##################################
# Loading R libraries
##################################
library(AppliedPredictiveModeling)
library(caret)
library(rpart)
library(lattice)
library(dplyr)
library(tidyr)
library(moments)
library(skimr)
library(RANN)
library(pls)
library(corrplot)
library(tidyverse)
library(lares)
library(DMwR2)
library(gridExtra)
library(rattle)
library(rpart.plot)
library(RColorBrewer)
library(stats)
library(nnet)
library(elasticnet)
library(earth)
library(party)
library(kernlab)
library(randomForest)
library(Cubist)
library(pROC)
library(mda)
library(klaR)
library(pamr)
##################################
# Loading source and
# formulating the train set
##################################
data(AlzheimerDisease)
<- predictors
Alzheimer $Class <- diagnosis
Alzheimer
##################################
# Decomposing the Genotype factor
# into binary dummy variables
##################################
## Decompose the genotype factor into binary dummy variables
$E2 <- Alzheimer$E3 <- Alzheimer$E4 <- 0
Alzheimer$E2[grepl("2", Alzheimer$Genotype)] <- 1
Alzheimer$E3[grepl("3", Alzheimer$Genotype)] <- 1
Alzheimer$E4[grepl("4", Alzheimer$Genotype)] <- 1
Alzheimer<- Alzheimer
Alzheimer_Original
##################################
# Removing baseline predictors
##################################
<- Alzheimer[,!(names(Alzheimer) %in% c("Genotype", "age", "tau", "p_tau", "Ab_42", "male"))]
Alzheimer
##################################
# Partitoning the data into
# train and test sets
##################################
set.seed(12345678)
<- createDataPartition(Alzheimer$Class,p=0.8)[[1]]
Alzheimer_Train_Index <- Alzheimer[ Alzheimer_Train_Index, ]
Alzheimer_Train <- Alzheimer[-Alzheimer_Train_Index, ]
Alzheimer_Test
##################################
# Performing a general exploration of the train set
##################################
dim(Alzheimer_Train)
## [1] 267 128
str(Alzheimer_Train)
## 'data.frame': 267 obs. of 128 variables:
## $ ACE_CD143_Angiotensin_Converti : num 2.003 1.562 1.521 2.401 0.431 ...
## $ ACTH_Adrenocorticotropic_Hormon : num -1.386 -1.386 -1.715 -0.968 -1.273 ...
## $ AXL : num 1.098 0.683 -0.145 0.191 -0.222 ...
## $ Adiponectin : num -5.36 -5.02 -5.81 -4.78 -5.22 ...
## $ Alpha_1_Antichymotrypsin : num 1.74 1.46 1.19 2.13 1.31 ...
## $ Alpha_1_Antitrypsin : num -12.6 -11.9 -13.6 -11.1 -12.1 ...
## $ Alpha_1_Microglobulin : num -2.58 -3.24 -2.88 -2.34 -2.55 ...
## $ Alpha_2_Macroglobulin : num -72.7 -154.6 -136.5 -144.9 -154.6 ...
## $ Angiopoietin_2_ANG_2 : num 1.0647 0.7419 0.8329 0.9555 -0.0513 ...
## $ Angiotensinogen : num 2.51 2.46 1.98 2.86 2.52 ...
## $ Apolipoprotein_A_IV : num -1.43 -1.66 -1.66 -1.17 -1.39 ...
## $ Apolipoprotein_A1 : num -7.4 -7.05 -7.68 -6.73 -7.4 ...
## $ Apolipoprotein_A2 : num -0.2614 -0.8675 -0.6539 0.0953 -0.2744 ...
## $ Apolipoprotein_B : num -4.62 -6.75 -3.98 -3.38 -2.96 ...
## $ Apolipoprotein_CI : num -1.273 -1.273 -1.715 -0.755 -1.661 ...
## $ Apolipoprotein_CIII : num -2.31 -2.34 -2.75 -1.51 -2.31 ...
## $ Apolipoprotein_D : num 2.08 1.34 1.34 1.63 1.92 ...
## $ Apolipoprotein_E : num 3.755 3.097 2.753 3.067 0.591 ...
## $ Apolipoprotein_H : num -0.1573 -0.5754 -0.3448 0.6626 0.0972 ...
## $ B_Lymphocyte_Chemoattractant_BL : num 2.3 1.67 1.67 2.3 2.48 ...
## $ BMP_6 : num -2.2 -1.73 -2.06 -1.24 -1.88 ...
## $ Beta_2_Microglobulin : num 0.693 0.47 0.336 0.336 -0.545 ...
## $ Betacellulin : int 34 53 49 67 51 41 42 58 32 43 ...
## $ C_Reactive_Protein : num -4.07 -6.65 -8.05 -4.34 -7.56 ...
## $ CD40 : num -0.796 -1.273 -1.242 -0.924 -1.784 ...
## $ CD5L : num 0.0953 -0.6733 0.0953 0.3633 0.4055 ...
## $ Calbindin : num 33.2 25.3 22.2 21.8 13.2 ...
## $ Calcitonin : num 1.39 3.61 2.12 1.31 1.63 ...
## $ CgA : num 398 466 348 443 138 ...
## $ Clusterin_Apo_J : num 3.56 3.04 2.77 3.04 2.56 ...
## $ Complement_3 : num -10.4 -16.1 -16.1 -12.8 -12 ...
## $ Complement_Factor_H : num 3.57 3.6 4.47 7.25 3.57 ...
## $ Connective_Tissue_Growth_Factor : num 0.531 0.588 0.642 0.916 0.993 ...
## $ Cortisol : num 10 12 10 11 13 4.9 13 12 6.8 12 ...
## $ Creatine_Kinase_MB : num -1.71 -1.75 -1.38 -1.63 -1.67 ...
## $ Cystatin_C : num 9.04 9.07 8.95 8.98 7.84 ...
## $ EGF_R : num -0.135 -0.37 -0.733 -0.621 -1.111 ...
## $ EN_RAGE : num -3.69 -3.82 -4.76 -2.36 -3.44 ...
## $ ENA_78 : num -1.35 -1.36 -1.39 -1.34 -1.36 ...
## $ Eotaxin_3 : int 53 62 62 64 57 64 64 64 82 73 ...
## $ FAS : num -0.0834 -0.5276 -0.6349 -0.1278 -0.3285 ...
## $ FSH_Follicle_Stimulation_Hormon : num -0.652 -1.627 -1.563 -0.976 -1.683 ...
## $ Fas_Ligand : num 3.1 2.98 1.36 4.04 2.41 ...
## $ Fatty_Acid_Binding_Protein : num 2.521 2.248 0.906 2.635 0.624 ...
## $ Ferritin : num 3.33 3.93 3.18 2.69 1.85 ...
## $ Fetuin_A : num 1.28 1.19 1.41 2.15 1.48 ...
## $ Fibrinogen : num -7.04 -8.05 -7.2 -6.98 -6.44 ...
## $ GRO_alpha : num 1.38 1.37 1.41 1.4 1.4 ...
## $ Gamma_Interferon_induced_Monokin: num 2.95 2.72 2.76 2.85 2.82 ...
## $ Glutathione_S_Transferase_alpha : num 1.064 0.867 0.889 1.236 1.154 ...
## $ HB_EGF : num 6.56 8.75 7.75 7.25 6.41 ...
## $ HCC_4 : num -3.04 -4.07 -3.65 -3.15 -3.08 ...
## $ Hepatocyte_Growth_Factor_HGF : num 0.5878 0.5306 0.0953 0.5306 0.0953 ...
## $ I_309 : num 3.43 3.14 2.4 3.76 2.71 ...
## $ ICAM_1 : num -0.1908 -0.462 -0.462 0.0972 -0.9351 ...
## $ IGF_BP_2 : num 5.61 5.35 5.18 5.42 5.06 ...
## $ IL_11 : num 5.12 4.94 4.67 7.07 6.1 ...
## $ IL_13 : num 1.28 1.27 1.27 1.31 1.28 ...
## $ IL_16 : num 4.19 2.88 2.62 4.74 2.67 ...
## $ IL_17E : num 5.73 6.71 4.15 4.2 3.64 ...
## $ IL_1alpha : num -6.57 -8.05 -8.18 -6.94 -8.18 ...
## $ IL_3 : num -3.24 -3.91 -4.65 -3 -3.86 ...
## $ IL_4 : num 2.48 2.4 1.82 2.71 1.21 ...
## $ IL_5 : num 1.099 0.693 -0.248 1.163 -0.4 ...
## $ IL_6 : num 0.2694 0.0962 0.1857 -0.072 0.1857 ...
## $ IL_6_Receptor : num 0.6428 0.4312 0.0967 0.0967 -0.5173 ...
## $ IL_7 : num 4.81 3.71 1.01 4.29 2.78 ...
## $ IL_8 : num 1.71 1.68 1.69 1.76 1.71 ...
## $ IP_10_Inducible_Protein_10 : num 6.24 5.69 5.05 6.37 5.48 ...
## $ IgA : num -6.81 -6.38 -6.32 -4.65 -5.81 ...
## $ Insulin : num -0.626 -0.943 -1.447 -0.3 -1.341 ...
## $ Kidney_Injury_Molecule_1_KIM_1 : num -1.2 -1.2 -1.19 -1.16 -1.12 ...
## $ LOX_1 : num 1.705 1.526 1.163 1.361 0.642 ...
## $ Leptin : num -1.529 -1.466 -1.662 -0.915 -1.361 ...
## $ Lipoprotein_a : num -4.27 -4.93 -5.84 -2.94 -4.51 ...
## $ MCP_1 : num 6.74 6.85 6.77 6.72 6.54 ...
## $ MCP_2 : num 1.981 1.809 0.401 2.221 2.334 ...
## $ MIF : num -1.24 -1.9 -2.3 -1.9 -2.04 ...
## $ MIP_1alpha : num 4.97 3.69 4.05 6.45 4.6 ...
## $ MIP_1beta : num 3.26 3.14 2.4 3.53 2.89 ...
## $ MMP_2 : num 4.48 3.78 2.87 3.69 2.92 ...
## $ MMP_3 : num -2.21 -2.47 -2.3 -1.56 -3.04 ...
## $ MMP10 : num -3.27 -3.65 -2.73 -2.62 -3.32 ...
## $ MMP7 : num -3.774 -5.968 -4.03 -0.222 -1.922 ...
## $ Myoglobin : num -1.897 -0.755 -1.386 -1.772 -1.139 ...
## $ NT_proBNP : num 4.55 4.22 4.25 4.47 4.19 ...
## $ NrCAM : num 5 5.21 4.74 5.2 3.26 ...
## $ Osteopontin : num 5.36 6 5.02 5.69 4.74 ...
## $ PAI_1 : num 1.0035 -0.0306 0.4384 0.2523 0.4384 ...
## $ PAPP_A : num -2.9 -2.81 -2.94 -2.94 -2.94 ...
## $ PLGF : num 4.44 4.03 4.51 4.8 4.39 ...
## $ PYY : num 3.22 3.14 2.89 3.66 3.33 ...
## $ Pancreatic_polypeptide : num 0.579 0.336 -0.892 0.262 -0.478 ...
## $ Prolactin : num 0 -0.511 -0.139 0.182 -0.151 ...
## $ Prostatic_Acid_Phosphatase : num -1.62 -1.74 -1.64 -1.7 -1.76 ...
## $ Protein_S : num -1.78 -2.46 -2.26 -1.66 -2.36 ...
## $ Pulmonary_and_Activation_Regulat: num -0.844 -2.303 -1.661 -0.562 -1.171 ...
## $ RANTES : num -6.21 -6.94 -6.65 -6.32 -6.5 ...
## $ Resistin : num -16.5 -16 -16.5 -11.1 -11.3 ...
## [list output truncated]
summary(Alzheimer_Train)
## ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
## Min. :-0.6756 Min. :-2.207
## 1st Qu.: 0.9462 1st Qu.:-1.715
## Median : 1.3013 Median :-1.561
## Mean : 1.3198 Mean :-1.538
## 3rd Qu.: 1.7191 3rd Qu.:-1.347
## Max. : 2.8398 Max. :-0.844
## AXL Adiponectin Alpha_1_Antichymotrypsin
## Min. :-0.9230 Min. :-6.725 Min. :0.2624
## 1st Qu.: 0.0000 1st Qu.:-5.669 1st Qu.:1.1314
## Median : 0.2804 Median :-5.185 Median :1.3610
## Mean : 0.3093 Mean :-5.201 Mean :1.3605
## 3rd Qu.: 0.6077 3rd Qu.:-4.780 3rd Qu.:1.5892
## Max. : 1.5214 Max. :-3.507 Max. :2.3026
## Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
## Min. :-17.028 Min. :-4.343 Min. :-289.68
## 1st Qu.:-14.071 1st Qu.:-3.270 1st Qu.:-186.64
## Median :-13.004 Median :-2.937 Median :-160.01
## Mean :-13.052 Mean :-2.932 Mean :-158.61
## 3rd Qu.:-12.096 3rd Qu.:-2.590 3rd Qu.:-134.62
## Max. : -8.192 Max. :-1.772 Max. : -59.46
## Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
## Min. :-0.5447 Min. :1.752 Min. :-2.9565 Min. :-8.680
## 1st Qu.: 0.4700 1st Qu.:2.119 1st Qu.:-2.1203 1st Qu.:-7.763
## Median : 0.6419 Median :2.320 Median :-1.8326 Median :-7.470
## Mean : 0.6730 Mean :2.318 Mean :-1.8544 Mean :-7.483
## 3rd Qu.: 0.8755 3rd Qu.:2.497 3rd Qu.:-1.6094 3rd Qu.:-7.209
## Max. : 1.5261 Max. :2.881 Max. :-0.7765 Max. :-6.166
## Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
## Min. :-1.8971 Min. :-9.937 Min. :-3.3242 Min. :-3.689
## 1st Qu.:-0.9676 1st Qu.:-6.630 1st Qu.:-1.8326 1st Qu.:-2.773
## Median :-0.6733 Median :-5.703 Median :-1.6094 Median :-2.526
## Mean :-0.6354 Mean :-5.578 Mean :-1.5833 Mean :-2.494
## 3rd Qu.:-0.3147 3rd Qu.:-4.539 3rd Qu.:-1.3667 3rd Qu.:-2.207
## Max. : 0.9555 Max. :-2.153 Max. :-0.2744 Max. :-1.238
## Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H
## Min. :0.470 Min. :0.5911 Min. :-2.23379
## 1st Qu.:1.209 1st Qu.:2.3344 1st Qu.:-0.59782
## Median :1.411 Median :2.8181 Median :-0.37005
## Mean :1.440 Mean :2.8062 Mean :-0.32122
## 3rd Qu.:1.668 3rd Qu.:3.2863 3rd Qu.:-0.06112
## Max. :2.272 Max. :5.4442 Max. : 0.92696
## B_Lymphocyte_Chemoattractant_BL BMP_6 Beta_2_Microglobulin
## Min. :0.7318 Min. :-2.7612 Min. :-0.54473
## 1st Qu.:1.6731 1st Qu.:-2.1516 1st Qu.:-0.04082
## Median :1.9805 Median :-1.8774 Median : 0.18232
## Mean :2.0175 Mean :-1.9114 Mean : 0.16757
## 3rd Qu.:2.3714 3rd Qu.:-1.6753 3rd Qu.: 0.33647
## Max. :4.0237 Max. :-0.8166 Max. : 0.99325
## Betacellulin C_Reactive_Protein CD40 CD5L
## Min. :10.00 Min. :-8.517 Min. :-1.8644 Min. :-1.23787
## 1st Qu.:42.00 1st Qu.:-6.645 1st Qu.:-1.3761 1st Qu.:-0.35667
## Median :51.00 Median :-5.843 Median :-1.2734 Median :-0.06188
## Mean :51.01 Mean :-5.874 Mean :-1.2584 Mean :-0.05310
## 3rd Qu.:59.00 3rd Qu.:-5.083 3rd Qu.:-1.1238 3rd Qu.: 0.26236
## Max. :82.00 Max. :-2.937 Max. :-0.5475 Max. : 1.16315
## Calbindin Calcitonin CgA Clusterin_Apo_J
## Min. :10.96 Min. :-0.7134 Min. :135.6 Min. :1.872
## 1st Qu.:19.77 1st Qu.: 0.9555 1st Qu.:278.0 1st Qu.:2.708
## Median :22.25 Median : 1.6487 Median :331.5 Median :2.890
## Mean :22.43 Mean : 1.6788 Mean :333.3 Mean :2.882
## 3rd Qu.:24.80 3rd Qu.: 2.2824 3rd Qu.:392.1 3rd Qu.:3.045
## Max. :33.78 Max. : 3.8918 Max. :535.4 Max. :3.584
## Complement_3 Complement_Factor_H Connective_Tissue_Growth_Factor
## Min. :-23.387 Min. :-0.8387 Min. :0.1823
## 1st Qu.:-17.567 1st Qu.: 2.7531 1st Qu.:0.6419
## Median :-15.524 Median : 3.6000 Median :0.7885
## Mean :-15.610 Mean : 3.5541 Mean :0.7739
## 3rd Qu.:-13.882 3rd Qu.: 4.2548 3rd Qu.:0.9163
## Max. : -9.563 Max. : 7.6238 Max. :1.4110
## Cortisol Creatine_Kinase_MB Cystatin_C EGF_R
## Min. : 0.10 Min. :-1.872 Min. :7.432 Min. :-1.36135
## 1st Qu.: 9.80 1st Qu.:-1.724 1st Qu.:8.321 1st Qu.:-0.85727
## Median :12.00 Median :-1.671 Median :8.564 Median :-0.68354
## Mean :11.98 Mean :-1.674 Mean :8.586 Mean :-0.70130
## 3rd Qu.:14.00 3rd Qu.:-1.626 3rd Qu.:8.839 3rd Qu.:-0.54612
## Max. :29.00 Max. :-1.384 Max. :9.694 Max. :-0.06112
## EN_RAGE ENA_78 Eotaxin_3 FAS
## Min. :-8.3774 Min. :-1.405 Min. : 7.00 Min. :-1.5141
## 1st Qu.:-4.1997 1st Qu.:-1.381 1st Qu.: 44.00 1st Qu.:-0.7133
## Median :-3.6497 Median :-1.374 Median : 59.00 Median :-0.5276
## Mean :-3.6353 Mean :-1.372 Mean : 58.17 Mean :-0.5291
## 3rd Qu.:-3.1466 3rd Qu.:-1.364 3rd Qu.: 70.00 3rd Qu.:-0.3147
## Max. :-0.3857 Max. :-1.339 Max. :107.00 Max. : 0.3365
## FSH_Follicle_Stimulation_Hormon Fas_Ligand Fatty_Acid_Binding_Protein
## Min. :-2.11511 Min. :-0.1536 Min. :-1.0441
## 1st Qu.:-1.46606 1st Qu.: 2.3415 1st Qu.: 0.7998
## Median :-1.13570 Median : 3.1015 Median : 1.3865
## Mean :-1.14259 Mean : 2.9680 Mean : 1.3529
## 3rd Qu.:-0.87620 3rd Qu.: 3.6950 3rd Qu.: 1.8847
## Max. : 0.09715 Max. : 7.6328 Max. : 3.7055
## Ferritin Fetuin_A Fibrinogen GRO_alpha
## Min. :0.6077 Min. :0.470 Min. :-8.874 Min. :1.271
## 1st Qu.:2.2895 1st Qu.:1.099 1st Qu.:-7.717 1st Qu.:1.351
## Median :2.7749 Median :1.308 Median :-7.323 Median :1.382
## Mean :2.7646 Mean :1.350 Mean :-7.356 Mean :1.378
## 3rd Qu.:3.2915 3rd Qu.:1.609 3rd Qu.:-7.013 3rd Qu.:1.406
## Max. :4.6333 Max. :2.251 Max. :-5.843 Max. :1.495
## Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
## Min. :2.393 Min. :0.5238
## 1st Qu.:2.707 1st Qu.:0.8439
## Median :2.783 Median :0.9677
## Mean :2.786 Mean :0.9512
## 3rd Qu.:2.873 3rd Qu.:1.0344
## Max. :3.065 Max. :1.3176
## HB_EGF HCC_4 Hepatocyte_Growth_Factor_HGF I_309
## Min. : 2.103 Min. :-4.510 Min. :-0.6349 Min. :1.758
## 1st Qu.: 5.786 1st Qu.:-3.730 1st Qu.: 0.0000 1st Qu.:2.708
## Median : 6.703 Median :-3.507 Median : 0.1823 Median :2.944
## Mean : 6.833 Mean :-3.500 Mean : 0.1963 Mean :2.958
## 3rd Qu.: 7.865 3rd Qu.:-3.270 3rd Qu.: 0.4055 3rd Qu.:3.219
## Max. :10.695 Max. :-2.120 Max. : 0.8755 Max. :4.143
## ICAM_1 IGF_BP_2 IL_11 IL_13
## Min. :-1.5332 Min. :4.635 Min. :1.755 Min. :1.259
## 1st Qu.:-0.8298 1st Qu.:5.179 1st Qu.:3.706 1st Qu.:1.274
## Median :-0.5903 Median :5.323 Median :4.805 Median :1.283
## Mean :-0.5908 Mean :5.317 Mean :4.725 Mean :1.284
## 3rd Qu.:-0.3828 3rd Qu.:5.453 3rd Qu.:5.776 3rd Qu.:1.290
## Max. : 0.5171 Max. :5.948 Max. :8.491 Max. :1.321
## IL_16 IL_17E IL_1alpha IL_3
## Min. :1.187 Min. :1.052 Min. :-8.517 Min. :-5.915
## 1st Qu.:2.521 1st Qu.:4.149 1st Qu.:-7.824 1st Qu.:-4.269
## Median :2.909 Median :4.749 Median :-7.524 Median :-3.912
## Mean :2.929 Mean :4.855 Mean :-7.514 Mean :-3.941
## 3rd Qu.:3.351 3rd Qu.:5.631 3rd Qu.:-7.264 3rd Qu.:-3.631
## Max. :4.937 Max. :8.952 Max. :-5.952 Max. :-2.453
## IL_4 IL_5 IL_6 IL_6_Receptor
## Min. :0.5306 Min. :-1.4271 Min. :-1.5343 Min. :-0.67562
## 1st Qu.:1.4586 1st Qu.:-0.1221 1st Qu.:-0.4127 1st Qu.:-0.12541
## Median :1.8083 Median : 0.1823 Median :-0.1599 Median : 0.09669
## Mean :1.7732 Mean : 0.1866 Mean :-0.1540 Mean : 0.09492
## 3rd Qu.:2.1459 3rd Qu.: 0.4700 3rd Qu.: 0.1410 3rd Qu.: 0.35404
## Max. :3.0445 Max. : 1.9459 Max. : 1.8138 Max. : 0.83099
## IL_7 IL_8 IP_10_Inducible_Protein_10 IgA
## Min. :0.5598 Min. :1.574 Min. :4.317 Min. :-10.520
## 1st Qu.:2.1548 1st Qu.:1.680 1st Qu.:5.398 1st Qu.: -6.645
## Median :2.7934 Median :1.705 Median :5.753 Median : -6.119
## Mean :2.8392 Mean :1.704 Mean :5.755 Mean : -6.121
## 3rd Qu.:3.7055 3rd Qu.:1.728 3rd Qu.:6.064 3rd Qu.: -5.573
## Max. :5.7056 Max. :1.807 Max. :7.501 Max. : -4.200
## Insulin Kidney_Injury_Molecule_1_KIM_1 LOX_1
## Min. :-2.1692 Min. :-1.256 Min. :0.000
## 1st Qu.:-1.4466 1st Qu.:-1.204 1st Qu.:1.030
## Median :-1.2462 Median :-1.183 Median :1.281
## Mean :-1.2329 Mean :-1.185 Mean :1.283
## 3rd Qu.:-1.0340 3rd Qu.:-1.164 3rd Qu.:1.526
## Max. :-0.1586 Max. :-1.105 Max. :2.272
## Leptin Lipoprotein_a MCP_1 MCP_2
## Min. :-2.1468 Min. :-6.812 Min. :5.826 Min. :0.4006
## 1st Qu.:-1.6996 1st Qu.:-5.308 1st Qu.:6.319 1st Qu.:1.5304
## Median :-1.5047 Median :-4.605 Median :6.494 Median :1.8528
## Mean :-1.5042 Mean :-4.417 Mean :6.497 Mean :1.8691
## 3rd Qu.:-1.3295 3rd Qu.:-3.490 3rd Qu.:6.678 3rd Qu.:2.1821
## Max. :-0.6206 Max. :-1.386 Max. :7.230 Max. :4.0237
## MIF MIP_1alpha MIP_1beta MMP_2
## Min. :-2.847 Min. :0.9346 Min. :1.946 Min. :0.09809
## 1st Qu.:-2.120 1st Qu.:3.3377 1st Qu.:2.565 1st Qu.:2.33214
## Median :-1.897 Median :4.0495 Median :2.833 Median :2.81512
## Mean :-1.864 Mean :4.0489 Mean :2.814 Mean :2.87534
## 3rd Qu.:-1.661 3rd Qu.:4.6857 3rd Qu.:3.045 3rd Qu.:3.55121
## Max. :-0.844 Max. :6.7959 Max. :4.007 Max. :5.35895
## MMP_3 MMP10 MMP7 Myoglobin
## Min. :-4.4228 Min. :-4.934 Min. :-8.3975 Min. :-3.1701
## 1st Qu.:-2.7489 1st Qu.:-3.938 1st Qu.:-4.8199 1st Qu.:-2.0402
## Median :-2.4534 Median :-3.650 Median :-3.7735 Median :-1.4697
## Mean :-2.4455 Mean :-3.635 Mean :-3.7894 Mean :-1.3671
## 3rd Qu.:-2.1203 3rd Qu.:-3.352 3rd Qu.:-2.7140 3rd Qu.:-0.7988
## Max. :-0.5276 Max. :-2.207 Max. :-0.2222 Max. : 1.7750
## NT_proBNP NrCAM Osteopontin PAI_1
## Min. :3.178 Min. :2.639 Min. :4.111 Min. :-0.99085
## 1st Qu.:4.350 1st Qu.:3.998 1st Qu.:4.963 1st Qu.:-0.16655
## Median :4.554 Median :4.394 Median :5.187 Median : 0.09396
## Mean :4.552 Mean :4.362 Mean :5.204 Mean : 0.07743
## 3rd Qu.:4.775 3rd Qu.:4.749 3rd Qu.:5.442 3rd Qu.: 0.32005
## Max. :5.886 Max. :6.011 Max. :6.308 Max. : 1.16611
## PAPP_A PLGF PYY Pancreatic_polypeptide
## Min. :-3.311 Min. :2.485 Min. :2.186 Min. :-2.12026
## 1st Qu.:-2.936 1st Qu.:3.638 1st Qu.:2.833 1st Qu.:-0.52763
## Median :-2.871 Median :3.871 Median :2.996 Median :-0.04082
## Mean :-2.854 Mean :3.912 Mean :3.015 Mean :-0.01323
## 3rd Qu.:-2.749 3rd Qu.:4.205 3rd Qu.:3.178 3rd Qu.: 0.53063
## Max. :-2.520 Max. :5.170 Max. :3.932 Max. : 1.93152
## Prolactin Prostatic_Acid_Phosphatase Protein_S
## Min. :-1.30933 Min. :-1.934 Min. :-3.338
## 1st Qu.:-0.13926 1st Qu.:-1.717 1st Qu.:-2.464
## Median : 0.00000 Median :-1.690 Median :-2.259
## Mean : 0.04495 Mean :-1.685 Mean :-2.240
## 3rd Qu.: 0.25799 3rd Qu.:-1.654 3rd Qu.:-2.000
## Max. : 0.99325 Max. :-1.424 Max. :-1.221
## Pulmonary_and_Activation_Regulat RANTES Resistin
## Min. :-2.5133 Min. :-7.222 Min. :-34.967
## 1st Qu.:-1.8326 1st Qu.:-6.725 1st Qu.:-21.468
## Median :-1.5141 Median :-6.502 Median :-17.466
## Mean :-1.4880 Mean :-6.511 Mean :-17.641
## 3rd Qu.:-1.1712 3rd Qu.:-6.320 3rd Qu.:-13.501
## Max. :-0.2744 Max. :-5.547 Max. : -2.239
## S100b SGOT SHBG SOD
## Min. :0.1874 Min. :-1.3471 Min. :-4.135 Min. :4.317
## 1st Qu.:1.0012 1st Qu.:-0.6349 1st Qu.:-2.813 1st Qu.:5.094
## Median :1.2544 Median :-0.4005 Median :-2.489 Median :5.366
## Mean :1.2505 Mean :-0.4057 Mean :-2.477 Mean :5.336
## 3rd Qu.:1.4996 3rd Qu.:-0.1985 3rd Qu.:-2.120 3rd Qu.:5.583
## Max. :2.3726 Max. : 0.7419 Max. :-1.109 Max. :6.317
## Serum_Amyloid_P Sortilin Stem_Cell_Factor TGF_alpha
## Min. :-7.506 Min. :1.654 Min. :2.251 Min. : 6.843
## 1st Qu.:-6.377 1st Qu.:3.343 1st Qu.:3.045 1st Qu.: 8.859
## Median :-6.032 Median :3.867 Median :3.296 Median : 9.919
## Mean :-6.017 Mean :3.852 Mean :3.301 Mean : 9.801
## 3rd Qu.:-5.655 3rd Qu.:4.371 3rd Qu.:3.526 3rd Qu.:10.695
## Max. :-4.646 Max. :6.225 Max. :4.277 Max. :13.827
## TIMP_1 TNF_RII TRAIL_R3 TTR_prealbumin
## Min. : 1.742 Min. :-1.6607 Min. :-1.2107 Min. :2.485
## 1st Qu.:10.490 1st Qu.:-0.8210 1st Qu.:-0.7008 1st Qu.:2.773
## Median :11.565 Median :-0.5978 Median :-0.5317 Median :2.833
## Mean :11.750 Mean :-0.5939 Mean :-0.5394 Mean :2.854
## 3rd Qu.:12.697 3rd Qu.:-0.3784 3rd Qu.:-0.3849 3rd Qu.:2.944
## Max. :18.881 Max. : 0.4700 Max. : 0.2694 Max. :3.332
## Tamm_Horsfall_Protein_THP Thrombomodulin Thrombopoietin
## Min. :-3.206 Min. :-2.0377 Min. :-1.53957
## 1st Qu.:-3.137 1st Qu.:-1.6256 1st Qu.:-0.88645
## Median :-3.117 Median :-1.4920 Median :-0.75100
## Mean :-3.116 Mean :-1.5050 Mean :-0.75419
## 3rd Qu.:-3.096 3rd Qu.:-1.3406 3rd Qu.:-0.62887
## Max. :-2.995 Max. :-0.8166 Max. : 0.09762
## Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
## Min. :1.508 Min. :-6.190
## 1st Qu.:3.343 1st Qu.:-4.962
## Median :3.810 Median :-4.510
## Mean :3.848 Mean :-4.499
## 3rd Qu.:4.316 3rd Qu.:-4.017
## Max. :6.225 Max. :-1.715
## Thyroxine_Binding_Globulin Tissue_Factor Transferrin
## Min. :-2.4769 Min. :-0.2107 Min. :1.932
## 1st Qu.:-1.7720 1st Qu.: 0.8329 1st Qu.:2.708
## Median :-1.5141 Median : 1.2238 Median :2.890
## Mean :-1.4788 Mean : 1.1702 Mean :2.909
## 3rd Qu.:-1.2379 3rd Qu.: 1.4816 3rd Qu.:3.091
## Max. :-0.2107 Max. : 2.4849 Max. :3.761
## Trefoil_Factor_3_TFF3 VCAM_1 VEGF Vitronectin
## Min. :-4.744 Min. :1.723 Min. :11.83 Min. :-1.42712
## 1st Qu.:-4.135 1st Qu.:2.485 1st Qu.:15.77 1st Qu.:-0.51083
## Median :-3.863 Median :2.708 Median :17.08 Median :-0.30111
## Mean :-3.876 Mean :2.688 Mean :16.99 Mean :-0.28473
## 3rd Qu.:-3.650 3rd Qu.:2.890 3rd Qu.:18.10 3rd Qu.:-0.03564
## Max. :-2.957 Max. :3.689 Max. :22.38 Max. : 0.53063
## von_Willebrand_Factor Class E4 E3
## Min. :-4.991 Impaired: 73 Min. :0.0000 Min. :0.0000
## 1st Qu.:-4.200 Control :194 1st Qu.:0.0000 1st Qu.:1.0000
## Median :-3.912 Median :0.0000 Median :1.0000
## Mean :-3.906 Mean :0.4007 Mean :0.9176
## 3rd Qu.:-3.612 3rd Qu.:1.0000 3rd Qu.:1.0000
## Max. :-2.957 Max. :1.0000 Max. :1.0000
## E2
## Min. :0.000
## 1st Qu.:0.000
## Median :0.000
## Mean :0.161
## 3rd Qu.:0.000
## Max. :1.000
##################################
# Performing a general exploration of the test set
##################################
dim(Alzheimer_Test)
## [1] 66 128
str(Alzheimer_Test)
## 'data.frame': 66 obs. of 128 variables:
## $ ACE_CD143_Angiotensin_Converti : num 1.681 1.602 1.301 1.562 0.831 ...
## $ ACTH_Adrenocorticotropic_Hormon : num -1.61 -1.51 -1.77 -1.56 -1.97 ...
## $ AXL : num 0.6833 0.4495 -0.0201 0.5298 -0.2 ...
## $ Adiponectin : num -5.12 -5.57 -6.17 -6.07 -5.43 ...
## $ Alpha_1_Antichymotrypsin : num 1.281 1.163 1.253 0.875 1.253 ...
## $ Alpha_1_Antitrypsin : num -15.5 -12.1 -14.5 -14 -13.3 ...
## $ Alpha_1_Microglobulin : num -3.17 -2.36 -3.32 -3.19 -3.24 ...
## $ Alpha_2_Macroglobulin : num -98.4 -144.9 -204.1 -125.8 -186.6 ...
## $ Angiopoietin_2_ANG_2 : num 0.916 0.531 0.262 0.742 0 ...
## $ Angiotensinogen : num 2.38 2.26 2.03 2.25 2.05 ...
## $ Apolipoprotein_A_IV : num -2.12 -1.9 -2.04 -2.3 -1.9 ...
## $ Apolipoprotein_A1 : num -8.05 -7.14 -8.08 -7.9 -8.18 ...
## $ Apolipoprotein_A2 : num -1.238 -0.562 -0.844 -1.022 -1.022 ...
## $ Apolipoprotein_B : num -6.52 -6.41 -5.56 -5.36 -5.94 ...
## $ Apolipoprotein_CI : num -1.97 -1.51 -2.21 -1.9 -2.04 ...
## $ Apolipoprotein_CIII : num -3 -1.97 -2.94 -2.83 -2.8 ...
## $ Apolipoprotein_D : num 1.44 1.48 1.39 1.16 1.25 ...
## $ Apolipoprotein_E : num 2.37 3.7 1.33 3.19 1.53 ...
## $ Apolipoprotein_H : num -0.532 -0.125 -0.32 -0.517 -0.462 ...
## $ B_Lymphocyte_Chemoattractant_BL : num 1.981 2.182 1.853 1.274 0.927 ...
## $ BMP_6 : num -1.98 -1.88 -1.68 -2.65 -1.68 ...
## $ Beta_2_Microglobulin : num 0.642 0.182 -0.274 0.405 -0.223 ...
## $ Betacellulin : int 52 59 51 46 51 42 61 46 32 46 ...
## $ C_Reactive_Protein : num -6.21 -6.21 -6.12 -5.71 -6.93 ...
## $ CD40 : num -1.12 -1.24 -1.45 -1.07 -1.41 ...
## $ CD5L : num -0.3285 0 -1.2379 -0.0408 -0.1054 ...
## $ Calbindin : num 23.5 20.6 13.4 27.3 22.5 ...
## $ Calcitonin : num -0.151 4.111 2.303 3.091 1.281 ...
## $ CgA : num 334 323 289 412 342 ...
## $ Clusterin_Apo_J : num 2.83 3.04 2.56 3.14 2.48 ...
## $ Complement_3 : num -13.2 -13 -17.3 -14.8 -19.2 ...
## $ Complement_Factor_H : num 3.1 4.68 3.78 2.52 3.3 ...
## $ Connective_Tissue_Growth_Factor : num 0.531 0.693 0.956 0.588 0.875 ...
## $ Cortisol : num 14 17 9.2 11 12 16 6.1 10 9.8 13 ...
## $ Creatine_Kinase_MB : num -1.65 -1.63 -1.61 -1.59 -1.72 ...
## $ Cystatin_C : num 9.58 8.33 7.91 8.99 8.47 ...
## $ EGF_R : num -0.422 -0.785 -0.976 -0.561 -0.767 ...
## $ EN_RAGE : num -2.94 -3.77 -3.24 -4.2 -4.27 ...
## $ ENA_78 : num -1.37 -1.38 -1.36 -1.37 -1.39 ...
## $ Eotaxin_3 : int 44 70 70 36 39 76 44 62 82 36 ...
## $ FAS : num -0.478 -0.0726 -0.5798 -0.5276 -0.9416 ...
## $ FSH_Follicle_Stimulation_Hormon : num -0.59 -0.652 -1.559 -1.505 -1.361 ...
## $ Fas_Ligand : num 2.537 2.792 2.073 0.288 3.867 ...
## $ Fatty_Acid_Binding_Protein : num 0.624 1.143 0.624 2.379 1.424 ...
## $ Ferritin : num 3.14 2.52 1.9 4.29 1.69 ...
## $ Fetuin_A : num 0.742 1.386 1.194 0.993 1.131 ...
## $ Fibrinogen : num -7.8 -7.06 -7.45 -7.8 -7.35 ...
## $ GRO_alpha : num 1.37 1.35 1.37 1.37 1.38 ...
## $ Gamma_Interferon_induced_Monokin: num 2.89 2.78 2.69 2.69 2.7 ...
## $ Glutathione_S_Transferase_alpha : num 0.708 1.034 1.13 0.676 0.844 ...
## $ HB_EGF : num 5.95 6.11 6.11 6.56 7.75 ...
## $ HCC_4 : num -3.82 -3.24 -3.77 -3.54 -3.73 ...
## $ Hepatocyte_Growth_Factor_HGF : num 0.4055 0.1823 -0.0834 0.47 -0.1054 ...
## $ I_309 : num 3.37 3 2.83 3.14 2.83 ...
## $ ICAM_1 : num -0.857 -1.111 -0.561 -0.357 -1.064 ...
## $ IGF_BP_2 : num 5.42 5.38 5.41 5.14 4.93 ...
## $ IL_11 : num 6.22 4.59 4.1 4.52 3.22 ...
## $ IL_13 : num 1.31 1.27 1.27 1.29 1.27 ...
## $ IL_16 : num 2.44 3.48 2.88 2.81 1.9 ...
## $ IL_17E : num 4.7 3.64 5.73 4.8 4.15 ...
## $ IL_1alpha : num -7.6 -7.37 -7.85 -7.68 -8.33 ...
## $ IL_3 : num -4.27 -4.02 -4.51 -3.58 -4.69 ...
## $ IL_4 : num 1.48 1.81 1.81 2.04 1.21 ...
## $ IL_5 : num 0.788 0.182 0 0.693 -0.371 ...
## $ IL_6 : num -0.371 -1.534 0.422 -0.563 0.8 ...
## $ IL_6_Receptor : num 0.5752 0.0967 -0.5322 -0.1586 0.0967 ...
## $ IL_7 : num 2.34 2.15 1.56 3.71 2.15 ...
## $ IL_8 : num 1.72 1.7 1.69 1.69 1.7 ...
## $ IP_10_Inducible_Protein_10 : num 5.6 5.33 5.06 4.75 5.29 ...
## $ IgA : num -7.62 -5.36 -7.04 -5.6 -6.57 ...
## $ Insulin : num -1.485 -1.034 -1.569 -0.901 -1.865 ...
## $ Kidney_Injury_Molecule_1_KIM_1 : num -1.23 -1.16 -1.12 -1.21 -1.16 ...
## $ LOX_1 : num 1.224 1.131 0.588 1.308 1.308 ...
## $ Leptin : num -1.27 -1.54 -1.54 -1.36 -1.55 ...
## $ Lipoprotein_a : num -4.99 -4.2 -3.54 -4.87 -5.08 ...
## $ MCP_1 : num 6.78 6.38 6.61 6.41 6.78 ...
## $ MCP_2 : num 1.981 1.626 1.626 0.401 1.853 ...
## $ MIF : num -1.66 -1.61 -2.04 -1.97 -1.83 ...
## $ MIP_1alpha : num 4.93 4.35 3.41 2.28 1.68 ...
## $ MIP_1beta : num 3.22 2.77 2.83 2.48 2.77 ...
## $ MMP_2 : num 2.97 2.92 3.27 4.05 1.36 ...
## $ MMP_3 : num -1.77 -1.97 -2.04 -2.04 -2.21 ...
## $ MMP10 : num -4.07 -3.27 -3.02 -3.04 -4.07 ...
## $ MMP7 : num -6.86 -3 -4.36 -3.35 -4.45 ...
## $ Myoglobin : num -1.139 -1.661 0.182 -1.897 -1.204 ...
## $ NT_proBNP : num 4.11 4.52 4.44 4.61 4.51 ...
## $ NrCAM : num 4.97 4.23 3.71 4.75 4.3 ...
## $ Osteopontin : num 5.77 5.28 4.96 5.23 4.79 ...
## $ PAI_1 : num 0 -0.0957 0.4905 0.4905 -0.0957 ...
## $ PAPP_A : num -2.79 -3.03 -2.71 -3.15 -3.08 ...
## $ PLGF : num 3.43 3.69 4.08 3.85 3.76 ...
## $ PYY : num 2.83 3 2.94 2.89 2.83 ...
## $ Pancreatic_polypeptide : num -0.821 0.262 -0.105 0.262 0.182 ...
## $ Prolactin : num -0.0408 0.7419 0.3365 0 -0.2485 ...
## $ Prostatic_Acid_Phosphatase : num -1.74 -1.68 -1.68 -1.69 -1.69 ...
## $ Protein_S : num -2.7 -2.36 -2.36 -2.7 -2.58 ...
## $ Pulmonary_and_Activation_Regulat: num -1.11 -1.31 -1.97 -1.97 -1.39 ...
## $ RANTES : num -5.99 -6.73 -6.65 -6.57 -6.57 ...
## $ Resistin : num -13.5 -15.6 -18 -16 -24.4 ...
## [list output truncated]
summary(Alzheimer_Test)
## ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
## Min. :-0.5473 Min. :-2.2073
## 1st Qu.: 0.9462 1st Qu.:-1.7148
## Median : 1.3013 Median :-1.5374
## Mean : 1.3105 Mean :-1.5311
## 3rd Qu.: 1.6320 3rd Qu.:-1.3863
## Max. : 3.0890 Max. :-0.7985
## AXL Adiponectin Alpha_1_Antichymotrypsin
## Min. :-0.73509 Min. :-7.059 Min. :0.1823
## 1st Qu.:-0.08175 1st Qu.:-5.737 1st Qu.:1.0647
## Median : 0.28035 Median :-5.360 Median :1.3083
## Mean : 0.25373 Mean :-5.298 Mean :1.3077
## 3rd Qu.: 0.60768 3rd Qu.:-4.917 3rd Qu.:1.5686
## Max. : 1.28634 Max. :-3.474 Max. :2.2192
## Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
## Min. :-18.17 Min. :-4.135 Min. :-238.64
## 1st Qu.:-14.70 1st Qu.:-3.284 1st Qu.:-186.64
## Median :-13.59 Median :-3.006 Median :-162.93
## Mean :-13.49 Mean :-2.983 Mean :-162.89
## 3rd Qu.:-12.31 3rd Qu.:-2.674 3rd Qu.:-136.53
## Max. :-10.06 Max. :-1.897 Max. : -50.17
## Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
## Min. :-0.05129 Min. :1.710 Min. :-2.749 Min. :-8.568
## 1st Qu.: 0.35372 1st Qu.:2.068 1st Qu.:-2.186 1st Qu.:-7.818
## Median : 0.55921 Median :2.276 Median :-1.897 Median :-7.497
## Mean : 0.60278 Mean :2.274 Mean :-1.867 Mean :-7.488
## 3rd Qu.: 0.78846 3rd Qu.:2.430 3rd Qu.:-1.526 3rd Qu.:-7.176
## Max. : 1.77495 Max. :2.752 Max. :-1.109 Max. :-6.645
## Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
## Min. :-1.9661 Min. :-8.192 Min. :-2.847 Min. :-3.863
## 1st Qu.:-0.9416 1st Qu.:-6.748 1st Qu.:-1.897 1st Qu.:-2.781
## Median :-0.7032 Median :-5.819 Median :-1.609 Median :-2.557
## Mean :-0.6902 Mean :-5.649 Mean :-1.625 Mean :-2.523
## 3rd Qu.:-0.3533 3rd Qu.:-4.603 3rd Qu.:-1.309 3rd Qu.:-2.231
## Max. : 0.5306 Max. :-2.339 Max. :-0.462 Max. :-1.386
## Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H
## Min. :0.2624 Min. :0.6626 Min. :-1.1609
## 1st Qu.:1.1314 1st Qu.:2.1526 1st Qu.:-0.5317
## Median :1.3863 Median :2.8181 Median :-0.2897
## Mean :1.3943 Mean :2.7160 Mean :-0.3212
## 3rd Qu.:1.6864 3rd Qu.:3.2363 3rd Qu.:-0.1032
## Max. :2.6391 Max. :4.6844 Max. : 0.4402
## B_Lymphocyte_Chemoattractant_BL BMP_6 Beta_2_Microglobulin
## Min. :0.7318 Min. :-2.669 Min. :-0.51083
## 1st Qu.:1.5304 1st Qu.:-2.152 1st Qu.:-0.06188
## Median :1.8528 Median :-1.964 Median : 0.18232
## Mean :1.8766 Mean :-1.937 Mean : 0.15566
## 3rd Qu.:2.3714 3rd Qu.:-1.675 3rd Qu.: 0.40547
## Max. :2.9757 Max. :-1.181 Max. : 0.83291
## Betacellulin C_Reactive_Protein CD40 CD5L
## Min. :32.00 Min. :-8.112 Min. :-1.9390 Min. :-1.96611
## 1st Qu.:46.00 1st Qu.:-6.725 1st Qu.:-1.4420 1st Qu.:-0.36747
## Median :51.00 Median :-6.166 Median :-1.2574 Median :-0.05135
## Mean :52.74 Mean :-5.997 Mean :-1.2773 Mean :-0.08760
## 3rd Qu.:59.75 3rd Qu.:-5.369 3rd Qu.:-1.1034 3rd Qu.: 0.24235
## Max. :80.00 Max. :-3.411 Max. :-0.7766 Max. : 0.91629
## Calbindin Calcitonin CgA Clusterin_Apo_J
## Min. :10.81 Min. :-0.7134 Min. :166.6 Min. :1.932
## 1st Qu.:18.88 1st Qu.: 1.2014 1st Qu.:268.2 1st Qu.:2.565
## Median :21.06 Median : 1.6849 Median :324.7 Median :2.833
## Mean :21.49 Mean : 1.7250 Mean :320.2 Mean :2.845
## 3rd Qu.:24.00 3rd Qu.: 2.2618 3rd Qu.:362.3 3rd Qu.:3.045
## Max. :35.36 Max. : 4.1109 Max. :494.5 Max. :3.761
## Complement_3 Complement_Factor_H Connective_Tissue_Growth_Factor
## Min. :-22.40 Min. :0.2766 Min. :0.09531
## 1st Qu.:-17.50 1st Qu.:2.6019 1st Qu.:0.58779
## Median :-15.90 Median :3.3983 Median :0.74194
## Mean :-15.91 Mean :3.3897 Mean :0.74507
## 3rd Qu.:-14.34 3rd Qu.:4.2548 3rd Qu.:0.87547
## Max. :-10.23 Max. :6.5597 Max. :1.41099
## Cortisol Creatine_Kinase_MB Cystatin_C EGF_R
## Min. : 0.10 Min. :-1.872 Min. :7.728 Min. :-1.2694
## 1st Qu.: 8.90 1st Qu.:-1.721 1st Qu.:8.301 1st Qu.:-0.8859
## Median :10.00 Median :-1.651 Median :8.544 Median :-0.6917
## Mean :10.46 Mean :-1.652 Mean :8.576 Mean :-0.6965
## 3rd Qu.:12.00 3rd Qu.:-1.590 3rd Qu.:8.837 3rd Qu.:-0.5034
## Max. :22.00 Max. :-1.434 Max. :9.694 Max. : 0.1891
## EN_RAGE ENA_78 Eotaxin_3 FAS
## Min. :-8.3774 Min. :-1.405 Min. : 23.00 Min. :-1.1087
## 1st Qu.:-4.1836 1st Qu.:-1.382 1st Qu.: 43.00 1st Qu.:-0.7133
## Median :-3.6889 Median :-1.374 Median : 54.00 Median :-0.5798
## Mean :-3.5986 Mean :-1.376 Mean : 55.55 Mean :-0.5414
## 3rd Qu.:-3.2189 3rd Qu.:-1.368 3rd Qu.: 64.00 3rd Qu.:-0.3355
## Max. :-0.8675 Max. :-1.353 Max. :107.00 Max. : 0.1823
## FSH_Follicle_Stimulation_Hormon Fas_Ligand Fatty_Acid_Binding_Protein
## Min. :-1.8101 Min. :0.288 Min. :-0.4559
## 1st Qu.:-1.2694 1st Qu.:2.073 1st Qu.: 0.7998
## Median :-0.9763 Median :2.665 Median : 1.1866
## Mean :-1.0597 Mean :2.649 Mean : 1.2884
## 3rd Qu.:-0.8068 3rd Qu.:3.162 3rd Qu.: 1.9192
## Max. :-0.4757 Max. :5.377 Max. : 3.2188
## Ferritin Fetuin_A Fibrinogen GRO_alpha
## Min. :0.8983 Min. :0.5306 Min. :-9.373 Min. :1.271
## 1st Qu.:2.1473 1st Qu.:1.0296 1st Qu.:-7.799 1st Qu.:1.351
## Median :2.6260 Median :1.3083 Median :-7.316 Median :1.372
## Mean :2.7069 Mean :1.3116 Mean :-7.360 Mean :1.378
## 3rd Qu.:3.1672 3rd Qu.:1.6094 3rd Qu.:-6.970 3rd Qu.:1.398
## Max. :4.9282 Max. :2.2083 Max. :-6.166 Max. :1.514
## Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
## Min. :2.545 Min. :0.5661
## 1st Qu.:2.698 1st Qu.:0.8257
## Median :2.768 Median :0.9493
## Mean :2.772 Mean :0.9440
## 3rd Qu.:2.829 3rd Qu.:1.0457
## Max. :3.046 Max. :1.3102
## HB_EGF HCC_4 Hepatocyte_Growth_Factor_HGF I_309
## Min. : 3.521 Min. :-4.343 Min. :-0.61619 Min. :2.041
## 1st Qu.: 5.949 1st Qu.:-3.772 1st Qu.:-0.05661 1st Qu.:2.724
## Median : 6.980 Median :-3.540 Median : 0.18232 Median :2.944
## Mean : 6.844 Mean :-3.538 Mean : 0.18076 Mean :2.921
## 3rd Qu.: 7.745 3rd Qu.:-3.352 3rd Qu.: 0.33647 3rd Qu.:3.135
## Max. :10.359 Max. :-2.489 Max. : 1.09861 Max. :3.689
## ICAM_1 IGF_BP_2 IL_11 IL_13
## Min. :-1.4661 Min. :4.718 Min. :2.031 Min. :1.232
## 1st Qu.:-0.7671 1st Qu.:5.127 1st Qu.:3.960 1st Qu.:1.274
## Median :-0.5903 Median :5.255 Median :4.838 Median :1.283
## Mean :-0.5958 Mean :5.263 Mean :4.651 Mean :1.283
## 3rd Qu.:-0.3574 3rd Qu.:5.402 3rd Qu.:5.482 3rd Qu.:1.292
## Max. : 0.3602 Max. :5.916 Max. :8.692 Max. :1.310
## IL_16 IL_17E IL_1alpha IL_3
## Min. :0.9568 Min. :1.582 Min. :-8.468 Min. :-5.521
## 1st Qu.:2.4411 1st Qu.:3.637 1st Qu.:-7.849 1st Qu.:-4.324
## Median :2.8763 Median :4.723 Median :-7.562 Median :-3.963
## Mean :2.8176 Mean :4.774 Mean :-7.549 Mean :-3.976
## 3rd Qu.:3.3514 3rd Qu.:5.415 3rd Qu.:-7.279 3rd Qu.:-3.576
## Max. :4.1028 Max. :8.081 Max. :-6.377 Max. :-3.079
## IL_4 IL_5 IL_6 IL_6_Receptor
## Min. :0.5306 Min. :-1.04982 Min. :-1.53428 Min. :-0.74560
## 1st Qu.:1.4586 1st Qu.:-0.03062 1st Qu.:-0.40924 1st Qu.:-0.20131
## Median :1.7226 Median : 0.22234 Median :-0.07205 Median : 0.00000
## Mean :1.7445 Mean : 0.22853 Mean :-0.05216 Mean : 0.06213
## 3rd Qu.:2.0669 3rd Qu.: 0.53063 3rd Qu.: 0.34805 3rd Qu.: 0.27297
## Max. :2.7081 Max. : 1.13140 Max. : 1.00562 Max. : 0.77048
## IL_7 IL_8 IP_10_Inducible_Protein_10 IgA
## Min. :1.310 Min. :1.615 Min. :4.263 Min. :-7.621
## 1st Qu.:2.379 1st Qu.:1.684 1st Qu.:5.323 1st Qu.:-6.571
## Median :3.148 Median :1.702 Median :5.617 Median :-6.012
## Mean :3.143 Mean :1.704 Mean :5.636 Mean :-6.066
## 3rd Qu.:3.706 3rd Qu.:1.725 3rd Qu.:5.917 3rd Qu.:-5.606
## Max. :5.000 Max. :1.836 Max. :7.208 Max. :-4.733
## Insulin Kidney_Injury_Molecule_1_KIM_1 LOX_1
## Min. :-2.0099 Min. :-1.251 Min. :0.0000
## 1st Qu.:-1.4466 1st Qu.:-1.209 1st Qu.:0.9649
## Median :-1.2169 Median :-1.187 Median :1.2238
## Mean :-1.1998 Mean :-1.188 Mean :1.2085
## 3rd Qu.:-1.0105 3rd Qu.:-1.166 3rd Qu.:1.4351
## Max. :-0.5025 Max. :-1.124 Max. :2.3979
## Leptin Lipoprotein_a MCP_1 MCP_2
## Min. :-1.9471 Min. :-6.571 Min. :5.889 Min. :0.4006
## 1st Qu.:-1.6334 1st Qu.:-5.116 1st Qu.:6.318 1st Qu.:1.5304
## Median :-1.4294 Median :-4.657 Median :6.482 Median :1.8528
## Mean :-1.4363 Mean :-4.515 Mean :6.480 Mean :1.8104
## 3rd Qu.:-1.2409 3rd Qu.:-4.017 3rd Qu.:6.627 3rd Qu.:2.0827
## Max. :-0.8387 Max. :-2.040 Max. :7.065 Max. :3.7545
## MIF MIP_1alpha MIP_1beta MMP_2
## Min. :-2.797 Min. :1.008 Min. :1.917 Min. :0.6248
## 1st Qu.:-2.120 1st Qu.:3.302 1st Qu.:2.485 1st Qu.:2.5513
## Median :-1.966 Median :3.736 Median :2.773 Median :2.9937
## Mean :-1.932 Mean :3.898 Mean :2.784 Mean :3.0347
## 3rd Qu.:-1.715 3rd Qu.:4.686 3rd Qu.:3.079 3rd Qu.:3.4798
## Max. :-1.109 Max. :5.735 Max. :3.784 Max. :6.0996
## MMP_3 MMP10 MMP7 Myoglobin
## Min. :-3.650 Min. :-4.948 Min. :-7.5346 Min. :-3.2968
## 1st Qu.:-2.852 1st Qu.:-4.075 1st Qu.:-4.9634 1st Qu.:-2.0217
## Median :-2.532 Median :-3.612 Median :-4.0302 Median :-1.5874
## Mean :-2.490 Mean :-3.676 Mean :-4.0148 Mean :-1.4165
## 3rd Qu.:-2.120 3rd Qu.:-3.331 3rd Qu.:-3.1640 3rd Qu.:-0.7765
## Max. :-1.171 Max. :-2.900 Max. :-0.1953 Max. : 1.1314
## NT_proBNP NrCAM Osteopontin PAI_1
## Min. :3.611 Min. :2.890 Min. :4.078 Min. :-0.990849
## 1st Qu.:4.174 1st Qu.:3.871 1st Qu.:4.892 1st Qu.:-0.334043
## Median :4.477 Median :4.317 Median :5.168 Median : 0.000000
## Mean :4.488 Mean :4.291 Mean :5.177 Mean :-0.003947
## 3rd Qu.:4.794 3rd Qu.:4.725 3rd Qu.:5.410 3rd Qu.: 0.303112
## Max. :5.398 Max. :5.690 Max. :6.315 Max. : 0.885785
## PAPP_A PLGF PYY Pancreatic_polypeptide
## Min. :-3.152 Min. :2.639 Min. :2.398 Min. :-1.609438
## 1st Qu.:-2.971 1st Qu.:3.689 1st Qu.:2.833 1st Qu.:-0.506693
## Median :-2.841 Median :3.892 Median :2.996 Median : 0.138816
## Mean :-2.845 Mean :3.884 Mean :2.976 Mean :-0.005258
## 3rd Qu.:-2.719 3rd Qu.:4.123 3rd Qu.:3.178 3rd Qu.: 0.470004
## Max. :-2.488 Max. :4.710 Max. :3.738 Max. : 1.504077
## Prolactin Prostatic_Acid_Phosphatase Protein_S
## Min. :-0.38566 Min. :-1.800 Min. :-3.154
## 1st Qu.:-0.16558 1st Qu.:-1.739 1st Qu.:-2.579
## Median : 0.00000 Median :-1.690 Median :-2.259
## Mean : 0.05195 Mean :-1.692 Mean :-2.268
## 3rd Qu.: 0.18232 3rd Qu.:-1.659 3rd Qu.:-1.924
## Max. : 0.78846 Max. :-1.540 Max. :-1.547
## Pulmonary_and_Activation_Regulat RANTES Resistin
## Min. :-2.4418 Min. :-7.236 Min. :-30.156
## 1st Qu.:-1.8326 1st Qu.:-6.725 1st Qu.:-22.131
## Median :-1.5141 Median :-6.571 Median :-18.014
## Mean :-1.5007 Mean :-6.540 Mean :-18.245
## 3rd Qu.:-1.1712 3rd Qu.:-6.392 3rd Qu.:-15.202
## Max. :-0.4463 Max. :-5.843 Max. : -6.594
## S100b SGOT SHBG SOD
## Min. :0.1874 Min. :-1.8971 Min. :-3.730 Min. :4.382
## 1st Qu.:0.9600 1st Qu.:-0.7498 1st Qu.:-3.052 1st Qu.:5.006
## Median :1.1571 Median :-0.4780 Median :-2.711 Median :5.313
## Mean :1.1819 Mean :-0.4898 Mean :-2.686 Mean :5.302
## 3rd Qu.:1.3807 3rd Qu.:-0.2138 3rd Qu.:-2.343 3rd Qu.:5.547
## Max. :2.1950 Max. : 0.1823 Max. :-1.561 Max. :6.461
## Serum_Amyloid_P Sortilin Stem_Cell_Factor TGF_alpha
## Min. :-7.182 Min. :1.508 Min. :2.219 Min. : 7.500
## 1st Qu.:-6.438 1st Qu.:3.177 1st Qu.:3.045 1st Qu.: 9.062
## Median :-6.215 Median :3.867 Median :3.314 Median : 9.596
## Mean :-6.083 Mean :3.787 Mean :3.267 Mean : 9.776
## 3rd Qu.:-5.607 3rd Qu.:4.371 3rd Qu.:3.466 3rd Qu.:10.612
## Max. :-4.699 Max. :5.681 Max. :4.078 Max. :13.083
## TIMP_1 TNF_RII TRAIL_R3 TTR_prealbumin
## Min. : 8.198 Min. :-1.6607 Min. :-1.30636 Min. :2.485
## 1st Qu.:10.530 1st Qu.:-0.8675 1st Qu.:-0.73332 1st Qu.:2.773
## Median :11.341 Median :-0.6541 Median :-0.55547 Median :2.890
## Mean :11.520 Mean :-0.6270 Mean :-0.58640 Mean :2.854
## 3rd Qu.:12.352 3rd Qu.:-0.3320 3rd Qu.:-0.47065 3rd Qu.:2.944
## Max. :16.547 Max. : 0.4055 Max. : 0.09622 Max. :3.091
## Tamm_Horsfall_Protein_THP Thrombomodulin Thrombopoietin
## Min. :-3.206 Min. :-2.054 Min. :-1.5396
## 1st Qu.:-3.144 1st Qu.:-1.675 1st Qu.:-0.8383
## Median :-3.126 Median :-1.534 Median :-0.7039
## Mean :-3.123 Mean :-1.533 Mean :-0.7192
## 3rd Qu.:-3.101 3rd Qu.:-1.341 3rd Qu.:-0.6289
## Max. :-3.041 Max. :-1.019 Max. :-0.3029
## Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
## Min. :2.141 Min. :-6.190
## 1st Qu.:3.283 1st Qu.:-4.733
## Median :3.753 Median :-4.269
## Mean :3.770 Mean :-4.221
## 3rd Qu.:4.316 3rd Qu.:-3.828
## Max. :5.681 Max. :-2.040
## Thyroxine_Binding_Globulin Tissue_Factor Transferrin
## Min. :-2.3026 Min. :0.0000 Min. :2.282
## 1st Qu.:-1.7148 1st Qu.:0.7053 1st Qu.:2.708
## Median :-1.4919 Median :1.1473 Median :2.890
## Mean :-1.4902 Mean :1.1356 Mean :2.900
## 3rd Qu.:-1.2379 3rd Qu.:1.5149 3rd Qu.:3.135
## Max. :-0.5978 Max. :2.7081 Max. :3.497
## Trefoil_Factor_3_TFF3 VCAM_1 VEGF Vitronectin
## Min. :-4.906 Min. :2.028 Min. :12.23 Min. :-1.07881
## 1st Qu.:-4.200 1st Qu.:2.420 1st Qu.:15.03 1st Qu.:-0.46204
## Median :-3.912 Median :2.674 Median :17.08 Median :-0.28106
## Mean :-3.947 Mean :2.644 Mean :16.70 Mean :-0.26833
## 3rd Qu.:-3.772 3rd Qu.:2.833 3rd Qu.:18.19 3rd Qu.:-0.05394
## Max. :-3.170 Max. :3.466 Max. :21.18 Max. : 0.40547
## von_Willebrand_Factor Class E4 E3
## Min. :-4.920 Impaired:18 Min. :0.000 Min. :0.0000
## 1st Qu.:-4.269 Control :48 1st Qu.:0.000 1st Qu.:1.0000
## Median :-4.017 Median :0.000 Median :1.0000
## Mean :-4.014 Mean :0.303 Mean :0.9848
## 3rd Qu.:-3.730 3rd Qu.:1.000 3rd Qu.:1.0000
## Max. :-3.058 Max. :1.000 Max. :1.0000
## E2
## Min. :0.00000
## 1st Qu.:0.00000
## Median :0.00000
## Mean :0.06061
## 3rd Qu.:0.00000
## Max. :1.00000
##################################
# Formulating a data type assessment summary
##################################
<- Alzheimer_Train
PDA <- data.frame(
(PDA.Summary Column.Index=c(1:length(names(PDA))),
Column.Name= names(PDA),
Column.Type=sapply(PDA, function(x) class(x)),
row.names=NULL)
)
## Column.Index Column.Name Column.Type
## 1 1 ACE_CD143_Angiotensin_Converti numeric
## 2 2 ACTH_Adrenocorticotropic_Hormon numeric
## 3 3 AXL numeric
## 4 4 Adiponectin numeric
## 5 5 Alpha_1_Antichymotrypsin numeric
## 6 6 Alpha_1_Antitrypsin numeric
## 7 7 Alpha_1_Microglobulin numeric
## 8 8 Alpha_2_Macroglobulin numeric
## 9 9 Angiopoietin_2_ANG_2 numeric
## 10 10 Angiotensinogen numeric
## 11 11 Apolipoprotein_A_IV numeric
## 12 12 Apolipoprotein_A1 numeric
## 13 13 Apolipoprotein_A2 numeric
## 14 14 Apolipoprotein_B numeric
## 15 15 Apolipoprotein_CI numeric
## 16 16 Apolipoprotein_CIII numeric
## 17 17 Apolipoprotein_D numeric
## 18 18 Apolipoprotein_E numeric
## 19 19 Apolipoprotein_H numeric
## 20 20 B_Lymphocyte_Chemoattractant_BL numeric
## 21 21 BMP_6 numeric
## 22 22 Beta_2_Microglobulin numeric
## 23 23 Betacellulin integer
## 24 24 C_Reactive_Protein numeric
## 25 25 CD40 numeric
## 26 26 CD5L numeric
## 27 27 Calbindin numeric
## 28 28 Calcitonin numeric
## 29 29 CgA numeric
## 30 30 Clusterin_Apo_J numeric
## 31 31 Complement_3 numeric
## 32 32 Complement_Factor_H numeric
## 33 33 Connective_Tissue_Growth_Factor numeric
## 34 34 Cortisol numeric
## 35 35 Creatine_Kinase_MB numeric
## 36 36 Cystatin_C numeric
## 37 37 EGF_R numeric
## 38 38 EN_RAGE numeric
## 39 39 ENA_78 numeric
## 40 40 Eotaxin_3 integer
## 41 41 FAS numeric
## 42 42 FSH_Follicle_Stimulation_Hormon numeric
## 43 43 Fas_Ligand numeric
## 44 44 Fatty_Acid_Binding_Protein numeric
## 45 45 Ferritin numeric
## 46 46 Fetuin_A numeric
## 47 47 Fibrinogen numeric
## 48 48 GRO_alpha numeric
## 49 49 Gamma_Interferon_induced_Monokin numeric
## 50 50 Glutathione_S_Transferase_alpha numeric
## 51 51 HB_EGF numeric
## 52 52 HCC_4 numeric
## 53 53 Hepatocyte_Growth_Factor_HGF numeric
## 54 54 I_309 numeric
## 55 55 ICAM_1 numeric
## 56 56 IGF_BP_2 numeric
## 57 57 IL_11 numeric
## 58 58 IL_13 numeric
## 59 59 IL_16 numeric
## 60 60 IL_17E numeric
## 61 61 IL_1alpha numeric
## 62 62 IL_3 numeric
## 63 63 IL_4 numeric
## 64 64 IL_5 numeric
## 65 65 IL_6 numeric
## 66 66 IL_6_Receptor numeric
## 67 67 IL_7 numeric
## 68 68 IL_8 numeric
## 69 69 IP_10_Inducible_Protein_10 numeric
## 70 70 IgA numeric
## 71 71 Insulin numeric
## 72 72 Kidney_Injury_Molecule_1_KIM_1 numeric
## 73 73 LOX_1 numeric
## 74 74 Leptin numeric
## 75 75 Lipoprotein_a numeric
## 76 76 MCP_1 numeric
## 77 77 MCP_2 numeric
## 78 78 MIF numeric
## 79 79 MIP_1alpha numeric
## 80 80 MIP_1beta numeric
## 81 81 MMP_2 numeric
## 82 82 MMP_3 numeric
## 83 83 MMP10 numeric
## 84 84 MMP7 numeric
## 85 85 Myoglobin numeric
## 86 86 NT_proBNP numeric
## 87 87 NrCAM numeric
## 88 88 Osteopontin numeric
## 89 89 PAI_1 numeric
## 90 90 PAPP_A numeric
## 91 91 PLGF numeric
## 92 92 PYY numeric
## 93 93 Pancreatic_polypeptide numeric
## 94 94 Prolactin numeric
## 95 95 Prostatic_Acid_Phosphatase numeric
## 96 96 Protein_S numeric
## 97 97 Pulmonary_and_Activation_Regulat numeric
## 98 98 RANTES numeric
## 99 99 Resistin numeric
## 100 100 S100b numeric
## 101 101 SGOT numeric
## 102 102 SHBG numeric
## 103 103 SOD numeric
## 104 104 Serum_Amyloid_P numeric
## 105 105 Sortilin numeric
## 106 106 Stem_Cell_Factor numeric
## 107 107 TGF_alpha numeric
## 108 108 TIMP_1 numeric
## 109 109 TNF_RII numeric
## 110 110 TRAIL_R3 numeric
## 111 111 TTR_prealbumin numeric
## 112 112 Tamm_Horsfall_Protein_THP numeric
## 113 113 Thrombomodulin numeric
## 114 114 Thrombopoietin numeric
## 115 115 Thymus_Expressed_Chemokine_TECK numeric
## 116 116 Thyroid_Stimulating_Hormone numeric
## 117 117 Thyroxine_Binding_Globulin numeric
## 118 118 Tissue_Factor numeric
## 119 119 Transferrin numeric
## 120 120 Trefoil_Factor_3_TFF3 numeric
## 121 121 VCAM_1 numeric
## 122 122 VEGF numeric
## 123 123 Vitronectin numeric
## 124 124 von_Willebrand_Factor numeric
## 125 125 Class factor
## 126 126 E4 numeric
## 127 127 E3 numeric
## 128 128 E2 numeric
##################################
# Loading dataset
##################################
<- Alzheimer_Train
DQA
##################################
# Formulating an overall data quality assessment summary
##################################
<- data.frame(
(DQA.Summary Column.Index=c(1:length(names(DQA))),
Column.Name= names(DQA),
Column.Type=sapply(DQA, function(x) class(x)),
Row.Count=sapply(DQA, function(x) nrow(DQA)),
NA.Count=sapply(DQA,function(x)sum(is.na(x))),
Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
row.names=NULL)
)
## Column.Index Column.Name Column.Type Row.Count
## 1 1 ACE_CD143_Angiotensin_Converti numeric 267
## 2 2 ACTH_Adrenocorticotropic_Hormon numeric 267
## 3 3 AXL numeric 267
## 4 4 Adiponectin numeric 267
## 5 5 Alpha_1_Antichymotrypsin numeric 267
## 6 6 Alpha_1_Antitrypsin numeric 267
## 7 7 Alpha_1_Microglobulin numeric 267
## 8 8 Alpha_2_Macroglobulin numeric 267
## 9 9 Angiopoietin_2_ANG_2 numeric 267
## 10 10 Angiotensinogen numeric 267
## 11 11 Apolipoprotein_A_IV numeric 267
## 12 12 Apolipoprotein_A1 numeric 267
## 13 13 Apolipoprotein_A2 numeric 267
## 14 14 Apolipoprotein_B numeric 267
## 15 15 Apolipoprotein_CI numeric 267
## 16 16 Apolipoprotein_CIII numeric 267
## 17 17 Apolipoprotein_D numeric 267
## 18 18 Apolipoprotein_E numeric 267
## 19 19 Apolipoprotein_H numeric 267
## 20 20 B_Lymphocyte_Chemoattractant_BL numeric 267
## 21 21 BMP_6 numeric 267
## 22 22 Beta_2_Microglobulin numeric 267
## 23 23 Betacellulin integer 267
## 24 24 C_Reactive_Protein numeric 267
## 25 25 CD40 numeric 267
## 26 26 CD5L numeric 267
## 27 27 Calbindin numeric 267
## 28 28 Calcitonin numeric 267
## 29 29 CgA numeric 267
## 30 30 Clusterin_Apo_J numeric 267
## 31 31 Complement_3 numeric 267
## 32 32 Complement_Factor_H numeric 267
## 33 33 Connective_Tissue_Growth_Factor numeric 267
## 34 34 Cortisol numeric 267
## 35 35 Creatine_Kinase_MB numeric 267
## 36 36 Cystatin_C numeric 267
## 37 37 EGF_R numeric 267
## 38 38 EN_RAGE numeric 267
## 39 39 ENA_78 numeric 267
## 40 40 Eotaxin_3 integer 267
## 41 41 FAS numeric 267
## 42 42 FSH_Follicle_Stimulation_Hormon numeric 267
## 43 43 Fas_Ligand numeric 267
## 44 44 Fatty_Acid_Binding_Protein numeric 267
## 45 45 Ferritin numeric 267
## 46 46 Fetuin_A numeric 267
## 47 47 Fibrinogen numeric 267
## 48 48 GRO_alpha numeric 267
## 49 49 Gamma_Interferon_induced_Monokin numeric 267
## 50 50 Glutathione_S_Transferase_alpha numeric 267
## 51 51 HB_EGF numeric 267
## 52 52 HCC_4 numeric 267
## 53 53 Hepatocyte_Growth_Factor_HGF numeric 267
## 54 54 I_309 numeric 267
## 55 55 ICAM_1 numeric 267
## 56 56 IGF_BP_2 numeric 267
## 57 57 IL_11 numeric 267
## 58 58 IL_13 numeric 267
## 59 59 IL_16 numeric 267
## 60 60 IL_17E numeric 267
## 61 61 IL_1alpha numeric 267
## 62 62 IL_3 numeric 267
## 63 63 IL_4 numeric 267
## 64 64 IL_5 numeric 267
## 65 65 IL_6 numeric 267
## 66 66 IL_6_Receptor numeric 267
## 67 67 IL_7 numeric 267
## 68 68 IL_8 numeric 267
## 69 69 IP_10_Inducible_Protein_10 numeric 267
## 70 70 IgA numeric 267
## 71 71 Insulin numeric 267
## 72 72 Kidney_Injury_Molecule_1_KIM_1 numeric 267
## 73 73 LOX_1 numeric 267
## 74 74 Leptin numeric 267
## 75 75 Lipoprotein_a numeric 267
## 76 76 MCP_1 numeric 267
## 77 77 MCP_2 numeric 267
## 78 78 MIF numeric 267
## 79 79 MIP_1alpha numeric 267
## 80 80 MIP_1beta numeric 267
## 81 81 MMP_2 numeric 267
## 82 82 MMP_3 numeric 267
## 83 83 MMP10 numeric 267
## 84 84 MMP7 numeric 267
## 85 85 Myoglobin numeric 267
## 86 86 NT_proBNP numeric 267
## 87 87 NrCAM numeric 267
## 88 88 Osteopontin numeric 267
## 89 89 PAI_1 numeric 267
## 90 90 PAPP_A numeric 267
## 91 91 PLGF numeric 267
## 92 92 PYY numeric 267
## 93 93 Pancreatic_polypeptide numeric 267
## 94 94 Prolactin numeric 267
## 95 95 Prostatic_Acid_Phosphatase numeric 267
## 96 96 Protein_S numeric 267
## 97 97 Pulmonary_and_Activation_Regulat numeric 267
## 98 98 RANTES numeric 267
## 99 99 Resistin numeric 267
## 100 100 S100b numeric 267
## 101 101 SGOT numeric 267
## 102 102 SHBG numeric 267
## 103 103 SOD numeric 267
## 104 104 Serum_Amyloid_P numeric 267
## 105 105 Sortilin numeric 267
## 106 106 Stem_Cell_Factor numeric 267
## 107 107 TGF_alpha numeric 267
## 108 108 TIMP_1 numeric 267
## 109 109 TNF_RII numeric 267
## 110 110 TRAIL_R3 numeric 267
## 111 111 TTR_prealbumin numeric 267
## 112 112 Tamm_Horsfall_Protein_THP numeric 267
## 113 113 Thrombomodulin numeric 267
## 114 114 Thrombopoietin numeric 267
## 115 115 Thymus_Expressed_Chemokine_TECK numeric 267
## 116 116 Thyroid_Stimulating_Hormone numeric 267
## 117 117 Thyroxine_Binding_Globulin numeric 267
## 118 118 Tissue_Factor numeric 267
## 119 119 Transferrin numeric 267
## 120 120 Trefoil_Factor_3_TFF3 numeric 267
## 121 121 VCAM_1 numeric 267
## 122 122 VEGF numeric 267
## 123 123 Vitronectin numeric 267
## 124 124 von_Willebrand_Factor numeric 267
## 125 125 Class factor 267
## 126 126 E4 numeric 267
## 127 127 E3 numeric 267
## 128 128 E2 numeric 267
## NA.Count Fill.Rate
## 1 0 1.000
## 2 0 1.000
## 3 0 1.000
## 4 0 1.000
## 5 0 1.000
## 6 0 1.000
## 7 0 1.000
## 8 0 1.000
## 9 0 1.000
## 10 0 1.000
## 11 0 1.000
## 12 0 1.000
## 13 0 1.000
## 14 0 1.000
## 15 0 1.000
## 16 0 1.000
## 17 0 1.000
## 18 0 1.000
## 19 0 1.000
## 20 0 1.000
## 21 0 1.000
## 22 0 1.000
## 23 0 1.000
## 24 0 1.000
## 25 0 1.000
## 26 0 1.000
## 27 0 1.000
## 28 0 1.000
## 29 0 1.000
## 30 0 1.000
## 31 0 1.000
## 32 0 1.000
## 33 0 1.000
## 34 0 1.000
## 35 0 1.000
## 36 0 1.000
## 37 0 1.000
## 38 0 1.000
## 39 0 1.000
## 40 0 1.000
## 41 0 1.000
## 42 0 1.000
## 43 0 1.000
## 44 0 1.000
## 45 0 1.000
## 46 0 1.000
## 47 0 1.000
## 48 0 1.000
## 49 0 1.000
## 50 0 1.000
## 51 0 1.000
## 52 0 1.000
## 53 0 1.000
## 54 0 1.000
## 55 0 1.000
## 56 0 1.000
## 57 0 1.000
## 58 0 1.000
## 59 0 1.000
## 60 0 1.000
## 61 0 1.000
## 62 0 1.000
## 63 0 1.000
## 64 0 1.000
## 65 0 1.000
## 66 0 1.000
## 67 0 1.000
## 68 0 1.000
## 69 0 1.000
## 70 0 1.000
## 71 0 1.000
## 72 0 1.000
## 73 0 1.000
## 74 0 1.000
## 75 0 1.000
## 76 0 1.000
## 77 0 1.000
## 78 0 1.000
## 79 0 1.000
## 80 0 1.000
## 81 0 1.000
## 82 0 1.000
## 83 0 1.000
## 84 0 1.000
## 85 0 1.000
## 86 0 1.000
## 87 0 1.000
## 88 0 1.000
## 89 0 1.000
## 90 0 1.000
## 91 0 1.000
## 92 0 1.000
## 93 0 1.000
## 94 0 1.000
## 95 0 1.000
## 96 0 1.000
## 97 0 1.000
## 98 0 1.000
## 99 0 1.000
## 100 0 1.000
## 101 0 1.000
## 102 0 1.000
## 103 0 1.000
## 104 0 1.000
## 105 0 1.000
## 106 0 1.000
## 107 0 1.000
## 108 0 1.000
## 109 0 1.000
## 110 0 1.000
## 111 0 1.000
## 112 0 1.000
## 113 0 1.000
## 114 0 1.000
## 115 0 1.000
## 116 0 1.000
## 117 0 1.000
## 118 0 1.000
## 119 0 1.000
## 120 0 1.000
## 121 0 1.000
## 122 0 1.000
## 123 0 1.000
## 124 0 1.000
## 125 0 1.000
## 126 0 1.000
## 127 0 1.000
## 128 0 1.000
##################################
# Listing all predictors
##################################
<- DQA[,!names(DQA) %in% c("Class")]
DQA.Predictors
##################################
# Listing all numeric predictors
##################################
<- DQA.Predictors[,!names(DQA.Predictors) %in% c("E2","E3","E4")]
DQA.Predictors.Numeric <- as.data.frame(sapply(DQA.Predictors.Numeric,function(x) as.numeric(x)))
DQA.Predictors.Numeric
if (length(names(DQA.Predictors.Numeric))>0) {
print(paste0("There are ",
length(names(DQA.Predictors.Numeric))),
(" numeric predictor variable(s)."))
else {
} print("There are no numeric predictor variables.")
