qu.: 2.4859   3rd Qu.:0.3437516  
##  Max.   : 3.8844   Max.   :0.5058790  
## 
## 
## $tables$Ferritin
## $tables$Ferritin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2804
## 
##        x                 y           
##  Min.   :0.05701   Min.   :0.000217  
##  1st Qu.:1.41138   1st Qu.:0.022078  
##  Median :2.76576   Median :0.136172  
##  Mean   :2.76576   Mean   :0.184213  
##  3rd Qu.:4.12014   3rd Qu.:0.346793  
##  Max.   :5.47452   Max.   :0.473627  
## 
## $tables$Ferritin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2345
## 
##        x                  y            
##  Min.   :-0.09576   Min.   :0.0000989  
##  1st Qu.: 1.26235   1st Qu.:0.0175433  
##  Median : 2.62046   Median :0.1093437  
##  Mean   : 2.62046   Mean   :0.1837170  
##  3rd Qu.: 3.97858   3rd Qu.:0.3541876  
##  Max.   : 5.33669   Max.   :0.4916991  
## 
## 
## $tables$Fetuin_A
## $tables$Fetuin_A$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1072
## 
##        x                y            
##  Min.   :0.2090   Min.   :0.0005703  
##  1st Qu.:0.7837   1st Qu.:0.0670041  
##  Median :1.3583   Median :0.2997970  
##  Mean   :1.3583   Mean   :0.4341721  
##  3rd Qu.:1.9330   3rd Qu.:0.6852882  
##  Max.   :2.5077   Max.   :1.3338471  
## 
## $tables$Fetuin_A$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1175
## 
##        x                y            
##  Min.   :0.1176   Min.   :0.0002735  
##  1st Qu.:0.7391   1st Qu.:0.0572785  
##  Median :1.3606   Median :0.3238185  
##  Mean   :1.3606   Mean   :0.4014570  
##  3rd Qu.:1.9821   3rd Qu.:0.7106765  
##  Max.   :2.6037   Max.   :1.0633923  
## 
## 
## $tables$Fibrinogen
## $tables$Fibrinogen$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2039
## 
##        x                y            
##  Min.   :-9.352   Min.   :0.0002994  
##  1st Qu.:-8.340   1st Qu.:0.0297491  
##  Median :-7.327   Median :0.1176966  
##  Mean   :-7.327   Mean   :0.2464541  
##  3rd Qu.:-6.315   3rd Qu.:0.4605718  
##  Max.   :-5.303   Max.   :0.7646276  
## 
## $tables$Fibrinogen$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1616
## 
##        x                y            
##  Min.   :-9.359   Min.   :0.0001768  
##  1st Qu.:-8.359   1st Qu.:0.0386225  
##  Median :-7.358   Median :0.1268076  
##  Mean   :-7.358   Mean   :0.2494747  
##  3rd Qu.:-6.358   3rd Qu.:0.4809641  
##  Max.   :-5.358   Max.   :0.7047324  
## 
## 
## $tables$GRO_alpha
## $tables$GRO_alpha$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.01539
## 
##        x               y           
##  Min.   :1.263   Min.   : 0.00406  
##  1st Qu.:1.332   1st Qu.: 0.54230  
##  Median :1.402   Median : 2.71917  
##  Mean   :1.402   Mean   : 3.59086  
##  3rd Qu.:1.471   3rd Qu.: 6.17618  
##  Max.   :1.541   Max.   :10.69562  
## 
## $tables$GRO_alpha$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01113
## 
##        x               y            
##  Min.   :1.238   Min.   : 0.002945  
##  1st Qu.:1.300   1st Qu.: 0.969398  
##  Median :1.363   Median : 3.049909  
##  Mean   :1.363   Mean   : 3.994613  
##  3rd Qu.:1.425   3rd Qu.: 7.200400  
##  Max.   :1.488   Max.   :10.071952  
## 
## 
## $tables$Gamma_Interferon_induced_Monokin
## $tables$Gamma_Interferon_induced_Monokin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.03894
## 
##        x               y          
##  Min.   :2.497   Min.   :0.00164  
##  1st Qu.:2.669   1st Qu.:0.17739  
##  Median :2.840   Median :1.25904  
##  Mean   :2.840   Mean   :1.45720  
##  3rd Qu.:3.011   3rd Qu.:2.70076  
##  Max.   :3.182   Max.   :3.51052  
## 
## $tables$Gamma_Interferon_induced_Monokin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.03562
## 
##        x               y           
##  Min.   :2.286   Min.   :0.000645  
##  1st Qu.:2.496   1st Qu.:0.054709  
##  Median :2.707   Median :0.799942  
##  Mean   :2.707   Mean   :1.187958  
##  3rd Qu.:2.917   3rd Qu.:2.388599  
##  Max.   :3.127   Max.   :3.377959  
## 
## 
## $tables$Glutathione_S_Transferase_alpha
## $tables$Glutathione_S_Transferase_alpha$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.04318
## 
##        x                y           
##  Min.   :0.5788   Min.   :0.001415  
##  1st Qu.:0.7883   1st Qu.:0.165684  
##  Median :0.9978   Median :0.939323  
##  Mean   :0.9978   Mean   :1.191138  
##  3rd Qu.:1.2072   3rd Qu.:2.088058  
##  Max.   :1.4167   Max.   :3.407231  
## 
## $tables$Glutathione_S_Transferase_alpha$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05304
## 
##        x                y            
##  Min.   :0.3647   Min.   :0.0004915  
##  1st Qu.:0.6427   1st Qu.:0.1123821  
##  Median :0.9207   Median :0.8433755  
##  Mean   :0.9207   Mean   :0.8975084  
##  3rd Qu.:1.1987   3rd Qu.:1.5776261  
##  Max.   :1.4767   Max.   :2.3126760  
## 
## 
## $tables$HB_EGF
## $tables$HB_EGF$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.5734
## 
##        x                y            
##  Min.   : 2.304   Min.   :0.0001287  
##  1st Qu.: 4.704   1st Qu.:0.0175895  
##  Median : 7.105   Median :0.0948862  
##  Mean   : 7.105   Mean   :0.1039336  
##  3rd Qu.: 9.505   3rd Qu.:0.1992858  
##  Max.   :11.906   Max.   :0.2162439  
## 
## $tables$HB_EGF$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4589
## 
##        x                 y            
##  Min.   : 0.7264   Min.   :5.017e-05  
##  1st Qu.: 3.5627   1st Qu.:7.261e-03  
##  Median : 6.3991   Median :4.535e-02  
##  Mean   : 6.3991   Mean   :8.797e-02  
##  3rd Qu.: 9.2354   3rd Qu.:1.654e-01  
##  Max.   :12.0717   Max.   :2.737e-01  
## 
## 
## $tables$HCC_4
## $tables$HCC_4$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1258
## 
##        x                y            
##  Min.   :-4.513   Min.   :0.0004839  
##  1st Qu.:-3.842   1st Qu.:0.0263764  
##  Median :-3.171   Median :0.1774249  
##  Mean   :-3.171   Mean   :0.3720055  
##  3rd Qu.:-2.501   3rd Qu.:0.7266870  
##  Max.   :-1.830   Max.   :1.1547574  
## 
## $tables$HCC_4$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1143
## 
##        x                y            
##  Min.   :-4.853   Min.   :0.0002017  
##  1st Qu.:-4.084   1st Qu.:0.0155689  
##  Median :-3.315   Median :0.0898749  
##  Mean   :-3.315   Mean   :0.3244994  
##  3rd Qu.:-2.546   3rd Qu.:0.6477835  
##  Max.   :-1.777   Max.   :1.1126875  
## 
## 
## $tables$Hepatocyte_Growth_Factor_HGF
## $tables$Hepatocyte_Growth_Factor_HGF$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1039
## 
##        x                 y            
##  Min.   :-0.6264   Min.   :0.0006633  
##  1st Qu.:-0.1730   1st Qu.:0.0918928  
##  Median : 0.2804   Median :0.4436919  
##  Mean   : 0.2804   Mean   :0.5503010  
##  3rd Qu.: 0.7338   3rd Qu.:0.9880750  
##  Max.   : 1.1871   Max.   :1.3558632  
## 
## $tables$Hepatocyte_Growth_Factor_HGF$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08115
## 
##        x                 y            
##  Min.   :-0.8783   Min.   :0.0002835  
##  1st Qu.:-0.3790   1st Qu.:0.0433307  
##  Median : 0.1203   Median :0.3791272  
##  Mean   : 0.1203   Mean   :0.4996986  
##  3rd Qu.: 0.6196   3rd Qu.:0.8912429  
##  Max.   : 1.1189   Max.   :1.4189093  
## 
## 
## $tables$I_309
## $tables$I_309$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.149
## 
##        x               y            
##  Min.   :1.568   Min.   :0.0004097  
##  1st Qu.:2.323   1st Qu.:0.0398765  
##  Median :3.079   Median :0.1732399  
##  Mean   :3.079   Mean   :0.3302244  
##  3rd Qu.:3.835   3rd Qu.:0.6186079  
##  Max.   :4.590   Max.   :1.0456971  
## 
## $tables$I_309$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1101
## 
##        x               y            
##  Min.   :1.428   Min.   :0.0002567  
##  1st Qu.:2.105   1st Qu.:0.0400438  
##  Median :2.782   Median :0.1467161  
##  Mean   :2.782   Mean   :0.3683789  
##  3rd Qu.:3.460   3rd Qu.:0.7275427  
##  Max.   :4.137   Max.   :1.1784584  
## 
## 
## $tables$ICAM_1
## $tables$ICAM_1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1211
## 
##        x                   y            
##  Min.   :-1.896401   Min.   :0.0005072  
##  1st Qu.:-1.262346   1st Qu.:0.0587764  
##  Median :-0.628291   Median :0.2158646  
##  Mean   :-0.628291   Mean   :0.3935033  
##  3rd Qu.: 0.005764   3rd Qu.:0.6724173  
##  Max.   : 0.639819   Max.   :1.2092518  
## 
## $tables$ICAM_1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1011
## 
##        x                 y            
##  Min.   :-1.6327   Min.   :0.0002273  
##  1st Qu.:-1.0195   1st Qu.:0.0168059  
##  Median :-0.4062   Median :0.2624004  
##  Mean   :-0.4062   Mean   :0.4068459  
##  3rd Qu.: 0.2071   3rd Qu.:0.7465031  
##  Max.   : 0.8203   Max.   :1.2298554  
## 
## 
## $tables$IGF_BP_2
## $tables$IGF_BP_2$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.08533
## 
##        x               y            
##  Min.   :4.407   Min.   :0.0007146  
##  1st Qu.:4.857   1st Qu.:0.0626516  
##  Median :5.306   Median :0.1648390  
##  Mean   :5.306   Mean   :0.5555022  
##  3rd Qu.:5.755   3rd Qu.:1.1485396  
##  Max.   :6.204   Max.   :1.6617362  
## 
## $tables$IGF_BP_2$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05889
## 
##        x               y            
##  Min.   :4.458   Min.   :0.0004143  
##  1st Qu.:4.833   1st Qu.:0.0413745  
##  Median :5.208   Median :0.3285500  
##  Mean   :5.208   Mean   :0.6656293  
##  3rd Qu.:5.583   3rd Qu.:1.2894544  
##  Max.   :5.957   Max.   :1.9852384  
## 
## 
## $tables$IL_11
## $tables$IL_11$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.6032
## 
##        x                  y            
##  Min.   :-0.05488   Min.   :0.0001106  
##  1st Qu.: 2.34389   1st Qu.:0.0172619  
##  Median : 4.74267   Median :0.1181189  
##  Mean   : 4.74267   Mean   :0.1040099  
##  3rd Qu.: 7.14144   3rd Qu.:0.1742549  
##  Max.   : 9.54022   Max.   :0.2216186  
## 
## $tables$IL_11$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.439
## 
##        x                y            
##  Min.   :0.7144   Min.   :5.474e-05  
##  1st Qu.:2.9878   1st Qu.:1.988e-02  
##  Median :5.2611   Median :8.466e-02  
##  Mean   :5.2611   Mean   :1.097e-01  
##  3rd Qu.:7.5344   3rd Qu.:1.963e-01  
##  Max.   :9.8078   Max.   :2.834e-01  
## 
## 
## $tables$IL_13
## $tables$IL_13$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.002242
## 
##        x               y           
##  Min.   :1.258   Min.   : 0.02731  
##  1st Qu.:1.272   1st Qu.: 5.03625  
##  Median :1.286   Median :11.43960  
##  Mean   :1.286   Mean   :17.64359  
##  3rd Qu.:1.300   3rd Qu.:32.59224  
##  Max.   :1.314   Max.   :46.56970  
## 
## $tables$IL_13$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.003487
## 
##        x               y           
##  Min.   :1.249   Min.   : 0.00669  
##  1st Qu.:1.269   1st Qu.: 1.21488  
##  Median :1.290   Median : 6.43813  
##  Mean   :1.290   Mean   :12.09952  
##  3rd Qu.:1.310   3rd Qu.:24.11920  
##  Max.   :1.331   Max.   :35.41822  
## 
## 
## $tables$IL_16
## $tables$IL_16$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2471
## 
##        x                y           
##  Min.   :0.7188   Min.   :0.000256  
##  1st Qu.:1.8146   1st Qu.:0.029507  
##  Median :2.9104   Median :0.176481  
##  Mean   :2.9104   Mean   :0.227684  
##  3rd Qu.:4.0062   3rd Qu.:0.414014  
##  Max.   :5.1020   Max.   :0.560157  
## 
## $tables$IL_16$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.181
## 
##        x                y            
##  Min.   :0.6436   Min.   :0.0001291  
##  1st Qu.:1.8526   1st Qu.:0.0285524  
##  Median :3.0616   Median :0.1208888  
##  Mean   :3.0616   Mean   :0.2063733  
##  3rd Qu.:4.2706   3rd Qu.:0.3504470  
##  Max.   :5.4797   Max.   :0.6955113  
## 
## 
## $tables$IL_17E
## $tables$IL_17E$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.3349
## 
##        x                y            
##  Min.   :0.7917   Min.   :0.0001834  
##  1st Qu.:2.6386   1st Qu.:0.0301897  
##  Median :4.4855   Median :0.0577842  
##  Mean   :4.4855   Mean   :0.1350901  
##  3rd Qu.:6.3324   3rd Qu.:0.2756548  
##  Max.   :8.1793   Max.   :0.3979849  
## 
## $tables$IL_17E$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3705
## 
##        x                  y            
##  Min.   :-0.05917   Min.   :6.299e-05  
##  1st Qu.: 2.47145   1st Qu.:1.476e-02  
##  Median : 5.00207   Median :5.715e-02  
##  Mean   : 5.00207   Mean   :9.860e-02  
##  3rd Qu.: 7.53269   3rd Qu.:1.703e-01  
##  Max.   :10.06331   Max.   :2.945e-01  
## 
## 
## $tables$IL_1alpha
## $tables$IL_1alpha$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1388
## 
##        x                y            
##  Min.   :-8.597   Min.   :0.0004376  
##  1st Qu.:-7.832   1st Qu.:0.0345254  
##  Median :-7.066   Median :0.1788847  
##  Mean   :-7.066   Mean   :0.3260198  
##  3rd Qu.:-6.301   3rd Qu.:0.6208007  
##  Max.   :-5.536   Max.   :0.9958831  
## 
## $tables$IL_1alpha$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1167
## 
##        x                y            
##  Min.   :-8.867   Min.   :0.0001982  
##  1st Qu.:-8.206   1st Qu.:0.0414531  
##  Median :-7.544   Median :0.2438771  
##  Mean   :-7.544   Mean   :0.3771454  
##  3rd Qu.:-6.883   3rd Qu.:0.7624463  
##  Max.   :-6.221   Max.   :1.0536107  
## 
## 
## $tables$IL_3
## $tables$IL_3$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1651
## 
##        x                y            
##  Min.   :-5.968   Min.   :0.0003701  
##  1st Qu.:-5.051   1st Qu.:0.0310334  
##  Median :-4.135   Median :0.1617798  
##  Mean   :-4.135   Mean   :0.2722019  
##  3rd Qu.:-3.218   3rd Qu.:0.4902163  
##  Max.   :-2.302   Max.   :0.8258531  
## 
## $tables$IL_3$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.144
## 
##        x                y            
##  Min.   :-6.347   Min.   :0.0001594  
##  1st Qu.:-5.265   1st Qu.:0.0094213  
##  Median :-4.184   Median :0.0892511  
##  Mean   :-4.184   Mean   :0.2307400  
##  3rd Qu.:-3.103   3rd Qu.:0.4004701  
##  Max.   :-2.021   Max.   :0.9027170  
## 
## 
## $tables$IL_4
## $tables$IL_4$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.172
## 
##        x                 y            
##  Min.   :0.01472   Min.   :0.0003873  
##  1st Qu.:0.90115   1st Qu.:0.0719530  
##  Median :1.78757   Median :0.1343204  
##  Mean   :1.78757   Mean   :0.2814638  
##  3rd Qu.:2.67400   3rd Qu.:0.5254313  
##  Max.   :3.56043   Max.   :0.8240657  
## 
## $tables$IL_4$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1575
## 
##        x                y            
##  Min.   :0.1154   Min.   :0.0003474  
##  1st Qu.:0.9536   1st Qu.:0.0533702  
##  Median :1.7918   Median :0.2212501  
##  Mean   :1.7918   Mean   :0.2976649  
##  3rd Qu.:2.6300   3rd Qu.:0.5425714  
##  Max.   :3.4681   Max.   :0.7475527  
## 
## 
## $tables$IL_5
## $tables$IL_5$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1651
## 
##        x                  y            
##  Min.   :-1.54514   Min.   :0.0003698  
##  1st Qu.:-0.74424   1st Qu.:0.0354536  
##  Median : 0.05666   Median :0.2057826  
##  Mean   : 0.05666   Mean   :0.3115260  
##  3rd Qu.: 0.85757   3rd Qu.:0.5661752  
##  Max.   : 1.65847   Max.   :0.8652026  
## 
## $tables$IL_5$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1448
## 
##        x                 y            
##  Min.   :-1.8615   Min.   :0.0001585  
##  1st Qu.:-0.8011   1st Qu.:0.0108436  
##  Median : 0.2594   Median :0.0627640  
##  Mean   : 0.2594   Mean   :0.2352824  
##  3rd Qu.: 1.3199   3rd Qu.:0.4393679  
##  Max.   : 2.3803   Max.   :0.8374625  
## 
## 
## $tables$IL_6
## $tables$IL_6$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1704
## 
##        x                 y            
##  Min.   :-1.9629   Min.   :0.0003585  
##  1st Qu.:-0.8909   1st Qu.:0.0432806  
##  Median : 0.1811   Median :0.1086902  
##  Mean   : 0.1811   Mean   :0.2327501  
##  3rd Qu.: 1.2530   3rd Qu.:0.3660240  
##  Max.   : 2.3250   Max.   :0.9421109  
## 
## $tables$IL_6$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1184
## 
##        x                 y            
##  Min.   :-1.8894   Min.   :0.0002611  
##  1st Qu.:-1.0009   1st Qu.:0.0582977  
##  Median :-0.1124   Median :0.1535081  
##  Mean   :-0.1124   Mean   :0.2808061  
##  3rd Qu.: 0.7762   3rd Qu.:0.4333115  
##  Max.   : 1.6647   Max.   :0.9325732  
## 
## 
## $tables$IL_6_Receptor
## $tables$IL_6_Receptor$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1073
## 
##        x                  y            
##  Min.   :-0.99740   Min.   :0.0005697  
##  1st Qu.:-0.45986   1st Qu.:0.0729806  
##  Median : 0.07769   Median :0.2991714  
##  Mean   : 0.07769   Mean   :0.4641447  
##  3rd Qu.: 0.61523   3rd Qu.:0.8854582  
##  Max.   : 1.15278   Max.   :1.2151938  
## 
## $tables$IL_6_Receptor$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1004
## 
##        x                  y           
##  Min.   :-0.94324   Min.   :0.000564  
##  1st Qu.:-0.45521   1st Qu.:0.106348  
##  Median : 0.03281   Median :0.501084  
##  Mean   : 0.03281   Mean   :0.511250  
##  3rd Qu.: 0.52084   3rd Qu.:0.927191  
##  Max.   : 1.00887   Max.   :1.082565  
## 
## 
## $tables$IL_7
## $tables$IL_7$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4111
## 
##        x                 y            
##  Min.   :-0.6736   Min.   :0.0004557  
##  1st Qu.: 0.9327   1st Qu.:0.0442524  
##  Median : 2.5390   Median :0.1448168  
##  Mean   : 2.5390   Mean   :0.1553058  
##  3rd Qu.: 4.1454   3rd Qu.:0.2582007  
##  Max.   : 5.7517   Max.   :0.3416548  
## 
## $tables$IL_7$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3193
## 
##        x                y            
##  Min.   :-0.273   Min.   :0.0000734  
##  1st Qu.: 1.461   1st Qu.:0.0170904  
##  Median : 3.195   Median :0.0965725  
##  Mean   : 3.195   Mean   :0.1438786  
##  3rd Qu.: 4.929   3rd Qu.:0.2850512  
##  Max.   : 6.664   Max.   :0.3481015  
## 
## 
## $tables$IL_8
## $tables$IL_8$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.01351
## 
##        x               y            
##  Min.   :1.567   Min.   : 0.004518  
##  1st Qu.:1.637   1st Qu.: 0.483051  
##  Median :1.707   Median : 1.878064  
##  Mean   :1.707   Mean   : 3.565088  
##  3rd Qu.:1.777   3rd Qu.: 6.302757  
##  Max.   :1.847   Max.   :10.732067  
## 
## $tables$IL_8$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.0109
## 
##        x               y           
##  Min.   :1.541   Min.   : 0.00211  
##  1st Qu.:1.607   1st Qu.: 0.23979  
##  Median :1.674   Median : 2.00436  
##  Mean   :1.674   Mean   : 3.76132  
##  3rd Qu.:1.740   3rd Qu.: 7.23914  
##  Max.   :1.806   Max.   :11.18418  
## 
## 
## $tables$IP_10_Inducible_Protein_10
## $tables$IP_10_Inducible_Protein_10$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1863
## 
##        x               y            
##  Min.   :4.142   Min.   :0.0004185  
##  1st Qu.:4.966   1st Qu.:0.0475262  
##  Median :5.790   Median :0.2376800  
##  Mean   :5.790   Mean   :0.3027442  
##  3rd Qu.:6.614   3rd Qu.:0.5357255  
##  Max.   :7.438   Max.   :0.7587120  
## 
## $tables$IP_10_Inducible_Protein_10$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1494
## 
##        x               y            
##  Min.   :3.869   Min.   :0.0001646  
##  1st Qu.:4.889   1st Qu.:0.0185718  
##  Median :5.909   Median :0.0913245  
##  Mean   :5.909   Mean   :0.2446043  
##  3rd Qu.:6.929   3rd Qu.:0.5129381  
##  Max.   :7.949   Max.   :0.7715558  
## 
## 
## $tables$IgA
## $tables$IgA$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2723
## 
##        x                y           
##  Min.   :-8.616   Min.   :0.000224  
##  1st Qu.:-7.325   1st Qu.:0.018891  
##  Median :-6.034   Median :0.131555  
##  Mean   :-6.034   Mean   :0.193252  
##  3rd Qu.:-4.743   3rd Qu.:0.394834  
##  Max.   :-3.452   Max.   :0.502000  
## 
## $tables$IgA$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2182
## 
##        x                 y           
##  Min.   :-11.174   Min.   :0.000000  
##  1st Qu.: -9.267   1st Qu.:0.001335  
##  Median : -7.360   Median :0.019659  
##  Mean   : -7.360   Mean   :0.130822  
##  3rd Qu.: -5.452   3rd Qu.:0.241560  
##  Max.   : -3.545   Max.   :0.560047  
## 
## 
## $tables$Insulin
## $tables$Insulin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1036
## 
##        x                 y            
##  Min.   :-2.4800   Min.   :0.0005896  
##  1st Qu.:-1.8574   1st Qu.:0.0556466  
##  Median :-1.2347   Median :0.3262143  
##  Mean   :-1.2347   Mean   :0.4007316  
##  3rd Qu.:-0.6121   3rd Qu.:0.5620447  
##  Max.   : 0.0105   Max.   :1.2933792  
## 
## $tables$Insulin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08799
## 
##        x                 y            
##  Min.   :-2.4331   Min.   :0.0002803  
##  1st Qu.:-1.7985   1st Qu.:0.0595975  
##  Median :-1.1639   Median :0.1891544  
##  Mean   :-1.1639   Mean   :0.3931588  
##  3rd Qu.:-0.5293   3rd Qu.:0.6684592  
##  Max.   : 0.1053   Max.   :1.4066919  
## 
## 
## $tables$Kidney_Injury_Molecule_1_KIM_1
## $tables$Kidney_Injury_Molecule_1_KIM_1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.00858
## 
##        x                y            
##  Min.   :-1.257   Min.   : 0.007559  
##  1st Qu.:-1.218   1st Qu.: 0.913827  
##  Median :-1.178   Median : 3.938927  
##  Mean   :-1.178   Mean   : 6.270026  
##  3rd Qu.:-1.138   3rd Qu.:11.635131  
##  Max.   :-1.098   Max.   :16.890980  
## 
## $tables$Kidney_Injury_Molecule_1_KIM_1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.009108
## 
##        x                y            
##  Min.   :-1.283   Min.   : 0.003825  
##  1st Qu.:-1.232   1st Qu.: 0.593889  
##  Median :-1.180   Median : 2.994047  
##  Mean   :-1.180   Mean   : 4.856747  
##  3rd Qu.:-1.129   3rd Qu.:10.109607  
##  Max.   :-1.077   Max.   :12.453354  
## 
## 
## $tables$LOX_1
## $tables$LOX_1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1414
## 
##        x                 y            
##  Min.   :-0.1617   Min.   :0.0005097  
##  1st Qu.: 0.5077   1st Qu.:0.0657787  
##  Median : 1.1771   Median :0.2904380  
##  Mean   : 1.1771   Mean   :0.3727120  
##  3rd Qu.: 1.8465   3rd Qu.:0.6062986  
##  Max.   : 2.5160   Max.   :1.0698854  
## 
## $tables$LOX_1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1163
## 
##        x                 y            
##  Min.   :-0.3488   Min.   :0.0001975  
##  1st Qu.: 0.3936   1st Qu.:0.0208446  
##  Median : 1.1361   Median :0.1972421  
##  Mean   : 1.1361   Mean   :0.3360700  
##  3rd Qu.: 1.8785   3rd Qu.:0.5647319  
##  Max.   : 2.6209   Max.   :1.0566625  
## 
## 
## $tables$Leptin
## $tables$Leptin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1027
## 
##        x                 y            
##  Min.   :-2.3820   Min.   :0.0005944  
##  1st Qu.:-1.8724   1st Qu.:0.0348112  
##  Median :-1.3627   Median :0.3292070  
##  Mean   :-1.3627   Mean   :0.4895453  
##  3rd Qu.:-0.8531   3rd Qu.:0.9544008  
##  Max.   :-0.3435   Max.   :1.4096912  
## 
## $tables$Leptin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08537
## 
##        x                 y            
##  Min.   :-2.4030   Min.   :0.0002687  
##  1st Qu.:-1.8933   1st Qu.:0.0265217  
##  Median :-1.3837   Median :0.2659151  
##  Mean   :-1.3837   Mean   :0.4895986  
##  3rd Qu.:-0.8741   3rd Qu.:1.0127026  
##  Max.   :-0.3645   Max.   :1.3460258  
## 
## 
## $tables$Lipoprotein_a
## $tables$Lipoprotein_a$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4463
## 
##        x                  y            
##  Min.   :-7.50460   Min.   :0.0001371  
##  1st Qu.:-5.64033   1st Qu.:0.0177566  
##  Median :-3.77606   Median :0.1233259  
##  Mean   :-3.77606   Mean   :0.1338291  
##  3rd Qu.:-1.91178   3rd Qu.:0.2470479  
##  Max.   :-0.04751   Max.   :0.3009930  
## 
## $tables$Lipoprotein_a$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3384
## 
##        x                y            
##  Min.   :-7.828   Min.   :0.0000707  
##  1st Qu.:-5.974   1st Qu.:0.0130355  
##  Median :-4.120   Median :0.1008437  
##  Mean   :-4.120   Mean   :0.1345872  
##  3rd Qu.:-2.266   3rd Qu.:0.2397932  
##  Max.   :-0.412   Max.   :0.3526708  
## 
## 
## $tables$MCP_1
## $tables$MCP_1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.08204
## 
##        x               y           
##  Min.   :5.580   Min.   :0.000742  
##  1st Qu.:6.023   1st Qu.:0.076306  
##  Median :6.466   Median :0.334402  
##  Mean   :6.466   Mean   :0.562949  
##  3rd Qu.:6.910   3rd Qu.:0.983386  
##  Max.   :7.353   Max.   :1.659696  
## 
## $tables$MCP_1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08365
## 
##        x               y            
##  Min.   :5.575   Min.   :0.0002833  
##  1st Qu.:6.051   1st Qu.:0.0503598  
##  Median :6.528   Median :0.3496635  
##  Mean   :6.528   Mean   :0.5236990  
##  3rd Qu.:7.004   3rd Qu.:1.0131174  
##  Max.   :7.481   Max.   :1.4058374  
## 
## 
## $tables$MCP_2
## $tables$MCP_2$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.258
## 
##        x                 y            
##  Min.   :-0.3735   Min.   :0.0002363  
##  1st Qu.: 0.9194   1st Qu.:0.0270400  
##  Median : 2.2122   Median :0.0879011  
##  Mean   : 2.2122   Mean   :0.1929878  
##  3rd Qu.: 3.5050   3rd Qu.:0.3588776  
##  Max.   : 4.7978   Max.   :0.6183413  
## 
## $tables$MCP_2$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1411
## 
##        x                  y            
##  Min.   :-0.02269   Min.   :0.0001634  
##  1st Qu.: 1.09474   1st Qu.:0.0145562  
##  Median : 2.21217   Median :0.1157047  
##  Mean   : 2.21217   Mean   :0.2232678  
##  3rd Qu.: 3.32960   3rd Qu.:0.3212348  
##  Max.   : 4.44703   Max.   :0.8582897  
## 
## 
## $tables$MIF
## $tables$MIF$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1116
## 
##        x                 y            
##  Min.   :-2.7318   Min.   :0.0005472  
##  1st Qu.:-2.1761   1st Qu.:0.0505520  
##  Median :-1.6204   Median :0.1858068  
##  Mean   :-1.6204   Mean   :0.4490134  
##  3rd Qu.:-1.0648   3rd Qu.:0.9965195  
##  Max.   :-0.5091   Max.   :1.1763069  
## 
## $tables$MIF$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09496
## 
##        x                 y            
##  Min.   :-3.1322   Min.   :0.0002408  
##  1st Qu.:-2.5133   1st Qu.:0.0326868  
##  Median :-1.8945   Median :0.2730891  
##  Mean   :-1.8945   Mean   :0.4031727  
##  3rd Qu.:-1.2756   3rd Qu.:0.7351494  
##  Max.   :-0.6567   Max.   :1.2561687  
## 
## 
## $tables$MIP_1alpha
## $tables$MIP_1alpha$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2821
## 
##        x               y           
##  Min.   :1.541   Min.   :0.000224  
##  1st Qu.:2.893   1st Qu.:0.035600  
##  Median :4.244   Median :0.136544  
##  Mean   :4.244   Mean   :0.184656  
##  3rd Qu.:5.595   3rd Qu.:0.299992  
##  Max.   :6.946   Max.   :0.496062  
## 
## $tables$MIP_1alpha$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3311
## 
##        x                  y            
##  Min.   :-0.05885   Min.   :0.0000694  
##  1st Qu.: 1.90320   1st Qu.:0.0071115  
##  Median : 3.86525   Median :0.0755098  
##  Mean   : 3.86525   Mean   :0.1271673  
##  3rd Qu.: 5.82730   3rd Qu.:0.2387466  
##  Max.   : 7.78935   Max.   :0.3768545  
## 
## 
## $tables$MIP_1beta
## $tables$MIP_1beta$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1583
## 
##        x               y            
##  Min.   :1.499   Min.   :0.0004186  
##  1st Qu.:2.245   1st Qu.:0.0514581  
##  Median :2.991   Median :0.1742610  
##  Mean   :2.991   Mean   :0.3345874  
##  3rd Qu.:3.736   3rd Qu.:0.6730393  
##  Max.   :4.482   Max.   :0.9441952  
## 
## $tables$MIP_1beta$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1009
## 
##        x               y            
##  Min.   :1.643   Min.   :0.0002509  
##  1st Qu.:2.243   1st Qu.:0.0794863  
##  Median :2.842   Median :0.3245179  
##  Mean   :2.842   Mean   :0.4163525  
##  3rd Qu.:3.441   3rd Qu.:0.6656659  
##  Max.   :4.040   Max.   :1.2432633  
## 
## 
## $tables$MMP_2
## $tables$MMP_2$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2979
## 
##        x                 y            
##  Min.   :-0.1107   Min.   :0.0002067  
##  1st Qu.: 1.4801   1st Qu.:0.0257066  
##  Median : 3.0710   Median :0.0676057  
##  Mean   : 3.0710   Mean   :0.1568382  
##  3rd Qu.: 4.6618   3rd Qu.:0.3046056  
##  Max.   : 6.2526   Max.   :0.4967223  
## 
## $tables$MMP_2$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2855
## 
##        x                 y            
##  Min.   :-0.7584   Min.   :0.0000807  
##  1st Qu.: 0.8574   1st Qu.:0.0232143  
##  Median : 2.4732   Median :0.1037683  
##  Mean   : 2.4732   Mean   :0.1544139  
##  3rd Qu.: 4.0890   3rd Qu.:0.2931617  
##  Max.   : 5.7048   Max.   :0.4099751  
## 
## 
## $tables$MMP_3
## $tables$MMP_3$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1763
## 
##        x                   y            
##  Min.   :-4.345539   Min.   :0.0003472  
##  1st Qu.:-3.258856   1st Qu.:0.0319547  
##  Median :-2.172173   Median :0.1425696  
##  Mean   :-2.172173   Mean   :0.2296006  
##  3rd Qu.:-1.085490   3rd Qu.:0.3262705  
##  Max.   : 0.001193   Max.   :0.7708525  
## 
## $tables$MMP_3$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1614
## 
##        x                 y            
##  Min.   :-4.9069   Min.   :0.0001477  
##  1st Qu.:-3.8440   1st Qu.:0.0202014  
##  Median :-2.7811   Median :0.1192796  
##  Mean   :-2.7811   Mean   :0.2347424  
##  3rd Qu.:-1.7182   3rd Qu.:0.4079722  
##  Max.   :-0.6553   Max.   :0.7543996  
## 
## 
## $tables$MMP10
## $tables$MMP10$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1366
## 
##        x                y            
##  Min.   :-5.343   Min.   :0.0004474  
##  1st Qu.:-4.457   1st Qu.:0.0326114  
##  Median :-3.570   Median :0.1316350  
##  Mean   :-3.570   Mean   :0.2814658  
##  3rd Qu.:-2.684   3rd Qu.:0.4407209  
##  Max.   :-1.798   Max.   :1.1131115  
## 
## $tables$MMP10$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1146
## 
##        x                y            
##  Min.   :-5.011   Min.   :0.0002376  
##  1st Qu.:-4.313   1st Qu.:0.0639220  
##  Median :-3.615   Median :0.1883134  
##  Mean   :-3.615   Mean   :0.3575896  
##  3rd Qu.:-2.918   3rd Qu.:0.7256202  
##  Max.   :-2.220   Max.   :0.9695254  
## 
## 
## $tables$MMP7
## $tables$MMP7$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4298
## 
##        x                 y            
##  Min.   :-7.8961   Min.   :0.0001877  
##  1st Qu.:-5.7017   1st Qu.:0.0296373  
##  Median :-3.5072   Median :0.0703373  
##  Mean   :-3.5072   Mean   :0.1136922  
##  3rd Qu.:-1.3127   3rd Qu.:0.2118599  
##  Max.   : 0.8818   Max.   :0.3283795  
## 
## $tables$MMP7$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4545
## 
##        x                y            
##  Min.   :-9.761   Min.   :5.049e-05  
##  1st Qu.:-7.035   1st Qu.:7.595e-03  
##  Median :-4.310   Median :7.733e-02  
##  Mean   :-4.310   Mean   :9.155e-02  
##  3rd Qu.:-1.584   3rd Qu.:1.513e-01  
##  Max.   : 1.141   Max.   :2.707e-01  
## 
## 
## $tables$Myoglobin
## $tables$Myoglobin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2835
## 
##        x                 y            
##  Min.   :-4.0204   Min.   :0.0002152  
##  1st Qu.:-2.3811   1st Qu.:0.0147224  
##  Median :-0.7418   Median :0.0570112  
##  Mean   :-0.7418   Mean   :0.1522008  
##  3rd Qu.: 0.8975   3rd Qu.:0.2850424  
##  Max.   : 2.5368   Max.   :0.5053032  
## 
## $tables$Myoglobin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3043
## 
##        x                 y            
##  Min.   :-4.0364   Min.   :0.0001409  
##  1st Qu.:-2.3554   1st Qu.:0.0246330  
##  Median :-0.6743   Median :0.0899004  
##  Mean   :-0.6743   Mean   :0.1484212  
##  3rd Qu.: 1.0068   3rd Qu.:0.2871095  
##  Max.   : 2.6878   Max.   :0.4047269  
## 
## 
## $tables$NT_proBNP
## $tables$NT_proBNP$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1278
## 
##        x               y            
##  Min.   :3.488   Min.   :0.0004799  
##  1st Qu.:4.183   1st Qu.:0.0472861  
##  Median :4.879   Median :0.1644620  
##  Mean   :4.879   Mean   :0.3587442  
##  3rd Qu.:5.574   3rd Qu.:0.6206068  
##  Max.   :6.270   Max.   :1.2352851  
## 
## $tables$NT_proBNP$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09443
## 
##        x               y            
##  Min.   :2.895   Min.   :0.0002446  
##  1st Qu.:3.609   1st Qu.:0.0257804  
##  Median :4.323   Median :0.1530335  
##  Mean   :4.323   Mean   :0.3493812  
##  3rd Qu.:5.037   3rd Qu.:0.5785926  
##  Max.   :5.751   Max.   :1.3532174  
## 
## 
## $tables$NrCAM
## $tables$NrCAM$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1993
## 
##        x               y            
##  Min.   :2.447   Min.   :0.0003088  
##  1st Qu.:3.371   1st Qu.:0.0293514  
##  Median :4.295   Median :0.1833253  
##  Mean   :4.295   Mean   :0.2700011  
##  3rd Qu.:5.219   3rd Qu.:0.5204525  
##  Max.   :6.143   Max.   :0.7102494  
## 
## $tables$NrCAM$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1695
## 
##        x               y            
##  Min.   :2.131   Min.   :0.0001359  
##  1st Qu.:3.228   1st Qu.:0.0240669  
##  Median :4.325   Median :0.0997709  
##  Mean   :4.325   Mean   :0.2273790  
##  3rd Qu.:5.422   3rd Qu.:0.4389008  
##  Max.   :6.520   Max.   :0.6934392  
## 
## 
## $tables$Osteopontin
## $tables$Osteopontin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1546
## 
##        x               y            
##  Min.   :3.647   Min.   :0.0003974  
##  1st Qu.:4.427   1st Qu.:0.0424181  
##  Median :5.208   Median :0.1382530  
##  Mean   :5.208   Mean   :0.3197770  
##  3rd Qu.:5.988   3rd Qu.:0.6681657  
##  Max.   :6.768   Max.   :0.9236408  
## 
## $tables$Osteopontin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.104
## 
##        x               y            
##  Min.   :3.922   Min.   :0.0002219  
##  1st Qu.:4.597   1st Qu.:0.0539899  
##  Median :5.271   Median :0.2050811  
##  Mean   :5.271   Mean   :0.3698778  
##  3rd Qu.:5.946   3rd Qu.:0.6549779  
##  Max.   :6.620   Max.   :1.1054060  
## 
## 
## $tables$PAI_1
## $tables$PAI_1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1684
## 
##        x                 y            
##  Min.   :-1.3796   Min.   :0.0003683  
##  1st Qu.:-0.6169   1st Qu.:0.0433878  
##  Median : 0.1458   Median :0.2047515  
##  Mean   : 0.1458   Mean   :0.3271269  
##  3rd Qu.: 0.9085   3rd Qu.:0.6651820  
##  Max.   : 1.6713   Max.   :0.7845451  
## 
## $tables$PAI_1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1155
## 
##        x                   y            
##  Min.   :-1.337358   Min.   :0.0002009  
##  1st Qu.:-0.665516   1st Qu.:0.0465423  
##  Median : 0.006326   Median :0.2552360  
##  Mean   : 0.006326   Mean   :0.3713764  
##  3rd Qu.: 0.678169   3rd Qu.:0.6258449  
##  Max.   : 1.350011   Max.   :1.0998865  
## 
## 
## $tables$PAPP_A
## $tables$PAPP_A$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.05245
## 
##        x                y           
##  Min.   :-3.293   Min.   :0.001188  
##  1st Qu.:-3.061   1st Qu.:0.113929  
##  Median :-2.828   Median :0.889823  
##  Mean   :-2.828   Mean   :1.072688  
##  3rd Qu.:-2.596   3rd Qu.:2.082858  
##  Max.   :-2.363   Max.   :2.356567  
## 
## $tables$PAPP_A$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.04084
## 
##        x                y            
##  Min.   :-3.433   Min.   :0.0005607  
##  1st Qu.:-3.183   1st Qu.:0.0520481  
##  Median :-2.933   Median :0.7298864  
##  Mean   :-2.933   Mean   :0.9964225  
##  3rd Qu.:-2.682   3rd Qu.:1.6209822  
##  Max.   :-2.432   Max.   :2.9240586  
## 
## 
## $tables$PLGF
## $tables$PLGF$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1622
## 
##        x               y            
##  Min.   :1.998   Min.   :0.0003764  
##  1st Qu.:2.831   1st Qu.:0.0253091  
##  Median :3.665   Median :0.1725115  
##  Mean   :3.665   Mean   :0.2994872  
##  3rd Qu.:4.498   3rd Qu.:0.5687072  
##  Max.   :5.331   Max.   :0.8938577  
## 
## $tables$PLGF$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1243
## 
##        x               y            
##  Min.   :2.571   Min.   :0.0001842  
##  1st Qu.:3.314   1st Qu.:0.0166082  
##  Median :4.057   Median :0.1947426  
##  Mean   :4.057   Mean   :0.3357975  
##  3rd Qu.:4.800   3rd Qu.:0.6666717  
##  Max.   :5.544   Max.   :0.9763553  
## 
## 
## $tables$PYY
## $tables$PYY$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.0982
## 
##        x               y            
##  Min.   :1.891   Min.   :0.0006209  
##  1st Qu.:2.455   1st Qu.:0.0587541  
##  Median :3.018   Median :0.1984700  
##  Mean   :3.018   Mean   :0.4429175  
##  3rd Qu.:3.581   3rd Qu.:0.8168789  
##  Max.   :4.145   Max.   :1.3349109  
## 
## $tables$PYY$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08076
## 
##        x               y            
##  Min.   :2.060   Min.   :0.0002856  
##  1st Qu.:2.589   1st Qu.:0.0599018  
##  Median :3.117   Median :0.2060174  
##  Mean   :3.117   Mean   :0.4721514  
##  3rd Qu.:3.646   3rd Qu.:0.8992958  
##  Max.   :4.174   Max.   :1.4111804  
## 
## 
## $tables$Pancreatic_polypeptide
## $tables$Pancreatic_polypeptide$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2937
## 
##        x                 y            
##  Min.   :-2.1541   Min.   :0.0004183  
##  1st Qu.:-0.9124   1st Qu.:0.0345638  
##  Median : 0.3293   Median :0.1788613  
##  Mean   : 0.3293   Mean   :0.2009313  
##  3rd Qu.: 1.5710   3rd Qu.:0.3209413  
##  Max.   : 2.8126   Max.   :0.5212213  
## 
## $tables$Pancreatic_polypeptide$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2106
## 
##        x                 y            
##  Min.   :-2.7520   Min.   :0.0001181  
##  1st Qu.:-1.4939   1st Qu.:0.0177924  
##  Median :-0.2358   Median :0.1181308  
##  Mean   :-0.2358   Mean   :0.1983245  
##  3rd Qu.: 1.0223   3rd Qu.:0.3748847  
##  Max.   : 2.2803   Max.   :0.5971506  
## 
## 
## $tables$Prolactin
## $tables$Prolactin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.07877
## 
##        x                 y            
##  Min.   :-0.7144   Min.   :0.0007755  
##  1st Qu.:-0.2476   1st Qu.:0.0768896  
##  Median : 0.2191   Median :0.1472789  
##  Mean   : 0.2191   Mean   :0.5345546  
##  3rd Qu.: 0.6859   3rd Qu.:1.1801963  
##  Max.   : 1.1526   Max.   :1.5625205  
## 
## $tables$Prolactin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09625
## 
##        x                 y            
##  Min.   :-1.5981   Min.   :0.0002389  
##  1st Qu.:-0.8781   1st Qu.:0.0135700  
##  Median :-0.1580   Median :0.0820399  
##  Mean   :-0.1580   Mean   :0.3465262  
##  3rd Qu.: 0.5620   3rd Qu.:0.5938191  
##  Max.   : 1.2820   Max.   :1.3499959  
## 
## 
## $tables$Prostatic_Acid_Phosphatase
## $tables$Prostatic_Acid_Phosphatase$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.01973
## 
##        x                y          
##  Min.   :-1.831   Min.   :0.00309  
##  1st Qu.:-1.715   1st Qu.:0.25083  
##  Median :-1.598   Median :0.80225  
##  Mean   :-1.598   Mean   :2.13904  
##  3rd Qu.:-1.481   3rd Qu.:3.67872  
##  Max.   :-1.365   Max.   :7.86067  
## 
## $tables$Prostatic_Acid_Phosphatase$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01622
## 
##        x                y           
##  Min.   :-1.982   Min.   :0.001418  
##  1st Qu.:-1.862   1st Qu.:0.079463  
##  Median :-1.741   Median :0.743960  
##  Mean   :-1.741   Mean   :2.067727  
##  3rd Qu.:-1.620   3rd Qu.:3.445326  
##  Max.   :-1.500   Max.   :8.158095  
## 
## 
## $tables$Protein_S
## $tables$Protein_S$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.132
## 
##        x                 y            
##  Min.   :-3.3850   Min.   :0.0006362  
##  1st Qu.:-2.7450   1st Qu.:0.0736674  
##  Median :-2.1050   Median :0.2180317  
##  Mean   :-2.1050   Mean   :0.3898316  
##  3rd Qu.:-1.4650   3rd Qu.:0.7054700  
##  Max.   :-0.8249   Max.   :1.1810831  
## 
## $tables$Protein_S$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08967
## 
##        x                y           
##  Min.   :-3.607   Min.   :0.000257  
##  1st Qu.:-2.954   1st Qu.:0.046951  
##  Median :-2.300   Median :0.164772  
##  Mean   :-2.300   Mean   :0.381793  
##  3rd Qu.:-1.647   3rd Qu.:0.696743  
##  Max.   :-0.993   Max.   :1.360841  
## 
## 
## $tables$Pulmonary_and_Activation_Regulat
## $tables$Pulmonary_and_Activation_Regulat$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1511
## 
##        x                  y            
##  Min.   :-2.75588   Min.   :0.0004523  
##  1st Qu.:-2.08129   1st Qu.:0.0628626  
##  Median :-1.40671   Median :0.2968929  
##  Mean   :-1.40671   Mean   :0.3698564  
##  3rd Qu.:-0.73212   3rd Qu.:0.6547507  
##  Max.   :-0.05753   Max.   :0.8981923  
## 
## $tables$Pulmonary_and_Activation_Regulat$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1424
## 
##        x                 y            
##  Min.   :-2.9405   Min.   :0.0002526  
##  1st Qu.:-2.1672   1st Qu.:0.0460465  
##  Median :-1.3939   Median :0.2339307  
##  Mean   :-1.3939   Mean   :0.3226469  
##  3rd Qu.:-0.6206   3rd Qu.:0.5587706  
##  Max.   : 0.1527   Max.   :0.8758486  
## 
## 
## $tables$RANTES
## $tables$RANTES$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1081
## 
##        x                y            
##  Min.   :-7.480   Min.   :0.0005643  
##  1st Qu.:-6.916   1st Qu.:0.0511756  
##  Median :-6.351   Median :0.2527197  
##  Mean   :-6.351   Mean   :0.4420157  
##  3rd Qu.:-5.787   3rd Qu.:0.7591550  
##  Max.   :-5.223   Max.   :1.3900569  
## 
## $tables$RANTES$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1023
## 
##        x                y            
##  Min.   :-7.529   Min.   :0.0002644  
##  1st Qu.:-6.964   1st Qu.:0.0544525  
##  Median :-6.398   Median :0.2593930  
##  Mean   :-6.398   Mean   :0.4408864  
##  3rd Qu.:-5.832   3rd Qu.:0.8938454  
##  Max.   :-5.266   Max.   :1.0887745  
## 
## 
## $tables$Resistin
## $tables$Resistin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 2.203
## 
##        x                 y            
##  Min.   :-41.576   Min.   :2.761e-05  
##  1st Qu.:-30.090   1st Qu.:2.149e-03  
##  Median :-18.603   Median :1.134e-02  
##  Mean   :-18.603   Mean   :2.172e-02  
##  3rd Qu.: -7.116   3rd Qu.:4.033e-02  
##  Max.   :  4.370   Max.   :7.083e-02  
## 
## $tables$Resistin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 1.737
## 
##        x                 y            
##  Min.   :-37.350   Min.   :1.384e-05  
##  1st Qu.:-27.539   1st Qu.:2.849e-03  
##  Median :-17.728   Median :1.740e-02  
##  Mean   :-17.728   Mean   :2.543e-02  
##  3rd Qu.: -7.917   3rd Qu.:4.768e-02  
##  Max.   :  1.895   Max.   :6.878e-02  
## 
## 
## $tables$S100b
## $tables$S100b$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1279
## 
##        x                y            
##  Min.   :0.1209   Min.   :0.0004874  
##  1st Qu.:0.6790   1st Qu.:0.0631170  
##  Median :1.2371   Median :0.3857408  
##  Mean   :1.2371   Mean   :0.4470420  
##  3rd Qu.:1.7952   3rd Qu.:0.8295527  
##  Max.   :2.3533   Max.   :1.0532003  
## 
## $tables$S100b$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1065
## 
##        x                 y           
##  Min.   :-0.1322   Min.   :0.000216  
##  1st Qu.: 0.5739   1st Qu.:0.016795  
##  Median : 1.2800   Median :0.151859  
##  Mean   : 1.2800   Mean   :0.353361  
##  3rd Qu.: 1.9861   3rd Qu.:0.729348  
##  Max.   : 2.6922   Max.   :1.068651  
## 
## 
## $tables$SGOT
## $tables$SGOT$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1086
## 
##        x                 y            
##  Min.   :-1.2934   Min.   :0.0006195  
##  1st Qu.:-0.8045   1st Qu.:0.0858720  
##  Median :-0.3156   Median :0.3795370  
##  Mean   :-0.3156   Mean   :0.5103096  
##  3rd Qu.: 0.1734   3rd Qu.:0.8977714  
##  Max.   : 0.6623   Max.   :1.3990519  
## 
## $tables$SGOT$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1027
## 
##        x                 y            
##  Min.   :-1.6551   Min.   :0.0002249  
##  1st Qu.:-0.9788   1st Qu.:0.0478939  
##  Median :-0.3026   Median :0.1818082  
##  Mean   :-0.3026   Mean   :0.3689448  
##  3rd Qu.: 0.3737   3rd Qu.:0.6588273  
##  Max.   : 1.0500   Max.   :1.1195433  
## 
## 
## $tables$SHBG
## $tables$SHBG$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.193
## 
##        x                 y            
##  Min.   :-4.3088   Min.   :0.0003178  
##  1st Qu.:-3.3640   1st Qu.:0.0397268  
##  Median :-2.4192   Median :0.1810245  
##  Mean   :-2.4192   Mean   :0.2640781  
##  3rd Qu.:-1.4744   3rd Qu.:0.4388186  
##  Max.   :-0.5296   Max.   :0.7656992  
## 
## $tables$SHBG$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1561
## 
##        x                 y            
##  Min.   :-4.6033   Min.   :0.0001902  
##  1st Qu.:-3.6203   1st Qu.:0.0358164  
##  Median :-2.6373   Median :0.1733113  
##  Mean   :-2.6373   Mean   :0.2538154  
##  3rd Qu.:-1.6543   3rd Qu.:0.4126118  
##  Max.   :-0.6713   Max.   :0.7496585  
## 
## 
## $tables$SOD
## $tables$SOD$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.136
## 
##        x               y            
##  Min.   :3.923   Min.   :0.0004486  
##  1st Qu.:4.623   1st Qu.:0.0413917  
##  Median :5.324   Median :0.1452683  
##  Mean   :5.324   Mean   :0.3561261  
##  3rd Qu.:6.025   3rd Qu.:0.6701857  
##  Max.   :6.725   Max.   :1.2203413  
## 
## $tables$SOD$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1159
## 
##        x               y            
##  Min.   :3.970   Min.   :0.0002469  
##  1st Qu.:4.643   1st Qu.:0.0622313  
##  Median :5.317   Median :0.2164216  
##  Mean   :5.317   Mean   :0.3702806  
##  3rd Qu.:5.991   3rd Qu.:0.6620650  
##  Max.   :6.665   Max.   :1.0812982  
## 
## 
## $tables$Serum_Amyloid_P
## $tables$Serum_Amyloid_P$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2052
## 
##        x                y            
##  Min.   :-7.954   Min.   :0.0003237  
##  1st Qu.:-7.013   1st Qu.:0.0448128  
##  Median :-6.071   Median :0.2262529  
##  Mean   :-6.071   Mean   :0.2650042  
##  3rd Qu.:-5.130   3rd Qu.:0.4605613  
##  Max.   :-4.188   Max.   :0.6735639  
## 
## $tables$Serum_Amyloid_P$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1606
## 
##        x                y            
##  Min.   :-7.987   Min.   :0.0001529  
##  1st Qu.:-7.032   1st Qu.:0.0438634  
##  Median :-6.076   Median :0.1502905  
##  Mean   :-6.076   Mean   :0.2610528  
##  3rd Qu.:-5.120   3rd Qu.:0.4678719  
##  Max.   :-4.164   Max.   :0.7413883  
## 
## 
## $tables$Sortilin
## $tables$Sortilin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.3258
## 
##        x               y            
##  Min.   :1.364   Min.   :0.0001872  
##  1st Qu.:2.824   1st Qu.:0.0196961  
##  Median :4.283   Median :0.1410954  
##  Mean   :4.283   Mean   :0.1709258  
##  3rd Qu.:5.743   3rd Qu.:0.3170583  
##  Max.   :7.203   Max.   :0.4402174  
## 
## $tables$Sortilin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2559
## 
##        x               y            
##  Min.   :0.886   Min.   :0.0000898  
##  1st Qu.:2.413   1st Qu.:0.0185340  
##  Median :3.940   Median :0.1083839  
##  Mean   :3.940   Mean   :0.1634219  
##  3rd Qu.:5.466   3rd Qu.:0.2843334  
##  Max.   :6.993   Max.   :0.4845338  
## 
## 
## $tables$Stem_Cell_Factor
## $tables$Stem_Cell_Factor$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1255
## 
##        x               y            
##  Min.   :2.021   Min.   :0.0004899  
##  1st Qu.:2.598   1st Qu.:0.0566164  
##  Median :3.175   Median :0.3028751  
##  Mean   :3.175   Mean   :0.4326855  
##  3rd Qu.:3.751   3rd Qu.:0.8932871  
##  Max.   :4.328   Max.   :1.1314376  
## 
## $tables$Stem_Cell_Factor$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1128
## 
##        x               y            
##  Min.   :1.913   Min.   :0.0002045  
##  1st Qu.:2.588   1st Qu.:0.0369662  
##  Median :3.264   Median :0.2177216  
##  Mean   :3.264   Mean   :0.3693084  
##  3rd Qu.:3.940   3rd Qu.:0.7344650  
##  Max.   :4.615   Max.   :1.0127667  
## 
## 
## $tables$TGF_alpha
## $tables$TGF_alpha$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4318
## 
##        x                y            
##  Min.   : 5.819   Min.   :0.0001779  
##  1st Qu.: 7.893   1st Qu.:0.0241582  
##  Median : 9.968   Median :0.0675647  
##  Mean   : 9.968   Mean   :0.1202481  
##  3rd Qu.:12.043   3rd Qu.:0.2277292  
##  Max.   :14.118   Max.   :0.3194842  
## 
## $tables$TGF_alpha$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4265
## 
##        x                y            
##  Min.   : 5.563   Min.   :5.434e-05  
##  1st Qu.: 7.949   1st Qu.:9.872e-03  
##  Median :10.335   Median :7.680e-02  
##  Mean   :10.335   Mean   :1.046e-01  
##  3rd Qu.:12.721   3rd Qu.:1.931e-01  
##  Max.   :15.107   Max.   :3.049e-01  
## 
## 
## $tables$TIMP_1
## $tables$TIMP_1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.7631
## 
##        x                y            
##  Min.   : 6.665   Min.   :7.996e-05  
##  1st Qu.:10.291   1st Qu.:5.927e-03  
##  Median :13.918   Median :4.027e-02  
##  Mean   :13.918   Mean   :6.880e-02  
##  3rd Qu.:17.544   3rd Qu.:1.315e-01  
##  Max.   :21.170   Max.   :1.901e-01  
## 
## $tables$TIMP_1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.5226
## 
##        x                 y            
##  Min.   : 0.1739   Min.   :0.0000000  
##  1st Qu.: 4.9973   1st Qu.:0.0002628  
##  Median : 9.8207   Median :0.0066975  
##  Mean   : 9.8207   Mean   :0.0517288  
##  3rd Qu.:14.6441   3rd Qu.:0.0812559  
##  Max.   :19.4675   Max.   :0.2370685  
## 
## 
## $tables$TNF_RII
## $tables$TNF_RII$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1287
## 
##        x                 y            
##  Min.   :-1.7724   Min.   :0.0004729  
##  1st Qu.:-1.1153   1st Qu.:0.0399146  
##  Median :-0.4581   Median :0.1767396  
##  Mean   :-0.4581   Mean   :0.3796843  
##  3rd Qu.: 0.1990   3rd Qu.:0.7846294  
##  Max.   : 0.8561   Max.   :1.0878833  
## 
## $tables$TNF_RII$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09976
## 
##        x                  y            
##  Min.   :-1.96002   Min.   :0.0002298  
##  1st Qu.:-1.31108   1st Qu.:0.0216834  
##  Median :-0.66213   Median :0.1367883  
##  Mean   :-0.66213   Mean   :0.3844817  
##  3rd Qu.:-0.01318   3rd Qu.:0.7880589  
##  Max.   : 0.63577   Max.   :1.1788242  
## 
## 
## $tables$TRAIL_R3
## $tables$TRAIL_R3$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.08757
## 
##        x                 y            
##  Min.   :-1.1644   Min.   :0.0006967  
##  1st Qu.:-0.7402   1st Qu.:0.0605912  
##  Median :-0.3161   Median :0.3641310  
##  Mean   :-0.3161   Mean   :0.5882954  
##  3rd Qu.: 0.1080   3rd Qu.:1.1507193  
##  Max.   : 0.5321   Max.   :1.6012376  
## 
## $tables$TRAIL_R3$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.071
## 
##        x                  y            
##  Min.   :-1.42370   Min.   :0.0003239  
##  1st Qu.:-0.96810   1st Qu.:0.0299211  
##  Median :-0.51251   Median :0.2241354  
##  Mean   :-0.51251   Mean   :0.5476573  
##  3rd Qu.:-0.05692   3rd Qu.:1.1322475  
##  Max.   : 0.39867   Max.   :1.6594882  
## 
## 
## $tables$TTR_prealbumin
## $tables$TTR_prealbumin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.03354
## 
##        x               y           
##  Min.   :2.464   Min.   :0.000515  
##  1st Qu.:2.706   1st Qu.:0.064512  
##  Median :2.949   Median :0.514260  
##  Mean   :2.949   Mean   :1.030464  
##  3rd Qu.:3.191   3rd Qu.:1.627569  
##  Max.   :3.433   Max.   :3.465569  
## 
## $tables$TTR_prealbumin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.04025
## 
##        x               y            
##  Min.   :2.364   Min.   :0.0005726  
##  1st Qu.:2.618   1st Qu.:0.0874315  
##  Median :2.872   Median :0.6397767  
##  Mean   :2.872   Mean   :0.9836059  
##  3rd Qu.:3.125   3rd Qu.:1.7009864  
##  Max.   :3.379   Max.   :2.9208455  
## 
## 
## $tables$Tamm_Horsfall_Protein_THP
## $tables$Tamm_Horsfall_Protein_THP$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.01
## 
##        x                y          
##  Min.   :-3.236   Min.   : 0.0061  
##  1st Qu.:-3.179   1st Qu.: 0.3875  
##  Median :-3.123   Median : 2.7142  
##  Mean   :-3.123   Mean   : 4.4429  
##  3rd Qu.:-3.067   3rd Qu.: 7.9055  
##  Max.   :-3.011   Max.   :13.4078  
## 
## $tables$Tamm_Horsfall_Protein_THP$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01004
## 
##        x                y            
##  Min.   :-3.236   Min.   : 0.002291  
##  1st Qu.:-3.168   1st Qu.: 0.202409  
##  Median :-3.100   Median : 1.441257  
##  Mean   :-3.100   Mean   : 3.679290  
##  3rd Qu.:-3.032   3rd Qu.: 6.958499  
##  Max.   :-2.964   Max.   :12.300325  
## 
## 
## $tables$Thrombomodulin
## $tables$Thrombomodulin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.08265
## 
##        x                 y            
##  Min.   :-2.2233   Min.   :0.0007774  
##  1st Qu.:-1.8097   1st Qu.:0.0789252  
##  Median :-1.3960   Median :0.2423543  
##  Mean   :-1.3960   Mean   :0.6031489  
##  3rd Qu.:-0.9823   3rd Qu.:1.2846085  
##  Max.   :-0.5687   Max.   :1.8615329  
## 
## $tables$Thrombomodulin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07006
## 
##        x                 y            
##  Min.   :-2.2478   Min.   :0.0005748  
##  1st Qu.:-1.8819   1st Qu.:0.1113643  
##  Median :-1.5160   Median :0.5888401  
##  Mean   :-1.5160   Mean   :0.6818655  
##  3rd Qu.:-1.1501   3rd Qu.:1.1895943  
##  Max.   :-0.7842   Max.   :1.7639707  
## 
## 
## $tables$Thrombopoietin
## $tables$Thrombopoietin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.06773
## 
##        x                  y            
##  Min.   :-1.74275   Min.   :0.0009015  
##  1st Qu.:-1.32325   1st Qu.:0.0451482  
##  Median :-0.90376   Median :0.3488088  
##  Mean   :-0.90376   Mean   :0.5947557  
##  3rd Qu.:-0.48426   3rd Qu.:0.9909795  
##  Max.   :-0.06476   Max.   :2.1026315  
## 
## $tables$Thrombopoietin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07041
## 
##        x                 y            
##  Min.   :-1.5184   Min.   :0.0003267  
##  1st Qu.:-1.0616   1st Qu.:0.0348825  
##  Median :-0.6048   Median :0.3479396  
##  Mean   :-0.6048   Mean   :0.5461857  
##  3rd Qu.:-0.1480   3rd Qu.:0.9234895  
##  Max.   : 0.3089   Max.   :1.7648531  
## 
## 
## $tables$Thymus_Expressed_Chemokine_TECK
## $tables$Thymus_Expressed_Chemokine_TECK$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2555
## 
##        x               y           
##  Min.   :1.170   Min.   :0.000239  
##  1st Qu.:2.625   1st Qu.:0.017862  
##  Median :4.081   Median :0.079276  
##  Mean   :4.081   Mean   :0.171420  
##  3rd Qu.:5.536   3rd Qu.:0.310995  
##  Max.   :6.992   Max.   :0.559876  
## 
## $tables$Thymus_Expressed_Chemokine_TECK$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1889
## 
##        x                y            
##  Min.   :0.9418   Min.   :0.0001233  
##  1st Qu.:2.4043   1st Qu.:0.0171002  
##  Median :3.8669   Median :0.0722106  
##  Mean   :3.8669   Mean   :0.1705975  
##  3rd Qu.:5.3294   3rd Qu.:0.2912266  
##  Max.   :6.7920   Max.   :0.5967206  
## 
## 
## $tables$Thyroid_Stimulating_Hormone
## $tables$Thyroid_Stimulating_Hormone$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.3209
## 
##        x                y            
##  Min.   :-7.152   Min.   :0.0001913  
##  1st Qu.:-5.704   1st Qu.:0.0262018  
##  Median :-4.256   Median :0.1122723  
##  Mean   :-4.256   Mean   :0.1722866  
##  3rd Qu.:-2.808   3rd Qu.:0.3264134  
##  Max.   :-1.360   Max.   :0.4631632  
## 
## $tables$Thyroid_Stimulating_Hormone$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1916
## 
##        x                y            
##  Min.   :-6.765   Min.   :0.0001202  
##  1st Qu.:-5.359   1st Qu.:0.0106288  
##  Median :-3.952   Median :0.0639249  
##  Mean   :-3.952   Mean   :0.1774198  
##  3rd Qu.:-2.546   3rd Qu.:0.3425615  
##  Max.   :-1.140   Max.   :0.6106165  
## 
## 
## $tables$Thyroxine_Binding_Globulin
## $tables$Thyroxine_Binding_Globulin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1455
## 
##        x                 y            
##  Min.   :-2.5566   Min.   :0.0008919  
##  1st Qu.:-1.9624   1st Qu.:0.0890178  
##  Median :-1.3682   Median :0.4048727  
##  Mean   :-1.3682   Mean   :0.4198723  
##  3rd Qu.:-0.7740   3rd Qu.:0.7462426  
##  Max.   :-0.1798   Max.   :0.8906812  
## 
## $tables$Thyroxine_Binding_Globulin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1246
## 
##        x                 y            
##  Min.   :-2.8507   Min.   :0.0001845  
##  1st Qu.:-2.0973   1st Qu.:0.0276562  
##  Median :-1.3438   Median :0.1557217  
##  Mean   :-1.3438   Mean   :0.3311640  
##  3rd Qu.:-0.5904   3rd Qu.:0.6687243  
##  Max.   : 0.1630   Max.   :0.9612922  
## 
## 
## $tables$Tissue_Factor
## $tables$Tissue_Factor$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1853
## 
##        x                 y           
##  Min.   :-0.5658   Min.   :0.000383  
##  1st Qu.: 0.2583   1st Qu.:0.044785  
##  Median : 1.0824   Median :0.217380  
##  Mean   : 1.0824   Mean   :0.302759  
##  3rd Qu.: 1.9064   3rd Qu.:0.539996  
##  Max.   : 2.7305   Max.   :0.827211  
## 
## $tables$Tissue_Factor$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1519
## 
##        x                 y            
##  Min.   :-0.6665   Min.   :0.0001829  
##  1st Qu.: 0.2353   1st Qu.:0.0411846  
##  Median : 1.1371   Median :0.1697445  
##  Mean   : 1.1371   Mean   :0.2766810  
##  3rd Qu.: 2.0389   3rd Qu.:0.4975023  
##  Max.   : 2.9407   Max.   :0.8122198  
## 
## 
## $tables$Transferrin
## $tables$Transferrin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.09068
## 
##        x               y            
##  Min.   :1.659   Min.   :0.0006734  
##  1st Qu.:2.194   1st Qu.:0.0260873  
##  Median :2.729   Median :0.1795431  
##  Mean   :2.729   Mean   :0.4665920  
##  3rd Qu.:3.264   3rd Qu.:0.8481347  
##  Max.   :3.798   Max.   :1.6573670  
## 
## $tables$Transferrin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08756
## 
##        x               y            
##  Min.   :1.683   Min.   :0.0002615  
##  1st Qu.:2.268   1st Qu.:0.0213870  
##  Median :2.854   Median :0.1751520  
##  Mean   :2.854   Mean   :0.4263912  
##  3rd Qu.:3.439   3rd Qu.:0.7871647  
##  Max.   :4.024   Max.   :1.4687536  
## 
## 
## $tables$Trefoil_Factor_3_TFF3
## $tables$Trefoil_Factor_3_TFF3$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1387
## 
##        x                y            
##  Min.   :-5.160   Min.   :0.0004648  
##  1st Qu.:-4.505   1st Qu.:0.0602022  
##  Median :-3.850   Median :0.2159617  
##  Mean   :-3.850   Mean   :0.3809361  
##  3rd Qu.:-3.196   3rd Qu.:0.7326102  
##  Max.   :-2.541   Max.   :1.0664573  
## 
## $tables$Trefoil_Factor_3_TFF3$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1031
## 
##        x                y            
##  Min.   :-4.987   Min.   :0.0002666  
##  1st Qu.:-4.422   1st Qu.:0.0575803  
##  Median :-3.857   Median :0.3067861  
##  Mean   :-3.857   Mean   :0.4416230  
##  3rd Qu.:-3.292   3rd Qu.:0.8679997  
##  Max.   :-2.727   Max.   :1.0993923  
## 
## 
## $tables$VCAM_1
## $tables$VCAM_1$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1398
## 
##        x               y            
##  Min.   :1.304   Min.   :0.0004365  
##  1st Qu.:2.005   1st Qu.:0.0357910  
##  Median :2.706   Median :0.1833254  
##  Mean   :2.706   Mean   :0.3558455  
##  3rd Qu.:3.407   3rd Qu.:0.5708029  
##  Max.   :4.108   Max.   :1.1464433  
## 
## $tables$VCAM_1$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09411
## 
##        x               y            
##  Min.   :1.649   Min.   :0.0003448  
##  1st Qu.:2.217   1st Qu.:0.0295152  
##  Median :2.785   Median :0.2422417  
##  Mean   :2.785   Mean   :0.4395158  
##  3rd Qu.:3.352   3rd Qu.:0.8112680  
##  Max.   :3.920   Max.   :1.3052173  
## 
## 
## $tables$VEGF
## $tables$VEGF$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.5539
## 
##        x               y            
##  Min.   :11.04   Min.   :0.0001229  
##  1st Qu.:13.97   1st Qu.:0.0183212  
##  Median :16.90   Median :0.0446594  
##  Mean   :16.90   Mean   :0.0852277  
##  3rd Qu.:19.82   3rd Qu.:0.1613336  
##  Max.   :22.75   Max.   :0.2622160  
## 
## $tables$VEGF$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.523
## 
##        x               y            
##  Min.   :10.26   Min.   :4.404e-05  
##  1st Qu.:13.68   1st Qu.:8.378e-03  
##  Median :17.11   Median :3.543e-02  
##  Mean   :17.11   Mean   :7.292e-02  
##  3rd Qu.:20.53   3rd Qu.:1.279e-01  
##  Max.   :23.95   Max.   :2.297e-01  
## 
## 
## $tables$Vitronectin
## $tables$Vitronectin$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.116
## 
##        x                 y            
##  Min.   :-1.2896   Min.   :0.0006909  
##  1st Qu.:-0.7961   1st Qu.:0.0863271  
##  Median :-0.3026   Median :0.4310126  
##  Mean   :-0.3026   Mean   :0.5055689  
##  3rd Qu.: 0.1909   3rd Qu.:0.9480774  
##  Max.   : 0.6844   Max.   :1.1551424  
## 
## $tables$Vitronectin$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1072
## 
##        x                 y            
##  Min.   :-1.7486   Min.   :0.0002144  
##  1st Qu.:-1.0984   1st Qu.:0.0194634  
##  Median :-0.4482   Median :0.1800500  
##  Mean   :-0.4482   Mean   :0.3837404  
##  3rd Qu.: 0.2020   3rd Qu.:0.8241035  
##  Max.   : 0.8522   Max.   :1.0688875  
## 
## 
## $tables$von_Willebrand_Factor
## $tables$von_Willebrand_Factor$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1421
## 
##        x                y            
##  Min.   :-5.182   Min.   :0.0004309  
##  1st Qu.:-4.519   1st Qu.:0.0443519  
##  Median :-3.856   Median :0.3044065  
##  Mean   :-3.856   Mean   :0.3763200  
##  3rd Qu.:-3.193   3rd Qu.:0.6967481  
##  Max.   :-2.530   Max.   :0.9158278  
## 
## $tables$von_Willebrand_Factor$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1166
## 
##        x                y           
##  Min.   :-5.341   Min.   :0.000244  
##  1st Qu.:-4.688   1st Qu.:0.040219  
##  Median :-4.035   Median :0.261248  
##  Mean   :-4.035   Mean   :0.382190  
##  3rd Qu.:-3.382   3rd Qu.:0.750083  
##  Max.   :-2.729   Max.   :0.998663  
## 
## 
## $tables$E4
## $tables$E4$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.189
## 
##        x                y          
##  Min.   :0.4329   Min.   :0.00965  
##  1st Qu.:0.9664   1st Qu.:0.11395  
##  Median :1.5000   Median :0.37933  
##  Mean   :1.5000   Mean   :0.46703  
##  3rd Qu.:2.0336   3rd Qu.:0.78142  
##  Max.   :2.5671   Max.   :1.24269  
## 
## $tables$E4$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1479
## 
##        x                y           
##  Min.   :0.5562   Min.   :0.008364  
##  1st Qu.:1.0281   1st Qu.:0.071217  
##  Median :1.5000   Median :0.345225  
##  Mean   :1.5000   Mean   :0.528053  
##  3rd Qu.:1.9719   3rd Qu.:0.833414  
##  Max.   :2.4438   Max.   :1.806542  
## 
## 
## $tables$E3
## $tables$E3$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.12
## 
##        x                y            
##  Min.   :0.6399   Min.   :0.0003441  
##  1st Qu.:1.0700   1st Qu.:0.0243032  
##  Median :1.5000   Median :0.1745859  
##  Mean   :1.5000   Mean   :0.5794704  
##  3rd Qu.:1.9300   3rd Qu.:0.5908657  
##  Max.   :2.3601   Max.   :2.9588517  
## 
## $tables$E3$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08141
## 
##        x                y           
##  Min.   :0.7558   Min.   :0.000000  
##  1st Qu.:1.1279   1st Qu.:0.000735  
##  Median :1.5000   Median :0.078645  
##  Mean   :1.5000   Mean   :0.669655  
##  3rd Qu.:1.8721   3rd Qu.:0.353346  
##  Max.   :2.2442   Max.   :4.544950  
## 
## 
## $tables$E2
## $tables$E2$Impaired
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1055
## 
##        x                y           
##  Min.   :0.6834   Min.   :0.000027  
##  1st Qu.:1.0917   1st Qu.:0.010496  
##  Median :1.5000   Median :0.130505  
##  Mean   :1.5000   Mean   :0.610325  
##  3rd Qu.:1.9083   3rd Qu.:0.529965  
##  Max.   :2.3166   Max.   :3.468090  
## 
## $tables$E2$Control
## 
## Call:
##  density.default(x = xx, adjust = ..1)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1236
## 
##        x                y            
##  Min.   :0.6292   Min.   :0.0007015  
##  1st Qu.:1.0646   1st Qu.:0.0369939  
##  Median :1.5000   Median :0.2460256  
##  Mean   :1.5000   Mean   :0.5723030  
##  3rd Qu.:1.9354   3rd Qu.:0.6137616  
##  Max.   :2.3708   Max.   :2.6115594  
## 
## 
## 
## $levels
## [1] "Impaired" "Control" 
## 
## $call
## NaiveBayes.default(x = x, grouping = y, usekernel = TRUE, fL = param$fL, 
##     adjust = param$adjust)
## 
## $x
##      ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon         AXL
## X1                       2.00310035                      -1.3862944  1.09838668
## X2                       1.56185602                      -1.3862944  0.68328157
## X3                       1.52065981                      -1.7147984 -0.14527630
## X5                       2.40093083                      -0.9675840  0.19089023
## X6                       0.43115645                      -1.2729657 -0.22236112
## X7                       0.94620673                      -1.8971200  0.52982213
## X8                       0.70781531                      -1.8325815 -0.32667995
## X9                       1.10654173                      -1.9661129  0.19089023
## X11                      1.82987064                      -0.9942523  0.36643191
## X12                      1.00119771                      -1.7147984  0.36643191
## X14                      1.52065981                      -1.7147984  0.19089023
## X16                      1.86560359                      -1.6607312  0.60768096
## X17                      0.88951564                      -1.6094379  0.19089023
## X18                      0.50475301                      -1.8971200 -0.16696972
## X19                      0.43115645                      -1.7719568 -0.60000000
## X20                      0.88951564                      -1.7719568 -0.64353400
## X21                      0.94620673                      -1.1086626 -0.15609111
## X22                      2.03621269                      -1.6094379  0.44948974
## X23                      1.20635622                      -1.5141277  0.09761770
## X24                      1.79355115                      -1.6094379  1.22490310
## X25                      1.05460735                      -1.5141277 -0.07126985
## X26                      1.79355115                      -1.3470736  0.60768096
## X28                      1.43572821                      -1.7147984  0.89827535
## X29                      0.43115645                      -1.6094379 -0.27953495
## X30                      1.30129723                      -1.8971200 -0.09212160
## X31                      1.25439977                      -1.4696760  0.19089023
## X34                      0.57519641                      -2.2072749 -0.12383370
## X35                      0.70781531                      -1.8971200 -0.07126985
## X36                      1.15709609                      -1.7147984  0.28035085
## X37                      1.82987064                      -1.4696760  0.60768096
## X38                      1.25439977                      -1.6094379  0.09761770
## X39                      2.28543598                      -1.1711830  0.68328157
## X40                      1.56185602                      -1.2729657  0.09761770
## X41                      0.64279595                      -1.8971200  0.28035085
## X42                      1.30129723                      -1.2378744  0.60768096
## X43                      0.77048138                      -1.7719568 -0.08166739
## X44                      1.39190522                      -1.1711830  0.44948974
## X45                      1.20635622                      -1.5141277  0.52982213
## X46                      1.90077250                      -1.5141277  0.75680975
## X47                      0.57519641                      -1.8971200 -0.30294373
## X48                      1.79355115                      -1.2378744  1.09838668
## X50                      1.90077250                      -0.8675006  0.28035085
## X51                      1.25439977                      -1.7719568  0.60768096
## X53                      1.20635622                      -1.3470736 -0.02010101
## X55                      1.47863123                      -1.4271164  0.52982213
## X56                      1.05460735                      -2.1202635 -0.04040821
## X57                      0.64279595                      -1.0498221  0.68328157
## X59                      1.05460735                      -2.2072749 -0.12383370
## X60                      0.50475301                      -2.1202635 -0.46377085
## X61                      0.43115645                      -1.2729657 -0.31477005
## X62                      0.77048138                      -1.8325815 -0.04040821
## X63                      1.10654173                      -1.7147984  0.19089023
## X64                      0.94620673                      -1.8325815  0.00000000
## X65                      1.82987064                      -1.4696760  0.44948974
## X67                      1.71905522                      -1.8971200  0.60768096
## X68                      1.43572821                      -1.4271164  0.60768096
## X69                      0.64279595                      -1.7147984 -0.33867523
## X70                      1.25439977                      -1.5141277  0.60768096
## X71                      1.64190425                      -1.5141277  0.09761770
## X72                      2.31482865                      -1.3862944  0.52982213
## X73                      1.90077250                      -1.3470736  0.82842712
## X74                      0.09668586                      -1.6607312 -0.68851230
## X75                      0.70781531                      -1.7719568 -0.21114562
## X76                      2.03621269                      -1.9661129  1.03315018
## X77                      1.71905522                      -1.4271164  0.19089023
## X78                      1.68082597                      -1.2729657  1.22490310
## X80                      1.43572821                      -1.4696760  0.09761770
## X81                      1.64190425                      -1.6094379  0.19089023
## X82                      0.43115645                      -1.5141277  0.52982213
## X83                      1.96950153                      -1.3470736  0.52982213
## X84                      0.64279595                      -1.8325815 -0.02010101
## X85                      1.71905522                      -1.7147984  1.22490310
## X86                      1.30129723                      -1.2378744  0.89827535
## X88                      2.03621269                      -1.2729657  0.19089023
## X90                     -0.67562020                      -1.9661129 -0.64353400
## X93                      1.00119771                      -1.6607312  0.28035085
## X94                      1.64190425                      -1.4696760  1.22490310
## X95                      1.15709609                      -1.2729657 -0.15609111
## X96                      1.71905522                      -0.9416085  0.09761770
## X97                      2.03621269                      -1.3093333  0.36643191
## X98                      0.77048138                      -1.6607312 -0.65835921
## X99                      1.79355115                      -1.7147984  0.09761770
## X100                     1.75662119                      -1.2729657  0.89827535
## X103                     2.40093083                      -1.7147984  0.75680975
## X104                     1.10654173                      -1.6094379  0.44948974
## X105                     1.30129723                      -1.3862944  0.89827535
## X107                     1.64190425                      -1.8325815  0.60768096
## X108                     1.34711282                      -1.8971200  0.60768096
## X109                     0.94620673                      -1.6094379 -0.16696972
## X110                     1.00119771                      -1.8325815 -0.22236112
## X111                     1.96950153                      -1.3470736  0.60768096
## X112                     1.64190425                      -1.7147984  0.82842712
## X113                     1.43572821                      -1.5606477  0.28035085
## X114                     0.27296583                      -1.5606477 -0.09212160
## X115                     0.35404039                      -2.1202635  0.19089023
## X117                     1.93539850                      -1.5141277  1.03315018
## X118                     1.96950153                      -1.1086626  0.68328157
## X121                     1.71905522                      -1.8971200  0.36643191
## X123                     0.43115645                      -1.3093333 -0.61435935
## X124                     1.25439977                      -1.2729657 -0.04040821
## X126                     0.57519641                      -1.6094379  0.00000000
## X128                     1.39190522                      -1.4271164  0.96647939
## X129                     0.43115645                      -1.7719568 -0.37519232
## X130                     1.75662119                      -1.2378744  0.52982213
## X131                     1.15709609                      -1.5141277  0.19089023
## X132                     0.94620673                      -1.7147984  0.36643191
## X133                     1.25439977                      -1.5606477  0.36643191
## X134                     0.88951564                      -1.2378744  0.68328157
## X135                     1.60225879                      -1.8971200  0.52982213
## X136                     1.25439977                      -1.5606477  0.00000000
## X137                     1.05460735                      -1.3093333 -0.15609111
## X139                     1.20635622                      -1.0216512 -0.18892297
## X140                     1.86560359                      -1.3862944  0.60768096
## X141                     2.03621269                      -1.5606477  0.75680975
## X143                     0.50475301                      -1.8325815 -0.11320377
## X144                     0.83099088                      -1.2729657  0.28035085
## X145                     1.43572821                      -1.8325815  0.36643191
## X146                     1.34711282                      -1.9661129  0.75680975
## X147                     1.79355115                      -1.5606477  0.60768096
## X148                     1.39190522                      -1.3862944  0.75680975
## X149                     1.10654173                      -1.3862944  0.19089023
## X152                     2.16411943                      -1.4696760  1.52136337
## X153                     1.71905522                      -1.3470736  0.19089023
## X154                     1.10654173                      -1.3862944  0.09761770
## X155                     1.34711282                      -1.4271164  0.00000000
## X156                     2.06885532                      -1.4696760  0.36643191
## X157                     1.47863123                      -1.8971200  0.09761770
## X158                     1.43572821                      -1.3862944  0.36643191
## X159                     1.43572821                      -1.6094379  0.19089023
## X160                     2.83982088                      -1.2729657  0.89827535
## X161                     1.15709609                      -1.6094379  0.68328157
## X162                     1.71905522                      -0.8675006  0.52982213
## X163                     1.34711282                      -1.0788097 -0.01002513
## X165                     1.79355115                      -1.5606477  0.09761770
## X166                     1.64190425                      -1.6607312  0.44948974
## X167                     2.25568010                      -1.5141277  1.28633535
## X168                     1.39190522                      -1.6094379  0.52982213
## X169                     0.88951564                      -1.3093333  0.19089023
## X170                     0.57519641                      -1.5606477 -0.09212160
## X171                     1.86560359                      -1.2039728  0.89827535
## X172                     1.43572821                      -1.5606477  0.36643191
## X174                     1.96950153                      -1.9661129  0.00000000
## X175                     1.47863123                      -1.2378744  0.52982213
## X176                     1.43572821                      -1.7147984 -0.11320377
## X177                     1.52065981                      -1.6607312  0.44948974
## X178                     1.10654173                      -1.8971200 -0.11320377
## X179                     1.52065981                      -1.4696760  0.44948974
## X180                     1.96950153                      -1.4271164  0.82842712
## X181                     0.57519641                      -1.5606477 -0.55777949
## X182                     1.15709609                      -1.8325815  0.82842712
## X183                     0.64279595                      -2.1202635 -0.38754845
## X184                     1.68082597                      -1.5141277  0.68328157
## X185                     1.34711282                      -1.7147984 -0.03022844
## X186                     1.68082597                      -1.6094379  0.19089023
## X189                     0.43115645                      -1.5141277  0.36643191
## X190                     1.79355115                      -1.6607312  0.75680975
## X191                     1.30129723                      -1.6607312  0.52982213
## X192                     2.25568010                      -1.8971200  1.16227766
## X193                     1.39190522                      -2.0402208  0.36643191
## X194                     1.15709609                      -1.3470736  0.19089023
## X195                     2.51123919                      -1.3862944  1.22490310
## X197                     1.96950153                      -1.2039728  0.52982213
## X198                     1.30129723                      -1.3470736  0.00000000
## X200                     1.39190522                      -1.0216512  0.68328157
## X201                     0.70781531                      -1.2378744 -0.02010101
## X202                     1.15709609                      -1.2378744  0.09761770
## X205                     1.86560359                      -1.2729657  0.52982213
## X208                     1.15709609                      -1.7719568  0.52982213
## X210                     1.90077250                      -1.1711830  0.52982213
## X212                     0.94620673                      -1.7719568  0.09761770
## X213                     1.20635622                      -1.3470736  0.52982213
## X214                     1.15709609                      -1.5141277  0.09761770
## X215                     1.05460735                      -1.5141277  0.09761770
## X216                     1.10654173                      -1.5606477  0.09761770
## X218                     0.35404039                      -1.4696760  0.28035085
## X219                     0.83099088                      -1.3093333  0.19089023
## X220                     1.39190522                      -1.7719568  0.68328157
## X223                     1.82987064                      -1.6094379  0.44948974
## X224                     1.34711282                      -2.1202635  0.09761770
## X225                     1.82987064                      -1.3862944  1.09838668
## X226                     2.03621269                      -1.8325815  1.22490310
## X227                     1.64190425                      -1.6094379  0.52982213
## X228                     1.10654173                      -1.7719568 -0.22236112
## X229                     0.88951564                      -1.3470736  0.00000000
## X230                     1.39190522                      -1.8325815  0.19089023
## X231                     1.10654173                      -1.2039728  0.36643191
## X232                     1.30129723                      -1.5606477 -0.09212160
## X233                     0.70781531                      -1.7719568 -0.16696972
## X234                     1.30129723                      -1.5606477  0.19089023
## X236                     1.25439977                      -1.1086626  0.19089023
## X237                     1.15709609                      -1.4271164  0.36643191
## X239                     0.50475301                      -1.8971200 -0.67335008
## X240                     1.15709609                      -1.8325815 -0.11320377
## X241                     1.68082597                      -1.7147984  0.82842712
## X242                     1.56185602                      -1.5606477 -0.45080666
## X243                     0.64279595                      -2.1202635  0.00000000
## X244                     1.56185602                      -1.6607312  0.28035085
## X245                     0.64279595                      -1.3862944 -0.24500712
## X246                     1.05460735                      -1.3862944 -0.25644042
## X247                     1.43572821                      -1.3470736 -0.05064113
## X249                     2.13279405                      -1.5606477  1.28633535
## X250                     0.35404039                      -1.4271164  0.19089023
## X251                     0.77048138                      -1.9661129  0.19089023
## X253                     0.94620673                      -1.4696760  0.28035085
## X254                     2.64263321                      -1.4696760  1.09838668
## X255                     1.90077250                      -1.1086626  0.96647939
## X256                     1.15709609                      -1.5141277  0.36643191
## X257                     1.05460735                      -0.9675840 -0.14527630
## X258                     0.43115645                      -1.6094379  0.09761770
## X260                     1.47863123                      -1.6094379  0.52982213
## X261                     1.15709609                      -1.7147984 -0.13452419
## X262                     1.15709609                      -1.5141277  0.00000000
## X263                     2.13279405                      -1.3862944  1.16227766
## X264                     0.77048138                      -1.9661129  0.19089023
## X265                     1.25439977                      -1.6607312  0.68328157
## X267                     1.47863123                      -1.5606477  0.89827535
## X268                     1.71905522                      -1.3470736  0.44948974
## X269                     1.00119771                      -1.7719568  0.09761770
## X270                     2.03621269                      -1.8325815  1.09838668
## X271                     0.70781531                      -1.0788097  0.19089023
## X272                     1.86560359                      -1.5141277  0.60768096
## X273                     1.68082597                      -1.1711830  0.52982213
## X274                     1.34711282                      -1.5606477  0.60768096
## X275                     1.93539850                      -1.0788097  0.60768096
## X277                     1.10654173                      -1.7147984  0.19089023
## X278                     0.70781531                      -1.8971200  0.52982213
## X279                     1.25439977                      -1.4271164  0.68328157
## X281                     1.60225879                      -1.3862944  0.52982213
## X282                     0.77048138                      -1.3862944  0.19089023
## X283                     2.25568010                      -1.4271164  0.82842712
## X287                     1.79355115                      -1.5606477  0.44948974
## X289                     1.10654173                      -2.2072749 -0.51676030
## X290                     0.88951564                      -1.5606477 -0.15609111
## X291                     1.60225879                      -1.3093333  0.36643191
## X292                     2.10104410                      -1.1711830  0.44948974
## X294                     0.64279595                      -1.7719568 -0.37519232
## X297                     1.05460735                      -1.6607312  0.44948974
## X298                     0.70781531                      -1.7147984 -0.51676030
## X299                     1.34711282                      -1.1394343  0.28035085
## X301                     0.94620673                      -1.8325815 -0.06092806
## X302                     0.35404039                      -1.7147984 -0.42519843
## X303                     1.47863123                      -1.6094379  0.52982213
## X304                     2.37256620                      -1.1086626  0.68328157
## X305                     1.39190522                      -1.2378744  0.75680975
## X306                     1.56185602                      -1.1711830  0.44948974
## X307                     2.06885532                      -1.1086626  0.82842712
## X308                     0.70781531                      -1.5606477 -0.92296704
## X311                     0.27296583                      -2.1202635  0.09761770
## X312                     1.68082597                      -0.8439701  0.60768096
## X313                     1.00119771                      -0.9162907 -0.09212160
## X314                     1.56185602                      -1.3470736  0.60768096
## X315                     0.18739989                      -1.6094379  0.52982213
## X316                     1.86560359                      -1.7719568  0.36643191
## X317                     1.52065981                      -1.4696760  0.19089023
## X320                     0.70781531                      -0.9416085  0.09761770
## X321                     0.50475301                      -1.4271164 -0.67335008
## X322                     2.42897180                      -1.8325815  0.52982213
## X323                     1.86560359                      -1.1394343  0.44948974
## X324                     1.20635622                      -1.6094379  0.28035085
## X325                     0.94620673                      -1.7719568  0.44948974
## X326                     1.25439977                      -1.4271164  0.19089023
## X327                     1.64190425                      -1.5141277  0.52982213
## X329                     1.71905522                      -1.6607312  0.82842712
## X330                     1.39190522                      -1.5141277 -0.14527630
## X331                     1.00119771                      -1.3470736 -0.01002513
## X332                     0.94620673                      -1.7719568  0.00000000
## X333                     2.42897180                      -1.4696760  1.40587727
##      Adiponectin Alpha_1_Antichymotrypsin Alpha_1_Antitrypsin
## X1     -5.360193                1.7404662          -12.631361
## X2     -5.020686                1.4586150          -11.909882
## X3     -5.809143                1.1939225          -13.642963
## X5     -4.779524                2.1282317          -11.133063
## X6     -5.221356                1.3083328          -12.134638
## X7     -6.119298                0.8329091          -12.813142
## X8     -4.879607                1.5260563          -13.310348
## X9     -5.167289                0.7419373          -12.907477
## X11    -4.840893                1.0986123          -13.310348
## X12    -4.199705                1.9021075          -11.838035
## X14    -5.776353                1.3862944          -11.909882
## X16    -4.199705                1.4109870          -11.983227
## X17    -4.699481                1.8245493          -11.499497
## X18    -6.265901                1.2237754          -14.135373
## X19    -4.422849                1.3083328          -12.292758
## X20    -5.132803                2.1633230           -8.932463
## X21    -5.683980                0.9555114          -14.135373
## X22    -5.914504                1.3609766          -15.344812
## X23    -6.377127                1.1314021          -13.642963
## X24    -5.843045                1.3083328          -13.310348
## X25    -4.919881                0.7884574          -13.528896
## X26    -5.099467                1.0986123          -13.205557
## X28    -6.502290                1.5260563          -11.909882
## X29    -6.165818                0.9932518          -14.135373
## X30    -5.278515                1.1314021          -13.760451
## X31    -5.099467                1.5475625          -12.058126
## X34    -5.426151                1.4109870          -11.435607
## X35    -4.199705                1.2237754          -12.458129
## X36    -3.963316                2.1041342          -11.909882
## X37    -4.767689                1.1314021          -14.548755
## X38    -5.005648                1.3609766          -13.528896
## X39    -5.843045                0.8754687          -16.321511
## X40    -5.991465                1.7749524          -13.418078
## X41    -3.649659                1.8870696           -8.191715
## X42    -4.605170                1.1314021          -13.881545
## X43    -4.688552                1.0647107          -13.004247
## X44    -5.259097                1.5892352          -12.907477
## X45    -6.502290                1.8082888          -12.058126
## X46    -6.214608                1.3862944          -15.008176
## X47    -4.605170                1.3862944          -11.630963
## X48    -5.099467                1.4816045          -15.344812
## X50    -5.184989                1.3862944          -11.698625
## X51    -4.677741                1.3609766          -12.374500
## X53    -5.083206                1.5892352          -13.881545
## X55    -5.496768                1.3862944          -15.344812
## X56    -4.509860                1.5260563          -11.698625
## X57    -5.403678                1.8405496          -12.212827
## X59    -4.509860                1.6486586          -11.250842
## X60    -5.318520                1.4586150          -13.103567
## X61    -5.776353                1.1631508          -14.006447
## X62    -5.914504                0.8329091          -15.008176
## X63    -5.521461                1.3350011          -12.907477
## X64    -4.744432                1.7749524          -12.631361
## X65    -5.546779                0.7419373          -15.523564
## X67    -4.990833                1.4350845          -14.406260
## X68    -4.199705                1.3862944          -14.268559
## X69    -5.683980                0.8329091          -15.008176
## X70    -6.165818                0.9932518          -14.406260
## X71    -6.032287                1.7047481          -12.134638
## X72    -3.540459                2.2082744          -10.963846
## X73    -5.067206                1.5892352          -14.135373
## X74    -4.615221                1.4109870          -10.802885
## X75    -4.342806                2.0412203          -12.907477
## X76    -5.426151                1.5260563          -10.363053
## X77    -3.912023                1.6292405          -11.564602
## X78    -4.803621                1.5892352          -11.311317
## X80    -6.214608                1.4350845          -13.205557
## X81    -5.572754                1.3862944          -12.292758
## X82    -5.067206                1.1939225          -12.292758
## X83    -4.828314                1.1631508          -12.374500
## X84    -5.099467                1.2809338          -11.564602
## X85    -5.713833                1.5686159          -12.212827
## X86    -4.509860                2.1633230          -11.019298
## X88    -4.866535                1.4350845          -13.418078
## X90    -5.878136                0.9932518          -14.849365
## X93    -4.342806                1.8082888          -13.004247
## X94    -4.199705                2.2823824          -12.292758
## X95    -4.919881                1.2527630          -12.058126
## X96    -5.991465                1.0986123          -14.406260
## X97    -5.360193                0.9162907          -13.881545
## X98    -5.914504                0.9932518          -15.344812
## X99    -5.403678                1.5040774          -14.268559
## X100   -5.278515                1.1939225          -15.008176
## X103   -5.221356                1.3609766          -13.310348
## X104   -5.167289                1.2237754          -13.881545
## X105   -5.115996                1.1939225          -12.374500
## X107   -5.599422                1.2809338          -13.004247
## X108   -5.005648                1.7047481          -13.103567
## X109   -5.809143                0.4054651          -16.780588
## X110   -5.952244                0.7884574          -15.173178
## X111   -4.744432                1.2527630          -14.268559
## X112   -3.963316                1.9169226          -12.058126
## X113   -4.342806                1.8718022          -11.191436
## X114   -6.119298                1.2237754          -13.418078
## X115   -4.268698                1.7227666          -11.499497
## X117   -5.991465                1.2237754          -14.006447
## X118   -5.572754                1.4350845          -13.881545
## X121   -4.135167                1.9315214           -9.562842
## X123   -5.776353                0.9555114          -13.103567
## X124   -5.020686                1.6292405          -13.004247
## X126   -5.298317                0.9932518          -13.418078
## X128   -3.912023                1.9169226          -10.750945
## X129   -5.221356                1.1939225          -13.103567
## X130   -5.051457                1.4350845          -10.363053
## X131   -5.744604                1.0647107          -13.642963
## X132   -5.654992                1.7578579          -12.058126
## X133   -4.342806                1.7047481          -11.983227
## X134   -4.906275                1.6677068          -12.813142
## X135   -5.744604                1.4816045          -11.499497
## X136   -4.074542                1.4350845          -12.374500
## X137   -6.319969                0.9162907          -14.135373
## X139   -5.683980                1.0986123          -14.406260
## X140   -5.521461                1.2237754          -13.881545
## X141   -5.240048                1.4109870          -11.250842
## X143   -4.947660                1.5260563          -12.134638
## X144   -5.426151                1.4816045          -13.528896
## X145   -5.914504                0.7884574          -14.696346
## X146   -5.099467                1.7404662          -13.103567
## X147   -4.947660                1.5040774          -13.881545
## X148   -4.199705                2.2512918          -12.907477
## X149   -5.360193                0.6931472          -15.008176
## X152   -5.496768                1.8082888          -12.458129
## X153   -6.319969                1.6094379          -12.374500
## X154   -5.099467                0.9162907          -14.696346
## X155   -5.115996                1.1314021          -12.631361
## X156   -5.132803                1.7227666          -12.543721
## X157   -5.259097                1.2527630          -13.310348
## X158   -5.991465                1.0647107          -14.268559
## X159   -5.184989                1.6292405          -11.838035
## X160   -4.828314                1.7404662          -12.721137
## X161   -4.509860                1.3609766          -12.458129
## X162   -5.472671                1.2237754          -15.523564
## X163   -5.240048                0.6931472          -15.709974
## X165   -5.496768                1.0986123          -14.135373
## X166   -5.318520                0.7419373          -14.135373
## X167   -4.755993                1.0647107          -14.406260
## X168   -5.449140                1.4816045          -14.006447
## X169   -5.203007                1.0647107          -13.205557
## X170   -4.268698                1.1314021          -12.134638
## X171   -5.713833                1.5040774          -10.599937
## X172   -5.654992                1.0296194          -12.631361
## X174   -3.575551                1.6292405          -11.435607
## X175   -4.828314                1.9021075          -11.838035
## X176   -5.020686                1.6863990          -11.133063
## X177   -5.167289                1.4586150          -14.548755
## X178   -5.240048                0.9555114          -14.135373
## X179   -3.506558                1.9021075          -13.103567
## X180   -4.853632                1.6292405          -13.103567
## X181   -6.074846                0.6931472          -15.173178
## X182   -5.521461                1.4109870          -15.173178
## X183   -4.892852                1.3862944          -13.205557
## X184   -5.654992                1.2809338          -12.813142
## X185   -4.422849                1.4109870          -12.212827
## X186   -5.496768                1.0647107          -16.545310
## X189   -5.991465                0.9932518          -13.205557
## X190   -5.278515                1.6292405          -14.406260
## X191   -5.449140                1.4109870          -13.528896
## X192   -5.149897                1.5040774          -13.881545
## X193   -4.645992                1.7749524          -11.191436
## X194   -4.135167                1.2237754          -12.907477
## X195   -5.546779                0.9932518          -12.907477
## X197   -5.035953                1.5040774          -11.983227
## X198   -4.947660                0.8329091          -15.904641
## X200   -5.952244                1.1939225          -12.721137
## X201   -5.496768                1.0986123          -13.642963
## X202   -6.377127                0.8329091          -14.696346
## X205   -5.403678                1.3609766          -17.028429
## X208   -5.203007                1.4816045          -13.881545
## X210   -4.605170                1.5040774          -10.699822
## X212   -5.083206                1.6677068          -12.631361
## X213   -5.115996                1.4109870          -12.458129
## X214   -6.119298                1.6863990          -12.543721
## X215   -5.991465                1.1631508          -14.696346
## X216   -4.422849                1.5475625          -13.004247
## X218   -4.605170                1.7047481          -13.103567
## X219   -5.259097                0.8754687          -13.760451
## X220   -6.725434                1.0986123          -14.406260
## X223   -5.496768                1.3862944          -12.212827
## X224   -6.437752                1.2809338          -12.721137
## X225   -5.521461                1.2809338          -13.528896
## X226   -4.906275                1.6486586          -13.205557
## X227   -4.767689                2.0541237          -12.813142
## X228   -6.265901                1.0647107          -14.696346
## X229   -6.119298                1.1939225          -14.006447
## X230   -4.744432                1.4350845          -12.292758
## X231   -6.074846                1.0647107          -11.767633
## X232   -5.259097                1.2809338          -12.907477
## X233   -5.020686                1.2809338          -13.205557
## X234   -4.268698                1.1939225          -11.983227
## X236   -5.991465                0.7419373          -13.004247
## X237   -4.710531                1.7047481          -10.185537
## X239   -5.914504                1.0296194          -13.418078
## X240   -5.449140                0.9162907          -14.548755
## X241   -6.725434                1.1939225          -11.983227
## X242   -3.575551                1.6781472          -14.135373
## X243   -5.184989                1.7227666          -10.317725
## X244   -4.906275                1.4109870          -11.698625
## X245   -6.319969                0.4054651          -15.904641
## X246   -4.677741                1.5892352          -11.698625
## X247   -5.744604                0.5877867          -15.709974
## X249   -5.339139                1.2237754          -14.849365
## X250   -5.683980                1.1631508          -13.310348
## X251   -4.947660                0.8754687          -12.721137
## X253   -4.721704                1.8718022          -10.750945
## X254   -5.083206                1.7578579          -12.721137
## X255   -4.509860                1.7749524          -11.191436
## X256   -5.654992                1.1314021          -15.523564
## X257   -5.184989                0.6418539          -15.523564
## X258   -4.017384                1.2809338          -10.802885
## X260   -5.020686                1.1939225          -13.310348
## X261   -5.005648                0.7884574          -13.004247
## X262   -4.947660                1.1314021          -14.135373
## X263   -4.840893                1.5040774          -13.004247
## X264   -4.342806                2.3025851           -8.191715
## X265   -5.654992                1.2809338          -14.406260
## X267   -5.449140                1.3350011          -13.310348
## X268   -4.268698                1.6486586          -13.103567
## X269   -6.725434                0.9162907          -14.696346
## X270   -5.472671                1.3609766          -14.268559
## X271   -4.677741                1.3083328          -12.458129
## X272   -4.779524                1.5260563          -11.564602
## X273   -5.278515                1.4586150          -13.881545
## X274   -5.381699                0.2623643          -13.418078
## X275   -5.952244                1.5260563          -13.205557
## X277   -5.184989                1.4586150          -11.838035
## X278   -6.377127                1.4350845          -12.292758
## X279   -5.843045                1.3862944          -12.058126
## X281   -5.259097                1.1314021          -13.205557
## X282   -5.654992                1.5892352          -12.458129
## X283   -3.649659                1.3609766          -12.907477
## X287   -5.259097                1.3350011          -14.548755
## X289   -5.914504                1.0986123          -13.004247
## X290   -5.952244                1.3609766          -14.268559
## X291   -5.240048                1.4586150          -12.721137
## X292   -6.377127                1.3083328          -12.374500
## X294   -6.119298                1.0296194          -15.709974
## X297   -4.961845                1.3609766          -14.006447
## X298   -6.319969                0.8754687          -13.205557
## X299   -5.403678                0.8754687          -12.721137
## X301   -6.165818                0.8754687          -12.721137
## X302   -5.259097                1.0986123          -11.311317
## X303   -4.840893                1.3083328          -13.310348
## X304   -4.422849                1.7047481          -11.499497
## X305   -4.840893                1.5475625          -15.904641
## X306   -4.866535                1.4586150          -11.133063
## X307   -3.963316                2.1747517          -11.191436
## X308   -4.721704                1.7404662          -12.458129
## X311   -4.422849                1.5475625          -11.019298
## X312   -5.051457                1.4109870           -8.417032
## X313   -4.853632                1.3083328          -14.406260
## X314   -5.776353                0.7884574          -15.523564
## X315   -5.035953                2.0014800          -12.721137
## X316   -5.132803                1.0296194          -13.310348
## X317   -5.843045                1.3350011          -13.418078
## X320   -4.677741                1.6863990          -11.630963
## X321   -4.509860                1.1939225          -12.292758
## X322   -4.135167                2.1162555          -10.551134
## X323   -4.074542                1.7227666          -13.418078
## X324   -6.502290                0.9162907          -14.849365
## X325   -5.339139                1.6677068          -12.907477
## X326   -4.422849                1.4586150          -14.006447
## X327   -4.779524                1.4586150          -11.838035
## X329   -5.449140                1.0986123          -16.321511
## X330   -4.906275                1.6094379          -11.838035
## X331   -4.509860                1.1939225          -14.406260
## X332   -5.521461                1.7047481          -12.543721
## X333   -5.051457                1.2809338          -12.907477
##      Alpha_1_Microglobulin Alpha_2_Macroglobulin Angiopoietin_2_ANG_2
## X1               -2.577022             -72.65029           1.06471074
## X2               -3.244194            -154.61228           0.74193734
## X3               -2.882404            -136.52918           0.83290912
## X5               -2.343407            -144.94460           0.95551145
## X6               -2.551046            -154.61228          -0.05129329
## X7               -3.270169            -149.60441           0.78845736
## X8               -2.900422            -144.94460           0.26236426
## X9               -3.649659            -194.94684           0.64185389
## X11              -3.079114             -91.36978           0.83290912
## X12              -2.353878            -132.71508           0.26236426
## X14              -2.513306            -104.44595           0.64185389
## X16              -2.900422             -94.72274           1.30833282
## X17              -2.733368            -149.60441           0.83290912
## X18              -3.296837            -225.75583           0.26236426
## X19              -2.975930            -179.08749           0.47000363
## X20              -2.590267            -186.64150           0.58778666
## X21              -2.937463            -149.60441           0.53062825
## X22              -3.688879            -165.84824           0.91629073
## X23              -3.575551            -238.63748           0.09531018
## X24              -3.411248            -179.08749           1.06471074
## X25              -3.170086            -194.94684           0.53062825
## X26              -3.218876            -186.64150           0.69314718
## X28              -3.057608            -165.84824           0.64185389
## X29              -3.816713            -238.63748           0.47000363
## X30              -3.270169            -225.75583           0.33647224
## X31              -2.617296            -172.18413           0.87546874
## X34              -2.563950            -186.64150           0.64185389
## X35              -2.453408            -179.08749           0.26236426
## X36              -2.040221            -140.59662           0.83290912
## X37              -3.324236            -172.18413           0.78845736
## X38              -3.015935            -154.61228           0.64185389
## X39              -3.194183            -144.94460           0.69314718
## X40              -2.796881            -140.59662           0.64185389
## X41              -2.501036            -106.66533           0.53062825
## X42              -2.796881            -125.75495           0.87546874
## X43              -3.575551            -194.94684           0.26236426
## X44              -2.645075             -89.78989           0.78845736
## X45              -2.748872            -136.52918           1.09861229
## X46              -3.270169            -125.75495           1.02961942
## X47              -3.079114            -100.30070           0.40546511
## X48              -3.057608             -71.69519           1.09861229
## X50              -2.590267             -93.01273           1.13140211
## X51              -3.270169            -125.75495           1.25276297
## X53              -2.918771             -82.71675           0.58778666
## X55              -2.918771            -160.01040           0.40546511
## X56              -2.419119            -140.59662           0.40546511
## X57              -2.525729             -67.30674           1.19392247
## X59              -2.441847            -108.99239           0.78845736
## X60              -3.123566             -84.03131           0.74193734
## X61              -3.411248            -179.08749           0.64185389
## X62              -3.772261            -225.75583           0.33647224
## X63              -2.780621             -96.50416           0.78845736
## X64              -2.453408            -165.84824           0.58778666
## X65              -3.352407            -160.01040           0.40546511
## X67              -3.324236            -122.56978           1.30833282
## X68              -2.659260             -75.69273           0.83290912
## X69              -3.473768            -122.56978           0.09531018
## X70              -3.729701            -149.60441           0.83290912
## X71              -2.441847            -179.08749           0.64185389
## X72              -1.832581            -138.25835           1.48160454
## X73              -1.897120             -81.44692           1.13140211
## X74              -2.813411            -186.64150           0.18232156
## X75              -2.419119            -129.13061           0.40546511
## X76              -2.718101            -154.61228           0.64185389
## X77              -2.688248            -165.84824           0.58778666
## X78              -2.353878            -140.59662           1.16315081
## X80              -2.830218             -91.36978           0.47000363
## X81              -3.170086            -160.01040           0.83290912
## X82              -3.015935            -149.60441           0.83290912
## X83              -2.673649            -165.84824           0.33647224
## X84              -3.146555            -154.61228           0.47000363
## X85              -2.590267            -136.52918           0.95551145
## X86              -1.832581            -140.59662           0.95551145
## X88              -2.441847             -74.64766           0.87546874
## X90              -4.342806            -253.28958           0.33647224
## X93              -2.780621            -140.59662           1.16315081
## X94              -2.333044            -102.32669           1.41098697
## X95              -3.244194            -214.33276           0.18232156
## X96              -3.015935            -172.18413           0.74193734
## X97              -3.170086            -172.18413           1.09861229
## X98              -3.816713            -186.64150           0.53062825
## X99              -2.703063            -140.59662           0.74193734
## X100             -3.170086            -154.61228           0.87546874
## X103             -3.218876            -116.70786           1.16315081
## X104             -3.194183            -154.61228           0.91629073
## X105             -3.057608            -172.18413           1.02961942
## X107             -2.813411             -93.01273           0.87546874
## X108             -2.353878            -165.84824           0.83290912
## X109             -3.688879            -204.12656           0.09531018
## X110             -4.017384            -225.75583           0.33647224
## X111             -2.956512            -102.32669           0.95551145
## X112             -1.966113             -93.01273           0.91629073
## X113             -2.419119            -102.32669           0.69314718
## X114             -3.296837            -194.94684          -0.54472718
## X115             -2.718101            -104.44595           0.47000363
## X117             -3.688879            -253.28958           0.95551145
## X118             -2.937463            -100.30070           1.19392247
## X121             -2.631089            -116.70786           0.91629073
## X123             -3.649659            -225.75583           0.33647224
## X124             -2.375156            -160.01040           0.83290912
## X126             -3.324236            -165.84824           0.78845736
## X128             -2.590267            -132.71508           0.69314718
## X129             -3.079114            -194.94684           0.40546511
## X130             -2.302585            -144.94460           0.91629073
## X131             -3.079114            -186.64150           0.53062825
## X132             -2.733368            -204.12656           0.78845736
## X133             -2.353878            -149.60441           0.83290912
## X134             -2.441847             -94.72274           0.69314718
## X135             -3.079114            -119.55888           1.16315081
## X136             -3.015935            -165.84824           0.53062825
## X137             -3.575551            -194.94684           0.18232156
## X139             -3.244194            -172.18413           0.47000363
## X140             -2.830218            -108.99239           0.64185389
## X141             -2.956512            -165.84824           1.02961942
## X143             -2.900422            -204.12656           0.53062825
## X144             -2.659260            -165.84824           0.40546511
## X145             -3.688879            -225.75583           0.33647224
## X146             -2.120264            -140.59662           0.87546874
## X147             -2.995732             -89.78989           0.64185389
## X148             -2.040221            -136.52918           0.69314718
## X149             -3.057608            -179.08749           0.47000363
## X152             -2.302585             -59.45638           1.33500107
## X153             -2.577022            -116.70786           0.64185389
## X154             -3.244194            -172.18413           0.47000363
## X155             -3.270169            -160.01040           0.33647224
## X156             -2.385967            -165.84824           0.58778666
## X157             -3.296837            -165.84824           0.87546874
## X158             -3.381395            -194.94684           0.53062825
## X159             -3.506558            -194.94684           0.18232156
## X160             -2.882404            -136.52918           0.69314718
## X161             -2.302585            -149.60441           0.91629073
## X162             -3.729701            -119.55888           0.87546874
## X163             -4.017384            -194.94684           0.26236426
## X165             -3.352407            -154.61228           0.78845736
## X166             -3.352407            -149.60441           0.53062825
## X167             -2.813411            -140.59662           1.33500107
## X168             -3.244194            -186.64150           0.26236426
## X169             -3.146555            -194.94684           0.40546511
## X170             -2.995732            -186.64150           0.40546511
## X171             -2.780621            -154.61228           0.74193734
## X172             -3.411248            -225.75583           0.47000363
## X174             -1.897120             -71.69519           0.26236426
## X175             -2.343407            -119.55888           0.64185389
## X176             -2.688248            -125.75495           0.58778666
## X177             -3.540459            -165.84824           0.87546874
## X178             -3.411248            -225.75583           0.33647224
## X179             -2.120264            -116.70786           0.53062825
## X180             -2.688248            -160.01040           0.64185389
## X181             -3.381395            -225.75583           0.26236426
## X182             -3.296837            -194.94684           0.91629073
## X183             -2.780621            -214.33276           0.53062825
## X184             -2.918771            -149.60441           0.95551145
## X185             -2.476938            -144.94460           0.64185389
## X186             -3.244194            -194.94684           0.53062825
## X189             -3.649659            -186.64150           0.78845736
## X190             -2.937463            -132.71508           0.87546874
## X191             -3.352407            -179.08749           0.78845736
## X192             -2.631089            -149.60441           1.06471074
## X193             -2.796881            -140.59662           0.99325177
## X194             -2.847312            -160.01040           0.18232156
## X195             -3.101093            -172.18413           0.58778666
## X197             -2.120264             -94.72274           0.64185389
## X198             -3.611918            -186.64150           0.40546511
## X200             -3.381395            -165.84824           0.53062825
## X201             -3.411248            -144.94460           0.58778666
## X202             -3.688879            -225.75583           0.40546511
## X205             -2.673649            -172.18413           0.53062825
## X208             -2.918771            -149.60441           1.09861229
## X210             -2.501036             -98.36175           0.83290912
## X212             -2.748872            -186.64150           0.58778666
## X213             -2.453408            -179.08749           0.58778666
## X214             -2.796881            -160.01040           0.78845736
## X215             -3.611918            -136.52918           0.69314718
## X216             -2.780621            -194.94684           0.33647224
## X218             -2.207275            -165.84824           0.58778666
## X219             -3.270169            -179.08749           0.69314718
## X220             -3.411248            -172.18413           0.69314718
## X223             -2.563950            -194.94684           0.47000363
## X224             -3.244194            -214.33276           0.33647224
## X225             -3.473768            -179.08749           1.16315081
## X226             -3.244194            -136.52918           1.52605630
## X227             -1.966113            -179.08749           0.40546511
## X228             -3.352407            -214.33276           0.40546511
## X229             -3.170086            -225.75583           0.18232156
## X230             -1.966113             -75.69273           0.99325177
## X231             -3.123566            -144.94460           0.47000363
## X232             -2.975930            -140.59662           0.53062825
## X233             -3.036554            -186.64150           0.18232156
## X234             -2.673649            -129.13061           0.53062825
## X236             -3.352407            -204.12656           0.58778666
## X237             -2.563950            -149.60441           0.09531018
## X239             -3.863233            -253.28958           0.18232156
## X240             -2.617296            -116.70786           0.47000363
## X241             -3.244194            -179.08749           0.53062825
## X242             -1.771957            -160.01040           0.18232156
## X243             -2.733368            -179.08749           0.40546511
## X244             -2.673649            -172.18413           0.64185389
## X245             -3.912023            -253.28958           0.09531018
## X246             -2.322788            -149.60441           0.74193734
## X247             -3.729701            -204.12656           0.47000363
## X249             -2.995732            -160.01040           0.95551145
## X250             -2.813411            -179.08749           0.74193734
## X251             -3.218876            -179.08749           0.58778666
## X253             -2.525729            -144.94460           0.87546874
## X254             -2.430418            -132.71508           1.36097655
## X255             -2.617296            -106.66533           1.02961942
## X256             -3.611918            -186.64150           0.58778666
## X257             -3.218876            -214.33276           0.40546511
## X258             -2.302585            -160.01040           1.28093385
## X260             -2.900422            -179.08749           0.69314718
## X261             -3.270169            -214.33276           0.33647224
## X262             -3.411248            -194.94684           0.53062825
## X263             -2.796881            -104.44595           0.91629073
## X264             -2.353878            -144.94460           0.91629073
## X265             -3.352407            -186.64150           0.74193734
## X267             -2.813411            -160.01040           1.16315081
## X268             -2.385967             -79.03231           0.69314718
## X269             -3.816713            -194.94684           0.69314718
## X270             -3.146555            -129.13061           1.13140211
## X271             -2.501036            -122.56978           0.99325177
## X272             -2.780621            -194.94684           0.78845736
## X273             -3.244194            -116.70786           0.83290912
## X274             -3.411248            -149.60441           0.58778666
## X275             -2.864704            -179.08749           0.91629073
## X277             -2.748872            -186.64150           0.53062825
## X278             -2.813411            -154.61228           0.78845736
## X279             -3.244194            -204.12656           0.53062825
## X281             -3.057608            -186.64150           0.83290912
## X282             -2.513306            -194.94684           0.58778666
## X283             -2.513306            -111.43549           1.41098697
## X287             -3.079114            -172.18413           0.78845736
## X289             -3.270169            -253.28958           0.33647224
## X290             -3.146555            -214.33276           0.09531018
## X291             -2.703063            -140.59662           0.33647224
## X292             -2.995732            -179.08749           1.25276297
## X294             -3.244194            -253.28958           0.64185389
## X297             -2.577022            -179.08749           0.58778666
## X298             -2.617296            -186.64150           0.83290912
## X299             -3.540459            -132.71508           1.02961942
## X301             -2.864704            -194.94684           0.64185389
## X302             -3.324236            -289.68493           0.00000000
## X303             -3.057608            -172.18413           0.78845736
## X304             -3.381395            -172.18413           0.78845736
## X305             -2.718101            -132.71508           1.16315081
## X306             -2.040221            -165.84824           0.91629073
## X307             -2.120264            -140.59662           0.69314718
## X308             -2.419119            -122.56978           0.64185389
## X311             -2.764621            -165.84824           0.33647224
## X312             -2.688248            -160.01040           1.19392247
## X313             -3.057608            -186.64150           0.83290912
## X314             -3.772261            -172.18413           0.69314718
## X315             -2.538307            -149.60441           0.53062825
## X316             -3.381395            -154.61228           0.53062825
## X317             -3.244194            -160.01040           0.53062825
## X320             -2.040221            -179.08749           0.26236426
## X321             -2.813411            -165.84824          -0.49429632
## X322             -2.120264            -154.61228           1.16315081
## X323             -2.430418            -119.55888           0.74193734
## X324             -3.649659            -125.75495           0.47000363
## X325             -2.813411            -140.59662           1.13140211
## X326             -3.123566            -165.84824           0.87546874
## X327             -2.419119             -86.80482           0.74193734
## X329             -3.324236            -160.01040           0.95551145
## X330             -2.120264            -154.61228           0.40546511
## X331             -3.170086            -179.08749          -0.24846136
## X332             -3.036554            -132.71508           0.40546511
## X333             -2.995732            -194.94684           1.25276297
##      Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1 Apolipoprotein_A2
## X1          2.510547          -1.4271164         -7.402052       -0.26136476
## X2          2.457283          -1.6607312         -7.047017       -0.86750057
## X3          1.976365          -1.6607312         -7.684284       -0.65392647
## X5          2.862219          -1.1711830         -6.725434        0.09531018
## X6          2.524026          -1.3862944         -7.402052       -0.27443685
## X7          2.106653          -2.0402208         -7.751725       -0.94160854
## X8          2.079076          -1.4271164         -6.948577       -0.16251893
## X9          2.131782          -2.3968958         -7.929407       -0.77652879
## X11         2.654255          -1.6607312         -7.250246       -0.75502258
## X12         2.289800          -1.7719568         -7.469874       -0.40047757
## X14         2.064231          -1.5606477         -7.208860       -0.43078292
## X16         2.466248          -2.3751558         -7.684284       -0.47803580
## X17         2.389150          -1.5606477         -6.907755       -0.08338161
## X18         2.214041          -2.4191189         -8.294050       -1.46967597
## X19         2.205050          -2.0402208         -7.323271       -0.41551544
## X20         2.195737          -1.7719568         -6.725434       -0.31471074
## X21         2.555806          -2.3227878         -7.621105       -1.23787436
## X22         2.262201          -2.3859667         -7.824046       -1.27296568
## X23         2.262201          -2.2072749         -7.435388       -1.20397280
## X24         2.308607          -2.3644605         -7.323271       -0.46203546
## X25         2.397445          -1.5606477         -7.505592       -1.13943428
## X26         2.276391          -2.3751558         -7.581100       -0.96758403
## X28         2.262201          -1.9661129         -7.435388       -0.91629073
## X29         2.376085          -2.7646206         -7.875339       -1.20397280
## X30         2.119499          -1.8325815         -7.293418       -0.73396918
## X31         2.500997          -1.3862944         -7.013116       -0.22314355
## X34         1.751632          -2.0402208         -7.505592       -0.17435339
## X35         2.195737          -1.6607312         -7.561682       -0.18632958
## X36         2.064231          -1.2378744         -6.725434        0.40546511
## X37         2.416882          -2.1202635         -7.542634       -1.07880966
## X38         2.472010          -2.3968958         -7.824046       -0.67334455
## X39         2.682856          -1.8325815         -7.875339       -0.89159812
## X40         2.466248          -1.6094379         -7.452482       -0.75502258
## X41         1.932789          -1.2729657         -6.571283        0.18232156
## X42         2.597766          -1.6094379         -7.799353       -0.79850770
## X43         2.186083          -2.0402208         -7.875339       -1.10866262
## X44         2.314560          -1.7147984         -7.070274       -0.57981850
## X45         2.239267          -1.7147984         -7.024289       -0.34249031
## X46         2.195737          -2.2072749         -7.986565       -1.27296568
## X47         2.326029          -1.9661129         -7.662778       -1.17118298
## X48         2.622996          -1.9661129         -7.600902       -1.23787436
## X50         2.734317          -1.6094379         -7.452482       -0.13926207
## X51         1.976365          -1.8971200         -7.130899       -0.63487827
## X53         2.496038          -1.1086626         -7.130899       -0.49429632
## X55         2.447901          -1.9661129         -7.323271       -0.65392647
## X56         1.882416          -1.2729657         -7.236259       -0.03045921
## X57         2.804296          -1.8325815         -7.600902       -1.20397280
## X59         1.955322          -1.5606477         -7.581100       -0.46203546
## X60         2.143544          -2.2072749         -7.929407       -0.96758403
## X61         2.624223          -1.7719568         -7.902008       -0.96758403
## X62         2.119499          -2.3434071         -7.849364       -0.99425227
## X63         2.014615          -2.0402208         -7.957577       -0.38566248
## X64         2.014615          -1.6094379         -7.106206        0.00000000
## X65         2.119499          -1.9661129         -8.145630       -1.56064775
## X67         2.320365          -1.9661129         -7.600902       -1.02165125
## X68         2.308607          -1.4271164         -7.195437       -0.40047757
## X69         2.239267          -2.3538784         -7.706263       -1.23787436
## X70         2.176062          -2.3025851         -7.728736       -1.30933332
## X71         2.064231          -1.8325815         -7.452482       -0.69314718
## X72         2.393337          -1.5141277         -6.319969        0.33647224
## X73         2.154822          -1.3862944         -7.452482       -0.69314718
## X74         2.079076          -1.4271164         -7.082109       -0.23572233
## X75         1.789161          -1.6607312         -6.812445        0.18232156
## X76         2.239267          -1.7719568         -7.662778       -0.34249031
## X77         2.472010          -1.7147984         -7.047017       -0.43078292
## X78         2.371551          -1.4271164         -7.418581       -0.57981850
## X80         2.431242          -1.6094379         -7.706263       -0.43078292
## X81         2.498534          -1.7147984         -7.751725       -0.73396918
## X82         2.460316          -1.8971200         -7.338538       -0.59783700
## X83         2.540605          -1.7147984         -7.308233       -0.21072103
## X84         2.064231          -1.9661129         -7.706263       -0.54472718
## X85         2.247148          -1.6094379         -7.487574       -0.47803580
## X86         2.629041          -1.3470736         -7.369791       -0.02020271
## X88         2.498534          -2.0402208         -7.751725       -0.84397007
## X90         1.854050          -2.7333680         -8.217089       -1.89711998
## X93         2.154822          -1.5606477         -7.435388       -0.59783700
## X94         2.557619          -1.3862944         -6.812445       -0.08338161
## X95         2.632564          -2.2072749         -7.236259       -0.89159812
## X96         2.736448          -2.0402208         -7.902008       -1.13943428
## X97         2.546456          -1.8325815         -7.775256       -1.23787436
## X98         2.490948          -2.1202635         -7.706263       -1.27296568
## X99         1.908566          -2.2072749         -7.775256       -1.04982212
## X100        2.619258          -1.8971200         -8.078938       -0.69314718
## X103        2.106653          -1.6607312         -7.452482       -0.82098055
## X104        2.079076          -1.9661129         -7.751725       -0.67334455
## X105        2.371551          -2.1202635         -7.130899       -0.69314718
## X107        2.262201          -1.6607312         -7.435388       -0.37106368
## X108        2.106653          -0.9416085         -6.907755        0.09531018
## X109        2.308607          -2.2072749         -7.957577       -1.30933332
## X110        2.320365          -2.2072749         -8.468403       -1.60943791
## X111        2.247148          -2.0402208         -7.385791       -0.51082562
## X112        2.342236          -0.9416085         -6.571283        0.00000000
## X113        2.320365          -1.7147984         -6.812445        0.33647224
## X114        2.326029          -2.3126354         -7.385791       -0.61618614
## X115        1.751632          -1.5141277         -7.130899       -0.09431068
## X117        2.431242          -2.3227878         -7.621105       -0.91629073
## X118        2.763185          -2.1202635         -7.728736       -1.04982212
## X121        1.882416          -1.8325815         -7.487574       -0.49429632
## X123        2.579644          -1.8325815         -7.929407       -1.07880966
## X124        2.532501          -1.7719568         -7.169120       -0.08338161
## X126        2.231132          -2.0402208         -7.929407       -0.96758403
## X128        2.633721          -1.5606477         -6.645391        0.26236426
## X129        1.996082          -2.0402208         -7.641724       -0.96758403
## X130        2.457283          -1.7147984         -7.169120       -0.40047757
## X131        2.176062          -2.2072749         -7.338538       -0.79850770
## X132        2.239267          -1.3862944         -7.581100       -0.41551544
## X133        2.424185          -1.1086626         -6.377127        0.18232156
## X134        2.457283          -1.7147984         -7.452482       -0.77652879
## X135        1.789161          -1.8325815         -7.278819       -0.79850770
## X136        2.231132          -1.7719568         -7.118476       -0.46203546
## X137        2.466248          -2.0402208         -7.902008       -1.27296568
## X139        2.735867          -2.0402208         -7.278819       -0.86750057
## X140        2.454203          -1.6607312         -7.728736       -0.75502258
## X141        2.165651          -2.0402208         -7.323271       -0.54472718
## X143        2.032084          -1.6094379         -7.208860       -0.51082562
## X144        2.463304          -1.8971200         -7.561682       -0.65392647
## X145        2.205050          -2.2072749         -8.180721       -1.42711636
## X146        1.996082          -1.3862944         -7.208860       -0.05129329
## X147        2.331559          -2.0402208         -7.929407       -1.07880966
## X148        2.119499          -1.0788097         -6.725434        0.26236426
## X149        2.480350          -1.8971200         -7.621105       -1.10866262
## X152        2.500997          -1.3862944         -6.812445       -0.26136476
## X153        2.014615          -2.2072749         -7.118476        0.00000000
## X154        2.505832          -1.9661129         -7.751725       -1.04982212
## X155        2.532501          -1.6607312         -7.542634       -0.84397007
## X156        2.048593          -1.4696760         -7.024289       -0.09431068
## X157        1.955322          -2.1202635         -7.902008       -0.96758403
## X158        2.296235          -2.3025851         -7.684284       -0.94160854
## X159        2.366924          -2.5639499         -8.047190       -1.10866262
## X160        2.550254          -1.8971200         -6.812445       -0.32850407
## X161        2.314560          -1.7719568         -7.469874       -0.40047757
## X162        2.881043          -2.5257286         -8.217089       -1.10866262
## X163        2.768766          -2.2072749         -8.180721       -1.20397280
## X165        2.405433          -1.8971200         -8.111728       -1.23787436
## X166        2.214041          -2.3025851         -8.254829       -1.02165125
## X167        2.389150          -2.0402208         -7.824046       -0.94160854
## X168        2.032084          -1.5141277         -6.812445       -0.35667494
## X169        2.604783          -1.6607312         -7.523941       -0.77652879
## X170        2.064231          -2.3025851         -7.323271       -0.47803580
## X171        2.711100          -1.7147984         -7.369791       -0.19845094
## X172        2.444675          -1.9661129         -7.143478       -0.77652879
## X174        2.165651          -0.9675840         -6.907755        0.00000000
## X175        2.661193          -1.7147984         -6.725434       -0.03045921
## X176        1.955322          -1.6607312         -7.418581       -0.52763274
## X177        2.186083          -2.4418472         -7.293418       -0.65392647
## X178        2.143544          -2.4889147         -7.957577       -0.91629073
## X179        2.106653          -1.3093333         -6.908737        0.64185389
## X180        2.483054          -1.5606477         -7.505592       -0.99425227
## X181        2.106653          -2.0402208         -8.016418       -1.07880966
## X182        2.262201          -1.9661129         -7.662778       -0.69314718
## X183        1.751632          -1.7719568         -7.182192        0.09531018
## X184        2.376085          -1.7719568         -7.385791       -0.73396918
## X185        2.014615          -1.5141277         -7.542634       -0.23572233
## X186        2.247148          -1.7719568         -8.047190       -1.02165125
## X189        2.517407          -2.3859667         -8.217089       -1.38629436
## X190        2.397445          -1.8971200         -7.542634       -0.99425227
## X191        2.222729          -2.3025851         -7.849364       -0.79850770
## X192        2.154822          -2.0402208         -7.369791       -0.71334989
## X193        2.214041          -1.7719568         -7.684284       -0.96758403
## X194        2.666903          -1.4271164         -7.182192       -0.75502258
## X195        2.544526          -1.7719568         -7.338538       -0.61618614
## X197        2.480350          -1.3862944         -7.222466       -0.18632958
## X198        2.447901          -2.3126354         -7.662778       -0.89159812
## X200        2.801517          -2.3751558         -7.875339       -1.02165125
## X201        2.474829          -1.7719568         -7.402052       -0.65392647
## X202        2.747573          -2.1202635         -8.078938       -1.20397280
## X205        2.444675          -1.6607312         -7.354042       -0.73396918
## X208        1.908566          -1.7147984         -7.013116       -0.08338161
## X210        2.515148          -1.3862944         -6.959049       -0.34249031
## X212        1.882416          -1.5606477         -7.902008       -0.73396918
## X213        2.401476          -1.7719568         -7.323271       -0.16251893
## X214        1.996082          -1.8325815         -7.621105       -1.07880966
## X215        2.493510          -1.7719568         -8.145630       -1.42711636
## X216        2.143544          -1.4696760         -7.308233       -0.10536052
## X218        2.405433          -1.3862944         -7.156217        0.33647224
## X219        2.638269          -1.8971200         -7.684284       -0.84397007
## X220        2.308607          -2.4304185         -8.622554       -0.94160854
## X223        2.431242          -1.4271164         -7.338538       -0.35667494
## X224        1.908566          -1.7147984         -7.418581       -1.04982212
## X225        2.629041          -2.4079456         -7.957577       -1.20397280
## X226        2.093196          -2.0402208         -7.600902       -1.10866262
## X227        2.331559          -1.4271164         -6.645391        0.58778666
## X228        2.186083          -2.1202635         -8.334872       -1.46967597
## X229        2.538612          -2.2072749         -8.217089       -0.84397007
## X230        2.079076          -1.5141277         -7.222466       -0.54472718
## X231        2.532501          -2.4651040         -7.354042       -0.54472718
## X232        2.352437          -1.6094379         -7.561682       -0.49429632
## X233        1.882416          -1.7719568         -7.621105       -0.59783700
## X234        2.254788          -1.7147984         -7.047017       -0.24846136
## X236        2.610193          -2.6882476         -8.468403       -1.51412773
## X237        2.434683          -1.5141277         -7.278819       -0.24846136
## X239        1.882416          -2.3644605         -8.016418       -1.77195684
## X240        2.231132          -1.7147984         -7.902008       -1.23787436
## X241        2.079076          -2.5510465         -7.013116       -0.24846136
## X242        2.079076          -0.8209806         -6.165818        0.95551145
## X243        1.908566          -1.5141277         -7.684284       -0.46203546
## X244        2.380527          -2.0402208         -7.641724       -0.71334989
## X245        2.397445          -2.9565116         -8.568486       -1.42711636
## X246        2.578045          -1.2039728         -6.907755       -0.13926207
## X247        2.296235          -2.9004221         -8.421883       -1.34707365
## X249        2.239267          -2.2072749         -8.421883       -1.34707365
## X250        2.048593          -1.8325815         -7.402052       -0.56211892
## X251        1.823113          -2.2072749         -7.986565       -1.27296568
## X253        2.331559          -2.0402208         -7.058578       -0.71334989
## X254        2.413134          -1.8971200         -6.959049       -0.37106368
## X255        2.741567          -1.7147984         -7.236259       -0.06187540
## X256        2.384881          -2.2072749         -8.334872       -1.56064775
## X257        2.836869          -2.0402208         -7.986565       -1.07880966
## X258        2.176062          -1.1711830         -7.208860        0.18232156
## X260        2.296235          -1.8325815         -7.250246        0.09531018
## X261        2.389150          -2.0402208         -8.016418       -0.82098055
## X262        2.427744          -2.0402208         -7.505592       -0.67334455
## X263        2.485721          -2.0402208         -7.222466       -0.41551544
## X264        2.154822          -1.3470736         -6.969631       -0.17435339
## X265        2.262201          -2.2072749         -7.452482       -0.75502258
## X267        2.336959          -2.1202635         -7.600902       -0.91629073
## X268        2.457283          -1.5141277         -7.169120       -0.77652879
## X269        2.262201          -2.4304185         -8.334872       -1.27296568
## X270        1.996082          -2.2072749         -7.902008       -1.23787436
## X271        2.736448          -1.8971200         -7.264430       -0.46203546
## X272        2.262201          -2.3751558         -7.156217       -0.17435339
## X273        2.582800          -1.9661129         -7.849364       -0.96758403
## X274        2.384881          -2.3227878         -7.505592       -0.96758403
## X275        2.780924          -2.0402208         -7.561682       -0.17435339
## X277        2.032084          -1.6607312         -6.991137        0.09531018
## X278        2.131782          -1.8971200         -7.621105       -0.67334455
## X279        2.413134          -1.9661129         -7.600902       -0.73396918
## X281        2.427744          -1.8325815         -7.487574       -0.82098055
## X282        2.106653          -1.4271164         -7.047017       -0.31471074
## X283        2.512862          -1.6607312         -7.156217       -0.63487827
## X287        2.106653          -1.7719568         -7.208860       -0.54472718
## X289        2.032084          -1.7147984         -7.929407       -0.75502258
## X290        2.247148          -2.0402208         -7.469874       -1.02165125
## X291        2.553974          -1.8325815         -7.369791       -0.79850770
## X292        2.731131          -2.0402208         -7.581100       -0.57981850
## X294        1.996082          -2.1202635         -7.523941       -0.75502258
## X297        2.342236          -1.7719568         -7.799353       -0.71334989
## X298        1.955322          -1.6607312         -7.385791       -0.43078292
## X299        2.624223          -2.4079456         -7.600902       -1.23787436
## X301        2.079076          -2.0402208         -8.180721       -0.84397007
## X302        1.955322          -2.1202635         -7.542634       -0.43078292
## X303        2.205050          -1.7719568         -7.354042       -0.10536052
## X304        2.669681          -1.7147984         -7.902008       -1.30933332
## X305        2.573156          -1.8971200         -7.070274       -0.54472718
## X306        2.789726          -1.3862944         -7.222466        0.18232156
## X307        2.761752          -1.1394343         -7.024289       -0.08338161
## X308        2.463304          -1.0498221         -7.250246        0.09531018
## X311        1.932789          -1.7719568         -7.118476       -0.08338161
## X312        2.734317          -1.6094379         -7.264430       -0.69314718
## X313        2.822737          -1.7147984         -7.070274       -0.27443685
## X314        2.561191          -2.5133061         -7.849364       -1.20397280
## X315        2.362198          -1.1711830         -6.725434        0.40546511
## X316        1.976365          -1.8971200         -7.469874       -0.91629073
## X317        2.262201          -2.1202635         -7.418581       -0.86750057
## X320        2.792780          -1.0498221         -6.377127        0.47000363
## X321        2.331559          -1.4271164         -6.959049        0.26236426
## X322        2.231132          -1.4696760         -7.236259       -0.11653382
## X323        2.649104          -2.1202635         -7.435388       -0.56211892
## X324        2.376085          -2.6882476         -8.679712       -1.77195684
## X325        2.032084          -2.1202635         -7.581100       -0.34249031
## X326        2.438068          -2.0402208         -7.957577       -1.56064775
## X327        2.314560          -1.5606477         -7.236259       -0.79850770
## X329        1.908566          -1.9661129         -8.047190       -0.75502258
## X330        1.789161          -0.7765288         -6.645391        0.74193734
## X331        2.596327          -1.8971200         -7.469874       -0.56211892
## X332        2.289800          -2.0402208         -7.581100       -0.57981850
## X333        2.498534          -1.7719568         -7.195437       -0.49429632
##      Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII Apolipoprotein_D
## X1          -4.624044        -1.2729657           -2.312635        2.0794415
## X2          -6.747507        -1.2729657           -2.343407        1.3350011
## X3          -3.976069        -1.7147984           -2.748872        1.3350011
## X5          -3.378594        -0.7550226           -1.514128        1.6292405
## X6          -2.963532        -1.6607312           -2.312635        1.9169226
## X7          -7.288830        -1.6607312           -2.375156        1.5260563
## X8          -3.888287        -0.9675840           -2.120264        1.7227666
## X9          -5.941894        -1.7719568           -2.476938        0.9555114
## X11         -5.702912        -1.5141277           -2.322788        1.4109870
## X12         -4.166581        -1.0498221           -1.832581        1.2809338
## X14         -3.357973        -1.5606477           -2.563950        1.3350011
## X16         -4.235078        -1.6607312           -2.577022        1.3609766
## X17         -4.068671        -1.3862944           -2.312635        1.0986123
## X18         -5.421759        -2.0402208           -3.057608        1.4109870
## X19         -4.200492        -1.2039728           -2.120264        1.3609766
## X20         -4.133321        -1.3862944           -1.771957        1.3862944
## X21         -6.517424        -2.1202635           -2.322788        0.9162907
## X22         -7.141616        -2.4769385           -3.036554        1.3083328
## X23         -7.141616        -1.9661129           -2.780621        0.4700036
## X24         -7.288830        -1.7147984           -2.465104        1.9021075
## X25         -7.141616        -1.7147984           -2.333044        1.8245493
## X26         -6.747507        -1.8971200           -2.577022        0.8754687
## X28         -8.932463        -1.6607312           -2.590267        1.7227666
## X29         -8.191715        -2.0402208           -2.975930        1.1631508
## X30         -6.308494        -1.3470736           -2.385967        1.4586150
## X31         -5.557525        -1.2729657           -2.040221        1.5040774
## X34         -4.458204        -1.3093333           -1.897120        1.3083328
## X35         -2.963532        -0.7133499           -1.966113        1.2809338
## X36         -2.678962        -0.4155154           -1.560648        1.9600948
## X37         -7.002855        -1.8971200           -2.703063        1.6292405
## X38         -4.458204        -1.7147984           -2.733368        1.0986123
## X39         -7.002855        -1.8325815           -3.057608        1.1314021
## X40         -4.581146        -1.5606477           -2.659260        1.4586150
## X41         -2.814127        -0.6348783           -1.427116        1.6486586
## X42         -5.779603        -1.6094379           -2.830218        1.1314021
## X43         -4.712962        -1.8971200           -2.900422        1.0647107
## X44         -2.963532        -1.8325815           -2.900422        1.4109870
## X45         -4.581146        -1.7147984           -2.322788        1.7404662
## X46         -5.941894        -2.0402208           -3.079114        0.9555114
## X47         -6.027915        -1.7147984           -2.551046        0.9932518
## X48         -7.288830        -1.8971200           -2.525729        1.1631508
## X50         -4.539232        -1.4696760           -2.120264        1.2809338
## X51         -6.210929        -1.4696760           -2.513306        1.6677068
## X53         -2.152627        -1.6094379           -2.476938        1.0296194
## X55         -4.539232        -1.6607312           -2.563950        1.2237754
## X56         -5.008267        -1.1711830           -2.513306        1.6677068
## X57         -6.117503        -2.1202635           -2.937463        1.5475625
## X59         -4.458204        -1.2039728           -1.966113        1.7227666
## X60         -5.941894        -1.7147984           -2.796881        1.5892352
## X61         -4.581146        -1.8325815           -2.864704        0.9555114
## X62         -7.141616        -1.8325815           -2.513306        1.1631508
## X63         -5.008267        -1.9661129           -2.659260        0.9932518
## X64         -3.317541        -1.0788097           -1.897120        1.3350011
## X65         -6.410533        -2.2072749           -2.830218        0.9555114
## X67         -6.308494        -1.8971200           -2.603690        1.0647107
## X68         -4.419017        -1.4696760           -2.476938        1.6486586
## X69         -8.191715        -1.8971200           -2.617296        0.9932518
## X70         -6.210929        -1.9661129           -3.015935        1.3350011
## X71         -7.445450        -1.8325815           -2.563950        0.7419373
## X72         -2.242336        -0.8641926           -1.714763        1.8718022
## X73         -4.539232        -1.7147984           -2.207275        1.0296194
## X74         -3.860022        -1.3093333           -2.120264        1.3862944
## X75         -3.130065        -1.0498221           -2.120264        1.2527630
## X76         -5.294544        -1.6094379           -2.513306        1.6094379
## X77         -4.624044        -1.2039728           -2.207275        1.3862944
## X78         -4.806353        -1.7147984           -2.733368        2.0794415
## X80         -4.306372        -1.7147984           -2.476938        1.5040774
## X81         -6.747507        -1.5606477           -2.780621        1.3862944
## X82         -6.117503        -1.6094379           -2.590267        1.7917595
## X83         -7.141616        -1.8971200           -2.645075        1.6292405
## X84         -3.725527        -2.0402208           -2.847312        1.2809338
## X85         -5.702912        -1.4696760           -2.551046        1.7047481
## X86         -7.002855        -0.9416085           -2.207275        1.6863990
## X88         -4.419017        -1.7147984           -2.645075        1.6863990
## X90         -8.417032        -2.5133061           -3.473768        1.0296194
## X93         -6.871722        -1.5141277           -2.780621        1.5475625
## X94         -5.008267        -0.6931472           -1.832581        2.1633230
## X95         -6.027915        -1.4696760           -1.966113        1.3350011
## X96         -5.859197        -2.0402208           -2.748872        1.4586150
## X97         -7.791589        -1.7147984           -2.830218        1.7917595
## X98         -7.288830        -1.8325815           -2.590267        1.0986123
## X99         -3.378594        -1.6607312           -2.590267        1.6094379
## X100        -5.117801        -1.7147984           -2.975930        1.5686159
## X103        -5.062260        -1.5606477           -2.453408        1.5686159
## X104        -4.458204        -1.5606477           -2.830218        1.4350845
## X105        -6.517424        -1.4271164           -2.631089        1.3609766
## X107        -3.442152        -1.6607312           -2.501036        1.5686159
## X108        -5.859197        -1.2378744           -2.207275        2.1517622
## X109        -7.983999        -1.8971200           -2.995732        1.1314021
## X110        -9.936906        -3.3242363           -3.688879        0.8754687
## X111        -5.941894        -1.3862944           -2.659260        1.4816045
## X112        -4.854854        -0.8915981           -1.609438        1.8405496
## X113        -2.152627        -1.1394343           -1.897120        1.4816045
## X114        -5.008267        -1.8325815           -2.302585        1.5686159
## X115        -3.751559        -0.8439701           -2.120264        1.8082888
## X117        -6.517424        -1.7147984           -2.207275        1.3862944
## X118        -5.233853        -1.7719568           -2.590267        1.7404662
## X121        -3.976069        -1.3862944           -2.207275        2.0794415
## X123        -7.983999        -1.8325815           -2.703063        1.1939225
## X124        -6.308494        -1.7719568           -2.525729        1.8718022
## X126        -4.904631        -1.8325815           -3.079114        0.8329091
## X128        -2.442874        -0.8209806           -1.237874        1.7917595
## X129        -5.859197        -1.7147984           -3.324236        1.3609766
## X130        -5.702912        -1.3862944           -2.120264        1.2237754
## X131        -5.628941        -1.5141277           -2.538307        0.9162907
## X132        -4.539232        -1.7719568           -2.577022        1.3862944
## X133        -2.555800        -0.8209806           -1.660731        2.1162555
## X134        -4.624044        -1.9661129           -2.120264        1.7227666
## X135        -5.557525        -1.3862944           -2.207275        1.8082888
## X136        -2.678962        -1.2039728           -2.407946        1.5260563
## X137        -7.002855        -2.1202635           -2.733368        0.7419373
## X139        -5.702912        -1.5141277           -2.441847        1.2527630
## X140        -5.233853        -1.8325815           -2.645075        1.8718022
## X141        -4.539232        -1.5606477           -2.302585        1.6486586
## X143        -5.117801        -1.3470736           -2.396896        1.1939225
## X144        -5.233853        -1.7719568           -2.748872        1.5260563
## X145        -8.191715        -2.1202635           -2.847312        1.0647107
## X146        -4.166581        -1.5606477           -2.302585        2.0412203
## X147        -5.062260        -1.8325815           -2.733368        1.8082888
## X148        -3.888287        -0.9416085           -2.302585        2.0281482
## X149        -6.629589        -1.5606477           -2.780621        1.1314021
## X152        -3.399492        -1.0788097           -2.040221        2.1972246
## X153        -4.380670        -1.2378744           -2.465104        2.0918641
## X154        -4.806353        -1.6607312           -2.513306        0.9555114
## X155        -4.955747        -1.4271164           -2.120264        1.5892352
## X156        -5.233853        -1.2039728           -2.120264        1.3862944
## X157        -5.357143        -1.6094379           -2.577022        1.4586150
## X158        -5.859197        -1.7719568           -2.937463        1.1939225
## X159        -6.027915        -1.6607312           -2.513306        0.6931472
## X160        -5.294544        -1.2729657           -2.375156        1.3350011
## X161        -4.712962        -1.6094379           -2.577022        1.1939225
## X162        -5.357143        -1.8971200           -3.057608        1.0986123
## X163        -6.410533        -2.0402208           -3.411248        0.9555114
## X165        -6.210929        -2.0402208           -3.506558        1.1314021
## X166        -6.308494        -1.8971200           -2.718101        1.1631508
## X167        -6.210929        -1.6094379           -2.882404        1.5475625
## X168        -5.294544        -1.0788097           -2.120264        1.2809338
## X169        -8.417032        -1.8971200           -2.645075        1.5475625
## X170        -5.357143        -1.2729657           -2.353878        1.2809338
## X171        -4.624044        -1.6607312           -2.703063        1.6486586
## X172        -6.210929        -1.4271164           -2.302585        1.3609766
## X174        -4.166581        -0.6348783           -1.386294        1.9600948
## X175        -2.963532        -0.5978370           -1.609438        2.2721259
## X176        -3.649844        -1.7147984           -2.718101        1.3609766
## X177        -6.871722        -1.6094379           -2.937463        1.5475625
## X178        -6.871722        -1.8325815           -2.577022        0.7884574
## X179        -3.531121        -0.8400523           -1.469676        1.8562980
## X180        -6.629589        -1.5141277           -2.501036        1.9878743
## X181        -6.410533        -2.0402208           -3.352407        1.1631508
## X182        -6.117503        -1.3862944           -2.207275        1.4109870
## X183        -4.166581        -1.0216512           -1.832581        2.0014800
## X184        -5.557525        -1.7719568           -2.673649        1.6863990
## X185        -3.699905        -1.4696760           -2.120264        1.4816045
## X186        -6.747507        -1.9661129           -2.796881        1.3083328
## X189        -5.233853        -2.1202635           -2.796881        1.3862944
## X190        -7.141616        -1.7719568           -2.995732        1.7917595
## X191        -5.941894        -1.6607312           -2.617296        1.7404662
## X192        -5.779603        -1.7719568           -2.847312        1.4109870
## X193        -5.294544        -1.6607312           -2.385967        1.4350845
## X194        -4.581146        -1.6094379           -2.488915        1.5475625
## X195        -7.445450        -1.4271164           -2.703063        1.0986123
## X197        -5.062260        -1.3862944           -2.302585        1.7917595
## X198        -8.191715        -1.6607312           -3.146555        1.3083328
## X200        -5.702912        -1.6094379           -2.419119        1.5892352
## X201        -4.904631        -1.7147984           -2.733368        1.4586150
## X202        -5.859197        -2.3434071           -2.617296        0.8754687
## X205        -6.117503        -1.7147984           -2.937463        1.2527630
## X208        -5.859197        -1.5141277           -2.577022        1.7047481
## X210        -4.380670        -1.4696760           -1.966113        1.7404662
## X212        -6.517424        -1.8325815           -2.563950        1.0647107
## X213        -5.859197        -1.5606477           -2.364460        1.6486586
## X214        -2.338769        -1.7719568           -2.040221        1.1631508
## X215        -7.612597        -2.2072749           -2.937463        0.7419373
## X216        -3.976069        -1.4271164           -2.673649        1.3083328
## X218        -4.759074        -1.1711830           -2.120264        1.7917595
## X219        -6.871722        -1.3862944           -2.488915        1.0986123
## X220        -6.871722        -2.0402208           -2.995732        1.1939225
## X223        -7.141616        -1.1711830           -1.966113        1.8718022
## X224        -6.117503        -1.5606477           -2.396896        1.2809338
## X225        -8.417032        -1.7719568           -2.703063        1.3083328
## X226        -6.210929        -1.8325815           -3.123566        1.8870696
## X227        -6.210929        -0.8915981           -1.771957        2.0412203
## X228        -8.417032        -2.0402208           -3.194183        0.7884574
## X229        -7.002855        -2.2072749           -2.937463        1.6486586
## X230        -4.270363        -1.6094379           -2.207275        1.5260563
## X231        -5.779603        -1.5141277           -2.563950        1.2527630
## X232        -6.747507        -1.7719568           -3.079114        1.3083328
## X233        -5.859197        -1.2378744           -2.501036        1.5686159
## X234        -4.624044        -1.1711830           -2.040221        1.8405496
## X236        -7.445450        -2.1202635           -3.170086        1.1631508
## X237        -5.488510        -1.0788097           -2.385967        1.7404662
## X239        -7.612597        -2.5902672           -3.057608        1.1631508
## X240        -6.517424        -2.2072749           -2.577022        0.9932518
## X241        -4.006378        -1.3862944           -2.040221        1.3350011
## X242        -4.581146        -0.2744368           -1.469676        1.5040774
## X243        -5.941894        -1.7719568           -2.419119        1.4350845
## X244        -4.904631        -1.5141277           -2.396896        1.3862944
## X245        -8.191715        -2.6736488           -3.540459        0.8329091
## X246        -6.517424        -1.1394343           -2.120264        1.8562980
## X247        -7.141616        -2.3968958           -3.473768        0.6418539
## X249        -7.288830        -1.9661129           -3.411248        1.1631508
## X250        -5.557525        -1.9661129           -2.748872        1.1939225
## X251        -6.027915        -2.0402208           -2.918771        1.2527630
## X253        -4.200492        -1.5606477           -2.207275        1.6486586
## X254        -6.747507        -1.3862944           -2.207275        1.8870696
## X255        -3.601291        -0.9162907           -2.040221        1.8082888
## X256        -8.417032        -2.2072749           -3.079114        0.8754687
## X257        -6.210929        -1.8971200           -2.631089        1.0647107
## X258        -4.100692        -1.2729657           -2.322788        0.8754687
## X260        -3.508403        -1.3862944           -2.577022        1.4816045
## X261        -6.629589        -1.7147984           -2.631089        0.9932518
## X262        -5.233853        -1.5141277           -2.918771        1.2527630
## X263        -4.806353        -1.1711830           -2.040221        1.6863990
## X264        -8.417032        -1.3470736           -1.897120        2.0014800
## X265        -6.210929        -1.7719568           -2.780621        1.4109870
## X267        -5.859197        -1.8971200           -2.525729        1.8718022
## X268        -4.806353        -1.4696760           -2.353878        1.4109870
## X269        -5.702912        -2.2072749           -3.101093        1.1314021
## X270        -6.308494        -1.8325815           -3.244194        1.5686159
## X271        -4.806353        -1.5606477           -2.465104        1.6094379
## X272        -7.288830        -1.2378744           -2.441847        1.5686159
## X273        -7.002855        -1.9661129           -3.036554        1.4109870
## X274        -5.233853        -1.6094379           -2.864704        1.3083328
## X275        -6.117503        -1.4696760           -2.513306        1.6094379
## X277        -3.130065        -1.3093333           -2.207275        1.4586150
## X278        -4.955747        -2.0402208           -2.430418        1.5475625
## X279        -6.871722        -1.7147984           -2.302585        1.5686159
## X281        -4.806353        -1.7719568           -2.551046        1.5892352
## X282        -4.498264        -1.4696760           -2.040221        1.2527630
## X283        -4.343131        -1.1394343           -2.207275        1.6094379
## X287        -5.174970        -1.1711830           -2.120264        1.1314021
## X289        -6.308494        -1.7147984           -2.764621        1.4586150
## X290        -7.002855        -1.8971200           -2.688248        0.9555114
## X291        -6.517424        -1.6607312           -2.631089        1.6863990
## X292        -7.141616        -1.5141277           -2.525729        1.8405496
## X294        -9.936906        -1.6607312           -2.207275        1.5040774
## X297        -7.288830        -1.9661129           -2.864704        1.4350845
## X298        -6.410533        -1.6607312           -2.590267        1.2809338
## X299        -5.941894        -1.7147984           -2.364460        1.7047481
## X301        -6.871722        -1.9661129           -2.864704        1.2527630
## X302        -6.410533        -1.7147984           -2.603690        1.3609766
## X303        -6.629589        -1.5141277           -2.918771        1.5686159
## X304        -7.288830        -1.7719568           -2.617296        1.3862944
## X305        -4.498264        -1.3093333           -2.538307        1.7227666
## X306        -6.210929        -1.0216512           -1.609438        1.8870696
## X307        -4.581146        -1.2039728           -1.560648        2.2512918
## X308        -4.581146        -1.5141277           -1.832581        1.7917595
## X311        -3.420676        -0.8915981           -2.040221        1.5686159
## X312        -7.002855        -1.5141277           -2.040221        1.3609766
## X313        -7.288830        -1.3093333           -2.302585        1.6486586
## X314        -7.983999        -2.0402208           -3.352407        1.3083328
## X315        -3.357973        -0.9162907           -1.560648        1.5892352
## X316        -4.854854        -1.2378744           -2.476938        1.1939225
## X317        -6.747507        -1.6607312           -2.617296        1.2527630
## X320        -3.508403        -0.3856625           -1.386294        1.4350845
## X321        -3.130065        -0.8915981           -2.207275        1.3350011
## X322        -7.445450        -1.0216512           -2.120264        1.4109870
## X323        -5.779603        -1.8325815           -2.764621        1.3083328
## X324        -6.517424        -2.6592600           -3.101093        1.2237754
## X325        -6.308494        -1.5606477           -2.847312        1.6677068
## X326        -6.210929        -2.1202635           -2.918771        1.3083328
## X327        -4.498264        -1.6094379           -2.120264        1.9740810
## X329        -6.629589        -1.6607312           -2.796881        1.1939225
## X330        -4.759074        -0.9416085           -1.514128        1.9169226
## X331        -5.421759        -1.4696760           -2.733368        1.2809338
## X332        -5.008267        -1.6094379           -2.617296        1.6863990
## X333        -4.806353        -1.4271164           -2.385967        1.5475625
##      Apolipoprotein_E Apolipoprotein_H B_Lymphocyte_Chemoattractant_BL
## X1          3.7545215      -0.15734908                       2.2969819
## X2          3.0971187      -0.57539617                       1.6731213
## X3          2.7530556      -0.34483937                       1.6731213
## X5          3.0671471       0.66263455                       2.2969819
## X6          0.5911464       0.09715030                       2.4798381
## X7          4.2548002      -0.34483937                       1.6731213
## X8          1.9385358       0.09715030                       3.7036702
## X9          2.7200688      -1.26939244                       2.3713615
## X11         2.7200688      -0.28367882                       1.8527528
## X12         3.1563503      -0.78459824                       2.6867663
## X14         2.4440754      -0.21347474                       1.6731213
## X16         2.5848812      -0.53172814                       2.9757467
## X17         2.7857346      -0.03027441                       3.0064666
## X18         2.0627326      -0.48946700                       1.2740115
## X19         1.5787922      -0.23651381                       2.2786154
## X20         2.3713615       0.09715030                       2.0627326
## X21         2.4079204      -0.37004744                       1.4308338
## X22         2.8181133      -0.80232932                       1.9805094
## X23         1.8527528      -0.63604036                       0.7317775
## X24         3.7797161      -0.54612169                       1.8527528
## X25         1.8088944      -0.38282097                       1.8527528
## X26         2.6531400      -0.35738780                       1.8527528
## X28         3.6261997      -0.24816638                       1.8527528
## X29         1.8959582      -0.63604036                       2.3713615
## X30         1.8527528      -0.54612169                       0.7987698
## X31         2.7200688       0.00000000                       2.0219013
## X34         1.8959582       0.00000000                       2.3713615
## X35         2.1427912      -0.44849801                       1.9805094
## X36         3.0971187       0.59114642                       3.4937139
## X37         2.5848812      -0.46201723                       2.1820549
## X38         2.5848812      -0.56067607                       2.3713615
## X39         3.1856203      -0.59028711                       2.0627326
## X40         2.2591348      -0.38282097                       2.0627326
## X41         2.7200688       0.44019756                       2.6867663
## X42         2.5152196      -0.38282097                       2.5152196
## X43         1.9805094      -0.63604036                       2.1427912
## X44         2.8501989      -0.37004744                       1.6731213
## X45         3.7797161       0.18913439                       2.1820549
## X46         3.2146659      -0.73298708                       2.6531400
## X47         2.0627326      -0.46201723                       2.3713615
## X48         4.2548002      -0.57539617                       2.5848812
## X50         3.6000471      -0.10317121                       2.3713615
## X51         3.3566831      -0.38282097                       1.9805094
## X53         3.0369315      -0.48946700                       1.2740115
## X55         2.8181133      -0.38282097                       0.7317775
## X56         3.6261997      -0.03027441                       2.6867663
## X57         3.6521859      -0.80232932                       2.6867663
## X59         2.5502306      -0.03027441                       2.9757467
## X60         2.6531400      -0.37004744                       1.6731213
## X61         2.7530556      -0.33239959                       1.2740115
## X62         2.4440754      -1.11122739                       1.2740115
## X63         2.9447661      -0.34483937                       2.3713615
## X64         1.5303762       0.18913439                       2.9757467
## X65         3.0671471      -0.83865049                       1.6731213
## X67         2.9447661      -0.80232932                       1.9805094
## X68         3.0064666      -0.17955518                       2.3713615
## X69         1.8527528      -0.74993753                       1.2740115
## X70         3.3566831      -0.65167154                       2.1820549
## X71         3.1563503      -0.76713789                       2.0627326
## X72         4.0237466       0.27662577                       2.6531400
## X73         4.0237466      -0.34483937                       2.0627326
## X74         1.6731213       0.00000000                       2.0219013
## X75         2.6191813       0.00000000                       2.3713615
## X76         3.3005016      -0.20208470                       2.6867663
## X77         2.6531400       0.00000000                       1.9805094
## X78         3.6521859       0.27662577                       1.8527528
## X80         2.4079204      -0.15734908                       2.0219013
## X81         3.3566831      -0.35738780                       1.9805094
## X82         2.2591348      -0.47567232                       2.7530556
## X83         2.8181133      -0.74993753                       2.3713615
## X84         2.2591348      -0.56067607                       1.9805094
## X85         4.2548002      -0.08200644                       1.9805094
## X86         4.0237466       0.59114642                       3.4937139
## X88         2.7857346      -0.04049051                       2.4440754
## X90         1.5787922      -0.99753895                       1.5303762
## X93         3.0671471       0.09715030                       2.6867663
## X94         4.6844119       0.00000000                       2.9757467
## X95         2.5502306      -0.38282097                       1.2740115
## X96         3.0971187      -0.51749076                       2.1820549
## X97         3.4937139      -0.54612169                       2.1820549
## X98         2.9447661      -0.87620360                       0.7987698
## X99         3.0064666      -0.39571116                       2.6531400
## X100        2.8181133      -0.50340513                       1.9805094
## X103        4.2548002      -0.53172814                       2.3713615
## X104        2.3713615      -0.43511112                       1.9805094
## X105        4.0237466      -0.46201723                       1.2740115
## X107        2.1427912      -0.15734908                       1.8527528
## X108        3.1563503       0.27662577                       2.0219013
## X109        3.4120676      -0.76713789                       1.2740115
## X110        1.1637797      -1.13570251                       1.4810717
## X111        2.3713615      -0.40872089                       2.3713615
## X112        3.2146659      -0.17955518                       2.2969819
## X113        3.2146659       0.66263455                       2.1820549
## X114        1.3796139      -0.32006598                       2.1820549
## X115        2.1427912      -0.03027441                       2.9757467
## X117        3.1268514      -0.69979867                       2.2969819
## X118        4.0237466      -0.37004744                       1.8527528
## X121        2.9135187      -0.03027441                       2.6867663
## X123        1.9385358      -0.87620360                       1.6731213
## X124        2.4798381       0.36016589                       2.3713615
## X126        1.9385358      -0.44849801                       2.3713615
## X128        2.8819985       0.18913439                       2.3713615
## X129        1.7643559      -0.53172814                       2.6867663
## X130        3.5205617       0.09715030                       3.0064666
## X131        2.6867663      -0.51749076                       2.2208309
## X132        2.4079204       0.00000000                       1.6731213
## X133        3.2146659       0.51708817                       2.1820549
## X134        2.3343863       0.09715030                       2.7530556
## X135        4.0237466      -0.32006598                       1.6731213
## X136        2.1427912      -0.69979867                       2.3713615
## X137        1.8088944      -0.73298708                       0.7317775
## X139        1.9805094      -0.40872089                       2.1820549
## X140        3.4666845      -0.19077873                       1.8527528
## X141        3.0671471      -0.08200644                       2.1820549
## X143        2.6867663      -0.12462010                       1.8527528
## X144        2.3343863      -0.44849801                       1.8527528
## X145        2.4440754      -0.48946700                       0.7987698
## X146        3.0971187       0.18913439                       2.4798381
## X147        3.0971187      -0.89547834                       1.8527528
## X148        3.0671471       0.66263455                       3.4937139
## X149        3.4394702      -0.63604036                       1.2740115
## X152        4.8854423      -0.27174693                       2.4798381
## X153        3.3566831       0.18913439                       2.1820549
## X154        2.9135187      -0.66750355                       1.2740115
## X155        1.6263611      -0.28367882                       1.6731213
## X156        3.1856203       0.09715030                       1.6731213
## X157        3.0064666      -0.39571116                       2.0219013
## X158        3.0671471      -0.69979867                       1.4810717
## X159        2.3343863      -0.65167154                       1.8813120
## X160        4.2548002      -0.42185317                       2.0627326
## X161        3.3566831      -0.07152751                       2.3713615
## X162        3.2434918      -0.65167154                       1.9805094
## X163        2.4079204      -0.76713789                       1.9805094
## X165        2.6867663      -0.54612169                       1.4308338
## X166        2.7200688      -0.66750355                       0.9269604
## X167        4.0237466      -0.60535429                       2.5152196
## X168        3.7797161      -0.39571116                       2.0627326
## X169        2.5502306      -0.39571116                       1.8527528
## X170        2.3343863      -0.25991011                       1.4308338
## X171        3.6780085      -0.17955518                       1.9805094
## X172        2.5502306      -0.43511112                       1.6731213
## X174        2.7857346      -0.35738780                       2.3713615
## X175        2.8501989       0.09715030                       2.0219013
## X176        2.6191813      -0.71627709                       2.6867663
## X177        2.1030230      -0.51749076                       1.5303762
## X178        1.8088944      -0.63604036                       1.9805094
## X179        4.0237466       0.44019756                       2.4798381
## X180        2.9135187      -0.25991011                       3.0064666
## X181        2.1030230      -0.51749076                       1.7643559
## X182        3.3844731      -0.40872089                       1.6731213
## X183        1.1637797       0.09715030                       1.8527528
## X184        2.9447661      -0.35738780                       2.1820549
## X185        2.8819985      -0.66750355                       2.3713615
## X186        2.1820549      -0.40872089                       1.4308338
## X189        2.8819985      -0.66750355                       1.4308338
## X190        3.5737252      -0.38282097                       1.9805094
## X191        2.5502306      -0.43511112                       1.9805094
## X192        2.9447661      -0.76713789                       1.9805094
## X193        2.9447661      -0.27174693                       2.3713615
## X194        1.5787922      -0.22495053                       1.9805094
## X195        3.7545215      -0.56067607                       1.2740115
## X197        2.7857346      -0.01003016                       2.1820549
## X198        2.3343863      -0.56067607                       0.9269604
## X200        3.0369315      -0.42185317                       2.0219013
## X201        2.7200688      -0.32006598                       2.3713615
## X202        2.1820549      -0.66750355                       0.7987698
## X205        3.1563503      -0.40872089                       1.8527528
## X208        2.9757467       0.09715030                       1.9805094
## X210        3.0369315      -0.16841247                       1.8527528
## X212        1.8959582      -0.15734908                       1.9805094
## X213        2.8819985       0.18913439                       1.4308338
## X214        2.2969819      -0.23651381                       1.2740115
## X215        2.6531400      -0.60535429                       1.2740115
## X216        1.3796139       0.09715030                       2.3713615
## X218        2.3713615       0.44019756                       2.9757467
## X219        2.6191813      -0.38282097                       1.9805094
## X220        3.1856203      -0.65167154                       2.3713615
## X223        2.4079204      -0.03027441                       1.6731213
## X224        2.9447661      -0.24816638                       1.2740115
## X225        3.6780085      -0.66750355                       1.2740115
## X226        3.3844731      -0.56067607                       2.6867663
## X227        2.7200688       0.92696036                       2.2969819
## X228        1.8959582      -0.68354345                       0.7987698
## X229        1.1067498      -1.06412706                       1.4308338
## X230        4.0237466       0.00000000                       1.8527528
## X231        3.0064666      -0.83865049                       1.8527528
## X232        3.6521859      -0.16841247                       2.6867663
## X233        1.0483341      -0.23651381                       1.9805094
## X234        3.7036702       0.09715030                       1.4308338
## X236        3.1563503      -0.60535429                       1.4308338
## X237        2.8819985       0.09715030                       2.6867663
## X239        0.9884391      -0.76713789                       0.7987698
## X240        2.2208309      -0.39571116                       0.7987698
## X241        3.3844731      -0.21347474                       1.8527528
## X242        1.2195081       0.24675221                       2.2208309
## X243        2.3343863      -0.07152751                       2.6867663
## X244        2.7200688      -0.32006598                       2.3713615
## X245        1.1637797      -0.83865049                       1.5303762
## X246        3.4666845       0.36016589                       1.6731213
## X247        2.0627326      -0.69979867                       1.5303762
## X249        3.6000471      -0.39571116                       2.1820549
## X250        2.7200688      -2.23379225                       2.0627326
## X251        2.2969819      -0.71627709                       2.1820549
## X253        2.1820549      -0.82034264                       2.8501989
## X254        4.2548002      -0.42185317                       2.2969819
## X255        3.3844731      -0.21347474                       2.3713615
## X256        2.7857346      -0.74993753                       1.9805094
## X257        1.8088944      -0.62060338                       1.5303762
## X258        3.0971187      -0.16841247                       2.3713615
## X260        2.9757467       0.09715030                       2.3713615
## X261        2.7200688      -0.66750355                       1.5303762
## X262        2.5848812      -0.57539617                       1.9805094
## X263        3.4394702      -0.24816638                       2.3713615
## X264        2.0219013       0.27662577                       2.3713615
## X265        3.5472311      -0.47567232                       2.3713615
## X267        3.6261997      -0.48946700                       2.1820549
## X268        3.3566831      -0.08200644                       1.9805094
## X269        2.5152196      -0.71627709                       0.7987698
## X270        3.2434918      -0.93510686                       1.5303762
## X271        2.5502306       0.18913439                       1.9805094
## X272        3.6000471      -0.05077067                       2.3713615
## X273        3.2721023      -0.30783617                       2.6867663
## X274        2.7200688      -0.51749076                       1.5303762
## X275        3.6780085      -0.13545431                       1.6731213
## X277        2.9447661      -0.51749076                       1.4308338
## X278        3.0671471      -0.14636351                       1.2740115
## X279        2.5848812      -0.32006598                       0.9884391
## X281        2.8181133      -0.30783617                       1.8527528
## X282        2.2591348      -0.06111597                       2.3713615
## X283        4.8854423      -0.03027441                       4.0237466
## X287        3.6000471      -0.46201723                       1.2740115
## X289        1.8088944      -0.35738780                       1.2740115
## X290        1.8088944      -0.50340513                       1.0483341
## X291        3.1856203      -0.82034264                       1.8527528
## X292        3.7797161      -0.05077067                       2.2969819
## X294        2.9135187      -0.37004744                       1.6731213
## X297        3.0971187      -0.53172814                       2.1820549
## X298        1.6731213      -0.16841247                       1.6731213
## X299        3.2434918      -0.60535429                       1.8527528
## X301        1.9385358      -0.30783617                       2.3713615
## X302        1.3796139      -0.32006598                       0.7987698
## X303        2.8501989      -0.16841247                       1.9805094
## X304        2.4798381      -0.63604036                       1.9805094
## X305        4.6844119      -0.80232932                       1.9805094
## X306        3.1856203      -0.12462010                       2.2969819
## X307        3.3005016       0.36016589                       2.0219013
## X308        2.2208309       0.18913439                       1.2740115
## X311        1.5787922      -0.19077873                       2.6867663
## X312        4.0237466      -0.66750355                       2.3713615
## X313        2.3343863      -0.28367882                       2.6867663
## X314        2.5502306      -0.85726607                       1.5303762
## X315        3.3286939       0.27662577                       1.6731213
## X316        2.8819985      -0.65167154                       1.6731213
## X317        3.4937139      -0.63604036                       1.2740115
## X320        2.2208309       0.59114642                       2.0627326
## X321        1.1637797      -0.01003016                       1.2740115
## X322        5.4441788       0.36016589                       2.6867663
## X323        3.1268514      -0.03027441                       2.3713615
## X324        2.2208309      -0.83865049                       1.6731213
## X325        3.7036702       0.00000000                       2.9757467
## X326        2.3343863      -0.60535429                       2.5152196
## X327        3.1268514      -0.06111597                       2.7530556
## X329        3.4666845      -0.87620360                       1.9805094
## X330        1.4308338       0.86378110                       1.8527528
## X331        1.8088944      -0.38282097                       2.3713615
## X332        2.2208309      -0.19077873                       2.6867663
## X333        3.6000471      -0.25991011                       2.6867663
##           BMP_6 Beta_2_Microglobulin Betacellulin C_Reactive_Protein       CD40
## X1   -2.2007445           0.69314718           34          -4.074542 -0.7964147
## X2   -1.7280531           0.47000363           53          -6.645391 -1.2733760
## X3   -2.0624206           0.33647224           49          -8.047190 -1.2415199
## X5   -1.2415199           0.33647224           67          -4.342806 -0.9240345
## X6   -1.8774117          -0.54472718           51          -7.561682 -1.7844998
## X7   -1.8452133          -0.04082199           41          -7.581100 -1.0965412
## X8   -1.9829118          -0.07257069           42          -6.165818 -1.8643733
## X9   -1.6752524           0.00000000           58          -7.070274 -1.4919984
## X11  -1.4130880           0.18232156           32          -6.645391 -1.3405665
## X12  -1.9679750          -0.10536052           43          -4.828314 -1.3405665
## X14  -2.0624206           0.40546511           53          -5.083206 -1.0965412
## X16  -1.9679750           0.33647224           58          -5.051457 -1.3761017
## X17  -2.0458231           0.09531018           51          -5.278515 -1.4130880
## X18  -1.6752524          -0.02020271           67          -5.626821 -1.5342758
## X19  -1.6752524           0.18232156           42          -6.980326 -1.4130880
## X20  -2.0624206           0.18232156           46          -5.221356 -1.3405665
## X21  -1.7280531           0.26236426           51          -6.571283 -1.1808680
## X22  -2.2007445           0.74193734           52          -5.051457 -0.9240345
## X23  -1.8906716          -0.12783337           46          -5.546779 -1.4130880
## X24  -2.0458231           0.33647224           42          -6.377127 -1.0441270
## X25  -1.8774117          -0.13926207           51          -6.812445 -1.4516659
## X26  -2.0458231           0.09531018           59          -8.468403 -1.1808680
## X28  -2.0458231           0.33647224           32          -6.645391 -1.3405665
## X29  -1.6752524          -0.08338161           61          -6.119298 -1.6256074
## X30  -1.8452133          -0.22314355           41          -6.165818 -1.2415199
## X31  -2.2319708           0.26236426           60          -4.074542 -0.9016377
## X34  -2.1516047          -0.01005034           51          -5.449140 -1.3405665
## X35  -1.4130880          -0.37106368           71          -5.599422 -1.3405665
## X36  -2.1516047           0.18232156           51          -3.963316 -1.2107086
## X37  -2.0458231           0.33647224           59          -7.849364 -1.2733760
## X38  -2.7611525           0.00000000           65          -4.815891 -1.2415199
## X39  -2.0624206           0.26236426           37          -7.402052 -1.2733760
## X40  -1.7280531           0.47000363           46          -6.032287 -1.3405665
## X41  -1.9679750           0.09531018           43          -5.744604 -1.4130880
## X42  -1.9679750           0.18232156           51          -6.437752 -1.2733760
## X43  -2.2319708           0.09531018           67          -5.298317 -1.3063602
## X44  -2.2873761           0.58778666           46          -4.879607 -1.2107086
## X45  -2.0458231           0.53062825           51          -7.600902 -0.9943519
## X46  -2.2873761           0.40546511           46          -5.381699 -1.1808680
## X47  -2.3867382          -0.30110509           51          -6.571283 -1.4130880
## X48  -2.2319708           0.58778666           60          -4.605170 -0.9016377
## X50  -0.8166252           0.26236426           51          -4.803621 -1.2415199
## X51  -1.8452133           0.33647224           42          -4.853632 -0.9240345
## X53  -1.7280531           0.33647224           46          -6.571283 -1.3405665
## X55  -2.1611633           0.53062825           53          -7.684284 -1.2415199
## X56  -1.9679750           0.09531018           51          -5.521461 -1.3761017
## X57  -2.2007445           0.58778666           42          -5.952244 -1.3761017
## X59  -1.6752524           0.33647224           43          -6.812445 -1.3063602
## X60  -1.9981504           0.00000000           60          -5.203007 -1.3761017
## X61  -1.5787229          -0.08338161           26          -7.182192 -1.0441270
## X62  -1.9041616          -0.26136476           51          -6.032287 -1.2107086
## X63  -2.2535986           0.26236426           51          -5.952244 -1.2733760
## X64  -1.8452133          -0.21072103           51          -3.816713 -1.3063602
## X65  -1.8452133           0.09531018           60          -7.035589 -1.1519318
## X67  -1.9679750           0.09531018           51          -7.957577 -1.3063602
## X68  -1.8452133           0.18232156           61          -6.377127 -1.3405665
## X69  -1.3761017          -0.47803580           67          -5.654992 -1.5342758
## X70  -2.0458231           0.09531018           42          -6.319969 -1.3063602
## X71  -1.7280531           0.09531018           49          -3.575551 -1.2733760
## X72  -2.6486592           0.99325177           28          -2.937463 -0.9016377
## X73  -2.0624206           0.40546511           46          -5.099467 -1.1238408
## X74  -1.5787229          -0.46203546           51          -5.167289 -1.3761017
## X75  -2.1611633           0.18232156           46          -6.265901 -1.2733760
## X76  -2.0540751           0.26236426           51          -7.169120 -1.1808680
## X77  -1.5787229           0.26236426           68          -4.135167 -1.1519318
## X78  -2.0458231           0.53062825           51          -6.119298 -0.9943519
## X80  -1.8452133           0.00000000           41          -3.194183 -1.2107086
## X81  -2.1516047           0.26236426           55          -5.449140 -1.2415199
## X82  -2.0458231           0.18232156           32          -5.878136 -1.3405665
## X83  -1.8452133           0.09531018           52          -6.377127 -1.3761017
## X84  -1.8452133          -0.18632958           51          -5.318520 -1.2415199
## X85  -2.3867382           0.47000363           43          -6.437752 -1.0699846
## X86  -1.4919984           0.58778666           51          -4.422849 -0.9240345
## X88  -2.2319708           0.33647224           74          -5.654992 -1.2107086
## X90  -1.9829118          -0.31471074           72          -4.509860 -1.8452133
## X93  -1.9829118           0.47000363           52          -5.184989 -1.5342758
## X94  -2.1516047           0.83290912           43          -5.776353 -0.7007809
## X95  -1.6752524          -0.09431068           51          -6.437752 -0.9943519
## X96  -1.8774117           0.26236426           66          -5.115996 -1.2415199
## X97  -1.6256074           0.18232156           42          -8.468403 -1.1808680
## X98  -2.2319708          -0.30110509           71          -4.744432 -1.3761017
## X99  -2.2873761           0.33647224           37          -4.199705 -0.9943519
## X100 -2.1516047           0.33647224           51          -5.744604 -1.1808680
## X103 -2.6486592           0.64185389           42          -6.074846 -0.6826401
## X104 -2.5370840           0.40546511           47          -5.809143 -1.2733760
## X105 -2.2007445           0.33647224           46          -6.948577 -1.0965412
## X107 -2.2007445           0.26236426           51          -6.502290 -0.9240345
## X108 -1.9981504          -0.04082199           46          -6.214608 -0.9240345
## X109 -1.7280531           0.09531018           42          -6.502290 -1.1238408
## X110 -1.8452133          -0.26136476           74          -7.799353 -1.3405665
## X111 -1.9829118           0.09531018           61          -6.502290 -1.2733760
## X112 -2.6694708           0.26236426           67          -5.115996 -1.0189283
## X113 -1.7280531           0.47000363           32          -5.472671 -1.3761017
## X114 -1.4919984          -0.54472718           59          -5.914504 -1.5787229
## X115 -2.3867382           0.18232156           58          -5.991465 -1.3405665
## X117 -1.6256074           0.33647224           60          -3.963316 -1.1808680
## X118 -2.0458231           0.74193734           51          -5.744604 -1.0699846
## X121 -2.3867382           0.47000363           58          -5.278515 -0.9240345
## X123 -1.4516659          -0.49429632           60          -4.779524 -1.3405665
## X124 -1.8452133           0.18232156           61          -5.035953 -1.2415199
## X126 -1.5787229           0.09531018           58          -5.203007 -1.4516659
## X128 -1.9679750           0.33647224           58          -4.710531 -1.1519318
## X129 -1.9679750          -0.04082199           51          -7.849364 -1.6752524
## X130 -1.7280531           0.33647224           59          -4.947660 -1.4516659
## X131 -2.2873761           0.09531018           53          -5.744604 -1.2733760
## X132 -1.6752524           0.00000000           64          -7.581100 -1.3063602
## X133 -1.7280531           0.09531018           20          -8.078938 -1.2107086
## X134 -1.8774117           0.33647224           51          -4.892852 -1.0965412
## X135 -2.2319708           0.09531018           60          -4.074542 -1.0441270
## X136 -2.5370840           0.18232156           61          -6.074846 -1.3063602
## X137 -1.6256074          -0.34249031           46          -3.729701 -1.4516659
## X139 -1.8774117          -0.12783337           51          -7.523941 -1.5787229
## X140 -2.0458231           0.09531018           42          -6.319969 -1.2415199
## X141 -1.6752524           0.09531018           51          -5.683980 -1.2415199
## X143 -1.6752524           0.09531018           41          -6.265901 -1.3761017
## X144 -1.8774117           0.09531018           59          -6.377127 -1.3063602
## X145 -2.2319708          -0.04082199           67          -7.581100 -1.3761017
## X146 -2.2007445           0.33647224           42          -7.070274 -1.0699846
## X147 -2.2646732           0.58778666           42          -4.779524 -1.0965412
## X148 -2.2007445           0.18232156           10          -3.123566 -1.3063602
## X149 -1.8906716          -0.01005034           37          -4.342806 -1.4130880
## X152 -1.8774117           0.74193734           32          -5.878136 -1.0965412
## X153 -2.2646732           0.40546511           32          -4.017384 -1.3761017
## X154 -2.6486592           0.09531018           37          -5.278515 -1.2107086
## X155 -1.5787229          -0.26136476           55          -5.020686 -1.2733760
## X156 -1.6256074           0.18232156           46          -4.733004 -1.2415199
## X157 -1.8452133           0.33647224           55          -6.319969 -0.9240345
## X158 -2.1611633           0.09531018           53          -5.132803 -0.9943519
## X159 -1.8452133          -0.02020271           58          -5.924465 -1.4516659
## X160 -1.5342758           0.47000363           37          -4.892852 -0.9469346
## X161 -1.9679750           0.40546511           58          -3.611918 -1.1808680
## X162 -1.5787229           0.47000363           52          -6.437752 -1.1808680
## X163 -2.2007445          -0.05129329           61          -7.250246 -1.4516659
## X165 -1.4919984           0.18232156           32          -7.293418 -1.3761017
## X166 -1.9679750          -0.16251893           58          -8.334872 -1.2415199
## X167 -1.6752524           0.58778666           68          -6.812445 -0.9016377
## X168 -2.0624206           0.09531018           46          -5.914504 -1.3761017
## X169 -2.0458231          -0.15082289           42          -6.265901 -1.6752524
## X170 -1.7280531          -0.08338161           51          -5.083206 -1.4130880
## X171 -2.1516047           0.47000363           43          -4.961845 -1.0189283
## X172 -1.6752524          -0.06187540           74          -7.323271 -1.3063602
## X174 -1.8452133           0.09531018           33          -6.265901 -1.3063602
## X175 -1.8774117           0.40546511           42          -5.149897 -1.4130880
## X176 -2.1516047           0.18232156           51          -5.472671 -1.3063602
## X177 -1.9829118           0.26236426           42          -6.319969 -1.3063602
## X178 -1.5787229          -0.31471074           65          -5.221356 -1.5342758
## X179 -1.6752524           0.47000363           42          -4.342806 -1.3405665
## X180 -2.0458231           0.91629073           42          -6.214608 -1.2415199
## X181 -1.6752524          -0.09431068           75          -7.047017 -1.5342758
## X182 -1.9981504          -0.04082199           60          -5.572754 -1.0189283
## X183 -1.7280531          -0.24846136           41          -7.094085 -1.2107086
## X184 -1.8774117           0.33647224           47          -6.265901 -1.2733760
## X185 -2.3867382           0.26236426           65          -6.938214 -1.2733760
## X186 -2.2007445          -0.06187540           42          -8.016418 -1.4919984
## X189 -1.9606157           0.26236426           51          -4.268698 -1.2415199
## X190 -2.5370840           0.47000363           47          -4.342806 -1.2733760
## X191 -1.6752524           0.18232156           61          -6.214608 -1.2415199
## X192 -1.8452133           0.64185389           61          -6.645391 -1.1519318
## X193 -2.3867382           0.58778666           43          -7.094085 -1.2107086
## X194 -1.8452133          -0.04082199           52          -6.907755 -1.3761017
## X195 -1.6256074           0.64185389           53          -5.599422 -1.1238408
## X197 -1.8774117           0.33647224           42          -5.843045 -1.1808680
## X198 -1.6752524          -0.10536052           75          -6.437752 -1.2107086
## X200 -1.8452133           0.33647224           51          -6.165818 -0.9943519
## X201 -2.2007445           0.33647224           61          -5.403678 -1.4516659
## X202 -2.2319708          -0.23572233           67          -5.952244 -1.3063602
## X205 -1.6256074           0.18232156           46          -6.502290 -1.2733760
## X208 -2.5370840           0.47000363           42          -4.744432 -0.9943519
## X210 -1.1808680           0.33647224           42          -8.111728 -1.1238408
## X212 -1.9679750          -0.12783337           51          -7.047017 -1.5787229
## X213 -1.7844998           0.18232156           59          -5.654992 -1.4130880
## X214 -2.2007445           0.26236426           53          -3.381395 -1.0189283
## X215 -1.6256074          -0.22314355           67          -5.572754 -0.9469346
## X216 -1.6752524          -0.08338161           42          -5.099467 -1.5342758
## X218 -1.8973873          -0.06187540           42          -4.744432 -1.4516659
## X219 -1.9679750           0.09531018           58          -5.426151 -1.5342758
## X220 -2.2535986           0.18232156           51          -4.791500 -1.3063602
## X223 -1.9041616           0.18232156           60          -6.907755 -1.0965412
## X224 -2.2319708           0.18232156           41          -6.265901 -1.3063602
## X225 -1.5787229           0.40546511           67          -6.571283 -0.6472472
## X226 -2.0794020           0.64185389           29          -3.688879 -1.2107086
## X227 -0.9240345           0.09531018           60          -3.611918 -1.0965412
## X228 -1.6752524          -0.17435339           67          -4.199705 -1.5787229
## X229 -2.0458231          -0.27443685           51          -8.180721 -1.5787229
## X230 -2.2646732           0.18232156           51          -4.268698 -1.2107086
## X231 -1.7844998           0.26236426           51          -5.665263 -1.5787229
## X232 -1.9829118           0.09531018           52          -6.812445 -1.2733760
## X233 -1.8452133          -0.19845094           52          -7.293418 -1.5787229
## X234 -1.8774117          -0.12783337           51          -8.377431 -1.4516659
## X236 -1.3063602          -0.17435339           32          -7.182192 -1.5342758
## X237 -1.9679750          -0.01005034           51          -5.744604 -1.2107086
## X239 -1.9981504          -0.30110509           51          -5.240048 -1.4919984
## X240 -1.5787229          -0.32850407           67          -7.641724 -1.4130880
## X241 -2.0458231           0.18232156           32          -5.051457 -1.2415199
## X242 -1.1519318          -0.06187540           46          -3.863233 -1.6256074
## X243 -2.3867382          -0.21072103           43          -5.683980 -1.3761017
## X244 -1.8452133           0.40546511           58          -6.502290 -1.1519318
## X245 -1.3063602          -0.49429632           82          -5.744604 -1.8452133
## X246 -1.9981504           0.33647224           41          -5.521461 -1.0699846
## X247 -1.4130880          -0.18632958           82          -7.130899 -1.4130880
## X249 -1.8774117           0.47000363           66          -7.013116 -0.9016377
## X250 -2.2873761           0.33647224           53          -5.496768 -0.9469346
## X251 -2.1516047           0.09531018           58          -7.621105 -1.0965412
## X253 -1.9679750           0.40546511           51          -3.057608 -1.3405665
## X254 -1.1238408           0.99325177           67          -3.912023 -0.5474623
## X255 -2.7611525           0.40546511           43          -4.422849 -1.0965412
## X256 -1.8906716          -0.23572233           58          -8.517193 -1.4919984
## X257 -1.8452133          -0.26136476           51          -6.319969 -1.5787229
## X258 -1.5342758           0.53062825           46          -4.840893 -0.8582591
## X260 -1.8973873           0.18232156           68          -5.381699 -1.3761017
## X261 -1.6752524          -0.16251893           58          -5.083206 -1.4919984
## X262 -1.3063602          -0.28768207           65          -7.641724 -1.4919984
## X263 -1.6752524           0.40546511           42          -4.509860 -1.1808680
## X264 -1.9679750           0.18232156           43          -5.368806 -1.0699846
## X265 -1.6752524           0.26236426           42          -6.812445 -1.0965412
## X267 -1.8774117           0.47000363           51          -7.323271 -1.0189283
## X268 -1.8452133           0.18232156           56          -6.032287 -1.1238408
## X269 -1.8452133          -0.15082289           41          -6.571283 -1.0699846
## X270 -1.5787229           0.69314718           52          -7.581100 -1.0441270
## X271 -2.2007445           0.47000363           52          -6.165818 -1.2415199
## X272 -1.8452133          -0.05129329           61          -5.115996 -1.1519318
## X273 -1.6752524           0.47000363           52          -6.165818 -1.3761017
## X274 -1.6752524           0.18232156           47          -5.472671 -1.3405665
## X275 -1.9981504           0.26236426           41          -3.863233 -1.1238408
## X277 -1.6256074           0.18232156           59          -4.422849 -1.6256074
## X278 -2.2319708           0.18232156           67          -4.755993 -1.1238408
## X279 -1.7844998           0.09531018           51          -6.502290 -1.5787229
## X281 -1.4919984           0.18232156           51          -7.435388 -1.3761017
## X282 -2.2873761          -0.16251893           60          -4.074542 -1.5342758
## X283 -1.6752524           0.69314718           52          -7.452482 -1.0699846
## X287 -1.8906716           0.09531018           60          -6.645391 -1.3063602
## X289 -1.3063602          -0.32850407           41          -7.849364 -1.3063602
## X290 -2.0624206           0.26236426           46          -5.426151 -1.4919984
## X291 -1.8774117           0.09531018           42          -5.203007 -1.1238408
## X292 -1.5787229           0.58778666           71          -5.521461 -0.8582591
## X294 -2.2319708          -0.40047757           51          -5.449140 -1.4130880
## X297 -2.1516047           0.18232156           62          -5.083206 -1.2733760
## X298 -1.9679750           0.09531018           37          -4.990833 -1.4919984
## X299 -1.6256074           0.40546511           51          -7.505592 -1.2733760
## X301 -1.6752524          -0.17435339           33          -5.776353 -1.2733760
## X302 -1.5787229          -0.54472718           41          -5.713833 -1.6256074
## X303 -2.0794020           0.09531018           52          -7.323271 -1.4919984
## X304 -1.6752524           0.40546511           38          -7.706263 -0.9943519
## X305 -1.6752524           0.47000363           61          -6.571283 -1.0965412
## X306 -1.6752524           0.47000363           51          -6.812445 -0.7380092
## X307 -1.4516659           0.33647224           60          -5.099467 -1.1808680
## X308 -2.2319708           0.26236426           41          -5.381699 -1.0965412
## X311 -1.8452133           0.18232156           58          -5.203007 -1.2415199
## X312 -2.7611525           0.53062825           51          -6.319969 -1.2415199
## X313 -2.2007445           0.18232156           42          -5.878136 -1.2415199
## X314 -1.6752524           0.09531018           42          -6.265901 -1.4130880
## X315 -1.8452133           0.09531018           60          -3.244194 -1.1519318
## X316 -2.2873761           0.09531018           37          -6.377127 -1.3761017
## X317 -2.0624206           0.26236426           37          -5.952244 -1.0189283
## X320 -1.7280531           0.09531018           46          -7.047017 -1.2415199
## X321 -2.0624206          -0.44628710           49          -7.293418 -1.6256074
## X322 -1.4516659           0.47000363           43          -5.099467 -1.3405665
## X323 -1.6752524           0.64185389           42          -5.843045 -1.2733760
## X324 -1.8452133           0.18232156           60          -7.169120 -1.1519318
## X325 -2.2007445           0.87546874           42          -4.906275 -1.1519318
## X326 -1.8452133           0.33647224           61          -6.502290 -1.2415199
## X327 -1.8774117           0.18232156           51          -5.020686 -1.2415199
## X329 -1.8452133           0.09531018           33          -5.776353 -1.2415199
## X330 -1.4130880          -0.05129329           42          -5.744604 -1.5342758
## X331 -2.2007445          -0.30110509           52          -7.728736 -1.4919984
## X332 -1.8452133          -0.12783337           61          -4.199705 -1.5342758
## X333 -1.6752524           0.53062825           61          -7.824046 -0.9469346
##             CD5L Calbindin Calcitonin      CgA Clusterin_Apo_J Complement_3
## X1    0.09531018  33.21363  1.3862944 397.6536        3.555348   -10.363053
## X2   -0.67334455  25.27636  3.6109179 465.6759        3.044522   -16.108237
## X3    0.09531018  22.16609  2.1162555 347.8639        2.772589   -16.108237
## X5    0.36331197  21.83275  1.3083328 442.8046        3.044522   -12.813142
## X6    0.40546511  13.23155  1.6292405 137.9473        2.564949   -11.983227
## X7   -0.24846136  27.12044  1.0986123 336.9532        3.178054   -16.545310
## X8    0.53062825  10.96148  1.7404662 166.5501        2.772589   -14.406260
## X9   -0.75502258  18.29778  1.2809338 254.4822        2.564949   -19.247713
## X11  -0.01005034  29.36877  2.6390573 361.5826        3.091042   -11.838035
## X12   0.83290912  20.36068  1.2809338 251.8879        2.833213   -15.709974
## X14   0.26236426  24.38181  1.8870696 270.1389        2.890372   -12.134638
## X16  -0.26136476  26.42534  0.6931472 372.6204        3.044522   -12.721137
## X17   0.33647224  22.97999  3.1354942 200.9777        2.944439   -12.813142
## X18  -0.16251893  18.39608  0.4700036 195.9948        2.302585   -17.860668
## X19   0.00000000  19.26029  1.2237754 183.6299        2.397895   -16.780588
## X20  -0.05129329  19.44761  1.6863990 367.0946        2.708050   -15.523564
## X21   0.18232156  24.07681  3.2580965 251.8879        2.484907   -13.528896
## X22  -0.86750057  22.57641  1.6486586 437.1170        2.944439   -16.108237
## X23  -0.61618614  26.14249  1.7749524 414.4903        2.564949   -18.506668
## X24  -0.75502258  24.22975  1.0296194 367.0946        3.401197   -17.860668
## X25  -0.52763274  19.44761  0.1823216 320.6970        2.708050   -20.111728
## X26  -0.63487827  23.84570  2.3978953 408.8652        2.995732   -17.860668
## X28   0.18232156  22.00000  0.6931472 288.5972        3.332205   -16.321511
## X29  -0.15082289  20.62742  0.9162907 183.6299        2.564949   -17.860668
## X30  -0.38566248  14.97056  0.7884574 304.5768        2.564949   -18.863805
## X31   0.33647224  21.83275  1.8718022 262.2911        2.995732   -16.108237
## X34  -0.16251893  24.98148  1.1314021 198.4836        2.772589   -16.108237
## X35   0.18232156  17.07878  0.6931472 259.6838        2.484907   -16.545310
## X36   0.87546874  17.49359  2.2823824 367.0946        2.833213   -13.881545
## X37  -0.57981850  23.05993  2.2823824 400.4516        3.044522   -17.860668
## X38  -0.75502258  20.18107  0.9555114 397.6536        2.708050   -16.545310
## X39  -0.32850407  18.39608  2.0412203 364.3368        3.295837   -16.545310
## X40   0.00000000  18.78461  3.2958369 361.5826        2.833213   -14.548755
## X41   0.47000363  18.68816  1.1314021 307.2539        2.890372    -9.562842
## X42  -0.77652879  22.08319  2.0668628 331.5196        2.890372   -14.696346
## X43   0.18232156  18.88061  0.9555114 231.2963        2.397895   -18.506668
## X44   0.53062825  21.49468  2.8903718 288.5972        2.995732   -12.134638
## X45   0.00000000  28.59412  3.1354942 394.8588        3.218876   -12.212827
## X46  -0.54472718  24.60827  1.9315214 420.1282        2.772589   -14.406260
## X47   0.26236426  20.09072  2.2925348 312.6196        2.564949   -13.528896
## X48  -0.17435339  30.61901  2.6390573 477.1827        3.496508   -11.909882
## X50   0.18232156  27.59730  1.6486586 336.9532        3.496508   -12.631361
## X51  -0.34249031  25.56810  0.6418539 394.8588        2.833213   -14.696346
## X53   0.18232156  23.37716  2.2823824 301.9036        2.890372   -12.374500
## X55  -0.26136476  24.07681  0.7419373 378.1598        2.833213   -15.709974
## X56   0.47000363  29.24100  1.5686159 267.5187        2.772589   -15.709974
## X57   0.18232156  26.56571 -0.1508229 315.3083        3.332205   -11.191436
## X59   0.33647224  21.40940  1.4816045 262.2911        2.890372   -12.721137
## X60   0.26236426  20.71563  0.7884574 198.4836        2.772589   -13.004247
## X61  -0.35667494  22.81935  1.6863990 195.9948        2.772589   -18.506668
## X62  -0.38566248  22.00000  0.9555114 285.9479        2.708050   -20.111728
## X63  -0.65392647  28.13304  2.7725887 356.0845        2.639057   -12.374500
## X64   0.78845736  20.36068  2.8903718 218.5779        2.890372   -13.004247
## X65  -0.41551544  20.89105  1.8870696 251.8879        2.708050   -17.860668
## X67  -0.23572233  25.92848  2.6390573 448.5044        2.833213   -14.406260
## X68  -0.59783700  20.44994  3.3672958 328.8084        2.890372   -12.631361
## X69  -0.04082199  17.39072  1.3083328 259.6838        2.302585   -14.696346
## X70  -0.96758403  24.30589  2.2407097 397.6536        3.044522   -17.028429
## X71   0.18232156  24.22975  3.5835189 296.5691        2.639057   -16.545310
## X72   0.91629073  20.44994  3.5553481 523.6660        3.401197   -13.746698
## X73   1.09861229  25.71281  1.8870696 389.2792        2.944439   -12.212827
## X74  -0.19845094  19.44761  2.3978953 149.7563        2.397895   -14.006447
## X75  -0.13926207  19.26029  1.4586150 241.5557        2.944439   -14.135373
## X76   0.00000000  27.73214  2.7080502 