}
## [1] "There are 124 numeric predictor variable(s)."
##################################
# Listing all factor predictors
##################################
<- DQA.Predictors[,names(DQA.Predictors) %in% c("E2","E3","E4")]
DQA.Predictors.Factor <- as.data.frame(sapply(DQA.Predictors.Factor,function(x) as.factor(x)))
DQA.Predictors.Factor
if (length(names(DQA.Predictors.Factor))>0) {
print(paste0("There are ",
length(names(DQA.Predictors.Factor))),
(" factor predictor variable(s)."))
else {
} print("There are no factor predictor variables.")
}
## [1] "There are 3 factor predictor variable(s)."
##################################
# Formulating a data quality assessment summary for factor predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {
##################################
# Formulating a function to determine the first mode
##################################
<- function(x) {
FirstModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab == max(tab)]
ux[tab
}
##################################
# Formulating a function to determine the second mode
##################################
<- function(x) {
SecondModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab = ux[tab == max(tab)]
fm = x[!(x %in% fm)]
sm <- unique(sm)
usm <- tabulate(match(sm, usm))
tabsm ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
return("x"),
return(usm[tabsm == max(tabsm)]))
}
<- data.frame(
(DQA.Predictors.Factor.Summary Column.Name= names(DQA.Predictors.Factor),
Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)),
Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
row.names=NULL)
)
}
## Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1 E4 character 2 0 1
## 2 E3 character 2 1 0
## 3 E2 character 2 0 1
## First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 1 160 107 0.007 1.495
## 2 245 22 0.007 11.136
## 3 224 43 0.007 5.209
##################################
# Formulating a data quality assessment summary for numeric predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {
##################################
# Formulating a function to determine the first mode
##################################
<- function(x) {
FirstModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab == max(tab)]
ux[tab
}
##################################
# Formulating a function to determine the second mode
##################################
<- function(x) {
SecondModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab = ux[tab == max(tab)]
fm = na.omit(x)[!(na.omit(x) %in% fm)]
sm <- unique(sm)
usm <- tabulate(match(sm, usm))
tabsm ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
return(0.00001),
return(usm[tabsm == max(tabsm)]))
}
<- data.frame(
(DQA.Predictors.Numeric.Summary Column.Name= names(DQA.Predictors.Numeric),
Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)),
Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
row.names=NULL)
)
}
## Column.Name Column.Type Unique.Count
## 1 ACE_CD143_Angiotensin_Converti numeric 53
## 2 ACTH_Adrenocorticotropic_Hormon numeric 32
## 3 AXL numeric 59
## 4 Adiponectin numeric 91
## 5 Alpha_1_Antichymotrypsin numeric 65
## 6 Alpha_1_Antitrypsin numeric 64
## 7 Alpha_1_Microglobulin numeric 82
## 8 Alpha_2_Macroglobulin numeric 47
## 9 Angiopoietin_2_ANG_2 numeric 36
## 10 Angiotensinogen numeric 135
## 11 Apolipoprotein_A_IV numeric 53
## 12 Apolipoprotein_A1 numeric 83
## 13 Apolipoprotein_A2 numeric 85
## 14 Apolipoprotein_B numeric 83
## 15 Apolipoprotein_CI numeric 49
## 16 Apolipoprotein_CIII numeric 82
## 17 Apolipoprotein_D numeric 63
## 18 Apolipoprotein_E numeric 79
## 19 Apolipoprotein_H numeric 82
## 20 B_Lymphocyte_Chemoattractant_BL numeric 35
## 21 BMP_6 numeric 42
## 22 Beta_2_Microglobulin numeric 50
## 23 Betacellulin numeric 36
## 24 C_Reactive_Protein numeric 135
## 25 CD40 numeric 34
## 26 CD5L numeric 82
## 27 Calbindin numeric 139
## 28 Calcitonin numeric 93
## 29 CgA numeric 105
## 30 Clusterin_Apo_J numeric 31
## 31 Complement_3 numeric 63
## 32 Complement_Factor_H numeric 87
## 33 Connective_Tissue_Growth_Factor numeric 26
## 34 Cortisol numeric 52
## 35 Creatine_Kinase_MB numeric 32
## 36 Cystatin_C numeric 212
## 37 EGF_R numeric 59
## 38 EN_RAGE numeric 95
## 39 ENA_78 numeric 39
## 40 Eotaxin_3 numeric 42
## 41 FAS numeric 52
## 42 FSH_Follicle_Stimulation_Hormon numeric 97
## 43 Fas_Ligand numeric 57
## 44 Fatty_Acid_Binding_Protein numeric 84
## 45 Ferritin numeric 75
## 46 Fetuin_A numeric 67
## 47 Fibrinogen numeric 91
## 48 GRO_alpha numeric 25
## 49 Gamma_Interferon_induced_Monokin numeric 209
## 50 Glutathione_S_Transferase_alpha numeric 42
## 51 HB_EGF numeric 54
## 52 HCC_4 numeric 53
## 53 Hepatocyte_Growth_Factor_HGF numeric 44
## 54 I_309 numeric 45
## 55 ICAM_1 numeric 68
## 56 IGF_BP_2 numeric 126
## 57 IL_11 numeric 75
## 58 IL_13 numeric 18
## 59 IL_16 numeric 55
## 60 IL_17E numeric 44
## 61 IL_1alpha numeric 60
## 62 IL_3 numeric 58
## 63 IL_4 numeric 47
## 64 IL_5 numeric 48
## 65 IL_6 numeric 53
## 66 IL_6_Receptor numeric 53
## 67 IL_7 numeric 46
## 68 IL_8 numeric 56
## 69 IP_10_Inducible_Protein_10 numeric 211
## 70 IgA numeric 94
## 71 Insulin numeric 55
## 72 Kidney_Injury_Molecule_1_KIM_1 numeric 50
## 73 LOX_1 numeric 67
## 74 Leptin numeric 82
## 75 Lipoprotein_a numeric 128
## 76 MCP_1 numeric 219
## 77 MCP_2 numeric 39
## 78 MIF numeric 43
## 79 MIP_1alpha numeric 49
## 80 MIP_1beta numeric 47
## 81 MMP_2 numeric 48
## 82 MMP_3 numeric 80
## 83 MMP10 numeric 56
## 84 MMP7 numeric 89
## 85 Myoglobin numeric 116
## 86 NT_proBNP numeric 111
## 87 NrCAM numeric 126
## 88 Osteopontin numeric 166
## 89 PAI_1 numeric 70
## 90 PAPP_A numeric 34
## 91 PLGF numeric 86
## 92 PYY numeric 34
## 93 Pancreatic_polypeptide numeric 81
## 94 Prolactin numeric 57
## 95 Prostatic_Acid_Phosphatase numeric 43
## 96 Protein_S numeric 24
## 97 Pulmonary_and_Activation_Regulat numeric 54
## 98 RANTES numeric 39
## 99 Resistin numeric 59
## 100 S100b numeric 35
## 101 SGOT numeric 75
## 102 SHBG numeric 92
## 103 SOD numeric 164
## 104 Serum_Amyloid_P numeric 74
## 105 Sortilin numeric 65
## 106 Stem_Cell_Factor numeric 44
## 107 TGF_alpha numeric 62
## 108 TIMP_1 numeric 56
## 109 TNF_RII numeric 72
## 110 TRAIL_R3 numeric 60
## 111 TTR_prealbumin numeric 16
## 112 Tamm_Horsfall_Protein_THP numeric 60
## 113 Thrombomodulin numeric 35
## 114 Thrombopoietin numeric 54
## 115 Thymus_Expressed_Chemokine_TECK numeric 37
## 116 Thyroid_Stimulating_Hormone numeric 66
## 117 Thyroxine_Binding_Globulin numeric 49
## 118 Tissue_Factor numeric 67
## 119 Transferrin numeric 30
## 120 Trefoil_Factor_3_TFF3 numeric 37
## 121 VCAM_1 numeric 40
## 122 VEGF numeric 200
## 123 Vitronectin numeric 71
## 124 von_Willebrand_Factor numeric 43
## Unique.Count.Ratio First.Mode.Value Second.Mode.Value First.Mode.Count
## 1 0.199 1.157 1.107 14
## 2 0.120 -1.609 -1.715 20
## 3 0.221 0.191 0.530 29
## 4 0.341 -5.991 -4.200 7
## 5 0.243 1.194 1.099 12
## 6 0.240 -12.907 -13.310 11
## 7 0.307 -3.244 -3.270 13
## 8 0.176 -179.087 -194.947 21
## 9 0.135 0.531 0.642 23
## 10 0.506 2.262 2.107 9
## 11 0.199 -2.040 -1.772 30
## 12 0.311 -7.902 -7.452 8
## 13 0.318 -0.968 -0.755 9
## 14 0.311 -6.211 -7.289 11
## 15 0.184 -1.715 -1.661 23
## 16 0.307 -2.120 -2.207 17
## 17 0.236 1.308 1.386 11
## 18 0.296 2.720 4.024 11
## 19 0.307 0.097 -0.383 14
## 20 0.131 2.371 1.981 36
## 21 0.157 -1.675 -1.845 30
## 22 0.187 0.095 0.182 38
## 23 0.135 51.000 42.000 50
## 24 0.506 -5.745 -6.571 7
## 25 0.127 -1.242 -1.273 25
## 26 0.307 0.095 0.182 17
## 27 0.521 21.495 20.891 8
## 28 0.348 0.693 0.956 15
## 29 0.393 315.308 361.583 9
## 30 0.116 2.773 2.890 25
## 31 0.236 -16.545 -18.173 15
## 32 0.326 4.024 4.475 22
## 33 0.097 0.693 0.788 25
## 34 0.195 12.000 11.000 38
## 35 0.120 -1.671 -1.724 27
## 36 0.794 8.470 8.357 4
## 37 0.221 -0.590 -0.700 12
## 38 0.356 -4.200 -4.423 11
## 39 0.146 -1.368 -1.364 39
## 40 0.157 64.000 44.000 38
## 41 0.195 -0.713 -0.528 23
## 42 0.363 -1.064 -1.361 10
## 43 0.213 3.101 2.792 19
## 44 0.315 0.624 0.269 9
## 45 0.281 2.382 3.329 8
## 46 0.251 1.281 1.224 15
## 47 0.341 -6.571 -7.601 7
## 48 0.094 1.398 1.372 32
## 49 0.783 2.789 2.584 4
## 50 0.157 0.968 0.985 20
## 51 0.202 6.413 6.560 17
## 52 0.199 -3.576 -3.689 15
## 53 0.165 0.095 0.182 45
## 54 0.169 2.944 2.996 21
## 55 0.255 -0.489 -0.590 19
## 56 0.472 5.328 5.187 7
## 57 0.281 2.031 5.122 16
## 58 0.067 1.283 1.274 41
## 59 0.206 3.077 2.924 21
## 60 0.165 5.325 4.749 30
## 61 0.225 -7.264 -7.849 35
## 62 0.217 -3.912 -4.075 20
## 63 0.176 1.808 1.209 25
## 64 0.180 0.182 0.336 27
## 65 0.199 0.096 -0.242 19
## 66 0.199 0.273 0.000 26
## 67 0.172 2.155 3.476 33
## 68 0.210 1.676 1.691 15
## 69 0.790 5.687 5.050 3
## 70 0.352 -6.645 -6.502 11
## 71 0.206 -1.277 -1.341 19
## 72 0.187 -1.172 -1.144 11
## 73 0.251 1.281 1.131 13
## 74 0.307 -1.329 -1.466 17
## 75 0.479 -4.343 -4.423 8
## 76 0.820 6.213 6.293 4
## 77 0.146 1.530 1.853 32
## 78 0.161 -1.897 -2.120 29
## 79 0.184 5.359 3.690 21
## 80 0.176 2.944 2.833 22
## 81 0.180 2.332 3.266 36
## 82 0.300 -2.207 -2.120 18
## 83 0.210 -3.689 -3.963 14
## 84 0.333 -3.774 -3.345 24
## 85 0.434 -2.040 -1.609 11
## 86 0.416 4.466 4.554 8
## 87 0.472 4.489 3.912 6
## 88 0.622 5.288 5.187 6
## 89 0.262 0.094 0.177 25
## 90 0.127 -2.971 -2.902 26
## 91 0.322 3.738 3.714 10
## 92 0.127 2.833 2.996 38
## 93 0.303 0.182 0.336 14
## 94 0.213 0.095 0.182 32
## 95 0.161 -1.690 -1.710 26
## 96 0.090 -2.358 -2.259 36
## 97 0.202 -1.386 -1.772 16
## 98 0.146 -6.571 -6.502 28
## 99 0.221 -20.661 -23.322 14
## 100 0.131 0.946 1.055 22
## 101 0.281 -0.400 0.095 12
## 102 0.345 -2.207 -1.772 24
## 103 0.614 5.263 5.468 9
## 104 0.277 -6.032 -6.215 14
## 105 0.243 3.461 3.924 11
## 106 0.165 3.401 3.045 18
## 107 0.232 10.186 10.858 10
## 108 0.210 11.266 11.856 15
## 109 0.270 -0.755 -0.598 9
## 110 0.225 -0.683 -0.471 13
## 111 0.060 2.833 2.890 48
## 112 0.225 -3.096 -3.123 20
## 113 0.131 -1.579 -1.534 26
## 114 0.202 -0.886 -0.658 20
## 115 0.139 4.149 3.637 20
## 116 0.247 -6.190 -4.605 15
## 117 0.184 -1.715 -1.661 19
## 118 0.251 0.742 1.435 9
## 119 0.112 2.890 2.773 29
## 120 0.139 -4.017 -3.730 19
## 121 0.150 2.708 2.565 27
## 122 0.749 15.756 17.476 4
## 123 0.266 0.095 0.182 14
## 124 0.161 -4.269 -4.343 18
## Second.Mode.Count First.Second.Mode.Ratio Minimum Mean Median
## 1 11 1.273 -0.676 1.320 1.301
## 2 19 1.053 -2.207 -1.538 -1.561
## 3 26 1.115 -0.923 0.309 0.280
## 4 6 1.167 -6.725 -5.201 -5.185
## 5 10 1.200 0.262 1.361 1.361
## 6 10 1.100 -17.028 -13.052 -13.004
## 7 8 1.625 -4.343 -2.932 -2.937
## 8 20 1.050 -289.685 -158.615 -160.010
## 9 20 1.150 -0.545 0.673 0.642
## 10 7 1.286 1.752 2.318 2.320
## 11 21 1.429 -2.957 -1.854 -1.833
## 12 7 1.143 -8.680 -7.483 -7.470
## 13 8 1.125 -1.897 -0.635 -0.673
## 14 9 1.222 -9.937 -5.578 -5.703
## 15 18 1.278 -3.324 -1.583 -1.609
## 16 15 1.133 -3.689 -2.494 -2.526
## 17 10 1.100 0.470 1.440 1.411
## 18 10 1.100 0.591 2.806 2.818
## 19 9 1.556 -2.234 -0.321 -0.370
## 20 30 1.200 0.732 2.017 1.981
## 21 29 1.034 -2.761 -1.911 -1.877
## 22 36 1.056 -0.545 0.168 0.182
## 23 31 1.613 10.000 51.011 51.000
## 24 6 1.167 -8.517 -5.874 -5.843
## 25 20 1.250 -1.864 -1.258 -1.273
## 26 16 1.062 -1.238 -0.053 -0.062
## 27 6 1.333 10.961 22.433 22.249
## 28 13 1.154 -0.713 1.679 1.649
## 29 8 1.125 135.605 333.298 331.520
## 30 21 1.190 1.872 2.882 2.890
## 31 13 1.154 -23.387 -15.610 -15.524
## 32 19 1.158 -0.839 3.554 3.600
## 33 24 1.042 0.182 0.774 0.788
## 34 34 1.118 0.100 11.984 12.000
## 35 24 1.125 -1.872 -1.674 -1.671
## 36 3 1.333 7.432 8.586 8.564
## 37 11 1.091 -1.361 -0.701 -0.684
## 38 10 1.100 -8.377 -3.635 -3.650
## 39 22 1.773 -1.405 -1.372 -1.374
## 40 26 1.462 7.000 58.172 59.000
## 41 19 1.211 -1.514 -0.529 -0.528
## 42 9 1.111 -2.115 -1.143 -1.136
## 43 14 1.357 -0.154 2.968 3.101
## 44 8 1.125 -1.044 1.353 1.387
## 45 7 1.143 0.608 2.765 2.775
## 46 12 1.250 0.470 1.350 1.308
## 47 6 1.167 -8.874 -7.356 -7.323
## 48 28 1.143 1.271 1.378 1.382
## 49 3 1.333 2.393 2.786 2.783
## 50 18 1.111 0.524 0.951 0.968
## 51 13 1.308 2.103 6.833 6.703
## 52 14 1.071 -4.510 -3.500 -3.507
## 53 27 1.667 -0.635 0.196 0.182
## 54 19 1.105 1.758 2.958 2.944
## 55 14 1.357 -1.533 -0.591 -0.590
## 56 6 1.167 4.635 5.317 5.323
## 57 10 1.600 1.755 4.725 4.805
## 58 38 1.079 1.259 1.284 1.283
## 59 20 1.050 1.187 2.929 2.909
## 60 25 1.200 1.052 4.855 4.749
## 61 26 1.346 -8.517 -7.514 -7.524
## 62 17 1.176 -5.915 -3.941 -3.912
## 63 20 1.250 0.531 1.773 1.808
## 64 26 1.038 -1.427 0.187 0.182
## 65 16 1.188 -1.534 -0.154 -0.160
## 66 24 1.083 -0.676 0.095 0.097
## 67 18 1.833 0.560 2.839 2.793
## 68 13 1.154 1.574 1.704 1.705
## 69 2 1.500 4.317 5.755 5.753
## 70 10 1.100 -10.520 -6.121 -6.119
## 71 16 1.188 -2.169 -1.233 -1.246
## 72 10 1.100 -1.256 -1.185 -1.183
## 73 12 1.083 0.000 1.283 1.281
## 74 15 1.133 -2.147 -1.504 -1.505
## 75 7 1.143 -6.812 -4.417 -4.605
## 76 3 1.333 5.826 6.497 6.494
## 77 24 1.333 0.401 1.869 1.853
## 78 25 1.160 -2.847 -1.864 -1.897
## 79 14 1.500 0.935 4.049 4.050
## 80 21 1.048 1.946 2.814 2.833
## 81 22 1.636 0.098 2.875 2.815
## 82 17 1.059 -4.423 -2.446 -2.453
## 83 13 1.077 -4.934 -3.635 -3.650
## 84 13 1.846 -8.398 -3.789 -3.774
## 85 10 1.100 -3.170 -1.367 -1.470
## 86 7 1.143 3.178 4.552 4.554
## 87 5 1.200 2.639 4.362 4.394
## 88 5 1.200 4.111 5.204 5.187
## 89 20 1.250 -0.991 0.077 0.094
## 90 25 1.040 -3.311 -2.854 -2.871
## 91 9 1.111 2.485 3.912 3.871
## 92 27 1.407 2.186 3.015 2.996
## 93 11 1.273 -2.120 -0.013 -0.041
## 94 30 1.067 -1.309 0.045 0.000
## 95 21 1.238 -1.934 -1.685 -1.690
## 96 30 1.200 -3.338 -2.240 -2.259
## 97 14 1.143 -2.513 -1.488 -1.514
## 98 22 1.273 -7.222 -6.511 -6.502
## 99 13 1.077 -34.967 -17.641 -17.466
## 100 20 1.100 0.187 1.251 1.254
## 101 10 1.200 -1.347 -0.406 -0.400
## 102 11 2.182 -4.135 -2.477 -2.489
## 103 6 1.500 4.317 5.336 5.366
## 104 12 1.167 -7.506 -6.017 -6.032
## 105 10 1.100 1.654 3.852 3.867
## 106 15 1.200 2.251 3.301 3.296
## 107 9 1.111 6.843 9.801 9.919
## 108 13 1.154 1.742 11.750 11.565
## 109 8 1.125 -1.661 -0.594 -0.598
## 110 12 1.083 -1.211 -0.539 -0.532
## 111 47 1.021 2.485 2.854 2.833
## 112 18 1.111 -3.206 -3.116 -3.117
## 113 21 1.238 -2.038 -1.505 -1.492
## 114 17 1.176 -1.540 -0.754 -0.751
## 115 19 1.053 1.508 3.848 3.810
## 116 14 1.071 -6.190 -4.499 -4.510
## 117 18 1.056 -2.477 -1.479 -1.514
## 118 8 1.125 -0.211 1.170 1.224
## 119 28 1.036 1.932 2.909 2.890
## 120 18 1.056 -4.744 -3.876 -3.863
## 121 24 1.125 1.723 2.688 2.708
## 122 3 1.333 11.831 16.988 17.077
## 123 12 1.167 -1.427 -0.285 -0.301
## 124 17 1.059 -4.991 -3.906 -3.912
## Maximum Skewness Kurtosis Percentile25th Percentile75th
## 1 2.840 -0.101 2.975 0.946 1.719
## 2 -0.844 0.028 2.746 -1.715 -1.347
## 3 1.521 0.038 2.866 0.000 0.608
## 4 -3.507 0.108 2.713 -5.669 -4.780
## 5 2.303 0.034 3.103 1.131 1.589
## 6 -8.192 0.164 3.586 -14.071 -12.096
## 7 -1.772 0.027 2.648 -3.270 -2.590
## 8 -59.456 -0.034 3.026 -186.641 -134.622
## 9 1.526 -0.168 3.639 0.470 0.875
## 10 2.881 -0.042 2.370 2.119 2.497
## 11 -0.777 0.046 3.028 -2.120 -1.609
## 12 -6.166 -0.016 3.085 -7.763 -7.209
## 13 0.956 0.279 2.957 -0.968 -0.315
## 14 -2.153 -0.032 2.767 -6.630 -4.539
## 15 -0.274 0.088 4.317 -1.833 -1.367
## 16 -1.238 0.245 3.246 -2.773 -2.207
## 17 2.272 0.001 2.732 1.209 1.668
## 18 5.444 0.064 3.288 2.334 3.286
## 19 0.927 0.097 4.888 -0.598 -0.061
## 20 4.024 0.050 3.410 1.673 2.371
## 21 -0.817 0.055 3.667 -2.152 -1.675
## 22 0.993 -0.022 2.906 -0.041 0.336
## 23 82.000 -0.026 3.431 42.000 59.000
## 24 -2.937 0.032 2.515 -6.645 -5.083
## 25 -0.547 0.157 3.504 -1.376 -1.124
## 26 1.163 0.095 2.918 -0.357 0.262
## 27 33.777 -0.042 3.250 19.771 24.795
## 28 3.892 0.109 2.731 0.956 2.282
## 29 535.397 -0.055 2.708 278.025 392.067
## 30 3.584 -0.186 3.336 2.708 3.045
## 31 -9.563 -0.028 2.547 -17.567 -13.882
## 32 7.624 0.065 3.873 2.753 4.255
## 33 1.411 0.015 3.002 0.642 0.916
## 34 29.000 0.586 5.953 9.800 14.000
## 35 -1.384 0.086 3.197 -1.724 -1.626
## 36 9.694 0.157 3.075 8.321 8.839
## 37 -0.061 -0.163 2.797 -0.857 -0.546
## 38 -0.386 0.068 6.513 -4.200 -3.147
## 39 -1.339 0.091 2.965 -1.381 -1.364
## 40 107.000 0.074 2.842 44.000 70.000
## 41 0.336 -0.085 2.755 -0.713 -0.315
## 42 0.097 0.114 2.612 -1.466 -0.876
## 43 7.633 0.000 4.024 2.341 3.695
## 44 3.706 0.037 3.003 0.800 1.885
## 45 4.633 -0.127 2.981 2.290 3.292
## 46 2.251 0.165 2.609 1.099 1.609
## 47 -5.843 0.006 3.171 -7.717 -7.013
## 48 1.495 -0.219 2.941 1.351 1.406
## 49 3.065 -0.158 2.829 2.707 2.873
## 50 1.318 0.044 2.589 0.844 1.034
## 51 10.695 0.020 2.900 5.786 7.865
## 52 -2.120 0.260 3.591 -3.730 -3.270
## 53 0.875 -0.055 2.708 0.000 0.405
## 54 4.143 -0.174 3.467 2.708 3.219
## 55 0.517 -0.040 2.979 -0.830 -0.383
## 56 5.948 -0.110 3.296 5.179 5.453
## 57 8.491 0.000 2.480 3.706 5.776
## 58 1.321 0.402 3.316 1.274 1.290
## 59 4.937 0.175 3.117 2.521 3.351
## 60 8.952 -0.012 3.326 4.149 5.631
## 61 -5.952 0.299 3.530 -7.824 -7.264
## 62 -2.453 -0.150 3.642 -4.269 -3.631
## 63 3.045 0.004 2.822 1.459 2.146
## 64 1.946 -0.045 3.687 -0.122 0.470
## 65 1.814 0.016 4.021 -0.413 0.141
## 66 0.831 -0.132 2.443 -0.125 0.354
## 67 5.706 -0.022 2.488 2.155 3.706
## 68 1.807 -0.145 3.470 1.680 1.728
## 69 7.501 0.293 3.317 5.398 6.064
## 70 -4.200 -0.607 6.399 -6.645 -5.573
## 71 -0.159 -0.025 3.691 -1.447 -1.034
## 72 -1.105 0.012 2.880 -1.204 -1.164
## 73 2.272 -0.020 3.061 1.030 1.526
## 74 -0.621 0.053 3.019 -1.700 -1.329
## 75 -1.386 0.344 2.390 -5.308 -3.490
## 76 7.230 -0.015 2.788 6.319 6.678
## 77 4.024 0.000 3.957 1.530 2.182
## 78 -0.844 0.160 3.034 -2.120 -1.661
## 79 6.796 0.151 2.810 3.338 4.686
## 80 4.007 0.206 3.001 2.565 3.045
## 81 5.359 -0.113 2.953 2.332 3.551
## 82 -0.528 -0.114 3.615 -2.749 -2.120
## 83 -2.207 0.240 3.361 -3.938 -3.352
## 84 -0.222 -0.035 2.703 -4.820 -2.714
## 85 1.775 0.704 3.638 -2.040 -0.799
## 86 5.886 -0.160 4.130 4.350 4.775
## 87 6.011 -0.244 3.244 3.998 4.749
## 88 6.308 0.031 3.223 4.963 5.442
## 89 1.166 0.045 2.750 -0.167 0.320
## 90 -2.520 -0.029 2.698 -2.936 -2.749
## 91 5.170 -0.092 3.011 3.638 4.205
## 92 3.932 0.166 3.434 2.833 3.178
## 93 1.932 0.076 2.690 -0.528 0.531
## 94 0.993 -0.045 4.693 -0.139 0.258
## 95 -1.424 0.193 5.276 -1.717 -1.654
## 96 -1.221 0.041 3.459 -2.464 -2.000
## 97 -0.274 0.244 2.621 -1.833 -1.171
## 98 -5.547 0.170 2.912 -6.725 -6.320
## 99 -2.239 -0.050 2.997 -21.468 -13.501
## 100 2.373 -0.007 2.971 1.001 1.500
## 101 0.742 0.142 3.370 -0.635 -0.198
## 102 -1.109 -0.066 2.965 -2.813 -2.120
## 103 6.317 -0.145 3.061 5.094 5.583
## 104 -4.646 -0.127 2.900 -6.377 -5.655
## 105 6.225 0.056 2.885 3.343 4.371
## 106 4.277 0.056 2.906 3.045 3.526
## 107 13.827 -0.021 2.809 8.859 10.695
## 108 18.881 0.157 6.004 10.490 12.697
## 109 0.470 0.044 3.110 -0.821 -0.378
## 110 0.269 0.070 3.256 -0.701 -0.385
## 111 3.332 0.226 3.255 2.773 2.944
## 112 -2.995 0.059 3.762 -3.137 -3.096
## 113 -0.817 -0.024 2.875 -1.626 -1.341
## 114 0.098 0.239 3.382 -0.886 -0.629
## 115 6.225 0.032 3.693 3.343 4.316
## 116 -1.715 0.024 3.719 -4.962 -4.017
## 117 -0.211 0.331 2.879 -1.772 -1.238
## 118 2.485 -0.180 2.887 0.833 1.482
## 119 3.761 -0.035 3.828 2.708 3.091
## 120 -2.957 0.151 2.781 -4.135 -3.650
## 121 3.689 -0.064 3.124 2.485 2.890
## 122 22.380 0.102 3.290 15.773 18.095
## 123 0.531 -0.038 2.760 -0.511 -0.036
## 124 -2.957 -0.124 2.625 -4.200 -3.612
##################################
# Identifying potential data quality issues
##################################
##################################
# Checking for missing observations
##################################
if ((nrow(DQA.Summary[DQA.Summary$NA.Count>0,]))>0){
print(paste0("Missing observations noted for ",
nrow(DQA.Summary[DQA.Summary$NA.Count>0,])),
(" variable(s) with NA.Count>0 and Fill.Rate<1.0."))
$NA.Count>0,]
DQA.Summary[DQA.Summaryelse {
} print("No missing observations noted.")
}
## [1] "No missing observations noted."
##################################
# Checking for zero or near-zero variance predictors
##################################
if (length(names(DQA.Predictors.Factor))==0) {
print("No factor predictors noted.")
else if (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])>0){
} print(paste0("Low variance observed for ",
nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])),
(" factor variable(s) with First.Second.Mode.Ratio>5."))
as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,]
DQA.Predictors.Factor.Summary[else {
} print("No low variance factor predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 2 factor variable(s) with First.Second.Mode.Ratio>5."
## Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 2 E3 character 2 1 0
## 3 E2 character 2 0 1
## First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 2 245 22 0.007 11.136
## 3 224 43 0.007 5.209
if (length(names(DQA.Predictors.Numeric))==0) {
print("No numeric predictors noted.")
else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])>0){
} print(paste0("Low variance observed for ",
nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])),
(" numeric variable(s) with First.Second.Mode.Ratio>5."))
as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,]
DQA.Predictors.Numeric.Summary[else {
} print("No low variance numeric predictors due to high first-second mode ratio noted.")
}
## [1] "No low variance numeric predictors due to high first-second mode ratio noted."
if (length(names(DQA.Predictors.Numeric))==0) {
print("No numeric predictors noted.")
else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])>0){
} print(paste0("Low variance observed for ",
nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])),
(" numeric variable(s) with Unique.Count.Ratio<0.01."))
as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,]
DQA.Predictors.Numeric.Summary[else {
} print("No low variance numeric predictors due to low unique count ratio noted.")
}
## [1] "No low variance numeric predictors due to low unique count ratio noted."
##################################
# Checking for skewed predictors
##################################
if (length(names(DQA.Predictors.Numeric))==0) {
print("No numeric predictors noted.")
else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
} as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])>0){
print(paste0("High skewness observed for ",
nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
(as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])),
" numeric variable(s) with Skewness>3 or Skewness<(-3)."))
as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),]
else {
} print("No skewed numeric predictors noted.")
}
## [1] "No skewed numeric predictors noted."
##################################
# Loading dataset
##################################
<- Alzheimer_Train
DPA
##################################
# Listing all predictors
##################################
<- DPA[,!names(DPA) %in% c("Class")]
DPA.Predictors
##################################
# Listing all numeric predictors
##################################
<- DPA.Predictors[,!names(DPA.Predictors) %in% c("E2","E3","E4")]
DPA.Predictors.Numeric <- as.data.frame(sapply(DPA.Predictors.Numeric,function(x) as.numeric(x)))
DPA.Predictors.Numeric
##################################
# Identifying outliers for the numeric predictors
##################################
<- c()
OutlierCountList
for (i in 1:ncol(DPA.Predictors.Numeric)) {
<- boxplot.stats(DPA.Predictors.Numeric[,i])$out
Outliers <- length(Outliers)
OutlierCount <- append(OutlierCountList,OutlierCount)
OutlierCountList <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
OutlierIndices boxplot(DPA.Predictors.Numeric[,i],
ylab = names(DPA.Predictors.Numeric)[i],
main = names(DPA.Predictors.Numeric)[i],
horizontal=TRUE)
mtext(paste0(OutlierCount, " Outlier(s) Detected"))
}
<- as.data.frame(cbind(names(DPA.Predictors.Numeric),(OutlierCountList)))
OutlierCountSummary names(OutlierCountSummary) <- c("NumericPredictors","OutlierCount")
$OutlierCount <- as.numeric(as.character(OutlierCountSummary$OutlierCount))
OutlierCountSummary<- nrow(OutlierCountSummary[OutlierCountSummary$OutlierCount>0,])
NumericPredictorWithOutlierCount print(paste0(NumericPredictorWithOutlierCount, " numeric variable(s) were noted with outlier(s)." ))
## [1] "105 numeric variable(s) were noted with outlier(s)."
##################################
# Gathering descriptive statistics
##################################
<- skim(DPA.Predictors.Numeric)) (DPA_Skimmed
Name | DPA.Predictors.Numeric |
Number of rows | 267 |
Number of columns | 124 |
_______________________ | |
Column type frequency: | |
numeric | 124 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
ACE_CD143_Angiotensin_Converti | 0 | 1 | 1.32 | 0.54 | -0.68 | 0.95 | 1.30 | 1.72 | 2.84 | ▁▃▇▇▁ |
ACTH_Adrenocorticotropic_Hormon | 0 | 1 | -1.54 | 0.28 | -2.21 | -1.71 | -1.56 | -1.35 | -0.84 | ▂▆▇▆▂ |
AXL | 0 | 1 | 0.31 | 0.45 | -0.92 | 0.00 | 0.28 | 0.61 | 1.52 | ▁▅▇▃▁ |
Adiponectin | 0 | 1 | -5.20 | 0.67 | -6.73 | -5.67 | -5.18 | -4.78 | -3.51 | ▂▆▇▅▁ |
Alpha_1_Antichymotrypsin | 0 | 1 | 1.36 | 0.36 | 0.26 | 1.13 | 1.36 | 1.59 | 2.30 | ▁▃▇▅▁ |
Alpha_1_Antitrypsin | 0 | 1 | -13.05 | 1.48 | -17.03 | -14.07 | -13.00 | -12.10 | -8.19 | ▁▅▇▂▁ |
Alpha_1_Microglobulin | 0 | 1 | -2.93 | 0.48 | -4.34 | -3.27 | -2.94 | -2.59 | -1.77 | ▁▅▇▇▂ |
Alpha_2_Macroglobulin | 0 | 1 | -158.61 | 40.93 | -289.68 | -186.64 | -160.01 | -134.62 | -59.46 | ▁▂▇▅▂ |
Angiopoietin_2_ANG_2 | 0 | 1 | 0.67 | 0.33 | -0.54 | 0.47 | 0.64 | 0.88 | 1.53 | ▁▂▇▆▂ |
Angiotensinogen | 0 | 1 | 2.32 | 0.25 | 1.75 | 2.12 | 2.32 | 2.50 | 2.88 | ▃▆▇▇▂ |
Apolipoprotein_A_IV | 0 | 1 | -1.85 | 0.38 | -2.96 | -2.12 | -1.83 | -1.61 | -0.78 | ▁▃▇▃▁ |
Apolipoprotein_A1 | 0 | 1 | -7.48 | 0.44 | -8.68 | -7.76 | -7.47 | -7.21 | -6.17 | ▁▅▇▃▁ |
Apolipoprotein_A2 | 0 | 1 | -0.64 | 0.50 | -1.90 | -0.97 | -0.67 | -0.31 | 0.96 | ▁▇▇▃▁ |
Apolipoprotein_B | 0 | 1 | -5.58 | 1.48 | -9.94 | -6.63 | -5.70 | -4.54 | -2.15 | ▁▅▇▇▂ |
Apolipoprotein_CI | 0 | 1 | -1.58 | 0.41 | -3.32 | -1.83 | -1.61 | -1.37 | -0.27 | ▁▁▇▅▁ |
Apolipoprotein_CIII | 0 | 1 | -2.49 | 0.44 | -3.69 | -2.77 | -2.53 | -2.21 | -1.24 | ▁▅▇▅▁ |
Apolipoprotein_D | 0 | 1 | 1.44 | 0.34 | 0.47 | 1.21 | 1.41 | 1.67 | 2.27 | ▁▃▇▆▂ |
Apolipoprotein_E | 0 | 1 | 2.81 | 0.78 | 0.59 | 2.33 | 2.82 | 3.29 | 5.44 | ▁▅▇▂▁ |
Apolipoprotein_H | 0 | 1 | -0.32 | 0.39 | -2.23 | -0.60 | -0.37 | -0.06 | 0.93 | ▁▁▇▆▁ |
B_Lymphocyte_Chemoattractant_BL | 0 | 1 | 2.02 | 0.57 | 0.73 | 1.67 | 1.98 | 2.37 | 4.02 | ▃▇▇▁▁ |
BMP_6 | 0 | 1 | -1.91 | 0.31 | -2.76 | -2.15 | -1.88 | -1.68 | -0.82 | ▁▅▇▂▁ |
Beta_2_Microglobulin | 0 | 1 | 0.17 | 0.30 | -0.54 | -0.04 | 0.18 | 0.34 | 0.99 | ▂▃▇▃▁ |
Betacellulin | 0 | 1 | 51.01 | 10.87 | 10.00 | 42.00 | 51.00 | 59.00 | 82.00 | ▁▁▇▅▁ |
C_Reactive_Protein | 0 | 1 | -5.87 | 1.20 | -8.52 | -6.65 | -5.84 | -5.08 | -2.94 | ▃▆▇▆▂ |
CD40 | 0 | 1 | -1.26 | 0.21 | -1.86 | -1.38 | -1.27 | -1.12 | -0.55 | ▁▆▇▃▁ |
CD5L | 0 | 1 | -0.05 | 0.45 | -1.24 | -0.36 | -0.06 | 0.26 | 1.16 | ▁▅▇▃▁ |
Calbindin | 0 | 1 | 22.43 | 4.11 | 10.96 | 19.77 | 22.25 | 24.80 | 33.78 | ▁▃▇▃▁ |
Calcitonin | 0 | 1 | 1.68 | 0.87 | -0.71 | 0.96 | 1.65 | 2.28 | 3.89 | ▁▆▇▅▂ |
CgA | 0 | 1 | 333.30 | 83.67 | 135.60 | 278.02 | 331.52 | 392.07 | 535.40 | ▂▆▇▅▂ |
Clusterin_Apo_J | 0 | 1 | 2.88 | 0.29 | 1.87 | 2.71 | 2.89 | 3.04 | 3.58 | ▁▂▇▆▂ |
Complement_3 | 0 | 1 | -15.61 | 2.46 | -23.39 | -17.57 | -15.52 | -13.88 | -9.56 | ▁▆▇▇▂ |
Complement_Factor_H | 0 | 1 | 3.55 | 1.25 | -0.84 | 2.75 | 3.60 | 4.25 | 7.62 | ▁▃▇▅▁ |
Connective_Tissue_Growth_Factor | 0 | 1 | 0.77 | 0.20 | 0.18 | 0.64 | 0.79 | 0.92 | 1.41 | ▁▅▇▃▁ |
Cortisol | 0 | 1 | 11.98 | 3.95 | 0.10 | 9.80 | 12.00 | 14.00 | 29.00 | ▁▇▇▁▁ |
Creatine_Kinase_MB | 0 | 1 | -1.67 | 0.09 | -1.87 | -1.72 | -1.67 | -1.63 | -1.38 | ▃▅▇▂▁ |
Cystatin_C | 0 | 1 | 8.59 | 0.40 | 7.43 | 8.32 | 8.56 | 8.84 | 9.69 | ▁▅▇▃▁ |
EGF_R | 0 | 1 | -0.70 | 0.22 | -1.36 | -0.86 | -0.68 | -0.55 | -0.06 | ▁▃▇▅▁ |
EN_RAGE | 0 | 1 | -3.64 | 0.88 | -8.38 | -4.20 | -3.65 | -3.15 | -0.39 | ▁▁▇▆▁ |
ENA_78 | 0 | 1 | -1.37 | 0.01 | -1.41 | -1.38 | -1.37 | -1.36 | -1.34 | ▁▅▇▅▁ |
Eotaxin_3 | 0 | 1 | 58.17 | 15.83 | 7.00 | 44.00 | 59.00 | 70.00 | 107.00 | ▁▆▇▅▁ |
FAS | 0 | 1 | -0.53 | 0.30 | -1.51 | -0.71 | -0.53 | -0.31 | 0.34 | ▁▃▇▆▁ |
FSH_Follicle_Stimulation_Hormon | 0 | 1 | -1.14 | 0.42 | -2.12 | -1.47 | -1.14 | -0.88 | 0.10 | ▂▇▇▃▁ |
Fas_Ligand | 0 | 1 | 2.97 | 1.09 | -0.15 | 2.34 | 3.10 | 3.70 | 7.63 | ▂▇▇▁▁ |
Fatty_Acid_Binding_Protein | 0 | 1 | 1.35 | 0.78 | -1.04 | 0.80 | 1.39 | 1.88 | 3.71 | ▁▅▇▅▁ |
Ferritin | 0 | 1 | 2.76 | 0.76 | 0.61 | 2.29 | 2.77 | 3.29 | 4.63 | ▁▃▇▆▂ |
Fetuin_A | 0 | 1 | 1.35 | 0.37 | 0.47 | 1.10 | 1.31 | 1.61 | 2.25 | ▂▆▇▅▂ |
Fibrinogen | 0 | 1 | -7.36 | 0.57 | -8.87 | -7.72 | -7.32 | -7.01 | -5.84 | ▁▅▇▅▁ |
GRO_alpha | 0 | 1 | 1.38 | 0.04 | 1.27 | 1.35 | 1.38 | 1.41 | 1.49 | ▂▃▇▅▁ |
Gamma_Interferon_induced_Monokin | 0 | 1 | 2.79 | 0.11 | 2.39 | 2.71 | 2.78 | 2.87 | 3.07 | ▁▂▇▆▂ |
Glutathione_S_Transferase_alpha | 0 | 1 | 0.95 | 0.16 | 0.52 | 0.84 | 0.97 | 1.03 | 1.32 | ▁▃▇▅▂ |
HB_EGF | 0 | 1 | 6.83 | 1.51 | 2.10 | 5.79 | 6.70 | 7.86 | 10.70 | ▁▃▇▆▂ |
HCC_4 | 0 | 1 | -3.50 | 0.36 | -4.51 | -3.73 | -3.51 | -3.27 | -2.12 | ▂▇▇▂▁ |
Hepatocyte_Growth_Factor_HGF | 0 | 1 | 0.20 | 0.29 | -0.63 | 0.00 | 0.18 | 0.41 | 0.88 | ▁▃▇▅▂ |
I_309 | 0 | 1 | 2.96 | 0.37 | 1.76 | 2.71 | 2.94 | 3.22 | 4.14 | ▁▅▇▃▁ |
ICAM_1 | 0 | 1 | -0.59 | 0.33 | -1.53 | -0.83 | -0.59 | -0.38 | 0.52 | ▁▅▇▃▁ |
IGF_BP_2 | 0 | 1 | 5.32 | 0.20 | 4.63 | 5.18 | 5.32 | 5.45 | 5.95 | ▁▃▇▅▁ |
IL_11 | 0 | 1 | 4.72 | 1.45 | 1.75 | 3.71 | 4.81 | 5.78 | 8.49 | ▃▆▇▅▁ |
IL_13 | 0 | 1 | 1.28 | 0.01 | 1.26 | 1.27 | 1.28 | 1.29 | 1.32 | ▂▇▆▂▁ |
IL_16 | 0 | 1 | 2.93 | 0.66 | 1.19 | 2.52 | 2.91 | 3.35 | 4.94 | ▁▆▇▃▁ |
IL_17E | 0 | 1 | 4.85 | 1.34 | 1.05 | 4.15 | 4.75 | 5.63 | 8.95 | ▁▆▇▃▁ |
IL_1alpha | 0 | 1 | -7.51 | 0.39 | -8.52 | -7.82 | -7.52 | -7.26 | -5.95 | ▂▇▇▂▁ |
IL_3 | 0 | 1 | -3.94 | 0.50 | -5.91 | -4.27 | -3.91 | -3.63 | -2.45 | ▁▂▇▅▁ |
IL_4 | 0 | 1 | 1.77 | 0.51 | 0.53 | 1.46 | 1.81 | 2.15 | 3.04 | ▂▅▇▅▂ |
IL_5 | 0 | 1 | 0.19 | 0.46 | -1.43 | -0.12 | 0.18 | 0.47 | 1.95 | ▁▃▇▂▁ |
IL_6 | 0 | 1 | -0.15 | 0.55 | -1.53 | -0.41 | -0.16 | 0.14 | 1.81 | ▂▆▇▂▁ |
IL_6_Receptor | 0 | 1 | 0.09 | 0.32 | -0.68 | -0.13 | 0.10 | 0.35 | 0.83 | ▂▆▇▆▂ |
IL_7 | 0 | 1 | 2.84 | 1.05 | 0.56 | 2.15 | 2.79 | 3.71 | 5.71 | ▃▇▇▆▁ |
IL_8 | 0 | 1 | 1.70 | 0.04 | 1.57 | 1.68 | 1.71 | 1.73 | 1.81 | ▁▂▇▆▁ |
IP_10_Inducible_Protein_10 | 0 | 1 | 5.75 | 0.51 | 4.32 | 5.40 | 5.75 | 6.06 | 7.50 | ▁▆▇▂▁ |
IgA | 0 | 1 | -6.12 | 0.76 | -10.52 | -6.65 | -6.12 | -5.57 | -4.20 | ▁▁▂▇▂ |
Insulin | 0 | 1 | -1.23 | 0.34 | -2.17 | -1.45 | -1.25 | -1.03 | -0.16 | ▁▃▇▂▁ |
Kidney_Injury_Molecule_1_KIM_1 | 0 | 1 | -1.18 | 0.03 | -1.26 | -1.20 | -1.18 | -1.16 | -1.10 | ▁▇▇▅▁ |
LOX_1 | 0 | 1 | 1.28 | 0.40 | 0.00 | 1.03 | 1.28 | 1.53 | 2.27 | ▁▂▇▅▂ |
Leptin | 0 | 1 | -1.50 | 0.27 | -2.15 | -1.70 | -1.50 | -1.33 | -0.62 | ▂▇▇▂▁ |
Lipoprotein_a | 0 | 1 | -4.42 | 1.11 | -6.81 | -5.31 | -4.61 | -3.49 | -1.39 | ▂▇▅▅▁ |
MCP_1 | 0 | 1 | 6.50 | 0.26 | 5.83 | 6.32 | 6.49 | 6.68 | 7.23 | ▂▅▇▅▁ |
MCP_2 | 0 | 1 | 1.87 | 0.65 | 0.40 | 1.53 | 1.85 | 2.18 | 4.02 | ▂▆▇▂▁ |
MIF | 0 | 1 | -1.86 | 0.34 | -2.85 | -2.12 | -1.90 | -1.66 | -0.84 | ▁▃▇▃▁ |
MIP_1alpha | 0 | 1 | 4.05 | 1.01 | 0.93 | 3.34 | 4.05 | 4.69 | 6.80 | ▁▅▇▅▂ |
MIP_1beta | 0 | 1 | 2.81 | 0.38 | 1.95 | 2.56 | 2.83 | 3.04 | 4.01 | ▂▅▇▂▁ |
MMP_2 | 0 | 1 | 2.88 | 0.93 | 0.10 | 2.33 | 2.82 | 3.55 | 5.36 | ▁▃▇▆▁ |
MMP_3 | 0 | 1 | -2.45 | 0.57 | -4.42 | -2.75 | -2.45 | -2.12 | -0.53 | ▁▂▇▃▁ |
MMP10 | 0 | 1 | -3.63 | 0.43 | -4.93 | -3.94 | -3.65 | -3.35 | -2.21 | ▁▆▇▃▁ |
MMP7 | 0 | 1 | -3.79 | 1.55 | -8.40 | -4.82 | -3.77 | -2.71 | -0.22 | ▁▃▇▅▂ |
Myoglobin | 0 | 1 | -1.37 | 0.95 | -3.17 | -2.04 | -1.47 | -0.80 | 1.77 | ▅▇▆▂▁ |
NT_proBNP | 0 | 1 | 4.55 | 0.38 | 3.18 | 4.35 | 4.55 | 4.77 | 5.89 | ▁▂▇▃▁ |
NrCAM | 0 | 1 | 4.36 | 0.57 | 2.64 | 4.00 | 4.39 | 4.75 | 6.01 | ▁▃▇▅▁ |
Osteopontin | 0 | 1 | 5.20 | 0.39 | 4.11 | 4.96 | 5.19 | 5.44 | 6.31 | ▁▅▇▃▁ |
PAI_1 | 0 | 1 | 0.08 | 0.41 | -0.99 | -0.17 | 0.09 | 0.32 | 1.17 | ▂▃▇▅▂ |
PAPP_A | 0 | 1 | -2.85 | 0.14 | -3.31 | -2.94 | -2.87 | -2.75 | -2.52 | ▁▂▇▅▂ |
PLGF | 0 | 1 | 3.91 | 0.41 | 2.48 | 3.64 | 3.87 | 4.20 | 5.17 | ▁▃▇▆▁ |
PYY | 0 | 1 | 3.02 | 0.29 | 2.19 | 2.83 | 3.00 | 3.18 | 3.93 | ▁▅▇▃▁ |
Pancreatic_polypeptide | 0 | 1 | -0.01 | 0.72 | -2.12 | -0.53 | -0.04 | 0.53 | 1.93 | ▁▅▇▆▁ |
Prolactin | 0 | 1 | 0.04 | 0.30 | -1.31 | -0.14 | 0.00 | 0.26 | 0.99 | ▁▁▇▇▁ |
Prostatic_Acid_Phosphatase | 0 | 1 | -1.69 | 0.06 | -1.93 | -1.72 | -1.69 | -1.65 | -1.42 | ▁▂▇▂▁ |
Protein_S | 0 | 1 | -2.24 | 0.35 | -3.34 | -2.46 | -2.26 | -2.00 | -1.22 | ▁▃▇▃▁ |
Pulmonary_and_Activation_Regulat | 0 | 1 | -1.49 | 0.45 | -2.51 | -1.83 | -1.51 | -1.17 | -0.27 | ▂▇▇▃▂ |
RANTES | 0 | 1 | -6.51 | 0.32 | -7.22 | -6.73 | -6.50 | -6.32 | -5.55 | ▃▇▇▃▁ |
Resistin | 0 | 1 | -17.64 | 5.82 | -34.97 | -21.47 | -17.47 | -13.50 | -2.24 | ▁▃▇▆▁ |
S100b | 0 | 1 | 1.25 | 0.34 | 0.19 | 1.00 | 1.25 | 1.50 | 2.37 | ▁▆▇▅▁ |
SGOT | 0 | 1 | -0.41 | 0.35 | -1.35 | -0.63 | -0.40 | -0.20 | 0.74 | ▁▅▇▂▁ |
SHBG | 0 | 1 | -2.48 | 0.58 | -4.14 | -2.81 | -2.49 | -2.12 | -1.11 | ▁▃▇▆▂ |
SOD | 0 | 1 | 5.34 | 0.38 | 4.32 | 5.09 | 5.37 | 5.58 | 6.32 | ▁▅▇▅▁ |
Serum_Amyloid_P | 0 | 1 | -6.02 | 0.56 | -7.51 | -6.38 | -6.03 | -5.65 | -4.65 | ▁▅▇▅▂ |
Sortilin | 0 | 1 | 3.85 | 0.87 | 1.65 | 3.34 | 3.87 | 4.37 | 6.23 | ▁▅▇▃▁ |
Stem_Cell_Factor | 0 | 1 | 3.30 | 0.36 | 2.25 | 3.04 | 3.30 | 3.53 | 4.28 | ▁▅▇▅▁ |
TGF_alpha | 0 | 1 | 9.80 | 1.32 | 6.84 | 8.86 | 9.92 | 10.70 | 13.83 | ▂▆▇▂▁ |
TIMP_1 | 0 | 1 | 11.75 | 1.90 | 1.74 | 10.49 | 11.56 | 12.70 | 18.88 | ▁▁▇▅▁ |
TNF_RII | 0 | 1 | -0.59 | 0.33 | -1.66 | -0.82 | -0.60 | -0.38 | 0.47 | ▁▃▇▃▁ |
TRAIL_R3 | 0 | 1 | -0.54 | 0.24 | -1.21 | -0.70 | -0.53 | -0.38 | 0.27 | ▁▆▇▂▁ |
TTR_prealbumin | 0 | 1 | 2.85 | 0.14 | 2.48 | 2.77 | 2.83 | 2.94 | 3.33 | ▂▅▇▃▁ |
Tamm_Horsfall_Protein_THP | 0 | 1 | -3.12 | 0.03 | -3.21 | -3.14 | -3.12 | -3.10 | -2.99 | ▁▇▇▂▁ |
Thrombomodulin | 0 | 1 | -1.51 | 0.22 | -2.04 | -1.63 | -1.49 | -1.34 | -0.82 | ▂▆▇▃▁ |
Thrombopoietin | 0 | 1 | -0.75 | 0.24 | -1.54 | -0.89 | -0.75 | -0.63 | 0.10 | ▁▅▇▂▁ |
Thymus_Expressed_Chemokine_TECK | 0 | 1 | 3.85 | 0.80 | 1.51 | 3.34 | 3.81 | 4.32 | 6.23 | ▁▃▇▃▁ |
Thyroid_Stimulating_Hormone | 0 | 1 | -4.50 | 0.75 | -6.19 | -4.96 | -4.51 | -4.02 | -1.71 | ▂▇▆▁▁ |
Thyroxine_Binding_Globulin | 0 | 1 | -1.48 | 0.40 | -2.48 | -1.77 | -1.51 | -1.24 | -0.21 | ▂▇▇▃▁ |
Tissue_Factor | 0 | 1 | 1.17 | 0.50 | -0.21 | 0.83 | 1.22 | 1.48 | 2.48 | ▁▅▇▆▁ |
Transferrin | 0 | 1 | 2.91 | 0.27 | 1.93 | 2.71 | 2.89 | 3.09 | 3.76 | ▁▂▇▅▁ |
Trefoil_Factor_3_TFF3 | 0 | 1 | -3.88 | 0.34 | -4.74 | -4.14 | -3.86 | -3.65 | -2.96 | ▁▅▇▃▁ |
VCAM_1 | 0 | 1 | 2.69 | 0.32 | 1.72 | 2.48 | 2.71 | 2.89 | 3.69 | ▁▃▇▃▁ |
VEGF | 0 | 1 | 16.99 | 1.81 | 11.83 | 15.77 | 17.08 | 18.10 | 22.38 | ▁▅▇▃▁ |
Vitronectin | 0 | 1 | -0.28 | 0.33 | -1.43 | -0.51 | -0.30 | -0.04 | 0.53 | ▁▃▇▇▂ |
von_Willebrand_Factor | 0 | 1 | -3.91 | 0.38 | -4.99 | -4.20 | -3.91 | -3.61 | -2.96 | ▁▅▇▆▂ |
###################################
# Verifying the data dimensions
###################################
dim(DPA.Predictors.Numeric)
## [1] 267 124
##################################
# Loading dataset
##################################
<- DPA.Predictors
DPA
##################################
# Gathering descriptive statistics
##################################
<- skim(DPA)) (DPA_Skimmed
Name | DPA |
Number of rows | 267 |
Number of columns | 127 |
_______________________ | |
Column type frequency: | |
numeric | 127 |
________________________ | |
Group variables | None |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
ACE_CD143_Angiotensin_Converti | 0 | 1 | 1.32 | 0.54 | -0.68 | 0.95 | 1.30 | 1.72 | 2.84 | ▁▃▇▇▁ |
ACTH_Adrenocorticotropic_Hormon | 0 | 1 | -1.54 | 0.28 | -2.21 | -1.71 | -1.56 | -1.35 | -0.84 | ▂▆▇▆▂ |
AXL | 0 | 1 | 0.31 | 0.45 | -0.92 | 0.00 | 0.28 | 0.61 | 1.52 | ▁▅▇▃▁ |
Adiponectin | 0 | 1 | -5.20 | 0.67 | -6.73 | -5.67 | -5.18 | -4.78 | -3.51 | ▂▆▇▅▁ |
Alpha_1_Antichymotrypsin | 0 | 1 | 1.36 | 0.36 | 0.26 | 1.13 | 1.36 | 1.59 | 2.30 | ▁▃▇▅▁ |
Alpha_1_Antitrypsin | 0 | 1 | -13.05 | 1.48 | -17.03 | -14.07 | -13.00 | -12.10 | -8.19 | ▁▅▇▂▁ |
Alpha_1_Microglobulin | 0 | 1 | -2.93 | 0.48 | -4.34 | -3.27 | -2.94 | -2.59 | -1.77 | ▁▅▇▇▂ |
Alpha_2_Macroglobulin | 0 | 1 | -158.61 | 40.93 | -289.68 | -186.64 | -160.01 | -134.62 | -59.46 | ▁▂▇▅▂ |
Angiopoietin_2_ANG_2 | 0 | 1 | 0.67 | 0.33 | -0.54 | 0.47 | 0.64 | 0.88 | 1.53 | ▁▂▇▆▂ |
Angiotensinogen | 0 | 1 | 2.32 | 0.25 | 1.75 | 2.12 | 2.32 | 2.50 | 2.88 | ▃▆▇▇▂ |
Apolipoprotein_A_IV | 0 | 1 | -1.85 | 0.38 | -2.96 | -2.12 | -1.83 | -1.61 | -0.78 | ▁▃▇▃▁ |
Apolipoprotein_A1 | 0 | 1 | -7.48 | 0.44 | -8.68 | -7.76 | -7.47 | -7.21 | -6.17 | ▁▅▇▃▁ |
Apolipoprotein_A2 | 0 | 1 | -0.64 | 0.50 | -1.90 | -0.97 | -0.67 | -0.31 | 0.96 | ▁▇▇▃▁ |
Apolipoprotein_B | 0 | 1 | -5.58 | 1.48 | -9.94 | -6.63 | -5.70 | -4.54 | -2.15 | ▁▅▇▇▂ |
Apolipoprotein_CI | 0 | 1 | -1.58 | 0.41 | -3.32 | -1.83 | -1.61 | -1.37 | -0.27 | ▁▁▇▅▁ |
Apolipoprotein_CIII | 0 | 1 | -2.49 | 0.44 | -3.69 | -2.77 | -2.53 | -2.21 | -1.24 | ▁▅▇▅▁ |
Apolipoprotein_D | 0 | 1 | 1.44 | 0.34 | 0.47 | 1.21 | 1.41 | 1.67 | 2.27 | ▁▃▇▆▂ |
Apolipoprotein_E | 0 | 1 | 2.81 | 0.78 | 0.59 | 2.33 | 2.82 | 3.29 | 5.44 | ▁▅▇▂▁ |
Apolipoprotein_H | 0 | 1 | -0.32 | 0.39 | -2.23 | -0.60 | -0.37 | -0.06 | 0.93 | ▁▁▇▆▁ |
B_Lymphocyte_Chemoattractant_BL | 0 | 1 | 2.02 | 0.57 | 0.73 | 1.67 | 1.98 | 2.37 | 4.02 | ▃▇▇▁▁ |
BMP_6 | 0 | 1 | -1.91 | 0.31 | -2.76 | -2.15 | -1.88 | -1.68 | -0.82 | ▁▅▇▂▁ |
Beta_2_Microglobulin | 0 | 1 | 0.17 | 0.30 | -0.54 | -0.04 | 0.18 | 0.34 | 0.99 | ▂▃▇▃▁ |
Betacellulin | 0 | 1 | 51.01 | 10.87 | 10.00 | 42.00 | 51.00 | 59.00 | 82.00 | ▁▁▇▅▁ |
C_Reactive_Protein | 0 | 1 | -5.87 | 1.20 | -8.52 | -6.65 | -5.84 | -5.08 | -2.94 | ▃▆▇▆▂ |
CD40 | 0 | 1 | -1.26 | 0.21 | -1.86 | -1.38 | -1.27 | -1.12 | -0.55 | ▁▆▇▃▁ |
CD5L | 0 | 1 | -0.05 | 0.45 | -1.24 | -0.36 | -0.06 | 0.26 | 1.16 | ▁▅▇▃▁ |
Calbindin | 0 | 1 | 22.43 | 4.11 | 10.96 | 19.77 | 22.25 | 24.80 | 33.78 | ▁▃▇▃▁ |
Calcitonin | 0 | 1 | 1.68 | 0.87 | -0.71 | 0.96 | 1.65 | 2.28 | 3.89 | ▁▆▇▅▂ |
CgA | 0 | 1 | 333.30 | 83.67 | 135.60 | 278.02 | 331.52 | 392.07 | 535.40 | ▂▆▇▅▂ |
Clusterin_Apo_J | 0 | 1 | 2.88 | 0.29 | 1.87 | 2.71 | 2.89 | 3.04 | 3.58 | ▁▂▇▆▂ |
Complement_3 | 0 | 1 | -15.61 | 2.46 | -23.39 | -17.57 | -15.52 | -13.88 | -9.56 | ▁▆▇▇▂ |
Complement_Factor_H | 0 | 1 | 3.55 | 1.25 | -0.84 | 2.75 | 3.60 | 4.25 | 7.62 | ▁▃▇▅▁ |
Connective_Tissue_Growth_Factor | 0 | 1 | 0.77 | 0.20 | 0.18 | 0.64 | 0.79 | 0.92 | 1.41 | ▁▅▇▃▁ |
Cortisol | 0 | 1 | 11.98 | 3.95 | 0.10 | 9.80 | 12.00 | 14.00 | 29.00 | ▁▇▇▁▁ |
Creatine_Kinase_MB | 0 | 1 | -1.67 | 0.09 | -1.87 | -1.72 | -1.67 | -1.63 | -1.38 | ▃▅▇▂▁ |
Cystatin_C | 0 | 1 | 8.59 | 0.40 | 7.43 | 8.32 | 8.56 | 8.84 | 9.69 | ▁▅▇▃▁ |
EGF_R | 0 | 1 | -0.70 | 0.22 | -1.36 | -0.86 | -0.68 | -0.55 | -0.06 | ▁▃▇▅▁ |
EN_RAGE | 0 | 1 | -3.64 | 0.88 | -8.38 | -4.20 | -3.65 | -3.15 | -0.39 | ▁▁▇▆▁ |
ENA_78 | 0 | 1 | -1.37 | 0.01 | -1.41 | -1.38 | -1.37 | -1.36 | -1.34 | ▁▅▇▅▁ |
Eotaxin_3 | 0 | 1 | 58.17 | 15.83 | 7.00 | 44.00 | 59.00 | 70.00 | 107.00 | ▁▆▇▅▁ |
FAS | 0 | 1 | -0.53 | 0.30 | -1.51 | -0.71 | -0.53 | -0.31 | 0.34 | ▁▃▇▆▁ |
FSH_Follicle_Stimulation_Hormon | 0 | 1 | -1.14 | 0.42 | -2.12 | -1.47 | -1.14 | -0.88 | 0.10 | ▂▇▇▃▁ |
Fas_Ligand | 0 | 1 | 2.97 | 1.09 | -0.15 | 2.34 | 3.10 | 3.70 | 7.63 | ▂▇▇▁▁ |
Fatty_Acid_Binding_Protein | 0 | 1 | 1.35 | 0.78 | -1.04 | 0.80 | 1.39 | 1.88 | 3.71 | ▁▅▇▅▁ |
Ferritin | 0 | 1 | 2.76 | 0.76 | 0.61 | 2.29 | 2.77 | 3.29 | 4.63 | ▁▃▇▆▂ |
Fetuin_A | 0 | 1 | 1.35 | 0.37 | 0.47 | 1.10 | 1.31 | 1.61 | 2.25 | ▂▆▇▅▂ |
Fibrinogen | 0 | 1 | -7.36 | 0.57 | -8.87 | -7.72 | -7.32 | -7.01 | -5.84 | ▁▅▇▅▁ |
GRO_alpha | 0 | 1 | 1.38 | 0.04 | 1.27 | 1.35 | 1.38 | 1.41 | 1.49 | ▂▃▇▅▁ |
Gamma_Interferon_induced_Monokin | 0 | 1 | 2.79 | 0.11 | 2.39 | 2.71 | 2.78 | 2.87 | 3.07 | ▁▂▇▆▂ |
Glutathione_S_Transferase_alpha | 0 | 1 | 0.95 | 0.16 | 0.52 | 0.84 | 0.97 | 1.03 | 1.32 | ▁▃▇▅▂ |
HB_EGF | 0 | 1 | 6.83 | 1.51 | 2.10 | 5.79 | 6.70 | 7.86 | 10.70 | ▁▃▇▆▂ |
HCC_4 | 0 | 1 | -3.50 | 0.36 | -4.51 | -3.73 | -3.51 | -3.27 | -2.12 | ▂▇▇▂▁ |
Hepatocyte_Growth_Factor_HGF | 0 | 1 | 0.20 | 0.29 | -0.63 | 0.00 | 0.18 | 0.41 | 0.88 | ▁▃▇▅▂ |
I_309 | 0 | 1 | 2.96 | 0.37 | 1.76 | 2.71 | 2.94 | 3.22 | 4.14 | ▁▅▇▃▁ |
ICAM_1 | 0 | 1 | -0.59 | 0.33 | -1.53 | -0.83 | -0.59 | -0.38 | 0.52 | ▁▅▇▃▁ |
IGF_BP_2 | 0 | 1 | 5.32 | 0.20 | 4.63 | 5.18 | 5.32 | 5.45 | 5.95 | ▁▃▇▅▁ |
IL_11 | 0 | 1 | 4.72 | 1.45 | 1.75 | 3.71 | 4.81 | 5.78 | 8.49 | ▃▆▇▅▁ |
IL_13 | 0 | 1 | 1.28 | 0.01 | 1.26 | 1.27 | 1.28 | 1.29 | 1.32 | ▂▇▆▂▁ |
IL_16 | 0 | 1 | 2.93 | 0.66 | 1.19 | 2.52 | 2.91 | 3.35 | 4.94 | ▁▆▇▃▁ |
IL_17E | 0 | 1 | 4.85 | 1.34 | 1.05 | 4.15 | 4.75 | 5.63 | 8.95 | ▁▆▇▃▁ |
IL_1alpha | 0 | 1 | -7.51 | 0.39 | -8.52 | -7.82 | -7.52 | -7.26 | -5.95 | ▂▇▇▂▁ |
IL_3 | 0 | 1 | -3.94 | 0.50 | -5.91 | -4.27 | -3.91 | -3.63 | -2.45 | ▁▂▇▅▁ |
IL_4 | 0 | 1 | 1.77 | 0.51 | 0.53 | 1.46 | 1.81 | 2.15 | 3.04 | ▂▅▇▅▂ |
IL_5 | 0 | 1 | 0.19 | 0.46 | -1.43 | -0.12 | 0.18 | 0.47 | 1.95 | ▁▃▇▂▁ |
IL_6 | 0 | 1 | -0.15 | 0.55 | -1.53 | -0.41 | -0.16 | 0.14 | 1.81 | ▂▆▇▂▁ |
IL_6_Receptor | 0 | 1 | 0.09 | 0.32 | -0.68 | -0.13 | 0.10 | 0.35 | 0.83 | ▂▆▇▆▂ |
IL_7 | 0 | 1 | 2.84 | 1.05 | 0.56 | 2.15 | 2.79 | 3.71 | 5.71 | ▃▇▇▆▁ |
IL_8 | 0 | 1 | 1.70 | 0.04 | 1.57 | 1.68 | 1.71 | 1.73 | 1.81 | ▁▂▇▆▁ |
IP_10_Inducible_Protein_10 | 0 | 1 | 5.75 | 0.51 | 4.32 | 5.40 | 5.75 | 6.06 | 7.50 | ▁▆▇▂▁ |
IgA | 0 | 1 | -6.12 | 0.76 | -10.52 | -6.65 | -6.12 | -5.57 | -4.20 | ▁▁▂▇▂ |
Insulin | 0 | 1 | -1.23 | 0.34 | -2.17 | -1.45 | -1.25 | -1.03 | -0.16 | ▁▃▇▂▁ |
Kidney_Injury_Molecule_1_KIM_1 | 0 | 1 | -1.18 | 0.03 | -1.26 | -1.20 | -1.18 | -1.16 | -1.10 | ▁▇▇▅▁ |
LOX_1 | 0 | 1 | 1.28 | 0.40 | 0.00 | 1.03 | 1.28 | 1.53 | 2.27 | ▁▂▇▅▂ |
Leptin | 0 | 1 | -1.50 | 0.27 | -2.15 | -1.70 | -1.50 | -1.33 | -0.62 | ▂▇▇▂▁ |
Lipoprotein_a | 0 | 1 | -4.42 | 1.11 | -6.81 | -5.31 | -4.61 | -3.49 | -1.39 | ▂▇▅▅▁ |
MCP_1 | 0 | 1 | 6.50 | 0.26 | 5.83 | 6.32 | 6.49 | 6.68 | 7.23 | ▂▅▇▅▁ |
MCP_2 | 0 | 1 | 1.87 | 0.65 | 0.40 | 1.53 | 1.85 | 2.18 | 4.02 | ▂▆▇▂▁ |
MIF | 0 | 1 | -1.86 | 0.34 | -2.85 | -2.12 | -1.90 | -1.66 | -0.84 | ▁▃▇▃▁ |
MIP_1alpha | 0 | 1 | 4.05 | 1.01 | 0.93 | 3.34 | 4.05 | 4.69 | 6.80 | ▁▅▇▅▂ |
MIP_1beta | 0 | 1 | 2.81 | 0.38 | 1.95 | 2.56 | 2.83 | 3.04 | 4.01 | ▂▅▇▂▁ |
MMP_2 | 0 | 1 | 2.88 | 0.93 | 0.10 | 2.33 | 2.82 | 3.55 | 5.36 | ▁▃▇▆▁ |
MMP_3 | 0 | 1 | -2.45 | 0.57 | -4.42 | -2.75 | -2.45 | -2.12 | -0.53 | ▁▂▇▃▁ |
MMP10 | 0 | 1 | -3.63 | 0.43 | -4.93 | -3.94 | -3.65 | -3.35 | -2.21 | ▁▆▇▃▁ |
MMP7 | 0 | 1 | -3.79 | 1.55 | -8.40 | -4.82 | -3.77 | -2.71 | -0.22 | ▁▃▇▅▂ |
Myoglobin | 0 | 1 | -1.37 | 0.95 | -3.17 | -2.04 | -1.47 | -0.80 | 1.77 | ▅▇▆▂▁ |
NT_proBNP | 0 | 1 | 4.55 | 0.38 | 3.18 | 4.35 | 4.55 | 4.77 | 5.89 | ▁▂▇▃▁ |
NrCAM | 0 | 1 | 4.36 | 0.57 | 2.64 | 4.00 | 4.39 | 4.75 | 6.01 | ▁▃▇▅▁ |
Osteopontin | 0 | 1 | 5.20 | 0.39 | 4.11 | 4.96 | 5.19 | 5.44 | 6.31 | ▁▅▇▃▁ |
PAI_1 | 0 | 1 | 0.08 | 0.41 | -0.99 | -0.17 | 0.09 | 0.32 | 1.17 | ▂▃▇▅▂ |
PAPP_A | 0 | 1 | -2.85 | 0.14 | -3.31 | -2.94 | -2.87 | -2.75 | -2.52 | ▁▂▇▅▂ |
PLGF | 0 | 1 | 3.91 | 0.41 | 2.48 | 3.64 | 3.87 | 4.20 | 5.17 | ▁▃▇▆▁ |
PYY | 0 | 1 | 3.02 | 0.29 | 2.19 | 2.83 | 3.00 | 3.18 | 3.93 | ▁▅▇▃▁ |
Pancreatic_polypeptide | 0 | 1 | -0.01 | 0.72 | -2.12 | -0.53 | -0.04 | 0.53 | 1.93 | ▁▅▇▆▁ |
Prolactin | 0 | 1 | 0.04 | 0.30 | -1.31 | -0.14 | 0.00 | 0.26 | 0.99 | ▁▁▇▇▁ |
Prostatic_Acid_Phosphatase | 0 | 1 | -1.69 | 0.06 | -1.93 | -1.72 | -1.69 | -1.65 | -1.42 | ▁▂▇▂▁ |
Protein_S | 0 | 1 | -2.24 | 0.35 | -3.34 | -2.46 | -2.26 | -2.00 | -1.22 | ▁▃▇▃▁ |
Pulmonary_and_Activation_Regulat | 0 | 1 | -1.49 | 0.45 | -2.51 | -1.83 | -1.51 | -1.17 | -0.27 | ▂▇▇▃▂ |
RANTES | 0 | 1 | -6.51 | 0.32 | -7.22 | -6.73 | -6.50 | -6.32 | -5.55 | ▃▇▇▃▁ |
Resistin | 0 | 1 | -17.64 | 5.82 | -34.97 | -21.47 | -17.47 | -13.50 | -2.24 | ▁▃▇▆▁ |
S100b | 0 | 1 | 1.25 | 0.34 | 0.19 | 1.00 | 1.25 | 1.50 | 2.37 | ▁▆▇▅▁ |
SGOT | 0 | 1 | -0.41 | 0.35 | -1.35 | -0.63 | -0.40 | -0.20 | 0.74 | ▁▅▇▂▁ |
SHBG | 0 | 1 | -2.48 | 0.58 | -4.14 | -2.81 | -2.49 | -2.12 | -1.11 | ▁▃▇▆▂ |
SOD | 0 | 1 | 5.34 | 0.38 | 4.32 | 5.09 | 5.37 | 5.58 | 6.32 | ▁▅▇▅▁ |
Serum_Amyloid_P | 0 | 1 | -6.02 | 0.56 | -7.51 | -6.38 | -6.03 | -5.65 | -4.65 | ▁▅▇▅▂ |
Sortilin | 0 | 1 | 3.85 | 0.87 | 1.65 | 3.34 | 3.87 | 4.37 | 6.23 | ▁▅▇▃▁ |
Stem_Cell_Factor | 0 | 1 | 3.30 | 0.36 | 2.25 | 3.04 | 3.30 | 3.53 | 4.28 | ▁▅▇▅▁ |
TGF_alpha | 0 | 1 | 9.80 | 1.32 | 6.84 | 8.86 | 9.92 | 10.70 | 13.83 | ▂▆▇▂▁ |
TIMP_1 | 0 | 1 | 11.75 | 1.90 | 1.74 | 10.49 | 11.56 | 12.70 | 18.88 | ▁▁▇▅▁ |
TNF_RII | 0 | 1 | -0.59 | 0.33 | -1.66 | -0.82 | -0.60 | -0.38 | 0.47 | ▁▃▇▃▁ |
TRAIL_R3 | 0 | 1 | -0.54 | 0.24 | -1.21 | -0.70 | -0.53 | -0.38 | 0.27 | ▁▆▇▂▁ |
TTR_prealbumin | 0 | 1 | 2.85 | 0.14 | 2.48 | 2.77 | 2.83 | 2.94 | 3.33 | ▂▅▇▃▁ |
Tamm_Horsfall_Protein_THP | 0 | 1 | -3.12 | 0.03 | -3.21 | -3.14 | -3.12 | -3.10 | -2.99 | ▁▇▇▂▁ |
Thrombomodulin | 0 | 1 | -1.51 | 0.22 | -2.04 | -1.63 | -1.49 | -1.34 | -0.82 | ▂▆▇▃▁ |
Thrombopoietin | 0 | 1 | -0.75 | 0.24 | -1.54 | -0.89 | -0.75 | -0.63 | 0.10 | ▁▅▇▂▁ |
Thymus_Expressed_Chemokine_TECK | 0 | 1 | 3.85 | 0.80 | 1.51 | 3.34 | 3.81 | 4.32 | 6.23 | ▁▃▇▃▁ |
Thyroid_Stimulating_Hormone | 0 | 1 | -4.50 | 0.75 | -6.19 | -4.96 | -4.51 | -4.02 | -1.71 | ▂▇▆▁▁ |
Thyroxine_Binding_Globulin | 0 | 1 | -1.48 | 0.40 | -2.48 | -1.77 | -1.51 | -1.24 | -0.21 | ▂▇▇▃▁ |
Tissue_Factor | 0 | 1 | 1.17 | 0.50 | -0.21 | 0.83 | 1.22 | 1.48 | 2.48 | ▁▅▇▆▁ |
Transferrin | 0 | 1 | 2.91 | 0.27 | 1.93 | 2.71 | 2.89 | 3.09 | 3.76 | ▁▂▇▅▁ |
Trefoil_Factor_3_TFF3 | 0 | 1 | -3.88 | 0.34 | -4.74 | -4.14 | -3.86 | -3.65 | -2.96 | ▁▅▇▃▁ |
VCAM_1 | 0 | 1 | 2.69 | 0.32 | 1.72 | 2.48 | 2.71 | 2.89 | 3.69 | ▁▃▇▃▁ |
VEGF | 0 | 1 | 16.99 | 1.81 | 11.83 | 15.77 | 17.08 | 18.10 | 22.38 | ▁▅▇▃▁ |
Vitronectin | 0 | 1 | -0.28 | 0.33 | -1.43 | -0.51 | -0.30 | -0.04 | 0.53 | ▁▃▇▇▂ |
von_Willebrand_Factor | 0 | 1 | -3.91 | 0.38 | -4.99 | -4.20 | -3.91 | -3.61 | -2.96 | ▁▅▇▆▂ |
E4 | 0 | 1 | 0.40 | 0.49 | 0.00 | 0.00 | 0.00 | 1.00 | 1.00 | ▇▁▁▁▆ |
E3 | 0 | 1 | 0.92 | 0.28 | 0.00 | 1.00 | 1.00 | 1.00 | 1.00 | ▁▁▁▁▇ |
E2 | 0 | 1 | 0.16 | 0.37 | 0.00 | 0.00 | 0.00 | 0.00 | 1.00 | ▇▁▁▁▂ |
##################################
# Identifying columns with low variance
###################################
<- nearZeroVar(DPA,
DPA_LowVariance freqCut = 95/5,
uniqueCut = 10,
saveMetrics= TRUE)
$nzv,]) (DPA_LowVariance[DPA_LowVariance
## [1] freqRatio percentUnique zeroVar nzv
## <0 rows> (or 0-length row.names)
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
print("No low variance predictors noted.")
else {
}
print(paste0("Low variance observed for ",
nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
(" numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
<- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
DPA_LowVarianceForRemoval
print(paste0("Low variance can be resolved by removing ",
nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
(" numeric variable(s)."))
for (j in 1:DPA_LowVarianceForRemoval) {
<- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
DPA_LowVarianceRemovedVariable print(paste0("Variable ",
j," for removal: ",
DPA_LowVarianceRemovedVariable))
}
%>%
DPA skim() %>%
::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))
dplyr
##################################
# Filtering out columns with low variance
#################################
<- DPA[,!names(DPA) %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,])]
DPA_ExcludedLowVariance
##################################
# Gathering descriptive statistics
##################################
<- skim(DPA_ExcludedLowVariance))
(DPA_ExcludedLowVariance_Skimmed }
## [1] "No low variance predictors noted."
##################################
# Loading dataset
##################################
<- Alzheimer_Train
DPA
##################################
# Listing all predictors
##################################
<- DPA[,!names(DPA) %in% c("Class")]
DPA.Predictors
##################################
# Listing all numeric predictors
##################################
<- DPA.Predictors[,!names(DPA.Predictors) %in% c("E2","E3","E4")]
DPA.Predictors.Numeric <- as.data.frame(sapply(DPA.Predictors.Numeric,function(x) as.numeric(x)))
DPA.Predictors.Numeric
##################################
# Visualizing pairwise correlation between predictors
##################################
<- cor.mtest(DPA.Predictors.Numeric,
DPA_CorrelationTest method = "pearson",
conf.level = .95)
corrplot(cor(DPA.Predictors.Numeric,
method = "pearson",
use="pairwise.complete.obs"),
method = "circle",
type = "upper",
order = "original",
tl.col = "black",
tl.cex = 0.75,
tl.srt = 90,
sig.level = 0.05,
p.mat = DPA_CorrelationTest$p,
insig = "blank")
##################################
# Identifying the highly correlated variables
##################################
<- cor(DPA.Predictors.Numeric,
DPA_Correlation method = "pearson",
use="pairwise.complete.obs")
<- sum(abs(DPA_Correlation[upper.tri(DPA_Correlation)]) > 0.95)) (DPA_HighlyCorrelatedCount
## [1] 0
if (DPA_HighlyCorrelatedCount == 0) {
print("No highly correlated predictors noted.")
else {
} print(paste0("High correlation observed for ",
(DPA_HighlyCorrelatedCount)," pairs of numeric variable(s) with Correlation.Coefficient>0.95."))