425.7786        3.295837   -15.008176
## X77   0.53062825  27.39388  0.9162907 315.3083        3.044522   -15.344812
## X78   0.64185389  24.38181  0.9162907 400.4516        3.332205   -13.205557
## X80  -0.82098055  21.15167  3.1780538 400.4516        2.772589   -10.909311
## X81  -0.44628710  28.13304  1.2809338 301.9036        2.944439   -17.860668
## X82   0.18232156  29.04835  3.2188758 334.2346        3.135494   -14.696346
## X83   0.33647224  19.90890  1.2237754 254.4822        2.772589   -15.523564
## X84  -0.31471074  24.15339  2.1860513 293.9078        2.708050   -15.344812
## X85  -0.24846136  27.46184  0.4700036 397.6536        3.401197   -14.849365
## X86   0.69314718  27.46184  0.6931472 336.9532        3.295837   -14.696346
## X88   0.69314718  22.81935  1.3862944 356.0845        3.135494   -10.599937
## X90  -0.44628710  13.62050  1.2237754 173.8361        2.151762   -19.662161
## X93   0.33647224  23.21904  2.6390573 246.7128        3.091042   -15.904641
## X94   0.58778666  28.33150  0.9555114 480.0666        3.367296   -13.418078
## X95  -0.21072103  26.56571  2.0794415 238.9839        2.833213   -17.860668
## X96  -0.19845094  21.15167  1.7578579 397.6536        3.295837   -16.321511
## X97  -0.52763274  29.74902 -0.7133499 375.3884        3.091042   -18.863805
## X98  -0.40047757  22.08319  2.1162555 254.4822        2.484907   -17.860668
## X99   0.09531018  20.89105  2.8332133 480.0666        2.833213   -16.545310
## X100 -0.24846136  23.61250  3.6375862 339.6754        3.091042   -16.780588
## X103 -0.07257069  22.49490  1.5686159 442.8046        3.044522   -16.545310
## X104  0.00000000  20.36068  1.5475625 389.2792        2.890372   -16.321511
## X105 -0.49429632  27.25748  0.7419373 408.8652        3.178054   -17.566939
## X107  0.00000000  24.53300  2.4849066 417.3077        2.944439   -11.909882
## X108  0.26236426  17.39072  2.0668628 403.2529        2.995732   -15.008176
## X109 -0.84397007  20.89105  1.1314021 288.5972        2.639057   -20.602047
## X110 -0.49429632  19.16601  1.3083328 223.6509        2.302585   -23.387329
## X111 -0.22314355  20.71563  2.5649494 345.1308        3.091042   -13.310348
## X112  1.16315081  24.68333  0.9555114 345.1308        3.295837   -11.983227
## X113  0.47000363  24.83282  1.5892352 275.3919        3.218876   -11.191436
## X114 -0.11653382  17.89975  1.2527630 259.6838        2.484907   -16.108237
## X115  0.47000363  27.52965  1.9878743 283.3028        2.833213   -11.698625
## X117 -0.24846136  26.21347  2.3025851 442.8046        3.135494   -18.173167
## X118 -0.24846136  27.32576  3.8918203 468.5482        3.367296   -12.543721
## X121  0.09531018  21.57965  2.0668628 425.7786        2.944439   -13.760451
## X123 -0.30110509  20.00000  2.3025851 251.8879        2.397895   -19.662161
## X124  0.26236426  22.24871  3.3672958 356.0845        2.708050   -13.881545
## X126 -0.28768207  18.97618  0.2623643 506.1507        2.302585   -18.173167
## X128  0.18232156  28.91925  0.9555114 408.8652        2.890372   -14.268559
## X129 -0.59783700  21.49468  0.2623643 291.2505        2.708050   -19.662161
## X130 -0.59783700  32.05877  1.4816045 336.9532        2.833213   -14.548755
## X131  0.00000000  27.12044  1.1314021 372.6204        2.708050   -18.863805
## X132  0.64185389  17.07878  1.5892352 318.0008        2.890372   -15.523564
## X133  0.47000363  18.00000  1.4816045 251.8879        3.218876   -12.721137
## X134  0.64185389  25.12932  1.8718022 454.2163        3.091042   -11.075694
## X135  0.18232156  26.63564  1.7227666 468.5482        2.995732   -14.696346
## X136  0.26236426  15.43560  1.6486586 283.3028        2.890372   -15.904641
## X137 -0.34249031  18.49390  2.3978953 283.3028        2.564949   -18.863805
## X139 -0.12783337  23.37716  3.4339872 342.4013        2.564949   -15.523564
## X140 -0.05129329  21.15167  1.0986123 320.6970        3.091042   -11.838035
## X141 -0.16251893  28.91925  2.3025851 417.3077        2.995732   -14.849365
## X143  0.74193734  23.05993  0.7884574 200.9777        2.890372   -15.173178
## X144  0.33647224  20.44994  1.3083328 320.6970        2.639057   -15.344812
## X145 -0.28768207  22.16609  2.8332133 309.9348        2.708050   -19.662161
## X146  0.09531018  21.66432  1.4816045 318.0008        3.218876   -13.760451
## X147 -0.04082199  26.07134  0.6931472 425.7786        3.332205   -11.564602
## X148 -0.03045921  24.75818  1.3083328 328.8084        3.258097   -13.881545
## X149 -0.44628710  18.88061  1.8405496 275.3919        2.639057   -19.662161
## X152  0.53062825  22.33105  1.9169226 411.6762        3.583519   -10.455704
## X153  0.64185389  25.27636  1.3609766 159.3166        3.258097   -12.212827
## X154  0.00000000  23.76820  2.1747517 323.3971        2.944439   -18.173167
## X155 -0.05129329  21.23790  1.5260563 462.8066        2.639057   -14.268559
## X156 -0.26136476  18.97618  2.7725887 320.6970        3.044522   -16.321511
## X157 -0.19845094  21.49468  2.3025851 272.7633        2.772589   -16.780588
## X158 -0.94160854  22.33105  2.7725887 420.1282        2.833213   -15.173178
## X159 -0.11653382  21.66432  1.6486586 417.3077        2.484907   -18.863805
## X160  0.09531018  21.49468  1.1314021 442.8046        3.583519   -15.008176
## X161  0.69314718  24.38181  0.9555114 503.2412        2.833213   -14.006447
## X162 -0.35667494  26.21347  2.7080502 437.1170        3.044522   -15.344812
## X163 -0.56211892  22.00000  1.6094379 331.5196        2.639057   -18.506668
## X165 -0.73396918  21.66432  1.7578579 392.0674        2.833213   -16.545310
## X166 -0.63487827  22.89980  1.5686159 448.5044        2.995732   -15.344812
## X167 -0.17435339  32.29286  1.6486586 414.4903        3.332205   -16.780588
## X168 -0.19845094  22.08319  2.4849066 312.6196        3.178054   -18.173167
## X169 -0.15082289  19.16601  0.6931472 315.3083        2.639057   -17.860668
## X170  0.18232156  24.15339  3.2580965 226.1946        2.772589   -14.849365
## X171 -0.02020271  21.49468  0.6931472 431.4416        3.135494   -13.760451
## X172 -0.10536052  21.91652  0.7884574 347.8639        2.772589   -18.863805
## X174  0.69314718  19.72556  2.4849066 299.2344        2.772589   -10.317725
## X175  0.91629073  17.07878  2.0281482 350.6005        2.995732   -13.205557
## X176 -1.23787436  23.21904  2.7080502 328.8084        2.639057   -15.523564
## X177 -0.05129329  16.86796  1.4816045 361.5826        2.708050   -16.780588
## X178 -0.43078292  15.32051  0.9555114 361.5826        2.174752   -20.111728
## X179  0.58778666  21.49468  2.6390573 254.4822        2.995732   -12.721137
## X180  0.40546511  21.83275  0.2623643 309.9348        2.995732   -16.545310
## X181 -0.28768207  18.19901  1.8562980 288.5972        2.219203   -18.863805
## X182 -0.51082562  24.53300  1.9600948 403.2529        2.833213   -18.863805
## X183 -0.52763274  15.77639  0.7884574 135.6050        2.639057   -17.860668
## X184 -0.43078292  20.89105  0.6931472 434.2777        2.944439   -15.709974
## X185 -0.17435339  26.91366  2.7725887 315.3083        2.833213   -15.904641
## X186  0.00000000  22.81935 -0.7133499 323.3971        2.772589   -18.506668
## X189 -0.28768207  19.44761  2.6390573 383.7128        2.833213   -18.173167
## X190  0.09531018  20.71563  1.8562980 353.3408        2.944439   -15.008176
## X191 -0.30110509  28.98387  0.6418539 283.3028        2.890372   -17.028429
## X192 -0.06187540  28.06659  0.6418539 347.8639        3.295837   -16.108237
## X193  0.40546511  33.77709  2.7725887 358.8318        3.332205   -16.545310
## X194 -0.57981850  18.88061  1.9315214 218.5779        2.833213   -15.523564
## X195 -0.35667494  21.74868  2.7725887 485.8432        3.295837   -16.545310
## X197 -0.17435339  23.69047  2.3025851 465.6759        3.178054   -11.075694
## X198  0.00000000  20.36068  1.7404662 364.3368        2.708050   -17.290073
## X200 -0.11653382  31.34666  2.7725887 293.9078        3.295837   -15.523564
## X201  0.00000000  19.72556  0.6418539 383.7128        2.772589   -14.696346
## X202 -0.52763274  20.00000  1.2237754 228.7431        2.639057   -19.662161
## X205  0.09531018  19.72556  2.3978953 389.2792        3.258097   -18.173167
## X208 -0.40047757  24.60827  2.7725887 291.2505        3.044522   -15.344812
## X210  0.26236426  26.07134  2.8903718 326.1009        3.135494   -11.698625
## X212 -0.57981850  24.53300  0.2623643 328.8084        2.890372   -18.173167
## X213  0.09531018  22.65766  2.0668628 400.4516        3.044522   -15.173178
## X214  0.26236426  17.59592  1.1314021 372.6204        2.708050   -17.290073
## X215 -0.57981850  23.05993  0.9555114 375.3884        2.772589   -16.545310
## X216  0.00000000  18.78461  0.9162907 291.2505        2.484907   -15.523564
## X218  0.47000363  17.28730  0.6418539 251.8879        2.995732   -13.642963
## X219 -0.04082199  22.49490  1.5686159 315.3083        2.564949   -18.173167
## X220 -0.02020271  23.53429  2.7080502 434.2777        2.772589   -19.247713
## X223  0.18232156  21.74868  3.4657359 309.9348        2.944439   -15.904641
## X224  0.09531018  21.57965  0.7884574 445.6530        2.772589   -18.173167
## X225 -0.37106368  29.49603  3.1354942 532.4605        3.044522   -18.173167
## X226 -1.10866262  21.49468  0.9162907 411.6762        2.944439   -16.321511
## X227  0.35333823  17.59592  0.4700036 353.3408        3.044522   -14.006447
## X228 -0.46203546  20.89105  1.4350845 307.2539        2.484907   -18.863805
## X229  0.26236426  13.36229  2.2082744 228.7431        2.484907   -17.566939
## X230 -0.03045921  23.61250  0.9162907 259.6838        2.708050   -13.103567
## X231 -0.07257069  19.54066  1.4816045 275.3919        2.944439   -14.406260
## X232 -0.16251893  23.76820  1.4109870 275.3919        2.944439   -12.813142
## X233 -0.13926207  17.39072  1.3083328 216.0486        2.564949   -15.904641
## X234  0.26236426  19.72556  1.2527630 361.5826        2.890372   -13.310348
## X236 -1.04982212  22.65766  1.7578579 383.7128        2.772589   -18.863805
## X237  0.33647224  21.40940  3.0445224 378.1598        2.995732   -16.108237
## X239 -0.17435339  11.26650  2.2721259 164.1330        1.960095   -20.602047
## X240 -0.11653382  19.81742  1.0986123 304.5768        2.564949   -14.548755
## X241 -0.44628710  23.37716  1.2527630 372.6204        2.890372   -16.108237
## X242  0.99325177  11.56466  1.7227666 149.7563        3.044522   -14.006447
## X243 -0.08338161  23.05993  1.9600948 270.1389        2.564949   -14.696346
## X244  0.09531018  28.98387  0.6931472 468.5482        2.772589   -17.028429
## X245 -1.17118298  15.32051  0.9162907 171.4017        1.871802   -20.602047
## X246  0.58778666  21.91652 -0.2357223 296.5691        2.833213   -15.173178
## X247 -0.51082562  22.33105  1.5475625 328.8084        2.484907   -19.247713
## X249 -0.37106368  25.27636  1.6677068 532.4605        3.178054   -15.904641
## X250  0.18232156  27.05168  1.5686159 380.9346        2.772589   -16.321511
## X251 -0.19845094  22.97999  0.9555114 339.6754        2.708050   -17.566939
## X253  0.33647224  19.72556  1.7749524 315.3083        2.890372   -14.406260
## X254  0.26236426  28.06659  1.8718022 462.8066        3.295837   -15.904641
## X255  0.40546511  22.97999  0.9555114 451.3589        3.091042   -14.135373
## X256 -0.18632958  24.00000  0.6931472 369.8558        2.708050   -19.662161
## X257 -0.30110509  22.97999  0.9555114 285.9479        2.484907   -20.602047
## X258  0.58778666  25.78489  1.4586150 356.0845        2.772589   -16.545310
## X260  0.40546511  25.05550  1.4109870 315.3083        2.995732   -15.709974
## X261 -0.23572233  20.62742  0.2623643 293.9078        2.397895   -20.111728
## X262 -0.47803580  20.00000  2.1747517 251.8879        2.564949   -17.566939
## X263 -0.44628710  22.81935  1.8870696 386.4943        3.178054   -12.458129
## X264  0.26236426  20.80351  0.6931472 299.2344        3.178054   -13.310348
## X265 -0.06187540  24.30589  2.2300144 342.4013        2.995732   -14.849365
## X267 -0.23572233  28.98387  1.1939225 361.5826        3.496508   -14.849365
## X268  0.83290912  24.83282  1.2237754 364.3368        2.944439   -12.458129
## X269 -0.13926207  24.68333  0.4700036 315.3083        2.639057   -18.173167
## X270  0.83290912  18.49390  1.8870696 380.9346        2.708050   -14.696346
## X271  0.87546874  18.97618  2.2925348 358.8318        2.944439   -13.760451
## X272  0.09531018  24.07681  1.8870696 270.1389        2.833213   -14.006447
## X273 -0.07257069  21.40940  2.5649494 320.6970        3.135494   -14.135373
## X274 -0.47803580  24.07681  2.2617631 356.0845        2.890372   -15.173178
## X275 -0.67334455  23.92296  0.7884574 442.8046        3.044522   -14.268559
## X277  0.53062825  19.81742  0.9162907 312.6196        2.772589   -13.642963
## X278 -0.54472718  23.45584  0.8754687 361.5826        2.890372   -14.548755
## X279 -0.19845094  24.83282  2.0918641 278.0247        2.833213   -16.545310
## X281  0.00000000  19.63331  0.6931472 386.4943        2.995732   -16.780588
## X282  0.26236426  25.05550  1.3083328 254.4822        2.995732   -16.545310
## X283 -0.16251893  30.61901  1.6486586 361.5826        3.401197   -13.418078
## X287 -0.61618614  23.53429  1.9878743 392.0674        2.944439   -17.860668
## X289 -0.35667494  15.54993  0.4700036 244.1320        2.484907   -18.506668
## X290  0.00000000  19.16601  2.2823824 278.0247        2.397895   -18.863805
## X291  0.18232156  17.59592  3.4011974 414.4903        2.708050   -13.760451
## X292 -0.04082199  29.87475  1.0986123 392.0674        3.295837   -15.709974
## X294 -0.40047757  16.54724  1.0986123 200.9777        2.639057   -17.566939
## X297 -1.17118298  25.12932  2.9957323 280.6617        2.944439   -18.506668
## X298  0.09531018  16.76166  1.1314021 254.4822        2.708050   -18.506668
## X299 -0.19845094  26.84441  1.5686159 288.5972        3.044522   -14.006447
## X301 -0.35667494  20.89105  0.6931472 331.5196        2.639057   -17.860668
## X302 -0.18632958  16.33030  1.0986123 166.5501        2.230014   -17.860668
## X303  0.53062825  24.22975  2.1400662 339.6754        2.772589   -15.709974
## X304 -1.04982212  23.84570  0.6931472 482.9535        2.995732   -17.290073
## X305 -0.03045921  31.28663  2.2721259 296.5691        3.401197   -14.548755
## X306  0.33647224  19.35416  0.9555114 535.3974        2.833213   -14.406260
## X307  0.87546874  27.52965  1.3862944 480.0666        3.044522   -14.696346
## X308  0.33647224  23.84570  0.2623643 251.8879        3.091042   -11.435607
## X311 -0.09431068  17.89975  0.6931472 334.2346        2.639057   -16.780588
## X312 -0.06187540  27.05168  1.1939225 454.2163        3.044522   -15.173178
## X313 -0.28768207  21.57965  2.4849066 238.9839        2.890372   -17.028429
## X314 -0.71334989  21.66432  2.4849066 345.1308        2.833213   -18.173167
## X315  0.09531018  21.49468  2.8903718 270.1389        3.044522   -12.292758
## X316 -0.40047757  25.42262  3.0910425 339.6754        2.833213   -14.696346
## X317 -0.63487827  24.45751  2.8903718 358.8318        2.995732   -18.173167
## X320  0.40546511  18.49390  2.6390573 211.0049        2.833213   -13.881545
## X321  0.09531018  15.66352  1.9740810 137.9473        2.397895   -16.321511
## X322  0.69314718  23.92296  1.7749524 323.3971        3.332205   -14.548755
## X323  0.09531018  20.09072  1.5475625 336.9532        2.995732   -13.103567
## X324 -0.37106368  28.91925  1.3083328 293.9078        2.890372   -15.709974
## X325 -0.23572233  22.81935  1.6486586 291.2505        2.995732   -13.642963
## X326 -0.46203546  21.74868  1.8245493 315.3083        2.772589   -17.860668
## X327 -0.37106368  23.45584 -0.7133499 345.1308        3.135494   -11.133063
## X329 -0.49429632  26.21347  2.2192035 408.8652        3.091042   -17.028429
## X330  0.26236426  11.41641  0.2623643 226.1946        2.639057   -12.543721
## X331  0.09531018  12.56022  2.6390573 296.5691        2.564949   -16.780588
## X332  0.26236426  14.49242  1.8562980 152.1371        2.833213   -12.458129
## X333  0.18232156  24.68333  1.7404662 431.4416        3.465736   -14.696346
##      Complement_Factor_H Connective_Tissue_Growth_Factor Cortisol
## X1             3.5737252                       0.5306283     10.0
## X2             3.6000471                       0.5877867     12.0
## X3             4.4745686                       0.6418539     10.0
## X5             7.2451496                       0.9162907     11.0
## X6             3.5737252                       0.9932518     13.0
## X7             2.4079204                       0.8754687      4.9
## X8             1.0483341                       0.7884574     13.0
## X9             2.4079204                       0.9555114     12.0
## X11            4.0237466                       0.8754687      6.8
## X12            4.6844119                       0.9162907     12.0
## X14            3.2434918                       0.9162907     15.0
## X16            4.2548002                       0.8329091     12.0
## X17            1.8959582                       0.8754687     12.0
## X18            3.7545215                       0.9932518      0.1
## X19            4.0237466                       1.0296194     10.0
## X20            3.0971187                       0.4054651     18.0
## X21            2.7857346                       0.7884574     26.0
## X22            0.9269604                       0.3364722     14.0
## X23            2.4440754                       0.6418539     16.0
## X24            2.3343863                       0.5306283      7.8
## X25            2.1427912                       0.7419373      8.6
## X26            3.4666845                       0.6418539     14.0
## X28            2.2969819                       0.5306283      8.9
## X29            3.3286939                       0.8329091     15.0
## X30            2.1820549                       0.9555114      1.8
## X31            3.1563503                       1.0296194     19.0
## X34            4.2548002                       1.1631508     14.0
## X35            4.4745686                       1.1314021     14.0
## X36            2.0627326                       0.9162907      9.8
## X37            2.8501989                       0.5306283     14.0
## X38            2.5502306                       1.1314021      9.5
## X39            3.6000471                       0.5877867     15.0
## X40            3.6521859                       0.9555114     12.0
## X41            5.0785828                       1.1314021     13.0
## X42            2.4440754                       0.6418539     11.0
## X43            3.7797161                       0.9162907     10.0
## X44            2.9135187                       0.9555114      9.5
## X45            4.4745686                       0.7419373     15.0
## X46            3.7291737                       0.7419373     15.0
## X47            1.9805094                       1.2527630     15.0
## X48            2.7530556                       0.6418539     15.0
## X50            4.2548002                       0.8329091      9.8
## X51            3.0971187                       0.5306283     10.0
## X53            4.4745686                       0.9932518     11.0
## X55            3.1856203                       0.7884574     15.0
## X56            4.2548002                       0.9162907     12.0
## X57            3.6780085                       0.6931472     11.0
## X59            2.8819985                       0.9162907     11.0
## X60            3.7545215                       0.6931472      7.0
## X61            3.4937139                       0.7884574     17.0
## X62            3.3005016                       0.8329091      7.1
## X63            1.1067498                       1.0296194     13.0
## X64            5.4441788                       1.1314021     10.0
## X65            3.2721023                       0.6931472     13.0
## X67            2.0219013                       0.7884574     18.0
## X68            4.4745686                       0.7884574     15.0
## X69            1.7191085                       1.1314021      7.4
## X70            2.2969819                       0.6931472     14.0
## X71            4.8854423                       0.8329091     15.0
## X72            5.4441788                       0.3364722     15.0
## X73            4.2548002                       0.8329091     11.0
## X74            3.3286939                       1.0296194     13.0
## X75            4.0237466                       0.9555114     16.0
## X76            1.4308338                       0.7884574     12.0
## X77            3.5472311                       0.5306283     17.0
## X78            4.8854423                       0.4054651     11.0
## X80            4.4745686                       0.9162907     11.0
## X81            2.7200688                       0.8329091     12.0
## X82            3.5472311                       0.7419373     14.0
## X83            4.2548002                       0.9932518     12.0
## X84            2.0219013                       1.2527630     14.0
## X85            4.4745686                       0.7884574     12.0
## X86            7.1138913                       0.6931472     12.0
## X88            3.4666845                       0.7419373     12.0
## X90           -0.8386505                       1.1314021      9.9
## X93            0.9884391                       0.6418539     12.0
## X94            2.2969819                       0.5306283     18.0
## X95            3.4937139                       0.9555114      5.9
## X96            3.7545215                       0.6418539     11.0
## X97            3.7797161                       0.7419373      8.2
## X98            1.8959582                       0.9162907      8.3
## X99            2.7530556                       0.4054651     15.0
## X100           0.7987698                       0.7419373      6.5
## X103           4.0237466                       0.5306283     16.0
## X104           2.9135187                       0.6418539     14.0
## X105           1.1067498                       0.4700036      9.0
## X107           2.9135187                       0.8754687     10.0
## X108           4.8854423                       0.3364722     13.0
## X109           3.0064666                       0.5877867     14.0
## X110           1.0483341                       0.8329091     11.0
## X111           4.2548002                       0.7884574      9.1
## X112           5.6178580                       0.4054651     13.0
## X113           2.1030230                       0.8754687     13.0
## X114           4.0237466                       0.8754687     13.0
## X115           0.7317775                       0.9162907     29.0
## X117           2.7530556                       0.9162907     13.0
## X118           2.7530556                       0.7884574     11.0
## X121           4.4745686                       0.9555114     18.0
## X123           3.6000471                       1.1939225      9.5
## X124           4.6844119                       0.6418539     13.0
## X126           3.4937139                       1.0647107     10.0
## X128           5.4441788                       0.6931472      8.9
## X129           4.4745686                       0.8754687      8.4
## X130           3.7036702                       0.8754687      4.0
## X131           3.7797161                       0.5306283     10.0
## X132           3.3286939                       0.6418539     12.0
## X133           4.0237466                       0.5306283     13.0
## X134           5.2646088                       0.7419373     12.0
## X135           4.0237466                       0.7419373      8.7
## X136           2.7530556                       0.8329091     29.0
## X137           2.2591348                       0.6931472      9.7
## X139           2.4079204                       0.8329091     13.0
## X140           2.9447661                       0.1823216     22.0
## X141           4.6844119                       0.5877867     12.0
## X143           0.7317775                       1.0296194      7.1
## X144           4.0237466                       0.5877867     12.0
## X145           1.5787922                       0.6931472      9.8
## X146           3.4937139                       0.6418539     15.0
## X147           4.2548002                       0.5306283     11.0
## X148           6.4130123                       0.7884574      9.7
## X149           3.7291737                       0.7419373      8.9
## X152           5.4441788                       0.3364722     14.0
## X153           6.4130123                       1.0986123      8.8
## X154           3.7036702                       0.5877867      8.9
## X155           4.2548002                       0.8754687      8.1
## X156           5.4441788                       0.5877867      9.0
## X157           3.4937139                       0.8329091     11.0
## X158           3.5472311                       0.6931472      7.0
## X159           2.8181133                       0.9932518      9.3
## X160           4.0237466                       0.5877867      8.5
## X161           4.6844119                       0.8754687     13.0
## X162           2.0219013                       0.6931472      9.1
## X163           1.7191085                       0.7884574     11.0
## X165           2.1030230                       0.6418539     14.0
## X166           3.3566831                       0.8329091     13.0
## X167           2.4079204                       0.4700036     10.0
## X168           3.7797161                       0.6418539      7.7
## X169           3.7797161                       0.7884574     12.0
## X170           4.4745686                       0.7884574     14.0
## X171           4.0237466                       1.0647107     13.0
## X172           2.1030230                       0.6418539      8.5
## X174           5.2646088                       1.4109870     12.0
## X175           5.6178580                       0.4054651     18.0
## X176           4.4745686                       1.2809338     17.0
## X177           3.3844731                       0.6931472     12.0
## X178           3.5205617                       1.0296194      8.3
## X179           6.8429820                       1.0986123     13.0
## X180           4.0237466                       0.6418539     16.0
## X181           3.4394702                       0.8754687     11.0
## X182           2.4079204                       0.5877867     11.0
## X183           4.6844119                       0.9932518      6.5
## X184           2.1427912                       0.4700036     14.0
## X185           4.8854423                       0.8329091     12.0
## X186           4.0237466                       0.7884574     18.0
## X189           3.5205617                       0.6418539     13.0
## X190           2.2591348                       0.7884574     14.0
## X191           4.0237466                       0.3364722      8.1
## X192           2.5502306                       0.5877867     19.0
## X193           3.0671471                       0.9932518     11.0
## X194           2.6867663                       0.8754687      9.5
## X195           4.0237466                       0.4054651     12.0
## X197           4.6844119                       0.7884574     15.0
## X198           3.6261997                       0.6931472      5.2
## X200           3.2146659                       0.4700036     12.0
## X201           2.6191813                       1.0647107     14.0
## X202           1.5787922                       0.8754687     10.0
## X205           4.2548002                       0.7419373     12.0
## X208           4.2548002                       0.5306283     20.0
## X210           4.2548002                       0.6418539     18.0
## X212           2.6531400                       0.9162907     11.0
## X213           4.6844119                       0.5306283     11.0
## X214           5.2646088                       0.5306283      5.5
## X215           3.0671471                       1.0296194     11.0
## X216           4.6844119                       0.7884574     11.0
## X218           5.2646088                       0.5877867     14.0
## X219           3.7797161                       1.0296194     14.0
## X220           3.0671471                       0.7884574     11.0
## X223           4.4745686                       0.5877867     12.0
## X224           3.5472311                       0.5877867     11.0
## X225           2.3713615                       0.6418539     13.0
## X226           2.3713615                       0.4054651     17.0
## X227           6.7029984                       0.6418539      4.8
## X228           3.0671471                       0.8329091     15.0
## X229           2.5848812                       0.6931472     11.0
## X230           4.6844119                       0.7884574      9.4
## X231           4.2548002                       0.9162907     11.0
## X232           3.7291737                       0.7419373     14.0
## X233           4.2548002                       0.8754687      9.0
## X234           4.4745686                       0.8754687      9.8
## X236           3.0671471                       0.7884574      8.1
## X237           4.6844119                       0.9555114     16.0
## X239           2.9757467                       0.9932518     13.0
## X240           4.0237466                       0.9932518     11.0
## X241           2.7857346                       1.0296194     15.0
## X242           7.6238473                       0.5877867     13.0
## X243           4.2548002                       0.9555114      9.1
## X244           4.0237466                       1.0647107     15.0
## X245           1.4810717                       0.9555114     12.0
## X246           3.6780085                       0.8754687     11.0
## X247           3.0369315                       0.6931472     12.0
## X249           4.0237466                       0.5877867     17.0
## X250           4.4745686                       0.7419373     12.0
## X251           3.4120676                       0.7419373     12.0
## X253           5.0785828                       0.9932518     13.0
## X254           1.9385358                       0.5877867     10.0
## X255           4.4745686                       0.9555114     22.0
## X256           1.8088944                       0.7884574     10.0
## X257           2.4798381                       0.9555114     10.0
## X258           4.6844119                       0.4054651     13.0
## X260           4.6844119                       0.6931472     13.0
## X261           3.4937139                       1.1631508     12.0
## X262           3.6261997                       0.6931472      9.9
## X263           3.2721023                       0.6931472     14.0
## X264           5.4441788                       0.7884574     11.0
## X265           3.4937139                       0.9162907     18.0
## X267           2.9135187                       0.6931472     14.0
## X268           4.0237466                       0.7419373     12.0
## X269           3.1856203                       0.7419373      7.8
## X270           3.5205617                       0.4700036     11.0
## X271           5.0785828                       0.8329091     15.0
## X272           2.7857346                       0.9555114     17.0
## X273           3.7797161                       0.7884574     16.0
## X274           2.1030230                       0.9162907      9.0
## X275           2.6531400                       0.7419373     11.0
## X277           4.4745686                       0.6931472      9.7
## X278           4.4745686                       0.5877867      6.9
## X279           3.6521859                       0.7419373     14.0
## X281           3.0369315                       0.5877867     13.0
## X282           3.7797161                       0.8329091     11.0
## X283           4.0237466                       0.4700036     22.0
## X287           3.4394702                       0.5877867     12.0
## X289           3.4937139                       0.8329091     11.0
## X290           2.5502306                       0.5877867     15.0
## X291           4.2548002                       0.6418539     20.0
## X292           4.8854423                       0.7419373     10.0
## X294           3.6780085                       0.9162907      0.1
## X297           4.0237466                       0.9555114      7.6
## X298           4.2548002                       0.6931472     12.0
## X299           3.6780085                       0.9162907     12.0
## X301           2.8819985                       0.8329091      3.4
## X302           2.5848812                       0.9932518      8.6
## X303           2.6867663                       0.8329091     13.0
## X304           2.2591348                       0.9932518     18.0
## X305           4.0237466                       0.6418539     18.0
## X306           5.0785828                       0.6931472     17.0
## X307           4.0237466                       0.6931472     12.0
## X308           4.4745686                       0.5306283     14.0
## X311           4.2548002                       1.2237754      9.0
## X312           3.0971187                       0.5877867     15.0
## X313           0.5911464                       0.6418539      9.1
## X314           2.6867663                       0.9555114     10.0
## X315           4.8854423                       0.8754687     14.0
## X316           3.4120676                       0.6931472     12.0
## X317           3.7291737                       0.6931472      7.4
## X320           5.9494361                       0.7419373      6.4
## X321           3.1856203                       0.8754687      4.3
## X322           5.0785828                       0.6931472     14.0
## X323           1.1637797                       0.8329091      9.9
## X324           2.0627326                       0.8754687      9.5
## X325           4.6844119                       0.6418539     20.0
## X326           3.2146659                       0.5877867     12.0
## X327           4.4745686                       0.8329091      0.1
## X329           3.3844731                       0.7419373      7.1
## X330           6.7029984                       1.0296194     11.0
## X331           3.7797161                       0.5306283     14.0
## X332           2.9447661                       0.9932518     11.0
## X333           3.7797161                       0.2623643      7.2
##      Creatine_Kinase_MB Cystatin_C       EGF_R    EN_RAGE    ENA_78 Eotaxin_3
## X1            -1.710172   9.041922 -0.13545431 -3.6888795 -1.349543        53
## X2            -1.751002   9.067624 -0.37004744 -3.8167128 -1.356595        62
## X3            -1.383559   8.954157 -0.73298708 -4.7559931 -1.390672        62
## X5            -1.625834   8.977146 -0.62060338 -2.3644605 -1.339440        64
## X6            -1.671366   7.835975 -1.11122739 -3.4420194 -1.363957        57
## X7            -1.739232   8.740337 -0.69979867 -5.0672056 -1.349543        64
## X8            -1.571048   7.736307 -0.97630091 -3.7722611 -1.381639        64
## X9            -1.671366   8.357024 -0.62060338 -4.7795236 -1.371699        64
## X11           -1.751002   8.375630 -0.51749076 -3.9633163 -1.382507        82
## X12           -1.671366   8.061487 -0.69979867 -1.3093333 -1.383822        73
## X14           -1.683772   8.692826 -0.63604036 -3.8167128 -1.360233        67
## X16           -1.671366   8.326033 -0.54612169 -3.5755508 -1.378653        69
## X17           -1.871938   8.055158 -0.65167154 -3.3524072 -1.360233        76
## X18           -1.780911   8.373323 -1.13570251 -4.4228486 -1.374923        33
## X19           -1.647864   7.615791 -1.13570251 -3.7297014 -1.367775        54
## X20           -1.518336   8.696176 -0.63604036 -2.9565116 -1.363957        77
## X21           -1.671366   7.944492 -1.01923714 -3.0576077 -1.360233        64
## X22           -1.647864   8.972083 -0.34483937 -3.1235656 -1.367775        73
## X23           -1.590122   8.373323 -0.65167154 -2.4191189 -1.372498        30
## X24           -1.751002   8.765615 -0.39571116 -5.1159958 -1.389729        82
## X25           -1.724319   8.035926 -0.87620360 -3.7297014 -1.382507        82
## X26           -1.724319   8.163371 -0.57539617 -4.0173835 -1.379499        70
## X28           -1.755051   8.737132 -0.76713789 -3.6119184 -1.346117        76
## X29           -1.647864   8.019613 -1.01923714 -4.0173835 -1.367775        34
## X30           -1.710172   8.092545 -0.74993753 -3.7722611 -1.374923        43
## X31           -1.653590   8.564077 -0.97630091 -3.5755508 -1.380778        64
## X34           -1.625834   8.407378 -0.80232932 -3.8632328 -1.383822        44
## X35           -1.625834   7.965546 -0.80232932 -3.9633163 -1.378653        44
## X36           -1.671366   8.357024 -0.69979867 -3.5065579 -1.363957        64
## X37           -1.780911   8.359369 -0.43511112 -3.1010928 -1.371699        70
## X38           -1.585271   8.294050 -0.87620360 -2.9187712 -1.378653        34
## X39           -1.683772   9.268609 -0.43511112 -4.5098600 -1.374516        62
## X40           -1.590122   8.782630 -0.93510686 -3.1235656 -1.367775        62
## X41           -1.671366   8.352319 -0.82034264 -3.2701691 -1.353033        54
## X42           -1.724319   8.538955 -0.63604036 -4.3428059 -1.404087        92
## X43           -1.710172   8.055158 -1.01923714 -4.2686979 -1.363957        43
## X44           -1.590122   8.980927 -0.66750355 -2.4769385 -1.381208        72
## X45           -1.780911   8.720950 -0.66750355 -3.6119184 -1.353033        82
## X46           -1.590122   9.341369 -0.43511112 -3.4112477 -1.376981        72
## X47           -1.868851   7.791523 -1.06412706 -3.5755508 -1.392588        64
## X48           -1.780911   8.972083 -0.42185317 -4.6459922 -1.360233        96
## X50           -1.671366   8.519191 -0.33239959 -3.5404594 -1.353033        73
## X51           -1.571048   8.954157 -0.71627709 -4.9336743 -1.390672        54
## X53           -1.518336   8.730690 -0.51749076 -1.9661129 -1.376981        52
## X55           -1.590122   8.884610 -0.40872089 -3.4737681 -1.383382        30
## X56           -1.696685   8.490849 -0.69979867 -3.4420194 -1.383822        54
## X57           -1.571048   9.441452 -0.40872089 -3.5065579 -1.386052        49
## X59           -1.671366   8.438150 -0.54612169 -2.9374634 -1.383822        64
## X60           -1.653590   8.405144 -1.11122739 -3.6119184 -1.367775        53
## X61           -1.710172   8.311398 -1.08738275 -1.9661129 -1.395547        43
## X62           -1.653590   8.188689 -0.93510686 -3.5755508 -1.374923        33
## X63           -1.724319   8.218787 -0.66750355 -3.9120230 -1.389729        64
## X64           -1.671366   8.470102 -0.78459824 -2.8473123 -1.378653        54
## X65           -1.590122   8.679312 -0.60535429 -3.4420194 -1.381208        52
## X67           -1.868851   8.821732 -0.44849801 -3.5755508 -1.383822        54
## X68           -1.647864   8.919988 -0.68354345 -4.0745419 -1.363957        64
## X69           -1.653590   8.407378 -1.13570251 -5.0672056 -1.367775        43
## X70           -1.755051   8.634087 -0.60535429 -3.9633163 -1.363957        70
## X71           -1.683772   8.646466 -0.82034264 -2.9957323 -1.363957        52
## X72           -1.751002   9.694000 -0.53172814 -3.1010928 -1.367775        83
## X73           -1.459630   9.230143 -0.43511112 -2.8302178 -1.381208        83
## X74           -1.605032   7.992945 -1.06412706 -1.4271164 -1.374923        53
## X75           -1.631218   8.398410 -0.83865049 -2.1202635 -1.372498        83
## X76           -1.755051   8.929303 -0.06111597 -3.8632328 -1.396051        54
## X77           -1.751002   8.843615 -0.54612169 -4.5098600 -1.367775        44
## X78           -1.780911   8.811354 -0.46201723 -4.1997051 -1.353033        70
## X80           -1.605032   8.171882 -0.85726607 -3.5065579 -1.349543        53
## X81           -1.780911   8.656955 -0.38282097 -2.7646206 -1.383822        44
## X82           -1.871938   8.496990 -0.80232932 -3.7297014 -1.363957        70
## X83           -1.441430   8.391630 -0.83865049 -2.9187712 -1.353033        44
## X84           -1.671366   8.301522 -0.78459824 -3.6119184 -1.378653        69
## X85           -1.671366   9.203316 -0.34483937 -3.2701691 -1.378653        44
## X86           -1.724319   9.072227 -0.63604036 -3.2835831 -1.356595        78
## X88           -1.710172   8.790269 -0.56067607 -3.1700857 -1.367775        64
## X90           -1.571048   7.625595 -1.18673610 -2.7333680 -1.386052        39
## X93           -1.830294   8.634087 -0.76713789 -4.1997051 -1.367775        64
## X94           -1.724319   9.196241 -0.37004744 -2.2072749 -1.367775        83
## X95           -1.751002   8.064636 -0.78459824 -3.2188758 -1.353033        43
## X96           -1.724319   8.625150 -0.60535429 -4.1997051 -1.371699        70
## X97           -1.780911   8.681011 -0.48946700 -3.8167128 -1.402398        70
## X98           -1.710172   8.229511 -0.91510681 -1.8971200 -1.395547        33
## X99           -1.590122   9.065315 -0.50340513 -3.6496587 -1.367775        83
## X100          -1.724319   9.061840 -0.46201723 -3.1941832 -1.378653        39
## X103          -1.590122   9.546813 -0.56067607 -4.0173835 -1.367775        93
## X104          -1.830294   9.220291 -0.65167154 -3.7722611 -1.342751        44
## X105          -1.751002   9.375855 -0.46201723 -3.5065579 -1.356595        52
## X107          -1.653590   8.877661 -0.59028711 -3.2968374 -1.367775        48
## X108          -1.653590   8.895630 -0.80232932 -4.5098600 -1.367775        64
## X109          -1.552786   8.612503 -0.69979867 -3.3813948 -1.386052        41
## X110          -1.653590   8.194229 -1.04142304 -4.1351666 -1.360233        38
## X111          -1.647864   8.767173 -0.38282097 -3.7722611 -1.367775        64
## X112          -1.653590   8.987197 -0.83865049 -3.3524072 -1.342751        59
## X113          -1.821115   8.448914 -0.35738780 -4.0745419 -1.360233        70
## X114          -1.780911   8.032685 -1.08738275 -4.1997051 -1.376154        70
## X115          -1.724319   8.237479 -0.60535429 -3.9633163 -1.373705        64
## X117          -1.653590   8.706159 -0.56067607 -0.3856625 -1.363957        64
## X118          -1.755051   8.616133 -0.60535429 -4.6777409 -1.373301        95
## X121          -1.671366   8.839277 -0.50340513 -4.1351666 -1.389729        64
## X123          -1.677510   8.151910 -1.24093251 -4.1997051 -1.405242        69
## X124          -1.647864   8.767173 -0.87620360 -4.9336743 -1.373705        44
## X126          -1.671366   8.737132 -0.85726607 -3.2441936 -1.367775        59
## X128          -1.868851   8.724207 -0.60535429 -3.5755508 -1.378653        44
## X129          -1.671366   8.122668 -0.97630091 -4.1351666 -1.389729        54
## X130          -1.696685   8.294050 -0.42185317 -3.3813948 -1.373301        57
## X131          -1.590122   8.722580 -0.71627709 -3.4737681 -1.381208        52
## X132          -1.653590   8.649974 -0.68354345 -3.0576077 -1.374923        64
## X133          -1.780911   8.416267 -0.60535429 -4.6051702 -1.386052        82
## X134          -1.631218   8.669056 -0.46201723 -1.5141277 -1.371699        70
## X135          -1.710172   8.760923 -0.71627709 -4.9198809 -1.395547        64
## X136          -1.647864   8.328451 -0.66750355 -4.1997051 -1.377815        64
## X137          -1.747018   8.143227 -0.83865049 -3.5404594 -1.390672        41
## X139          -1.671366   8.294050 -0.82034264 -3.1465552 -1.382507        57
## X140          -1.871938   8.674197 -0.59028711 -4.1997051 -1.376154        70
## X141          -1.871938   8.422883 -0.47567232 -3.1941832 -1.360233        70
## X143          -1.653590   8.266164 -1.01923714 -2.7968814 -1.360233        64
## X144          -1.751002   8.242756 -1.01923714 -4.6051702 -1.382507        64
## X145          -1.710172   8.760923 -0.89547834 -4.0173835 -1.363957        33
## X146          -1.631218   8.558335 -0.85726607 -2.6450754 -1.371699        88
## X147          -1.755051   8.738735 -0.74993753 -4.4228486 -1.360233        70
## X148          -1.571048   8.582981 -0.66750355 -2.8647040 -1.373705        73
## X149          -1.518336   8.625150 -0.71627709 -1.6607312 -1.386052        52
## X152          -1.724319   9.096051 -0.39571116 -3.6496587 -1.371699       107
## X153          -1.724319   8.474286 -0.66750355 -2.3538784 -1.371699        95
## X154          -1.518336   8.759355 -0.83865049 -3.1700857 -1.386052        62
## X155          -1.605032   8.509161 -1.08738275 -3.3813948 -1.363957        59
## X156          -1.631218   9.002085 -0.47567232 -2.3227878 -1.372498        67
## X157          -1.653590   8.887376 -0.89547834 -3.2441936 -1.367775        85
## X158          -1.590122   8.865029 -0.60535429 -4.0745419 -1.386052        62
## X159          -1.585271   7.933797 -0.59028711 -3.9633163 -1.383822        23
## X160          -1.683772   9.341369 -0.46201723 -4.4228486 -1.390672        62
## X161          -1.671366   8.887376 -0.56067607 -3.4112477 -1.367775        64
## X162          -1.647864   8.930626 -0.59028711 -3.7722611 -1.377815        49
## X163          -1.647864   8.501064 -0.60535429 -3.7722611 -1.381639        34
## X165          -1.653590   8.677610 -0.76713789 -3.8167128 -1.371699        57
## X166          -1.868851   8.649974 -0.59028711 -3.1465552 -1.389729        64
## X167          -1.647864   9.694000 -0.28367882 -4.9336743 -1.373705        64
## X168          -1.683772   8.894259 -0.39571116 -2.8824036 -1.376981        46
## X169          -1.631218   8.174703 -0.91510681 -4.8665350 -1.382507        70
## X170          -1.724319   7.922986 -0.99753895 -2.9957323 -1.349543        82
## X171          -1.671366   9.014325 -0.47567232 -4.2686979 -1.373705        54
## X172          -1.677510   8.692826 -0.91510681 -4.0745419 -1.405242        43
## X174          -1.625834   8.684401 -0.47567232 -4.4228486 -1.376154        54
## X175          -1.724319   8.503094 -0.76713789 -4.0745419 -1.371699        70
## X176          -1.671366   8.511175 -0.87620360 -1.6094379 -1.383822        64
## X177          -1.647864   8.776476 -0.68354345 -5.0832060 -1.363957        44
## X178          -1.724319   8.154788 -0.97630091 -0.4155154 -1.346117        34
## X179          -1.671366   8.188689 -0.71627709 -3.2968374 -1.376154        70
## X180          -1.653590   8.357024 -0.74993753 -4.6777409 -1.376154        82
## X181          -1.478464   8.347590 -1.04142304 -5.0832060 -1.367775        29
## X182          -1.710172   8.837826 -0.74993753 -3.1941832 -1.367775        64
## X183          -1.653590   8.048788 -1.26939244 -4.3428059 -1.360233        64
## X184          -1.590122   8.692826 -0.48946700 -2.9957323 -1.367775        70
## X185          -1.585271   8.180321 -0.69979867 -4.1351666 -1.373705        59
## X186          -1.724319   8.242756 -0.68354345 -4.1351666 -1.376154        45
## X189          -1.653590   8.345218 -0.87620360 -4.1997051 -1.382507        33
## X190          -1.647864   8.840725 -0.48946700 -4.7559931 -1.381639        54
## X191          -1.647864   8.846497 -0.76713789 -3.2968374 -1.360233        44
## X192          -1.441430   9.433484 -0.56067607 -4.4228486 -1.353033        54
## X193          -1.671366   9.002085 -0.59028711 -3.6496587 -1.389729        73
## X194          -1.647864   8.472196 -0.74993753 -3.7722611 -1.353033        44
## X195          -1.751002   9.367344 -0.32006598 -3.0791139 -1.367775        67
## X197          -1.780911   8.774931 -0.65167154 -3.5065579 -1.353033        82
## X198          -1.518336   8.478452 -0.83865049 -4.4228486 -1.363957        44
## X200          -1.653590   8.565983 -0.65167154 -4.7444323 -1.367775        43
## X201          -1.605032   8.470102 -0.83865049 -2.6882476 -1.373705        44
## X202          -1.710172   8.323608 -1.04142304 -2.6310892 -1.367775        48
## X205          -1.751002   9.037177 -0.62060338 -4.1351666 -1.386052        77
## X208          -1.571048   8.823206 -0.56067607 -3.7297014 -1.381639        44
## X210          -1.780911   8.273847 -0.59028711 -3.0791139 -1.360233        76
## X212          -1.780911   8.224164 -0.66750355 -3.0576077 -1.378653        44
## X213          -1.590122   8.465900 -0.69979867 -4.2686979 -1.349543        70
## X214          -1.459630   9.097172 -0.91510681 -2.1202635 -1.376981        41
## X215          -1.653590   8.691146 -0.76713789 -4.2686979 -1.367775        43
## X216          -1.647864   8.064636 -0.95549787 -4.4228486 -1.360233        44
## X218          -1.543930   8.283999 -0.87620360 -3.9633163 -1.373705        54
## X219          -1.671366   8.308938 -0.68354345 -3.7722611 -1.396051        44
## X220          -1.671366   8.492900 -0.59028711 -4.0173835 -1.378653        44
## X223          -1.605032   8.558335 -0.74993753 -4.4228486 -1.363957        43
## X224          -1.710172   8.874868 -0.68354345 -3.7297014 -1.367775        43
## X225          -1.653590   9.031214 -0.44849801 -4.8665350 -1.367775        53
## X226          -1.647864   9.277999 -0.59028711 -3.0159350 -1.381639        83
## X227          -1.780911   8.488794 -0.66750355 -3.9120230 -1.374923        74
## X228          -1.653590   8.474286 -0.87620360 -4.1351666 -1.360233        33
## X229          -1.780911   8.207947 -0.91510681 -4.2686979 -1.398625        45
## X230          -1.871938   8.480529 -0.93510686 -3.3813948 -1.376154        70
## X231          -1.590122   8.407378 -0.37004744 -2.4889147 -1.360233        57
## X232          -1.571048   8.785692 -0.73298708 -4.5098600 -1.363957        54
## X233          -1.751002   7.989560 -0.99753895 -4.2686979 -1.381639        34
## X234          -1.448638   8.420682 -0.74993753 -3.9120230 -1.360233        70
## X236          -1.724319   8.318742 -0.68354345 -4.7676891 -1.363957        57
## X237          -1.724319   8.765615 -0.78459824 -1.7147984 -1.367775        44
## X239          -1.605032   7.714231 -1.36134745 -2.8473123 -1.363957        33
## X240          -1.557281   8.345218 -1.01923714 -4.2686979 -1.374923        43
## X241          -1.780911   8.361708 -0.54612169 -3.2968374 -1.360233        45
## X242          -1.518336   8.306472 -0.78459824 -3.8632328 -1.363957        72
## X243          -1.625834   8.177516 -0.89547834 -2.5010360 -1.386959        44
## X244          -1.671366   8.433812 -0.74993753 -3.9120230 -1.373705        64
## X245          -1.571048   7.432484 -0.97630091 -4.2686979 -1.375743        23
## X246          -1.710172   8.499029 -0.78459824 -2.3025851 -1.367775        64
## X247          -1.751002   8.405144 -0.89547834 -3.1700857 -1.377815        39
## X249          -1.724319   9.341369 -0.48946700 -4.1351666 -1.376154        82
## X250          -1.518336   8.812843 -0.63604036 -3.4737681 -1.367775        72
## X251          -1.625834   8.743532 -0.73298708 -4.1351666 -1.378653        54
## X253          -1.724319   8.546752 -0.93510686 -3.1010928 -1.373705        64
## X254          -1.710172   9.016756 -0.19077873 -3.4737681 -1.356595        80
## X255          -1.671366   8.706159 -0.46201723 -1.8325815 -1.378653        73
## X256          -1.724319   8.550628 -0.66750355 -4.2686979 -1.378653        34
## X257          -1.625834   8.131531 -0.93510686 -4.2686979 -1.383822        44
## X258          -1.590122   9.187072 -0.68354345 -3.4420194 -1.381208        72
## X260          -1.830294   9.014325 -0.59028711 -4.6051702 -1.375743        64
## X261          -1.647864   7.955074 -0.69979867 -3.4737681 -1.367775         7
## X262          -1.571048   8.328451 -0.71627709 -3.9633163 -1.381639        39
## X263          -1.830294   8.905173 -0.51749076 -4.1997051 -1.377815        64
## X264          -1.724319   8.371011 -0.73298708 -3.4112477 -1.356595        69
## X265          -1.830294   8.896999 -0.73298708 -4.8158912 -1.373705        54
## X267          -1.751002   8.999619 -0.44849801 -3.4420194 -1.371699        70
## X268          -1.571048   8.767173 -0.47567232 -4.4228486 -1.360233        44
## X269          -1.653590   8.391630 -0.99753895 -3.5755508 -1.363957        33
## X270          -1.647864   9.546813 -0.69979867 -3.7297014 -1.386052        49
## X271          -1.571048   9.077951 -0.44849801 -3.3524072 -1.356595        64
## X272          -1.647864   8.773385 -0.68354345 -4.7559931 -1.375743        49
## X273          -1.647864   9.143132 -0.78459824 -5.2590967 -1.367775        78
## X274          -1.647864   8.400659 -0.54612169 -2.8824036 -1.386052        39
## X275          -1.780911   8.496990 -0.59028711 -5.0672056 -1.346117        53
## X277          -1.696685   8.304000 -0.74993753 -3.1941832 -1.371699        33
## X278          -1.710172   8.787220 -0.93510686 -3.7297014 -1.363957        53
## X279          -1.780911   8.271293 -0.85726607 -4.5098600 -1.353033        51
## X281          -1.631218   8.444622 -0.35738780 -2.8302178 -1.382507        82
## X282          -1.518336   8.308938 -0.83865049 -2.3751558 -1.363957        72
## X283          -1.571048   9.268609 -0.32006598 -3.3450880 -1.367775        92
## X287          -1.683772   8.794825 -0.54612169 -3.6888795 -1.376981        52
## X289          -1.605032   8.098643 -0.89547834 -4.1997051 -1.387873        33
## X290          -1.590122   8.478452 -0.93510686 -2.7646206 -1.367775        46
## X291          -1.871938   8.380227 -0.56067607 -2.6450754 -1.371699        57
## X292          -1.710172   8.771835 -0.46201723 -3.0576077 -1.387873        74
## X294          -1.557281   7.749322 -1.11122739 -3.1235656 -1.353033        43
## X297          -1.671366   8.283999 -0.57539617 -4.6777409 -1.386959        54
## X298          -1.751002   8.396155 -0.97630091 -3.0576077 -1.386052        62
## X299          -1.780911   8.610684 -0.69979867 -4.3428059 -1.389729        82
## X301          -1.671366   8.125631 -0.69979867 -4.4228486 -1.378653        54
## X302          -1.653590   7.926603 -1.13570251 -3.8167128 -1.367775        33
## X303          -1.830294   8.472196 -0.56067607 -4.0745419 -1.367775        54
## X304          -1.780911   9.143132 -0.33239959 -4.9062753 -1.383822        59
## X305          -1.647864   9.072227 -0.39571116 -3.4112477 -1.373705        73
## X306          -1.653590   9.124782 -0.71627709 -4.0173835 -1.353033        74
## X307          -1.710172   8.829080 -0.53172814 -3.3242363 -1.349543        64
## X308          -1.653590   8.648221 -0.59028711 -3.6496587 -1.360233        33
## X311          -1.724319   8.371011 -0.71627709 -3.3813948 -1.376154        54
## X312          -1.724319   8.874868 -0.37004744 -2.8302178 -1.367775        64
## X313          -1.571048   8.582981 -0.60535429 -3.5404594 -1.377815        54
## X314          -1.518336   8.662159 -0.66750355 -8.3774312 -1.386052        44
## X315          -1.710172   8.525161 -0.68354345 -3.2968374 -1.349543        48
## X316          -1.590122   8.820256 -0.62060338 -3.1235656 -1.390672        41
## X317          -1.751002   8.984694 -0.87620360 -2.3751558 -1.372498        62
## X320          -1.459630   8.470102 -0.74993753 -4.3428059 -1.363957        62
## X321          -1.590122   7.926603 -1.13570251 -3.4420194 -1.371699        52
## X322          -1.724319   8.722580 -0.47567232 -3.3242363 -1.360233        64
## X323          -1.830294   9.287301 -0.89547834 -4.8158912 -1.386052        54
## X324          -1.780911   8.398410 -0.80232932 -3.6496587 -1.339440        43
## X325          -1.571048   8.672486 -0.54612169 -4.3428059 -1.373705        54
## X326          -1.518336   8.470102 -0.97630091 -2.9374634 -1.395547        44
## X327          -1.871938   8.621553 -0.44849801 -1.9661129 -1.376154        82
## X329          -1.868851   8.588583 -0.39571116 -4.7330036 -1.371699        44
## X330          -1.780911   7.979339 -1.08738275 -4.7676891 -1.367775        70
## X331          -1.605032   8.149024 -0.68354345 -4.5098600 -1.386052        49
## X332          -1.571048   8.276395 -0.99753895 -4.1997051 -1.375743        54
## X333          -1.647864   9.694000 -0.24816638 -2.9759296 -1.373705        69
##              FAS FSH_Follicle_Stimulation_Hormon Fas_Ligand
## X1   -0.08338161                      -0.6516715  3.1014922
## X2   -0.52763274                      -1.6272839  2.9788133
## X3   -0.63487827                      -1.5630004  1.3600098
## X5   -0.12783337                      -0.9763009  4.0372847
## X6   -0.32850407                      -1.6832823  2.4071818
## X7   -0.71334989                      -1.2988756  3.1014922
## X8   -0.71334989                      -1.7833269  1.8664764
## X9   -0.82098055                      -0.6053543  3.5787773
## X11  -0.02020271                      -0.1795552  3.9808937
## X12  -0.71334989                      -1.4294363  2.6654557
## X14  -0.44628710                      -0.8023293  3.8673473
## X16  -0.41551544                      -1.9018595  3.5787773
## X17  -0.02020271                      -1.9376269  2.4071818
## X18  -0.82098055                      -1.4294363  2.7919923
## X19  -0.47803580                      -0.5034051  3.2828922
## X20  -0.63487827                      -1.4660558  1.0522633
## X21  -0.07257069                      -0.5753962  4.4253224
## X22  -0.30110509                      -1.8460158  0.3794001
## X23  -0.86750057                      -1.3613475  2.8546530
## X24  -0.07257069                      -1.3946054  3.6950395
## X25  -0.57981850                      -0.6997987  2.4071818
## X26  -0.16251893                      -0.9975390  3.1014922
## X28  -0.49429632                      -1.5208516  3.1014922
## X29  -1.04982212                      -1.2988756  1.8664764
## X30  -0.96758403                      -1.2409325  4.3156075
## X31  -0.82098055                      -1.3294863  3.8673473
## X34  -0.82098055                      -1.9987562  3.4613463
## X35  -0.82098055                      -1.4660558  2.9788133
## X36  -0.49429632                      -1.5586574  3.8673473
## X37  -0.28768207                      -0.8203426  2.6015565
## X38  -0.82098055                      -0.8762036  3.5787773
## X39  -0.44628710                      -1.6779529  2.0050277
## X40  -0.63487827                      -1.7397296  2.8546530
## X41  -0.52763274                      -2.1151130  2.6654557
## X42  -0.61618614                      -0.6053543  4.9086293
## X43  -0.57981850                      -1.1867361  4.0372847
## X44  -0.63487827                      -0.5753962  4.2049870
## X45  -0.05129329                      -0.8954783  2.4071818
## X46  -0.44628710                      -0.9975390  1.3600098
## X47  -0.75502258                      -1.0641271  2.5372201
## X48  -0.30110509                      -0.9351069  3.2828922
## X50  -0.44628710                      -0.3448394  7.6327510
## X51  -0.65392647                      -1.3294863  1.7253811
## X53  -0.52763274                      -0.8023293  3.1014922
## X55  -0.63487827                      -0.6206034  2.2752257
## X56  -0.71334989                      -1.1867361  4.4253224
## X57  -0.11653382                      -1.6520506  1.5084870
## X59  -0.71334989                      -0.9554979  4.6958484
## X60  -0.82098055                      -1.1357025  3.1014922
## X61  -0.71334989                      -0.6516715  3.1014922
## X62  -1.10866262                      -0.6997987  2.7919923
## X63  -0.37106368                      -1.5942865  3.5787773
## X64  -0.44628710                      -1.0641271  2.9788133
## X65  -0.73396918                      -0.8023293  1.6538133
## X67  -0.44628710                      -1.0641271  3.5787773
## X68  -0.08338161                      -1.0192371  2.2084887
## X69  -0.96758403                      -0.9151068  3.4613463
## X70  -0.44628710                      -0.9554979  3.2227633
## X71  -0.52763274                      -1.2134062  2.2752257
## X72   0.09531018                      -1.1112274  2.6654557
## X73  -0.15082289                      -0.8093644  4.8026281
## X74  -0.89159812                      -1.5047321  3.1014922
## X75  -0.52763274                      -0.8954783  2.2752257
## X76  -0.31471074                      -0.2020847  2.6654557
## X77  -0.47803580                      -0.6835434  2.2084887
## X78   0.33647224                      -0.4620172  4.1493268
## X80  -0.52763274                      -1.1608546  4.5882647
## X81  -0.71334989                      -0.3573878  2.3414512
## X82  -0.57981850                      -1.1608546  3.1014922
## X83  -0.26136476                      -1.5586574  3.6950395
## X84  -0.94160854                      -1.0641271  3.2828922
## X85  -0.31471074                      -1.0192371  3.2828922
## X86  -0.31471074                      -1.7768556  3.8673473
## X88  -0.24846136                      -1.0641271  4.9613454
## X90  -0.71334989                      -1.3946054  1.5084870
## X93  -0.47803580                      -1.6321526  2.2084887
## X94   0.09531018                      -0.8762036  3.2828922
## X95  -0.82098055                      -0.9351069  3.4613463
## X96  -0.32850407                      -1.3613475  2.7919923
## X97  -0.57981850                      -0.6360404  3.4021763
## X98  -1.51412773                      -1.3613475  1.7962595
## X99  -0.63487827                      -0.8762036  0.7271504
## X100 -0.71334989                      -0.9975390  2.3414512
## X103 -0.35667494                      -0.1463635  2.0050277
## X104 -0.71334989                      -1.4660558  3.4021763
## X105 -0.52763274                      -0.5317281  1.0522633
## X107 -0.52763274                      -0.6835434  1.4346609
## X108 -0.61618614                      -1.4294363  2.7919923
## X109 -0.94160854                      -1.2409325  2.2752257
## X110 -1.02165125                      -1.3946054  3.2828922
## X111 -0.34249031                      -0.6516715  1.8664764
## X112 -0.18632958                      -0.9975390  3.4613463
## X113 -0.02020271                      -1.3946054  4.5341630
## X114 -0.69314718                      -1.5673739  2.7919923
## X115 -0.71334989                      -0.6053543  3.8673473
## X117 -0.52763274                      -1.9018595  3.4613463
## X118 -0.26136476                      -0.8203426  3.6950395
## X121 -0.56211892                       0.0971503  2.3414512
## X123 -1.10866262                      -1.0414230  3.4613463
## X124 -1.04982212                      -0.8203426  2.5372201
## X126 -0.61618614                      -1.0641271  4.1493268
## X128 -0.31471074                      -1.3294863  3.2828922
## X129 -1.07880966                      -0.9151068  3.5787773
## X130 -0.07257069                      -1.1608546  3.4021763
## X131 -0.57981850                      -0.8386505  0.7271504
## X132 -0.71334989                      -1.6622675  2.7919923
## X133 -0.32850407                      -1.6726748  3.5202111
## X134  0.18232156                      -0.7671379  3.4021763
## X135 -0.57981850                      -1.4294363  3.1014922
## X136 -1.04982212                      -0.8572661  1.1306711
## X137 -0.73396918                      -1.2693924  2.1412227
## X139 -0.49429632                      -0.9554979  1.7253811
## X140 -0.26136476                      -1.0414230  3.9808937
## X141 -0.22314355                      -0.9975390  3.9808937
## X143 -0.82098055                      -1.6622675  3.7527477
## X144 -0.32850407                      -2.0466943  3.6950395
## X145 -0.96758403                      -0.5174908  2.4724332
## X146 -0.18632958                      -1.6995924  1.7253811
## X147 -0.32850407                      -1.1608546  3.9808937
## X148 -0.30110509                      -0.1463635  2.5372201
## X149 -0.52763274                      -0.9975390  1.6538133
## X152  0.09531018                      -1.4660558  5.7312462
## X153 -0.18632958                      -1.3946054  2.7919923
## X154 -0.73396918                      -1.4660558  0.7271504
## X155 -0.96758403                      -1.1357025  4.0372847
## X156 -0.63487827                      -1.0192371  2.8546530
## X157 -0.52763274                      -1.1112274  2.3414512
## X158 -0.73396918                      -0.5753962  1.0522633
## X159 -0.71334989                      -0.8762036  4.1493268
## X160 -0.28768207                      -1.2134062  4.0934276
## X161 -0.31471074                      -1.2409325  4.9086293
## X162 -0.30110509                      -0.3448394  3.6950395
## X163 -1.27296568                      -0.8954783  1.5084870
## X165 -0.75502258                      -1.0641271  4.8026281
## X166 -0.94160854                      -1.3613475  2.6654557
## X167 -0.18632958                      -0.9151068  4.2049870
## X168 -0.28768207                      -0.5753962  2.8546530
## X169 -0.32850407                      -1.2693924  2.7919923
## X170 -0.32850407                      -1.1357025  3.1014922
## X171 -0.44628710                      -1.0873827  3.8673473
## X172 -0.71334989                      -0.7845982  3.1014922
## X174 -0.24846136                      -1.7279412  4.1493268
## X175 -0.26136476                      -1.4660558  2.2752257
## X176 -0.37106368                      -0.8572661  3.2828922
## X177 -0.57981850                      -0.9763009  1.1306711
## X178 -0.94160854                      -0.9763009  3.5787773
## X179 -0.02020271                      -1.5332077  3.6950395
## X180 -0.12783337                      -0.7329871  4.8026281
## X181 -0.57981850                      -1.5458053  1.5084870
## X182 -0.44628710                      -1.7221470  2.4724332
## X183 -0.96758403                      -0.8762036  3.2828922
## X184  0.00000000                      -1.7397296  2.4071818
## X185 -0.31471074                      -1.0641271  2.6654557
## X186 -0.26136476                      -1.5127425  0.5565448
## X189 -0.57981850                      -1.0641271  2.7919923
## X190 -0.38566248                      -1.3613475  2.2084887
## X191 -0.57981850                      -1.5717783  2.5372201
## X192 -0.22314355                      -1.6420151  4.7493371
## X193 -0.52763274                      -0.7845982  4.1493268
## X194 -0.71334989                      -0.7845982  2.2084887
## X195 -0.28768207                      -0.4620172  3.3426940
## X197 -0.26136476                      -0.3957112  3.4021763
## X198 -1.04982212                      -1.1357025  3.1014922
## X200 -0.96758403                      -0.5606761  4.0372847
## X201 -0.34249031                      -1.5047321  0.8103017
## X202 -0.96758403                      -1.2988756  2.4724332
## X205 -0.63487827                      -1.3294863  3.8673473
## X208 -0.57981850                      -1.2134062  2.2084887
## X210 -0.18632958                      -0.7162771  4.9613454
## X212 -0.94160854                      -0.9554979  2.3414512
## X213 -0.12783337                      -0.9554979  3.1014922
## X214 -0.35667494                      -0.9351069  0.2880017
## X215 -0.44628710                      -1.4660558  3.1014922
## X216 -0.47803580                      -1.9568634  2.5372201
## X218 -0.26136476                      -1.7051413  3.6950395
## X219 -1.07880966                      -1.0873827  2.3414512
## X220 -0.71334989                      -0.8954783  2.0050277
## X223 -0.61618614                      -0.5753962  2.7919923
## X224 -0.96758403                      -1.5087252  2.1412227
## X225 -0.37106368                      -1.0641271  4.0372847
## X226 -0.15082289                      -1.1357025  2.2084887
## X227 -0.44628710                      -1.3946054  4.5882647
## X228 -0.96758403                      -1.4660558  3.7527477
## X229 -0.57981850                      -1.7579443  2.4071818
## X230 -0.02020271                      -1.0192371  2.7919923
## X231 -0.26136476                      -0.9763009  3.4021763
## X232 -0.86750057                      -1.8535550  0.8103017
## X233 -1.04982212                      -1.1867361  1.5084870
## X234 -0.40047757                      -1.2134062  2.4071818
## X236 -0.40047757                      -0.9151068  3.4021763
## X237 -0.61618614                      -1.6832823  2.6654557
## X239 -0.96758403                      -0.7671379  2.4724332
## X240 -0.96758403                      -1.3946054  3.7527477
## X241 -0.40047757                      -0.9975390  3.4021763
## X242 -0.67334455                      -1.5762143  2.8546530
## X243 -0.82098055                      -1.2988756  2.3414512
## X244 -0.71334989                      -0.9554979  2.3414512
## X245 -0.47803580                      -1.7457280  1.5084870
## X246 -0.49429632                      -1.3613475  2.4724332
## X247 -0.65392647                      -0.8572661  3.4021763
## X249 -0.05129329                      -0.8954783  3.4021763
## X250 -0.52763274                      -0.8572661  1.8664764
## X251 -1.07880966                      -0.6516715  2.2084887
## X253 -0.52763274                      -1.1357025  2.8546530
## X254 -0.03045921                      -0.6206034  5.7312462
## X255 -0.52763274                      -0.4756723  2.9788133
## X256 -1.07880966                      -0.9351069  2.0050277
## X257 -0.82098055                      -1.2409325  3.2828922
## X258 -0.35667494                      -0.4620172  2.5372201
## X260 -0.30110509                      -1.3946054  2.2084887
## X261 -1.07880966                      -1.3613475  4.1493268
## X262 -0.86750057                      -1.5806825  3.4021763
## X263 -0.30110509                      -0.8954783  2.2084887
## X264 -0.52763274                      -1.2134062  3.5787773
## X265 -0.57981850                      -1.4294363  2.3414512
## X267 -0.02020271                      -1.2988756  3.9808937
## X268 -0.57981850                      -0.9351069  4.2049870
## X269 -0.71334989                      -0.9975390  2.4724332
## X270 -0.22314355                      -1.6129165  3.9808937
## X271 -0.30110509                      -1.1608546  3.2828922
## X272 -0.57981850                      -1.6520506  2.2084887
## X273 -0.22314355                      -1.3613475  3.4021763
## X274 -0.47803580                      -1.6886644  2.5372201
## X275 -0.61618614                      -1.5087252  2.1412227
## X277 -0.32850407                      -1.3613475  3.4021763
## X278 -0.96758403                      -1.5586574  4.5882647
## X279 -0.40047757                      -0.8572661  2.0734090
## X281 -0.07257069                      -1.2988756  3.4021763
## X282 -0.52763274                      -1.2409325  0.2880017
## X283 -0.38566248                      -0.5174908  4.2049870
## X287 -0.63487827                      -0.9151068  1.6538133
## X289 -0.96758403                      -1.2134062  4.5882647
## X290 -0.63487827                      -0.6206034  0.2880017
## X291  0.00000000                      -0.7845982  2.4071818
## X292 -0.37106368                      -1.1112274  4.0372847
## X294 -0.82098055                      -2.0738009  2.4724332
## X297 -0.94160854                      -1.1357025  2.9788133
## X298 -0.94160854                      -1.7833269  1.3600098
## X299 -0.40047757                      -0.7162771  3.9808937
## X301 -0.94160854                      -1.7338014  4.9086293
## X302 -0.96758403                      -1.5047321  2.7919923
## X303 -0.38566248                      -1.5332077  2.2084887
## X304 -0.31471074                      -1.1608546  3.2828922
## X305 -0.30110509                      -1.3946054  3.1014922
## X306 -0.24846136                      -1.5673739  3.1014922
## X307 -0.37106368                      -1.5047321  4.5882647
## X308 -0.96758403                      -1.2409325  4.0372847
## X311 -0.71334989                      -0.6675036  3.5787773
## X312 -0.52763274                      -1.8460158  2.6654557
## X313 -0.71334989                      -1.1112274  2.2084887
## X314 -0.38566248                      -0.9554979  3.1014922
## X315 -0.61618614                      -1.2693924  3.7527477
## X316 -0.57981850                      -0.3573878  0.2880017
## X317 -0.52763274                      -0.6053543  2.8546530
## X320 -0.44628710                      -1.6622675  3.6370513
## X321 -0.86750057                      -1.5208516  1.3600098
## X322 -0.41551544                      -1.0414230  4.9086293
## X323 -0.15082289                      -1.5047321  2.8546530
## X324 -0.71334989                      -1.2409325  4.0372847
## X325 -0.47803580                      -0.8954783  2.5372201
## X326 -0.71334989                      -0.3957112  3.6950395
## X327 -0.02020271                      -1.2988756  2.7919923
## X329 -0.61618614                      -1.6082042  3.5787773
## X330 -0.26136476                      -0.8954783  2.7919923
## X331 -0.71334989                      -1.1112274 -0.1536154
## X332 -0.57981850                      -1.8535550  3.1014922
## X333 -0.08338161                      -0.5753962  3.6950395
##      Fatty_Acid_Binding_Protein  Ferritin  Fetuin_A Fibrinogen GRO_alpha
## X1                   2.52087117 3.3291650 1.2809338  -7.035589  1.381830
## X2                   2.24779664 3.9329588 1.1939225  -8.047190  1.372438
## X3                   0.90630094 3.1768716 1.4109870  -7.195437  1.412679
## X5                   2.63458831 2.6904158 2.1517622  -6.980326  1.398431
## X6                   0.62373057 1.8470768 1.4816045  -6.437752  1.398431
## X7                   1.59753955 3.4405882 1.1314021  -7.621105  1.338425
## X8                   0.74349177 2.8166378 1.6677068  -6.502290  1.350892
## X9                   0.34805188 2.3817805 1.0647107  -7.902008  1.381830
## X11                  0.62373057 3.0596443 1.4350845  -7.523941  1.412679
## X12                  0.55980793 3.3291650 1.4109870  -7.278819  1.398431
## X14                  1.53020362 3.0199602 1.3862944  -6.991137  1.440955
## X16                  2.65289688 2.2426407 1.4816045  -7.222466  1.412679
## X17                  0.49280272 2.5607017 1.7578579  -6.319969  1.419083
## X18                  1.05291638 2.5607017 0.8754687  -7.402052  1.324552
## X19                  0.26936976 1.7416574 1.3350011  -6.959049  1.405814
## X20                  1.49546653 2.4271887 1.5260563  -5.843045  1.430692
## X21                  1.14329840 2.2426407 1.3350011  -7.182192  1.398431
## X22                  2.20192082 4.0663004 0.8754687  -7.385791  1.405814
## X23                  1.05291638 3.0596443 1.0986123  -7.641724  1.338425
## X24                  0.90630094 4.6332496 1.1631508  -7.600902  1.372438
## X25                  0.49280272 2.6475800 1.0986123  -7.435388  1.308996
## X26                  1.89864831 3.0199602 1.0986123  -7.452482  1.381830
## X28                  2.31450540 4.3245553 1.3083328  -7.323271  1.350892
## X29                  0.62373057 2.2895221 1.0986123  -7.875339  1.338425
## X30                  0.26936976 2.3817805 0.9162907  -7.875339  1.398431
## X31                  1.78455817 2.5166359 1.5040774  -6.645391  1.381830
## X34                  1.09877705 2.0496913 1.5686159  -6.969631  1.458333
## X35                  0.79981129 2.2426407 1.7749524  -7.236259  1.362172
## X36                  1.45997005 0.8982753 1.8562980  -6.571283  1.445658
## X37                  2.35766182 3.3291650 1.0986123  -7.505592  1.398431
## X38                  1.26963623 1.6331804 1.0296194  -7.561682  1.398431
## X39                  2.29253952 3.7271284 0.9932518  -8.111728  1.291400
## X40                  1.56421694 2.1952354 1.4350845  -7.824046  1.430692
## X41                  1.42367579 2.4721360 2.0541237  -6.377127  1.398431
## X42                  1.42367579 2.6475800 1.3609766  -7.487574  1.398431
## X43                  0.90630094 1.9496835 1.3083328  -7.143478  1.362172
## X44                  2.15484541 2.5607017 1.4816045  -6.812445  1.362172
## X45                  2.87633811 3.8991525 1.6486586  -6.571283  1.425073
## X46                  2.24779664 2.9396356 0.6418539  -8.180721  1.372438
## X47                  0.49280272 2.0000000 1.4109870  -7.505592  1.405814
## X48                  1.95297508 3.9329588 0.7884574  -8.111728  1.405814
## X50                  2.03141194 2.6904158 1.2237754  -7.354042  1.435976
## X51                  2.08182149 2.9396356 1.2809338  -7.278819  1.338425
## X53                  1.18656534 2.2426407 1.2809338  -6.907755  1.390462
## X55                  1.45997005 3.8651513 1.1314021  -7.641724  1.372438
## X56                  1.78455817 2.1472883 1.8405496  -7.208860  1.390462
## X57                  1.89864831 3.7619441 1.2527630  -7.264430  1.338425
## X59                  2.08182149 3.1380930 1.6094379  -7.082109  1.430692
## X60                 -0.06149412 2.2895221 0.9932518  -6.812445  1.381830
## X61                  0.74349177 2.4271887 1.2237754  -7.013116  1.362172
## X62                 -0.81662520 0.8982753 0.9555114  -7.662778  1.324552
## X63                  1.69366072 4.2928531 1.3350011  -7.250246  1.390462
## X64                  1.59753955 2.7328638 1.8870696  -7.195437  1.430692
## X65                  1.56421694 3.2915026 0.4700036  -8.254829  1.372438
## X67                  1.05291638 3.2535702 1.0296194  -7.523941  1.390462
## X68                  1.26963623 3.2153619 1.5040774  -7.278819  1.308996
## X69                  0.79981129 1.2863353 1.3609766  -7.957577  1.308996
## X70                  1.38654222 2.1952354 0.9162907  -7.957577  1.381830
## X71                  1.72450839 3.3291650 1.4816045  -7.505592  1.350892
## X72                  2.31450540 2.0987803 1.9169226  -6.505132  1.372438
## X73                  2.31450540 3.4037024 1.3609766  -7.354042  1.338425
## X74                 -0.41274719 2.2895221 1.5260563  -7.143478  1.362172
## X75                  1.30957344 2.0000000 1.7227666  -6.437752  1.430692
## X76                  2.92446596 3.4772256 1.4586150  -7.130899  1.430692
## X77                  2.03141194 4.6332496 1.4109870  -6.319969  1.462144
## X78                  3.21875915 2.7328638 1.4816045  -6.502290  1.445658
## X80                  1.18656534 3.0990195 1.2237754  -6.917806  1.338425
## X81                  1.09877705 2.0496913 1.3350011  -7.902008  1.419083
## X82                  1.38654222 2.4721360 1.3350011  -7.338538  1.350892
## X83                  0.95678949 3.8309519 1.4586150  -8.804875  1.372438
## X84                  1.14329840 2.1952354 1.4816045  -7.250246  1.435976
## X85                  0.49280272 4.0991803 1.7917595  -7.182192  1.362172
## X86                  2.17853747 3.5497748 2.1162555  -6.214608  1.435976
## X88                  2.08182149 3.5136195 1.4816045  -6.917806  1.430692
## X90                 -1.04412698 1.2249031 0.5877867  -8.873868  1.350892
## X93                  1.56421694 3.6568542 1.4350845  -6.959049  1.372438
## X94                  3.70550563 3.2915026 2.1860513  -6.502290  1.475713
## X95                  0.55980793 3.5136195 1.2809338  -7.469874  1.405814
## X96                  1.09877705 3.2915026 0.8329091  -7.986565  1.381830
## X97                  1.72450839 2.8166378 0.9555114  -7.875339  1.381830
## X98                  0.42235886 2.0496913 1.0296194  -8.468403  1.324552
## X99                  2.39982883 3.0596443 1.0647107  -6.812445  1.405814
## X100                 1.45997005 3.0990195 1.3609766  -7.751725  1.362172
## X103                 3.21875915 3.2535702 1.3083328  -7.799353  1.405814
## X104                 1.56421694 3.6920998 1.1939225  -7.323271  1.372438
## X105                 1.66223369 3.7619441 1.1314021  -7.706263  1.372438
## X107                 1.87083027 2.6904158 1.2237754  -7.208860  1.398431
## X108                 1.38654222 3.5136195 2.0014800  -7.070274  1.338425
## X109                 0.68487244 2.6475800 0.6418539  -8.517193  1.350892
## X110                 0.79981129 2.6904158 0.7419373  -8.334872  1.435976
## X111                 1.63020224 3.9329588 1.1314021  -7.293418  1.350892
## X112                 2.86003086 2.9799598 1.8870696  -6.214608  1.425073
## X113                 1.95297508 3.7965507 2.1041342  -5.991465  1.390462
## X114                 0.34805188 1.1622777 1.0647107  -7.035589  1.381830
## X115                 0.49280272 2.3358967 1.8870696  -6.437752  1.450108
## X117                 1.75480019 2.3817805 1.2527630  -7.452482  1.398431
## X118                 2.52087117 3.4772256 1.2237754  -7.452482  1.435976
## X121                 2.54030520 3.3665631 1.7227666  -7.250246  1.398431
## X123                -0.01004024 0.6832816 0.9162907  -8.334872  1.350892
## X124                 0.26936976 2.5166359 1.7404662  -7.182192  1.338425
## X126                 1.42367579 1.7416574 1.1631508  -7.195437  1.381830
## X128                 0.55980793 2.3817805 1.9878743  -6.725434  1.454327
## X129                 0.00000000 2.5607017 1.2527630  -7.600902  1.338425
## X130                 1.26963623 2.9799598 1.6292405  -6.571283  1.372438
## X131                 1.30957344 2.5166359 1.1314021  -7.418581  1.372438
## X132                 1.69366072 2.7749346 1.5892352  -7.143478  1.362172
## X133                 1.05291638 3.5856960 1.8082888  -5.914504  1.271288
## X134                 0.68487244 3.6213877 1.6094379  -6.812445  1.398431
## X135                 2.15484541 2.0496913 1.5686159  -7.250246  1.308996
## X136                 1.09877705 1.6878178 1.2809338  -6.907755  1.412679
## X137                 0.79981129 1.5777088 0.9555114  -7.902008  1.381830
## X139                 0.90630094 3.2153619 1.0647107  -7.662778  1.338425
## X140                 1.56421694 2.6475800 1.2809338  -7.250246  1.398431
## X141                 1.49546653 3.2915026 1.7227666  -6.437752  1.419083
## X143                 0.85402456 2.5166359 1.2527630  -7.561682  1.350892
## X144                 1.49546653 3.3291650 1.2809338  -7.070274  1.372438
## X145                 0.79981129 2.3817805 1.0647107  -8.180721  1.350892
## X146                 1.66223369 2.8989795 1.8718022  -6.725434  1.381830
## X147                 1.63020224 3.1380930 1.4816045  -7.024289  1.412679
## X148                 1.14329840 2.6043458 2.0281482  -6.907755  1.425073
## X149                 0.90630094 2.3358967 0.9162907  -7.875339  1.381830
## X152                 2.46133172 4.1318839 1.8245493  -6.571283  1.494568
## X153                 1.42367579 3.0990195 1.9459101  -8.111728  1.372438
## X154                 1.38654222 3.0199602 0.7419373  -7.542634  1.308996
## X155                 1.22865470 2.7328638 1.1939225  -7.986565  1.372438
## X156                 1.81380304 3.3291650 1.6486586  -6.991137  1.390462
## X157                 2.17853747 2.6904158 0.8754687  -7.957577  1.324552
## X158                 1.14329840 2.9396356 1.0647107  -7.799353  1.350892
## X159                 0.62373057 1.1622777 0.9555114  -6.917806  1.450108
## X160                 2.13083532 3.7271284 1.0647107  -7.452482  1.350892
## X161                 0.09622438 2.3358967 1.5892352  -7.706263  1.419083
## X162                 2.13083532 3.2153619 0.6931472  -7.751725  1.405814
## X163                 0.62373057 2.6043458 0.8754687  -7.561682  1.390462
## X165                 2.33621055 2.9799598 0.9555114  -7.402052  1.390462
## X166                 0.95678949 2.8166378 0.9555114  -7.728736  1.350892
## X167                 2.10649743 3.4772256 0.9162907  -7.875339  1.372438
## X168                 1.38654222 2.7328638 1.3609766  -7.418581  1.350892
## X169                 0.95678949 1.7947332 1.2527630  -7.182192  1.324552
## X170                 0.68487244 3.3665631 1.5475625  -7.013116  1.372438
## X171                 1.53020362 2.5166359 1.8405496  -7.323271  1.381830
## X172                 0.79981129 2.8166378 1.2809338  -7.323271  1.381830
## X174                 1.26963623 3.4405882 2.1400662  -8.421883  1.412679
## X175                 2.54030520 2.7749346 1.6094379  -5.914504  1.435976
## X176                 0.95678949 2.1952354 1.4350845  -8.873868  1.419083
## X177                 2.03141194 2.9799598 1.1314021  -8.016418  1.338425
## X178                 0.26936976 0.6076810 1.0986123  -7.799353  1.412679
## X179                 0.09622438 1.8470768 2.1633230  -7.323271  1.398431
## X180                 1.89864831 2.8579831 1.2527630  -7.369791  1.398431
## X181                 1.00562217 2.0000000 1.0647107  -8.254829  1.291400
## X182                 0.42235886 3.2535702 0.9555114  -7.435388  1.324552
## X183                 1.14329840 1.0331502 1.7227666  -6.645391  1.372438
## X184                 0.68487244 2.4271887 1.0986123  -7.561682  1.372438
## X185                 1.89864831 1.9496835 1.8562980  -6.812445  1.435976
## X186                 1.42367579 2.6475800 1.2527630  -7.208860  1.308996
## X189                 0.62373057 2.7328638 0.5306283  -7.487574  1.338425
## X190                 1.49546653 3.5497748 1.1631508  -7.293418  1.291400
## X191                 1.69366072 2.8989795 1.2809338  -7.338538  1.308996
## X192                 2.57858283 3.3665631 1.4586150  -7.684284  1.425073
## X193                 1.78455817 3.1380930 1.4350845  -7.278819  1.405814
## X194                 0.26936976 3.1380930 1.5686159  -7.469874  1.308996
## X195                 2.50123416 3.2153619 1.2237754  -7.523941  1.412679
## X197                 1.59753955 3.3665631 1.5040774  -7.118476  1.405814
## X198                 0.79981129 1.6878178 1.1631508  -7.418581  1.350892
## X200                 1.18656534 3.0990195 0.9555114  -7.662778  1.372438
## X201                 0.79981129 2.5607017 1.3609766  -7.561682  1.381830
## X202                 0.62373057 2.6043458 0.8754687  -8.294050  1.308996
## X205                 1.97951393 3.4772256 1.2809338  -7.487574  1.390462
## X208                 1.05291638 3.5136195 1.9600948  -6.948577  1.291400
## X210                 1.97951393 2.6043458 1.3350011  -7.106206  1.398431
## X212                 1.84255429 2.2426407 1.3350011  -7.621105  1.390462
## X213                 2.08182149 3.2153619 1.6486586  -6.812445  1.405814
## X214                 2.24779664 2.4271887 1.4109870  -7.013116  1.462144
## X215                 1.59753955 2.9799598 0.7884574  -7.824046  1.324552
## X216                 0.95678949 1.6331804 1.5686159  -6.119298  1.425073
## X218                -0.12621307 1.8987177 1.7227666  -6.571283  1.398431
## X219                 0.55980793 1.5777088 1.2809338  -7.684284  1.412679
## X220                 0.85402456 2.4271887 0.9555114  -7.849364  1.390462
## X223                 1.84255429 3.1768716 1.7578579  -6.917806  1.338425
## X224                 1.26963623 2.6475800 1.2527630  -7.264430  1.308996
## X225                 3.07697133 2.2895221 0.8754687  -7.418581  1.372438
## X226                 2.31450540 3.4405882 1.2237754  -7.024289  1.398431
## X227                 1.78455817 2.5166359 2.2512918  -6.214608  1.398431
## X228                 0.49280272 1.2863353 0.7419373  -7.070274  1.362172
## X229                 1.18656534 1.6878178 1.3350011  -7.621105  1.381830
## X230                 1.63020224 2.1952354 1.5260563  -7.293418  1.390462
## X231                 1.09877705 2.7328638 1.1939225  -6.907755  1.381830
## X232                 1.00562217 2.8989795 1.5040774  -7.143478  1.362172
## X233                 0.85402456 2.0987803 1.2237754  -7.469874  1.398431
## X234                 2.08182149 3.0199602 1.4586150  -7.250246  1.271288
## X236                -0.17134851 2.9396356 0.9932518  -7.621105  1.324552
## X237                 1.00562217 4.3245553 2.0281482  -7.182192  1.390462
## X239                 0.09622438 1.0331502 0.6418539  -8.217089  1.271288
## X240                 0.85402456 2.2895221 0.9162907  -8.145630  1.324552
## X241                 1.53020362 3.4405882 1.7578579  -8.047190  1.338425
## X242                 0.85402456 1.7416574 1.9399676  -7.600902  1.372438
## X243                 0.26936976 2.8579831 1.6292405  -6.938214  1.362172
## X244                 2.17853747 3.8991525 1.3862944  -7.799353  1.435976
## X245                -0.10425819 2.3817805 0.7419373  -8.740337  1.390462
## X246                 1.34852439 2.5166359 1.9459101  -7.208860  1.362172
## X247                 0.90630094 2.1952354 0.6931472  -8.180721  1.398431
## X249                 3.21875915 4.0332413 1.0296194  -7.581100  1.398431
## X250                 1.38654222 2.5607017 1.3083328  -7.600902  1.381830
## X251                 0.85402456 1.6331804 1.1631508  -7.775256  1.362172
## X253                 1.45997005 2.3358967 1.5260563  -6.502290  1.405814
## X254                 3.07697133 4.0332413 1.9315214  -7.250246  1.398431
## X255                 1.87083027 2.9396356 1.6094379  -8.740337  1.405814
## X256                 1.00562217 3.5136195 0.7884574  -8.334872  1.324552
## X257                -0.05103109 2.7749346 0.9162907  -7.775256  1.362172
## X258                 2.70679585 3.0596443 1.7578579  -6.948577  1.390462
## X260                 1.30957344 3.3665631 1.5686159  -6.938214  1.440955
## X261                 0.26936976 2.0496913 0.9555114  -8.111728  1.398431
## X262                 0.09622438 3.0596443 1.2527630  -7.308233  1.390462
## X263                 1.78455817 3.1380930 1.7227666  -7.561682  1.372438
## X264                 1.66223369 3.0596443 1.9315214  -6.502290  1.350892
## X265                 1.00562217 2.4271887 1.3609766  -7.775256  1.350892
## X267                 2.27030576 3.2535702 1.3609766  -7.047017  1.390462
## X268                 1.87083027 3.0990195 1.4109870  -7.600902  1.362172
## X269                 0.62373057 1.7416574 0.9162907  -7.875339  1.324552
## X270                 2.13083532 2.7749346 0.9932518  -7.662778  1.440955
## X271                 1.84255429 4.0000000 1.5686159  -6.959049  1.398431
## X272                 1.09877705 3.0199602 1.6094379  -7.824046  1.350892
## X273                 1.92602476 3.6568542 1.2237754  -7.222466  1.350892
## X274                 1.09877705 3.4037024 1.2237754  -7.505592  1.398431
## X275                 1.66223369 2.9396356 1.6292405  -8.047190  1.338425
## X277                 0.95678949 3.4405882 1.7227666  -6.725434  1.405814
## X278                 1.53020362 3.6568542 1.0647107  -6.725434  1.324552
## X279                 0.62373057 2.2426407 1.2527630  -7.706263  1.381830
## X281                 2.15484541 3.0990195 1.2809338  -6.571283  1.398431
## X282                 1.72450839 2.2426407 1.6094379  -8.740337  1.419083
## X283                 1.87083027 4.6332496 1.6094379  -6.725434  1.435976
## X287                 1.45997005 3.1380930 1.0647107  -7.775256  1.372438
## X289                 0.42235886 2.3358967 1.0296194  -7.542634  1.338425
## X290                 1.34852439 1.7947332 0.8329091  -7.824046  1.445658
## X291                 1.59753955 3.3291650 1.2809338  -7.058578  1.475713
## X292                 2.00565516 3.8309519 1.6292405  -7.236259  1.350892
## X294                 0.42235886 1.7947332 1.2237754  -7.662778  1.308996
## X297                 0.74349177 2.3817805 1.2237754  -8.016418  1.350892
## X298                 1.22865470 1.7416574 1.4350845  -7.082109  1.291400
## X299                 2.24779664 2.7328638 1.1314021  -7.581100  1.372438
## X301                 0.79981129 1.6878178 1.1314021  -8.047190  1.362172
## X302                -0.06149412 1.4641016 1.2527630  -7.469874  1.271288
## X303                 1.09877705 3.0596443 1.6677068  -7.156217  1.308996
## X304                 2.74190799 2.3817805 0.9555114  -7.728736  1.445658
## X305                 0.55980793 4.1644140 1.2809338  -6.980326  1.390462
## X306                 2.10649743 1.4058773 1.8082888  -7.106206  1.412679
## X307                 2.75922787 4.6332496 1.9315214  -5.914504  1.372438
## X308                 1.69366072 2.8166378 1.6677068  -6.725434  1.381830
## X311                 0.68487244 2.7328638 1.5040774  -7.600902  1.412679
## X312                 2.13083532 3.8309519 1.5040774  -7.293418  1.390462
## X313                 1.49546653 2.3358967 1.4586150  -7.505592  1.440955
## X314                 1.05291638 2.0987803 0.8754687  -8.334872  1.324552
## X315                 0.68487244 2.6475800 1.8245493  -7.024289  1.372438
## X316                 1.69366072 3.2153619 1.1631508  -7.799353  1.338425
## X317                 1.78455817 2.8166378 1.1631508  -7.581100  1.350892
## X320                 0.26936976 2.3358967 1.9740810  -6.725434  1.308996
## X321                 0.55980793 1.7947332 1.9600948  -7.728736  1.324552
## X322                 1.00562217 3.2915026 1.8562980  -6.377127  1.398431
## X323                 1.53020362 3.0199602 1.2809338  -7.195437  1.338425
## X324                 1.26963623 2.5166359 0.4700036  -8.468403  1.271288
## X325                 1.18656534 2.1952354 1.7749524  -6.907755  1.398431
## X326                 1.78455817 1.8987177 0.7419373  -7.986565  1.398431
## X327                 1.95297508 3.5136195 1.3609766  -7.293418  1.398431
## X329                 1.53020362 2.0496913 1.1314021  -7.775256  1.405814
## X330                 0.90630094 2.0000000 2.1972246  -6.571283  1.381830
## X331                 0.55980793 1.6331804 1.0296194  -7.236259  1.372438
## X332                -0.38485910 2.4271887 1.3609766  -7.024289  1.362172
## X333                 2.33621055 3.0596443 1.5475625  -7.236259  1.350892
##      Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha    HB_EGF
## X1                           2.949822                       1.0641271  6.559746
## X2                           2.721793                       0.8670202  8.754531
## X3                           2.762231                       0.8890150  7.745463
## X5                           2.851987                       1.2358607  7.245150
## X6                           2.822442                       1.1538270  6.413012
## X7                           2.739315                       1.1421966  6.262563
## X8                           2.966101                       1.0343625  6.559746
## X9                           2.584357                       0.9853483  9.736307
## X11                          2.701785                       0.9676836  8.542148
## X12                          2.769220                       1.0782394  6.108135
## X14                          2.924402                       1.0495119  7.745463
## X16                          2.911527                       0.7941114  8.754531
## X17                          2.845167                       1.1538270  6.413012
## X18                          2.956388                       1.1970974  5.264609
## X19                          3.019718                       1.0343625  4.254800
## X20                          2.708297                       0.8670202  6.262563
## X21                          2.929867                       0.9853483  7.373808
## X22                          2.724975                       0.7083677  9.454406
## X23                          2.568127                       0.8439372  6.979888
## X24                          2.614139                       0.8890150  7.500000
## X25                          2.667835                       1.0343625  5.949436
## X26                          2.788951                       0.8890150  9.358191
## X28                          2.680311                       0.9853483  7.245150
## X29                          2.713850                       0.9300710  6.262563
## X30                          2.766469                       1.2358607  3.779716
## X31                          2.790112                       1.2871473  4.474569
## X34                          2.883453                       1.1178380  5.264609
## X35                          2.802914                       0.8890150  7.982407
## X36                          2.848747                       1.0186444  6.842982
## X37                          2.786199                       0.9676836  7.982407
## X38                          2.919789                       1.0023201  6.413012
## X39                          2.620513                       0.8890150  6.979888
## X40                          2.876049                       1.0641271  5.949436
## X41                          2.825646                       1.1302068  8.211578
## X42                          2.603403                       0.7083677  7.982407
## X43                          2.927719                       1.2071782  5.444179
## X44                          2.908388                       0.7671379  7.864950
## X45                          2.792403                       1.0343625  9.260790
## X46                          2.762231                       0.7941114  8.542148
## X47                          2.757357                       0.8439372  6.413012
## X48                          2.879640                       1.1050693  6.559746
## X50                          2.787386                       0.9100066  9.454406
## X51                          2.829324                       0.7386101  7.113891
## X53                          2.848276                       0.9100066  7.245150
## X55                          2.637144                       0.7083677  8.649098
## X56                          2.852215                       0.8439372  7.500000
## X57                          2.864362                       0.7386101  5.617858
## X59                          2.974175                       0.7671379  7.982407
## X60                          2.936028                       1.0023201  4.474569
## X61                          2.742679                       1.1651160  4.885442
## X62                          2.684529                       1.1970974  5.949436
## X63                          2.726228                       1.0186444  6.262563
## X64                          3.065368                       1.0023201  7.113891
## X65                          2.632564                       0.7671379  7.864950
## X67                          2.674201                       0.7386101  7.113891
## X68                          2.713850                       0.8670202  5.786135
## X69                          2.732330                       1.0641271  4.474569
## X70                          2.809013                       0.9853483  7.745463
## X71                          2.780093                       1.0186444  6.559746
## X72                          2.928799                       0.9676836  9.162164
## X73                          2.939917                       0.9853483  7.745463
## X74                          2.916177                       1.2950103  3.272102
## X75                          2.939917                       0.9853483  6.413012
## X76                          2.818539                       0.8439372  9.454406
## X77                          2.946345                       0.8670202  5.786135
## X78                          2.943646                       0.9676836  7.745463
## X80                          2.735867                       1.1760805  6.413012
## X81                          2.760303                       0.9300710  7.982407
## X82                          2.757852                       0.9676836  6.413012
## X83                          2.668760                       0.9676836  6.702998
## X84                          2.774554                       0.9492763  6.979888
## X85                          2.851530                       0.9676836  7.373808
## X86                          2.851530                       1.0023201  8.323453
## X88                          2.909446                       1.1050693  5.444179
## X90                          2.668760                       0.6419718  2.103023
## X93                          2.881737                       0.6762264  6.979888
## X94                          3.032417                       0.7941114  9.828139
## X95                          2.868085                       1.3175721  6.108135
## X96                          2.827923                       0.8439372  9.736307
## X97                          2.778414                       0.9676836  8.649098
## X98                          2.694967                       1.0495119  4.684412
## X99                          2.873869                       0.7941114  6.413012
## X100                         2.722435                       0.8670202  8.433621
## X103                         2.876049                       0.7671379  8.097921
## X104                         2.705439                       0.7941114  7.745463
## X105                         2.579644                       0.8439372  7.745463
## X107                         2.752296                       1.1760805  6.842982
## X108                         2.832888                       0.8439372  5.949436
## X109                         2.646995                       0.7671379  6.842982
## X110                         2.750740                       1.2265482  5.264609
## X111                         2.636011                       0.9300710  5.786135
## X112                         2.893035                       1.1421966  5.617858
## X113                         2.875131                       1.0186444  8.542148
## X114                         2.694190                       0.9676836  5.786135
## X115                         2.845409                       1.0186444  5.949436
## X117                         2.806678                       1.1970974  6.559746
## X118                         2.968193                       0.8439372  7.745463
## X121                         3.000719                       0.7083677  8.097921
## X123                         2.706159                       1.1760805  4.885442
## X124                         2.872708                       0.7941114  5.264609
## X126                         2.715877                       0.9300710  6.842982
## X128                         2.763185                       0.8670202  8.323453
## X129                         2.690241                       0.6762264  6.559746
## X130                         2.901221                       1.0782394  9.260790
## X131                         2.532501                       0.9100066  6.979888
## X132                         2.766469                       1.1050693  6.559746
## X133                         2.786199                       0.9492763  8.323453
## X134                         2.791263                       1.0186444  9.454406
## X135                         2.893035                       1.1970974  4.684412
## X136                         2.905282                       0.7083677  7.745463
## X137                         2.568127                       0.9676836  7.373808
## X139                         2.665023                       0.7941114  6.842982
## X140                         2.860121                       0.9676836  6.702998
## X141                         2.604783                       1.0343625  8.961066
## X143                         2.767852                       1.2358607  4.684412
## X144                         2.911270                       0.8439372  5.264609
## X145                         2.674201                       1.0343625  5.617858
## X146                         2.950670                       0.9853483  5.444179
## X147                         2.858842                       0.8196703  4.254800
## X148                         2.908918                       0.7941114  4.023747
## X149                         2.790112                       0.9300710  5.786135
## X152                         2.984412                       0.9300710  7.113891
## X153                         2.731131                       0.9853483  7.982407
## X154                         2.579644                       0.7671379  6.413012
## X155                         2.691833                       1.1421966  5.078583
## X156                         2.926626                       0.8670202  6.559746
## X157                         2.903482                       1.1302068  6.413012
## X158                         2.557619                       0.9100066  6.702998
## X159                         2.845892                       0.9492763  7.623847
## X160                         2.769220                       0.9676836  5.786135
## X161                         2.843211                       1.0186444 10.528568
## X162                         2.875866                       0.7671379  6.559746
## X163                         2.678590                       0.7671379  5.786135
## X165                         2.788951                       0.8196703  6.413012
## X166                         2.662160                       0.9100066  7.373808
## X167                         2.843948                       0.7941114  9.062271
## X168                         2.681164                       0.9853483  8.097921
## X169                         2.824491                       1.0641271  4.023747
## X170                         2.881391                       1.0495119  5.444179
## X171                         2.823909                       0.9100066  9.549474
## X172                         2.694967                       1.2265482  6.262563
## X174                         2.886307                       0.9676836  8.649098
## X175                         2.786199                       0.8890150  6.979888
## X176                         2.823031                       1.0023201  6.262563
## X177                         2.760303                       1.0343625  6.108135
## X178                         2.704715                       0.9300710  6.108135
## X179                         2.891000                       1.0782394  7.982407
## X180                         3.008161                       0.9853483  7.245150
## X181                         2.596327                       0.7083677  6.979888
## X182                         2.773241                       1.1178380  5.444179
## X183                         2.823325                       1.3102163  4.474569
## X184                         2.654255                       0.8670202  8.542148
## X185                         2.771914                       0.8670202  8.323453
## X186                         2.701785                       0.9853483  8.323453
## X189                         2.777140                       0.7671379  5.078583
## X190                         2.839703                       0.8670202  6.108135
## X191                         2.715205                       0.7083677  6.702998
## X192                         2.845409                       0.7083677  8.097921
## X193                         2.852896                       0.7083677  9.260790
## X194                         2.771023                       0.9300710  5.786135
## X195                         2.708297                       0.7083677  7.745463
## X197                         2.815134                       0.9676836  8.097921
## X198                         2.743782                       0.7671379  3.779716
## X200                         2.735867                       1.0023201  6.559746
## X201                         2.785402                       0.9300710  7.745463
## X202                         2.712482                       1.1050693  4.023747
## X205                         2.557619                       0.7671379  6.979888
## X208                         2.824491                       1.0023201  8.649098
## X210                         2.919789                       0.9492763  9.454406
## X212                         2.700297                       0.9492763  6.262563
## X213                         2.754850                       1.0186444  8.323453
## X214                         2.874020                       0.9100066  5.949436
## X215                         2.656269                       1.1651160  6.108135
## X216                         2.752811                       0.9676836  7.245150
## X218                         2.890046                       0.9300710  6.413012
## X219                         2.687819                       0.8670202  6.842982
## X220                         2.594876                       0.7671379  7.623847
## X223                         2.710405                       1.1760805  5.949436
## X224                         2.735867                       1.2169911  5.786135
## X225                         2.744330                       1.0343625  6.108135
## X226                         2.768310                       0.5660797  5.078583
## X227                         2.763659                       1.2537933  5.264609
## X228                         2.653238                       1.1970974  5.617858
## X229                         2.665023                       0.8196703  6.559746
## X230                         2.963228                       0.9676836  6.413012
## X231                         2.767393                       1.0782394 10.695079
## X232                         2.697275                       1.0186444  7.623847
## X233                         2.771023                       0.7941114  5.444179
## X234                         2.715877                       1.1050693  7.500000
## X236                         2.767393                       0.9853483  7.745463
## X237                         2.763185                       0.9300710  6.262563
## X239                         2.875683                       1.1302068  4.684412
## X240                         2.791263                       1.1302068  5.444179
## X241                         2.724975                       0.9676836  7.245150
## X242                         2.654255                       0.9300710  6.413012
## X243                         2.665966                       1.0495119  6.262563
## X244                         2.783386                       0.9492763  8.211578
## X245                         2.692623                       0.7941114  5.617858
## X246                         2.883623                       1.2358607  4.885442
## X247                         2.792403                       0.6762264  5.444179
## X249                         2.665023                       1.0186444  7.500000
## X250                         2.870614                       0.9100066  6.108135
## X251                         2.737602                       0.7671379  6.559746
## X253                         3.008576                       1.0186444  7.113891
## X254                         3.011822                       1.1421966  7.500000
## X255                         2.769220                       1.0023201  8.961066
## X256                         2.393337                       0.6762264  7.373808
## X257                         2.584357                       1.0186444  6.702998
## X258                         2.906102                       0.7941114  7.500000
## X260                         2.822737                       0.8196703  7.500000
## X261                         2.695741                       1.0918780  8.649098
## X262                         2.530419                       0.7941114  6.108135
## X263                         2.807684                       0.8196703 10.444102
## X264                         2.763185                       0.9300710  5.264609
## X265                         2.611519                       0.8439372  5.949436
## X267                         3.009810                       0.9853483  8.097921
## X268                         2.906780                       0.8670202  7.500000
## X269                         2.524026                       1.0641271  5.078583
## X270                         2.735284                       0.5237995  8.097921
## X271                         2.910232                       0.8670202  8.157135
## X272                         2.735284                       0.9300710  6.413012
## X273                         2.842468                       0.8439372  6.702998
## X274                         2.785402                       0.9100066  8.433621
## X275                         2.825933                       1.1538270  6.262563
## X277                         2.943646                       1.0343625  7.500000
## X278                         2.937016                       1.1421966  4.474569
## X279                         2.788951                       0.9853483  7.245150
## X281                         2.875131                       0.8890150 10.185606
## X282                         2.900935                       0.9676836  3.067147
## X283                         2.953166                       0.6762264  6.559746
## X287                         2.666903                       0.7671379  7.373808
## X289                         2.786596                       1.2265482  4.254800
## X290                         2.701785                       0.7671379  5.786135
## X291                         2.839193                       1.0343625  7.982407
## X292                         2.848747                       1.1538270  7.113891
## X294                         2.627850                       1.3026978  4.254800
## X297                         2.751261                       0.9676836  6.413012
## X298                         2.657266                       0.9853483  5.444179
## X299                         2.788951                       0.9853483  8.542148
## X301                         2.620513                       0.7083677  7.864950
## X302                         2.584357                       1.2537933  3.678009
## X303                         2.760303                       0.9853483  6.413012
## X304                         2.700297                       0.8670202  9.643429
## X305                         2.905965                       0.7941114  8.858503
## X306                         2.732330                       1.1421966  5.949436
## X307                         2.945455                       1.2071782  5.617858
## X308                         2.781750                       1.2071782  6.262563
## X311                         2.854245                       0.9300710  8.211578
## X312                         2.810980                       0.7671379 10.185606
## X313                         2.800812                       0.9100066  7.864950
## X314                         2.568127                       0.7941114  7.623847
## X315                         2.846133                       1.1651160  4.474569
## X316                         2.603403                       0.6762264  7.500000
## X317                         2.766469                       0.8439372  5.078583
## X320                         2.666903                       0.9853483  7.500000
## X321                         2.738746                       1.0186444  4.474569
## X322                         2.863047                       0.9300710  9.549474
## X323                         2.913692                       0.8439372  5.444179
## X324                         2.847566                       1.1421966  5.786135
## X325                         3.006900                       0.7941114  5.444179
## X326                         2.864685                       0.6419718  5.444179
## X327                         2.897137                       1.0186444  7.113891
## X329                         2.749166                       0.7941114  8.323453
## X330                         2.713850                       1.0186444  5.949436
## X331                         2.678590                       0.8670202  5.786135
## X332                         2.748106                       0.9676836  5.786135
## X333                         2.862841                       0.5660797  6.108135
##          HCC_4 Hepatocyte_Growth_Factor_HGF    I_309      ICAM_1 IGF_BP_2
## X1   -3.036554                   0.58778666 3.433987 -0.19077873 5.609472
## X2   -4.074542                   0.53062825 3.135494 -0.46201723 5.347108
## X3   -3.649659                   0.09531018 2.397895 -0.46201723 5.181784
## X5   -3.146555                   0.53062825 3.761200  0.09715030 5.420535
## X6   -3.079114                   0.09531018 2.708050 -0.93510686 5.056246
## X7   -3.506558                   0.40546511 2.995732 -0.63604036 5.438079
## X8   -3.079114                   0.18232156 2.890372 -1.29887557 5.365976
## X9   -4.135167                  -0.16251893 3.295837 -1.06412706 5.273000
## X11  -3.540459                   0.40546511 3.091042 -0.56067607 5.505332
## X12  -2.918771                   0.09531018 3.258097 -0.73298708 5.081404
## X14  -3.816713                   0.53062825 2.944439 -0.17955518 5.209486
## X16  -3.575551                   0.18232156 3.332205 -1.06412706 5.375278
## X17  -3.816713                   0.18232156 2.639057 -0.66750355 5.455321
## X18  -4.135167                  -0.24846136 2.708050 -0.93510686 5.087596
## X19  -3.057608                  -0.19845094 2.944439 -0.93510686 5.379897
## X20  -3.772261                   0.09531018 2.708050 -0.17955518 5.513429
## X21  -3.437118                   0.09531018 2.944439 -1.11122739 5.361292
## X22  -3.863233                   0.74193734 3.465736 -0.48946700 5.141664
## X23  -3.816713                  -0.07257069 2.484907 -1.16085462 4.955827
## X24  -3.411248                   0.69314718 2.708050 -0.38282097 5.472271
## X25  -3.611918                   0.09531018 2.890372 -0.56067607 5.187386
## X26  -3.473768                   0.33647224 3.258097 -0.66750355 5.257495
## X28  -3.688879                   0.33647224 2.197225 -0.80232932 5.438079
## X29  -3.816713                  -0.10536052 2.302585 -0.85726607 4.997212
## X30  -4.074542                  -0.24846136 2.639057 -0.63604036 5.147494
## X31  -3.194183                   0.09531018 3.044522 -0.25991011 5.513429
## X34  -3.381395                   0.33647224 3.583519 -1.16085462 5.273000
## X35  -3.218876                  -0.19845094 3.091042 -0.48946700 4.836282
## X36  -3.688879                   0.18232156 2.944439 -0.30783617 5.598422
## X37  -3.411248                   0.47000363 3.135494 -0.66750355 5.351858
## X38  -3.611918                   0.18232156 2.639057 -0.60535429 5.141664
## X39  -4.017384                   0.64185389 2.833213 -0.91510681 5.252273
## X40  -4.017384                   0.09531018 3.178054 -0.59028711 5.407172
## X41  -3.270169                   0.00000000 2.708050 -0.39571116 5.327876
## X42  -3.863233                   0.09531018 2.890372 -0.73298708 5.420535
## X43  -3.352407                   0.18232156 3.258097 -0.69979867 5.198497
## X44  -3.649659                   0.26236426 2.708050  0.00000000 5.420535
## X45  -3.170086                   0.33647224 3.555348 -0.23651381 5.645447
## X46  -3.575551                   0.47000363 3.135494 -0.59028711 5.267858
## X47  -3.506558                  -0.31471074 2.995732 -0.87620360 5.351858
## X48  -3.381395                   0.64185389 3.761200 -0.42185317 5.700444
## X50  -3.863233                   0.26236426 3.332205 -0.48946700 5.262690
## X51  -3.963316                  -0.01005034 3.044522 -1.04142304 5.398163
## X53  -3.649659                   0.47000363 2.995732 -0.35738780 5.278115
## X55  -3.863233                   0.33647224 2.564949 -0.25991011 5.030438
## X56  -3.816713                  -0.17435339 2.944439 -0.48946700 5.262690
## X57  -3.123566                   0.40546511 3.295837 -0.48946700 5.641907
## X59  -3.611918                   0.18232156 2.944439 -0.39571116 5.616771
## X60  -3.575551                  -0.17435339 3.218876 -0.63604036 5.438079
## X61  -4.074542                  -0.07257069 2.708050 -0.76713789 5.192957
## X62  -3.772261                  -0.32850407 2.484907 -0.76713789 5.123964
## X63  -3.442019                   0.09531018 3.091042 -0.60535429 5.283204
## X64  -3.146555                   0.26236426 3.178054 -0.30783617 5.370638
## X65  -4.135167                   0.18232156 2.833213 -0.73298708 5.164786
## X67  -3.688879                   0.58778666 3.465736 -0.48946700 5.356586
## X68  -3.218876                   0.33647224 2.944439 -0.39571116 5.429346
## X69  -3.863233                  -0.43078292 2.564949 -0.93510686 5.141664
## X70  -4.074542                   0.18232156 3.465736 -0.56067607 5.594711
## X71  -3.296837                   0.09531018 3.258097 -0.10317121 5.068904
## X72  -3.270169                   0.87546874 3.332205 -0.16503132 5.780744
## X73  -3.352407                   0.47000363 3.433987  0.00000000 5.509388
## X74  -3.442019                  -0.19845094 2.639057 -0.69979867 5.241747
## X75  -3.729701                   0.40546511 3.663562 -0.91510681 5.337538
## X76  -3.352407                   0.69314718 3.433987 -0.30783617 5.549076
## X77  -3.270169                   0.58778666 2.944439 -0.48946700 5.129899
## X78  -2.733368                   0.64185389 3.465736 -0.16841247 5.624018
## X80  -3.473768                   0.09531018 3.044522 -0.53172814 5.204007
## X81  -3.729701                  -0.02020271 3.258097 -0.73298708 5.111988
## X82  -3.863233                   0.33647224 2.708050 -1.11122739 5.521461
## X83  -3.146555                   0.26236426 2.564949 -0.78459824 4.905275
## X84  -3.540459                   0.26236426 2.772589 -0.73298708 5.043425
## X85  -3.296837                   0.47000363 3.044522 -0.39571116 5.370638
## X86  -2.207275                   0.47000363 2.995732 -0.15734908 5.590987
## X88  -3.146555                   0.40546511 3.367296 -0.25991011 5.501258
## X90  -2.995732                  -0.63487827 1.757858 -1.16085462 4.634729
## X93  -3.270169                   0.09531018 2.944439 -0.48946700 5.497168
## X94  -3.123566                   0.64185389 4.143135  0.09715030 5.948035
## X95  -3.912023                   0.26236426 2.890372 -0.57539617 5.327876
## X96  -3.270169                   0.47000363 3.178054 -1.32948627 5.509388
## X97  -3.575551                   0.33647224 2.708050 -0.47567232 5.356586
## X98  -4.074542                  -0.37106368 2.484907 -1.04142304 5.075174
## X99  -3.816713                   0.47000363 3.258097 -0.17955518 5.370638
## X100 -3.729701                   0.26236426 3.258097 -0.48946700 5.187386
## X103 -3.649659                   0.64185389 3.784190 -0.07152751 5.641907
## X104 -4.509860                   0.09531018 2.772589 -0.71627709 5.159055
## X105 -4.074542                   0.47000363 2.995732 -0.59028711 5.231109
## X107 -3.772261                   0.26236426 3.044522 -0.42185317 5.214936
## X108 -3.123566                   0.18232156 2.890372 -0.06111597 5.579730
## X109 -3.912023                  -0.04082199 2.292535 -0.91510681 5.003946
## X110 -4.017384                  -0.16251893 2.890372 -0.76713789 5.062595
## X111 -3.649659                   0.18232156 2.890372 -0.23651381 5.347108
## X112 -2.813411                   0.53062825 3.433987 -0.19077873 5.609472
## X113 -3.079114                   0.47000363 3.091042 -0.16841247 5.398163
## X114 -3.381395                  -0.32850407 2.397895 -0.66750355 5.081404
## X115 -3.381395                   0.09531018 3.465736 -1.36134745 5.420535
## X117 -4.135167                   0.40546511 3.401197 -0.57539617 5.293305
## X118 -3.352407                   0.64185389 3.610918 -0.43511112 5.616771
## X121 -3.575551                   0.40546511 3.332205 -0.12462010 5.420535
## X123 -3.611918                  -0.44628710 2.833213 -0.93510686 5.407172
## X124 -2.995732                  -0.04082199 2.890372 -0.17955518 5.402677
## X126 -4.017384                   0.00000000 2.944439 -0.60535429 5.135798
## X128 -3.324236                   0.53062825 3.178054 -0.39571116 5.303305
## X129 -3.575551                  -0.18632958 2.708050 -0.87620360 5.257495
## X130 -3.352407                   0.26236426 2.995732 -0.66750355 5.433722
## X131 -3.688879                   0.09531018 2.564949 -0.65167154 4.969813
## X132 -3.575551                   0.09531018 2.639057 -0.76713789 5.375278
## X133 -3.170086                   0.26236426 2.484907 -0.80232932 5.620401
## X134 -3.015935                   0.87546874 3.332205 -0.34483937 5.521461
## X135 -3.649659                   0.00000000 3.258097 -0.25991011 5.455321
## X136 -4.135167                  -0.15082289 2.564949 -0.48946700 5.451038
## X137 -3.057608                  -0.18632958 2.397895 -0.91510681 5.159055
## X139 -3.473768                   0.09531018 2.639057 -1.11122739 5.153292
## X140 -3.863233                   0.26236426 2.833213 -0.47567232 5.433722
## X141 -3.244194                   0.33647224 3.044522 -0.30783617 5.293305
## X143 -3.462900                  -0.11653382 2.944439 -0.93510686 5.313206
## X144 -3.442019                  -0.21072103 2.708050 -0.30783617 5.356586
## X145 -3.963316                   0.09531018 2.639057 -0.85726607 5.164786
## X146 -3.057608                   0.40546511 2.564949 -0.05077067 5.645447
## X147 -4.017384                   0.33647224 3.465736 -0.38282097 5.342334
## X148 -2.748872                   0.33647224 3.135494 -0.11385950 5.468060
## X149 -3.772261                   0.18232156 2.833213 -0.46201723 5.081404
## X152 -3.473768                   0.78845736 3.761200 -0.16841247 5.758902
## X153 -2.120264                   0.47000363 3.295837 -1.21340622 5.609472
## X154 -3.611918                   0.33647224 1.808289 -0.73298708 5.181784
## X155 -3.772261                   0.09531018 2.890372 -0.63604036 5.062595
## X156 -3.411248                   0.64185389 3.258097 -0.14636351 5.332719
## X157 -3.611918                   0.18232156 2.995732 -0.53172814 5.613128
## X158 -3.912023                   0.18232156 2.833213 -0.59028711 5.198497
## X159 -3.442019                   0.09531018 2.995732 -0.87620360 5.093750
## X160 -3.575551                   0.53062825 3.091042 -0.25991011 5.389072
## X161 -3.473768                   0.18232156 3.433987 -0.39571116 5.135798
## X162 -3.611918                   0.64185389 2.944439 -0.59028711 5.342334
## X163 -3.649659                   0.26236426 2.564949 -1.16085462 5.030438
## X165 -3.506558                   0.18232156 3.218876 -0.73298708 5.455321
## X166 -3.912023                   0.09531018 2.995732 -0.87620360 5.379897
## X167 -3.963316                   0.58778666 2.944439 -0.17955518 5.342334
## X168 -3.575551                   0.33647224 2.639057 -0.73298708 5.209486
## X169 -3.218876                   0.09531018 2.772589 -0.66750355 5.153292
## X170 -3.270169                   0.09531018 2.995732 -0.66750355 5.187386
## X171 -3.296837                   0.09531018 3.258097 -0.15734908 5.117994
## X172 -3.772261                   0.09531018 2.890372 -0.93510686 5.075174
## X174 -3.575551                  -0.01005034 2.890372 -0.48946700 5.298317
## X175 -2.975930                   0.40546511 3.178054 -0.16841247 5.476464
## X176 -3.079114                  -0.06187540 2.944439 -0.39571116 5.056246
## X177 -3.540459                   0.09531018 2.890372 -0.59028711 5.468060
## X178 -4.509860                  -0.21072103 3.178054 -0.87620360 4.983607
## X179 -2.551046                   0.26236426 3.332205 -0.30783617 5.517453
## X180 -3.649659                   0.40546511 3.126272  0.18913439 5.655992
## X181 -3.506558                  -0.19845094 2.484907 -0.85726607 5.093750
## X182 -3.611918                   0.18232156 3.218876 -0.85726607 5.424950
## X183 -3.575551                  -0.38566248 2.564949 -0.34483937 5.365976
## X184 -3.244194                   0.33647224 3.401197 -0.47567232 5.648974
## X185 -3.270169                   0.47000363 3.044522 -0.48946700 5.204007
## X186 -3.324236                  -0.07257069 2.014903 -0.93510686 5.198497
## X189 -3.688879                   0.18232156 2.944439 -0.66750355 5.164786
## X190 -3.575551                   0.09531018 2.944439 -0.48946700 5.323010
## X191 -3.506558                   0.26236426 2.639057 -0.71627709 4.983607
## X192 -3.381395                   0.64185389 2.995732 -0.17955518 5.327876
## X193 -3.611918                   0.40546511 3.178054 -0.60535429 5.645447
## X194 -3.270169                  -0.05129329 2.564949 -0.59028711 5.209486
## X195 -3.649659                   0.83290912 3.433987 -0.17955518 5.303305
## X197 -3.057608                   0.26236426 3.091042 -0.56067607 5.560682
## X198 -3.611918                  -0.02020271 2.397895 -0.71627709 5.159055
## X200 -3.912023                   0.09531018 2.564949 -1.04142304 5.323010
## X201 -3.218876                   0.00000000 3.178054 -0.71627709 5.247024
## X202 -3.912023                   0.00000000 2.564949 -1.13570251 5.105945
## X205 -3.324236                   0.40546511 3.332205 -0.35738780 5.488938
## X208 -3.611918                   0.40546511 2.484907 -0.59028711 5.192957
## X210 -3.352407                   0.26236426 3.295837 -0.38282097 5.613128
## X212 -4.074542                   0.09531018 2.564949 -0.54612169 5.187386
## X213 -3.057608                   0.18232156 3.178054 -0.43511112 5.407172
## X214 -3.772261                   0.53062825 3.044522 -0.30783617 5.293305
## X215 -3.649659                   0.00000000 3.258097 -0.93510686 5.288267
## X216 -3.816713                  -0.05129329 3.178054 -1.04142304 5.105945
## X218 -2.847312                   0.09531018 2.772589 -0.85726607 5.327876
## X219 -4.199705                  -0.11653382 2.772589 -0.87620360 5.327876
## X220 -4.017384                   0.09531018 3.044522 -0.97630091 5.030438
## X223 -3.575551                   0.09531018 3.258097 -0.57539617 5.303305
## X224 -3.688879                   0.18232156 2.995732 -0.63604036 5.147494
## X225 -3.863233                   0.40546511 3.433987 -0.22495053 5.472271
## X226 -3.611918                   0.74193734 3.259500 -0.32006598 5.620401
## X227 -2.864704                   0.00000000 3.044522 -0.06111597 5.293305
## X228 -4.074542                  -0.44628710 3.332205 -0.85726607 5.023881
## X229 -3.411248                  -0.12783337 2.197225 -0.66750355 5.192957
## X230 -2.882404                   0.09531018 3.218876 -0.51749076 5.342334
## X231 -3.442019                   0.09531018 2.833213 -0.66750355 5.187386
## X232 -3.101093                   0.09531018 2.302585 -0.59028711 5.389072
## X233 -3.352407                  -0.11653382 2.833213 -1.04142304 5.187386
## X234 -3.244194                  -0.15082289 2.890372 -0.80232932 5.407172
## X236 -3.688879                   0.26236426 2.772589 -0.56067607 5.081404
## X237 -3.442019                   0.33647224 2.995732 -0.39571116 5.192957
## X239 -4.199705                  -0.24846136 2.708050 -0.76713789 5.141664
## X240 -3.411248                   0.00000000 2.772589 -1.26939244 5.093750
## X241 -3.324236                   0.26236426 3.178054 -1.21340622 5.129899
## X242 -2.956512                  -0.13926207 2.772589 -0.54602499 5.288267
## X243 -3.381395                   0.00000000 2.564949 -1.06412706 5.252273
## X244 -3.101093                   0.26236426 2.944439 -0.48946700 5.365976
## X245 -2.956512                  -0.23572233 2.140066 -1.53320769 4.663439
## X246 -2.937463                   0.18232156 2.833213 -0.42185317 5.583496
## X247 -3.411248                  -0.08338161 2.708050 -1.29887557 5.093750
## X249 -3.688879                   0.87546874 3.555348 -0.51749076 5.609472
## X250 -3.146555                   0.26236426 2.833213 -1.16085462 5.303305
## X251 -3.816713                   0.00000000 2.995732 -0.60535429 5.257495
## X253 -3.270169                   0.00000000 3.044522 -0.03027441 5.342334
## X254 -3.218876                   0.40546511 3.806662  0.51708817 5.598422
## X255 -3.506558                   0.40546511 3.295837 -0.09255394 5.472271
## X256 -3.688879                   0.09531018 2.639057 -0.87620360 5.176150
## X257 -3.575551                  -0.17435339 2.833213 -0.73298708 5.093750
## X258 -2.937463                   0.64185389 3.496508 -0.04049051 5.351858
## X260 -3.101093                   0.33647224 3.295837 -0.71627709 5.273000
## X261 -3.411248                  -0.26136476 3.044522 -1.06412706 4.682131
## X262 -4.017384                  -0.03045921 2.484907 -1.04142304 4.976734
## X263 -3.506558                   0.33647224 2.564949 -0.48946700 5.407172
## X264 -2.813411                   0.40546511 3.433987 -0.09255394 5.327876
## X265 -3.540459                   0.18232156 2.772589 -0.93510686 5.252273
## X267 -3.411248                   0.47000363 2.995732 -0.47567232 5.624018
## X268 -3.079114                   0.18232156 2.944439 -0.39571116 5.283204
## X269 -3.863233                  -0.12783337 2.564949 -0.85726607 5.262690
## X270 -3.649659                   0.09531018 3.526361 -0.39571116 5.220356
## X271 -2.918771                   0.53062825 3.295837 -0.17955518 5.438079
## X272 -3.729701                   0.26236426 2.708050 -0.59028711 5.192957
## X273 -3.057608                   0.33647224 2.708050 -0.48946700 5.594711
## X274 -3.540459                   0.09531018 2.944439 -0.71627709 5.159055
## X275 -3.506558                   0.09531018 3.044522 -0.93510686 5.342334
## X277 -3.688879                   0.33647224 2.890372 -0.30783617 5.075174
## X278 -3.506558                  -0.11653382 2.995732 -0.19077873 5.579730
## X279 -3.540459                   0.09531018 2.772589 -0.93510686 5.087596
## X281 -3.036554                   0.53062825 3.135494 -0.80232932 5.517453
## X282 -3.352935                   0.26236426 2.397895 -0.25991011 5.288267
## X283 -3.194183                   0.64185389 3.332205 -0.39571116 5.777652
## X287 -3.729701                   0.58778666 3.044522 -1.18673610 5.135798
## X289 -3.863233                  -0.31471074 2.484907 -0.85726607 5.087596
## X290 -4.017384                   0.09531018 3.044522 -0.91510681 5.327876
## X291 -3.244194                   0.58778666 3.332205 -0.38282097 5.365976
## X292 -3.381395                   0.64185389 3.044522 -0.34483937 5.525453
## X294 -3.688879                  -0.41551544 2.833213 -1.26939244 5.442418
## X297 -3.442019                   0.00000000 2.995732 -0.60535429 5.323010
## X298 -3.411248                  -0.24846136 2.041220 -0.65167154 5.521461
## X299 -3.575551                   0.18232156 2.995732 -0.43511112 5.662960
## X301 -3.442019                  -0.23572233 2.708050 -1.06412706 5.257495
## X302 -3.649659                  -0.31471074 2.708050 -1.13570251 4.962845
## X303 -3.540459                   0.47000363 2.772589 -0.93510686 5.384495
## X304 -3.912023                   0.78845736 3.784190 -0.30783617 5.587249
## X305 -3.688879                   0.47000363 2.484907 -0.59028711 5.693732
## X306 -3.194183                   0.47000363 3.555348 -0.25991011 5.480639
## X307 -2.975930                   0.33647224 3.135494  0.27662577 5.541264
## X308 -3.079114                   0.09531018 2.833213 -0.53172814 5.181784
## X311 -3.688879                  -0.26136476 3.091042 -0.48946700 5.225747
## X312 -3.270169                   0.26236426 3.135494 -0.73298708 5.214936
## X313 -3.611918                   0.26236426 2.564949 -0.71627709 5.638355
## X314 -3.816713                   0.26236426 2.564949 -1.04142304 5.236442
## X315 -3.411248                  -0.04082199 2.944439 -0.53172814 5.262690
## X316 -4.074542                   0.47000363 3.044522 -0.46201723 5.332719
## X317 -4.074542                   0.33647224 3.218876 -0.59028711 5.505332
## X320 -3.057608                   0.18232156 2.397895 -0.17955518 5.323010
## X321 -3.729701                  -0.37106368 2.772589 -0.46201723 4.976734
## X322 -3.057608                   0.47000363 2.708050 -0.48946700 5.402677
## X323 -3.079114                   0.40546511 3.332205 -0.43511112 5.424950
## X324 -3.688879                   0.18232156 2.639057 -0.76713789 5.135798
## X325 -3.146555                   0.33647224 2.186051 -0.59028711 5.472271
## X326 -3.473768                   0.18232156 2.995732 -0.48946700 5.389072
## X327 -3.324236                   0.09531018 3.091042 -0.66750355 5.609472
## X329 -3.912023                   0.40546511 3.044522 -0.73298708 5.278115
## X330 -3.244194                   0.09531018 2.944439 -0.38282097 5.209486
## X331 -3.101093                   0.00000000 2.240710 -0.85726607 5.087596
## X332 -3.296837                  -0.01005034 2.028148 -0.59028711 5.411646
## X333 -3.649659                   0.64185389 3.295837 -0.32006598 5.552960
##         IL_11    IL_13    IL_16   IL_17E IL_1alpha      IL_3      IL_4
## X1   5.121987 1.282549 4.192081 5.731246 -6.571283 -3.244194 2.4849066
## X2   4.936704 1.269463 2.876338 6.705891 -8.047190 -3.912023 2.3978953
## X3   4.665910 1.274133 2.616102 4.149327 -8.180721 -4.645992 1.8245493
## X5   7.070709 1.309980 4.736472 4.204987 -6.943657 -2.995732 2.7080502
## X6   6.103215 1.282549 2.671032 3.637051 -8.180721 -3.863233 1.2089603
## X7   2.031412 1.286356 3.476091 6.705891 -6.907755 -3.296837 1.8718022
## X8   5.180840 1.293295 3.593860 4.037285 -7.418581 -2.956512 2.3978953
## X9   2.860031 1.282549 2.420557 5.170380 -7.469874 -4.422849 1.8082888
## X11  6.919778 1.274133 2.154845 4.749337 -7.849364 -4.509860 1.5686159
## X12  3.218759 1.286356 3.593860 3.867347 -8.047190 -3.575551 1.9169226
## X14  4.665910 1.269463 2.924466 5.427755 -7.264430 -4.074542 1.5260563
## X16  4.360856 1.278484 2.776394 5.170380 -7.662778 -4.017384 1.5475625
## X17  5.121987 1.286356 2.671032 5.325310 -7.047017 -3.912023 1.2237754
## X18  3.076971 1.274133 2.270306 4.749337 -7.182192 -4.933674 1.0296194
## X19  5.180840 1.293295 2.924466 7.174674 -7.542634 -3.912023 2.3978953
## X20  2.178537 1.274133 2.741908 4.149327 -7.264430 -3.816713 1.8245493
## X21  6.414275 1.274133 2.292540 5.580204 -7.236259 -5.035953 1.8082888
## X22  4.805045 1.293295 3.351388 8.081107 -7.542634 -3.772261 1.2089603
## X23  4.518270 1.282549 2.461332 5.427755 -7.264430 -4.919881 1.0296194
## X24  4.360856 1.289931 3.476091 5.325310 -6.980326 -3.442019 2.3978953
## X25  4.936704 1.274133 1.662234 3.040333 -7.706263 -4.074542 1.5686159
## X26  4.360856 1.282549 2.420557 4.204987 -7.523941 -4.509860 1.8082888
## X28  3.593860 1.269463 3.076971 4.749337 -7.278819 -3.816713 1.2237754
## X29  5.752800 1.302302 2.924466 5.325310 -7.487574 -4.605170 3.0445224
## X30  3.593860 1.282549 2.520871 4.749337 -7.469874 -3.411248 1.9740810
## X31  5.121987 1.278484 3.705506 5.731246 -7.143478 -3.324236 2.5649494
## X34  2.031412 1.274133 2.081821 5.170380 -7.264430 -4.422849 2.0149030
## X35  3.476091 1.282549 2.420557 5.170380 -7.849364 -4.509860 1.6863990
## X36  2.031412 1.299465 3.705506 3.040333 -7.106206 -3.057608 2.1860513
## X37  5.238363 1.278484 2.671032 4.204987 -7.581100 -3.912023 1.8082888
## X38  4.360856 1.286356 2.578583 3.578777 -7.250246 -3.729701 1.5475625
## X39  7.011244 1.293295 3.913012 4.802628 -7.435388 -3.244194 1.8245493
## X40  5.705637 1.264435 2.292540 6.705891 -7.264430 -3.912023 1.2089603
## X41  3.351388 1.286356 3.811702 3.578777 -7.600902 -3.688879 1.5475625
## X42  6.061784 1.269463 2.578583 4.149327 -7.264430 -4.779524 0.5877867
## X43  3.913012 1.274133 2.597435 5.731246 -7.706263 -4.342806 1.2089603
## X44  5.558929 1.278484 3.476091 6.705891 -7.264430 -4.509860 1.5260563
## X45  3.913012 1.286356 3.593860 4.749337 -7.469874 -3.772261 2.1747517
## X46  4.518270 1.278484 3.705506 4.802628 -8.294050 -4.135167 1.0296194
## X47  4.102821 1.264435 1.898648 5.630705 -7.264430 -4.509860 1.1939225
## X48  6.019723 1.286356 4.009916 5.731246 -6.907755 -3.218876 1.6094379
## X50  7.730538 1.289931 3.476091 6.705891 -7.849364 -4.422849 1.8082888
## X51  5.349675 1.289931 2.292540 5.731246 -7.264430 -4.017384 1.2089603
## X53  5.799150 1.289931 3.476091 5.427755 -8.047190 -3.688879 1.5260563
## X55  5.558929 1.274133 2.876338 4.802628 -7.264430 -4.268698 1.0296194
## X56  2.031412 1.289931 2.270306 6.225224 -7.402052 -3.816713 1.8082888
## X57  8.004073 1.304993 3.913012 7.174674 -7.323271 -3.772261 1.8245493
## X59  2.031412 1.293295 2.827004 4.149327 -8.047190 -4.268698 1.1939225
## X60  3.913012 1.278484 2.876338 5.325310 -7.706263 -4.017384 1.4586150
## X61  6.414275 1.269463 2.441056 4.204987 -7.706263 -4.017384 1.0296194
## X62  2.843587 1.259002 1.386542 6.225224 -7.641724 -4.268698 1.4586150
## X63  3.218759 1.269463 2.776394 4.149327 -8.047190 -4.268698 1.5475625
## X64  2.860031 1.286356 3.705506 5.630705 -7.662778 -3.863233 2.0149030
## X65  4.518270 1.269463 2.741908 4.802628 -8.294050 -4.074542 2.0412203
## X67  3.705506 1.269463 2.081821 2.407182 -7.264430 -4.815891 1.5475625
## X68  5.608737 1.278484 3.593860 6.705891 -7.542634 -3.912023 1.4816045
## X69  5.238363 1.286356 1.186565 4.204987 -7.469874 -4.635629 1.6094379
## X70  3.705506 1.282549 2.671032 5.325310 -7.706263 -3.772261 1.5686159
## X71  4.278004 1.278484 2.616102 4.802628 -8.294050 -4.199705 1.0296194
## X72  5.180840 1.304993 4.593226 3.461346 -6.907755 -2.718101 2.6390573
## X73  4.102821 1.274133 3.476091 5.118391 -8.047190 -4.017384 1.0296194
## X74  3.913012 1.259002 2.081821 6.225224 -7.706263 -4.635629 1.2089603
## X75  3.913012 1.286356 3.913012 1.052263 -7.849364 -3.649659 2.3978953
## X76  2.688997 1.282549 3.218759 5.170380 -7.662778 -4.017384 1.1939225
## X77  6.223931 1.293295 2.860031 6.225224 -7.684284 -4.074542 1.8245493
## X78  3.593860 1.282549 3.811702 5.325310 -7.706263 -3.506558 2.0149030
## X80  5.558929 1.289931 2.924466 6.705891 -7.182192 -3.611918 1.7404662
## X81  4.736472 1.278484 3.218759 4.370576 -7.662778 -3.772261 2.3025851
## X82  5.456396 1.282549 2.420557 4.204987 -7.581100 -4.017384 1.5686159
## X83  6.760790 1.293295 3.476091 8.951879 -7.418581 -3.473768 1.6677068
## X84  2.501234 1.278484 2.081821 6.225224 -7.662778 -4.733004 1.8082888
## X85  3.476091 1.286356 3.705506 6.225224 -7.024289 -3.442019 2.4849066
## X86  4.805045 1.293295 3.913012 3.867347 -6.725434 -2.796881 2.7725887
## X88  5.403583 1.293295 3.218759 5.325310 -7.523941 -4.268698 1.0296194
## X90  4.360856 1.282549 1.813803 5.325310 -8.111728 -5.914504 1.2089603
## X93  5.000000 1.307549 3.351388 7.174674 -7.684284 -4.135167 2.0668628
## X94  3.705506 1.286356 4.360856 5.630705 -6.812445 -3.506558 2.1860513
## X95  5.799150 1.293295 3.076971 4.749337 -7.264430 -3.575551 1.9740810
## X96  6.857203 1.274133 2.876338 4.749337 -7.706263 -4.074542 1.5686159
## X97  5.799150 1.274133 2.671032 4.204987 -8.078938 -4.767689 1.5686159
## X98  5.121987 1.274133 2.178537 5.325310 -7.706263 -4.135167 1.4586150
## X99  3.913012 1.289931 4.102821 4.479850 -7.849364 -3.506558 2.4849066
## X100 5.121987 1.264435 2.924466 5.170380 -7.849364 -4.342806 1.5475625
## X103 4.102821 1.282549 3.476091 6.225224 -7.849364 -3.057608 1.8245493
## X104 5.000000 1.309980 2.860031 6.705891 -7.542634 -3.816713 2.3978953
## X105 5.000000 1.289931 3.351388 4.802628 -7.849364 -3.863233 2.0412203
## X107 4.278004 1.286356 3.076971 6.705891 -7.264430 -3.473768 1.9740810
## X108 2.031412 1.286356 4.009916 4.749337 -6.927958 -3.411248 2.7080502
## X109 5.180840 1.264435 2.106497 6.225224 -7.264430 -4.815891 1.0296194
## X110 4.593226 1.274133 2.081821 4.204987 -7.354042 -4.509860 1.9740810
## X111 5.000000 1.299465 3.476091 5.630705 -7.542634 -3.575551 2.0668628
## X112 4.102821 1.302302 4.440875 4.749337 -6.725434 -2.918771 2.9444390
## X113 4.593226 1.286356 3.351388 3.924249 -7.118476 -3.506558 2.3025851
## X114 5.000000 1.274133 2.292540 2.728930 -7.849364 -4.422849 1.2089603
## X115 1.754800 1.278484 2.924466 4.149327 -7.264430 -3.963316 0.5877867
## X117 4.440875 1.278484 3.476091 5.731246 -7.058578 -3.649659 1.7404662
## X118 7.157766 1.286356 3.476091 5.325310 -7.369791 -3.649659 2.0149030
## X121 2.031412 1.274133 3.076971 2.407182 -7.751725 -4.017384 1.8082888
## X123 5.799150 1.274133 1.564217 4.749337 -7.849364 -4.815891 1.4586150
## X124 6.557896 1.286356 3.076971 7.174674 -7.542634 -3.816713 1.8245493
## X126 3.218759 1.282549 2.924466 6.225224 -7.662778 -4.509860 1.1939225
## X128 6.103215 1.282549 3.218759 4.149327 -7.662778 -4.074542 1.1939225
## X129 2.860031 1.278484 1.898648 4.149327 -7.264430 -4.422849 0.5877867
## X130 5.558929 1.286356 3.218759 4.749337 -7.581100 -4.342806 1.2237754
## X131 4.665910 1.282549 3.351388 2.005028 -8.294050 -3.729701 2.3978953
## X132 3.476091 1.282549 3.218759 5.325310 -7.469874 -4.074542 1.7404662
## X133 4.936704 1.289931 2.420557 2.407182 -7.278819 -3.729701 1.8082888
## X134 5.180840 1.289931 3.705506 4.749337 -6.437752 -4.135167 2.0918641
## X135 2.031412 1.286356 2.876338 6.225224 -7.581100 -3.611918 1.4586150
## X136 5.508162 1.293295 2.908553 4.695848 -7.418581 -4.199705 1.2089603
## X137 5.705637 1.269463 1.898648 5.427755 -7.264430 -4.074542 2.1400662
## X139 7.157766 1.264435 2.154845 4.749337 -8.180721 -4.767689 0.5306283
## X140 5.558929 1.269463 2.540305 4.204987 -7.581100 -3.963316 1.8082888
## X141 3.913012 1.269463 2.876338 4.749337 -7.706263 -4.422849 1.8082888
## X143 3.076971 1.282549 2.924466 3.578777 -7.264430 -3.324236 2.2407097
## X144 5.238363 1.274133 1.459970 2.407182 -5.952244 -4.268698 1.4109870
## X145 3.913012 1.286356 2.741908 4.749337 -7.354042 -3.816713 1.4586150
## X146 2.314505 1.286356 2.924466 3.924249 -7.195437 -3.324236 1.8082888
## X147 4.360856 1.278484 2.876338 4.204987 -7.775256 -4.074542 1.2237754
## X148 4.805045 1.320562 4.192081 4.037285 -6.725434 -2.918771 2.2617631
## X149 5.799150 1.282549 2.876338 2.791992 -7.849364 -3.575551 1.8245493
## X152 4.871752 1.293295 4.102821 3.637051 -6.725434 -2.882404 2.8903718
## X153 2.843587 1.282549 3.351388 2.407182 -7.523941 -3.506558 2.1747517
## X154 5.752800 1.274133 2.741908 4.149327 -7.264430 -4.135167 1.8245493
## X155 5.180840 1.274133 2.597435 6.225224 -7.469874 -4.017384 1.0296194
## X156 3.476091 1.278484 3.913012 5.427755 -7.156217 -3.442019 2.2192035
## X157 2.314505 1.289931 3.076971 5.325310 -7.264430 -3.540459 1.7404662
## X158 5.238363 1.269463 2.741908 3.461346 -7.264430 -4.074542 1.0296194
## X159 3.913012 1.289931 2.270306 6.225224 -7.751725 -4.342806 1.8082888
## X160 6.144037 1.286356 3.593860 7.174674 -7.561682 -3.079114 2.9957323
## X161 3.705506 1.286356 2.706796 4.149327 -7.849364 -3.912023 1.8082888
## X162 8.490785 1.293295 3.076971 6.225224 -7.824046 -4.342806 1.8245493
## X163 7.801137 1.296467 1.423676 7.174674 -8.016418 -4.509860 2.0668628
## X165 5.121987 1.274133 2.292540 3.637051 -7.849364 -4.422849 0.9555114
## X166 3.705506 1.282549 2.081821 3.578777 -7.849364 -4.074542 0.5877867
## X167 5.061733 1.296467 3.476091 5.731246 -7.264430 -3.442019 2.6390573
## X168 3.705506 1.282549 3.593860 2.791992 -7.957577 -3.381395 2.8332133
## X169 6.522658 1.282549 2.540305 5.325310 -7.641724 -3.772261 2.3025851
## X170 4.360856 1.278484 2.292540 4.204987 -7.849364 -4.342806 1.8082888
## X171 5.799150 1.282549 3.351388 5.170380 -7.523941 -4.199705 2.0149030
## X172 5.121987 1.274133 2.597435 3.578777 -7.264430 -3.863233 2.2407097
## X174 3.476091 1.302302 2.706796 5.376615 -7.662778 -3.729701 1.5475625
## X175 6.450860 1.282549 3.218759 3.637051 -7.706263 -3.816713 1.2237754
## X176 2.501234 1.293295 2.924466 6.705891 -7.106206 -4.135167 1.8082888
## X177 4.805045 1.312295 3.705506 5.731246 -7.047017 -3.352407 1.8245493
## X178 3.593860 1.264435 1.898648 4.642159 -8.334872 -4.656463 1.5475625
## X179 2.843587 1.299465 3.476091 3.924249 -7.118476 -3.244194 2.3025851
## X180 4.665910 1.286356 2.420557 2.728930 -7.581100 -3.324236 1.8082888
## X181 5.000000 1.289931 2.652897 7.174674 -8.016418 -4.422849 2.0668628
## X182 3.593860 1.282549 3.218759 5.325310 -7.182192 -3.729701 1.7404662
## X183 2.031412 1.282549 3.218759 6.225224 -7.106206 -3.540459 1.7404662
## X184 4.593226 1.289931 3.476091 3.342694 -7.369791 -3.649659 2.5649494
## X185 2.688997 1.282549 2.706796 5.630705 -7.293418 -4.135167 2.0149030
## X186 3.913012 1.278484 2.357662 5.325310 -8.180721 -4.199705 0.5306283
## X189 5.558929 1.274133 2.154845 4.749337 -7.849364 -4.342806 2.1747517
## X190 5.657628 1.289931 2.908553 6.705891 -7.824046 -3.688879 1.8245493
## X191 5.180840 1.299465 2.924466 4.037285 -7.684284 -3.912023 1.2089603
## X192 4.360856 1.304993 2.924466 5.325310 -7.418581 -3.912023 2.0668628
## X193 2.031412 1.282549 3.218759 1.796259 -7.402052 -3.729701 1.1939225
## X194 7.378459 1.299465 3.076971 3.402176 -7.487574 -3.244194 2.3978953
## X195 4.665910 1.282549 4.192081 5.427755 -7.338538 -3.688879 2.0412203
## X197 5.558929 1.274133 3.218759 3.040333 -7.849364 -4.017384 1.5686159
## X198 6.103215 1.296467 2.597435 4.370576 -7.684284 -3.863233 2.3978953
## X200 6.888655 1.278484 3.076971 5.731246 -7.581100 -3.912023 1.7404662
## X201 6.103215 1.274133 2.292540 5.325310 -7.542634 -4.017384 1.2089603
## X202 6.857203 1.269463 2.081821 4.749337 -7.354042 -3.863233 1.6094379
## X205 6.144037 1.269463 2.616102 3.810182 -7.684284 -3.963316 1.8245493
## X208 4.593226 1.296467 2.924466 3.402176 -7.222466 -3.963316 2.5649494
## X210 6.694714 1.286356 2.420557 4.749337 -7.369791 -4.656463 2.0149030
## X212 2.031412 1.278484 2.578583 1.796259 -7.849364 -4.074542 1.5475625
## X213 5.121987 1.282549 2.671032 5.731246 -7.278819 -4.135167 1.4109870
## X214 4.102821 1.274133 3.351388 4.149327 -8.180721 -3.772261 2.0412203
## X215 5.558929 1.278484 2.597435 6.225224 -7.523941 -4.074542 1.7404662
## X216 5.752800 1.286356 2.520871 8.081107 -7.264430 -4.645992 1.4816045
## X218 5.799150 1.296467 3.218759 4.695848 -7.047017 -3.123566 2.2617631
## X219 5.799150 1.264435 1.386542 1.434661 -7.264430 -4.779524 1.5475625
## X220 3.705506 1.296467 2.578583 3.578777 -7.523941 -4.017384 1.5475625
## X223 4.736472 1.286356 3.218759 4.749337 -6.927958 -3.611918 1.9740810
## X224 2.031412 1.278484 3.076971 4.749337 -7.581100 -3.540459 1.9740810
## X225 4.936704 1.278484 3.076971 5.325310 -7.354042 -3.912023 2.3025851
## X226 4.102821 1.286356 2.924466 7.174674 -7.684284 -3.540459 1.4816045
## X227 3.076971 1.289931 3.351388 4.749337 -6.907755 -3.381395 2.3025851
## X228 3.593860 1.278484 2.876338 2.978813 -7.469874 -3.912023 1.2809338
## X229 6.019723 1.274133 2.292540 4.204987 -7.929407 -4.199705 1.8082888
## X230 3.913012 1.274133 2.924466 4.204987 -7.849364 -3.963316 2.1747517
## X231 6.184269 1.286356 2.671032 5.325310 -7.469874 -4.342806 1.8082888
## X232 6.223931 1.302302 2.860031 5.731246 -7.542634 -3.912023 1.4816045
## X233 4.805045 1.296467 2.106497 4.695848 -8.016418 -3.963316 1.4816045
## X234 4.102821 1.289931 3.076971 5.325310 -7.369791 -3.772261 2.1747517
## X236 6.592710 1.282549 2.154845 4.749337 -7.706263 -4.688552 1.5686159
## X237 4.360856 1.286356 3.076971 5.630705 -7.849364 -3.506558 2.3025851
## X239 3.913012 1.282549 1.564217 4.204987 -7.706263 -3.912023 1.0296194
## X240 4.360856 1.286356 3.076971 3.578777 -7.024289 -4.017384 2.4849066
## X241 3.913012 1.282549 2.924466 5.066223 -7.469874 -4.135167 2.0149030
## X242 2.634588 1.316614 4.936704 2.791992 -6.948287 -2.453408 2.9957323
## X243 2.860031 1.264435 2.578583 1.052263 -7.264430 -4.268698 1.5475625
## X244 3.913012 1.274133 2.578583 5.376615 -7.849364 -4.268698 2.0149030
## X245 6.857203 1.264435 1.693661 7.174674 -7.751725 -5.472671 1.2089603
## X246 4.936704 1.293295 3.593860 2.978813 -6.907755 -3.079114 2.4849066
## X247 6.103215 1.286356 2.292540 7.174674 -8.217089 -4.976234 1.2089603
## X249 3.076971 1.269463 2.776394 4.204987 -7.469874 -3.912023 1.8082888
## X250 3.351388 1.278484 2.616102 4.149327 -8.047190 -3.912023 1.5260563
## X251 2.031412 1.289931 2.357662 3.578777 -7.662778 -4.509860 2.1860513
## X253 3.705506 1.278484 3.076971 2.407182 -7.402052 -3.057608 2.1860513
## X254 2.031412 1.289931 4.440875 5.325310 -7.354042 -3.324236 2.0668628
## X255 6.223931 1.286356 3.218759 4.149327 -7.751725 -3.863233 1.1939225
## X256 4.518270 1.269463 1.898648 3.040333 -7.264430 -4.815891 0.5877867
## X257 7.431248 1.264435 2.501234 5.630705 -8.047190 -4.656463 1.1939225
## X258 4.278004 1.269463 2.461332 4.149327 -7.264430 -4.509860 1.5260563
## X260 5.799150 1.274133 3.351388 3.402176 -7.824046 -3.963316 1.2089603
## X261 4.440875 1.278484 2.270306 4.642159 -8.047190 -5.132803 1.1939225
## X262 6.223931 1.282549 2.520871 6.705891 -7.684284 -4.645992 1.2089603
## X263 5.889532 1.293295 4.009916 4.037285 -7.182192 -3.244194 2.1747517
## X264 2.031412 1.302302 3.811702 5.170380 -6.502290 -3.194183 2.8903718
## X265 5.456396 1.278484 2.597435 5.731246 -8.016418 -3.912023 2.2617631
## X267 3.218759 1.286356 3.476091 3.637051 -7.581100 -3.688879 2.0149030
## X268 6.339666 1.286356 2.860031 8.081107 -7.600902 -3.912023 2.2617631
## X269 4.665910 1.278484 2.081821 4.204987 -7.706263 -4.268698 1.4586150
## X270 4.805045 1.302302 2.652897 5.325310 -7.824046 -3.863233 1.8245493
## X271 7.609273 1.299465 3.076971 5.325310 -7.751725 -3.912023 2.3978953
## X272 4.871752 1.282549 2.520871 8.520578 -7.824046 -4.074542 1.8245493
## X273 7.041123 1.286356 3.076971 6.705891 -8.016418 -4.268698 1.4816045
## X274 5.657628 1.289931 2.597435 4.695848 -7.824046 -4.199705 1.4816045
## X275 6.339666 1.282549 4.192081 3.578777 -6.812445 -3.218876 2.4849066
## X277 3.218759 1.278484 2.776394 3.637051 -7.641724 -4.199705 1.2237754
## X278 2.843587 1.293295 3.218759 4.749337 -7.354042 -3.506558 2.1517622
## X279 4.871752 1.269463 2.671032 3.637051 -7.581100 -4.135167 1.5686159
## X281 5.121987 1.293295 3.218759 4.204987 -7.706263 -3.863233 2.0149030
## X282 3.593860 1.274133 2.924466 4.802628 -7.264430 -3.575551 1.2089603
## X283 6.223931 1.296467 3.351388 5.325310 -7.418581 -3.688879 2.2617631
## X287 4.102821 1.289931 3.076971 5.427755 -8.047190 -3.688879 2.2192035
## X289 3.218759 1.274133 1.952975 5.325310 -7.581100 -4.199705 1.7404662
## X290 4.518270 1.274133 2.106497 2.791992 -7.264430 -4.422849 1.2089603
## X291 6.339666 1.274133 2.876338 5.066223 -7.581100 -4.017384 1.5686159
## X292 6.339666 1.286356 4.009916 4.204987 -7.182192 -3.688879 1.7404662
## X294 2.843587 1.278484 3.076971 3.578777 -7.354042 -3.244194 2.1517622
## X297 4.440875 1.269463 2.420557 4.642159 -7.849364 -4.017384 1.8082888
## X298 4.102821 1.274133 2.671032 3.461346 -8.294050 -3.296837 1.5260563
## X299 6.103215 1.278484 2.671032 5.325310 -7.469874 -4.422849 1.8082888
## X301 3.351388 1.286356 1.898648 4.642159 -8.517193 -4.422849 1.6863990
## X302 3.218759 1.293295 1.842554 5.731246 -7.182192 -4.074542 1.4586150
## X303 5.061733 1.293295 2.597435 3.402176 -7.684284 -4.199705 2.2617631
## X304 5.558929 1.278484 2.420557 5.731246 -7.264430 -4.656463 1.8082888
## X305 6.661108 1.307549 3.593860 6.705891 -7.047017 -3.611918 2.5649494
## X306 6.592710 1.282549 3.593860 5.731246 -7.354042 -3.540459 1.7404662
## X307 6.103215 1.302302 4.360856 5.325310 -6.812445 -3.079114 2.3025851
## X308 4.936704 1.289931 4.009916 4.749337 -6.645391 -2.813411 2.5649494
## X311 2.031412 1.286356 3.593860 3.282892 -7.293418 -3.816713 1.9169226
## X312 7.559432 1.264435 2.827004 5.170380 -7.264430 -4.268698 0.5877867
## X313 8.025855 1.293295 2.860031 1.866476 -7.824046 -3.729701 1.2089603
## X314 7.070709 1.274133 2.201921 5.731246 -7.264430 -4.199705 1.2089603
## X315 3.913012 1.293295 3.476091 4.204987 -6.907755 -3.352407 2.5649494
## X316 4.665910 1.278484 3.076971 6.225224 -7.849364 -3.912023 1.5260563
## X317 3.913012 1.274133 2.924466 3.461346 -7.849364 -3.863233 2.2192035
## X320 7.157766 1.286356 3.218759 4.802628 -8.294050 -3.963316 2.0412203
## X321 4.665910 1.286356 2.924466 2.407182 -7.264430 -3.649659 1.9459101
## X322 3.218759 1.293295 4.192081 7.632751 -6.725434 -3.244194 2.4849066
## X323 7.297547 1.293295 3.218759 6.705891 -7.684284 -4.268698 1.2089603
## X324 5.121987 1.293295 3.076971 4.204987 -7.354042 -4.074542 1.7404662
## X325 4.805045 1.307549 3.476091 5.325310 -7.222466 -3.442019 1.4816045
## X326 5.799150 1.282549 2.860031 5.325310 -7.264430 -4.791500 1.1939225
## X327 4.871752 1.274133 3.218759 3.637051 -7.849364 -3.649659 1.8082888
## X329 2.501234 1.282549 2.924466 5.630705 -7.849364 -4.074542 1.8082888
## X330 2.843587 1.278484 2.876338 4.749337 -8.047190 -4.268698 2.0668628
## X331 6.857203 1.293295 2.005655 5.325310 -8.111728 -3.963316 2.2617631
## X332 5.180840 1.282549 3.593860 6.705891 -7.323271 -3.863233 1.4816045
## X333 6.223931 1.293295 2.860031 4.695848 -7.418581 -3.863233 1.8245493
##             IL_5        IL_6 IL_6_Receptor      IL_7     IL_8
## X1    1.09861229  0.26936976    0.64279595 4.8050453 1.711325
## X2    0.69314718  0.09622438    0.43115645 3.7055056 1.675557
## X3   -0.24846136  0.18568645    0.09668586 1.0056222 1.691393
## X5    1.16315081 -0.07204658    0.09668586 4.2875620 1.764298
## X6   -0.40047757  0.18568645   -0.51727788 2.7763945 1.708270
## X7    0.83290912  0.09622438    0.43115645 4.0099156 1.698489
## X8   -0.09431068  1.00562217   -0.60969274 3.7055056 1.701858
## X9   -0.15082289 -0.64724718    0.27296583 0.6848724 1.691393
## X11   0.18232156 -1.09654116    0.35404039 2.9244660 1.719944
## X12   0.33647224 -0.39871863    0.09668586 2.9244660 1.675557
## X14   0.09531018  0.49280272    0.00000000 1.0056222 1.760954
## X16   0.26236426  0.42235886    0.18739989 1.2696362 1.705116
## X17  -0.17435339  0.26936976   -0.25138068 2.5785828 1.760954
## X18  -0.75502258 -0.17134851    0.00000000 2.7592279 1.573599
## X19  -0.30110509 -0.37116408   -0.33825519 1.3095734 1.719944
## X20  -0.67334455 -0.07204658   -0.39066087 2.7934108 1.750000
## X21  -0.54472718 -0.09342680   -0.30031103 0.5598079 1.701858
## X22   0.40546511 -1.01892829    0.35404039 3.5938596 1.764298
## X23  -0.13926207  0.62373057   -0.51727788 2.1548454 1.675557
## X24   0.47000363 -0.15990607    0.35404039 3.2187591 1.695003
## X25  -0.71334989 -0.33102365   -0.18121747 1.5642169 1.657003
## X26  -0.17435339 -0.24238905   -0.30031103 1.5642169 1.679744
## X28   0.33647224 -0.09342680    0.27296583 2.1548454 1.671202
## X29   0.09531018 -0.15990607    0.00000000 2.7763945 1.675557
## X30   1.94591015  0.09622438   -0.20419869 3.2187591 1.679744
## X31   0.64185389  0.34805188   -0.12541320 3.2187591 1.772079
## X34   0.00000000  1.53020362   -0.40410820 0.6848724 1.757464
## X35  -0.37106368 -0.64724718   -0.32548281 4.3608562 1.646447
## X36   0.64185389  0.34805188    0.18739989 4.3608562 1.717157
## X37   0.00000000 -0.83723396    0.00000000 1.5642169 1.701858
## X38  -0.37106368 -0.18290044    0.09668586 2.0567968 1.739622
## X39   0.58778666 -1.18086796   -0.05090066 3.9130123 1.657003
## X40  -0.13926207  0.26936976    0.00000000 1.8425543 1.730320
## X41   0.18232156 -0.99435191    0.27296583 3.9130123 1.717157
## X42   0.00000000 -0.18290044    0.18739989 2.1548454 1.711325
## X43  -0.30110509  0.49280272   -0.01003520 3.2187591 1.698489
## X44   0.33647224 -0.24238905   -0.06130466 3.8117017 1.760954
## X45   0.26236426 -0.41274719    0.35404039 3.2187591 1.725279
## X46   0.33647224 -0.07204658    0.00000000 1.8425543 1.727834
## X47  -1.04982212  0.34805188   -0.10371280 2.1548454 1.679744
## X48   0.64185389 -0.07204658    0.35404039 3.9130123 1.701858
## X50   0.58778666 -0.99435191   -0.13639307 2.9244660 1.725279
## X51   0.09531018 -1.45166590    0.50475301 2.3362105 1.661938
## X53   0.09531018  0.26936976   -0.26344327 3.4760910 1.708270
## X55   0.18232156 -0.45589516    0.27296583 2.7934108 1.730320
## X56  -0.15082289  0.00000000   -0.16987200 2.0567968 1.683772
## X57   0.58778666 -0.15990607    0.64279595 3.7055056 1.714286
## X59  -0.15082289  0.18568645    0.27296583 1.6936607 1.735094
## X60  -0.18632958  0.55980793   -0.04057305 2.1548454 1.705116
## X61   0.33647224 -0.17134851   -0.19265903 2.0567968 1.687652
## X62  -0.08338161  0.09622438   -0.12541320 5.1219873 1.695003
## X63  -0.65392647 -0.09342680    0.00000000 2.1548454 1.683772
## X64   0.33647224  1.30957344    0.18739989 1.2696362 1.711325
## X65  -0.67334455 -0.24238905   -0.31283574 1.8425543 1.714286
## X67   0.00000000 -0.27956244    0.27296583 1.2696362 1.675557
## X68  -0.56211892 -1.01892829   -0.08234738 2.7763945 1.695003
## X69  -0.75502258 -0.26704121   -0.13639307 2.1548454 1.683772
## X70   0.58778666 -0.24238905   -0.14746164 2.5785828 1.691393
## X71  -0.13926207  0.09622438    0.35404039 1.0056222 1.714286
## X72   1.19392247 -0.24238905    0.43115645 4.2780037 1.746000
## X73   0.09531018  0.09622438    0.18739989 2.3788658 1.691393
## X74  -1.42711636  0.34805188   -0.32548281 3.5938596 1.708270
## X75   0.26236426  1.26963623   -0.33825519 3.7055056 1.762644
## X76   0.33647224  0.18568645    0.09668586 1.2696362 1.732739
## X77   0.09531018 -0.06149412    0.27296583 3.4760910 1.722650
## X78   0.99325177 -0.09342680    0.50475301 3.4760910 1.779137
## X80   0.40546511  0.09622438    0.00000000 3.9130123 1.687652
## X81   0.47000363 -0.09342680    0.27296583 2.9244660 1.705116
## X82   0.00000000 -1.09654116    0.18739989 2.5785828 1.717157
## X83   0.09531018  0.79981129    0.35404039 3.5938596 1.727834
## X84  -0.15082289  0.00000000   -0.25138068 2.1548454 1.683772
## X85   0.83290912 -1.45166590   -0.03032047 4.0099156 1.725279
## X86   0.91629073  0.18568645    0.50475301 4.3608562 1.760954
## X88  -0.43078292  0.09622438   -0.18121747 2.1548454 1.751931
## X90  -0.56211892  0.00000000   -0.45939334 1.7245084 1.651845
## X93   0.69314718 -1.45166590    0.43115645 3.0769713 1.735094
## X94   0.91629073  0.49280272    0.18739989 4.1028210 1.794804
## X95   0.33647224  0.34805188   -0.07178642 3.7055056 1.705116
## X96   0.64185389 -1.53427578   -0.26344327 2.5785828 1.695003
## X97   0.00000000 -0.61296931    0.64279595 2.1548454 1.695003
## X98   0.00000000 -0.07204658   -0.43144357 2.7592279 1.634852
## X99   0.47000363  0.62373057   -0.12541320 3.0769713 1.767505
## X100  0.33647224 -0.64724718    0.50475301 2.3362105 1.666667
## X103  1.09861229  0.34805188    0.64279595 3.9130123 1.725279
## X104  0.09531018  0.00000000   -0.06130466 3.7055056 1.719944
## X105  0.64185389 -0.70078093   -0.10371280 3.4760910 1.725279
## X107  0.58778666  0.09622438    0.27296583 3.2187591 1.737387
## X108  0.26236426  0.34805188    0.27296583 3.9130123 1.711325
## X109  0.58778666 -0.24238905    0.27296583 2.1548454 1.661938
## X110  0.00000000 -0.50074709   -0.14746164 2.1548454 1.687652
## X111  0.40546511 -0.15990607   -0.16987200 3.5938596 1.714286
## X112  0.83290912 -0.07204658    0.64279595 5.3496753 1.737387
## X113  0.58778666 -0.24238905    0.27296583 3.9130123 1.725279
## X114 -0.17435339  0.09622438   -0.41770114 2.5785828 1.711325
## X115 -0.49429632 -0.18290044   -0.35115595 2.1548454 1.714286
## X117  0.53062825  0.00000000    0.50475301 3.4760910 1.711325
## X118  0.40546511 -0.24238905    0.27296583 2.9244660 1.730320
## X121 -0.15082289  0.95678949    0.64279595 1.2696362 1.711325
## X123 -0.18632958 -0.77658561   -0.19265903 2.1548454 1.657003
## X124 -0.18632958 -0.37116408    0.57519641 3.4760910 1.651845
## X126  0.00000000  0.34805188   -0.13639307 1.2696362 1.705116
## X128  0.47000363 -0.64724718    0.43115645 2.9244660 1.773545
## X129 -0.37106368 -0.51610326   -0.62582535 1.6936607 1.651845
## X130  0.00000000 -0.50074709   -0.05090066 0.5598079 1.687652
## X131  0.18232156 -0.83723396    0.09668586 3.4760910 1.691393
## X132  0.00000000 -0.26704121    0.35404039 2.0567968 1.717157
## X133  0.33647224 -1.09654116    0.09668586 3.4760910 1.671202
## X134  0.47000363 -0.61296931    0.35404039 2.9244660 1.735094
## X135  0.00000000  0.00000000    0.18739989 2.1548454 1.646447
## X136 -0.56211892  0.00000000   -0.16987200 3.7055056 1.698489
## X137 -0.13926207 -0.45589516   -0.21583851 2.3788658 1.661938
## X139  0.00000000 -0.24238905    0.00000000 0.5598079 1.646447
## X140  0.18232156 -1.53427578   -0.11452033 2.9244660 1.711325
## X141  0.33647224 -0.02016195    0.64279595 1.8708303 1.708270
## X143  0.00000000  0.09622438   -0.33825519 3.4760910 1.714286
## X144  0.00000000  0.74349177   -0.10371280 0.5598079 1.675557
## X145  0.18232156 -0.37116408    0.50475301 3.5938596 1.691393
## X146  0.64185389 -0.24238905    0.35404039 3.9130123 1.730320
## X147  0.33647224  0.18568645    0.57519641 2.1548454 1.737387
## X148  0.87546874  0.79981129   -0.27561748 5.0617331 1.769060
## X149  0.33647224  0.26936976    0.18739989 3.4760910 1.717157
## X152  0.99325177 -0.61296931    0.43115645 4.5182697 1.770584
## X153  0.74193734  1.30957344   -0.21583851 3.4760910 1.759228
## X154  0.18232156 -0.24238905   -0.04057305 1.4599700 1.657003
## X155  0.00000000 -0.07204658    0.09668586 2.1548454 1.701858
## X156  0.58778666  0.49280272   -0.06130466 3.7055056 1.739622
## X157  0.47000363  0.49280272    0.27296583 2.7592279 1.687652
## X158  0.09531018  0.26936976    0.18739989 1.8425543 1.691393
## X159 -0.65392647 -1.45166590    0.00000000 2.1548454 1.753817
## X160  0.69314718 -0.07204658    0.27296583 3.9130123 1.687652
## X161  0.18232156 -0.18290044    0.70781531 2.9244660 1.679744
## X162  0.09531018 -1.01892829    0.27296583 3.0769713 1.695003
## X163 -0.56211892  0.00000000    0.09668586 0.7434918 1.679744
## X165 -0.17435339 -1.45166590    0.27296583 0.5598079 1.708270
## X166 -0.05129329 -0.64724718    0.18739989 2.0567968 1.640789
## X167  0.87546874 -0.37116408    0.57519641 4.1920814 1.727834
## X168  1.02961942 -0.45589516    0.27296583 4.1920814 1.708270
## X169 -0.17435339 -0.24238905    0.00000000 2.5785828 1.666667
## X170 -0.40047757  0.26936976   -0.31283574 1.5642169 1.695003
## X171  0.58778666 -0.64724718    0.27296583 4.1920814 1.714286
## X172  0.00000000 -0.50074709    0.35404039 1.4236758 1.671202
## X174  0.33647224  0.42235886    0.09668586 2.0567968 1.719944
## X175  0.33647224 -0.09342680   -0.23942725 3.7055056 1.741801
## X176  0.00000000 -0.39871863   -0.15862068 2.5595409 1.727834
## X177  0.40546511 -0.15990607    0.57519641 4.1028210 1.675557
## X178 -0.37106368  0.00000000   -0.09298900 2.1548454 1.622036
## X179  0.64185389  0.09622438    0.35404039 5.0000000 1.760954
## X180  0.58778666  0.26936976   -0.67562020 2.5785828 1.748024
## X181 -0.09431068 -0.15990607    0.18739989 3.4760910 1.708270
## X182  0.33647224 -0.07204658   -0.31283574 2.0567968 1.698489
## X183  0.18232156 -0.07204658   -0.30031103 3.5938596 1.725279
## X184  0.58778666 -1.53427578    0.18739989 2.1548454 1.705116
## X185  0.26236426 -0.18290044    0.35404039 2.7763945 1.691393
## X186  0.00000000 -0.09342680    0.18739989 1.5642169 1.607768
## X189 -0.17435339 -0.61296931    0.27296583 2.1548454 1.657003
## X190  0.09531018 -1.01892829    0.09668586 2.7763945 1.683772
## X191  0.33647224 -0.81662520   -0.21583851 2.7763945 1.705116
## X192  0.83290912 -0.37116408    0.50475301 3.3513883 1.739622
## X193  0.47000363 -0.51610326    0.27296583 2.5595409 1.698489
## X194  0.26236426  0.00000000    0.18739989 3.9130123 1.666667
## X195  0.87546874  1.00562217    0.18739989 3.7055056 1.772079
## X197  0.58778666 -0.02016195    0.70781531 2.9244660 1.717157
## X198  0.26236426 -0.50074709    0.09668586 2.0567968 1.661938
## X200  0.33647224  0.34805188    0.57519641 3.4760910 1.732739
## X201 -0.09431068 -0.06149412   -0.02014161 3.8117017 1.708270
## X202 -0.43078292 -0.26704121    0.00000000 3.2187591 1.695003
## X205  0.47000363 -0.45589516    0.35404039 2.3788658 1.705116
## X208  0.26236426 -0.15990607    0.35404039 3.0769713 1.675557
## X210  0.09531018 -0.24238905    0.50475301 0.5598079 1.683772
## X212  0.00000000 -0.99435191    0.00000000 2.5595409 1.675557
## X213  0.18232156 -0.41274719    0.18739989 2.1548454 1.691393
## X214  0.18232156  0.85402456    0.50475301 3.2187591 1.806653
## X215  0.33647224 -0.26704121    0.00000000 2.0567968 1.719944
## X216 -0.56211892  0.34805188   -0.08234738 1.7245084 1.727834
## X218  0.09531018 -0.06149412    0.43115645 3.3513883 1.698489
## X219 -0.24846136  0.18568645    0.00000000 2.0567968 1.679744
## X220  0.18232156 -0.39871863    0.27296583 2.5595409 1.666667
## X223  0.33647224 -0.26704121    0.00000000 4.1028210 1.701858
## X224  0.53062825 -0.50074709    0.09668586 2.1548454 1.657003
## X225  0.33647224 -0.26704121    0.50475301 2.0567968 1.714286
## X226  0.78845736  0.49280272    0.57519641 2.3362105 1.711325
## X227  0.64185389  0.00000000    0.27296583 4.3608562 1.727834
## X228 -0.43078292 -0.07204658   -0.18121747 3.2187591 1.679744
## X229 -0.54472718 -0.61296931   -0.07178642 2.1548454 1.695003
## X230  0.00000000  0.55980793    0.09668586 2.1548454 1.719944
## X231  0.18232156 -0.41274719    0.09668586 1.5642169 1.695003
## X232 -0.09431068  0.18568645    0.35404039 3.0769713 1.691393
## X233 -0.30110509  0.00000000   -0.30031103 1.7245084 1.687652
## X234  0.18232156 -0.71923319   -0.07178642 3.4760910 1.675557
## X236  0.18232156 -0.15990607    0.00000000 2.1548454 1.634852
## X237  0.47000363 -0.64724718    0.35404039 3.4760910 1.732739
## X239 -0.18632958  0.79981129   -0.40410820 5.7056368 1.695003
## X240  0.53062825  0.09622438    0.18739989 2.1548454 1.737387
## X241  0.58778666 -1.45166590    0.00000000 3.9130123 1.657003
## X242  0.78845736  0.09622438    0.64279595 5.1219873 1.737387
## X243 -0.15082289  0.09622438    0.09668586 1.2696362 1.661938
## X244  0.00000000  0.79981129    0.18739989 1.2696362 1.797969
## X245 -0.41551544 -0.15990607   -0.67562020 1.7245084 1.687652
## X246  0.74193734 -0.26704121   -0.18121747 4.2780037 1.711325
## X247 -0.41551544 -0.37116408   -0.33825519 2.0567968 1.671202
## X249  0.58778666 -0.24238905    0.83099088 1.5642169 1.687652
## X250  0.18232156 -0.99435191   -0.05090066 3.0769713 1.739622
## X251 -1.04982212  0.18568645    0.18739989 1.2696362 1.691393
## X253  0.47000363  0.18641819    0.43115645 3.4760910 1.750000
## X254  1.16315081 -0.37116408    0.64279595 4.3608562 1.762644
## X255  0.64185389 -0.39871863    0.18739989 2.0567968 1.750000
## X256  0.00000000 -0.64724718   -0.18121747 2.0567968 1.646447
## X257 -0.15082289 -0.81662520    0.00000000 2.0567968 1.628609
## X258  0.18232156  0.90630094   -0.13639307 2.1548454 1.695003
## X260 -0.09431068 -0.64724718   -0.12541320 3.0769713 1.741801
## X261 -0.65392647 -0.27956244   -0.03032047 1.2696362 1.687652
## X262 -0.30110509 -0.15990607    0.18739989 1.7245084 1.666667
## X263  0.69314718 -0.15990607    0.50475301 3.9130123 1.741801
## X264  1.06471074 -0.64724718   -0.22758062 4.5182697 1.753817
## X265  0.33647224 -0.15990607    0.27296583 4.2780037 1.661938
## X267  0.33647224  0.26936976    0.57519641 2.9244660 1.719944
## X268  0.18232156 -0.37116408    0.00000000 3.7055056 1.732739
## X269  0.47000363  0.26936976   -0.19265903 2.7592279 1.657003
## X270 -0.09431068 -0.81662520    0.64279595 2.7763945 1.739622
## X271  0.26236426 -0.37116408    0.35404039 3.4760910 1.711325
## X272 -0.18632958  0.18568645   -0.25138068 3.7055056 1.687652
## X273 -0.30110509  0.68487244    0.57519641 2.3362105 1.746000
## X274  0.40546511 -0.15990607    0.27296583 0.7434918 1.675557
## X275  0.95551145  0.49280272    0.50475301 4.4408751 1.691393
## X277 -0.07257069 -0.41274719    0.18739989 2.5785828 1.717157
## X278  0.64185389 -0.07204658    0.35404039 3.9130123 1.719944
## X279  0.18232156 -1.27337604    0.00000000 2.5785828 1.675557
## X281  0.47000363 -0.09342680    0.35404039 2.5785828 1.705116
## X282  0.33647224  0.34805188   -0.48799216 1.8425543 1.743926
## X283  0.69314718 -0.15990607    0.09668586 3.4760910 1.753817
## X287  0.58778666  0.09622438    0.09668586 3.9130123 1.675557
## X289 -0.18632958 -0.07204658   -0.60969274 3.5938596 1.687652
## X290 -0.37106368 -0.24238905   -0.57808019 2.3788658 1.698489
## X291  0.33647224  0.49280272    0.09668586 3.2187591 1.759228
## X292  0.33647224  1.81380304    0.64279595 3.5938596 1.760954
## X294  0.18232156 -0.26704121   -0.48799216 3.9130123 1.671202
## X297  0.00000000 -0.39871863    0.57519641 1.2696362 1.640789
## X298  0.47000363 -0.24238905   -0.30031103 2.9244660 1.657003
## X299 -0.17435339 -0.83723396    0.27296583 2.1548454 1.675557
## X301  0.18232156 -0.39871863    0.18739989 2.1548454 1.607768
## X302  0.18232156  0.26936976   -0.45939334 2.1548454 1.708270
## X303  0.47000363  0.68487244   -0.12541320 2.3362105 1.717157
## X304  0.18232156 -0.18290044    0.00000000 2.1548454 1.701858
## X305  0.58778666 -0.64724718   -0.08234738 3.7055056 1.711325
## X306  0.58778666 -0.50074709    0.18739989 4.1920814 1.743926
## X307  1.16315081 -0.26704121    0.00000000 4.2780037 1.753817
## X308  0.83290912  0.09622438    0.57519641 4.6659102 1.691393
## X311  0.47000363 -0.39871863   -0.27561748 4.2780037 1.730320
## X312  0.09531018  0.00000000   -0.02014161 2.5595409 1.683772
## X313 -0.30110509 -0.25465110    0.43115645 3.0769713 1.705116
## X314 -0.56211892 -1.45166590   -0.06130466 2.5595409 1.661938
## X315  0.64185389  0.09622438    0.35404039 4.3608562 1.743926
## X316  0.18232156 -0.07204658    0.50475301 4.1028210 1.671202
## X317  0.18232156 -0.45589516    0.35404039 2.7934108 1.646447
## X320 -0.13926207  0.00000000    0.00000000 4.1028210 1.666667
## X321 -0.13926207 -0.07204658   -0.64218542 3.7055056 1.679744
## X322  0.58778666 -0.39871863    0.18739989 4.4408751 1.698489
## X323  0.09531018  0.00000000   -0.27561748 2.7763945 1.675557
## X324  0.18232156 -0.26704121    0.09668586 3.2187591 1.698489
## X325 -0.09431068  0.09622438    0.43115645 4.4408751 1.722650
## X326 -0.10503540 -0.81662520    0.35404039 2.0567968 1.701858
## X327  0.18232156  0.26936976    0.09668586 2.9244660 1.725279
## X329  0.64185389  0.18568645    0.09668586 2.1548454 1.714286
## X330  0.26236426  0.42235886   -0.05090066 3.7055056 1.727834
## X331 -0.56211892 -1.01892829   -0.06130466 3.0769713 1.600000
## X332 -0.09431068 -0.15990607   -0.35115595 3.3513883 1.717157
## X333  0.69314718 -1.27337604    0.43115645 3.9130123 1.727834
##      IP_10_Inducible_Protein_10        IgA    Insulin
## X1                     6.242223  -6.812445 -0.6258253
## X2                     5.686975  -6.377127 -0.9431406
## X3                     5.049856  -6.319969 -1.4466191
## X5                     6.369901  -4.645992 -0.3003110
## X6                     5.480639  -5.809143 -1.3405481
## X7                     5.451038  -6.645391 -0.8398078
## X8                     5.968708  -5.083206 -1.0105157
## X9                     5.375278  -6.645391 -1.4852687
## X11                    6.144186  -5.776353 -1.3079612
## X12                    5.164786  -6.502290 -1.0827874
## X14                    6.313548  -5.599422 -1.3405481
## X16                    5.598422  -5.449140 -1.4097335
## X17                    6.063785  -5.496768 -1.1884825
## X18                    5.036953  -6.214608 -1.6677387
## X19                    7.383989  -7.323271 -1.3405481
## X20                    5.375278  -4.509860 -1.3405481
## X21                    6.218600  -5.339139 -1.4466191
## X22                    5.789960  -5.403678 -1.1884825
## X23                    5.056246  -5.952244 -1.2765538
## X24                    5.683580  -6.119298 -0.8203007
## X25                    5.416100  -7.402052 -1.2765538
## X26                    5.843544  -6.165818 -1.4852687
## X28                    5.758902  -6.502290 -0.7456014
## X29                    5.480639  -6.437752 -1.3405481
## X30                    5.837730  -7.293418 -1.3079612
## X31                    6.428105  -6.074846 -0.9431406
## X34                    5.484797  -5.278515 -1.1884825
## X35                    4.905275  -5.744604 -1.8132213
## X36                    6.612041  -4.803621 -0.7638043
## X37                    6.086775  -6.074846 -1.2765538
## X38                    5.902633  -6.907755 -1.3079612
## X39                    5.181784  -6.119298 -0.7823131
## X40                    6.527958  -6.119298 -1.5259022
## X41                    5.484797  -5.496768 -1.2168953
## X42                    5.541264  -6.214608 -1.8652431
## X43                    5.937536  -6.265901 -1.4466191
## X44                    6.675823  -6.437752 -1.2765538
## X45                    6.118097  -5.744604 -1.0827874
## X46                    5.204007  -6.571283 -1.2168953
## X47                    5.389072  -6.907755 -1.8652431
## X48                    5.758902  -6.032287 -0.8799269
## X50                    5.723585  -5.572754 -1.1884825
## X51                    5.451038  -6.948577 -1.5687868
## X53                    5.983936  -5.360193 -1.1081246
## X55                    5.476464  -6.725434 -1.5259022
## X56                    5.913503  -6.437752 -1.4852687
## X57                    6.156979  -5.259097 -1.0827874
## X59                    6.565265  -5.472671 -1.8132213
## X60                    5.817111  -5.572754 -1.3744281
## X61                    5.147494  -6.502290 -1.4466191
## X62                    5.817111  -6.265901 -1.3744281
## X63                    5.981414  -6.032287 -2.1691668
## X64                    6.059123  -5.360193 -1.4097335
## X65                    5.129899  -6.645391 -1.3405481
## X67                    5.468060  -6.812445 -2.1691668
## X68                    5.318120  -6.725434 -1.2462272
## X69                    5.225747  -6.119298 -1.3405481
## X70                    5.765191  -7.236259 -1.1884825
## X71                    5.153292  -7.035589 -1.2765538
## X72                    6.565265  -5.201186 -0.4177011
## X73                    5.805135  -6.032287 -1.1081246
## X74                    5.758902  -5.572754 -2.1464071
## X75                    6.115892  -4.791500 -1.0105157
## X76                    5.141664  -6.165818 -1.3079612
## X77                    5.420535  -5.360193 -1.2462272
## X78                    6.700731  -5.744604 -0.9431406
## X80                    5.855072  -5.991465 -1.0340201
## X81                    5.891644  -7.195437 -1.1341535
## X82                    5.846439  -6.502290 -1.2765538
## X83                    5.983936  -6.437752 -1.2462272
## X84                    5.690359  -6.907755 -1.4852687
## X85                    6.359574  -5.776353 -0.9005739
## X86                    6.023448  -5.020686 -0.5472920
## X88                    5.958425  -6.502290 -1.3744281
## X90                    5.505332  -6.645391 -1.4852687
## X93                    5.799093  -5.067206 -1.2462272
## X94                    6.813445  -4.268698 -0.7276925
## X95                    5.697093  -6.725434 -1.0827874
## X96                    6.300786  -6.725434 -1.3405481
## X97                    5.905362  -6.645391 -2.0098877
## X98                    5.327876  -6.927958 -1.5259022
## X99                    5.525453  -6.437752 -0.9651041
## X100                   5.662960  -6.377127 -1.6142515
## X103                   6.115892  -8.047190 -0.8799269
## X104                   5.686975  -6.214608 -1.1081246
## X105                   5.068904  -6.645391 -0.9431406
## X107                   5.361292  -6.725434 -0.9216381
## X108                   6.326149  -6.437752 -0.7823131
## X109                   5.384495  -6.319969 -1.6677387
## X110                   5.752573  -7.250246 -1.4466191
## X111                   5.529429  -6.377127 -1.0105157
## X112                   6.423247  -5.083206 -0.3641883
## X113                   6.322565  -4.699481 -0.8596776
## X114                   5.468060  -5.521461 -2.0098877
## X115                   6.879356  -4.879607 -1.4852687
## X117                   5.793014  -6.812445 -1.0340201
## X118                   6.579251  -6.319969 -0.8011407
## X121                   5.673323  -5.318520 -1.7093141
## X123                   5.451038  -6.502290 -2.1464071
## X124                   5.075174  -6.074846 -0.7456014
## X126                   5.049856  -6.319969 -1.8132213
## X128                   6.651572  -5.914504 -1.4097335
## X129                   5.934894  -6.437752 -1.8132213
## X130                   5.793014  -5.259097 -1.1884825
## X131                   4.962845  -7.082109 -1.1081246
## X132                   5.852202  -6.214608 -1.2168953
## X133                   6.107023  -5.083206 -0.9875535
## X134                   5.743003  -5.472671 -0.9875535
## X135                   5.332719  -5.546779 -1.0580989
## X136                   6.410175  -5.083206 -1.2765538
## X137                   4.934474  -5.713833 -1.2765538
## X139                   5.501258  -6.265901 -1.8652431
## X140                   6.406880  -6.265901 -1.0827874
## X141                   5.429346  -6.645391 -1.2765538
## X143                   6.068426  -5.991465 -1.2168953
## X144                   6.013715  -6.214608 -1.8652431
## X145                   5.513429  -6.032287 -1.3744281
## X146                   6.646391  -4.879607 -0.7638043
## X147                   6.651572  -6.938214 -1.1884825
## X148                   6.588926  -5.952244 -0.2275806
## X149                   5.720312  -7.338538 -1.0580989
## X152                   6.431331  -5.683980 -0.3003110
## X153                   6.165418  -5.099467 -0.8596776
## X154                   4.990433  -7.013116 -1.2168953
## X155                   5.616771  -6.265901 -1.3079612
## X156                   5.472271  -5.240048 -0.8011407
## X157                   4.927254  -6.571283 -1.0827874
## X158                   4.997212  -5.914504 -1.4466191
## X159                   6.259581  -5.914504 -1.4852687
## X160                   4.962845  -5.496768 -0.8011407
## X161                   6.444131  -5.952244 -1.2462272
## X162                   5.846439  -7.118476 -1.2765538
## X163                   5.641907  -6.907755 -1.4466191
## X165                   6.184149  -6.645391 -1.7255647
## X166                   5.613128  -6.571283 -1.4852687
## X167                   6.220590  -6.907755 -0.8398078
## X168                   5.111988  -6.725434 -0.7823131
## X169                   5.575949  -5.599422 -1.2765538
## X170                   6.336826  -5.952244 -1.7255647
## X171                   5.899897  -5.149897 -1.1884825
## X172                   5.389072  -6.645391 -1.1341535
## X174                   5.648974  -5.521461 -1.2168953
## X175                   5.828946  -4.625373 -1.0340201
## X176                   6.169611  -6.437752 -1.4852687
## X177                   5.198497  -6.812445 -0.9651041
## X178                   5.897154  -6.907755 -1.8652431
## X179                   6.073045  -4.828314 -0.8011407
## X180                   6.220738  -6.119298 -1.1609217
## X181                   5.135798  -6.571283 -1.4097335
## X182                   5.214936 -10.519674 -1.0827874
## X183                   4.990433  -5.809143 -1.0827874
## X184                   5.739793  -6.812445 -1.0827874
## X185                   5.863631  -5.809143 -1.4097335
## X186                   4.779123  -6.265901 -1.4466191
## X189                   5.720312  -5.878136 -1.3405481
## X190                   5.968708  -5.654992 -1.2462272
## X191                   5.575949  -6.119298 -1.3405481
## X192                   6.315358  -6.165818 -0.9651041
## X193                   5.752573  -7.082109 -1.1341535
## X194                   5.493061  -6.165818 -1.0340201
## X195                   5.805135  -6.165818 -0.7456014
## X197                   5.777652  -5.449140 -1.1341535
## X198                   5.958425  -6.725434 -1.1341535
## X200                   5.549076  -6.725434 -1.2462272
## X201                   6.063785  -6.165818 -1.2765538
## X202                   5.659482  -6.991137 -1.4466191
## X205                   5.135798  -5.878136 -1.1081246
## X208                   6.903747  -6.265901 -1.0340201
## X210                   6.001415  -6.502290 -1.7255647
## X212                   5.407172  -7.799353 -1.4852687
## X213                   5.424950  -5.713833 -1.1341535
## X214                   5.298317  -6.319969 -0.8596776
## X215                   5.278115  -6.571283 -1.3079612
## X216                   5.934894  -5.878136 -1.4852687
## X218                   6.456770  -4.840893 -0.8596776
## X219                   5.986452  -6.119298 -1.8652431
## X220                   5.361292  -7.452482 -1.0827874
## X223                   5.442418  -5.298317 -0.9005739
## X224                   5.733341  -5.713833 -1.0105157
## X225                   5.752573  -6.377127 -1.1341535
## X226                   5.575949  -5.521461 -1.2462272
## X227                   5.996452  -5.318520 -0.9005739
## X228                   5.652489  -6.812445 -1.2168953
## X229                   5.648974  -5.221356 -1.4852687
## X230                   5.579730  -5.426151 -1.2765538
## X231                   5.863631  -6.502290 -1.5687868
## X232                   5.384495  -5.599422 -1.1341535
## X233                   5.937536  -7.106206 -1.5687868
## X234                   4.969813  -5.184989 -1.0827874
## X236                   5.198497  -6.812445 -1.7255647
## X237                   5.953243  -6.980326 -0.9875535
## X239                   5.030438  -5.843045 -1.5259022
## X240                   5.288267  -7.523941 -1.1884825
## X241                   5.288267  -6.319969 -1.0827874
## X242                   5.537334  -4.342806 -0.1586207
## X243                   5.093750  -5.683980 -1.6142515
## X244                   5.902633  -6.645391 -1.6142515
## X245                   4.700480  -6.377127 -1.3405481
## X246                   6.298949  -4.947660 -0.7638043
## X247                   5.817111  -6.645391 -1.7708847
## X249                   5.590987  -7.182192 -1.1884825
## X250                   5.746203  -5.914504 -1.1609217
## X251                   5.686975  -6.571283 -1.4097335
## X253                   6.003887  -4.976234 -1.2765538
## X254                   6.793466  -5.914504 -0.8398078
## X255                   5.993961  -5.184989 -1.2462272
## X256                   4.941642  -6.907755 -1.8652431
## X257                   5.123964  -7.293418 -1.4852687
## X258                   5.323010  -6.927958 -1.2765538
## X260                   5.872118  -5.878136 -1.1081246
## X261                   5.648974  -6.265901 -1.8132213
## X262                   4.844187  -6.074846 -1.3405481
## X263                   6.077642  -7.082109 -0.7638043
## X264                   6.070738  -5.472671 -0.6756202
## X265                   5.303305  -5.713833 -1.2462272
## X267                   6.063785  -5.599422 -1.1884825
## X268                   6.013715  -6.725434 -1.1884825
## X269                   5.087596  -8.145630 -1.6677387
## X270                   5.620401  -5.843045 -1.2462272
## X271                   5.924256  -5.472671 -1.2168953
## X272                   5.820083  -5.381699 -1.2765538
## X273                   6.173786  -6.119298 -1.2765538
## X274                   5.587249  -6.502290 -1.4466191
## X275                   6.122493  -5.991465 -0.7823131
## X277                   6.137727  -5.683980 -1.3405481
## X278                   6.357842  -5.878136 -0.8398078
## X279                   6.186209  -5.572754 -1.3405481
## X281                   5.631212  -5.221356 -1.0340201
## X282                   5.356586  -5.991465 -0.9431406
## X283                   6.873164  -5.744604 -1.2462272
## X287                   5.135798  -5.809143 -0.9651041
## X289                   5.501258  -5.952244 -1.3079612
## X290                   5.517453  -5.991465 -1.4466191
## X291                   5.389072  -5.381699 -1.2765538
## X292                   6.617403  -6.265901 -1.0827874
## X294                   5.840642  -6.571283 -1.0340201
## X297                   5.517453  -5.952244 -1.4097335
## X298                   4.317488  -6.119298 -1.0580989
## X299                   6.098074  -6.725434 -1.4466191
## X301                   5.590987  -7.542634 -1.9446703
## X302                   5.241747  -6.165818 -1.1341535
## X303                   5.720312  -6.119298 -1.2462272
## X304                   5.796058  -6.437752 -1.8132213
## X305                   5.361292  -5.713833 -1.0827874
## X306                   5.497168  -5.472671 -1.0340201
## X307                   6.532334  -5.546779 -0.6421854
## X308                   6.054439  -5.521461 -0.6096927
## X311                   6.278521  -5.221356 -1.0827874
## X312                   5.874931  -6.032287 -1.4852687
## X313                   6.059123  -6.502290 -1.3405481
## X314                   5.087596  -7.035589 -1.9145792
## X315                   6.208590  -5.339139 -0.7823131
## X316                   4.356709  -6.119298 -1.0580989
## X317                   5.971262  -6.907755 -1.1341535
## X320                   5.252273  -4.710531 -1.3405481
## X321                   5.111988  -7.024289 -1.2462272
## X322                   6.011267  -5.051457 -0.6421854
## X323                   6.897705  -6.214608 -1.4852687
## X324                   6.208590  -7.169120 -1.1341535
## X325                   7.501082  -6.319969 -0.9651041
## X326                   5.560682  -6.812445 -1.5687868
## X327                   5.587249  -5.240048 -1.2168953
## X329                   5.926926  -6.812445 -1.2765538
## X330                   5.267858  -4.199705 -1.3744281
## X331                   5.293305  -6.265901 -1.5687868
## X332                   5.273000  -5.914504 -1.2462272
## X333                   6.746412  -6.074846 -1.0340201
##      Kidney_Injury_Molecule_1_KIM_1     LOX_1     Leptin Lipoprotein_a    MCP_1
## X1                        -1.204295 1.7047481 -1.5290628     -4.268698 6.740519
## X2                        -1.197703 1.5260563 -1.4660558     -4.933674 6.849066
## X3                        -1.191191 1.1631508 -1.6622675     -5.843045 6.767343
## X5                        -1.163800 1.3609766 -0.9151068     -2.937463 6.722630
## X6                        -1.123868 0.6418539 -1.3613475     -4.509860 6.541030
## X7                        -1.143534 1.2237754 -1.7051413     -6.319969 6.359574
## X8                        -1.184754 1.4350845 -1.7517987     -3.863233 6.448889
## X9                        -1.159695 1.0986123 -1.7833269     -4.961845 6.445720
## X11                       -1.155616 1.4816045 -1.1867361     -5.572754 6.606650
## X12                       -1.153587 1.4586150 -1.9987562     -5.083206 6.444131
## X14                       -1.172093 1.0647107 -1.5087252     -3.442019 6.744059
## X16                       -1.202089 1.8405496 -1.3294863     -5.914504 6.212606
## X17                       -1.123868 0.5306283 -1.6420151     -2.120264 6.781058
## X18                       -1.163800 0.9162907 -1.6832823     -6.032287 6.501290
## X19                       -1.206511 0.9162907 -1.7397296     -3.540459 6.066108
## X20                       -1.191191 0.8754687 -1.6622675     -2.302585 6.787845
## X21                       -1.147537 0.7419373 -1.3294863     -6.032287 6.513230
## X22                       -1.224597 1.8718022 -1.2134062     -2.995732 6.476972
## X23                       -1.186891 0.9162907 -1.3294863     -3.863233 6.293419
## X24                       -1.202089 1.2809338 -1.7221470     -5.035953 6.403574
## X25                       -1.155616 0.9555114 -1.5047321     -5.599422 6.424869
## X26                       -1.155616 1.4109870 -1.7221470     -4.733004 6.122493
## X28                       -1.182624 1.0296194 -1.7457280     -3.324236 7.003065
## X29                       -1.184754 1.0986123 -1.4294363     -4.135167 6.484635
## X30                       -1.143534 1.0647107 -1.6272839     -4.017384 6.177944
## X31                       -1.145532 0.9932518 -1.3294863     -4.645992 6.408529
## X34                       -1.167932 0.9555114 -1.2134062     -4.342806 6.815640
## X35                       -1.170009 0.5306283 -1.9987562     -5.083206 6.478510
## X36                       -1.174184 1.5260563 -1.7517987     -2.207275 6.651572
## X37                       -1.182624 1.2527630 -1.9877978     -4.074542 6.293419
## X38                       -1.172093 1.5260563 -1.3613475     -5.184989 6.416732
## X39                       -1.199892 1.5892352 -1.7164169     -4.645992 6.302619
## X40                       -1.172093 1.4350845 -1.4660558     -6.812445 6.797940
## X41                       -1.159695 1.1939225 -1.5673739     -4.199705 6.796824
## X42                       -1.213217 1.4586150 -1.5127425     -5.472671 6.246107
## X43                       -1.123868 1.0296194 -1.9471197     -3.352407 6.364751
## X44                       -1.210972 1.5260563 -1.3946054     -4.635629 6.583409
## X45                       -1.155616 1.4586150 -1.8032876     -5.914504 6.877296
## X46                       -1.217737 1.2809338 -1.5988899     -3.649659 6.602588
## X47                       -1.186891 1.1939225 -1.7221470     -4.667046 6.516193
## X48                       -1.165862 1.5040774 -1.3294863     -5.599422 6.562444
## X50                       -1.213217 1.7404662 -1.2409325     -5.278515 6.453625
## X51                       -1.224597 1.6863990 -1.7965395     -5.221356 6.154858
## X53                       -1.199892 1.0647107 -1.3294863     -4.268698 6.401917
## X55                       -1.204295 1.0986123 -1.2988756     -5.318520 6.222576
## X56                       -1.174184 1.3609766 -1.8170863     -4.803621 6.480045
## X57                       -1.231557 1.3350011 -1.7107489     -4.645992 6.661855
## X59                       -1.191191 1.2809338 -1.7221470     -4.688552 6.565265
## X60                       -1.184754 0.8329091 -1.7338014     -5.449140 6.481577
## X61                       -1.163800 0.9555114 -1.1608546     -5.449140 6.242223
## X62                       -1.143534 0.6931472 -1.2693924     -5.472671 6.556778
## X63                       -1.182624 1.5892352 -1.6995924     -5.381699 6.823286
## X64                       -1.157652 1.5892352 -1.2988756     -2.847312 6.669498
## X65                       -1.197703 1.2237754 -1.4660558     -5.496768 6.320768
## X67                       -1.208737 1.9169226 -1.7517987     -3.442019 6.401917
## X68                       -1.224597 1.1939225 -1.6520506     -4.342806 6.368187
## X69                       -1.170009 0.5877867 -1.2409325     -5.259097 6.263398
## X70                       -1.159695 1.0986123 -1.5762143     -5.843045 6.259581
## X71                       -1.186891 1.4109870 -1.2693924     -5.546779 6.579251
## X72                       -1.231557 1.9740810 -0.6206034     -3.164404 6.603944
## X73                       -1.193353 1.5892352 -1.0641271     -4.721704 6.406880
## X74                       -1.145532 0.3364722 -1.2988756     -4.815891 6.326149
## X75                       -1.204295 0.8754687 -1.5415785     -2.847312 6.946976
## X76                       -1.193353 1.9021075 -1.7221470     -5.360193 6.907755
## X77                       -1.217737 1.6486586 -1.4294363     -3.649659 6.606650
## X78                       -1.195524 1.2527630 -1.5249442     -3.146555 6.293419
## X80                       -1.143534 1.1939225 -1.1608546     -4.840893 6.817831
## X81                       -1.178389 1.3862944 -1.1608546     -5.259097 6.742881
## X82                       -1.172093 1.1631508 -1.4660558     -3.146555 6.630683
## X83                       -1.208737 1.2237754 -1.6370627     -3.688879 6.442540
## X84                       -1.163800 1.1939225 -1.0873827     -6.165818 6.576470
## X85                       -1.197703 1.7047481 -1.5630004     -6.265901 6.767343
## X86                       -1.182624 1.4109870 -1.3294863     -3.170086 6.829794
## X88                       -1.199892 1.1314021 -1.6832823     -3.170086 6.508769
## X90                       -1.241005 0.0000000 -1.8101352     -5.403678 6.586172
## X93                       -1.241005 1.7227666 -2.0809951     -5.472671 6.665684
## X94                       -1.213217 2.0918641 -1.6224555     -3.442019 7.038784
## X95                       -1.104733 1.1939225 -1.6622675     -3.146555 6.517671
## X96                       -1.191191 1.0647107 -1.0414230     -4.605170 6.437752
## X97                       -1.189037 1.3083328 -1.6420151     -5.360193 6.152733
## X98                       -1.167932 0.5306283 -1.3294863     -5.572754 6.459904
## X99                       -1.204295 1.5475625 -1.1357025     -3.146555 6.927558
## X100                      -1.186891 1.9600948 -1.2134062     -5.878136 6.249975
## X103                      -1.213217 1.8405496 -1.3294863     -4.605170 6.726233
## X104                      -1.217737 1.8245493 -1.7641672     -3.381395 7.229839
## X105                      -1.213217 1.5260563 -1.6995924     -5.654992 6.463029
## X107                      -1.161744 1.2527630 -1.3294863     -3.963316 6.161207
## X108                      -1.206511 1.0986123 -1.8770048     -4.342806 6.731018
## X109                      -1.193353 0.8754687 -1.2693924     -3.963316 6.304449
## X110                      -1.157652 0.7419373 -1.3294863     -5.381699 6.869014
## X111                      -1.208737 1.5040774 -1.3946054     -3.506558 6.566672
## X112                      -1.184754 1.9459101 -1.4294363     -2.796881 6.519147
## X113                      -1.159695 1.2809338 -1.5249442     -2.207275 6.748760
## X114                      -1.151564 0.6418539 -1.2693924     -5.521461 6.455199
## X115                      -1.167932 1.1939225 -1.6674468     -3.411248 6.212606
## X117                      -1.161744 1.7917595 -1.3946054     -4.710531 6.184149
## X118                      -1.178389 1.7404662 -1.4660558     -5.472671 6.403574
## X121                      -1.206511 1.9021075 -1.3613475     -3.381395 6.142037
## X123                      -1.170009 0.7419373 -1.5806825     -4.268698 6.663133
## X124                      -1.197703 1.7578579 -0.8954783     -5.318520 6.473891
## X126                      -1.165862 1.7404662 -1.2988756     -3.772261 6.538140
## X128                      -1.182624 1.3862944 -1.3946054     -3.775670 6.927558
## X129                      -1.204295 1.0986123 -1.7221470     -2.733368 5.826000
## X130                      -1.178389 1.4350845 -1.5047321     -3.963316 6.251904
## X131                      -1.180503 1.0986123 -1.1357025     -4.919881 6.356108
## X132                      -1.159695 1.0296194 -1.9104977     -5.259097 5.908083
## X133                      -1.202089 0.9162907 -2.0809951     -3.273000 6.146329
## X134                      -1.149547 1.1939225 -1.2988756     -2.375156 6.844815
## X135                      -1.159695 1.5686159 -1.5047321     -5.744604 6.458338
## X136                      -1.208737 1.1314021 -1.5087252     -3.270169 6.511745
## X137                      -1.161744 1.1939225 -0.9975390     -3.381395 6.084499
## X139                      -1.172093 0.7419373 -1.6779529     -5.221356 6.416732
## X140                      -1.182624 1.1939225 -1.6571358     -5.878136 6.284134
## X141                      -1.145532 1.1314021 -1.2988756     -5.240048 6.364751
## X143                      -1.161744 0.4054651 -1.6321526     -3.015935 6.775366
## X144                      -1.182624 0.5306283 -1.4294363     -2.659260 6.561031
## X145                      -1.174184 1.4109870 -1.4294363     -5.776353 6.493754
## X146                      -1.182624 1.3083328 -2.0738009     -2.302585 6.677083
## X147                      -1.210972 1.2237754 -1.5373794     -3.270169 6.678342
## X148                      -1.229225 1.2809338 -1.1867361     -3.317314 6.613384
## X149                      -1.202089 1.0986123 -1.0192371     -4.268698 6.520621
## X152                      -1.206511 1.8405496 -2.0738009     -4.017384 6.669498
## X153                      -1.172093 0.9932518 -1.4294363     -2.120264 6.669498
## X154                      -1.204295 1.0296194 -1.1867361     -4.625373 6.196444
## X155                      -1.161744 1.2237754 -1.1608546     -3.473768 6.504288
## X156                      -1.191191 1.3862944 -1.0641271     -4.879607 6.532334
## X157                      -1.170009 1.4109870 -1.3946054     -4.688552 6.357842
## X158                      -1.199892 1.2809338 -1.5806825     -3.442019 6.202536
## X159                      -1.174184 1.1314021 -1.3294863     -4.135167 5.905362
## X160                      -1.199892 2.0412203 -1.5673739     -5.298317 5.968708
## X161                      -1.157652 1.6292405 -1.1867361     -3.079114 5.937536
## X162                      -1.224597 1.7749524 -1.2409325     -3.816713 6.689599
## X163                      -1.217737 1.3350011 -1.3294863     -6.265901 6.563856
## X165                      -1.191191 0.9555114 -1.9877978     -3.649659 7.106606
## X166                      -1.180503 1.5260563 -1.2693924     -3.772261 6.529419
## X167                      -1.243398 2.2721259 -1.4660558     -4.199705 6.610696
## X168                      -1.184754 1.4109870 -1.4660558     -4.342806 6.797940
## X169                      -1.170009 1.1314021 -1.4660558     -3.912023 6.371612
## X170                      -1.155616 0.5877867 -1.6082042     -4.422849 7.012115
## X171                      -1.178389 1.6677068 -1.7833269     -3.381395 6.257668
## X172                      -1.147537 1.1314021 -1.4294363     -4.919881 5.940171
## X174                      -1.159695 1.2237754 -1.7517987     -2.956512 6.937314
## X175                      -1.195524 1.2809338 -1.6779529     -1.386294 6.590301
## X176                      -1.163800 1.3350011 -1.3946054     -4.933674 6.697034
## X177                      -1.204295 1.9169226 -1.2988756     -5.099467 6.714171
## X178                      -1.170009 1.4350845 -1.5897179     -4.947660 6.047372
## X179                      -1.123868 0.9162907 -2.0809951     -3.170086 6.347389
## X180                      -1.167932 1.0296194 -1.4294363     -6.165818 6.369901
## X181                      -1.224597 1.0296194 -1.8313164     -5.626821 6.626718
## X182                      -1.170009 0.9932518 -1.8770048     -4.342806 6.200509
## X183                      -1.123868 0.9932518 -1.8313164     -4.135167 6.621406
## X184                      -1.191191 1.2809338 -1.7221470     -6.214608 6.333280
## X185                      -1.174184 1.4816045 -1.1608546     -2.302585 6.778785
## X186                      -1.151564 0.9932518 -1.7457280     -2.937463 6.729824
## X189                      -1.199892 0.9555114 -1.6571358     -5.298317 6.016157
## X190                      -1.224597 1.3609766 -1.8690427     -5.083206 6.429719
## X191                      -1.236256 1.0296194 -1.5415785     -3.381395 6.556778
## X192                      -1.243398 2.1633230 -1.7397296     -3.816713 7.012115
## X193                      -1.202089 1.9315214 -1.2988756     -5.599422 6.214608
## X194                      -1.206511 0.9162907 -1.5087252     -4.199705 6.320768
## X195                      -1.204295 1.9459101 -1.2693924     -4.767689 6.701960
## X197                      -1.163800 1.4816045 -1.1867361     -5.809143 6.366470
## X198                      -1.222299 1.4350845 -1.2693924     -3.688879 6.212606
## X200                      -1.202089 1.2527630 -1.8770048     -5.167289 6.297109
## X201                      -1.184754 1.2527630 -1.4660558     -5.496768 6.345636
## X202                      -1.163800 0.8329091 -1.3294863     -4.017384 6.246107
## X205                      -1.193353 1.4350845 -1.6886644     -4.961845 6.937314
## X208                      -1.213217 1.3350011 -1.3294863     -4.767689 6.075346
## X210                      -1.202089 1.1939225 -1.5373794     -5.132803 6.504288
## X212                      -1.172093 1.1631508 -1.1867361     -5.051457 6.629363
## X213                      -1.172093 1.2237754 -1.5047321     -3.772261 6.637258
## X214                      -1.193353 1.3862944 -0.6516715     -3.506558 6.685861
## X215                      -1.161744 1.4350845 -2.0466943     -4.199705 6.622736
## X216                      -1.197703 1.1631508 -1.9987562     -2.513306 6.513230
## X218                      -1.206511 1.4109870 -1.7641672     -3.473768 6.393591
## X219                      -1.174184 1.3862944 -1.4294363     -3.473768 6.089045
## X220                      -1.186891 1.3350011 -1.4294363     -5.914504 6.679599
## X223                      -1.143534 1.3083328 -1.3613475     -4.199705 6.156979
## X224                      -1.151564 0.9932518 -1.4660558     -4.933674 6.212606
## X225                      -1.197703 1.6292405 -1.4660558     -5.403678 6.253829
## X226                      -1.243398 2.2512918 -1.6470107     -5.099467 6.839476
## X227                      -1.157652 1.2809338 -1.6272839     -3.575551 6.184149
## X228                      -1.143534 1.1314021 -1.0414230     -4.509860 6.434547
## X229                      -1.143534 0.2623643 -1.2409325     -5.472671 6.042633
## X230                      -1.172093 1.1314021 -2.0738009     -4.422849 6.816736
## X231                      -1.123868 0.8329091 -1.6420151     -2.780621 6.282267
## X232                      -1.206511 1.3862944 -1.7965395     -3.473768 6.898715
## X233                      -1.208737 1.2809338 -1.1608546     -5.360193 6.214608
## X234                      -1.147537 1.0296194 -1.9193301     -2.688248 6.154858
## X236                      -1.159695 1.3862944 -1.4660558     -6.032287 6.493754
## X237                      -1.193353 1.0647107 -1.8170863     -4.422849 6.447306
## X239                      -1.149547 0.5306283 -1.2693924     -6.119298 7.012115
## X240                      -1.163800 0.6418539 -1.0414230     -5.203007 6.089045
## X241                      -1.163800 1.2809338 -1.2134062     -3.649659 6.018593
## X242                      -1.199892 0.6418539 -1.1608546     -1.427116 6.862758
## X243                      -1.182624 1.3862944 -1.2409325     -4.755993 6.739337
## X244                      -1.165862 1.6094379 -1.4294363     -3.015935 6.693324
## X245                      -1.224597 0.3364722 -1.5762143     -4.422849 6.405228
## X246                      -1.167932 0.9932518 -1.3613475     -4.990833 6.684612
## X247                      -1.220013 1.1314021 -1.2134062     -5.449140 6.248043
## X249                      -1.182624 1.8405496 -1.3613475     -4.933674 6.580639
## X250                      -1.213217 1.0986123 -1.1608546     -4.828314 6.608001
## X251                      -1.176283 1.3083328 -1.5047321     -6.119298 6.363028
## X253                      -1.143534 1.7047481 -1.3946054     -4.342806 6.385194
## X254                      -1.184754 2.0541237 -1.0873827     -5.626821 6.376727
## X255                      -1.182624 2.1400662 -1.6370627     -2.364460 6.690842
## X256                      -1.195524 1.4350845 -1.6995924     -5.744604 6.317165
## X257                      -1.153587 0.8754687 -1.4294363     -4.342806 6.424869
## X258                      -1.199892 1.5475625 -1.2409325     -4.074542 6.864848
## X260                      -1.206511 1.6863990 -1.6622675     -2.688248 6.553933
## X261                      -1.174184 0.8754687 -1.5249442     -6.165818 6.620073
## X262                      -1.208737 1.0296194 -1.8934045     -3.649659 6.269096
## X263                      -1.220013 1.2527630 -1.2988756     -4.199705 6.439350
## X264                      -1.202089 1.6292405 -1.9987562     -4.767689 6.892642
## X265                      -1.213217 1.3350011 -1.7965395     -5.426151 6.182085
## X267                      -1.178389 1.2809338 -1.7704700     -5.713833 6.568078
## X268                      -1.224597 1.7917595 -0.8954783     -2.882404 6.530878
## X269                      -1.178389 1.1314021 -1.3294863     -4.688552 6.787845
## X270                      -1.233900 1.9600948 -2.1468457     -5.099467 6.525030
## X271                      -1.202089 2.0014800 -1.6520506     -3.270169 6.674561
## X272                      -1.191191 1.2809338 -1.3946054     -5.572754 6.656727
## X273                      -1.231557 1.8245493 -1.6272839     -6.437752 6.582025
## X274                      -1.217737 1.2237754 -1.3946054     -5.426151 6.652863
## X275                      -1.161744 1.1939225 -1.5415785     -3.912023 6.975414
## X277                      -1.167932 0.8754687 -1.8770048     -5.914504 6.419995
## X278                      -1.161744 1.0986123 -1.4660558     -5.449140 6.593045
## X279                      -1.167932 1.1314021 -1.2988756     -3.540459 6.469250
## X281                      -1.151564 0.7884574 -1.3946054     -4.422849 6.697034
## X282                      -1.193353 0.4700036 -0.8572661     -3.015935 6.734592
## X283                      -1.255574 2.2300144 -1.9987562     -5.426151 6.632002
## X287                      -1.191191 1.6292405 -1.2409325     -4.866535 6.366470
## X289                      -1.143534 0.7884574 -1.5673739     -5.683980 6.120297
## X290                      -1.204295 1.0647107 -1.0414230     -3.079114 7.047517
## X291                      -1.167932 0.8329091 -1.2988756     -3.816713 6.317165
## X292                      -1.178389 1.6292405 -1.8770048     -5.020686 6.464588
## X294                      -1.104733 0.8754687 -1.3294863     -4.767689 6.975414
## X297                      -1.176283 1.3862944 -1.2988756     -4.605170 6.045005
## X298                      -1.176283 0.9932518 -1.6176666     -3.411248 6.450470
## X299                      -1.172093 1.3609766 -1.6571358     -5.713833 5.826000
## X301                      -1.174184 1.1631508 -1.4660558     -4.779524 6.625392
## X302                      -1.143534 0.4054651 -1.5415785     -5.381699 6.481577
## X303                      -1.202089 1.9600948 -1.8313164     -4.268698 6.755769
## X304                      -1.186891 2.0412203 -1.5415785     -5.626821 6.519147
## X305                      -1.231557 1.7917595 -2.0599345     -5.020686 6.445720
## X306                      -1.161744 1.8405496 -1.5673739     -3.218876 6.356108
## X307                      -1.174184 1.5686159 -1.3946054     -5.005648 6.699500
## X308                      -1.174184 1.2237754 -1.4660558     -2.590267 6.716595
## X311                      -1.174184 1.1314021 -1.5762143     -2.995732 6.376727
## X312                      -1.208737 1.6292405 -1.4294363     -3.506558 6.527958
## X313                      -1.206511 1.6094379 -1.5988899     -4.422849 6.255750
## X314                      -1.208737 2.0014800 -1.5586574     -6.377127 5.958425
## X315                      -1.178389 0.8329091 -1.6622675     -3.729701 6.481577
## X316                      -1.213217 1.0647107 -1.3946054     -4.422849 6.089045
## X317                      -1.193353 1.3862944 -1.3946054     -5.572754 7.146772
## X320                      -1.172093 0.8329091 -1.2988756     -1.427116 6.184149
## X321                      -1.167932 0.5877867 -1.3613475     -2.975930 6.687109
## X322                      -1.186891 1.5686159 -1.8170863     -4.828314 6.661855
## X323                      -1.226905 1.5892352 -1.8313164     -3.057608 6.440947
## X324                      -1.147537 1.0986123 -1.6272839     -5.298317 6.393591
## X325                      -1.222299 1.3083328 -1.2693924     -4.947660 6.543912
## X326                      -1.248226 1.6863990 -1.9987562     -5.221356 6.075346
## X327                      -1.195524 0.9932518 -1.5167845     -4.976234 6.493754
## X329                      -1.193353 1.4350845 -1.3946054     -5.149897 6.648985
## X330                      -1.155616 0.9162907 -1.6082042     -2.617296 6.699500
## X331                      -1.206511 1.1939225 -1.8690427     -4.342806 6.375025
## X332                      -1.189037 0.8754687 -1.3613475     -5.051457 6.218600
## X333                      -1.253110 2.0412203 -1.7107489     -5.051457 6.472346
##          MCP_2        MIF MIP_1alpha MIP_1beta      MMP_2      MMP_3     MMP10
## X1   1.9805094 -1.2378744  4.9684528  3.258097 4.47856632 -2.2072749 -3.270169
## X2   1.8088944 -1.8971200  3.6901597  3.135494 3.78147319 -2.4651040 -3.649659
## X3   0.4005958 -2.3025851  4.0495083  2.397895 2.86663136 -2.3025851 -2.733368
## X5   2.2208309 -1.8971200  6.4527639  3.526361 3.69015975 -1.5606477 -2.617296
## X6   2.3343863 -2.0402208  4.6034206  2.890372 2.91775974 -3.0365543 -3.324236
## X7   2.1030230 -2.1202635  3.5512079  2.564949 3.26560115 -2.1202635 -4.135167
## X8   2.6867663 -1.7719568  6.4527639  2.833213 1.55530341 -2.5257286 -3.688879
## X9   1.8527528 -2.2072749  2.1623278  2.219203 2.81511562 -2.5639499 -4.017384
## X11  4.0237466 -1.5141277  5.3589486  4.007333 3.26560115 -2.3025851 -3.963316
## X12  1.5303762 -1.7147984  3.9611107  2.639057 2.10460236 -2.3025851 -3.244194
## X14  2.4440754 -2.0402208  4.9684528  2.833213 3.16792675 -2.5133061 -3.575551
## X16  1.0483341 -1.5141277  4.4785663  2.564949 2.33213462 -2.6592600 -3.123566
## X17  2.8501989 -1.9661129  5.3589486  3.178054 3.26560115 -3.2188758 -3.411248
## X18  1.8527528 -2.3330443  2.7632020  2.639057 2.33213462 -2.3025851 -3.963316
## X19  2.8501989 -1.7147984  5.7354768  2.639057 2.65813701 -3.1941832 -4.074542
## X20  1.5303762 -2.3538784  4.9684528  2.890372 4.60342060 -1.9661129 -2.563950
## X21  2.8501989 -1.4696760  4.3519974  3.091042 3.26560115 -2.3859667 -3.324236
## X22  1.7643559 -1.4696760  4.9285621  2.639057 4.09336677 -1.1711830 -3.611918
## X23  1.8088944 -2.1202635  3.6901597  3.583519 4.04950827 -2.1202635 -4.135167
## X24  1.0483341 -1.7147984  4.6034206  2.833213 4.13700376 -2.7333680 -3.381395
## X25  2.1820549 -2.1202635  3.4097438  2.397895 3.87177749 -2.6736488 -3.506558
## X26  2.0219013 -1.5606477  4.0495083  2.944439 2.55134197 -1.8325815 -3.381395
## X28  1.6263611 -1.8971200  3.7359451  2.116256 3.26560115 -2.5902672 -3.381395
## X29  2.2969819 -1.8971200  3.5043402  2.564949 2.33213462 -2.9004221 -3.772261
## X30  2.1030230 -2.4079456  2.3321346  2.944439 2.81511562 -2.3126354 -3.863233
## X31  2.5152196 -2.1202635  5.3589486  3.688879 3.69015975 -2.3644605 -3.244194
## X34  2.7530556 -1.8971200  3.4097438  3.258097 2.33213462 -2.6592600 -3.270169
## X35  1.5303762 -1.8325815  3.4097438  2.564949 2.33213462 -2.5383074 -3.506558
## X36  1.8527528 -1.8325815  3.9611107  2.944439 1.86752075 -2.0402208 -3.218876
## X37  1.6263611 -1.4696760  4.3519974  2.944439 3.87177749 -1.6094379 -3.218876
## X38  1.8527528 -1.7147984  3.9611107  3.367296 3.21692675 -2.1202635 -3.270169
## X39  0.4005958 -1.8325815  3.2656012  1.945910 4.84829388 -2.6310892 -4.074542
## X40  2.6191813 -2.1202635  3.6901597  2.944439 2.49726361 -2.3025851 -3.912023
## X41  1.0483341 -1.5141277  2.7632020  2.995732 2.33213462 -2.7181005 -3.270169
## X42  1.0483341 -1.7719568  3.4097438  2.944439 2.33213462 -2.4889147 -3.816713
## X43  1.8527528 -2.2072749  3.8717775  2.186051 2.81511562 -2.4889147 -3.218876
## X44  