<- corr_cross(DPA.Predictors.Numeric,
(DPA_HighlyCorrelatedPairs max_pvalue = 0.05,
top = DPA_HighlyCorrelatedCount,
rm.na = TRUE,
grid = FALSE
))
}
## [1] "No highly correlated predictors noted."
if (DPA_HighlyCorrelatedCount > 0) {
<- findCorrelation(DPA_Correlation, cutoff = 0.95)
DPA_HighlyCorrelated
<- length(DPA_HighlyCorrelated))
(DPA_HighlyCorrelatedForRemoval
print(paste0("High correlation can be resolved by removing ",
(DPA_HighlyCorrelatedForRemoval)," numeric variable(s)."))
for (j in 1:DPA_HighlyCorrelatedForRemoval) {
<- colnames(DPA.Predictors.Numeric)[DPA_HighlyCorrelated[j]]
DPA_HighlyCorrelatedRemovedVariable print(paste0("Variable ",
j," for removal: ",
DPA_HighlyCorrelatedRemovedVariable))
}
##################################
# Filtering out columns with high correlation
#################################
<- DPA[,-DPA_HighlyCorrelated]
DPA_ExcludedHighCorrelation
##################################
# Gathering descriptive statistics
##################################
<- skim(DPA_ExcludedHighCorrelation))
(DPA_ExcludedHighCorrelation_Skimmed
}
##################################
# Loading dataset
##################################
<- Alzheimer_Train
DPA
##################################
# Listing all predictors
##################################
<- DPA[,!names(DPA) %in% c("Class")]
DPA.Predictors
##################################
# Listing all numeric predictors
##################################
<- DPA.Predictors[,!names(DPA.Predictors) %in% c("E2","E3","E4")]
DPA.Predictors.Numeric <- as.data.frame(sapply(DPA.Predictors.Numeric,function(x) as.numeric(x)))
DPA.Predictors.Numeric
##################################
# Identifying the linearly dependent variables
##################################
<- findLinearCombos(DPA.Predictors.Numeric)
DPA_LinearlyDependent
<- length(DPA_LinearlyDependent$linearCombos)) (DPA_LinearlyDependentCount
## [1] 0
if (DPA_LinearlyDependentCount == 0) {
print("No linearly dependent predictors noted.")
else {
} print(paste0("Linear dependency observed for ",
(DPA_LinearlyDependentCount)," subset(s) of numeric variable(s)."))
for (i in 1:DPA_LinearlyDependentCount) {
<- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$linearCombos[[i]]]
DPA_LinearlyDependentSubset print(paste0("Linear dependent variable(s) for subset ",
i," include: ",
DPA_LinearlyDependentSubset))
}
}
## [1] "No linearly dependent predictors noted."
##################################
# Identifying the linearly dependent variables for removal
##################################
if (DPA_LinearlyDependentCount > 0) {
<- findLinearCombos(DPA.Predictors.Numeric)
DPA_LinearlyDependent
<- length(DPA_LinearlyDependent$remove)
DPA_LinearlyDependentForRemoval
print(paste0("Linear dependency can be resolved by removing ",
(DPA_LinearlyDependentForRemoval)," numeric variable(s)."))
for (j in 1:DPA_LinearlyDependentForRemoval) {
<- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$remove[j]]
DPA_LinearlyDependentRemovedVariable print(paste0("Variable ",
j," for removal: ",
DPA_LinearlyDependentRemovedVariable))
}
##################################
# Filtering out columns with linear dependency
#################################
<- DPA[,-DPA_LinearlyDependent$remove]
DPA_ExcludedLinearlyDependent
##################################
# Gathering descriptive statistics
##################################
<- skim(DPA_ExcludedLinearlyDependent))
(DPA_ExcludedLinearlyDependent_Skimmed
}
##################################
# Creating the pre-modelling
# train set
##################################
<- Alzheimer_Train
PMA_PreModelling_Train $Class <- as.factor(PMA_PreModelling_Train$Class)
PMA_PreModelling_Train$E2 <- as.factor(PMA_PreModelling_Train$E2)
PMA_PreModelling_Train$E3 <- as.factor(PMA_PreModelling_Train$E3)
PMA_PreModelling_Train$E4 <- as.factor(PMA_PreModelling_Train$E4)
PMA_PreModelling_Train
##################################
# Gathering descriptive statistics
##################################
<- skim(PMA_PreModelling_Train)) (PMA_PreModelling_Train_Skimmed
Name | PMA_PreModelling_Train |
Number of rows | 267 |
Number of columns | 128 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 124 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
Class | 0 | 1 | FALSE | 2 | Con: 194, Imp: 73 |
E4 | 0 | 1 | FALSE | 2 | 0: 160, 1: 107 |
E3 | 0 | 1 | FALSE | 2 | 1: 245, 0: 22 |
E2 | 0 | 1 | FALSE | 2 | 0: 224, 1: 43 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
ACE_CD143_Angiotensin_Converti | 0 | 1 | 1.32 | 0.54 | -0.68 | 0.95 | 1.30 | 1.72 | 2.84 | ▁▃▇▇▁ |
ACTH_Adrenocorticotropic_Hormon | 0 | 1 | -1.54 | 0.28 | -2.21 | -1.71 | -1.56 | -1.35 | -0.84 | ▂▆▇▆▂ |
AXL | 0 | 1 | 0.31 | 0.45 | -0.92 | 0.00 | 0.28 | 0.61 | 1.52 | ▁▅▇▃▁ |
Adiponectin | 0 | 1 | -5.20 | 0.67 | -6.73 | -5.67 | -5.18 | -4.78 | -3.51 | ▂▆▇▅▁ |
Alpha_1_Antichymotrypsin | 0 | 1 | 1.36 | 0.36 | 0.26 | 1.13 | 1.36 | 1.59 | 2.30 | ▁▃▇▅▁ |
Alpha_1_Antitrypsin | 0 | 1 | -13.05 | 1.48 | -17.03 | -14.07 | -13.00 | -12.10 | -8.19 | ▁▅▇▂▁ |
Alpha_1_Microglobulin | 0 | 1 | -2.93 | 0.48 | -4.34 | -3.27 | -2.94 | -2.59 | -1.77 | ▁▅▇▇▂ |
Alpha_2_Macroglobulin | 0 | 1 | -158.61 | 40.93 | -289.68 | -186.64 | -160.01 | -134.62 | -59.46 | ▁▂▇▅▂ |
Angiopoietin_2_ANG_2 | 0 | 1 | 0.67 | 0.33 | -0.54 | 0.47 | 0.64 | 0.88 | 1.53 | ▁▂▇▆▂ |
Angiotensinogen | 0 | 1 | 2.32 | 0.25 | 1.75 | 2.12 | 2.32 | 2.50 | 2.88 | ▃▆▇▇▂ |
Apolipoprotein_A_IV | 0 | 1 | -1.85 | 0.38 | -2.96 | -2.12 | -1.83 | -1.61 | -0.78 | ▁▃▇▃▁ |
Apolipoprotein_A1 | 0 | 1 | -7.48 | 0.44 | -8.68 | -7.76 | -7.47 | -7.21 | -6.17 | ▁▅▇▃▁ |
Apolipoprotein_A2 | 0 | 1 | -0.64 | 0.50 | -1.90 | -0.97 | -0.67 | -0.31 | 0.96 | ▁▇▇▃▁ |
Apolipoprotein_B | 0 | 1 | -5.58 | 1.48 | -9.94 | -6.63 | -5.70 | -4.54 | -2.15 | ▁▅▇▇▂ |
Apolipoprotein_CI | 0 | 1 | -1.58 | 0.41 | -3.32 | -1.83 | -1.61 | -1.37 | -0.27 | ▁▁▇▅▁ |
Apolipoprotein_CIII | 0 | 1 | -2.49 | 0.44 | -3.69 | -2.77 | -2.53 | -2.21 | -1.24 | ▁▅▇▅▁ |
Apolipoprotein_D | 0 | 1 | 1.44 | 0.34 | 0.47 | 1.21 | 1.41 | 1.67 | 2.27 | ▁▃▇▆▂ |
Apolipoprotein_E | 0 | 1 | 2.81 | 0.78 | 0.59 | 2.33 | 2.82 | 3.29 | 5.44 | ▁▅▇▂▁ |
Apolipoprotein_H | 0 | 1 | -0.32 | 0.39 | -2.23 | -0.60 | -0.37 | -0.06 | 0.93 | ▁▁▇▆▁ |
B_Lymphocyte_Chemoattractant_BL | 0 | 1 | 2.02 | 0.57 | 0.73 | 1.67 | 1.98 | 2.37 | 4.02 | ▃▇▇▁▁ |
BMP_6 | 0 | 1 | -1.91 | 0.31 | -2.76 | -2.15 | -1.88 | -1.68 | -0.82 | ▁▅▇▂▁ |
Beta_2_Microglobulin | 0 | 1 | 0.17 | 0.30 | -0.54 | -0.04 | 0.18 | 0.34 | 0.99 | ▂▃▇▃▁ |
Betacellulin | 0 | 1 | 51.01 | 10.87 | 10.00 | 42.00 | 51.00 | 59.00 | 82.00 | ▁▁▇▅▁ |
C_Reactive_Protein | 0 | 1 | -5.87 | 1.20 | -8.52 | -6.65 | -5.84 | -5.08 | -2.94 | ▃▆▇▆▂ |
CD40 | 0 | 1 | -1.26 | 0.21 | -1.86 | -1.38 | -1.27 | -1.12 | -0.55 | ▁▆▇▃▁ |
CD5L | 0 | 1 | -0.05 | 0.45 | -1.24 | -0.36 | -0.06 | 0.26 | 1.16 | ▁▅▇▃▁ |
Calbindin | 0 | 1 | 22.43 | 4.11 | 10.96 | 19.77 | 22.25 | 24.80 | 33.78 | ▁▃▇▃▁ |
Calcitonin | 0 | 1 | 1.68 | 0.87 | -0.71 | 0.96 | 1.65 | 2.28 | 3.89 | ▁▆▇▅▂ |
CgA | 0 | 1 | 333.30 | 83.67 | 135.60 | 278.02 | 331.52 | 392.07 | 535.40 | ▂▆▇▅▂ |
Clusterin_Apo_J | 0 | 1 | 2.88 | 0.29 | 1.87 | 2.71 | 2.89 | 3.04 | 3.58 | ▁▂▇▆▂ |
Complement_3 | 0 | 1 | -15.61 | 2.46 | -23.39 | -17.57 | -15.52 | -13.88 | -9.56 | ▁▆▇▇▂ |
Complement_Factor_H | 0 | 1 | 3.55 | 1.25 | -0.84 | 2.75 | 3.60 | 4.25 | 7.62 | ▁▃▇▅▁ |
Connective_Tissue_Growth_Factor | 0 | 1 | 0.77 | 0.20 | 0.18 | 0.64 | 0.79 | 0.92 | 1.41 | ▁▅▇▃▁ |
Cortisol | 0 | 1 | 11.98 | 3.95 | 0.10 | 9.80 | 12.00 | 14.00 | 29.00 | ▁▇▇▁▁ |
Creatine_Kinase_MB | 0 | 1 | -1.67 | 0.09 | -1.87 | -1.72 | -1.67 | -1.63 | -1.38 | ▃▅▇▂▁ |
Cystatin_C | 0 | 1 | 8.59 | 0.40 | 7.43 | 8.32 | 8.56 | 8.84 | 9.69 | ▁▅▇▃▁ |
EGF_R | 0 | 1 | -0.70 | 0.22 | -1.36 | -0.86 | -0.68 | -0.55 | -0.06 | ▁▃▇▅▁ |
EN_RAGE | 0 | 1 | -3.64 | 0.88 | -8.38 | -4.20 | -3.65 | -3.15 | -0.39 | ▁▁▇▆▁ |
ENA_78 | 0 | 1 | -1.37 | 0.01 | -1.41 | -1.38 | -1.37 | -1.36 | -1.34 | ▁▅▇▅▁ |
Eotaxin_3 | 0 | 1 | 58.17 | 15.83 | 7.00 | 44.00 | 59.00 | 70.00 | 107.00 | ▁▆▇▅▁ |
FAS | 0 | 1 | -0.53 | 0.30 | -1.51 | -0.71 | -0.53 | -0.31 | 0.34 | ▁▃▇▆▁ |
FSH_Follicle_Stimulation_Hormon | 0 | 1 | -1.14 | 0.42 | -2.12 | -1.47 | -1.14 | -0.88 | 0.10 | ▂▇▇▃▁ |
Fas_Ligand | 0 | 1 | 2.97 | 1.09 | -0.15 | 2.34 | 3.10 | 3.70 | 7.63 | ▂▇▇▁▁ |
Fatty_Acid_Binding_Protein | 0 | 1 | 1.35 | 0.78 | -1.04 | 0.80 | 1.39 | 1.88 | 3.71 | ▁▅▇▅▁ |
Ferritin | 0 | 1 | 2.76 | 0.76 | 0.61 | 2.29 | 2.77 | 3.29 | 4.63 | ▁▃▇▆▂ |
Fetuin_A | 0 | 1 | 1.35 | 0.37 | 0.47 | 1.10 | 1.31 | 1.61 | 2.25 | ▂▆▇▅▂ |
Fibrinogen | 0 | 1 | -7.36 | 0.57 | -8.87 | -7.72 | -7.32 | -7.01 | -5.84 | ▁▅▇▅▁ |
GRO_alpha | 0 | 1 | 1.38 | 0.04 | 1.27 | 1.35 | 1.38 | 1.41 | 1.49 | ▂▃▇▅▁ |
Gamma_Interferon_induced_Monokin | 0 | 1 | 2.79 | 0.11 | 2.39 | 2.71 | 2.78 | 2.87 | 3.07 | ▁▂▇▆▂ |
Glutathione_S_Transferase_alpha | 0 | 1 | 0.95 | 0.16 | 0.52 | 0.84 | 0.97 | 1.03 | 1.32 | ▁▃▇▅▂ |
HB_EGF | 0 | 1 | 6.83 | 1.51 | 2.10 | 5.79 | 6.70 | 7.86 | 10.70 | ▁▃▇▆▂ |
HCC_4 | 0 | 1 | -3.50 | 0.36 | -4.51 | -3.73 | -3.51 | -3.27 | -2.12 | ▂▇▇▂▁ |
Hepatocyte_Growth_Factor_HGF | 0 | 1 | 0.20 | 0.29 | -0.63 | 0.00 | 0.18 | 0.41 | 0.88 | ▁▃▇▅▂ |
I_309 | 0 | 1 | 2.96 | 0.37 | 1.76 | 2.71 | 2.94 | 3.22 | 4.14 | ▁▅▇▃▁ |
ICAM_1 | 0 | 1 | -0.59 | 0.33 | -1.53 | -0.83 | -0.59 | -0.38 | 0.52 | ▁▅▇▃▁ |
IGF_BP_2 | 0 | 1 | 5.32 | 0.20 | 4.63 | 5.18 | 5.32 | 5.45 | 5.95 | ▁▃▇▅▁ |
IL_11 | 0 | 1 | 4.72 | 1.45 | 1.75 | 3.71 | 4.81 | 5.78 | 8.49 | ▃▆▇▅▁ |
IL_13 | 0 | 1 | 1.28 | 0.01 | 1.26 | 1.27 | 1.28 | 1.29 | 1.32 | ▂▇▆▂▁ |
IL_16 | 0 | 1 | 2.93 | 0.66 | 1.19 | 2.52 | 2.91 | 3.35 | 4.94 | ▁▆▇▃▁ |
IL_17E | 0 | 1 | 4.85 | 1.34 | 1.05 | 4.15 | 4.75 | 5.63 | 8.95 | ▁▆▇▃▁ |
IL_1alpha | 0 | 1 | -7.51 | 0.39 | -8.52 | -7.82 | -7.52 | -7.26 | -5.95 | ▂▇▇▂▁ |
IL_3 | 0 | 1 | -3.94 | 0.50 | -5.91 | -4.27 | -3.91 | -3.63 | -2.45 | ▁▂▇▅▁ |
IL_4 | 0 | 1 | 1.77 | 0.51 | 0.53 | 1.46 | 1.81 | 2.15 | 3.04 | ▂▅▇▅▂ |
IL_5 | 0 | 1 | 0.19 | 0.46 | -1.43 | -0.12 | 0.18 | 0.47 | 1.95 | ▁▃▇▂▁ |
IL_6 | 0 | 1 | -0.15 | 0.55 | -1.53 | -0.41 | -0.16 | 0.14 | 1.81 | ▂▆▇▂▁ |
IL_6_Receptor | 0 | 1 | 0.09 | 0.32 | -0.68 | -0.13 | 0.10 | 0.35 | 0.83 | ▂▆▇▆▂ |
IL_7 | 0 | 1 | 2.84 | 1.05 | 0.56 | 2.15 | 2.79 | 3.71 | 5.71 | ▃▇▇▆▁ |
IL_8 | 0 | 1 | 1.70 | 0.04 | 1.57 | 1.68 | 1.71 | 1.73 | 1.81 | ▁▂▇▆▁ |
IP_10_Inducible_Protein_10 | 0 | 1 | 5.75 | 0.51 | 4.32 | 5.40 | 5.75 | 6.06 | 7.50 | ▁▆▇▂▁ |
IgA | 0 | 1 | -6.12 | 0.76 | -10.52 | -6.65 | -6.12 | -5.57 | -4.20 | ▁▁▂▇▂ |
Insulin | 0 | 1 | -1.23 | 0.34 | -2.17 | -1.45 | -1.25 | -1.03 | -0.16 | ▁▃▇▂▁ |
Kidney_Injury_Molecule_1_KIM_1 | 0 | 1 | -1.18 | 0.03 | -1.26 | -1.20 | -1.18 | -1.16 | -1.10 | ▁▇▇▅▁ |
LOX_1 | 0 | 1 | 1.28 | 0.40 | 0.00 | 1.03 | 1.28 | 1.53 | 2.27 | ▁▂▇▅▂ |
Leptin | 0 | 1 | -1.50 | 0.27 | -2.15 | -1.70 | -1.50 | -1.33 | -0.62 | ▂▇▇▂▁ |
Lipoprotein_a | 0 | 1 | -4.42 | 1.11 | -6.81 | -5.31 | -4.61 | -3.49 | -1.39 | ▂▇▅▅▁ |
MCP_1 | 0 | 1 | 6.50 | 0.26 | 5.83 | 6.32 | 6.49 | 6.68 | 7.23 | ▂▅▇▅▁ |
MCP_2 | 0 | 1 | 1.87 | 0.65 | 0.40 | 1.53 | 1.85 | 2.18 | 4.02 | ▂▆▇▂▁ |
MIF | 0 | 1 | -1.86 | 0.34 | -2.85 | -2.12 | -1.90 | -1.66 | -0.84 | ▁▃▇▃▁ |
MIP_1alpha | 0 | 1 | 4.05 | 1.01 | 0.93 | 3.34 | 4.05 | 4.69 | 6.80 | ▁▅▇▅▂ |
MIP_1beta | 0 | 1 | 2.81 | 0.38 | 1.95 | 2.56 | 2.83 | 3.04 | 4.01 | ▂▅▇▂▁ |
MMP_2 | 0 | 1 | 2.88 | 0.93 | 0.10 | 2.33 | 2.82 | 3.55 | 5.36 | ▁▃▇▆▁ |
MMP_3 | 0 | 1 | -2.45 | 0.57 | -4.42 | -2.75 | -2.45 | -2.12 | -0.53 | ▁▂▇▃▁ |
MMP10 | 0 | 1 | -3.63 | 0.43 | -4.93 | -3.94 | -3.65 | -3.35 | -2.21 | ▁▆▇▃▁ |
MMP7 | 0 | 1 | -3.79 | 1.55 | -8.40 | -4.82 | -3.77 | -2.71 | -0.22 | ▁▃▇▅▂ |
Myoglobin | 0 | 1 | -1.37 | 0.95 | -3.17 | -2.04 | -1.47 | -0.80 | 1.77 | ▅▇▆▂▁ |
NT_proBNP | 0 | 1 | 4.55 | 0.38 | 3.18 | 4.35 | 4.55 | 4.77 | 5.89 | ▁▂▇▃▁ |
NrCAM | 0 | 1 | 4.36 | 0.57 | 2.64 | 4.00 | 4.39 | 4.75 | 6.01 | ▁▃▇▅▁ |
Osteopontin | 0 | 1 | 5.20 | 0.39 | 4.11 | 4.96 | 5.19 | 5.44 | 6.31 | ▁▅▇▃▁ |
PAI_1 | 0 | 1 | 0.08 | 0.41 | -0.99 | -0.17 | 0.09 | 0.32 | 1.17 | ▂▃▇▅▂ |
PAPP_A | 0 | 1 | -2.85 | 0.14 | -3.31 | -2.94 | -2.87 | -2.75 | -2.52 | ▁▂▇▅▂ |
PLGF | 0 | 1 | 3.91 | 0.41 | 2.48 | 3.64 | 3.87 | 4.20 | 5.17 | ▁▃▇▆▁ |
PYY | 0 | 1 | 3.02 | 0.29 | 2.19 | 2.83 | 3.00 | 3.18 | 3.93 | ▁▅▇▃▁ |
Pancreatic_polypeptide | 0 | 1 | -0.01 | 0.72 | -2.12 | -0.53 | -0.04 | 0.53 | 1.93 | ▁▅▇▆▁ |
Prolactin | 0 | 1 | 0.04 | 0.30 | -1.31 | -0.14 | 0.00 | 0.26 | 0.99 | ▁▁▇▇▁ |
Prostatic_Acid_Phosphatase | 0 | 1 | -1.69 | 0.06 | -1.93 | -1.72 | -1.69 | -1.65 | -1.42 | ▁▂▇▂▁ |
Protein_S | 0 | 1 | -2.24 | 0.35 | -3.34 | -2.46 | -2.26 | -2.00 | -1.22 | ▁▃▇▃▁ |
Pulmonary_and_Activation_Regulat | 0 | 1 | -1.49 | 0.45 | -2.51 | -1.83 | -1.51 | -1.17 | -0.27 | ▂▇▇▃▂ |
RANTES | 0 | 1 | -6.51 | 0.32 | -7.22 | -6.73 | -6.50 | -6.32 | -5.55 | ▃▇▇▃▁ |
Resistin | 0 | 1 | -17.64 | 5.82 | -34.97 | -21.47 | -17.47 | -13.50 | -2.24 | ▁▃▇▆▁ |
S100b | 0 | 1 | 1.25 | 0.34 | 0.19 | 1.00 | 1.25 | 1.50 | 2.37 | ▁▆▇▅▁ |
SGOT | 0 | 1 | -0.41 | 0.35 | -1.35 | -0.63 | -0.40 | -0.20 | 0.74 | ▁▅▇▂▁ |
SHBG | 0 | 1 | -2.48 | 0.58 | -4.14 | -2.81 | -2.49 | -2.12 | -1.11 | ▁▃▇▆▂ |
SOD | 0 | 1 | 5.34 | 0.38 | 4.32 | 5.09 | 5.37 | 5.58 | 6.32 | ▁▅▇▅▁ |
Serum_Amyloid_P | 0 | 1 | -6.02 | 0.56 | -7.51 | -6.38 | -6.03 | -5.65 | -4.65 | ▁▅▇▅▂ |
Sortilin | 0 | 1 | 3.85 | 0.87 | 1.65 | 3.34 | 3.87 | 4.37 | 6.23 | ▁▅▇▃▁ |
Stem_Cell_Factor | 0 | 1 | 3.30 | 0.36 | 2.25 | 3.04 | 3.30 | 3.53 | 4.28 | ▁▅▇▅▁ |
TGF_alpha | 0 | 1 | 9.80 | 1.32 | 6.84 | 8.86 | 9.92 | 10.70 | 13.83 | ▂▆▇▂▁ |
TIMP_1 | 0 | 1 | 11.75 | 1.90 | 1.74 | 10.49 | 11.56 | 12.70 | 18.88 | ▁▁▇▅▁ |
TNF_RII | 0 | 1 | -0.59 | 0.33 | -1.66 | -0.82 | -0.60 | -0.38 | 0.47 | ▁▃▇▃▁ |
TRAIL_R3 | 0 | 1 | -0.54 | 0.24 | -1.21 | -0.70 | -0.53 | -0.38 | 0.27 | ▁▆▇▂▁ |
TTR_prealbumin | 0 | 1 | 2.85 | 0.14 | 2.48 | 2.77 | 2.83 | 2.94 | 3.33 | ▂▅▇▃▁ |
Tamm_Horsfall_Protein_THP | 0 | 1 | -3.12 | 0.03 | -3.21 | -3.14 | -3.12 | -3.10 | -2.99 | ▁▇▇▂▁ |
Thrombomodulin | 0 | 1 | -1.51 | 0.22 | -2.04 | -1.63 | -1.49 | -1.34 | -0.82 | ▂▆▇▃▁ |
Thrombopoietin | 0 | 1 | -0.75 | 0.24 | -1.54 | -0.89 | -0.75 | -0.63 | 0.10 | ▁▅▇▂▁ |
Thymus_Expressed_Chemokine_TECK | 0 | 1 | 3.85 | 0.80 | 1.51 | 3.34 | 3.81 | 4.32 | 6.23 | ▁▃▇▃▁ |
Thyroid_Stimulating_Hormone | 0 | 1 | -4.50 | 0.75 | -6.19 | -4.96 | -4.51 | -4.02 | -1.71 | ▂▇▆▁▁ |
Thyroxine_Binding_Globulin | 0 | 1 | -1.48 | 0.40 | -2.48 | -1.77 | -1.51 | -1.24 | -0.21 | ▂▇▇▃▁ |
Tissue_Factor | 0 | 1 | 1.17 | 0.50 | -0.21 | 0.83 | 1.22 | 1.48 | 2.48 | ▁▅▇▆▁ |
Transferrin | 0 | 1 | 2.91 | 0.27 | 1.93 | 2.71 | 2.89 | 3.09 | 3.76 | ▁▂▇▅▁ |
Trefoil_Factor_3_TFF3 | 0 | 1 | -3.88 | 0.34 | -4.74 | -4.14 | -3.86 | -3.65 | -2.96 | ▁▅▇▃▁ |
VCAM_1 | 0 | 1 | 2.69 | 0.32 | 1.72 | 2.48 | 2.71 | 2.89 | 3.69 | ▁▃▇▃▁ |
VEGF | 0 | 1 | 16.99 | 1.81 | 11.83 | 15.77 | 17.08 | 18.10 | 22.38 | ▁▅▇▃▁ |
Vitronectin | 0 | 1 | -0.28 | 0.33 | -1.43 | -0.51 | -0.30 | -0.04 | 0.53 | ▁▃▇▇▂ |
von_Willebrand_Factor | 0 | 1 | -3.91 | 0.38 | -4.99 | -4.20 | -3.91 | -3.61 | -2.96 | ▁▅▇▆▂ |
###################################
# Verifying the data dimensions
# for the train set
###################################
dim(PMA_PreModelling_Train)
## [1] 267 128
##################################
# Formulating the test set
##################################
<- Alzheimer_Test
PMA_PreModelling_Test $Class <- as.factor(PMA_PreModelling_Test$Class)
PMA_PreModelling_Test$E2 <- as.factor(PMA_PreModelling_Test$E2)
PMA_PreModelling_Test$E3 <- as.factor(PMA_PreModelling_Test$E3)
PMA_PreModelling_Test$E4 <- as.factor(PMA_PreModelling_Test$E4)
PMA_PreModelling_Test
##################################
# Gathering descriptive statistics
##################################
<- skim(PMA_PreModelling_Test)) (PMA_PreModelling_Test_Skimmed
Name | PMA_PreModelling_Test |
Number of rows | 66 |
Number of columns | 128 |
_______________________ | |
Column type frequency: | |
factor | 4 |
numeric | 124 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
Class | 0 | 1 | FALSE | 2 | Con: 48, Imp: 18 |
E4 | 0 | 1 | FALSE | 2 | 0: 46, 1: 20 |
E3 | 0 | 1 | FALSE | 2 | 1: 65, 0: 1 |
E2 | 0 | 1 | FALSE | 2 | 0: 62, 1: 4 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
ACE_CD143_Angiotensin_Converti | 0 | 1 | 1.31 | 0.59 | -0.55 | 0.95 | 1.30 | 1.63 | 3.09 | ▁▃▇▃▁ |
ACTH_Adrenocorticotropic_Hormon | 0 | 1 | -1.53 | 0.25 | -2.21 | -1.71 | -1.54 | -1.39 | -0.80 | ▁▃▇▃▁ |
AXL | 0 | 1 | 0.25 | 0.45 | -0.74 | -0.08 | 0.28 | 0.61 | 1.29 | ▃▃▇▅▂ |
Adiponectin | 0 | 1 | -5.30 | 0.66 | -7.06 | -5.74 | -5.36 | -4.92 | -3.47 | ▁▅▇▃▁ |
Alpha_1_Antichymotrypsin | 0 | 1 | 1.31 | 0.38 | 0.18 | 1.06 | 1.31 | 1.57 | 2.22 | ▁▃▇▆▂ |
Alpha_1_Antitrypsin | 0 | 1 | -13.49 | 1.76 | -18.17 | -14.70 | -13.59 | -12.31 | -10.06 | ▁▃▇▆▃ |
Alpha_1_Microglobulin | 0 | 1 | -2.98 | 0.49 | -4.14 | -3.28 | -3.01 | -2.67 | -1.90 | ▂▅▇▅▂ |
Alpha_2_Macroglobulin | 0 | 1 | -162.89 | 40.98 | -238.64 | -186.64 | -162.93 | -136.53 | -50.17 | ▃▇▇▃▁ |
Angiopoietin_2_ANG_2 | 0 | 1 | 0.60 | 0.35 | -0.05 | 0.35 | 0.56 | 0.79 | 1.77 | ▃▇▅▁▁ |
Angiotensinogen | 0 | 1 | 2.27 | 0.23 | 1.71 | 2.07 | 2.28 | 2.43 | 2.75 | ▁▇▇▇▂ |
Apolipoprotein_A_IV | 0 | 1 | -1.87 | 0.38 | -2.75 | -2.19 | -1.90 | -1.53 | -1.11 | ▂▆▇▆▅ |
Apolipoprotein_A1 | 0 | 1 | -7.49 | 0.42 | -8.57 | -7.82 | -7.50 | -7.18 | -6.65 | ▁▆▇▇▃ |
Apolipoprotein_A2 | 0 | 1 | -0.69 | 0.48 | -1.97 | -0.94 | -0.70 | -0.35 | 0.53 | ▁▃▇▅▁ |
Apolipoprotein_B | 0 | 1 | -5.65 | 1.34 | -8.19 | -6.75 | -5.82 | -4.60 | -2.34 | ▃▇▅▅▂ |
Apolipoprotein_CI | 0 | 1 | -1.63 | 0.45 | -2.85 | -1.90 | -1.61 | -1.31 | -0.46 | ▂▅▇▅▁ |
Apolipoprotein_CIII | 0 | 1 | -2.52 | 0.46 | -3.86 | -2.78 | -2.56 | -2.23 | -1.39 | ▁▂▇▃▂ |
Apolipoprotein_D | 0 | 1 | 1.39 | 0.41 | 0.26 | 1.13 | 1.39 | 1.69 | 2.64 | ▁▇▇▅▁ |
Apolipoprotein_E | 0 | 1 | 2.72 | 0.88 | 0.66 | 2.15 | 2.82 | 3.24 | 4.68 | ▂▅▇▅▂ |
Apolipoprotein_H | 0 | 1 | -0.32 | 0.33 | -1.16 | -0.53 | -0.29 | -0.10 | 0.44 | ▂▅▇▆▂ |
B_Lymphocyte_Chemoattractant_BL | 0 | 1 | 1.88 | 0.57 | 0.73 | 1.53 | 1.85 | 2.37 | 2.98 | ▂▆▇▆▃ |
BMP_6 | 0 | 1 | -1.94 | 0.35 | -2.67 | -2.15 | -1.96 | -1.68 | -1.18 | ▃▃▇▆▂ |
Beta_2_Microglobulin | 0 | 1 | 0.16 | 0.31 | -0.51 | -0.06 | 0.18 | 0.41 | 0.83 | ▂▇▇▆▂ |
Betacellulin | 0 | 1 | 52.74 | 10.58 | 32.00 | 46.00 | 51.00 | 59.75 | 80.00 | ▂▇▅▃▁ |
C_Reactive_Protein | 0 | 1 | -6.00 | 1.17 | -8.11 | -6.73 | -6.17 | -5.37 | -3.41 | ▃▇▇▃▃ |
CD40 | 0 | 1 | -1.28 | 0.24 | -1.94 | -1.44 | -1.26 | -1.10 | -0.78 | ▂▃▅▇▂ |
CD5L | 0 | 1 | -0.09 | 0.49 | -1.97 | -0.37 | -0.05 | 0.24 | 0.92 | ▁▁▃▇▂ |
Calbindin | 0 | 1 | 21.49 | 4.49 | 10.81 | 18.88 | 21.06 | 24.00 | 35.36 | ▂▆▇▂▁ |
Calcitonin | 0 | 1 | 1.73 | 0.89 | -0.71 | 1.20 | 1.68 | 2.26 | 4.11 | ▁▅▇▅▁ |
CgA | 0 | 1 | 320.22 | 75.26 | 166.55 | 268.21 | 324.75 | 362.27 | 494.53 | ▃▃▇▃▂ |
Clusterin_Apo_J | 0 | 1 | 2.85 | 0.35 | 1.93 | 2.56 | 2.83 | 3.04 | 3.76 | ▁▆▇▅▁ |
Complement_3 | 0 | 1 | -15.91 | 2.60 | -22.40 | -17.50 | -15.90 | -14.34 | -10.23 | ▁▃▇▃▂ |
Complement_Factor_H | 0 | 1 | 3.39 | 1.26 | 0.28 | 2.60 | 3.40 | 4.25 | 6.56 | ▁▅▇▅▁ |
Connective_Tissue_Growth_Factor | 0 | 1 | 0.75 | 0.22 | 0.10 | 0.59 | 0.74 | 0.88 | 1.41 | ▁▃▇▃▁ |
Cortisol | 0 | 1 | 10.46 | 3.85 | 0.10 | 8.90 | 10.00 | 12.00 | 22.00 | ▁▂▇▂▁ |
Creatine_Kinase_MB | 0 | 1 | -1.65 | 0.10 | -1.87 | -1.72 | -1.65 | -1.59 | -1.43 | ▂▅▇▅▂ |
Cystatin_C | 0 | 1 | 8.58 | 0.42 | 7.73 | 8.30 | 8.54 | 8.84 | 9.69 | ▃▇▇▃▂ |
EGF_R | 0 | 1 | -0.70 | 0.26 | -1.27 | -0.89 | -0.69 | -0.50 | 0.19 | ▂▆▇▁▁ |
EN_RAGE | 0 | 1 | -3.60 | 0.98 | -8.38 | -4.18 | -3.69 | -3.22 | -0.87 | ▁▁▅▇▁ |
ENA_78 | 0 | 1 | -1.38 | 0.01 | -1.41 | -1.38 | -1.37 | -1.37 | -1.35 | ▂▂▆▇▂ |
Eotaxin_3 | 0 | 1 | 55.55 | 18.33 | 23.00 | 43.00 | 54.00 | 64.00 | 107.00 | ▅▇▆▂▁ |
FAS | 0 | 1 | -0.54 | 0.30 | -1.11 | -0.71 | -0.58 | -0.34 | 0.18 | ▃▇▇▅▂ |
FSH_Follicle_Stimulation_Hormon | 0 | 1 | -1.06 | 0.34 | -1.81 | -1.27 | -0.98 | -0.81 | -0.48 | ▂▂▅▇▃ |
Fas_Ligand | 0 | 1 | 2.65 | 1.02 | 0.29 | 2.07 | 2.67 | 3.16 | 5.38 | ▂▅▇▃▁ |
Fatty_Acid_Binding_Protein | 0 | 1 | 1.29 | 0.79 | -0.46 | 0.80 | 1.19 | 1.92 | 3.22 | ▂▇▆▆▂ |
Ferritin | 0 | 1 | 2.71 | 0.87 | 0.90 | 2.15 | 2.63 | 3.17 | 4.93 | ▂▆▇▂▂ |
Fetuin_A | 0 | 1 | 1.31 | 0.41 | 0.53 | 1.03 | 1.31 | 1.61 | 2.21 | ▅▇▇▇▂ |
Fibrinogen | 0 | 1 | -7.36 | 0.63 | -9.37 | -7.80 | -7.32 | -6.97 | -6.17 | ▁▂▇▇▅ |
GRO_alpha | 0 | 1 | 1.38 | 0.04 | 1.27 | 1.35 | 1.37 | 1.40 | 1.51 | ▁▇▇▂▁ |
Gamma_Interferon_induced_Monokin | 0 | 1 | 2.77 | 0.12 | 2.54 | 2.70 | 2.77 | 2.83 | 3.05 | ▂▅▇▂▂ |
Glutathione_S_Transferase_alpha | 0 | 1 | 0.94 | 0.17 | 0.57 | 0.83 | 0.95 | 1.05 | 1.31 | ▃▅▇▇▂ |
HB_EGF | 0 | 1 | 6.84 | 1.43 | 3.52 | 5.95 | 6.98 | 7.75 | 10.36 | ▂▆▇▇▂ |
HCC_4 | 0 | 1 | -3.54 | 0.35 | -4.34 | -3.77 | -3.54 | -3.35 | -2.49 | ▂▇▇▃▁ |
Hepatocyte_Growth_Factor_HGF | 0 | 1 | 0.18 | 0.34 | -0.62 | -0.06 | 0.18 | 0.34 | 1.10 | ▁▆▇▃▁ |
I_309 | 0 | 1 | 2.92 | 0.36 | 2.04 | 2.72 | 2.94 | 3.14 | 3.69 | ▂▂▇▃▂ |
ICAM_1 | 0 | 1 | -0.60 | 0.35 | -1.47 | -0.77 | -0.59 | -0.36 | 0.36 | ▂▂▇▅▁ |
IGF_BP_2 | 0 | 1 | 5.26 | 0.22 | 4.72 | 5.13 | 5.25 | 5.40 | 5.92 | ▁▅▇▂▁ |
IL_11 | 0 | 1 | 4.65 | 1.33 | 2.03 | 3.96 | 4.84 | 5.48 | 8.69 | ▃▅▇▂▁ |
IL_13 | 0 | 1 | 1.28 | 0.01 | 1.23 | 1.27 | 1.28 | 1.29 | 1.31 | ▁▁▇▇▃ |
IL_16 | 0 | 1 | 2.82 | 0.70 | 0.96 | 2.44 | 2.88 | 3.35 | 4.10 | ▂▂▇▇▅ |
IL_17E | 0 | 1 | 4.77 | 1.33 | 1.58 | 3.64 | 4.72 | 5.41 | 8.08 | ▁▇▇▃▂ |
IL_1alpha | 0 | 1 | -7.55 | 0.44 | -8.47 | -7.85 | -7.56 | -7.28 | -6.38 | ▂▇▇▃▁ |
IL_3 | 0 | 1 | -3.98 | 0.52 | -5.52 | -4.32 | -3.96 | -3.58 | -3.08 | ▁▃▇▇▆ |
IL_4 | 0 | 1 | 1.74 | 0.52 | 0.53 | 1.46 | 1.72 | 2.07 | 2.71 | ▁▅▇▃▅ |
IL_5 | 0 | 1 | 0.23 | 0.44 | -1.05 | -0.03 | 0.22 | 0.53 | 1.13 | ▁▂▇▇▂ |
IL_6 | 0 | 1 | -0.05 | 0.52 | -1.53 | -0.41 | -0.07 | 0.35 | 1.01 | ▁▂▇▇▂ |
IL_6_Receptor | 0 | 1 | 0.06 | 0.35 | -0.75 | -0.20 | 0.00 | 0.27 | 0.77 | ▂▇▇▆▅ |
IL_7 | 0 | 1 | 3.14 | 0.85 | 1.31 | 2.38 | 3.15 | 3.71 | 5.00 | ▁▇▅▆▂ |
IL_8 | 0 | 1 | 1.70 | 0.04 | 1.62 | 1.68 | 1.70 | 1.73 | 1.84 | ▂▇▆▂▁ |
IP_10_Inducible_Protein_10 | 0 | 1 | 5.64 | 0.51 | 4.26 | 5.32 | 5.62 | 5.92 | 7.21 | ▁▅▇▃▁ |
IgA | 0 | 1 | -6.07 | 0.64 | -7.62 | -6.57 | -6.01 | -5.61 | -4.73 | ▁▆▇▇▂ |
Insulin | 0 | 1 | -1.20 | 0.32 | -2.01 | -1.45 | -1.22 | -1.01 | -0.50 | ▂▆▇▇▃ |
Kidney_Injury_Molecule_1_KIM_1 | 0 | 1 | -1.19 | 0.03 | -1.25 | -1.21 | -1.19 | -1.17 | -1.12 | ▃▇▇▇▂ |
LOX_1 | 0 | 1 | 1.21 | 0.45 | 0.00 | 0.96 | 1.22 | 1.44 | 2.40 | ▁▃▇▃▁ |
Leptin | 0 | 1 | -1.44 | 0.25 | -1.95 | -1.63 | -1.43 | -1.24 | -0.84 | ▃▇▆▇▂ |
Lipoprotein_a | 0 | 1 | -4.51 | 0.91 | -6.57 | -5.12 | -4.66 | -4.02 | -2.04 | ▂▇▇▅▁ |
MCP_1 | 0 | 1 | 6.48 | 0.25 | 5.89 | 6.32 | 6.48 | 6.63 | 7.06 | ▁▅▇▅▂ |
MCP_2 | 0 | 1 | 1.81 | 0.60 | 0.40 | 1.53 | 1.85 | 2.08 | 3.75 | ▂▅▇▁▁ |
MIF | 0 | 1 | -1.93 | 0.31 | -2.80 | -2.12 | -1.97 | -1.71 | -1.11 | ▁▃▇▃▁ |
MIP_1alpha | 0 | 1 | 3.90 | 1.04 | 1.01 | 3.30 | 3.74 | 4.69 | 5.74 | ▁▂▇▆▅ |
MIP_1beta | 0 | 1 | 2.78 | 0.39 | 1.92 | 2.48 | 2.77 | 3.08 | 3.78 | ▃▆▇▆▁ |
MMP_2 | 0 | 1 | 3.03 | 0.95 | 0.62 | 2.55 | 2.99 | 3.48 | 6.10 | ▁▃▇▁▁ |
MMP_3 | 0 | 1 | -2.49 | 0.59 | -3.65 | -2.85 | -2.53 | -2.12 | -1.17 | ▃▆▇▅▂ |
MMP10 | 0 | 1 | -3.68 | 0.44 | -4.95 | -4.07 | -3.61 | -3.33 | -2.90 | ▁▃▆▇▅ |
MMP7 | 0 | 1 | -4.01 | 1.55 | -7.53 | -4.96 | -4.03 | -3.16 | -0.20 | ▂▃▇▂▁ |
Myoglobin | 0 | 1 | -1.42 | 0.91 | -3.30 | -2.02 | -1.59 | -0.78 | 1.13 | ▂▇▆▃▁ |
NT_proBNP | 0 | 1 | 4.49 | 0.39 | 3.61 | 4.17 | 4.48 | 4.79 | 5.40 | ▂▇▇▆▂ |
NrCAM | 0 | 1 | 4.29 | 0.58 | 2.89 | 3.87 | 4.32 | 4.72 | 5.69 | ▂▆▇▆▁ |
Osteopontin | 0 | 1 | 5.18 | 0.40 | 4.08 | 4.89 | 5.17 | 5.41 | 6.32 | ▁▆▇▃▁ |
PAI_1 | 0 | 1 | 0.00 | 0.41 | -0.99 | -0.33 | 0.00 | 0.30 | 0.89 | ▂▆▇▇▂ |
PAPP_A | 0 | 1 | -2.84 | 0.14 | -3.15 | -2.97 | -2.84 | -2.72 | -2.49 | ▂▇▇▆▁ |
PLGF | 0 | 1 | 3.88 | 0.38 | 2.64 | 3.69 | 3.89 | 4.12 | 4.71 | ▁▂▇▇▂ |
PYY | 0 | 1 | 2.98 | 0.29 | 2.40 | 2.83 | 3.00 | 3.18 | 3.74 | ▃▇▇▅▁ |
Pancreatic_polypeptide | 0 | 1 | -0.01 | 0.70 | -1.61 | -0.51 | 0.14 | 0.47 | 1.50 | ▂▅▅▇▁ |
Prolactin | 0 | 1 | 0.05 | 0.29 | -0.39 | -0.17 | 0.00 | 0.18 | 0.79 | ▇▇▆▃▂ |
Prostatic_Acid_Phosphatase | 0 | 1 | -1.69 | 0.05 | -1.80 | -1.74 | -1.69 | -1.66 | -1.54 | ▂▇▇▂▁ |
Protein_S | 0 | 1 | -2.27 | 0.41 | -3.15 | -2.58 | -2.26 | -1.92 | -1.55 | ▃▅▇▇▆ |
Pulmonary_and_Activation_Regulat | 0 | 1 | -1.50 | 0.45 | -2.44 | -1.83 | -1.51 | -1.17 | -0.45 | ▃▇▆▇▂ |
RANTES | 0 | 1 | -6.54 | 0.29 | -7.24 | -6.73 | -6.57 | -6.39 | -5.84 | ▁▆▇▃▂ |
Resistin | 0 | 1 | -18.24 | 5.18 | -30.16 | -22.13 | -18.01 | -15.20 | -6.59 | ▂▅▇▅▂ |
S100b | 0 | 1 | 1.18 | 0.37 | 0.19 | 0.96 | 1.16 | 1.38 | 2.20 | ▁▃▇▂▁ |
SGOT | 0 | 1 | -0.49 | 0.37 | -1.90 | -0.75 | -0.48 | -0.21 | 0.18 | ▁▁▆▇▅ |
SHBG | 0 | 1 | -2.69 | 0.49 | -3.73 | -3.05 | -2.71 | -2.34 | -1.56 | ▂▇▇▆▂ |
SOD | 0 | 1 | 5.30 | 0.41 | 4.38 | 5.01 | 5.31 | 5.55 | 6.46 | ▂▇▇▃▁ |
Serum_Amyloid_P | 0 | 1 | -6.08 | 0.52 | -7.18 | -6.44 | -6.21 | -5.61 | -4.70 | ▂▇▅▃▁ |
Sortilin | 0 | 1 | 3.79 | 0.87 | 1.51 | 3.18 | 3.87 | 4.37 | 5.68 | ▂▅▇▆▃ |
Stem_Cell_Factor | 0 | 1 | 3.27 | 0.35 | 2.22 | 3.04 | 3.31 | 3.47 | 4.08 | ▁▅▇▇▂ |
TGF_alpha | 0 | 1 | 9.78 | 1.11 | 7.50 | 9.06 | 9.60 | 10.61 | 13.08 | ▃▇▆▃▁ |
TIMP_1 | 0 | 1 | 11.52 | 1.64 | 8.20 | 10.53 | 11.34 | 12.35 | 16.55 | ▅▇▇▃▁ |
TNF_RII | 0 | 1 | -0.63 | 0.36 | -1.66 | -0.87 | -0.65 | -0.33 | 0.41 | ▁▅▇▅▁ |
TRAIL_R3 | 0 | 1 | -0.59 | 0.23 | -1.31 | -0.73 | -0.56 | -0.47 | 0.10 | ▁▃▇▂▁ |
TTR_prealbumin | 0 | 1 | 2.85 | 0.14 | 2.48 | 2.77 | 2.89 | 2.94 | 3.09 | ▁▃▅▇▅ |
Tamm_Horsfall_Protein_THP | 0 | 1 | -3.12 | 0.03 | -3.21 | -3.14 | -3.13 | -3.10 | -3.04 | ▁▅▇▃▂ |
Thrombomodulin | 0 | 1 | -1.53 | 0.25 | -2.05 | -1.68 | -1.53 | -1.34 | -1.02 | ▂▆▇▆▂ |
Thrombopoietin | 0 | 1 | -0.72 | 0.21 | -1.54 | -0.84 | -0.70 | -0.63 | -0.30 | ▁▁▆▇▃ |
Thymus_Expressed_Chemokine_TECK | 0 | 1 | 3.77 | 0.73 | 2.14 | 3.28 | 3.75 | 4.32 | 5.68 | ▃▆▇▅▂ |
Thyroid_Stimulating_Hormone | 0 | 1 | -4.22 | 0.79 | -6.19 | -4.73 | -4.27 | -3.83 | -2.04 | ▁▅▇▃▁ |
Thyroxine_Binding_Globulin | 0 | 1 | -1.49 | 0.40 | -2.30 | -1.71 | -1.49 | -1.24 | -0.60 | ▃▅▇▆▂ |
Tissue_Factor | 0 | 1 | 1.14 | 0.54 | 0.00 | 0.71 | 1.15 | 1.51 | 2.71 | ▂▆▇▂▁ |
Transferrin | 0 | 1 | 2.90 | 0.29 | 2.28 | 2.71 | 2.89 | 3.14 | 3.50 | ▃▃▇▅▃ |
Trefoil_Factor_3_TFF3 | 0 | 1 | -3.95 | 0.34 | -4.91 | -4.20 | -3.91 | -3.77 | -3.17 | ▁▂▇▆▂ |
VCAM_1 | 0 | 1 | 2.64 | 0.32 | 2.03 | 2.42 | 2.67 | 2.83 | 3.47 | ▅▃▇▃▁ |
VEGF | 0 | 1 | 16.70 | 2.10 | 12.23 | 15.03 | 17.08 | 18.19 | 21.18 | ▃▇▇▆▂ |
Vitronectin | 0 | 1 | -0.27 | 0.32 | -1.08 | -0.46 | -0.28 | -0.05 | 0.41 | ▁▅▇▆▂ |
von_Willebrand_Factor | 0 | 1 | -4.01 | 0.38 | -4.92 | -4.27 | -4.02 | -3.73 | -3.06 | ▂▇▇▆▂ |
###################################
# Verifying the data dimensions
# for the test set
###################################
dim(PMA_PreModelling_Test)
## [1] 66 128
##################################
# Loading dataset
##################################
<- PMA_PreModelling_Train
EDA
##################################
# Listing all predictors
##################################
<- EDA[,!names(EDA) %in% c("Class")]
EDA.Predictors
##################################
# Listing all numeric predictors
##################################
<- EDA.Predictors[,sapply(EDA.Predictors, is.numeric)]
EDA.Predictors.Numeric ncol(EDA.Predictors.Numeric)
## [1] 124
names(EDA.Predictors.Numeric)
## [1] "ACE_CD143_Angiotensin_Converti" "ACTH_Adrenocorticotropic_Hormon"
## [3] "AXL" "Adiponectin"
## [5] "Alpha_1_Antichymotrypsin" "Alpha_1_Antitrypsin"
## [7] "Alpha_1_Microglobulin" "Alpha_2_Macroglobulin"
## [9] "Angiopoietin_2_ANG_2" "Angiotensinogen"
## [11] "Apolipoprotein_A_IV" "Apolipoprotein_A1"
## [13] "Apolipoprotein_A2" "Apolipoprotein_B"
## [15] "Apolipoprotein_CI" "Apolipoprotein_CIII"
## [17] "Apolipoprotein_D" "Apolipoprotein_E"
## [19] "Apolipoprotein_H" "B_Lymphocyte_Chemoattractant_BL"
## [21] "BMP_6" "Beta_2_Microglobulin"
## [23] "Betacellulin" "C_Reactive_Protein"
## [25] "CD40" "CD5L"
## [27] "Calbindin" "Calcitonin"
## [29] "CgA" "Clusterin_Apo_J"
## [31] "Complement_3" "Complement_Factor_H"
## [33] "Connective_Tissue_Growth_Factor" "Cortisol"
## [35] "Creatine_Kinase_MB" "Cystatin_C"
## [37] "EGF_R" "EN_RAGE"
## [39] "ENA_78" "Eotaxin_3"
## [41] "FAS" "FSH_Follicle_Stimulation_Hormon"
## [43] "Fas_Ligand" "Fatty_Acid_Binding_Protein"
## [45] "Ferritin" "Fetuin_A"
## [47] "Fibrinogen" "GRO_alpha"
## [49] "Gamma_Interferon_induced_Monokin" "Glutathione_S_Transferase_alpha"
## [51] "HB_EGF" "HCC_4"
## [53] "Hepatocyte_Growth_Factor_HGF" "I_309"
## [55] "ICAM_1" "IGF_BP_2"
## [57] "IL_11" "IL_13"
## [59] "IL_16" "IL_17E"
## [61] "IL_1alpha" "IL_3"
## [63] "IL_4" "IL_5"
## [65] "IL_6" "IL_6_Receptor"
## [67] "IL_7" "IL_8"
## [69] "IP_10_Inducible_Protein_10" "IgA"
## [71] "Insulin" "Kidney_Injury_Molecule_1_KIM_1"
## [73] "LOX_1" "Leptin"
## [75] "Lipoprotein_a" "MCP_1"
## [77] "MCP_2" "MIF"
## [79] "MIP_1alpha" "MIP_1beta"
## [81] "MMP_2" "MMP_3"
## [83] "MMP10" "MMP7"
## [85] "Myoglobin" "NT_proBNP"
## [87] "NrCAM" "Osteopontin"
## [89] "PAI_1" "PAPP_A"
## [91] "PLGF" "PYY"
## [93] "Pancreatic_polypeptide" "Prolactin"
## [95] "Prostatic_Acid_Phosphatase" "Protein_S"
## [97] "Pulmonary_and_Activation_Regulat" "RANTES"
## [99] "Resistin" "S100b"
## [101] "SGOT" "SHBG"
## [103] "SOD" "Serum_Amyloid_P"
## [105] "Sortilin" "Stem_Cell_Factor"
## [107] "TGF_alpha" "TIMP_1"
## [109] "TNF_RII" "TRAIL_R3"
## [111] "TTR_prealbumin" "Tamm_Horsfall_Protein_THP"
## [113] "Thrombomodulin" "Thrombopoietin"
## [115] "Thymus_Expressed_Chemokine_TECK" "Thyroid_Stimulating_Hormone"
## [117] "Thyroxine_Binding_Globulin" "Tissue_Factor"
## [119] "Transferrin" "Trefoil_Factor_3_TFF3"
## [121] "VCAM_1" "VEGF"
## [123] "Vitronectin" "von_Willebrand_Factor"
##################################
# Listing all factor predictors
##################################
<- EDA.Predictors[,sapply(EDA.Predictors, is.factor)]
EDA.Predictors.Factor ncol(EDA.Predictors.Factor)
## [1] 3
names(EDA.Predictors.Factor)
## [1] "E4" "E3" "E2"
##################################
# Formulating the box plots
##################################
featurePlot(x = EDA.Predictors.Numeric[1:124],
y = EDA$Class,
plot = "box",
scales = list(x = list(relation="free", rot = 90),
y = list(relation="free")),
adjust = 1.5,
pch = "|",
layout=(c(4,4)))
##################################
# Restructuring the dataset for
# for barchart analysis
##################################
<- as.data.frame(cbind(EDA$Class,
EDA.Bar.Source
EDA.Predictors.Factor))names(EDA.Bar.Source) <- c("Class",names(EDA.Predictors.Factor))
ncol(EDA.Bar.Source)
## [1] 4
##################################
# Creating a function to formulate
# the proportions table
##################################
<- function(FactorVar) {
EDA.PropTable.Function <- EDA.Bar.Source[,c("Class",
EDA.Bar.Source.FactorVar
FactorVar)]<- as.data.frame(prop.table(table(EDA.Bar.Source.FactorVar), 2))
EDA.Bar.Source.FactorVar.Prop names(EDA.Bar.Source.FactorVar.Prop)[2] <- "Class"
$Variable <- rep(FactorVar,nrow(EDA.Bar.Source.FactorVar.Prop))
EDA.Bar.Source.FactorVar.Prop
return(EDA.Bar.Source.FactorVar.Prop)
}
<- rbind(EDA.PropTable.Function("E2"),
EDA.Bar.Source.FactorVar.Prop EDA.PropTable.Function("E3"),
EDA.PropTable.Function("E4"))
<- barchart(EDA.Bar.Source.FactorVar.Prop[,3] ~
(EDA.Barchart.FactorVar 2] | EDA.Bar.Source.FactorVar.Prop[,4],
EDA.Bar.Source.FactorVar.Prop[,data=EDA.Bar.Source.FactorVar.Prop,
groups = EDA.Bar.Source.FactorVar.Prop[,1],
stack=TRUE,
ylab = "Proportion",
xlab = "Class",
auto.key = list(adj=1, space="top", columns=2),
layout=(c(3,1))))
##################################
# Converting all predictors to numeric
# for both train and test data
##################################
for (i in 1:ncol(PMA_PreModelling_Train)){
if (names(PMA_PreModelling_Train)[i]!="Class"){
<- as.numeric(PMA_PreModelling_Train[,i])
PMA_PreModelling_Train[,i]
}
}summary(PMA_PreModelling_Train)
## ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
## Min. :-0.6756 Min. :-2.207
## 1st Qu.: 0.9462 1st Qu.:-1.715
## Median : 1.3013 Median :-1.561
## Mean : 1.3198 Mean :-1.538
## 3rd Qu.: 1.7191 3rd Qu.:-1.347
## Max. : 2.8398 Max. :-0.844
## AXL Adiponectin Alpha_1_Antichymotrypsin
## Min. :-0.9230 Min. :-6.725 Min. :0.2624
## 1st Qu.: 0.0000 1st Qu.:-5.669 1st Qu.:1.1314
## Median : 0.2804 Median :-5.185 Median :1.3610
## Mean : 0.3093 Mean :-5.201 Mean :1.3605
## 3rd Qu.: 0.6077 3rd Qu.:-4.780 3rd Qu.:1.5892
## Max. : 1.5214 Max. :-3.507 Max. :2.3026
## Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
## Min. :-17.028 Min. :-4.343 Min. :-289.68
## 1st Qu.:-14.071 1st Qu.:-3.270 1st Qu.:-186.64
## Median :-13.004 Median :-2.937 Median :-160.01
## Mean :-13.052 Mean :-2.932 Mean :-158.61
## 3rd Qu.:-12.096 3rd Qu.:-2.590 3rd Qu.:-134.62
## Max. : -8.192 Max. :-1.772 Max. : -59.46
## Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
## Min. :-0.5447 Min. :1.752 Min. :-2.9565 Min. :-8.680
## 1st Qu.: 0.4700 1st Qu.:2.119 1st Qu.:-2.1203 1st Qu.:-7.763
## Median : 0.6419 Median :2.320 Median :-1.8326 Median :-7.470
## Mean : 0.6730 Mean :2.318 Mean :-1.8544 Mean :-7.483
## 3rd Qu.: 0.8755 3rd Qu.:2.497 3rd Qu.:-1.6094 3rd Qu.:-7.209
## Max. : 1.5261 Max. :2.881 Max. :-0.7765 Max. :-6.166
## Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
## Min. :-1.8971 Min. :-9.937 Min. :-3.3242 Min. :-3.689
## 1st Qu.:-0.9676 1st Qu.:-6.630 1st Qu.:-1.8326 1st Qu.:-2.773
## Median :-0.6733 Median :-5.703 Median :-1.6094 Median :-2.526
## Mean :-0.6354 Mean :-5.578 Mean :-1.5833 Mean :-2.494
## 3rd Qu.:-0.3147 3rd Qu.:-4.539 3rd Qu.:-1.3667 3rd Qu.:-2.207
## Max. : 0.9555 Max. :-2.153 Max. :-0.2744 Max. :-1.238
## Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H
## Min. :0.470 Min. :0.5911 Min. :-2.23379
## 1st Qu.:1.209 1st Qu.:2.3344 1st Qu.:-0.59782
## Median :1.411 Median :2.8181 Median :-0.37005
## Mean :1.440 Mean :2.8062 Mean :-0.32122
## 3rd Qu.:1.668 3rd Qu.:3.2863 3rd Qu.:-0.06112
## Max. :2.272 Max. :5.4442 Max. : 0.92696
## B_Lymphocyte_Chemoattractant_BL BMP_6 Beta_2_Microglobulin
## Min. :0.7318 Min. :-2.7612 Min. :-0.54473
## 1st Qu.:1.6731 1st Qu.:-2.1516 1st Qu.:-0.04082
## Median :1.9805 Median :-1.8774 Median : 0.18232
## Mean :2.0175 Mean :-1.9114 Mean : 0.16757
## 3rd Qu.:2.3714 3rd Qu.:-1.6753 3rd Qu.: 0.33647
## Max. :4.0237 Max. :-0.8166 Max. : 0.99325
## Betacellulin C_Reactive_Protein CD40 CD5L
## Min. :10.00 Min. :-8.517 Min. :-1.8644 Min. :-1.23787
## 1st Qu.:42.00 1st Qu.:-6.645 1st Qu.:-1.3761 1st Qu.:-0.35667
## Median :51.00 Median :-5.843 Median :-1.2734 Median :-0.06188
## Mean :51.01 Mean :-5.874 Mean :-1.2584 Mean :-0.05310
## 3rd Qu.:59.00 3rd Qu.:-5.083 3rd Qu.:-1.1238 3rd Qu.: 0.26236
## Max. :82.00 Max. :-2.937 Max. :-0.5475 Max. : 1.16315
## Calbindin Calcitonin CgA Clusterin_Apo_J
## Min. :10.96 Min. :-0.7134 Min. :135.6 Min. :1.872
## 1st Qu.:19.77 1st Qu.: 0.9555 1st Qu.:278.0 1st Qu.:2.708
## Median :22.25 Median : 1.6487 Median :331.5 Median :2.890
## Mean :22.43 Mean : 1.6788 Mean :333.3 Mean :2.882
## 3rd Qu.:24.80 3rd Qu.: 2.2824 3rd Qu.:392.1 3rd Qu.:3.045
## Max. :33.78 Max. : 3.8918 Max. :535.4 Max. :3.584
## Complement_3 Complement_Factor_H Connective_Tissue_Growth_Factor
## Min. :-23.387 Min. :-0.8387 Min. :0.1823
## 1st Qu.:-17.567 1st Qu.: 2.7531 1st Qu.:0.6419
## Median :-15.524 Median : 3.6000 Median :0.7885
## Mean :-15.610 Mean : 3.5541 Mean :0.7739
## 3rd Qu.:-13.882 3rd Qu.: 4.2548 3rd Qu.:0.9163
## Max. : -9.563 Max. : 7.6238 Max. :1.4110
## Cortisol Creatine_Kinase_MB Cystatin_C EGF_R
## Min. : 0.10 Min. :-1.872 Min. :7.432 Min. :-1.36135
## 1st Qu.: 9.80 1st Qu.:-1.724 1st Qu.:8.321 1st Qu.:-0.85727
## Median :12.00 Median :-1.671 Median :8.564 Median :-0.68354
## Mean :11.98 Mean :-1.674 Mean :8.586 Mean :-0.70130
## 3rd Qu.:14.00 3rd Qu.:-1.626 3rd Qu.:8.839 3rd Qu.:-0.54612
## Max. :29.00 Max. :-1.384 Max. :9.694 Max. :-0.06112
## EN_RAGE ENA_78 Eotaxin_3 FAS
## Min. :-8.3774 Min. :-1.405 Min. : 7.00 Min. :-1.5141
## 1st Qu.:-4.1997 1st Qu.:-1.381 1st Qu.: 44.00 1st Qu.:-0.7133
## Median :-3.6497 Median :-1.374 Median : 59.00 Median :-0.5276
## Mean :-3.6353 Mean :-1.372 Mean : 58.17 Mean :-0.5291
## 3rd Qu.:-3.1466 3rd Qu.:-1.364 3rd Qu.: 70.00 3rd Qu.:-0.3147
## Max. :-0.3857 Max. :-1.339 Max. :107.00 Max. : 0.3365
## FSH_Follicle_Stimulation_Hormon Fas_Ligand Fatty_Acid_Binding_Protein
## Min. :-2.11511 Min. :-0.1536 Min. :-1.0441
## 1st Qu.:-1.46606 1st Qu.: 2.3415 1st Qu.: 0.7998
## Median :-1.13570 Median : 3.1015 Median : 1.3865
## Mean :-1.14259 Mean : 2.9680 Mean : 1.3529
## 3rd Qu.:-0.87620 3rd Qu.: 3.6950 3rd Qu.: 1.8847
## Max. : 0.09715 Max. : 7.6328 Max. : 3.7055
## Ferritin Fetuin_A Fibrinogen GRO_alpha
## Min. :0.6077 Min. :0.470 Min. :-8.874 Min. :1.271
## 1st Qu.:2.2895 1st Qu.:1.099 1st Qu.:-7.717 1st Qu.:1.351
## Median :2.7749 Median :1.308 Median :-7.323 Median :1.382
## Mean :2.7646 Mean :1.350 Mean :-7.356 Mean :1.378
## 3rd Qu.:3.2915 3rd Qu.:1.609 3rd Qu.:-7.013 3rd Qu.:1.406
## Max. :4.6333 Max. :2.251 Max. :-5.843 Max. :1.495
## Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
## Min. :2.393 Min. :0.5238
## 1st Qu.:2.707 1st Qu.:0.8439
## Median :2.783 Median :0.9677
## Mean :2.786 Mean :0.9512
## 3rd Qu.:2.873 3rd Qu.:1.0344
## Max. :3.065 Max. :1.3176
## HB_EGF HCC_4 Hepatocyte_Growth_Factor_HGF I_309
## Min. : 2.103 Min. :-4.510 Min. :-0.6349 Min. :1.758
## 1st Qu.: 5.786 1st Qu.:-3.730 1st Qu.: 0.0000 1st Qu.:2.708
## Median : 6.703 Median :-3.507 Median : 0.1823 Median :2.944
## Mean : 6.833 Mean :-3.500 Mean : 0.1963 Mean :2.958
## 3rd Qu.: 7.865 3rd Qu.:-3.270 3rd Qu.: 0.4055 3rd Qu.:3.219
## Max. :10.695 Max. :-2.120 Max. : 0.8755 Max. :4.143
## ICAM_1 IGF_BP_2 IL_11 IL_13
## Min. :-1.5332 Min. :4.635 Min. :1.755 Min. :1.259
## 1st Qu.:-0.8298 1st Qu.:5.179 1st Qu.:3.706 1st Qu.:1.274
## Median :-0.5903 Median :5.323 Median :4.805 Median :1.283
## Mean :-0.5908 Mean :5.317 Mean :4.725 Mean :1.284
## 3rd Qu.:-0.3828 3rd Qu.:5.453 3rd Qu.:5.776 3rd Qu.:1.290
## Max. : 0.5171 Max. :5.948 Max. :8.491 Max. :1.321
## IL_16 IL_17E IL_1alpha IL_3
## Min. :1.187 Min. :1.052 Min. :-8.517 Min. :-5.915
## 1st Qu.:2.521 1st Qu.:4.149 1st Qu.:-7.824 1st Qu.:-4.269
## Median :2.909 Median :4.749 Median :-7.524 Median :-3.912
## Mean :2.929 Mean :4.855 Mean :-7.514 Mean :-3.941
## 3rd Qu.:3.351 3rd Qu.:5.631 3rd Qu.:-7.264 3rd Qu.:-3.631
## Max. :4.937 Max. :8.952 Max. :-5.952 Max. :-2.453
## IL_4 IL_5 IL_6 IL_6_Receptor
## Min. :0.5306 Min. :-1.4271 Min. :-1.5343 Min. :-0.67562
## 1st Qu.:1.4586 1st Qu.:-0.1221 1st Qu.:-0.4127 1st Qu.:-0.12541
## Median :1.8083 Median : 0.1823 Median :-0.1599 Median : 0.09669
## Mean :1.7732 Mean : 0.1866 Mean :-0.1540 Mean : 0.09492
## 3rd Qu.:2.1459 3rd Qu.: 0.4700 3rd Qu.: 0.1410 3rd Qu.: 0.35404
## Max. :3.0445 Max. : 1.9459 Max. : 1.8138 Max. : 0.83099
## IL_7 IL_8 IP_10_Inducible_Protein_10 IgA
## Min. :0.5598 Min. :1.574 Min. :4.317 Min. :-10.520
## 1st Qu.:2.1548 1st Qu.:1.680 1st Qu.:5.398 1st Qu.: -6.645
## Median :2.7934 Median :1.705 Median :5.753 Median : -6.119
## Mean :2.8392 Mean :1.704 Mean :5.755 Mean : -6.121
## 3rd Qu.:3.7055 3rd Qu.:1.728 3rd Qu.:6.064 3rd Qu.: -5.573
## Max. :5.7056 Max. :1.807 Max. :7.501 Max. : -4.200
## Insulin Kidney_Injury_Molecule_1_KIM_1 LOX_1
## Min. :-2.1692 Min. :-1.256 Min. :0.000
## 1st Qu.:-1.4466 1st Qu.:-1.204 1st Qu.:1.030
## Median :-1.2462 Median :-1.183 Median :1.281
## Mean :-1.2329 Mean :-1.185 Mean :1.283
## 3rd Qu.:-1.0340 3rd Qu.:-1.164 3rd Qu.:1.526
## Max. :-0.1586 Max. :-1.105 Max. :2.272
## Leptin Lipoprotein_a MCP_1 MCP_2
## Min. :-2.1468 Min. :-6.812 Min. :5.826 Min. :0.4006
## 1st Qu.:-1.6996 1st Qu.:-5.308 1st Qu.:6.319 1st Qu.:1.5304
## Median :-1.5047 Median :-4.605 Median :6.494 Median :1.8528
## Mean :-1.5042 Mean :-4.417 Mean :6.497 Mean :1.8691
## 3rd Qu.:-1.3295 3rd Qu.:-3.490 3rd Qu.:6.678 3rd Qu.:2.1821
## Max. :-0.6206 Max. :-1.386 Max. :7.230 Max. :4.0237
## MIF MIP_1alpha MIP_1beta MMP_2
## Min. :-2.847 Min. :0.9346 Min. :1.946 Min. :0.09809
## 1st Qu.:-2.120 1st Qu.:3.3377 1st Qu.:2.565 1st Qu.:2.33214
## Median :-1.897 Median :4.0495 Median :2.833 Median :2.81512
## Mean :-1.864 Mean :4.0489 Mean :2.814 Mean :2.87534
## 3rd Qu.:-1.661 3rd Qu.:4.6857 3rd Qu.:3.045 3rd Qu.:3.55121
## Max. :-0.844 Max. :6.7959 Max. :4.007 Max. :5.35895
## MMP_3 MMP10 MMP7 Myoglobin
## Min. :-4.4228 Min. :-4.934 Min. :-8.3975 Min. :-3.1701
## 1st Qu.:-2.7489 1st Qu.:-3.938 1st Qu.:-4.8199 1st Qu.:-2.0402
## Median :-2.4534 Median :-3.650 Median :-3.7735 Median :-1.4697
## Mean :-2.4455 Mean :-3.635 Mean :-3.7894 Mean :-1.3671
## 3rd Qu.:-2.1203 3rd Qu.:-3.352 3rd Qu.:-2.7140 3rd Qu.:-0.7988
## Max. :-0.5276 Max. :-2.207 Max. :-0.2222 Max. : 1.7750
## NT_proBNP NrCAM Osteopontin PAI_1
## Min. :3.178 Min. :2.639 Min. :4.111 Min. :-0.99085
## 1st Qu.:4.350 1st Qu.:3.998 1st Qu.:4.963 1st Qu.:-0.16655
## Median :4.554 Median :4.394 Median :5.187 Median : 0.09396
## Mean :4.552 Mean :4.362 Mean :5.204 Mean : 0.07743
## 3rd Qu.:4.775 3rd Qu.:4.749 3rd Qu.:5.442 3rd Qu.: 0.32005
## Max. :5.886 Max. :6.011 Max. :6.308 Max. : 1.16611
## PAPP_A PLGF PYY Pancreatic_polypeptide
## Min. :-3.311 Min. :2.485 Min. :2.186 Min. :-2.12026
## 1st Qu.:-2.936 1st Qu.:3.638 1st Qu.:2.833 1st Qu.:-0.52763
## Median :-2.871 Median :3.871 Median :2.996 Median :-0.04082
## Mean :-2.854 Mean :3.912 Mean :3.015 Mean :-0.01323
## 3rd Qu.:-2.749 3rd Qu.:4.205 3rd Qu.:3.178 3rd Qu.: 0.53063
## Max. :-2.520 Max. :5.170 Max. :3.932 Max. : 1.93152
## Prolactin Prostatic_Acid_Phosphatase Protein_S
## Min. :-1.30933 Min. :-1.934 Min. :-3.338
## 1st Qu.:-0.13926 1st Qu.:-1.717 1st Qu.:-2.464
## Median : 0.00000 Median :-1.690 Median :-2.259
## Mean : 0.04495 Mean :-1.685 Mean :-2.240
## 3rd Qu.: 0.25799 3rd Qu.:-1.654 3rd Qu.:-2.000
## Max. : 0.99325 Max. :-1.424 Max. :-1.221
## Pulmonary_and_Activation_Regulat RANTES Resistin
## Min. :-2.5133 Min. :-7.222 Min. :-34.967
## 1st Qu.:-1.8326 1st Qu.:-6.725 1st Qu.:-21.468
## Median :-1.5141 Median :-6.502 Median :-17.466
## Mean :-1.4880 Mean :-6.511 Mean :-17.641
## 3rd Qu.:-1.1712 3rd Qu.:-6.320 3rd Qu.:-13.501
## Max. :-0.2744 Max. :-5.547 Max. : -2.239
## S100b SGOT SHBG SOD
## Min. :0.1874 Min. :-1.3471 Min. :-4.135 Min. :4.317
## 1st Qu.:1.0012 1st Qu.:-0.6349 1st Qu.:-2.813 1st Qu.:5.094
## Median :1.2544 Median :-0.4005 Median :-2.489 Median :5.366
## Mean :1.2505 Mean :-0.4057 Mean :-2.477 Mean :5.336
## 3rd Qu.:1.4996 3rd Qu.:-0.1985 3rd Qu.:-2.120 3rd Qu.:5.583
## Max. :2.3726 Max. : 0.7419 Max. :-1.109 Max. :6.317
## Serum_Amyloid_P Sortilin Stem_Cell_Factor TGF_alpha
## Min. :-7.506 Min. :1.654 Min. :2.251 Min. : 6.843
## 1st Qu.:-6.377 1st Qu.:3.343 1st Qu.:3.045 1st Qu.: 8.859
## Median :-6.032 Median :3.867 Median :3.296 Median : 9.919
## Mean :-6.017 Mean :3.852 Mean :3.301 Mean : 9.801
## 3rd Qu.:-5.655 3rd Qu.:4.371 3rd Qu.:3.526 3rd Qu.:10.695
## Max. :-4.646 Max. :6.225 Max. :4.277 Max. :13.827
## TIMP_1 TNF_RII TRAIL_R3 TTR_prealbumin
## Min. : 1.742 Min. :-1.6607 Min. :-1.2107 Min. :2.485
## 1st Qu.:10.490 1st Qu.:-0.8210 1st Qu.:-0.7008 1st Qu.:2.773
## Median :11.565 Median :-0.5978 Median :-0.5317 Median :2.833
## Mean :11.750 Mean :-0.5939 Mean :-0.5394 Mean :2.854
## 3rd Qu.:12.697 3rd Qu.:-0.3784 3rd Qu.:-0.3849 3rd Qu.:2.944
## Max. :18.881 Max. : 0.4700 Max. : 0.2694 Max. :3.332
## Tamm_Horsfall_Protein_THP Thrombomodulin Thrombopoietin
## Min. :-3.206 Min. :-2.0377 Min. :-1.53957
## 1st Qu.:-3.137 1st Qu.:-1.6256 1st Qu.:-0.88645
## Median :-3.117 Median :-1.4920 Median :-0.75100
## Mean :-3.116 Mean :-1.5050 Mean :-0.75419
## 3rd Qu.:-3.096 3rd Qu.:-1.3406 3rd Qu.:-0.62887
## Max. :-2.995 Max. :-0.8166 Max. : 0.09762
## Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
## Min. :1.508 Min. :-6.190
## 1st Qu.:3.343 1st Qu.:-4.962
## Median :3.810 Median :-4.510
## Mean :3.848 Mean :-4.499
## 3rd Qu.:4.316 3rd Qu.:-4.017
## Max. :6.225 Max. :-1.715
## Thyroxine_Binding_Globulin Tissue_Factor Transferrin
## Min. :-2.4769 Min. :-0.2107 Min. :1.932
## 1st Qu.:-1.7720 1st Qu.: 0.8329 1st Qu.:2.708
## Median :-1.5141 Median : 1.2238 Median :2.890
## Mean :-1.4788 Mean : 1.1702 Mean :2.909
## 3rd Qu.:-1.2379 3rd Qu.: 1.4816 3rd Qu.:3.091
## Max. :-0.2107 Max. : 2.4849 Max. :3.761
## Trefoil_Factor_3_TFF3 VCAM_1 VEGF Vitronectin
## Min. :-4.744 Min. :1.723 Min. :11.83 Min. :-1.42712
## 1st Qu.:-4.135 1st Qu.:2.485 1st Qu.:15.77 1st Qu.:-0.51083
## Median :-3.863 Median :2.708 Median :17.08 Median :-0.30111
## Mean :-3.876 Mean :2.688 Mean :16.99 Mean :-0.28473
## 3rd Qu.:-3.650 3rd Qu.:2.890 3rd Qu.:18.10 3rd Qu.:-0.03564
## Max. :-2.957 Max. :3.689 Max. :22.38 Max. : 0.53063
## von_Willebrand_Factor Class E4 E3
## Min. :-4.991 Impaired: 73 Min. :1.000 Min. :1.000
## 1st Qu.:-4.200 Control :194 1st Qu.:1.000 1st Qu.:2.000
## Median :-3.912 Median :1.000 Median :2.000
## Mean :-3.906 Mean :1.401 Mean :1.918
## 3rd Qu.:-3.612 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :-2.957 Max. :2.000 Max. :2.000
## E2
## Min. :1.000
## 1st Qu.:1.000
## Median :1.000
## Mean :1.161
## 3rd Qu.:1.000
## Max. :2.000
for (i in 1:ncol(PMA_PreModelling_Test)){
if (names(PMA_PreModelling_Test)[i]!="Class"){
<- as.numeric(PMA_PreModelling_Test[,i])
PMA_PreModelling_Test[,i]
}
}summary(PMA_PreModelling_Test)
## ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon
## Min. :-0.5473 Min. :-2.2073
## 1st Qu.: 0.9462 1st Qu.:-1.7148
## Median : 1.3013 Median :-1.5374
## Mean : 1.3105 Mean :-1.5311
## 3rd Qu.: 1.6320 3rd Qu.:-1.3863
## Max. : 3.0890 Max. :-0.7985
## AXL Adiponectin Alpha_1_Antichymotrypsin
## Min. :-0.73509 Min. :-7.059 Min. :0.1823
## 1st Qu.:-0.08175 1st Qu.:-5.737 1st Qu.:1.0647
## Median : 0.28035 Median :-5.360 Median :1.3083
## Mean : 0.25373 Mean :-5.298 Mean :1.3077
## 3rd Qu.: 0.60768 3rd Qu.:-4.917 3rd Qu.:1.5686
## Max. : 1.28634 Max. :-3.474 Max. :2.2192
## Alpha_1_Antitrypsin Alpha_1_Microglobulin Alpha_2_Macroglobulin
## Min. :-18.17 Min. :-4.135 Min. :-238.64
## 1st Qu.:-14.70 1st Qu.:-3.284 1st Qu.:-186.64
## Median :-13.59 Median :-3.006 Median :-162.93
## Mean :-13.49 Mean :-2.983 Mean :-162.89
## 3rd Qu.:-12.31 3rd Qu.:-2.674 3rd Qu.:-136.53
## Max. :-10.06 Max. :-1.897 Max. : -50.17
## Angiopoietin_2_ANG_2 Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1
## Min. :-0.05129 Min. :1.710 Min. :-2.749 Min. :-8.568
## 1st Qu.: 0.35372 1st Qu.:2.068 1st Qu.:-2.186 1st Qu.:-7.818
## Median : 0.55921 Median :2.276 Median :-1.897 Median :-7.497
## Mean : 0.60278 Mean :2.274 Mean :-1.867 Mean :-7.488
## 3rd Qu.: 0.78846 3rd Qu.:2.430 3rd Qu.:-1.526 3rd Qu.:-7.176
## Max. : 1.77495 Max. :2.752 Max. :-1.109 Max. :-6.645
## Apolipoprotein_A2 Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII
## Min. :-1.9661 Min. :-8.192 Min. :-2.847 Min. :-3.863
## 1st Qu.:-0.9416 1st Qu.:-6.748 1st Qu.:-1.897 1st Qu.:-2.781
## Median :-0.7032 Median :-5.819 Median :-1.609 Median :-2.557
## Mean :-0.6902 Mean :-5.649 Mean :-1.625 Mean :-2.523
## 3rd Qu.:-0.3533 3rd Qu.:-4.603 3rd Qu.:-1.309 3rd Qu.:-2.231
## Max. : 0.5306 Max. :-2.339 Max. :-0.462 Max. :-1.386
## Apolipoprotein_D Apolipoprotein_E Apolipoprotein_H
## Min. :0.2624 Min. :0.6626 Min. :-1.1609
## 1st Qu.:1.1314 1st Qu.:2.1526 1st Qu.:-0.5317
## Median :1.3863 Median :2.8181 Median :-0.2897
## Mean :1.3943 Mean :2.7160 Mean :-0.3212
## 3rd Qu.:1.6864 3rd Qu.:3.2363 3rd Qu.:-0.1032
## Max. :2.6391 Max. :4.6844 Max. : 0.4402
## B_Lymphocyte_Chemoattractant_BL BMP_6 Beta_2_Microglobulin
## Min. :0.7318 Min. :-2.669 Min. :-0.51083
## 1st Qu.:1.5304 1st Qu.:-2.152 1st Qu.:-0.06188
## Median :1.8528 Median :-1.964 Median : 0.18232
## Mean :1.8766 Mean :-1.937 Mean : 0.15566
## 3rd Qu.:2.3714 3rd Qu.:-1.675 3rd Qu.: 0.40547
## Max. :2.9757 Max. :-1.181 Max. : 0.83291
## Betacellulin C_Reactive_Protein CD40 CD5L
## Min. :32.00 Min. :-8.112 Min. :-1.9390 Min. :-1.96611
## 1st Qu.:46.00 1st Qu.:-6.725 1st Qu.:-1.4420 1st Qu.:-0.36747
## Median :51.00 Median :-6.166 Median :-1.2574 Median :-0.05135
## Mean :52.74 Mean :-5.997 Mean :-1.2773 Mean :-0.08760
## 3rd Qu.:59.75 3rd Qu.:-5.369 3rd Qu.:-1.1034 3rd Qu.: 0.24235
## Max. :80.00 Max. :-3.411 Max. :-0.7766 Max. : 0.91629
## Calbindin Calcitonin CgA Clusterin_Apo_J
## Min. :10.81 Min. :-0.7134 Min. :166.6 Min. :1.932
## 1st Qu.:18.88 1st Qu.: 1.2014 1st Qu.:268.2 1st Qu.:2.565
## Median :21.06 Median : 1.6849 Median :324.7 Median :2.833
## Mean :21.49 Mean : 1.7250 Mean :320.2 Mean :2.845
## 3rd Qu.:24.00 3rd Qu.: 2.2618 3rd Qu.:362.3 3rd Qu.:3.045
## Max. :35.36 Max. : 4.1109 Max. :494.5 Max. :3.761
## Complement_3 Complement_Factor_H Connective_Tissue_Growth_Factor
## Min. :-22.40 Min. :0.2766 Min. :0.09531
## 1st Qu.:-17.50 1st Qu.:2.6019 1st Qu.:0.58779
## Median :-15.90 Median :3.3983 Median :0.74194
## Mean :-15.91 Mean :3.3897 Mean :0.74507
## 3rd Qu.:-14.34 3rd Qu.:4.2548 3rd Qu.:0.87547
## Max. :-10.23 Max. :6.5597 Max. :1.41099
## Cortisol Creatine_Kinase_MB Cystatin_C EGF_R
## Min. : 0.10 Min. :-1.872 Min. :7.728 Min. :-1.2694
## 1st Qu.: 8.90 1st Qu.:-1.721 1st Qu.:8.301 1st Qu.:-0.8859
## Median :10.00 Median :-1.651 Median :8.544 Median :-0.6917
## Mean :10.46 Mean :-1.652 Mean :8.576 Mean :-0.6965
## 3rd Qu.:12.00 3rd Qu.:-1.590 3rd Qu.:8.837 3rd Qu.:-0.5034
## Max. :22.00 Max. :-1.434 Max. :9.694 Max. : 0.1891
## EN_RAGE ENA_78 Eotaxin_3 FAS
## Min. :-8.3774 Min. :-1.405 Min. : 23.00 Min. :-1.1087
## 1st Qu.:-4.1836 1st Qu.:-1.382 1st Qu.: 43.00 1st Qu.:-0.7133
## Median :-3.6889 Median :-1.374 Median : 54.00 Median :-0.5798
## Mean :-3.5986 Mean :-1.376 Mean : 55.55 Mean :-0.5414
## 3rd Qu.:-3.2189 3rd Qu.:-1.368 3rd Qu.: 64.00 3rd Qu.:-0.3355
## Max. :-0.8675 Max. :-1.353 Max. :107.00 Max. : 0.1823
## FSH_Follicle_Stimulation_Hormon Fas_Ligand Fatty_Acid_Binding_Protein
## Min. :-1.8101 Min. :0.288 Min. :-0.4559
## 1st Qu.:-1.2694 1st Qu.:2.073 1st Qu.: 0.7998
## Median :-0.9763 Median :2.665 Median : 1.1866
## Mean :-1.0597 Mean :2.649 Mean : 1.2884
## 3rd Qu.:-0.8068 3rd Qu.:3.162 3rd Qu.: 1.9192
## Max. :-0.4757 Max. :5.377 Max. : 3.2188
## Ferritin Fetuin_A Fibrinogen GRO_alpha
## Min. :0.8983 Min. :0.5306 Min. :-9.373 Min. :1.271
## 1st Qu.:2.1473 1st Qu.:1.0296 1st Qu.:-7.799 1st Qu.:1.351
## Median :2.6260 Median :1.3083 Median :-7.316 Median :1.372
## Mean :2.7069 Mean :1.3116 Mean :-7.360 Mean :1.378
## 3rd Qu.:3.1672 3rd Qu.:1.6094 3rd Qu.:-6.970 3rd Qu.:1.398
## Max. :4.9282 Max. :2.2083 Max. :-6.166 Max. :1.514
## Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha
## Min. :2.545 Min. :0.5661
## 1st Qu.:2.698 1st Qu.:0.8257
## Median :2.768 Median :0.9493
## Mean :2.772 Mean :0.9440
## 3rd Qu.:2.829 3rd Qu.:1.0457
## Max. :3.046 Max. :1.3102
## HB_EGF HCC_4 Hepatocyte_Growth_Factor_HGF I_309
## Min. : 3.521 Min. :-4.343 Min. :-0.61619 Min. :2.041
## 1st Qu.: 5.949 1st Qu.:-3.772 1st Qu.:-0.05661 1st Qu.:2.724
## Median : 6.980 Median :-3.540 Median : 0.18232 Median :2.944
## Mean : 6.844 Mean :-3.538 Mean : 0.18076 Mean :2.921
## 3rd Qu.: 7.745 3rd Qu.:-3.352 3rd Qu.: 0.33647 3rd Qu.:3.135
## Max. :10.359 Max. :-2.489 Max. : 1.09861 Max. :3.689
## ICAM_1 IGF_BP_2 IL_11 IL_13
## Min. :-1.4661 Min. :4.718 Min. :2.031 Min. :1.232
## 1st Qu.:-0.7671 1st Qu.:5.127 1st Qu.:3.960 1st Qu.:1.274
## Median :-0.5903 Median :5.255 Median :4.838 Median :1.283
## Mean :-0.5958 Mean :5.263 Mean :4.651 Mean :1.283
## 3rd Qu.:-0.3574 3rd Qu.:5.402 3rd Qu.:5.482 3rd Qu.:1.292
## Max. : 0.3602 Max. :5.916 Max. :8.692 Max. :1.310
## IL_16 IL_17E IL_1alpha IL_3
## Min. :0.9568 Min. :1.582 Min. :-8.468 Min. :-5.521
## 1st Qu.:2.4411 1st Qu.:3.637 1st Qu.:-7.849 1st Qu.:-4.324
## Median :2.8763 Median :4.723 Median :-7.562 Median :-3.963
## Mean :2.8176 Mean :4.774 Mean :-7.549 Mean :-3.976
## 3rd Qu.:3.3514 3rd Qu.:5.415 3rd Qu.:-7.279 3rd Qu.:-3.576
## Max. :4.1028 Max. :8.081 Max. :-6.377 Max. :-3.079
## IL_4 IL_5 IL_6 IL_6_Receptor
## Min. :0.5306 Min. :-1.04982 Min. :-1.53428 Min. :-0.74560
## 1st Qu.:1.4586 1st Qu.:-0.03062 1st Qu.:-0.40924 1st Qu.:-0.20131
## Median :1.7226 Median : 0.22234 Median :-0.07205 Median : 0.00000
## Mean :1.7445 Mean : 0.22853 Mean :-0.05216 Mean : 0.06213
## 3rd Qu.:2.0669 3rd Qu.: 0.53063 3rd Qu.: 0.34805 3rd Qu.: 0.27297
## Max. :2.7081 Max. : 1.13140 Max. : 1.00562 Max. : 0.77048
## IL_7 IL_8 IP_10_Inducible_Protein_10 IgA
## Min. :1.310 Min. :1.615 Min. :4.263 Min. :-7.621
## 1st Qu.:2.379 1st Qu.:1.684 1st Qu.:5.323 1st Qu.:-6.571
## Median :3.148 Median :1.702 Median :5.617 Median :-6.012
## Mean :3.143 Mean :1.704 Mean :5.636 Mean :-6.066
## 3rd Qu.:3.706 3rd Qu.:1.725 3rd Qu.:5.917 3rd Qu.:-5.606
## Max. :5.000 Max. :1.836 Max. :7.208 Max. :-4.733
## Insulin Kidney_Injury_Molecule_1_KIM_1 LOX_1
## Min. :-2.0099 Min. :-1.251 Min. :0.0000
## 1st Qu.:-1.4466 1st Qu.:-1.209 1st Qu.:0.9649
## Median :-1.2169 Median :-1.187 Median :1.2238
## Mean :-1.1998 Mean :-1.188 Mean :1.2085
## 3rd Qu.:-1.0105 3rd Qu.:-1.166 3rd Qu.:1.4351
## Max. :-0.5025 Max. :-1.124 Max. :2.3979
## Leptin Lipoprotein_a MCP_1 MCP_2
## Min. :-1.9471 Min. :-6.571 Min. :5.889 Min. :0.4006
## 1st Qu.:-1.6334 1st Qu.:-5.116 1st Qu.:6.318 1st Qu.:1.5304
## Median :-1.4294 Median :-4.657 Median :6.482 Median :1.8528
## Mean :-1.4363 Mean :-4.515 Mean :6.480 Mean :1.8104
## 3rd Qu.:-1.2409 3rd Qu.:-4.017 3rd Qu.:6.627 3rd Qu.:2.0827
## Max. :-0.8387 Max. :-2.040 Max. :7.065 Max. :3.7545
## MIF MIP_1alpha MIP_1beta MMP_2
## Min. :-2.797 Min. :1.008 Min. :1.917 Min. :0.6248
## 1st Qu.:-2.120 1st Qu.:3.302 1st Qu.:2.485 1st Qu.:2.5513
## Median :-1.966 Median :3.736 Median :2.773 Median :2.9937
## Mean :-1.932 Mean :3.898 Mean :2.784 Mean :3.0347
## 3rd Qu.:-1.715 3rd Qu.:4.686 3rd Qu.:3.079 3rd Qu.:3.4798
## Max. :-1.109 Max. :5.735 Max. :3.784 Max. :6.0996
## MMP_3 MMP10 MMP7 Myoglobin
## Min. :-3.650 Min. :-4.948 Min. :-7.5346 Min. :-3.2968
## 1st Qu.:-2.852 1st Qu.:-4.075 1st Qu.:-4.9634 1st Qu.:-2.0217
## Median :-2.532 Median :-3.612 Median :-4.0302 Median :-1.5874
## Mean :-2.490 Mean :-3.676 Mean :-4.0148 Mean :-1.4165
## 3rd Qu.:-2.120 3rd Qu.:-3.331 3rd Qu.:-3.1640 3rd Qu.:-0.7765
## Max. :-1.171 Max. :-2.900 Max. :-0.1953 Max. : 1.1314
## NT_proBNP NrCAM Osteopontin PAI_1
## Min. :3.611 Min. :2.890 Min. :4.078 Min. :-0.990849
## 1st Qu.:4.174 1st Qu.:3.871 1st Qu.:4.892 1st Qu.:-0.334043
## Median :4.477 Median :4.317 Median :5.168 Median : 0.000000
## Mean :4.488 Mean :4.291 Mean :5.177 Mean :-0.003947
## 3rd Qu.:4.794 3rd Qu.:4.725 3rd Qu.:5.410 3rd Qu.: 0.303112
## Max. :5.398 Max. :5.690 Max. :6.315 Max. : 0.885785
## PAPP_A PLGF PYY Pancreatic_polypeptide
## Min. :-3.152 Min. :2.639 Min. :2.398 Min. :-1.609438
## 1st Qu.:-2.971 1st Qu.:3.689 1st Qu.:2.833 1st Qu.:-0.506693
## Median :-2.841 Median :3.892 Median :2.996 Median : 0.138816
## Mean :-2.845 Mean :3.884 Mean :2.976 Mean :-0.005258
## 3rd Qu.:-2.719 3rd Qu.:4.123 3rd Qu.:3.178 3rd Qu.: 0.470004
## Max. :-2.488 Max. :4.710 Max. :3.738 Max. : 1.504077
## Prolactin Prostatic_Acid_Phosphatase Protein_S
## Min. :-0.38566 Min. :-1.800 Min. :-3.154
## 1st Qu.:-0.16558 1st Qu.:-1.739 1st Qu.:-2.579
## Median : 0.00000 Median :-1.690 Median :-2.259
## Mean : 0.05195 Mean :-1.692 Mean :-2.268
## 3rd Qu.: 0.18232 3rd Qu.:-1.659 3rd Qu.:-1.924
## Max. : 0.78846 Max. :-1.540 Max. :-1.547
## Pulmonary_and_Activation_Regulat RANTES Resistin
## Min. :-2.4418 Min. :-7.236 Min. :-30.156
## 1st Qu.:-1.8326 1st Qu.:-6.725 1st Qu.:-22.131
## Median :-1.5141 Median :-6.571 Median :-18.014
## Mean :-1.5007 Mean :-6.540 Mean :-18.245
## 3rd Qu.:-1.1712 3rd Qu.:-6.392 3rd Qu.:-15.202
## Max. :-0.4463 Max. :-5.843 Max. : -6.594
## S100b SGOT SHBG SOD
## Min. :0.1874 Min. :-1.8971 Min. :-3.730 Min. :4.382
## 1st Qu.:0.9600 1st Qu.:-0.7498 1st Qu.:-3.052 1st Qu.:5.006
## Median :1.1571 Median :-0.4780 Median :-2.711 Median :5.313
## Mean :1.1819 Mean :-0.4898 Mean :-2.686 Mean :5.302
## 3rd Qu.:1.3807 3rd Qu.:-0.2138 3rd Qu.:-2.343 3rd Qu.:5.547
## Max. :2.1950 Max. : 0.1823 Max. :-1.561 Max. :6.461
## Serum_Amyloid_P Sortilin Stem_Cell_Factor TGF_alpha
## Min. :-7.182 Min. :1.508 Min. :2.219 Min. : 7.500
## 1st Qu.:-6.438 1st Qu.:3.177 1st Qu.:3.045 1st Qu.: 9.062
## Median :-6.215 Median :3.867 Median :3.314 Median : 9.596
## Mean :-6.083 Mean :3.787 Mean :3.267 Mean : 9.776
## 3rd Qu.:-5.607 3rd Qu.:4.371 3rd Qu.:3.466 3rd Qu.:10.612
## Max. :-4.699 Max. :5.681 Max. :4.078 Max. :13.083
## TIMP_1 TNF_RII TRAIL_R3 TTR_prealbumin
## Min. : 8.198 Min. :-1.6607 Min. :-1.30636 Min. :2.485
## 1st Qu.:10.530 1st Qu.:-0.8675 1st Qu.:-0.73332 1st Qu.:2.773
## Median :11.341 Median :-0.6541 Median :-0.55547 Median :2.890
## Mean :11.520 Mean :-0.6270 Mean :-0.58640 Mean :2.854
## 3rd Qu.:12.352 3rd Qu.:-0.3320 3rd Qu.:-0.47065 3rd Qu.:2.944
## Max. :16.547 Max. : 0.4055 Max. : 0.09622 Max. :3.091
## Tamm_Horsfall_Protein_THP Thrombomodulin Thrombopoietin
## Min. :-3.206 Min. :-2.054 Min. :-1.5396
## 1st Qu.:-3.144 1st Qu.:-1.675 1st Qu.:-0.8383
## Median :-3.126 Median :-1.534 Median :-0.7039
## Mean :-3.123 Mean :-1.533 Mean :-0.7192
## 3rd Qu.:-3.101 3rd Qu.:-1.341 3rd Qu.:-0.6289
## Max. :-3.041 Max. :-1.019 Max. :-0.3029
## Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