1.8088944 -1.8971200  4.2236285  2.564949 4.04950827 -2.5133061 -3.123566
## X45  3.0369315 -1.3470736  5.3589486  3.218876 3.26560115 -1.4696760 -2.764621
## X46  1.1637797 -1.8325815  3.6901597  3.178054 4.04950827 -1.5141277 -3.270169
## X47  1.8527528 -1.8325815  3.9611107  2.240710 2.33213462 -3.2441936 -3.649659
## X48  1.5303762 -1.1711830  3.5512079  2.890372 3.69015975 -1.9661129 -3.816713
## X50  3.2434918 -1.6607312  4.2236285  3.044522 1.86752075 -2.3025851 -2.645075
## X51  1.7643559 -1.9661129  3.0188940  2.230014 3.55120786 -2.4534080 -4.074542
## X53  1.1637797 -1.8971200  5.3589486  2.833213 2.86663136 -2.3227878 -3.411248
## X55  1.6731213 -2.1202635  4.0495083  2.564949 3.50434016 -2.2072749 -3.540459
## X56  1.5303762 -1.8325815  3.1185934  2.833213 2.81511562 -2.5383074 -3.729701
## X57  1.9805094 -1.2729657  6.7959273  2.186051 4.60342060 -1.9661129 -3.442019
## X59  2.5848812 -1.7147984  4.6857433  2.944439 2.60496200 -2.3644605 -3.772261
## X60  1.6731213 -2.2072749  4.7266389  2.995732 2.55134197 -3.3813948 -4.074542
## X61  1.5303762 -2.1202635  2.7632020  2.639057 2.04628168 -3.2968374 -4.017384
## X62  1.8527528 -2.3538784  3.5512079  2.639057 2.33213462 -3.0791139 -4.422849
## X63  2.3713615 -1.5606477  3.9611107  2.240710 1.86752075 -2.5902672 -3.688879
## X64  2.1427912 -1.6607312  5.3589486  3.367296 1.08050280 -3.3813948 -3.101093
## X65  1.1637797 -2.0402208  3.2656012  3.178054 3.16792675 -2.2072749 -3.649659
## X67  1.5303762 -1.3470736  3.1185934  2.639057 2.33213462 -2.4889147 -3.772261
## X68  1.7643559 -1.1394343  6.0996440  2.079442 3.55120786 -2.5510465 -3.540459
## X69  1.1637797 -2.2072749  2.9685108  2.564949 2.33213462 -4.2686979 -4.342806
## X70  2.0219013 -1.6607312  2.9685108  2.995732 3.26560115 -1.8971200 -3.324236
## X71  1.3273591 -2.1202635  4.3519974  2.772589 3.78147319 -2.0402208 -4.135167
## X72  2.2591348 -1.7147984  5.3589486  3.737670 4.04950827 -1.6607312 -3.506558
## X73  1.1637797 -1.6094379  5.3589486  3.178054 4.84829388 -1.3470736 -3.324236
## X74  2.5152196 -2.3751558  3.8717775  2.772589 3.26560115 -2.8134107 -2.995732
## X75  1.8088944 -2.3330443  6.4527639  3.401197 3.16792675 -1.8971200 -3.015935
## X76  1.6731213 -1.5141277  3.4097438  3.044522 1.35792679 -1.4696760 -2.577022
## X77  1.5303762 -1.5606477  4.6034206  2.833213 2.33213462 -2.3126354 -3.473768
## X78  2.6191813 -1.6607312  5.7354768  3.044522 4.92856213 -1.8971200 -3.036554
## X80  1.8527528 -1.6094379  3.8717775  2.833213 3.69015975 -1.8325815 -3.411248
## X81  0.4005958 -1.8971200  3.4097438  2.397895 1.35792679 -3.0365543 -3.540459
## X82  2.0219013 -1.8971200  2.7632020  2.890372 3.26560115 -2.1202635 -3.473768
## X83  2.3713615 -1.8971200  6.4527639  2.397895 3.55120786 -1.9661129 -3.411248
## X84  2.1427912 -1.6607312  3.9611107  2.397895 3.21692675 -3.2441936 -3.575551
## X85  2.1427912 -1.7147984  3.2656012  2.564949 3.64411202 -2.1202635 -3.688879
## X86  2.1427912 -1.4696760  3.5512079  3.295837 1.86752075 -1.4271164 -3.123566
## X88  2.6867663 -1.2729657  5.3589486  2.995732 2.81511562 -2.2072749 -3.270169
## X90  2.1820549 -2.3025851  5.7354768  2.708050 1.55530341 -3.6496587 -4.509860
## X93  1.7643559 -1.8325815  3.8717775  2.116256 2.96851076 -2.4418472 -3.688879
## X94  3.1563503 -1.4271164  6.0996440  3.891820 3.21692675 -1.3470736 -2.645075
## X95  2.5152196 -2.1202635  3.5512079  3.044522 2.33213462 -2.8134107 -3.688879
## X96  2.0219013 -1.6094379  4.0495083  2.944439 3.26560115 -2.2072749 -3.816713
## X97  2.0219013 -2.0402208  2.7632020  2.639057 4.39438269 -2.1202635 -3.649659
## X98  1.5303762 -2.2072749  0.9345728  2.564949 3.26560115 -3.9120230 -4.342806
## X99  1.5303762 -2.1202635  5.3589486  2.944439 2.86663136 -1.3470736 -3.963316
## X100 1.5303762 -1.8971200  3.1185934  2.054124 2.81511562 -2.0402208 -3.649659
## X103 1.1637797 -1.8325815  3.6901597  2.944439 3.78147319 -1.2729657 -2.995732
## X104 2.5502306 -1.5606477  4.2666237  3.295837 1.92776515 -2.2072749 -3.963316
## X105 1.1637797 -1.8971200  3.2656012  2.833213 3.16792675 -2.6310892 -3.863233
## X107 1.8527528 -1.6607312  4.0495083  2.772589 3.50434016 -2.5770219 -3.575551
## X108 2.1030230 -2.0402208  2.9685108  2.833213 2.81511562 -2.8647040 -3.912023
## X109 0.4005958 -2.4304185  3.2656012  2.833213 2.49726361 -3.3524072 -4.667046
## X110 1.6731213 -2.2072749  3.5512079  3.465736 1.22143685 -3.4420194 -3.963316
## X111 1.7643559 -1.4271164  3.2656012  3.044522 3.82674905 -2.1202635 -3.575551
## X112 2.3343863 -1.5606477  5.7354768  2.944439 2.81511562 -1.7147984 -2.631089
## X113 2.0219013 -1.9661129  4.9684528  3.135494 1.80658378 -2.3126354 -2.995732
## X114 2.0219013 -2.1202635  3.4097438  2.484907 2.55134197 -3.0791139 -4.199705
## X115 2.1427912 -1.5606477  4.0933668  2.397895 1.86752075 -2.6310892 -3.381395
## X117 1.5303762 -1.8971200  2.5513420  2.772589 2.55134197 -1.7719568 -3.575551
## X118 2.0219013 -1.1086626  3.9165632  3.091042 3.87177749 -0.5276327 -2.207275
## X121 2.3713615 -1.6607312  4.4785663  3.091042 1.61931977 -1.5606477 -3.575551
## X123 2.6867663 -2.5510465  2.7632020  2.397895 1.80658378 -3.3813948 -4.199705
## X124 1.7643559 -1.7719568  3.5043402  2.833213 3.55120786 -1.8971200 -3.863233
## X126 1.5303762 -1.8971200  3.1185934  2.272126 1.35792679 -1.9661129 -4.268698
## X128 2.5848812 -1.8971200  3.1185934  2.833213 2.10460236 -2.3644605 -3.272534
## X129 0.4005958 -2.1202635  3.2656012  2.397895 0.78296569 -3.1235656 -4.017384
## X130 2.0219013 -1.9661129  4.3519974  3.737670 3.87177749 -1.8971200 -4.017384
## X131 0.4005958 -2.3126354  3.6901597  2.397895 3.16792675 -2.9565116 -3.863233
## X132 1.5303762 -2.2072749  4.0495083  2.639057 2.33213462 -1.8971200 -3.506558
## X133 2.3343863 -1.8325815  4.3519974  2.708050 1.80658378 -2.4769385 -3.912023
## X134 1.6263611 -1.0216512  5.3589486  3.178054 3.26560115 -1.3862944 -2.813411
## X135 1.8527528 -1.9661129  2.3321346  2.564949 2.33213462 -3.6496587 -4.017384
## X136 2.9135187 -2.0402208  4.2666237  2.397895 3.55120786 -2.3434071 -3.575551
## X137 0.4005958 -2.2072749  3.6901597  2.104134 3.16792675 -2.7806209 -3.963316
## X139 2.0219013 -1.7719568  4.0495083  2.890372 3.26560115 -2.4769385 -3.442019
## X140 1.6263611 -1.4271164  3.2169268  2.564949 2.55134197 -2.5639499 -3.729701
## X141 1.0483341 -1.8325815  3.4097438  2.564949 4.39438269 -2.3025851 -4.074542
## X143 2.6867663 -2.1202635  4.9684528  3.332205 3.69015975 -2.4889147 -3.688879
## X144 2.0219013 -2.0402208  4.1804231  3.091042 1.80658378 -3.0791139 -3.912023
## X145 1.6731213 -2.3025851  2.3321346  2.833213 1.22143685 -3.1700857 -4.074542
## X146 2.3343863 -1.6094379  4.6034206  2.397895 2.55134197 -1.6094379 -2.975930
## X147 2.8501989 -1.2378744  4.6034206  3.295837 2.55134197 -1.6607312 -3.270169
## X148 2.9757467 -1.8325815  5.7354768  3.332205 2.96851076 -2.1202635 -3.411248
## X149 1.5303762 -2.2072749  4.0495083  3.044522 2.49726361 -2.5133061 -3.688879
## X152 2.0219013 -0.8439701  4.1804231  2.272126 2.55134197 -1.6607312 -3.244194
## X153 2.6191813 -1.7147984  4.4785663  3.178054 3.87177749 -2.3859667 -3.473768
## X154 0.4005958 -2.1202635  3.0689186  2.151762 2.49726361 -2.9565116 -4.422849
## X155 2.3343863 -1.8971200  1.7449255  2.944439 1.22143685 -3.0791139 -3.963316
## X156 0.4005958 -2.3126354  4.9684528  2.772589 4.84829388 -2.6310892 -3.506558
## X157 1.1637797 -1.9661129  3.6901597  3.258097 2.33213462 -2.5770219 -3.912023
## X158 1.1637797 -2.0402208  3.4571875  2.772589 3.16792675 -2.2072749 -3.575551
## X159 3.0064666 -2.1202635  3.6901597  2.708050 2.33213462 -2.6592600 -4.074542
## X160 1.1637797 -1.8971200  3.2656012  2.708050 4.84829388 -1.7147984 -3.540459
## X161 2.3713615 -1.7147984  3.9611107  2.833213 2.10460236 -2.3644605 -3.963316
## X162 2.1820549 -1.2378744  4.7673608  3.135494 3.55120786 -2.9004221 -4.074542
## X163 1.5303762 -2.0402208  3.0188940  2.708050 2.33213462 -3.6496587 -4.509860
## X165 2.6191813 -1.6607312  3.7359451  2.772589 2.55134197 -2.7333680 -3.473768
## X166 1.5303762 -1.7719568  1.9277652  3.044522 0.78296569 -2.8134107 -4.074542
## X167 2.1820549 -1.4696760  4.9285621  2.995732 4.09336677 -1.6607312 -2.864704
## X168 1.5303762 -2.3025851  4.0495083  2.833213 2.49726361 -2.3644605 -3.772261
## X169 2.0219013 -2.1202635  4.0495083  2.639057 3.87177749 -2.6172958 -4.342806
## X170 2.6191813 -1.4696760  4.0495083  2.484907 2.55134197 -3.8167128 -4.933674
## X171 1.0483341 -1.8325815  3.8267490  2.397895 2.33213462 -1.8971200 -3.270169
## X172 1.1637797 -2.2072749  3.5512079  3.178054 2.33213462 -2.7488722 -4.074542
## X174 2.7530556 -1.7147984  4.4785663  3.178054 3.21692675 -1.7719568 -3.101093
## X175 2.6191813 -1.8325815  4.3519974  1.974081 2.21947889 -2.1202635 -2.343407
## X176 1.5303762 -1.7147984  4.5619880  2.833213 3.01889401 -2.8647040 -3.912023
## X177 1.7643559 -1.8325815  4.6034206  3.258097 3.82674905 -1.6607312 -3.473768
## X178 1.9805094 -1.9661129  2.7632020  2.484907 1.86752075 -2.7181005 -3.688879
## X179 2.0219013 -2.3751558  4.9684528  2.484907 4.39438269 -2.7333680 -2.659260
## X180 2.8501989 -1.8971200  5.7354768  3.178054 1.80658378 -2.3434071 -3.649659
## X181 1.7643559 -2.1202635  5.3589486  2.639057 2.96851076 -3.0365543 -4.135167
## X182 0.4005958 -1.8971200  3.1679268  2.890372 2.33213462 -2.2072749 -3.912023
## X183 2.1030230 -2.5133061  2.3321346  2.833213 1.22143685 -2.7488722 -3.611918
## X184 2.0219013 -1.3093333  4.6034206  3.135494 3.26560115 -2.4769385 -3.473768
## X185 1.0483341 -2.0402208  4.5619880  2.639057 2.10460236 -2.5133061 -3.324236
## X186 1.6263611 -1.8325815  3.9165632  2.708050 2.55134197 -2.6172958 -3.688879
## X189 1.0483341 -1.6607312  3.7359451  3.218876 4.92856213 -2.6736488 -3.772261
## X190 1.2195081 -1.6607312  5.3589486  2.208274 2.96851076 -1.5606477 -3.912023
## X191 1.7643559 -1.7147984  4.6034206  2.890372 2.65813701 -2.2072749 -3.101093
## X192 2.1820549 -1.4271164  4.2666237  2.708050 3.55120786 -2.7968814 -3.473768
## X193 0.4005958 -1.4696760  2.3876751  2.564949 0.78296569 -2.3644605 -3.473768
## X194 1.7643559 -2.0402208  3.5043402  2.163323 2.33213462 -3.0791139 -3.688879
## X195 2.0219013 -2.0402208  2.8151156  3.496508 3.78147319 -1.5606477 -3.473768
## X197 1.6263611 -0.9416085  4.1804231  3.044522 4.13700376 -2.3025851 -3.575551
## X198 1.9805094 -2.1202635  3.2656012  2.302585 0.62482405 -2.7646206 -4.135167
## X200 1.5303762 -1.6607312  2.3321346  2.484907 2.81511562 -2.6310892 -3.575551
## X201 1.9805094 -1.8325815  5.7354768  2.772589 2.33213462 -2.3434071 -3.540459
## X202 1.5303762 -2.2072749  2.7632020  2.639057 2.55134197 -3.2968374 -4.074542
## X205 1.8088944 -1.8971200  4.6857433  2.890372 3.78147319 -1.8971200 -3.411248
## X208 2.6867663 -2.0402208  4.9285621  2.772589 2.33213462 -2.9957323 -3.816713
## X210 4.0237466 -2.2072749  4.1804231  2.639057 2.55134197 -2.1202635 -3.170086
## X212 1.0483341 -1.8325815  2.3876751  2.054124 2.33213462 -2.4889147 -4.342806
## X213 1.6263611 -1.9661129  4.6034206  2.397895 2.55134197 -1.4696760 -3.101093
## X214 2.0219013 -2.0402208  4.8079117  2.772589 3.78147319 -2.9565116 -3.218876
## X215 2.1030230 -1.9661129  3.5512079  2.995732 2.33213462 -1.8971200 -3.912023
## X216 4.0237466 -2.1202635  5.7354768  2.944439 3.55120786 -2.7030627 -3.473768
## X218 2.1820549 -1.9661129  5.7354768  2.484907 2.65813701 -2.5010360 -3.381395
## X219 2.1427912 -1.8971200  3.1185934  2.639057 2.81511562 -2.9374634 -4.199705
## X220 1.0483341 -1.8325815  3.1185934  2.890372 1.86752075 -2.5902672 -3.816713
## X223 1.6731213 -2.1202635  4.1804231  3.044522 2.33213462 -2.6310892 -3.575551
## X224 1.8527528 -2.0402208  3.5512079  2.772589 3.26560115 -1.8971200 -3.912023
## X225 1.5303762 -1.8971200  2.5513420  3.178054 3.26560115 -2.5770219 -4.135167
## X226 1.9805094 -1.7147984  5.7354768  2.772589 4.80791166 -1.1394343 -3.575551
## X227 2.3343863 -2.3859667  3.8717775  2.890372 3.26560115 -1.8325815 -3.649659
## X228 1.9805094 -2.3025851  2.5513420  2.186051 1.22143685 -2.6310892 -3.963316
## X229 1.0483341 -2.0402208  3.4097438  2.564949 2.21947889 -2.4534080 -3.270169
## X230 2.1820549 -1.2729657  5.3589486  2.995732 3.26560115 -2.2072749 -3.123566
## X231 2.6191813 -1.9661129  3.7359451  2.397895 3.87177749 -3.3524072 -3.912023
## X232 2.6867663 -1.7719568  4.2666237  2.639057 3.55120786 -2.5510465 -4.135167
## X233 2.9135187 -2.1202635  4.2666237  3.496508 2.33213462 -2.6450754 -3.688879
## X234 1.0483341 -1.8971200  2.4972636  2.944439 3.26560115 -2.1202635 -3.352407
## X236 2.0219013 -2.0402208  3.2169268  2.772589 4.39438269 -2.5639499 -3.575551
## X237 1.5303762 -1.8971200  3.1185934  2.833213 1.86752075 -2.3644605 -3.688879
## X239 1.8527528 -2.3859667  4.6034206  2.890372 1.80658378 -3.3813948 -4.199705
## X240 1.5303762 -2.1202635  3.1679268  2.944439 2.55134197 -2.6310892 -4.017384
## X241 1.6263611 -1.6607312  2.7632020  3.178054 4.39438269 -2.3126354 -3.611918
## X242 1.5303762 -2.6736488  4.0495083  2.944439 1.68251524 -2.7030627 -3.506558
## X243 0.4005958 -2.0402208  3.6901597  2.484907 0.78296569 -3.2441936 -3.772261
## X244 2.3713615 -1.7147984  3.2656012  2.639057 1.86752075 -2.1202635 -3.079114
## X245 1.9805094 -2.3968958  5.3589486  3.044522 2.33213462 -3.4737681 -4.342806
## X246 3.1563503 -2.3330443  4.7266389  2.772589 1.80658378 -2.6310892 -3.324236
## X247 2.1820549 -1.8325815  4.2666237  2.708050 2.96851076 -3.4737681 -3.863233
## X249 1.0483341 -1.4696760  3.7359451  2.772589 5.35894856 -2.2072749 -3.863233
## X250 1.8088944 -2.3025851  2.8151156  3.178054 3.16792675 -2.6310892 -3.611918
## X251 1.8527528 -1.8325815  3.1185934  2.772589 2.33213462 -3.1700857 -4.017384
## X253 1.5303762 -1.8325815  4.9684528  3.218876 3.21692675 -2.9374634 -3.863233
## X254 1.8527528 -1.8325815  5.3589486  2.833213 3.69015975 -1.6094379 -3.036554
## X255 1.0483341 -1.4271164  2.3876751  2.944439 2.81511562 -2.1202635 -3.270169
## X256 0.4005958 -1.7719568  2.3876751  2.302585 1.35792679 -3.0365543 -4.342806
## X257 1.0483341 -2.3330443  3.1185934  2.639057 1.35792679 -2.4079456 -3.863233
## X258 2.5152196 -1.8971200  5.7354768  3.688879 3.78147319 -2.4191189 -3.270169
## X260 2.3713615 -1.7719568  4.9285621  3.367296 3.55120786 -2.1202635 -3.611918
## X261 1.8527528 -2.3751558  3.4097438  2.151762 1.86752075 -3.2968374 -4.342806
## X262 2.5502306 -1.6094379  2.4972636  2.564949 4.60342060 -2.5510465 -4.422849
## X263 1.9805094 -1.2378744  3.2656012  2.890372 3.55120786 -2.2072749 -3.772261
## X264 2.5848812 -2.0402208  3.8267490  2.484907 2.81511562 -2.0402208 -3.442019
## X265 1.2195081 -1.9661129  3.0188940  2.484907 2.33213462 -2.3126354 -3.863233
## X267 2.0219013 -1.4696760  4.8482939  3.044522 3.87177749 -2.2072749 -3.816713
## X268 1.9805094 -1.2729657  4.2666237  2.944439 2.96851076 -2.5510465 -3.296837
## X269 1.5303762 -2.2072749  4.1804231  2.772589 2.33213462 -3.1700857 -4.342806
## X270 2.3713615 -1.5606477  4.9285621  3.610918 2.96851076 -2.5639499 -4.135167
## X271 1.9805094 -1.5606477  5.7354768  3.258097 3.55120786 -2.3227878 -3.352407
## X272 2.1820549 -1.5141277  4.4365713  2.995732 2.96851076 -2.2072749 -4.605170
## X273 2.3713615 -1.3862944  4.7673608  2.890372 2.33213462 -2.5902672 -3.506558
## X274 1.9805094 -1.6094379  4.0933668  2.397895 2.96851076 -2.1202635 -3.963316
## X275 1.8527528 -1.7719568  3.1679268  3.044522 2.81511562 -1.9661129 -3.540459
## X277 2.0219013 -1.9661129  4.6034206  2.397895 3.87177749 -2.3025851 -3.611918
## X278 2.1030230 -2.2072749  4.4785663  2.944439 2.81511562 -2.3025851 -3.772261
## X279 1.6263611 -1.8971200  3.4097438  2.302585 2.55134197 -4.4228486 -4.017384
## X281 2.7200688 -1.7719568  4.7266389  3.135494 1.80658378 -2.7030627 -3.170086
## X282 1.1637797 -1.8971200  4.3519974  2.772589 3.16792675 -2.7806209 -3.194183
## X283 3.3286939 -1.5545112  4.6034206  3.526361 3.55120786 -2.0402208 -3.473768
## X287 1.1637797 -2.1202635  3.6901597  2.772589 3.78147319 -2.4191189 -3.218876
## X289 2.1030230 -2.5383074  3.5512079  2.302585 1.49042759 -3.2968374 -4.342806
## X290 2.2591348 -2.1202635  4.9684528  3.610918 3.16792675 -3.0159350 -3.649659
## X291 1.6263611 -1.4271164  4.6034206  2.833213 2.55134197 -0.9416085 -2.830218
## X292 1.8527528 -1.8325815  4.9684528  3.178054 3.69015975 -1.8325815 -3.381395
## X294 1.8527528 -2.4769385  4.6034206  3.610918 1.80658378 -3.2968374 -3.963316
## X297 2.1427912 -2.0402208  2.3876751  2.484907 2.81511562 -2.4889147 -4.199705
## X298 0.4005958 -2.5010360  4.3519974  2.564949 3.16792675 -2.6310892 -3.963316
## X299 2.0219013 -1.4271164  3.7359451  2.995732 3.87177749 -2.9374634 -3.772261
## X301 1.8527528 -1.8325815  2.1623278  2.639057 0.09808809 -2.7181005 -4.268698
## X302 2.1030230 -2.8473123  4.0495083  2.772589 2.81511562 -2.7488722 -3.863233
## X303 1.7643559 -1.9661129  5.3589486  2.397895 3.55120786 -2.7333680 -4.268698
## X304 1.5303762 -1.6094379  3.6901597  2.944439 1.86752075 -1.9661129 -3.079114
## X305 1.7643559 -1.3862944  5.3589486  2.484907 3.55120786 -2.1202635 -3.540459
## X306 1.8527528 -1.7147984  6.0996440  3.465736 3.26560115 -1.6094379 -3.729701
## X307 2.3343863 -1.8325815  5.7354768  3.401197 3.26560115 -2.2072749 -3.324236
## X308 1.8527528 -1.7719568  4.1804231  2.140066 2.81511562 -2.3227878 -3.816713
## X311 1.8527528 -2.1202635  3.6901597  2.564949 2.33213462 -3.0365543 -3.649659
## X312 1.8527528 -1.6607312  4.3519974  3.295837 4.00542427 -1.9661129 -3.296837
## X313 1.5303762 -1.7719568  3.5043402  2.772589 0.62482405 -2.8647040 -4.074542
## X314 1.5303762 -1.5141277  2.4972636  2.282382 3.26560115 -2.7333680 -3.863233
## X315 1.5303762 -1.9661129  4.1804231  3.367296 2.81511562 -3.4420194 -3.688879
## X316 0.4005958 -2.0402208  3.0689186  2.397895 4.30941221 -3.0791139 -3.688879
## X317 1.8088944 -2.2072749  4.2236285  2.944439 3.16792675 -2.2072749 -3.381395
## X320 1.1637797 -2.3025851  4.6857433  2.484907 2.49726361 -2.2072749 -3.381395
## X321 0.4005958 -2.6310892  3.6901597  3.401197 2.49726361 -3.1941832 -4.199705
## X322 1.5303762 -1.8971200  4.6857433  2.639057 4.00542427 -2.2072749 -3.649659
## X323 1.9805094 -1.3862944  5.3589486  2.772589 3.55120786 -2.0402208 -3.540459
## X324 1.8527528 -1.6607312  3.5512079  2.833213 2.33213462 -2.6882476 -3.963316
## X325 1.8959582 -1.7719568  3.8717775  2.944439 2.33213462 -2.3025851 -3.352407
## X326 2.1030230 -1.9661129  5.3589486  2.890372 2.96851076 -3.0791139 -3.352407
## X327 2.3343863 -1.1086626  5.3589486  2.484907 3.55120786 -1.6094379 -3.381395
## X329 2.1427912 -1.8971200  3.4097438  3.044522 3.21692675 -2.1202635 -3.506558
## X330 2.3343863 -2.5010360  4.4785663  2.708050 3.87177749 -2.4304185 -3.352407
## X331 1.8959582 -1.6607312  3.2656012  2.028148 0.62482405 -2.9957323 -3.912023
## X332 1.7643559 -1.2729657  4.2666237  2.116256 1.55530341 -2.5510465 -3.816713
## X333 2.6867663 -1.3093333  4.9285621  3.044522 4.09336677 -1.8971200 -3.772261
##            MMP7   Myoglobin NT_proBNP    NrCAM Osteopontin       PAI_1
## X1   -3.7735027 -1.89711998  4.553877 5.003946    5.356586  1.00350156
## X2   -5.9681907 -0.75502258  4.219508 5.209486    6.003887 -0.03059880
## X3   -4.0302269 -1.38629436  4.248495 4.744932    5.017280  0.43837211
## X5   -0.2222222 -1.77195684  4.465908 5.198497    5.693732  0.25230466
## X6   -1.9223227 -1.13943428  4.189655 3.258097    4.736198  0.43837211
## X7   -5.9681907 -1.77195684  4.330733 4.521789    5.318120  0.00000000
## X8   -2.4721360 -1.20397280  3.828641 3.258097    4.983607  0.49054798
## X9   -5.8446454 -1.96611286  5.043425 3.912023    5.049856 -0.47754210
## X11  -3.7735027 -1.66073121  4.875197 4.488636    5.533389  0.25230466
## X12  -3.0000000 -1.42711636  4.727388 3.988984    5.099866  0.25230466
## X14  -1.3806170 -1.60943791  4.691348 4.174387    5.023881  0.32004747
## X16  -4.0302269 -2.55104645  5.323010 4.812184    5.690359  0.49054798
## X17  -2.8507125 -1.17118298  4.595120 3.761200    5.043425  0.32004747
## X18  -1.2879797 -2.35387839  3.931826 3.637586    4.927254  0.32004747
## X19  -3.3452248 -0.82098055  4.290459 3.044522    4.804021  0.53887915
## X20  -0.6037782 -0.03045921  3.784190 3.970292    4.969813  0.85893499
## X21  -3.3452248 -1.56064775  5.262690 3.828641    4.997212 -0.65480247
## X22  -4.0302269 -2.71810054  4.828314 5.429346    6.308098 -0.15428707
## X23  -6.3770782 -2.53830743  3.663562 4.382027    5.351858 -0.04107298
## X24  -4.3245553  0.74193734  4.709530 4.934474    5.743003 -0.21752413
## X25  -4.0302269 -2.12026354  4.672829 3.988984    4.653960 -0.72247798
## X26  -3.5470020  0.87546874  4.499810 4.836282    5.568345  0.09396047
## X28  -4.0302269 -0.02020271  4.465908 4.204693    5.609472 -0.05168998
## X29  -2.2640143 -1.42711636  3.931826 3.295837    4.615121 -0.87443088
## X30  -3.7735027 -2.04022083  4.317488 4.158883    5.087596 -0.14221210
## X31  -3.3452248 -1.42711636  4.828314 3.931826    5.236442  0.09396047
## X34  -2.8507125 -1.13943428  4.770685 3.526361    4.919981  0.58384004
## X35  -2.5883147 -0.73396918  4.605170 3.637586    4.744932  0.00000000
## X36  -0.7216553 -1.46967597  4.718499 4.060443    4.812184  0.00000000
## X37  -3.7735027  1.68639895  4.595120 4.836282    5.826000  0.09396047
## X38  -4.7040152 -2.04022083  4.605170 4.248495    4.976734  0.25230466
## X39  -4.5938047 -1.83258146  4.262680 5.129899    5.529429  0.09396047
## X40  -1.6514837 -1.77195684  4.499810 4.356709    4.890349  0.32004747
## X41  -3.7735027 -1.34707365  4.983607 3.806662    5.081404  0.25230466
## X42  -4.3245553 -1.46967597  4.700480 4.477337    5.262690 -0.11859478
## X43  -3.1639778 -2.71810054  4.304065 3.871201    5.323010 -0.28605071
## X44  -4.4888568 -1.17118298  4.736198 4.369448    5.147494  0.62582535
## X45  -2.1702883  0.18232156  4.634729 4.543295    5.192957  0.17742506
## X46  -1.1622777 -1.20397280  4.499810 5.010635    5.529429  0.17742506
## X47  -2.8507125 -1.96611286  4.976734 3.912023    4.727388 -0.11859478
## X48  -4.0302269 -1.89711998  4.919981 5.332719    5.765191  0.49054798
## X50  -3.5470020 -1.60943791  5.129899 4.532599    5.214936  0.17742506
## X51  -4.6666667 -1.96611286  4.795791 4.753590    5.416100 -0.40885871
## X53  -3.7735027 -1.60943791  4.127134 4.442651    5.283204  0.09396047
## X55  -6.6874449 -1.77195684  4.127134 4.836282    4.882802  0.09396047
## X56  -4.3245553 -0.59783700  5.062595 4.143135    5.017280  0.17742506
## X57  -2.8507125 -1.07880966  4.574711 4.709530    5.323010  0.49054798
## X59  -3.0000000 -1.71479843  5.036953 4.290459    5.062595  1.10005082
## X60  -4.3887656 -1.60943791  4.736198 3.912023    5.062595 -0.27188464
## X61  -3.5470020 -2.47693848  4.488636 3.713572    5.023881 -0.25795574
## X62  -6.7705802 -2.70306266  4.574711 3.713572    4.653960 -0.55204550
## X63  -3.7735027 -1.77195684  4.948760 4.465908    5.493061 -0.01006550
## X64  -1.0151134 -1.71479843  5.181784 3.526361    5.318120  0.76993928
## X65  -4.0302269 -1.60943791  4.143135 4.418841    5.117994  0.09396047
## X67  -6.3045480 -2.20727491  4.859812 4.897840    5.771441 -0.16654597
## X68  -4.3245553 -0.15082289  3.610918 4.564348    5.521461 -0.04107298
## X69  -5.7849894 -1.38629436  4.304065 4.094345    4.718499 -0.11859478
## X70  -3.3452248 -2.04022083  5.003946 5.023881    5.105945  0.17742506
## X71  -4.0302269 -1.13943428  4.605170 4.430817    4.941642  0.73700033
## X72  -4.0302269 -1.20397280  4.634729 5.472271    5.549076  0.09396047
## X73  -5.2074997 -0.67334455  4.795791 5.159055    5.605802  0.58384004
## X74  -2.0000000 -2.20727491  4.406719 3.258097    4.290459  0.49054798
## X75  -2.4721360 -0.82098055  4.820282 3.737670    5.288267  0.58384004
## X76  -2.7140452 -2.12026354  4.770685 4.955827    5.921578  0.73700033
## X77  -4.5582584 -1.13943428  4.727388 4.442651    5.501258  0.76993928
## X78  -3.1639778 -1.66073121  4.990433 4.969813    5.921578  0.83076041
## X80  -2.3643578 -2.34340709  4.770685 4.543295    5.068904  0.17742506
## X81  -3.7735027 -2.30258509  4.859812 4.356709    5.081404 -0.14221210
## X82  -4.0302269 -2.60369019  4.406719 4.174387    5.252273  0.17742506
## X83  -3.5470020  1.41098697  4.595120 4.077537    4.770685 -0.16654597
## X84  -3.3452248 -1.66073121  4.543295 4.007333    5.332719  0.32004747
## X85  -3.7735027 -1.30933332  5.468060 4.615121    5.442418  0.43837211
## X86  -2.7140452 -0.61618614  5.117994 4.248495    5.318120  0.25230466
## X88  -3.1639778 -1.10866262  4.727388 4.812184    5.365976  0.38177502
## X90  -8.3975049 -2.79688141  3.178054 2.708050    4.234107 -0.63330256
## X93  -3.5470020 -0.49429632  4.317488 3.828641    4.779123  0.38177502
## X94  -1.4299717 -0.56211892  5.886104 4.820282    5.780744  0.80114069
## X95  -2.7140452 -0.84397007  4.762174 3.970292    4.867534  0.17742506
## X96  -3.3452248 -0.82098055  4.521789 4.867534    5.384495 -0.23078200
## X97  -4.5938047 -3.01593498  4.543295 5.111988    5.288267 -0.05168998
## X98  -7.3250481 -2.97592965  4.477337 3.970292    5.087596 -0.51401261
## X99  -3.5935279 -1.51412773  4.290459 4.727388    5.840642  0.62582535
## X100 -5.1611487 -0.24846136  4.634729 5.030438    5.351858  0.25230466
## X103 -3.2335542 -1.60943791  4.663439 5.631212    5.407172  0.43837211
## X104 -4.8199434 -1.71479843  4.430817 4.795791    4.934474 -0.17899381
## X105 -5.5592895 -2.31263543  4.454347 4.962845    5.351858 -0.27188464
## X107 -1.3806170 -2.12026354  4.369448 4.812184    4.976734  0.00000000
## X108 -1.9223227 -1.27296568  4.682131 4.442651    5.438079  0.09396047
## X109 -7.5346259 -2.20727491  4.465908 4.127134    4.882802 -0.24425708
## X110 -4.3245553 -2.43041846  4.043051 3.713572    5.220356 -0.06245326
## X111 -1.2879797 -1.60943791  4.110874 5.075174    5.159055 -0.47754210
## X112 -3.3452248 -0.38566248  5.323010 5.003946    5.857933  0.17742506
## X113 -2.3643578  0.53062825  4.787492 4.204693    5.303305  0.70214496
## X114 -5.1156807 -2.56394986  4.543295 3.583519    4.595120 -0.24425708
## X115 -2.2640143 -0.86750057  4.700480 3.871201    4.912655 -0.13031621
## X117 -4.3564173 -1.96611286  4.812184 5.087596    5.605802  0.38177502
## X118 -2.3643578 -2.12026354  4.700480 5.030438    5.662960  0.83076041
## X121 -0.4253563 -1.10866262  5.062595 4.682131    5.863631  0.53887915
## X123 -2.0000000 -1.66073121  4.304065 3.610918    4.795791 -0.42552800
## X124 -3.1639778 -0.99425227  4.875197 4.143135    5.010635  0.00000000
## X126 -4.8199434 -2.48891467  4.912655 4.624973    4.983607 -0.19163579
## X128 -1.2025631 -2.31263543  4.962845 4.820282    5.488938  0.95939061
## X129 -5.9056942 -1.89711998  4.624973 3.871201    4.605170 -0.57168558
## X130 -3.7735027 -0.86750057  5.159055 4.564348    5.099866  0.25230466
## X131 -5.0710678 -2.76462055  4.025352 4.488636    5.129899 -0.34523643
## X132 -4.0302269  0.69314718  4.442651 4.369448    5.017280 -0.08443323
## X133 -2.4721360 -0.75502258  4.672829 4.219508    4.859812  0.09396047
## X134 -0.5000000 -1.34707365  4.727388 4.672829    5.602119  0.43837211
## X135 -4.3245553 -2.45340798  4.584967 5.105945    5.257495  0.00000000
## X136 -2.4721360 -0.77652879  4.727388 3.828641    4.110874  0.43837211
## X137 -4.6299354 -1.42711636  4.488636 4.204693    4.976734 -0.01006550
## X139 -3.3452248 -1.34707365  4.543295 3.931826    5.017280 -0.59176325
## X140 -4.0302269 -1.89711998  4.406719 4.465908    5.187386  0.00000000
## X141 -3.1639778 -1.56064775  4.820282 4.890349    5.509388  0.25230466
## X143 -3.5470020  0.33647224  4.574711 3.637586    4.867534  0.00000000
## X144 -3.7735027 -2.04022083  4.276666 4.077537    5.030438  0.49054798
## X145 -5.0272837 -2.46510402  4.276666 4.330733    5.187386 -0.63330256
## X146 -2.1702883 -0.59783700  4.406719 4.430817    4.836282  0.43837211
## X147 -3.7735027 -1.23787436  4.634729 4.867534    5.743003  0.43837211
## X148 -1.7139068 -0.44628710  4.543295 4.276666    5.537334  0.09396047
## X149 -1.7139068 -2.88240359  4.290459 4.382027    4.897840 -0.27188464
## X152 -2.0824829 -0.94160854  4.682131 5.298317    5.634790  0.88578467
## X153 -3.5470020 -0.06187540  4.672829 4.488636    5.323010  0.00000000
## X154 -5.9681907 -1.71479843  3.806662 4.330733    5.442418 -0.36070366
## X155 -5.2547625 -2.47693848  4.442651 4.406719    5.164786 -0.24425708
## X156 -1.1622777 -0.40047757  4.369448 4.653960    5.176150  0.43837211
## X157 -3.1639778 -2.12026354  4.770685 4.356709    5.568345  1.00350156
## X158 -5.1611487 -2.59026717  3.828641 4.634729    4.962845 -0.51401261
## X159 -4.3245553 -2.20727491  4.859812 4.174387    4.941642  0.17742506
## X160 -4.5582584 -1.51412773  4.454347 5.501258    5.564520 -0.07336643
## X161 -5.0710678  0.40546511  5.081404 4.955827    5.361292 -0.69936731
## X162 -3.7735027 -0.63487827  4.406719 4.890349    6.144186 -0.07336643
## X163 -6.6874449 -2.83021784  4.262680 4.143135    5.429346 -0.57168558
## X165 -3.5470020 -2.30258509  4.499810 4.672829    5.484797  0.25230466
## X166 -5.4023321  0.09531018  4.624973 4.499810    5.257495 -0.31512364
## X167 -1.5921060  0.18232156  4.605170 5.283204    5.783825 -0.42552800
## X168 -0.9814240 -2.31263543  4.025352 4.532599    4.962845 -0.42552800
## X169 -2.0000000 -0.38566248  4.465908 4.330733    5.164786  0.00000000
## X170 -2.0000000 -2.61729584  4.499810 3.610918    5.159055 -0.10704332
## X171 -4.9421013 -0.63487827  4.948760 4.700480    5.187386 -0.45985790
## X172 -5.2074997 -3.12356565  4.510860 4.553877    5.318120 -0.65480247
## X174 -1.5921060  1.41098697  4.595120 4.356709    5.176150  0.17742506
## X175 -2.5883147 -0.77652879  4.584967 4.709530    5.323010  0.58384004
## X176 -5.0710678 -2.32278780  5.003946 4.204693    4.934474  0.32004747
## X177 -4.7419986 -2.40794561  4.770685 4.584967    5.375278  0.25230466
## X178 -4.0302269 -3.07911388  4.682131 4.077537    4.820282 -0.82104815
## X179 -2.1884251 -1.07880966  4.983607 4.060443    4.442651 -0.01006550
## X180 -2.0000000 -1.23787436  4.727388 4.553877    5.568345 -0.10704332
## X181 -5.5592895  1.77495235  4.382027 3.555348    4.356709  0.17742506
## X182 -5.0710678 -1.38629436  4.553877 4.510860    5.187386  0.49054798
## X183 -3.7735027 -1.71479843  4.406719 2.833213    4.248495  0.17742506
## X184 -5.4023321  1.06471074  4.653960 4.727388    5.225747  0.38177502
## X185 -4.4549722 -1.42711636  4.948760 4.304065    5.278115  0.49054798
## X186 -5.0272837 -1.60943791  4.304065 4.234107    5.214936 -0.08443323
## X189 -6.0321933 -0.84397007  4.672829 4.867534    5.710427  0.09396047
## X190 -4.0302269 -0.63487827  4.174387 4.521789    5.509388  0.32004747
## X191 -6.8561489 -1.56064775  4.700480 4.158883    5.332719 -0.63330256
## X192 -4.3245553  0.26236426  4.382027 5.056246    5.899897  0.25230466
## X193 -3.5470020 -2.04022083  5.283204 4.543295    5.488938  1.00350156
## X194 -2.8507125 -1.07880966  4.787492 3.663562    4.927254  0.17742506
## X195 -1.1234752 -0.34249031  4.488636 6.011267    5.978886  0.43837211
## X197 -2.2640143 -0.07257069  5.204007 4.753590    5.313206 -0.25795574
## X198 -5.5058663 -2.90042209  4.077537 4.043051    5.288267 -0.82104815
## X200 -4.0302269 -1.34707365  4.812184 4.584967    5.370638  0.00000000
## X201 -3.3452248 -1.46967597  4.204693 3.850148    4.962845 -0.06245326
## X202 -6.6066297 -1.42711636  4.204693 3.912023    5.293305 -0.49558921
## X205 -2.0000000 -0.47803580  4.369448 4.859812    5.332719  0.32004747
## X208 -5.0710678 -1.83258146  4.382027 4.234107    5.379897 -0.27188464
## X210 -3.0000000 -0.21072103  5.241747 4.653960    5.278115  0.53887915
## X212 -4.0302269 -0.96758403  4.644391 3.850148    4.948760 -0.20447735
## X213 -3.0000000 -0.51082562  4.836282 4.488636    5.181784 -0.08443323
## X214 -3.3452248 -1.83258146  4.304065 4.584967    5.093750  1.16610855
## X215 -1.6514837 -2.37515579  4.430817 4.867534    5.676754 -0.39250510
## X216 -4.4549722 -1.46967597  3.663562 3.850148    5.187386  0.25230466
## X218 -2.2640143 -0.18632958  4.204693 3.555348    4.997212  0.66516665
## X219 -5.1611487 -1.71479843  4.787492 4.094345    5.214936 -0.15428707
## X220 -5.8446454 -2.86470401  4.897840 4.691348    5.384495 -0.65480247
## X223 -3.3452248 -0.84397007  4.828314 4.430817    5.583496 -0.51401261
## X224 -5.8446454 -1.66073121  4.304065 4.615121    5.293305  0.00000000
## X225 -5.5058663 -1.10866262  4.394449 5.347108    5.826000  0.17742506
## X226 -3.0000000 -0.89159812  4.442651 5.411646    5.693732  0.43837211
## X227 -3.0000000 -0.91629073  4.077537 4.770685    4.969813  0.00000000
## X228 -1.4299717 -2.81341072  4.553877 3.828641    5.429346 -0.63330256
## X229 -0.4077171 -1.07880966  4.248495 3.663562    4.990433 -0.21752413
## X230 -2.7140452 -1.13943428  4.691348 4.219508    4.499810  0.43837211
## X231 -4.4888568  1.75785792  4.595120 4.158883    4.948760  0.00000000
## X232 -5.3521462 -1.83258146  4.143135 4.043051    4.934474  0.00000000
## X233 -5.3029674 -2.04022083  4.043051 3.433987    5.030438 -0.24425708
## X234 -3.3452248 -1.02976542  4.521789 4.317488    4.890349 -0.61229604
## X236 -4.0302269 -3.17008566  4.382027 4.691348    5.488938 -0.65480247
## X237 -4.0302269  0.09531018  4.574711 4.317488    5.153292 -0.09565753
## X239 -4.0302269 -0.77652879  4.394449 3.044522    4.584967  0.09396047
## X240 -4.0302269  0.74193734  4.442651 3.912023    4.795791 -0.42552800
## X241 -3.7735027 -2.52572864  4.859812 4.919981    5.117994  0.00000000
## X242 -1.7796447 -1.10866262  3.828641 2.833213    4.330733  0.25230466
## X243 -4.6299354 -1.51412773  5.075174 3.526361    4.787492  0.49054798
## X244 -3.7735027 -0.27443685  5.225747 4.454347    5.003946  0.85893499
## X245 -6.4515425 -0.22314355  3.871201 3.044522    4.317488 -0.16654597
## X246 -2.7140452  0.26236426  4.510860 4.094345    5.105945  0.25230466
## X247 -4.7806350 -2.45340798  4.553877 3.850148    5.049856 -0.57168558
## X249 -5.4023321 -1.46553683  4.820282 5.545177    6.102559  0.00000000
## X250 -4.5582584 -2.04022083  4.234107 4.430817    5.093750  0.09396047
## X251 -4.6299354 -1.27296568  4.553877 4.143135    4.779123 -0.55204550
## X253 -2.7140452 -1.96611286  4.962845 4.143135    5.135798  0.58384004
## X254 -2.3643578 -1.60943791  5.411646 5.598422    5.739793  0.09396047
## X255 -2.2640143 -1.46967597  4.875197 4.682131    5.170484  0.09396047
## X256 -6.3770782 -1.20397280  4.859812 4.615121    5.262690 -0.59176325
## X257 -5.7266741 -2.04022083  4.543295 3.931826    4.700480 -0.37645673
## X258 -3.1639778 -0.91629073  4.553877 4.859812    5.549076  0.09396047
## X260 -6.6066297 -1.96611286  4.204693 4.510860    4.844187  0.09396047
## X261 -7.1287093 -2.20727491  4.406719 3.871201    4.948760 -0.07336643
## X262 -5.7266741 -2.33304430  4.077537 3.931826    4.672829 -0.53282641
## X263 -1.2879797 -2.20727491  3.871201 4.663439    5.645447 -0.15428707
## X264 -2.0824829 -0.22314355  5.707110 4.127134    5.267858  0.17742506
## X265 -6.0977633 -2.37515579  3.433987 4.356709    5.214936  0.09396047
## X267 -2.0000000 -1.07880966  4.882802 4.499810    5.739793  0.66516665
## X268 -3.5470020 -0.96758403  4.465908 4.700480    5.525453 -0.47754210
## X269 -5.5058663 -2.93746337  4.624973 4.077537    4.852030 -0.99084860
## X270 -1.8490018 -0.41551544  4.025352 5.030438    5.945421 -0.07336643
## X271 -2.2640143 -1.13943428  4.488636 4.234107    5.616771 -0.02026405
## X272 -4.4216130 -1.46967597  4.564348 4.127134    4.962845 -0.10704332
## X273 -3.0000000 -0.63487827  4.043051 4.532599    5.247024  0.32004747
## X274 -5.6696499  0.33647224  3.970292 4.488636    5.147494 -0.03059880
## X275 -4.0302269 -1.27296568  4.442651 4.867534    5.370638  0.17742506
## X277 -1.7139068 -1.04982212  4.143135 4.356709    5.010635  0.53887915
## X278 -3.1639778 -1.96611286  4.663439 4.394449    5.225747 -0.10704332
## X279 -3.1639778 -2.71810054  4.753590 4.025352    4.976734 -0.13031621
## X281 -3.3452248 -0.76744135  4.276666 4.691348    5.521461  0.70214496
## X282 -3.7735027 -0.93350237  3.828641 3.737670    4.644391  0.38177502
## X283 -4.0302269 -1.30933332  4.477337 5.147494    5.679253  0.43837211
## X287 -3.7735027 -1.66073121  4.454347 4.736198    5.886104  0.09396047
## X289 -5.3029674 -0.28768207  3.951244 3.663562    4.912655 -0.23078200
## X290 -3.5470020 -2.20727491  3.610918 3.828641    5.147494  0.09396047
## X291 -0.9814240 -1.77195684  4.356709 4.828314    5.472271  0.70214496
## X292 -4.0302269 -2.12026354  4.779123 5.003946    5.556828  0.32004747
## X294 -6.0977633 -1.13943428  4.553877 3.295837    5.257495 -0.55204550
## X297 -4.3887656 -1.77195684  4.564348 4.110874    4.663439 -0.16654597
## X298 -5.5058663 -2.04022083  3.951244 3.637586    4.532599  0.00000000
## X299 -5.1156807 -2.04022083  4.927254 4.488636    5.560682  0.09396047
## X301 -4.4549722 -2.32278780  4.356709 4.127134    4.875197 -0.17899381
## X302 -4.0302269 -2.04022083  4.343805 3.218876    4.343805 -0.63330256
## X303 -5.2547625 -1.83258146  4.442651 4.234107    5.288267 -0.20447735
## X304 -3.0000000 -2.35387839  5.111988 5.075174    6.304449  0.62582535
## X305 -3.7735027 -1.46967597  4.682131 4.094345    5.662960  0.73700033
## X306 -4.4216130 -0.77652879  4.595120 4.941642    5.267858  0.38177502
## X307 -3.5470020 -0.71334989  4.779123 4.962845    6.129050  0.85893499
## X308 -6.9442719 -0.84397007  4.595120 4.510860    5.135798  0.09396047
## X311 -3.7735027 -1.77195684  4.770685 4.043051    4.828314 -0.11859478
## X312 -3.7735027 -1.96611286  4.912655 5.075174    5.164786  0.32004747
## X313 -5.0710678 -0.35667494  4.317488 3.688879    5.288267  0.17742506
## X314 -6.5280287 -2.90042209  4.709530 4.406719    5.293305 -0.17899381
## X315 -3.7735027 -1.89711998  4.418841 4.007333    5.093750 -0.09565753
## X316 -5.1611487 -1.60943791  4.290459 4.736198    5.411646  0.25230466
## X317 -4.9421013 -2.12026354  4.653960 4.844187    5.081404 -0.04107298
## X320 -4.6299354 -1.23787436  4.465908 4.007333    4.304065 -0.28605071
## X321 -4.6666667 -1.46967597  3.784190 2.639057    4.454347 -0.10704332
## X322 -0.8867513 -0.77652879  4.912655 4.465908    5.393628  0.49054798
## X323 -3.5470020 -0.35667494  5.135798 4.382027    5.236442  0.32004747
## X324 -6.3045480 -1.13943428  4.875197 4.219508    5.170484  0.25230466
## X325 -4.3245553 -2.40794561  4.488636 4.442651    4.941642  0.85893499
## X326 -3.7735027 -0.38566248  4.510860 4.276666    5.288267  0.09396047
## X327 -0.7472113  0.33647224  4.890349 4.795791    5.236442  0.53887915
## X329 -4.9843030 -2.37515579  4.465908 5.192957    5.416100  0.17742506
## X330 -1.2025631 -0.52763274  4.744932 3.761200    4.488636  0.09396047
## X331 -6.1649658 -1.83258146  4.304065 3.931826    4.762174 -0.09565753
## X332 -3.7735027 -0.77652879  4.189655 3.465736    4.859812  0.17742506
## X333 -5.5058663 -0.63487827  4.465908 5.541264    6.102559 -0.53282641
##         PAPP_A     PLGF      PYY Pancreatic_polypeptide   Prolactin
## X1   -2.902226 4.442651 3.218876             0.57878085  0.00000000
## X2   -2.813276 4.025352 3.135494             0.33647224 -0.51082562
## X3   -2.935541 4.510860 2.890372            -0.89159812 -0.13926207
## X5   -2.935541 4.795791 3.663562             0.26236426  0.18232156
## X6   -2.935541 4.394449 3.332205            -0.47803580 -0.15082289
## X7   -2.590291 3.367296 2.833213            -0.59783700 -0.52763274
## X8   -2.669471 4.343805 2.397895            -0.31471074 -0.35667494
## X9   -2.786601 3.526361 2.833213            -0.52763274  0.40546511
## X11  -2.669471 4.356709 3.258097            -1.27296568  0.40546511
## X12  -2.971157 3.871201 2.995732             1.16315081  0.26236426
## X14  -2.841320 4.330733 2.772589            -0.37106368  0.09531018
## X16  -2.971157 4.189655 2.833213             0.33647224 -0.03045921
## X17  -2.691054 4.219508 2.639057             0.78845736  0.26236426
## X18  -2.841320 4.189655 2.833213            -0.59783700 -0.44628710
## X19  -2.713475 3.784190 2.833213             0.18232156  0.18232156
## X20  -2.813276 4.454347 2.302585            -0.26136476  0.26236426
## X21  -2.813276 4.007333 3.178054             0.69314718  0.18232156
## X22  -2.713475 3.258097 2.833213            -1.23787436 -0.22314355
## X23  -3.110843 4.262680 3.135494            -0.82098055 -0.21072103
## X24  -2.590291 3.465736 2.772589            -0.04082199 -0.05129329
## X25  -2.691054 3.433987 2.890372            -1.27296568 -1.30933332
## X26  -2.902226 3.688879 2.772589             0.09531018  0.18232156
## X28  -3.009464 3.713572 2.772589             0.40546511 -0.23572233
## X29  -2.736812 3.912023 2.995732             0.09531018 -0.10536052
## X30  -2.813276 3.583519 2.995732             0.09531018 -0.13926207
## X31  -2.590291 4.488636 3.218876             0.33647224 -0.10536052
## X34  -2.813276 4.727388 2.397895             0.91629073 -0.13926207
## X35  -3.050970 4.110874 2.833213             0.53062825  0.00000000
## X36  -2.736812 4.499810 2.833213            -0.75502258  0.09531018
## X37  -2.971157 3.912023 2.995732            -0.10536052 -0.03045921
## X38  -2.902226 3.871201 3.178054            -0.63487827  0.18232156
## X39  -2.841320 3.332205 3.367296            -0.71334989 -0.40047757
## X40  -2.761153 3.891820 3.218876            -0.51082562 -0.07230692
## X41  -2.813276 4.094345 2.833213             0.18232156  0.09531018
## X42  -2.902226 4.025352 3.367296            -1.27296568  0.47000363
## X43  -2.971157 3.806662 2.833213             0.00000000  0.40546511
## X44  -2.841320 4.532599 3.135494             0.47000363  0.40546511
## X45  -2.590291 4.143135 2.890372             0.64185389  0.00000000
## X46  -3.110843 4.382027 2.890372            -0.26136476  0.26236426
## X47  -2.971157 3.828641 2.995732             0.18232156  0.00000000
## X48  -2.691054 4.248495 3.496508             0.69314718  0.09531018
## X50  -2.713475 4.127134 3.850148            -0.41551544  0.18232156
## X51  -2.841320 3.295837 2.639057            -0.96758403  0.09531018
## X53  -2.902226 4.007333 3.332205            -0.34249031  0.09531018
## X55  -2.902226 3.871201 3.135494             0.26236426 -0.10536052
## X56  -2.841320 4.290459 2.833213            -0.46203546 -0.07257069
## X57  -2.813276 4.499810 3.295837             1.06471074 -0.13926207
## X59  -2.713475 4.663439 2.995732            -0.32850407  0.33647224
## X60  -2.736812 3.806662 2.833213             0.95551145  0.26236426
## X61  -2.761153 3.931826 3.433987            -0.09431068 -0.40047757
## X62  -3.009464 3.496508 2.708050            -0.73396918 -0.23572233
## X63  -2.628559 4.077537 3.135494             0.91629073 -0.30110509
## X64  -2.813276 4.343805 2.944439             0.83290912 -0.17435339
## X65  -2.971157 3.332205 2.890372             0.83290912 -0.18632958
## X67  -3.009464 3.850148 2.397895            -0.32850407  0.09531018
## X68  -2.691054 3.663562 2.995732             0.26236426  0.09531018
## X69  -2.935541 3.555348 2.995732            -0.16251893 -0.01005034
## X70  -2.935541 3.737670 3.091042             0.26236426 -0.31471074
## X71  -3.068611 4.369448 2.772589             0.40546511 -0.18632958
## X72  -2.813276 4.369448 2.890372            -0.59783700  0.58778666
## X73  -2.786601 4.615121 2.890372             0.26236426  0.99325177
## X74  -2.813276 3.871201 3.091042             0.53062825 -0.06187540
## X75  -2.935541 4.605170 2.833213             0.69314718  0.09531018
## X76  -2.813276 4.043051 3.135494             1.02961942 -0.26136476
## X77  -2.761153 3.761200 3.044522             0.83290912  0.69314718
## X78  -2.935541 4.418841 2.639057             1.52605630  0.18232156
## X80  -2.902226 3.891820 3.401197             0.33647224  0.09531018
## X81  -3.009464 4.189655 3.178054            -0.63487827  0.26236426
## X82  -2.761153 3.135494 2.995732             0.09531018  0.26236426
## X83  -2.971157 3.970292 3.178054            -0.40047757  0.18232156
## X84  -2.935541 3.871201 2.772589            -0.63487827 -0.02020271
## X85  -2.935541 3.761200 3.135494            -0.32850407 -0.17435339
## X86  -2.870902 4.317488 3.496508             1.93152141 -0.09431068
## X88  -2.669471 4.634729 3.465736             0.47000363 -0.06187540
## X90  -2.902226 3.555348 2.397895            -0.40047757 -0.75502258
## X93  -2.902226 3.761200 2.833213             0.18232156 -0.26136476
## X94  -2.902226 4.844187 3.218876             1.25276297  0.18232156
## X95  -2.736812 3.806662 3.367296             0.47000363  0.18232156
## X96  -3.068611 3.713572 3.332205            -0.79850770 -0.05129329
## X97  -2.971157 3.218876 2.772589            -0.67334455 -0.22314355
## X98  -2.870902 3.496508 2.995732            -1.02165125  0.33647224
## X99  -3.033945 4.465908 2.708050             0.91629073  0.53062825
## X100 -2.870902 3.828641 3.295837            -0.23572233  0.00000000
## X103 -2.841320 4.382027 2.564949            -0.19845094  0.00000000
## X104 -2.870902 3.891820 2.639057             0.26236426 -0.15082289
## X105 -2.648659 3.044522 3.044522             0.26236426 -0.19845094
## X107 -2.841320 3.332205 3.178054            -0.16251893  0.26236426
## X108 -2.590291 3.713572 2.833213            -0.03045921 -0.22314355
## X109 -3.110843 3.433987 3.044522            -0.71334989  0.18232156
## X110 -2.813276 3.713572 2.833213            -2.12026354 -0.30110509
## X111 -2.870902 3.784190 2.833213            -0.40047757  0.00000000
## X112 -2.713475 3.951244 2.995732             1.64865863 -0.21072103
## X113 -2.761153 4.595120 2.890372             0.69314718  0.09531018
## X114 -3.101129 3.526361 2.772589            -0.73396918  0.33647224
## X115 -2.648659 4.465908 2.708050             1.09861229 -0.16251893
## X117 -2.590291 3.784190 3.091042             0.18232156 -0.11653382
## X118 -2.648659 3.988984 3.583519            -1.27296568  0.09531018
## X121 -3.082278 4.330733 2.708050             0.18232156  0.26236426
## X123 -2.761153 3.526361 3.218876            -0.23572233  0.33647224
## X124 -2.609119 4.094345 3.258097             0.09531018  0.26236426
## X126 -2.786601 3.465736 2.995732            -0.52763274  0.09531018
## X128 -2.902226 3.828641 3.178054             0.47000363  0.26236426
## X129 -2.935541 3.433987 2.833213            -0.75502258 -0.07257069
## X130 -2.902226 4.143135 3.367296             0.58778666  0.40546511
## X131 -3.013461 2.995732 2.772589             0.78845736  0.00000000
## X132 -2.813276 3.806662 2.833213            -0.31471074 -0.23572233
## X133 -2.736812 4.204693 2.833213            -0.52763274 -0.08338161
## X134 -2.736812 4.204693 3.178054             1.25276297  0.00000000
## X135 -2.761153 3.637586 2.833213            -0.31471074 -0.27443685
## X136 -2.971157 4.094345 3.091042             0.69314718  0.91629073
## X137 -2.870902 4.094345 3.135494            -0.34249031  0.00000000
## X139 -2.870902 3.761200 3.526361            -0.47803580  0.26236426
## X140 -2.609119 3.828641 3.091042             1.19392247  0.33647224
## X141 -2.870902 3.332205 2.890372             0.18232156  0.09531018
## X143 -2.609119 4.317488 2.833213             0.99325177 -0.30110509
## X144 -2.902226 3.610918 3.178054             0.58778666 -0.04082199
## X145 -2.870902 3.295837 2.995732            -0.86750057  0.00000000
## X146 -2.813276 3.663562 2.186051             1.33500107 -0.09431068
## X147 -3.009464 3.496508 2.890372             0.78845736 -0.27443685
## X148 -2.870902 4.189655 2.639057             0.00000000 -0.18632958
## X149 -2.813276 3.761200 3.044522            -1.10866262 -0.12783337
## X152 -2.691054 4.488636 2.890372             1.13140211 -0.22314355
## X153 -2.648659 4.158883 2.995732             0.64185389 -0.07257069
## X154 -2.935541 3.496508 3.218876            -0.71334989 -0.02020271
## X155 -2.902226 3.784190 3.332205            -0.86750057  0.09531018
## X156 -2.870902 4.262680 3.044522            -0.26136476  0.18232156
## X157 -2.813276 4.304065 2.995732             0.26236426  0.33647224
## X158 -2.813276 4.077537 2.890372            -0.96758403 -0.01005034
## X159 -2.935541 4.043051 3.044522             0.18232156 -0.07257069
## X160 -2.902226 3.828641 3.332205             0.33647224  0.18232156
## X161 -2.870902 4.025352 3.135494            -1.27296568  0.18232156
## X162 -2.841320 3.367296 3.806662            -0.40047757  0.40546511
## X163 -2.935541 2.944439 3.465736            -0.96758403 -0.03045921
## X165 -2.971157 3.218876 2.890372            -1.07880966 -0.21072103
## X166 -2.841320 3.737670 2.944439            -0.23572233 -0.35667494
## X167 -2.691054 3.401197 2.944439            -1.34707365  0.00000000
## X168 -2.870902 3.610918 2.833213            -0.82098055  0.00000000
## X169 -3.017491 3.737670 3.178054            -0.47803580  0.18232156
## X170 -2.841320 3.737670 2.890372            -0.61618614  0.26236426
## X171 -2.786601 3.367296 3.526361            -0.09431068 -0.03045921
## X172 -2.813276 3.526361 3.218876            -0.16251893  0.53062825
## X174 -2.870902 4.624973 2.995732             0.83290912  0.53062825
## X175 -3.136040 3.850148 3.135494             0.33647224 -0.21072103
## X176 -2.971157 4.762174 2.708050             0.64185389  0.33647224
## X177 -2.841320 4.007333 2.397895            -0.16251893 -0.15082289
## X178 -2.971157 3.433987 2.995732            -0.99425227  0.18232156
## X179 -2.761153 4.077537 2.890372            -0.34249031  0.09531018
## X180 -2.971157 4.007333 2.833213             0.58194114  0.26236426
## X181 -2.902226 3.610918 2.833213            -0.47803580 -0.22314355
## X182 -2.713475 3.761200 3.091042            -0.09431068  0.00000000
## X183 -2.870902 4.077537 2.772589            -1.42711636  0.25361982
## X184 -2.669471 4.143135 2.639057            -0.31471074  0.09531018
## X185 -2.902226 4.007333 2.995732             0.78845736 -0.15082289
## X186 -3.033945 3.806662 2.944439             0.64185389  0.18232156
## X189 -2.971157 2.484907 2.890372             1.56861592 -0.09431068
## X190 -2.902226 3.583519 2.833213            -0.40047757 -0.06187540
## X191 -2.870902 4.077537 2.833213            -1.96611286 -0.67334455
## X192 -2.935541 3.295837 2.397895             1.30833282 -0.51082562
## X193 -2.813276 4.836282 2.708050             0.87546874 -0.16251893
## X194 -2.713475 3.713572 3.295837            -0.52763274  0.26236426
## X195 -3.009464 4.234107 3.135494            -0.46203546  0.00000000
## X197 -2.971157 3.713572 3.044522            -0.23572233  0.00000000
## X198 -2.609119 2.995732 3.295837            -1.23787436  0.18232156
## X200 -2.870902 3.496508 3.610918            -0.49429632 -0.16251893
## X201 -2.971157 4.127134 3.044522            -0.23572233 -0.46203546
## X202 -2.841320 3.091042 3.433987            -0.86750057  0.26236426
## X205 -2.736812 4.499810 3.218876            -0.41551544 -0.18632958
## X208 -2.935541 3.737670 2.397895             0.00000000 -0.27443685
## X210 -2.761153 4.394449 3.332205             0.47000363  0.18232156
## X212 -3.050970 3.850148 2.833213             1.93152141  0.40546511
## X213 -3.033945 3.737670 2.995732             1.19392247  0.33647224
## X214 -2.902226 4.219508 2.833213             0.87546874 -0.06187540
## X215 -2.935541 3.218876 3.367296             0.47000363 -0.28768207
## X216 -2.786601 4.189655 3.044522            -0.31471074 -0.01005034
## X218 -2.713475 4.234107 3.135494            -0.01005034  0.09531018
## X219 -2.971157 3.610918 3.295837             0.87546874 -0.40047757
## X220 -2.971157 3.970292 2.995732            -0.37106368  0.33647224
## X223 -2.935541 3.218876 3.091042             0.91629073 -0.12783337
## X224 -2.786601 3.496508 2.708050            -0.73396918 -0.41551544
## X225 -2.841320 3.806662 3.044522            -0.49429632 -0.46203546
## X226 -3.009464 3.401197 2.639057             0.18232156  0.00000000
## X227 -2.902226 4.127134 3.332205             1.19392247 -0.05129329
## X228 -2.935541 3.806662 2.833213            -0.31471074 -0.27443685
## X229 -3.009464 3.850148 3.178054            -0.73396918 -0.13926207
## X230 -3.179436 4.276666 2.890372             1.62924054 -0.05129329
## X231 -2.902226 4.330733 3.332205            -0.67334455  0.33647224
## X232 -2.736812 4.077537 3.218876            -0.40047757 -0.17435339
## X233 -2.813276 4.127134 2.639057            -0.63487827  0.18232156
## X234 -2.736812 3.828641 2.944439             0.74193734 -0.01005034
## X236 -3.009464 3.295837 3.178054            -0.94160854  0.09531018
## X237 -3.120760 4.060443 3.135494             1.09861229 -0.11653382
## X239 -2.971157 3.806662 3.091042            -0.16251893  0.09531018
## X240 -2.713475 3.784190 3.091042             0.18232156 -0.18632958
## X241 -2.935541 3.258097 2.708050            -0.31471074  0.58778666
## X242 -3.310880 4.208969 2.833213             0.99325177  0.09531018
## X243 -3.068611 4.219508 2.995732            -0.02020271 -0.54472718
## X244 -2.870902 4.060443 2.995732             0.74193734  0.53062825
## X245 -2.935541 3.850148 3.135494            -0.40047757 -0.47803580
## X246 -2.691054 3.988984 3.218876             0.58778666  0.09531018
## X247 -2.691054 3.828641 3.044522            -0.16251893  0.26236426
## X249 -2.736812 3.465736 2.484907            -1.07880966  0.18232156
## X250 -3.009464 4.110874 2.890372            -0.82098055  0.18232156
## X251 -2.971157 3.737670 2.944439             0.09531018  0.09531018
## X253 -3.120760 4.644391 3.218876             0.33647224 -0.26136476
## X254 -2.786601 4.025352 2.995732            -0.59783700  0.69314718
## X255 -2.870902 4.060443 3.367296            -0.63487827  0.33647224
## X256 -2.971157 3.367296 3.295837             0.53062825 -0.03045921
## X257 -2.870902 3.737670 3.688879            -0.09431068  0.47000363
## X258 -2.713475 4.317488 3.135494             0.33647224  0.09531018
## X260 -2.648659 3.713572 2.833213            -0.69314718  0.09531018
## X261 -3.136040 3.713572 3.295837             0.00000000  0.26236426
## X262 -2.669471 3.713572 3.044522            -0.69314718 -0.06187540
## X263 -2.870902 3.871201 3.135494            -1.13943428 -0.02020271
## X264 -2.813276 4.382027 2.833213             0.60449978  0.18232156
## X265 -2.786601 3.784190 2.639057             0.91629073 -0.09431068
## X267 -2.786601 4.234107 2.639057             0.83290912  0.09531018
## X268 -2.935541 3.555348 3.044522             0.40546511  0.26236426
## X269 -2.648659 3.737670 2.995732            -1.42711636 -0.08338161
## X270 -2.902226 3.737670 2.397895            -0.47803580  0.18232156
## X271 -2.609119 5.170484 3.433987            -0.23572233  0.00000000
## X272 -2.841320 3.218876 2.833213            -0.23572233  0.47000363
## X273 -2.609119 4.110874 3.295837             0.09531018 -0.43078292
## X274 -2.841320 3.555348 2.833213            -1.13943428 -0.49429632
## X275 -2.935541 3.433987 3.401197            -0.49429632 -0.40047757
## X277 -2.841320 4.110874 2.639057             0.53062825  0.33647224
## X278 -2.648659 3.871201 2.708050             0.18232156  0.09531018
## X279 -2.971157 3.091042 2.772589            -0.94160854 -0.01005034
## X281 -2.841320 4.499810 3.178054             0.18232156 -0.06187540
## X282 -3.068611 3.931826 2.890372             0.33647224  0.09531018
## X283 -2.554309 3.850148 3.135494             0.58778666 -0.13926207
## X287 -3.033945 3.610918 3.135494             0.26236426  0.18232156
## X289 -2.736812 4.158883 2.833213            -0.59783700  0.09531018
## X290 -2.870902 4.510860 3.091042             0.33647224  0.53062825
## X291 -2.935541 3.850148 3.044522            -0.10536052  0.18232156
## X292 -2.520328 3.610918 3.465736            -0.23572233  0.09531018
## X294 -2.971157 4.094345 2.708050            -1.02165125 -0.59783700
## X297 -2.971157 3.912023 2.995732             0.74193734  0.64185389
## X298 -2.713475 4.510860 2.772589             0.09531018  0.74193734
## X299 -2.691054 3.465736 3.332205            -0.94160854  0.91629073
## X301 -2.669471 3.828641 2.708050            -0.41551544  0.18232156
## X302 -2.648659 3.526361 3.091042            -0.86750057 -0.10536052
## X303 -2.628559 4.127134 2.639057            -0.16251893 -0.22314355
## X304 -2.841320 4.304065 3.367296             0.18232156  0.26236426
## X305 -2.669471 4.477337 3.135494             0.09531018 -0.06187540
## X306 -2.902226 4.219508 3.496508             0.18232156  0.26236426
## X307 -2.841320 4.110874 3.610918             0.99325177 -0.04082199
## X308 -2.786601 3.637586 3.295837             0.99325177 -0.02020271
## X311 -2.971157 4.174387 2.944439            -0.41551544  0.40546511
## X312 -3.196833 4.025352 3.931826             0.78845736 -0.43078292
## X313 -2.648659 4.127134 3.433987             0.00000000  0.18232156
## X314 -2.609119 3.555348 3.295837            -0.96758403  0.18232156
## X315 -2.935541 3.931826 2.995732            -0.16251893  0.91629073
## X316 -2.935541 3.784190 2.833213             0.09531018  0.09531018
## X317 -3.068611 3.295837 3.135494            -0.34249031  0.26236426
## X320 -2.786601 3.784190 3.761200             0.40546511 -0.11653382
## X321 -3.009464 4.043051 3.044522             0.26236426  0.40546511
## X322 -2.971157 4.454347 3.135494            -0.52763274  0.33647224
## X323 -2.813276 4.158883 3.367296             0.53062825  0.18232156
## X324 -3.009464 3.663562 3.044522             0.58778666 -0.04082199
## X325 -2.902226 4.234107 2.397895             0.78845736  0.64185389
## X326 -2.628559 3.135494 2.995732            -0.04082199  0.09531018
## X327 -3.033945 4.304065 2.639057             0.78845736  0.33647224
## X329 -3.157227 4.330733 2.708050             0.33647224  0.00000000
## X330 -2.902226 4.317488 3.178054             0.78845736  0.47000363
## X331 -3.091611 3.610918 3.218876            -0.96758403  0.47000363
## X332 -2.648659 4.276666 2.833213            -1.34707365  0.26236426
## X333 -2.609119 3.583519 2.944439            -0.52763274 -0.30110509
##      Prostatic_Acid_Phosphatase Protein_S Pulmonary_and_Activation_Regulat
## X1                    -1.620527 -1.784998                       -0.8439701
## X2                    -1.739232 -2.463991                       -2.3025851
## X3                    -1.636682 -2.259135                       -1.6607312
## X5                    -1.696685 -1.659842                       -0.5621189
## X6                    -1.755051 -2.357788                       -1.1711830
## X7                    -1.659412 -2.259135                       -1.5606477
## X8                    -1.724319 -2.081112                       -1.1086626
## X9                    -1.763357 -2.167156                       -1.6607312
## X11                   -1.690161 -2.081112                       -1.2039728
## X12                   -1.710172 -2.259135                       -0.8439701
## X14                   -1.548336 -2.081112                       -1.0498221
## X16                   -1.631218 -2.463991                       -1.0216512
## X17                   -1.677510 -2.000377                       -1.0498221
## X18                   -1.710172 -2.703458                       -2.2072749
## X19                   -1.636682 -2.357788                       -0.5798185
## X20                   -1.631218 -1.852753                       -1.1711830
## X21                   -1.724319 -2.259135                       -1.1394343
## X22                   -1.677510 -2.357788                       -1.9661129
## X23                   -1.671366 -2.578792                       -2.0402208
## X24                   -1.696685 -2.357788                       -1.3862944
## X25                   -1.755051 -2.578792                       -2.1202635
## X26                   -1.665336 -2.357788                       -1.8971200
## X28                   -1.677510 -2.000377                       -1.7719568
## X29                   -1.677510 -2.839536                       -1.8325815
## X30                   -1.615292 -2.703458                       -1.8971200
## X31                   -1.665336 -1.852753                       -1.6094379
## X34                   -1.659412 -2.167156                       -1.2039728
## X35                   -1.671366 -2.000377                       -0.9942523
## X36                   -1.659412 -1.720797                       -0.7985077
## X37                   -1.620527 -2.463991                       -1.8971200
## X38                   -1.696685 -2.167156                       -1.5141277
## X39                   -1.671366 -2.463991                       -2.2072749
## X40                   -1.647864 -2.167156                       -2.1202635
## X41                   -1.677510 -2.000377                       -1.1394343
## X42                   -1.647864 -2.259135                       -0.8915981
## X43                   -1.665336 -2.357788                       -0.9942523
## X44                   -1.659412 -2.259135                       -1.8325815
## X45                   -1.724319 -1.784998                       -1.0498221
## X46                   -1.696685 -2.081112                       -1.2729657
## X47                   -1.717157 -2.463991                       -1.2039728
## X48                   -1.755051 -2.000377                       -1.8325815
## X50                   -1.747018 -2.081112                       -1.3862944
## X51                   -1.843795 -2.357788                       -2.2072749
## X53                   -1.585271 -2.357788                       -1.2378744
## X55                   -1.690161 -2.357788                       -1.9661129
## X56                   -1.683772 -1.852753                       -1.6607312
## X57                   -1.690161 -1.924411                       -0.2744368
## X59                   -1.671366 -2.000377                       -1.1711830
## X60                   -1.755051 -3.338046                       -1.5606477
## X61                   -1.724319 -2.703458                       -1.3862944
## X62                   -1.653590 -2.703458                       -1.9661129
## X63                   -1.575736 -2.578792                       -1.1394343
## X64                   -1.647864 -2.000377                       -0.6161861
## X65                   -1.739232 -2.463991                       -1.9661129
## X67                   -1.683772 -2.357788                       -0.6539265
## X68                   -1.817791 -2.167156                       -0.3011051
## X69                   -1.755051 -3.154089                       -1.6094379
## X70                   -1.755051 -2.463991                       -1.8971200
## X71                   -1.671366 -2.000377                       -1.4696760
## X72                   -1.690161 -1.395242                       -0.5447272
## X73                   -1.595031 -1.924411                       -1.5141277
## X74                   -1.710172 -2.357788                       -1.6094379
## X75                   -1.690161 -1.924411                       -0.7765288
## X76                   -1.600000 -1.720797                       -1.4696760
## X77                   -1.631218 -2.167156                       -1.5606477
## X78                   -1.610128 -1.262002                       -0.7985077
## X80                   -1.665336 -2.259135                       -1.5141277
## X81                   -1.631218 -2.259135                       -1.2378744
## X82                   -1.724319 -2.578792                       -2.2072749
## X83                   -1.585271 -2.081112                       -0.4942963
## X84                   -1.659412 -2.357788                       -1.3862944
## X85                   -1.671366 -2.000377                       -0.9416085
## X86                   -1.610128 -1.546611                       -1.2039728
## X88                   -1.677510 -1.720797                       -0.7550226
## X90                   -1.790238 -3.154089                       -0.8439701
## X93                   -1.755051 -2.000377                       -1.5606477
## X94                   -1.642229 -1.220997                       -0.5108256
## X95                   -1.665336 -2.167156                       -1.9661129
## X96                   -1.690161 -2.357788                       -1.7719568
## X97                   -1.710172 -2.578792                       -2.5010360
## X98                   -1.790238 -2.703458                       -1.8971200
## X99                   -1.690161 -2.259135                       -1.2729657
## X100                  -1.659412 -2.357788                       -1.7719568
## X103                  -1.731672 -2.000377                       -1.6607312
## X104                  -1.653590 -2.259135                       -1.6607312
## X105                  -1.671366 -2.167156                       -2.5133061
## X107                  -1.731672 -2.463991                       -1.2729657
## X108                  -1.665336 -2.000377                       -1.8325815
## X109                  -1.933668 -3.338046                       -2.1202635
## X110                  -1.710172 -2.988944                       -1.6094379
## X111                  -1.710172 -2.357788                       -2.0402208
## X112                  -1.653590 -1.852753                       -0.6161861
## X113                  -1.600000 -1.720797                       -1.3862944
## X114                  -1.739232 -2.703458                       -1.5141277
## X115                  -1.747018 -2.000377                       -0.7133499
## X117                  -1.710172 -2.357788                       -2.0402208
## X118                  -1.636682 -2.259135                       -1.7719568
## X121                  -1.647864 -2.081112                       -1.2039728
## X123                  -1.790238 -2.578792                       -1.6094379
## X124                  -1.631218 -2.167156                       -1.7147984
## X126                  -1.647864 -2.463991                       -1.6094379
## X128                  -1.590122 -1.720797                       -1.5606477
## X129                  -1.717157 -2.578792                       -1.3470736
## X130                  -1.677510 -2.000377                       -1.3093333
## X131                  -1.690161 -2.578792                       -1.3862944
## X132                  -1.710172 -2.167156                       -1.5141277
## X133                  -1.771965 -1.924411                       -1.7147984
## X134                  -1.755051 -2.000377                       -0.7985077
## X135                  -1.739232 -2.357788                       -1.7719568
## X136                  -1.763357 -2.578792                       -1.7719568
## X137                  -1.703352 -2.703458                       -1.8325815
## X139                  -1.696685 -2.839536                       -1.0498221
## X140                  -1.710172 -2.259135                       -1.9661129
## X141                  -1.690161 -2.081112                       -1.8971200
## X143                  -1.724319 -2.081112                       -1.1086626
## X144                  -1.755051 -2.578792                       -1.4696760
## X145                  -1.815609 -2.703458                       -2.1202635
## X146                  -1.677510 -1.852753                       -1.3862944
## X147                  -1.690161 -2.081112                       -1.9661129
## X148                  -1.631218 -1.852753                       -0.5447272
## X149                  -1.696685 -2.703458                       -1.3093333
## X152                  -1.571048 -2.167156                       -0.9675840
## X153                  -1.696685 -1.443483                       -0.8209806
## X154                  -1.703352 -2.578792                       -1.6607312
## X155                  -1.710172 -2.259135                       -1.6607312
## X156                  -1.610128 -1.924411                       -1.2729657
## X157                  -1.710172 -2.167156                       -1.5141277
## X158                  -1.690161 -2.578792                       -2.0402208
## X159                  -1.653590 -2.259135                       -1.3862944
## X160                  -1.703352 -2.081112                       -1.8971200
## X161                  -1.590122 -1.924411                       -1.0216512
## X162                  -1.642229 -2.357788                       -1.8325815
## X163                  -1.690161 -2.703458                       -2.3025851
## X165                  -1.653590 -2.463991                       -2.3025851
## X166                  -1.671366 -2.578792                       -1.7719568
## X167                  -1.615292 -2.259135                       -1.3470736
## X168                  -1.631218 -2.357788                       -1.2039728
## X169                  -1.690161 -2.578792                       -1.3470736
## X170                  -1.690161 -2.259135                       -1.5606477
## X171                  -1.659412 -1.720797                       -1.0498221
## X172                  -1.696685 -2.578792                       -1.7719568
## X174                  -1.575736 -1.659842                       -0.7339692
## X175                  -1.665336 -1.852753                       -1.5141277
## X176                  -1.600000 -2.463991                       -0.7985077
## X177                  -1.690161 -2.259135                       -1.5606477
## X178                  -1.696685 -2.703458                       -1.1711830
## X179                  -1.600000 -1.493883                       -1.3862944
## X180                  -1.771965 -2.167156                       -1.2729657
## X181                  -1.710172 -2.703458                       -1.0216512
## X182                  -1.724319 -2.357788                       -1.5141277
## X183                  -1.755051 -2.000377                       -2.4304185
## X184                  -1.690161 -2.259135                       -1.2729657
## X185                  -1.683772 -2.081112                       -0.7133499
## X186                  -1.710172 -2.463991                       -1.6607312
## X189                  -1.696685 -2.578792                       -2.0402208
## X190                  -1.817791 -2.167156                       -0.9942523
## X191                  -1.710172 -2.357788                       -1.7719568
## X192                  -1.642229 -2.081112                       -1.9661129
## X193                  -1.671366 -1.852753                       -1.3862944
## X194                  -1.653590 -2.357788                       -1.5141277
## X195                  -1.585271 -2.167156                       -1.8325815
## X197                  -1.690161 -2.000377                       -1.5606477
## X198                  -1.724319 -2.578792                       -1.8971200
## X200                  -1.696685 -2.703458                       -2.3538784
## X201                  -1.665336 -2.357788                       -0.8915981
## X202                  -1.677510 -2.988944                       -1.6094379
## X205                  -1.763357 -2.167156                       -1.6607312
## X208                  -1.724319 -2.259135                       -1.5141277
## X210                  -1.665336 -2.167156                       -1.8325815
## X212                  -1.696685 -2.578792                       -2.2072749
## X213                  -1.530958 -2.081112                       -1.5141277
## X214                  -1.486191 -2.081112                       -1.1394343
## X215                  -1.755051 -2.463991                       -1.2378744
## X216                  -1.647864 -2.167156                       -1.3470736
## X218                  -1.724319 -2.000377                       -0.8675006
## X219                  -1.683772 -2.463991                       -1.3862944
## X220                  -1.590122 -2.463991                       -1.4271164
## X223                  -1.615292 -2.463991                       -1.4696760
## X224                  -1.642229 -2.578792                       -1.9661129
## X225                  -1.610128 -2.259135                       -2.3859667
## X226                  -1.690161 -2.357788                       -1.3862944
## X227                  -1.710172 -1.659842                       -1.7719568
## X228                  -1.739232 -2.463991                       -2.0402208
## X229                  -1.771965 -2.463991                       -1.8325815
## X230                  -1.710172 -1.924411                       -0.7133499
## X231                  -1.690161 -2.357788                       -1.7719568
## X232                  -1.724319 -2.357788                       -1.8325815
## X233                  -1.755051 -2.703458                       -1.6094379
## X234                  -1.696685 -1.720797                       -2.0402208
## X236                  -1.747018 -2.703458                       -2.2072749
## X237                  -1.647864 -1.924411                       -1.4271164
## X239                  -1.710172 -2.839536                       -1.4271164
## X240                  -1.659412 -2.463991                       -1.4696760
## X241                  -1.665336 -2.357788                       -2.1202635
## X242                  -1.631218 -1.262002                       -1.8325815
## X243                  -1.683772 -2.357788                       -1.0498221
## X244                  -1.600000 -2.081112                       -1.5141277
## X245                  -1.771965 -2.988944                       -1.0788097
## X246                  -1.696685 -1.924411                       -1.1086626
## X247                  -1.724319 -2.578792                       -1.5606477
## X249                  -1.717157 -2.259135                       -1.7147984
## X250                  -1.696685 -2.463991                       -1.7147984
## X251                  -1.671366 -2.259135                       -1.7719568
## X253                  -1.590122 -2.000377                       -0.8915981
## X254                  -1.605032 -1.546611                       -1.3862944
## X255                  -1.647864 -1.852753                       -1.4271164
## X256                  -1.747018 -2.578792                       -1.9661129
## X257                  -1.763357 -2.463991                       -1.4696760
## X258                  -1.671366 -1.784998                       -0.6539265
## X260                  -1.615292 -2.081112                       -1.1711830
## X261                  -1.717157 -2.703458                       -1.6607312
## X262                  -1.683772 -2.839536                       -2.2072749
## X263                  -1.780911 -1.852753                       -2.0402208
## X264                  -1.590122 -1.784998                       -1.0788097
## X265                  -1.739232 -2.463991                       -1.7147984
## X267                  -1.665336 -1.852753                       -1.7147984
## X268                  -1.677510 -2.357788                       -1.6094379
## X269                  -1.665336 -2.578792                       -1.3470736
## X270                  -1.690161 -2.357788                       -1.7147984
## X271                  -1.710172 -1.852753                       -0.7550226
## X272                  -1.631218 -2.259135                       -1.5606477
## X273                  -1.575736 -2.000377                       -1.1086626
## X274                  -1.717157 -2.463991                       -1.8325815
## X275                  -1.659412 -2.357788                       -1.6094379
## X277                  -1.677510 -2.357788                       -1.4271164
## X278                  -1.739232 -2.081112                       -1.7147984
## X279                  -1.710172 -2.703458                       -1.6094379
## X281                  -1.717157 -2.000377                       -1.3862944
## X282                  -1.690161 -2.081112                       -1.5141277
## X283                  -1.642229 -1.852753                       -1.7719568
## X287                  -1.690161 -2.259135                       -2.2072749
## X289                  -1.703352 -2.703458                       -1.9661129
## X290                  -1.763357 -2.463991                       -1.8971200
## X291                  -1.620527 -2.259135                       -0.7133499
## X292                  -1.423806 -1.546611                       -1.4271164
## X294                  -1.739232 -2.703458                       -1.0216512
## X297                  -1.717157 -2.167156                       -1.7147984
## X298                  -1.703352 -2.167156                       -1.3862944
## X299                  -1.671366 -2.000377                       -1.6607312
## X301                  -1.731672 -2.357788                       -1.8971200
## X302                  -1.771965 -2.703458                       -1.3862944
## X303                  -1.739232 -2.081112                       -1.2039728
## X304                  -1.671366 -2.167156                       -1.9661129
## X305                  -1.710172 -1.784998                       -1.5141277
## X306                  -1.724319 -1.659842                       -0.5447272
## X307                  -1.595031 -1.924411                       -1.4696760
## X308                  -1.631218 -2.259135                       -1.7147984
## X311                  -1.747018 -2.000377                       -1.1394343
## X312                  -1.683772 -2.167156                       -1.3470736
## X313                  -1.690161 -2.259135                       -1.9661129
## X314                  -1.724319 -2.578792                       -2.3434071
## X315                  -1.677510 -2.167156                       -1.2729657
## X316                  -1.690161 -2.463991                       -2.1202635
## X317                  -1.659412 -2.259135                       -1.7719568
## X320                  -1.671366 -1.659842                       -1.0788097
## X321                  -1.813452 -2.357788                       -1.8971200
## X322                  -1.731672 -1.546611                       -0.9942523
## X323                  -1.690161 -2.259135                       -1.2729657
## X324                  -1.620527 -2.357788                       -1.8971200
## X325                  -1.710172 -2.167156                       -1.7147984
## X326                  -1.665336 -2.463991                       -1.5141277
## X327                  -1.600000 -1.601860                       -0.8915981
## X329                  -1.717157 -2.357788                       -1.4271164
## X330                  -1.724319 -1.720797                       -1.5141277
## X331                  -1.771965 -2.578792                       -1.7147984
## X332                  -1.690161 -2.259135                       -1.0216512
## X333                  -1.642229 -2.167156                       -1.8971200
##         RANTES   Resistin     S100b        SGOT      SHBG      SOD
## X1   -6.214608 -16.475315 1.5618560 -0.94160854 -1.897120 5.609472
## X2   -6.938214 -16.025283 1.7566212 -0.65392647 -1.560648 5.814131
## X3   -6.645391 -16.475315 1.4357282  0.33647224 -2.207275 5.723585
## X5   -6.319969 -11.092838 1.3012972  0.09531018 -2.430418 5.655992
## X6   -6.502290 -11.291369 1.0546073 -0.31471074 -2.645075 4.543295
## X7   -6.812445 -20.660678 1.3012972 -0.69314718 -3.123566 5.509388
## X8   -6.377127  -6.048172 1.0546073 -0.15082289 -2.396896 4.532599
## X9   -6.502290 -28.434991 1.0011977 -0.51082562 -1.714798 4.941642
## X11  -6.502290 -11.291369 1.7566212 -0.06187540 -1.560648 5.488938
## X12  -6.571283 -14.824999 1.5206598 -0.31471074 -2.312635 5.129899
## X14  -6.214608 -16.954608 1.5206598 -0.75502258 -2.577022 5.262690
## X16  -6.032287 -15.202379 1.1570961 -0.10536052 -1.108663 5.605802
## X17  -6.265901 -10.901667 1.5206598 -0.91629073 -2.207275 5.030438
## X18  -6.812445 -24.395099 1.1065417 -0.44628710 -2.813411 4.882802
## X19  -6.165818 -16.475315 0.5751964 -1.27296568 -2.207275 4.584967
## X20  -5.914504 -10.717434 1.5206598 -0.17435339 -2.847312 5.424950
## X21  -6.502290 -14.824999 0.7704814 -0.26136476 -2.353878 5.262690
## X22  -6.032287 -32.139553 1.1570961 -0.30110509 -3.688879 6.045005
## X23  -6.502290 -16.954608 1.7566212 -0.40047757 -2.900422 5.262690
## X24  -6.645391 -22.351393 1.5618560 -0.77652879 -3.244194 5.834811
## X25  -6.812445 -23.322142 1.3471128 -0.52763274 -1.897120 5.023881
## X26  -6.571283 -13.807280 1.5206598 -0.34249031 -2.441847 5.468060
## X28  -6.502290 -19.235033 1.3012972  0.09531018 -2.207275 5.468060
## X29  -6.725434 -24.395099 0.8309909 -0.52763274 -3.611918 4.779123
## X30  -6.980326 -22.351393 1.0011977 -0.73396918 -2.207275 4.941642
## X31  -6.502290 -18.014017 1.2063562 -0.24846136 -2.430418 5.192957
## X34  -6.571283 -18.014017 0.8895156 -0.57981850 -3.015935 5.062595
## X35  -6.725434 -15.202379 1.4357282 -0.40047757 -2.813411 4.859812
## X36  -6.502290 -14.467762 1.3012972 -0.71334989 -2.040221 5.442418
## X37  -6.502290 -16.025283 1.4786312 -0.24846136 -2.040221 5.521461
## X38  -6.377127 -26.925298 1.0011977 -0.22314355 -2.563950 5.327876
## X39  -6.907755 -23.322142 1.5618560 -0.51082562 -2.501036 5.634790
## X40  -6.812445 -18.601960 1.0546073 -0.69314718 -1.771957 5.342334
## X41  -6.502290  -8.576675 1.3919052 -0.71334989 -1.609438 5.010635
## X42  -6.377127 -16.954608 0.8309909  0.09531018 -2.207275 5.288267
## X43  -6.725434 -25.588488 1.1065417 -1.10866262 -2.333044 4.875197
## X44  -5.843045  -9.592564 1.1570961 -0.71334989 -2.302585 5.472271
## X45  -6.437752 -12.782746 1.5618560 -0.34249031 -2.748872 5.693732
## X46  -6.907755 -16.954608 1.3471128 -0.73396918 -3.079114 5.648974
## X47  -6.917806 -17.466301 0.5047530 -0.23572233 -2.207275 4.919981
## X48  -6.265901 -18.014017 1.6808260 -0.63487827 -2.501036 5.634790
## X50  -6.319969 -10.202587 1.1065417 -0.54472718 -2.847312 5.379897
## X51  -6.571283 -11.092838 1.1570961  0.26236426 -1.347074 5.730100
## X53  -6.319969  -3.316155 1.0546073 -0.96758403 -2.333044 5.398163
## X55  -6.502290 -18.601960 1.2543998 -0.77652879 -2.465104 5.455321
## X56  -6.725434 -13.807280 1.0011977 -0.49429632 -2.120264 5.472271
## X57  -6.437752 -16.025283 0.9462067 -0.09431068 -2.207275 5.517453
## X59  -5.843045 -13.807280 1.7935512 -0.19845094 -2.302585 5.480639
## X60  -7.106206 -25.588488 0.9462067  0.26236426 -2.302585 5.068904
## X61  -6.907755 -18.601960 1.0546073  0.47000363 -2.501036 4.962845
## X62  -7.208860 -24.395099 1.2543998 -0.54472718 -3.411248 4.672829
## X63  -6.377127 -18.601960 1.3471128 -0.07257069 -3.146555 5.433722
## X64  -5.546779 -12.168957 1.8656036 -0.40047757 -1.386294 5.036953
## X65  -6.725434 -20.660678 1.3919052 -0.59783700 -3.036554 5.476464
## X67  -6.907755 -25.588488 1.3919052 -0.26136476 -2.207275 5.831882
## X68  -6.319969 -20.660678 1.3012972 -0.30110509 -2.343407 5.389072
## X69  -7.058578 -16.475315 0.5751964 -0.99425227 -2.956512 4.875197
## X70  -6.812445 -19.918999 1.2063562 -0.54472718 -2.302585 5.564520
## X71  -6.437752 -18.014017 1.1570961 -0.61618614 -3.123566 5.384495
## X72  -6.032287 -11.712400 1.4786312 -0.43078292 -1.171183 6.045005
## X73  -6.119298  -9.737717 1.4786312 -0.59783700 -2.796881 5.905362
## X74  -6.812445 -15.601770 1.0546073 -0.46203546 -2.396896 4.418841
## X75  -6.074846 -21.468210 1.4786312 -0.69314718 -1.171183 4.955827
## X76  -6.319969  -3.509845 1.7190552 -0.19845094 -2.718101 5.723585
## X77  -6.214608 -12.931637 1.9353985 -0.96758403 -1.897120 5.420535
## X78  -6.119298 -12.931637 1.2543998 -0.61618614 -1.771957 5.929589
## X80  -6.502290 -18.601960 1.5206598 -0.96758403 -3.575551 5.273000
## X81  -6.265901 -25.588488 1.1065417 -0.31471074 -2.207275 5.379897
## X82  -6.437752 -20.660678 1.8656036 -0.31471074 -1.427116 5.273000
## X83  -6.319969 -13.807280 1.2543998 -0.89159812 -3.442019 4.934474
## X84  -6.645391 -20.660678 1.2543998 -0.61618614 -2.764621 5.225747
## X85  -6.214608 -19.235033 1.6022588 -0.22314355 -2.718101 5.641907
## X86  -6.265901  -9.737717 1.5618560 -0.82098055 -2.207275 5.476464
## X88  -6.502290 -11.712400 1.3919052 -0.11653382 -2.207275 5.451038
## X90  -5.809143 -26.925298 0.3540404 -0.69314718 -3.296837 4.317488
## X93  -6.437752 -11.935945 1.3012972 -0.59783700 -1.771957 5.192957
## X94  -6.032287  -9.887603 1.7190552 -0.03045921 -1.560648 6.317165
## X95  -6.645391 -18.014017 1.6022588  0.74193734 -1.714798 4.828314
## X96  -7.002066 -18.601960 1.3919052 -0.51082562 -2.364460 5.624018
## X97  -6.571283 -19.918999 0.9462067  0.00000000 -2.207275 5.869297
## X98  -6.938214 -22.351393 0.7704814 -0.04082199 -2.120264 5.056246
## X99  -6.119298 -11.935945 1.2543998 -0.82098055 -2.441847 5.855072
## X100 -6.571283 -24.395099 1.3012972 -0.11653382 -2.764621 5.572154
## X103 -6.074846 -12.168957 1.2543998 -0.24846136 -2.207275 6.222576
## X104 -6.571283 -23.322142 1.3012972 -0.44628710 -2.577022 5.497168
## X105 -6.571283 -28.434991 1.5206598 -0.27443685 -1.897120 5.680173
## X107 -6.319969 -19.235033 1.2063562 -0.34249031 -2.441847 5.579730
## X108 -6.571283 -18.014017 1.5206598 -0.24846136 -2.385967 5.308268
## X109 -6.812445 -21.468210 1.0546073  0.26236426 -3.772261 5.153292
## X110 -6.725434 -19.918999 1.0546073 -0.40047757 -2.780621 4.859812
## X111 -6.502290 -19.918999 1.2063562 -0.63487827 -2.551046 5.525453
## X112 -6.645391 -11.497723 1.6022588 -0.40047757 -1.203973 5.525453
## X113 -6.214608 -13.209714 1.6419042 -0.31471074 -1.771957 5.468060
## X114 -7.002066 -25.588488 0.8309909  0.09531018 -2.645075 4.836282
## X115 -6.571283 -14.824999 1.1065417  0.33647224 -1.609438 5.105945
## X117 -5.572754 -12.931637 1.6022588 -0.69314718 -1.386294 5.572154
## X118 -6.319969 -14.129014 1.5618560 -0.77652879 -2.590267 5.765191
## X121 -6.437752 -13.501240 1.3012972 -0.18632958 -1.560648 5.799093
## X123 -7.058578 -32.139553 0.5047530  0.58778666 -1.832581 4.770685
## X124 -6.437752 -18.014017 0.7704814 -0.63487827 -3.352407 5.379897
## X126 -6.645391 -20.660678 0.5751964 -1.13943428 -2.577022 5.468060
## X128 -6.074846 -16.475315 1.5618560 -0.21072103 -1.309333 5.648974
## X129 -6.725434 -22.351393 0.8309909 -0.75502258 -2.764621 4.976734
## X130 -6.377127 -11.092838 1.1570961 -0.63487827 -2.207275 5.529429
## X131 -7.156217 -26.925298 1.3919052 -0.69314718 -2.538307 5.262690
## X132 -6.725434 -12.931637 1.1065417 -0.99425227 -2.780621 5.198497
## X133 -6.571283 -12.168957 1.5206598 -0.23572233 -1.469676 5.308268
## X134 -6.067933 -10.901667 1.7935512 -0.94160854 -2.407946 5.497168
## X135 -6.725434 -14.129014 1.0546073 -0.09431068 -1.171183 5.780744
## X136 -6.319969  -3.509845 0.9462067 -0.57981850 -2.302585 4.828314
## X137 -6.725434 -21.468210 1.3471128 -0.47803580 -4.135167 5.153292
## X139 -7.094085 -20.660678 1.0546073 -0.23572233 -2.538307 5.111988
## X140 -6.571283  -9.737717 1.2543998 -0.04082199 -2.673649 5.529429
## X141 -5.843045 -18.014017 1.2543998 -0.84397007 -2.207275 5.468060
## X143 -6.265901 -21.468210 0.6427959 -0.67334455 -2.040221 4.820282
## X144 -6.645391 -18.601960 1.2063562 -0.47803580 -2.407946 5.262690
## X145 -6.917806 -28.434991 0.8895156 -0.18632958 -2.488915 5.093750
## X146 -5.878136 -13.209714 1.2063562 -0.35667494 -1.771957 5.613128
## X147 -6.812445  -2.239355 1.4786312 -0.21072103 -2.322788 5.598422
## X148 -6.165818 -16.025283 1.8298706  0.26236426 -2.207275 5.342334
## X149 -6.917806 -23.322142 0.8309909 -0.43078292 -2.764621 5.164786
## X152 -6.571283 -15.601770 1.3919052  0.09531018 -2.207275 5.869297
## X153 -6.502290 -19.235033 2.3725662 -0.41551544 -2.207275 5.379897
## X154 -6.812445 -22.351393 1.3919052 -0.40047757 -3.611918 5.198497
## X155 -6.645391 -20.660678 1.2543998 -0.37106368 -3.244194 5.262690
## X156 -6.319969 -15.601770 1.6808260 -0.67334455 -2.577022 5.583496
## X157 -6.377127 -13.807280 1.0546073 -0.67334455 -2.577022 5.278115
## X158 -6.917806 -20.660678 1.1065417 -0.51082562 -2.813411 5.517453
## X159 -6.377127 -20.460441 1.1065417 -0.34249031 -3.442019 5.170484
## X160 -6.571283  -8.047964 1.7935512  0.53062825 -2.631089 5.940171
## X161 -6.319969 -10.368242 1.3012972 -0.41551544 -3.270169 5.669881
## X162 -6.377127 -20.660678 1.4357282 -1.17118298 -2.975930 5.686975
## X163 -6.812445 -25.588488 1.3012972  0.09531018 -2.703063 4.948760
## X165 -6.571283 -19.235033 1.3919052 -0.12783337 -2.577022 5.796058
## X166 -6.502290 -28.434991 1.2063562 -0.26136476 -3.611918 5.323010
## X167 -6.502290 -12.666051 1.6022588 -0.89159812 -1.897120 5.869297
## X168 -6.917806 -18.601960 1.5618560 -0.65392647 -2.918771 5.365976
## X169 -7.118476 -20.660678 0.6427959 -0.40047757 -2.513306 5.164786
## X170 -6.571283 -15.601770 1.5618560 -0.35667494 -2.207275 5.105945
## X171 -6.571283 -10.717434 1.5206598 -0.84397007 -2.501036 5.517453
## X172 -6.938214 -22.351393 0.8309909  0.09531018 -2.040221 5.147494
## X174 -6.214608 -10.539746 1.3012972 -0.43078292 -2.207275 5.262690
## X175 -6.265901 -10.539746 1.3919052 -0.27443685 -1.771957 5.669881
## X176 -5.776353 -16.954608 0.9462067 -0.77652879 -1.771957 5.075174
## X177 -6.725434 -19.918999 0.9462067 -0.35667494 -2.353878 5.433722
## X178 -7.143478 -19.235033 0.6427959 -0.31471074 -2.882404 4.905275
## X179 -6.214608  -6.464363 1.7190552 -0.69314718 -2.096274 5.164786
## X180 -6.074846 -14.824999 1.2543998 -0.18632958 -2.040221 5.572154
## X181 -6.645391 -26.925298 0.7078153 -1.13943428 -3.324236 4.859812
## X182 -6.645391 -25.588488 0.9462067 -0.32850407 -2.603690 5.187386
## X183 -6.938214 -18.014017 0.6427959 -0.96758403 -1.609438 4.553877
## X184 -6.377127 -16.025283 1.3012972 -0.94160854 -2.796881 5.680173
## X185 -6.571283 -13.209714 1.3919052 -0.96758403 -3.079114 5.525453
## X186 -7.156217 -21.468210 1.3471128 -0.71334989 -2.882404 5.198497
## X189 -6.645391 -18.601960 0.9462067 -0.43078292 -2.364460 5.765191
## X190 -6.377127 -23.322142 1.3471128  0.18232156 -2.538307 5.293305
## X191 -6.165818 -23.322142 1.4786312 -0.52763274 -3.101093 5.389072
## X192 -6.265901 -19.918999 1.8656036 -0.57981850 -2.631089 6.079933
## X193 -6.265901 -14.824999 1.7190552 -0.34249031 -2.407946 5.613128
## X194 -6.319969 -17.466301 0.9462067 -0.84397007 -1.771957 4.927254
## X195 -6.265901 -21.468210 1.7190552 -0.44628710 -2.501036 6.269096
## X197 -6.265901 -11.935945 1.3012972 -0.22314355 -2.302585 5.438079
## X198 -6.907755 -23.322142 0.6427959 -0.63487827 -2.302585 5.117994
## X200 -6.725434 -19.918999 1.9695015 -0.26136476 -2.937463 5.262690
## X201 -6.265901 -22.351393 0.9462067 -0.11653382 -3.352407 5.068904
## X202 -6.812445 -34.966595 0.9462067 -0.35667494 -3.194183 4.867534
## X205 -6.812445 -15.601770 1.6419042  0.40546511 -2.937463 5.710427
## X208 -6.502290 -26.925298 1.1570961 -0.27443685 -2.396896 5.181784
## X210 -6.502290  -2.450735 1.6808260 -0.18632958 -2.813411 5.513429
## X212 -6.119298 -22.351393 1.4357282 -0.34249031 -2.718101 5.209486
## X213 -6.725434 -18.014017 1.4357282 -0.19845094 -1.897120 5.513429
## X214 -6.265901 -10.539746 0.7704814 -0.73396918 -3.057608 5.634790
## X215 -7.156217 -16.475315 1.1065417 -0.15082289 -3.411248 5.451038
## X216 -6.437752 -12.931637 1.6022588 -0.47803580 -2.396896 5.023881
## X218 -6.319969 -23.322142 1.3919052 -0.46203546 -1.897120 4.836282
## X219 -6.812445 -19.235033 0.8309909 -0.02020271 -2.764621 5.273000
## X220 -7.222466 -30.156007 0.6427959 -0.40047757 -4.074542 5.293305
## X223 -6.907755 -14.467762 1.6808260 -0.41551544 -2.302585 5.455321
## X224 -6.980326 -13.807280 1.0546073 -0.13926207 -2.551046 5.393628
## X225 -6.725434 -25.588488 1.9007725 -0.61618614 -1.897120 6.171701
## X226 -6.265901 -12.931637 1.6022588 -0.40047757 -2.780621 5.991465
## X227 -6.725434 -16.475315 1.5618560 -0.99425227 -1.660731 5.204007
## X228 -6.938214 -13.501240 0.8309909 -0.24846136 -3.473768 4.897840
## X229 -7.002066 -25.588488 1.0011977 -0.63487827 -3.540459 5.093750
## X230 -6.502290 -11.935945 0.8309909 -0.21072103 -1.771957 5.468060
## X231 -6.571283 -16.025283 1.5206598 -0.40047757 -2.764621 5.075174
## X232 -6.437752 -26.925298 0.9462067 -0.04082199 -2.430418 5.056246
## X233 -6.725434 -21.468210 0.8895156  0.26236426 -2.407946 4.744932
## X234 -6.725434 -14.467762 1.1065417 -0.61618614 -1.560648 5.298317
## X236 -6.907755 -23.322142 1.0546073 -0.52763274 -2.501036 5.572154
## X237 -6.119298 -14.467762 1.4357282  0.00000000 -1.897120 5.236442
## X239 -6.725434 -18.601960 0.1873999 -0.62623564 -2.813411 4.430817
## X240 -6.907755 -14.129014 0.9462067 -1.30933332 -3.218876 4.744932
## X241 -5.843045 -21.468210 1.1065417 -0.94160854 -1.139434 5.662960
## X242 -6.502290  -9.592564 1.4357282 -0.52763274 -1.660731 4.553877
## X243 -6.571283 -21.468210 1.1570961 -0.17435339 -2.120264 4.983607
## X244 -5.991465 -14.824999 1.0546073 -0.49429632 -2.207275 5.517453
## X245 -6.645391 -13.501240 1.0546073 -0.37106368 -3.729701 4.330733
## X246 -6.165818 -13.209714 0.9462067 -0.47803580 -2.040221 5.075174
## X247 -6.725434 -17.466301 0.7704814  0.00000000 -3.170086 4.859812
## X249 -6.377127 -16.954608 1.8298706 -0.19845094 -2.718101 6.082219
## X250 -6.437752 -17.466301 1.6022588 -0.43078292 -2.513306 5.347108
## X251 -6.812445 -24.395099 1.1065417 -0.22314355 -2.918771 5.303305
## X253 -6.377127 -16.025283 1.3471128 -0.40047757 -2.551046 5.398163
## X254 -6.214608 -12.931637 1.7935512 -0.67334455 -2.603690 6.317165
## X255 -5.626821 -18.601960 1.3471128 -0.56211892 -2.120264 5.703782
## X256 -6.812445 -25.588488 1.1570961 -0.26136476 -2.718101 5.332719
## X257 -6.725434 -25.588488 1.0546073 -0.17435339 -2.780621 4.867534
## X258 -6.265901  -4.873381 1.6022588 -0.54472718 -2.040221 5.891644
## X260 -6.377127 -23.322142 1.3471128 -0.34249031 -2.603690 5.420535
## X261 -6.437752 -16.954608 1.0011977 -0.54472718 -2.513306 4.828314
## X262 -6.645391 -23.322142 1.0011977 -0.91629073 -2.441847 4.804021
## X263 -6.165818 -15.202379 1.1570961 -0.26136476 -1.609438 5.446737
## X264 -6.319969 -11.291369 1.5618560 -0.56211892 -2.120264 5.123964
## X265 -6.571283 -23.322142 0.9462067 -0.56211892 -2.419119 5.459586
## X267 -6.437752 -10.539746 1.8298706 -0.10536052 -2.918771 5.616771
## X268 -6.571283 -15.601770 1.3919052 -0.11653382 -2.312635 5.484797
## X269 -6.725434 -28.434991 0.9462067 -0.73396918 -3.218876 5.192957
## X270 -6.319969 -14.824999 0.7704814  0.00000000 -2.563950 5.993961
## X271 -6.319969 -12.666051 1.4786312 -0.38566248 -1.660731 5.402677
## X272 -6.437752 -15.601770 1.4357282 -0.54472718 -2.937463 5.087596
## X273 -6.377127 -12.666051 1.2543998 -0.34249031 -3.352407 5.379897
## X274 -6.074846 -28.434991 0.9462067 -0.26136476 -3.170086 5.170484
## X275 -6.571283 -28.434991 1.7935512 -0.63487827 -2.688248 5.620401
## X277 -6.074846 -14.129014 1.2543998 -0.35667494 -2.488915 5.262690
## X278 -6.119298 -14.467762 0.9462067 -0.34249031 -3.101093 5.451038
## X279 -6.980326 -16.954608 1.4357282 -0.73396918 -2.937463 5.209486
## X281 -6.074846  -3.723928 1.3919052 -0.47803580 -2.631089 5.407172
## X282 -6.165818 -20.660678 1.1570961 -0.31471074 -3.123566 5.252273
## X283 -5.843045  -7.247686 1.4786312 -0.57981850 -1.771957 5.826000
## X287 -6.917806 -18.014017 1.3919052 -0.22314355 -2.120264 5.783825
## X289 -6.812445 -19.235033 0.7078153 -0.27443685 -2.937463 4.787492
## X290 -6.165818 -16.025283 1.0011977 -0.61618614 -3.057608 5.093750
## X291 -6.265901 -20.660678 1.1570961 -0.61618614 -2.207275 5.572154
## X292 -6.165818 -26.925298 1.1065417 -0.89159812 -2.617296 5.669881
## X294 -7.024289 -22.293116 1.0011977 -0.43078292 -3.649659 4.691348
## X297 -6.907755 -16.475315 0.9462067  0.09531018 -2.796881 5.257495
## X298 -7.047017 -22.351393 0.5047530 -0.12783337 -2.673649 5.036953
## X299 -6.571283 -26.925298 0.9462067  0.00000000 -2.476938 5.613128
## X301 -6.502290 -19.235033 0.8309909 -0.02020271 -3.611918 5.220356
## X302 -7.208860 -19.235033 0.9462067 -1.34707365 -3.079114 4.418841
## X303 -6.645391 -18.014017 1.3012972 -0.34249031 -3.101093 5.303305
## X304 -6.645391 -22.351393 1.9695015 -0.06187540 -2.207275 5.755742
## X305 -6.319969 -16.954608 1.6419042 -0.40047757 -1.966113 5.351858
## X306 -6.377127 -12.412086 1.6419042 -0.79850770 -2.302585 5.891644
## X307 -6.319969 -11.497723 1.9695015 -0.82098055 -1.560648 5.755742
## X308 -6.437752 -13.501240 1.5206598  0.09531018 -2.764621 5.501258
## X311 -6.377127 -16.954608 1.0546073 -0.99425227 -1.897120 5.081404
## X312 -6.377127 -18.601960 1.4357282 -0.31471074 -3.101093 5.843544
## X313 -6.319969 -19.235033 1.2543998  0.00000000 -1.771957 5.117994
## X314 -6.571283 -26.925298 0.8895156  0.00000000 -2.476938 5.278115
## X315 -6.571283 -16.475315 1.3471128 -0.73396918 -2.748872 5.117994
## X316 -6.917806 -26.925298 1.1570961 -0.09431068 -2.563950 5.583496
## X317 -6.645391 -21.468210 1.0546073  0.00000000 -2.590267 5.710427
## X320 -6.812445 -13.501240 1.0546073 -0.56211892 -2.302585 5.056246
## X321 -6.938214 -14.467762 1.1570961 -0.61618614 -2.718101 4.394449
## X322 -6.377127  -8.930136 1.8656036 -0.49429632 -1.966113 5.398163
## X323 -6.437752 -12.666051 1.0011977 -0.37106368 -2.882404 5.342334
## X324 -6.812445 -16.954608 1.2063562 -0.54472718 -2.882404 5.093750
## X325 -6.119298 -23.322142 0.9462067 -0.30110509 -2.513306 5.375278
## X326 -6.214608 -13.501240 1.3012972  0.00000000 -2.465104 5.347108
## X327 -6.437752 -14.467762 1.3471128 -0.01005034 -2.733368 5.676754
## X329 -6.571283 -28.434991 0.8895156 -0.69314718 -3.611918 5.693732
## X330 -6.571283 -14.824999 1.2063562  0.09531018 -2.040221 4.875197
## X331 -6.645391 -20.660678 1.0546073 -0.11653382 -1.966113 4.948760
## X332 -6.437752 -18.601960 0.8895156 -0.31471074 -2.847312 4.709530
## X333 -6.214608 -19.918999 1.9007725 -0.13926207 -2.120264 6.013715
##      Serum_Amyloid_P Sortilin Stem_Cell_Factor TGF_alpha    TIMP_1     TNF_RII
## X1         -5.599422 4.908629         4.174387  8.649098 15.204651 -0.06187540
## X2         -6.119298 5.478731         3.713572 11.331619 11.266499 -0.32850407
## X3         -5.381699 3.810182         3.433987 10.858497 12.282857 -0.41551544
## X5         -5.203007 3.402176         4.060443  8.323453 13.748016 -0.34249031
## X6         -5.115996 2.978813         2.564949 10.008788 11.266499 -0.94160854
## X7         -6.032287 4.037285         3.401197  8.649098 12.422205 -0.77652879
## X8         -5.083206 2.665456         2.772589 10.097662 14.492423 -0.91629073
## X9         -7.013116 2.141223         3.295837 10.777165 10.000000 -0.94160854
## X11        -6.119298 4.802628         2.995732 10.777165 10.489996 -0.51082562
## X12        -5.449140 4.093428         3.091042  9.549474 10.961481 -0.71334989
## X14        -6.032287 3.752748         3.044522 10.008788 13.491933 -0.61618614
## X16        -6.032287 4.479850         3.135494 10.777165 12.696938 -0.28768207
## X17        -5.035953 4.093428         2.944439  9.736307 10.961481 -0.69314718
## X18        -5.952244 2.916923         3.044522  8.542148 10.328828 -0.77652879
## X19        -6.319969 2.341451         2.944439 10.612220 13.620499 -0.79850770
## X20        -4.779524 2.728930         2.772589 10.185606 13.748016 -0.75502258
## X21        -6.645391 2.601557         3.178054  8.649098 10.165525 -0.65392647
## X22        -5.991465 4.315608         3.891820 11.998865 10.961481 -0.04082199
## X23        -6.377127 3.040333         2.890372  9.828139  9.661904 -0.59783700
## X24        -6.032287 6.225224         3.526361  9.454406 11.266499 -0.43078292
## X25        -6.437752 3.695039         2.995732  9.162164  9.832160 -0.82098055
## X26        -6.319969 4.855724         3.367296 10.272644 10.649111 -0.43078292
## X28        -6.265901 4.802628         3.367296  9.358191 11.416408 -0.22314355
## X29        -6.725434 2.791992         2.708050  9.260790 10.165525 -1.02165125
## X30        -6.437752 3.461346         2.708050  7.113891  9.313708 -0.89159812
## X31        -5.298317 2.978813         3.401197  7.982407 13.099669 -0.73396918
## X34        -5.654992 2.916923         2.944439  7.245150 11.856406 -0.65392647
## X35        -6.032287 3.695039         2.944439  9.828139 10.328828 -0.89159812
## X36        -4.919881 3.342694         3.401197 10.358802 12.696938 -0.67334455
## X37        -6.214608 4.802628         3.367296  9.549474 10.806248 -0.30110509
## X38        -6.265901 3.520211         3.663562  9.454406 12.000000 -0.65392647
## X39        -6.074846 5.325310         3.583519 10.097662 12.142136 -0.46203546
## X40        -6.074846 3.101492         3.258097  9.358191 12.966630 -0.44628710
## X41        -5.099467 3.924249         3.178054 10.612220 13.748016 -0.75502258
## X42        -6.319969 3.637051         3.091042 10.008788 10.961481 -0.69314718
## X43        -6.725434 3.282892         3.044522  7.623847 10.328828 -0.86750057
## X44        -6.165818 4.093428         3.496508 10.858497 13.748016 -0.24846136
## X45        -5.776353 3.461346         3.688879 11.331619 12.142136 -0.02020271
## X46        -6.032287 4.093428         3.637586 11.176634 13.099669 -0.38566248
## X47        -6.725434 2.472433         2.944439  8.211578 10.000000 -0.79850770
## X48        -6.377127 5.325310         4.060443  9.162164 11.856406 -0.27443685
## X50        -6.074846 5.170380         3.555348 10.858497 11.266499 -0.54472718
## X51        -6.437752 3.578777         3.295837  9.918956 10.649111 -0.38566248
## X53        -5.991465 3.342694         3.258097 10.097662 13.620499 -0.71334989
## X55        -6.265901 3.520211         3.135494 10.858497 11.266499 -0.63487827
## X56        -5.713833 3.867347         3.178054 11.331619 14.370706 -0.63487827
## X57        -5.991465 4.370576         3.891820 11.484041 14.613248 -0.31471074
## X59        -5.878136 3.867347         3.135494 11.018969 14.000000 -0.30110509
## X60        -6.319969 2.275226         2.890372  8.097921 12.560220 -0.59783700
## X61        -6.377127 2.791992         3.044522  7.623847 10.165525 -1.04982212
## X62        -6.377127 2.472433         2.890372  7.623847  9.661904 -1.20397280
## X63        -5.878136 3.402176         3.178054 10.185606 11.564660 -0.27443685
## X64        -5.744604 4.534163         2.772589 10.858497 13.099669 -0.44628710
## X65        -7.385791 4.425322         3.258097 10.528568 10.489996 -0.73396918
## X67        -6.980326 4.425322         3.583519 10.185606  9.832160 -0.18632958
## X68        -5.449140 3.637051         3.526361 10.695079 12.560220 -0.51082562
## X69        -7.505592 2.407182         3.178054  6.842982  9.489125 -1.04982212
## X70        -7.195437 3.924249         3.367296 10.528568 10.328828 -0.61618614
## X71        -6.119298 3.867347         3.258097 10.358802 12.000000 -0.46203546
## X72        -5.386185 3.980894         4.174387 11.781632 16.439089  0.33647224
## X73        -5.952244 3.924249         3.713572 10.939092 12.560220 -0.03045921
## X74        -5.914504 1.866476         2.251292  6.979888 10.489996 -1.34707365
## X75        -5.339139 2.728930         2.890372  9.358191 15.320508 -0.67334455
## X76        -5.654992 5.427755         3.555348 10.939092 14.970563  0.00000000
## X77        -5.626821 4.315608         3.401197 10.528568 13.874508 -0.41551544
## X78        -5.878136 4.695848         3.951244 11.559326 14.970563 -0.06187540
## X80        -5.496768 4.315608         3.526361  8.649098 10.489996 -0.65392647
## X81        -6.265901 4.370576         2.944439 10.444102 10.806248 -0.59783700
## X82        -6.265901 4.315608         3.401197  8.858503 11.266499 -0.44628710
## X83        -5.744604 3.867347         3.465736  9.643429 11.266499 -0.82098055
## X84        -6.214608 3.637051         2.944439  8.211578 10.649111 -0.57981850
## X85        -5.878136 5.170380         3.496508  9.260790 13.491933 -0.31471074
## X86        -5.318520 4.479850         3.555348 10.777165 14.124515 -0.26136476
## X88        -5.914504 3.520211         3.555348  8.961066 14.000000 -0.30110509
## X90        -6.502290 1.653813         2.564949  8.542148  8.954451 -1.38629436
## X93        -5.991465 2.978813         3.555348 10.272644 13.620499 -0.24846136
## X94        -5.546779 4.204987         3.871201 10.858497 18.880613  0.47000363
## X95        -6.571283 3.867347         2.890372  8.323453  9.661904 -0.63487827
## X96        -6.032287 4.749337         3.401197 10.185606 11.416408 -0.63487827
## X97        -6.812445 4.425322         3.367296 10.444102 10.328828 -0.51082562
## X98        -6.645391 3.040333         3.044522  7.245150  9.489125 -1.10866262
## X99        -5.843045 3.402176         3.761200 10.358802 14.733201 -0.19845094
## X100       -5.914504 5.066223         3.663562 11.854592 11.114877 -0.49429632
## X103       -6.377127 3.810182         4.060443 12.211323 13.362291 -0.05129329
## X104       -5.426151 3.040333         3.784190 11.559326 12.696938 -0.44628710
## X105       -6.502290 4.908629         3.135494 10.272644 11.711309 -0.59783700
## X107       -6.165818 4.479850         3.465736  8.323453 11.266499 -0.59783700
## X108       -5.626821 4.908629         3.713572  8.649098 12.142136 -0.51082562
## X109       -6.571283 3.461346         2.890372  9.454406 10.000000 -0.94160854
## X110       -7.354042 3.402176         3.044522  7.745463  9.313708 -0.89159812
## X111       -6.265901 3.520211         3.637586 10.858497 11.114877 -0.77652879
## X112       -5.449140 4.479850         3.784190  8.097921 12.282857 -0.27443685
## X113       -4.803621 4.908629         3.465736 11.098144 12.696938  0.00000000
## X114       -6.032287 2.665456         2.833213  9.454406  8.770330 -1.07880966
## X115       -5.240048 2.854653         3.091042  9.062271 11.856406 -0.71334989
## X117       -6.502290 5.427755         3.555348  9.162164 10.961481 -0.47803580
## X118       -6.119298 5.118391         3.688879  9.062271 14.733201 -0.18632958
## X121       -6.645391 4.908629         3.583519 10.444102 14.970563  0.09531018
## X123       -6.502290 1.653813         2.484907  7.500000 10.165525 -1.13943428
## X124       -5.809143 2.472433         3.465736 10.939092 12.832397 -0.44628710
## X126       -6.119298 2.854653         3.496508  9.828139 10.000000 -0.84397007
## X128       -5.318520 4.204987         3.295837 10.858497 17.390719 -0.43078292
## X129       -6.502290 3.162299         2.564949  8.858503 10.000000 -1.23787436
## X130       -5.381699 3.867347         3.367296 12.822626 11.114877 -0.44628710
## X131       -6.032287 3.637051         3.295837  9.260790 10.328828 -0.94160854
## X132       -5.035953 2.791992         3.465736  8.433621 11.266499 -0.67334455
## X133       -5.083206 4.260413         3.091042 10.528568 12.422205 -0.57981850
## X134       -5.572754 5.118391         3.828641 12.555529 12.282857 -0.44628710
## X135       -6.319969 3.695039         3.637586  8.211578 12.000000 -0.52763274
## X136       -6.571283 2.728930         3.044522 10.097662 12.696938 -0.65392647
## X137       -6.165818 3.752748         2.890372  9.454406 10.489996 -1.13943428
## X139       -7.130899 3.752748         2.944439 10.097662 10.165525 -0.86750057
## X140       -5.776353 3.695039         3.135494  8.858503 11.114877 -0.69314718
## X141       -5.472671 5.681052         3.465736 10.097662 11.856406 -0.41551544
## X143       -5.713833 2.208489         3.178054  7.982407 11.856406 -1.02165125
## X144       -5.713833 3.637051         2.995732  9.358191 11.114877 -0.52763274
## X145       -7.338538 4.260413         3.218876  8.542148 10.165525 -0.89159812
## X146       -5.298317 3.695039         3.610918  9.358191 13.099669 -0.17435339
## X147       -6.032287 5.478731         3.258097  9.454406 11.856406 -0.15082289
## X148       -5.051457 3.867347         3.295837  8.858503 14.733201 -0.52763274
## X149       -6.645391 3.924249         3.135494  9.828139 11.416408 -0.71334989
## X152       -5.051457 5.478731         3.688879  8.542148 14.370706  0.00000000
## X153       -5.626821 4.749337         3.295837 10.528568 13.231546 -0.56211892
## X154       -5.914504 3.980894         2.772589  8.542148 10.489996 -0.86750057
## X155       -5.776353 4.260413         3.295837  8.433621  9.313708 -0.79850770
## X156       -5.472671 4.037285         3.496508 10.528568 14.000000 -0.41551544
## X157       -6.119298 4.370576         3.295837  8.858503 14.733201 -0.67334455
## X158       -6.319969 3.695039         2.890372 10.444102 10.489996 -0.79850770
## X159       -6.571283 3.637051         3.091042 10.444102  9.661904 -0.91629073
## X160       -5.991465 6.225224         3.496508 11.559326 12.142136 -0.26136476
## X161       -5.991465 4.149327         3.091042 11.926999 10.489996 -0.43078292
## X162       -7.308233 3.810182         3.784190 10.528568 10.806248 -0.38566248
## X163       -6.725434 4.093428         2.944439 10.939092  8.583005 -0.94160854
## X165       -6.645391 3.867347         3.367296  8.961066 11.856406 -0.40047757
## X166       -6.571283 4.315608         2.772589  9.736307  9.313708 -0.75502258
## X167       -6.265901 5.222195         4.007333 12.419275 11.564660 -0.26136476
## X168       -5.843045 3.924249         3.135494 10.272644 11.856406 -0.38566248
## X169       -6.725434 4.149327         3.135494  9.549474  9.489125 -0.86750057
## X170       -5.426151 4.315608         2.833213  9.062271  9.832160 -0.75502258
## X171       -5.572754 4.425322         3.806662 11.176634 11.266499 -0.59783700
## X172       -6.437752 3.695039         3.555348  7.982407  9.135529 -1.10866262
## X174       -5.654992 4.370576         3.178054 11.018969 14.000000 -0.51082562
## X175       -5.099467 3.810182         3.526361  8.754531 14.613248 -0.24846136
## X176       -5.952244 3.578777         3.367296  9.549474 11.564660 -0.69314718
## X177       -6.437752 3.282892         3.891820 11.018969 11.856406 -0.54472718
## X178       -6.074846 2.791992         2.772589  8.961066  8.392305 -1.30933332
## X179       -5.521461 4.204987         3.610918 10.185606 14.492423 -0.26136476
## X180       -6.319969 3.924249         3.258097  9.736307 11.266499  0.09531018
## X181       -6.214608 2.275226         3.044522 11.408143 11.564660 -0.91629073
## X182       -6.074846 3.924249         3.526361  8.323453 11.564660 -0.75502258
## X183       -5.683980 2.005028         3.295837  8.097921 11.266499 -0.86750057
## X184       -5.809143 3.752748         3.761200 12.822626 12.560220 -0.63487827
## X185       -6.645391 3.461346         3.401197 11.018969 12.696938 -0.56211892
## X186       -6.437752 3.867347         2.995732 10.939092  9.489125 -0.82098055
## X189       -6.571283 4.479850         3.367296  7.113891  9.661904 -0.52763274
## X190       -5.991465 3.867347         3.178054 11.634012 12.282857 -0.35667494
## X191       -5.572754 3.282892         3.401197 10.358802 11.114877 -0.69314718
## X192       -6.265901 4.037285         3.713572 10.444102 13.362291 -0.15082289
## X193       -6.119298 4.961345         3.295837 10.444102 15.320508 -0.32850407
## X194       -6.214608 3.402176         3.044522  9.828139 12.000000 -0.75502258
## X195       -6.074846 5.731246         3.988984 11.559326 12.000000 -0.24846136
## X197       -5.809143 5.630705         3.367296 10.444102 11.266499 -0.24846136
## X198       -6.502290 3.162299         3.044522  9.454406  9.489125 -0.91629073
## X200       -6.917806 5.222195         3.295837  8.754531 10.806248 -0.59783700
## X201       -5.776353 2.916923         2.772589 10.695079 12.560220 -0.77652879
## X202       -6.265901 3.867347         2.890372  7.500000  9.832160 -1.13943428
## X205       -5.809143 4.315608         3.135494 10.695079 11.114877 -0.73396918
## X208       -5.572754 4.315608         3.178054 10.358802 12.282857 -0.54472718
## X210       -6.214608 4.749337         3.367296 12.141017 13.099669 -0.28768207
## X212       -6.214608 3.924249         3.091042  9.828139 10.489996 -0.89159812
## X213       -6.214608 4.149327         3.091042 10.008788  9.661904 -0.46203546
## X214       -5.654992 3.101492         3.433987 10.008788 16.547237 -0.32850407
## X215       -6.725434 3.695039         3.465736  8.542148  9.832160 -0.75502258
## X216       -5.203007 3.222763         2.944439  8.961066 10.649111 -1.07880966
## X218       -4.906275 3.461346         2.944439 10.185606 13.362291 -0.82098055
## X219       -6.214608 3.162299         2.772589  9.736307 10.806248 -1.02165125
## X220       -6.319969 4.260413         3.583519  8.754531 10.489996 -0.96758403
## X223       -6.214608 4.149327         3.850148  8.754531 11.564660 -0.59783700
## X224       -6.032287 4.204987         3.555348  7.623847 11.266499 -0.89159812
## X225       -6.437752 5.325310         4.060443  9.162164 12.000000 -0.26136476
## X226       -5.991465 4.642159         3.891820 10.528568 13.231546  0.09531018
## X227       -4.645992 3.461346         3.526361  8.858503 11.711309 -0.63487827
## X228       -6.645391 3.342694         3.295837  7.982407  9.661904 -0.94160854
## X229       -5.991465 3.402176         2.833213 10.097662  9.489125 -1.07880966
## X230       -5.809143 2.791992         3.258097  9.454406 12.282857 -0.26136476
## X231       -5.809143 3.461346         3.367296 13.827158  1.741657 -0.65392647
## X232       -5.809143 4.149327         3.044522 11.634012 11.856406 -0.73396918
## X233       -6.214608 2.978813         2.995732 10.358802 10.649111 -0.96758403
## X234       -5.546779 3.578777         3.367296  8.754531 10.328828 -0.79850770
## X236       -7.169120 3.752748         2.995732  9.162164  8.954451 -0.84397007
## X237       -5.496768 5.118391         2.564949  7.500000 11.856406 -0.67334455
## X239       -7.293418 1.725381         3.044522  7.500000  9.661904 -0.99425227
## X240       -6.571283 3.402176         3.401197  7.745463 10.165525 -0.96758403
## X241       -5.744604 4.749337         3.496508  9.549474 10.000000 -0.65392647
## X242       -4.866535 2.728930         3.135494  9.643429 12.422205 -0.44628710
## X243       -5.654992 4.315608         2.772589  9.260790 11.711309 -1.07880966
## X244       -6.377127 3.461346         3.258097 10.272644 12.000000 -0.30110509
## X245       -6.502290 2.341451         2.397895 10.185606  9.135529 -1.38629436
## X246       -5.259097 3.282892         3.401197  7.745463 13.620499 -0.51082562
## X247       -6.917806 3.222763         2.944439  8.097921  9.832160 -1.07880966
## X249       -6.502290 5.731246         3.891820 10.444102 11.114877 -0.03045921
## X250       -5.713833 3.461346         3.135494  9.918956 11.856406 -0.51082562
## X251       -6.725434 2.854653         2.944439 10.272644  9.832160 -0.82098055
## X253       -5.496768 3.810182         3.295837  9.828139 15.888544 -0.41551544
## X254       -5.878136 4.425322         4.276666 10.358802 12.966630  0.26236426
## X255       -5.744604 4.802628         3.663562 11.254454 12.832397 -0.22314355
## X256       -7.402052 3.980894         3.178054  9.358191  8.954451 -1.04982212
## X257       -6.074846 3.342694         2.944439 10.185606  9.135529 -1.13943428
## X258       -6.571283 4.370576         3.332205 10.695079 13.099669 -0.34249031
## X260       -4.906275 4.425322         3.401197 10.358802 12.142136 -0.69314718
## X261       -6.645391 3.637051         2.944439 10.272644  8.954451 -0.91629073
## X262       -5.914504 3.101492         3.135494 10.185606  9.135529 -1.10866262
## X263       -5.776353 3.980894         3.891820 11.854592 14.492423 -0.47803580
## X264       -5.599422 4.479850         3.583519  9.260790 14.248077 -0.38566248
## X265       -5.744604 3.101492         3.401197 10.777165 12.696938 -0.75502258
## X267       -6.032287 5.013876         3.258097 11.018969 13.099669 -0.02020271
## X268       -6.319969 4.479850         3.637586 10.272644 10.165525 -0.34249031
## X269       -7.035589 2.472433         3.044522  6.842982  9.489125 -0.75502258
## X270       -6.377127 3.578777         3.951244 11.708110 10.649111 -0.19845094
## X271       -5.776353 4.093428         3.637586 13.273934 17.899749 -0.17435339
## X272       -5.744604 3.980894         3.401197  8.323453 10.328828 -0.77652879
## X273       -5.952244 3.980894         3.555348  9.358191 12.560220 -0.22314355
## X274       -6.074846 3.461346         3.258097 12.350442 11.416408 -0.57981850
## X275       -5.776353 4.695848         3.713572  7.982407 13.231546 -0.26136476
## X277       -5.020686 4.749337         3.135494 10.185606 12.142136 -0.57981850
## X278       -5.403678 3.637051         3.637586  8.649098 12.560220 -0.41551544
## X279       -6.377127 3.924249         3.258097  8.961066 10.328828 -0.61618614
## X281       -5.914504 5.170380         3.367296 12.555529 12.282857 -0.44628710
## X282       -5.298317 2.791992         2.890372  6.842982 13.491933 -0.82098055
## X283       -6.265901 5.170380         3.663562 10.858497 15.088007 -0.10536052
## X287       -6.119298 4.370576         3.433987  9.549474 11.266499 -0.40047757
## X289       -6.032287 2.665456         3.178054  7.982407  9.489125 -1.07880966
## X290       -6.319969 2.728930         3.135494  9.549474 11.114877 -0.71334989
## X291       -5.744604 4.204987         3.465736 10.695079 14.370706 -0.17435339
## X292       -5.878136 4.749337         3.850148  9.454406 13.362291 -0.26136476
## X294       -5.683980 2.854653         2.890372  7.373808 10.165525 -1.02165125
## X297       -6.571283 3.342694         2.944439  9.549474 10.806248 -0.89159812
## X298       -5.132803 2.341451         2.890372 10.358802 12.282857 -0.96758403
## X299       -7.338538 3.578777         3.465736  9.828139 10.961481 -0.54472718
## X301       -5.521461 2.916923         3.091042 10.528568  9.832160 -0.99425227
## X302       -5.843045 2.073409         3.178054  7.373808  9.489125 -1.66073121
## X303       -5.203007 3.578777         3.401197 11.559326 11.564660 -0.82098055
## X304       -6.502290 5.478731         3.583519 11.559326 11.564660 -0.19845094
## X305       -5.952244 5.066223         3.401197 11.998865 14.970563 -0.40047757
## X306       -5.654992 4.037285         4.007333 10.008788 13.874508 -0.15082289
## X307       -5.318520 5.118391         3.850148  7.982407 16.110770 -0.16251893
## X308       -5.360193 4.855724         3.465736  8.649098 12.142136 -0.56211892
## X311       -6.165818 3.461346         3.178054  9.918956 11.114877 -0.67334455
## X312       -6.119298 4.425322         3.496508 11.708110 12.422205 -0.46203546
## X313       -5.776353 3.637051         3.295837 11.176634 12.000000 -0.82098055
## X314       -6.725434 4.370576         2.944439 10.444102 11.416408 -0.77652879
## X315       -5.149897 3.924249         3.401197  7.113891 12.142136 -0.67334455
## X316       -6.571283 3.695039         2.890372 10.008788 11.711309 -0.52763274
## X317       -6.214608 3.402176         3.258097  8.649098 12.000000 -0.37106368
## X320       -5.184989 3.282892         3.044522  9.454406 11.856406 -0.91629073
## X321       -5.259097 2.854653         2.397895  8.433621 11.114877 -1.02165125
## X322       -5.099467 4.749337         3.663562 11.408143 10.961481 -0.40047757
## X323       -6.165818 3.222763         3.401197 10.008788 12.696938 -0.46203546
## X324       -6.725434 3.637051         3.465736  8.211578 11.416408 -0.71334989
## X325       -6.032287 3.222763         3.465736 10.008788 14.733201 -0.47803580
## X326       -7.182192 3.637051         3.401197  9.549474 11.711309 -0.40047757
## X327       -5.878136 3.752748         3.258097  9.643429 12.142136 -0.27443685
## X329       -6.214608 4.037285         3.496508  9.918956 10.961481 -0.61618614
## X330       -5.132803 3.402176         2.833213  8.754531 10.961481 -0.79850770
## X331       -6.645391 3.752748         3.044522 10.358802 10.165525 -1.17118298
## X332       -5.403678 3.222763         2.944439 10.777165 12.560220 -1.02165125
## X333       -5.952244 5.273838         3.713572 11.408143 11.564660 -0.21072103
##         TRAIL_R3 TTR_prealbumin Tamm_Horsfall_Protein_THP Thrombomodulin
## X1   -0.18290044       2.944439                 -3.095810     -1.3405665
## X2   -0.50074709       2.833213                 -3.111190     -1.6752524
## X3   -0.92403445       2.944439                 -3.166721     -1.5342758
## X5   -0.85825911       3.044522                 -3.038017     -1.2107086
## X6   -0.73800921       3.044522                 -3.125574     -1.4516659
## X7   -0.62997381       2.890372                 -3.133732     -1.6752524
## X8   -0.56347899       2.708050                 -3.056473     -1.2107086
## X9   -0.75712204       2.772589                 -3.128881     -1.4130880
## X11  -0.37116408       2.833213                 -3.111190     -1.5342758
## X12  -0.68264012       2.833213                 -3.126226     -1.2733760
## X14  -0.54746226       2.890372                 -3.100676     -1.2733760
## X16  -0.48559774       2.890372                 -3.128881     -1.3761017
## X17   0.00000000       2.833213                 -3.074400     -1.4130880
## X18  -0.75712204       2.833213                 -3.123014     -2.0376622
## X19  -0.41274719       2.890372                 -3.111190     -1.7844998
## X20  -0.85825911       2.772589                 -3.123014     -1.1238408
## X21   0.26936976       3.044522                 -3.156593     -1.7280531
## X22  -0.20634242       2.639057                 -3.139636     -1.5787229
## X23  -0.56347899       3.091042                 -3.132318     -1.6752524
## X24  -0.25465110       2.639057                 -3.100676     -1.3405665
## X25  -0.70078093       2.772589                 -3.123014     -1.5787229
## X26  -0.37116408       2.639057                 -3.116914     -1.4516659
## X28  -0.70078093       2.772589                 -3.125574     -1.5787229
## X29  -0.83723396       2.708050                 -3.123014     -1.6256074
## X30  -0.94693458       3.091042                 -3.105791     -1.7844998
## X31  -0.62997381       2.944439                 -3.116914     -1.4130880
## X34  -0.13734056       3.091042                 -3.111190     -1.2415199
## X35  -0.64724718       2.833213                 -3.116914     -1.2733760
## X36  -0.68264012       2.833213                 -3.040908     -1.1238408
## X37  -0.34425042       2.833213                 -3.095810     -1.5787229
## X38  -0.56347899       2.772589                 -3.126226     -1.3405665
## X39  -0.57973042       2.772589                 -3.144357     -1.4516659
## X40  -0.47064906       2.772589                 -3.135170     -1.3761017
## X41  -0.47064906       2.944439                 -3.050006     -1.3405665
## X42  -0.73800921       2.833213                 -3.095810     -1.4516659
## X43  -0.48559774       2.890372                 -3.125574     -1.6752524
## X44  -0.64724718       2.708050                 -3.100676     -1.2107086
## X45  -0.21823750       2.890372                 -3.078354     -1.5342758
## X46  -0.57973042       2.772589                 -3.158511     -1.4516659
## X47  -0.64724718       2.890372                 -3.135170     -1.5787229
## X48  -0.13734056       2.772589                 -3.123014     -1.5787229
## X50   0.00000000       2.772589                 -3.105791     -1.1808680
## X51  -0.73800921       2.639057                 -3.074400     -1.6752524
## X53  -0.53167272       2.944439                 -3.095810     -1.4516659
## X55  -0.47064906       2.708050                 -3.138121     -1.5342758
## X56  -0.37116408       2.944439                 -3.074400     -1.1238408
## X57  -0.27956244       2.772589                 -3.116914     -1.5787229
## X59  -0.56347899       2.995732                 -3.095810     -1.3761017
## X60  -0.53167272       2.995732                 -3.095810     -1.9461072
## X61  -0.79641472       2.944439                 -3.133732     -1.8452133
## X62  -1.09654116       3.091042                 -3.095810     -1.8708654
## X63  -0.33102365       2.995732                 -3.116914     -1.4130880
## X64  -0.44133043       2.708050                 -3.070582     -1.2733760
## X65  -0.68264012       2.833213                 -3.154723     -1.7280531
## X67  -0.56347899       2.890372                 -3.205541     -1.4130880
## X68  -0.31794508       2.708050                 -3.105791     -1.2733760
## X69  -1.09654116       2.833213                 -3.143551     -1.9248483
## X70  -0.39871863       2.772589                 -3.111190     -1.5342758
## X71  -0.61296931       3.178054                 -3.147663     -1.4919984
## X72  -0.21823750       2.833213                 -3.074400     -1.3761017
## X73  -0.30501103       2.639057                 -3.158511     -1.3063602
## X74  -0.90163769       2.944439                 -3.086722     -1.6752524
## X75  -0.77658561       2.833213                 -3.111190     -1.3063602
## X76  -0.30501103       2.890372                 -3.111190     -1.2733760
## X77  -0.31794508       2.708050                 -3.111190     -1.2107086
## X78  -0.10425819       2.833213                 -3.082457     -1.3405665
## X80  -0.47064906       3.135494                 -3.133732     -1.6256074
## X81  -0.62997381       2.833213                 -3.126226     -1.3063602
## X82  -0.68264012       2.708050                 -3.095810     -1.6256074
## X83  -0.44133043       2.890372                 -3.111190     -1.2415199
## X84  -0.54746226       2.772589                 -3.126226     -1.3405665
## X85  -0.37116408       2.890372                 -3.078354     -1.3063602
## X86  -0.30501103       2.944439                 -3.070582     -1.2415199
## X88  -0.17134851       2.772589                 -3.125574     -1.3405665
## X90  -0.81662520       2.833213                 -3.146824     -2.0295903
## X93  -0.44133043       2.890372                 -3.086722     -1.4919984
## X94   0.00000000       2.995732                 -3.086722     -0.8166252
## X95  -0.54746226       2.639057                 -3.091166     -1.4130880
## X96  -0.54746226       2.772589                 -3.168929     -1.5787229
## X97  -0.71923319       2.772589                 -3.139636     -1.5787229
## X98  -0.92403445       2.995732                 -3.136633     -1.9109957
## X99  -0.57973042       2.890372                 -3.171207     -1.6256074
## X100 -0.48559774       2.639057                 -3.100676     -1.3063602
## X103 -0.38485910       2.772589                 -3.144357     -1.4516659
## X104 -0.45589516       2.833213                 -3.105791     -1.5787229
## X105 -0.75712204       2.708050                 -3.105791     -1.5787229
## X107 -0.47064906       2.944439                 -3.116914     -1.6752524
## X108 -0.61296931       2.944439                 -3.053196     -1.4919984
## X109 -1.21070858       2.995732                 -3.154723     -1.5787229
## X110 -0.75712204       2.944439                 -3.166721     -1.9109957
## X111 -0.75712204       2.708050                 -3.074400     -1.6752524
## X112 -0.27956244       3.091042                 -3.091166     -1.4516659
## X113 -0.42694948       2.890372                 -3.091166     -1.3405665
## X114 -0.83723396       2.890372                 -3.139636     -1.6752524
## X115 -0.42694948       3.044522                 -3.059843     -1.0965412
## X117 -0.42694948       2.708050                 -3.100676     -1.7280531
## X118 -0.42694948       2.944439                 -3.123014     -1.4516659
## X121 -0.13734056       2.772589                 -3.086722     -1.2415199
## X123 -0.99435191       2.833213                 -3.143551     -1.8708654
## X124 -0.20634242       2.708050                 -3.095810     -1.4919984
## X126 -0.38485910       2.564949                 -3.123014     -1.4130880
## X128 -0.27956244       2.639057                 -3.100676     -1.1808680
## X129 -0.70078093       2.772589                 -3.153804     -1.4130880
## X130 -0.39871863       2.833213                 -3.111190     -1.3761017
## X131 -0.87972006       2.772589                 -3.123647     -1.7280531
## X132 -0.62997381       2.890372                 -3.116914     -1.4919984
## X133 -0.92403445       3.044522                 -3.053196     -1.4130880
## X134 -0.31794508       2.772589                 -3.136633     -1.3405665
## X135 -0.53167272       2.772589                 -3.086722     -1.7844998
## X136 -0.38485910       2.639057                 -3.100676     -1.4516659
## X137 -1.04412698       2.639057                 -3.171207     -1.7280531
## X139 -0.47064906       2.995732                 -3.136633     -1.7844998
## X140 -0.48559774       2.833213                 -3.168929     -1.5342758
## X141 -0.34425042       2.639057                 -3.086722     -1.3063602
## X143 -0.61296931       3.258097                 -3.100676     -1.4919984
## X144 -0.64724718       2.708050                 -3.145993     -1.6752524
## X145 -0.39871863       2.944439                 -3.166721     -1.7844998
## X146 -0.53167272       2.772589                 -3.074400     -1.3063602
## X147 -0.47064906       2.564949                 -3.149369     -1.3761017
## X148 -0.94693458       3.044522                 -3.100676     -1.2415199
## X149 -0.97036428       2.772589                 -3.176003     -1.5787229
## X152 -0.18290044       2.772589                 -3.111190     -1.2415199
## X153 -0.41274719       2.833213                 -3.086722     -1.0441270
## X154 -0.85825911       2.833213                 -3.138121     -1.9461072
## X155 -0.75712204       2.890372                 -3.091166     -1.7280531
## X156 -0.61296931       2.833213                 -3.100676     -1.2107086
## X157 -0.42694948       2.944439                 -3.116914     -1.4919984
## X158 -0.81662520       2.890372                 -3.105791     -1.7280531
## X159 -0.75712204       2.890372                 -3.095810     -1.3761017
## X160 -0.59622443       2.944439                 -3.105791     -1.3405665
## X161 -0.30501103       2.890372                 -3.138875     -1.3405665
## X162 -0.42694948       2.833213                 -3.126882     -1.6256074
## X163 -0.75712204       2.995732                 -3.139636     -1.6752524
## X165 -0.44133043       2.833213                 -3.136633     -1.7280531
## X166 -0.79641472       2.944439                 -3.149369     -1.6256074
## X167 -0.30501103       2.708050                 -3.111190     -1.5342758
## X168 -0.62997381       2.995732                 -3.123014     -1.3761017
## X169 -0.51610326       2.890372                 -3.091166     -1.6256074
## X170 -0.47064906       3.044522                 -3.105791     -1.5342758
## X171 -0.38485910       2.564949                 -3.100676     -1.0189283
## X172 -0.62997381       2.890372                 -3.140405     -1.7844998
## X174 -0.51610326       3.044522                 -3.111190     -1.1238408
## X175 -0.31794508       2.772589                 -3.074400     -1.4919984
## X176 -0.56347899       2.772589                 -3.095810     -1.3063602
## X177 -0.68264012       2.708050                 -3.095810     -1.7280531
## X178 -0.51610326       2.833213                 -3.141963     -1.4130880
## X179 -0.54746226       2.833213                 -3.100676     -1.0965412
## X180 -0.21823750       2.833213                 -3.145993     -1.5342758
## X181 -0.97036428       2.708050                 -3.126882     -1.9041616
## X182 -0.61296931       2.772589                 -3.105791     -1.7280531
## X183 -0.68264012       2.995732                 -3.116914     -1.5342758
## X184 -0.37116408       2.708050                 -3.136633     -1.4130880
## X185 -0.15990607       2.833213                 -3.056473     -1.3405665
## X186 -0.30501103       2.890372                 -3.125574     -1.6256074
## X189 -0.68264012       2.639057                 -3.160479     -1.7280531
## X190 -0.47064906       2.944439                 -3.100676     -1.5342758
## X191 -0.68264012       2.833213                 -3.126882     -1.6256074
## X192 -0.38485910       2.708050                 -3.123647     -1.2733760
## X193 -0.47064906       2.772589                 -3.111190     -1.3761017
## X194 -0.70078093       3.044522                 -3.139636     -1.4130880
## X195 -0.47064906       2.564949                 -3.091166     -1.3405665
## X197 -0.06149412       2.639057                 -3.133732     -1.3063602
## X198 -0.79641472       2.833213                 -3.082457     -1.6752524
## X200 -0.79641472       2.772589                 -3.095810     -1.8452133
## X201 -0.38485910       2.772589                 -3.155652     -1.4919984
## X202 -0.79641472       2.995732                 -3.166721     -1.9754065
## X205 -0.59622443       2.708050                 -3.205541     -1.2733760
## X208 -0.62997381       2.833213                 -3.082457     -1.4516659
## X210 -0.21823750       2.772589                 -3.139636     -1.2733760
## X212 -0.71923319       2.890372                 -3.074400     -1.6256074
## X213 -0.41274719       2.833213                 -3.123014     -1.4516659
## X214 -0.71923319       2.833213                 -3.147663     -1.7280531
## X215 -0.68264012       2.890372                 -3.125574     -1.8452133
## X216 -0.38485910       2.890372                 -3.066890     -1.5342758
## X218 -0.51610326       2.772589                 -3.082457     -1.5342758
## X219 -0.68264012       2.944439                 -3.171207     -1.5787229
## X220 -0.71923319       2.890372                 -3.145993     -1.3405665
## X223 -0.62997381       3.044522                 -3.091166     -1.6256074
## X224 -0.70078093       3.044522                 -3.130927     -1.8708654
## X225 -0.34425042       2.833213                 -3.116914     -1.5342758
## X226 -0.41274719       2.833213                 -3.116914     -1.9389551
## X227 -0.50074709       3.135494                 -3.086722     -1.3405665
## X228 -0.71923319       2.879892                 -3.143551     -1.9606157
## X229 -0.57973042       2.944439                 -3.130927     -1.7844998
## X230 -0.42694948       2.944439                 -3.123014     -1.4130880
## X231 -0.51610326       2.708050                 -3.100676     -1.3761017
## X232 -0.42694948       2.944439                 -3.123014     -1.4919984
## X233 -0.90163769       2.890372                 -3.129558     -1.6752524
## X234 -0.56347899       2.890372                 -3.053196     -1.3761017
## X236 -0.56347899       2.639057                 -3.160479     -1.6256074
## X237 -0.51610326       2.890372                 -3.082457     -1.4130880
## X239 -0.77658561       2.708050                 -3.140405     -1.9248483
## X240 -0.83723396       3.091042                 -3.166721     -1.9248483
## X241 -0.54746226       2.639057                 -3.095810     -1.5342758
## X242 -0.35762924       3.178054                 -2.994538     -1.2415199
## X243 -0.75712204       2.890372                 -3.105791     -1.4130880
## X244 -0.41274719       2.772589                 -3.116914     -1.2733760
## X245 -0.77658561       2.890372                 -3.205541     -1.9041616
## X246 -0.41274719       2.995732                 -3.111190     -1.5787229
## X247 -0.70078093       2.564949                 -3.155652     -1.6256074
## X249 -0.15990607       2.564949                 -3.152897     -1.6256074
## X250 -0.50074709       3.044522                 -3.123014     -1.8452133
## X251 -0.68264012       2.944439                 -3.123014     -1.4919984
## X253 -0.42694948       2.833213                 -3.095810     -1.1519318
## X254  0.18568645       2.995732                 -3.123014     -1.2733760
## X255  0.00000000       2.708050                 -3.038017     -1.1519318
## X256 -0.64724718       2.833213                 -3.123014     -1.5342758
## X257 -0.64724718       2.772589                 -3.145993     -1.6752524
## X258 -0.34425042       2.772589                 -3.151113     -1.4130880
## X260 -0.41274719       2.890372                 -3.105791     -1.7844998
## X261 -0.71923319       2.772589                 -3.116914     -1.5342758
## X262 -0.90163769       2.833213                 -3.091166     -1.7844998
## X263 -0.47064906       3.044522                 -3.086722     -1.6256074
## X264 -0.06149412       2.890372                 -3.063313     -0.8582591
## X265 -0.81662520       2.890372                 -3.126882     -1.8452133
## X267 -0.18290044       2.708050                 -3.100676     -1.3405665
## X268 -0.44133043       2.708050                 -3.135898     -1.5787229
## X269 -0.34425042       3.178054                 -3.136633     -1.9754065
## X270 -0.41274719       2.944439                 -3.142753     -1.5787229
## X271 -0.20634242       2.944439                 -3.095810     -1.3063602
## X272 -0.53167272       2.833213                 -3.082457     -1.4130880
## X273 -0.38485910       2.564949                 -3.105791     -1.3405665
## X274 -0.38485910       2.833213                 -3.105791     -1.9389551
## X275 -0.85825911       2.772589                 -3.105791     -1.4919984
## X277 -0.48559774       2.772589                 -3.116914     -1.4516659
## X278 -0.53167272       2.890372                 -3.128210     -1.8452133
## X279 -0.57973042       2.708050                 -3.123014     -1.6256074
## X281 -0.21823750       2.772589                 -3.100676     -1.6752524
## X282 -0.73800921       2.890372                 -3.158511     -1.4130880
## X283 -0.29221795       2.772589                 -3.126882     -1.0189283
## X287 -0.42694948       2.833213                 -3.126226     -1.5342758
## X289 -0.92403445       3.044522                 -3.116914     -1.7844998
## X290 -0.42694948       2.639057                 -3.147663     -1.6752524
## X291 -0.35762924       2.890372                 -3.149369     -1.5787229
## X292 -0.37116408       3.332205                 -3.123014     -1.3063602
## X294 -0.50074709       3.044522                 -3.136633     -1.9248483
## X297 -0.64724718       2.890372                 -3.091166     -1.4919984
## X298 -0.77658561       3.044522                 -3.176003     -1.5342758
## X299 -0.37116408       2.944439                 -3.152897     -1.5787229
## X301 -0.71923319       3.044522                 -3.145993     -1.5787229
## X302 -0.87972006       2.833213                 -3.100676     -1.4919984
## X303 -0.70078093       2.890372                 -3.095810     -1.5787229
## X304 -0.29221795       2.890372                 -3.138875     -1.5342758
## X305 -0.54746226       2.833213                 -3.105791     -1.4919984
## X306 -0.48559774       2.890372                 -3.105791     -1.3063602
## X307 -0.21823750       2.833213                 -3.095810     -1.2415199
## X308 -0.56347899       2.995732                 -3.086722     -1.6256074
## X311 -0.35762924       2.833213                 -3.086722     -1.2733760
## X312 -0.21823750       2.890372                 -3.091166     -1.2733760
## X313 -0.83723396       3.044522                 -3.205541     -1.5787229
## X314 -0.66479918       2.484907                 -3.135898     -1.7280531
## X315 -0.56347899       3.091042                 -3.050006     -1.5342758
## X316 -1.15193183       2.772589                 -3.166721     -1.4516659
## X317 -0.59622443       2.890372                 -3.205541     -1.3761017
## X320 -0.75712204       3.091042                 -3.086722     -1.1808680
## X321 -1.01892829       2.708050                 -3.095810     -1.5787229
## X322 -0.37116408       2.772589                 -3.056473     -0.9943519
## X323 -0.31794508       2.833213                 -3.123014     -1.3405665
## X324 -0.59622443       2.708050                 -3.143551     -1.5787229
## X325 -0.68264012       2.890372                 -3.105791     -1.7844998
## X326 -0.42694948       2.890372                 -3.123647     -1.6256074
## X327 -0.41274719       2.995732                 -3.149369     -1.2107086
## X329 -0.68264012       2.995732                 -3.111190     -1.4919984
## X330 -0.77658561       3.135494                 -3.035191     -1.2107086
## X331 -1.01892829       2.833213                 -3.095810     -1.5787229
## X332 -0.94693458       2.890372                 -3.091166     -1.4516659
## X333 -0.38485910       2.772589                 -3.056473     -1.5787229
##      Thrombopoietin Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
## X1       -0.1026334                        4.149327                   -3.863233
## X2       -0.6733501                        3.810182                   -4.828314
## X3       -0.9229670                        2.791992                   -4.990833
## X5        0.0976177                        4.534163                   -4.645992
## X6       -1.0000000                        4.534163                   -4.422849
## X7       -0.3386752                        3.342694                   -3.963316
## X8       -0.6583592                        4.037285                   -4.017384
## X9       -0.8864471                        3.637051                   -4.605170
## X11      -0.8000000                        4.908629                   -3.442019
## X12      -0.5577795                        3.637051                   -4.605170
## X14      -1.0834849                        4.534163                   -3.816713
## X16      -0.8000000                        4.093428                   -4.892852
## X17      -0.6885123                        5.273838                   -4.422849
## X18      -1.0619168                        2.407182                   -5.005648
## X19      -0.9801961                        4.260413                   -4.509860
## X20      -1.2254033                        3.810182                   -4.422849
## X21      -1.1282202                        4.908629                   -4.509860
## X22      -0.5857864                        3.578777                   -4.199705
## X23      -1.0834849                        3.810182                   -5.381699
## X24      -0.7193752                        4.534163                   -5.449140
## X25      -1.0619168                        2.472433                   -4.422849
## X26      -0.8000000                        4.149327                   -4.615221
## X28      -0.8000000                        3.282892                   -5.449140
## X29      -0.5577795                        3.578777                   -4.074542
## X30      -0.6435340                        2.407182                   -4.342806
## X31      -0.4900331                        2.854653                   -4.509860
## X34      -1.5395654                        4.093428                   -4.605170
## X35      -0.7038519                        4.093428                   -3.863233
## X36      -0.4508067                        4.479850                   -5.298317
## X37      -0.6885123                        4.149327                   -4.879607
## X38      -0.7038519                        4.093428                   -5.298317
## X39      -0.7038519                        4.315608                   -5.496768
## X40      -0.9607695                        1.936058                   -4.342806
## X41      -0.8000000                        3.637051                   -4.733004
## X42      -1.1753789                        4.093428                   -4.605170
## X43      -0.7350889                        3.342694                   -5.005648
## X44      -0.7038519                        2.791992                   -4.767689
## X45      -0.7193752                        4.908629                   -3.649659
## X46      -0.9607695                        4.315608                   -5.167289
## X47      -1.0202041                        3.867347                   -5.599422
## X48      -0.3629294                        3.752748                   -4.509860
## X50      -0.8338096                        4.093428                   -4.135167
## X51      -0.7510004                        3.810182                   -4.017384
## X53      -0.7834475                        3.810182                   -4.990833
## X55      -0.9607695                        2.791992                   -4.699481
## X56      -0.8864471                        2.601557                   -5.599422
## X57      -0.4637709                        6.225224                   -5.083206
## X59      -1.0202041                        3.101492                   -4.509860
## X60      -0.7834475                        1.796259                   -3.912023
## X61      -0.8510875                        2.854653                   -3.611918
## X62      -0.2111456                        2.854653                   -4.645992
## X63      -0.8864471                        4.479850                   -4.342806
## X64      -0.8864471                        4.479850                   -6.189915
## X65      -0.9607695                        3.810182                   -4.635629
## X67      -1.1753789                        4.855724                   -3.816713
## X68      -0.5303062                        6.225224                   -5.083206
## X69      -0.6733501                        2.854653                   -5.259097
## X70      -0.8510875                        2.791992                   -4.268698
## X71      -0.9607695                        3.810182                   -4.422849
## X72      -0.3147700                        4.749337                   -4.135167
## X73      -0.8686292                        4.961345                   -3.611918
## X74      -1.0619168                        3.752748                   -4.199705
## X75      -0.6288691                        3.810182                   -3.611918
## X76      -0.8864471                        4.479850                   -3.442019
## X77      -0.6583592                        5.325310                   -3.473768
## X78      -0.7193752                        6.225224                   -6.189915
## X80      -0.7350889                        3.342694                   -2.673649
## X81      -0.6288691                        3.637051                   -4.342806
## X82      -0.8000000                        3.282892                   -5.221356
## X83      -0.6583592                        4.908629                   -4.733004
## X84      -0.8864471                        3.637051                   -4.605170
## X85      -0.6288691                        4.479850                   -4.509860
## X86      -0.2679492                        4.479850                   -3.816713
## X88      -0.8510875                        4.149327                   -3.442019
## X90      -0.9045549                        3.040333                   -3.688879
## X93      -0.8510875                        4.037285                   -4.342806
## X94      -0.7510004                        5.222195                   -6.189915
## X95      -0.5577795                        3.752748                   -5.259097
## X96      -0.8000000                        3.980894                   -3.963316
## X97      -1.1282202                        4.149327                   -4.615221
## X98      -0.7350889                        1.508487                   -4.645992
## X99      -0.6288691                        3.810182                   -5.167289
## X100     -1.1753789                        3.101492                   -6.189915
## X103     -0.5717143                        4.534163                   -2.813411
## X104     -0.6583592                        4.037285                   -4.605170
## X105     -0.7834475                        3.810182                   -5.381699
## X107     -0.4379501                        3.752748                   -3.863233
## X108     -0.2911993                        3.342694                   -4.475594
## X109     -0.9607695                        2.208489                   -4.268698
## X110     -0.8510875                        2.854653                   -5.259097
## X111     -0.6583592                        3.040333                   -3.688879
## X112     -0.3147700                        4.149327                   -4.268698
## X113     -0.4251984                        4.149327                   -4.199705
## X114     -1.2788897                        2.791992                   -3.324236
## X115     -1.0202041                        3.637051                   -6.189915
## X117     -0.5577795                        4.315608                   -4.422849
## X118     -0.8864471                        4.149327                   -4.615221
## X121     -0.8338096                        3.637051                   -3.649659
## X123     -0.6733501                        2.854653                   -4.645992
## X124     -0.7038519                        3.040333                   -4.803621
## X126     -0.7038519                        3.867347                   -6.189915
## X128     -0.8338096                        4.093428                   -3.963316
## X129     -1.3071797                        3.101492                   -6.189915
## X130     -0.8864471                        4.908629                   -4.733004
## X131     -0.7038519                        3.578777                   -4.342806
## X132     -0.5577795                        3.752748                   -3.963316
## X133     -0.6583592                        4.149327                   -4.268698
## X134     -0.8864471                        6.225224                   -3.218876
## X135     -0.7350889                        3.342694                   -3.649659
## X136     -0.5857864                        3.578777                   -4.017384
## X137     -1.0202041                        2.791992                   -4.990833
## X139     -1.0000000                        3.282892                   -4.199705
## X140     -0.9416995                        4.149327                   -1.714798
## X141     -1.0000000                        4.149327                   -3.296837
## X143     -0.5577795                        3.752748                   -4.268698
## X144     -1.0000000                        3.752748                   -4.947660
## X145     -0.7350889                        2.854653                   -5.259097
## X146     -0.6583592                        3.980894                   -4.422849
## X147     -0.8000000                        3.752748                   -3.611918
## X148     -0.2564404                        4.479850                   -4.733004
## X149     -0.7038519                        3.342694                   -5.381699
## X152     -0.2679492                        5.580204                   -3.218876
## X153     -0.7193752                        4.149327                   -4.879607
## X154     -1.0834849                        2.537220                   -4.342806
## X155     -0.7350889                        3.342694                   -4.803621
## X156     -0.6733501                        4.315608                   -5.626821
## X157     -0.4125492                        3.752748                   -4.422849
## X158     -1.0834849                        3.342694                   -5.381699
## X159     -0.8864471                        3.637051                   -4.605170
## X160     -0.5717143                        4.315608                   -4.605170
## X161     -1.1753789                        4.479850                   -4.509860
## X162     -0.6583592                        3.578777                   -6.189915
## X163     -0.8510875                        4.479850                   -5.083206
## X165     -1.0000000                        3.040333                   -5.035953
## X166     -1.0202041                        3.637051                   -4.892852
## X167     -0.5303062                        4.908629                   -4.342806
## X168     -0.7038519                        3.342694                   -4.906275
## X169     -0.8000000                        3.282892                   -6.189915
## X170     -0.9416995                        3.752748                   -5.035953
## X171     -0.7038519                        4.855724                   -4.605170
## X172     -0.7350889                        3.752748                   -3.649659
## X174     -0.8000000                        4.093428                   -4.976234
## X175     -0.8864471                        4.149327                   -3.688879
## X176     -0.8864471                        4.093428                   -3.442019
## X177     -0.3147700                        3.578777                   -4.199705
## X178     -1.1753789                        3.637051                   -6.189915
## X179     -0.1026334                        5.273838                   -2.975930
## X180     -0.7193752                        5.580204                   -3.816713
## X181     -0.7510004                        4.037285                   -5.318520
## X182     -0.6435340                        3.520211                   -2.847312
## X183     -0.5577795                        2.407182                   -4.135167
## X184     -0.5303062                        4.908629                   -4.268698
## X185     -1.0202041                        4.093428                   -4.342806
## X186     -1.0000000                        4.149327                   -5.035953
## X189     -1.0619168                        3.520211                   -5.221356
## X190     -0.6583592                        4.479850                   -3.772261
## X191     -0.8510875                        4.037285                   -4.199705
## X192     -0.8000000                        4.479850                   -5.083206
## X193     -0.6288691                        3.637051                   -2.322788
## X194     -0.5303062                        4.037285                   -3.649659
## X195     -0.7834475                        3.810182                   -4.199705
## X197     -0.6583592                        3.980894                   -4.803621
## X198     -0.6583592                        4.037285                   -6.189915
## X200     -0.6435340                        2.854653                   -5.259097
## X201     -0.7510004                        4.908629                   -4.199705
## X202     -0.8510875                        3.342694                   -4.074542
## X205     -0.9607695                        4.315608                   -4.990833
## X208     -0.6288691                        4.037285                   -3.963316
## X210     -1.0000000                        4.534163                   -4.074542
## X212     -1.1753789                        1.936058                   -4.422849
## X213     -0.8000000                        4.534163                   -3.912023
## X214     -0.8686292                        3.342694                   -2.764621
## X215     -0.7350889                        3.752748                   -4.645992
## X216     -1.0619168                        4.479850                   -4.422849
## X218     -0.4125492                        4.908629                   -3.352407
## X219     -1.1753789                        3.637051                   -5.298317
## X220     -0.8864471                        3.637051                   -4.892852
## X223     -0.3875485                        4.149327                   -4.342806
## X224     -0.5577795                        2.854653                   -4.509860
## X225     -0.7350889                        3.752748                   -4.803621
## X226     -0.6583592                        4.037285                   -4.268698
## X227     -0.3875485                        3.752748                   -3.863233
## X228     -0.5303062                        1.796259                   -3.649659
## X229     -1.0000000                        3.520211                   -5.449140
## X230     -0.8000000                        4.908629                   -4.074542
## X231     -0.8864471                        3.752748                   -3.963316
## X232     -0.8510875                        4.479850                   -4.976234
## X233     -0.8510875                        3.040333                   -4.656463
## X234     -0.7193752                        3.752748                   -4.509860
## X236     -0.8864471                        3.282892                   -4.509860
## X237     -0.8000000                        3.637051                   -4.017384
## X239     -0.3875485                        3.342694                   -5.259097
## X240     -0.4900331                        2.854653                   -4.268698
## X241     -0.5857864                        4.149327                   -4.422849
## X242     -0.2000000                        2.791992                   -2.688248
## X243     -0.8338096                        3.637051                   -5.083206
## X244     -1.0202041                        4.093428                   -3.540459
## X245     -0.9045549                        4.479850                   -4.892852
## X246     -0.3386752                        3.752748                   -4.268698
## X247     -0.8510875                        4.479850                   -4.733004
## X249     -0.8000000                        4.149327                   -4.803621
## X250     -1.0834849                        3.040333                   -4.828314
## X251     -0.7510004                        3.101492                   -6.189915
## X253     -0.6288691                        4.093428                   -4.199705
## X254     -0.4900331                        4.149327                   -4.304754
## X255     -1.0834849                        3.637051                   -3.540459
## X256     -0.8864471                        3.101492                   -5.298317
## X257     -0.6733501                        3.637051                   -6.189915
## X258     -1.2254033                        5.580204                   -3.772261
## X260     -0.5857864                        4.037285                   -4.605170
## X261     -1.0202041                        3.101492                   -4.605170
## X262     -0.7510004                        4.037285                   -3.772261
## X263     -0.4379501                        4.037285                   -4.733004
## X264     -0.5577795                        4.093428                   -5.083206
## X265     -0.6583592                        3.810182                   -4.199705
## X267     -0.7193752                        4.149327                   -6.189915
## X268     -0.8510875                        4.479850                   -5.626821
## X269     -1.0619168                        3.520211                   -4.017384
## X270     -0.5857864                        3.578777                   -3.540459
## X271     -0.6583592                        4.908629                   -4.892852
## X272     -0.5577795                        4.908629                   -4.892852
## X273     -0.6583592                        4.479850                   -4.892852
## X274     -0.7510004                        3.578777                   -4.892852
## X275     -0.3386752                        3.342694                   -5.132803
## X277     -1.0000000                        4.534163                   -3.688879
## X278     -0.4900331                        3.101492                   -4.135167
## X279     -0.7671172                        3.980894                   -3.729701
## X281     -0.8864471                        4.908629                   -4.268698
## X282     -0.7834475                        4.315608                   -4.699481
## X283     -0.9801961                        4.479850                   -4.268698
## X287     -0.7834475                        2.791992                   -3.442019
## X289     -1.0619168                        2.407182                   -4.803621
## X290     -0.9607695                        3.342694                   -4.074542
## X291     -0.8864471                        5.580204                   -4.733004
## X292     -0.4900331                        4.149327                   -3.816713
## X294     -0.4379501                        2.407182                   -5.005648
## X297     -0.8864471                        2.601557                   -5.426151
## X298     -0.7834475                        2.208489                   -4.605170
## X299     -1.0000000                        4.534163                   -5.035953
## X301     -1.0202041                        3.101492                   -4.733004
## X302     -0.4900331                        3.342694                   -4.509860
## X303     -0.6288691                        4.908629                   -5.083206
## X304     -1.0202041                        3.867347                   -5.083206
## X305     -0.3147700                        4.908629                   -4.074542
## X306     -0.5577795                        4.534163                   -3.863233
## X307     -0.3147700                        4.315608                   -3.729701
## X308     -0.2450071                        1.796259                   -3.816713
## X311     -0.5303062                        4.479850                   -5.083206
## X312     -1.0202041                        3.637051                   -4.199705
## X313     -0.6583592                        3.040333                   -4.422849
## X314     -0.8510875                        4.037285                   -4.605170
## X315     -0.4900331                        2.854653                   -4.645992
## X316     -0.8686292                        3.810182                   -5.167289
## X317     -1.0834849                        3.810182                   -4.828314
## X320     -0.6288691                        3.342694                   -4.422849
## X321     -0.7834475                        2.791992                   -4.605170
## X322     -0.4508067                        4.093428                   -3.863233
## X323     -0.8510875                        4.037285                   -3.540459
## X324     -0.7350889                        3.342694                   -4.803621
## X325     -0.4379501                        3.578777                   -4.074542
## X326     -1.2000000                        4.037285                   -3.729701
## X327     -0.7193752                        5.273838                   -4.199705
## X329     -0.8864471                        3.637051                   -6.189915
## X330     -0.5717143                        4.534163                   -3.688879
## X331     -0.7510004                        4.260413                   -4.733004
## X332     -0.5857864                        4.479850                   -4.509860
## X333     -0.6583592                        4.037285                   -4.733004
##      Thyroxine_Binding_Globulin Tissue_Factor Transferrin Trefoil_Factor_3_TFF3
## X1                   -1.4271164    2.04122033    3.332205             -3.381395
## X2                   -1.6094379    2.02814825    2.890372             -3.912023
## X3                   -1.8971200    1.43508453    2.890372             -3.729701
## X5                   -0.4780358    1.98787435    3.496508             -3.442019
## X6                   -1.2378744   -0.01005034    2.995732             -4.342806
## X7                   -2.1202635    1.64865863    2.708050             -3.649659
## X8                   -1.3470736    0.40546511    2.833213             -4.268698
## X9                   -1.4696760    0.64185389    2.564949             -4.199705
## X11                  -1.3470736    1.41098697    2.772589             -4.017384
## X12                  -1.2729657    1.02961942    2.995732             -4.135167
## X14                  -1.2378744    1.09861229    2.995732             -3.963316
## X16                  -1.1711830    1.66770682    3.091042             -2.956512
## X17                  -0.9675840    0.69314718    2.708050             -4.135167
## X18                  -1.9661129    0.47000363    2.564949             -4.017384
## X19                  -1.8325815    0.18232156    2.639057             -4.342806
## X20                  -1.1394343    1.09861229    3.091042             -4.017384
## X21                  -1.8325815    0.33647224    2.564949             -3.816713
## X22                  -1.7719568    1.91692261    3.178054             -3.649659
## X23                  -1.6094379    0.69314718    2.302585             -4.268698
## X24                  -1.6607312    1.66770682    2.995732             -3.772261
## X25                  -1.9661129    0.69314718    2.564949             -4.268698
## X26                  -1.6607312    1.48160454    2.772589             -3.863233
## X28                  -1.7147984    1.52605630    2.890372             -3.816713
## X29                  -1.7719568    0.26236426    2.484907             -4.422849
## X30                  -1.8971200    0.95551145    2.564949             -4.017384
## X31                  -1.3862944    0.87546874    3.091042             -3.324236
## X34                  -1.2729657    0.74193734    2.772589             -3.863233
## X35                  -1.3093333    0.26236426    2.833213             -4.199705
## X36                  -0.6733446    0.91629073    3.526361             -3.729701
## X37                  -1.7147984    1.68639895    2.890372             -3.863233
## X38                  -1.6607312    1.02961942    2.772589             -4.017384
## X39                  -2.0402208    1.87180218    2.944439             -3.863233
## X40                  -1.2729657    0.99325177    3.091042             -3.729701
## X41                  -1.2378744    0.69314718    3.178054             -4.074542
## X42                  -1.7147984    1.22377543    2.708050             -4.074542
## X43                  -1.7147984    0.64185389    2.772589             -4.199705
## X44                  -1.5141277    1.25276297    3.091042             -3.442019
## X45                  -1.2039728    1.62924054    3.044522             -3.575551
## X46                  -2.0402208    1.75785792    2.944439             -3.729701
## X47                  -1.7147984    0.53062825    2.484907             -4.268698
## X48                  -1.8325815    1.84054963    2.639057             -3.575551
## X50                  -1.6094379    1.33500107    2.944439             -4.135167
## X51                  -1.4696760    1.19392247    3.044522             -3.575551
## X53                  -1.5141277    1.02961942    2.772589             -3.912023
## X55                  -1.6607312    1.48160454    2.833213             -3.963316
## X56                  -1.0498221    1.02961942    2.944439             -3.772261
## X57                  -1.3862944    1.70474809    2.944439             -3.270169
## X59                  -1.4271164    1.19392247    2.944439             -3.772261
## X60                  -1.8325815    0.99325177    2.708050             -3.863233
## X61                  -1.8325815    0.47000363    2.833213             -3.963316
## X62                  -2.3538784    0.69314718    2.564949             -4.268698
## X63                  -1.8325815    1.33500107    2.708050             -3.688879
## X64                  -0.6161861    0.64185389    3.218876             -3.442019
## X65                  -2.4769385    1.25276297    2.708050             -4.268698
## X67                  -1.9661129    1.66770682    2.890372             -4.074542
## X68                  -1.3862944    1.54756251    2.890372             -3.772261
## X69                  -1.9661129    0.53062825    2.397895             -4.422849
## X70                  -1.9661129    1.30833282    2.708050             -4.074542
## X71                  -1.7147984    1.30833282    2.833213             -3.729701
## X72                  -0.7339692    2.39789527    3.555348             -3.036554
## X73                  -1.6094379    1.62924054    2.995732             -3.270169
## X74                  -1.6607312   -0.12783337    2.708050             -4.074542
## X75                  -0.7550226    0.33647224    3.135494             -3.688879
## X76                  -1.5606477    1.58923521    3.044522             -3.816713
## X77                  -0.9416085    1.43508453    2.995732             -3.863233
## X78                  -1.2729657    1.82454929    3.367296             -3.123566
## X80                  -0.4942963    0.99325177    2.833213             -3.963316
## X81                  -1.3862944    1.06471074    2.833213             -4.017384
## X82                  -1.5141277    1.06471074    2.890372             -3.963316
## X83                  -1.0498221    1.30833282    2.890372             -3.729701
## X84                  -1.3470736    0.95551145    2.708050             -4.199705
## X85                  -1.2039728    1.52605630    3.218876             -3.575551
## X86                  -0.9416085    1.13140211    3.135494             -3.218876
## X88                  -1.2039728    1.48160454    2.708050             -3.324236
## X90                  -2.3025851   -0.21072103    1.945910             -4.677741
## X93                  -1.4696760    1.02961942    2.890372             -3.649659
## X94                  -0.6733446    1.82454929    3.496508             -3.079114
## X95                  -1.5606477    0.74193734    2.639057             -3.963316
## X96                  -1.6094379    1.48160454    2.772589             -3.963316
## X97                  -1.8325815    1.66770682    2.944439             -3.772261
## X98                  -1.8971200    0.87546874    2.708050             -4.074542
## X99                  -1.6607312    1.75785792    3.091042             -3.473768
## X100                 -1.4696760    1.43508453    3.044522             -3.912023
## X103                 -1.7719568    2.16332303    3.332205             -3.352407
## X104                 -1.4271164    1.30833282    2.833213             -3.963316
## X105                 -1.4271164    1.62924054    3.135494             -3.772261
## X107                 -1.4696760    1.45861502    3.091042             -4.017384
## X108                 -0.7765288    1.38629436    3.218876             -3.218876
## X109                 -2.3025851    1.02961942    2.564949             -4.268698
## X110                 -1.7719568    0.58778666    2.302585             -4.268698
## X111                 -1.6607312    1.38629436    2.890372             -4.074542
## X112                 -1.1394343    2.11625551    3.526361             -3.442019
## X113                 -0.8439701    1.43508453    3.178054             -3.863233
## X114                 -1.5606477    0.33647224    2.639057             -4.199705
## X115                 -0.9675840    0.91629073    2.890372             -4.074542
## X117                 -1.4696760    1.28093385    3.044522             -3.411248
## X118                 -1.8325815    1.64865863    2.772589             -3.540459
## X121                 -1.6607312    1.68639895    3.178054             -3.442019
## X123                 -1.3093333    0.18232156    2.639057             -4.017384
## X124                 -0.9675840    1.16315081    2.944439             -3.729701
## X126                 -1.5141277    1.19392247    2.639057             -4.268698
## X128                 -0.7985077    1.13140211    3.332205             -3.381395
## X129                 -1.5606477    0.58778666    2.484907             -4.135167
## X130                 -1.2039728    1.22377543    3.044522             -3.649659
## X131                 -1.6607312    1.28093385    2.708050             -4.268698
## X132                 -1.2729657    1.33500107    3.091042             -3.611918
## X133                 -1.0498221    1.02961942    3.295837             -3.729701
## X134                 -1.3093333    1.54756251    2.833213             -3.729701
## X135                 -1.1711830    1.66770682    3.258097             -3.244194
## X136                 -1.3093333    0.69314718    2.995732             -4.017384
## X137                 -1.8325815    0.99325177    2.772589             -4.342806
## X139                 -1.7147984    0.74193734    2.772589             -4.135167
## X140                 -1.7719568    1.45861502    2.833213             -3.912023
## X141                 -0.8675006    1.36097655    2.995732             -4.199705
## X143                 -1.6607312    0.33647224    2.890372             -3.649659
## X144                 -1.9661129    0.99325177    2.639057             -4.342806
## X145                 -2.0402208    1.28093385    2.484907             -4.342806
## X146                 -0.7133499    1.22377543    3.218876             -3.540459
## X147                 -1.4271164    1.68639895    2.944439             -3.729701
## X148                 -0.2107210    1.30833282    3.401197             -3.688879
## X149                 -2.0402208    1.16315081    2.772589             -4.268698
## X152                 -1.0216512    2.17475172    3.295837             -3.411248
## X153                 -0.6161861    1.19392247    3.367296             -3.963316
## X154                 -2.0402208    1.22377543    2.833213             -3.863233
## X155                 -1.3470736    1.22377543    2.772589             -4.199705
## X156                 -1.2039728    1.43508453    3.135494             -3.772261
## X157                 -1.4696760    1.38629436    2.890372             -3.729701
## X158                 -1.2039728    1.54756251    2.708050             -4.074542
## X159                 -1.6607312    0.83290912    2.639057             -4.342806
## X160                 -1.8971200    1.74046617    3.218876             -3.863233
## X161                 -1.2039728    1.06471074    3.091042             -3.729701
## X162                 -2.0402208    1.75785792    2.708050             -4.017384
## X163                 -2.0402208    1.09861229    2.708050             -4.422849
## X165                 -2.0402208    1.62924054    2.639057             -3.963316
## X166                 -2.3025851    1.13140211    2.708050             -4.199705
## X167                 -1.5606477    1.96009478    3.218876             -3.575551
## X168                 -1.6094379    1.48160454    2.890372             -4.017384
## X169                 -1.7719568    0.69314718    2.890372             -4.199705
## X170                 -1.3862944    0.33647224    2.772589             -4.268698
## X171                 -0.9942523    1.48160454    3.178054             -3.688879
## X172                 -1.6607312    1.19392247    2.772589             -4.199705
## X174                 -0.9675840    0.87546874    3.135494             -3.688879
## X175                 -0.8439701    1.41098697    3.135494             -3.611918
## X176                 -1.0788097    1.06471074    2.890372             -3.863233
## X177                 -1.7147984    1.52605630    3.044522             -3.729701
## X178                 -1.8971200    0.53062825    2.564949             -4.017384
## X179                 -0.8728085    0.58778666    3.583519             -3.079114
## X180                 -1.5606477    1.45861502    2.944439             -3.649659
## X181                 -1.8325815    0.47000363    2.564949             -4.268698
## X182                 -1.7719568    1.19392247    2.833213             -3.863233
## X183                 -1.3862944    0.00000000    3.091042             -3.816713
## X184                 -1.8325815    1.25276297    3.218876             -3.688879
## X185                 -1.0788097    1.06471074    3.178054             -3.863233
## X186                 -1.7147984    0.95551145    2.833213             -4.017384
## X189                 -1.9661129    1.30833282    2.708050             -4.744432
## X190                 -1.5141277    1.62924054    2.772589             -3.912023
## X191                 -1.5606477    1.09861229    2.833213             -4.135167
## X192                 -1.5606477    2.10413415    3.091042             -3.688879
## X193                 -1.3862944    1.54756251    3.044522             -3.772261
## X194                 -1.5141277    0.83290912    2.639057             -4.135167
## X195                 -1.7719568    2.11625551    3.258097             -3.688879
## X197                 -1.2378744    1.54756251    3.044522             -3.575551
## X198                 -1.5141277    0.78845736    2.708050             -4.342806
## X200                 -1.8971200    1.38629436    3.178054             -3.912023
## X201                 -1.3470736    0.74193734    2.708050             -3.863233
## X202                 -2.1202635    0.58778666    2.564949             -4.199705
## X205                 -1.7147984    1.36097655    2.772589             -3.772261
## X208                 -0.7133499    1.25276297    3.135494             -3.912023
## X210                 -1.2729657    1.36097655    3.135494             -3.506558
## X212                 -1.4696760    0.91629073    2.772589             -3.863233
## X213                 -1.0788097    1.41098697    3.044522             -3.772261
## X214                 -1.7147984    1.38629436    2.833213             -3.540459
## X215                 -1.9661129    1.38629436    2.772589             -4.135167
## X216                 -1.1394343    0.74193734    2.890372             -4.268698
## X218                 -0.8675006    0.83290912    3.295837             -3.729701
## X219                 -2.0402208    0.83290912    2.639057             -3.963316
## X220                 -1.7147984    1.16315081    2.772589             -4.135167
## X223                 -1.3470736    1.41098697    3.218876             -3.863233
## X224                 -1.8325815    1.48160454    2.944439             -4.199705
## X225                 -1.5606477    2.39789527    2.995732             -3.473768
## X226                 -1.5606477    1.85629799    3.044522             -3.352407
## X227                 -0.9675840    1.16315081    3.496508             -3.912023
## X228                 -1.8971200    1.06471074    2.708050             -4.509860
## X229                 -1.6607312    0.69314718    2.772589             -4.199705
## X230                 -1.8325815    0.95551145    2.890372             -3.649659
## X231                 -1.4696760    0.83290912    2.639057             -4.268698
## X232                 -1.3470736    0.91629073    2.833213             -4.135167
## X233                 -1.4696760    0.47000363    2.639057             -4.422849
## X234                 -1.1394343    0.95551145    2.833213             -4.017384
## X236                 -1.8971200    1.13140211    2.484907             -4.342806
## X237                 -0.9675840    1.19392247    2.890372             -3.506558
## X239                 -1.9661129    0.18232156    2.302585             -4.268698
## X240                 -1.7147984    0.47000363    2.639057             -4.074542
## X241                 -0.9942523    1.43508453    3.044522             -3.540459
## X242                 -0.9535408    0.47000363    3.285794             -3.729701
## X243                 -1.2378744    0.58778666    2.772589             -4.135167
## X244                 -1.4271164    1.36097655    2.833213             -3.611918
## X245                 -2.0402208    0.09531018    1.931521             -4.744432
## X246                 -1.2039728    0.78845736    3.178054             -3.411248
## X247                 -2.1202635    0.74193734    2.397895             -4.199705
## X249                 -2.1202635    2.11625551    2.833213             -3.649659
## X250                 -1.5141277    1.38629436    2.944439             -3.772261
## X251                 -1.7147984    0.83290912    2.708050             -4.135167
## X253                 -0.8439701    1.06471074    2.890372             -3.729701
## X254                 -1.0788097    2.48490665    3.367296             -3.123566
## X255                 -1.1086626    1.70474809    3.218876             -3.381395
## X256                 -2.2072749    1.19392247    2.564949             -4.199705
## X257                 -1.9661129    0.64185389    2.302585             -4.509860
## X258                 -1.2039728    1.41098697    3.401197             -3.442019
## X260                 -1.2729657    1.16315081    2.772589             -4.135167
## X261                 -1.7147984    0.58778666    2.564949             -4.199705
## X262                 -1.8325815    0.78845736    2.484907             -4.605170
## X263                 -0.9675840    1.48160454    3.091042             -3.194183
## X264                 -0.6539265    1.28093385    2.944439             -3.772261
## X265                 -1.3470736    1.30833282    2.890372             -3.816713
## X267                 -1.7147984    1.43508453    3.091042             -3.473768
## X268                 -1.7719568    1.50407740    2.772589             -3.688879
## X269                 -1.7719568    0.74193734    2.772589             -4.135167
## X270                 -1.8971200    1.85629799    2.995732             -3.729701
## X271                 -1.2378744    1.41098697    2.995732             -3.506558
## X272                 -1.1394343    1.36097655    2.995732             -3.772261
## X273                 -1.5141277    1.28093385    2.772589             -3.540459
## X274                 -1.5141277    1.30833282    2.833213             -4.342806
## X275                 -1.3093333    1.98787435    3.044522             -3.381395
## X277                 -1.0788097    0.87546874    3.091042             -4.509860
## X278                 -1.3862944    1.25276297    3.044522             -3.442019
## X279                 -1.4271164    0.58778666    2.890372             -3.772261
## X281                 -1.5606477    1.38629436    2.944439             -3.863233
## X282                 -1.2378744    0.83290912    2.890372             -4.199705
## X283                 -1.2378744    1.56861592    3.135494             -3.244194
## X287                 -1.7147984    1.70474809    3.044522             -3.912023
## X289                 -1.7147984    0.64185389    2.708050             -4.422849
## X290                 -1.7719568    0.95551145    2.708050             -4.017384
## X291                 -1.5606477    1.72276660    2.890372             -4.017384
## X292                 -1.0216512    1.87180218    3.135494             -3.411248
## X294                 -1.8971200    0.47000363    2.564949             -4.135167
## X297                 -1.6607312    1.13140211    2.772589             -3.963316
## X298                 -1.7719568    0.53062825    3.044522             -3.963316
## X299                 -1.8325815    1.19392247    2.890372             -3.816713
## X301                 -1.8971200    0.40546511    2.639057             -4.017384
## X302                 -1.4696760    0.09531018    2.772589             -4.135167
## X303                 -1.3470736    1.16315081    2.995732             -3.816713
## X304                 -1.6607312    2.02814825    2.944439             -3.912023
## X305                 -1.4271164    1.22377543    2.890372             -3.575551
## X306                 -0.8915981    1.84054963    3.761200             -3.218876
## X307                 -0.8209806    1.52605630    3.367296             -3.352407
## X308                 -1.2729657    1.58923521    3.258097             -3.473768
## X311                 -1.2039728    0.87546874    2.833213             -3.912023
## X312                 -1.2378744    1.56861592    2.995732             -3.729701
## X313                 -1.2729657    0.99325177    2.944439             -4.017384
## X314                 -1.7147984    1.43508453    2.708050             -4.074542
## X315                 -0.9942523    0.99325177    3.295837             -3.540459
## X316                 -1.7719568    1.64865863    2.890372             -4.268698
## X317                 -1.6607312    1.70474809    2.890372             -3.772261
## X320                 -1.3093333    0.74193734    3.332205             -3.816713
## X321                 -1.2378744   -0.06187540    3.044522             -4.017384
## X322                 -1.2729657    1.56861592    3.218876             -3.575551
## X323                 -1.3862944    1.45861502    2.944439             -3.649659
## X324                 -2.0402208    0.91629073    2.282382             -3.863233
## X325                 -0.9675840    1.33500107    3.044522             -3.575551
## X326                 -1.6607312    0.91629073    2.772589             -3.963316
## X327                 -1.5606477    1.28093385    2.995732             -4.074542
## X329                 -1.8971200    1.41098697    2.944439             -3.863233
## X330                 -0.4780358    0.47000363    3.496508             -4.268698
## X331                 -1.6607312    0.74193734    2.639057             -4.605170
## X332                 -1.2729657    0.18232156    2.890372             -4.074542
## X333                 -1.4696760    2.17475172    3.367296             -3.863233
##        VCAM_1     VEGF Vitronectin von_Willebrand_Factor E4 E3 E2
## X1   3.258097 22.03456 -0.04082199             -3.146555  1  2  1
## X2   2.708050 18.60184 -0.38566248             -3.863233  2  2  1
## X3   2.639057 17.47619 -0.22314355             -3.540459  2  2  1
## X5   3.044522 20.77860  0.16621555             -3.816713  1  2  1
## X6   2.208274 13.19761  0.26236426             -4.509860  2  1  1
## X7   2.639057 17.91139 -0.37106368             -4.017384  1  2  2
## X8   2.564949 13.26878  0.00000000             -4.199705  1  2  2
## X9   2.564949 15.77258 -0.82098055             -4.268698  1  2  1
## X11  2.708050 15.65264 -0.11653382             -3.611918  2  2  1
## X12  2.397895 17.16420 -0.15082289             -4.199705  1  2  2
## X14  2.833213 15.95757 -0.09431068             -3.442019  2  2  1
## X16  3.218876 17.47619 -0.19845094             -3.863233  2  2  1
## X17  3.135494 13.14977 -0.30110509             -4.199705  1  2  1
## X18  2.564949 14.00853 -0.57981850             -3.816713  2  2  1
## X19  2.890372 15.09899 -0.49429632             -4.268698  1  2  1
## X20  2.639057 17.29317 -0.11653382             -3.506558  2  1  2
## X21  2.639057 13.72601 -0.65392647             -4.268698  2  2  1
## X22  2.944439 19.75007 -0.63487827             -3.611918  1  2  1
## X23  1.945910 14.83572 -0.44628710             -4.342806  2  2  1
## X24  2.890372 17.17862 -0.63487827             -3.649659  1  2  1
## X25  2.302585 15.38951 -0.49429632             -4.342806  2  1  1
## X26  2.397895 16.85569 -0.73396918             -3.863233  2  2  1
## X28  2.833213 16.42640 -0.12783337             -4.342806  1  2  1
## X29  2.230014 14.70067 -0.51082562             -4.342806  2  1  1
## X30  2.397895 15.08048 -0.52763274             -4.342806  1  2  2
## X31  2.995732 17.09173 -0.17435339             -3.863233  1  2  1
## X34  2.772589 15.53091 -0.09431068             -4.074542  2  2  1
## X35  2.028148 14.98724 -0.23572233             -4.342806  2  2  1
## X36  3.135494 15.72139  0.33647224             -3.611918  1  2  2
## X37  2.564949 17.14975 -0.75502258             -3.729701  2  2  1
## X38  2.639057 15.66988 -0.61618614             -3.963316  1  2  1
## X39  2.833213 18.65101 -0.49429632             -3.575551  1  2  1
## X40  2.639057 16.10590 -0.21072103             -3.575551  1  2  1
## X41  2.708050 14.91184  0.09531018             -4.017384  1  2  1
## X42  2.708050 17.34988 -0.43078292             -4.074542  2  2  1
## X43  2.302585 14.96846 -0.40047757             -4.135167  1  2  1
## X44  2.995732 18.23746 -0.22314355             -3.575551  2  2  1
## X45  3.258097 17.09173 -0.26136476             -3.912023  1  2  1
## X46  2.708050 18.91693 -0.65392647             -3.411248  1  2  1
## X47  2.397895 15.35377 -0.49429632             -4.342806  1  2  1
## X48  3.091042 19.83721 -0.69314718             -3.170086  1  2  2
## X50  2.890372 17.14975 -0.19845094             -3.688879  1  2  1
## X51  2.944439 19.04716 -0.01005034             -3.381395  1  2  1
## X53  2.772589 17.76415 -0.30110509             -4.074542  1  2  1
## X55  2.564949 18.18606 -0.43078292             -3.912023  2  1  1
## X56  2.708050 16.78059 -0.01005034             -3.863233  1  2  1
## X57  2.944439 19.62899 -0.65392647             -3.506558  1  2  1
## X59  3.091042 16.05675 -0.44628710             -3.218876  2  2  1
## X60  2.708050 15.77258 -0.37106368             -4.135167  1  2  1
## X61  2.708050 15.53091 -0.40047757             -3.912023  1  2  1
## X62  2.028148 16.61303 -0.61618614             -4.342806  1  2  1
## X63  2.833213 16.70483 -0.31471074             -3.649659  1  2  1
## X64  2.708050 15.75555  0.09531018             -3.963316  2  2  1
## X65  2.564949 16.42640 -0.96758403             -3.863233  1  2  1
## X67  2.484907 17.44828 -0.96758403             -3.963316  2  2  1
## X68  2.639057 18.14732 -0.26136476             -4.342806  1  2  1
## X69  2.282382 14.70067 -0.43078292             -3.963316  1  2  1
## X70  2.890372 18.25027 -0.63487827             -3.816713  1  2  1
## X71  2.484907 17.81797 -0.37106368             -3.649659  1  2  2
## X72  3.610918 19.86969  0.47000363             -3.490408  1  2  1
## X73  3.091042 19.29097 -0.56211892             -3.411248  1  2  2
## X74  2.302585 13.98717 -0.05129329             -4.605170  1  2  1
## X75  2.772589 15.02467 -0.01005034             -3.575551  1  2  1
## X76  2.772589 18.14732 -0.40047757             -3.863233  2  2  1
## X77  2.639057 17.53176 -0.01005034             -3.442019  2  2  1
## X78  3.044522 20.00922 -0.09431068             -3.352407  2  2  1
## X80  3.091042 19.12912  0.09531018             -3.912023  1  2  1
## X81  2.639057 15.77258 -0.23572233             -4.017384  1  2  1
## X82  2.772589 16.28369 -0.51082562             -4.017384  2  2  1
## X83  2.772589 17.50402  0.00000000             -4.721704  1  2  2
## X84  2.484907 16.95974 -0.47803580             -3.963316  2  2  1
## X85  2.890372 20.15734 -0.09431068             -3.442019  1  2  1
## X86  3.295837 16.73521 -0.04082199             -3.218876  1  2  2
## X88  3.178054 17.84476 -0.31471074             -3.729701  2  2  1
## X90  2.292535 14.07222 -1.13943428             -4.990833  1  2  1
## X93  2.833213 18.09542 -0.51082562             -3.442019  2  2  1
## X94  3.688879 20.79835  0.18232156             -3.218876  1  2  1
## X95  2.890372 15.80652 -0.57981850             -3.688879  1  2  1
## X96  2.639057 17.61447 -0.32850407             -3.863233  2  2  1
## X97  2.564949 17.23608 -0.89159812             -4.199705  2  2  1
## X98  2.197225 16.02382 -0.46203546             -4.509860  1  2  2
## X99  2.944439 17.62818 -0.41551544             -3.079114  1  2  1
## X100 2.397895 18.36473  0.09531018             -3.772261  2  2  1
## X103 3.044522 20.92578 -0.65392647             -3.324236  1  2  2
## X104 2.772589 19.23348 -0.40047757             -3.688879  2  2  1
## X105 2.833213 18.41515 -0.23572233             -3.912023  1  2  1
## X107 2.708050 18.12141 -0.07257069             -3.912023  2  2  1
## X108 2.833213 18.67549  0.18232156             -4.074542  1  2  1
## X109 2.128232 15.75555 -0.77652879             -4.342806  1  2  2
## X110 1.960095 13.38584 -0.99425227             -3.912023  1  2  2
## X111 2.772589 19.35952 -0.59783700             -4.017384  2  2  1
## X112 3.044522 18.88110  0.26236426             -3.575551  1  2  1
## X113 2.944439 15.68709  0.26236426             -3.506558  2  2  1
## X114 2.079442 13.36258 -0.15082289             -4.268698  2  2  1
## X115 2.833213 15.13589 -0.02020271             -4.017384  2  2  1
## X117 2.995732 17.92466 -0.22314355             -3.816713  1  2  1
## X118 2.995732 17.66918 -0.57981850             -3.575551  1  2  1
## X121 3.044522 16.82573 -0.41551544             -3.194183  2  2  1
## X123 2.251292 14.19800 -0.54472718             -4.017384  2  2  1
## X124 2.708050 16.94495  0.33647224             -3.729701  1  2  1
## X126 2.564949 15.99076 -0.57981850             -4.074542  2  2  1
## X128 2.708050 18.65101  0.18232156             -3.816713  2  2  1
## X129 2.397895 13.92275 -0.61618614             -4.605170  2  2  1
## X130 2.772589 17.46224 -0.16251893             -3.863233  1  2  1
## X131 2.282382 17.01865 -0.49429632             -4.422849  1  2  1
## X132 2.639057 18.17317 -0.22314355             -3.963316  2  1  1
## X133 2.944439 16.26768 -0.08338161             -3.963316  2  2  1
## X134 2.944439 17.40624 -0.27443685             -3.816713  2  2  1
## X135 2.833213 18.51518 -0.18632958             -3.611918  1  2  2
## X136 2.708050 17.68281 -0.23572233             -3.649659  2  2  1
## X137 2.128232 16.61303 -0.51082562             -3.649659  2  1  2
## X139 2.251292 15.82344 -0.19845094             -4.268698  2  2  1
## X140 2.639057 16.75036 -0.24846136             -3.963316  2  1  2
## X141 2.564949 17.96435  0.09531018             -4.017384  2  2  1
## X143 2.772589 16.65905 -0.03045921             -4.074542  1  2  1
## X144 2.708050 14.19800 -0.27443685             -3.863233  2  2  1
## X145 2.302585 16.07317 -0.77652879             -4.342806  1  2  1
## X146 3.044522 17.62818 -0.09431068             -3.442019  2  2  1
## X147 2.708050 17.37811 -0.52763274             -3.381395  2  2  1
## X148 2.833213 18.63874  0.47000363             -4.017384  1  2  1
## X149 2.302585 16.68960 -0.35667494             -3.963316  1  2  2
## X152 3.332205 17.76415 -0.04082199             -3.218876  2  2  1
## X153 2.890372 16.81071  0.18232156             -3.912023  1  2  1
## X154 2.397895 16.13851 -0.41551544             -4.199705  1  2  1
## X155 2.302585 15.40733 -0.15082289             -4.135167  2  1  1
## X156 2.833213 18.62646 -0.09431068             -3.540459  1  2  1
## X157 3.135494 17.07716 -0.40047757             -3.324236  1  2  2
## X158 2.639057 17.89810 -0.59783700             -3.772261  2  2  1
## X159 2.772589 14.70067 -0.38566248             -3.611918  1  2  1
## X160 2.944439 19.49518 -0.35667494             -3.729701  1  2  2
## X161 2.833213 17.61447 -0.02020271             -3.963316  1  2  1
## X162 2.564949 18.42771 -0.73396918             -3.963316  1  2  1
## X163 2.066863 16.10590 -0.57981850             -4.615221  2  2  1
## X165 2.890372 16.47344 -0.94160854             -3.575551  2  2  1
## X166 2.208274 16.18718 -0.71334989             -4.135167  1  2  1
## X167 2.995732 19.88049 -0.71334989             -4.422849  1  2  1
## X168 2.772589 16.95974 -0.08338161             -4.199705  1  2  1
## X169 2.251292 15.51337 -0.54472718             -4.199705  1  2  2
## X170 2.397895 13.85775 -0.02020271             -3.963316  1  2  1
## X171 3.091042 16.41066  0.09531018             -4.074542  1  2  1
## X172 2.564949 17.60073 -0.30110509             -4.509860  1  2  1
## X174 2.772589 16.73521  0.26236426             -3.912023  1  2  1
## X175 2.772589 16.56675  0.09531018             -4.268698  1  2  1
## X176 2.708050 16.25164 -0.01005034             -3.575551  1  2  1
## X177 2.708050 18.49027 -0.47803580             -3.772261  1  2  1
## X178 1.931521 15.02467 -1.42711636             -4.422849  1  2  1
## X179 2.772589 18.27583  0.53062825             -3.772261  1  2  2
## X180 3.295837 15.87400 -0.51082562             -3.912023  1  2  1
## X181 2.397895 16.28369 -0.34249031             -4.268698  1  2  1
## X182 2.564949 18.41515 -0.49429632             -3.649659  1  2  2
## X183 2.484907 14.54339 -0.04082199             -3.863233  2  2  1
## X184 2.708050 18.33941 -0.69314718             -3.611918  2  2  1
## X185 2.302585 18.06935 -0.01005034             -3.649659  2  2  1
## X186 2.261763 15.42510 -0.47803580             -4.074542  2  2  1
## X189 2.484907 17.47619 -0.84397007             -3.772261  1  2  1
## X190 2.772589 19.25652 -0.59783700             -3.963316  1  2  2
## X191 2.708050 16.88555 -0.10536052             -3.963316  2  1  1
## X192 3.044522 19.21038 -0.47803580             -4.074542  2  1  2
## X193 3.178054 15.78957 -0.37106368             -3.381395  2  1  1
## X194 2.302585 16.44211 -0.41551544             -4.074542  2  2  1
## X195 3.044522 17.64187 -0.31471074             -3.540459  1  2  1
## X197 3.044522 17.95114  0.00000000             -3.611918  2  2  1
## X198 2.484907 15.75555 -0.46203546             -4.755993  2  1  2
## X200 2.772589 19.40495 -0.51082562             -3.575551  2  2  1
## X201 2.484907 18.08239 -0.22314355             -4.268698  1  2  1
## X202 2.302585 14.23946 -0.69314718             -4.422849  2  2  1
## X205 2.772589 16.93014 -0.54472718             -3.863233  1  2  1
## X208 2.772589 17.96435  0.26236426             -3.649659  2  2  1
## X210 2.772589 16.88555 -0.41551544             -3.473768  2  2  1
## X212 2.772589 15.17262 -0.21072103             -4.342806  2  1  1
## X213 2.708050 16.72003 -0.05129329             -3.611918  2  2  1
## X214 2.995732 16.08955 -0.18632958             -2.956512  1  2  1
## X215 2.302585 17.06257 -0.89159812             -3.963316  1  2  1
## X216 2.708050 17.60073  0.09531018             -4.342806  2  2  1
## X218 2.833213 16.28369  0.33647224             -4.074542  1  2  1
## X219 2.397895 16.55127 -0.41551544             -4.268698  1  2  1
## X220 2.302585 15.40733 -0.44628710             -4.135167  1  2  1
## X223 2.639057 17.14975  0.00000000             -4.135167  2  2  1
## X224 2.639057 17.83137 -0.37106368             -3.729701  1  2  1
## X225 3.135494 20.29296 -0.69314718             -3.473768  1  2  1
## X226 3.091042 21.33654 -0.41551544             -3.442019  1  2  1
## X227 2.708050 18.37736  0.24233051             -3.772261  1  2  1
## X228 2.272126 14.75884 -0.63487827             -4.268698  1  2  1
## X229 2.230014 12.70378 -0.15082289             -4.755993  2  1  1
## X230 2.833213 18.03012 -0.26136476             -3.411248  1  2  2
## X231 2.484907 17.17862 -0.26136476             -3.912023  1  2  1
## X232 2.397895 18.19894 -0.24846136             -4.135167  1  2  2
## X233 2.041220 15.19092 -0.22314355             -4.656463  2  1  1
## X234 2.708050 15.75555 -0.12783337             -4.268698  1  2  2
## X236 2.208274 15.63536 -0.44628710             -4.268698  1  2  1
## X237 2.564949 16.78059  0.00000000             -4.199705  1  2  1
## X239 2.302585 11.83075 -0.82098055             -4.268698  1  2  1
## X240 2.564949 15.58331 -0.47803580             -3.912023  1  2  1
## X241 2.397895 17.88480  0.26236426             -3.912023  1  2  1
## X242 2.995732 14.34213  0.14249286             -3.729701  1  2  1
## X243 2.484907 14.05105  0.18232156             -3.963316  1  2  1
## X244 2.944439 17.43429 -0.43078292             -3.506558  2  2  1
## X245 1.722767 13.50102 -0.77652879             -4.422849  1  2  1
## X246 2.890372 17.23608  0.18232156             -3.473768  1  2  2
## X247 2.151762 16.26768 -0.73396918             -4.342806  2  2  1
## X249 3.044522 19.12912 -0.65392647             -3.270169  2  1  2
## X250 2.639057 17.88480 -0.02020271             -3.772261  2  1  2
## X251 2.564949 17.32157 -0.67334455             -4.017384  2  2  1
## X253 2.944439 17.50402 -0.03045921             -3.411248  1  2  1
## X254 3.637586 22.38015  0.00000000             -3.218876  1  2  1
## X255 2.890372 17.26467  0.00000000             -3.473768  2  2  1
## X256 2.282382 14.83572 -0.84397007             -4.268698  2  2  1
## X257 2.272126 14.89288 -0.63487827             -4.199705  2  2  1
## X258 2.890372 18.73643  0.00000000             -3.296837  2  2  1
## X260 2.639057 17.26467  0.09531018             -4.017384  1  2  1
## X261 2.128232 14.13537 -0.59783700             -4.199705  1  2  1
## X262 2.079442 16.90044 -0.44628710             -4.422849  1  2  1
## X263 2.890372 19.52881  0.26236426             -3.270169  1  2  1
## X264 3.044522 17.51790  0.09531018             -4.074542  2  2  1
## X265 2.639057 17.89810 -0.22314355             -4.422849  1  2  1
## X267 2.944439 18.18606 -0.56211892             -3.352407  2  2  1
## X268 2.564949 18.60184 -0.21072103             -3.963316  1  2  1
## X269 2.397895 16.85569 -0.47803580             -4.509860  2  2  1
## X270 3.178054 18.19894 -0.65392647             -3.729701  1  2  1
## X271 2.944439 18.09542 -0.09431068             -3.442019  2  2  1
## X272 2.484907 18.73643  0.09531018             -4.509860  1  2  2
## X273 3.044522 17.51790 -0.34249031             -4.074542  1  2  1
## X274 2.564949 17.20740 -0.23572233             -3.912023  1  2  1
## X275 2.833213 18.21180 -0.13926207             -3.611918  1  2  2
## X277 2.833213 16.10590  0.18232156             -3.611918  1  2  1
## X278 3.044522 17.61447 -0.08338161             -3.863233  1  2  1
## X279 2.639057 16.39490 -0.21072103             -3.963316  2  2  1
## X281 2.833213 15.90753 -0.47803580             -3.912023  2  2  1
## X282 2.484907 17.12079  0.09531018             -3.540459  2  2  1
## X283 3.091042 21.12839 -0.32850407             -3.649659  1  2  2
## X287 2.302585 17.87147 -0.22314355             -3.540459  1  2  2
## X289 2.397895 14.91184 -0.21072103             -4.342806  1  2  1
## X290 2.564949 14.77813 -0.57981850             -3.729701  1  2  1
## X291 2.292535 15.22740 -0.31471074             -3.729701  1  2  2
## X292 3.218876 19.42759  0.09531018             -4.199705  1  2  1
## X294 2.564949 13.92275 -0.47803580             -4.342806  1  1  2
## X297 2.564949 16.62839 -0.56211892             -4.017384  1  2  1
## X298 2.772589 16.37910 -0.12783337             -3.772261  1  2  1
## X299 2.708050 16.87063 -0.69314718             -3.863233  2  2  1
## X301 2.890372 15.19092  0.00000000             -4.268698  2  2  1
## X302 2.066863 14.40307 -0.19845094             -4.947660  1  2  1
## X303 2.772589 17.76415  0.18232156             -4.074542  1  2  1
## X304 2.708050 17.80454 -0.75502258             -3.688879  2  1  1
## X305 3.135494 21.09010 -0.43078292             -4.017384  1  2  1
## X306 2.995732 19.25652  0.26236426             -3.352407  1  2  2
## X307 2.772589 18.45279  0.18232156             -3.575551  1  2  1
## X308 2.944439 17.92466 -0.10536052             -3.816713  2  2  1
## X311 2.484907 15.42510 -0.18632958             -3.912023  2  2  1
## X312 2.833213 20.78848 -0.05129329             -3.772261  2  1  2
## X313 2.708050 16.41066  0.09531018             -4.268698  1  2  1
## X314 2.708050 16.88555 -0.71334989             -4.268698  1  2  1
## X315 2.833213 16.58220  0.18232156             -3.729701  1  2  1
## X316 2.564949 17.49011 -0.61618614             -4.017384  1  2  1
## X317 2.639057 17.61447 -0.40047757             -3.296837  1  2  1
## X320 2.944439 16.41066  0.47000363             -4.605170  2  2  1
## X321 2.397895 12.70378  0.26236426             -4.635629  1  2  1
## X322 3.178054 17.73712 -0.04082199             -3.575551  1  1  2
## X323 3.135494 18.54002 -0.61618614             -3.352407  1  2  1
## X324 2.484907 15.87400 -0.69314718             -3.473768  2  2  1
## X325 3.044522 18.42771  0.18232156             -3.575551  1  2  2
## X326 2.890372 16.97451 -0.69314718             -4.268698  2  2  1
## X327 2.564949 19.05891 -0.44628710             -3.649659  2  2  1
## X329 2.292535 17.51790 -0.44628710             -3.729701  1  2  1
## X330 2.564949 15.61805  0.20543916             -4.509860  2  2  1
## X331 2.302585 14.54339 -0.47803580             -4.509860  1  2  1
## X332 2.564949 16.36327  0.18232156             -4.342806  1  2  1
## X333 2.944439 22.34608 -0.32850407             -4.074542  2  2  1
## 
## $usekernel
## [1] TRUE
## 
## $varnames
##   [1] "ACE_CD143_Angiotensin_Converti"   "ACTH_Adrenocorticotropic_Hormon" 
##   [3] "AXL"                              "Adiponectin"                     
##   [5] "Alpha_1_Antichymotrypsin"         "Alpha_1_Antitrypsin"             
##   [7] "Alpha_1_Microglobulin"            "Alpha_2_Macroglobulin"           
##   [9] "Angiopoietin_2_ANG_2"             "Angiotensinogen"                 
##  [11] "Apolipoprotein_A_IV"              "Apolipoprotein_A1"               
##  [13] "Apolipoprotein_A2"                "Apolipoprotein_B"                
##  [15] "Apolipoprotein_CI"                "Apolipoprotein_CIII"             
##  [17] "Apolipoprotein_D"                 "Apolipoprotein_E"                
##  [19] "Apolipoprotein_H"                 "B_Lymphocyte_Chemoattractant_BL" 
##  [21] "BMP_6"                            "Beta_2_Microglobulin"            
##  [23] "Betacellulin"                     "C_Reactive_Protein"              
##  [25] "CD40"                             "CD5L"                            
##  [27] "Calbindin"                        "Calcitonin"                      
##  [29] "CgA"                              "Clusterin_Apo_J"                 
##  [31] "Complement_3"                     "Complement_Factor_H"             
##  [33] "Connective_Tissue_Growth_Factor"  "Cortisol"                        
##  [35] "Creatine_Kinase_MB"               "Cystatin_C"                      
##  [37] "EGF_R"                            "EN_RAGE"                         
##  [39] "ENA_78"                           "Eotaxin_3"                       
##  [41] "FAS"                              "FSH_Follicle_Stimulation_Hormon" 
##  [43] "Fas_Ligand"                       "Fatty_Acid_Binding_Protein"      
##  [45] "Ferritin"                         "Fetuin_A"                        
##  [47] "Fibrinogen"                       "GRO_alpha"                       
##  [49] "Gamma_Interferon_induced_Monokin" "Glutathione_S_Transferase_alpha" 
##  [51] "HB_EGF"                           "HCC_4"                           
##  [53] "Hepatocyte_Growth_Factor_HGF"     "I_309"                           
##  [55] "ICAM_1"                           "IGF_BP_2"                        
##  [57] "IL_11"                            "IL_13"                           
##  [59] "IL_16"                            "IL_17E"                          
##  [61] "IL_1alpha"                        "IL_3"                            
##  [63] "IL_4"                             "IL_5"                            
##  [65] "IL_6"                             "IL_6_Receptor"                   
##  [67] "IL_7"                             "IL_8"                            
##  [69] "IP_10_Inducible_Protein_10"       "IgA"                             
##  [71] "Insulin"                          "Kidney_Injury_Molecule_1_KIM_1"  
##  [73] "LOX_1"                            "Leptin"                          
##  [75] "Lipoprotein_a"                    "MCP_1"                           
##  [77] "MCP_2"                            "MIF"                             
##  [79] "MIP_1alpha"                       "MIP_1beta"                       
##  [81] "MMP_2"                            "MMP_3"                           
##  [83] "MMP10"                            "MMP7"                            
##  [85] "Myoglobin"                        "NT_proBNP"                       
##  [87] "NrCAM"                            "Osteopontin"                     
##  [89] "PAI_1"                            "PAPP_A"                          
##  [91] "PLGF"                             "PYY"                             
##  [93] "Pancreatic_polypeptide"           "Prolactin"                       
##  [95] "Prostatic_Acid_Phosphatase"       "Protein_S"                       
##  [97] "Pulmonary_and_Activation_Regulat" "RANTES"                          
##  [99] "Resistin"                         "S100b"                           
## [101] "SGOT"                             "SHBG"                            
## [103] "SOD"                              "Serum_Amyloid_P"                 
## [105] "Sortilin"                         "Stem_Cell_Factor"                
## [107] "TGF_alpha"                        "TIMP_1"                          
## [109] "TNF_RII"                          "TRAIL_R3"                        
## [111] "TTR_prealbumin"                   "Tamm_Horsfall_Protein_THP"       
## [113] "Thrombomodulin"                   "Thrombopoietin"                  
## [115] "Thymus_Expressed_Chemokine_TECK"  "Thyroid_Stimulating_Hormone"     
## [117] "Thyroxine_Binding_Globulin"       "Tissue_Factor"                   
## [119] "Transferrin"                      "Trefoil_Factor_3_TFF3"           
## [121] "VCAM_1"                           "VEGF"                            
## [123] "Vitronectin"                      "von_Willebrand_Factor"           
## [125] "E4"                               "E3"                              
## [127] "E2"                              
## 
## $xNames
##   [1] "ACE_CD143_Angiotensin_Converti"   "ACTH_Adrenocorticotropic_Hormon" 
##   [3] "AXL"                              "Adiponectin"                     
##   [5] "Alpha_1_Antichymotrypsin"         "Alpha_1_Antitrypsin"             
##   [7] "Alpha_1_Microglobulin"            "Alpha_2_Macroglobulin"           
##   [9] "Angiopoietin_2_ANG_2"             "Angiotensinogen"                 
##  [11] "Apolipoprotein_A_IV"              "Apolipoprotein_A1"               
##  [13] "Apolipoprotein_A2"                "Apolipoprotein_B"                
##  [15] "Apolipoprotein_CI"                "Apolipoprotein_CIII"             
##  [17] "Apolipoprotein_D"                 "Apolipoprotein_E"                
##  [19] "Apolipoprotein_H"                 "B_Lymphocyte_Chemoattractant_BL" 
##  [21] "BMP_6"                            "Beta_2_Microglobulin"            
##  [23] "Betacellulin"                     "C_Reactive_Protein"              
##  [25] "CD40"                             "CD5L"                            
##  [27] "Calbindin"                        "Calcitonin"                      
##  [29] "CgA"                              "Clusterin_Apo_J"                 
##  [31] "Complement_3"                     "Complement_Factor_H"             
##  [33] "Connective_Tissue_Growth_Factor"  "Cortisol"                        
##  [35] "Creatine_Kinase_MB"               "Cystatin_C"                      
##  [37] "EGF_R"                            "EN_RAGE"                         
##  [39] "ENA_78"                           "Eotaxin_3"                       
##  [41] "FAS"                              "FSH_Follicle_Stimulation_Hormon" 
##  [43] "Fas_Ligand"                       "Fatty_Acid_Binding_Protein"      
##  [45] "Ferritin"                         "Fetuin_A"                        
##  [47] "Fibrinogen"                       "GRO_alpha"                       
##  [49] "Gamma_Interferon_induced_Monokin" "Glutathione_S_Transferase_alpha" 
##  [51] "HB_EGF"                           "HCC_4"                           
##  [53] "Hepatocyte_Growth_Factor_HGF"     "I_309"                           
##  [55] "ICAM_1"                           "IGF_BP_2"                        
##  [57] "IL_11"                            "IL_13"                           
##  [59] "IL_16"                            "IL_17E"                          
##  [61] "IL_1alpha"                        "IL_3"                            
##  [63] "IL_4"                             "IL_5"                            
##  [65] "IL_6"                             "IL_6_Receptor"                   
##  [67] "IL_7"                             "IL_8"                            
##  [69] "IP_10_Inducible_Protein_10"       "IgA"                             
##  [71] "Insulin"                          "Kidney_Injury_Molecule_1_KIM_1"  
##  [73] "LOX_1"                            "Leptin"                          
##  [75] "Lipoprotein_a"                    "MCP_1"                           
##  [77] "MCP_2"                            "MIF"                             
##  [79] "MIP_1alpha"                       "MIP_1beta"                       
##  [81] "MMP_2"                            "MMP_3"                           
##  [83] "MMP10"                            "MMP7"                            
##  [85] "Myoglobin"                        "NT_proBNP"                       
##  [87] "NrCAM"                            "Osteopontin"                     
##  [89] "PAI_1"                            "PAPP_A"                          
##  [91] "PLGF"                             "PYY"                             
##  [93] "Pancreatic_polypeptide"           "Prolactin"                       
##  [95] "Prostatic_Acid_Phosphatase"       "Protein_S"                       
##  [97] "Pulmonary_and_Activation_Regulat" "RANTES"                          
##  [99] "Resistin"                         "S100b"                           
## [101] "SGOT"                             "SHBG"                            
## [103] "SOD"                              "Serum_Amyloid_P"                 
## [105] "Sortilin"                         "Stem_Cell_Factor"                
## [107] "TGF_alpha"                        "TIMP_1"                          
## [109] "TNF_RII"                          "TRAIL_R3"                        
## [111] "TTR_prealbumin"                   "Tamm_Horsfall_Protein_THP"       
## [113] "Thrombomodulin"                   "Thrombopoietin"                  
## [115] "Thymus_Expressed_Chemokine_TECK"  "Thyroid_Stimulating_Hormone"     
## [117] "Thyroxine_Binding_Globulin"       "Tissue_Factor"                   
## [119] "Transferrin"                      "Trefoil_Factor_3_TFF3"           
## [121] "VCAM_1"                           "VEGF"                            
## [123] "Vitronectin"                      "von_Willebrand_Factor"           
## [125] "E4"                               "E3"                              
## [127] "E2"                              
## 
## $problemType
## [1] "Classification"
## 
## $tuneValue
##   fL usekernel adjust
## 2  0      TRUE      1
## 
## $obsLevels
## [1] "Impaired" "Control" 
## attr(,"ordered")
## [1] FALSE
## 
## $param
## list()
## 
## attr(,"class")
## [1] "NaiveBayes"
NB_FULL_Tune$results
##   usekernel fL adjust       ROC      Sens      Spec  Accuracy     Kappa
## 1     FALSE  0      1 0.7333788 0.6089286 0.7363158 0.7006410 0.3162972
## 2      TRUE  0      1 0.7390414 0.5821429 0.7518421 0.7043549 0.3064041
##       ROCSD    SensSD    SpecSD AccuracySD   KappaSD
## 1 0.1214378 0.2417062 0.1481122  0.1188615 0.2321727
## 2 0.1170132 0.2432769 0.1230640  0.1032011 0.2332805
(NB_FULL_Train_ROCCurveAUC <- NB_FULL_Tune$results[NB_FULL_Tune$results$usekernel==NB_FULL_Tune$bestTune$usekernel,
                                                   c("ROC")])
## [1] 0.7390414
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
NB_FULL_Test <- data.frame(NB_FULL_Observed = PMA_PreModelling_Test$Class,
                      NB_FULL_Predicted = predict(NB_FULL_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
NB_FULL_Test_ROC <- roc(response = NB_FULL_Test$NB_FULL_Observed,
                        predictor = NB_FULL_Test$NB_FULL_Predicted.Impaired,
                        levels = rev(levels(NB_FULL_Test$NB_FULL_Observed)))