## Min. :2.141 Min. :-6.190
## 1st Qu.:3.283 1st Qu.:-4.733
## Median :3.753 Median :-4.269
## Mean :3.770 Mean :-4.221
## 3rd Qu.:4.316 3rd Qu.:-3.828
## Max. :5.681 Max. :-2.040
## Thyroxine_Binding_Globulin Tissue_Factor Transferrin
## Min. :-2.3026 Min. :0.0000 Min. :2.282
## 1st Qu.:-1.7148 1st Qu.:0.7053 1st Qu.:2.708
## Median :-1.4919 Median :1.1473 Median :2.890
## Mean :-1.4902 Mean :1.1356 Mean :2.900
## 3rd Qu.:-1.2379 3rd Qu.:1.5149 3rd Qu.:3.135
## Max. :-0.5978 Max. :2.7081 Max. :3.497
## Trefoil_Factor_3_TFF3 VCAM_1 VEGF Vitronectin
## Min. :-4.906 Min. :2.028 Min. :12.23 Min. :-1.07881
## 1st Qu.:-4.200 1st Qu.:2.420 1st Qu.:15.03 1st Qu.:-0.46204
## Median :-3.912 Median :2.674 Median :17.08 Median :-0.28106
## Mean :-3.947 Mean :2.644 Mean :16.70 Mean :-0.26833
## 3rd Qu.:-3.772 3rd Qu.:2.833 3rd Qu.:18.19 3rd Qu.:-0.05394
## Max. :-3.170 Max. :3.466 Max. :21.18 Max. : 0.40547
## von_Willebrand_Factor Class E4 E3
## Min. :-4.920 Impaired:18 Min. :1.000 Min. :1.000
## 1st Qu.:-4.269 Control :48 1st Qu.:1.000 1st Qu.:2.000
## Median :-4.017 Median :1.000 Median :2.000
## Mean :-4.014 Mean :1.303 Mean :1.985
## 3rd Qu.:-3.730 3rd Qu.:2.000 3rd Qu.:2.000
## Max. :-3.058 Max. :2.000 Max. :2.000
## E2
## Min. :1.000
## 1st Qu.:1.000
## Median :1.000
## Mean :1.061
## 3rd Qu.:1.000
## Max. :2.000
##################################
# Formulating a function to summarize
# model performance metrics
##################################
<- function(...) c(twoClassSummary(...), defaultSummary(...))
FiveMetricsSummary
##################################
# Creating consistent fold assignments
# for the Cross Validation process
##################################
set.seed(12345678)
<- createFolds(PMA_PreModelling_Train$Class ,
KFold_Indices k = 10,
returnTrain=TRUE)
##################################
# Creating a range of
# variable subsets for evaluation
##################################
<- seq(1, length(names(PMA_PreModelling_Train))-2, by=20)
VariableSubset
##################################
# Formulating the controls for the
# recursive feature elimination process
##################################
<- rfeControl(method = "cv",
KFold_RFEControl saveDetails = TRUE,
index = KFold_Indices,
returnResamp = "final")
##################################
# Formulating the controls for the
# model training process
##################################
<- trainControl(method = "cv",
KFold_TrainControl summaryFunction = FiveMetricsSummary,
classProbs = TRUE,
index = KFold_Indices)
##################################
# Running the random forest model
# by setting the caret method to 'rf'
##################################
set.seed(12345678)
<- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
RF_FULL_Tune y = PMA_PreModelling_Train$Class,
method = "rf",
metric = "ROC",
tuneGrid = data.frame(mtry = floor(sqrt(length(names(PMA_PreModelling_Train) %in% c("Class"))))),
ntree = 100,
trControl = KFold_TrainControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
RF_FULL_Tune
## Random Forest
##
## 267 samples
## 127 predictors
## 2 classes: 'Impaired', 'Control'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ...
## Resampling results:
##
## ROC Sens Spec Accuracy Kappa
## 0.7826833 0.3035714 0.9589474 0.7797517 0.3094392
##
## Tuning parameter 'mtry' was held constant at a value of 11
$finalModel RF_FULL_Tune
##
## Call:
## randomForest(x = x, y = y, ntree = 100, mtry = param$mtry)
## Type of random forest: classification
## Number of trees: 100
## No. of variables tried at each split: 11
##
## OOB estimate of error rate: 23.22%
## Confusion matrix:
## Impaired Control class.error
## Impaired 22 51 0.69863014
## Control 11 183 0.05670103
$results RF_FULL_Tune
## mtry ROC Sens Spec Accuracy Kappa ROCSD SensSD
## 1 11 0.7826833 0.3035714 0.9589474 0.7797517 0.3094392 0.1152203 0.191404
## SpecSD AccuracySD KappaSD
## 1 0.03201935 0.06273494 0.225028
<- RF_FULL_Tune$results[,c("ROC")]) (RF_FULL_Train_ROCCurveAUC
## [1] 0.7826833
##################################
# Identifying and plotting the
# best model predictors
##################################
<- varImp(RF_FULL_Tune, scale = TRUE)
RF_FULL_VarImp plot(RF_FULL_VarImp,
top=25,
scales=list(y=list(cex = .95)),
main="Ranked Variable Importance : Random Forest",
xlab="Scaled Variable Importance Metrics",
ylab="Predictors",
cex=2,
origin=0,
alpha=0.45)
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(RF_FULL_Observed = PMA_PreModelling_Test$Class,
RF_FULL_Test RF_FULL_Predicted = predict(RF_FULL_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = RF_FULL_Test$RF_FULL_Observed,
RF_FULL_Test_ROC predictor = RF_FULL_Test$RF_FULL_Predicted.Impaired,
levels = rev(levels(RF_FULL_Test$RF_FULL_Observed)))
<- auc(RF_FULL_Test_ROC)[1]) (RF_FULL_Test_ROCCurveAUC
## [1] 0.7980324
##################################
# Running the linear discriminant analysis model
# by setting the caret method to 'lda'
##################################
set.seed(12345678)
<- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
LDA_FULL_Tune y = PMA_PreModelling_Train$Class,
method = "lda",
metric = "ROC",
tol = 1.0e-12,
trControl = KFold_TrainControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
LDA_FULL_Tune
## Linear Discriminant Analysis
##
## 267 samples
## 127 predictors
## 2 classes: 'Impaired', 'Control'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ...
## Resampling results:
##
## ROC Sens Spec Accuracy Kappa
## 0.8015132 0.6428571 0.8142105 0.7675417 0.4377465
<- LDA_FULL_Tune$results[,c("ROC")]) (LDA_FULL_Train_ROCCurveAUC
## [1] 0.8015132
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(LDA_FULL_Observed = PMA_PreModelling_Test$Class,
LDA_FULL_Test LDA_FULL_Predicted = predict(LDA_FULL_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = LDA_FULL_Test$LDA_FULL_Observed,
LDA_FULL_Test_ROC predictor = LDA_FULL_Test$LDA_FULL_Predicted.Impaired,
levels = rev(levels(LDA_FULL_Test$LDA_FULL_Observed)))
<- auc(LDA_FULL_Test_ROC)[1]) (LDA_FULL_Test_ROCCurveAUC
## [1] 0.7719907
##################################
# Running the naive bayes model
# by setting the caret method to 'nb'
##################################
set.seed(12345678)
<- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
NB_FULL_Tune y = PMA_PreModelling_Train$Class,
method = "nb",
metric = "ROC",
trControl = KFold_TrainControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
NB_FULL_Tune
## Naive Bayes
##
## 267 samples
## 127 predictors
## 2 classes: 'Impaired', 'Control'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ...
## Resampling results across tuning parameters:
##
## usekernel ROC Sens Spec Accuracy Kappa
## FALSE 0.7333788 0.6089286 0.7363158 0.7006410 0.3162972
## TRUE 0.7390414 0.5821429 0.7518421 0.7043549 0.3064041
##
## Tuning parameter 'fL' was held constant at a value of 0
## Tuning
## parameter 'adjust' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were fL = 0, usekernel = TRUE and adjust
## = 1.
$finalModel NB_FULL_Tune
## $apriori
## grouping
## Impaired Control
## 0.2734082 0.7265918
##
## $tables
## $tables$ACE_CD143_Angiotensin_Converti
## $tables$ACE_CD143_Angiotensin_Converti$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1998
##
## x y
## Min. :-0.2455 Min. :0.0003209
## 1st Qu.: 0.5589 1st Qu.:0.0490299
## Median : 1.3633 Median :0.3461303
## Mean : 1.3633 Mean :0.3101593
## 3rd Qu.: 2.1677 3rd Qu.:0.5461595
## Max. : 2.9721 Max. :0.6280039
##
## $tables$ACE_CD143_Angiotensin_Converti$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1681
##
## x y
## Min. :-1.17998 Min. :0.0001371
## 1st Qu.:-0.04894 1st Qu.:0.0089598
## Median : 1.08210 Median :0.1029867
## Mean : 1.08210 Mean :0.2206013
## 3rd Qu.: 2.21314 3rd Qu.:0.4099024
## Max. : 3.34418 Max. :0.7151786
##
##
## $tables$ACTH_Adrenocorticotropic_Hormon
## $tables$ACTH_Adrenocorticotropic_Hormon$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1143
##
## x y
## Min. :-2.5502 Min. :0.0005475
## 1st Qu.:-2.0438 1st Qu.:0.0692909
## Median :-1.5374 Median :0.3840751
## Mean :-1.5374 Mean :0.4926815
## 3rd Qu.:-1.0310 3rd Qu.:0.9225221
## Max. :-0.5246 Max. :1.2602537
##
## $tables$ACTH_Adrenocorticotropic_Hormon$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08486
##
## x y
## Min. :-2.4619 Min. :0.0003137
## 1st Qu.:-1.9937 1st Qu.:0.0895963
## Median :-1.5256 Median :0.2980905
## Mean :-1.5256 Mean :0.5329992
## 3rd Qu.:-1.0575 3rd Qu.:1.0765004
## Max. :-0.5894 Max. :1.3565983
##
##
## $tables$AXL
## $tables$AXL$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1452
##
## x y
## Min. :-0.73867 Min. :0.0004204
## 1st Qu.:-0.06473 1st Qu.:0.0589901
## Median : 0.60921 Median :0.2320519
## Mean : 0.60921 Mean :0.3702070
## 3rd Qu.: 1.28315 3rd Qu.:0.6513799
## Max. : 1.95709 Max. :1.0520134
##
## $tables$AXL$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1448
##
## x y
## Min. :-1.3574 Min. :0.0001591
## 1st Qu.:-0.5580 1st Qu.:0.0344729
## Median : 0.2415 Median :0.2151028
## Mean : 0.2415 Mean :0.3121146
## 3rd Qu.: 1.0409 3rd Qu.:0.6337831
## Max. : 1.8403 Max. :0.8436302
##
##
## $tables$Adiponectin
## $tables$Adiponectin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2539
##
## x y
## Min. :-7.264 Min. :0.0002521
## 1st Qu.:-6.170 1st Qu.:0.0394325
## Median :-5.076 Median :0.2066845
## Mean :-5.076 Mean :0.2280610
## 3rd Qu.:-3.982 3rd Qu.:0.3942500
## Max. :-2.888 Max. :0.5531403
##
## $tables$Adiponectin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2047
##
## x y
## Min. :-7.340 Min. :0.0002675
## 1st Qu.:-6.228 1st Qu.:0.0422054
## Median :-5.116 Median :0.1469090
## Mean :-5.116 Mean :0.2244105
## 3rd Qu.:-4.004 3rd Qu.:0.4158256
## Max. :-2.892 Max. :0.6303057
##
##
## $tables$Alpha_1_Antichymotrypsin
## $tables$Alpha_1_Antichymotrypsin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.137
##
## x y
## Min. :-0.005415 Min. :0.0004458
## 1st Qu.: 0.674305 1st Qu.:0.0430018
## Median : 1.354025 Median :0.2037227
## Mean : 1.354025 Mean :0.3670632
## 3rd Qu.: 2.033745 3rd Qu.:0.7057813
## Max. : 2.713465 Max. :1.0974955
##
## $tables$Alpha_1_Antichymotrypsin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1039
##
## x y
## Min. :-0.04928 Min. :0.0002224
## 1st Qu.: 0.60377 1st Qu.:0.0337927
## Median : 1.25683 Median :0.1887951
## Mean : 1.25683 Mean :0.3820623
## 3rd Qu.: 1.90988 3rd Qu.:0.7159872
## Max. : 2.56294 Max. :1.1195436
##
##
## $tables$Alpha_1_Antitrypsin
## $tables$Alpha_1_Antitrypsin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4782
##
## x y
## Min. :-17.980 Min. :0.0001293
## 1st Qu.:-15.174 1st Qu.:0.0145127
## Median :-12.369 Median :0.0298018
## Mean :-12.369 Mean :0.0889250
## 3rd Qu.: -9.563 3rd Qu.:0.1573948
## Max. : -6.757 Max. :0.2894396
##
## $tables$Alpha_1_Antitrypsin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4461
##
## x y
## Min. :-18.367 Min. :5.246e-05
## 1st Qu.:-15.545 1st Qu.:6.361e-03
## Median :-12.723 Median :4.263e-02
## Mean :-12.723 Mean :8.842e-02
## 3rd Qu.: -9.901 3rd Qu.:1.639e-01
## Max. : -7.079 Max. :2.904e-01
##
##
## $tables$Alpha_1_Microglobulin
## $tables$Alpha_1_Microglobulin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1673
##
## x y
## Min. :-4.414 Min. :0.0003698
## 1st Qu.:-3.643 1st Qu.:0.0406102
## Median :-2.872 Median :0.2123210
## Mean :-2.872 Mean :0.3237022
## 3rd Qu.:-2.102 3rd Qu.:0.6327584
## Max. :-1.331 Max. :0.8444216
##
## $tables$Alpha_1_Microglobulin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1525
##
## x y
## Min. :-4.800 Min. :0.0001505
## 1st Qu.:-3.929 1st Qu.:0.0220770
## Median :-3.057 Median :0.1808985
## Mean :-3.057 Mean :0.2863190
## 3rd Qu.:-2.186 3rd Qu.:0.5640564
## Max. :-1.315 Max. :0.8166444
##
##
## $tables$Alpha_2_Macroglobulin
## $tables$Alpha_2_Macroglobulin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 11.24
##
## x y
## Min. :-287.01 Min. :5.480e-06
## 1st Qu.:-221.69 1st Qu.:6.888e-04
## Median :-156.37 Median :1.894e-03
## Mean :-156.37 Mean :3.820e-03
## 3rd Qu.: -91.06 3rd Qu.:6.271e-03
## Max. : -25.74 Max. :1.127e-02
##
## $tables$Alpha_2_Macroglobulin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 11.74
##
## x y
## Min. :-324.9 Min. :1.956e-06
## 1st Qu.:-251.7 1st Qu.:2.978e-04
## Median :-178.5 Median :2.373e-03
## Mean :-178.5 Mean :3.409e-03
## 3rd Qu.:-105.3 3rd Qu.:6.138e-03
## Max. : -32.1 Max. :9.772e-03
##
##
## $tables$Angiopoietin_2_ANG_2
## $tables$Angiopoietin_2_ANG_2$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.0982
##
## x y
## Min. :-0.3459 Min. :0.0006234
## 1st Qu.: 0.1670 1st Qu.:0.0781865
## Median : 0.6798 Median :0.3461658
## Mean : 0.6798 Mean :0.4864897
## 3rd Qu.: 1.1927 3rd Qu.:0.8349924
## Max. : 1.7056 Max. :1.3554703
##
## $tables$Angiopoietin_2_ANG_2$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1062
##
## x y
## Min. :-0.8633 Min. :0.0002621
## 1st Qu.:-0.1863 1st Qu.:0.0253269
## Median : 0.4907 Median :0.1522265
## Mean : 0.4907 Mean :0.3685663
## 3rd Qu.: 1.1676 3rd Qu.:0.7120418
## Max. : 1.8446 Max. :1.1408102
##
##
## $tables$Angiotensinogen
## $tables$Angiotensinogen$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.0834
##
## x y
## Min. :1.501 Min. :0.001466
## 1st Qu.:1.879 1st Qu.:0.164862
## Median :2.257 Median :0.614044
## Mean :2.257 Mean :0.660034
## 3rd Qu.:2.635 3rd Qu.:1.031014
## Max. :3.013 Max. :1.736671
##
## $tables$Angiotensinogen$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07902
##
## x y
## Min. :1.515 Min. :0.0004946
## 1st Qu.:1.915 1st Qu.:0.1122796
## Median :2.316 Median :0.5063013
## Mean :2.316 Mean :0.6224036
## 3rd Qu.:2.717 3rd Qu.:1.1729522
## Max. :3.118 Max. :1.4049536
##
##
## $tables$Apolipoprotein_A_IV
## $tables$Apolipoprotein_A_IV$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1366
##
## x y
## Min. :-3.3662 Min. :0.0004478
## 1st Qu.:-2.7071 1st Qu.:0.0523803
## Median :-2.0480 Median :0.2231518
## Mean :-2.0480 Mean :0.3785438
## 3rd Qu.:-1.3889 3rd Qu.:0.6980312
## Max. :-0.7298 Max. :1.1139157
##
## $tables$Apolipoprotein_A_IV$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1196
##
## x y
## Min. :-3.2593 Min. :0.0001936
## 1st Qu.:-2.5489 1st Qu.:0.0360635
## Median :-1.8385 Median :0.1920540
## Mean :-1.8385 Mean :0.3512108
## 3rd Qu.:-1.1281 3rd Qu.:0.6808012
## Max. :-0.4176 Max. :0.9538399
##
##
## $tables$Apolipoprotein_A1
## $tables$Apolipoprotein_A1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1467
##
## x y
## Min. :-9.009 Min. :0.0004379
## 1st Qu.:-8.289 1st Qu.:0.0620870
## Median :-7.570 Median :0.2576626
## Mean :-7.570 Mean :0.3468466
## 3rd Qu.:-6.851 3rd Qu.:0.5742760
## Max. :-6.131 Max. :1.0401170
##
## $tables$Apolipoprotein_A1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1383
##
## x y
## Min. :-9.095 Min. :0.0001704
## 1st Qu.:-8.259 1st Qu.:0.0355649
## Median :-7.423 Median :0.1598424
## Mean :-7.423 Mean :0.2984869
## 3rd Qu.:-6.587 3rd Qu.:0.5933218
## Max. :-5.751 Max. :0.9106778
##
##
## $tables$Apolipoprotein_A2
## $tables$Apolipoprotein_A2$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1786
##
## x y
## Min. :-2.0498 Min. :0.0005364
## 1st Qu.:-1.3021 1st Qu.:0.0568856
## Median :-0.5543 Median :0.3095466
## Mean :-0.5543 Mean :0.3336677
## 3rd Qu.: 0.1934 3rd Qu.:0.5957716
## Max. : 0.9412 Max. :0.7381188
##
## $tables$Apolipoprotein_A2$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1456
##
## x y
## Min. :-2.3338 Min. :0.0001587
## 1st Qu.:-1.4023 1st Qu.:0.0297244
## Median :-0.4708 Median :0.1432504
## Mean :-0.4708 Mean :0.2678557
## 3rd Qu.: 0.4607 3rd Qu.:0.4799477
## Max. : 1.3922 Max. :0.8396120
##
##
## $tables$Apolipoprotein_B
## $tables$Apolipoprotein_B$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.6047
##
## x y
## Min. :-10.7466 Min. :0.0001139
## 1st Qu.: -8.1446 1st Qu.:0.0153891
## Median : -5.5425 Median :0.0825055
## Mean : -5.5425 Mean :0.0958876
## 3rd Qu.: -2.9405 3rd Qu.:0.1620245
## Max. : -0.3385 Max. :0.2459914
##
## $tables$Apolipoprotein_B$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4484
##
## x y
## Min. :-11.2822 Min. :8.705e-05
## 1st Qu.: -8.6635 1st Qu.:8.308e-03
## Median : -6.0448 Median :5.663e-02
## Mean : -6.0448 Mean :9.528e-02
## 3rd Qu.: -3.4261 3rd Qu.:1.984e-01
## Max. : -0.8073 Max. :2.739e-01
##
##
## $tables$Apolipoprotein_CI
## $tables$Apolipoprotein_CI$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1594
##
## x y
## Min. :-3.15171 Min. :0.0003823
## 1st Qu.:-2.34815 1st Qu.:0.0367549
## Median :-1.54458 Median :0.1789952
## Mean :-1.54458 Mean :0.3104953
## 3rd Qu.:-0.74102 3rd Qu.:0.5826321
## Max. : 0.06255 Max. :0.9612227
##
## $tables$Apolipoprotein_CI$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1045
##
## x y
## Min. :-3.63779 Min. :0.0002209
## 1st Qu.:-2.71856 1st Qu.:0.0149817
## Median :-1.79934 Median :0.0685845
## Mean :-1.79934 Mean :0.2714330
## 3rd Qu.:-0.88011 3rd Qu.:0.4132861
## Max. : 0.03912 Max. :1.1961881
##
##
## $tables$Apolipoprotein_CIII
## $tables$Apolipoprotein_CIII$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1455
##
## x y
## Min. :-3.9768 Min. :0.0004594
## 1st Qu.:-3.2303 1st Qu.:0.0769950
## Median :-2.4838 Median :0.1626602
## Mean :-2.4838 Mean :0.3342151
## 3rd Qu.:-1.7373 3rd Qu.:0.6342758
## Max. :-0.9907 Max. :1.0259670
##
## $tables$Apolipoprotein_CIII$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1236
##
## x y
## Min. :-4.0596 Min. :0.0001868
## 1st Qu.:-3.2615 1st Qu.:0.0384294
## Median :-2.4634 Median :0.1446462
## Mean :-2.4634 Mean :0.3126263
## 3rd Qu.:-1.6653 3rd Qu.:0.5920527
## Max. :-0.8672 Max. :1.0140099
##
##
## $tables$Apolipoprotein_D
## $tables$Apolipoprotein_D$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1309
##
## x y
## Min. :0.3494 Min. :0.0005284
## 1st Qu.:0.9282 1st Qu.:0.0738700
## Median :1.5070 Median :0.3572737
## Mean :1.5070 Mean :0.4310411
## 3rd Qu.:2.0859 3rd Qu.:0.8265433
## Max. :2.6647 Max. :1.0110736
##
## $tables$Apolipoprotein_D$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09731
##
## x y
## Min. :0.1781 Min. :0.0002366
## 1st Qu.:0.7445 1st Qu.:0.0418393
## Median :1.3109 Median :0.3065151
## Mean :1.3109 Mean :0.4405095
## 3rd Qu.:1.8773 3rd Qu.:0.7824477
## Max. :2.4437 Max. :1.2350084
##
##
## $tables$Apolipoprotein_E
## $tables$Apolipoprotein_E$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.253
##
## x y
## Min. :-0.168 Min. :0.0002411
## 1st Qu.: 1.285 1st Qu.:0.0352925
## Median : 2.738 Median :0.0701342
## Mean : 2.738 Mean :0.1716987
## 3rd Qu.: 4.191 3rd Qu.:0.2939771
## Max. : 5.645 Max. :0.5674180
##
## $tables$Apolipoprotein_E$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2394
##
## x y
## Min. :0.2702 Min. :0.0000961
## 1st Qu.:1.7432 1st Qu.:0.0092534
## Median :3.2163 Median :0.1030462
## Mean :3.2163 Mean :0.1693809
## 3rd Qu.:4.6894 3rd Qu.:0.3008762
## Max. :6.1624 Max. :0.5303439
##
##
## $tables$Apolipoprotein_H
## $tables$Apolipoprotein_H$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1461
##
## x y
## Min. :-1.5024 Min. :0.0004265
## 1st Qu.:-0.8516 1st Qu.:0.0521460
## Median :-0.2007 Median :0.2722437
## Mean :-0.2007 Mean :0.3833466
## 3rd Qu.: 0.4501 3rd Qu.:0.7306001
## Max. : 1.1010 Max. :0.9663690
##
## $tables$Apolipoprotein_H$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1182
##
## x y
## Min. :-2.5885 Min. :0.0000088
## 1st Qu.:-1.6210 1st Qu.:0.0062752
## Median :-0.6534 Median :0.0534011
## Mean :-0.6534 Mean :0.2578794
## 3rd Qu.: 0.3141 3rd Qu.:0.4458639
## Max. : 1.2817 Max. :1.1064203
##
##
## $tables$B_Lymphocyte_Chemoattractant_BL
## $tables$B_Lymphocyte_Chemoattractant_BL$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1786
##
## x y
## Min. :0.2631 Min. :0.0003411
## 1st Qu.:1.2047 1st Qu.:0.0344897
## Median :2.1462 Median :0.2154676
## Mean :2.1462 Mean :0.2649772
## 3rd Qu.:3.0878 3rd Qu.:0.4189822
## Max. :4.0294 Max. :0.7283596
##
## $tables$B_Lymphocyte_Chemoattractant_BL$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1635
##
## x y
## Min. :0.2412 Min. :0.0001404
## 1st Qu.:1.3095 1st Qu.:0.0158056
## Median :2.3778 Median :0.1517980
## Mean :2.3778 Mean :0.2335554
## 3rd Qu.:3.4460 3rd Qu.:0.4260135
## Max. :4.5143 Max. :0.7412313
##
##
## $tables$BMP_6
## $tables$BMP_6$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.09284
##
## x y
## Min. :-3.0397 Min. :0.0006598
## 1st Qu.:-2.4143 1st Qu.:0.0449987
## Median :-1.7889 Median :0.1859826
## Mean :-1.7889 Mean :0.3989581
## 3rd Qu.:-1.1635 3rd Qu.:0.6880575
## Max. :-0.5381 Max. :1.3759981
##
## $tables$BMP_6$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09612
##
## x y
## Min. :-3.0495 Min. :0.0002386
## 1st Qu.:-2.4461 1st Qu.:0.0385815
## Median :-1.8426 Median :0.1396934
## Mean :-1.8426 Mean :0.4134594
## 3rd Qu.:-1.2391 3rd Qu.:0.9163731
## Max. :-0.6357 Max. :1.2639152
##
##
## $tables$Beta_2_Microglobulin
## $tables$Beta_2_Microglobulin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1171
##
## x y
## Min. :-0.8960 Min. :0.0005716
## 1st Qu.:-0.3551 1st Qu.:0.0654314
## Median : 0.1858 Median :0.2969428
## Mean : 0.1858 Mean :0.4612902
## 3rd Qu.: 0.7267 3rd Qu.:0.7188823
## Max. : 1.2675 Max. :1.4159783
##
## $tables$Beta_2_Microglobulin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08836
##
## x y
## Min. :-0.8098 Min. :0.0005204
## 1st Qu.:-0.2928 1st Qu.:0.0601380
## Median : 0.2243 Median :0.3259995
## Mean : 0.2243 Mean :0.4825685
## 3rd Qu.: 0.7413 3rd Qu.:0.8538544
## Max. : 1.2583 Max. :1.4796700
##
##
## $tables$Betacellulin
## $tables$Betacellulin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 4.15
##
## x y
## Min. :19.55 Min. :1.471e-05
## 1st Qu.:38.28 1st Qu.:1.810e-03
## Median :57.00 Median :1.038e-02
## Mean :57.00 Mean :1.332e-02
## 3rd Qu.:75.72 3rd Qu.:2.312e-02
## Max. :94.45 Max. :3.913e-02
##
## $tables$Betacellulin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 3.417
##
## x y
## Min. :-0.2524 Min. :6.710e-06
## 1st Qu.:22.8738 1st Qu.:5.619e-04
## Median :46.0000 Median :3.704e-03
## Mean :46.0000 Mean :1.079e-02
## 3rd Qu.:69.1262 3rd Qu.:2.256e-02
## Max. :92.2524 Max. :3.570e-02
##
##
## $tables$C_Reactive_Protein
## $tables$C_Reactive_Protein$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.434
##
## x y
## Min. :-9.483 Min. :0.0001462
## 1st Qu.:-7.632 1st Qu.:0.0194985
## Median :-5.781 Median :0.1182317
## Mean :-5.781 Mean :0.1348031
## 3rd Qu.:-3.930 3rd Qu.:0.2385781
## Max. :-2.079 Max. :0.3138492
##
## $tables$C_Reactive_Protein$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3559
##
## x y
## Min. :-9.585 Min. :0.0001076
## 1st Qu.:-7.656 1st Qu.:0.0271541
## Median :-5.727 Median :0.1112364
## Mean :-5.727 Mean :0.1293551
## 3rd Qu.:-3.798 3rd Qu.:0.2300748
## Max. :-1.870 Max. :0.3024495
##
##
## $tables$CD40
## $tables$CD40$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.07961
##
## x y
## Min. :-2.0840 Min. :0.0007637
## 1st Qu.:-1.6785 1st Qu.:0.0782203
## Median :-1.2730 Median :0.3599145
## Mean :-1.2730 Mean :0.6152694
## 3rd Qu.:-0.8675 3rd Qu.:1.1323779
## Max. :-0.4620 Max. :1.8693612
##
## $tables$CD40$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05743
##
## x y
## Min. :-2.0367 Min. :0.0004012
## 1st Qu.:-1.6213 1st Qu.:0.0553619
## Median :-1.2059 Median :0.2193892
## Mean :-1.2059 Mean :0.6006770
## 3rd Qu.:-0.7905 3rd Qu.:1.0452844
## Max. :-0.3752 Max. :2.2195996
##
##
## $tables$CD5L
## $tables$CD5L$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.172
##
## x y
## Min. :-1.6871 Min. :0.0004209
## 1st Qu.:-0.9073 1st Qu.:0.0656876
## Median :-0.1274 Median :0.2613718
## Mean :-0.1274 Mean :0.3199414
## 3rd Qu.: 0.6524 3rd Qu.:0.5479588
## Max. : 1.4322 Max. :0.8452315
##
## $tables$CD5L$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.133
##
## x y
## Min. :-1.63693 Min. :0.0002106
## 1st Qu.:-0.83715 1st Qu.:0.0421442
## Median :-0.03736 Median :0.1637532
## Mean :-0.03736 Mean :0.3119687
## 3rd Qu.: 0.76242 3rd Qu.:0.5640367
## Max. : 1.56221 Max. :0.9668307
##
##
## $tables$Calbindin
## $tables$Calbindin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 1.699
##
## x y
## Min. : 8.134 Min. :3.704e-05
## 1st Qu.:15.819 1st Qu.:4.408e-03
## Median :23.504 Median :2.335e-02
## Mean :23.504 Mean :3.247e-02
## 3rd Qu.:31.189 3rd Qu.:6.288e-02
## Max. :38.874 Max. :8.151e-02
##
## $tables$Calbindin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 1.104
##
## x y
## Min. : 7.65 Min. :2.206e-05
## 1st Qu.:14.87 1st Qu.:6.150e-03
## Median :22.09 Median :1.696e-02
## Mean :22.09 Mean :3.456e-02
## 3rd Qu.:29.31 3rd Qu.:6.251e-02
## Max. :36.52 Max. :1.082e-01
##
##
## $tables$Calcitonin
## $tables$Calcitonin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.3538
##
## x y
## Min. :-1.77474 Min. :0.0001725
## 1st Qu.:-0.09275 1st Qu.:0.0146715
## Median : 1.58923 Median :0.1004850
## Mean : 1.58923 Mean :0.1483381
## 3rd Qu.: 3.27122 3rd Qu.:0.2647752
## Max. : 4.95321 Max. :0.4215435
##
## $tables$Calcitonin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2686
##
## x y
## Min. :-1.51917 Min. :0.0001713
## 1st Qu.:-0.02852 1st Qu.:0.0196753
## Median : 1.46212 Median :0.1068481
## Mean : 1.46212 Mean :0.1673803
## 3rd Qu.: 2.95276 3rd Qu.:0.3258038
## Max. : 4.44340 Max. :0.4272822
##
##
## $tables$CgA
## $tables$CgA$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 30.97
##
## x y
## Min. : 45.03 Min. :1.981e-06
## 1st Qu.:190.12 1st Qu.:1.969e-04
## Median :335.20 Median :1.248e-03
## Mean :335.20 Mean :1.720e-03
## 3rd Qu.:480.29 3rd Qu.:3.088e-03
## Max. :625.37 Max. :4.645e-03
##
## $tables$CgA$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 26.56
##
## x y
## Min. : 55.93 Min. :1.718e-06
## 1st Qu.:195.71 1st Qu.:3.215e-04
## Median :335.50 Median :1.210e-03
## Mean :335.50 Mean :1.785e-03
## 3rd Qu.:475.29 3rd Qu.:3.252e-03
## Max. :615.08 Max. :4.497e-03
##
##
## $tables$Clusterin_Apo_J
## $tables$Clusterin_Apo_J$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1155
##
## x y
## Min. :1.525 Min. :0.0005269
## 1st Qu.:2.127 1st Qu.:0.0219539
## Median :2.728 Median :0.1830742
## Mean :2.728 Mean :0.4150646
## 3rd Qu.:3.329 3rd Qu.:0.8290506
## Max. :3.930 Max. :1.2069046
##
## $tables$Clusterin_Apo_J$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.0788
##
## x y
## Min. :1.724 Min. :0.0002915
## 1st Qu.:2.248 1st Qu.:0.0430777
## Median :2.772 Median :0.2921669
## Mean :2.772 Mean :0.4761093
## 3rd Qu.:3.296 3rd Qu.:0.7752340
## Max. :3.820 Max. :1.5112165
##
##
## $tables$Complement_3
## $tables$Complement_3$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.9024
##
## x y
## Min. :-23.309 Min. :6.925e-05
## 1st Qu.:-19.196 1st Qu.:6.933e-03
## Median :-15.082 Median :4.532e-02
## Mean :-15.082 Mean :6.066e-02
## 3rd Qu.:-10.969 3rd Qu.:1.205e-01
## Max. : -6.855 Max. :1.458e-01
##
## $tables$Complement_3$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.7662
##
## x y
## Min. :-25.686 Min. :2.994e-05
## 1st Qu.:-21.269 1st Qu.:2.573e-03
## Median :-16.853 Median :4.057e-02
## Mean :-16.853 Mean :5.649e-02
## 3rd Qu.:-12.436 3rd Qu.:1.164e-01
## Max. : -8.019 Max. :1.468e-01
##
##
## $tables$Complement_Factor_H
## $tables$Complement_Factor_H$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4561
##
## x y
## Min. :-0.6365 Min. :0.0001334
## 1st Qu.: 1.6432 1st Qu.:0.0101982
## Median : 3.9228 Median :0.0677571
## Mean : 3.9228 Mean :0.1094477
## 3rd Qu.: 6.2025 3rd Qu.:0.2231480
## Max. : 8.4821 Max. :0.2975106
##
## $tables$Complement_Factor_H$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.344
##
## x y
## Min. :-1.8708 Min. :0.0000668
## 1st Qu.: 0.7609 1st Qu.:0.0058281
## Median : 3.3926 Median :0.0287327
## Mean : 3.3926 Mean :0.0948090
## 3rd Qu.: 6.0243 3rd Qu.:0.1687079
## Max. : 8.6560 Max. :0.3761700
##
##
## $tables$Connective_Tissue_Growth_Factor
## $tables$Connective_Tissue_Growth_Factor$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.07808
##
## x y
## Min. :0.1022 Min. :0.0008546
## 1st Qu.:0.4484 1st Qu.:0.1082344
## Median :0.7946 Median :0.5578172
## Mean :0.7946 Mean :0.7206807
## 3rd Qu.:1.1408 3rd Qu.:1.3365230
## Max. :1.4870 Max. :1.8357463
##
## $tables$Connective_Tissue_Growth_Factor$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.06372
##
## x y
## Min. :-0.008838 Min. :0.0003616
## 1st Qu.: 0.393908 1st Qu.:0.0417111
## Median : 0.796654 Median :0.2894073
## Mean : 0.796654 Mean :0.6195177
## 3rd Qu.: 1.199401 3rd Qu.:1.2846006
## Max. : 1.602147 Max. :1.8366601
##
##
## $tables$Cortisol
## $tables$Cortisol$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 1.139
##
## x y
## Min. : 0.5829 Min. :5.413e-05
## 1st Qu.: 8.5415 1st Qu.:3.530e-03
## Median :16.5000 Median :9.513e-03
## Mean :16.5000 Mean :3.135e-02
## 3rd Qu.:24.4585 3rd Qu.:4.559e-02
## Max. :32.4171 Max. :1.342e-01
##
## $tables$Cortisol$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 1.095
##
## x y
## Min. :-3.185 Min. :6.292e-05
## 1st Qu.: 3.933 1st Qu.:5.135e-03
## Median :11.050 Median :1.130e-02
## Mean :11.050 Mean :3.506e-02
## 3rd Qu.:18.167 3rd Qu.:6.465e-02
## Max. :25.285 Max. :1.183e-01
##
##
## $tables$Creatine_Kinase_MB
## $tables$Creatine_Kinase_MB$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.02774
##
## x y
## Min. :-1.955 Min. :0.002195
## 1st Qu.:-1.810 1st Qu.:0.178288
## Median :-1.666 Median :0.807714
## Mean :-1.666 Mean :1.724376
## 3rd Qu.:-1.521 3rd Qu.:3.478317
## Max. :-1.376 Max. :5.171466
##
## $tables$Creatine_Kinase_MB$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.02971
##
## x y
## Min. :-1.961 Min. :0.000774
## 1st Qu.:-1.794 1st Qu.:0.209347
## Median :-1.628 Median :0.920239
## Mean :-1.628 Mean :1.497037
## 3rd Qu.:-1.461 3rd Qu.:2.710941
## Max. :-1.294 Max. :4.648178
##
##
## $tables$Cystatin_C
## $tables$Cystatin_C$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1319
##
## x y
## Min. :7.037 Min. :0.0004624
## 1st Qu.:7.712 1st Qu.:0.0413703
## Median :8.387 Median :0.2488927
## Mean :8.387 Mean :0.3695760
## 3rd Qu.:9.062 3rd Qu.:0.6297262
## Max. :9.737 Max. :1.2524724
##
## $tables$Cystatin_C$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1193
##
## x y
## Min. : 7.258 Min. :0.0003623
## 1st Qu.: 7.956 1st Qu.:0.0677002
## Median : 8.655 Median :0.2241862
## Mean : 8.655 Mean :0.3571722
## 3rd Qu.: 9.353 3rd Qu.:0.6483143
## Max. :10.052 Max. :0.9827179
##
##
## $tables$EGF_R
## $tables$EGF_R$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.08218
##
## x y
## Min. :-1.3578 Min. :0.0007425
## 1st Qu.:-0.9720 1st Qu.:0.0600108
## Median :-0.5862 Median :0.5140964
## Mean :-0.5862 Mean :0.6467050
## 3rd Qu.:-0.2004 3rd Qu.:1.2028013
## Max. : 0.1854 Max. :1.7124077
##
## $tables$EGF_R$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07095
##
## x y
## Min. :-1.57421 Min. :0.0003276
## 1st Qu.:-1.16130 1st Qu.:0.0531100
## Median :-0.74840 Median :0.4011749
## Mean :-0.74840 Mean :0.6042781
## 3rd Qu.:-0.33550 3rd Qu.:1.1115689
## Max. : 0.07741 Max. :1.8027229
##
##
## $tables$EN_RAGE
## $tables$EN_RAGE$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2748
##
## x y
## Min. :-5.9404 Min. :0.0002402
## 1st Qu.:-4.5765 1st Qu.:0.0310972
## Median :-3.2127 Median :0.0838398
## Mean :-3.2127 Mean :0.1829350
## 3rd Qu.:-1.8488 3rd Qu.:0.3608164
## Max. :-0.4849 Max. :0.5219322
##
## $tables$EN_RAGE$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2507
##
## x y
## Min. :-9.1295 Min. :0.0000000
## 1st Qu.:-6.7555 1st Qu.:0.0008659
## Median :-4.3815 Median :0.0118944
## Mean :-4.3815 Mean :0.1051017
## 3rd Qu.:-2.0076 3rd Qu.:0.1614620
## Max. : 0.3664 Max. :0.4752559
##
##
## $tables$ENA_78
## $tables$ENA_78$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.004593
##
## x y
## Min. :-1.412 Min. : 0.01553
## 1st Qu.:-1.392 1st Qu.: 1.83256
## Median :-1.372 Median :10.87818
## Mean :-1.372 Mean :12.46437
## 3rd Qu.:-1.352 3rd Qu.:20.66792
## Max. :-1.332 Max. :33.23027
##
## $tables$ENA_78$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.003951
##
## x y
## Min. :-1.417 Min. : 0.01232
## 1st Qu.:-1.395 1st Qu.: 1.90271
## Median :-1.372 Median : 6.30877
## Mean :-1.372 Mean :11.15043
## 3rd Qu.:-1.350 3rd Qu.:21.48475
## Max. :-1.328 Max. :30.60726
##
##
## $tables$Eotaxin_3
## $tables$Eotaxin_3$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 4.556
##
## x y
## Min. : 9.332 Min. :1.337e-05
## 1st Qu.: 37.166 1st Qu.:1.129e-03
## Median : 65.000 Median :5.511e-03
## Mean : 65.000 Mean :8.964e-03
## 3rd Qu.: 92.834 3rd Qu.:1.491e-02
## Max. :120.668 Max. :2.988e-02
##
## $tables$Eotaxin_3$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 4.684
##
## x y
## Min. : -7.052 Min. :4.901e-06
## 1st Qu.: 22.224 1st Qu.:4.092e-04
## Median : 51.500 Median :4.572e-03
## Mean : 51.500 Mean :8.523e-03
## 3rd Qu.: 80.776 3rd Qu.:1.856e-02
## Max. :110.052 Max. :2.364e-02
##
##
## $tables$FAS
## $tables$FAS$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.112
##
## x y
## Min. :-1.3860 Min. :0.0005482
## 1st Qu.:-0.8713 1st Qu.:0.0744882
## Median :-0.3567 Median :0.4050701
## Mean :-0.3567 Mean :0.4847868
## 3rd Qu.: 0.1580 3rd Qu.:0.8069833
## Max. : 0.6726 Max. :1.3560508
##
## $tables$FAS$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08631
##
## x y
## Min. :-1.7731 Min. :0.0002668
## 1st Qu.:-1.2412 1st Qu.:0.0228707
## Median :-0.7094 Median :0.3094483
## Mean :-0.7094 Mean :0.4691546
## 3rd Qu.:-0.1776 3rd Qu.:0.8467171
## Max. : 0.3542 Max. :1.4115039
##
##
## $tables$FSH_Follicle_Stimulation_Hormon
## $tables$FSH_Follicle_Stimulation_Hormon$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.168
##
## x y
## Min. :-2.619 Min. :0.0003642
## 1st Qu.:-1.814 1st Qu.:0.0437196
## Median :-1.009 Median :0.1807169
## Mean :-1.009 Mean :0.3099351
## 3rd Qu.:-0.204 3rd Qu.:0.5836509
## Max. : 0.601 Max. :0.8823118
##
## $tables$FSH_Follicle_Stimulation_Hormon$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1266
##
## x y
## Min. :-2.4537 Min. :0.0001905
## 1st Qu.:-1.7819 1st Qu.:0.0381262
## Median :-1.1101 Median :0.3300939
## Mean :-1.1101 Mean :0.3713992
## 3rd Qu.:-0.4383 3rd Qu.:0.7256807
## Max. : 0.2335 Max. :0.8698906
##
##
## $tables$Fas_Ligand
## $tables$Fas_Ligand$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.3972
##
## x y
## Min. :-0.9036 Min. :0.0001532
## 1st Qu.: 1.5284 1st Qu.:0.0075761
## Median : 3.9604 Median :0.0323509
## Mean : 3.9604 Mean :0.1025914
## 3rd Qu.: 6.3924 3rd Qu.:0.1765223
## Max. : 8.8244 Max. :0.3745872
##
## $tables$Fas_Ligand$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3209
##
## x y
## Min. :-1.1164 Min. :0.0000717
## 1st Qu.: 0.8362 1st Qu.:0.0099146
## Median : 2.7888 Median :0.0732924
## Mean : 2.7888 Mean :0.1277836
## 3rd Qu.: 4.7414 3rd Qu.:0.2410426
## Max. : 6.6940 Max. :0.3644452
##
##
## $tables$Fatty_Acid_Binding_Protein
## $tables$Fatty_Acid_Binding_Protein$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.3218
##
## x y
## Min. :-1.1366 Min. :0.0001909
## 1st Qu.: 0.3152 1st Qu.:0.0229681
## Median : 1.7671 Median :0.1194680
## Mean : 1.7671 Mean :0.1718472
## 3rd Qu.: 3.2189 3rd Qu.:0.3272007
## Max. : 4.6708 Max. :0.4306972
##
## $tables$Fatty_Acid_Binding_Protein$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2219
##
## x y
## Min. :-1.7098 Min. :0.0001066
## 1st Qu.:-0.3112 1st Qu.:0.0178705
## Median : 1.0873 Median :0.0844530
## Mean : 1.0873 Mean :0.1784060
## 3rd Qu.: 2.4859 3rd Qu.:0.3437516
## Max. : 3.8844 Max. :0.5058790
##
##
## $tables$Ferritin
## $tables$Ferritin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2804
##
## x y
## Min. :0.05701 Min. :0.000217
## 1st Qu.:1.41138 1st Qu.:0.022078
## Median :2.76576 Median :0.136172
## Mean :2.76576 Mean :0.184213
## 3rd Qu.:4.12014 3rd Qu.:0.346793
## Max. :5.47452 Max. :0.473627
##
## $tables$Ferritin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2345
##
## x y
## Min. :-0.09576 Min. :0.0000989
## 1st Qu.: 1.26235 1st Qu.:0.0175433
## Median : 2.62046 Median :0.1093437
## Mean : 2.62046 Mean :0.1837170
## 3rd Qu.: 3.97858 3rd Qu.:0.3541876
## Max. : 5.33669 Max. :0.4916991
##
##
## $tables$Fetuin_A
## $tables$Fetuin_A$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1072
##
## x y
## Min. :0.2090 Min. :0.0005703
## 1st Qu.:0.7837 1st Qu.:0.0670041
## Median :1.3583 Median :0.2997970
## Mean :1.3583 Mean :0.4341721
## 3rd Qu.:1.9330 3rd Qu.:0.6852882
## Max. :2.5077 Max. :1.3338471
##
## $tables$Fetuin_A$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1175
##
## x y
## Min. :0.1176 Min. :0.0002735
## 1st Qu.:0.7391 1st Qu.:0.0572785
## Median :1.3606 Median :0.3238185
## Mean :1.3606 Mean :0.4014570
## 3rd Qu.:1.9821 3rd Qu.:0.7106765
## Max. :2.6037 Max. :1.0633923
##
##
## $tables$Fibrinogen
## $tables$Fibrinogen$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2039
##
## x y
## Min. :-9.352 Min. :0.0002994
## 1st Qu.:-8.340 1st Qu.:0.0297491
## Median :-7.327 Median :0.1176966
## Mean :-7.327 Mean :0.2464541
## 3rd Qu.:-6.315 3rd Qu.:0.4605718
## Max. :-5.303 Max. :0.7646276
##
## $tables$Fibrinogen$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1616
##
## x y
## Min. :-9.359 Min. :0.0001768
## 1st Qu.:-8.359 1st Qu.:0.0386225
## Median :-7.358 Median :0.1268076
## Mean :-7.358 Mean :0.2494747
## 3rd Qu.:-6.358 3rd Qu.:0.4809641
## Max. :-5.358 Max. :0.7047324
##
##
## $tables$GRO_alpha
## $tables$GRO_alpha$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.01539
##
## x y
## Min. :1.263 Min. : 0.00406
## 1st Qu.:1.332 1st Qu.: 0.54230
## Median :1.402 Median : 2.71917
## Mean :1.402 Mean : 3.59086
## 3rd Qu.:1.471 3rd Qu.: 6.17618
## Max. :1.541 Max. :10.69562
##
## $tables$GRO_alpha$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01113
##
## x y
## Min. :1.238 Min. : 0.002945
## 1st Qu.:1.300 1st Qu.: 0.969398
## Median :1.363 Median : 3.049909
## Mean :1.363 Mean : 3.994613
## 3rd Qu.:1.425 3rd Qu.: 7.200400
## Max. :1.488 Max. :10.071952
##
##
## $tables$Gamma_Interferon_induced_Monokin
## $tables$Gamma_Interferon_induced_Monokin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.03894
##
## x y
## Min. :2.497 Min. :0.00164
## 1st Qu.:2.669 1st Qu.:0.17739
## Median :2.840 Median :1.25904
## Mean :2.840 Mean :1.45720
## 3rd Qu.:3.011 3rd Qu.:2.70076
## Max. :3.182 Max. :3.51052
##
## $tables$Gamma_Interferon_induced_Monokin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.03562
##
## x y
## Min. :2.286 Min. :0.000645
## 1st Qu.:2.496 1st Qu.:0.054709
## Median :2.707 Median :0.799942
## Mean :2.707 Mean :1.187958
## 3rd Qu.:2.917 3rd Qu.:2.388599
## Max. :3.127 Max. :3.377959
##
##
## $tables$Glutathione_S_Transferase_alpha
## $tables$Glutathione_S_Transferase_alpha$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.04318
##
## x y
## Min. :0.5788 Min. :0.001415
## 1st Qu.:0.7883 1st Qu.:0.165684
## Median :0.9978 Median :0.939323
## Mean :0.9978 Mean :1.191138
## 3rd Qu.:1.2072 3rd Qu.:2.088058
## Max. :1.4167 Max. :3.407231
##
## $tables$Glutathione_S_Transferase_alpha$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05304
##
## x y
## Min. :0.3647 Min. :0.0004915
## 1st Qu.:0.6427 1st Qu.:0.1123821
## Median :0.9207 Median :0.8433755
## Mean :0.9207 Mean :0.8975084
## 3rd Qu.:1.1987 3rd Qu.:1.5776261
## Max. :1.4767 Max. :2.3126760
##
##
## $tables$HB_EGF
## $tables$HB_EGF$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.5734
##
## x y
## Min. : 2.304 Min. :0.0001287
## 1st Qu.: 4.704 1st Qu.:0.0175895
## Median : 7.105 Median :0.0948862
## Mean : 7.105 Mean :0.1039336
## 3rd Qu.: 9.505 3rd Qu.:0.1992858
## Max. :11.906 Max. :0.2162439
##
## $tables$HB_EGF$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4589
##
## x y
## Min. : 0.7264 Min. :5.017e-05
## 1st Qu.: 3.5627 1st Qu.:7.261e-03
## Median : 6.3991 Median :4.535e-02
## Mean : 6.3991 Mean :8.797e-02
## 3rd Qu.: 9.2354 3rd Qu.:1.654e-01
## Max. :12.0717 Max. :2.737e-01
##
##
## $tables$HCC_4
## $tables$HCC_4$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1258
##
## x y
## Min. :-4.513 Min. :0.0004839
## 1st Qu.:-3.842 1st Qu.:0.0263764
## Median :-3.171 Median :0.1774249
## Mean :-3.171 Mean :0.3720055
## 3rd Qu.:-2.501 3rd Qu.:0.7266870
## Max. :-1.830 Max. :1.1547574
##
## $tables$HCC_4$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1143
##
## x y
## Min. :-4.853 Min. :0.0002017
## 1st Qu.:-4.084 1st Qu.:0.0155689
## Median :-3.315 Median :0.0898749
## Mean :-3.315 Mean :0.3244994
## 3rd Qu.:-2.546 3rd Qu.:0.6477835
## Max. :-1.777 Max. :1.1126875
##
##
## $tables$Hepatocyte_Growth_Factor_HGF
## $tables$Hepatocyte_Growth_Factor_HGF$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1039
##
## x y
## Min. :-0.6264 Min. :0.0006633
## 1st Qu.:-0.1730 1st Qu.:0.0918928
## Median : 0.2804 Median :0.4436919
## Mean : 0.2804 Mean :0.5503010
## 3rd Qu.: 0.7338 3rd Qu.:0.9880750
## Max. : 1.1871 Max. :1.3558632
##
## $tables$Hepatocyte_Growth_Factor_HGF$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08115
##
## x y
## Min. :-0.8783 Min. :0.0002835
## 1st Qu.:-0.3790 1st Qu.:0.0433307
## Median : 0.1203 Median :0.3791272
## Mean : 0.1203 Mean :0.4996986
## 3rd Qu.: 0.6196 3rd Qu.:0.8912429
## Max. : 1.1189 Max. :1.4189093
##
##
## $tables$I_309
## $tables$I_309$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.149
##
## x y
## Min. :1.568 Min. :0.0004097
## 1st Qu.:2.323 1st Qu.:0.0398765
## Median :3.079 Median :0.1732399
## Mean :3.079 Mean :0.3302244
## 3rd Qu.:3.835 3rd Qu.:0.6186079
## Max. :4.590 Max. :1.0456971
##
## $tables$I_309$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1101
##
## x y
## Min. :1.428 Min. :0.0002567
## 1st Qu.:2.105 1st Qu.:0.0400438
## Median :2.782 Median :0.1467161
## Mean :2.782 Mean :0.3683789
## 3rd Qu.:3.460 3rd Qu.:0.7275427
## Max. :4.137 Max. :1.1784584
##
##
## $tables$ICAM_1
## $tables$ICAM_1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1211
##
## x y
## Min. :-1.896401 Min. :0.0005072
## 1st Qu.:-1.262346 1st Qu.:0.0587764
## Median :-0.628291 Median :0.2158646
## Mean :-0.628291 Mean :0.3935033
## 3rd Qu.: 0.005764 3rd Qu.:0.6724173
## Max. : 0.639819 Max. :1.2092518
##
## $tables$ICAM_1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1011
##
## x y
## Min. :-1.6327 Min. :0.0002273
## 1st Qu.:-1.0195 1st Qu.:0.0168059
## Median :-0.4062 Median :0.2624004
## Mean :-0.4062 Mean :0.4068459
## 3rd Qu.: 0.2071 3rd Qu.:0.7465031
## Max. : 0.8203 Max. :1.2298554
##
##
## $tables$IGF_BP_2
## $tables$IGF_BP_2$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.08533
##
## x y
## Min. :4.407 Min. :0.0007146
## 1st Qu.:4.857 1st Qu.:0.0626516
## Median :5.306 Median :0.1648390
## Mean :5.306 Mean :0.5555022
## 3rd Qu.:5.755 3rd Qu.:1.1485396
## Max. :6.204 Max. :1.6617362
##
## $tables$IGF_BP_2$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05889
##
## x y
## Min. :4.458 Min. :0.0004143
## 1st Qu.:4.833 1st Qu.:0.0413745
## Median :5.208 Median :0.3285500
## Mean :5.208 Mean :0.6656293
## 3rd Qu.:5.583 3rd Qu.:1.2894544
## Max. :5.957 Max. :1.9852384
##
##
## $tables$IL_11
## $tables$IL_11$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.6032
##
## x y
## Min. :-0.05488 Min. :0.0001106
## 1st Qu.: 2.34389 1st Qu.:0.0172619
## Median : 4.74267 Median :0.1181189
## Mean : 4.74267 Mean :0.1040099
## 3rd Qu.: 7.14144 3rd Qu.:0.1742549
## Max. : 9.54022 Max. :0.2216186
##
## $tables$IL_11$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.439
##
## x y
## Min. :0.7144 Min. :5.474e-05
## 1st Qu.:2.9878 1st Qu.:1.988e-02
## Median :5.2611 Median :8.466e-02
## Mean :5.2611 Mean :1.097e-01
## 3rd Qu.:7.5344 3rd Qu.:1.963e-01
## Max. :9.8078 Max. :2.834e-01
##
##
## $tables$IL_13
## $tables$IL_13$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.002242
##
## x y
## Min. :1.258 Min. : 0.02731
## 1st Qu.:1.272 1st Qu.: 5.03625
## Median :1.286 Median :11.43960
## Mean :1.286 Mean :17.64359
## 3rd Qu.:1.300 3rd Qu.:32.59224
## Max. :1.314 Max. :46.56970
##
## $tables$IL_13$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.003487
##
## x y
## Min. :1.249 Min. : 0.00669
## 1st Qu.:1.269 1st Qu.: 1.21488
## Median :1.290 Median : 6.43813
## Mean :1.290 Mean :12.09952
## 3rd Qu.:1.310 3rd Qu.:24.11920
## Max. :1.331 Max. :35.41822
##
##
## $tables$IL_16
## $tables$IL_16$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2471
##
## x y
## Min. :0.7188 Min. :0.000256
## 1st Qu.:1.8146 1st Qu.:0.029507
## Median :2.9104 Median :0.176481
## Mean :2.9104 Mean :0.227684
## 3rd Qu.:4.0062 3rd Qu.:0.414014
## Max. :5.1020 Max. :0.560157
##
## $tables$IL_16$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.181
##
## x y
## Min. :0.6436 Min. :0.0001291
## 1st Qu.:1.8526 1st Qu.:0.0285524
## Median :3.0616 Median :0.1208888
## Mean :3.0616 Mean :0.2063733
## 3rd Qu.:4.2706 3rd Qu.:0.3504470
## Max. :5.4797 Max. :0.6955113
##
##
## $tables$IL_17E
## $tables$IL_17E$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.3349
##
## x y
## Min. :0.7917 Min. :0.0001834
## 1st Qu.:2.6386 1st Qu.:0.0301897
## Median :4.4855 Median :0.0577842
## Mean :4.4855 Mean :0.1350901
## 3rd Qu.:6.3324 3rd Qu.:0.2756548
## Max. :8.1793 Max. :0.3979849
##
## $tables$IL_17E$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3705
##
## x y
## Min. :-0.05917 Min. :6.299e-05
## 1st Qu.: 2.47145 1st Qu.:1.476e-02
## Median : 5.00207 Median :5.715e-02
## Mean : 5.00207 Mean :9.860e-02
## 3rd Qu.: 7.53269 3rd Qu.:1.703e-01
## Max. :10.06331 Max. :2.945e-01
##
##
## $tables$IL_1alpha
## $tables$IL_1alpha$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1388
##
## x y
## Min. :-8.597 Min. :0.0004376
## 1st Qu.:-7.832 1st Qu.:0.0345254
## Median :-7.066 Median :0.1788847
## Mean :-7.066 Mean :0.3260198
## 3rd Qu.:-6.301 3rd Qu.:0.6208007
## Max. :-5.536 Max. :0.9958831
##
## $tables$IL_1alpha$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1167
##
## x y
## Min. :-8.867 Min. :0.0001982
## 1st Qu.:-8.206 1st Qu.:0.0414531
## Median :-7.544 Median :0.2438771
## Mean :-7.544 Mean :0.3771454
## 3rd Qu.:-6.883 3rd Qu.:0.7624463
## Max. :-6.221 Max. :1.0536107
##
##
## $tables$IL_3
## $tables$IL_3$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1651
##
## x y
## Min. :-5.968 Min. :0.0003701
## 1st Qu.:-5.051 1st Qu.:0.0310334
## Median :-4.135 Median :0.1617798
## Mean :-4.135 Mean :0.2722019
## 3rd Qu.:-3.218 3rd Qu.:0.4902163
## Max. :-2.302 Max. :0.8258531
##
## $tables$IL_3$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.144
##
## x y
## Min. :-6.347 Min. :0.0001594
## 1st Qu.:-5.265 1st Qu.:0.0094213
## Median :-4.184 Median :0.0892511
## Mean :-4.184 Mean :0.2307400
## 3rd Qu.:-3.103 3rd Qu.:0.4004701
## Max. :-2.021 Max. :0.9027170
##
##
## $tables$IL_4
## $tables$IL_4$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.172
##
## x y
## Min. :0.01472 Min. :0.0003873
## 1st Qu.:0.90115 1st Qu.:0.0719530
## Median :1.78757 Median :0.1343204
## Mean :1.78757 Mean :0.2814638
## 3rd Qu.:2.67400 3rd Qu.:0.5254313
## Max. :3.56043 Max. :0.8240657
##
## $tables$IL_4$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1575
##
## x y
## Min. :0.1154 Min. :0.0003474
## 1st Qu.:0.9536 1st Qu.:0.0533702
## Median :1.7918 Median :0.2212501
## Mean :1.7918 Mean :0.2976649
## 3rd Qu.:2.6300 3rd Qu.:0.5425714
## Max. :3.4681 Max. :0.7475527
##
##
## $tables$IL_5
## $tables$IL_5$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1651
##
## x y
## Min. :-1.54514 Min. :0.0003698
## 1st Qu.:-0.74424 1st Qu.:0.0354536
## Median : 0.05666 Median :0.2057826
## Mean : 0.05666 Mean :0.3115260
## 3rd Qu.: 0.85757 3rd Qu.:0.5661752
## Max. : 1.65847 Max. :0.8652026
##
## $tables$IL_5$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1448
##
## x y
## Min. :-1.8615 Min. :0.0001585
## 1st Qu.:-0.8011 1st Qu.:0.0108436
## Median : 0.2594 Median :0.0627640
## Mean : 0.2594 Mean :0.2352824
## 3rd Qu.: 1.3199 3rd Qu.:0.4393679
## Max. : 2.3803 Max. :0.8374625
##
##
## $tables$IL_6
## $tables$IL_6$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1704
##
## x y
## Min. :-1.9629 Min. :0.0003585
## 1st Qu.:-0.8909 1st Qu.:0.0432806
## Median : 0.1811 Median :0.1086902
## Mean : 0.1811 Mean :0.2327501
## 3rd Qu.: 1.2530 3rd Qu.:0.3660240
## Max. : 2.3250 Max. :0.9421109
##
## $tables$IL_6$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1184
##
## x y
## Min. :-1.8894 Min. :0.0002611
## 1st Qu.:-1.0009 1st Qu.:0.0582977
## Median :-0.1124 Median :0.1535081
## Mean :-0.1124 Mean :0.2808061
## 3rd Qu.: 0.7762 3rd Qu.:0.4333115
## Max. : 1.6647 Max. :0.9325732
##
##
## $tables$IL_6_Receptor
## $tables$IL_6_Receptor$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1073
##
## x y
## Min. :-0.99740 Min. :0.0005697
## 1st Qu.:-0.45986 1st Qu.:0.0729806
## Median : 0.07769 Median :0.2991714
## Mean : 0.07769 Mean :0.4641447
## 3rd Qu.: 0.61523 3rd Qu.:0.8854582
## Max. : 1.15278 Max. :1.2151938
##
## $tables$IL_6_Receptor$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1004
##
## x y
## Min. :-0.94324 Min. :0.000564
## 1st Qu.:-0.45521 1st Qu.:0.106348
## Median : 0.03281 Median :0.501084
## Mean : 0.03281 Mean :0.511250
## 3rd Qu.: 0.52084 3rd Qu.:0.927191
## Max. : 1.00887 Max. :1.082565
##
##
## $tables$IL_7
## $tables$IL_7$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4111
##
## x y
## Min. :-0.6736 Min. :0.0004557
## 1st Qu.: 0.9327 1st Qu.:0.0442524
## Median : 2.5390 Median :0.1448168
## Mean : 2.5390 Mean :0.1553058
## 3rd Qu.: 4.1454 3rd Qu.:0.2582007
## Max. : 5.7517 Max. :0.3416548
##
## $tables$IL_7$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3193
##
## x y
## Min. :-0.273 Min. :0.0000734
## 1st Qu.: 1.461 1st Qu.:0.0170904
## Median : 3.195 Median :0.0965725
## Mean : 3.195 Mean :0.1438786
## 3rd Qu.: 4.929 3rd Qu.:0.2850512
## Max. : 6.664 Max. :0.3481015
##
##
## $tables$IL_8
## $tables$IL_8$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.01351
##
## x y
## Min. :1.567 Min. : 0.004518
## 1st Qu.:1.637 1st Qu.: 0.483051
## Median :1.707 Median : 1.878064
## Mean :1.707 Mean : 3.565088
## 3rd Qu.:1.777 3rd Qu.: 6.302757
## Max. :1.847 Max. :10.732067
##
## $tables$IL_8$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.0109
##
## x y
## Min. :1.541 Min. : 0.00211
## 1st Qu.:1.607 1st Qu.: 0.23979
## Median :1.674 Median : 2.00436
## Mean :1.674 Mean : 3.76132
## 3rd Qu.:1.740 3rd Qu.: 7.23914
## Max. :1.806 Max. :11.18418
##
##
## $tables$IP_10_Inducible_Protein_10
## $tables$IP_10_Inducible_Protein_10$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1863
##
## x y
## Min. :4.142 Min. :0.0004185
## 1st Qu.:4.966 1st Qu.:0.0475262
## Median :5.790 Median :0.2376800
## Mean :5.790 Mean :0.3027442
## 3rd Qu.:6.614 3rd Qu.:0.5357255
## Max. :7.438 Max. :0.7587120
##
## $tables$IP_10_Inducible_Protein_10$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1494
##
## x y
## Min. :3.869 Min. :0.0001646
## 1st Qu.:4.889 1st Qu.:0.0185718
## Median :5.909 Median :0.0913245
## Mean :5.909 Mean :0.2446043
## 3rd Qu.:6.929 3rd Qu.:0.5129381
## Max. :7.949 Max. :0.7715558
##
##
## $tables$IgA
## $tables$IgA$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2723
##
## x y
## Min. :-8.616 Min. :0.000224
## 1st Qu.:-7.325 1st Qu.:0.018891
## Median :-6.034 Median :0.131555
## Mean :-6.034 Mean :0.193252
## 3rd Qu.:-4.743 3rd Qu.:0.394834
## Max. :-3.452 Max. :0.502000
##
## $tables$IgA$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2182
##
## x y
## Min. :-11.174 Min. :0.000000
## 1st Qu.: -9.267 1st Qu.:0.001335
## Median : -7.360 Median :0.019659
## Mean : -7.360 Mean :0.130822
## 3rd Qu.: -5.452 3rd Qu.:0.241560
## Max. : -3.545 Max. :0.560047
##
##
## $tables$Insulin
## $tables$Insulin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1036
##
## x y
## Min. :-2.4800 Min. :0.0005896
## 1st Qu.:-1.8574 1st Qu.:0.0556466
## Median :-1.2347 Median :0.3262143
## Mean :-1.2347 Mean :0.4007316
## 3rd Qu.:-0.6121 3rd Qu.:0.5620447
## Max. : 0.0105 Max. :1.2933792
##
## $tables$Insulin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08799
##
## x y
## Min. :-2.4331 Min. :0.0002803
## 1st Qu.:-1.7985 1st Qu.:0.0595975
## Median :-1.1639 Median :0.1891544
## Mean :-1.1639 Mean :0.3931588
## 3rd Qu.:-0.5293 3rd Qu.:0.6684592
## Max. : 0.1053 Max. :1.4066919
##
##
## $tables$Kidney_Injury_Molecule_1_KIM_1
## $tables$Kidney_Injury_Molecule_1_KIM_1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.00858
##
## x y
## Min. :-1.257 Min. : 0.007559
## 1st Qu.:-1.218 1st Qu.: 0.913827
## Median :-1.178 Median : 3.938927
## Mean :-1.178 Mean : 6.270026
## 3rd Qu.:-1.138 3rd Qu.:11.635131
## Max. :-1.098 Max. :16.890980
##
## $tables$Kidney_Injury_Molecule_1_KIM_1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.009108
##
## x y
## Min. :-1.283 Min. : 0.003825