(NB_FULL_Test_ROCCurveAUC <- auc(NB_FULL_Test_ROC)[1])
## [1] 0.6793981

1.5.4 Logistic Regression Without RFE (LR_FULL)


Logistic Regression models the relationship between the probability of an event (among two outcome levels) by having the log-odds of the event be a linear combination of a set of predictors weighted by their respective parameter estimates. The parameters are estimated via maximum likelihood estimation by testing different values through multiple iterations to optimize for the best fit of log odds. All of these iterations produce the log likelihood function, and logistic regression seeks to maximize this function to find the best parameter estimates. Given the optimal parameters, the conditional probabilities for each observation can be calculated, logged, and summed together to yield a predicted probability.

[A] The logistic regression model from the stats package was implemented without recursive feature elimination through the caret package.

[B] The model does not contain any hyperparameter.

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] AUROC = 0.70733

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] Cortisol variable (numeric)
     [D.2] Apolipoprotein_A1 variable (numeric)
     [D.3] MCP_2 variable (numeric)
     [D.4] SOD variable (numeric)
     [D.5] Fatty_Acid_Binding_Protein variable (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.77199

Code Chunk | Output
##################################
# Running the logistic regression model
# by setting the caret method to 'glm'
##################################
set.seed(12345678)
LR_FULL_Tune <- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                        y = PMA_PreModelling_Train$Class,
                        method = "glm",
                        metric = "ROC",
                        trControl = KFold_TrainControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
LR_FULL_Tune
## Generalized Linear Model 
## 
## 267 samples
## 127 predictors
##   2 classes: 'Impaired', 'Control' 
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ... 
## Resampling results:
## 
##   ROC        Sens       Spec       Accuracy   Kappa    
##   0.7073308  0.5785714  0.7626316  0.7121998  0.3195053
LR_FULL_Tune$finalModel
## 
## Call:  NULL
## 
## Coefficients:
##                      (Intercept)    ACE_CD143_Angiotensin_Converti  
##                        388.06098                          18.32098  
##  ACTH_Adrenocorticotropic_Hormon                               AXL  
##                        -12.20990                          -3.45911  
##                      Adiponectin          Alpha_1_Antichymotrypsin  
##                          2.32446                          14.80819  
##              Alpha_1_Antitrypsin             Alpha_1_Microglobulin  
##                          1.16444                         -36.94176  
##            Alpha_2_Macroglobulin              Angiopoietin_2_ANG_2  
##                          0.15646                         -20.14245  
##                  Angiotensinogen               Apolipoprotein_A_IV  
##                         15.06727                          -5.74660  
##                Apolipoprotein_A1                 Apolipoprotein_A2  
##                         65.72600                          27.28822  
##                 Apolipoprotein_B                 Apolipoprotein_CI  
##                         -3.55107                         -30.47327  
##              Apolipoprotein_CIII                  Apolipoprotein_D  
##                        -11.37076                         -16.53210  
##                 Apolipoprotein_E                  Apolipoprotein_H  
##                          9.03550                          -6.17398  
##  B_Lymphocyte_Chemoattractant_BL                             BMP_6  
##                         14.70988                         -10.29325  
##             Beta_2_Microglobulin                      Betacellulin  
##                         40.61789                          -0.49887  
##               C_Reactive_Protein                              CD40  
##                         -8.22874                         -27.50459  
##                             CD5L                         Calbindin  
##                         -4.14634                          -0.61489  
##                       Calcitonin                               CgA  
##                          2.92788                           0.05034  
##                  Clusterin_Apo_J                      Complement_3  
##                        -63.28971                           0.04768  
##              Complement_Factor_H   Connective_Tissue_Growth_Factor  
##                         11.86463                         -40.70041  
##                         Cortisol                Creatine_Kinase_MB  
##                         -3.89047                          13.21449  
##                       Cystatin_C                             EGF_R  
##                         49.19880                           1.26931  
##                          EN_RAGE                            ENA_78  
##                         -0.13826                         133.68092  
##                        Eotaxin_3                               FAS  
##                         -0.21024                          20.80349  
##  FSH_Follicle_Stimulation_Hormon                        Fas_Ligand  
##                         28.17017                           2.03818  
##       Fatty_Acid_Binding_Protein                          Ferritin  
##                        -20.21994                           3.11387  
##                         Fetuin_A                        Fibrinogen  
##                        -64.75019                          -3.78237  
##                        GRO_alpha  Gamma_Interferon_induced_Monokin  
##                       -119.57073                          36.33642  
##  Glutathione_S_Transferase_alpha                            HB_EGF  
##                         14.56088                           3.55343  
##                            HCC_4      Hepatocyte_Growth_Factor_HGF  
##                        -10.83310                         -66.62893  
##                            I_309                            ICAM_1  
##                         34.30972                           0.33369  
##                         IGF_BP_2                             IL_11  
##                         -3.23873                           0.05103  
##                            IL_13                             IL_16  
##                       -197.21726                          -3.36357  
##                           IL_17E                         IL_1alpha  
##                          5.23043                          -6.53111  
##                             IL_3                              IL_4  
##                         -1.35180                           4.18246  
##                             IL_5                              IL_6  
##                         17.16601                           3.03229  
##                    IL_6_Receptor                              IL_7  
##                         -9.96758                           5.91157  
##                             IL_8        IP_10_Inducible_Protein_10  
##                        -59.02272                          16.16684  
##                              IgA                           Insulin  
##                          2.72264                         -31.22159  
##   Kidney_Injury_Molecule_1_KIM_1                             LOX_1  
##                        108.41959                          10.84599  
##                           Leptin                     Lipoprotein_a  
##                         22.72144                           5.35564  
##                            MCP_1                             MCP_2  
##                          6.80700                         -20.31103  
##                              MIF                        MIP_1alpha  
##                          3.02394                           6.99887  
##                        MIP_1beta                             MMP_2  
##                        -16.77570                         -10.02623  
##                            MMP_3                             MMP10  
##                         -2.94442                         -18.03783  
##                             MMP7                         Myoglobin  
##                         -2.01746                           3.74592  
##                        NT_proBNP                             NrCAM  
##                        -21.39214                          52.65219  
##                      Osteopontin                             PAI_1  
##                        -40.34847                         -33.94504  
##                           PAPP_A                              PLGF  
##                          9.86822                           8.89102  
##                              PYY            Pancreatic_polypeptide  
##                        -29.52340                          -2.33873  
##                        Prolactin        Prostatic_Acid_Phosphatase  
##                        -15.99474                         -22.41757  
##                        Protein_S  Pulmonary_and_Activation_Regulat  
##                         27.50578                         -19.51313  
##                           RANTES                          Resistin  
##                         54.11654                           0.71871  
##                            S100b                              SGOT  
##                         33.96157                          11.46625  
##                             SHBG                               SOD  
##                          4.30953                         -88.42860  
##                  Serum_Amyloid_P                          Sortilin  
##                          8.34079                          -9.71997  
##                 Stem_Cell_Factor                         TGF_alpha  
##                         36.95818                         -13.10608  
##                           TIMP_1                           TNF_RII  
##                          5.55468                         -58.39813  
##                         TRAIL_R3                    TTR_prealbumin  
##                        -22.47826                          26.23333  
##        Tamm_Horsfall_Protein_THP                    Thrombomodulin  
##                       -253.91848                          45.05838  
##                   Thrombopoietin   Thymus_Expressed_Chemokine_TECK  
##                        -53.44490                          -2.59744  
##      Thyroid_Stimulating_Hormone        Thyroxine_Binding_Globulin  
##                         -5.79247                         -26.53832  
##                    Tissue_Factor                       Transferrin  
##                          3.95910                          35.13990  
##            Trefoil_Factor_3_TFF3                            VCAM_1  
##                         13.94216                         -11.77542  
##                             VEGF                       Vitronectin  
##                         10.17582                          27.52795  
##            von_Willebrand_Factor                                E4  
##                          9.14891                           0.93127  
##                               E3                                E2  
##                          3.42334                           9.53015  
## 
## Degrees of Freedom: 266 Total (i.e. Null);  139 Residual
## Null Deviance:       313.3 
## Residual Deviance: 6.654e-09     AIC: 256
LR_FULL_Tune$results
##   parameter       ROC      Sens      Spec  Accuracy     Kappa      ROCSD
## 1      none 0.7073308 0.5785714 0.7626316 0.7121998 0.3195053 0.06575141
##      SensSD     SpecSD AccuracySD  KappaSD
## 1 0.1453649 0.08268725 0.06290438 0.141295
(LR_FULL_Train_ROCCurveAUC <- LR_FULL_Tune$results[,c("ROC")])
## [1] 0.7073308
##################################
# Identifying and plotting the
# best model predictors
##################################
LR_FULL_VarImp <- varImp(LR_FULL_Tune, scale = TRUE)
plot(LR_FULL_VarImp,
     top=25,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Logistic Regression",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
LR_FULL_Test <- data.frame(LR_FULL_Observed = PMA_PreModelling_Test$Class,
                      LR_FULL_Predicted = predict(LR_FULL_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
LR_FULL_Test_ROC <- roc(response = LR_FULL_Test$LR_FULL_Observed,
                        predictor = LR_FULL_Test$LR_FULL_Predicted.Impaired,
                        levels = rev(levels(LR_FULL_Test$LR_FULL_Observed)))

(LR_FULL_Test_ROCCurveAUC <- auc(LR_FULL_Test_ROC)[1])
## [1] 0.7719907

1.5.5 Support Vector Machine - Radial Basis Function Kernel Without RFE (SVM_R_FULL)


Support Vector Machine plots each observation in an N-dimensional space corresponding to the number of features in the data set and finds a hyperplane that maximally separates the different classes by a maximally large margin (which is defined as the distance between the hyperplane and the closest data points from each class). The algorithm applies kernel transformation by mapping non-linearly separable data using the similarities between the points in a high-dimensional feature space for improved discrimination.

[A] The support vector machine (radial basis function kernel) model from the kernlab package was implemented without recursive feature elimination through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] sigma = sigma held constant at a value of 0.00455
     [B.2] C = cost made to vary across a range of 10 default values

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves sigma=0.00455 and C=8
     [C.2] AUROC = 0.85690

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.82060

Code Chunk | Output
##################################
# Running the support vector machine (radial basis function kernel) model
# by setting the caret method to 'svmRadial'
##################################
set.seed(12345678)
SVM_R_FULL_Tune <- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                           y = PMA_PreModelling_Train$Class,
                           method = "svmRadial",
                           metric = "ROC",
                           tuneLength = 10,
                           preProc = c("center", "scale"),
                           trControl = KFold_TrainControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_R_FULL_Tune
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 267 samples
## 127 predictors
##   2 classes: 'Impaired', 'Control' 
## 
## Pre-processing: centered (127), scaled (127) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ... 
## Resampling results across tuning parameters:
## 
##   C       ROC        Sens       Spec       Accuracy   Kappa    
##     0.25  0.8156015  0.5660714  0.8913158  0.8021164  0.4673266
##     0.50  0.8156015  0.5660714  0.8913158  0.8021164  0.4673266
##     1.00  0.8218233  0.5500000  0.9018421  0.8059727  0.4665589
##     2.00  0.8366494  0.5392857  0.9328947  0.8249186  0.4988373
##     4.00  0.8524436  0.4803571  0.9484211  0.8213573  0.4700460
##     8.00  0.8569079  0.4946429  0.9378947  0.8173687  0.4713105
##    16.00  0.8555263  0.4517857  0.9428947  0.8092593  0.4385548
##    32.00  0.8555263  0.4660714  0.9431579  0.8133801  0.4515947
##    64.00  0.8555263  0.5089286  0.9378947  0.8209300  0.4850754
##   128.00  0.8555263  0.4785714  0.9171053  0.7982804  0.4292607
## 
## Tuning parameter 'sigma' was held constant at a value of 0.004554698
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.004554698 and C = 8.
SVM_R_FULL_Tune$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 8 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.00455469842134126 
## 
## Number of Support Vectors : 199 
## 
## Objective Function Value : -215.1357 
## Training error : 0 
## Probability model included.
SVM_R_FULL_Tune$results
##          sigma      C       ROC      Sens      Spec  Accuracy     Kappa
## 1  0.004554698   0.25 0.8156015 0.5660714 0.8913158 0.8021164 0.4673266
## 2  0.004554698   0.50 0.8156015 0.5660714 0.8913158 0.8021164 0.4673266
## 3  0.004554698   1.00 0.8218233 0.5500000 0.9018421 0.8059727 0.4665589
## 4  0.004554698   2.00 0.8366494 0.5392857 0.9328947 0.8249186 0.4988373
## 5  0.004554698   4.00 0.8524436 0.4803571 0.9484211 0.8213573 0.4700460
## 6  0.004554698   8.00 0.8569079 0.4946429 0.9378947 0.8173687 0.4713105
## 7  0.004554698  16.00 0.8555263 0.4517857 0.9428947 0.8092593 0.4385548
## 8  0.004554698  32.00 0.8555263 0.4660714 0.9431579 0.8133801 0.4515947
## 9  0.004554698  64.00 0.8555263 0.5089286 0.9378947 0.8209300 0.4850754
## 10 0.004554698 128.00 0.8555263 0.4785714 0.9171053 0.7982804 0.4292607
##         ROCSD    SensSD     SpecSD AccuracySD   KappaSD
## 1  0.12019683 0.2363103 0.06636648 0.06853518 0.2022444
## 2  0.12019683 0.2363103 0.06636648 0.06853518 0.2022444
## 3  0.11799422 0.2392531 0.05594882 0.06404731 0.1977729
## 4  0.10578558 0.2601129 0.04920498 0.06403128 0.2220275
## 5  0.09773967 0.2545574 0.03424874 0.07658472 0.2535540
## 6  0.09104174 0.2247842 0.04111032 0.05779809 0.1972180
## 7  0.09317267 0.2084268 0.03897443 0.05440848 0.1858882
## 8  0.09317267 0.2219927 0.03823998 0.05976578 0.2011546
## 9  0.09317267 0.2246580 0.04801700 0.07321576 0.2297742
## 10 0.09317267 0.1919216 0.04999615 0.05274999 0.1644813
(SVM_R_FULL_Train_ROCCurveAUC <- SVM_R_FULL_Tune$results[SVM_R_FULL_Tune$results$C==SVM_R_FULL_Tune$bestTune$C,
                                                         c("ROC")])
## [1] 0.8569079
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
SVM_R_FULL_Test <- data.frame(SVM_R_FULL_Observed = PMA_PreModelling_Test$Class,
                      SVM_R_FULL_Predicted = predict(SVM_R_FULL_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
SVM_R_FULL_Test_ROC <- roc(response = SVM_R_FULL_Test$SVM_R_FULL_Observed,
                        predictor = SVM_R_FULL_Test$SVM_R_FULL_Predicted.Impaired,
                        levels = rev(levels(SVM_R_FULL_Test$SVM_R_FULL_Observed)))

(SVM_R_FULL_Test_ROCCurveAUC <- auc(SVM_R_FULL_Test_ROC)[1])
## [1] 0.8206019

1.5.6 K-Nearest Neighbors Without RFE (KNN_FULL)


K-Nearest Neighbors works on the similarity principle which assumes that every data point falling in near to each other belong to the same class. The algorithm therefore assigns an unclassified sample point the classification of the nearest of a set of previously classified points.

[A] The k-nearest neighbors model was implemented without recursive feature elimination through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] k = number of neighbors made to vary across a range of 10 default values

[C] The cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves k=23
     [C.2] AUROC = 0.79886

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.79167

Code Chunk | Output
##################################
# Running the k-nearest neighbors model
# by setting the caret method to 'knn'
##################################
set.seed(12345678)
KNN_FULL_Tune <- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                         y = PMA_PreModelling_Train$Class,
                         method = "knn",
                         metric = "ROC",
                         tuneLength = 10,
                         preProc = c("center", "scale"),
                         trControl = KFold_TrainControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
KNN_FULL_Tune
## k-Nearest Neighbors 
## 
## 267 samples
## 127 predictors
##   2 classes: 'Impaired', 'Control' 
## 
## Pre-processing: centered (127), scaled (127) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ... 
## Resampling results across tuning parameters:
## 
##   k   ROC        Sens       Spec       Accuracy   Kappa    
##    5  0.6983788  0.3910714  0.8555263  0.7277066  0.2512403
##    7  0.7346217  0.3607143  0.8865789  0.7423891  0.2720487
##    9  0.7408318  0.3196429  0.9278947  0.7609381  0.2829851
##   11  0.7322462  0.3196429  0.9126316  0.7500916  0.2669541
##   13  0.7658271  0.3160714  0.9534211  0.7794770  0.3195973
##   15  0.7627961  0.2642857  0.9484211  0.7612129  0.2527805
##   17  0.7790202  0.2482143  0.9586842  0.7647843  0.2455628
##   19  0.7988322  0.2500000  0.9589474  0.7649267  0.2490637
##   21  0.7975752  0.2642857  0.9794737  0.7836081  0.2974036
##   23  0.7988651  0.2214286  0.9744737  0.7687831  0.2380964
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 23.
KNN_FULL_Tune$finalModel
## 23-nearest neighbor model
## Training set outcome distribution:
## 
## Impaired  Control 
##       73      194
KNN_FULL_Tune$results
##     k       ROC      Sens      Spec  Accuracy     Kappa     ROCSD    SensSD
## 1   5 0.6983788 0.3910714 0.8555263 0.7277066 0.2512403 0.1691065 0.2954025
## 2   7 0.7346217 0.3607143 0.8865789 0.7423891 0.2720487 0.1571726 0.2204471
## 3   9 0.7408318 0.3196429 0.9278947 0.7609381 0.2829851 0.1495604 0.1953343
## 4  11 0.7322462 0.3196429 0.9126316 0.7500916 0.2669541 0.1437392 0.1414740
## 5  13 0.7658271 0.3160714 0.9534211 0.7794770 0.3195973 0.1186339 0.1588405
## 6  15 0.7627961 0.2642857 0.9484211 0.7612129 0.2527805 0.1254370 0.1838120
## 7  17 0.7790202 0.2482143 0.9586842 0.7647843 0.2455628 0.1166273 0.1949711
## 8  19 0.7988322 0.2500000 0.9589474 0.7649267 0.2490637 0.1221173 0.1874764
## 9  21 0.7975752 0.2642857 0.9794737 0.7836081 0.2974036 0.1217746 0.1838120
## 10 23 0.7988651 0.2214286 0.9744737 0.7687831 0.2380964 0.1149696 0.2025909
##        SpecSD AccuracySD   KappaSD
## 1  0.07537176 0.12825365 0.3645445
## 2  0.07874682 0.10527834 0.2954716
## 3  0.05564751 0.07468878 0.2398829
## 4  0.05897190 0.05920734 0.1581750
## 5  0.05168818 0.04777909 0.1595109
## 6  0.05928942 0.06024148 0.1921446
## 7  0.04756376 0.05033696 0.1912615
## 8  0.04050694 0.05296725 0.1931351
## 9  0.02651387 0.05660022 0.2105880
## 10 0.03578367 0.06781507 0.2476633
(KNN_FULL_Train_ROCCurveAUC <- KNN_FULL_Tune$results[KNN_FULL_Tune$results$k==KNN_FULL_Tune$bestTune$k,
                                                         c("ROC")])
## [1] 0.7988651
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
KNN_FULL_Test <- data.frame(KNN_FULL_Observed = PMA_PreModelling_Test$Class,
                      KNN_FULL_Predicted = predict(KNN_FULL_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
KNN_FULL_Test_ROC <- roc(response = KNN_FULL_Test$KNN_FULL_Observed,
                        predictor = KNN_FULL_Test$KNN_FULL_Predicted.Impaired,
                        levels = rev(levels(KNN_FULL_Test$KNN_FULL_Observed)))

(KNN_FULL_Test_ROCCurveAUC <- auc(KNN_FULL_Test_ROC)[1])
## [1] 0.7916667

1.5.7 Random Forest With RFE (RF_RFE)


Random Forest is an ensemble learning method made up of a large set of small decision trees called estimators, with each producing its own prediction. The random forest model aggregates the predictions of the estimators to produce a more accurate prediction. The algorithm involves bootstrap aggregating (where smaller subsets of the training data are repeatedly subsampled with replacement), random subspacing (where a subset of features are sampled and used to train each individual estimator), estimator training (where unpruned decision trees are formulated for each estimator) and inference by aggregating the predictions of all estimators.

Recursive Feature Elimination is a wrapper-style feature selection algorithm which searches for a subset of features by starting with all features in the training data set and successfully removing features until the desired number remains. The algorithm repeatedly fits a given machine learning algorithm used in the core of the model, ranks features by importance, discards the least important features, and re-fits the model. Features are scored either using importance scores relevant to the provided machine learning model or by applying statistical methods.

[A] The random forest model from the randomForest package was implemented with recursive feature elimination through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mtry = number of randomly selected predictors held constant at a value of 6

[C] Recursive feature elimination was applied across a range of variable subset sizes ranging from 1 to 127:
     [C.1] The variable subset with the best cross-validated performance was 41 with the top 5 variables identified as:
            [C.1.1] MMP10 variable (numeric)
            [C.1.2] Cystatin_C variable (numeric)
            [C.1.3] TRAIL_R3 variable (numeric)
            [C.1.4] PAI_1 variable (numeric)
            [C.1.5] GRO_alpha variable (numeric)

[D] The cross-validated model performance of the final model is summarized as follows:
     [D.1] Final model configuration involves mtry=11 and variable subset=41
     [D.2] AUROC = 0.81534

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.84201

Code Chunk | Output
##################################
# Running the random forest model
# by setting the caret method to 'rf'
# with implementation of recursive feature elimination
##################################
KFold_RFEControl$functions <- rfFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary

set.seed(12345678)
RF_RFE_Tune <- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                          y = PMA_PreModelling_Train$Class,
                          sizes = VariableSubset,
                          metric = "ROC",
                          ntree = 100,
                          rfeControl = KFold_RFEControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
RF_RFE_Tune
## 
## Recursive feature selection
## 
## Outer resampling method: Cross-Validated (10 fold) 
## 
## Resampling performance over subset size:
## 
##  Variables    ROC   Sens   Spec Accuracy  Kappa  ROCSD SensSD  SpecSD
##          1 0.5659 0.3143 0.8287   0.6883 0.1559 0.1200 0.1935 0.12183
##         21 0.7939 0.3625 0.9432   0.7839 0.3501 0.1300 0.1882 0.05190
##         41 0.8153 0.2786 0.9589   0.7733 0.2720 0.1111 0.2618 0.05246
##         61 0.7913 0.3339 0.9692   0.7954 0.3590 0.1326 0.2064 0.04330
##         81 0.8069 0.3357 0.9589   0.7881 0.3402 0.1237 0.2354 0.05246
##        101 0.7845 0.3446 0.9639   0.7950 0.3566 0.1215 0.2257 0.04232
##        121 0.7938 0.3161 0.9379   0.7686 0.2903 0.1082 0.2115 0.05845
##        127 0.7805 0.2518 0.9587   0.7652 0.2488 0.1221 0.2066 0.04058
##  AccuracySD KappaSD Selected
##     0.09918  0.2561         
##     0.05994  0.2040         
##     0.08411  0.2996        *
##     0.07272  0.2420         
##     0.07653  0.2597         
##     0.05929  0.2232         
##     0.05791  0.2021         
##     0.06769  0.2405         
## 
## The top 5 variables (out of 41):
##    MMP10, Cystatin_C, TRAIL_R3, PAI_1, GRO_alpha
RF_RFE_Tune$fit
## 
## Call:
##  randomForest(x = x, y = y, ntree = 100, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 100
## No. of variables tried at each split: 6
## 
##         OOB estimate of  error rate: 21.35%
## Confusion matrix:
##          Impaired Control class.error
## Impaired       32      41  0.56164384
## Control        16     178  0.08247423
RF_RFE_Tune$results
##   Variables       ROC      Sens      Spec  Accuracy     Kappa     ROCSD
## 1         1 0.5659234 0.3142857 0.8286842 0.6882784 0.1558500 0.1199506
## 2        21 0.7938534 0.3625000 0.9431579 0.7838726 0.3500941 0.1299852
## 3        41 0.8153477 0.2785714 0.9589474 0.7733109 0.2719906 0.1111441
## 4        61 0.7912758 0.3339286 0.9692105 0.7954212 0.3590385 0.1325685
## 5        81 0.8068515 0.3357143 0.9589474 0.7881359 0.3401538 0.1237378
## 6       101 0.7844901 0.3446429 0.9639474 0.7949939 0.3566195 0.1214807
## 7       121 0.7938252 0.3160714 0.9378947 0.7686304 0.2903298 0.1082441
## 8       127 0.7804652 0.2517857 0.9586842 0.7652015 0.2487579 0.1220921
##      SensSD     SpecSD AccuracySD   KappaSD
## 1 0.1934661 0.12182850 0.09917501 0.2561487
## 2 0.1882402 0.05189840 0.05994328 0.2040432
## 3 0.2617965 0.05245878 0.08411383 0.2995929
## 4 0.2063769 0.04329549 0.07271831 0.2419879
## 5 0.2353713 0.05245878 0.07653029 0.2597450
## 6 0.2257279 0.04232490 0.05929101 0.2231779
## 7 0.2114646 0.05845292 0.05790773 0.2021318
## 8 0.2066171 0.04058001 0.06768834 0.2404506
(RF_RFE_Train_ROCCurveAUC <- RF_RFE_Tune$results[RF_RFE_Tune$results$ROC==max(RF_RFE_Tune$results$ROC),
                                                       c("ROC")])
## [1] 0.8153477
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
RF_RFE_Test <- data.frame(RF_RFE_Observed = PMA_PreModelling_Test$Class,
                      RF_RFE_Predicted = predict(RF_RFE_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
RF_RFE_Test_ROC <- roc(response = RF_RFE_Test$RF_RFE_Observed,
                        predictor = RF_RFE_Test$RF_RFE_Predicted.Impaired,
                        levels = rev(levels(RF_RFE_Test$RF_RFE_Observed)))

(RF_RFE_Test_ROCCurveAUC <- auc(RF_RFE_Test_ROC)[1])
## [1] 0.8420139

1.5.8 Linear Discriminant Analysis With RFE (LDA_RFE)


Linear Discriminant Analysis finds a linear combination of features that best separates the classes in a data set by projecting the data onto a lower-dimensional space that maximizes the separation between the classes. The algorithm searches for a set of linear discriminants that maximize the ratio of between-class variance to within-class variance by evaluating directions in the feature space that best separate the different classes of data. LDA assumes that the data has a Gaussian distribution and that the covariance matrices of the different classes are equal, in addition to the data being linearly separable by the presence of a linear decision boundary can accurately classify the different classes.

Recursive Feature Elimination is a wrapper-style feature selection algorithm which searches for a subset of features by starting with all features in the training data set and successfully removing features until the desired number remains. The algorithm repeatedly fits a given machine learning algorithm used in the core of the model, ranks features by importance, discards the least important features, and re-fits the model. Features are scored either using importance scores relevant to the provided machine learning model or by applying statistical methods.

[A] The linear discriminant analysis model from the MASS package was implemented with recursive feature elimination through the caret package.

[B] The model does not contain any hyperparameter.

[C] Recursive feature elimination was applied across a range of variable subset sizes ranging from 1 to 127:
     [C.1] The variable subset with the best cross-validated performance was 81 with the top 5 variables identified as:
            [C.1.1] MMP10 variable (numeric)
            [C.1.2] GRO_alpha variable (numeric)
            [C.1.3] TRAIL_R3 variable (numeric)
            [C.1.4] Fibrinogen variable (numeric)
            [C.1.5] PAI_1 variable (numeric)

[D] The cross-validated model performance of the final model is summarized as follows:
     [D.1] Final model configuration involves variable subset=81
     [D.2] AUROC = 0.83569

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.85301

Code Chunk | Output
##################################
# Running the linear discriminant analysis model
# by setting the caret method to 'lda'
# with implementation of recursive feature elimination
##################################
KFold_RFEControl$functions <- ldaFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary

set.seed(12345678)
LDA_RFE_Tune <- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                           y = PMA_PreModelling_Train$Class,
                           sizes = VariableSubset,
                           metric = "ROC",
                           tol = 1.0e-12,
                           rfeControl = KFold_RFEControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
LDA_RFE_Tune
## 
## Recursive feature selection
## 
## Outer resampling method: Cross-Validated (10 fold) 
## 
## Resampling performance over subset size:
## 
##  Variables    ROC   Sens   Spec Accuracy  Kappa   ROCSD  SensSD  SpecSD
##          1 0.7185 0.1536 0.9537   0.7343 0.1316 0.09278 0.12576 0.03870
##         21 0.7659 0.4714 0.8908   0.7756 0.3780 0.13447 0.24313 0.07164
##         41 0.8337 0.6357 0.8913   0.8212 0.5283 0.10420 0.24946 0.05791
##         61 0.8338 0.6054 0.8916   0.8131 0.5147 0.07940 0.17220 0.07928
##         81 0.8357 0.6304 0.8647   0.8012 0.4961 0.06676 0.14484 0.06700
##        101 0.7910 0.6018 0.8342   0.7711 0.4318 0.06160 0.10103 0.06039
##        121 0.8175 0.6304 0.8037   0.7564 0.4166 0.05993 0.09185 0.07279
##        127 0.8015 0.6429 0.8142   0.7675 0.4377 0.07919 0.12959 0.05583
##  AccuracySD KappaSD Selected
##     0.03391  0.1362         
##     0.07717  0.2363         
##     0.08662  0.2503         
##     0.08582  0.2162         
##     0.04516  0.1091        *
##     0.04707  0.1051         
##     0.05361  0.1054         
##     0.05778  0.1371         
## 
## The top 5 variables (out of 81):
##    MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
LDA_RFE_Tune$fit
## Call:
## lda(x, y, tol = 1e-12)
## 
## Prior probabilities of groups:
##  Impaired   Control 
## 0.2734082 0.7265918 
## 
## Group means:
##              MMP10 GRO_alpha   TRAIL_R3 Fibrinogen       PAI_1      MMP7
## Impaired -3.404275  1.399543 -0.4163806  -7.090535 0.275440319 -3.156452
## Control  -3.721335  1.370087 -0.5856845  -7.456059 0.002927648 -4.027631
##          NT_proBNP       MIF Pancreatic_polypeptide        FAS Eotaxin_3
## Impaired  4.720840 -1.724998              0.3059723 -0.3996292  64.00000
## Control   4.488264 -1.916871             -0.1333379 -0.5778808  55.97938
##          Gamma_Interferon_induced_Monokin Thymus_Expressed_Chemokine_TECK
## Impaired                         2.829613                        4.152730
## Control                          2.769219                        3.733299
##             TNF_RII Alpha_1_Antitrypsin IGF_BP_2 Creatine_Kinase_MB    MCP_2
## Impaired -0.4725251           -12.54310 5.384293          -1.702831 2.104018
## Control  -0.6396312           -13.24365 5.291718          -1.663646 1.780639
##           Resistin Cortisol       E4 Fatty_Acid_Binding_Protein
## Impaired -15.66720 13.42740 1.589041                   1.614389
## Control  -18.38319 11.44124 1.329897                   1.254534
##          Pulmonary_and_Activation_Regulat     VEGF        CD5L Cystatin_C
## Impaired                        -1.368849 16.49858  0.05894109   8.472553
## Control                         -1.532822 17.17183 -0.09525496   8.628643
##              HCC_4 Complement_3 Alpha_1_Microglobulin
## Impaired -3.394734    -14.85689             -2.812275
## Control  -3.539563    -15.89379             -2.977260
##          Hepatocyte_Growth_Factor_HGF Osteopontin
## Impaired                    0.2821109    5.313664
## Control                     0.1639794    5.162882
##          B_Lymphocyte_Chemoattractant_BL     PLGF Alpha_1_Antichymotrypsin
## Impaired                        2.191212 4.012400                 1.461656
## Control                         1.952112 3.874869                 1.322478
##          MIP_1alpha Sortilin     IL_7 Apolipoprotein_D    S100b
## Impaired   4.281621 4.101578 2.525637         1.534726 1.339447
## Control    3.961372 3.757482 2.957174         1.404988 1.217084
##          Apolipoprotein_CIII Fetuin_A IP_10_Inducible_Protein_10       IgA
## Impaired           -2.402152 1.434358                   5.875371 -5.928985
## Control            -2.528993 1.318421                   5.709495 -6.193464
##          Protein_S Thrombomodulin Fas_Ligand Clusterin_Apo_J Adiponectin
## Impaired -2.161885      -1.448956   3.240515        2.952344   -5.062015
## Control  -2.268898      -1.526102   2.865447        2.855998   -5.252821
##            HB_EGF Thrombopoietin Alpha_2_Macroglobulin   VCAM_1    MCP_1
## Impaired 7.177725     -0.8002665             -149.8084 2.750947 6.548438
## Control  6.703511     -0.7368538             -161.9286 2.663773 6.477030
##              IL_8 Calbindin Apolipoprotein_B      SHBG Angiotensinogen
## Impaired 1.713003  23.27885        -5.290980 -2.373962        2.358407
## Control  1.701045  22.11405        -5.686514 -2.515326        2.302900
##             RANTES Kidney_Injury_Molecule_1_KIM_1   TIMP_1    I_309
## Impaired -6.453900                      -1.179252 12.17891 3.023617
## Control  -6.532627                      -1.186509 11.58805 2.933276
##          Apolipoprotein_H     MMP_3 Ferritin Myoglobin      SOD
## Impaired       -0.2462583 -2.324019 2.931628 -1.246804 5.389265
## Control        -0.3494279 -2.491243 2.701751 -1.412393 5.316217
##          Thyroxine_Binding_Globulin MIP_1beta     ICAM_1    MMP_2
## Impaired                  -1.413281  2.877145 -0.5474443 2.781498
## Control                   -1.503474  2.790792 -0.6071264 2.910655
##          Prostatic_Acid_Phosphatase Angiopoietin_2_ANG_2 Beta_2_Microglobulin
## Impaired                  -1.673206            0.7189962            0.2010301
## Control                   -1.689756            0.6556583            0.1549796
##                E2   IL_17E    Leptin von_Willebrand_Factor
## Impaired 1.082192 4.671603 -1.544007             -3.848044
## Control  1.190722 4.923843 -1.489273             -3.927726
##          ACTH_Adrenocorticotropic_Hormon C_Reactive_Protein Lipoprotein_a
## Impaired                       -1.512663          -6.014766     -4.277014
## Control                        -1.547922          -5.820661     -4.470063
## 
## Coefficients of linear discriminants:
##                                            LD1
## MMP10                            -0.6778495578
## GRO_alpha                        -5.8437118089
## TRAIL_R3                         -0.6406081642
## Fibrinogen                       -0.2338360045
## PAI_1                            -0.8288542918
## MMP7                             -0.0647822072
## NT_proBNP                        -1.3006873141
## MIF                              -0.6160160807
## Pancreatic_polypeptide           -0.3090868060
## FAS                              -0.0217693800
## Eotaxin_3                        -0.0081983194
## Gamma_Interferon_induced_Monokin  1.3299434140
## Thymus_Expressed_Chemokine_TECK  -0.0379784241
## TNF_RII                          -2.0226999320
## Alpha_1_Antitrypsin              -0.0923019597
## IGF_BP_2                          0.3528864700
## Creatine_Kinase_MB               -1.4732172451
## MCP_2                            -0.2703185599
## Resistin                         -0.0022397928
## Cortisol                         -0.0556646218
## E4                               -0.1667885539
## Fatty_Acid_Binding_Protein       -0.4987214377
## Pulmonary_and_Activation_Regulat -0.2718329526
## VEGF                              0.5807820405
## CD5L                             -0.1114035816
## Cystatin_C                        1.7422669646
## HCC_4                             0.0516411901
## Complement_3                     -0.0292668839
## Alpha_1_Microglobulin            -0.1467706659
## Hepatocyte_Growth_Factor_HGF     -0.8418183018
## Osteopontin                      -0.6631915643
## B_Lymphocyte_Chemoattractant_BL   0.0358254216
## PLGF                             -0.0188978088
## Alpha_1_Antichymotrypsin          0.4087597274
## MIP_1alpha                       -0.0198960923
## Sortilin                          0.1028037448
## IL_7                              0.2580105214
## Apolipoprotein_D                 -0.0009247194
## S100b                             0.4332472881
## Apolipoprotein_CIII               0.3843202615
## Fetuin_A                         -0.6985063910
## IP_10_Inducible_Protein_10        0.0281079434
## IgA                               0.1446875319
## Protein_S                         0.7699018297
## Thrombomodulin                    1.0022010369
## Fas_Ligand                        0.0494800814
## Clusterin_Apo_J                  -2.1319265640
## Adiponectin                      -0.2105422918
## HB_EGF                            0.0225477869
## Thrombopoietin                   -1.0566751745
## Alpha_2_Macroglobulin             0.0102508716
## VCAM_1                            0.1011044898
## MCP_1                             0.1938058549
## IL_8                              2.2639303597
## Calbindin                        -0.0237902831
## Apolipoprotein_B                 -0.0864330504
## SHBG                              0.4018868518
## Angiotensinogen                  -0.6517305684
## RANTES                            1.0839214997
## Kidney_Injury_Molecule_1_KIM_1    2.0403487925
## TIMP_1                           -0.0447283524
## I_309                             1.3638576115
## Apolipoprotein_H                  0.2782456208
## MMP_3                            -0.0679830388
## Ferritin                         -0.1086841200
## Myoglobin                         0.1733153003
## SOD                              -0.6356300096
## Thyroxine_Binding_Globulin        0.0970457989
## MIP_1beta                        -0.3645585898
## ICAM_1                           -0.2155873261
## MMP_2                            -0.1528205683
## Prostatic_Acid_Phosphatase        1.3130124532
## Angiopoietin_2_ANG_2             -0.4535763314
## Beta_2_Microglobulin              1.5619497473
## E2                                0.3302873155
## IL_17E                           -0.0366544919
## Leptin                            0.8891369897
## von_Willebrand_Factor             0.5191263748
## ACTH_Adrenocorticotropic_Hormon   0.2546402469
## C_Reactive_Protein               -0.1502267622
## Lipoprotein_a                    -0.0047476341
LDA_RFE_Tune$results
##   Variables       ROC      Sens      Spec  Accuracy     Kappa      ROCSD
## 1         1 0.7185197 0.1535714 0.9536842 0.7343000 0.1316428 0.09278394
## 2        21 0.7658788 0.4714286 0.8907895 0.7756207 0.3779921 0.13446771
## 3        41 0.8336842 0.6357143 0.8913158 0.8212047 0.5282533 0.10419508
## 4        61 0.8338158 0.6053571 0.8915789 0.8131054 0.5146507 0.07940192
## 5        81 0.8356861 0.6303571 0.8647368 0.8011701 0.4960627 0.06676256
## 6       101 0.7909539 0.6017857 0.8342105 0.7710928 0.4317545 0.06159587
## 7       121 0.8175376 0.6303571 0.8036842 0.7564001 0.4166117 0.05993414
## 8       127 0.8015132 0.6428571 0.8142105 0.7675417 0.4377465 0.07919456
##       SensSD     SpecSD AccuracySD   KappaSD
## 1 0.12576298 0.03870002 0.03391046 0.1362022
## 2 0.24313126 0.07164310 0.07716516 0.2363455
## 3 0.24946087 0.05790869 0.08661968 0.2502905
## 4 0.17219776 0.07927612 0.08582429 0.2162227
## 5 0.14483991 0.06700285 0.04516015 0.1091275
## 6 0.10103279 0.06039268 0.04706861 0.1050703
## 7 0.09184815 0.07279328 0.05361003 0.1053563
## 8 0.12959251 0.05582698 0.05778037 0.1370938
(LDA_RFE_Train_ROCCurveAUC <- LDA_RFE_Tune$results[LDA_RFE_Tune$results$ROC==max(LDA_RFE_Tune$results$ROC),
                                                       c("ROC")])
## [1] 0.8356861
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
LDA_RFE_Test <- data.frame(LDA_RFE_Observed = PMA_PreModelling_Test$Class,
                      LDA_RFE_Predicted = predict(LDA_RFE_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
LDA_RFE_Test_ROC <- roc(response = LDA_RFE_Test$LDA_RFE_Observed,
                        predictor = LDA_RFE_Test$LDA_RFE_Predicted.Impaired,
                        levels = rev(levels(LDA_RFE_Test$LDA_RFE_Observed)))

(LDA_RFE_Test_ROCCurveAUC <- auc(LDA_RFE_Test_ROC)[1])
## [1] 0.8530093

1.5.9 Naive Bayes With RFE (NB_RFE)


Naive Bayes Classifier categorizes instances by applying Bayes Theorem in determining posterior probabilities as conditioned by the likelihood of features, and prior probabilities pertaining to both events and features. The algorithm naively assumes independence between features and assigns the same weight (degree of significance) to all given features.

Recursive Feature Elimination is a wrapper-style feature selection algorithm which searches for a subset of features by starting with all features in the training data set and successfully removing features until the desired number remains. The algorithm repeatedly fits a given machine learning algorithm used in the core of the model, ranks features by importance, discards the least important features, and re-fits the model. Features are scored either using importance scores relevant to the provided machine learning model or by applying statistical methods.

[A] The naive bayes model from the klaR package was implemented with recursive feature elimination through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] fL = laplace correction held constant at a value of 0
     [B.2] adjust = bandwidth adjustment held constant at a value of TRUE
     [B.3] usekernel = distribution type made to vary across a range of levels equal to TRUE and FALSE

[C] Recursive feature elimination was applied across a range of variable subset sizes ranging from 1 to 127:
     [C.1] The variable subset with the best cross-validated performance was 21 with the top 5 variables identified as:
            [C.1.1] MMP10 variable (numeric)
            [C.1.2] GRO_alpha variable (numeric)
            [C.1.3] TRAIL_R3 variable (numeric)
            [C.1.4] Fibrinogen variable (numeric)
            [C.1.5] PAI_1 variable (numeric)

[D] The cross-validated model performance of the final model is summarized as follows:
     [D.1] Final model configuration involves fL=0, adjust=TRUE, usekernel=TRUE and variable subset=21
     [D.2] AUROC = 0.76825

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.75231

Code Chunk | Output
##################################
# Running the naive bayes model
# by setting the caret method to 'nb'
# with implementation of recursive feature elimination
##################################
KFold_RFEControl$functions <- nbFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary

set.seed(12345678)
NB_RFE_Tune <- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                          y = PMA_PreModelling_Train$Class,
                          sizes = VariableSubset,
                          metric = "ROC",
                          rfeControl = KFold_RFEControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
NB_RFE_Tune
## 
## Recursive feature selection
## 
## Outer resampling method: Cross-Validated (10 fold) 
## 
## Resampling performance over subset size:
## 
##  Variables    ROC   Sens   Spec Accuracy  Kappa   ROCSD SensSD  SpecSD
##          1 0.7191 0.2089 0.9439   0.7425 0.1842 0.08707 0.1539 0.04367
##         21 0.7682 0.6107 0.7521   0.7126 0.3373 0.10731 0.2147 0.13773
##         41 0.7474 0.6232 0.7621   0.7234 0.3630 0.11767 0.2137 0.14673
##         61 0.7524 0.6375 0.7624   0.7276 0.3760 0.10482 0.2146 0.14897
##         81 0.7438 0.6232 0.7521   0.7162 0.3498 0.10873 0.2241 0.14828
##        101 0.7434 0.6232 0.7626   0.7237 0.3605 0.10817 0.2241 0.13800
##        121 0.7444 0.5946 0.7574   0.7120 0.3257 0.11227 0.2192 0.11968
##        127 0.7390 0.5821 0.7518   0.7044 0.3064 0.11701 0.2433 0.12306
##  AccuracySD KappaSD Selected
##     0.05824  0.1962         
##     0.10835  0.2126        *
##     0.11474  0.2210         
##     0.12326  0.2361         
##     0.11875  0.2276         
##     0.11294  0.2227         
##     0.09692  0.2052         
##     0.10320  0.2333         
## 
## The top 5 variables (out of 21):
##    MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
NB_RFE_Tune$fit
## $apriori
## grouping
##  Impaired   Control 
## 0.2734082 0.7265918 
## 
## $tables
## $tables$MMP10
## $tables$MMP10$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1366
## 
##        x                y            
##  Min.   :-5.343   Min.   :0.0004474  
##  1st Qu.:-4.457   1st Qu.:0.0326114  
##  Median :-3.570   Median :0.1316350  
##  Mean   :-3.570   Mean   :0.2814658  
##  3rd Qu.:-2.684   3rd Qu.:0.4407209  
##  Max.   :-1.798   Max.   :1.1131115  
## 
## $tables$MMP10$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1146
## 
##        x                y            
##  Min.   :-5.011   Min.   :0.0002376  
##  1st Qu.:-4.313   1st Qu.:0.0639220  
##  Median :-3.615   Median :0.1883134  
##  Mean   :-3.615   Mean   :0.3575896  
##  3rd Qu.:-2.918   3rd Qu.:0.7256202  
##  Max.   :-2.220   Max.   :0.9695254  
## 
## 
## $tables$GRO_alpha
## $tables$GRO_alpha$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.01539
## 
##        x               y           
##  Min.   :1.263   Min.   : 0.00406  
##  1st Qu.:1.332   1st Qu.: 0.54230  
##  Median :1.402   Median : 2.71917  
##  Mean   :1.402   Mean   : 3.59086  
##  3rd Qu.:1.471   3rd Qu.: 6.17618  
##  Max.   :1.541   Max.   :10.69562  
## 
## $tables$GRO_alpha$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01113
## 
##        x               y            
##  Min.   :1.238   Min.   : 0.002945  
##  1st Qu.:1.300   1st Qu.: 0.969398  
##  Median :1.363   Median : 3.049909  
##  Mean   :1.363   Mean   : 3.994613  
##  3rd Qu.:1.425   3rd Qu.: 7.200400  
##  Max.   :1.488   Max.   :10.071952  
## 
## 
## $tables$TRAIL_R3
## $tables$TRAIL_R3$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.08757
## 
##        x                 y            
##  Min.   :-1.1644   Min.   :0.0006967  
##  1st Qu.:-0.7402   1st Qu.:0.0605912  
##  Median :-0.3161   Median :0.3641310  
##  Mean   :-0.3161   Mean   :0.5882954  
##  3rd Qu.: 0.1080   3rd Qu.:1.1507193  
##  Max.   : 0.5321   Max.   :1.6012376  
## 
## $tables$TRAIL_R3$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.071
## 
##        x                  y            
##  Min.   :-1.42370   Min.   :0.0003239  
##  1st Qu.:-0.96810   1st Qu.:0.0299211  
##  Median :-0.51251   Median :0.2241354  
##  Mean   :-0.51251   Mean   :0.5476573  
##  3rd Qu.:-0.05692   3rd Qu.:1.1322475  
##  Max.   : 0.39867   Max.   :1.6594882  
## 
## 
## $tables$Fibrinogen
## $tables$Fibrinogen$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2039
## 
##        x                y            
##  Min.   :-9.352   Min.   :0.0002994  
##  1st Qu.:-8.340   1st Qu.:0.0297491  
##  Median :-7.327   Median :0.1176966  
##  Mean   :-7.327   Mean   :0.2464541  
##  3rd Qu.:-6.315   3rd Qu.:0.4605718  
##  Max.   :-5.303   Max.   :0.7646276  
## 
## $tables$Fibrinogen$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1616
## 
##        x                y            
##  Min.   :-9.359   Min.   :0.0001768  
##  1st Qu.:-8.359   1st Qu.:0.0386225  
##  Median :-7.358   Median :0.1268076  
##  Mean   :-7.358   Mean   :0.2494747  
##  3rd Qu.:-6.358   3rd Qu.:0.4809641  
##  Max.   :-5.358   Max.   :0.7047324  
## 
## 
## $tables$PAI_1
## $tables$PAI_1$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1684
## 
##        x                 y            
##  Min.   :-1.3796   Min.   :0.0003683  
##  1st Qu.:-0.6169   1st Qu.:0.0433878  
##  Median : 0.1458   Median :0.2047515  
##  Mean   : 0.1458   Mean   :0.3271269  
##  3rd Qu.: 0.9085   3rd Qu.:0.6651820  
##  Max.   : 1.6713   Max.   :0.7845451  
## 
## $tables$PAI_1$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1155
## 
##        x                   y            
##  Min.   :-1.337358   Min.   :0.0002009  
##  1st Qu.:-0.665516   1st Qu.:0.0465423  
##  Median : 0.006326   Median :0.2552360  
##  Mean   : 0.006326   Mean   :0.3713764  
##  3rd Qu.: 0.678169   3rd Qu.:0.6258449  
##  Max.   : 1.350011   Max.   :1.0998865  
## 
## 
## $tables$MMP7
## $tables$MMP7$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4298
## 
##        x                 y            
##  Min.   :-7.8961   Min.   :0.0001877  
##  1st Qu.:-5.7017   1st Qu.:0.0296373  
##  Median :-3.5072   Median :0.0703373  
##  Mean   :-3.5072   Mean   :0.1136922  
##  3rd Qu.:-1.3127   3rd Qu.:0.2118599  
##  Max.   : 0.8818   Max.   :0.3283795  
## 
## $tables$MMP7$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4545
## 
##        x                y            
##  Min.   :-9.761   Min.   :5.049e-05  
##  1st Qu.:-7.035   1st Qu.:7.595e-03  
##  Median :-4.310   Median :7.733e-02  
##  Mean   :-4.310   Mean   :9.155e-02  
##  3rd Qu.:-1.584   3rd Qu.:1.513e-01  
##  Max.   : 1.141   Max.   :2.707e-01  
## 
## 
## $tables$NT_proBNP
## $tables$NT_proBNP$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1278
## 
##        x               y            
##  Min.   :3.488   Min.   :0.0004799  
##  1st Qu.:4.183   1st Qu.:0.0472861  
##  Median :4.879   Median :0.1644620  
##  Mean   :4.879   Mean   :0.3587442  
##  3rd Qu.:5.574   3rd Qu.:0.6206068  
##  Max.   :6.270   Max.   :1.2352851  
## 
## $tables$NT_proBNP$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09443
## 
##        x               y            
##  Min.   :2.895   Min.   :0.0002446  
##  1st Qu.:3.609   1st Qu.:0.0257804  
##  Median :4.323   Median :0.1530335  
##  Mean   :4.323   Mean   :0.3493812  
##  3rd Qu.:5.037   3rd Qu.:0.5785926  
##  Max.   :5.751   Max.   :1.3532174  
## 
## 
## $tables$MIF
## $tables$MIF$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1116
## 
##        x                 y            
##  Min.   :-2.7318   Min.   :0.0005472  
##  1st Qu.:-2.1761   1st Qu.:0.0505520  
##  Median :-1.6204   Median :0.1858068  
##  Mean   :-1.6204   Mean   :0.4490134  
##  3rd Qu.:-1.0648   3rd Qu.:0.9965195  
##  Max.   :-0.5091   Max.   :1.1763069  
## 
## $tables$MIF$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09496
## 
##        x                 y            
##  Min.   :-3.1322   Min.   :0.0002408  
##  1st Qu.:-2.5133   1st Qu.:0.0326868  
##  Median :-1.8945   Median :0.2730891  
##  Mean   :-1.8945   Mean   :0.4031727  
##  3rd Qu.:-1.2756   3rd Qu.:0.7351494  
##  Max.   :-0.6567   Max.   :1.2561687  
## 
## 
## $tables$Pancreatic_polypeptide
## $tables$Pancreatic_polypeptide$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2937
## 
##        x                 y            
##  Min.   :-2.1541   Min.   :0.0004183  
##  1st Qu.:-0.9124   1st Qu.:0.0345638  
##  Median : 0.3293   Median :0.1788613  
##  Mean   : 0.3293   Mean   :0.2009313  
##  3rd Qu.: 1.5710   3rd Qu.:0.3209413  
##  Max.   : 2.8126   Max.   :0.5212213  
## 
## $tables$Pancreatic_polypeptide$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2106
## 
##        x                 y            
##  Min.   :-2.7520   Min.   :0.0001181  
##  1st Qu.:-1.4939   1st Qu.:0.0177924  
##  Median :-0.2358   Median :0.1181308  
##  Mean   :-0.2358   Mean   :0.1983245  
##  3rd Qu.: 1.0223   3rd Qu.:0.3748847  
##  Max.   : 2.2803   Max.   :0.5971506  
## 
## 
## $tables$FAS
## $tables$FAS$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.112
## 
##        x                 y            
##  Min.   :-1.3860   Min.   :0.0005482  
##  1st Qu.:-0.8713   1st Qu.:0.0744882  
##  Median :-0.3567   Median :0.4050701  
##  Mean   :-0.3567   Mean   :0.4847868  
##  3rd Qu.: 0.1580   3rd Qu.:0.8069833  
##  Max.   : 0.6726   Max.   :1.3560508  
## 
## $tables$FAS$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08631
## 
##        x                 y            
##  Min.   :-1.7731   Min.   :0.0002668  
##  1st Qu.:-1.2412   1st Qu.:0.0228707  
##  Median :-0.7094   Median :0.3094483  
##  Mean   :-0.7094   Mean   :0.4691546  
##  3rd Qu.:-0.1776   3rd Qu.:0.8467171  
##  Max.   : 0.3542   Max.   :1.4115039  
## 
## 
## $tables$Eotaxin_3
## $tables$Eotaxin_3$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 4.556
## 
##        x                 y            
##  Min.   :  9.332   Min.   :1.337e-05  
##  1st Qu.: 37.166   1st Qu.:1.129e-03  
##  Median : 65.000   Median :5.511e-03  
##  Mean   : 65.000   Mean   :8.964e-03  
##  3rd Qu.: 92.834   3rd Qu.:1.491e-02  
##  Max.   :120.668   Max.   :2.988e-02  
## 
## $tables$Eotaxin_3$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 4.684
## 
##        x                 y            
##  Min.   : -7.052   Min.   :4.901e-06  
##  1st Qu.: 22.224   1st Qu.:4.092e-04  
##  Median : 51.500   Median :4.572e-03  
##  Mean   : 51.500   Mean   :8.523e-03  
##  3rd Qu.: 80.776   3rd Qu.:1.856e-02  
##  Max.   :110.052   Max.   :2.364e-02  
## 
## 
## $tables$Gamma_Interferon_induced_Monokin
## $tables$Gamma_Interferon_induced_Monokin$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.03894
## 
##        x               y          
##  Min.   :2.497   Min.   :0.00164  
##  1st Qu.:2.669   1st Qu.:0.17739  
##  Median :2.840   Median :1.25904  
##  Mean   :2.840   Mean   :1.45720  
##  3rd Qu.:3.011   3rd Qu.:2.70076  
##  Max.   :3.182   Max.   :3.51052  
## 
## $tables$Gamma_Interferon_induced_Monokin$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.03562
## 
##        x               y           
##  Min.   :2.286   Min.   :0.000645  
##  1st Qu.:2.496   1st Qu.:0.054709  
##  Median :2.707   Median :0.799942  
##  Mean   :2.707   Mean   :1.187958  
##  3rd Qu.:2.917   3rd Qu.:2.388599  
##  Max.   :3.127   Max.   :3.377959  
## 
## 
## $tables$Thymus_Expressed_Chemokine_TECK
## $tables$Thymus_Expressed_Chemokine_TECK$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.2555
## 
##        x               y           
##  Min.   :1.170   Min.   :0.000239  
##  1st Qu.:2.625   1st Qu.:0.017862  
##  Median :4.081   Median :0.079276  
##  Mean   :4.081   Mean   :0.171420  
##  3rd Qu.:5.536   3rd Qu.:0.310995  
##  Max.   :6.992   Max.   :0.559876  
## 
## $tables$Thymus_Expressed_Chemokine_TECK$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1889
## 
##        x                y            
##  Min.   :0.9418   Min.   :0.0001233  
##  1st Qu.:2.4043   1st Qu.:0.0171002  
##  Median :3.8669   Median :0.0722106  
##  Mean   :3.8669   Mean   :0.1705975  
##  3rd Qu.:5.3294   3rd Qu.:0.2912266  
##  Max.   :6.7920   Max.   :0.5967206  
## 
## 
## $tables$TNF_RII
## $tables$TNF_RII$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.1287
## 
##        x                 y            
##  Min.   :-1.7724   Min.   :0.0004729  
##  1st Qu.:-1.1153   1st Qu.:0.0399146  
##  Median :-0.4581   Median :0.1767396  
##  Mean   :-0.4581   Mean   :0.3796843  
##  3rd Qu.: 0.1990   3rd Qu.:0.7846294  
##  Max.   : 0.8561   Max.   :1.0878833  
## 
## $tables$TNF_RII$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09976
## 
##        x                  y            
##  Min.   :-1.96002   Min.   :0.0002298  
##  1st Qu.:-1.31108   1st Qu.:0.0216834  
##  Median :-0.66213   Median :0.1367883  
##  Mean   :-0.66213   Mean   :0.3844817  
##  3rd Qu.:-0.01318   3rd Qu.:0.7880589  
##  Max.   : 0.63577   Max.   :1.1788242  
## 
## 
## $tables$Alpha_1_Antitrypsin
## $tables$Alpha_1_Antitrypsin$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.4782
## 
##        x                 y            
##  Min.   :-17.980   Min.   :0.0001293  
##  1st Qu.:-15.174   1st Qu.:0.0145127  
##  Median :-12.369   Median :0.0298018  
##  Mean   :-12.369   Mean   :0.0889250  
##  3rd Qu.: -9.563   3rd Qu.:0.1573948  
##  Max.   : -6.757   Max.   :0.2894396  
## 
## $tables$Alpha_1_Antitrypsin$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4461
## 
##        x                 y            
##  Min.   :-18.367   Min.   :5.246e-05  
##  1st Qu.:-15.545   1st Qu.:6.361e-03  
##  Median :-12.723   Median :4.263e-02  
##  Mean   :-12.723   Mean   :8.842e-02  
##  3rd Qu.: -9.901   3rd Qu.:1.639e-01  
##  Max.   : -7.079   Max.   :2.904e-01  
## 
## 
## $tables$IGF_BP_2
## $tables$IGF_BP_2$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.08533
## 
##        x               y            
##  Min.   :4.407   Min.   :0.0007146  
##  1st Qu.:4.857   1st Qu.:0.0626516  
##  Median :5.306   Median :0.1648390  
##  Mean   :5.306   Mean   :0.5555022  
##  3rd Qu.:5.755   3rd Qu.:1.1485396  
##  Max.   :6.204   Max.   :1.6617362  
## 
## $tables$IGF_BP_2$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05889
## 
##        x               y            
##  Min.   :4.458   Min.   :0.0004143  
##  1st Qu.:4.833   1st Qu.:0.0413745  
##  Median :5.208   Median :0.3285500  
##  Mean   :5.208   Mean   :0.6656293  
##  3rd Qu.:5.583   3rd Qu.:1.2894544  
##  Max.   :5.957   Max.   :1.9852384  
## 
## 
## $tables$Creatine_Kinase_MB
## $tables$Creatine_Kinase_MB$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.02774
## 
##        x                y           
##  Min.   :-1.955   Min.   :0.002195  
##  1st Qu.:-1.810   1st Qu.:0.178288  
##  Median :-1.666   Median :0.807714  
##  Mean   :-1.666   Mean   :1.724376  
##  3rd Qu.:-1.521   3rd Qu.:3.478317  
##  Max.   :-1.376   Max.   :5.171466  
## 
## $tables$Creatine_Kinase_MB$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.02971
## 
##        x                y           
##  Min.   :-1.961   Min.   :0.000774  
##  1st Qu.:-1.794   1st Qu.:0.209347  
##  Median :-1.628   Median :0.920239  
##  Mean   :-1.628   Mean   :1.497037  
##  3rd Qu.:-1.461   3rd Qu.:2.710941  
##  Max.   :-1.294   Max.   :4.648178  
## 
## 
## $tables$MCP_2
## $tables$MCP_2$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.258
## 
##        x                 y            
##  Min.   :-0.3735   Min.   :0.0002363  
##  1st Qu.: 0.9194   1st Qu.:0.0270400  
##  Median : 2.2122   Median :0.0879011  
##  Mean   : 2.2122   Mean   :0.1929878  
##  3rd Qu.: 3.5050   3rd Qu.:0.3588776  
##  Max.   : 4.7978   Max.   :0.6183413  
## 
## $tables$MCP_2$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1411
## 
##        x                  y            
##  Min.   :-0.02269   Min.   :0.0001634  
##  1st Qu.: 1.09474   1st Qu.:0.0145562  
##  Median : 2.21217   Median :0.1157047  
##  Mean   : 2.21217   Mean   :0.2232678  
##  3rd Qu.: 3.32960   3rd Qu.:0.3212348  
##  Max.   : 4.44703   Max.   :0.8582897  
## 
## 
## $tables$Resistin
## $tables$Resistin$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 2.203
## 
##        x                 y            
##  Min.   :-41.576   Min.   :2.761e-05  
##  1st Qu.:-30.090   1st Qu.:2.149e-03  
##  Median :-18.603   Median :1.134e-02  
##  Mean   :-18.603   Mean   :2.172e-02  
##  3rd Qu.: -7.116   3rd Qu.:4.033e-02  
##  Max.   :  4.370   Max.   :7.083e-02  
## 
## $tables$Resistin$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 1.737
## 
##        x                 y            
##  Min.   :-37.350   Min.   :1.384e-05  
##  1st Qu.:-27.539   1st Qu.:2.849e-03  
##  Median :-17.728   Median :1.740e-02  
##  Mean   :-17.728   Mean   :2.543e-02  
##  3rd Qu.: -7.917   3rd Qu.:4.768e-02  
##  Max.   :  1.895   Max.   :6.878e-02  
## 
## 
## $tables$Cortisol
## $tables$Cortisol$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 1.139
## 
##        x                 y            
##  Min.   : 0.5829   Min.   :5.413e-05  
##  1st Qu.: 8.5415   1st Qu.:3.530e-03  
##  Median :16.5000   Median :9.513e-03  
##  Mean   :16.5000   Mean   :3.135e-02  
##  3rd Qu.:24.4585   3rd Qu.:4.559e-02  
##  Max.   :32.4171   Max.   :1.342e-01  
## 
## $tables$Cortisol$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 1.095
## 
##        x                y            
##  Min.   :-3.185   Min.   :6.292e-05  
##  1st Qu.: 3.933   1st Qu.:5.135e-03  
##  Median :11.050   Median :1.130e-02  
##  Mean   :11.050   Mean   :3.506e-02  
##  3rd Qu.:18.167   3rd Qu.:6.465e-02  
##  Max.   :25.285   Max.   :1.183e-01  
## 
## 
## $tables$E4
## $tables$E4$Impaired
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (73 obs.);  Bandwidth 'bw' = 0.189
## 
##        x                y          
##  Min.   :0.4329   Min.   :0.00965  
##  1st Qu.:0.9664   1st Qu.:0.11395  
##  Median :1.5000   Median :0.37933  
##  Mean   :1.5000   Mean   :0.46703  
##  3rd Qu.:2.0336   3rd Qu.:0.78142  
##  Max.   :2.5671   Max.   :1.24269  
## 
## $tables$E4$Control
## 
## Call:
##  density.default(x = xx)
## 
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1479
## 
##        x                y           
##  Min.   :0.5562   Min.   :0.008364  
##  1st Qu.:1.0281   1st Qu.:0.071217  
##  Median :1.5000   Median :0.345225  
##  Mean   :1.5000   Mean   :0.528053  
##  3rd Qu.:1.9719   3rd Qu.:0.833414  
##  Max.   :2.4438   Max.   :1.806542  
## 
## 
## 
## $levels
## [1] "Impaired" "Control" 
## 
## $call
## NaiveBayes.default(x = x, grouping = y, usekernel = TRUE, fL = 2)
## 
## $x
##         MMP10 GRO_alpha    TRAIL_R3 Fibrinogen       PAI_1       MMP7 NT_proBNP
## 1   -3.270169  1.381830 -0.18290044  -7.035589  1.00350156 -3.7735027  4.553877
## 2   -3.649659  1.372438 -0.50074709  -8.047190 -0.03059880 -5.9681907  4.219508
## 3   -2.733368  1.412679 -0.92403445  -7.195437  0.43837211 -4.0302269  4.248495
## 5   -2.617296  1.398431 -0.85825911  -6.980326  0.25230466 -0.2222222  4.465908
## 6   -3.324236  1.398431 -0.73800921  -6.437752  0.43837211 -1.9223227  4.189655
## 7   -4.135167  1.338425 -0.62997381  -7.621105  0.00000000 -5.9681907  4.330733
## 8   -3.688879  1.350892 -0.56347899  -6.502290  0.49054798 -2.4721360  3.828641
## 9   -4.017384  1.381830 -0.75712204  -7.902008 -0.47754210 -5.8446454  5.043425
## 11  -3.963316  1.412679 -0.37116408  -7.523941  0.25230466 -3.7735027  4.875197
## 12  -3.244194  1.398431 -0.68264012  -7.278819  0.25230466 -3.0000000  4.727388
## 14  -3.575551  1.440955 -0.54746226  -6.991137  0.32004747 -1.3806170  4.691348
## 16  -3.123566  1.412679 -0.48559774  -7.222466  0.49054798 -4.0302269  5.323010
## 17  -3.411248  1.419083  0.00000000  -6.319969  0.32004747 -2.8507125  4.595120
## 18  -3.963316  1.324552 -0.75712204  -7.402052  0.32004747 -1.2879797  3.931826
## 19  -4.074542  1.405814 -0.41274719  -6.959049  0.53887915 -3.3452248  4.290459
## 20  -2.563950  1.430692 -0.85825911  -5.843045  0.85893499 -0.6037782  3.784190
## 21  -3.324236  1.398431  0.26936976  -7.182192 -0.65480247 -3.3452248  5.262690
## 22  -3.611918  1.405814 -0.20634242  -7.385791 -0.15428707 -4.0302269  4.828314
## 23  -4.135167  1.338425 -0.56347899  -7.641724 -0.04107298 -6.3770782  3.663562
## 24  -3.381395  1.372438 -0.25465110  -7.600902 -0.21752413 -4.3245553  4.709530
## 25  -3.506558  1.308996 -0.70078093  -7.435388 -0.72247798 -4.0302269  4.672829
## 26  -3.381395  1.381830 -0.37116408  -7.452482  0.09396047 -3.5470020  4.499810
## 28  -3.381395  1.350892 -0.70078093  -7.323271 -0.05168998 -4.0302269  4.465908
## 29  -3.772261  1.338425 -0.83723396  -7.875339 -0.87443088 -2.2640143  3.931826
## 30  -3.863233  1.398431 -0.94693458  -7.875339 -0.14221210 -3.7735027  4.317488
## 31  -3.244194  1.381830 -0.62997381  -6.645391  0.09396047 -3.3452248  4.828314
## 34  -3.270169  1.458333 -0.13734056  -6.969631  0.58384004 -2.8507125  4.770685
## 35  -3.506558  1.362172 -0.64724718  -7.236259  0.00000000 -2.5883147  4.605170
## 36  -3.218876  1.445658 -0.68264012  -6.571283  0.00000000 -0.7216553  4.718499
## 37  -3.218876  1.398431 -0.34425042  -7.505592  0.09396047 -3.7735027  4.595120
## 38  -3.270169  1.398431 -0.56347899  -7.561682  0.25230466 -4.7040152  4.605170
## 39  -4.074542  1.291400 -0.57973042  -8.111728  0.09396047 -4.5938047  4.262680
## 40  -3.912023  1.430692 -0.47064906  -7.824046  0.32004747 -1.6514837  4.499810
## 41  -3.270169  1.398431 -0.47064906  -6.377127  0.25230466 -3.7735027  4.983607
## 42  -3.816713  1.398431 -0.73800921  -7.487574 -0.11859478 -4.3245553  4.700480
## 43  -3.218876  1.362172 -0.48559774  -7.143478 -0.28605071 -3.1639778  4.304065
## 44  -3.123566  1.362172 -0.64724718  -6.812445  0.62582535 -4.4888568  4.736198
## 45  -2.764621  1.425073 -0.21823750  -6.571283  0.17742506 -2.1702883  4.634729
## 46  -3.270169  1.372438 -0.57973042  -8.180721  0.17742506 -1.1622777  4.499810
## 47  -3.649659  1.405814 -0.64724718  -7.505592 -0.11859478 -2.8507125  4.976734
## 48  -3.816713  1.405814 -0.13734056  -8.111728  0.49054798 -4.0302269  4.919981
## 50  -2.645075  1.435976  0.00000000  -7.354042  0.17742506 -3.5470020  5.129899
## 51  -4.074542  1.338425 -0.73800921  -7.278819 -0.40885871 -4.6666667  4.795791
## 53  -3.411248  1.390462 -0.53167272  -6.907755  0.09396047 -3.7735027  4.127134
## 55  -3.540459  1.372438 -0.47064906  -7.641724  0.09396047 -6.6874449  4.127134
## 56  -3.729701  1.390462 -0.37116408  -7.208860  0.17742506 -4.3245553  5.062595
## 57  -3.442019  1.338425 -0.27956244  -7.264430  0.49054798 -2.8507125  4.574711
## 59  -3.772261  1.430692 -0.56347899  -7.082109  1.10005082 -3.0000000  5.036953
## 60  -4.074542  1.381830 -0.53167272  -6.812445 -0.27188464 -4.3887656  4.736198
## 61  -4.017384  1.362172 -0.79641472  -7.013116 -0.25795574 -3.5470020  4.488636
## 62  -4.422849  1.324552 -1.09654116  -7.662778 -0.55204550 -6.7705802  4.574711
## 63  -3.688879  1.390462 -0.33102365  -7.250246 -0.01006550 -3.7735027  4.948760
## 64  -3.101093  1.430692 -0.44133043  -7.195437  0.76993928 -1.0151134  5.181784
## 65  -3.649659  1.372438 -0.68264012  -8.254829  0.09396047 -4.0302269  4.143135
## 67  -3.772261  1.390462 -0.56347899  -7.523941 -0.16654597 -6.3045480  4.859812
## 68  -3.540459  1.308996 -0.31794508  -7.278819 -0.04107298 -4.3245553  3.610918
## 69  -4.342806  1.308996 -1.09654116  -7.957577 -0.11859478 -5.7849894  4.304065
## 70  -3.324236  1.381830 -0.39871863  -7.957577  0.17742506 -3.3452248  5.003946
## 71  -4.135167  1.350892 -0.61296931  -7.505592  0.73700033 -4.0302269  4.605170
## 72  -3.506558  1.372438 -0.21823750  -6.505132  0.09396047 -4.0302269  4.634729
## 73  -3.324236  1.338425 -0.30501103  -7.354042  0.58384004 -5.2074997  4.795791
## 74  -2.995732  1.362172 -0.90163769  -7.143478  0.49054798 -2.0000000  4.406719
## 75  -3.015935  1.430692 -0.77658561  -6.437752  0.58384004 -2.4721360  4.820282
## 76  -2.577022  1.430692 -0.30501103  -7.130899  0.73700033 -2.7140452  4.770685
## 77  -3.473768  1.462144 -0.31794508  -6.319969  0.76993928 -4.5582584  4.727388
## 78  -3.036554  1.445658 -0.10425819  -6.502290  0.83076041 -3.1639778  4.990433
## 80  -3.411248  1.338425 -0.47064906  -6.917806  0.17742506 -2.3643578  4.770685
## 81  -3.540459  1.419083 -0.62997381  -7.902008 -0.14221210 -3.7735027  4.859812
## 82  -3.473768  1.350892 -0.68264012  -7.338538  0.17742506 -4.0302269  4.406719
## 83  -3.411248  1.372438 -0.44133043  -8.804875 -0.16654597 -3.5470020  4.595120
## 84  -3.575551  1.435976 -0.54746226  -7.250246  0.32004747 -3.3452248  4.543295
## 85  -3.688879  1.362172 -0.37116408  -7.182192  0.43837211 -3.7735027  5.468060
## 86  -3.123566  1.435976 -0.30501103  -6.214608  0.25230466 -2.7140452  5.117994
## 88  -3.270169  1.430692 -0.17134851  -6.917806  0.38177502 -3.1639778  4.727388
## 90  -4.509860  1.350892 -0.81662520  -8.873868 -0.63330256 -8.3975049  3.178054
## 93  -3.688879  1.372438 -0.44133043  -6.959049  0.38177502 -3.5470020  4.317488
## 94  -2.645075  1.475713  0.00000000  -6.502290  0.80114069 -1.4299717  5.886104
## 95  -3.688879  1.405814 -0.54746226  -7.469874  0.17742506 -2.7140452  4.762174
## 96  -3.816713  1.381830 -0.54746226  -7.986565 -0.23078200 -3.3452248  4.521789
## 97  -3.649659  1.381830 -0.71923319  -7.875339 -0.05168998 -4.5938047  4.543295
## 98  -4.342806  1.324552 -0.92403445  -8.468403 -0.51401261 -7.3250481  4.477337
## 99  -3.963316  1.405814 -0.57973042  -6.812445  0.62582535 -3.5935279  4.290459
## 100 -3.649659  1.362172 -0.48559774  -7.751725  0.25230466 -5.1611487  4.634729
## 103 -2.995732  1.405814 -0.38485910  -7.799353  0.43837211 -3.2335542  4.663439
## 104 -3.963316  1.372438 -0.45589516  -7.323271 -0.17899381 -4.8199434  4.430817
## 105 -3.863233  1.372438 -0.75712204  -7.706263 -0.27188464 -5.5592895  4.454347
## 107 -3.575551  1.398431 -0.47064906  -7.208860  0.00000000 -1.3806170  4.369448
## 108 -3.912023  1.338425 -0.61296931  -7.070274  0.09396047 -1.9223227  4.682131
## 109 -4.667046  1.350892 -1.21070858  -8.517193 -0.24425708 -7.5346259  4.465908
## 110 -3.963316  1.435976 -0.75712204  -8.334872 -0.06245326 -4.3245553  4.043051
## 111 -3.575551  1.350892 -0.75712204  -7.293418 -0.47754210 -1.2879797  4.110874
## 112 -2.631089  1.425073 -0.27956244  -6.214608  0.17742506 -3.3452248  5.323010
## 113 -2.995732  1.390462 -0.42694948  -5.991465  0.70214496 -2.3643578  4.787492
## 114 -4.199705  1.381830 -0.83723396  -7.035589 -0.24425708 -5.1156807  4.543295
## 115 -3.381395  1.450108 -0.42694948  -6.437752 -0.13031621 -2.2640143  4.700480
## 117 -3.575551  1.398431 -0.42694948  -7.452482  0.38177502 -4.3564173  4.812184
## 118 -2.207275  1.435976 -0.42694948  -7.452482  0.83076041 -2.3643578  4.700480
## 121 -3.575551  1.398431 -0.13734056  -7.250246  0.53887915 -0.4253563  5.062595
## 123 -4.199705  1.350892 -0.99435191  -8.334872 -0.42552800 -2.0000000  4.304065
## 124 -3.863233  1.338425 -0.20634242  -7.182192  0.00000000 -3.1639778  4.875197
## 126 -4.268698  1.381830 -0.38485910  -7.195437 -0.19163579 -4.8199434  4.912655
## 128 -3.272534  1.454327 -0.27956244  -6.725434  0.95939061 -1.2025631  4.962845
## 129 -4.017384  1.338425 -0.70078093  -7.600902 -0.57168558 -5.9056942  4.624973
## 130 -4.017384  1.372438 -0.39871863  -6.571283  0.25230466 -3.7735027  5.159055
## 131 -3.863233  1.372438 -0.87972006  -7.418581 -0.34523643 -5.0710678  4.025352
## 132 -3.506558  1.362172 -0.62997381  -7.143478 -0.08443323 -4.0302269  4.442651
## 133 -3.912023  1.271288 -0.92403445  -5.914504  0.09396047 -2.4721360  4.672829
## 134 -2.813411  1.398431 -0.31794508  -6.812445  0.43837211 -0.5000000  4.727388
## 135 -4.017384  1.308996 -0.53167272  -7.250246  0.00000000 -4.3245553  4.584967
## 136 -3.575551  1.412679 -0.38485910  -6.907755  0.43837211 -2.4721360  4.727388
## 137 -3.963316  1.381830 -1.04412698  -7.902008 -0.01006550 -4.6299354  4.488636
## 139 -3.442019  1.338425 -0.47064906  -7.662778 -0.59176325 -3.3452248  4.543295
## 140 -3.729701  1.398431 -0.48559774  -7.250246  0.00000000 -4.0302269  4.406719
## 141 -4.074542  1.419083 -0.34425042  -6.437752  0.25230466 -3.1639778  4.820282
## 143 -3.688879  1.350892 -0.61296931  -7.561682  0.00000000 -3.5470020  4.574711
## 144 -3.912023  1.372438 -0.64724718  -7.070274  0.49054798 -3.7735027  4.276666
## 145 -4.074542  1.350892 -0.39871863  -8.180721 -0.63330256 -5.0272837  4.276666
## 146 -2.975930  1.381830 -0.53167272  -6.725434  0.43837211 -2.1702883  4.406719
## 147 -3.270169  1.412679 -0.47064906  -7.024289  0.43837211 -3.7735027  4.634729
## 148 -3.411248  1.425073 -0.94693458  -6.907755  0.09396047 -1.7139068  4.543295
## 149 -3.688879  1.381830 -0.97036428  -7.875339 -0.27188464 -1.7139068  4.290459
## 152 -3.244194  1.494568 -0.18290044  -6.571283  0.88578467 -2.0824829  4.682131
## 153 -3.473768  1.372438 -0.41274719  -8.111728  0.00000000 -3.5470020  4.672829
## 154 -4.422849  1.308996 -0.85825911  -7.542634 -0.36070366 -5.9681907  3.806662
## 155 -3.963316  1.372438 -0.75712204  -7.986565 -0.24425708 -5.2547625  4.442651
## 156 -3.506558  1.390462 -0.61296931  -6.991137  0.43837211 -1.1622777  4.369448
## 157 -3.912023  1.324552 -0.42694948  -7.957577  1.00350156 -3.1639778  4.770685
## 158 -3.575551  1.350892 -0.81662520  -7.799353 -0.51401261 -5.1611487  3.828641
## 159 -4.074542  1.450108 -0.75712204  -6.917806  0.17742506 -4.3245553  4.859812
## 160 -3.540459  1.350892 -0.59622443  -7.452482 -0.07336643 -4.5582584  4.454347
## 161 -3.963316  1.419083 -0.30501103  -7.706263 -0.69936731 -5.0710678  5.081404
## 162 -4.074542  1.405814 -0.42694948  -7.751725 -0.07336643 -3.7735027  4.406719
## 163 -4.509860  1.390462 -0.75712204  -7.561682 -0.57168558 -6.6874449  4.262680
## 165 -3.473768  1.390462 -0.44133043  -7.402052  0.25230466 -3.5470020  4.499810
## 166 -4.074542  1.350892 -0.79641472  -7.728736 -0.31512364 -5.4023321  4.624973
## 167 -2.864704  1.372438 -0.30501103  -7.875339 -0.42552800 -1.5921060  4.605170
## 168 -3.772261  1.350892 -0.62997381  -7.418581 -0.42552800 -0.9814240  4.025352
## 169 -4.342806  1.324552 -0.51610326  -7.182192  0.00000000 -2.0000000  4.465908
## 170 -4.933674  1.372438 -0.47064906  -7.013116 -0.10704332 -2.0000000  4.499810
## 171 -3.270169  1.381830 -0.38485910  -7.323271 -0.45985790 -4.9421013  4.948760
## 172 -4.074542  1.381830 -0.62997381  -7.323271 -0.65480247 -5.2074997  4.510860
## 174 -3.101093  1.412679 -0.51610326  -8.421883  0.17742506 -1.5921060  4.595120
## 175 -2.343407  1.435976 -0.31794508  -5.914504  0.58384004 -2.5883147  4.584967
## 176 -3.912023  1.419083 -0.56347899  -8.873868  0.32004747 -5.0710678  5.003946
## 177 -3.473768  1.338425 -0.68264012  -8.016418  0.25230466 -4.7419986  4.770685
## 178 -3.688879  1.412679 -0.51610326  -7.799353 -0.82104815 -4.0302269  4.682131
## 179 -2.659260  1.398431 -0.54746226  -7.323271 -0.01006550 -2.1884251  4.983607
## 180 -3.649659  1.398431 -0.21823750  -7.369791 -0.10704332 -2.0000000  4.727388
## 181 -4.135167  1.291400 -0.97036428  -8.254829  0.17742506 -5.5592895  4.382027
## 182 -3.912023  1.324552 -0.61296931  -7.435388  0.49054798 -5.0710678  4.553877
## 183 -3.611918  1.372438 -0.68264012  -6.645391  0.17742506 -3.7735027  4.406719
## 184 -3.473768  1.372438 -0.37116408  -7.561682  0.38177502 -5.4023321  4.653960
## 185 -3.324236  1.435976 -0.15990607  -6.812445  0.49054798 -4.4549722  4.948760
## 186 -3.688879  1.308996 -0.30501103  -7.208860 -0.08443323 -5.0272837  4.304065
## 189 -3.772261  1.338425 -0.68264012  -7.487574  0.09396047 -6.0321933  4.672829
## 190 -3.912023  1.291400 -0.47064906  -7.293418  0.32004747 -4.0302269  4.174387
## 191 -3.101093  1.308996 -0.68264012  -7.338538 -0.63330256 -6.8561489  4.700480
## 192 -3.473768  1.425073 -0.38485910  -7.684284  0.25230466 -4.3245553  4.382027
## 193 -3.473768  1.405814 -0.47064906  -7.278819  1.00350156 -3.5470020  5.283204
## 194 -3.688879  1.308996 -0.70078093  -7.469874  0.17742506 -2.8507125  4.787492
## 195 -3.473768  1.412679 -0.47064906  -7.523941  0.43837211 -1.1234752  4.488636
## 197 -3.575551  1.405814 -0.06149412  -7.118476 -0.25795574 -2.2640143  5.204007
## 198 -4.135167  1.350892 -0.79641472  -7.418581 -0.82104815 -5.5058663  4.077537
## 200 -3.575551  1.372438 -0.79641472  -7.662778  0.00000000 -4.0302269  4.812184
## 201 -3.540459  1.381830 -0.38485910  -7.561682 -0.06245326 -3.3452248  4.204693
## 202 -4.074542  1.308996 -0.79641472  -8.294050 -0.49558921 -6.6066297  4.204693
## 205 -3.411248  1.390462 -0.59622443  -7.487574  0.32004747 -2.0000000  4.369448
## 208 -3.816713  1.291400 -0.62997381  -6.948577 -0.27188464 -5.0710678  4.382027
## 210 -3.170086  1.398431 -0.21823750  -7.106206  0.53887915 -3.0000000  5.241747
## 212 -4.342806  1.390462 -0.71923319  -7.621105 -0.20447735 -4.0302269  4.644391
## 213 -3.101093  1.405814 -0.41274719  -6.812445 -0.08443323 -3.0000000  4.836282
## 214 -3.218876  1.462144 -0.71923319  -7.013116  1.16610855 -3.3452248  4.304065
## 215 -3.912023  1.324552 -0.68264012  -7.824046 -0.39250510 -1.6514837  4.430817
## 216 -3.473768  1.425073 -0.38485910  -6.119298  0.25230466 -4.4549722  3.663562
## 218 -3.381395  1.398431 -0.51610326  -6.571283  0.66516665 -2.2640143  4.204693
## 219 -4.199705  1.412679 -0.68264012  -7.684284 -0.15428707 -5.1611487  4.787492
## 220 -3.816713  1.390462 -0.71923319  -7.849364 -0.65480247 -5.8446454  4.897840
## 223 -3.575551  1.338425 -0.62997381  -6.917806 -0.51401261 -3.3452248  4.828314
## 224 -3.912023  1.308996 -0.70078093  -7.264430  0.00000000 -5.8446454  4.304065
## 225 -4.135167  1.372438 -0.34425042  -7.418581  0.17742506 -5.5058663  4.394449
## 226 -3.575551  1.398431 -0.41274719  -7.024289  0.43837211 -3.0000000  4.442651
## 227 -3.649659  1.398431 -0.50074709  -6.214608  0.00000000 -3.0000000  4.077537
## 228 -3.963316  1.362172 -0.71923319  -7.070274 -0.63330256 -1.4299717  4.553877
## 229 -3.270169  1.381830 -0.57973042  -7.621105 -0.21752413 -0.4077171  4.248495
## 230 -3.123566  1.390462 -0.42694948  -7.293418  0.43837211 -2.7140452  4.691348
## 231 -3.912023  1.381830 -0.51610326  -6.907755  0.00000000 -4.4888568  4.595120
## 232 -4.135167  1.362172 -0.42694948  -7.143478  0.00000000 -5.3521462  4.143135
## 233 -3.688879  1.398431 -0.90163769  -7.469874 -0.24425708 -5.3029674  4.043051
## 234 -3.352407  1.271288 -0.56347899  -7.250246 -0.61229604 -3.3452248  4.521789
## 236 -3.575551  1.324552 -0.56347899  -7.621105 -0.65480247 -4.0302269  4.382027
## 237 -3.688879  1.390462 -0.51610326  -7.182192 -0.09565753 -4.0302269  4.574711
## 239 -4.199705  1.271288 -0.77658561  -8.217089  0.09396047 -4.0302269  4.394449
## 240 -4.017384  1.324552 -0.83723396  -8.145630 -0.42552800 -4.0302269  4.442651
## 241 -3.611918  1.338425 -0.54746226  -8.047190  0.00000000 -3.7735027  4.859812
## 242 -3.506558  1.372438 -0.35762924  -7.600902  0.25230466 -1.7796447  3.828641
## 243 -3.772261  1.362172 -0.75712204  -6.938214  0.49054798 -4.6299354  5.075174
## 244 -3.079114  1.435976 -0.41274719  -7.799353  0.85893499 -3.7735027  5.225747
## 245 -4.342806  1.390462 -0.77658561  -8.740337 -0.16654597 -6.4515425  3.871201
## 246 -3.324236  1.362172 -0.41274719  -7.208860  0.25230466 -2.7140452  4.510860
## 247 -3.863233  1.398431 -0.70078093  -8.180721 -0.57168558 -4.7806350  4.553877
## 249 -3.863233  1.398431 -0.15990607  -7.581100  0.00000000 -5.4023321  4.820282
## 250 -3.611918  1.381830 -0.50074709  -7.600902  0.09396047 -4.5582584  4.234107
## 251 -4.017384  1.362172 -0.68264012  -7.775256 -0.55204550 -4.6299354  4.553877
## 253 -3.863233  1.405814 -0.42694948  -6.502290  0.58384004 -2.7140452  4.962845
## 254 -3.036554  1.398431  0.18568645  -7.250246  0.09396047 -2.3643578  5.411646
## 255 -3.270169  1.405814  0.00000000  -8.740337  0.09396047 -2.2640143  4.875197
## 256 -4.342806  1.324552 -0.64724718  -8.334872 -0.59176325 -6.3770782  4.859812
## 257 -3.863233  1.362172 -0.64724718  -7.775256 -0.37645673 -5.7266741  4.543295
## 258 -3.270169  1.390462 -0.34425042  -6.948577  0.09396047 -3.1639778  4.553877
## 260 -3.611918  1.440955 -0.41274719  -6.938214  0.09396047 -6.6066297  4.204693
## 261 -4.342806  1.398431 -0.71923319  -8.111728 -0.07336643 -7.1287093  4.406719
## 262 -4.422849  1.390462 -0.90163769  -7.308233 -0.53282641 -5.7266741  4.077537
## 263 -3.772261  1.372438 -0.47064906  -7.561682 -0.15428707 -1.2879797  3.871201
## 264 -3.442019  1.350892 -0.06149412  -6.502290  0.17742506 -2.0824829  5.707110
## 265 -3.863233  1.350892 -0.81662520  -7.775256  0.09396047 -6.0977633  3.433987
## 267 -3.816713  1.390462 -0.18290044  -7.047017  0.66516665 -2.0000000  4.882802
## 268 -3.296837  1.362172 -0.44133043  -7.600902 -0.47754210 -3.5470020  4.465908
## 269 -4.342806  1.324552 -0.34425042  -7.875339 -0.99084860 -5.5058663  4.624973
## 270 -4.135167  1.440955 -0.41274719  -7.662778 -0.07336643 -1.8490018  4.025352
## 271 -3.352407  1.398431 -0.20634242  -6.959049 -0.02026405 -2.2640143  4.488636
## 272 -4.605170  1.350892 -0.53167272  -7.824046 -0.10704332 -4.4216130  4.564348
## 273 -3.506558  1.350892 -0.38485910  -7.222466  0.32004747 -3.0000000  4.043051
## 274 -3.963316  1.398431 -0.38485910  -7.505592 -0.03059880 -5.6696499  3.970292
## 275 -3.540459  1.338425 -0.85825911  -8.047190  0.17742506 -4.0302269  4.442651
## 277 -3.611918  1.405814 -0.48559774  -6.725434  0.53887915 -1.7139068  4.143135
## 278 -3.772261  1.324552 -0.53167272  -6.725434 -0.10704332 -3.1639778  4.663439
## 279 -4.017384  1.381830 -0.57973042  -7.706263 -0.13031621 -3.1639778  4.753590
## 281 -3.170086  1.398431 -0.21823750  -6.571283  0.70214496 -3.3452248  4.276666
## 282 -3.194183  1.419083 -0.73800921  -8.740337  0.38177502 -3.7735027  3.828641
## 283 -3.473768  1.435976 -0.29221795  -6.725434  0.43837211 -4.0302269  4.477337
## 287 -3.218876  1.372438 -0.42694948  -7.775256  0.09396047 -3.7735027  4.454347
## 289 -4.342806  1.338425 -0.92403445  -7.542634 -0.23078200 -5.3029674  3.951244
## 290 -3.649659  1.445658 -0.42694948  -7.824046  0.09396047 -3.5470020  3.610918
## 291 -2.830218  1.475713 -0.35762924  -7.058578  0.70214496 -0.9814240  4.356709
## 292 -3.381395  1.350892 -0.37116408  -7.236259  0.32004747 -4.0302269  4.779123
## 294 -3.963316  1.308996 -0.50074709  -7.662778 -0.55204550 -6.0977633  4.553877
## 297 -4.199705  1.350892 -0.64724718  -8.016418 -0.16654597 -4.3887656  4.564348
## 298 -3.963316  1.291400 -0.77658561  -7.082109  0.00000000 -5.5058663  3.951244
## 299 -3.772261  1.372438 -0.37116408  -7.581100  0.09396047 -5.1156807  4.927254
## 301 -4.268698  1.362172 -0.71923319  -8.047190 -0.17899381 -4.4549722  4.356709
## 302 -3.863233  1.271288 -0.87972006  -7.469874 -0.63330256 -4.0302269  4.343805
## 303 -4.268698  1.308996 -0.70078093  -7.156217 -0.20447735 -5.2547625  4.442651
## 304 -3.079114  1.445658 -0.29221795  -7.728736  0.62582535 -3.0000000  5.111988
## 305 -3.540459  1.390462 -0.54746226  -6.980326  0.73700033 -3.7735027  4.682131
## 306 -3.729701  1.412679 -0.48559774  -7.106206  0.38177502 -4.4216130  4.595120
## 307 -3.324236  1.372438 -0.21823750  -5.914504  0.85893499 -3.5470020  4.779123
## 308 -3.816713  1.381830 -0.56347899  -6.725434  0.09396047 -6.9442719  4.595120
## 311 -3.649659  1.412679 -0.35762924  -7.600902 -0.11859478 -3.7735027  4.770685
## 312 -3.296837  1.390462 -0.21823750  -7.293418  0.32004747 -3.7735027  4.912655
## 313 -4.074542  1.440955 -0.83723396  -7.505592  0.17742506 -5.0710678  4.317488
## 314 -3.863233  1.324552 -0.66479918  -8.334872 -0.17899381 -6.5280287  4.709530
## 315 -3.688879  1.372438 -0.56347899  -7.024289 -0.09565753 -3.7735027  4.418841
## 316 -3.688879  1.338425 -1.15193183  -7.799353  0.25230466 -5.1611487  4.290459
## 317 -3.381395  1.350892 -0.59622443  -7.581100 -0.04107298 -4.9421013  4.653960
## 320 -3.381395  1.308996 -0.75712204  -6.725434 -0.28605071 -4.6299354  4.465908
## 321 -4.199705  1.324552 -1.01892829  -7.728736 -0.10704332 -4.6666667  3.784190
## 322 -3.649659  1.398431 -0.37116408  -6.377127  0.49054798 -0.8867513  4.912655
## 323 -3.540459  1.338425 -0.31794508  -7.195437  0.32004747 -3.5470020  5.135798
## 324 -3.963316  1.271288 -0.59622443  -8.468403  0.25230466 -6.3045480  4.875197
## 325 -3.352407  1.398431 -0.68264012  -6.907755  0.85893499 -4.3245553  4.488636
## 326 -3.352407  1.398431 -0.42694948  -7.986565  0.09396047 -3.7735027  4.510860
## 327 -3.381395  1.398431 -0.41274719  -7.293418  0.53887915 -0.7472113  4.890349
## 329 -3.506558  1.405814 -0.68264012  -7.775256  0.17742506 -4.9843030  4.465908
## 330 -3.352407  1.381830 -0.77658561  -6.571283  0.09396047 -1.2025631  4.744932
## 331 -3.912023  1.372438 -1.01892829  -7.236259 -0.09565753 -6.1649658  4.304065
## 332 -3.816713  1.362172 -0.94693458  -7.024289  0.17742506 -3.7735027  4.189655
## 333 -3.772261  1.350892 -0.38485910  -7.236259 -0.53282641 -5.5058663  4.465908
##            MIF Pancreatic_polypeptide         FAS Eotaxin_3
## 1   -1.2378744             0.57878085 -0.08338161        53
## 2   -1.8971200             0.33647224 -0.52763274        62
## 3   -2.3025851            -0.89159812 -0.63487827        62
## 5   -1.8971200             0.26236426 -0.12783337        64
## 6   -2.0402208            -0.47803580 -0.32850407        57
## 7   -2.1202635            -0.59783700 -0.71334989        64
## 8   -1.7719568            -0.31471074 -0.71334989        64
## 9   -2.2072749            -0.52763274 -0.82098055        64
## 11  -1.5141277            -1.27296568 -0.02020271        82
## 12  -1.7147984             1.16315081 -0.71334989        73
## 14  -2.0402208            -0.37106368 -0.44628710        67
## 16  -1.5141277             0.33647224 -0.41551544        69
## 17  -1.9661129             0.78845736 -0.02020271        76
## 18  -2.3330443            -0.59783700 -0.82098055        33
## 19  -1.7147984             0.18232156 -0.47803580        54
## 20  -2.3538784            -0.26136476 -0.63487827        77
## 21  -1.4696760             0.69314718 -0.07257069        64
## 22  -1.4696760            -1.23787436 -0.30110509        73
## 23  -2.1202635            -0.82098055 -0.86750057        30
## 24  -1.7147984            -0.04082199 -0.07257069        82
## 25  -2.1202635            -1.27296568 -0.57981850        82
## 26  -1.5606477             0.09531018 -0.16251893        70
## 28  -1.8971200             0.40546511 -0.49429632        76
## 29  -1.8971200             0.09531018 -1.04982212        34
## 30  -2.4079456             0.09531018 -0.96758403        43
## 31  -2.1202635             0.33647224 -0.82098055        64
## 34  -1.8971200             0.91629073 -0.82098055        44
## 35  -1.8325815             0.53062825 -0.82098055        44
## 36  -1.8325815            -0.75502258 -0.49429632        64
## 37  -1.4696760            -0.10536052 -0.28768207        70
## 38  -1.7147984            -0.63487827 -0.82098055        34
## 39  -1.8325815            -0.71334989 -0.44628710        62
## 40  -2.1202635            -0.51082562 -0.63487827        62
## 41  -1.5141277             0.18232156 -0.52763274        54
## 42  -1.7719568            -1.27296568 -0.61618614        92
## 43  -2.2072749             0.00000000 -0.57981850        43
## 44  -1.8971200             0.47000363 -0.63487827        72
## 45  -1.3470736             0.64185389 -0.05129329        82
## 46  -1.8325815            -0.26136476 -0.44628710        72
## 47  -1.8325815             0.18232156 -0.75502258        64
## 48  -1.1711830             0.69314718 -0.30110509        96
## 50  -1.6607312            -0.41551544 -0.44628710        73
## 51  -1.9661129            -0.96758403 -0.65392647        54
## 53  -1.8971200            -0.34249031 -0.52763274        52
## 55  -2.1202635             0.26236426 -0.63487827        30
## 56  -1.8325815            -0.46203546 -0.71334989        54
## 57  -1.2729657             1.06471074 -0.11653382        49
## 59  -1.7147984            -0.32850407 -0.71334989        64
## 60  -2.2072749             0.95551145 -0.82098055        53
## 61  -2.1202635            -0.09431068 -0.71334989        43
## 62  -2.3538784            -0.73396918 -1.10866262        33
## 63  -1.5606477             0.91629073 -0.37106368        64
## 64  -1.6607312             0.83290912 -0.44628710        54
## 65  -2.0402208             0.83290912 -0.73396918        52
## 67  -1.3470736            -0.32850407 -0.44628710        54
## 68  -1.1394343             0.26236426 -0.08338161        64
## 69  -2.2072749            -0.16251893 -0.96758403        43
## 70  -1.6607312             0.26236426 -0.44628710        70
## 71  -2.1202635             0.40546511 -0.52763274        52
## 72  -1.7147984            -0.59783700  0.09531018        83
## 73  -1.6094379             0.26236426 -0.15082289        83
## 74  -2.3751558             0.53062825 -0.89159812        53
## 75  -2.3330443             0.69314718 -0.52763274        83
## 76  -1.5141277             1.02961942 -0.31471074        54
## 77  -1.5606477             0.83290912 -0.47803580        44
## 78  -1.6607312             1.52605630  0.33647224        70
## 80  -1.6094379             0.33647224 -0.52763274        53
## 81  -1.8971200            -0.63487827 -0.71334989        44
## 82  -1.8971200             0.09531018 -0.57981850        70
## 83  -1.8971200            -0.40047757 -0.26136476        44
## 84  -1.6607312            -0.63487827 -0.94160854        69
## 85  -1.7147984            -0.32850407 -0.31471074        44
## 86  -1.4696760             1.93152141 -0.31471074        78
## 88  -1.2729657             0.47000363 -0.24846136        64
## 90  -2.3025851            -0.40047757 -0.71334989        39
## 93  -1.8325815             0.18232156 -0.47803580        64
## 94  -1.4271164             1.25276297  0.09531018        83
## 95  -2.1202635             0.47000363 -0.82098055        43
## 96  -1.6094379            -0.79850770 -0.32850407        70
## 97  -2.0402208            -0.67334455 -0.57981850        70
## 98  -2.2072749            -1.02165125 -1.51412773        33
## 99  -2.1202635             0.91629073 -0.63487827        83
## 100 -1.8971200            -0.23572233 -0.71334989        39
## 103 -1.8325815            -0.19845094 -0.35667494        93
## 104 -1.5606477             0.26236426 -0.71334989        44
## 105 -1.8971200             0.26236426 -0.52763274        52
## 107 -1.6607312            -0.16251893 -0.52763274        48
## 108 -2.0402208            -0.03045921 -0.61618614        64
## 109 -2.4304185            -0.71334989 -0.94160854        41
## 110 -2.2072749            -2.12026354 -1.02165125        38
## 111 -1.4271164            -0.40047757 -0.34249031        64
## 112 -1.5606477             1.64865863 -0.18632958        59
## 113 -1.9661129             0.69314718 -0.02020271        70
## 114 -2.1202635            -0.73396918 -0.69314718        70
## 115 -1.5606477             1.09861229 -0.71334989        64
## 117 -1.8971200             0.18232156 -0.52763274        64
## 118 -1.1086626            -1.27296568 -0.26136476        95
## 121 -1.6607312             0.18232156 -0.56211892        64
## 123 -2.5510465            -0.23572233 -1.10866262        69
## 124 -1.7719568             0.09531018 -1.04982212        44
## 126 -1.8971200            -0.52763274 -0.61618614        59
## 128 -1.8971200             0.47000363 -0.31471074        44
## 129 -2.1202635            -0.75502258 -1.07880966        54
## 130 -1.9661129             0.58778666 -0.07257069        57
## 131 -2.3126354             0.78845736 -0.57981850        52
## 132 -2.2072749            -0.31471074 -0.71334989        64
## 133 -1.8325815            -0.52763274 -0.32850407        82
## 134 -1.0216512             1.25276297  0.18232156        70
## 135 -1.9661129            -0.31471074 -0.57981850        64
## 136 -2.0402208             0.69314718 -1.04982212        64
## 137 -2.2072749            -0.34249031 -0.73396918        41
## 139 -1.7719568            -0.47803580 -0.49429632        57
## 140 -1.4271164             1.19392247 -0.26136476        70
## 141 -1.8325815             0.18232156 -0.22314355        70
## 143 -2.1202635             0.99325177 -0.82098055        64
## 144 -2.0402208             0.58778666 -0.32850407        64
## 145 -2.3025851            -0.86750057 -0.96758403        33
## 146 -1.6094379             1.33500107 -0.18632958        88
## 147 -1.2378744             0.78845736 -0.32850407        70
## 148 -1.8325815             0.00000000 -0.30110509        73
## 149 -2.2072749            -1.10866262 -0.52763274        52
## 152 -0.8439701             1.13140211  0.09531018       107
## 153 -1.7147984             0.64185389 -0.18632958        95
## 154 -2.1202635            -0.71334989 -0.73396918        62
## 155 -1.8971200            -0.86750057 -0.96758403        59
## 156 -2.3126354            -0.26136476 -0.63487827        67
## 157 -1.9661129             0.26236426 -0.52763274        85
## 158 -2.0402208            -0.96758403 -0.73396918        62
## 159 -2.1202635             0.18232156 -0.71334989        23
## 160 -1.8971200             0.33647224 -0.28768207        62
## 161 -1.7147984            -1.27296568 -0.31471074        64
## 162 -1.2378744            -0.40047757 -0.30110509        49
## 163 -2.0402208            -0.96758403 -1.27296568        34
## 165 -1.6607312            -1.07880966 -0.75502258        57
## 166 -1.7719568            -0.23572233 -0.94160854        64
## 167 -1.4696760            -1.34707365 -0.18632958        64
## 168 -2.3025851            -0.82098055 -0.28768207        46
## 169 -2.1202635            -0.47803580 -0.32850407        70
## 170 -1.4696760            -0.61618614 -0.32850407        82
## 171 -1.8325815            -0.09431068 -0.44628710        54
## 172 -2.2072749            -0.16251893 -0.71334989        43
## 174 -1.7147984             0.83290912 -0.24846136        54
## 175 -1.8325815             0.33647224 -0.26136476        70
## 176 -1.7147984             0.64185389 -0.37106368        64
## 177 -1.8325815            -0.16251893 -0.57981850        44
## 178 -1.9661129            -0.99425227 -0.94160854        34
## 179 -2.3751558            -0.34249031 -0.02020271        70
## 180 -1.8971200             0.58194114 -0.12783337        82
## 181 -2.1202635            -0.47803580 -0.57981850        29
## 182 -1.8971200            -0.09431068 -0.44628710        64
## 183 -2.5133061            -1.42711636 -0.96758403        64
## 184 -1.3093333            -0.31471074  0.00000000        70
## 185 -2.0402208             0.78845736 -0.31471074        59
## 186 -1.8325815             0.64185389 -0.26136476        45
## 189 -1.6607312             1.56861592 -0.57981850        33
## 190 -1.6607312            -0.40047757 -0.38566248        54
## 191 -1.7147984            -1.96611286 -0.57981850        44
## 192 -1.4271164             1.30833282 -0.22314355        54
## 193 -1.4696760             0.87546874 -0.52763274        73
## 194 -2.0402208            -0.52763274 -0.71334989        44
## 195 -2.0402208            -0.46203546 -0.28768207        67
## 197 -0.9416085            -0.23572233 -0.26136476        82
## 198 -2.1202635            -1.23787436 -1.04982212        44
## 200 -1.6607312            -0.49429632 -0.96758403        43
## 201 -1.8325815            -0.23572233 -0.34249031        44
## 202 -2.2072749            -0.86750057 -0.96758403        48
## 205 -1.8971200            -0.41551544 -0.63487827        77
## 208 -2.0402208             0.00000000 -0.57981850        44
## 210 -2.2072749             0.47000363 -0.18632958        76
## 212 -1.8325815             1.93152141 -0.94160854        44
## 213 -1.9661129             1.19392247 -0.12783337        70
## 214 -2.0402208             0.87546874 -0.35667494        41
## 215 -1.9661129             0.47000363 -0.44628710        43
## 216 -2.1202635            -0.31471074 -0.47803580        44
## 218 -1.9661129            -0.01005034 -0.26136476        54
## 219 -1.8971200             0.87546874 -1.07880966        44
## 220 -1.8325815            -0.37106368 -0.71334989        44
## 223 -2.1202635             0.91629073 -0.61618614        43
## 224 -2.0402208            -0.73396918 -0.96758403        43
## 225 -1.8971200            -0.49429632 -0.37106368        53
## 226 -1.7147984             0.18232156 -0.15082289        83
## 227 -2.3859667             1.19392247 -0.44628710        74
## 228 -2.3025851            -0.31471074 -0.96758403        33
## 229 -2.0402208            -0.73396918 -0.57981850        45
## 230 -1.2729657             1.62924054 -0.02020271        70
## 231 -1.9661129            -0.67334455 -0.26136476        57
## 232 -1.7719568            -0.40047757 -0.86750057        54
## 233 -2.1202635            -0.63487827 -1.04982212        34
## 234 -1.8971200             0.74193734 -0.40047757        70
## 236 -2.0402208            -0.94160854 -0.40047757        57
## 237 -1.8971200             1.09861229 -0.61618614        44
## 239 -2.3859667            -0.16251893 -0.96758403        33
## 240 -2.1202635             0.18232156 -0.96758403        43
## 241 -1.6607312            -0.31471074 -0.40047757        45
## 242 -2.6736488             0.99325177 -0.67334455        72
## 243 -2.0402208            -0.02020271 -0.82098055        44
## 244 -1.7147984             0.74193734 -0.71334989        64
## 245 -2.3968958            -0.40047757 -0.47803580        23
## 246 -2.3330443             0.58778666 -0.49429632        64
## 247 -1.8325815            -0.16251893 -0.65392647        39
## 249 -1.4696760            -1.07880966 -0.05129329        82
## 250 -2.3025851            -0.82098055 -0.52763274        72
## 251 -1.8325815             0.09531018 -1.07880966        54
## 253 -1.8325815             0.33647224 -0.52763274        64
## 254 -1.8325815            -0.59783700 -0.03045921        80
## 255 -1.4271164            -0.63487827 -0.52763274        73
## 256 -1.7719568             0.53062825 -1.07880966        34
## 257 -2.3330443            -0.09431068 -0.82098055        44
## 258 -1.8971200             0.33647224 -0.35667494        72
## 260 -1.7719568            -0.69314718 -0.30110509        64
## 261 -2.3751558             0.00000000 -1.07880966         7
## 262 -1.6094379            -0.69314718 -0.86750057        39
## 263 -1.2378744            -1.13943428 -0.30110509        64
## 264 -2.0402208             0.60449978 -0.52763274        69
## 265 -1.9661129             0.91629073 -0.57981850        54
## 267 -1.4696760             0.83290912 -0.02020271        70
## 268 -1.2729657             0.40546511 -0.57981850        44
## 269 -2.2072749            -1.42711636 -0.71334989        33
## 270 -1.5606477            -0.47803580 -0.22314355        49
## 271 -1.5606477            -0.23572233 -0.30110509        64
## 272 -1.5141277            -0.23572233 -0.57981850        49
## 273 -1.3862944             0.09531018 -0.22314355        78
## 274 -1.6094379            -1.13943428 -0.47803580        39
## 275 -1.7719568            -0.49429632 -0.61618614        53
## 277 -1.9661129             0.53062825 -0.32850407        33
## 278 -2.2072749             0.18232156 -0.96758403        53
## 279 -1.8971200            -0.94160854 -0.40047757        51
## 281 -1.7719568             0.18232156 -0.07257069        82
## 282 -1.8971200             0.33647224 -0.52763274        72
## 283 -1.5545112             0.58778666 -0.38566248        92
## 287 -2.1202635             0.26236426 -0.63487827        52
## 289 -2.5383074            -0.59783700 -0.96758403        33
## 290 -2.1202635             0.33647224 -0.63487827        46
## 291 -1.4271164            -0.10536052  0.00000000        57
## 292 -1.8325815            -0.23572233 -0.37106368        74
## 294 -2.4769385            -1.02165125 -0.82098055        43
## 297 -2.0402208             0.74193734 -0.94160854        54
## 298 -2.5010360             0.09531018 -0.94160854        62
## 299 -1.4271164            -0.94160854 -0.40047757        82
## 301 -1.8325815            -0.41551544 -0.94160854        54
## 302 -2.8473123            -0.86750057 -0.96758403        33
## 303 -1.9661129            -0.16251893 -0.38566248        54
## 304 -1.6094379             0.18232156 -0.31471074        59
## 305 -1.3862944             0.09531018 -0.30110509        73
## 306 -1.7147984             0.18232156 -0.24846136        74
## 307 -1.8325815             0.99325177 -0.37106368        64
## 308 -1.7719568             0.99325177 -0.96758403        33
## 311 -2.1202635            -0.41551544 -0.71334989        54
## 312 -1.6607312             0.78845736 -0.52763274        64
## 313 -1.7719568             0.00000000 -0.71334989        54
## 314 -1.5141277            -0.96758403 -0.38566248        44
## 315 -1.9661129            -0.16251893 -0.61618614        48
## 316 -2.0402208             0.09531018 -0.57981850        41
## 317 -2.2072749            -0.34249031 -0.52763274        62
## 320 -2.3025851             0.40546511 -0.44628710        62
## 321 -2.6310892             0.26236426 -0.86750057        52
## 322 -1.8971200            -0.52763274 -0.41551544        64
## 323 -1.3862944             0.53062825 -0.15082289        54
## 324 -1.6607312             0.58778666 -0.71334989        43
## 325 -1.7719568             0.78845736 -0.47803580        54
## 326 -1.9661129            -0.04082199 -0.71334989        44
## 327 -1.1086626             0.78845736 -0.02020271        82
## 329 -1.8971200             0.33647224 -0.61618614        44
## 330 -2.5010360             0.78845736 -0.26136476        70
## 331 -1.6607312            -0.96758403 -0.71334989        49
## 332 -1.2729657            -1.34707365 -0.57981850        54
## 333 -1.3093333            -0.52763274 -0.08338161        69
##     Gamma_Interferon_induced_Monokin Thymus_Expressed_Chemokine_TECK
## 1                           2.949822                        4.149327
## 2                           2.721793                        3.810182
## 3                           2.762231                        2.791992
## 5                           2.851987                        4.534163
## 6                           2.822442                        4.534163
## 7                           2.739315                        3.342694
## 8                           2.966101                        4.037285
## 9                           2.584357                        3.637051
## 11                          2.701785                        4.908629
## 12                          2.769220                        3.637051
## 14                          2.924402                        4.534163
## 16                          2.911527                        4.093428
## 17                          2.845167                        5.273838
## 18                          2.956388                        2.407182
## 19                          3.019718                        4.260413
## 20                          2.708297                        3.810182
## 21                          2.929867                        4.908629
## 22                          2.724975                        3.578777
## 23                          2.568127                        3.810182
## 24                          2.614139                        4.534163
## 25                          2.667835                        2.472433
## 26                          2.788951                        4.149327
## 28                          2.680311                        3.282892
## 29                          2.713850                        3.578777
## 30                          2.766469                        2.407182
## 31                          2.790112                        2.854653
## 34                          2.883453                        4.093428
## 35                          2.802914                        4.093428
## 36                          2.848747                        4.479850
## 37                          2.786199                        4.149327
## 38                          2.919789                        4.093428
## 39                          2.620513                        4.315608
## 40                          2.876049                        1.936058
## 41                          2.825646                        3.637051
## 42                          2.603403                        4.093428
## 43                          2.927719                        3.342694
## 44                          2.908388                        2.791992
## 45                          2.792403                        4.908629
## 46                          2.762231                        4.315608
## 47                          2.757357                        3.867347
## 48                          2.879640                        3.752748
## 50                          2.787386                        4.093428
## 51                          2.829324                        3.810182
## 53                          2.848276                        3.810182
## 55                          2.637144                        2.791992
## 56                          2.852215                        2.601557
## 57                          2.864362                        6.225224
## 59                          2.974175                        3.101492
## 60                          2.936028                        1.796259
## 61                          2.742679                        2.854653
## 62                          2.684529                        2.854653
## 63                          2.726228                        4.479850
## 64                          3.065368                        4.479850
## 65                          2.632564                        3.810182
## 67                          2.674201                        4.855724
## 68                          2.713850                        6.225224
## 69                          2.732330                        2.854653
## 70                          2.809013                        2.791992
## 71                          2.780093                        3.810182
## 72                          2.928799                        4.749337
## 73                          2.939917                        4.961345
## 74                          2.916177                        3.752748
## 75                          2.939917                        3.810182
## 76                          2.818539                        4.479850
## 77                          2.946345                        5.325310
## 78                          2.943646                        6.225224
## 80                          2.735867                        3.342694
## 81                          2.760303                        3.637051
## 82                          2.757852                        3.282892
## 83                          2.668760                        4.908629
## 84                          2.774554                        3.637051
## 85                          2.851530                        4.479850
## 86                          2.851530                        4.479850
## 88                          2.909446                        4.149327
## 90                          2.668760                        3.040333
## 93                          2.881737                        4.037285
## 94                          3.032417                        5.222195
## 95                          2.868085                        3.752748
## 96                          2.827923                        3.980894
## 97                          2.778414                        4.149327
## 98                          2.694967                        1.508487
## 99                          2.873869                        3.810182
## 100                         2.722435                        3.101492
## 103                         2.876049                        4.534163
## 104                         2.705439                        4.037285
## 105                         2.579644                        3.810182
## 107                         2.752296                        3.752748
## 108                         2.832888                        3.342694
## 109                         2.646995                        2.208489
## 110                         2.750740                        2.854653
## 111                         2.636011                        3.040333
## 112                         2.893035                        4.149327
## 113                         2.875131                        4.149327
## 114                         2.694190                        2.791992
## 115                         2.845409                        3.637051
## 117                         2.806678                        4.315608
## 118                         2.968193                        4.149327
## 121                         3.000719                        3.637051
## 123                         2.706159                        2.854653
## 124                         2.872708                        3.040333
## 126                         2.715877                        3.867347
## 128                         2.763185                        4.093428
## 129                         2.690241                        3.101492
## 130                         2.901221                        4.908629
## 131                         2.532501                        3.578777
## 132                         2.766469                        3.752748
## 133                         2.786199                        4.149327
## 134                         2.791263                        6.225224
## 135                         2.893035                        3.342694
## 136                         2.905282                        3.578777
## 137                         2.568127                        2.791992
## 139                         2.665023                        3.282892
## 140                         2.860121                        4.149327
## 141                         2.604783                        4.149327
## 143                         2.767852                        3.752748
## 144                         2.911270                        3.752748
## 145                         2.674201                        2.854653
## 146                         2.950670                        3.980894
## 147                         2.858842                        3.752748
## 148                         2.908918                        4.479850
## 149                         2.790112                        3.342694
## 152                         2.984412                        5.580204
## 153                         2.731131                        4.149327
## 154                         2.579644                        2.537220
## 155                         2.691833                        3.342694
## 156                         2.926626                        4.315608
## 157                         2.903482                        3.752748
## 158                         2.557619                        3.342694
## 159                         2.845892                        3.637051
## 160                         2.769220                        4.315608
## 161                         2.843211                        4.479850
## 162                         2.875866                        3.578777
## 163                         2.678590                        4.479850
## 165                         2.788951                        3.040333
## 166                         2.662160                        3.637051
## 167                         2.843948                        4.908629
## 168                         2.681164                        3.342694
## 169                         2.824491                        3.282892
## 170                         2.881391                        3.752748
## 171                         2.823909                        4.855724
## 172                         2.694967                        3.752748
## 174                         2.886307                        4.093428
## 175                         2.786199                        4.149327
## 176                         2.823031                        4.093428
## 177                         2.760303                        3.578777
## 178                         2.704715                        3.637051
## 179                         2.891000                        5.273838
## 180                         3.008161                        5.580204
## 181                         2.596327                        4.037285
## 182                         2.773241                        3.520211
## 183                         2.823325                        2.407182
## 184                         2.654255                        4.908629
## 185                         2.771914                        4.093428
## 186                         2.701785                        4.149327
## 189                         2.777140                        3.520211
## 190                         2.839703                        4.479850
## 191                         2.715205                        4.037285
## 192                         2.845409                        4.479850
## 193                         2.852896                        3.637051
## 194                         2.771023                        4.037285
## 195                         2.708297                        3.810182
## 197                         2.815134                        3.980894
## 198                         2.743782                        4.037285
## 200                         2.735867                        2.854653
## 201                         2.785402                        4.908629
## 202                         2.712482                        3.342694
## 205                         2.557619                        4.315608
## 208                         2.824491                        4.037285
## 210                         2.919789                        4.534163
## 212                         2.700297                        1.936058
## 213                         2.754850                        4.534163
## 214                         2.874020                        3.342694
## 215                         2.656269                        3.752748
## 216                         2.752811                        4.479850
## 218                         2.890046                        4.908629
## 219                         2.687819                        3.637051
## 220                         2.594876                        3.637051
## 223                         2.710405                        4.149327
## 224                         2.735867                        2.854653
## 225                         2.744330                        3.752748
## 226                         2.768310                        4.037285
## 227                         2.763659                        3.752748
## 228                         2.653238                        1.796259
## 229                         2.665023                        3.520211
## 230                         2.963228                        4.908629
## 231                         2.767393                        3.752748
## 232                         2.697275                        4.479850
## 233                         2.771023                        3.040333
## 234                         2.715877                        3.752748
## 236                         2.767393                        3.282892
## 237                         2.763185                        3.637051
## 239                         2.875683                        3.342694
## 240                         2.791263                        2.854653
## 241                         2.724975                        4.149327
## 242                         2.654255                        2.791992
## 243                         2.665966                        3.637051
## 244                         2.783386                        4.093428
## 245                         2.692623                        4.479850
## 246                         2.883623                        3.752748
## 247                         2.792403                        4.479850
## 249                         2.665023                        4.149327
## 250                         2.870614                        3.040333
## 251                         2.737602                        3.101492
## 253                         3.008576                        4.093428
## 254                         3.011822                        4.149327
## 255                         2.769220                        3.637051
## 256                         2.393337                        3.101492
## 257                         2.584357                        3.637051
## 258                         2.906102                        5.580204
## 260                         2.822737                        4.037285
## 261                         2.695741                        3.101492
## 262                         2.530419                        4.037285
## 263                         2.807684                        4.037285
## 264                         2.763185                        4.093428
## 265                         2.611519                        3.810182
## 267                         3.009810                        4.149327
## 268                         2.906780                        4.479850
## 269                         2.524026                        3.520211
## 270                         2.735284                        3.578777
## 271                         2.910232                        4.908629
## 272                         2.735284                        4.908629
## 273                         2.842468                        4.479850
## 274                         2.785402                        3.578777
## 275                         2.825933                        3.342694
## 277                         2.943646                        4.534163
## 278                         2.937016                        3.101492
## 279                         2.788951                        3.980894
## 281                         2.875131                        4.908629
## 282                         2.900935                        4.315608
## 283                         2.953166                        4.479850
## 287                         2.666903                        2.791992
## 289                         2.786596                        2.407182
## 290                         2.701785                        3.342694
## 291                         2.839193                        5.580204
## 292                         2.848747                        4.149327
## 294                         2.627850                        2.407182
## 297                         2.751261                        2.601557
## 298                         2.657266                        2.208489
## 299                         2.788951                        4.534163
## 301                         2.620513                        3.101492
## 302                         2.584357                        3.342694
## 303                         2.760303                        4.908629
## 304                         2.700297                        3.867347
## 305                         2.905965                        4.908629
## 306                         2.732330                        4.534163
## 307                         2.945455                        4.315608
## 308                         2.781750                        1.796259
## 311                         2.854245                        4.479850
## 312                         2.810980                        3.637051
## 313                         2.800812                        3.040333
## 314                         2.568127                        4.037285
## 315                         2.846133                        2.854653
## 316                         2.603403                        3.810182
## 317                         2.766469                        3.810182
## 320                         2.666903                        3.342694
## 321                         2.738746                        2.791992
## 322                         2.863047                        4.093428
## 323                         2.913692                        4.037285
## 324                         2.847566                        3.342694
## 325                         3.006900                        3.578777
## 326                         2.864685                        4.037285
## 327                         2.897137                        5.273838
## 329                         2.749166                        3.637051
## 330                         2.713850                        4.534163
## 331                         2.678590                        4.260413
## 332                         2.748106                        4.479850
## 333                         2.862841                        4.037285
##         TNF_RII Alpha_1_Antitrypsin IGF_BP_2 Creatine_Kinase_MB     MCP_2
## 1   -0.06187540          -12.631361 5.609472          -1.710172 1.9805094
## 2   -0.32850407          -11.909882 5.347108          -1.751002 1.8088944
## 3   -0.41551544          -13.642963 5.181784          -1.383559 0.4005958
## 5   -0.34249031          -11.133063 5.420535          -1.625834 2.2208309
## 6   -0.94160854          -12.134638 5.056246          -1.671366 2.3343863
## 7   -0.77652879          -12.813142 5.438079          -1.739232 2.1030230
## 8   -0.91629073          -13.310348 5.365976          -1.571048 2.6867663
## 9   -0.94160854          -12.907477 5.273000          -1.671366 1.8527528
## 11  -0.51082562          -13.310348 5.505332          -1.751002 4.0237466
## 12  -0.71334989          -11.838035 5.081404          -1.671366 1.5303762
## 14  -0.61618614          -11.909882 5.209486          -1.683772 2.4440754
## 16  -0.28768207          -11.983227 5.375278          -1.671366 1.0483341
## 17  -0.69314718          -11.499497 5.455321          -1.871938 2.8501989
## 18  -0.77652879          -14.135373 5.087596          -1.780911 1.8527528
## 19  -0.79850770          -12.292758 5.379897          -1.647864 2.8501989
## 20  -0.75502258           -8.932463 5.513429          -1.518336 1.5303762
## 21  -0.65392647          -14.135373 5.361292          -1.671366 2.8501989
## 22  -0.04082199          -15.344812 5.141664          -1.647864 1.7643559
## 23  -0.59783700          -13.642963 4.955827          -1.590122 1.8088944
## 24  -0.43078292          -13.310348 5.472271          -1.751002 1.0483341
## 25  -0.82098055          -13.528896 5.187386          -1.724319 2.1820549
## 26  -0.43078292          -13.205557 5.257495          -1.724319 2.0219013
## 28  -0.22314355          -11.909882 5.438079          -1.755051 1.6263611
## 29  -1.02165125          -14.135373 4.997212          -1.647864 2.2969819
## 30  -0.89159812          -13.760451 5.147494          -1.710172 2.1030230
## 31  -0.73396918          -12.058126 5.513429          -1.653590 2.5152196
## 34  -0.65392647          -11.435607 5.273000          -1.625834 2.7530556
## 35  -0.89159812          -12.458129 4.836282          -1.625834 1.5303762
## 36  -0.67334455          -11.909882 5.598422          -1.671366 1.8527528
## 37  -0.30110509          -14.548755 5.351858          -1.780911 1.6263611
## 38  -0.65392647          -13.528896 5.141664          -1.585271 1.8527528
## 39  -0.46203546          -16.321511 5.252273          -1.683772 0.4005958
## 40  -0.44628710          -13.418078 5.407172          -1.590122 2.6191813
## 41  -0.75502258           -8.191715 5.327876          -1.671366 1.0483341
## 42  -0.69314718          -13.881545 5.420535          -1.724319 1.0483341
## 43  -0.86750057          -13.004247 5.198497          -1.710172 1.8527528
## 44  -0.24846136          -12.907477 5.420535          -1.590122 1.8088944
## 45  -0.02020271          -12.058126 5.645447          -1.780911 3.0369315
## 46  -0.38566248          -15.008176 5.267858          -1.590122 1.1637797
## 47  -0.79850770          -11.630963 5.351858          -1.868851 1.8527528
## 48  -0.27443685          -15.344812 5.700444          -1.780911 1.5303762
## 50  -0.54472718          -11.698625 5.262690          -1.671366 3.2434918
## 51  -0.38566248          -12.374500 5.398163          -1.571048 1.7643559
## 53  -0.71334989          -13.881545 5.278115          -1.518336 1.1637797
## 55  -0.63487827          -15.344812 5.030438          -1.590122 1.6731213
## 56  -0.63487827          -11.698625 5.262690          -1.696685 1.5303762
## 57  -0.31471074          -12.212827 5.641907          -1.571048 1.9805094
## 59  -0.30110509          -11.250842 5.616771          -1.671366 2.5848812
## 60  -0.59783700          -13.103567 5.438079          -1.653590 1.6731213
## 61  -1.04982212          -14.006447 5.192957          -1.710172 1.5303762
## 62  -1.20397280          -15.008176 5.123964          -1.653590 1.8527528
## 63  -0.27443685          -12.907477 5.283204          -1.724319 2.3713615
## 64  -0.44628710          -12.631361 5.370638          -1.671366 2.1427912
## 65  -0.73396918          -15.523564 5.164786          -1.590122 1.1637797
## 67  -0.18632958          -14.406260 5.356586          -1.868851 1.5303762
## 68  -0.51082562          -14.268559 5.429346          -1.647864 1.7643559
## 69  -1.04982212          -15.008176 5.141664          -1.653590 1.1637797
## 70  -0.61618614          -14.406260 5.594711          -1.755051 2.0219013
## 71  -0.46203546          -12.134638 5.068904          -1.683772 1.3273591
## 72   0.33647224          -10.963846 5.780744          -1.751002 2.2591348
## 73  -0.03045921          -14.135373 5.509388          -1.459630 1.1637797
## 74  -1.34707365          -10.802885 5.241747          -1.605032 2.5152196
## 75  -0.67334455          -12.907477 5.337538          -1.631218 1.8088944
## 76   0.00000000          -10.363053 5.549076          -1.755051 1.6731213
## 77  -0.41551544          -11.564602 5.129899          -1.751002 1.5303762
## 78  -0.06187540          -11.311317 5.624018          -1.780911 2.6191813
## 80  -0.65392647          -13.205557 5.204007          -1.605032 1.8527528
## 81  -0.59783700          -12.292758 5.111988          -1.780911 0.4005958
## 82  -0.44628710          -12.292758 5.521461          -1.871938 2.0219013
## 83  -0.82098055          -12.374500 4.905275          -1.441430 2.3713615
## 84  -0.57981850          -11.564602 5.043425          -1.671366 2.1427912
## 85  -0.31471074          -12.212827 5.370638          -1.671366 2.1427912
## 86  -0.26136476          -11.019298 5.590987          -1.724319 2.1427912
## 88  -0.30110509          -13.418078 5.501258          -1.710172 2.6867663
## 90  -1.38629436          -14.849365 4.634729          -1.571048 2.1820549
## 93  -0.24846136          -13.004247 5.497168          -1.830294 1.7643559
## 94   0.47000363          -12.292758 5.948035          -1.724319 3.1563503
## 95  -0.63487827          -12.058126 5.327876          -1.751002 2.5152196
## 96  -0.63487827          -14.406260 5.509388          -1.724319 2.0219013
## 97  -0.51082562          -13.881545 5.356586          -1.780911 2.0219013
## 98  -1.10866262          -15.344812 5.075174          -1.710172 1.5303762
## 99  -0.19845094          -14.268559 5.370638          -1.590122 1.5303762
## 100 -0.49429632          -15.008176 5.187386          -1.724319 1.5303762
## 103 -0.05129329          -13.310348 5.641907          -1.590122 1.1637797
## 104 -0.44628710          -13.881545 5.159055          -1.830294 2.5502306
## 105 -0.59783700          -12.374500 5.231109          -1.751002 1.1637797
## 107 -0.59783700          -13.004247 5.214936          -1.653590 1.8527528
## 108 -0.51082562          -13.103567 5.579730          -1.653590 2.1030230
## 109 -0.94160854          -16.780588 5.003946          -1.552786 0.4005958
## 110 -0.89159812          -15.173178 5.062595          -1.653590 1.6731213
## 111 -0.77652879          -14.268559 5.347108          -1.647864 1.7643559
## 112 -0.27443685          -12.058126 5.609472          -1.653590 2.3343863
## 113  0.00000000          -11.191436 5.398163          -1.821115 2.0219013
## 114 -1.07880966          -13.418078 5.081404          -1.780911 2.0219013
## 115 -0.71334989          -11.499497 5.420535          -1.724319 2.1427912
## 117 -0.47803580          -14.006447 5.293305          -1.653590 1.5303762
## 118 -0.18632958          -13.881545 5.616771          -1.755051 2.0219013
## 121  0.09531018           -9.562842 5.420535          -1.671366 2.3713615
## 123 -1.13943428          -13.103567 5.407172          -1.677510 2.6867663
## 124 -0.44628710          -13.004247 5.402677          -1.647864 1.7643559
## 126 -0.84397007          -13.418078 5.135798          -1.671366 1.5303762
## 128 -0.43078292          -10.750945 5.303305          -1.868851 2.5848812
## 129 -1.23787436          -13.103567 5.257495          -1.671366 0.4005958
## 130 -0.44628710          -10.363053 5.433722          -1.696685 2.0219013
## 131 -0.94160854          -13.642963 4.969813          -1.590122 0.4005958
## 132 -0.67334455          -12.058126 5.375278          -1.653590 1.5303762
## 133 -0.57981850          -11.983227 5.620401          -1.780911 2.3343863
## 134 -0.44628710          -12.813142 5.521461          -1.631218 1.6263611
## 135 -0.52763274          -11.499497 5.455321          -1.710172 1.8527528
## 136 -0.65392647          -12.374500 5.451038          -1.647864 2.9135187
## 137 -1.13943428          -14.135373 5.159055          -1.747018 0.4005958
## 139 -0.86750057          -14.406260 5.153292          -1.671366 2.0219013
## 140 -0.69314718          -13.881545 5.433722          -1.871938 1.6263611
## 141 -0.41551544          -11.250842 5.293305          -1.871938 1.0483341
## 143 -1.02165125          -12.134638 5.313206          -1.653590 2.6867663
## 144 -0.52763274          -13.528896 5.356586          -1.751002 2.0219013
## 145 -0.89159812          -14.696346 5.164786          -1.710172 1.6731213
## 146 -0.17435339          -13.103567 5.645447          -1.631218 2.3343863
## 147 -0.15082289          -13.881545 5.342334          -1.755051 2.8501989
## 148 -0.52763274          -12.907477 5.468060          -1.571048 2.9757467
## 149 -0.71334989          -15.008176 5.081404          -1.518336 1.5303762
## 152  0.00000000          -12.458129 5.758902          -1.724319 2.0219013
## 153 -0.56211892          -12.374500 5.609472          -1.724319 2.6191813
## 154 -0.86750057          -14.696346 5.181784          -1.518336 0.4005958
## 155 -0.79850770          -12.631361 5.062595          -1.605032 2.3343863
## 156 -0.41551544          -12.543721 5.332719          -1.631218 0.4005958
## 157 -0.67334455          -13.310348 5.613128          -1.653590 1.1637797
## 158 -0.79850770          -14.268559 5.198497          -1.590122 1.1637797
## 159 -0.91629073          -11.838035 5.093750          -1.585271 3.0064666
## 160 -0.26136476          -12.721137 5.389072          -1.683772 1.1637797
## 161 -0.43078292          -12.458129 5.135798          -1.671366 2.3713615
## 162 -0.38566248          -15.523564 5.342334          -1.647864 2.1820549
## 163 -0.94160854          -15.709974 5.030438          -1.647864 1.5303762
## 165 -0.40047757          -14.135373 5.455321          -1.653590 2.6191813
## 166 -0.75502258          -14.135373 5.379897          -1.868851 1.5303762
## 167 -0.26136476          -14.406260 5.342334          -1.647864 2.1820549
## 168 -0.38566248          -14.006447 5.209486          -1.683772 1.5303762
## 169 -0.86750057          -13.205557 5.153292          -1.631218 2.0219013
## 170 -0.75502258          -12.134638 5.187386          -1.724319 2.6191813
## 171 -0.59783700          -10.599937 5.117994          -1.671366 1.0483341
## 172 -1.10866262          -12.631361 5.075174          -1.677510 1.1637797
## 174 -0.51082562          -11.435607 5.298317          -1.625834 2.7530556
## 175 -0.24846136          -11.838035 5.476464          -1.724319 2.6191813
## 176 -0.69314718          -11.133063 5.056246          -1.671366 1.5303762
## 177 -0.54472718          -14.548755 5.468060          -1.647864 1.7643559
## 178 -1.30933332          -14.135373 4.983607          -1.724319 1.9805094
## 179 -0.26136476          -13.103567 5.517453          -1.671366 2.0219013
## 180  0.09531018          -13.103567 5.655992          -1.653590 2.8501989
## 181 -0.91629073          -15.173178 5.093750          -1.478464 1.7643559
## 182 -0.75502258          -15.173178 5.424950          -1.710172 0.4005958
## 183 -0.86750057          -13.205557 5.365976          -1.653590 2.1030230
## 184 -0.63487827          -12.813142 5.648974          -1.590122 2.0219013
## 185 -0.56211892          -12.212827 5.204007          -1.585271 1.0483341
## 186 -0.82098055          -16.545310 5.198497          -1.724319 1.6263611
## 189 -0.52763274          -13.205557 5.164786          -1.653590 1.0483341
## 190 -0.35667494          -14.406260 5.323010          -1.647864 1.2195081
## 191 -0.69314718          -13.528896 4.983607          -1.647864 1.7643559
## 192 -0.15082289          -13.881545 5.327876          -1.441430 2.1820549
## 193 -0.32850407          -11.191436 5.645447          -1.671366 0.4005958
## 194 -0.75502258          -12.907477 5.209486          -1.647864 1.7643559
## 195 -0.24846136          -12.907477 5.303305          -1.751002 2.0219013
## 197 -0.24846136          -11.983227 5.560682          -1.780911 1.6263611
## 198 -0.91629073          -15.904641 5.159055          -1.518336 1.9805094
## 200 -0.59783700          -12.721137 5.323010          -1.653590 1.5303762
## 201 -0.77652879          -13.642963 5.247024          -1.605032 1.9805094
## 202 -1.13943428          -14.696346 5.105945          -1.710172 1.5303762
## 205 -0.73396918          -17.028429 5.488938          -1.751002 1.8088944
## 208 -0.54472718          -13.881545 5.192957          -1.571048 2.6867663
## 210 -0.28768207          -10.699822 5.613128          -1.780911 4.0237466
## 212 -0.89159812          -12.631361 5.187386          -1.780911 1.0483341
## 213 -0.46203546          -12.458129 5.407172          -1.590122 1.6263611
## 214 -0.32850407          -12.543721 5.293305          -1.459630 2.0219013
## 215 -0.75502258          -14.696346 5.288267          -1.653590 2.1030230
## 216 -1.07880966          -13.004247 5.105945          -1.647864 4.0237466
## 218 -0.82098055          -13.103567 5.327876          -1.543930 2.1820549
## 219 -1.02165125          -13.760451 5.327876          -1.671366 2.1427912
## 220 -0.96758403          -14.406260 5.030438          -1.671366 1.0483341
## 223 -0.59783700          -12.212827 5.303305          -1.605032 1.6731213
## 224 -0.89159812          -12.721137 5.147494          -1.710172 1.8527528
## 225 -0.26136476          -13.528896 5.472271          -1.653590 1.5303762
## 226  0.09531018          -13.205557 5.620401          -1.647864 1.9805094
## 227 -0.63487827          -12.813142 5.293305          -1.780911 2.3343863
## 228 -0.94160854          -14.696346 5.023881          -1.653590 1.9805094
## 229 -1.07880966          -14.006447 5.192957          -1.780911 1.0483341
## 230 -0.26136476          -12.292758 5.342334          -1.871938 2.1820549
## 231 -0.65392647          -11.767633 5.187386          -1.590122 2.6191813
## 232 -0.73396918          -12.907477 5.389072          -1.571048 2.6867663
## 233 -0.96758403          -13.205557 5.187386          -1.751002 2.9135187
## 234 -0.79850770          -11.983227 5.407172          -1.448638 1.0483341
## 236 -0.84397007          -13.004247 5.081404          -1.724319 2.0219013
## 237 -0.67334455          -10.185537 5.192957          -1.724319 1.5303762
## 239 -0.99425227          -13.418078 5.141664          -1.605032 1.8527528
## 240 -0.96758403          -14.548755 5.093750          -1.557281 1.5303762
## 241 -0.65392647          -11.983227 5.129899          -1.780911 1.6263611
## 242 -0.44628710          -14.135373 5.288267          -1.518336 1.5303762
## 243 -1.07880966          -10.317725 5.252273          -1.625834 0.4005958
## 244 -0.30110509          -11.698625 5.365976          -1.671366 2.3713615
## 245 -1.38629436          -15.904641 4.663439          -1.571048 1.9805094
## 246 -0.51082562          -11.698625 5.583496          -1.710172 3.1563503
## 247 -1.07880966          -15.709974 5.093750          -1.751002 2.1820549
## 249 -0.03045921          -14.849365 5.609472          -1.724319 1.0483341
## 250 -0.51082562          -13.310348 5.303305          -1.518336 1.8088944
## 251 -0.82098055          -12.721137 5.257495          -1.625834 1.8527528
## 253 -0.41551544          -10.750945 5.342334          -1.724319 1.5303762
## 254  0.26236426          -12.721137 5.598422          -1.710172 1.8527528
## 255 -0.22314355          -11.191436 5.472271          -1.671366 1.0483341
## 256 -1.04982212          -15.523564 5.176150          -1.724319 0.4005958
## 257 -1.13943428          -15.523564 5.093750          -1.625834 1.0483341
## 258 -0.34249031          -10.802885 5.351858          -1.590122 2.5152196
## 260 -0.69314718          -13.310348 5.273000          -1.830294 2.3713615
## 261 -0.91629073          -13.004247 4.682131          -1.647864 1.8527528
## 262 -1.10866262          -14.135373 4.976734          -1.571048 2.5502306
## 263 -0.47803580          -13.004247 5.407172          -1.830294 1.9805094
## 264 -0.38566248           -8.191715 5.327876          -1.724319 2.5848812
## 265 -0.75502258          -14.406260 5.252273          -1.830294 1.2195081
## 267 -0.02020271          -13.310348 5.624018          -1.751002 2.0219013
## 268 -0.34249031          -13.103567 5.283204          -1.571048 1.9805094
## 269 -0.75502258          -14.696346 5.262690          -1.653590 1.5303762
## 270 -0.19845094          -14.268559 5.220356          -1.647864 2.3713615
## 271 -0.17435339          -12.458129 5.438079          -1.571048 1.9805094
## 272 -0.77652879          -11.564602 5.192957          -1.647864 2.1820549
## 273 -0.22314355          -13.881545 5.594711          -1.647864 2.3713615
## 274 -0.57981850          -13.418078 5.159055          -1.647864 1.9805094
## 275 -0.26136476          -13.205557 5.342334          -1.780911 1.8527528
## 277 -0.57981850          -11.838035 5.075174          -1.696685 2.0219013
## 278 -0.41551544          -12.292758 5.579730          -1.710172 2.1030230
## 279 -0.61618614          -12.058126 5.087596          -1.780911 1.6263611
## 281 -0.44628710          -13.205557 5.517453          -1.631218 2.7200688
## 282 -0.82098055          -12.458129 5.288267          -1.518336 1.1637797
## 283 -0.10536052          -12.907477 5.777652          -1.571048 3.3286939
## 287 -0.40047757          -14.548755 5.135798          -1.683772 1.1637797
## 289 -1.07880966          -13.004247 5.087596          -1.605032 2.1030230
## 290 -0.71334989          -14.268559 5.327876          -1.590122 2.2591348
## 291 -0.17435339          -12.721137 5.365976          -1.871938 1.6263611
## 292 -0.26136476          -12.374500 5.525453          -1.710172 1.8527528
## 294 -1.02165125          -15.709974 5.442418          -1.557281 1.8527528
## 297 -0.89159812          -14.006447 5.323010          -1.671366 2.1427912
## 298 -0.96758403          -13.205557 5.521461          -1.751002 0.4005958
## 299 -0.54472718          -12.721137 5.662960          -1.780911 2.0219013
## 301 -0.99425227          -12.721137 5.257495          -1.671366 1.8527528
## 302 -1.66073121          -11.311317 4.962845          -1.653590 2.1030230
## 303 -0.82098055          -13.310348 5.384495          -1.830294 1.7643559
## 304 -0.19845094          -11.499497 5.587249          -1.780911 1.5303762
## 305 -0.40047757          -15.904641 5.693732          -1.647864 1.7643559
## 306 -0.15082289          -11.133063 5.480639          -1.653590 1.8527528
## 307 -0.16251893          -11.191436 5.541264          -1.710172 2.3343863
## 308 -0.56211892          -12.458129 5.181784          -1.653590 1.8527528
## 311 -0.67334455          -11.019298 5.225747          -1.724319 1.8527528
## 312 -0.46203546           -8.417032 5.214936          -1.724319 1.8527528
## 313 -0.82098055          -14.406260 5.638355          -1.571048 1.5303762
## 314 -0.77652879          -15.523564 5.236442          -1.518336 1.5303762
## 315 -0.67334455          -12.721137 5.262690          -1.710172 1.5303762
## 316 -0.52763274          -13.310348 5.332719          -1.590122 0.4005958
## 317 -0.37106368          -13.418078 5.505332          -1.751002 1.8088944
## 320 -0.91629073          -11.630963 5.323010          -1.459630 1.1637797
## 321 -1.02165125          -12.292758 4.976734          -1.590122 0.4005958
## 322 -0.40047757          -10.551134 5.402677          -1.724319 1.5303762
## 323 -0.46203546          -13.418078 5.424950          -1.830294 1.9805094
## 324 -0.71334989          -14.849365 5.135798          -1.780911 1.8527528
## 325 -0.47803580          -12.907477 5.472271          -1.571048 1.8959582
## 326 -0.40047757          -14.006447 5.389072          -1.518336 2.1030230
## 327 -0.27443685          -11.838035 5.609472          -1.871938 2.3343863
## 329 -0.61618614          -16.321511 5.278115          -1.868851 2.1427912
## 330 -0.79850770          -11.838035 5.209486          -1.780911 2.3343863
## 331 -1.17118298          -14.406260 5.087596          -1.605032 1.8959582
## 332 -1.02165125          -12.543721 5.411646          -1.571048 1.7643559
## 333 -0.21072103          -12.907477 5.552960          -1.647864 2.6867663
##       Resistin Cortisol E4
## 1   -16.475315     10.0  1
## 2   -16.025283     12.0  2
## 3   -16.475315     10.0  2
## 5   -11.092838     11.0  1
## 6   -11.291369     13.0  2
## 7   -20.660678      4.9  1
## 8    -6.048172     13.0  1
## 9   -28.434991     12.0  1
## 11  -11.291369      6.8  2
## 12  -14.824999     12.0  1
## 14  -16.954608     15.0  2
## 16  -15.202379     12.0  2
## 17  -10.901667     12.0  1
## 18  -24.395099      0.1  2
## 19  -16.475315     10.0  1
## 20  -10.717434     18.0  2
## 21  -14.824999     26.0  2
## 22  -32.139553     14.0  1
## 23  -16.954608     16.0  2
## 24  -22.351393      7.8  1
## 25  -23.322142      8.6  2
## 26  -13.807280     14.0  2
## 28  -19.235033      8.9  1
## 29  -24.395099     15.0  2
## 30  -22.351393      1.8  1
## 31  -18.014017     19.0  1
## 34  -18.014017     14.0  2
## 35  -15.202379     14.0  2
## 36  -14.467762      9.8  1
## 37  -16.025283     14.0  2
## 38  -26.925298      9.5  1
## 39  -23.322142     15.0  1
## 40  -18.601960     12.0  1
## 41   -8.576675     13.0  1
## 42  -16.954608     11.0  2
## 43  -25.588488     10.0  1
## 44   -9.592564      9.5  2
## 45  -12.782746     15.0  1
## 46  -16.954608     15.0  1
## 47  -17.466301     15.0  1
## 48  -18.014017     15.0  1
## 50  -10.202587      9.8  1
## 51  -11.092838     10.0  1
## 53   -3.316155     11.0  1
## 55  -18.601960     15.0  2
## 56  -13.807280     12.0  1
## 57  -16.025283     11.0  1
## 59  -13.807280     11.0  2
## 60  -25.588488      7.0  1
## 61  -18.601960     17.0  1
## 62  -24.395099      7.1  1
## 63  -18.601960     13.0  1
## 64  -12.168957     10.0  2
## 65  -20.660678     13.0  1
## 67  -25.588488     18.0  2
## 68  -20.660678     15.0  1
## 69  -16.475315      7.4  1
## 70  -19.918999     14.0  1
## 71  -18.014017     15.0  1
## 72  -11.712400     15.0  1
## 73   -9.737717     11.0  1
## 74  -15.601770     13.0  1
## 75  -21.468210     16.0  1
## 76   -3.509845     12.0  2
## 77  -12.931637     17.0  2
## 78  -12.931637     11.0  2
## 80  -18.601960     11.0  1
## 81  -25.588488     12.0  1
## 82  -20.660678     14.0  2
## 83  -13.807280     12.0  1
## 84  -20.660678     14.0  2
## 85  -19.235033     12.0  1
## 86   -9.737717     12.0  1
## 88  -11.712400     12.0  2
## 90  -26.925298      9.9  1
## 93  -11.935945     12.0  2
## 94   -9.887603     18.0  1
## 95  -18.014017      5.9  1
## 96  -18.601960     11.0  2
## 97  -19.918999      8.2  2
## 98  -22.351393      8.3  1
## 99  -11.935945     15.0  1
## 100 -24.395099      6.5  2
## 103 -12.168957     16.0  1
## 104 -23.322142     14.0  2
## 105 -28.434991      9.0  1
## 107 -19.235033     10.0  2
## 108 -18.014017     13.0  1
## 109 -21.468210     14.0  1
## 110 -19.918999     11.0  1
## 111 -19.918999      9.1  2
## 112 -11.497723     13.0  1
## 113 -13.209714     13.0  2
## 114 -25.588488     13.0  2
## 115 -14.824999     29.0  2
## 117 -12.931637     13.0  1
## 118 -14.129014     11.0  1
## 121 -13.501240     18.0  2
## 123 -32.139553      9.5  2
## 124 -18.014017     13.0  1
## 126 -20.660678     10.0  2
## 128 -16.475315      8.9  2
## 129 -22.351393      8.4  2
## 130 -11.092838      4.0  1
## 131 -26.925298     10.0  1
## 132 -12.931637     12.0  2
## 133 -12.168957     13.0  2
## 134 -10.901667     12.0  2
## 135 -14.129014      8.7  1
## 136  -3.509845     29.0  2
## 137 -21.468210      9.7  2
## 139 -20.660678     13.0  2
## 140  -9.737717     22.0  2
## 141 -18.014017     12.0  2
## 143 -21.468210      7.1  1
## 144 -18.601960     12.0  2
## 145 -28.434991      9.8  1
## 146 -13.209714     15.0  2
## 147  -2.239355     11.0  2
## 148 -16.025283      9.7  1
## 149 -23.322142      8.9  1
## 152 -15.601770     14.0  2
## 153 -19.235033      8.8  1
## 154 -22.351393      8.9  1
## 155 -20.660678      8.1  2
## 156 -15.601770      9.0  1
## 157 -13.807280     11.0  1
## 158 -20.660678      7.0  2
## 159 -20.460441      9.3  1
## 160  -8.047964      8.5  1
## 161 -10.368242     13.0  1
## 162 -20.660678      9.1  1
## 163 -25.588488     11.0  2
## 165 -19.235033     14.0  2
## 166 -28.434991     13.0  1
## 167 -12.666051     10.0  1
## 168 -18.601960      7.7  1
## 169 -20.660678     12.0  1
## 170 -15.601770     14.0  1
## 171 -10.717434     13.0  1
## 172 -22.351393      8.5  1
## 174 -10.539746     12.0  1
## 175 -10.539746     18.0  1
## 176 -16.954608     17.0  1
## 177 -19.918999     12.0  1
## 178 -19.235033      8.3  1
## 179  -6.464363     13.0  1
## 180 -14.824999     16.0  1
## 181 -26.925298     11.0  1
## 182 -25.588488     11.0  1
## 183 -18.014017      6.5  2
## 184 -16.025283     14.0  2
## 185 -13.209714     12.0  2
## 186 -21.468210     18.0  2
## 189 -18.601960     13.0  1
## 190 -23.322142     14.0  1
## 191 -23.322142      8.1  2
## 192 -19.918999     19.0  2
## 193 -14.824999     11.0  2
## 194 -17.466301      9.5  2
## 195 -21.468210     12.0  1
## 197 -11.935945     15.0  2
## 198 -23.322142      5.2  2
## 200 -19.918999     12.0  2
## 201 -22.351393     14.0  1
## 202 -34.966595     10.0  2
## 205 -15.601770     12.0  1
## 208 -26.925298     20.0  2
## 210  -2.450735     18.0  2
## 212 -22.351393     11.0  2
## 213 -18.014017     11.0  2
## 214 -10.539746      5.5  1
## 215 -16.475315     11.0  1
## 216 -12.931637     11.0  2
## 218 -23.322142     14.0  1
## 219 -19.235033     14.0  1
## 220 -30.156007     11.0  1
## 223 -14.467762     12.0  2
## 224 -13.807280     11.0  1
## 225 -25.588488     13.0  1
## 226 -12.931637     17.0  1
## 227 -16.475315      4.8  1
## 228 -13.501240     15.0  1
## 229 -25.588488     11.0  2
## 230 -11.935945      9.4  1
## 231 -16.025283     11.0  1
## 232 -26.925298     14.0  1
## 233 -21.468210      9.0  2
## 234 -14.467762      9.8  1
## 236 -23.322142      8.1  1
## 237 -14.467762     16.0  1
## 239 -18.601960     13.0  1
## 240 -14.129014     11.0  1
## 241 -21.468210     15.0  1
## 242  -9.592564     13.0  1
## 243 -21.468210      9.1  1
## 244 -14.824999     15.0  2
## 245 -13.501240     12.0  1
## 246 -13.209714     11.0  1
## 247 -17.466301     12.0  2
## 249 -16.954608     17.0  2
## 250 -17.466301     12.0  2
## 251 -24.395099     12.0  2
## 253 -16.025283     13.0  1
## 254 -12.931637     10.0  1
## 255 -18.601960     22.0  2
## 256 -25.588488     10.0  2
## 257 -25.588488     10.0  2
## 258  -4.873381     13.0  2
## 260 -23.322142     13.0  1
## 261 -16.954608     12.0  1
## 262 -23.322142      9.9  1
## 263 -15.202379     14.0  1
## 264 -11.291369     11.0  2
## 265 -23.322142     18.0  1
## 267 -10.539746     14.0  2
## 268 -15.601770     12.0  1
## 269 -28.434991      7.8  2
## 270 -14.824999     11.0  1
## 271 -12.666051     15.0  2
## 272 -15.601770     17.0  1
## 273 -12.666051     16.0  1
## 274 -28.434991      9.0  1
## 275 -28.434991     11.0  1
## 277 -14.129014      9.7  1
## 278 -14.467762      6.9  1
## 279 -16.954608     14.0  2
## 281  -3.723928     13.0  2
## 282 -20.660678     11.0  2
## 283  -7.247686     22.0  1
## 287 -18.014017     12.0  1
## 289 -19.235033     11.0  1
## 290 -16.025283     15.0  1
## 291 -20.660678     20.0  1
## 292 -26.925298     10.0  1
## 294 -22.293116      0.1  1
## 297 -16.475315      7.6  1
## 298 -22.351393     12.0  1
## 299 -26.925298     12.0  2
## 301 -19.235033      3.4  2
## 302 -19.235033      8.6  1
## 303 -18.014017     13.0  1
## 304 -22.351393     18.0  2
## 305 -16.954608     18.0  1
## 306 -12.412086     17.0  1
## 307 -11.497723     12.0  1
## 308 -13.501240     14.0  2
## 311 -16.954608      9.0  2
## 312 -18.601960     15.0  2
## 313 -19.235033      9.1  1
## 314 -26.925298     10.0  1
## 315 -16.475315     14.0  1
## 316 -26.925298     12.0  1
## 317 -21.468210      7.4  1
## 320 -13.501240      6.4  2
## 321 -14.467762      4.3  1
## 322  -8.930136     14.0  1
## 323 -12.666051      9.9  1
## 324 -16.954608      9.5  2
## 325 -23.322142     20.0  1
## 326 -13.501240     12.0  2
## 327 -14.467762      0.1  2
## 329 -28.434991      7.1  1
## 330 -14.824999     11.0  2
## 331 -20.660678     14.0  1
## 332 -18.601960     11.0  1
## 333 -19.918999      7.2  2
## 
## $usekernel
## [1] TRUE
## 
## $varnames
##  [1] "MMP10"                            "GRO_alpha"                       
##  [3] "TRAIL_R3"                         "Fibrinogen"                      
##  [5] "PAI_1"                            "MMP7"                            
##  [7] "NT_proBNP"                        "MIF"                             
##  [9] "Pancreatic_polypeptide"           "FAS"                             
## [11] "Eotaxin_3"                        "Gamma_Interferon_induced_Monokin"
## [13] "Thymus_Expressed_Chemokine_TECK"  "TNF_RII"                         
## [15] "Alpha_1_Antitrypsin"              "IGF_BP_2"                        
## [17] "Creatine_Kinase_MB"               "MCP_2"                           
## [19] "Resistin"                         "Cortisol"                        
## [21] "E4"                              
## 
## attr(,"class")
## [1] "NaiveBayes"
NB_RFE_Tune$results
##   Variables       ROC      Sens      Spec  Accuracy     Kappa      ROCSD
## 1         1 0.7190930 0.2089286 0.9439474 0.7425417 0.1841923 0.08707182
## 2        21 0.7682472 0.6107143 0.7521053 0.7125865 0.3373127 0.10730612
## 3        41 0.7474013 0.6232143 0.7621053 0.7234432 0.3629843 0.11767270
## 4        61 0.7523731 0.6375000 0.7623684 0.7275641 0.3759538 0.10481520
## 5        81 0.7438064 0.6232143 0.7521053 0.7161681 0.3498289 0.10873176
## 6       101 0.7434164 0.6232143 0.7626316 0.7237179 0.3604692 0.10817177
## 7       121 0.7444220 0.5946429 0.7573684 0.7120472 0.3257190 0.11227352
## 8       127 0.7390414 0.5821429 0.7518421 0.7043549 0.3064041 0.11701325
##      SensSD     SpecSD AccuracySD   KappaSD
## 1 0.1538549 0.04366712 0.05823576 0.1961714
## 2 0.2147482 0.13772656 0.10835094 0.2125839
## 3 0.2136979 0.14672583 0.11474056 0.2210172
## 4 0.2146244 0.14897335 0.12326383 0.2361289
## 5 0.2240579 0.14827831 0.11874534 0.2275762
## 6 0.2240579 0.13800005 0.11294404 0.2227129
## 7 0.2191980 0.11967690 0.09691544 0.2051666
## 8 0.2432769 0.12306395 0.10320115 0.2332805
(NB_RFE_Train_ROCCurveAUC <- NB_RFE_Tune$results[NB_RFE_Tune$results$ROC==max(NB_RFE_Tune$results$ROC),
                                                       c("ROC")])
## [1] 0.7682472
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
NB_RFE_Test <- data.frame(NB_RFE_Observed = PMA_PreModelling_Test$Class,
                      NB_RFE_Predicted = predict(NB_RFE_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
NB_RFE_Test_ROC <- roc(response = NB_RFE_Test$NB_RFE_Observed,
                        predictor = NB_RFE_Test$NB_RFE_Predicted.Impaired,
                        levels = rev(levels(NB_RFE_Test$NB_RFE_Observed)))

(NB_RFE_Test_ROCCurveAUC <- auc(NB_RFE_Test_ROC)[1])
## [1] 0.7523148

1.5.10 Logistic Regression With RFE (LR_RFE)


Logistic Regression models the relationship between the probability of an event (among two outcome levels) by having the log-odds of the event be a linear combination of a set of predictors weighted by their respective parameter estimates. The parameters are estimated via maximum likelihood estimation by testing different values through multiple iterations to optimize for the best fit of log odds. All of these iterations produce the log likelihood function, and logistic regression seeks to maximize this function to find the best parameter estimates. Given the optimal parameters, the conditional probabilities for each observation can be calculated, logged, and summed together to yield a predicted probability.

Recursive Feature Elimination is a wrapper-style feature selection algorithm which searches for a subset of features by starting with all features in the training data set and successfully removing features until the desired number remains. The algorithm repeatedly fits a given machine learning algorithm used in the core of the model, ranks features by importance, discards the least important features, and re-fits the model. Features are scored either using importance scores relevant to the provided machine learning model or by applying statistical methods.

[A] The logistic regression model from the stats package was implemented with recursive feature elimination through the caret package.

[B] The model does not contain any hyperparameter.

[C] Recursive feature elimination was applied across a range of variable subset sizes ranging from 1 to 127:
     [C.1] The variable subset with the best cross-validated performance was 21 with the top 5 variables identified as:
            [C.1.1] Cortisol variable (numeric)
            [C.1.2] RANTES variable (numeric)
            [C.1.3] I_309 variable (numeric)
            [C.1.4] MCP_2 variable (numeric)
            [C.1.5] Clusterin_Apo_J variable (numeric)

[D] The cross-validated model performance of the final model is summarized as follows:
     [D.1] Final model configuration variable subset=21
     [D.2] AUROC = 0.80296

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.86921

Code Chunk | Output
##################################
# Running the logistic regression model
# by setting the caret method to 'glm'
# with implementation of recursive feature elimination
##################################
KFold_RFEControl$functions <- lrFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary

set.seed(12345678)
LR_RFE_Tune <- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                          y = PMA_PreModelling_Train$Class,
                          sizes = VariableSubset,
                          metric = "ROC",
                          rfeControl = KFold_RFEControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
LR_RFE_Tune
## 
## Recursive feature selection
## 
## Outer resampling method: Cross-Validated (10 fold) 
## 
## Resampling performance over subset size:
## 
##  Variables    ROC    Sens   Spec Accuracy   Kappa   ROCSD  SensSD  SpecSD
##          1 0.6415 0.02679 1.0000   0.7342 0.03654 0.06950 0.05663 0.00000
##         21 0.8030 0.56250 0.8755   0.7902 0.45093 0.07628 0.12235 0.04509
##         41 0.7884 0.56429 0.7939   0.7306 0.34840 0.08024 0.16392 0.11014
##         61 0.6941 0.52143 0.7787   0.7082 0.28982 0.07069 0.10708 0.06353
##         81 0.7082 0.55000 0.7682   0.7088 0.30000 0.07954 0.15878 0.07380
##        101 0.6967 0.52143 0.7576   0.6932 0.26488 0.08321 0.16577 0.09132
##        121 0.7055 0.55000 0.7626   0.7045 0.29461 0.06840 0.14380 0.08269
##        127 0.7073 0.57857 0.7626   0.7122 0.31951 0.06575 0.14536 0.08269
##  AccuracySD KappaSD Selected
##     0.01806 0.07728         
##     0.03639 0.10371        *
##     0.08904 0.19484         
##     0.04230 0.09026         
##     0.06390 0.15137         
##     0.07411 0.17107         
##     0.05400 0.11994         
##     0.06290 0.14129         
## 
## The top 5 variables (out of 21):
##    Cortisol, RANTES, I_309, MCP_2, Clusterin_Apo_J
LR_RFE_Tune$fit
## 
## Call:  glm(formula = Class ~ ., family = "binomial", data = tmp)
## 
## Coefficients:
##                (Intercept)                    Cortisol  
##                   25.28358                    -0.17458  
##                     RANTES                       I_309  
##                    1.81740                     0.69368  
##                      MCP_2             Clusterin_Apo_J  
##                   -0.86484                    -6.62826  
##                   Fetuin_A           Apolipoprotein_A1  
##                   -3.50171                     2.88160  
##                       VEGF                   Protein_S  
##                    1.20472                     1.68572  
##                 Cystatin_C                       PAI_1  
##                    5.43369                    -2.90334  
##                        SOD                      Leptin  
##                   -3.22998                     1.20938  
##        Complement_Factor_H          C_Reactive_Protein  
##                    0.09791                    -0.21416  
## Fatty_Acid_Binding_Protein                   TGF_alpha  
##                   -1.31378                    -0.34938  
##             Thrombopoietin                   Myoglobin  
##                   -0.51341                     0.21488  
##               Betacellulin                       MMP_2  
##                   -0.06691                    -0.50738  
## 
## Degrees of Freedom: 266 Total (i.e. Null);  245 Residual
## Null Deviance:       313.3 
## Residual Deviance: 153.4     AIC: 197.4
LR_RFE_Tune$results
##   Variables       ROC       Sens      Spec  Accuracy      Kappa      ROCSD
## 1         1 0.6415367 0.02678571 1.0000000 0.7341779 0.03653678 0.06949685
## 2        21 0.8029605 0.56250000 0.8755263 0.7902015 0.45093180 0.07627619
## 3        41 0.7884398 0.56428571 0.7939474 0.7305963 0.34840368 0.08024416
## 4        61 0.6940742 0.52142857 0.7786842 0.7082214 0.28982065 0.07068925
## 5        81 0.7082213 0.55000000 0.7681579 0.7087709 0.30000469 0.07954371
## 6       101 0.6966729 0.52142857 0.7576316 0.6932438 0.26488351 0.08321054
## 7       121 0.7055381 0.55000000 0.7626316 0.7045075 0.29461432 0.06840188
## 8       127 0.7073308 0.57857143 0.7626316 0.7121998 0.31950527 0.06575141
##       SensSD     SpecSD AccuracySD    KappaSD
## 1 0.05662589 0.00000000 0.01806173 0.07727694
## 2 0.12235003 0.04508891 0.03638724 0.10370583
## 3 0.16392300 0.11014310 0.08903578 0.19483605
## 4 0.10707670 0.06352779 0.04229518 0.09025537
## 5 0.15878471 0.07380368 0.06390018 0.15136651
## 6 0.16577141 0.09131617 0.07410602 0.17106952
## 7 0.14379651 0.08268725 0.05400302 0.11993918
## 8 0.14536489 0.08268725 0.06290438 0.14129499
(LR_RFE_Train_ROCCurveAUC <- LR_RFE_Tune$results[LR_RFE_Tune$results$ROC==max(LR_RFE_Tune$results$ROC),
                                                       c("ROC")])
## [1] 0.8029605
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
LR_RFE_Test <- data.frame(LR_RFE_Observed = PMA_PreModelling_Test$Class,
                      LR_RFE_Predicted = predict(LR_RFE_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
LR_RFE_Test_ROC <- roc(response = LR_RFE_Test$LR_RFE_Observed,
                        predictor = LR_RFE_Test$LR_RFE_Predicted.Impaired,
                        levels = rev(levels(LR_RFE_Test$LR_RFE_Observed)))

(LR_RFE_Test_ROCCurveAUC <- auc(LR_RFE_Test_ROC)[1])
## [1] 0.869213

1.5.11 Support Vector Machine - Radial Basis Function Kernel With RFE (SVM_R_RFE)


Support Vector Machine plots each observation in an N-dimensional space corresponding to the number of features in the data set and finds a hyperplane that maximally separates the different classes by a maximally large margin (which is defined as the distance between the hyperplane and the closest data points from each class). The algorithm applies kernel transformation by mapping non-linearly separable data using the similarities between the points in a high-dimensional feature space for improved discrimination.

Recursive Feature Elimination is a wrapper-style feature selection algorithm which searches for a subset of features by starting with all features in the training data set and successfully removing features until the desired number remains. The algorithm repeatedly fits a given machine learning algorithm used in the core of the model, ranks features by importance, discards the least important features, and re-fits the model. Features are scored either using importance scores relevant to the provided machine learning model or by applying statistical methods.

[A] The support vector machine (radial basis function kernel) model from the kernlab package was implemented with recursive feature elimination through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] sigma = sigma held constant at a value of 0.00455
     [B.2] C = cost made to vary across a range of 10 default values

[C] Recursive feature elimination was applied across a range of variable subset sizes ranging from 1 to 127:
     [C.1] The variable subset with the best cross-validated performance was 121 with the top 5 variables identified as:
            [C.1.1] MMP10 variable (numeric)
            [C.1.2] GRO_alpha variable (numeric)
            [C.1.3] TRAIL_R3 variable (numeric)
            [C.1.4] Fibrinogen variable (numeric)
            [C.1.5] PAI_1 variable (numeric)

[D] The cross-validated model performance of the final model is summarized as follows:
     [D.1] Final model configuration involves sigma=0.00455, C=8 and variable subset=121
     [D.2] AUROC = 0.84155

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.85995

Code Chunk | Output
##################################
# Running the support vector machine (radial basis function kernel) model
# by setting the caret method to 'svmRadial'
# with implementation of recursive feature elimination
##################################
KFold_RFEControl$functions <- caretFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary

KFold_RFETrainControl <- trainControl(method = "cv",
                                      verboseIter = FALSE,
                                      classProbs = TRUE,
                                      allowParallel = FALSE)

set.seed(12345678)
SVM_R_RFE_Tune <- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                             y = PMA_PreModelling_Train$Class,
                             method = "svmRadial",
                             metric = "ROC",
                             tuneLength = 10,
                             preProc = c("center", "scale"),
                             trControl = KFold_RFETrainControl,
                             sizes = VariableSubset,
                             rfeControl = KFold_RFEControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_R_RFE_Tune
## 
## Recursive feature selection
## 
## Outer resampling method: Cross-Validated (10 fold) 
## 
## Resampling performance over subset size:
## 
##  Variables    ROC    Sens   Spec Accuracy   Kappa   ROCSD  SensSD  SpecSD
##          1 0.6601 0.02857 0.9900   0.7272 0.02546 0.13251 0.06023 0.02108
##         21 0.7625 0.48750 0.9432   0.8182 0.47705 0.14977 0.22447 0.06168
##         41 0.8337 0.49643 0.9068   0.7946 0.42860 0.10199 0.21541 0.06400
##         61 0.8399 0.53571 0.9326   0.8245 0.50350 0.09070 0.20893 0.04308
##         81 0.8402 0.52321 0.9066   0.8021 0.45772 0.09906 0.19270 0.07614
##        101 0.8332 0.49643 0.9329   0.8138 0.46519 0.08115 0.24554 0.05401
##        121 0.8416 0.53929 0.9074   0.8067 0.46317 0.08825 0.26011 0.05787
##        127 0.8400 0.50714 0.9174   0.8060 0.45494 0.09705 0.22559 0.06928
##  AccuracySD KappaSD Selected
##     0.02866 0.09407         
##     0.08411 0.25302         
##     0.06225 0.19226         
##     0.05577 0.17978         
##     0.05138 0.13790         
##     0.08346 0.26062         
##     0.07806 0.24220        *
##     0.07662 0.22004         
## 
## The top 5 variables (out of 121):
##    MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
SVM_R_RFE_Tune$fit
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 267 samples
## 121 predictors
##   2 classes: 'Impaired', 'Control' 
## 
## Pre-processing: centered (121), scaled (121) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 241, 241, 240, 241, 240, ... 
## Resampling results across tuning parameters:
## 
##   C       Accuracy   Kappa    
##     0.25  0.8058913  0.4883727
##     0.50  0.8020452  0.4799836
##     1.00  0.7986162  0.4619809
##     2.00  0.8131665  0.4834344
##     4.00  0.8019129  0.4249401
##     8.00  0.7945055  0.4078516
##    16.00  0.7908018  0.3938628
##    32.00  0.7869556  0.3877159
##    64.00  0.7945055  0.4157865
##   128.00  0.7870981  0.3701294
## 
## Tuning parameter 'sigma' was held constant at a value of 0.004773811
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.004773811 and C = 2.
SVM_R_RFE_Tune$results
##   Variables       ROC       Sens      Spec  Accuracy     Kappa      ROCSD
## 1         1 0.6600893 0.02857143 0.9900000 0.7271775 0.0254649 0.13250867
## 2        21 0.7624765 0.48750000 0.9431579 0.8181929 0.4770529 0.14976671
## 3        41 0.8337500 0.49642857 0.9068421 0.7945767 0.4286033 0.10198864
## 4        61 0.8398966 0.53571429 0.9326316 0.8245116 0.5034982 0.09069509
## 5        81 0.8401504 0.52321429 0.9065789 0.8021266 0.4577169 0.09906229
## 6       101 0.8332425 0.49642857 0.9328947 0.8137973 0.4651928 0.08114792
## 7       121 0.8415508 0.53928571 0.9073684 0.8066545 0.4631669 0.08825037
## 8       127 0.8400235 0.50714286 0.9173684 0.8059626 0.4549365 0.09705472
##       SensSD     SpecSD AccuracySD    KappaSD
## 1 0.06023386 0.02108185 0.02865582 0.09407459
## 2 0.22446870 0.06168108 0.08410730 0.25301541
## 3 0.21540712 0.06399542 0.06224683 0.19226314
## 4 0.20892772 0.04308438 0.05576925 0.17978225
## 5 0.19270460 0.07614166 0.05137542 0.13790138
## 6 0.24553842 0.05400617 0.08346028 0.26062474
## 7 0.26011292 0.05786549 0.07805508 0.24219532
## 8 0.22559445 0.06928381 0.07662446 0.22003693
(SVM_R_RFE_Train_ROCCurveAUC <- SVM_R_RFE_Tune$results[SVM_R_RFE_Tune$results$ROC==max(SVM_R_RFE_Tune$results$ROC),
                                                       c("ROC")])
## [1] 0.8415508
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
SVM_R_RFE_Test <- data.frame(SVM_R_RFE_Observed = PMA_PreModelling_Test$Class,
                      SVM_R_RFE_Predicted = predict(SVM_R_RFE_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
SVM_R_RFE_Test_ROC <- roc(response = SVM_R_RFE_Test$SVM_R_RFE_Observed,
                        predictor = SVM_R_RFE_Test$SVM_R_RFE_Predicted.Impaired,
                        levels = rev(levels(SVM_R_RFE_Test$SVM_R_RFE_Observed)))

(SVM_R_RFE_Test_ROCCurveAUC <- auc(SVM_R_RFE_Test_ROC)[1])
## [1] 0.8599537

1.5.12 K-Nearest Neighbors With RFE (KNN_RFE)


K-Nearest Neighbors works on the similarity principle which assumes that every data point falling in near to each other belong to the same class. The algorithm therefore assigns an unclassified sample point the classification of the nearest of a set of previously classified points.

Recursive Feature Elimination is a wrapper-style feature selection algorithm which searches for a subset of features by starting with all features in the training data set and successfully removing features until the desired number remains. The algorithm repeatedly fits a given machine learning algorithm used in the core of the model, ranks features by importance, discards the least important features, and re-fits the model. Features are scored either using importance scores relevant to the provided machine learning model or by applying statistical methods.

[A] The k-nearest neighbors model was implemented with recursive feature elimination through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] k = number of neighbors made to vary across a range of 10 default values

[C] Recursive feature elimination was applied across a range of variable subset sizes ranging from 1 to 127:
     [C.1] The variable subset with the best cross-validated performance was 41 with the top 5 variables identified as:
            [C.1.1] MMP10 variable (numeric)
            [C.1.2] GRO_alpha variable (numeric)
            [C.1.3] TRAIL_R3 variable (numeric)
            [C.1.4] Fibrinogen variable (numeric)
            [C.1.5] PAI_1 variable (numeric)

[D] The cross-validated model performance of the final model is summarized as follows:
     [D.1] Final model configuration involves k=23 and variable subset=41
     [D.2] AUROC = 0.79215

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.84143

Code Chunk | Output
##################################
# Running the k-nearest neighbors model
# by setting the caret method to 'knn'
# with implementation of recursive feature elimination
##################################
KFold_RFEControl$functions <- caretFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary

KFold_RFETrainControl <- trainControl(method = "cv",
                                      verboseIter = FALSE,
                                      classProbs = TRUE,
                                      allowParallel = FALSE)

set.seed(12345678)
KNN_RFE_Tune <- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
                             y = PMA_PreModelling_Train$Class,
                             method = "knn",
                             metric = "ROC",
                             tuneLength = 10,
                             preProc = c("center", "scale"),
                             trControl = KFold_RFETrainControl,
                             sizes = VariableSubset,
                             rfeControl = KFold_RFEControl)

##################################
# Reporting the cross-validation results
# for the train set
##################################
KNN_RFE_Tune
## 
## Recursive feature selection
## 
## Outer resampling method: Cross-Validated (10 fold) 
## 
## Resampling performance over subset size:
## 
##  Variables    ROC   Sens   Spec Accuracy  Kappa   ROCSD SensSD  SpecSD
##          1 0.7133 0.3964 0.8813   0.7491 0.3014 0.08153 0.1472 0.05522
##         21 0.7568 0.4161 0.9379   0.7951 0.3940 0.12900 0.2531 0.07130
##         41 0.7922 0.4143 0.9534   0.8062 0.4120 0.11749 0.2559 0.05628
##         61 0.7780 0.3054 0.9229   0.7544 0.2699 0.10890 0.1860 0.09598
##         81 0.7851 0.3607 0.9432   0.7839 0.3574 0.11967 0.1577 0.06968
##        101 0.7794 0.3321 0.9539   0.7837 0.3319 0.11815 0.1978 0.03788
##        121 0.7611 0.2339 0.9271   0.7377 0.1909 0.12715 0.1853 0.07551
##        127 0.7711 0.2750 0.9234   0.7465 0.2372 0.13122 0.1358 0.08669
##  AccuracySD KappaSD Selected
##     0.05439  0.1650         
##     0.08946  0.2676         
##     0.07162  0.2409        *
##     0.09683  0.2413         
##     0.07482  0.2026         
##     0.06240  0.2232         
##     0.07824  0.2275         
##     0.06278  0.1420         
## 
## The top 5 variables (out of 41):
##    MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
KNN_RFE_Tune$fit
## k-Nearest Neighbors 
## 
## 267 samples
##  41 predictor
##   2 classes: 'Impaired', 'Control' 
## 
## Pre-processing: centered (41), scaled (41) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 240, 241, 241, 239, 241, 241, ... 
## Resampling results across tuning parameters:
## 
##   k   Accuracy   Kappa    
##    5  0.7980057  0.4217501
##    7  0.7947192  0.4291988
##    9  0.7948616  0.4266179
##   11  0.8028388  0.4401765
##   13  0.8138278  0.4665307
##   15  0.8135429  0.4537696
##   17  0.8397538  0.5157486
##   19  0.8247965  0.4751949
##   21  0.8360501  0.5056444
##   23  0.8322039  0.4919978
## 
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 17.
KNN_RFE_Tune$results
##   Variables       ROC      Sens      Spec  Accuracy     Kappa      ROCSD
## 1         1 0.7133130 0.3964286 0.8813158 0.7491249 0.3013735 0.08153297
## 2        21 0.7567763 0.4160714 0.9378947 0.7951262 0.3939577 0.12900410
## 3        41 0.7921523 0.4142857 0.9534211 0.8062475 0.4120084 0.11749349
## 4        61 0.7779911 0.3053571 0.9228947 0.7543549 0.2699427 0.10889505
## 5        81 0.7851316 0.3607143 0.9431579 0.7838726 0.3574155 0.11966688
## 6       101 0.7794267 0.3321429 0.9539474 0.7837302 0.3318665 0.11814945
## 7       121 0.7610526 0.2339286 0.9271053 0.7377289 0.1909460 0.12715001
## 8       127 0.7710879 0.2750000 0.9234211 0.7465201 0.2372464 0.13122350
##      SensSD     SpecSD AccuracySD   KappaSD
## 1 0.1472056 0.05522067 0.05438564 0.1650017
## 2 0.2531057 0.07129804 0.08945859 0.2676203
## 3 0.2558555 0.05627793 0.07161739 0.2408532
## 4 0.1860440 0.09597991 0.09683044 0.2413189
## 5 0.1576651 0.06968248 0.07482452 0.2026297
## 6 0.1978126 0.03787707 0.06240487 0.2231843
## 7 0.1852807 0.07551047 0.07824282 0.2275205
## 8 0.1357874 0.08669090 0.06277844 0.1420277
(KNN_RFE_Train_ROCCurveAUC <- KNN_RFE_Tune$results[KNN_RFE_Tune$results$ROC==max(KNN_RFE_Tune$results$ROC),
                                                       c("ROC")])
## [1] 0.7921523
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
KNN_RFE_Test <- data.frame(KNN_RFE_Observed = PMA_PreModelling_Test$Class,
                      KNN_RFE_Predicted = predict(KNN_RFE_Tune,
                      PMA_PreModelling_Test[,!names(PMA_PreModelling_Test) %in% c("Class")],
                      type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
KNN_RFE_Test_ROC <- roc(response = KNN_RFE_Test$KNN_RFE_Observed,
                        predictor = KNN_RFE_Test$KNN_RFE_Predicted.Impaired,
                        levels = rev(levels(KNN_RFE_Test$KNN_RFE_Observed)))

(KNN_RFE_Test_ROCCurveAUC <- auc(KNN_RFE_Test_ROC)[1])
## [1] 0.8414352

1.6 Consolidated Findings


[A] Models which applied recursive feature elimination to select a subset of informative predictors performed better than those which utilized the full set of predictors.
     [A.1] RF: Random Forest (randomForest package)
            [A.1.1] RF_FULL (Random Forest Without Recursive Feature Elimination)
                     [A.1.1.1] Cross-Validation AUROC = 0.78268
                     [A.1.1.2] Test AUROC = 0.79803
            [A.1.2] RF_RFE (Random Forest With Recursive Feature Elimination)
                     [A.1.2.1] Cross-Validation AUROC = 0.81534
                     [A.1.2.2] Test AUROC = 0.84201
     [A.2] LDA: Linear Discriminant Analysis (MASS package)
            [A.2.1] LDA_FULL (Linear Discriminant Analysis Without Recursive Feature Elimination)
                     [A.2.1.1] Cross-Validation AUROC = 0.80151
                     [A.2.1.2] Test AUROC = 0.77199
            [A.2.2] LDA_RFE (Linear Discriminant Analysis With Recursive Feature Elimination)
                     [A.2.2.1] Cross-Validation AUROC = 0.83569
                     [A.2.2.2] Test AUROC = 0.85301
     [A.3] NB: Naive Bayes (klaR package)
            [A.3.1] NB_FULL (Naive Bayes Without Recursive Feature Elimination)
                     [A.3.1.1] Cross-Validation AUROC = 0.73904
                     [A.3.1.2] Test AUROC = 0.68055
            [A.3.2] NB_RFE (Naive Bayes With Recursive Feature Elimination)
                     [A.3.2.1] Cross-Validation AUROC = 0.76825
                     [A.3.2.2] Test AUROC = 0.75231
     [A.4] LR: Logistic Regression (stats package)
            [A.4.1] LR_FULL (Logistic Regression Without Recursive Feature Elimination)
                     [A.4.1.1] Cross-Validation AUROC = 0.70733
                     [A.4.1.2] Test AUROC = 0.77199
            [A.4.2] LR_RFE (Logistic Regression With Recursive Feature Elimination)
                     [A.4.2.1] Cross-Validation AUROC = 0.80296
                     [A.4.2.2] Test AUROC = 0.86921
     [A.5] SVM_R: Support Vector Machine - Radial Basis Function Kernel (kernlab package)
            [A.5.1] SVM_R_FULL (Support Vector Machine - Radial Basis Function Kernel Without Recursive Feature Elimination)
                     [A.5.1.1] Cross-Validation AUROC = 0.85690
                     [A.5.1.2] Test AUROC = 0.82060
            [A.5.2] SVM_R_RFE (Support Vector Machine - Radial Basis Function Kernel With Recursive Feature Elimination)
                     [A.5.2.1] Cross-Validation AUROC = 0.84155
                     [A.5.2.2] Test AUROC = 0.85995
     [A.6] KNN: K-Nearest Neighbors (caret package)
            [A.6.1] KNN_FULL (K-Nearest Neighbors Without Recursive Feature Elimination)
                     [A.6.1.1] Cross-Validation AUROC = 0.79886
                     [A.6.1.2] Test AUROC = 0.79167
            [A.6.2] KNN_RFE (K-Nearest Neighbors With Recursive Feature Elimination)
                     [A.6.2.1] Cross-Validation AUROC = 0.79215
                     [A.6.2.2] Test AUROC = 0.84143

[B] The models applied with recursive feature elimination which demonstrated the best and most consistent AUROC metrics are as follows:
     [B.1] SVM_R_RFE: Support Vector Machine - Radial Basis Function Kernel (kernlab package)
     [B.2] LDA_RFE: Linear Discriminant Analysis (MASS package)
     [B.3] RF_RFE: Random Forest (randomForest package)

[C] The most informative predictors consistently identified based from recursive feature elimination were as follows:
     [C.1] MMP10 variable (numeric)
     [C.2] Cystatin_C variable (numeric)
     [C.3] TRAIL_R3 variable (numeric)
     [C.4] PAI_1 variable (numeric)
     [C.5] GRO_alpha variable (numeric)

Code Chunk | Output
##################################
# Consolidating all evaluation results
# for the train and test sets
# using the AUROC metric
##################################
Model <- c('RF_FULL','LDA_FULL','NB_FULL','LR_FULL','SVM_R_FULL','KNN_FULL','RF_RFE','LDA_RFE','NB_RFE','LR_RFE','SVM_R_RFE','KNN_RFE',
           'RF_FULL','LDA_FULL','NB_FULL','LR_FULL','SVM_R_FULL','KNN_FULL','RF_RFE','LDA_RFE','NB_RFE','LR_RFE','SVM_R_RFE','KNN_RFE')

Set <- c(rep('Cross-Validation',12),rep('Test',12))

ROCCurveAUC <- c(RF_FULL_Train_ROCCurveAUC,
                 LDA_FULL_Train_ROCCurveAUC,
                 NB_FULL_Train_ROCCurveAUC,
                 LR_FULL_Train_ROCCurveAUC,
                 SVM_R_FULL_Train_ROCCurveAUC,
                 KNN_FULL_Train_ROCCurveAUC,
                 RF_RFE_Train_ROCCurveAUC,
                 LDA_RFE_Train_ROCCurveAUC,
                 NB_RFE_Train_ROCCurveAUC,
                 LR_RFE_Train_ROCCurveAUC,
                 SVM_R_RFE_Train_ROCCurveAUC,
                 KNN_RFE_Train_ROCCurveAUC,
                 RF_FULL_Test_ROCCurveAUC,
                 LDA_FULL_Test_ROCCurveAUC,
                 NB_FULL_Test_ROCCurveAUC,
                 LR_FULL_Test_ROCCurveAUC,
                 SVM_R_FULL_Test_ROCCurveAUC,
                 KNN_FULL_Test_ROCCurveAUC,
                 RF_RFE_Test_ROCCurveAUC,
                 LDA_RFE_Test_ROCCurveAUC,
                 NB_RFE_Test_ROCCurveAUC,
                 LR_RFE_Test_ROCCurveAUC,
                 SVM_R_RFE_Test_ROCCurveAUC,
                 KNN_RFE_Test_ROCCurveAUC)

ROCCurveAUC_Summary <- as.data.frame(cbind(Model,Set,ROCCurveAUC))

ROCCurveAUC_Summary$ROCCurveAUC <- as.numeric(as.character(ROCCurveAUC_Summary$ROCCurveAUC))
ROCCurveAUC_Summary$Set <- factor(ROCCurveAUC_Summary$Set,
                                        levels = c("Cross-Validation",
                                                   "Test"))
ROCCurveAUC_Summary$Model <- factor(ROCCurveAUC_Summary$Model,
                                        levels = c('RF_FULL',
                                                   'RF_RFE',
                                                   'LDA_FULL',
                                                   'LDA_RFE',
                                                   'NB_FULL',
                                                   'NB_RFE',
                                                   'LR_FULL',
                                                   'LR_RFE',
                                                   'SVM_R_FULL',
                                                   'SVM_R_RFE',
                                                   'KNN_FULL',
                                                   'KNN_RFE'))

print(ROCCurveAUC_Summary, row.names=FALSE)
##       Model              Set ROCCurveAUC
##     RF_FULL Cross-Validation   0.7826833
##    LDA_FULL Cross-Validation   0.8015132
##     NB_FULL Cross-Validation   0.7390414
##     LR_FULL Cross-Validation   0.7073308
##  SVM_R_FULL Cross-Validation   0.8569079
##    KNN_FULL Cross-Validation   0.7988651
##      RF_RFE Cross-Validation   0.8153477
##     LDA_RFE Cross-Validation   0.8356861
##      NB_RFE Cross-Validation   0.7682472
##      LR_RFE Cross-Validation   0.8029605
##   SVM_R_RFE Cross-Validation   0.8415508
##     KNN_RFE Cross-Validation   0.7921523
##     RF_FULL             Test   0.7980324
##    LDA_FULL             Test   0.7719907
##     NB_FULL             Test   0.6793981
##     LR_FULL             Test   0.7719907
##  SVM_R_FULL             Test   0.8206019
##    KNN_FULL             Test   0.7916667
##      RF_RFE             Test   0.8420139
##     LDA_RFE             Test   0.8530093
##      NB_RFE             Test   0.7523148
##      LR_RFE             Test   0.8692130
##   SVM_R_RFE             Test   0.8599537
##     KNN_RFE             Test   0.8414352
(ROCCurveAUC_Plot <- dotplot(Model ~ ROCCurveAUC,
                           data = ROCCurveAUC_Summary,
                           groups = Set,
                           main = "Classification Model Performance Comparison",
                           ylab = "Model",
                           xlab = "AUROC",
                           auto.key = list(adj=1, space="top", columns=2),
                           type=c("p", "h"),       
                           origin = 0,
                           alpha = 0.45,
                           pch = 16,
                           cex = 2))

2. Summary



3. References


[Book] Applied Predictive Modeling by Max Kuhn and Kjell Johnson
[Book] An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
[Book] Multivariate Data Visualization with R by Deepayan Sarkar
[Book] Machine Learning by Samuel Jackson
[Book] Data Modeling Methods by Jacob Larget
[Book] Feature Engineering and Selection: A Practical Approach for Predictive Models by Max Kuhn and Kjell Johnson
[R Package] AppliedPredictiveModeling by Max Kuhn
[R Package] caret by Max Kuhn
[R Package] rpart by Terry Therneau and Beth Atkinson
[R Package] lattice by Deepayan Sarkar
[R Package] dplyr by Hadley Wickham
[R Package] moments by Lukasz Komsta and Frederick
[R Package] skimr by Elin Waring
[R Package] RANN by Sunil Arya, David Mount, Samuel Kemp and Gregory Jefferis
[R Package] corrplot by Taiyun Wei
[R Package] tidyverse by Hadley Wickham
[R Package] lares by Bernardo Lares
[R Package] DMwR2 by Luis Torgo
[R Package] gridExtra by Baptiste Auguie and Anton Antonov
[R Package] rattle by Graham Williams
[R Package] rpart.plot by Stephen Milborrow
[R Package] RColorBrewer by Erich Neuwirth
[R Package] stats by R Core Team
[R Package] pls by Kristian Hovde Liland
[R Package] nnet by Brian Ripley
[R Package] elasticnet by Hui Zou
[R Package] earth by Stephen Milborrow
[R Package] party by Torsten Hothorn
[R Package] kernlab by Alexandros Karatzoglou
[R Package] randomForest by Andy Liaw
[R Package] pROC by Xavier Robin
[R Package] mda by Trevor Hastie
[R Package] klaR by Christian Roever, Nils Raabe, Karsten Luebke, Uwe Ligges, Gero Szepannek, Marc Zentgraf and David Meyer
[R Package] pamr by Trevor Hastie, Rob Tibshirani, Balasubramanian Narasimhan and Gil Chu
[Article] The caret Package by Max Kuhn
[Article] A Short Introduction to the caret Package by Max Kuhn
[Article] Caret Package – A Practical Guide to Machine Learning in R by Selva Prabhakaran
[Article] Tuning Machine Learning Models Using the Caret R Package by Jason Brownlee
[Article] Lattice Graphs by Alboukadel Kassambara
[Article] A Tour of Machine Learning Algorithms by Jason Brownlee
[Article] Recursive Feature Elimination: What It Is and Why It Matters by Karin Kelley
[Article] Recursive Feature Elimination (RFE) Example in Python by Otabek Yorkinov
[Article] Recursive Feature Elimination (RFE) for Feature Selection in Python by Jason Brownlee
[Article] Getting started with Recursive Feature Elimination algorithm in Machine Learning by Daniel Mwanthi
[Article] Guide To Dimensionality Reduction With Recursive Feature Elimination by Vijaysinh Lendave
[Article] Decision Tree Algorithm Examples In Data Mining by Software Testing Help Team
[Article] 4 Types of Classification Tasks in Machine Learning by Jason Brownlee
[Article] Spot-Check Classification Machine Learning Algorithms in Python with scikit-learn by Jason Brownlee
[Article] An Introduction to Naive Bayes Algorithm for Beginners by Turing Team
[Article] How Naive Bayes Algorithm Works? by Selva Prabhakaran
[Article] Naive Bayes Classifiers by Geeks For Geeks Team
[Article] Machine Learning Tutorial: A Step-by-Step Guide for Beginners by Mayank Banoula
[Article] Discriminant Analysis Essentials in R by Alboukadel Kassambara
[Article] Linear Discriminant Analysis, Explained by Xiaozhou Yang
[Article] Classification Tree by BCCVL Team
[Article] K-Nearest Neighbors (KNN) Classification with scikit-learn by Datacamp Team
[Article] Mathematical explanation of K-Nearest Neighbour by Geeks for Geeks Team
[Article] What Is The K-Nearest Neighbors Algorithm? by IBM Team
[Article] Random Forest by BCCVL Team
[Article] Generalized Linear Model by BCCVL Team
[Article] Introduction to Support Vector Machines by Geeks for Geeks Team
[Article] Support Vector Machines: A Simple Explanation by Noel Bambrick
[Publication] Enhanced Recursive Feature Elimination by Xuewen Chen and Jong Cheol Jeong (International Conference on Machine Learning and Applications (ICMLA))
[Publication] Bagging Predictors by Leo Breiman (Machine Learning)
[Publication] The Use of Multiple Measurements in Taxonomic Problems by Ronald Fisher (Annals of Human Genetics)
[Publication] The Origins of Logistic Regression by JS Cramer (Econometrics eJournal)
[Publication] Who Discovered Bayes’s Theorem? by Stephen Stigler (The American Statistician)
[Publication] Nearest Neighbor Pattern Classification by T Cover and P Hart (Transactions of Information Theory)
[Publication] Support Vector Regression Machines by Harris Drucker, Chris Burges, Linda Kaufman, Alex Smola and Vladimir Vapnik (Advances in Neural Information Processing Systems)
[Course] Applied Data Mining and Statistical Learning by Penn State Eberly College of Science
[Course] Regression Methods by Penn State Eberly College of Science
[Course] Applied Regression Analysis by Penn State Eberly College of Science
[Course] Applied Data Mining and Statistical Learning by Penn State Eberly College of Science