## 1st Qu.:-1.232 1st Qu.: 0.593889
## Median :-1.180 Median : 2.994047
## Mean :-1.180 Mean : 4.856747
## 3rd Qu.:-1.129 3rd Qu.:10.109607
## Max. :-1.077 Max. :12.453354
##
##
## $tables$LOX_1
## $tables$LOX_1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1414
##
## x y
## Min. :-0.1617 Min. :0.0005097
## 1st Qu.: 0.5077 1st Qu.:0.0657787
## Median : 1.1771 Median :0.2904380
## Mean : 1.1771 Mean :0.3727120
## 3rd Qu.: 1.8465 3rd Qu.:0.6062986
## Max. : 2.5160 Max. :1.0698854
##
## $tables$LOX_1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1163
##
## x y
## Min. :-0.3488 Min. :0.0001975
## 1st Qu.: 0.3936 1st Qu.:0.0208446
## Median : 1.1361 Median :0.1972421
## Mean : 1.1361 Mean :0.3360700
## 3rd Qu.: 1.8785 3rd Qu.:0.5647319
## Max. : 2.6209 Max. :1.0566625
##
##
## $tables$Leptin
## $tables$Leptin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1027
##
## x y
## Min. :-2.3820 Min. :0.0005944
## 1st Qu.:-1.8724 1st Qu.:0.0348112
## Median :-1.3627 Median :0.3292070
## Mean :-1.3627 Mean :0.4895453
## 3rd Qu.:-0.8531 3rd Qu.:0.9544008
## Max. :-0.3435 Max. :1.4096912
##
## $tables$Leptin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08537
##
## x y
## Min. :-2.4030 Min. :0.0002687
## 1st Qu.:-1.8933 1st Qu.:0.0265217
## Median :-1.3837 Median :0.2659151
## Mean :-1.3837 Mean :0.4895986
## 3rd Qu.:-0.8741 3rd Qu.:1.0127026
## Max. :-0.3645 Max. :1.3460258
##
##
## $tables$Lipoprotein_a
## $tables$Lipoprotein_a$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4463
##
## x y
## Min. :-7.50460 Min. :0.0001371
## 1st Qu.:-5.64033 1st Qu.:0.0177566
## Median :-3.77606 Median :0.1233259
## Mean :-3.77606 Mean :0.1338291
## 3rd Qu.:-1.91178 3rd Qu.:0.2470479
## Max. :-0.04751 Max. :0.3009930
##
## $tables$Lipoprotein_a$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3384
##
## x y
## Min. :-7.828 Min. :0.0000707
## 1st Qu.:-5.974 1st Qu.:0.0130355
## Median :-4.120 Median :0.1008437
## Mean :-4.120 Mean :0.1345872
## 3rd Qu.:-2.266 3rd Qu.:0.2397932
## Max. :-0.412 Max. :0.3526708
##
##
## $tables$MCP_1
## $tables$MCP_1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.08204
##
## x y
## Min. :5.580 Min. :0.000742
## 1st Qu.:6.023 1st Qu.:0.076306
## Median :6.466 Median :0.334402
## Mean :6.466 Mean :0.562949
## 3rd Qu.:6.910 3rd Qu.:0.983386
## Max. :7.353 Max. :1.659696
##
## $tables$MCP_1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08365
##
## x y
## Min. :5.575 Min. :0.0002833
## 1st Qu.:6.051 1st Qu.:0.0503598
## Median :6.528 Median :0.3496635
## Mean :6.528 Mean :0.5236990
## 3rd Qu.:7.004 3rd Qu.:1.0131174
## Max. :7.481 Max. :1.4058374
##
##
## $tables$MCP_2
## $tables$MCP_2$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.258
##
## x y
## Min. :-0.3735 Min. :0.0002363
## 1st Qu.: 0.9194 1st Qu.:0.0270400
## Median : 2.2122 Median :0.0879011
## Mean : 2.2122 Mean :0.1929878
## 3rd Qu.: 3.5050 3rd Qu.:0.3588776
## Max. : 4.7978 Max. :0.6183413
##
## $tables$MCP_2$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1411
##
## x y
## Min. :-0.02269 Min. :0.0001634
## 1st Qu.: 1.09474 1st Qu.:0.0145562
## Median : 2.21217 Median :0.1157047
## Mean : 2.21217 Mean :0.2232678
## 3rd Qu.: 3.32960 3rd Qu.:0.3212348
## Max. : 4.44703 Max. :0.8582897
##
##
## $tables$MIF
## $tables$MIF$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1116
##
## x y
## Min. :-2.7318 Min. :0.0005472
## 1st Qu.:-2.1761 1st Qu.:0.0505520
## Median :-1.6204 Median :0.1858068
## Mean :-1.6204 Mean :0.4490134
## 3rd Qu.:-1.0648 3rd Qu.:0.9965195
## Max. :-0.5091 Max. :1.1763069
##
## $tables$MIF$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09496
##
## x y
## Min. :-3.1322 Min. :0.0002408
## 1st Qu.:-2.5133 1st Qu.:0.0326868
## Median :-1.8945 Median :0.2730891
## Mean :-1.8945 Mean :0.4031727
## 3rd Qu.:-1.2756 3rd Qu.:0.7351494
## Max. :-0.6567 Max. :1.2561687
##
##
## $tables$MIP_1alpha
## $tables$MIP_1alpha$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2821
##
## x y
## Min. :1.541 Min. :0.000224
## 1st Qu.:2.893 1st Qu.:0.035600
## Median :4.244 Median :0.136544
## Mean :4.244 Mean :0.184656
## 3rd Qu.:5.595 3rd Qu.:0.299992
## Max. :6.946 Max. :0.496062
##
## $tables$MIP_1alpha$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3311
##
## x y
## Min. :-0.05885 Min. :0.0000694
## 1st Qu.: 1.90320 1st Qu.:0.0071115
## Median : 3.86525 Median :0.0755098
## Mean : 3.86525 Mean :0.1271673
## 3rd Qu.: 5.82730 3rd Qu.:0.2387466
## Max. : 7.78935 Max. :0.3768545
##
##
## $tables$MIP_1beta
## $tables$MIP_1beta$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1583
##
## x y
## Min. :1.499 Min. :0.0004186
## 1st Qu.:2.245 1st Qu.:0.0514581
## Median :2.991 Median :0.1742610
## Mean :2.991 Mean :0.3345874
## 3rd Qu.:3.736 3rd Qu.:0.6730393
## Max. :4.482 Max. :0.9441952
##
## $tables$MIP_1beta$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1009
##
## x y
## Min. :1.643 Min. :0.0002509
## 1st Qu.:2.243 1st Qu.:0.0794863
## Median :2.842 Median :0.3245179
## Mean :2.842 Mean :0.4163525
## 3rd Qu.:3.441 3rd Qu.:0.6656659
## Max. :4.040 Max. :1.2432633
##
##
## $tables$MMP_2
## $tables$MMP_2$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2979
##
## x y
## Min. :-0.1107 Min. :0.0002067
## 1st Qu.: 1.4801 1st Qu.:0.0257066
## Median : 3.0710 Median :0.0676057
## Mean : 3.0710 Mean :0.1568382
## 3rd Qu.: 4.6618 3rd Qu.:0.3046056
## Max. : 6.2526 Max. :0.4967223
##
## $tables$MMP_2$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2855
##
## x y
## Min. :-0.7584 Min. :0.0000807
## 1st Qu.: 0.8574 1st Qu.:0.0232143
## Median : 2.4732 Median :0.1037683
## Mean : 2.4732 Mean :0.1544139
## 3rd Qu.: 4.0890 3rd Qu.:0.2931617
## Max. : 5.7048 Max. :0.4099751
##
##
## $tables$MMP_3
## $tables$MMP_3$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1763
##
## x y
## Min. :-4.345539 Min. :0.0003472
## 1st Qu.:-3.258856 1st Qu.:0.0319547
## Median :-2.172173 Median :0.1425696
## Mean :-2.172173 Mean :0.2296006
## 3rd Qu.:-1.085490 3rd Qu.:0.3262705
## Max. : 0.001193 Max. :0.7708525
##
## $tables$MMP_3$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1614
##
## x y
## Min. :-4.9069 Min. :0.0001477
## 1st Qu.:-3.8440 1st Qu.:0.0202014
## Median :-2.7811 Median :0.1192796
## Mean :-2.7811 Mean :0.2347424
## 3rd Qu.:-1.7182 3rd Qu.:0.4079722
## Max. :-0.6553 Max. :0.7543996
##
##
## $tables$MMP10
## $tables$MMP10$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1366
##
## x y
## Min. :-5.343 Min. :0.0004474
## 1st Qu.:-4.457 1st Qu.:0.0326114
## Median :-3.570 Median :0.1316350
## Mean :-3.570 Mean :0.2814658
## 3rd Qu.:-2.684 3rd Qu.:0.4407209
## Max. :-1.798 Max. :1.1131115
##
## $tables$MMP10$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1146
##
## x y
## Min. :-5.011 Min. :0.0002376
## 1st Qu.:-4.313 1st Qu.:0.0639220
## Median :-3.615 Median :0.1883134
## Mean :-3.615 Mean :0.3575896
## 3rd Qu.:-2.918 3rd Qu.:0.7256202
## Max. :-2.220 Max. :0.9695254
##
##
## $tables$MMP7
## $tables$MMP7$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4298
##
## x y
## Min. :-7.8961 Min. :0.0001877
## 1st Qu.:-5.7017 1st Qu.:0.0296373
## Median :-3.5072 Median :0.0703373
## Mean :-3.5072 Mean :0.1136922
## 3rd Qu.:-1.3127 3rd Qu.:0.2118599
## Max. : 0.8818 Max. :0.3283795
##
## $tables$MMP7$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4545
##
## x y
## Min. :-9.761 Min. :5.049e-05
## 1st Qu.:-7.035 1st Qu.:7.595e-03
## Median :-4.310 Median :7.733e-02
## Mean :-4.310 Mean :9.155e-02
## 3rd Qu.:-1.584 3rd Qu.:1.513e-01
## Max. : 1.141 Max. :2.707e-01
##
##
## $tables$Myoglobin
## $tables$Myoglobin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2835
##
## x y
## Min. :-4.0204 Min. :0.0002152
## 1st Qu.:-2.3811 1st Qu.:0.0147224
## Median :-0.7418 Median :0.0570112
## Mean :-0.7418 Mean :0.1522008
## 3rd Qu.: 0.8975 3rd Qu.:0.2850424
## Max. : 2.5368 Max. :0.5053032
##
## $tables$Myoglobin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.3043
##
## x y
## Min. :-4.0364 Min. :0.0001409
## 1st Qu.:-2.3554 1st Qu.:0.0246330
## Median :-0.6743 Median :0.0899004
## Mean :-0.6743 Mean :0.1484212
## 3rd Qu.: 1.0068 3rd Qu.:0.2871095
## Max. : 2.6878 Max. :0.4047269
##
##
## $tables$NT_proBNP
## $tables$NT_proBNP$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1278
##
## x y
## Min. :3.488 Min. :0.0004799
## 1st Qu.:4.183 1st Qu.:0.0472861
## Median :4.879 Median :0.1644620
## Mean :4.879 Mean :0.3587442
## 3rd Qu.:5.574 3rd Qu.:0.6206068
## Max. :6.270 Max. :1.2352851
##
## $tables$NT_proBNP$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09443
##
## x y
## Min. :2.895 Min. :0.0002446
## 1st Qu.:3.609 1st Qu.:0.0257804
## Median :4.323 Median :0.1530335
## Mean :4.323 Mean :0.3493812
## 3rd Qu.:5.037 3rd Qu.:0.5785926
## Max. :5.751 Max. :1.3532174
##
##
## $tables$NrCAM
## $tables$NrCAM$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1993
##
## x y
## Min. :2.447 Min. :0.0003088
## 1st Qu.:3.371 1st Qu.:0.0293514
## Median :4.295 Median :0.1833253
## Mean :4.295 Mean :0.2700011
## 3rd Qu.:5.219 3rd Qu.:0.5204525
## Max. :6.143 Max. :0.7102494
##
## $tables$NrCAM$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1695
##
## x y
## Min. :2.131 Min. :0.0001359
## 1st Qu.:3.228 1st Qu.:0.0240669
## Median :4.325 Median :0.0997709
## Mean :4.325 Mean :0.2273790
## 3rd Qu.:5.422 3rd Qu.:0.4389008
## Max. :6.520 Max. :0.6934392
##
##
## $tables$Osteopontin
## $tables$Osteopontin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1546
##
## x y
## Min. :3.647 Min. :0.0003974
## 1st Qu.:4.427 1st Qu.:0.0424181
## Median :5.208 Median :0.1382530
## Mean :5.208 Mean :0.3197770
## 3rd Qu.:5.988 3rd Qu.:0.6681657
## Max. :6.768 Max. :0.9236408
##
## $tables$Osteopontin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.104
##
## x y
## Min. :3.922 Min. :0.0002219
## 1st Qu.:4.597 1st Qu.:0.0539899
## Median :5.271 Median :0.2050811
## Mean :5.271 Mean :0.3698778
## 3rd Qu.:5.946 3rd Qu.:0.6549779
## Max. :6.620 Max. :1.1054060
##
##
## $tables$PAI_1
## $tables$PAI_1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1684
##
## x y
## Min. :-1.3796 Min. :0.0003683
## 1st Qu.:-0.6169 1st Qu.:0.0433878
## Median : 0.1458 Median :0.2047515
## Mean : 0.1458 Mean :0.3271269
## 3rd Qu.: 0.9085 3rd Qu.:0.6651820
## Max. : 1.6713 Max. :0.7845451
##
## $tables$PAI_1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1155
##
## x y
## Min. :-1.337358 Min. :0.0002009
## 1st Qu.:-0.665516 1st Qu.:0.0465423
## Median : 0.006326 Median :0.2552360
## Mean : 0.006326 Mean :0.3713764
## 3rd Qu.: 0.678169 3rd Qu.:0.6258449
## Max. : 1.350011 Max. :1.0998865
##
##
## $tables$PAPP_A
## $tables$PAPP_A$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.05245
##
## x y
## Min. :-3.293 Min. :0.001188
## 1st Qu.:-3.061 1st Qu.:0.113929
## Median :-2.828 Median :0.889823
## Mean :-2.828 Mean :1.072688
## 3rd Qu.:-2.596 3rd Qu.:2.082858
## Max. :-2.363 Max. :2.356567
##
## $tables$PAPP_A$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.04084
##
## x y
## Min. :-3.433 Min. :0.0005607
## 1st Qu.:-3.183 1st Qu.:0.0520481
## Median :-2.933 Median :0.7298864
## Mean :-2.933 Mean :0.9964225
## 3rd Qu.:-2.682 3rd Qu.:1.6209822
## Max. :-2.432 Max. :2.9240586
##
##
## $tables$PLGF
## $tables$PLGF$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1622
##
## x y
## Min. :1.998 Min. :0.0003764
## 1st Qu.:2.831 1st Qu.:0.0253091
## Median :3.665 Median :0.1725115
## Mean :3.665 Mean :0.2994872
## 3rd Qu.:4.498 3rd Qu.:0.5687072
## Max. :5.331 Max. :0.8938577
##
## $tables$PLGF$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1243
##
## x y
## Min. :2.571 Min. :0.0001842
## 1st Qu.:3.314 1st Qu.:0.0166082
## Median :4.057 Median :0.1947426
## Mean :4.057 Mean :0.3357975
## 3rd Qu.:4.800 3rd Qu.:0.6666717
## Max. :5.544 Max. :0.9763553
##
##
## $tables$PYY
## $tables$PYY$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.0982
##
## x y
## Min. :1.891 Min. :0.0006209
## 1st Qu.:2.455 1st Qu.:0.0587541
## Median :3.018 Median :0.1984700
## Mean :3.018 Mean :0.4429175
## 3rd Qu.:3.581 3rd Qu.:0.8168789
## Max. :4.145 Max. :1.3349109
##
## $tables$PYY$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08076
##
## x y
## Min. :2.060 Min. :0.0002856
## 1st Qu.:2.589 1st Qu.:0.0599018
## Median :3.117 Median :0.2060174
## Mean :3.117 Mean :0.4721514
## 3rd Qu.:3.646 3rd Qu.:0.8992958
## Max. :4.174 Max. :1.4111804
##
##
## $tables$Pancreatic_polypeptide
## $tables$Pancreatic_polypeptide$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2937
##
## x y
## Min. :-2.1541 Min. :0.0004183
## 1st Qu.:-0.9124 1st Qu.:0.0345638
## Median : 0.3293 Median :0.1788613
## Mean : 0.3293 Mean :0.2009313
## 3rd Qu.: 1.5710 3rd Qu.:0.3209413
## Max. : 2.8126 Max. :0.5212213
##
## $tables$Pancreatic_polypeptide$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2106
##
## x y
## Min. :-2.7520 Min. :0.0001181
## 1st Qu.:-1.4939 1st Qu.:0.0177924
## Median :-0.2358 Median :0.1181308
## Mean :-0.2358 Mean :0.1983245
## 3rd Qu.: 1.0223 3rd Qu.:0.3748847
## Max. : 2.2803 Max. :0.5971506
##
##
## $tables$Prolactin
## $tables$Prolactin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.07877
##
## x y
## Min. :-0.7144 Min. :0.0007755
## 1st Qu.:-0.2476 1st Qu.:0.0768896
## Median : 0.2191 Median :0.1472789
## Mean : 0.2191 Mean :0.5345546
## 3rd Qu.: 0.6859 3rd Qu.:1.1801963
## Max. : 1.1526 Max. :1.5625205
##
## $tables$Prolactin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09625
##
## x y
## Min. :-1.5981 Min. :0.0002389
## 1st Qu.:-0.8781 1st Qu.:0.0135700
## Median :-0.1580 Median :0.0820399
## Mean :-0.1580 Mean :0.3465262
## 3rd Qu.: 0.5620 3rd Qu.:0.5938191
## Max. : 1.2820 Max. :1.3499959
##
##
## $tables$Prostatic_Acid_Phosphatase
## $tables$Prostatic_Acid_Phosphatase$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.01973
##
## x y
## Min. :-1.831 Min. :0.00309
## 1st Qu.:-1.715 1st Qu.:0.25083
## Median :-1.598 Median :0.80225
## Mean :-1.598 Mean :2.13904
## 3rd Qu.:-1.481 3rd Qu.:3.67872
## Max. :-1.365 Max. :7.86067
##
## $tables$Prostatic_Acid_Phosphatase$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01622
##
## x y
## Min. :-1.982 Min. :0.001418
## 1st Qu.:-1.862 1st Qu.:0.079463
## Median :-1.741 Median :0.743960
## Mean :-1.741 Mean :2.067727
## 3rd Qu.:-1.620 3rd Qu.:3.445326
## Max. :-1.500 Max. :8.158095
##
##
## $tables$Protein_S
## $tables$Protein_S$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.132
##
## x y
## Min. :-3.3850 Min. :0.0006362
## 1st Qu.:-2.7450 1st Qu.:0.0736674
## Median :-2.1050 Median :0.2180317
## Mean :-2.1050 Mean :0.3898316
## 3rd Qu.:-1.4650 3rd Qu.:0.7054700
## Max. :-0.8249 Max. :1.1810831
##
## $tables$Protein_S$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08967
##
## x y
## Min. :-3.607 Min. :0.000257
## 1st Qu.:-2.954 1st Qu.:0.046951
## Median :-2.300 Median :0.164772
## Mean :-2.300 Mean :0.381793
## 3rd Qu.:-1.647 3rd Qu.:0.696743
## Max. :-0.993 Max. :1.360841
##
##
## $tables$Pulmonary_and_Activation_Regulat
## $tables$Pulmonary_and_Activation_Regulat$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1511
##
## x y
## Min. :-2.75588 Min. :0.0004523
## 1st Qu.:-2.08129 1st Qu.:0.0628626
## Median :-1.40671 Median :0.2968929
## Mean :-1.40671 Mean :0.3698564
## 3rd Qu.:-0.73212 3rd Qu.:0.6547507
## Max. :-0.05753 Max. :0.8981923
##
## $tables$Pulmonary_and_Activation_Regulat$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1424
##
## x y
## Min. :-2.9405 Min. :0.0002526
## 1st Qu.:-2.1672 1st Qu.:0.0460465
## Median :-1.3939 Median :0.2339307
## Mean :-1.3939 Mean :0.3226469
## 3rd Qu.:-0.6206 3rd Qu.:0.5587706
## Max. : 0.1527 Max. :0.8758486
##
##
## $tables$RANTES
## $tables$RANTES$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1081
##
## x y
## Min. :-7.480 Min. :0.0005643
## 1st Qu.:-6.916 1st Qu.:0.0511756
## Median :-6.351 Median :0.2527197
## Mean :-6.351 Mean :0.4420157
## 3rd Qu.:-5.787 3rd Qu.:0.7591550
## Max. :-5.223 Max. :1.3900569
##
## $tables$RANTES$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1023
##
## x y
## Min. :-7.529 Min. :0.0002644
## 1st Qu.:-6.964 1st Qu.:0.0544525
## Median :-6.398 Median :0.2593930
## Mean :-6.398 Mean :0.4408864
## 3rd Qu.:-5.832 3rd Qu.:0.8938454
## Max. :-5.266 Max. :1.0887745
##
##
## $tables$Resistin
## $tables$Resistin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 2.203
##
## x y
## Min. :-41.576 Min. :2.761e-05
## 1st Qu.:-30.090 1st Qu.:2.149e-03
## Median :-18.603 Median :1.134e-02
## Mean :-18.603 Mean :2.172e-02
## 3rd Qu.: -7.116 3rd Qu.:4.033e-02
## Max. : 4.370 Max. :7.083e-02
##
## $tables$Resistin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 1.737
##
## x y
## Min. :-37.350 Min. :1.384e-05
## 1st Qu.:-27.539 1st Qu.:2.849e-03
## Median :-17.728 Median :1.740e-02
## Mean :-17.728 Mean :2.543e-02
## 3rd Qu.: -7.917 3rd Qu.:4.768e-02
## Max. : 1.895 Max. :6.878e-02
##
##
## $tables$S100b
## $tables$S100b$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1279
##
## x y
## Min. :0.1209 Min. :0.0004874
## 1st Qu.:0.6790 1st Qu.:0.0631170
## Median :1.2371 Median :0.3857408
## Mean :1.2371 Mean :0.4470420
## 3rd Qu.:1.7952 3rd Qu.:0.8295527
## Max. :2.3533 Max. :1.0532003
##
## $tables$S100b$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1065
##
## x y
## Min. :-0.1322 Min. :0.000216
## 1st Qu.: 0.5739 1st Qu.:0.016795
## Median : 1.2800 Median :0.151859
## Mean : 1.2800 Mean :0.353361
## 3rd Qu.: 1.9861 3rd Qu.:0.729348
## Max. : 2.6922 Max. :1.068651
##
##
## $tables$SGOT
## $tables$SGOT$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1086
##
## x y
## Min. :-1.2934 Min. :0.0006195
## 1st Qu.:-0.8045 1st Qu.:0.0858720
## Median :-0.3156 Median :0.3795370
## Mean :-0.3156 Mean :0.5103096
## 3rd Qu.: 0.1734 3rd Qu.:0.8977714
## Max. : 0.6623 Max. :1.3990519
##
## $tables$SGOT$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1027
##
## x y
## Min. :-1.6551 Min. :0.0002249
## 1st Qu.:-0.9788 1st Qu.:0.0478939
## Median :-0.3026 Median :0.1818082
## Mean :-0.3026 Mean :0.3689448
## 3rd Qu.: 0.3737 3rd Qu.:0.6588273
## Max. : 1.0500 Max. :1.1195433
##
##
## $tables$SHBG
## $tables$SHBG$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.193
##
## x y
## Min. :-4.3088 Min. :0.0003178
## 1st Qu.:-3.3640 1st Qu.:0.0397268
## Median :-2.4192 Median :0.1810245
## Mean :-2.4192 Mean :0.2640781
## 3rd Qu.:-1.4744 3rd Qu.:0.4388186
## Max. :-0.5296 Max. :0.7656992
##
## $tables$SHBG$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1561
##
## x y
## Min. :-4.6033 Min. :0.0001902
## 1st Qu.:-3.6203 1st Qu.:0.0358164
## Median :-2.6373 Median :0.1733113
## Mean :-2.6373 Mean :0.2538154
## 3rd Qu.:-1.6543 3rd Qu.:0.4126118
## Max. :-0.6713 Max. :0.7496585
##
##
## $tables$SOD
## $tables$SOD$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.136
##
## x y
## Min. :3.923 Min. :0.0004486
## 1st Qu.:4.623 1st Qu.:0.0413917
## Median :5.324 Median :0.1452683
## Mean :5.324 Mean :0.3561261
## 3rd Qu.:6.025 3rd Qu.:0.6701857
## Max. :6.725 Max. :1.2203413
##
## $tables$SOD$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1159
##
## x y
## Min. :3.970 Min. :0.0002469
## 1st Qu.:4.643 1st Qu.:0.0622313
## Median :5.317 Median :0.2164216
## Mean :5.317 Mean :0.3702806
## 3rd Qu.:5.991 3rd Qu.:0.6620650
## Max. :6.665 Max. :1.0812982
##
##
## $tables$Serum_Amyloid_P
## $tables$Serum_Amyloid_P$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2052
##
## x y
## Min. :-7.954 Min. :0.0003237
## 1st Qu.:-7.013 1st Qu.:0.0448128
## Median :-6.071 Median :0.2262529
## Mean :-6.071 Mean :0.2650042
## 3rd Qu.:-5.130 3rd Qu.:0.4605613
## Max. :-4.188 Max. :0.6735639
##
## $tables$Serum_Amyloid_P$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1606
##
## x y
## Min. :-7.987 Min. :0.0001529
## 1st Qu.:-7.032 1st Qu.:0.0438634
## Median :-6.076 Median :0.1502905
## Mean :-6.076 Mean :0.2610528
## 3rd Qu.:-5.120 3rd Qu.:0.4678719
## Max. :-4.164 Max. :0.7413883
##
##
## $tables$Sortilin
## $tables$Sortilin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.3258
##
## x y
## Min. :1.364 Min. :0.0001872
## 1st Qu.:2.824 1st Qu.:0.0196961
## Median :4.283 Median :0.1410954
## Mean :4.283 Mean :0.1709258
## 3rd Qu.:5.743 3rd Qu.:0.3170583
## Max. :7.203 Max. :0.4402174
##
## $tables$Sortilin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2559
##
## x y
## Min. :0.886 Min. :0.0000898
## 1st Qu.:2.413 1st Qu.:0.0185340
## Median :3.940 Median :0.1083839
## Mean :3.940 Mean :0.1634219
## 3rd Qu.:5.466 3rd Qu.:0.2843334
## Max. :6.993 Max. :0.4845338
##
##
## $tables$Stem_Cell_Factor
## $tables$Stem_Cell_Factor$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1255
##
## x y
## Min. :2.021 Min. :0.0004899
## 1st Qu.:2.598 1st Qu.:0.0566164
## Median :3.175 Median :0.3028751
## Mean :3.175 Mean :0.4326855
## 3rd Qu.:3.751 3rd Qu.:0.8932871
## Max. :4.328 Max. :1.1314376
##
## $tables$Stem_Cell_Factor$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1128
##
## x y
## Min. :1.913 Min. :0.0002045
## 1st Qu.:2.588 1st Qu.:0.0369662
## Median :3.264 Median :0.2177216
## Mean :3.264 Mean :0.3693084
## 3rd Qu.:3.940 3rd Qu.:0.7344650
## Max. :4.615 Max. :1.0127667
##
##
## $tables$TGF_alpha
## $tables$TGF_alpha$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4318
##
## x y
## Min. : 5.819 Min. :0.0001779
## 1st Qu.: 7.893 1st Qu.:0.0241582
## Median : 9.968 Median :0.0675647
## Mean : 9.968 Mean :0.1202481
## 3rd Qu.:12.043 3rd Qu.:0.2277292
## Max. :14.118 Max. :0.3194842
##
## $tables$TGF_alpha$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4265
##
## x y
## Min. : 5.563 Min. :5.434e-05
## 1st Qu.: 7.949 1st Qu.:9.872e-03
## Median :10.335 Median :7.680e-02
## Mean :10.335 Mean :1.046e-01
## 3rd Qu.:12.721 3rd Qu.:1.931e-01
## Max. :15.107 Max. :3.049e-01
##
##
## $tables$TIMP_1
## $tables$TIMP_1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.7631
##
## x y
## Min. : 6.665 Min. :7.996e-05
## 1st Qu.:10.291 1st Qu.:5.927e-03
## Median :13.918 Median :4.027e-02
## Mean :13.918 Mean :6.880e-02
## 3rd Qu.:17.544 3rd Qu.:1.315e-01
## Max. :21.170 Max. :1.901e-01
##
## $tables$TIMP_1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.5226
##
## x y
## Min. : 0.1739 Min. :0.0000000
## 1st Qu.: 4.9973 1st Qu.:0.0002628
## Median : 9.8207 Median :0.0066975
## Mean : 9.8207 Mean :0.0517288
## 3rd Qu.:14.6441 3rd Qu.:0.0812559
## Max. :19.4675 Max. :0.2370685
##
##
## $tables$TNF_RII
## $tables$TNF_RII$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1287
##
## x y
## Min. :-1.7724 Min. :0.0004729
## 1st Qu.:-1.1153 1st Qu.:0.0399146
## Median :-0.4581 Median :0.1767396
## Mean :-0.4581 Mean :0.3796843
## 3rd Qu.: 0.1990 3rd Qu.:0.7846294
## Max. : 0.8561 Max. :1.0878833
##
## $tables$TNF_RII$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09976
##
## x y
## Min. :-1.96002 Min. :0.0002298
## 1st Qu.:-1.31108 1st Qu.:0.0216834
## Median :-0.66213 Median :0.1367883
## Mean :-0.66213 Mean :0.3844817
## 3rd Qu.:-0.01318 3rd Qu.:0.7880589
## Max. : 0.63577 Max. :1.1788242
##
##
## $tables$TRAIL_R3
## $tables$TRAIL_R3$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.08757
##
## x y
## Min. :-1.1644 Min. :0.0006967
## 1st Qu.:-0.7402 1st Qu.:0.0605912
## Median :-0.3161 Median :0.3641310
## Mean :-0.3161 Mean :0.5882954
## 3rd Qu.: 0.1080 3rd Qu.:1.1507193
## Max. : 0.5321 Max. :1.6012376
##
## $tables$TRAIL_R3$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.071
##
## x y
## Min. :-1.42370 Min. :0.0003239
## 1st Qu.:-0.96810 1st Qu.:0.0299211
## Median :-0.51251 Median :0.2241354
## Mean :-0.51251 Mean :0.5476573
## 3rd Qu.:-0.05692 3rd Qu.:1.1322475
## Max. : 0.39867 Max. :1.6594882
##
##
## $tables$TTR_prealbumin
## $tables$TTR_prealbumin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.03354
##
## x y
## Min. :2.464 Min. :0.000515
## 1st Qu.:2.706 1st Qu.:0.064512
## Median :2.949 Median :0.514260
## Mean :2.949 Mean :1.030464
## 3rd Qu.:3.191 3rd Qu.:1.627569
## Max. :3.433 Max. :3.465569
##
## $tables$TTR_prealbumin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.04025
##
## x y
## Min. :2.364 Min. :0.0005726
## 1st Qu.:2.618 1st Qu.:0.0874315
## Median :2.872 Median :0.6397767
## Mean :2.872 Mean :0.9836059
## 3rd Qu.:3.125 3rd Qu.:1.7009864
## Max. :3.379 Max. :2.9208455
##
##
## $tables$Tamm_Horsfall_Protein_THP
## $tables$Tamm_Horsfall_Protein_THP$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.01
##
## x y
## Min. :-3.236 Min. : 0.0061
## 1st Qu.:-3.179 1st Qu.: 0.3875
## Median :-3.123 Median : 2.7142
## Mean :-3.123 Mean : 4.4429
## 3rd Qu.:-3.067 3rd Qu.: 7.9055
## Max. :-3.011 Max. :13.4078
##
## $tables$Tamm_Horsfall_Protein_THP$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01004
##
## x y
## Min. :-3.236 Min. : 0.002291
## 1st Qu.:-3.168 1st Qu.: 0.202409
## Median :-3.100 Median : 1.441257
## Mean :-3.100 Mean : 3.679290
## 3rd Qu.:-3.032 3rd Qu.: 6.958499
## Max. :-2.964 Max. :12.300325
##
##
## $tables$Thrombomodulin
## $tables$Thrombomodulin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.08265
##
## x y
## Min. :-2.2233 Min. :0.0007774
## 1st Qu.:-1.8097 1st Qu.:0.0789252
## Median :-1.3960 Median :0.2423543
## Mean :-1.3960 Mean :0.6031489
## 3rd Qu.:-0.9823 3rd Qu.:1.2846085
## Max. :-0.5687 Max. :1.8615329
##
## $tables$Thrombomodulin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07006
##
## x y
## Min. :-2.2478 Min. :0.0005748
## 1st Qu.:-1.8819 1st Qu.:0.1113643
## Median :-1.5160 Median :0.5888401
## Mean :-1.5160 Mean :0.6818655
## 3rd Qu.:-1.1501 3rd Qu.:1.1895943
## Max. :-0.7842 Max. :1.7639707
##
##
## $tables$Thrombopoietin
## $tables$Thrombopoietin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.06773
##
## x y
## Min. :-1.74275 Min. :0.0009015
## 1st Qu.:-1.32325 1st Qu.:0.0451482
## Median :-0.90376 Median :0.3488088
## Mean :-0.90376 Mean :0.5947557
## 3rd Qu.:-0.48426 3rd Qu.:0.9909795
## Max. :-0.06476 Max. :2.1026315
##
## $tables$Thrombopoietin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.07041
##
## x y
## Min. :-1.5184 Min. :0.0003267
## 1st Qu.:-1.0616 1st Qu.:0.0348825
## Median :-0.6048 Median :0.3479396
## Mean :-0.6048 Mean :0.5461857
## 3rd Qu.:-0.1480 3rd Qu.:0.9234895
## Max. : 0.3089 Max. :1.7648531
##
##
## $tables$Thymus_Expressed_Chemokine_TECK
## $tables$Thymus_Expressed_Chemokine_TECK$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2555
##
## x y
## Min. :1.170 Min. :0.000239
## 1st Qu.:2.625 1st Qu.:0.017862
## Median :4.081 Median :0.079276
## Mean :4.081 Mean :0.171420
## 3rd Qu.:5.536 3rd Qu.:0.310995
## Max. :6.992 Max. :0.559876
##
## $tables$Thymus_Expressed_Chemokine_TECK$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1889
##
## x y
## Min. :0.9418 Min. :0.0001233
## 1st Qu.:2.4043 1st Qu.:0.0171002
## Median :3.8669 Median :0.0722106
## Mean :3.8669 Mean :0.1705975
## 3rd Qu.:5.3294 3rd Qu.:0.2912266
## Max. :6.7920 Max. :0.5967206
##
##
## $tables$Thyroid_Stimulating_Hormone
## $tables$Thyroid_Stimulating_Hormone$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.3209
##
## x y
## Min. :-7.152 Min. :0.0001913
## 1st Qu.:-5.704 1st Qu.:0.0262018
## Median :-4.256 Median :0.1122723
## Mean :-4.256 Mean :0.1722866
## 3rd Qu.:-2.808 3rd Qu.:0.3264134
## Max. :-1.360 Max. :0.4631632
##
## $tables$Thyroid_Stimulating_Hormone$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1916
##
## x y
## Min. :-6.765 Min. :0.0001202
## 1st Qu.:-5.359 1st Qu.:0.0106288
## Median :-3.952 Median :0.0639249
## Mean :-3.952 Mean :0.1774198
## 3rd Qu.:-2.546 3rd Qu.:0.3425615
## Max. :-1.140 Max. :0.6106165
##
##
## $tables$Thyroxine_Binding_Globulin
## $tables$Thyroxine_Binding_Globulin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1455
##
## x y
## Min. :-2.5566 Min. :0.0008919
## 1st Qu.:-1.9624 1st Qu.:0.0890178
## Median :-1.3682 Median :0.4048727
## Mean :-1.3682 Mean :0.4198723
## 3rd Qu.:-0.7740 3rd Qu.:0.7462426
## Max. :-0.1798 Max. :0.8906812
##
## $tables$Thyroxine_Binding_Globulin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1246
##
## x y
## Min. :-2.8507 Min. :0.0001845
## 1st Qu.:-2.0973 1st Qu.:0.0276562
## Median :-1.3438 Median :0.1557217
## Mean :-1.3438 Mean :0.3311640
## 3rd Qu.:-0.5904 3rd Qu.:0.6687243
## Max. : 0.1630 Max. :0.9612922
##
##
## $tables$Tissue_Factor
## $tables$Tissue_Factor$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1853
##
## x y
## Min. :-0.5658 Min. :0.000383
## 1st Qu.: 0.2583 1st Qu.:0.044785
## Median : 1.0824 Median :0.217380
## Mean : 1.0824 Mean :0.302759
## 3rd Qu.: 1.9064 3rd Qu.:0.539996
## Max. : 2.7305 Max. :0.827211
##
## $tables$Tissue_Factor$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1519
##
## x y
## Min. :-0.6665 Min. :0.0001829
## 1st Qu.: 0.2353 1st Qu.:0.0411846
## Median : 1.1371 Median :0.1697445
## Mean : 1.1371 Mean :0.2766810
## 3rd Qu.: 2.0389 3rd Qu.:0.4975023
## Max. : 2.9407 Max. :0.8122198
##
##
## $tables$Transferrin
## $tables$Transferrin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.09068
##
## x y
## Min. :1.659 Min. :0.0006734
## 1st Qu.:2.194 1st Qu.:0.0260873
## Median :2.729 Median :0.1795431
## Mean :2.729 Mean :0.4665920
## 3rd Qu.:3.264 3rd Qu.:0.8481347
## Max. :3.798 Max. :1.6573670
##
## $tables$Transferrin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08756
##
## x y
## Min. :1.683 Min. :0.0002615
## 1st Qu.:2.268 1st Qu.:0.0213870
## Median :2.854 Median :0.1751520
## Mean :2.854 Mean :0.4263912
## 3rd Qu.:3.439 3rd Qu.:0.7871647
## Max. :4.024 Max. :1.4687536
##
##
## $tables$Trefoil_Factor_3_TFF3
## $tables$Trefoil_Factor_3_TFF3$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1387
##
## x y
## Min. :-5.160 Min. :0.0004648
## 1st Qu.:-4.505 1st Qu.:0.0602022
## Median :-3.850 Median :0.2159617
## Mean :-3.850 Mean :0.3809361
## 3rd Qu.:-3.196 3rd Qu.:0.7326102
## Max. :-2.541 Max. :1.0664573
##
## $tables$Trefoil_Factor_3_TFF3$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1031
##
## x y
## Min. :-4.987 Min. :0.0002666
## 1st Qu.:-4.422 1st Qu.:0.0575803
## Median :-3.857 Median :0.3067861
## Mean :-3.857 Mean :0.4416230
## 3rd Qu.:-3.292 3rd Qu.:0.8679997
## Max. :-2.727 Max. :1.0993923
##
##
## $tables$VCAM_1
## $tables$VCAM_1$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1398
##
## x y
## Min. :1.304 Min. :0.0004365
## 1st Qu.:2.005 1st Qu.:0.0357910
## Median :2.706 Median :0.1833254
## Mean :2.706 Mean :0.3558455
## 3rd Qu.:3.407 3rd Qu.:0.5708029
## Max. :4.108 Max. :1.1464433
##
## $tables$VCAM_1$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09411
##
## x y
## Min. :1.649 Min. :0.0003448
## 1st Qu.:2.217 1st Qu.:0.0295152
## Median :2.785 Median :0.2422417
## Mean :2.785 Mean :0.4395158
## 3rd Qu.:3.352 3rd Qu.:0.8112680
## Max. :3.920 Max. :1.3052173
##
##
## $tables$VEGF
## $tables$VEGF$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.5539
##
## x y
## Min. :11.04 Min. :0.0001229
## 1st Qu.:13.97 1st Qu.:0.0183212
## Median :16.90 Median :0.0446594
## Mean :16.90 Mean :0.0852277
## 3rd Qu.:19.82 3rd Qu.:0.1613336
## Max. :22.75 Max. :0.2622160
##
## $tables$VEGF$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.523
##
## x y
## Min. :10.26 Min. :4.404e-05
## 1st Qu.:13.68 1st Qu.:8.378e-03
## Median :17.11 Median :3.543e-02
## Mean :17.11 Mean :7.292e-02
## 3rd Qu.:20.53 3rd Qu.:1.279e-01
## Max. :23.95 Max. :2.297e-01
##
##
## $tables$Vitronectin
## $tables$Vitronectin$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.116
##
## x y
## Min. :-1.2896 Min. :0.0006909
## 1st Qu.:-0.7961 1st Qu.:0.0863271
## Median :-0.3026 Median :0.4310126
## Mean :-0.3026 Mean :0.5055689
## 3rd Qu.: 0.1909 3rd Qu.:0.9480774
## Max. : 0.6844 Max. :1.1551424
##
## $tables$Vitronectin$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1072
##
## x y
## Min. :-1.7486 Min. :0.0002144
## 1st Qu.:-1.0984 1st Qu.:0.0194634
## Median :-0.4482 Median :0.1800500
## Mean :-0.4482 Mean :0.3837404
## 3rd Qu.: 0.2020 3rd Qu.:0.8241035
## Max. : 0.8522 Max. :1.0688875
##
##
## $tables$von_Willebrand_Factor
## $tables$von_Willebrand_Factor$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1421
##
## x y
## Min. :-5.182 Min. :0.0004309
## 1st Qu.:-4.519 1st Qu.:0.0443519
## Median :-3.856 Median :0.3044065
## Mean :-3.856 Mean :0.3763200
## 3rd Qu.:-3.193 3rd Qu.:0.6967481
## Max. :-2.530 Max. :0.9158278
##
## $tables$von_Willebrand_Factor$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1166
##
## x y
## Min. :-5.341 Min. :0.000244
## 1st Qu.:-4.688 1st Qu.:0.040219
## Median :-4.035 Median :0.261248
## Mean :-4.035 Mean :0.382190
## 3rd Qu.:-3.382 3rd Qu.:0.750083
## Max. :-2.729 Max. :0.998663
##
##
## $tables$E4
## $tables$E4$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.189
##
## x y
## Min. :0.4329 Min. :0.00965
## 1st Qu.:0.9664 1st Qu.:0.11395
## Median :1.5000 Median :0.37933
## Mean :1.5000 Mean :0.46703
## 3rd Qu.:2.0336 3rd Qu.:0.78142
## Max. :2.5671 Max. :1.24269
##
## $tables$E4$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1479
##
## x y
## Min. :0.5562 Min. :0.008364
## 1st Qu.:1.0281 1st Qu.:0.071217
## Median :1.5000 Median :0.345225
## Mean :1.5000 Mean :0.528053
## 3rd Qu.:1.9719 3rd Qu.:0.833414
## Max. :2.4438 Max. :1.806542
##
##
## $tables$E3
## $tables$E3$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.12
##
## x y
## Min. :0.6399 Min. :0.0003441
## 1st Qu.:1.0700 1st Qu.:0.0243032
## Median :1.5000 Median :0.1745859
## Mean :1.5000 Mean :0.5794704
## 3rd Qu.:1.9300 3rd Qu.:0.5908657
## Max. :2.3601 Max. :2.9588517
##
## $tables$E3$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08141
##
## x y
## Min. :0.7558 Min. :0.000000
## 1st Qu.:1.1279 1st Qu.:0.000735
## Median :1.5000 Median :0.078645
## Mean :1.5000 Mean :0.669655
## 3rd Qu.:1.8721 3rd Qu.:0.353346
## Max. :2.2442 Max. :4.544950
##
##
## $tables$E2
## $tables$E2$Impaired
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1055
##
## x y
## Min. :0.6834 Min. :0.000027
## 1st Qu.:1.0917 1st Qu.:0.010496
## Median :1.5000 Median :0.130505
## Mean :1.5000 Mean :0.610325
## 3rd Qu.:1.9083 3rd Qu.:0.529965
## Max. :2.3166 Max. :3.468090
##
## $tables$E2$Control
##
## Call:
## density.default(x = xx, adjust = ..1)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1236
##
## x y
## Min. :0.6292 Min. :0.0007015
## 1st Qu.:1.0646 1st Qu.:0.0369939
## Median :1.5000 Median :0.2460256
## Mean :1.5000 Mean :0.5723030
## 3rd Qu.:1.9354 3rd Qu.:0.6137616
## Max. :2.3708 Max. :2.6115594
##
##
##
## $levels
## [1] "Impaired" "Control"
##
## $call
## NaiveBayes.default(x = x, grouping = y, usekernel = TRUE, fL = param$fL,
## adjust = param$adjust)
##
## $x
## ACE_CD143_Angiotensin_Converti ACTH_Adrenocorticotropic_Hormon AXL
## X1 2.00310035 -1.3862944 1.09838668
## X2 1.56185602 -1.3862944 0.68328157
## X3 1.52065981 -1.7147984 -0.14527630
## X5 2.40093083 -0.9675840 0.19089023
## X6 0.43115645 -1.2729657 -0.22236112
## X7 0.94620673 -1.8971200 0.52982213
## X8 0.70781531 -1.8325815 -0.32667995
## X9 1.10654173 -1.9661129 0.19089023
## X11 1.82987064 -0.9942523 0.36643191
## X12 1.00119771 -1.7147984 0.36643191
## X14 1.52065981 -1.7147984 0.19089023
## X16 1.86560359 -1.6607312 0.60768096
## X17 0.88951564 -1.6094379 0.19089023
## X18 0.50475301 -1.8971200 -0.16696972
## X19 0.43115645 -1.7719568 -0.60000000
## X20 0.88951564 -1.7719568 -0.64353400
## X21 0.94620673 -1.1086626 -0.15609111
## X22 2.03621269 -1.6094379 0.44948974
## X23 1.20635622 -1.5141277 0.09761770
## X24 1.79355115 -1.6094379 1.22490310
## X25 1.05460735 -1.5141277 -0.07126985
## X26 1.79355115 -1.3470736 0.60768096
## X28 1.43572821 -1.7147984 0.89827535
## X29 0.43115645 -1.6094379 -0.27953495
## X30 1.30129723 -1.8971200 -0.09212160
## X31 1.25439977 -1.4696760 0.19089023
## X34 0.57519641 -2.2072749 -0.12383370
## X35 0.70781531 -1.8971200 -0.07126985
## X36 1.15709609 -1.7147984 0.28035085
## X37 1.82987064 -1.4696760 0.60768096
## X38 1.25439977 -1.6094379 0.09761770
## X39 2.28543598 -1.1711830 0.68328157
## X40 1.56185602 -1.2729657 0.09761770
## X41 0.64279595 -1.8971200 0.28035085
## X42 1.30129723 -1.2378744 0.60768096
## X43 0.77048138 -1.7719568 -0.08166739
## X44 1.39190522 -1.1711830 0.44948974
## X45 1.20635622 -1.5141277 0.52982213
## X46 1.90077250 -1.5141277 0.75680975
## X47 0.57519641 -1.8971200 -0.30294373
## X48 1.79355115 -1.2378744 1.09838668
## X50 1.90077250 -0.8675006 0.28035085
## X51 1.25439977 -1.7719568 0.60768096
## X53 1.20635622 -1.3470736 -0.02010101
## X55 1.47863123 -1.4271164 0.52982213
## X56 1.05460735 -2.1202635 -0.04040821
## X57 0.64279595 -1.0498221 0.68328157
## X59 1.05460735 -2.2072749 -0.12383370
## X60 0.50475301 -2.1202635 -0.46377085
## X61 0.43115645 -1.2729657 -0.31477005
## X62 0.77048138 -1.8325815 -0.04040821
## X63 1.10654173 -1.7147984 0.19089023
## X64 0.94620673 -1.8325815 0.00000000
## X65 1.82987064 -1.4696760 0.44948974
## X67 1.71905522 -1.8971200 0.60768096
## X68 1.43572821 -1.4271164 0.60768096
## X69 0.64279595 -1.7147984 -0.33867523
## X70 1.25439977 -1.5141277 0.60768096
## X71 1.64190425 -1.5141277 0.09761770
## X72 2.31482865 -1.3862944 0.52982213
## X73 1.90077250 -1.3470736 0.82842712
## X74 0.09668586 -1.6607312 -0.68851230
## X75 0.70781531 -1.7719568 -0.21114562
## X76 2.03621269 -1.9661129 1.03315018
## X77 1.71905522 -1.4271164 0.19089023
## X78 1.68082597 -1.2729657 1.22490310
## X80 1.43572821 -1.4696760 0.09761770
## X81 1.64190425 -1.6094379 0.19089023
## X82 0.43115645 -1.5141277 0.52982213
## X83 1.96950153 -1.3470736 0.52982213
## X84 0.64279595 -1.8325815 -0.02010101
## X85 1.71905522 -1.7147984 1.22490310
## X86 1.30129723 -1.2378744 0.89827535
## X88 2.03621269 -1.2729657 0.19089023
## X90 -0.67562020 -1.9661129 -0.64353400
## X93 1.00119771 -1.6607312 0.28035085
## X94 1.64190425 -1.4696760 1.22490310
## X95 1.15709609 -1.2729657 -0.15609111
## X96 1.71905522 -0.9416085 0.09761770
## X97 2.03621269 -1.3093333 0.36643191
## X98 0.77048138 -1.6607312 -0.65835921
## X99 1.79355115 -1.7147984 0.09761770
## X100 1.75662119 -1.2729657 0.89827535
## X103 2.40093083 -1.7147984 0.75680975
## X104 1.10654173 -1.6094379 0.44948974
## X105 1.30129723 -1.3862944 0.89827535
## X107 1.64190425 -1.8325815 0.60768096
## X108 1.34711282 -1.8971200 0.60768096
## X109 0.94620673 -1.6094379 -0.16696972
## X110 1.00119771 -1.8325815 -0.22236112
## X111 1.96950153 -1.3470736 0.60768096
## X112 1.64190425 -1.7147984 0.82842712
## X113 1.43572821 -1.5606477 0.28035085
## X114 0.27296583 -1.5606477 -0.09212160
## X115 0.35404039 -2.1202635 0.19089023
## X117 1.93539850 -1.5141277 1.03315018
## X118 1.96950153 -1.1086626 0.68328157
## X121 1.71905522 -1.8971200 0.36643191
## X123 0.43115645 -1.3093333 -0.61435935
## X124 1.25439977 -1.2729657 -0.04040821
## X126 0.57519641 -1.6094379 0.00000000
## X128 1.39190522 -1.4271164 0.96647939
## X129 0.43115645 -1.7719568 -0.37519232
## X130 1.75662119 -1.2378744 0.52982213
## X131 1.15709609 -1.5141277 0.19089023
## X132 0.94620673 -1.7147984 0.36643191
## X133 1.25439977 -1.5606477 0.36643191
## X134 0.88951564 -1.2378744 0.68328157
## X135 1.60225879 -1.8971200 0.52982213
## X136 1.25439977 -1.5606477 0.00000000
## X137 1.05460735 -1.3093333 -0.15609111
## X139 1.20635622 -1.0216512 -0.18892297
## X140 1.86560359 -1.3862944 0.60768096
## X141 2.03621269 -1.5606477 0.75680975
## X143 0.50475301 -1.8325815 -0.11320377
## X144 0.83099088 -1.2729657 0.28035085
## X145 1.43572821 -1.8325815 0.36643191
## X146 1.34711282 -1.9661129 0.75680975
## X147 1.79355115 -1.5606477 0.60768096
## X148 1.39190522 -1.3862944 0.75680975
## X149 1.10654173 -1.3862944 0.19089023
## X152 2.16411943 -1.4696760 1.52136337
## X153 1.71905522 -1.3470736 0.19089023
## X154 1.10654173 -1.3862944 0.09761770
## X155 1.34711282 -1.4271164 0.00000000
## X156 2.06885532 -1.4696760 0.36643191
## X157 1.47863123 -1.8971200 0.09761770
## X158 1.43572821 -1.3862944 0.36643191
## X159 1.43572821 -1.6094379 0.19089023
## X160 2.83982088 -1.2729657 0.89827535
## X161 1.15709609 -1.6094379 0.68328157
## X162 1.71905522 -0.8675006 0.52982213
## X163 1.34711282 -1.0788097 -0.01002513
## X165 1.79355115 -1.5606477 0.09761770
## X166 1.64190425 -1.6607312 0.44948974
## X167 2.25568010 -1.5141277 1.28633535
## X168 1.39190522 -1.6094379 0.52982213
## X169 0.88951564 -1.3093333 0.19089023
## X170 0.57519641 -1.5606477 -0.09212160
## X171 1.86560359 -1.2039728 0.89827535
## X172 1.43572821 -1.5606477 0.36643191
## X174 1.96950153 -1.9661129 0.00000000
## X175 1.47863123 -1.2378744 0.52982213
## X176 1.43572821 -1.7147984 -0.11320377
## X177 1.52065981 -1.6607312 0.44948974
## X178 1.10654173 -1.8971200 -0.11320377
## X179 1.52065981 -1.4696760 0.44948974
## X180 1.96950153 -1.4271164 0.82842712
## X181 0.57519641 -1.5606477 -0.55777949
## X182 1.15709609 -1.8325815 0.82842712
## X183 0.64279595 -2.1202635 -0.38754845
## X184 1.68082597 -1.5141277 0.68328157
## X185 1.34711282 -1.7147984 -0.03022844
## X186 1.68082597 -1.6094379 0.19089023
## X189 0.43115645 -1.5141277 0.36643191
## X190 1.79355115 -1.6607312 0.75680975
## X191 1.30129723 -1.6607312 0.52982213
## X192 2.25568010 -1.8971200 1.16227766
## X193 1.39190522 -2.0402208 0.36643191
## X194 1.15709609 -1.3470736 0.19089023
## X195 2.51123919 -1.3862944 1.22490310
## X197 1.96950153 -1.2039728 0.52982213
## X198 1.30129723 -1.3470736 0.00000000
## X200 1.39190522 -1.0216512 0.68328157
## X201 0.70781531 -1.2378744 -0.02010101
## X202 1.15709609 -1.2378744 0.09761770
## X205 1.86560359 -1.2729657 0.52982213
## X208 1.15709609 -1.7719568 0.52982213
## X210 1.90077250 -1.1711830 0.52982213
## X212 0.94620673 -1.7719568 0.09761770
## X213 1.20635622 -1.3470736 0.52982213
## X214 1.15709609 -1.5141277 0.09761770
## X215 1.05460735 -1.5141277 0.09761770
## X216 1.10654173 -1.5606477 0.09761770
## X218 0.35404039 -1.4696760 0.28035085
## X219 0.83099088 -1.3093333 0.19089023
## X220 1.39190522 -1.7719568 0.68328157
## X223 1.82987064 -1.6094379 0.44948974
## X224 1.34711282 -2.1202635 0.09761770
## X225 1.82987064 -1.3862944 1.09838668
## X226 2.03621269 -1.8325815 1.22490310
## X227 1.64190425 -1.6094379 0.52982213
## X228 1.10654173 -1.7719568 -0.22236112
## X229 0.88951564 -1.3470736 0.00000000
## X230 1.39190522 -1.8325815 0.19089023
## X231 1.10654173 -1.2039728 0.36643191
## X232 1.30129723 -1.5606477 -0.09212160
## X233 0.70781531 -1.7719568 -0.16696972
## X234 1.30129723 -1.5606477 0.19089023
## X236 1.25439977 -1.1086626 0.19089023
## X237 1.15709609 -1.4271164 0.36643191
## X239 0.50475301 -1.8971200 -0.67335008
## X240 1.15709609 -1.8325815 -0.11320377
## X241 1.68082597 -1.7147984 0.82842712
## X242 1.56185602 -1.5606477 -0.45080666
## X243 0.64279595 -2.1202635 0.00000000
## X244 1.56185602 -1.6607312 0.28035085
## X245 0.64279595 -1.3862944 -0.24500712
## X246 1.05460735 -1.3862944 -0.25644042
## X247 1.43572821 -1.3470736 -0.05064113
## X249 2.13279405 -1.5606477 1.28633535
## X250 0.35404039 -1.4271164 0.19089023
## X251 0.77048138 -1.9661129 0.19089023
## X253 0.94620673 -1.4696760 0.28035085
## X254 2.64263321 -1.4696760 1.09838668
## X255 1.90077250 -1.1086626 0.96647939
## X256 1.15709609 -1.5141277 0.36643191
## X257 1.05460735 -0.9675840 -0.14527630
## X258 0.43115645 -1.6094379 0.09761770
## X260 1.47863123 -1.6094379 0.52982213
## X261 1.15709609 -1.7147984 -0.13452419
## X262 1.15709609 -1.5141277 0.00000000
## X263 2.13279405 -1.3862944 1.16227766
## X264 0.77048138 -1.9661129 0.19089023
## X265 1.25439977 -1.6607312 0.68328157
## X267 1.47863123 -1.5606477 0.89827535
## X268 1.71905522 -1.3470736 0.44948974
## X269 1.00119771 -1.7719568 0.09761770
## X270 2.03621269 -1.8325815 1.09838668
## X271 0.70781531 -1.0788097 0.19089023
## X272 1.86560359 -1.5141277 0.60768096
## X273 1.68082597 -1.1711830 0.52982213
## X274 1.34711282 -1.5606477 0.60768096
## X275 1.93539850 -1.0788097 0.60768096
## X277 1.10654173 -1.7147984 0.19089023
## X278 0.70781531 -1.8971200 0.52982213
## X279 1.25439977 -1.4271164 0.68328157
## X281 1.60225879 -1.3862944 0.52982213
## X282 0.77048138 -1.3862944 0.19089023
## X283 2.25568010 -1.4271164 0.82842712
## X287 1.79355115 -1.5606477 0.44948974
## X289 1.10654173 -2.2072749 -0.51676030
## X290 0.88951564 -1.5606477 -0.15609111
## X291 1.60225879 -1.3093333 0.36643191
## X292 2.10104410 -1.1711830 0.44948974
## X294 0.64279595 -1.7719568 -0.37519232
## X297 1.05460735 -1.6607312 0.44948974
## X298 0.70781531 -1.7147984 -0.51676030
## X299 1.34711282 -1.1394343 0.28035085
## X301 0.94620673 -1.8325815 -0.06092806
## X302 0.35404039 -1.7147984 -0.42519843
## X303 1.47863123 -1.6094379 0.52982213
## X304 2.37256620 -1.1086626 0.68328157
## X305 1.39190522 -1.2378744 0.75680975
## X306 1.56185602 -1.1711830 0.44948974
## X307 2.06885532 -1.1086626 0.82842712
## X308 0.70781531 -1.5606477 -0.92296704
## X311 0.27296583 -2.1202635 0.09761770
## X312 1.68082597 -0.8439701 0.60768096
## X313 1.00119771 -0.9162907 -0.09212160
## X314 1.56185602 -1.3470736 0.60768096
## X315 0.18739989 -1.6094379 0.52982213
## X316 1.86560359 -1.7719568 0.36643191
## X317 1.52065981 -1.4696760 0.19089023
## X320 0.70781531 -0.9416085 0.09761770
## X321 0.50475301 -1.4271164 -0.67335008
## X322 2.42897180 -1.8325815 0.52982213
## X323 1.86560359 -1.1394343 0.44948974
## X324 1.20635622 -1.6094379 0.28035085
## X325 0.94620673 -1.7719568 0.44948974
## X326 1.25439977 -1.4271164 0.19089023
## X327 1.64190425 -1.5141277 0.52982213
## X329 1.71905522 -1.6607312 0.82842712
## X330 1.39190522 -1.5141277 -0.14527630
## X331 1.00119771 -1.3470736 -0.01002513
## X332 0.94620673 -1.7719568 0.00000000
## X333 2.42897180 -1.4696760 1.40587727
## Adiponectin Alpha_1_Antichymotrypsin Alpha_1_Antitrypsin
## X1 -5.360193 1.7404662 -12.631361
## X2 -5.020686 1.4586150 -11.909882
## X3 -5.809143 1.1939225 -13.642963
## X5 -4.779524 2.1282317 -11.133063
## X6 -5.221356 1.3083328 -12.134638
## X7 -6.119298 0.8329091 -12.813142
## X8 -4.879607 1.5260563 -13.310348
## X9 -5.167289 0.7419373 -12.907477
## X11 -4.840893 1.0986123 -13.310348
## X12 -4.199705 1.9021075 -11.838035
## X14 -5.776353 1.3862944 -11.909882
## X16 -4.199705 1.4109870 -11.983227
## X17 -4.699481 1.8245493 -11.499497
## X18 -6.265901 1.2237754 -14.135373
## X19 -4.422849 1.3083328 -12.292758
## X20 -5.132803 2.1633230 -8.932463
## X21 -5.683980 0.9555114 -14.135373
## X22 -5.914504 1.3609766 -15.344812
## X23 -6.377127 1.1314021 -13.642963
## X24 -5.843045 1.3083328 -13.310348
## X25 -4.919881 0.7884574 -13.528896
## X26 -5.099467 1.0986123 -13.205557
## X28 -6.502290 1.5260563 -11.909882
## X29 -6.165818 0.9932518 -14.135373
## X30 -5.278515 1.1314021 -13.760451
## X31 -5.099467 1.5475625 -12.058126
## X34 -5.426151 1.4109870 -11.435607
## X35 -4.199705 1.2237754 -12.458129
## X36 -3.963316 2.1041342 -11.909882
## X37 -4.767689 1.1314021 -14.548755
## X38 -5.005648 1.3609766 -13.528896
## X39 -5.843045 0.8754687 -16.321511
## X40 -5.991465 1.7749524 -13.418078
## X41 -3.649659 1.8870696 -8.191715
## X42 -4.605170 1.1314021 -13.881545
## X43 -4.688552 1.0647107 -13.004247
## X44 -5.259097 1.5892352 -12.907477
## X45 -6.502290 1.8082888 -12.058126
## X46 -6.214608 1.3862944 -15.008176
## X47 -4.605170 1.3862944 -11.630963
## X48 -5.099467 1.4816045 -15.344812
## X50 -5.184989 1.3862944 -11.698625
## X51 -4.677741 1.3609766 -12.374500
## X53 -5.083206 1.5892352 -13.881545
## X55 -5.496768 1.3862944 -15.344812
## X56 -4.509860 1.5260563 -11.698625
## X57 -5.403678 1.8405496 -12.212827
## X59 -4.509860 1.6486586 -11.250842
## X60 -5.318520 1.4586150 -13.103567
## X61 -5.776353 1.1631508 -14.006447
## X62 -5.914504 0.8329091 -15.008176
## X63 -5.521461 1.3350011 -12.907477
## X64 -4.744432 1.7749524 -12.631361
## X65 -5.546779 0.7419373 -15.523564
## X67 -4.990833 1.4350845 -14.406260
## X68 -4.199705 1.3862944 -14.268559
## X69 -5.683980 0.8329091 -15.008176
## X70 -6.165818 0.9932518 -14.406260
## X71 -6.032287 1.7047481 -12.134638
## X72 -3.540459 2.2082744 -10.963846
## X73 -5.067206 1.5892352 -14.135373
## X74 -4.615221 1.4109870 -10.802885
## X75 -4.342806 2.0412203 -12.907477
## X76 -5.426151 1.5260563 -10.363053
## X77 -3.912023 1.6292405 -11.564602
## X78 -4.803621 1.5892352 -11.311317
## X80 -6.214608 1.4350845 -13.205557
## X81 -5.572754 1.3862944 -12.292758
## X82 -5.067206 1.1939225 -12.292758
## X83 -4.828314 1.1631508 -12.374500
## X84 -5.099467 1.2809338 -11.564602
## X85 -5.713833 1.5686159 -12.212827
## X86 -4.509860 2.1633230 -11.019298
## X88 -4.866535 1.4350845 -13.418078
## X90 -5.878136 0.9932518 -14.849365
## X93 -4.342806 1.8082888 -13.004247
## X94 -4.199705 2.2823824 -12.292758
## X95 -4.919881 1.2527630 -12.058126
## X96 -5.991465 1.0986123 -14.406260
## X97 -5.360193 0.9162907 -13.881545
## X98 -5.914504 0.9932518 -15.344812
## X99 -5.403678 1.5040774 -14.268559
## X100 -5.278515 1.1939225 -15.008176
## X103 -5.221356 1.3609766 -13.310348
## X104 -5.167289 1.2237754 -13.881545
## X105 -5.115996 1.1939225 -12.374500
## X107 -5.599422 1.2809338 -13.004247
## X108 -5.005648 1.7047481 -13.103567
## X109 -5.809143 0.4054651 -16.780588
## X110 -5.952244 0.7884574 -15.173178
## X111 -4.744432 1.2527630 -14.268559
## X112 -3.963316 1.9169226 -12.058126
## X113 -4.342806 1.8718022 -11.191436
## X114 -6.119298 1.2237754 -13.418078
## X115 -4.268698 1.7227666 -11.499497
## X117 -5.991465 1.2237754 -14.006447
## X118 -5.572754 1.4350845 -13.881545
## X121 -4.135167 1.9315214 -9.562842
## X123 -5.776353 0.9555114 -13.103567
## X124 -5.020686 1.6292405 -13.004247
## X126 -5.298317 0.9932518 -13.418078
## X128 -3.912023 1.9169226 -10.750945
## X129 -5.221356 1.1939225 -13.103567
## X130 -5.051457 1.4350845 -10.363053
## X131 -5.744604 1.0647107 -13.642963
## X132 -5.654992 1.7578579 -12.058126
## X133 -4.342806 1.7047481 -11.983227
## X134 -4.906275 1.6677068 -12.813142
## X135 -5.744604 1.4816045 -11.499497
## X136 -4.074542 1.4350845 -12.374500
## X137 -6.319969 0.9162907 -14.135373
## X139 -5.683980 1.0986123 -14.406260
## X140 -5.521461 1.2237754 -13.881545
## X141 -5.240048 1.4109870 -11.250842
## X143 -4.947660 1.5260563 -12.134638
## X144 -5.426151 1.4816045 -13.528896
## X145 -5.914504 0.7884574 -14.696346
## X146 -5.099467 1.7404662 -13.103567
## X147 -4.947660 1.5040774 -13.881545
## X148 -4.199705 2.2512918 -12.907477
## X149 -5.360193 0.6931472 -15.008176
## X152 -5.496768 1.8082888 -12.458129
## X153 -6.319969 1.6094379 -12.374500
## X154 -5.099467 0.9162907 -14.696346
## X155 -5.115996 1.1314021 -12.631361
## X156 -5.132803 1.7227666 -12.543721
## X157 -5.259097 1.2527630 -13.310348
## X158 -5.991465 1.0647107 -14.268559
## X159 -5.184989 1.6292405 -11.838035
## X160 -4.828314 1.7404662 -12.721137
## X161 -4.509860 1.3609766 -12.458129
## X162 -5.472671 1.2237754 -15.523564
## X163 -5.240048 0.6931472 -15.709974
## X165 -5.496768 1.0986123 -14.135373
## X166 -5.318520 0.7419373 -14.135373
## X167 -4.755993 1.0647107 -14.406260
## X168 -5.449140 1.4816045 -14.006447
## X169 -5.203007 1.0647107 -13.205557
## X170 -4.268698 1.1314021 -12.134638
## X171 -5.713833 1.5040774 -10.599937
## X172 -5.654992 1.0296194 -12.631361
## X174 -3.575551 1.6292405 -11.435607
## X175 -4.828314 1.9021075 -11.838035
## X176 -5.020686 1.6863990 -11.133063
## X177 -5.167289 1.4586150 -14.548755
## X178 -5.240048 0.9555114 -14.135373
## X179 -3.506558 1.9021075 -13.103567
## X180 -4.853632 1.6292405 -13.103567
## X181 -6.074846 0.6931472 -15.173178
## X182 -5.521461 1.4109870 -15.173178
## X183 -4.892852 1.3862944 -13.205557
## X184 -5.654992 1.2809338 -12.813142
## X185 -4.422849 1.4109870 -12.212827
## X186 -5.496768 1.0647107 -16.545310
## X189 -5.991465 0.9932518 -13.205557
## X190 -5.278515 1.6292405 -14.406260
## X191 -5.449140 1.4109870 -13.528896
## X192 -5.149897 1.5040774 -13.881545
## X193 -4.645992 1.7749524 -11.191436
## X194 -4.135167 1.2237754 -12.907477
## X195 -5.546779 0.9932518 -12.907477
## X197 -5.035953 1.5040774 -11.983227
## X198 -4.947660 0.8329091 -15.904641
## X200 -5.952244 1.1939225 -12.721137
## X201 -5.496768 1.0986123 -13.642963
## X202 -6.377127 0.8329091 -14.696346
## X205 -5.403678 1.3609766 -17.028429
## X208 -5.203007 1.4816045 -13.881545
## X210 -4.605170 1.5040774 -10.699822
## X212 -5.083206 1.6677068 -12.631361
## X213 -5.115996 1.4109870 -12.458129
## X214 -6.119298 1.6863990 -12.543721
## X215 -5.991465 1.1631508 -14.696346
## X216 -4.422849 1.5475625 -13.004247
## X218 -4.605170 1.7047481 -13.103567
## X219 -5.259097 0.8754687 -13.760451
## X220 -6.725434 1.0986123 -14.406260
## X223 -5.496768 1.3862944 -12.212827
## X224 -6.437752 1.2809338 -12.721137
## X225 -5.521461 1.2809338 -13.528896
## X226 -4.906275 1.6486586 -13.205557
## X227 -4.767689 2.0541237 -12.813142
## X228 -6.265901 1.0647107 -14.696346
## X229 -6.119298 1.1939225 -14.006447
## X230 -4.744432 1.4350845 -12.292758
## X231 -6.074846 1.0647107 -11.767633
## X232 -5.259097 1.2809338 -12.907477
## X233 -5.020686 1.2809338 -13.205557
## X234 -4.268698 1.1939225 -11.983227
## X236 -5.991465 0.7419373 -13.004247
## X237 -4.710531 1.7047481 -10.185537
## X239 -5.914504 1.0296194 -13.418078
## X240 -5.449140 0.9162907 -14.548755
## X241 -6.725434 1.1939225 -11.983227
## X242 -3.575551 1.6781472 -14.135373
## X243 -5.184989 1.7227666 -10.317725
## X244 -4.906275 1.4109870 -11.698625
## X245 -6.319969 0.4054651 -15.904641
## X246 -4.677741 1.5892352 -11.698625
## X247 -5.744604 0.5877867 -15.709974
## X249 -5.339139 1.2237754 -14.849365
## X250 -5.683980 1.1631508 -13.310348
## X251 -4.947660 0.8754687 -12.721137
## X253 -4.721704 1.8718022 -10.750945
## X254 -5.083206 1.7578579 -12.721137
## X255 -4.509860 1.7749524 -11.191436
## X256 -5.654992 1.1314021 -15.523564
## X257 -5.184989 0.6418539 -15.523564
## X258 -4.017384 1.2809338 -10.802885
## X260 -5.020686 1.1939225 -13.310348
## X261 -5.005648 0.7884574 -13.004247
## X262 -4.947660 1.1314021 -14.135373
## X263 -4.840893 1.5040774 -13.004247
## X264 -4.342806 2.3025851 -8.191715
## X265 -5.654992 1.2809338 -14.406260
## X267 -5.449140 1.3350011 -13.310348
## X268 -4.268698 1.6486586 -13.103567
## X269 -6.725434 0.9162907 -14.696346
## X270 -5.472671 1.3609766 -14.268559
## X271 -4.677741 1.3083328 -12.458129
## X272 -4.779524 1.5260563 -11.564602
## X273 -5.278515 1.4586150 -13.881545
## X274 -5.381699 0.2623643 -13.418078
## X275 -5.952244 1.5260563 -13.205557
## X277 -5.184989 1.4586150 -11.838035
## X278 -6.377127 1.4350845 -12.292758
## X279 -5.843045 1.3862944 -12.058126
## X281 -5.259097 1.1314021 -13.205557
## X282 -5.654992 1.5892352 -12.458129
## X283 -3.649659 1.3609766 -12.907477
## X287 -5.259097 1.3350011 -14.548755
## X289 -5.914504 1.0986123 -13.004247
## X290 -5.952244 1.3609766 -14.268559
## X291 -5.240048 1.4586150 -12.721137
## X292 -6.377127 1.3083328 -12.374500
## X294 -6.119298 1.0296194 -15.709974
## X297 -4.961845 1.3609766 -14.006447
## X298 -6.319969 0.8754687 -13.205557
## X299 -5.403678 0.8754687 -12.721137
## X301 -6.165818 0.8754687 -12.721137
## X302 -5.259097 1.0986123 -11.311317
## X303 -4.840893 1.3083328 -13.310348
## X304 -4.422849 1.7047481 -11.499497
## X305 -4.840893 1.5475625 -15.904641
## X306 -4.866535 1.4586150 -11.133063
## X307 -3.963316 2.1747517 -11.191436
## X308 -4.721704 1.7404662 -12.458129
## X311 -4.422849 1.5475625 -11.019298
## X312 -5.051457 1.4109870 -8.417032
## X313 -4.853632 1.3083328 -14.406260
## X314 -5.776353 0.7884574 -15.523564
## X315 -5.035953 2.0014800 -12.721137
## X316 -5.132803 1.0296194 -13.310348
## X317 -5.843045 1.3350011 -13.418078
## X320 -4.677741 1.6863990 -11.630963
## X321 -4.509860 1.1939225 -12.292758
## X322 -4.135167 2.1162555 -10.551134
## X323 -4.074542 1.7227666 -13.418078
## X324 -6.502290 0.9162907 -14.849365
## X325 -5.339139 1.6677068 -12.907477
## X326 -4.422849 1.4586150 -14.006447
## X327 -4.779524 1.4586150 -11.838035
## X329 -5.449140 1.0986123 -16.321511
## X330 -4.906275 1.6094379 -11.838035
## X331 -4.509860 1.1939225 -14.406260
## X332 -5.521461 1.7047481 -12.543721
## X333 -5.051457 1.2809338 -12.907477
## Alpha_1_Microglobulin Alpha_2_Macroglobulin Angiopoietin_2_ANG_2
## X1 -2.577022 -72.65029 1.06471074
## X2 -3.244194 -154.61228 0.74193734
## X3 -2.882404 -136.52918 0.83290912
## X5 -2.343407 -144.94460 0.95551145
## X6 -2.551046 -154.61228 -0.05129329
## X7 -3.270169 -149.60441 0.78845736
## X8 -2.900422 -144.94460 0.26236426
## X9 -3.649659 -194.94684 0.64185389
## X11 -3.079114 -91.36978 0.83290912
## X12 -2.353878 -132.71508 0.26236426
## X14 -2.513306 -104.44595 0.64185389
## X16 -2.900422 -94.72274 1.30833282
## X17 -2.733368 -149.60441 0.83290912
## X18 -3.296837 -225.75583 0.26236426
## X19 -2.975930 -179.08749 0.47000363
## X20 -2.590267 -186.64150 0.58778666
## X21 -2.937463 -149.60441 0.53062825
## X22 -3.688879 -165.84824 0.91629073
## X23 -3.575551 -238.63748 0.09531018
## X24 -3.411248 -179.08749 1.06471074
## X25 -3.170086 -194.94684 0.53062825
## X26 -3.218876 -186.64150 0.69314718
## X28 -3.057608 -165.84824 0.64185389
## X29 -3.816713 -238.63748 0.47000363
## X30 -3.270169 -225.75583 0.33647224
## X31 -2.617296 -172.18413 0.87546874
## X34 -2.563950 -186.64150 0.64185389
## X35 -2.453408 -179.08749 0.26236426
## X36 -2.040221 -140.59662 0.83290912
## X37 -3.324236 -172.18413 0.78845736
## X38 -3.015935 -154.61228 0.64185389
## X39 -3.194183 -144.94460 0.69314718
## X40 -2.796881 -140.59662 0.64185389
## X41 -2.501036 -106.66533 0.53062825
## X42 -2.796881 -125.75495 0.87546874
## X43 -3.575551 -194.94684 0.26236426
## X44 -2.645075 -89.78989 0.78845736
## X45 -2.748872 -136.52918 1.09861229
## X46 -3.270169 -125.75495 1.02961942
## X47 -3.079114 -100.30070 0.40546511
## X48 -3.057608 -71.69519 1.09861229
## X50 -2.590267 -93.01273 1.13140211
## X51 -3.270169 -125.75495 1.25276297
## X53 -2.918771 -82.71675 0.58778666
## X55 -2.918771 -160.01040 0.40546511
## X56 -2.419119 -140.59662 0.40546511
## X57 -2.525729 -67.30674 1.19392247
## X59 -2.441847 -108.99239 0.78845736
## X60 -3.123566 -84.03131 0.74193734
## X61 -3.411248 -179.08749 0.64185389
## X62 -3.772261 -225.75583 0.33647224
## X63 -2.780621 -96.50416 0.78845736
## X64 -2.453408 -165.84824 0.58778666
## X65 -3.352407 -160.01040 0.40546511
## X67 -3.324236 -122.56978 1.30833282
## X68 -2.659260 -75.69273 0.83290912
## X69 -3.473768 -122.56978 0.09531018
## X70 -3.729701 -149.60441 0.83290912
## X71 -2.441847 -179.08749 0.64185389
## X72 -1.832581 -138.25835 1.48160454
## X73 -1.897120 -81.44692 1.13140211
## X74 -2.813411 -186.64150 0.18232156
## X75 -2.419119 -129.13061 0.40546511
## X76 -2.718101 -154.61228 0.64185389
## X77 -2.688248 -165.84824 0.58778666
## X78 -2.353878 -140.59662 1.16315081
## X80 -2.830218 -91.36978 0.47000363
## X81 -3.170086 -160.01040 0.83290912
## X82 -3.015935 -149.60441 0.83290912
## X83 -2.673649 -165.84824 0.33647224
## X84 -3.146555 -154.61228 0.47000363
## X85 -2.590267 -136.52918 0.95551145
## X86 -1.832581 -140.59662 0.95551145
## X88 -2.441847 -74.64766 0.87546874
## X90 -4.342806 -253.28958 0.33647224
## X93 -2.780621 -140.59662 1.16315081
## X94 -2.333044 -102.32669 1.41098697
## X95 -3.244194 -214.33276 0.18232156
## X96 -3.015935 -172.18413 0.74193734
## X97 -3.170086 -172.18413 1.09861229
## X98 -3.816713 -186.64150 0.53062825
## X99 -2.703063 -140.59662 0.74193734
## X100 -3.170086 -154.61228 0.87546874
## X103 -3.218876 -116.70786 1.16315081
## X104 -3.194183 -154.61228 0.91629073
## X105 -3.057608 -172.18413 1.02961942
## X107 -2.813411 -93.01273 0.87546874
## X108 -2.353878 -165.84824 0.83290912
## X109 -3.688879 -204.12656 0.09531018
## X110 -4.017384 -225.75583 0.33647224
## X111 -2.956512 -102.32669 0.95551145
## X112 -1.966113 -93.01273 0.91629073
## X113 -2.419119 -102.32669 0.69314718
## X114 -3.296837 -194.94684 -0.54472718
## X115 -2.718101 -104.44595 0.47000363
## X117 -3.688879 -253.28958 0.95551145
## X118 -2.937463 -100.30070 1.19392247
## X121 -2.631089 -116.70786 0.91629073
## X123 -3.649659 -225.75583 0.33647224
## X124 -2.375156 -160.01040 0.83290912
## X126 -3.324236 -165.84824 0.78845736
## X128 -2.590267 -132.71508 0.69314718
## X129 -3.079114 -194.94684 0.40546511
## X130 -2.302585 -144.94460 0.91629073
## X131 -3.079114 -186.64150 0.53062825
## X132 -2.733368 -204.12656 0.78845736
## X133 -2.353878 -149.60441 0.83290912
## X134 -2.441847 -94.72274 0.69314718
## X135 -3.079114 -119.55888 1.16315081
## X136 -3.015935 -165.84824 0.53062825
## X137 -3.575551 -194.94684 0.18232156
## X139 -3.244194 -172.18413 0.47000363
## X140 -2.830218 -108.99239 0.64185389
## X141 -2.956512 -165.84824 1.02961942
## X143 -2.900422 -204.12656 0.53062825
## X144 -2.659260 -165.84824 0.40546511
## X145 -3.688879 -225.75583 0.33647224
## X146 -2.120264 -140.59662 0.87546874
## X147 -2.995732 -89.78989 0.64185389
## X148 -2.040221 -136.52918 0.69314718
## X149 -3.057608 -179.08749 0.47000363
## X152 -2.302585 -59.45638 1.33500107
## X153 -2.577022 -116.70786 0.64185389
## X154 -3.244194 -172.18413 0.47000363
## X155 -3.270169 -160.01040 0.33647224
## X156 -2.385967 -165.84824 0.58778666
## X157 -3.296837 -165.84824 0.87546874
## X158 -3.381395 -194.94684 0.53062825
## X159 -3.506558 -194.94684 0.18232156
## X160 -2.882404 -136.52918 0.69314718
## X161 -2.302585 -149.60441 0.91629073
## X162 -3.729701 -119.55888 0.87546874
## X163 -4.017384 -194.94684 0.26236426
## X165 -3.352407 -154.61228 0.78845736
## X166 -3.352407 -149.60441 0.53062825
## X167 -2.813411 -140.59662 1.33500107
## X168 -3.244194 -186.64150 0.26236426
## X169 -3.146555 -194.94684 0.40546511
## X170 -2.995732 -186.64150 0.40546511
## X171 -2.780621 -154.61228 0.74193734
## X172 -3.411248 -225.75583 0.47000363
## X174 -1.897120 -71.69519 0.26236426
## X175 -2.343407 -119.55888 0.64185389
## X176 -2.688248 -125.75495 0.58778666
## X177 -3.540459 -165.84824 0.87546874
## X178 -3.411248 -225.75583 0.33647224
## X179 -2.120264 -116.70786 0.53062825
## X180 -2.688248 -160.01040 0.64185389
## X181 -3.381395 -225.75583 0.26236426
## X182 -3.296837 -194.94684 0.91629073
## X183 -2.780621 -214.33276 0.53062825
## X184 -2.918771 -149.60441 0.95551145
## X185 -2.476938 -144.94460 0.64185389
## X186 -3.244194 -194.94684 0.53062825
## X189 -3.649659 -186.64150 0.78845736
## X190 -2.937463 -132.71508 0.87546874
## X191 -3.352407 -179.08749 0.78845736
## X192 -2.631089 -149.60441 1.06471074
## X193 -2.796881 -140.59662 0.99325177
## X194 -2.847312 -160.01040 0.18232156
## X195 -3.101093 -172.18413 0.58778666
## X197 -2.120264 -94.72274 0.64185389
## X198 -3.611918 -186.64150 0.40546511
## X200 -3.381395 -165.84824 0.53062825
## X201 -3.411248 -144.94460 0.58778666
## X202 -3.688879 -225.75583 0.40546511
## X205 -2.673649 -172.18413 0.53062825
## X208 -2.918771 -149.60441 1.09861229
## X210 -2.501036 -98.36175 0.83290912
## X212 -2.748872 -186.64150 0.58778666
## X213 -2.453408 -179.08749 0.58778666
## X214 -2.796881 -160.01040 0.78845736
## X215 -3.611918 -136.52918 0.69314718
## X216 -2.780621 -194.94684 0.33647224
## X218 -2.207275 -165.84824 0.58778666
## X219 -3.270169 -179.08749 0.69314718
## X220 -3.411248 -172.18413 0.69314718
## X223 -2.563950 -194.94684 0.47000363
## X224 -3.244194 -214.33276 0.33647224
## X225 -3.473768 -179.08749 1.16315081
## X226 -3.244194 -136.52918 1.52605630
## X227 -1.966113 -179.08749 0.40546511
## X228 -3.352407 -214.33276 0.40546511
## X229 -3.170086 -225.75583 0.18232156
## X230 -1.966113 -75.69273 0.99325177
## X231 -3.123566 -144.94460 0.47000363
## X232 -2.975930 -140.59662 0.53062825
## X233 -3.036554 -186.64150 0.18232156
## X234 -2.673649 -129.13061 0.53062825
## X236 -3.352407 -204.12656 0.58778666
## X237 -2.563950 -149.60441 0.09531018
## X239 -3.863233 -253.28958 0.18232156
## X240 -2.617296 -116.70786 0.47000363
## X241 -3.244194 -179.08749 0.53062825
## X242 -1.771957 -160.01040 0.18232156
## X243 -2.733368 -179.08749 0.40546511
## X244 -2.673649 -172.18413 0.64185389
## X245 -3.912023 -253.28958 0.09531018
## X246 -2.322788 -149.60441 0.74193734
## X247 -3.729701 -204.12656 0.47000363
## X249 -2.995732 -160.01040 0.95551145
## X250 -2.813411 -179.08749 0.74193734
## X251 -3.218876 -179.08749 0.58778666
## X253 -2.525729 -144.94460 0.87546874
## X254 -2.430418 -132.71508 1.36097655
## X255 -2.617296 -106.66533 1.02961942
## X256 -3.611918 -186.64150 0.58778666
## X257 -3.218876 -214.33276 0.40546511
## X258 -2.302585 -160.01040 1.28093385
## X260 -2.900422 -179.08749 0.69314718
## X261 -3.270169 -214.33276 0.33647224
## X262 -3.411248 -194.94684 0.53062825
## X263 -2.796881 -104.44595 0.91629073
## X264 -2.353878 -144.94460 0.91629073
## X265 -3.352407 -186.64150 0.74193734
## X267 -2.813411 -160.01040 1.16315081
## X268 -2.385967 -79.03231 0.69314718
## X269 -3.816713 -194.94684 0.69314718
## X270 -3.146555 -129.13061 1.13140211
## X271 -2.501036 -122.56978 0.99325177
## X272 -2.780621 -194.94684 0.78845736
## X273 -3.244194 -116.70786 0.83290912
## X274 -3.411248 -149.60441 0.58778666
## X275 -2.864704 -179.08749 0.91629073
## X277 -2.748872 -186.64150 0.53062825
## X278 -2.813411 -154.61228 0.78845736
## X279 -3.244194 -204.12656 0.53062825
## X281 -3.057608 -186.64150 0.83290912
## X282 -2.513306 -194.94684 0.58778666
## X283 -2.513306 -111.43549 1.41098697
## X287 -3.079114 -172.18413 0.78845736
## X289 -3.270169 -253.28958 0.33647224
## X290 -3.146555 -214.33276 0.09531018
## X291 -2.703063 -140.59662 0.33647224
## X292 -2.995732 -179.08749 1.25276297
## X294 -3.244194 -253.28958 0.64185389
## X297 -2.577022 -179.08749 0.58778666
## X298 -2.617296 -186.64150 0.83290912
## X299 -3.540459 -132.71508 1.02961942
## X301 -2.864704 -194.94684 0.64185389
## X302 -3.324236 -289.68493 0.00000000
## X303 -3.057608 -172.18413 0.78845736
## X304 -3.381395 -172.18413 0.78845736
## X305 -2.718101 -132.71508 1.16315081
## X306 -2.040221 -165.84824 0.91629073
## X307 -2.120264 -140.59662 0.69314718
## X308 -2.419119 -122.56978 0.64185389
## X311 -2.764621 -165.84824 0.33647224
## X312 -2.688248 -160.01040 1.19392247
## X313 -3.057608 -186.64150 0.83290912
## X314 -3.772261 -172.18413 0.69314718
## X315 -2.538307 -149.60441 0.53062825
## X316 -3.381395 -154.61228 0.53062825
## X317 -3.244194 -160.01040 0.53062825
## X320 -2.040221 -179.08749 0.26236426
## X321 -2.813411 -165.84824 -0.49429632
## X322 -2.120264 -154.61228 1.16315081
## X323 -2.430418 -119.55888 0.74193734
## X324 -3.649659 -125.75495 0.47000363
## X325 -2.813411 -140.59662 1.13140211
## X326 -3.123566 -165.84824 0.87546874
## X327 -2.419119 -86.80482 0.74193734
## X329 -3.324236 -160.01040 0.95551145
## X330 -2.120264 -154.61228 0.40546511
## X331 -3.170086 -179.08749 -0.24846136
## X332 -3.036554 -132.71508 0.40546511
## X333 -2.995732 -194.94684 1.25276297
## Angiotensinogen Apolipoprotein_A_IV Apolipoprotein_A1 Apolipoprotein_A2
## X1 2.510547 -1.4271164 -7.402052 -0.26136476
## X2 2.457283 -1.6607312 -7.047017 -0.86750057
## X3 1.976365 -1.6607312 -7.684284 -0.65392647
## X5 2.862219 -1.1711830 -6.725434 0.09531018
## X6 2.524026 -1.3862944 -7.402052 -0.27443685
## X7 2.106653 -2.0402208 -7.751725 -0.94160854
## X8 2.079076 -1.4271164 -6.948577 -0.16251893
## X9 2.131782 -2.3968958 -7.929407 -0.77652879
## X11 2.654255 -1.6607312 -7.250246 -0.75502258
## X12 2.289800 -1.7719568 -7.469874 -0.40047757
## X14 2.064231 -1.5606477 -7.208860 -0.43078292
## X16 2.466248 -2.3751558 -7.684284 -0.47803580
## X17 2.389150 -1.5606477 -6.907755 -0.08338161
## X18 2.214041 -2.4191189 -8.294050 -1.46967597
## X19 2.205050 -2.0402208 -7.323271 -0.41551544
## X20 2.195737 -1.7719568 -6.725434 -0.31471074
## X21 2.555806 -2.3227878 -7.621105 -1.23787436
## X22 2.262201 -2.3859667 -7.824046 -1.27296568
## X23 2.262201 -2.2072749 -7.435388 -1.20397280
## X24 2.308607 -2.3644605 -7.323271 -0.46203546
## X25 2.397445 -1.5606477 -7.505592 -1.13943428
## X26 2.276391 -2.3751558 -7.581100 -0.96758403
## X28 2.262201 -1.9661129 -7.435388 -0.91629073
## X29 2.376085 -2.7646206 -7.875339 -1.20397280
## X30 2.119499 -1.8325815 -7.293418 -0.73396918
## X31 2.500997 -1.3862944 -7.013116 -0.22314355
## X34 1.751632 -2.0402208 -7.505592 -0.17435339
## X35 2.195737 -1.6607312 -7.561682 -0.18632958
## X36 2.064231 -1.2378744 -6.725434 0.40546511
## X37 2.416882 -2.1202635 -7.542634 -1.07880966
## X38 2.472010 -2.3968958 -7.824046 -0.67334455
## X39 2.682856 -1.8325815 -7.875339 -0.89159812
## X40 2.466248 -1.6094379 -7.452482 -0.75502258
## X41 1.932789 -1.2729657 -6.571283 0.18232156
## X42 2.597766 -1.6094379 -7.799353 -0.79850770
## X43 2.186083 -2.0402208 -7.875339 -1.10866262
## X44 2.314560 -1.7147984 -7.070274 -0.57981850
## X45 2.239267 -1.7147984 -7.024289 -0.34249031
## X46 2.195737 -2.2072749 -7.986565 -1.27296568
## X47 2.326029 -1.9661129 -7.662778 -1.17118298
## X48 2.622996 -1.9661129 -7.600902 -1.23787436
## X50 2.734317 -1.6094379 -7.452482 -0.13926207
## X51 1.976365 -1.8971200 -7.130899 -0.63487827
## X53 2.496038 -1.1086626 -7.130899 -0.49429632
## X55 2.447901 -1.9661129 -7.323271 -0.65392647
## X56 1.882416 -1.2729657 -7.236259 -0.03045921
## X57 2.804296 -1.8325815 -7.600902 -1.20397280
## X59 1.955322 -1.5606477 -7.581100 -0.46203546
## X60 2.143544 -2.2072749 -7.929407 -0.96758403
## X61 2.624223 -1.7719568 -7.902008 -0.96758403
## X62 2.119499 -2.3434071 -7.849364 -0.99425227
## X63 2.014615 -2.0402208 -7.957577 -0.38566248
## X64 2.014615 -1.6094379 -7.106206 0.00000000
## X65 2.119499 -1.9661129 -8.145630 -1.56064775
## X67 2.320365 -1.9661129 -7.600902 -1.02165125
## X68 2.308607 -1.4271164 -7.195437 -0.40047757
## X69 2.239267 -2.3538784 -7.706263 -1.23787436
## X70 2.176062 -2.3025851 -7.728736 -1.30933332
## X71 2.064231 -1.8325815 -7.452482 -0.69314718
## X72 2.393337 -1.5141277 -6.319969 0.33647224
## X73 2.154822 -1.3862944 -7.452482 -0.69314718
## X74 2.079076 -1.4271164 -7.082109 -0.23572233
## X75 1.789161 -1.6607312 -6.812445 0.18232156
## X76 2.239267 -1.7719568 -7.662778 -0.34249031
## X77 2.472010 -1.7147984 -7.047017 -0.43078292
## X78 2.371551 -1.4271164 -7.418581 -0.57981850
## X80 2.431242 -1.6094379 -7.706263 -0.43078292
## X81 2.498534 -1.7147984 -7.751725 -0.73396918
## X82 2.460316 -1.8971200 -7.338538 -0.59783700
## X83 2.540605 -1.7147984 -7.308233 -0.21072103
## X84 2.064231 -1.9661129 -7.706263 -0.54472718
## X85 2.247148 -1.6094379 -7.487574 -0.47803580
## X86 2.629041 -1.3470736 -7.369791 -0.02020271
## X88 2.498534 -2.0402208 -7.751725 -0.84397007
## X90 1.854050 -2.7333680 -8.217089 -1.89711998
## X93 2.154822 -1.5606477 -7.435388 -0.59783700
## X94 2.557619 -1.3862944 -6.812445 -0.08338161
## X95 2.632564 -2.2072749 -7.236259 -0.89159812
## X96 2.736448 -2.0402208 -7.902008 -1.13943428
## X97 2.546456 -1.8325815 -7.775256 -1.23787436
## X98 2.490948 -2.1202635 -7.706263 -1.27296568
## X99 1.908566 -2.2072749 -7.775256 -1.04982212
## X100 2.619258 -1.8971200 -8.078938 -0.69314718
## X103 2.106653 -1.6607312 -7.452482 -0.82098055
## X104 2.079076 -1.9661129 -7.751725 -0.67334455
## X105 2.371551 -2.1202635 -7.130899 -0.69314718
## X107 2.262201 -1.6607312 -7.435388 -0.37106368
## X108 2.106653 -0.9416085 -6.907755 0.09531018
## X109 2.308607 -2.2072749 -7.957577 -1.30933332
## X110 2.320365 -2.2072749 -8.468403 -1.60943791
## X111 2.247148 -2.0402208 -7.385791 -0.51082562
## X112 2.342236 -0.9416085 -6.571283 0.00000000
## X113 2.320365 -1.7147984 -6.812445 0.33647224
## X114 2.326029 -2.3126354 -7.385791 -0.61618614
## X115 1.751632 -1.5141277 -7.130899 -0.09431068
## X117 2.431242 -2.3227878 -7.621105 -0.91629073
## X118 2.763185 -2.1202635 -7.728736 -1.04982212
## X121 1.882416 -1.8325815 -7.487574 -0.49429632
## X123 2.579644 -1.8325815 -7.929407 -1.07880966
## X124 2.532501 -1.7719568 -7.169120 -0.08338161
## X126 2.231132 -2.0402208 -7.929407 -0.96758403
## X128 2.633721 -1.5606477 -6.645391 0.26236426
## X129 1.996082 -2.0402208 -7.641724 -0.96758403
## X130 2.457283 -1.7147984 -7.169120 -0.40047757
## X131 2.176062 -2.2072749 -7.338538 -0.79850770
## X132 2.239267 -1.3862944 -7.581100 -0.41551544
## X133 2.424185 -1.1086626 -6.377127 0.18232156
## X134 2.457283 -1.7147984 -7.452482 -0.77652879
## X135 1.789161 -1.8325815 -7.278819 -0.79850770
## X136 2.231132 -1.7719568 -7.118476 -0.46203546
## X137 2.466248 -2.0402208 -7.902008 -1.27296568
## X139 2.735867 -2.0402208 -7.278819 -0.86750057
## X140 2.454203 -1.6607312 -7.728736 -0.75502258
## X141 2.165651 -2.0402208 -7.323271 -0.54472718
## X143 2.032084 -1.6094379 -7.208860 -0.51082562
## X144 2.463304 -1.8971200 -7.561682 -0.65392647
## X145 2.205050 -2.2072749 -8.180721 -1.42711636
## X146 1.996082 -1.3862944 -7.208860 -0.05129329
## X147 2.331559 -2.0402208 -7.929407 -1.07880966
## X148 2.119499 -1.0788097 -6.725434 0.26236426
## X149 2.480350 -1.8971200 -7.621105 -1.10866262
## X152 2.500997 -1.3862944 -6.812445 -0.26136476
## X153 2.014615 -2.2072749 -7.118476 0.00000000
## X154 2.505832 -1.9661129 -7.751725 -1.04982212
## X155 2.532501 -1.6607312 -7.542634 -0.84397007
## X156 2.048593 -1.4696760 -7.024289 -0.09431068
## X157 1.955322 -2.1202635 -7.902008 -0.96758403
## X158 2.296235 -2.3025851 -7.684284 -0.94160854
## X159 2.366924 -2.5639499 -8.047190 -1.10866262
## X160 2.550254 -1.8971200 -6.812445 -0.32850407
## X161 2.314560 -1.7719568 -7.469874 -0.40047757
## X162 2.881043 -2.5257286 -8.217089 -1.10866262
## X163 2.768766 -2.2072749 -8.180721 -1.20397280
## X165 2.405433 -1.8971200 -8.111728 -1.23787436
## X166 2.214041 -2.3025851 -8.254829 -1.02165125
## X167 2.389150 -2.0402208 -7.824046 -0.94160854
## X168 2.032084 -1.5141277 -6.812445 -0.35667494
## X169 2.604783 -1.6607312 -7.523941 -0.77652879
## X170 2.064231 -2.3025851 -7.323271 -0.47803580
## X171 2.711100 -1.7147984 -7.369791 -0.19845094
## X172 2.444675 -1.9661129 -7.143478 -0.77652879
## X174 2.165651 -0.9675840 -6.907755 0.00000000
## X175 2.661193 -1.7147984 -6.725434 -0.03045921
## X176 1.955322 -1.6607312 -7.418581 -0.52763274
## X177 2.186083 -2.4418472 -7.293418 -0.65392647
## X178 2.143544 -2.4889147 -7.957577 -0.91629073
## X179 2.106653 -1.3093333 -6.908737 0.64185389
## X180 2.483054 -1.5606477 -7.505592 -0.99425227
## X181 2.106653 -2.0402208 -8.016418 -1.07880966
## X182 2.262201 -1.9661129 -7.662778 -0.69314718
## X183 1.751632 -1.7719568 -7.182192 0.09531018
## X184 2.376085 -1.7719568 -7.385791 -0.73396918
## X185 2.014615 -1.5141277 -7.542634 -0.23572233
## X186 2.247148 -1.7719568 -8.047190 -1.02165125
## X189 2.517407 -2.3859667 -8.217089 -1.38629436
## X190 2.397445 -1.8971200 -7.542634 -0.99425227
## X191 2.222729 -2.3025851 -7.849364 -0.79850770
## X192 2.154822 -2.0402208 -7.369791 -0.71334989
## X193 2.214041 -1.7719568 -7.684284 -0.96758403
## X194 2.666903 -1.4271164 -7.182192 -0.75502258
## X195 2.544526 -1.7719568 -7.338538 -0.61618614
## X197 2.480350 -1.3862944 -7.222466 -0.18632958
## X198 2.447901 -2.3126354 -7.662778 -0.89159812
## X200 2.801517 -2.3751558 -7.875339 -1.02165125
## X201 2.474829 -1.7719568 -7.402052 -0.65392647
## X202 2.747573 -2.1202635 -8.078938 -1.20397280
## X205 2.444675 -1.6607312 -7.354042 -0.73396918
## X208 1.908566 -1.7147984 -7.013116 -0.08338161
## X210 2.515148 -1.3862944 -6.959049 -0.34249031
## X212 1.882416 -1.5606477 -7.902008 -0.73396918
## X213 2.401476 -1.7719568 -7.323271 -0.16251893
## X214 1.996082 -1.8325815 -7.621105 -1.07880966
## X215 2.493510 -1.7719568 -8.145630 -1.42711636
## X216 2.143544 -1.4696760 -7.308233 -0.10536052
## X218 2.405433 -1.3862944 -7.156217 0.33647224
## X219 2.638269 -1.8971200 -7.684284 -0.84397007
## X220 2.308607 -2.4304185 -8.622554 -0.94160854
## X223 2.431242 -1.4271164 -7.338538 -0.35667494
## X224 1.908566 -1.7147984 -7.418581 -1.04982212
## X225 2.629041 -2.4079456 -7.957577 -1.20397280
## X226 2.093196 -2.0402208 -7.600902 -1.10866262
## X227 2.331559 -1.4271164 -6.645391 0.58778666
## X228 2.186083 -2.1202635 -8.334872 -1.46967597
## X229 2.538612 -2.2072749 -8.217089 -0.84397007
## X230 2.079076 -1.5141277 -7.222466 -0.54472718
## X231 2.532501 -2.4651040 -7.354042 -0.54472718
## X232 2.352437 -1.6094379 -7.561682 -0.49429632
## X233 1.882416 -1.7719568 -7.621105 -0.59783700
## X234 2.254788 -1.7147984 -7.047017 -0.24846136
## X236 2.610193 -2.6882476 -8.468403 -1.51412773
## X237 2.434683 -1.5141277 -7.278819 -0.24846136
## X239 1.882416 -2.3644605 -8.016418 -1.77195684
## X240 2.231132 -1.7147984 -7.902008 -1.23787436
## X241 2.079076 -2.5510465 -7.013116 -0.24846136
## X242 2.079076 -0.8209806 -6.165818 0.95551145
## X243 1.908566 -1.5141277 -7.684284 -0.46203546
## X244 2.380527 -2.0402208 -7.641724 -0.71334989
## X245 2.397445 -2.9565116 -8.568486 -1.42711636
## X246 2.578045 -1.2039728 -6.907755 -0.13926207
## X247 2.296235 -2.9004221 -8.421883 -1.34707365
## X249 2.239267 -2.2072749 -8.421883 -1.34707365
## X250 2.048593 -1.8325815 -7.402052 -0.56211892
## X251 1.823113 -2.2072749 -7.986565 -1.27296568
## X253 2.331559 -2.0402208 -7.058578 -0.71334989
## X254 2.413134 -1.8971200 -6.959049 -0.37106368
## X255 2.741567 -1.7147984 -7.236259 -0.06187540
## X256 2.384881 -2.2072749 -8.334872 -1.56064775
## X257 2.836869 -2.0402208 -7.986565 -1.07880966
## X258 2.176062 -1.1711830 -7.208860 0.18232156
## X260 2.296235 -1.8325815 -7.250246 0.09531018
## X261 2.389150 -2.0402208 -8.016418 -0.82098055
## X262 2.427744 -2.0402208 -7.505592 -0.67334455
## X263 2.485721 -2.0402208 -7.222466 -0.41551544
## X264 2.154822 -1.3470736 -6.969631 -0.17435339
## X265 2.262201 -2.2072749 -7.452482 -0.75502258
## X267 2.336959 -2.1202635 -7.600902 -0.91629073
## X268 2.457283 -1.5141277 -7.169120 -0.77652879
## X269 2.262201 -2.4304185 -8.334872 -1.27296568
## X270 1.996082 -2.2072749 -7.902008 -1.23787436
## X271 2.736448 -1.8971200 -7.264430 -0.46203546
## X272 2.262201 -2.3751558 -7.156217 -0.17435339
## X273 2.582800 -1.9661129 -7.849364 -0.96758403
## X274 2.384881 -2.3227878 -7.505592 -0.96758403
## X275 2.780924 -2.0402208 -7.561682 -0.17435339
## X277 2.032084 -1.6607312 -6.991137 0.09531018
## X278 2.131782 -1.8971200 -7.621105 -0.67334455
## X279 2.413134 -1.9661129 -7.600902 -0.73396918
## X281 2.427744 -1.8325815 -7.487574 -0.82098055
## X282 2.106653 -1.4271164 -7.047017 -0.31471074
## X283 2.512862 -1.6607312 -7.156217 -0.63487827
## X287 2.106653 -1.7719568 -7.208860 -0.54472718
## X289 2.032084 -1.7147984 -7.929407 -0.75502258
## X290 2.247148 -2.0402208 -7.469874 -1.02165125
## X291 2.553974 -1.8325815 -7.369791 -0.79850770
## X292 2.731131 -2.0402208 -7.581100 -0.57981850
## X294 1.996082 -2.1202635 -7.523941 -0.75502258
## X297 2.342236 -1.7719568 -7.799353 -0.71334989
## X298 1.955322 -1.6607312 -7.385791 -0.43078292
## X299 2.624223 -2.4079456 -7.600902 -1.23787436
## X301 2.079076 -2.0402208 -8.180721 -0.84397007
## X302 1.955322 -2.1202635 -7.542634 -0.43078292
## X303 2.205050 -1.7719568 -7.354042 -0.10536052
## X304 2.669681 -1.7147984 -7.902008 -1.30933332
## X305 2.573156 -1.8971200 -7.070274 -0.54472718
## X306 2.789726 -1.3862944 -7.222466 0.18232156
## X307 2.761752 -1.1394343 -7.024289 -0.08338161
## X308 2.463304 -1.0498221 -7.250246 0.09531018
## X311 1.932789 -1.7719568 -7.118476 -0.08338161
## X312 2.734317 -1.6094379 -7.264430 -0.69314718
## X313 2.822737 -1.7147984 -7.070274 -0.27443685
## X314 2.561191 -2.5133061 -7.849364 -1.20397280
## X315 2.362198 -1.1711830 -6.725434 0.40546511
## X316 1.976365 -1.8971200 -7.469874 -0.91629073
## X317 2.262201 -2.1202635 -7.418581 -0.86750057
## X320 2.792780 -1.0498221 -6.377127 0.47000363
## X321 2.331559 -1.4271164 -6.959049 0.26236426
## X322 2.231132 -1.4696760 -7.236259 -0.11653382
## X323 2.649104 -2.1202635 -7.435388 -0.56211892
## X324 2.376085 -2.6882476 -8.679712 -1.77195684
## X325 2.032084 -2.1202635 -7.581100 -0.34249031
## X326 2.438068 -2.0402208 -7.957577 -1.56064775
## X327 2.314560 -1.5606477 -7.236259 -0.79850770
## X329 1.908566 -1.9661129 -8.047190 -0.75502258
## X330 1.789161 -0.7765288 -6.645391 0.74193734
## X331 2.596327 -1.8971200 -7.469874 -0.56211892
## X332 2.289800 -2.0402208 -7.581100 -0.57981850
## X333 2.498534 -1.7719568 -7.195437 -0.49429632
## Apolipoprotein_B Apolipoprotein_CI Apolipoprotein_CIII Apolipoprotein_D
## X1 -4.624044 -1.2729657 -2.312635 2.0794415
## X2 -6.747507 -1.2729657 -2.343407 1.3350011
## X3 -3.976069 -1.7147984 -2.748872 1.3350011
## X5 -3.378594 -0.7550226 -1.514128 1.6292405
## X6 -2.963532 -1.6607312 -2.312635 1.9169226
## X7 -7.288830 -1.6607312 -2.375156 1.5260563
## X8 -3.888287 -0.9675840 -2.120264 1.7227666
## X9 -5.941894 -1.7719568 -2.476938 0.9555114
## X11 -5.702912 -1.5141277 -2.322788 1.4109870
## X12 -4.166581 -1.0498221 -1.832581 1.2809338
## X14 -3.357973 -1.5606477 -2.563950 1.3350011
## X16 -4.235078 -1.6607312 -2.577022 1.3609766
## X17 -4.068671 -1.3862944 -2.312635 1.0986123
## X18 -5.421759 -2.0402208 -3.057608 1.4109870
## X19 -4.200492 -1.2039728 -2.120264 1.3609766
## X20 -4.133321 -1.3862944 -1.771957 1.3862944
## X21 -6.517424 -2.1202635 -2.322788 0.9162907
## X22 -7.141616 -2.4769385 -3.036554 1.3083328
## X23 -7.141616 -1.9661129 -2.780621 0.4700036
## X24 -7.288830 -1.7147984 -2.465104 1.9021075
## X25 -7.141616 -1.7147984 -2.333044 1.8245493
## X26 -6.747507 -1.8971200 -2.577022 0.8754687
## X28 -8.932463 -1.6607312 -2.590267 1.7227666
## X29 -8.191715 -2.0402208 -2.975930 1.1631508
## X30 -6.308494 -1.3470736 -2.385967 1.4586150
## X31 -5.557525 -1.2729657 -2.040221 1.5040774
## X34 -4.458204 -1.3093333 -1.897120 1.3083328
## X35 -2.963532 -0.7133499 -1.966113 1.2809338
## X36 -2.678962 -0.4155154 -1.560648 1.9600948
## X37 -7.002855 -1.8971200 -2.703063 1.6292405
## X38 -4.458204 -1.7147984 -2.733368 1.0986123
## X39 -7.002855 -1.8325815 -3.057608 1.1314021
## X40 -4.581146 -1.5606477 -2.659260 1.4586150
## X41 -2.814127 -0.6348783 -1.427116 1.6486586
## X42 -5.779603 -1.6094379 -2.830218 1.1314021
## X43 -4.712962 -1.8971200 -2.900422 1.0647107
## X44 -2.963532 -1.8325815 -2.900422 1.4109870
## X45 -4.581146 -1.7147984 -2.322788 1.7404662
## X46 -5.941894 -2.0402208 -3.079114 0.9555114
## X47 -6.027915 -1.7147984 -2.551046 0.9932518
## X48 -7.288830 -1.8971200 -2.525729 1.1631508
## X50 -4.539232 -1.4696760 -2.120264 1.2809338
## X51 -6.210929 -1.4696760 -2.513306 1.6677068
## X53 -2.152627 -1.6094379 -2.476938 1.0296194
## X55 -4.539232 -1.6607312 -2.563950 1.2237754
## X56 -5.008267 -1.1711830 -2.513306 1.6677068
## X57 -6.117503 -2.1202635 -2.937463 1.5475625
## X59 -4.458204 -1.2039728 -1.966113 1.7227666
## X60 -5.941894 -1.7147984 -2.796881 1.5892352
## X61 -4.581146 -1.8325815 -2.864704 0.9555114
## X62 -7.141616 -1.8325815 -2.513306 1.1631508
## X63 -5.008267 -1.9661129 -2.659260 0.9932518
## X64 -3.317541 -1.0788097 -1.897120 1.3350011
## X65 -6.410533 -2.2072749 -2.830218 0.9555114
## X67 -6.308494 -1.8971200 -2.603690 1.0647107
## X68 -4.419017 -1.4696760 -2.476938 1.6486586
## X69 -8.191715 -1.8971200 -2.617296 0.9932518
## X70 -6.210929 -1.9661129 -3.015935 1.3350011
## X71 -7.445450 -1.8325815 -2.563950 0.7419373
## X72 -2.242336 -0.8641926 -1.714763 1.8718022
## X73 -4.539232 -1.7147984 -2.207275 1.0296194
## X74 -3.860022 -1.3093333 -2.120264 1.3862944
## X75 -3.130065 -1.0498221 -2.120264 1.2527630
## X76 -5.294544 -1.6094379 -2.513306 1.6094379
## X77 -4.624044 -1.2039728 -2.207275 1.3862944
## X78 -4.806353 -1.7147984 -2.733368 2.0794415
## X80 -4.306372 -1.7147984 -2.476938 1.5040774
## X81 -6.747507 -1.5606477 -2.780621 1.3862944
## X82 -6.117503 -1.6094379 -2.590267 1.7917595
## X83 -7.141616 -1.8971200 -2.645075 1.6292405
## X84 -3.725527 -2.0402208 -2.847312 1.2809338
## X85 -5.702912 -1.4696760 -2.551046 1.7047481
## X86 -7.002855 -0.9416085 -2.207275 1.6863990
## X88 -4.419017 -1.7147984 -2.645075 1.6863990
## X90 -8.417032 -2.5133061 -3.473768 1.0296194
## X93 -6.871722 -1.5141277 -2.780621 1.5475625
## X94 -5.008267 -0.6931472 -1.832581 2.1633230
## X95 -6.027915 -1.4696760 -1.966113 1.3350011
## X96 -5.859197 -2.0402208 -2.748872 1.4586150
## X97 -7.791589 -1.7147984 -2.830218 1.7917595
## X98 -7.288830 -1.8325815 -2.590267 1.0986123
## X99 -3.378594 -1.6607312 -2.590267 1.6094379
## X100 -5.117801 -1.7147984 -2.975930 1.5686159
## X103 -5.062260 -1.5606477 -2.453408 1.5686159
## X104 -4.458204 -1.5606477 -2.830218 1.4350845
## X105 -6.517424 -1.4271164 -2.631089 1.3609766
## X107 -3.442152 -1.6607312 -2.501036 1.5686159
## X108 -5.859197 -1.2378744 -2.207275 2.1517622
## X109 -7.983999 -1.8971200 -2.995732 1.1314021
## X110 -9.936906 -3.3242363 -3.688879 0.8754687
## X111 -5.941894 -1.3862944 -2.659260 1.4816045
## X112 -4.854854 -0.8915981 -1.609438 1.8405496
## X113 -2.152627 -1.1394343 -1.897120 1.4816045
## X114 -5.008267 -1.8325815 -2.302585 1.5686159
## X115 -3.751559 -0.8439701 -2.120264 1.8082888
## X117 -6.517424 -1.7147984 -2.207275 1.3862944
## X118 -5.233853 -1.7719568 -2.590267 1.7404662
## X121 -3.976069 -1.3862944 -2.207275 2.0794415
## X123 -7.983999 -1.8325815 -2.703063 1.1939225
## X124 -6.308494 -1.7719568 -2.525729 1.8718022
## X126 -4.904631 -1.8325815 -3.079114 0.8329091
## X128 -2.442874 -0.8209806 -1.237874 1.7917595
## X129 -5.859197 -1.7147984 -3.324236 1.3609766
## X130 -5.702912 -1.3862944 -2.120264 1.2237754
## X131 -5.628941 -1.5141277 -2.538307 0.9162907
## X132 -4.539232 -1.7719568 -2.577022 1.3862944
## X133 -2.555800 -0.8209806 -1.660731 2.1162555
## X134 -4.624044 -1.9661129 -2.120264 1.7227666
## X135 -5.557525 -1.3862944 -2.207275 1.8082888
## X136 -2.678962 -1.2039728 -2.407946 1.5260563
## X137 -7.002855 -2.1202635 -2.733368 0.7419373
## X139 -5.702912 -1.5141277 -2.441847 1.2527630
## X140 -5.233853 -1.8325815 -2.645075 1.8718022
## X141 -4.539232 -1.5606477 -2.302585 1.6486586
## X143 -5.117801 -1.3470736 -2.396896 1.1939225
## X144 -5.233853 -1.7719568 -2.748872 1.5260563
## X145 -8.191715 -2.1202635 -2.847312 1.0647107
## X146 -4.166581 -1.5606477 -2.302585 2.0412203
## X147 -5.062260 -1.8325815 -2.733368 1.8082888
## X148 -3.888287 -0.9416085 -2.302585 2.0281482
## X149 -6.629589 -1.5606477 -2.780621 1.1314021
## X152 -3.399492 -1.0788097 -2.040221 2.1972246
## X153 -4.380670 -1.2378744 -2.465104 2.0918641
## X154 -4.806353 -1.6607312 -2.513306 0.9555114
## X155 -4.955747 -1.4271164 -2.120264 1.5892352
## X156 -5.233853 -1.2039728 -2.120264 1.3862944
## X157 -5.357143 -1.6094379 -2.577022 1.4586150
## X158 -5.859197 -1.7719568 -2.937463 1.1939225
## X159 -6.027915 -1.6607312 -2.513306 0.6931472
## X160 -5.294544 -1.2729657 -2.375156 1.3350011
## X161 -4.712962 -1.6094379 -2.577022 1.1939225
## X162 -5.357143 -1.8971200 -3.057608 1.0986123
## X163 -6.410533 -2.0402208 -3.411248 0.9555114
## X165 -6.210929 -2.0402208 -3.506558 1.1314021
## X166 -6.308494 -1.8971200 -2.718101 1.1631508
## X167 -6.210929 -1.6094379 -2.882404 1.5475625
## X168 -5.294544 -1.0788097 -2.120264 1.2809338
## X169 -8.417032 -1.8971200 -2.645075 1.5475625
## X170 -5.357143 -1.2729657 -2.353878 1.2809338
## X171 -4.624044 -1.6607312 -2.703063 1.6486586
## X172 -6.210929 -1.4271164 -2.302585 1.3609766
## X174 -4.166581 -0.6348783 -1.386294 1.9600948
## X175 -2.963532 -0.5978370 -1.609438 2.2721259
## X176 -3.649844 -1.7147984 -2.718101 1.3609766
## X177 -6.871722 -1.6094379 -2.937463 1.5475625
## X178 -6.871722 -1.8325815 -2.577022 0.7884574
## X179 -3.531121 -0.8400523 -1.469676 1.8562980
## X180 -6.629589 -1.5141277 -2.501036 1.9878743
## X181 -6.410533 -2.0402208 -3.352407 1.1631508
## X182 -6.117503 -1.3862944 -2.207275 1.4109870
## X183 -4.166581 -1.0216512 -1.832581 2.0014800
## X184 -5.557525 -1.7719568 -2.673649 1.6863990
## X185 -3.699905 -1.4696760 -2.120264 1.4816045
## X186 -6.747507 -1.9661129 -2.796881 1.3083328
## X189 -5.233853 -2.1202635 -2.796881 1.3862944
## X190 -7.141616 -1.7719568 -2.995732 1.7917595
## X191 -5.941894 -1.6607312 -2.617296 1.7404662
## X192 -5.779603 -1.7719568 -2.847312 1.4109870
## X193 -5.294544 -1.6607312 -2.385967 1.4350845
## X194 -4.581146 -1.6094379 -2.488915 1.5475625
## X195 -7.445450 -1.4271164 -2.703063 1.0986123
## X197 -5.062260 -1.3862944 -2.302585 1.7917595
## X198 -8.191715 -1.6607312 -3.146555 1.3083328
## X200 -5.702912 -1.6094379 -2.419119 1.5892352
## X201 -4.904631 -1.7147984 -2.733368 1.4586150
## X202 -5.859197 -2.3434071 -2.617296 0.8754687
## X205 -6.117503 -1.7147984 -2.937463 1.2527630
## X208 -5.859197 -1.5141277 -2.577022 1.7047481
## X210 -4.380670 -1.4696760 -1.966113 1.7404662
## X212 -6.517424 -1.8325815 -2.563950 1.0647107
## X213 -5.859197 -1.5606477 -2.364460 1.6486586
## X214 -2.338769 -1.7719568 -2.040221 1.1631508
## X215 -7.612597 -2.2072749 -2.937463 0.7419373
## X216 -3.976069 -1.4271164 -2.673649 1.3083328
## X218 -4.759074 -1.1711830 -2.120264 1.7917595
## X219 -6.871722 -1.3862944 -2.488915 1.0986123
## X220 -6.871722 -2.0402208 -2.995732 1.1939225
## X223 -7.141616 -1.1711830 -1.966113 1.8718022
## X224 -6.117503 -1.5606477 -2.396896 1.2809338
## X225 -8.417032 -1.7719568 -2.703063 1.3083328
## X226 -6.210929 -1.8325815 -3.123566 1.8870696
## X227 -6.210929 -0.8915981 -1.771957 2.0412203
## X228 -8.417032 -2.0402208 -3.194183 0.7884574
## X229 -7.002855 -2.2072749 -2.937463 1.6486586
## X230 -4.270363 -1.6094379 -2.207275 1.5260563
## X231 -5.779603 -1.5141277 -2.563950 1.2527630
## X232 -6.747507 -1.7719568 -3.079114 1.3083328
## X233 -5.859197 -1.2378744 -2.501036 1.5686159
## X234 -4.624044 -1.1711830 -2.040221 1.8405496
## X236 -7.445450 -2.1202635 -3.170086 1.1631508
## X237 -5.488510 -1.0788097 -2.385967 1.7404662
## X239 -7.612597 -2.5902672 -3.057608 1.1631508
## X240 -6.517424 -2.2072749 -2.577022 0.9932518
## X241 -4.006378 -1.3862944 -2.040221 1.3350011
## X242 -4.581146 -0.2744368 -1.469676 1.5040774
## X243 -5.941894 -1.7719568 -2.419119 1.4350845
## X244 -4.904631 -1.5141277 -2.396896 1.3862944
## X245 -8.191715 -2.6736488 -3.540459 0.8329091
## X246 -6.517424 -1.1394343 -2.120264 1.8562980
## X247 -7.141616 -2.3968958 -3.473768 0.6418539
## X249 -7.288830 -1.9661129 -3.411248 1.1631508
## X250 -5.557525 -1.9661129 -2.748872 1.1939225
## X251 -6.027915 -2.0402208 -2.918771 1.2527630
## X253 -4.200492 -1.5606477 -2.207275 1.6486586
## X254 -6.747507 -1.3862944 -2.207275 1.8870696
## X255 -3.601291 -0.9162907 -2.040221 1.8082888
## X256 -8.417032 -2.2072749 -3.079114 0.8754687
## X257 -6.210929 -1.8971200 -2.631089 1.0647107
## X258 -4.100692 -1.2729657 -2.322788 0.8754687
## X260 -3.508403 -1.3862944 -2.577022 1.4816045
## X261 -6.629589 -1.7147984 -2.631089 0.9932518
## X262 -5.233853 -1.5141277 -2.918771 1.2527630
## X263 -4.806353 -1.1711830 -2.040221 1.6863990
## X264 -8.417032 -1.3470736 -1.897120 2.0014800
## X265 -6.210929 -1.7719568 -2.780621 1.4109870
## X267 -5.859197 -1.8971200 -2.525729 1.8718022
## X268 -4.806353 -1.4696760 -2.353878 1.4109870
## X269 -5.702912 -2.2072749 -3.101093 1.1314021
## X270 -6.308494 -1.8325815 -3.244194 1.5686159
## X271 -4.806353 -1.5606477 -2.465104 1.6094379
## X272 -7.288830 -1.2378744 -2.441847 1.5686159
## X273 -7.002855 -1.9661129 -3.036554 1.4109870
## X274 -5.233853 -1.6094379 -2.864704 1.3083328
## X275 -6.117503 -1.4696760 -2.513306 1.6094379
## X277 -3.130065 -1.3093333 -2.207275 1.4586150
## X278 -4.955747 -2.0402208 -2.430418 1.5475625
## X279 -6.871722 -1.7147984 -2.302585 1.5686159
## X281 -4.806353 -1.7719568 -2.551046 1.5892352
## X282 -4.498264 -1.4696760 -2.040221 1.2527630
## X283 -4.343131 -1.1394343 -2.207275 1.6094379
## X287 -5.174970 -1.1711830 -2.120264 1.1314021
## X289 -6.308494 -1.7147984 -2.764621 1.4586150
## X290 -7.002855 -1.8971200 -2.688248 0.9555114
## X291 -6.517424 -1.6607312 -2.631089 1.6863990
## X292 -7.141616 -1.5141277 -2.525729 1.8405496
## X294 -9.936906 -1.6607312 -2.207275 1.5040774
## X297 -7.288830 -1.9661129 -2.864704 1.4350845
## X298 -6.410533 -1.6607312 -2.590267 1.2809338
## X299 -5.941894 -1.7147984 -2.364460 1.7047481
## X301 -6.871722 -1.9661129 -2.864704 1.2527630
## X302 -6.410533 -1.7147984 -2.603690 1.3609766
## X303 -6.629589 -1.5141277 -2.918771 1.5686159
## X304 -7.288830 -1.7719568 -2.617296 1.3862944
## X305 -4.498264 -1.3093333 -2.538307 1.7227666
## X306 -6.210929 -1.0216512 -1.609438 1.8870696
## X307 -4.581146 -1.2039728 -1.560648 2.2512918
## X308 -4.581146 -1.5141277 -1.832581 1.7917595
## X311 -3.420676 -0.8915981 -2.040221 1.5686159
## X312 -7.002855 -1.5141277 -2.040221 1.3609766
## X313 -7.288830 -1.3093333 -2.302585 1.6486586
## X314 -7.983999 -2.0402208 -3.352407 1.3083328
## X315 -3.357973 -0.9162907 -1.560648 1.5892352
## X316 -4.854854 -1.2378744 -2.476938 1.1939225
## X317 -6.747507 -1.6607312 -2.617296 1.2527630
## X320 -3.508403 -0.3856625 -1.386294 1.4350845
## X321 -3.130065 -0.8915981 -2.207275 1.3350011
## X322 -7.445450 -1.0216512 -2.120264 1.4109870
## X323 -5.779603 -1.8325815 -2.764621 1.3083328
## X324 -6.517424 -2.6592600 -3.101093 1.2237754
## X325 -6.308494 -1.5606477 -2.847312 1.6677068
## X326 -6.210929 -2.1202635 -2.918771 1.3083328
## X327 -4.498264 -1.6094379 -2.120264 1.9740810
## X329 -6.629589 -1.6607312 -2.796881 1.1939225
## X330 -4.759074 -0.9416085 -1.514128 1.9169226
## X331 -5.421759 -1.4696760 -2.733368 1.2809338
## X332 -5.008267 -1.6094379 -2.617296 1.6863990
## X333 -4.806353 -1.4271164 -2.385967 1.5475625
## Apolipoprotein_E Apolipoprotein_H B_Lymphocyte_Chemoattractant_BL
## X1 3.7545215 -0.15734908 2.2969819
## X2 3.0971187 -0.57539617 1.6731213
## X3 2.7530556 -0.34483937 1.6731213
## X5 3.0671471 0.66263455 2.2969819
## X6 0.5911464 0.09715030 2.4798381
## X7 4.2548002 -0.34483937 1.6731213
## X8 1.9385358 0.09715030 3.7036702
## X9 2.7200688 -1.26939244 2.3713615
## X11 2.7200688 -0.28367882 1.8527528
## X12 3.1563503 -0.78459824 2.6867663
## X14 2.4440754 -0.21347474 1.6731213
## X16 2.5848812 -0.53172814 2.9757467
## X17 2.7857346 -0.03027441 3.0064666
## X18 2.0627326 -0.48946700 1.2740115
## X19 1.5787922 -0.23651381 2.2786154
## X20 2.3713615 0.09715030 2.0627326
## X21 2.4079204 -0.37004744 1.4308338
## X22 2.8181133 -0.80232932 1.9805094
## X23 1.8527528 -0.63604036 0.7317775
## X24 3.7797161 -0.54612169 1.8527528
## X25 1.8088944 -0.38282097 1.8527528
## X26 2.6531400 -0.35738780 1.8527528
## X28 3.6261997 -0.24816638 1.8527528
## X29 1.8959582 -0.63604036 2.3713615
## X30 1.8527528 -0.54612169 0.7987698
## X31 2.7200688 0.00000000 2.0219013
## X34 1.8959582 0.00000000 2.3713615
## X35 2.1427912 -0.44849801 1.9805094
## X36 3.0971187 0.59114642 3.4937139
## X37 2.5848812 -0.46201723 2.1820549
## X38 2.5848812 -0.56067607 2.3713615
## X39 3.1856203 -0.59028711 2.0627326
## X40 2.2591348 -0.38282097 2.0627326
## X41 2.7200688 0.44019756 2.6867663
## X42 2.5152196 -0.38282097 2.5152196
## X43 1.9805094 -0.63604036 2.1427912
## X44 2.8501989 -0.37004744 1.6731213
## X45 3.7797161 0.18913439 2.1820549
## X46 3.2146659 -0.73298708 2.6531400
## X47 2.0627326 -0.46201723 2.3713615
## X48 4.2548002 -0.57539617 2.5848812
## X50 3.6000471 -0.10317121 2.3713615
## X51 3.3566831 -0.38282097 1.9805094
## X53 3.0369315 -0.48946700 1.2740115
## X55 2.8181133 -0.38282097 0.7317775
## X56 3.6261997 -0.03027441 2.6867663
## X57 3.6521859 -0.80232932 2.6867663
## X59 2.5502306 -0.03027441 2.9757467
## X60 2.6531400 -0.37004744 1.6731213
## X61 2.7530556 -0.33239959 1.2740115
## X62 2.4440754 -1.11122739 1.2740115
## X63 2.9447661 -0.34483937 2.3713615
## X64 1.5303762 0.18913439 2.9757467
## X65 3.0671471 -0.83865049 1.6731213
## X67 2.9447661 -0.80232932 1.9805094
## X68 3.0064666 -0.17955518 2.3713615
## X69 1.8527528 -0.74993753 1.2740115
## X70 3.3566831 -0.65167154 2.1820549
## X71 3.1563503 -0.76713789 2.0627326
## X72 4.0237466 0.27662577 2.6531400
## X73 4.0237466 -0.34483937 2.0627326
## X74 1.6731213 0.00000000 2.0219013
## X75 2.6191813 0.00000000 2.3713615
## X76 3.3005016 -0.20208470 2.6867663
## X77 2.6531400 0.00000000 1.9805094
## X78 3.6521859 0.27662577 1.8527528
## X80 2.4079204 -0.15734908 2.0219013
## X81 3.3566831 -0.35738780 1.9805094
## X82 2.2591348 -0.47567232 2.7530556
## X83 2.8181133 -0.74993753 2.3713615
## X84 2.2591348 -0.56067607 1.9805094
## X85 4.2548002 -0.08200644 1.9805094
## X86 4.0237466 0.59114642 3.4937139
## X88 2.7857346 -0.04049051 2.4440754
## X90 1.5787922 -0.99753895 1.5303762
## X93 3.0671471 0.09715030 2.6867663
## X94 4.6844119 0.00000000 2.9757467
## X95 2.5502306 -0.38282097 1.2740115
## X96 3.0971187 -0.51749076 2.1820549
## X97 3.4937139 -0.54612169 2.1820549
## X98 2.9447661 -0.87620360 0.7987698
## X99 3.0064666 -0.39571116 2.6531400
## X100 2.8181133 -0.50340513 1.9805094
## X103 4.2548002 -0.53172814 2.3713615
## X104 2.3713615 -0.43511112 1.9805094
## X105 4.0237466 -0.46201723 1.2740115
## X107 2.1427912 -0.15734908 1.8527528
## X108 3.1563503 0.27662577 2.0219013
## X109 3.4120676 -0.76713789 1.2740115
## X110 1.1637797 -1.13570251 1.4810717
## X111 2.3713615 -0.40872089 2.3713615
## X112 3.2146659 -0.17955518 2.2969819
## X113 3.2146659 0.66263455 2.1820549
## X114 1.3796139 -0.32006598 2.1820549
## X115 2.1427912 -0.03027441 2.9757467
## X117 3.1268514 -0.69979867 2.2969819
## X118 4.0237466 -0.37004744 1.8527528
## X121 2.9135187 -0.03027441 2.6867663
## X123 1.9385358 -0.87620360 1.6731213
## X124 2.4798381 0.36016589 2.3713615
## X126 1.9385358 -0.44849801 2.3713615
## X128 2.8819985 0.18913439 2.3713615
## X129 1.7643559 -0.53172814 2.6867663
## X130 3.5205617 0.09715030 3.0064666
## X131 2.6867663 -0.51749076 2.2208309
## X132 2.4079204 0.00000000 1.6731213
## X133 3.2146659 0.51708817 2.1820549
## X134 2.3343863 0.09715030 2.7530556
## X135 4.0237466 -0.32006598 1.6731213
## X136 2.1427912 -0.69979867 2.3713615
## X137 1.8088944 -0.73298708 0.7317775
## X139 1.9805094 -0.40872089 2.1820549
## X140 3.4666845 -0.19077873 1.8527528
## X141 3.0671471 -0.08200644 2.1820549
## X143 2.6867663 -0.12462010 1.8527528
## X144 2.3343863 -0.44849801 1.8527528
## X145 2.4440754 -0.48946700 0.7987698
## X146 3.0971187 0.18913439 2.4798381
## X147 3.0971187 -0.89547834 1.8527528
## X148 3.0671471 0.66263455 3.4937139
## X149 3.4394702 -0.63604036 1.2740115
## X152 4.8854423 -0.27174693 2.4798381
## X153 3.3566831 0.18913439 2.1820549
## X154 2.9135187 -0.66750355 1.2740115
## X155 1.6263611 -0.28367882 1.6731213
## X156 3.1856203 0.09715030 1.6731213
## X157 3.0064666 -0.39571116 2.0219013
## X158 3.0671471 -0.69979867 1.4810717
## X159 2.3343863 -0.65167154 1.8813120
## X160 4.2548002 -0.42185317 2.0627326
## X161 3.3566831 -0.07152751 2.3713615
## X162 3.2434918 -0.65167154 1.9805094
## X163 2.4079204 -0.76713789 1.9805094
## X165 2.6867663 -0.54612169 1.4308338
## X166 2.7200688 -0.66750355 0.9269604
## X167 4.0237466 -0.60535429 2.5152196
## X168 3.7797161 -0.39571116 2.0627326
## X169 2.5502306 -0.39571116 1.8527528
## X170 2.3343863 -0.25991011 1.4308338
## X171 3.6780085 -0.17955518 1.9805094
## X172 2.5502306 -0.43511112 1.6731213
## X174 2.7857346 -0.35738780 2.3713615
## X175 2.8501989 0.09715030 2.0219013
## X176 2.6191813 -0.71627709 2.6867663
## X177 2.1030230 -0.51749076 1.5303762
## X178 1.8088944 -0.63604036 1.9805094
## X179 4.0237466 0.44019756 2.4798381
## X180 2.9135187 -0.25991011 3.0064666
## X181 2.1030230 -0.51749076 1.7643559
## X182 3.3844731 -0.40872089 1.6731213
## X183 1.1637797 0.09715030 1.8527528
## X184 2.9447661 -0.35738780 2.1820549
## X185 2.8819985 -0.66750355 2.3713615
## X186 2.1820549 -0.40872089 1.4308338
## X189 2.8819985 -0.66750355 1.4308338
## X190 3.5737252 -0.38282097 1.9805094
## X191 2.5502306 -0.43511112 1.9805094
## X192 2.9447661 -0.76713789 1.9805094
## X193 2.9447661 -0.27174693 2.3713615
## X194 1.5787922 -0.22495053 1.9805094
## X195 3.7545215 -0.56067607 1.2740115
## X197 2.7857346 -0.01003016 2.1820549
## X198 2.3343863 -0.56067607 0.9269604
## X200 3.0369315 -0.42185317 2.0219013
## X201 2.7200688 -0.32006598 2.3713615
## X202 2.1820549 -0.66750355 0.7987698
## X205 3.1563503 -0.40872089 1.8527528
## X208 2.9757467 0.09715030 1.9805094
## X210 3.0369315 -0.16841247 1.8527528
## X212 1.8959582 -0.15734908 1.9805094
## X213 2.8819985 0.18913439 1.4308338
## X214 2.2969819 -0.23651381 1.2740115
## X215 2.6531400 -0.60535429 1.2740115
## X216 1.3796139 0.09715030 2.3713615
## X218 2.3713615 0.44019756 2.9757467
## X219 2.6191813 -0.38282097 1.9805094
## X220 3.1856203 -0.65167154 2.3713615
## X223 2.4079204 -0.03027441 1.6731213
## X224 2.9447661 -0.24816638 1.2740115
## X225 3.6780085 -0.66750355 1.2740115
## X226 3.3844731 -0.56067607 2.6867663
## X227 2.7200688 0.92696036 2.2969819
## X228 1.8959582 -0.68354345 0.7987698
## X229 1.1067498 -1.06412706 1.4308338
## X230 4.0237466 0.00000000 1.8527528
## X231 3.0064666 -0.83865049 1.8527528
## X232 3.6521859 -0.16841247 2.6867663
## X233 1.0483341 -0.23651381 1.9805094
## X234 3.7036702 0.09715030 1.4308338
## X236 3.1563503 -0.60535429 1.4308338
## X237 2.8819985 0.09715030 2.6867663
## X239 0.9884391 -0.76713789 0.7987698
## X240 2.2208309 -0.39571116 0.7987698
## X241 3.3844731 -0.21347474 1.8527528
## X242 1.2195081 0.24675221 2.2208309
## X243 2.3343863 -0.07152751 2.6867663
## X244 2.7200688 -0.32006598 2.3713615
## X245 1.1637797 -0.83865049 1.5303762
## X246 3.4666845 0.36016589 1.6731213
## X247 2.0627326 -0.69979867 1.5303762
## X249 3.6000471 -0.39571116 2.1820549
## X250 2.7200688 -2.23379225 2.0627326
## X251 2.2969819 -0.71627709 2.1820549
## X253 2.1820549 -0.82034264 2.8501989
## X254 4.2548002 -0.42185317 2.2969819
## X255 3.3844731 -0.21347474 2.3713615
## X256 2.7857346 -0.74993753 1.9805094
## X257 1.8088944 -0.62060338 1.5303762
## X258 3.0971187 -0.16841247 2.3713615
## X260 2.9757467 0.09715030 2.3713615
## X261 2.7200688 -0.66750355 1.5303762
## X262 2.5848812 -0.57539617 1.9805094
## X263 3.4394702 -0.24816638 2.3713615
## X264 2.0219013 0.27662577 2.3713615
## X265 3.5472311 -0.47567232 2.3713615
## X267 3.6261997 -0.48946700 2.1820549
## X268 3.3566831 -0.08200644 1.9805094
## X269 2.5152196 -0.71627709 0.7987698
## X270 3.2434918 -0.93510686 1.5303762
## X271 2.5502306 0.18913439 1.9805094
## X272 3.6000471 -0.05077067 2.3713615
## X273 3.2721023 -0.30783617 2.6867663
## X274 2.7200688 -0.51749076 1.5303762
## X275 3.6780085 -0.13545431 1.6731213
## X277 2.9447661 -0.51749076 1.4308338
## X278 3.0671471 -0.14636351 1.2740115
## X279 2.5848812 -0.32006598 0.9884391
## X281 2.8181133 -0.30783617 1.8527528
## X282 2.2591348 -0.06111597 2.3713615
## X283 4.8854423 -0.03027441 4.0237466
## X287 3.6000471 -0.46201723 1.2740115
## X289 1.8088944 -0.35738780 1.2740115
## X290 1.8088944 -0.50340513 1.0483341
## X291 3.1856203 -0.82034264 1.8527528
## X292 3.7797161 -0.05077067 2.2969819
## X294 2.9135187 -0.37004744 1.6731213
## X297 3.0971187 -0.53172814 2.1820549
## X298 1.6731213 -0.16841247 1.6731213
## X299 3.2434918 -0.60535429 1.8527528
## X301 1.9385358 -0.30783617 2.3713615
## X302 1.3796139 -0.32006598 0.7987698
## X303 2.8501989 -0.16841247 1.9805094
## X304 2.4798381 -0.63604036 1.9805094
## X305 4.6844119 -0.80232932 1.9805094
## X306 3.1856203 -0.12462010 2.2969819
## X307 3.3005016 0.36016589 2.0219013
## X308 2.2208309 0.18913439 1.2740115
## X311 1.5787922 -0.19077873 2.6867663
## X312 4.0237466 -0.66750355 2.3713615
## X313 2.3343863 -0.28367882 2.6867663
## X314 2.5502306 -0.85726607 1.5303762
## X315 3.3286939 0.27662577 1.6731213
## X316 2.8819985 -0.65167154 1.6731213
## X317 3.4937139 -0.63604036 1.2740115
## X320 2.2208309 0.59114642 2.0627326
## X321 1.1637797 -0.01003016 1.2740115
## X322 5.4441788 0.36016589 2.6867663
## X323 3.1268514 -0.03027441 2.3713615
## X324 2.2208309 -0.83865049 1.6731213
## X325 3.7036702 0.00000000 2.9757467
## X326 2.3343863 -0.60535429 2.5152196
## X327 3.1268514 -0.06111597 2.7530556
## X329 3.4666845 -0.87620360 1.9805094
## X330 1.4308338 0.86378110 1.8527528
## X331 1.8088944 -0.38282097 2.3713615
## X332 2.2208309 -0.19077873 2.6867663
## X333 3.6000471 -0.25991011 2.6867663
## BMP_6 Beta_2_Microglobulin Betacellulin C_Reactive_Protein CD40
## X1 -2.2007445 0.69314718 34 -4.074542 -0.7964147
## X2 -1.7280531 0.47000363 53 -6.645391 -1.2733760
## X3 -2.0624206 0.33647224 49 -8.047190 -1.2415199
## X5 -1.2415199 0.33647224 67 -4.342806 -0.9240345
## X6 -1.8774117 -0.54472718 51 -7.561682 -1.7844998
## X7 -1.8452133 -0.04082199 41 -7.581100 -1.0965412
## X8 -1.9829118 -0.07257069 42 -6.165818 -1.8643733
## X9 -1.6752524 0.00000000 58 -7.070274 -1.4919984
## X11 -1.4130880 0.18232156 32 -6.645391 -1.3405665
## X12 -1.9679750 -0.10536052 43 -4.828314 -1.3405665
## X14 -2.0624206 0.40546511 53 -5.083206 -1.0965412
## X16 -1.9679750 0.33647224 58 -5.051457 -1.3761017
## X17 -2.0458231 0.09531018 51 -5.278515 -1.4130880
## X18 -1.6752524 -0.02020271 67 -5.626821 -1.5342758
## X19 -1.6752524 0.18232156 42 -6.980326 -1.4130880
## X20 -2.0624206 0.18232156 46 -5.221356 -1.3405665
## X21 -1.7280531 0.26236426 51 -6.571283 -1.1808680
## X22 -2.2007445 0.74193734 52 -5.051457 -0.9240345
## X23 -1.8906716 -0.12783337 46 -5.546779 -1.4130880
## X24 -2.0458231 0.33647224 42 -6.377127 -1.0441270
## X25 -1.8774117 -0.13926207 51 -6.812445 -1.4516659
## X26 -2.0458231 0.09531018 59 -8.468403 -1.1808680
## X28 -2.0458231 0.33647224 32 -6.645391 -1.3405665
## X29 -1.6752524 -0.08338161 61 -6.119298 -1.6256074
## X30 -1.8452133 -0.22314355 41 -6.165818 -1.2415199
## X31 -2.2319708 0.26236426 60 -4.074542 -0.9016377
## X34 -2.1516047 -0.01005034 51 -5.449140 -1.3405665
## X35 -1.4130880 -0.37106368 71 -5.599422 -1.3405665
## X36 -2.1516047 0.18232156 51 -3.963316 -1.2107086
## X37 -2.0458231 0.33647224 59 -7.849364 -1.2733760
## X38 -2.7611525 0.00000000 65 -4.815891 -1.2415199
## X39 -2.0624206 0.26236426 37 -7.402052 -1.2733760
## X40 -1.7280531 0.47000363 46 -6.032287 -1.3405665
## X41 -1.9679750 0.09531018 43 -5.744604 -1.4130880
## X42 -1.9679750 0.18232156 51 -6.437752 -1.2733760
## X43 -2.2319708 0.09531018 67 -5.298317 -1.3063602
## X44 -2.2873761 0.58778666 46 -4.879607 -1.2107086
## X45 -2.0458231 0.53062825 51 -7.600902 -0.9943519
## X46 -2.2873761 0.40546511 46 -5.381699 -1.1808680
## X47 -2.3867382 -0.30110509 51 -6.571283 -1.4130880
## X48 -2.2319708 0.58778666 60 -4.605170 -0.9016377
## X50 -0.8166252 0.26236426 51 -4.803621 -1.2415199
## X51 -1.8452133 0.33647224 42 -4.853632 -0.9240345
## X53 -1.7280531 0.33647224 46 -6.571283 -1.3405665
## X55 -2.1611633 0.53062825 53 -7.684284 -1.2415199
## X56 -1.9679750 0.09531018 51 -5.521461 -1.3761017
## X57 -2.2007445 0.58778666 42 -5.952244 -1.3761017
## X59 -1.6752524 0.33647224 43 -6.812445 -1.3063602
## X60 -1.9981504 0.00000000 60 -5.203007 -1.3761017
## X61 -1.5787229 -0.08338161 26 -7.182192 -1.0441270
## X62 -1.9041616 -0.26136476 51 -6.032287 -1.2107086
## X63 -2.2535986 0.26236426 51 -5.952244 -1.2733760
## X64 -1.8452133 -0.21072103 51 -3.816713 -1.3063602
## X65 -1.8452133 0.09531018 60 -7.035589 -1.1519318
## X67 -1.9679750 0.09531018 51 -7.957577 -1.3063602
## X68 -1.8452133 0.18232156 61 -6.377127 -1.3405665
## X69 -1.3761017 -0.47803580 67 -5.654992 -1.5342758
## X70 -2.0458231 0.09531018 42 -6.319969 -1.3063602
## X71 -1.7280531 0.09531018 49 -3.575551 -1.2733760
## X72 -2.6486592 0.99325177 28 -2.937463 -0.9016377
## X73 -2.0624206 0.40546511 46 -5.099467 -1.1238408
## X74 -1.5787229 -0.46203546 51 -5.167289 -1.3761017
## X75 -2.1611633 0.18232156 46 -6.265901 -1.2733760
## X76 -2.0540751 0.26236426 51 -7.169120 -1.1808680
## X77 -1.5787229 0.26236426 68 -4.135167 -1.1519318
## X78 -2.0458231 0.53062825 51 -6.119298 -0.9943519
## X80 -1.8452133 0.00000000 41 -3.194183 -1.2107086
## X81 -2.1516047 0.26236426 55 -5.449140 -1.2415199
## X82 -2.0458231 0.18232156 32 -5.878136 -1.3405665
## X83 -1.8452133 0.09531018 52 -6.377127 -1.3761017
## X84 -1.8452133 -0.18632958 51 -5.318520 -1.2415199
## X85 -2.3867382 0.47000363 43 -6.437752 -1.0699846
## X86 -1.4919984 0.58778666 51 -4.422849 -0.9240345
## X88 -2.2319708 0.33647224 74 -5.654992 -1.2107086
## X90 -1.9829118 -0.31471074 72 -4.509860 -1.8452133
## X93 -1.9829118 0.47000363 52 -5.184989 -1.5342758
## X94 -2.1516047 0.83290912 43 -5.776353 -0.7007809
## X95 -1.6752524 -0.09431068 51 -6.437752 -0.9943519
## X96 -1.8774117 0.26236426 66 -5.115996 -1.2415199
## X97 -1.6256074 0.18232156 42 -8.468403 -1.1808680
## X98 -2.2319708 -0.30110509 71 -4.744432 -1.3761017
## X99 -2.2873761 0.33647224 37 -4.199705 -0.9943519
## X100 -2.1516047 0.33647224 51 -5.744604 -1.1808680
## X103 -2.6486592 0.64185389 42 -6.074846 -0.6826401
## X104 -2.5370840 0.40546511 47 -5.809143 -1.2733760
## X105 -2.2007445 0.33647224 46 -6.948577 -1.0965412
## X107 -2.2007445 0.26236426 51 -6.502290 -0.9240345
## X108 -1.9981504 -0.04082199 46 -6.214608 -0.9240345
## X109 -1.7280531 0.09531018 42 -6.502290 -1.1238408
## X110 -1.8452133 -0.26136476 74 -7.799353 -1.3405665
## X111 -1.9829118 0.09531018 61 -6.502290 -1.2733760
## X112 -2.6694708 0.26236426 67 -5.115996 -1.0189283
## X113 -1.7280531 0.47000363 32 -5.472671 -1.3761017
## X114 -1.4919984 -0.54472718 59 -5.914504 -1.5787229
## X115 -2.3867382 0.18232156 58 -5.991465 -1.3405665
## X117 -1.6256074 0.33647224 60 -3.963316 -1.1808680
## X118 -2.0458231 0.74193734 51 -5.744604 -1.0699846
## X121 -2.3867382 0.47000363 58 -5.278515 -0.9240345
## X123 -1.4516659 -0.49429632 60 -4.779524 -1.3405665
## X124 -1.8452133 0.18232156 61 -5.035953 -1.2415199
## X126 -1.5787229 0.09531018 58 -5.203007 -1.4516659
## X128 -1.9679750 0.33647224 58 -4.710531 -1.1519318
## X129 -1.9679750 -0.04082199 51 -7.849364 -1.6752524
## X130 -1.7280531 0.33647224 59 -4.947660 -1.4516659
## X131 -2.2873761 0.09531018 53 -5.744604 -1.2733760
## X132 -1.6752524 0.00000000 64 -7.581100 -1.3063602
## X133 -1.7280531 0.09531018 20 -8.078938 -1.2107086
## X134 -1.8774117 0.33647224 51 -4.892852 -1.0965412
## X135 -2.2319708 0.09531018 60 -4.074542 -1.0441270
## X136 -2.5370840 0.18232156 61 -6.074846 -1.3063602
## X137 -1.6256074 -0.34249031 46 -3.729701 -1.4516659
## X139 -1.8774117 -0.12783337 51 -7.523941 -1.5787229
## X140 -2.0458231 0.09531018 42 -6.319969 -1.2415199
## X141 -1.6752524 0.09531018 51 -5.683980 -1.2415199
## X143 -1.6752524 0.09531018 41 -6.265901 -1.3761017
## X144 -1.8774117 0.09531018 59 -6.377127 -1.3063602
## X145 -2.2319708 -0.04082199 67 -7.581100 -1.3761017
## X146 -2.2007445 0.33647224 42 -7.070274 -1.0699846
## X147 -2.2646732 0.58778666 42 -4.779524 -1.0965412
## X148 -2.2007445 0.18232156 10 -3.123566 -1.3063602
## X149 -1.8906716 -0.01005034 37 -4.342806 -1.4130880
## X152 -1.8774117 0.74193734 32 -5.878136 -1.0965412
## X153 -2.2646732 0.40546511 32 -4.017384 -1.3761017
## X154 -2.6486592 0.09531018 37 -5.278515 -1.2107086
## X155 -1.5787229 -0.26136476 55 -5.020686 -1.2733760
## X156 -1.6256074 0.18232156 46 -4.733004 -1.2415199
## X157 -1.8452133 0.33647224 55 -6.319969 -0.9240345
## X158 -2.1611633 0.09531018 53 -5.132803 -0.9943519
## X159 -1.8452133 -0.02020271 58 -5.924465 -1.4516659
## X160 -1.5342758 0.47000363 37 -4.892852 -0.9469346
## X161 -1.9679750 0.40546511 58 -3.611918 -1.1808680
## X162 -1.5787229 0.47000363 52 -6.437752 -1.1808680
## X163 -2.2007445 -0.05129329 61 -7.250246 -1.4516659
## X165 -1.4919984 0.18232156 32 -7.293418 -1.3761017
## X166 -1.9679750 -0.16251893 58 -8.334872 -1.2415199
## X167 -1.6752524 0.58778666 68 -6.812445 -0.9016377
## X168 -2.0624206 0.09531018 46 -5.914504 -1.3761017
## X169 -2.0458231 -0.15082289 42 -6.265901 -1.6752524
## X170 -1.7280531 -0.08338161 51 -5.083206 -1.4130880
## X171 -2.1516047 0.47000363 43 -4.961845 -1.0189283
## X172 -1.6752524 -0.06187540 74 -7.323271 -1.3063602
## X174 -1.8452133 0.09531018 33 -6.265901 -1.3063602
## X175 -1.8774117 0.40546511 42 -5.149897 -1.4130880
## X176 -2.1516047 0.18232156 51 -5.472671 -1.3063602
## X177 -1.9829118 0.26236426 42 -6.319969 -1.3063602
## X178 -1.5787229 -0.31471074 65 -5.221356 -1.5342758
## X179 -1.6752524 0.47000363 42 -4.342806 -1.3405665
## X180 -2.0458231 0.91629073 42 -6.214608 -1.2415199
## X181 -1.6752524 -0.09431068 75 -7.047017 -1.5342758
## X182 -1.9981504 -0.04082199 60 -5.572754 -1.0189283
## X183 -1.7280531 -0.24846136 41 -7.094085 -1.2107086
## X184 -1.8774117 0.33647224 47 -6.265901 -1.2733760
## X185 -2.3867382 0.26236426 65 -6.938214 -1.2733760
## X186 -2.2007445 -0.06187540 42 -8.016418 -1.4919984
## X189 -1.9606157 0.26236426 51 -4.268698 -1.2415199
## X190 -2.5370840 0.47000363 47 -4.342806 -1.2733760
## X191 -1.6752524 0.18232156 61 -6.214608 -1.2415199
## X192 -1.8452133 0.64185389 61 -6.645391 -1.1519318
## X193 -2.3867382 0.58778666 43 -7.094085 -1.2107086
## X194 -1.8452133 -0.04082199 52 -6.907755 -1.3761017
## X195 -1.6256074 0.64185389 53 -5.599422 -1.1238408
## X197 -1.8774117 0.33647224 42 -5.843045 -1.1808680
## X198 -1.6752524 -0.10536052 75 -6.437752 -1.2107086
## X200 -1.8452133 0.33647224 51 -6.165818 -0.9943519
## X201 -2.2007445 0.33647224 61 -5.403678 -1.4516659
## X202 -2.2319708 -0.23572233 67 -5.952244 -1.3063602
## X205 -1.6256074 0.18232156 46 -6.502290 -1.2733760
## X208 -2.5370840 0.47000363 42 -4.744432 -0.9943519
## X210 -1.1808680 0.33647224 42 -8.111728 -1.1238408
## X212 -1.9679750 -0.12783337 51 -7.047017 -1.5787229
## X213 -1.7844998 0.18232156 59 -5.654992 -1.4130880
## X214 -2.2007445 0.26236426 53 -3.381395 -1.0189283
## X215 -1.6256074 -0.22314355 67 -5.572754 -0.9469346
## X216 -1.6752524 -0.08338161 42 -5.099467 -1.5342758
## X218 -1.8973873 -0.06187540 42 -4.744432 -1.4516659
## X219 -1.9679750 0.09531018 58 -5.426151 -1.5342758
## X220 -2.2535986 0.18232156 51 -4.791500 -1.3063602
## X223 -1.9041616 0.18232156 60 -6.907755 -1.0965412
## X224 -2.2319708 0.18232156 41 -6.265901 -1.3063602
## X225 -1.5787229 0.40546511 67 -6.571283 -0.6472472
## X226 -2.0794020 0.64185389 29 -3.688879 -1.2107086
## X227 -0.9240345 0.09531018 60 -3.611918 -1.0965412
## X228 -1.6752524 -0.17435339 67 -4.199705 -1.5787229
## X229 -2.0458231 -0.27443685 51 -8.180721 -1.5787229
## X230 -2.2646732 0.18232156 51 -4.268698 -1.2107086
## X231 -1.7844998 0.26236426 51 -5.665263 -1.5787229
## X232 -1.9829118 0.09531018 52 -6.812445 -1.2733760
## X233 -1.8452133 -0.19845094 52 -7.293418 -1.5787229
## X234 -1.8774117 -0.12783337 51 -8.377431 -1.4516659
## X236 -1.3063602 -0.17435339 32 -7.182192 -1.5342758
## X237 -1.9679750 -0.01005034 51 -5.744604 -1.2107086
## X239 -1.9981504 -0.30110509 51 -5.240048 -1.4919984
## X240 -1.5787229 -0.32850407 67 -7.641724 -1.4130880
## X241 -2.0458231 0.18232156 32 -5.051457 -1.2415199
## X242 -1.1519318 -0.06187540 46 -3.863233 -1.6256074
## X243 -2.3867382 -0.21072103 43 -5.683980 -1.3761017
## X244 -1.8452133 0.40546511 58 -6.502290 -1.1519318
## X245 -1.3063602 -0.49429632 82 -5.744604 -1.8452133
## X246 -1.9981504 0.33647224 41 -5.521461 -1.0699846
## X247 -1.4130880 -0.18632958 82 -7.130899 -1.4130880
## X249 -1.8774117 0.47000363 66 -7.013116 -0.9016377
## X250 -2.2873761 0.33647224 53 -5.496768 -0.9469346
## X251 -2.1516047 0.09531018 58 -7.621105 -1.0965412
## X253 -1.9679750 0.40546511 51 -3.057608 -1.3405665
## X254 -1.1238408 0.99325177 67 -3.912023 -0.5474623
## X255 -2.7611525 0.40546511 43 -4.422849 -1.0965412
## X256 -1.8906716 -0.23572233 58 -8.517193 -1.4919984
## X257 -1.8452133 -0.26136476 51 -6.319969 -1.5787229
## X258 -1.5342758 0.53062825 46 -4.840893 -0.8582591
## X260 -1.8973873 0.18232156 68 -5.381699 -1.3761017
## X261 -1.6752524 -0.16251893 58 -5.083206 -1.4919984
## X262 -1.3063602 -0.28768207 65 -7.641724 -1.4919984
## X263 -1.6752524 0.40546511 42 -4.509860 -1.1808680
## X264 -1.9679750 0.18232156 43 -5.368806 -1.0699846
## X265 -1.6752524 0.26236426 42 -6.812445 -1.0965412
## X267 -1.8774117 0.47000363 51 -7.323271 -1.0189283
## X268 -1.8452133 0.18232156 56 -6.032287 -1.1238408
## X269 -1.8452133 -0.15082289 41 -6.571283 -1.0699846
## X270 -1.5787229 0.69314718 52 -7.581100 -1.0441270
## X271 -2.2007445 0.47000363 52 -6.165818 -1.2415199
## X272 -1.8452133 -0.05129329 61 -5.115996 -1.1519318
## X273 -1.6752524 0.47000363 52 -6.165818 -1.3761017
## X274 -1.6752524 0.18232156 47 -5.472671 -1.3405665
## X275 -1.9981504 0.26236426 41 -3.863233 -1.1238408
## X277 -1.6256074 0.18232156 59 -4.422849 -1.6256074
## X278 -2.2319708 0.18232156 67 -4.755993 -1.1238408
## X279 -1.7844998 0.09531018 51 -6.502290 -1.5787229
## X281 -1.4919984 0.18232156 51 -7.435388 -1.3761017
## X282 -2.2873761 -0.16251893 60 -4.074542 -1.5342758
## X283 -1.6752524 0.69314718 52 -7.452482 -1.0699846
## X287 -1.8906716 0.09531018 60 -6.645391 -1.3063602
## X289 -1.3063602 -0.32850407 41 -7.849364 -1.3063602
## X290 -2.0624206 0.26236426 46 -5.426151 -1.4919984
## X291 -1.8774117 0.09531018 42 -5.203007 -1.1238408
## X292 -1.5787229 0.58778666 71 -5.521461 -0.8582591
## X294 -2.2319708 -0.40047757 51 -5.449140 -1.4130880
## X297 -2.1516047 0.18232156 62 -5.083206 -1.2733760
## X298 -1.9679750 0.09531018 37 -4.990833 -1.4919984
## X299 -1.6256074 0.40546511 51 -7.505592 -1.2733760
## X301 -1.6752524 -0.17435339 33 -5.776353 -1.2733760
## X302 -1.5787229 -0.54472718 41 -5.713833 -1.6256074
## X303 -2.0794020 0.09531018 52 -7.323271 -1.4919984
## X304 -1.6752524 0.40546511 38 -7.706263 -0.9943519
## X305 -1.6752524 0.47000363 61 -6.571283 -1.0965412
## X306 -1.6752524 0.47000363 51 -6.812445 -0.7380092
## X307 -1.4516659 0.33647224 60 -5.099467 -1.1808680
## X308 -2.2319708 0.26236426 41 -5.381699 -1.0965412
## X311 -1.8452133 0.18232156 58 -5.203007 -1.2415199
## X312 -2.7611525 0.53062825 51 -6.319969 -1.2415199
## X313 -2.2007445 0.18232156 42 -5.878136 -1.2415199
## X314 -1.6752524 0.09531018 42 -6.265901 -1.4130880
## X315 -1.8452133 0.09531018 60 -3.244194 -1.1519318
## X316 -2.2873761 0.09531018 37 -6.377127 -1.3761017
## X317 -2.0624206 0.26236426 37 -5.952244 -1.0189283
## X320 -1.7280531 0.09531018 46 -7.047017 -1.2415199
## X321 -2.0624206 -0.44628710 49 -7.293418 -1.6256074
## X322 -1.4516659 0.47000363 43 -5.099467 -1.3405665
## X323 -1.6752524 0.64185389 42 -5.843045 -1.2733760
## X324 -1.8452133 0.18232156 60 -7.169120 -1.1519318
## X325 -2.2007445 0.87546874 42 -4.906275 -1.1519318
## X326 -1.8452133 0.33647224 61 -6.502290 -1.2415199
## X327 -1.8774117 0.18232156 51 -5.020686 -1.2415199
## X329 -1.8452133 0.09531018 33 -5.776353 -1.2415199
## X330 -1.4130880 -0.05129329 42 -5.744604 -1.5342758
## X331 -2.2007445 -0.30110509 52 -7.728736 -1.4919984
## X332 -1.8452133 -0.12783337 61 -4.199705 -1.5342758
## X333 -1.6752524 0.53062825 61 -7.824046 -0.9469346
## CD5L Calbindin Calcitonin CgA Clusterin_Apo_J Complement_3
## X1 0.09531018 33.21363 1.3862944 397.6536 3.555348 -10.363053
## X2 -0.67334455 25.27636 3.6109179 465.6759 3.044522 -16.108237
## X3 0.09531018 22.16609 2.1162555 347.8639 2.772589 -16.108237
## X5 0.36331197 21.83275 1.3083328 442.8046 3.044522 -12.813142
## X6 0.40546511 13.23155 1.6292405 137.9473 2.564949 -11.983227
## X7 -0.24846136 27.12044 1.0986123 336.9532 3.178054 -16.545310
## X8 0.53062825 10.96148 1.7404662 166.5501 2.772589 -14.406260
## X9 -0.75502258 18.29778 1.2809338 254.4822 2.564949 -19.247713
## X11 -0.01005034 29.36877 2.6390573 361.5826 3.091042 -11.838035
## X12 0.83290912 20.36068 1.2809338 251.8879 2.833213 -15.709974
## X14 0.26236426 24.38181 1.8870696 270.1389 2.890372 -12.134638
## X16 -0.26136476 26.42534 0.6931472 372.6204 3.044522 -12.721137
## X17 0.33647224 22.97999 3.1354942 200.9777 2.944439 -12.813142
## X18 -0.16251893 18.39608 0.4700036 195.9948 2.302585 -17.860668
## X19 0.00000000 19.26029 1.2237754 183.6299 2.397895 -16.780588
## X20 -0.05129329 19.44761 1.6863990 367.0946 2.708050 -15.523564
## X21 0.18232156 24.07681 3.2580965 251.8879 2.484907 -13.528896
## X22 -0.86750057 22.57641 1.6486586 437.1170 2.944439 -16.108237
## X23 -0.61618614 26.14249 1.7749524 414.4903 2.564949 -18.506668
## X24 -0.75502258 24.22975 1.0296194 367.0946 3.401197 -17.860668
## X25 -0.52763274 19.44761 0.1823216 320.6970 2.708050 -20.111728
## X26 -0.63487827 23.84570 2.3978953 408.8652 2.995732 -17.860668
## X28 0.18232156 22.00000 0.6931472 288.5972 3.332205 -16.321511
## X29 -0.15082289 20.62742 0.9162907 183.6299 2.564949 -17.860668
## X30 -0.38566248 14.97056 0.7884574 304.5768 2.564949 -18.863805
## X31 0.33647224 21.83275 1.8718022 262.2911 2.995732 -16.108237
## X34 -0.16251893 24.98148 1.1314021 198.4836 2.772589 -16.108237
## X35 0.18232156 17.07878 0.6931472 259.6838 2.484907 -16.545310
## X36 0.87546874 17.49359 2.2823824 367.0946 2.833213 -13.881545
## X37 -0.57981850 23.05993 2.2823824 400.4516 3.044522 -17.860668
## X38 -0.75502258 20.18107 0.9555114 397.6536 2.708050 -16.545310
## X39 -0.32850407 18.39608 2.0412203 364.3368 3.295837 -16.545310
## X40 0.00000000 18.78461 3.2958369 361.5826 2.833213 -14.548755
## X41 0.47000363 18.68816 1.1314021 307.2539 2.890372 -9.562842
## X42 -0.77652879 22.08319 2.0668628 331.5196 2.890372 -14.696346
## X43 0.18232156 18.88061 0.9555114 231.2963 2.397895 -18.506668
## X44 0.53062825 21.49468 2.8903718 288.5972 2.995732 -12.134638
## X45 0.00000000 28.59412 3.1354942 394.8588 3.218876 -12.212827
## X46 -0.54472718 24.60827 1.9315214 420.1282 2.772589 -14.406260
## X47 0.26236426 20.09072 2.2925348 312.6196 2.564949 -13.528896
## X48 -0.17435339 30.61901 2.6390573 477.1827 3.496508 -11.909882
## X50 0.18232156 27.59730 1.6486586 336.9532 3.496508 -12.631361
## X51 -0.34249031 25.56810 0.6418539 394.8588 2.833213 -14.696346
## X53 0.18232156 23.37716 2.2823824 301.9036 2.890372 -12.374500
## X55 -0.26136476 24.07681 0.7419373 378.1598 2.833213 -15.709974
## X56 0.47000363 29.24100 1.5686159 267.5187 2.772589 -15.709974
## X57 0.18232156 26.56571 -0.1508229 315.3083 3.332205 -11.191436
## X59 0.33647224 21.40940 1.4816045 262.2911 2.890372 -12.721137
## X60 0.26236426 20.71563 0.7884574 198.4836 2.772589 -13.004247
## X61 -0.35667494 22.81935 1.6863990 195.9948 2.772589 -18.506668
## X62 -0.38566248 22.00000 0.9555114 285.9479 2.708050 -20.111728
## X63 -0.65392647 28.13304 2.7725887 356.0845 2.639057 -12.374500
## X64 0.78845736 20.36068 2.8903718 218.5779 2.890372 -13.004247
## X65 -0.41551544 20.89105 1.8870696 251.8879 2.708050 -17.860668
## X67 -0.23572233 25.92848 2.6390573 448.5044 2.833213 -14.406260
## X68 -0.59783700 20.44994 3.3672958 328.8084 2.890372 -12.631361
## X69 -0.04082199 17.39072 1.3083328 259.6838 2.302585 -14.696346
## X70 -0.96758403 24.30589 2.2407097 397.6536 3.044522 -17.028429
## X71 0.18232156 24.22975 3.5835189 296.5691 2.639057 -16.545310
## X72 0.91629073 20.44994 3.5553481 523.6660 3.401197 -13.746698
## X73 1.09861229 25.71281 1.8870696 389.2792 2.944439 -12.212827
## X74 -0.19845094 19.44761 2.3978953 149.7563 2.397895 -14.006447
## X75 -0.13926207 19.26029 1.4586150 241.5557 2.944439 -14.135373
## X76 0.00000000 27.73214 2.7080502 425.7786 3.295837 -15.008176
## X77 0.53062825 27.39388 0.9162907 315.3083 3.044522 -15.344812
## X78 0.64185389 24.38181 0.9162907 400.4516 3.332205 -13.205557
## X80 -0.82098055 21.15167 3.1780538 400.4516 2.772589 -10.909311
## X81 -0.44628710 28.13304 1.2809338 301.9036 2.944439 -17.860668
## X82 0.18232156 29.04835 3.2188758 334.2346 3.135494 -14.696346
## X83 0.33647224 19.90890 1.2237754 254.4822 2.772589 -15.523564
## X84 -0.31471074 24.15339 2.1860513 293.9078 2.708050 -15.344812
## X85 -0.24846136 27.46184 0.4700036 397.6536 3.401197 -14.849365
## X86 0.69314718 27.46184 0.6931472 336.9532 3.295837 -14.696346
## X88 0.69314718 22.81935 1.3862944 356.0845 3.135494 -10.599937
## X90 -0.44628710 13.62050 1.2237754 173.8361 2.151762 -19.662161
## X93 0.33647224 23.21904 2.6390573 246.7128 3.091042 -15.904641
## X94 0.58778666 28.33150 0.9555114 480.0666 3.367296 -13.418078
## X95 -0.21072103 26.56571 2.0794415 238.9839 2.833213 -17.860668
## X96 -0.19845094 21.15167 1.7578579 397.6536 3.295837 -16.321511
## X97 -0.52763274 29.74902 -0.7133499 375.3884 3.091042 -18.863805
## X98 -0.40047757 22.08319 2.1162555 254.4822 2.484907 -17.860668
## X99 0.09531018 20.89105 2.8332133 480.0666 2.833213 -16.545310
## X100 -0.24846136 23.61250 3.6375862 339.6754 3.091042 -16.780588
## X103 -0.07257069 22.49490 1.5686159 442.8046 3.044522 -16.545310
## X104 0.00000000 20.36068 1.5475625 389.2792 2.890372 -16.321511
## X105 -0.49429632 27.25748 0.7419373 408.8652 3.178054 -17.566939
## X107 0.00000000 24.53300 2.4849066 417.3077 2.944439 -11.909882
## X108 0.26236426 17.39072 2.0668628 403.2529 2.995732 -15.008176
## X109 -0.84397007 20.89105 1.1314021 288.5972 2.639057 -20.602047
## X110 -0.49429632 19.16601 1.3083328 223.6509 2.302585 -23.387329
## X111 -0.22314355 20.71563 2.5649494 345.1308 3.091042 -13.310348
## X112 1.16315081 24.68333 0.9555114 345.1308 3.295837 -11.983227
## X113 0.47000363 24.83282 1.5892352 275.3919 3.218876 -11.191436
## X114 -0.11653382 17.89975 1.2527630 259.6838 2.484907 -16.108237
## X115 0.47000363 27.52965 1.9878743 283.3028 2.833213 -11.698625
## X117 -0.24846136 26.21347 2.3025851 442.8046 3.135494 -18.173167
## X118 -0.24846136 27.32576 3.8918203 468.5482 3.367296 -12.543721
## X121 0.09531018 21.57965 2.0668628 425.7786 2.944439 -13.760451
## X123 -0.30110509 20.00000 2.3025851 251.8879 2.397895 -19.662161
## X124 0.26236426 22.24871 3.3672958 356.0845 2.708050 -13.881545
## X126 -0.28768207 18.97618 0.2623643 506.1507 2.302585 -18.173167
## X128 0.18232156 28.91925 0.9555114 408.8652 2.890372 -14.268559
## X129 -0.59783700 21.49468 0.2623643 291.2505 2.708050 -19.662161
## X130 -0.59783700 32.05877 1.4816045 336.9532 2.833213 -14.548755
## X131 0.00000000 27.12044 1.1314021 372.6204 2.708050 -18.863805
## X132 0.64185389 17.07878 1.5892352 318.0008 2.890372 -15.523564
## X133 0.47000363 18.00000 1.4816045 251.8879 3.218876 -12.721137
## X134 0.64185389 25.12932 1.8718022 454.2163 3.091042 -11.075694
## X135 0.18232156 26.63564 1.7227666 468.5482 2.995732 -14.696346
## X136 0.26236426 15.43560 1.6486586 283.3028 2.890372 -15.904641
## X137 -0.34249031 18.49390 2.3978953 283.3028 2.564949 -18.863805
## X139 -0.12783337 23.37716 3.4339872 342.4013 2.564949 -15.523564
## X140 -0.05129329 21.15167 1.0986123 320.6970 3.091042 -11.838035
## X141 -0.16251893 28.91925 2.3025851 417.3077 2.995732 -14.849365
## X143 0.74193734 23.05993 0.7884574 200.9777 2.890372 -15.173178
## X144 0.33647224 20.44994 1.3083328 320.6970 2.639057 -15.344812
## X145 -0.28768207 22.16609 2.8332133 309.9348 2.708050 -19.662161
## X146 0.09531018 21.66432 1.4816045 318.0008 3.218876 -13.760451
## X147 -0.04082199 26.07134 0.6931472 425.7786 3.332205 -11.564602
## X148 -0.03045921 24.75818 1.3083328 328.8084 3.258097 -13.881545
## X149 -0.44628710 18.88061 1.8405496 275.3919 2.639057 -19.662161
## X152 0.53062825 22.33105 1.9169226 411.6762 3.583519 -10.455704
## X153 0.64185389 25.27636 1.3609766 159.3166 3.258097 -12.212827
## X154 0.00000000 23.76820 2.1747517 323.3971 2.944439 -18.173167
## X155 -0.05129329 21.23790 1.5260563 462.8066 2.639057 -14.268559
## X156 -0.26136476 18.97618 2.7725887 320.6970 3.044522 -16.321511
## X157 -0.19845094 21.49468 2.3025851 272.7633 2.772589 -16.780588
## X158 -0.94160854 22.33105 2.7725887 420.1282 2.833213 -15.173178
## X159 -0.11653382 21.66432 1.6486586 417.3077 2.484907 -18.863805
## X160 0.09531018 21.49468 1.1314021 442.8046 3.583519 -15.008176
## X161 0.69314718 24.38181 0.9555114 503.2412 2.833213 -14.006447
## X162 -0.35667494 26.21347 2.7080502 437.1170 3.044522 -15.344812
## X163 -0.56211892 22.00000 1.6094379 331.5196 2.639057 -18.506668
## X165 -0.73396918 21.66432 1.7578579 392.0674 2.833213 -16.545310
## X166 -0.63487827 22.89980 1.5686159 448.5044 2.995732 -15.344812
## X167 -0.17435339 32.29286 1.6486586 414.4903 3.332205 -16.780588
## X168 -0.19845094 22.08319 2.4849066 312.6196 3.178054 -18.173167
## X169 -0.15082289 19.16601 0.6931472 315.3083 2.639057 -17.860668
## X170 0.18232156 24.15339 3.2580965 226.1946 2.772589 -14.849365
## X171 -0.02020271 21.49468 0.6931472 431.4416 3.135494 -13.760451
## X172 -0.10536052 21.91652 0.7884574 347.8639 2.772589 -18.863805
## X174 0.69314718 19.72556 2.4849066 299.2344 2.772589 -10.317725
## X175 0.91629073 17.07878 2.0281482 350.6005 2.995732 -13.205557
## X176 -1.23787436 23.21904 2.7080502 328.8084 2.639057 -15.523564
## X177 -0.05129329 16.86796 1.4816045 361.5826 2.708050 -16.780588
## X178 -0.43078292 15.32051 0.9555114 361.5826 2.174752 -20.111728
## X179 0.58778666 21.49468 2.6390573 254.4822 2.995732 -12.721137
## X180 0.40546511 21.83275 0.2623643 309.9348 2.995732 -16.545310
## X181 -0.28768207 18.19901 1.8562980 288.5972 2.219203 -18.863805
## X182 -0.51082562 24.53300 1.9600948 403.2529 2.833213 -18.863805
## X183 -0.52763274 15.77639 0.7884574 135.6050 2.639057 -17.860668
## X184 -0.43078292 20.89105 0.6931472 434.2777 2.944439 -15.709974
## X185 -0.17435339 26.91366 2.7725887 315.3083 2.833213 -15.904641
## X186 0.00000000 22.81935 -0.7133499 323.3971 2.772589 -18.506668
## X189 -0.28768207 19.44761 2.6390573 383.7128 2.833213 -18.173167
## X190 0.09531018 20.71563 1.8562980 353.3408 2.944439 -15.008176
## X191 -0.30110509 28.98387 0.6418539 283.3028 2.890372 -17.028429
## X192 -0.06187540 28.06659 0.6418539 347.8639 3.295837 -16.108237
## X193 0.40546511 33.77709 2.7725887 358.8318 3.332205 -16.545310
## X194 -0.57981850 18.88061 1.9315214 218.5779 2.833213 -15.523564
## X195 -0.35667494 21.74868 2.7725887 485.8432 3.295837 -16.545310
## X197 -0.17435339 23.69047 2.3025851 465.6759 3.178054 -11.075694
## X198 0.00000000 20.36068 1.7404662 364.3368 2.708050 -17.290073
## X200 -0.11653382 31.34666 2.7725887 293.9078 3.295837 -15.523564
## X201 0.00000000 19.72556 0.6418539 383.7128 2.772589 -14.696346
## X202 -0.52763274 20.00000 1.2237754 228.7431 2.639057 -19.662161
## X205 0.09531018 19.72556 2.3978953 389.2792 3.258097 -18.173167
## X208 -0.40047757 24.60827 2.7725887 291.2505 3.044522 -15.344812
## X210 0.26236426 26.07134 2.8903718 326.1009 3.135494 -11.698625
## X212 -0.57981850 24.53300 0.2623643 328.8084 2.890372 -18.173167
## X213 0.09531018 22.65766 2.0668628 400.4516 3.044522 -15.173178
## X214 0.26236426 17.59592 1.1314021 372.6204 2.708050 -17.290073
## X215 -0.57981850 23.05993 0.9555114 375.3884 2.772589 -16.545310
## X216 0.00000000 18.78461 0.9162907 291.2505 2.484907 -15.523564
## X218 0.47000363 17.28730 0.6418539 251.8879 2.995732 -13.642963
## X219 -0.04082199 22.49490 1.5686159 315.3083 2.564949 -18.173167
## X220 -0.02020271 23.53429 2.7080502 434.2777 2.772589 -19.247713
## X223 0.18232156 21.74868 3.4657359 309.9348 2.944439 -15.904641
## X224 0.09531018 21.57965 0.7884574 445.6530 2.772589 -18.173167
## X225 -0.37106368 29.49603 3.1354942 532.4605 3.044522 -18.173167
## X226 -1.10866262 21.49468 0.9162907 411.6762 2.944439 -16.321511
## X227 0.35333823 17.59592 0.4700036 353.3408 3.044522 -14.006447
## X228 -0.46203546 20.89105 1.4350845 307.2539 2.484907 -18.863805
## X229 0.26236426 13.36229 2.2082744 228.7431 2.484907 -17.566939
## X230 -0.03045921 23.61250 0.9162907 259.6838 2.708050 -13.103567
## X231 -0.07257069 19.54066 1.4816045 275.3919 2.944439 -14.406260
## X232 -0.16251893 23.76820 1.4109870 275.3919 2.944439 -12.813142
## X233 -0.13926207 17.39072 1.3083328 216.0486 2.564949 -15.904641
## X234 0.26236426 19.72556 1.2527630 361.5826 2.890372 -13.310348
## X236 -1.04982212 22.65766 1.7578579 383.7128 2.772589 -18.863805
## X237 0.33647224 21.40940 3.0445224 378.1598 2.995732 -16.108237
## X239 -0.17435339 11.26650 2.2721259 164.1330 1.960095 -20.602047
## X240 -0.11653382 19.81742 1.0986123 304.5768 2.564949 -14.548755
## X241 -0.44628710 23.37716 1.2527630 372.6204 2.890372 -16.108237
## X242 0.99325177 11.56466 1.7227666 149.7563 3.044522 -14.006447
## X243 -0.08338161 23.05993 1.9600948 270.1389 2.564949 -14.696346
## X244 0.09531018 28.98387 0.6931472 468.5482 2.772589 -17.028429
## X245 -1.17118298 15.32051 0.9162907 171.4017 1.871802 -20.602047
## X246 0.58778666 21.91652 -0.2357223 296.5691 2.833213 -15.173178
## X247 -0.51082562 22.33105 1.5475625 328.8084 2.484907 -19.247713
## X249 -0.37106368 25.27636 1.6677068 532.4605 3.178054 -15.904641
## X250 0.18232156 27.05168 1.5686159 380.9346 2.772589 -16.321511
## X251 -0.19845094 22.97999 0.9555114 339.6754 2.708050 -17.566939
## X253 0.33647224 19.72556 1.7749524 315.3083 2.890372 -14.406260
## X254 0.26236426 28.06659 1.8718022 462.8066 3.295837 -15.904641
## X255 0.40546511 22.97999 0.9555114 451.3589 3.091042 -14.135373
## X256 -0.18632958 24.00000 0.6931472 369.8558 2.708050 -19.662161
## X257 -0.30110509 22.97999 0.9555114 285.9479 2.484907 -20.602047
## X258 0.58778666 25.78489 1.4586150 356.0845 2.772589 -16.545310
## X260 0.40546511 25.05550 1.4109870 315.3083 2.995732 -15.709974
## X261 -0.23572233 20.62742 0.2623643 293.9078 2.397895 -20.111728
## X262 -0.47803580 20.00000 2.1747517 251.8879 2.564949 -17.566939
## X263 -0.44628710 22.81935 1.8870696 386.4943 3.178054 -12.458129
## X264 0.26236426 20.80351 0.6931472 299.2344 3.178054 -13.310348
## X265 -0.06187540 24.30589 2.2300144 342.4013 2.995732 -14.849365
## X267 -0.23572233 28.98387 1.1939225 361.5826 3.496508 -14.849365
## X268 0.83290912 24.83282 1.2237754 364.3368 2.944439 -12.458129
## X269 -0.13926207 24.68333 0.4700036 315.3083 2.639057 -18.173167
## X270 0.83290912 18.49390 1.8870696 380.9346 2.708050 -14.696346
## X271 0.87546874 18.97618 2.2925348 358.8318 2.944439 -13.760451
## X272 0.09531018 24.07681 1.8870696 270.1389 2.833213 -14.006447
## X273 -0.07257069 21.40940 2.5649494 320.6970 3.135494 -14.135373
## X274 -0.47803580 24.07681 2.2617631 356.0845 2.890372 -15.173178
## X275 -0.67334455 23.92296 0.7884574 442.8046 3.044522 -14.268559
## X277 0.53062825 19.81742 0.9162907 312.6196 2.772589 -13.642963
## X278 -0.54472718 23.45584 0.8754687 361.5826 2.890372 -14.548755
## X279 -0.19845094 24.83282 2.0918641 278.0247 2.833213 -16.545310
## X281 0.00000000 19.63331 0.6931472 386.4943 2.995732 -16.780588
## X282 0.26236426 25.05550 1.3083328 254.4822 2.995732 -16.545310
## X283 -0.16251893 30.61901 1.6486586 361.5826 3.401197 -13.418078
## X287 -0.61618614 23.53429 1.9878743 392.0674 2.944439 -17.860668
## X289 -0.35667494 15.54993 0.4700036 244.1320 2.484907 -18.506668
## X290 0.00000000 19.16601 2.2823824 278.0247 2.397895 -18.863805
## X291 0.18232156 17.59592 3.4011974 414.4903 2.708050 -13.760451
## X292 -0.04082199 29.87475 1.0986123 392.0674 3.295837 -15.709974
## X294 -0.40047757 16.54724 1.0986123 200.9777 2.639057 -17.566939
## X297 -1.17118298 25.12932 2.9957323 280.6617 2.944439 -18.506668
## X298 0.09531018 16.76166 1.1314021 254.4822 2.708050 -18.506668
## X299 -0.19845094 26.84441 1.5686159 288.5972 3.044522 -14.006447
## X301 -0.35667494 20.89105 0.6931472 331.5196 2.639057 -17.860668
## X302 -0.18632958 16.33030 1.0986123 166.5501 2.230014 -17.860668
## X303 0.53062825 24.22975 2.1400662 339.6754 2.772589 -15.709974
## X304 -1.04982212 23.84570 0.6931472 482.9535 2.995732 -17.290073
## X305 -0.03045921 31.28663 2.2721259 296.5691 3.401197 -14.548755
## X306 0.33647224 19.35416 0.9555114 535.3974 2.833213 -14.406260
## X307 0.87546874 27.52965 1.3862944 480.0666 3.044522 -14.696346
## X308 0.33647224 23.84570 0.2623643 251.8879 3.091042 -11.435607
## X311 -0.09431068 17.89975 0.6931472 334.2346 2.639057 -16.780588
## X312 -0.06187540 27.05168 1.1939225 454.2163 3.044522 -15.173178
## X313 -0.28768207 21.57965 2.4849066 238.9839 2.890372 -17.028429
## X314 -0.71334989 21.66432 2.4849066 345.1308 2.833213 -18.173167
## X315 0.09531018 21.49468 2.8903718 270.1389 3.044522 -12.292758
## X316 -0.40047757 25.42262 3.0910425 339.6754 2.833213 -14.696346
## X317 -0.63487827 24.45751 2.8903718 358.8318 2.995732 -18.173167
## X320 0.40546511 18.49390 2.6390573 211.0049 2.833213 -13.881545
## X321 0.09531018 15.66352 1.9740810 137.9473 2.397895 -16.321511
## X322 0.69314718 23.92296 1.7749524 323.3971 3.332205 -14.548755
## X323 0.09531018 20.09072 1.5475625 336.9532 2.995732 -13.103567
## X324 -0.37106368 28.91925 1.3083328 293.9078 2.890372 -15.709974
## X325 -0.23572233 22.81935 1.6486586 291.2505 2.995732 -13.642963
## X326 -0.46203546 21.74868 1.8245493 315.3083 2.772589 -17.860668
## X327 -0.37106368 23.45584 -0.7133499 345.1308 3.135494 -11.133063
## X329 -0.49429632 26.21347 2.2192035 408.8652 3.091042 -17.028429
## X330 0.26236426 11.41641 0.2623643 226.1946 2.639057 -12.543721
## X331 0.09531018 12.56022 2.6390573 296.5691 2.564949 -16.780588
## X332 0.26236426 14.49242 1.8562980 152.1371 2.833213 -12.458129
## X333 0.18232156 24.68333 1.7404662 431.4416 3.465736 -14.696346
## Complement_Factor_H Connective_Tissue_Growth_Factor Cortisol
## X1 3.5737252 0.5306283 10.0
## X2 3.6000471 0.5877867 12.0
## X3 4.4745686 0.6418539 10.0
## X5 7.2451496 0.9162907 11.0
## X6 3.5737252 0.9932518 13.0
## X7 2.4079204 0.8754687 4.9
## X8 1.0483341 0.7884574 13.0
## X9 2.4079204 0.9555114 12.0
## X11 4.0237466 0.8754687 6.8
## X12 4.6844119 0.9162907 12.0
## X14 3.2434918 0.9162907 15.0
## X16 4.2548002 0.8329091 12.0
## X17 1.8959582 0.8754687 12.0
## X18 3.7545215 0.9932518 0.1
## X19 4.0237466 1.0296194 10.0
## X20 3.0971187 0.4054651 18.0
## X21 2.7857346 0.7884574 26.0
## X22 0.9269604 0.3364722 14.0
## X23 2.4440754 0.6418539 16.0
## X24 2.3343863 0.5306283 7.8
## X25 2.1427912 0.7419373 8.6
## X26 3.4666845 0.6418539 14.0
## X28 2.2969819 0.5306283 8.9
## X29 3.3286939 0.8329091 15.0
## X30 2.1820549 0.9555114 1.8
## X31 3.1563503 1.0296194 19.0
## X34 4.2548002 1.1631508 14.0
## X35 4.4745686 1.1314021 14.0
## X36 2.0627326 0.9162907 9.8
## X37 2.8501989 0.5306283 14.0
## X38 2.5502306 1.1314021 9.5
## X39 3.6000471 0.5877867 15.0
## X40 3.6521859 0.9555114 12.0
## X41 5.0785828 1.1314021 13.0
## X42 2.4440754 0.6418539 11.0
## X43 3.7797161 0.9162907 10.0
## X44 2.9135187 0.9555114 9.5
## X45 4.4745686 0.7419373 15.0
## X46 3.7291737 0.7419373 15.0
## X47 1.9805094 1.2527630 15.0
## X48 2.7530556 0.6418539 15.0
## X50 4.2548002 0.8329091 9.8
## X51 3.0971187 0.5306283 10.0
## X53 4.4745686 0.9932518 11.0
## X55 3.1856203 0.7884574 15.0
## X56 4.2548002 0.9162907 12.0
## X57 3.6780085 0.6931472 11.0
## X59 2.8819985 0.9162907 11.0
## X60 3.7545215 0.6931472 7.0
## X61 3.4937139 0.7884574 17.0
## X62 3.3005016 0.8329091 7.1
## X63 1.1067498 1.0296194 13.0
## X64 5.4441788 1.1314021 10.0
## X65 3.2721023 0.6931472 13.0
## X67 2.0219013 0.7884574 18.0
## X68 4.4745686 0.7884574 15.0
## X69 1.7191085 1.1314021 7.4
## X70 2.2969819 0.6931472 14.0
## X71 4.8854423 0.8329091 15.0
## X72 5.4441788 0.3364722 15.0
## X73 4.2548002 0.8329091 11.0
## X74 3.3286939 1.0296194 13.0
## X75 4.0237466 0.9555114 16.0
## X76 1.4308338 0.7884574 12.0
## X77 3.5472311 0.5306283 17.0
## X78 4.8854423 0.4054651 11.0
## X80 4.4745686 0.9162907 11.0
## X81 2.7200688 0.8329091 12.0
## X82 3.5472311 0.7419373 14.0
## X83 4.2548002 0.9932518 12.0
## X84 2.0219013 1.2527630 14.0
## X85 4.4745686 0.7884574 12.0
## X86 7.1138913 0.6931472 12.0
## X88 3.4666845 0.7419373 12.0
## X90 -0.8386505 1.1314021 9.9
## X93 0.9884391 0.6418539 12.0
## X94 2.2969819 0.5306283 18.0
## X95 3.4937139 0.9555114 5.9
## X96 3.7545215 0.6418539 11.0
## X97 3.7797161 0.7419373 8.2
## X98 1.8959582 0.9162907 8.3
## X99 2.7530556 0.4054651 15.0
## X100 0.7987698 0.7419373 6.5
## X103 4.0237466 0.5306283 16.0
## X104 2.9135187 0.6418539 14.0
## X105 1.1067498 0.4700036 9.0
## X107 2.9135187 0.8754687 10.0
## X108 4.8854423 0.3364722 13.0
## X109 3.0064666 0.5877867 14.0
## X110 1.0483341 0.8329091 11.0
## X111 4.2548002 0.7884574 9.1
## X112 5.6178580 0.4054651 13.0
## X113 2.1030230 0.8754687 13.0
## X114 4.0237466 0.8754687 13.0
## X115 0.7317775 0.9162907 29.0
## X117 2.7530556 0.9162907 13.0
## X118 2.7530556 0.7884574 11.0
## X121 4.4745686 0.9555114 18.0
## X123 3.6000471 1.1939225 9.5
## X124 4.6844119 0.6418539 13.0
## X126 3.4937139 1.0647107 10.0
## X128 5.4441788 0.6931472 8.9
## X129 4.4745686 0.8754687 8.4
## X130 3.7036702 0.8754687 4.0
## X131 3.7797161 0.5306283 10.0
## X132 3.3286939 0.6418539 12.0
## X133 4.0237466 0.5306283 13.0
## X134 5.2646088 0.7419373 12.0
## X135 4.0237466 0.7419373 8.7
## X136 2.7530556 0.8329091 29.0
## X137 2.2591348 0.6931472 9.7
## X139 2.4079204 0.8329091 13.0
## X140 2.9447661 0.1823216 22.0
## X141 4.6844119 0.5877867 12.0
## X143 0.7317775 1.0296194 7.1
## X144 4.0237466 0.5877867 12.0
## X145 1.5787922 0.6931472 9.8
## X146 3.4937139 0.6418539 15.0
## X147 4.2548002 0.5306283 11.0
## X148 6.4130123 0.7884574 9.7
## X149 3.7291737 0.7419373 8.9
## X152 5.4441788 0.3364722 14.0
## X153 6.4130123 1.0986123 8.8
## X154 3.7036702 0.5877867 8.9
## X155 4.2548002 0.8754687 8.1
## X156 5.4441788 0.5877867 9.0
## X157 3.4937139 0.8329091 11.0
## X158 3.5472311 0.6931472 7.0
## X159 2.8181133 0.9932518 9.3
## X160 4.0237466 0.5877867 8.5
## X161 4.6844119 0.8754687 13.0
## X162 2.0219013 0.6931472 9.1
## X163 1.7191085 0.7884574 11.0
## X165 2.1030230 0.6418539 14.0
## X166 3.3566831 0.8329091 13.0
## X167 2.4079204 0.4700036 10.0
## X168 3.7797161 0.6418539 7.7
## X169 3.7797161 0.7884574 12.0
## X170 4.4745686 0.7884574 14.0
## X171 4.0237466 1.0647107 13.0
## X172 2.1030230 0.6418539 8.5
## X174 5.2646088 1.4109870 12.0
## X175 5.6178580 0.4054651 18.0
## X176 4.4745686 1.2809338 17.0
## X177 3.3844731 0.6931472 12.0
## X178 3.5205617 1.0296194 8.3
## X179 6.8429820 1.0986123 13.0
## X180 4.0237466 0.6418539 16.0
## X181 3.4394702 0.8754687 11.0
## X182 2.4079204 0.5877867 11.0
## X183 4.6844119 0.9932518 6.5
## X184 2.1427912 0.4700036 14.0
## X185 4.8854423 0.8329091 12.0
## X186 4.0237466 0.7884574 18.0
## X189 3.5205617 0.6418539 13.0
## X190 2.2591348 0.7884574 14.0
## X191 4.0237466 0.3364722 8.1
## X192 2.5502306 0.5877867 19.0
## X193 3.0671471 0.9932518 11.0
## X194 2.6867663 0.8754687 9.5
## X195 4.0237466 0.4054651 12.0
## X197 4.6844119 0.7884574 15.0
## X198 3.6261997 0.6931472 5.2
## X200 3.2146659 0.4700036 12.0
## X201 2.6191813 1.0647107 14.0
## X202 1.5787922 0.8754687 10.0
## X205 4.2548002 0.7419373 12.0
## X208 4.2548002 0.5306283 20.0
## X210 4.2548002 0.6418539 18.0
## X212 2.6531400 0.9162907 11.0
## X213 4.6844119 0.5306283 11.0
## X214 5.2646088 0.5306283 5.5
## X215 3.0671471 1.0296194 11.0
## X216 4.6844119 0.7884574 11.0
## X218 5.2646088 0.5877867 14.0
## X219 3.7797161 1.0296194 14.0
## X220 3.0671471 0.7884574 11.0
## X223 4.4745686 0.5877867 12.0
## X224 3.5472311 0.5877867 11.0
## X225 2.3713615 0.6418539 13.0
## X226 2.3713615 0.4054651 17.0
## X227 6.7029984 0.6418539 4.8
## X228 3.0671471 0.8329091 15.0
## X229 2.5848812 0.6931472 11.0
## X230 4.6844119 0.7884574 9.4
## X231 4.2548002 0.9162907 11.0
## X232 3.7291737 0.7419373 14.0
## X233 4.2548002 0.8754687 9.0
## X234 4.4745686 0.8754687 9.8
## X236 3.0671471 0.7884574 8.1
## X237 4.6844119 0.9555114 16.0
## X239 2.9757467 0.9932518 13.0
## X240 4.0237466 0.9932518 11.0
## X241 2.7857346 1.0296194 15.0
## X242 7.6238473 0.5877867 13.0
## X243 4.2548002 0.9555114 9.1
## X244 4.0237466 1.0647107 15.0
## X245 1.4810717 0.9555114 12.0
## X246 3.6780085 0.8754687 11.0
## X247 3.0369315 0.6931472 12.0
## X249 4.0237466 0.5877867 17.0
## X250 4.4745686 0.7419373 12.0
## X251 3.4120676 0.7419373 12.0
## X253 5.0785828 0.9932518 13.0
## X254 1.9385358 0.5877867 10.0
## X255 4.4745686 0.9555114 22.0
## X256 1.8088944 0.7884574 10.0
## X257 2.4798381 0.9555114 10.0
## X258 4.6844119 0.4054651 13.0
## X260 4.6844119 0.6931472 13.0
## X261 3.4937139 1.1631508 12.0
## X262 3.6261997 0.6931472 9.9
## X263 3.2721023 0.6931472 14.0
## X264 5.4441788 0.7884574 11.0
## X265 3.4937139 0.9162907 18.0
## X267 2.9135187 0.6931472 14.0
## X268 4.0237466 0.7419373 12.0
## X269 3.1856203 0.7419373 7.8
## X270 3.5205617 0.4700036 11.0
## X271 5.0785828 0.8329091 15.0
## X272 2.7857346 0.9555114 17.0
## X273 3.7797161 0.7884574 16.0
## X274 2.1030230 0.9162907 9.0
## X275 2.6531400 0.7419373 11.0
## X277 4.4745686 0.6931472 9.7
## X278 4.4745686 0.5877867 6.9
## X279 3.6521859 0.7419373 14.0
## X281 3.0369315 0.5877867 13.0
## X282 3.7797161 0.8329091 11.0
## X283 4.0237466 0.4700036 22.0
## X287 3.4394702 0.5877867 12.0
## X289 3.4937139 0.8329091 11.0
## X290 2.5502306 0.5877867 15.0
## X291 4.2548002 0.6418539 20.0
## X292 4.8854423 0.7419373 10.0
## X294 3.6780085 0.9162907 0.1
## X297 4.0237466 0.9555114 7.6
## X298 4.2548002 0.6931472 12.0
## X299 3.6780085 0.9162907 12.0
## X301 2.8819985 0.8329091 3.4
## X302 2.5848812 0.9932518 8.6
## X303 2.6867663 0.8329091 13.0
## X304 2.2591348 0.9932518 18.0
## X305 4.0237466 0.6418539 18.0
## X306 5.0785828 0.6931472 17.0
## X307 4.0237466 0.6931472 12.0
## X308 4.4745686 0.5306283 14.0
## X311 4.2548002 1.2237754 9.0
## X312 3.0971187 0.5877867 15.0
## X313 0.5911464 0.6418539 9.1
## X314 2.6867663 0.9555114 10.0
## X315 4.8854423 0.8754687 14.0
## X316 3.4120676 0.6931472 12.0
## X317 3.7291737 0.6931472 7.4
## X320 5.9494361 0.7419373 6.4
## X321 3.1856203 0.8754687 4.3
## X322 5.0785828 0.6931472 14.0
## X323 1.1637797 0.8329091 9.9
## X324 2.0627326 0.8754687 9.5
## X325 4.6844119 0.6418539 20.0
## X326 3.2146659 0.5877867 12.0
## X327 4.4745686 0.8329091 0.1
## X329 3.3844731 0.7419373 7.1
## X330 6.7029984 1.0296194 11.0
## X331 3.7797161 0.5306283 14.0
## X332 2.9447661 0.9932518 11.0
## X333 3.7797161 0.2623643 7.2
## Creatine_Kinase_MB Cystatin_C EGF_R EN_RAGE ENA_78 Eotaxin_3
## X1 -1.710172 9.041922 -0.13545431 -3.6888795 -1.349543 53
## X2 -1.751002 9.067624 -0.37004744 -3.8167128 -1.356595 62
## X3 -1.383559 8.954157 -0.73298708 -4.7559931 -1.390672 62
## X5 -1.625834 8.977146 -0.62060338 -2.3644605 -1.339440 64
## X6 -1.671366 7.835975 -1.11122739 -3.4420194 -1.363957 57
## X7 -1.739232 8.740337 -0.69979867 -5.0672056 -1.349543 64
## X8 -1.571048 7.736307 -0.97630091 -3.7722611 -1.381639 64
## X9 -1.671366 8.357024 -0.62060338 -4.7795236 -1.371699 64
## X11 -1.751002 8.375630 -0.51749076 -3.9633163 -1.382507 82
## X12 -1.671366 8.061487 -0.69979867 -1.3093333 -1.383822 73
## X14 -1.683772 8.692826 -0.63604036 -3.8167128 -1.360233 67
## X16 -1.671366 8.326033 -0.54612169 -3.5755508 -1.378653 69
## X17 -1.871938 8.055158 -0.65167154 -3.3524072 -1.360233 76
## X18 -1.780911 8.373323 -1.13570251 -4.4228486 -1.374923 33
## X19 -1.647864 7.615791 -1.13570251 -3.7297014 -1.367775 54
## X20 -1.518336 8.696176 -0.63604036 -2.9565116 -1.363957 77
## X21 -1.671366 7.944492 -1.01923714 -3.0576077 -1.360233 64
## X22 -1.647864 8.972083 -0.34483937 -3.1235656 -1.367775 73
## X23 -1.590122 8.373323 -0.65167154 -2.4191189 -1.372498 30
## X24 -1.751002 8.765615 -0.39571116 -5.1159958 -1.389729 82
## X25 -1.724319 8.035926 -0.87620360 -3.7297014 -1.382507 82
## X26 -1.724319 8.163371 -0.57539617 -4.0173835 -1.379499 70
## X28 -1.755051 8.737132 -0.76713789 -3.6119184 -1.346117 76
## X29 -1.647864 8.019613 -1.01923714 -4.0173835 -1.367775 34
## X30 -1.710172 8.092545 -0.74993753 -3.7722611 -1.374923 43
## X31 -1.653590 8.564077 -0.97630091 -3.5755508 -1.380778 64
## X34 -1.625834 8.407378 -0.80232932 -3.8632328 -1.383822 44
## X35 -1.625834 7.965546 -0.80232932 -3.9633163 -1.378653 44
## X36 -1.671366 8.357024 -0.69979867 -3.5065579 -1.363957 64
## X37 -1.780911 8.359369 -0.43511112 -3.1010928 -1.371699 70
## X38 -1.585271 8.294050 -0.87620360 -2.9187712 -1.378653 34
## X39 -1.683772 9.268609 -0.43511112 -4.5098600 -1.374516 62
## X40 -1.590122 8.782630 -0.93510686 -3.1235656 -1.367775 62
## X41 -1.671366 8.352319 -0.82034264 -3.2701691 -1.353033 54
## X42 -1.724319 8.538955 -0.63604036 -4.3428059 -1.404087 92
## X43 -1.710172 8.055158 -1.01923714 -4.2686979 -1.363957 43
## X44 -1.590122 8.980927 -0.66750355 -2.4769385 -1.381208 72
## X45 -1.780911 8.720950 -0.66750355 -3.6119184 -1.353033 82
## X46 -1.590122 9.341369 -0.43511112 -3.4112477 -1.376981 72
## X47 -1.868851 7.791523 -1.06412706 -3.5755508 -1.392588 64
## X48 -1.780911 8.972083 -0.42185317 -4.6459922 -1.360233 96
## X50 -1.671366 8.519191 -0.33239959 -3.5404594 -1.353033 73
## X51 -1.571048 8.954157 -0.71627709 -4.9336743 -1.390672 54
## X53 -1.518336 8.730690 -0.51749076 -1.9661129 -1.376981 52
## X55 -1.590122 8.884610 -0.40872089 -3.4737681 -1.383382 30
## X56 -1.696685 8.490849 -0.69979867 -3.4420194 -1.383822 54
## X57 -1.571048 9.441452 -0.40872089 -3.5065579 -1.386052 49
## X59 -1.671366 8.438150 -0.54612169 -2.9374634 -1.383822 64
## X60 -1.653590 8.405144 -1.11122739 -3.6119184 -1.367775 53
## X61 -1.710172 8.311398 -1.08738275 -1.9661129 -1.395547 43
## X62 -1.653590 8.188689 -0.93510686 -3.5755508 -1.374923 33
## X63 -1.724319 8.218787 -0.66750355 -3.9120230 -1.389729 64
## X64 -1.671366 8.470102 -0.78459824 -2.8473123 -1.378653 54
## X65 -1.590122 8.679312 -0.60535429 -3.4420194 -1.381208 52
## X67 -1.868851 8.821732 -0.44849801 -3.5755508 -1.383822 54
## X68 -1.647864 8.919988 -0.68354345 -4.0745419 -1.363957 64
## X69 -1.653590 8.407378 -1.13570251 -5.0672056 -1.367775 43
## X70 -1.755051 8.634087 -0.60535429 -3.9633163 -1.363957 70
## X71 -1.683772 8.646466 -0.82034264 -2.9957323 -1.363957 52
## X72 -1.751002 9.694000 -0.53172814 -3.1010928 -1.367775 83
## X73 -1.459630 9.230143 -0.43511112 -2.8302178 -1.381208 83
## X74 -1.605032 7.992945 -1.06412706 -1.4271164 -1.374923 53
## X75 -1.631218 8.398410 -0.83865049 -2.1202635 -1.372498 83
## X76 -1.755051 8.929303 -0.06111597 -3.8632328 -1.396051 54
## X77 -1.751002 8.843615 -0.54612169 -4.5098600 -1.367775 44
## X78 -1.780911 8.811354 -0.46201723 -4.1997051 -1.353033 70
## X80 -1.605032 8.171882 -0.85726607 -3.5065579 -1.349543 53
## X81 -1.780911 8.656955 -0.38282097 -2.7646206 -1.383822 44
## X82 -1.871938 8.496990 -0.80232932 -3.7297014 -1.363957 70
## X83 -1.441430 8.391630 -0.83865049 -2.9187712 -1.353033 44
## X84 -1.671366 8.301522 -0.78459824 -3.6119184 -1.378653 69
## X85 -1.671366 9.203316 -0.34483937 -3.2701691 -1.378653 44
## X86 -1.724319 9.072227 -0.63604036 -3.2835831 -1.356595 78
## X88 -1.710172 8.790269 -0.56067607 -3.1700857 -1.367775 64
## X90 -1.571048 7.625595 -1.18673610 -2.7333680 -1.386052 39
## X93 -1.830294 8.634087 -0.76713789 -4.1997051 -1.367775 64
## X94 -1.724319 9.196241 -0.37004744 -2.2072749 -1.367775 83
## X95 -1.751002 8.064636 -0.78459824 -3.2188758 -1.353033 43
## X96 -1.724319 8.625150 -0.60535429 -4.1997051 -1.371699 70
## X97 -1.780911 8.681011 -0.48946700 -3.8167128 -1.402398 70
## X98 -1.710172 8.229511 -0.91510681 -1.8971200 -1.395547 33
## X99 -1.590122 9.065315 -0.50340513 -3.6496587 -1.367775 83
## X100 -1.724319 9.061840 -0.46201723 -3.1941832 -1.378653 39
## X103 -1.590122 9.546813 -0.56067607 -4.0173835 -1.367775 93
## X104 -1.830294 9.220291 -0.65167154 -3.7722611 -1.342751 44
## X105 -1.751002 9.375855 -0.46201723 -3.5065579 -1.356595 52
## X107 -1.653590 8.877661 -0.59028711 -3.2968374 -1.367775 48
## X108 -1.653590 8.895630 -0.80232932 -4.5098600 -1.367775 64
## X109 -1.552786 8.612503 -0.69979867 -3.3813948 -1.386052 41
## X110 -1.653590 8.194229 -1.04142304 -4.1351666 -1.360233 38
## X111 -1.647864 8.767173 -0.38282097 -3.7722611 -1.367775 64
## X112 -1.653590 8.987197 -0.83865049 -3.3524072 -1.342751 59
## X113 -1.821115 8.448914 -0.35738780 -4.0745419 -1.360233 70
## X114 -1.780911 8.032685 -1.08738275 -4.1997051 -1.376154 70
## X115 -1.724319 8.237479 -0.60535429 -3.9633163 -1.373705 64
## X117 -1.653590 8.706159 -0.56067607 -0.3856625 -1.363957 64
## X118 -1.755051 8.616133 -0.60535429 -4.6777409 -1.373301 95
## X121 -1.671366 8.839277 -0.50340513 -4.1351666 -1.389729 64
## X123 -1.677510 8.151910 -1.24093251 -4.1997051 -1.405242 69
## X124 -1.647864 8.767173 -0.87620360 -4.9336743 -1.373705 44
## X126 -1.671366 8.737132 -0.85726607 -3.2441936 -1.367775 59
## X128 -1.868851 8.724207 -0.60535429 -3.5755508 -1.378653 44
## X129 -1.671366 8.122668 -0.97630091 -4.1351666 -1.389729 54
## X130 -1.696685 8.294050 -0.42185317 -3.3813948 -1.373301 57
## X131 -1.590122 8.722580 -0.71627709 -3.4737681 -1.381208 52
## X132 -1.653590 8.649974 -0.68354345 -3.0576077 -1.374923 64
## X133 -1.780911 8.416267 -0.60535429 -4.6051702 -1.386052 82
## X134 -1.631218 8.669056 -0.46201723 -1.5141277 -1.371699 70
## X135 -1.710172 8.760923 -0.71627709 -4.9198809 -1.395547 64
## X136 -1.647864 8.328451 -0.66750355 -4.1997051 -1.377815 64
## X137 -1.747018 8.143227 -0.83865049 -3.5404594 -1.390672 41
## X139 -1.671366 8.294050 -0.82034264 -3.1465552 -1.382507 57
## X140 -1.871938 8.674197 -0.59028711 -4.1997051 -1.376154 70
## X141 -1.871938 8.422883 -0.47567232 -3.1941832 -1.360233 70
## X143 -1.653590 8.266164 -1.01923714 -2.7968814 -1.360233 64
## X144 -1.751002 8.242756 -1.01923714 -4.6051702 -1.382507 64
## X145 -1.710172 8.760923 -0.89547834 -4.0173835 -1.363957 33
## X146 -1.631218 8.558335 -0.85726607 -2.6450754 -1.371699 88
## X147 -1.755051 8.738735 -0.74993753 -4.4228486 -1.360233 70
## X148 -1.571048 8.582981 -0.66750355 -2.8647040 -1.373705 73
## X149 -1.518336 8.625150 -0.71627709 -1.6607312 -1.386052 52
## X152 -1.724319 9.096051 -0.39571116 -3.6496587 -1.371699 107
## X153 -1.724319 8.474286 -0.66750355 -2.3538784 -1.371699 95
## X154 -1.518336 8.759355 -0.83865049 -3.1700857 -1.386052 62
## X155 -1.605032 8.509161 -1.08738275 -3.3813948 -1.363957 59
## X156 -1.631218 9.002085 -0.47567232 -2.3227878 -1.372498 67
## X157 -1.653590 8.887376 -0.89547834 -3.2441936 -1.367775 85
## X158 -1.590122 8.865029 -0.60535429 -4.0745419 -1.386052 62
## X159 -1.585271 7.933797 -0.59028711 -3.9633163 -1.383822 23
## X160 -1.683772 9.341369 -0.46201723 -4.4228486 -1.390672 62
## X161 -1.671366 8.887376 -0.56067607 -3.4112477 -1.367775 64
## X162 -1.647864 8.930626 -0.59028711 -3.7722611 -1.377815 49
## X163 -1.647864 8.501064 -0.60535429 -3.7722611 -1.381639 34
## X165 -1.653590 8.677610 -0.76713789 -3.8167128 -1.371699 57
## X166 -1.868851 8.649974 -0.59028711 -3.1465552 -1.389729 64
## X167 -1.647864 9.694000 -0.28367882 -4.9336743 -1.373705 64
## X168 -1.683772 8.894259 -0.39571116 -2.8824036 -1.376981 46
## X169 -1.631218 8.174703 -0.91510681 -4.8665350 -1.382507 70
## X170 -1.724319 7.922986 -0.99753895 -2.9957323 -1.349543 82
## X171 -1.671366 9.014325 -0.47567232 -4.2686979 -1.373705 54
## X172 -1.677510 8.692826 -0.91510681 -4.0745419 -1.405242 43
## X174 -1.625834 8.684401 -0.47567232 -4.4228486 -1.376154 54
## X175 -1.724319 8.503094 -0.76713789 -4.0745419 -1.371699 70
## X176 -1.671366 8.511175 -0.87620360 -1.6094379 -1.383822 64
## X177 -1.647864 8.776476 -0.68354345 -5.0832060 -1.363957 44
## X178 -1.724319 8.154788 -0.97630091 -0.4155154 -1.346117 34
## X179 -1.671366 8.188689 -0.71627709 -3.2968374 -1.376154 70
## X180 -1.653590 8.357024 -0.74993753 -4.6777409 -1.376154 82
## X181 -1.478464 8.347590 -1.04142304 -5.0832060 -1.367775 29
## X182 -1.710172 8.837826 -0.74993753 -3.1941832 -1.367775 64
## X183 -1.653590 8.048788 -1.26939244 -4.3428059 -1.360233 64
## X184 -1.590122 8.692826 -0.48946700 -2.9957323 -1.367775 70
## X185 -1.585271 8.180321 -0.69979867 -4.1351666 -1.373705 59
## X186 -1.724319 8.242756 -0.68354345 -4.1351666 -1.376154 45
## X189 -1.653590 8.345218 -0.87620360 -4.1997051 -1.382507 33
## X190 -1.647864 8.840725 -0.48946700 -4.7559931 -1.381639 54
## X191 -1.647864 8.846497 -0.76713789 -3.2968374 -1.360233 44
## X192 -1.441430 9.433484 -0.56067607 -4.4228486 -1.353033 54
## X193 -1.671366 9.002085 -0.59028711 -3.6496587 -1.389729 73
## X194 -1.647864 8.472196 -0.74993753 -3.7722611 -1.353033 44
## X195 -1.751002 9.367344 -0.32006598 -3.0791139 -1.367775 67
## X197 -1.780911 8.774931 -0.65167154 -3.5065579 -1.353033 82
## X198 -1.518336 8.478452 -0.83865049 -4.4228486 -1.363957 44
## X200 -1.653590 8.565983 -0.65167154 -4.7444323 -1.367775 43
## X201 -1.605032 8.470102 -0.83865049 -2.6882476 -1.373705 44
## X202 -1.710172 8.323608 -1.04142304 -2.6310892 -1.367775 48
## X205 -1.751002 9.037177 -0.62060338 -4.1351666 -1.386052 77
## X208 -1.571048 8.823206 -0.56067607 -3.7297014 -1.381639 44
## X210 -1.780911 8.273847 -0.59028711 -3.0791139 -1.360233 76
## X212 -1.780911 8.224164 -0.66750355 -3.0576077 -1.378653 44
## X213 -1.590122 8.465900 -0.69979867 -4.2686979 -1.349543 70
## X214 -1.459630 9.097172 -0.91510681 -2.1202635 -1.376981 41
## X215 -1.653590 8.691146 -0.76713789 -4.2686979 -1.367775 43
## X216 -1.647864 8.064636 -0.95549787 -4.4228486 -1.360233 44
## X218 -1.543930 8.283999 -0.87620360 -3.9633163 -1.373705 54
## X219 -1.671366 8.308938 -0.68354345 -3.7722611 -1.396051 44
## X220 -1.671366 8.492900 -0.59028711 -4.0173835 -1.378653 44
## X223 -1.605032 8.558335 -0.74993753 -4.4228486 -1.363957 43
## X224 -1.710172 8.874868 -0.68354345 -3.7297014 -1.367775 43
## X225 -1.653590 9.031214 -0.44849801 -4.8665350 -1.367775 53
## X226 -1.647864 9.277999 -0.59028711 -3.0159350 -1.381639 83
## X227 -1.780911 8.488794 -0.66750355 -3.9120230 -1.374923 74
## X228 -1.653590 8.474286 -0.87620360 -4.1351666 -1.360233 33
## X229 -1.780911 8.207947 -0.91510681 -4.2686979 -1.398625 45
## X230 -1.871938 8.480529 -0.93510686 -3.3813948 -1.376154 70
## X231 -1.590122 8.407378 -0.37004744 -2.4889147 -1.360233 57
## X232 -1.571048 8.785692 -0.73298708 -4.5098600 -1.363957 54
## X233 -1.751002 7.989560 -0.99753895 -4.2686979 -1.381639 34
## X234 -1.448638 8.420682 -0.74993753 -3.9120230 -1.360233 70
## X236 -1.724319 8.318742 -0.68354345 -4.7676891 -1.363957 57
## X237 -1.724319 8.765615 -0.78459824 -1.7147984 -1.367775 44
## X239 -1.605032 7.714231 -1.36134745 -2.8473123 -1.363957 33
## X240 -1.557281 8.345218 -1.01923714 -4.2686979 -1.374923 43
## X241 -1.780911 8.361708 -0.54612169 -3.2968374 -1.360233 45
## X242 -1.518336 8.306472 -0.78459824 -3.8632328 -1.363957 72
## X243 -1.625834 8.177516 -0.89547834 -2.5010360 -1.386959 44
## X244 -1.671366 8.433812 -0.74993753 -3.9120230 -1.373705 64
## X245 -1.571048 7.432484 -0.97630091 -4.2686979 -1.375743 23
## X246 -1.710172 8.499029 -0.78459824 -2.3025851 -1.367775 64
## X247 -1.751002 8.405144 -0.89547834 -3.1700857 -1.377815 39
## X249 -1.724319 9.341369 -0.48946700 -4.1351666 -1.376154 82
## X250 -1.518336 8.812843 -0.63604036 -3.4737681 -1.367775 72
## X251 -1.625834 8.743532 -0.73298708 -4.1351666 -1.378653 54
## X253 -1.724319 8.546752 -0.93510686 -3.1010928 -1.373705 64
## X254 -1.710172 9.016756 -0.19077873 -3.4737681 -1.356595 80
## X255 -1.671366 8.706159 -0.46201723 -1.8325815 -1.378653 73
## X256 -1.724319 8.550628 -0.66750355 -4.2686979 -1.378653 34
## X257 -1.625834 8.131531 -0.93510686 -4.2686979 -1.383822 44
## X258 -1.590122 9.187072 -0.68354345 -3.4420194 -1.381208 72
## X260 -1.830294 9.014325 -0.59028711 -4.6051702 -1.375743 64
## X261 -1.647864 7.955074 -0.69979867 -3.4737681 -1.367775 7
## X262 -1.571048 8.328451 -0.71627709 -3.9633163 -1.381639 39
## X263 -1.830294 8.905173 -0.51749076 -4.1997051 -1.377815 64
## X264 -1.724319 8.371011 -0.73298708 -3.4112477 -1.356595 69
## X265 -1.830294 8.896999 -0.73298708 -4.8158912 -1.373705 54
## X267 -1.751002 8.999619 -0.44849801 -3.4420194 -1.371699 70
## X268 -1.571048 8.767173 -0.47567232 -4.4228486 -1.360233 44
## X269 -1.653590 8.391630 -0.99753895 -3.5755508 -1.363957 33
## X270 -1.647864 9.546813 -0.69979867 -3.7297014 -1.386052 49
## X271 -1.571048 9.077951 -0.44849801 -3.3524072 -1.356595 64
## X272 -1.647864 8.773385 -0.68354345 -4.7559931 -1.375743 49
## X273 -1.647864 9.143132 -0.78459824 -5.2590967 -1.367775 78
## X274 -1.647864 8.400659 -0.54612169 -2.8824036 -1.386052 39
## X275 -1.780911 8.496990 -0.59028711 -5.0672056 -1.346117 53
## X277 -1.696685 8.304000 -0.74993753 -3.1941832 -1.371699 33
## X278 -1.710172 8.787220 -0.93510686 -3.7297014 -1.363957 53
## X279 -1.780911 8.271293 -0.85726607 -4.5098600 -1.353033 51
## X281 -1.631218 8.444622 -0.35738780 -2.8302178 -1.382507 82
## X282 -1.518336 8.308938 -0.83865049 -2.3751558 -1.363957 72
## X283 -1.571048 9.268609 -0.32006598 -3.3450880 -1.367775 92
## X287 -1.683772 8.794825 -0.54612169 -3.6888795 -1.376981 52
## X289 -1.605032 8.098643 -0.89547834 -4.1997051 -1.387873 33
## X290 -1.590122 8.478452 -0.93510686 -2.7646206 -1.367775 46
## X291 -1.871938 8.380227 -0.56067607 -2.6450754 -1.371699 57
## X292 -1.710172 8.771835 -0.46201723 -3.0576077 -1.387873 74
## X294 -1.557281 7.749322 -1.11122739 -3.1235656 -1.353033 43
## X297 -1.671366 8.283999 -0.57539617 -4.6777409 -1.386959 54
## X298 -1.751002 8.396155 -0.97630091 -3.0576077 -1.386052 62
## X299 -1.780911 8.610684 -0.69979867 -4.3428059 -1.389729 82
## X301 -1.671366 8.125631 -0.69979867 -4.4228486 -1.378653 54
## X302 -1.653590 7.926603 -1.13570251 -3.8167128 -1.367775 33
## X303 -1.830294 8.472196 -0.56067607 -4.0745419 -1.367775 54
## X304 -1.780911 9.143132 -0.33239959 -4.9062753 -1.383822 59
## X305 -1.647864 9.072227 -0.39571116 -3.4112477 -1.373705 73
## X306 -1.653590 9.124782 -0.71627709 -4.0173835 -1.353033 74
## X307 -1.710172 8.829080 -0.53172814 -3.3242363 -1.349543 64
## X308 -1.653590 8.648221 -0.59028711 -3.6496587 -1.360233 33
## X311 -1.724319 8.371011 -0.71627709 -3.3813948 -1.376154 54
## X312 -1.724319 8.874868 -0.37004744 -2.8302178 -1.367775 64
## X313 -1.571048 8.582981 -0.60535429 -3.5404594 -1.377815 54
## X314 -1.518336 8.662159 -0.66750355 -8.3774312 -1.386052 44
## X315 -1.710172 8.525161 -0.68354345 -3.2968374 -1.349543 48
## X316 -1.590122 8.820256 -0.62060338 -3.1235656 -1.390672 41
## X317 -1.751002 8.984694 -0.87620360 -2.3751558 -1.372498 62
## X320 -1.459630 8.470102 -0.74993753 -4.3428059 -1.363957 62
## X321 -1.590122 7.926603 -1.13570251 -3.4420194 -1.371699 52
## X322 -1.724319 8.722580 -0.47567232 -3.3242363 -1.360233 64
## X323 -1.830294 9.287301 -0.89547834 -4.8158912 -1.386052 54
## X324 -1.780911 8.398410 -0.80232932 -3.6496587 -1.339440 43
## X325 -1.571048 8.672486 -0.54612169 -4.3428059 -1.373705 54
## X326 -1.518336 8.470102 -0.97630091 -2.9374634 -1.395547 44
## X327 -1.871938 8.621553 -0.44849801 -1.9661129 -1.376154 82
## X329 -1.868851 8.588583 -0.39571116 -4.7330036 -1.371699 44
## X330 -1.780911 7.979339 -1.08738275 -4.7676891 -1.367775 70
## X331 -1.605032 8.149024 -0.68354345 -4.5098600 -1.386052 49
## X332 -1.571048 8.276395 -0.99753895 -4.1997051 -1.375743 54
## X333 -1.647864 9.694000 -0.24816638 -2.9759296 -1.373705 69
## FAS FSH_Follicle_Stimulation_Hormon Fas_Ligand
## X1 -0.08338161 -0.6516715 3.1014922
## X2 -0.52763274 -1.6272839 2.9788133
## X3 -0.63487827 -1.5630004 1.3600098
## X5 -0.12783337 -0.9763009 4.0372847
## X6 -0.32850407 -1.6832823 2.4071818
## X7 -0.71334989 -1.2988756 3.1014922
## X8 -0.71334989 -1.7833269 1.8664764
## X9 -0.82098055 -0.6053543 3.5787773
## X11 -0.02020271 -0.1795552 3.9808937
## X12 -0.71334989 -1.4294363 2.6654557
## X14 -0.44628710 -0.8023293 3.8673473
## X16 -0.41551544 -1.9018595 3.5787773
## X17 -0.02020271 -1.9376269 2.4071818
## X18 -0.82098055 -1.4294363 2.7919923
## X19 -0.47803580 -0.5034051 3.2828922
## X20 -0.63487827 -1.4660558 1.0522633
## X21 -0.07257069 -0.5753962 4.4253224
## X22 -0.30110509 -1.8460158 0.3794001
## X23 -0.86750057 -1.3613475 2.8546530
## X24 -0.07257069 -1.3946054 3.6950395
## X25 -0.57981850 -0.6997987 2.4071818
## X26 -0.16251893 -0.9975390 3.1014922
## X28 -0.49429632 -1.5208516 3.1014922
## X29 -1.04982212 -1.2988756 1.8664764
## X30 -0.96758403 -1.2409325 4.3156075
## X31 -0.82098055 -1.3294863 3.8673473
## X34 -0.82098055 -1.9987562 3.4613463
## X35 -0.82098055 -1.4660558 2.9788133
## X36 -0.49429632 -1.5586574 3.8673473
## X37 -0.28768207 -0.8203426 2.6015565
## X38 -0.82098055 -0.8762036 3.5787773
## X39 -0.44628710 -1.6779529 2.0050277
## X40 -0.63487827 -1.7397296 2.8546530
## X41 -0.52763274 -2.1151130 2.6654557
## X42 -0.61618614 -0.6053543 4.9086293
## X43 -0.57981850 -1.1867361 4.0372847
## X44 -0.63487827 -0.5753962 4.2049870
## X45 -0.05129329 -0.8954783 2.4071818
## X46 -0.44628710 -0.9975390 1.3600098
## X47 -0.75502258 -1.0641271 2.5372201
## X48 -0.30110509 -0.9351069 3.2828922
## X50 -0.44628710 -0.3448394 7.6327510
## X51 -0.65392647 -1.3294863 1.7253811
## X53 -0.52763274 -0.8023293 3.1014922
## X55 -0.63487827 -0.6206034 2.2752257
## X56 -0.71334989 -1.1867361 4.4253224
## X57 -0.11653382 -1.6520506 1.5084870
## X59 -0.71334989 -0.9554979 4.6958484
## X60 -0.82098055 -1.1357025 3.1014922
## X61 -0.71334989 -0.6516715 3.1014922
## X62 -1.10866262 -0.6997987 2.7919923
## X63 -0.37106368 -1.5942865 3.5787773
## X64 -0.44628710 -1.0641271 2.9788133
## X65 -0.73396918 -0.8023293 1.6538133
## X67 -0.44628710 -1.0641271 3.5787773
## X68 -0.08338161 -1.0192371 2.2084887
## X69 -0.96758403 -0.9151068 3.4613463
## X70 -0.44628710 -0.9554979 3.2227633
## X71 -0.52763274 -1.2134062 2.2752257
## X72 0.09531018 -1.1112274 2.6654557
## X73 -0.15082289 -0.8093644 4.8026281
## X74 -0.89159812 -1.5047321 3.1014922
## X75 -0.52763274 -0.8954783 2.2752257
## X76 -0.31471074 -0.2020847 2.6654557
## X77 -0.47803580 -0.6835434 2.2084887
## X78 0.33647224 -0.4620172 4.1493268
## X80 -0.52763274 -1.1608546 4.5882647
## X81 -0.71334989 -0.3573878 2.3414512
## X82 -0.57981850 -1.1608546 3.1014922
## X83 -0.26136476 -1.5586574 3.6950395
## X84 -0.94160854 -1.0641271 3.2828922
## X85 -0.31471074 -1.0192371 3.2828922
## X86 -0.31471074 -1.7768556 3.8673473
## X88 -0.24846136 -1.0641271 4.9613454
## X90 -0.71334989 -1.3946054 1.5084870
## X93 -0.47803580 -1.6321526 2.2084887
## X94 0.09531018 -0.8762036 3.2828922
## X95 -0.82098055 -0.9351069 3.4613463
## X96 -0.32850407 -1.3613475 2.7919923
## X97 -0.57981850 -0.6360404 3.4021763
## X98 -1.51412773 -1.3613475 1.7962595
## X99 -0.63487827 -0.8762036 0.7271504
## X100 -0.71334989 -0.9975390 2.3414512
## X103 -0.35667494 -0.1463635 2.0050277
## X104 -0.71334989 -1.4660558 3.4021763
## X105 -0.52763274 -0.5317281 1.0522633
## X107 -0.52763274 -0.6835434 1.4346609
## X108 -0.61618614 -1.4294363 2.7919923
## X109 -0.94160854 -1.2409325 2.2752257
## X110 -1.02165125 -1.3946054 3.2828922
## X111 -0.34249031 -0.6516715 1.8664764
## X112 -0.18632958 -0.9975390 3.4613463
## X113 -0.02020271 -1.3946054 4.5341630
## X114 -0.69314718 -1.5673739 2.7919923
## X115 -0.71334989 -0.6053543 3.8673473
## X117 -0.52763274 -1.9018595 3.4613463
## X118 -0.26136476 -0.8203426 3.6950395
## X121 -0.56211892 0.0971503 2.3414512
## X123 -1.10866262 -1.0414230 3.4613463
## X124 -1.04982212 -0.8203426 2.5372201
## X126 -0.61618614 -1.0641271 4.1493268
## X128 -0.31471074 -1.3294863 3.2828922
## X129 -1.07880966 -0.9151068 3.5787773
## X130 -0.07257069 -1.1608546 3.4021763
## X131 -0.57981850 -0.8386505 0.7271504
## X132 -0.71334989 -1.6622675 2.7919923
## X133 -0.32850407 -1.6726748 3.5202111
## X134 0.18232156 -0.7671379 3.4021763
## X135 -0.57981850 -1.4294363 3.1014922
## X136 -1.04982212 -0.8572661 1.1306711
## X137 -0.73396918 -1.2693924 2.1412227
## X139 -0.49429632 -0.9554979 1.7253811
## X140 -0.26136476 -1.0414230 3.9808937
## X141 -0.22314355 -0.9975390 3.9808937
## X143 -0.82098055 -1.6622675 3.7527477
## X144 -0.32850407 -2.0466943 3.6950395
## X145 -0.96758403 -0.5174908 2.4724332
## X146 -0.18632958 -1.6995924 1.7253811
## X147 -0.32850407 -1.1608546 3.9808937
## X148 -0.30110509 -0.1463635 2.5372201
## X149 -0.52763274 -0.9975390 1.6538133
## X152 0.09531018 -1.4660558 5.7312462
## X153 -0.18632958 -1.3946054 2.7919923
## X154 -0.73396918 -1.4660558 0.7271504
## X155 -0.96758403 -1.1357025 4.0372847
## X156 -0.63487827 -1.0192371 2.8546530
## X157 -0.52763274 -1.1112274 2.3414512
## X158 -0.73396918 -0.5753962 1.0522633
## X159 -0.71334989 -0.8762036 4.1493268
## X160 -0.28768207 -1.2134062 4.0934276
## X161 -0.31471074 -1.2409325 4.9086293
## X162 -0.30110509 -0.3448394 3.6950395
## X163 -1.27296568 -0.8954783 1.5084870
## X165 -0.75502258 -1.0641271 4.8026281
## X166 -0.94160854 -1.3613475 2.6654557
## X167 -0.18632958 -0.9151068 4.2049870
## X168 -0.28768207 -0.5753962 2.8546530
## X169 -0.32850407 -1.2693924 2.7919923
## X170 -0.32850407 -1.1357025 3.1014922
## X171 -0.44628710 -1.0873827 3.8673473
## X172 -0.71334989 -0.7845982 3.1014922
## X174 -0.24846136 -1.7279412 4.1493268
## X175 -0.26136476 -1.4660558 2.2752257
## X176 -0.37106368 -0.8572661 3.2828922
## X177 -0.57981850 -0.9763009 1.1306711
## X178 -0.94160854 -0.9763009 3.5787773
## X179 -0.02020271 -1.5332077 3.6950395
## X180 -0.12783337 -0.7329871 4.8026281
## X181 -0.57981850 -1.5458053 1.5084870
## X182 -0.44628710 -1.7221470 2.4724332
## X183 -0.96758403 -0.8762036 3.2828922
## X184 0.00000000 -1.7397296 2.4071818
## X185 -0.31471074 -1.0641271 2.6654557
## X186 -0.26136476 -1.5127425 0.5565448
## X189 -0.57981850 -1.0641271 2.7919923
## X190 -0.38566248 -1.3613475 2.2084887
## X191 -0.57981850 -1.5717783 2.5372201
## X192 -0.22314355 -1.6420151 4.7493371
## X193 -0.52763274 -0.7845982 4.1493268
## X194 -0.71334989 -0.7845982 2.2084887
## X195 -0.28768207 -0.4620172 3.3426940
## X197 -0.26136476 -0.3957112 3.4021763
## X198 -1.04982212 -1.1357025 3.1014922
## X200 -0.96758403 -0.5606761 4.0372847
## X201 -0.34249031 -1.5047321 0.8103017
## X202 -0.96758403 -1.2988756 2.4724332
## X205 -0.63487827 -1.3294863 3.8673473
## X208 -0.57981850 -1.2134062 2.2084887
## X210 -0.18632958 -0.7162771 4.9613454
## X212 -0.94160854 -0.9554979 2.3414512
## X213 -0.12783337 -0.9554979 3.1014922
## X214 -0.35667494 -0.9351069 0.2880017
## X215 -0.44628710 -1.4660558 3.1014922
## X216 -0.47803580 -1.9568634 2.5372201
## X218 -0.26136476 -1.7051413 3.6950395
## X219 -1.07880966 -1.0873827 2.3414512
## X220 -0.71334989 -0.8954783 2.0050277
## X223 -0.61618614 -0.5753962 2.7919923
## X224 -0.96758403 -1.5087252 2.1412227
## X225 -0.37106368 -1.0641271 4.0372847
## X226 -0.15082289 -1.1357025 2.2084887
## X227 -0.44628710 -1.3946054 4.5882647
## X228 -0.96758403 -1.4660558 3.7527477
## X229 -0.57981850 -1.7579443 2.4071818
## X230 -0.02020271 -1.0192371 2.7919923
## X231 -0.26136476 -0.9763009 3.4021763
## X232 -0.86750057 -1.8535550 0.8103017
## X233 -1.04982212 -1.1867361 1.5084870
## X234 -0.40047757 -1.2134062 2.4071818
## X236 -0.40047757 -0.9151068 3.4021763
## X237 -0.61618614 -1.6832823 2.6654557
## X239 -0.96758403 -0.7671379 2.4724332
## X240 -0.96758403 -1.3946054 3.7527477
## X241 -0.40047757 -0.9975390 3.4021763
## X242 -0.67334455 -1.5762143 2.8546530
## X243 -0.82098055 -1.2988756 2.3414512
## X244 -0.71334989 -0.9554979 2.3414512
## X245 -0.47803580 -1.7457280 1.5084870
## X246 -0.49429632 -1.3613475 2.4724332
## X247 -0.65392647 -0.8572661 3.4021763
## X249 -0.05129329 -0.8954783 3.4021763
## X250 -0.52763274 -0.8572661 1.8664764
## X251 -1.07880966 -0.6516715 2.2084887
## X253 -0.52763274 -1.1357025 2.8546530
## X254 -0.03045921 -0.6206034 5.7312462
## X255 -0.52763274 -0.4756723 2.9788133
## X256 -1.07880966 -0.9351069 2.0050277
## X257 -0.82098055 -1.2409325 3.2828922
## X258 -0.35667494 -0.4620172 2.5372201
## X260 -0.30110509 -1.3946054 2.2084887
## X261 -1.07880966 -1.3613475 4.1493268
## X262 -0.86750057 -1.5806825 3.4021763
## X263 -0.30110509 -0.8954783 2.2084887
## X264 -0.52763274 -1.2134062 3.5787773
## X265 -0.57981850 -1.4294363 2.3414512
## X267 -0.02020271 -1.2988756 3.9808937
## X268 -0.57981850 -0.9351069 4.2049870
## X269 -0.71334989 -0.9975390 2.4724332
## X270 -0.22314355 -1.6129165 3.9808937
## X271 -0.30110509 -1.1608546 3.2828922
## X272 -0.57981850 -1.6520506 2.2084887
## X273 -0.22314355 -1.3613475 3.4021763
## X274 -0.47803580 -1.6886644 2.5372201
## X275 -0.61618614 -1.5087252 2.1412227
## X277 -0.32850407 -1.3613475 3.4021763
## X278 -0.96758403 -1.5586574 4.5882647
## X279 -0.40047757 -0.8572661 2.0734090
## X281 -0.07257069 -1.2988756 3.4021763
## X282 -0.52763274 -1.2409325 0.2880017
## X283 -0.38566248 -0.5174908 4.2049870
## X287 -0.63487827 -0.9151068 1.6538133
## X289 -0.96758403 -1.2134062 4.5882647
## X290 -0.63487827 -0.6206034 0.2880017
## X291 0.00000000 -0.7845982 2.4071818
## X292 -0.37106368 -1.1112274 4.0372847
## X294 -0.82098055 -2.0738009 2.4724332
## X297 -0.94160854 -1.1357025 2.9788133
## X298 -0.94160854 -1.7833269 1.3600098
## X299 -0.40047757 -0.7162771 3.9808937
## X301 -0.94160854 -1.7338014 4.9086293
## X302 -0.96758403 -1.5047321 2.7919923
## X303 -0.38566248 -1.5332077 2.2084887
## X304 -0.31471074 -1.1608546 3.2828922
## X305 -0.30110509 -1.3946054 3.1014922
## X306 -0.24846136 -1.5673739 3.1014922
## X307 -0.37106368 -1.5047321 4.5882647
## X308 -0.96758403 -1.2409325 4.0372847
## X311 -0.71334989 -0.6675036 3.5787773
## X312 -0.52763274 -1.8460158 2.6654557
## X313 -0.71334989 -1.1112274 2.2084887
## X314 -0.38566248 -0.9554979 3.1014922
## X315 -0.61618614 -1.2693924 3.7527477
## X316 -0.57981850 -0.3573878 0.2880017
## X317 -0.52763274 -0.6053543 2.8546530
## X320 -0.44628710 -1.6622675 3.6370513
## X321 -0.86750057 -1.5208516 1.3600098
## X322 -0.41551544 -1.0414230 4.9086293
## X323 -0.15082289 -1.5047321 2.8546530
## X324 -0.71334989 -1.2409325 4.0372847
## X325 -0.47803580 -0.8954783 2.5372201
## X326 -0.71334989 -0.3957112 3.6950395
## X327 -0.02020271 -1.2988756 2.7919923
## X329 -0.61618614 -1.6082042 3.5787773
## X330 -0.26136476 -0.8954783 2.7919923
## X331 -0.71334989 -1.1112274 -0.1536154
## X332 -0.57981850 -1.8535550 3.1014922
## X333 -0.08338161 -0.5753962 3.6950395
## Fatty_Acid_Binding_Protein Ferritin Fetuin_A Fibrinogen GRO_alpha
## X1 2.52087117 3.3291650 1.2809338 -7.035589 1.381830
## X2 2.24779664 3.9329588 1.1939225 -8.047190 1.372438
## X3 0.90630094 3.1768716 1.4109870 -7.195437 1.412679
## X5 2.63458831 2.6904158 2.1517622 -6.980326 1.398431
## X6 0.62373057 1.8470768 1.4816045 -6.437752 1.398431
## X7 1.59753955 3.4405882 1.1314021 -7.621105 1.338425
## X8 0.74349177 2.8166378 1.6677068 -6.502290 1.350892
## X9 0.34805188 2.3817805 1.0647107 -7.902008 1.381830
## X11 0.62373057 3.0596443 1.4350845 -7.523941 1.412679
## X12 0.55980793 3.3291650 1.4109870 -7.278819 1.398431
## X14 1.53020362 3.0199602 1.3862944 -6.991137 1.440955
## X16 2.65289688 2.2426407 1.4816045 -7.222466 1.412679
## X17 0.49280272 2.5607017 1.7578579 -6.319969 1.419083
## X18 1.05291638 2.5607017 0.8754687 -7.402052 1.324552
## X19 0.26936976 1.7416574 1.3350011 -6.959049 1.405814
## X20 1.49546653 2.4271887 1.5260563 -5.843045 1.430692
## X21 1.14329840 2.2426407 1.3350011 -7.182192 1.398431
## X22 2.20192082 4.0663004 0.8754687 -7.385791 1.405814
## X23 1.05291638 3.0596443 1.0986123 -7.641724 1.338425
## X24 0.90630094 4.6332496 1.1631508 -7.600902 1.372438
## X25 0.49280272 2.6475800 1.0986123 -7.435388 1.308996
## X26 1.89864831 3.0199602 1.0986123 -7.452482 1.381830
## X28 2.31450540 4.3245553 1.3083328 -7.323271 1.350892
## X29 0.62373057 2.2895221 1.0986123 -7.875339 1.338425
## X30 0.26936976 2.3817805 0.9162907 -7.875339 1.398431
## X31 1.78455817 2.5166359 1.5040774 -6.645391 1.381830
## X34 1.09877705 2.0496913 1.5686159 -6.969631 1.458333
## X35 0.79981129 2.2426407 1.7749524 -7.236259 1.362172
## X36 1.45997005 0.8982753 1.8562980 -6.571283 1.445658
## X37 2.35766182 3.3291650 1.0986123 -7.505592 1.398431
## X38 1.26963623 1.6331804 1.0296194 -7.561682 1.398431
## X39 2.29253952 3.7271284 0.9932518 -8.111728 1.291400
## X40 1.56421694 2.1952354 1.4350845 -7.824046 1.430692
## X41 1.42367579 2.4721360 2.0541237 -6.377127 1.398431
## X42 1.42367579 2.6475800 1.3609766 -7.487574 1.398431
## X43 0.90630094 1.9496835 1.3083328 -7.143478 1.362172
## X44 2.15484541 2.5607017 1.4816045 -6.812445 1.362172
## X45 2.87633811 3.8991525 1.6486586 -6.571283 1.425073
## X46 2.24779664 2.9396356 0.6418539 -8.180721 1.372438
## X47 0.49280272 2.0000000 1.4109870 -7.505592 1.405814
## X48 1.95297508 3.9329588 0.7884574 -8.111728 1.405814
## X50 2.03141194 2.6904158 1.2237754 -7.354042 1.435976
## X51 2.08182149 2.9396356 1.2809338 -7.278819 1.338425
## X53 1.18656534 2.2426407 1.2809338 -6.907755 1.390462
## X55 1.45997005 3.8651513 1.1314021 -7.641724 1.372438
## X56 1.78455817 2.1472883 1.8405496 -7.208860 1.390462
## X57 1.89864831 3.7619441 1.2527630 -7.264430 1.338425
## X59 2.08182149 3.1380930 1.6094379 -7.082109 1.430692
## X60 -0.06149412 2.2895221 0.9932518 -6.812445 1.381830
## X61 0.74349177 2.4271887 1.2237754 -7.013116 1.362172
## X62 -0.81662520 0.8982753 0.9555114 -7.662778 1.324552
## X63 1.69366072 4.2928531 1.3350011 -7.250246 1.390462
## X64 1.59753955 2.7328638 1.8870696 -7.195437 1.430692
## X65 1.56421694 3.2915026 0.4700036 -8.254829 1.372438
## X67 1.05291638 3.2535702 1.0296194 -7.523941 1.390462
## X68 1.26963623 3.2153619 1.5040774 -7.278819 1.308996
## X69 0.79981129 1.2863353 1.3609766 -7.957577 1.308996
## X70 1.38654222 2.1952354 0.9162907 -7.957577 1.381830
## X71 1.72450839 3.3291650 1.4816045 -7.505592 1.350892
## X72 2.31450540 2.0987803 1.9169226 -6.505132 1.372438
## X73 2.31450540 3.4037024 1.3609766 -7.354042 1.338425
## X74 -0.41274719 2.2895221 1.5260563 -7.143478 1.362172
## X75 1.30957344 2.0000000 1.7227666 -6.437752 1.430692
## X76 2.92446596 3.4772256 1.4586150 -7.130899 1.430692
## X77 2.03141194 4.6332496 1.4109870 -6.319969 1.462144
## X78 3.21875915 2.7328638 1.4816045 -6.502290 1.445658
## X80 1.18656534 3.0990195 1.2237754 -6.917806 1.338425
## X81 1.09877705 2.0496913 1.3350011 -7.902008 1.419083
## X82 1.38654222 2.4721360 1.3350011 -7.338538 1.350892
## X83 0.95678949 3.8309519 1.4586150 -8.804875 1.372438
## X84 1.14329840 2.1952354 1.4816045 -7.250246 1.435976
## X85 0.49280272 4.0991803 1.7917595 -7.182192 1.362172
## X86 2.17853747 3.5497748 2.1162555 -6.214608 1.435976
## X88 2.08182149 3.5136195 1.4816045 -6.917806 1.430692
## X90 -1.04412698 1.2249031 0.5877867 -8.873868 1.350892
## X93 1.56421694 3.6568542 1.4350845 -6.959049 1.372438
## X94 3.70550563 3.2915026 2.1860513 -6.502290 1.475713
## X95 0.55980793 3.5136195 1.2809338 -7.469874 1.405814
## X96 1.09877705 3.2915026 0.8329091 -7.986565 1.381830
## X97 1.72450839 2.8166378 0.9555114 -7.875339 1.381830
## X98 0.42235886 2.0496913 1.0296194 -8.468403 1.324552
## X99 2.39982883 3.0596443 1.0647107 -6.812445 1.405814
## X100 1.45997005 3.0990195 1.3609766 -7.751725 1.362172
## X103 3.21875915 3.2535702 1.3083328 -7.799353 1.405814
## X104 1.56421694 3.6920998 1.1939225 -7.323271 1.372438
## X105 1.66223369 3.7619441 1.1314021 -7.706263 1.372438
## X107 1.87083027 2.6904158 1.2237754 -7.208860 1.398431
## X108 1.38654222 3.5136195 2.0014800 -7.070274 1.338425
## X109 0.68487244 2.6475800 0.6418539 -8.517193 1.350892
## X110 0.79981129 2.6904158 0.7419373 -8.334872 1.435976
## X111 1.63020224 3.9329588 1.1314021 -7.293418 1.350892
## X112 2.86003086 2.9799598 1.8870696 -6.214608 1.425073
## X113 1.95297508 3.7965507 2.1041342 -5.991465 1.390462
## X114 0.34805188 1.1622777 1.0647107 -7.035589 1.381830
## X115 0.49280272 2.3358967 1.8870696 -6.437752 1.450108
## X117 1.75480019 2.3817805 1.2527630 -7.452482 1.398431
## X118 2.52087117 3.4772256 1.2237754 -7.452482 1.435976
## X121 2.54030520 3.3665631 1.7227666 -7.250246 1.398431
## X123 -0.01004024 0.6832816 0.9162907 -8.334872 1.350892
## X124 0.26936976 2.5166359 1.7404662 -7.182192 1.338425
## X126 1.42367579 1.7416574 1.1631508 -7.195437 1.381830
## X128 0.55980793 2.3817805 1.9878743 -6.725434 1.454327
## X129 0.00000000 2.5607017 1.2527630 -7.600902 1.338425
## X130 1.26963623 2.9799598 1.6292405 -6.571283 1.372438
## X131 1.30957344 2.5166359 1.1314021 -7.418581 1.372438
## X132 1.69366072 2.7749346 1.5892352 -7.143478 1.362172
## X133 1.05291638 3.5856960 1.8082888 -5.914504 1.271288
## X134 0.68487244 3.6213877 1.6094379 -6.812445 1.398431
## X135 2.15484541 2.0496913 1.5686159 -7.250246 1.308996
## X136 1.09877705 1.6878178 1.2809338 -6.907755 1.412679
## X137 0.79981129 1.5777088 0.9555114 -7.902008 1.381830
## X139 0.90630094 3.2153619 1.0647107 -7.662778 1.338425
## X140 1.56421694 2.6475800 1.2809338 -7.250246 1.398431
## X141 1.49546653 3.2915026 1.7227666 -6.437752 1.419083
## X143 0.85402456 2.5166359 1.2527630 -7.561682 1.350892
## X144 1.49546653 3.3291650 1.2809338 -7.070274 1.372438
## X145 0.79981129 2.3817805 1.0647107 -8.180721 1.350892
## X146 1.66223369 2.8989795 1.8718022 -6.725434 1.381830
## X147 1.63020224 3.1380930 1.4816045 -7.024289 1.412679
## X148 1.14329840 2.6043458 2.0281482 -6.907755 1.425073
## X149 0.90630094 2.3358967 0.9162907 -7.875339 1.381830
## X152 2.46133172 4.1318839 1.8245493 -6.571283 1.494568
## X153 1.42367579 3.0990195 1.9459101 -8.111728 1.372438
## X154 1.38654222 3.0199602 0.7419373 -7.542634 1.308996
## X155 1.22865470 2.7328638 1.1939225 -7.986565 1.372438
## X156 1.81380304 3.3291650 1.6486586 -6.991137 1.390462
## X157 2.17853747 2.6904158 0.8754687 -7.957577 1.324552
## X158 1.14329840 2.9396356 1.0647107 -7.799353 1.350892
## X159 0.62373057 1.1622777 0.9555114 -6.917806 1.450108
## X160 2.13083532 3.7271284 1.0647107 -7.452482 1.350892
## X161 0.09622438 2.3358967 1.5892352 -7.706263 1.419083
## X162 2.13083532 3.2153619 0.6931472 -7.751725 1.405814
## X163 0.62373057 2.6043458 0.8754687 -7.561682 1.390462
## X165 2.33621055 2.9799598 0.9555114 -7.402052 1.390462
## X166 0.95678949 2.8166378 0.9555114 -7.728736 1.350892
## X167 2.10649743 3.4772256 0.9162907 -7.875339 1.372438
## X168 1.38654222 2.7328638 1.3609766 -7.418581 1.350892
## X169 0.95678949 1.7947332 1.2527630 -7.182192 1.324552
## X170 0.68487244 3.3665631 1.5475625 -7.013116 1.372438
## X171 1.53020362 2.5166359 1.8405496 -7.323271 1.381830
## X172 0.79981129 2.8166378 1.2809338 -7.323271 1.381830
## X174 1.26963623 3.4405882 2.1400662 -8.421883 1.412679
## X175 2.54030520 2.7749346 1.6094379 -5.914504 1.435976
## X176 0.95678949 2.1952354 1.4350845 -8.873868 1.419083
## X177 2.03141194 2.9799598 1.1314021 -8.016418 1.338425
## X178 0.26936976 0.6076810 1.0986123 -7.799353 1.412679
## X179 0.09622438 1.8470768 2.1633230 -7.323271 1.398431
## X180 1.89864831 2.8579831 1.2527630 -7.369791 1.398431
## X181 1.00562217 2.0000000 1.0647107 -8.254829 1.291400
## X182 0.42235886 3.2535702 0.9555114 -7.435388 1.324552
## X183 1.14329840 1.0331502 1.7227666 -6.645391 1.372438
## X184 0.68487244 2.4271887 1.0986123 -7.561682 1.372438
## X185 1.89864831 1.9496835 1.8562980 -6.812445 1.435976
## X186 1.42367579 2.6475800 1.2527630 -7.208860 1.308996
## X189 0.62373057 2.7328638 0.5306283 -7.487574 1.338425
## X190 1.49546653 3.5497748 1.1631508 -7.293418 1.291400
## X191 1.69366072 2.8989795 1.2809338 -7.338538 1.308996
## X192 2.57858283 3.3665631 1.4586150 -7.684284 1.425073
## X193 1.78455817 3.1380930 1.4350845 -7.278819 1.405814
## X194 0.26936976 3.1380930 1.5686159 -7.469874 1.308996
## X195 2.50123416 3.2153619 1.2237754 -7.523941 1.412679
## X197 1.59753955 3.3665631 1.5040774 -7.118476 1.405814
## X198 0.79981129 1.6878178 1.1631508 -7.418581 1.350892
## X200 1.18656534 3.0990195 0.9555114 -7.662778 1.372438
## X201 0.79981129 2.5607017 1.3609766 -7.561682 1.381830
## X202 0.62373057 2.6043458 0.8754687 -8.294050 1.308996
## X205 1.97951393 3.4772256 1.2809338 -7.487574 1.390462
## X208 1.05291638 3.5136195 1.9600948 -6.948577 1.291400
## X210 1.97951393 2.6043458 1.3350011 -7.106206 1.398431
## X212 1.84255429 2.2426407 1.3350011 -7.621105 1.390462
## X213 2.08182149 3.2153619 1.6486586 -6.812445 1.405814
## X214 2.24779664 2.4271887 1.4109870 -7.013116 1.462144
## X215 1.59753955 2.9799598 0.7884574 -7.824046 1.324552
## X216 0.95678949 1.6331804 1.5686159 -6.119298 1.425073
## X218 -0.12621307 1.8987177 1.7227666 -6.571283 1.398431
## X219 0.55980793 1.5777088 1.2809338 -7.684284 1.412679
## X220 0.85402456 2.4271887 0.9555114 -7.849364 1.390462
## X223 1.84255429 3.1768716 1.7578579 -6.917806 1.338425
## X224 1.26963623 2.6475800 1.2527630 -7.264430 1.308996
## X225 3.07697133 2.2895221 0.8754687 -7.418581 1.372438
## X226 2.31450540 3.4405882 1.2237754 -7.024289 1.398431
## X227 1.78455817 2.5166359 2.2512918 -6.214608 1.398431
## X228 0.49280272 1.2863353 0.7419373 -7.070274 1.362172
## X229 1.18656534 1.6878178 1.3350011 -7.621105 1.381830
## X230 1.63020224 2.1952354 1.5260563 -7.293418 1.390462
## X231 1.09877705 2.7328638 1.1939225 -6.907755 1.381830
## X232 1.00562217 2.8989795 1.5040774 -7.143478 1.362172
## X233 0.85402456 2.0987803 1.2237754 -7.469874 1.398431
## X234 2.08182149 3.0199602 1.4586150 -7.250246 1.271288
## X236 -0.17134851 2.9396356 0.9932518 -7.621105 1.324552
## X237 1.00562217 4.3245553 2.0281482 -7.182192 1.390462
## X239 0.09622438 1.0331502 0.6418539 -8.217089 1.271288
## X240 0.85402456 2.2895221 0.9162907 -8.145630 1.324552
## X241 1.53020362 3.4405882 1.7578579 -8.047190 1.338425
## X242 0.85402456 1.7416574 1.9399676 -7.600902 1.372438
## X243 0.26936976 2.8579831 1.6292405 -6.938214 1.362172
## X244 2.17853747 3.8991525 1.3862944 -7.799353 1.435976
## X245 -0.10425819 2.3817805 0.7419373 -8.740337 1.390462
## X246 1.34852439 2.5166359 1.9459101 -7.208860 1.362172
## X247 0.90630094 2.1952354 0.6931472 -8.180721 1.398431
## X249 3.21875915 4.0332413 1.0296194 -7.581100 1.398431
## X250 1.38654222 2.5607017 1.3083328 -7.600902 1.381830
## X251 0.85402456 1.6331804 1.1631508 -7.775256 1.362172
## X253 1.45997005 2.3358967 1.5260563 -6.502290 1.405814
## X254 3.07697133 4.0332413 1.9315214 -7.250246 1.398431
## X255 1.87083027 2.9396356 1.6094379 -8.740337 1.405814
## X256 1.00562217 3.5136195 0.7884574 -8.334872 1.324552
## X257 -0.05103109 2.7749346 0.9162907 -7.775256 1.362172
## X258 2.70679585 3.0596443 1.7578579 -6.948577 1.390462
## X260 1.30957344 3.3665631 1.5686159 -6.938214 1.440955
## X261 0.26936976 2.0496913 0.9555114 -8.111728 1.398431
## X262 0.09622438 3.0596443 1.2527630 -7.308233 1.390462
## X263 1.78455817 3.1380930 1.7227666 -7.561682 1.372438
## X264 1.66223369 3.0596443 1.9315214 -6.502290 1.350892
## X265 1.00562217 2.4271887 1.3609766 -7.775256 1.350892
## X267 2.27030576 3.2535702 1.3609766 -7.047017 1.390462
## X268 1.87083027 3.0990195 1.4109870 -7.600902 1.362172
## X269 0.62373057 1.7416574 0.9162907 -7.875339 1.324552
## X270 2.13083532 2.7749346 0.9932518 -7.662778 1.440955
## X271 1.84255429 4.0000000 1.5686159 -6.959049 1.398431
## X272 1.09877705 3.0199602 1.6094379 -7.824046 1.350892
## X273 1.92602476 3.6568542 1.2237754 -7.222466 1.350892
## X274 1.09877705 3.4037024 1.2237754 -7.505592 1.398431
## X275 1.66223369 2.9396356 1.6292405 -8.047190 1.338425
## X277 0.95678949 3.4405882 1.7227666 -6.725434 1.405814
## X278 1.53020362 3.6568542 1.0647107 -6.725434 1.324552
## X279 0.62373057 2.2426407 1.2527630 -7.706263 1.381830
## X281 2.15484541 3.0990195 1.2809338 -6.571283 1.398431
## X282 1.72450839 2.2426407 1.6094379 -8.740337 1.419083
## X283 1.87083027 4.6332496 1.6094379 -6.725434 1.435976
## X287 1.45997005 3.1380930 1.0647107 -7.775256 1.372438
## X289 0.42235886 2.3358967 1.0296194 -7.542634 1.338425
## X290 1.34852439 1.7947332 0.8329091 -7.824046 1.445658
## X291 1.59753955 3.3291650 1.2809338 -7.058578 1.475713
## X292 2.00565516 3.8309519 1.6292405 -7.236259 1.350892
## X294 0.42235886 1.7947332 1.2237754 -7.662778 1.308996
## X297 0.74349177 2.3817805 1.2237754 -8.016418 1.350892
## X298 1.22865470 1.7416574 1.4350845 -7.082109 1.291400
## X299 2.24779664 2.7328638 1.1314021 -7.581100 1.372438
## X301 0.79981129 1.6878178 1.1314021 -8.047190 1.362172
## X302 -0.06149412 1.4641016 1.2527630 -7.469874 1.271288
## X303 1.09877705 3.0596443 1.6677068 -7.156217 1.308996
## X304 2.74190799 2.3817805 0.9555114 -7.728736 1.445658
## X305 0.55980793 4.1644140 1.2809338 -6.980326 1.390462
## X306 2.10649743 1.4058773 1.8082888 -7.106206 1.412679
## X307 2.75922787 4.6332496 1.9315214 -5.914504 1.372438
## X308 1.69366072 2.8166378 1.6677068 -6.725434 1.381830
## X311 0.68487244 2.7328638 1.5040774 -7.600902 1.412679
## X312 2.13083532 3.8309519 1.5040774 -7.293418 1.390462
## X313 1.49546653 2.3358967 1.4586150 -7.505592 1.440955
## X314 1.05291638 2.0987803 0.8754687 -8.334872 1.324552
## X315 0.68487244 2.6475800 1.8245493 -7.024289 1.372438
## X316 1.69366072 3.2153619 1.1631508 -7.799353 1.338425
## X317 1.78455817 2.8166378 1.1631508 -7.581100 1.350892
## X320 0.26936976 2.3358967 1.9740810 -6.725434 1.308996
## X321 0.55980793 1.7947332 1.9600948 -7.728736 1.324552
## X322 1.00562217 3.2915026 1.8562980 -6.377127 1.398431
## X323 1.53020362 3.0199602 1.2809338 -7.195437 1.338425
## X324 1.26963623 2.5166359 0.4700036 -8.468403 1.271288
## X325 1.18656534 2.1952354 1.7749524 -6.907755 1.398431
## X326 1.78455817 1.8987177 0.7419373 -7.986565 1.398431
## X327 1.95297508 3.5136195 1.3609766 -7.293418 1.398431
## X329 1.53020362 2.0496913 1.1314021 -7.775256 1.405814
## X330 0.90630094 2.0000000 2.1972246 -6.571283 1.381830
## X331 0.55980793 1.6331804 1.0296194 -7.236259 1.372438
## X332 -0.38485910 2.4271887 1.3609766 -7.024289 1.362172
## X333 2.33621055 3.0596443 1.5475625 -7.236259 1.350892
## Gamma_Interferon_induced_Monokin Glutathione_S_Transferase_alpha HB_EGF
## X1 2.949822 1.0641271 6.559746
## X2 2.721793 0.8670202 8.754531
## X3 2.762231 0.8890150 7.745463
## X5 2.851987 1.2358607 7.245150
## X6 2.822442 1.1538270 6.413012
## X7 2.739315 1.1421966 6.262563
## X8 2.966101 1.0343625 6.559746
## X9 2.584357 0.9853483 9.736307
## X11 2.701785 0.9676836 8.542148
## X12 2.769220 1.0782394 6.108135
## X14 2.924402 1.0495119 7.745463
## X16 2.911527 0.7941114 8.754531
## X17 2.845167 1.1538270 6.413012
## X18 2.956388 1.1970974 5.264609
## X19 3.019718 1.0343625 4.254800
## X20 2.708297 0.8670202 6.262563
## X21 2.929867 0.9853483 7.373808
## X22 2.724975 0.7083677 9.454406
## X23 2.568127 0.8439372 6.979888
## X24 2.614139 0.8890150 7.500000
## X25 2.667835 1.0343625 5.949436
## X26 2.788951 0.8890150 9.358191
## X28 2.680311 0.9853483 7.245150
## X29 2.713850 0.9300710 6.262563
## X30 2.766469 1.2358607 3.779716
## X31 2.790112 1.2871473 4.474569
## X34 2.883453 1.1178380 5.264609
## X35 2.802914 0.8890150 7.982407
## X36 2.848747 1.0186444 6.842982
## X37 2.786199 0.9676836 7.982407
## X38 2.919789 1.0023201 6.413012
## X39 2.620513 0.8890150 6.979888
## X40 2.876049 1.0641271 5.949436
## X41 2.825646 1.1302068 8.211578
## X42 2.603403 0.7083677 7.982407
## X43 2.927719 1.2071782 5.444179
## X44 2.908388 0.7671379 7.864950
## X45 2.792403 1.0343625 9.260790
## X46 2.762231 0.7941114 8.542148
## X47 2.757357 0.8439372 6.413012
## X48 2.879640 1.1050693 6.559746
## X50 2.787386 0.9100066 9.454406
## X51 2.829324 0.7386101 7.113891
## X53 2.848276 0.9100066 7.245150
## X55 2.637144 0.7083677 8.649098
## X56 2.852215 0.8439372 7.500000
## X57 2.864362 0.7386101 5.617858
## X59 2.974175 0.7671379 7.982407
## X60 2.936028 1.0023201 4.474569
## X61 2.742679 1.1651160 4.885442
## X62 2.684529 1.1970974 5.949436
## X63 2.726228 1.0186444 6.262563
## X64 3.065368 1.0023201 7.113891
## X65 2.632564 0.7671379 7.864950
## X67 2.674201 0.7386101 7.113891
## X68 2.713850 0.8670202 5.786135
## X69 2.732330 1.0641271 4.474569
## X70 2.809013 0.9853483 7.745463
## X71 2.780093 1.0186444 6.559746
## X72 2.928799 0.9676836 9.162164
## X73 2.939917 0.9853483 7.745463
## X74 2.916177 1.2950103 3.272102
## X75 2.939917 0.9853483 6.413012
## X76 2.818539 0.8439372 9.454406
## X77 2.946345 0.8670202 5.786135
## X78 2.943646 0.9676836 7.745463
## X80 2.735867 1.1760805 6.413012
## X81 2.760303 0.9300710 7.982407
## X82 2.757852 0.9676836 6.413012
## X83 2.668760 0.9676836 6.702998
## X84 2.774554 0.9492763 6.979888
## X85 2.851530 0.9676836 7.373808
## X86 2.851530 1.0023201 8.323453
## X88 2.909446 1.1050693 5.444179
## X90 2.668760 0.6419718 2.103023
## X93 2.881737 0.6762264 6.979888
## X94 3.032417 0.7941114 9.828139
## X95 2.868085 1.3175721 6.108135
## X96 2.827923 0.8439372 9.736307
## X97 2.778414 0.9676836 8.649098
## X98 2.694967 1.0495119 4.684412
## X99 2.873869 0.7941114 6.413012
## X100 2.722435 0.8670202 8.433621
## X103 2.876049 0.7671379 8.097921
## X104 2.705439 0.7941114 7.745463
## X105 2.579644 0.8439372 7.745463
## X107 2.752296 1.1760805 6.842982
## X108 2.832888 0.8439372 5.949436
## X109 2.646995 0.7671379 6.842982
## X110 2.750740 1.2265482 5.264609
## X111 2.636011 0.9300710 5.786135
## X112 2.893035 1.1421966 5.617858
## X113 2.875131 1.0186444 8.542148
## X114 2.694190 0.9676836 5.786135
## X115 2.845409 1.0186444 5.949436
## X117 2.806678 1.1970974 6.559746
## X118 2.968193 0.8439372 7.745463
## X121 3.000719 0.7083677 8.097921
## X123 2.706159 1.1760805 4.885442
## X124 2.872708 0.7941114 5.264609
## X126 2.715877 0.9300710 6.842982
## X128 2.763185 0.8670202 8.323453
## X129 2.690241 0.6762264 6.559746
## X130 2.901221 1.0782394 9.260790
## X131 2.532501 0.9100066 6.979888
## X132 2.766469 1.1050693 6.559746
## X133 2.786199 0.9492763 8.323453
## X134 2.791263 1.0186444 9.454406
## X135 2.893035 1.1970974 4.684412
## X136 2.905282 0.7083677 7.745463
## X137 2.568127 0.9676836 7.373808
## X139 2.665023 0.7941114 6.842982
## X140 2.860121 0.9676836 6.702998
## X141 2.604783 1.0343625 8.961066
## X143 2.767852 1.2358607 4.684412
## X144 2.911270 0.8439372 5.264609
## X145 2.674201 1.0343625 5.617858
## X146 2.950670 0.9853483 5.444179
## X147 2.858842 0.8196703 4.254800
## X148 2.908918 0.7941114 4.023747
## X149 2.790112 0.9300710 5.786135
## X152 2.984412 0.9300710 7.113891
## X153 2.731131 0.9853483 7.982407
## X154 2.579644 0.7671379 6.413012
## X155 2.691833 1.1421966 5.078583
## X156 2.926626 0.8670202 6.559746
## X157 2.903482 1.1302068 6.413012
## X158 2.557619 0.9100066 6.702998
## X159 2.845892 0.9492763 7.623847
## X160 2.769220 0.9676836 5.786135
## X161 2.843211 1.0186444 10.528568
## X162 2.875866 0.7671379 6.559746
## X163 2.678590 0.7671379 5.786135
## X165 2.788951 0.8196703 6.413012
## X166 2.662160 0.9100066 7.373808
## X167 2.843948 0.7941114 9.062271
## X168 2.681164 0.9853483 8.097921
## X169 2.824491 1.0641271 4.023747
## X170 2.881391 1.0495119 5.444179
## X171 2.823909 0.9100066 9.549474
## X172 2.694967 1.2265482 6.262563
## X174 2.886307 0.9676836 8.649098
## X175 2.786199 0.8890150 6.979888
## X176 2.823031 1.0023201 6.262563
## X177 2.760303 1.0343625 6.108135
## X178 2.704715 0.9300710 6.108135
## X179 2.891000 1.0782394 7.982407
## X180 3.008161 0.9853483 7.245150
## X181 2.596327 0.7083677 6.979888
## X182 2.773241 1.1178380 5.444179
## X183 2.823325 1.3102163 4.474569
## X184 2.654255 0.8670202 8.542148
## X185 2.771914 0.8670202 8.323453
## X186 2.701785 0.9853483 8.323453
## X189 2.777140 0.7671379 5.078583
## X190 2.839703 0.8670202 6.108135
## X191 2.715205 0.7083677 6.702998
## X192 2.845409 0.7083677 8.097921
## X193 2.852896 0.7083677 9.260790
## X194 2.771023 0.9300710 5.786135
## X195 2.708297 0.7083677 7.745463
## X197 2.815134 0.9676836 8.097921
## X198 2.743782 0.7671379 3.779716
## X200 2.735867 1.0023201 6.559746
## X201 2.785402 0.9300710 7.745463
## X202 2.712482 1.1050693 4.023747
## X205 2.557619 0.7671379 6.979888
## X208 2.824491 1.0023201 8.649098
## X210 2.919789 0.9492763 9.454406
## X212 2.700297 0.9492763 6.262563
## X213 2.754850 1.0186444 8.323453
## X214 2.874020 0.9100066 5.949436
## X215 2.656269 1.1651160 6.108135
## X216 2.752811 0.9676836 7.245150
## X218 2.890046 0.9300710 6.413012
## X219 2.687819 0.8670202 6.842982
## X220 2.594876 0.7671379 7.623847
## X223 2.710405 1.1760805 5.949436
## X224 2.735867 1.2169911 5.786135
## X225 2.744330 1.0343625 6.108135
## X226 2.768310 0.5660797 5.078583
## X227 2.763659 1.2537933 5.264609
## X228 2.653238 1.1970974 5.617858
## X229 2.665023 0.8196703 6.559746
## X230 2.963228 0.9676836 6.413012
## X231 2.767393 1.0782394 10.695079
## X232 2.697275 1.0186444 7.623847
## X233 2.771023 0.7941114 5.444179
## X234 2.715877 1.1050693 7.500000
## X236 2.767393 0.9853483 7.745463
## X237 2.763185 0.9300710 6.262563
## X239 2.875683 1.1302068 4.684412
## X240 2.791263 1.1302068 5.444179
## X241 2.724975 0.9676836 7.245150
## X242 2.654255 0.9300710 6.413012
## X243 2.665966 1.0495119 6.262563
## X244 2.783386 0.9492763 8.211578
## X245 2.692623 0.7941114 5.617858
## X246 2.883623 1.2358607 4.885442
## X247 2.792403 0.6762264 5.444179
## X249 2.665023 1.0186444 7.500000
## X250 2.870614 0.9100066 6.108135
## X251 2.737602 0.7671379 6.559746
## X253 3.008576 1.0186444 7.113891
## X254 3.011822 1.1421966 7.500000
## X255 2.769220 1.0023201 8.961066
## X256 2.393337 0.6762264 7.373808
## X257 2.584357 1.0186444 6.702998
## X258 2.906102 0.7941114 7.500000
## X260 2.822737 0.8196703 7.500000
## X261 2.695741 1.0918780 8.649098
## X262 2.530419 0.7941114 6.108135
## X263 2.807684 0.8196703 10.444102
## X264 2.763185 0.9300710 5.264609
## X265 2.611519 0.8439372 5.949436
## X267 3.009810 0.9853483 8.097921
## X268 2.906780 0.8670202 7.500000
## X269 2.524026 1.0641271 5.078583
## X270 2.735284 0.5237995 8.097921
## X271 2.910232 0.8670202 8.157135
## X272 2.735284 0.9300710 6.413012
## X273 2.842468 0.8439372 6.702998
## X274 2.785402 0.9100066 8.433621
## X275 2.825933 1.1538270 6.262563
## X277 2.943646 1.0343625 7.500000
## X278 2.937016 1.1421966 4.474569
## X279 2.788951 0.9853483 7.245150
## X281 2.875131 0.8890150 10.185606
## X282 2.900935 0.9676836 3.067147
## X283 2.953166 0.6762264 6.559746
## X287 2.666903 0.7671379 7.373808
## X289 2.786596 1.2265482 4.254800
## X290 2.701785 0.7671379 5.786135
## X291 2.839193 1.0343625 7.982407
## X292 2.848747 1.1538270 7.113891
## X294 2.627850 1.3026978 4.254800
## X297 2.751261 0.9676836 6.413012
## X298 2.657266 0.9853483 5.444179
## X299 2.788951 0.9853483 8.542148
## X301 2.620513 0.7083677 7.864950
## X302 2.584357 1.2537933 3.678009
## X303 2.760303 0.9853483 6.413012
## X304 2.700297 0.8670202 9.643429
## X305 2.905965 0.7941114 8.858503
## X306 2.732330 1.1421966 5.949436
## X307 2.945455 1.2071782 5.617858
## X308 2.781750 1.2071782 6.262563
## X311 2.854245 0.9300710 8.211578
## X312 2.810980 0.7671379 10.185606
## X313 2.800812 0.9100066 7.864950
## X314 2.568127 0.7941114 7.623847
## X315 2.846133 1.1651160 4.474569
## X316 2.603403 0.6762264 7.500000
## X317 2.766469 0.8439372 5.078583
## X320 2.666903 0.9853483 7.500000
## X321 2.738746 1.0186444 4.474569
## X322 2.863047 0.9300710 9.549474
## X323 2.913692 0.8439372 5.444179
## X324 2.847566 1.1421966 5.786135
## X325 3.006900 0.7941114 5.444179
## X326 2.864685 0.6419718 5.444179
## X327 2.897137 1.0186444 7.113891
## X329 2.749166 0.7941114 8.323453
## X330 2.713850 1.0186444 5.949436
## X331 2.678590 0.8670202 5.786135
## X332 2.748106 0.9676836 5.786135
## X333 2.862841 0.5660797 6.108135
## HCC_4 Hepatocyte_Growth_Factor_HGF I_309 ICAM_1 IGF_BP_2
## X1 -3.036554 0.58778666 3.433987 -0.19077873 5.609472
## X2 -4.074542 0.53062825 3.135494 -0.46201723 5.347108
## X3 -3.649659 0.09531018 2.397895 -0.46201723 5.181784
## X5 -3.146555 0.53062825 3.761200 0.09715030 5.420535
## X6 -3.079114 0.09531018 2.708050 -0.93510686 5.056246
## X7 -3.506558 0.40546511 2.995732 -0.63604036 5.438079
## X8 -3.079114 0.18232156 2.890372 -1.29887557 5.365976
## X9 -4.135167 -0.16251893 3.295837 -1.06412706 5.273000
## X11 -3.540459 0.40546511 3.091042 -0.56067607 5.505332
## X12 -2.918771 0.09531018 3.258097 -0.73298708 5.081404
## X14 -3.816713 0.53062825 2.944439 -0.17955518 5.209486
## X16 -3.575551 0.18232156 3.332205 -1.06412706 5.375278
## X17 -3.816713 0.18232156 2.639057 -0.66750355 5.455321
## X18 -4.135167 -0.24846136 2.708050 -0.93510686 5.087596
## X19 -3.057608 -0.19845094 2.944439 -0.93510686 5.379897
## X20 -3.772261 0.09531018 2.708050 -0.17955518 5.513429
## X21 -3.437118 0.09531018 2.944439 -1.11122739 5.361292
## X22 -3.863233 0.74193734 3.465736 -0.48946700 5.141664
## X23 -3.816713 -0.07257069 2.484907 -1.16085462 4.955827
## X24 -3.411248 0.69314718 2.708050 -0.38282097 5.472271
## X25 -3.611918 0.09531018 2.890372 -0.56067607 5.187386
## X26 -3.473768 0.33647224 3.258097 -0.66750355 5.257495
## X28 -3.688879 0.33647224 2.197225 -0.80232932 5.438079
## X29 -3.816713 -0.10536052 2.302585 -0.85726607 4.997212
## X30 -4.074542 -0.24846136 2.639057 -0.63604036 5.147494
## X31 -3.194183 0.09531018 3.044522 -0.25991011 5.513429
## X34 -3.381395 0.33647224 3.583519 -1.16085462 5.273000
## X35 -3.218876 -0.19845094 3.091042 -0.48946700 4.836282
## X36 -3.688879 0.18232156 2.944439 -0.30783617 5.598422
## X37 -3.411248 0.47000363 3.135494 -0.66750355 5.351858
## X38 -3.611918 0.18232156 2.639057 -0.60535429 5.141664
## X39 -4.017384 0.64185389 2.833213 -0.91510681 5.252273
## X40 -4.017384 0.09531018 3.178054 -0.59028711 5.407172
## X41 -3.270169 0.00000000 2.708050 -0.39571116 5.327876
## X42 -3.863233 0.09531018 2.890372 -0.73298708 5.420535
## X43 -3.352407 0.18232156 3.258097 -0.69979867 5.198497
## X44 -3.649659 0.26236426 2.708050 0.00000000 5.420535
## X45 -3.170086 0.33647224 3.555348 -0.23651381 5.645447
## X46 -3.575551 0.47000363 3.135494 -0.59028711 5.267858
## X47 -3.506558 -0.31471074 2.995732 -0.87620360 5.351858
## X48 -3.381395 0.64185389 3.761200 -0.42185317 5.700444
## X50 -3.863233 0.26236426 3.332205 -0.48946700 5.262690
## X51 -3.963316 -0.01005034 3.044522 -1.04142304 5.398163
## X53 -3.649659 0.47000363 2.995732 -0.35738780 5.278115
## X55 -3.863233 0.33647224 2.564949 -0.25991011 5.030438
## X56 -3.816713 -0.17435339 2.944439 -0.48946700 5.262690
## X57 -3.123566 0.40546511 3.295837 -0.48946700 5.641907
## X59 -3.611918 0.18232156 2.944439 -0.39571116 5.616771
## X60 -3.575551 -0.17435339 3.218876 -0.63604036 5.438079
## X61 -4.074542 -0.07257069 2.708050 -0.76713789 5.192957
## X62 -3.772261 -0.32850407 2.484907 -0.76713789 5.123964
## X63 -3.442019 0.09531018 3.091042 -0.60535429 5.283204
## X64 -3.146555 0.26236426 3.178054 -0.30783617 5.370638
## X65 -4.135167 0.18232156 2.833213 -0.73298708 5.164786
## X67 -3.688879 0.58778666 3.465736 -0.48946700 5.356586
## X68 -3.218876 0.33647224 2.944439 -0.39571116 5.429346
## X69 -3.863233 -0.43078292 2.564949 -0.93510686 5.141664
## X70 -4.074542 0.18232156 3.465736 -0.56067607 5.594711
## X71 -3.296837 0.09531018 3.258097 -0.10317121 5.068904
## X72 -3.270169 0.87546874 3.332205 -0.16503132 5.780744
## X73 -3.352407 0.47000363 3.433987 0.00000000 5.509388
## X74 -3.442019 -0.19845094 2.639057 -0.69979867 5.241747
## X75 -3.729701 0.40546511 3.663562 -0.91510681 5.337538
## X76 -3.352407 0.69314718 3.433987 -0.30783617 5.549076
## X77 -3.270169 0.58778666 2.944439 -0.48946700 5.129899
## X78 -2.733368 0.64185389 3.465736 -0.16841247 5.624018
## X80 -3.473768 0.09531018 3.044522 -0.53172814 5.204007
## X81 -3.729701 -0.02020271 3.258097 -0.73298708 5.111988
## X82 -3.863233 0.33647224 2.708050 -1.11122739 5.521461
## X83 -3.146555 0.26236426 2.564949 -0.78459824 4.905275
## X84 -3.540459 0.26236426 2.772589 -0.73298708 5.043425
## X85 -3.296837 0.47000363 3.044522 -0.39571116 5.370638
## X86 -2.207275 0.47000363 2.995732 -0.15734908 5.590987
## X88 -3.146555 0.40546511 3.367296 -0.25991011 5.501258
## X90 -2.995732 -0.63487827 1.757858 -1.16085462 4.634729
## X93 -3.270169 0.09531018 2.944439 -0.48946700 5.497168
## X94 -3.123566 0.64185389 4.143135 0.09715030 5.948035
## X95 -3.912023 0.26236426 2.890372 -0.57539617 5.327876
## X96 -3.270169 0.47000363 3.178054 -1.32948627 5.509388
## X97 -3.575551 0.33647224 2.708050 -0.47567232 5.356586
## X98 -4.074542 -0.37106368 2.484907 -1.04142304 5.075174
## X99 -3.816713 0.47000363 3.258097 -0.17955518 5.370638
## X100 -3.729701 0.26236426 3.258097 -0.48946700 5.187386
## X103 -3.649659 0.64185389 3.784190 -0.07152751 5.641907
## X104 -4.509860 0.09531018 2.772589 -0.71627709 5.159055
## X105 -4.074542 0.47000363 2.995732 -0.59028711 5.231109
## X107 -3.772261 0.26236426 3.044522 -0.42185317 5.214936
## X108 -3.123566 0.18232156 2.890372 -0.06111597 5.579730
## X109 -3.912023 -0.04082199 2.292535 -0.91510681 5.003946
## X110 -4.017384 -0.16251893 2.890372 -0.76713789 5.062595
## X111 -3.649659 0.18232156 2.890372 -0.23651381 5.347108
## X112 -2.813411 0.53062825 3.433987 -0.19077873 5.609472
## X113 -3.079114 0.47000363 3.091042 -0.16841247 5.398163
## X114 -3.381395 -0.32850407 2.397895 -0.66750355 5.081404
## X115 -3.381395 0.09531018 3.465736 -1.36134745 5.420535
## X117 -4.135167 0.40546511 3.401197 -0.57539617 5.293305
## X118 -3.352407 0.64185389 3.610918 -0.43511112 5.616771
## X121 -3.575551 0.40546511 3.332205 -0.12462010 5.420535
## X123 -3.611918 -0.44628710 2.833213 -0.93510686 5.407172
## X124 -2.995732 -0.04082199 2.890372 -0.17955518 5.402677
## X126 -4.017384 0.00000000 2.944439 -0.60535429 5.135798
## X128 -3.324236 0.53062825 3.178054 -0.39571116 5.303305
## X129 -3.575551 -0.18632958 2.708050 -0.87620360 5.257495
## X130 -3.352407 0.26236426 2.995732 -0.66750355 5.433722
## X131 -3.688879 0.09531018 2.564949 -0.65167154 4.969813
## X132 -3.575551 0.09531018 2.639057 -0.76713789 5.375278
## X133 -3.170086 0.26236426 2.484907 -0.80232932 5.620401
## X134 -3.015935 0.87546874 3.332205 -0.34483937 5.521461
## X135 -3.649659 0.00000000 3.258097 -0.25991011 5.455321
## X136 -4.135167 -0.15082289 2.564949 -0.48946700 5.451038
## X137 -3.057608 -0.18632958 2.397895 -0.91510681 5.159055
## X139 -3.473768 0.09531018 2.639057 -1.11122739 5.153292
## X140 -3.863233 0.26236426 2.833213 -0.47567232 5.433722
## X141 -3.244194 0.33647224 3.044522 -0.30783617 5.293305
## X143 -3.462900 -0.11653382 2.944439 -0.93510686 5.313206
## X144 -3.442019 -0.21072103 2.708050 -0.30783617 5.356586
## X145 -3.963316 0.09531018 2.639057 -0.85726607 5.164786
## X146 -3.057608 0.40546511 2.564949 -0.05077067 5.645447
## X147 -4.017384 0.33647224 3.465736 -0.38282097 5.342334
## X148 -2.748872 0.33647224 3.135494 -0.11385950 5.468060
## X149 -3.772261 0.18232156 2.833213 -0.46201723 5.081404
## X152 -3.473768 0.78845736 3.761200 -0.16841247 5.758902
## X153 -2.120264 0.47000363 3.295837 -1.21340622 5.609472
## X154 -3.611918 0.33647224 1.808289 -0.73298708 5.181784
## X155 -3.772261 0.09531018 2.890372 -0.63604036 5.062595
## X156 -3.411248 0.64185389 3.258097 -0.14636351 5.332719
## X157 -3.611918 0.18232156 2.995732 -0.53172814 5.613128
## X158 -3.912023 0.18232156 2.833213 -0.59028711 5.198497
## X159 -3.442019 0.09531018 2.995732 -0.87620360 5.093750
## X160 -3.575551 0.53062825 3.091042 -0.25991011 5.389072
## X161 -3.473768 0.18232156 3.433987 -0.39571116 5.135798
## X162 -3.611918 0.64185389 2.944439 -0.59028711 5.342334
## X163 -3.649659 0.26236426 2.564949 -1.16085462 5.030438
## X165 -3.506558 0.18232156 3.218876 -0.73298708 5.455321
## X166 -3.912023 0.09531018 2.995732 -0.87620360 5.379897
## X167 -3.963316 0.58778666 2.944439 -0.17955518 5.342334
## X168 -3.575551 0.33647224 2.639057 -0.73298708 5.209486
## X169 -3.218876 0.09531018 2.772589 -0.66750355 5.153292
## X170 -3.270169 0.09531018 2.995732 -0.66750355 5.187386
## X171 -3.296837 0.09531018 3.258097 -0.15734908 5.117994
## X172 -3.772261 0.09531018 2.890372 -0.93510686 5.075174
## X174 -3.575551 -0.01005034 2.890372 -0.48946700 5.298317
## X175 -2.975930 0.40546511 3.178054 -0.16841247 5.476464
## X176 -3.079114 -0.06187540 2.944439 -0.39571116 5.056246
## X177 -3.540459 0.09531018 2.890372 -0.59028711 5.468060
## X178 -4.509860 -0.21072103 3.178054 -0.87620360 4.983607
## X179 -2.551046 0.26236426 3.332205 -0.30783617 5.517453
## X180 -3.649659 0.40546511 3.126272 0.18913439 5.655992
## X181 -3.506558 -0.19845094 2.484907 -0.85726607 5.093750
## X182 -3.611918 0.18232156 3.218876 -0.85726607 5.424950
## X183 -3.575551 -0.38566248 2.564949 -0.34483937 5.365976
## X184 -3.244194 0.33647224 3.401197 -0.47567232 5.648974
## X185 -3.270169 0.47000363 3.044522 -0.48946700 5.204007
## X186 -3.324236 -0.07257069 2.014903 -0.93510686 5.198497
## X189 -3.688879 0.18232156 2.944439 -0.66750355 5.164786
## X190 -3.575551 0.09531018 2.944439 -0.48946700 5.323010
## X191 -3.506558 0.26236426 2.639057 -0.71627709 4.983607
## X192 -3.381395 0.64185389 2.995732 -0.17955518 5.327876
## X193 -3.611918 0.40546511 3.178054 -0.60535429 5.645447
## X194 -3.270169 -0.05129329 2.564949 -0.59028711 5.209486
## X195 -3.649659 0.83290912 3.433987 -0.17955518 5.303305
## X197 -3.057608 0.26236426 3.091042 -0.56067607 5.560682
## X198 -3.611918 -0.02020271 2.397895 -0.71627709 5.159055
## X200 -3.912023 0.09531018 2.564949 -1.04142304 5.323010
## X201 -3.218876 0.00000000 3.178054 -0.71627709 5.247024
## X202 -3.912023 0.00000000 2.564949 -1.13570251 5.105945
## X205 -3.324236 0.40546511 3.332205 -0.35738780 5.488938
## X208 -3.611918 0.40546511 2.484907 -0.59028711 5.192957
## X210 -3.352407 0.26236426 3.295837 -0.38282097 5.613128
## X212 -4.074542 0.09531018 2.564949 -0.54612169 5.187386
## X213 -3.057608 0.18232156 3.178054 -0.43511112 5.407172
## X214 -3.772261 0.53062825 3.044522 -0.30783617 5.293305
## X215 -3.649659 0.00000000 3.258097 -0.93510686 5.288267
## X216 -3.816713 -0.05129329 3.178054 -1.04142304 5.105945
## X218 -2.847312 0.09531018 2.772589 -0.85726607 5.327876
## X219 -4.199705 -0.11653382 2.772589 -0.87620360 5.327876
## X220 -4.017384 0.09531018 3.044522 -0.97630091 5.030438
## X223 -3.575551 0.09531018 3.258097 -0.57539617 5.303305
## X224 -3.688879 0.18232156 2.995732 -0.63604036 5.147494
## X225 -3.863233 0.40546511 3.433987 -0.22495053 5.472271
## X226 -3.611918 0.74193734 3.259500 -0.32006598 5.620401
## X227 -2.864704 0.00000000 3.044522 -0.06111597 5.293305
## X228 -4.074542 -0.44628710 3.332205 -0.85726607 5.023881
## X229 -3.411248 -0.12783337 2.197225 -0.66750355 5.192957
## X230 -2.882404 0.09531018 3.218876 -0.51749076 5.342334
## X231 -3.442019 0.09531018 2.833213 -0.66750355 5.187386
## X232 -3.101093 0.09531018 2.302585 -0.59028711 5.389072
## X233 -3.352407 -0.11653382 2.833213 -1.04142304 5.187386
## X234 -3.244194 -0.15082289 2.890372 -0.80232932 5.407172
## X236 -3.688879 0.26236426 2.772589 -0.56067607 5.081404
## X237 -3.442019 0.33647224 2.995732 -0.39571116 5.192957
## X239 -4.199705 -0.24846136 2.708050 -0.76713789 5.141664
## X240 -3.411248 0.00000000 2.772589 -1.26939244 5.093750
## X241 -3.324236 0.26236426 3.178054 -1.21340622 5.129899
## X242 -2.956512 -0.13926207 2.772589 -0.54602499 5.288267
## X243 -3.381395 0.00000000 2.564949 -1.06412706 5.252273
## X244 -3.101093 0.26236426 2.944439 -0.48946700 5.365976
## X245 -2.956512 -0.23572233 2.140066 -1.53320769 4.663439
## X246 -2.937463 0.18232156 2.833213 -0.42185317 5.583496
## X247 -3.411248 -0.08338161 2.708050 -1.29887557 5.093750
## X249 -3.688879 0.87546874 3.555348 -0.51749076 5.609472
## X250 -3.146555 0.26236426 2.833213 -1.16085462 5.303305
## X251 -3.816713 0.00000000 2.995732 -0.60535429 5.257495
## X253 -3.270169 0.00000000 3.044522 -0.03027441 5.342334
## X254 -3.218876 0.40546511 3.806662 0.51708817 5.598422
## X255 -3.506558 0.40546511 3.295837 -0.09255394 5.472271
## X256 -3.688879 0.09531018 2.639057 -0.87620360 5.176150
## X257 -3.575551 -0.17435339 2.833213 -0.73298708 5.093750
## X258 -2.937463 0.64185389 3.496508 -0.04049051 5.351858
## X260 -3.101093 0.33647224 3.295837 -0.71627709 5.273000
## X261 -3.411248 -0.26136476 3.044522 -1.06412706 4.682131
## X262 -4.017384 -0.03045921 2.484907 -1.04142304 4.976734
## X263 -3.506558 0.33647224 2.564949 -0.48946700 5.407172
## X264 -2.813411 0.40546511 3.433987 -0.09255394 5.327876
## X265 -3.540459 0.18232156 2.772589 -0.93510686 5.252273
## X267 -3.411248 0.47000363 2.995732 -0.47567232 5.624018
## X268 -3.079114 0.18232156 2.944439 -0.39571116 5.283204
## X269 -3.863233 -0.12783337 2.564949 -0.85726607 5.262690
## X270 -3.649659 0.09531018 3.526361 -0.39571116 5.220356
## X271 -2.918771 0.53062825 3.295837 -0.17955518 5.438079
## X272 -3.729701 0.26236426 2.708050 -0.59028711 5.192957
## X273 -3.057608 0.33647224 2.708050 -0.48946700 5.594711
## X274 -3.540459 0.09531018 2.944439 -0.71627709 5.159055
## X275 -3.506558 0.09531018 3.044522 -0.93510686 5.342334
## X277 -3.688879 0.33647224 2.890372 -0.30783617 5.075174
## X278 -3.506558 -0.11653382 2.995732 -0.19077873 5.579730
## X279 -3.540459 0.09531018 2.772589 -0.93510686 5.087596
## X281 -3.036554 0.53062825 3.135494 -0.80232932 5.517453
## X282 -3.352935 0.26236426 2.397895 -0.25991011 5.288267
## X283 -3.194183 0.64185389 3.332205 -0.39571116 5.777652
## X287 -3.729701 0.58778666 3.044522 -1.18673610 5.135798
## X289 -3.863233 -0.31471074 2.484907 -0.85726607 5.087596
## X290 -4.017384 0.09531018 3.044522 -0.91510681 5.327876
## X291 -3.244194 0.58778666 3.332205 -0.38282097 5.365976
## X292 -3.381395 0.64185389 3.044522 -0.34483937 5.525453
## X294 -3.688879 -0.41551544 2.833213 -1.26939244 5.442418
## X297 -3.442019 0.00000000 2.995732 -0.60535429 5.323010
## X298 -3.411248 -0.24846136 2.041220 -0.65167154 5.521461
## X299 -3.575551 0.18232156 2.995732 -0.43511112 5.662960
## X301 -3.442019 -0.23572233 2.708050 -1.06412706 5.257495
## X302 -3.649659 -0.31471074 2.708050 -1.13570251 4.962845
## X303 -3.540459 0.47000363 2.772589 -0.93510686 5.384495
## X304 -3.912023 0.78845736 3.784190 -0.30783617 5.587249
## X305 -3.688879 0.47000363 2.484907 -0.59028711 5.693732
## X306 -3.194183 0.47000363 3.555348 -0.25991011 5.480639
## X307 -2.975930 0.33647224 3.135494 0.27662577 5.541264
## X308 -3.079114 0.09531018 2.833213 -0.53172814 5.181784
## X311 -3.688879 -0.26136476 3.091042 -0.48946700 5.225747
## X312 -3.270169 0.26236426 3.135494 -0.73298708 5.214936
## X313 -3.611918 0.26236426 2.564949 -0.71627709 5.638355
## X314 -3.816713 0.26236426 2.564949 -1.04142304 5.236442
## X315 -3.411248 -0.04082199 2.944439 -0.53172814 5.262690
## X316 -4.074542 0.47000363 3.044522 -0.46201723 5.332719
## X317 -4.074542 0.33647224 3.218876 -0.59028711 5.505332
## X320 -3.057608 0.18232156 2.397895 -0.17955518 5.323010
## X321 -3.729701 -0.37106368 2.772589 -0.46201723 4.976734
## X322 -3.057608 0.47000363 2.708050 -0.48946700 5.402677
## X323 -3.079114 0.40546511 3.332205 -0.43511112 5.424950
## X324 -3.688879 0.18232156 2.639057 -0.76713789 5.135798
## X325 -3.146555 0.33647224 2.186051 -0.59028711 5.472271
## X326 -3.473768 0.18232156 2.995732 -0.48946700 5.389072
## X327 -3.324236 0.09531018 3.091042 -0.66750355 5.609472
## X329 -3.912023 0.40546511 3.044522 -0.73298708 5.278115
## X330 -3.244194 0.09531018 2.944439 -0.38282097 5.209486
## X331 -3.101093 0.00000000 2.240710 -0.85726607 5.087596
## X332 -3.296837 -0.01005034 2.028148 -0.59028711 5.411646
## X333 -3.649659 0.64185389 3.295837 -0.32006598 5.552960
## IL_11 IL_13 IL_16 IL_17E IL_1alpha IL_3 IL_4
## X1 5.121987 1.282549 4.192081 5.731246 -6.571283 -3.244194 2.4849066
## X2 4.936704 1.269463 2.876338 6.705891 -8.047190 -3.912023 2.3978953
## X3 4.665910 1.274133 2.616102 4.149327 -8.180721 -4.645992 1.8245493
## X5 7.070709 1.309980 4.736472 4.204987 -6.943657 -2.995732 2.7080502
## X6 6.103215 1.282549 2.671032 3.637051 -8.180721 -3.863233 1.2089603
## X7 2.031412 1.286356 3.476091 6.705891 -6.907755 -3.296837 1.8718022
## X8 5.180840 1.293295 3.593860 4.037285 -7.418581 -2.956512 2.3978953
## X9 2.860031 1.282549 2.420557 5.170380 -7.469874 -4.422849 1.8082888
## X11 6.919778 1.274133 2.154845 4.749337 -7.849364 -4.509860 1.5686159
## X12 3.218759 1.286356 3.593860 3.867347 -8.047190 -3.575551 1.9169226
## X14 4.665910 1.269463 2.924466 5.427755 -7.264430 -4.074542 1.5260563
## X16 4.360856 1.278484 2.776394 5.170380 -7.662778 -4.017384 1.5475625
## X17 5.121987 1.286356 2.671032 5.325310 -7.047017 -3.912023 1.2237754
## X18 3.076971 1.274133 2.270306 4.749337 -7.182192 -4.933674 1.0296194
## X19 5.180840 1.293295 2.924466 7.174674 -7.542634 -3.912023 2.3978953
## X20 2.178537 1.274133 2.741908 4.149327 -7.264430 -3.816713 1.8245493
## X21 6.414275 1.274133 2.292540 5.580204 -7.236259 -5.035953 1.8082888
## X22 4.805045 1.293295 3.351388 8.081107 -7.542634 -3.772261 1.2089603
## X23 4.518270 1.282549 2.461332 5.427755 -7.264430 -4.919881 1.0296194
## X24 4.360856 1.289931 3.476091 5.325310 -6.980326 -3.442019 2.3978953
## X25 4.936704 1.274133 1.662234 3.040333 -7.706263 -4.074542 1.5686159
## X26 4.360856 1.282549 2.420557 4.204987 -7.523941 -4.509860 1.8082888
## X28 3.593860 1.269463 3.076971 4.749337 -7.278819 -3.816713 1.2237754
## X29 5.752800 1.302302 2.924466 5.325310 -7.487574 -4.605170 3.0445224
## X30 3.593860 1.282549 2.520871 4.749337 -7.469874 -3.411248 1.9740810
## X31 5.121987 1.278484 3.705506 5.731246 -7.143478 -3.324236 2.5649494
## X34 2.031412 1.274133 2.081821 5.170380 -7.264430 -4.422849 2.0149030
## X35 3.476091 1.282549 2.420557 5.170380 -7.849364 -4.509860 1.6863990
## X36 2.031412 1.299465 3.705506 3.040333 -7.106206 -3.057608 2.1860513
## X37 5.238363 1.278484 2.671032 4.204987 -7.581100 -3.912023 1.8082888
## X38 4.360856 1.286356 2.578583 3.578777 -7.250246 -3.729701 1.5475625
## X39 7.011244 1.293295 3.913012 4.802628 -7.435388 -3.244194 1.8245493
## X40 5.705637 1.264435 2.292540 6.705891 -7.264430 -3.912023 1.2089603
## X41 3.351388 1.286356 3.811702 3.578777 -7.600902 -3.688879 1.5475625
## X42 6.061784 1.269463 2.578583 4.149327 -7.264430 -4.779524 0.5877867
## X43 3.913012 1.274133 2.597435 5.731246 -7.706263 -4.342806 1.2089603
## X44 5.558929 1.278484 3.476091 6.705891 -7.264430 -4.509860 1.5260563
## X45 3.913012 1.286356 3.593860 4.749337 -7.469874 -3.772261 2.1747517
## X46 4.518270 1.278484 3.705506 4.802628 -8.294050 -4.135167 1.0296194
## X47 4.102821 1.264435 1.898648 5.630705 -7.264430 -4.509860 1.1939225
## X48 6.019723 1.286356 4.009916 5.731246 -6.907755 -3.218876 1.6094379
## X50 7.730538 1.289931 3.476091 6.705891 -7.849364 -4.422849 1.8082888
## X51 5.349675 1.289931 2.292540 5.731246 -7.264430 -4.017384 1.2089603
## X53 5.799150 1.289931 3.476091 5.427755 -8.047190 -3.688879 1.5260563
## X55 5.558929 1.274133 2.876338 4.802628 -7.264430 -4.268698 1.0296194
## X56 2.031412 1.289931 2.270306 6.225224 -7.402052 -3.816713 1.8082888
## X57 8.004073 1.304993 3.913012 7.174674 -7.323271 -3.772261 1.8245493
## X59 2.031412 1.293295 2.827004 4.149327 -8.047190 -4.268698 1.1939225
## X60 3.913012 1.278484 2.876338 5.325310 -7.706263 -4.017384 1.4586150
## X61 6.414275 1.269463 2.441056 4.204987 -7.706263 -4.017384 1.0296194
## X62 2.843587 1.259002 1.386542 6.225224 -7.641724 -4.268698 1.4586150
## X63 3.218759 1.269463 2.776394 4.149327 -8.047190 -4.268698 1.5475625
## X64 2.860031 1.286356 3.705506 5.630705 -7.662778 -3.863233 2.0149030
## X65 4.518270 1.269463 2.741908 4.802628 -8.294050 -4.074542 2.0412203
## X67 3.705506 1.269463 2.081821 2.407182 -7.264430 -4.815891 1.5475625
## X68 5.608737 1.278484 3.593860 6.705891 -7.542634 -3.912023 1.4816045
## X69 5.238363 1.286356 1.186565 4.204987 -7.469874 -4.635629 1.6094379
## X70 3.705506 1.282549 2.671032 5.325310 -7.706263 -3.772261 1.5686159
## X71 4.278004 1.278484 2.616102 4.802628 -8.294050 -4.199705 1.0296194
## X72 5.180840 1.304993 4.593226 3.461346 -6.907755 -2.718101 2.6390573
## X73 4.102821 1.274133 3.476091 5.118391 -8.047190 -4.017384 1.0296194
## X74 3.913012 1.259002 2.081821 6.225224 -7.706263 -4.635629 1.2089603
## X75 3.913012 1.286356 3.913012 1.052263 -7.849364 -3.649659 2.3978953
## X76 2.688997 1.282549 3.218759 5.170380 -7.662778 -4.017384 1.1939225
## X77 6.223931 1.293295 2.860031 6.225224 -7.684284 -4.074542 1.8245493
## X78 3.593860 1.282549 3.811702 5.325310 -7.706263 -3.506558 2.0149030
## X80 5.558929 1.289931 2.924466 6.705891 -7.182192 -3.611918 1.7404662
## X81 4.736472 1.278484 3.218759 4.370576 -7.662778 -3.772261 2.3025851
## X82 5.456396 1.282549 2.420557 4.204987 -7.581100 -4.017384 1.5686159
## X83 6.760790 1.293295 3.476091 8.951879 -7.418581 -3.473768 1.6677068
## X84 2.501234 1.278484 2.081821 6.225224 -7.662778 -4.733004 1.8082888
## X85 3.476091 1.286356 3.705506 6.225224 -7.024289 -3.442019 2.4849066
## X86 4.805045 1.293295 3.913012 3.867347 -6.725434 -2.796881 2.7725887
## X88 5.403583 1.293295 3.218759 5.325310 -7.523941 -4.268698 1.0296194
## X90 4.360856 1.282549 1.813803 5.325310 -8.111728 -5.914504 1.2089603
## X93 5.000000 1.307549 3.351388 7.174674 -7.684284 -4.135167 2.0668628
## X94 3.705506 1.286356 4.360856 5.630705 -6.812445 -3.506558 2.1860513
## X95 5.799150 1.293295 3.076971 4.749337 -7.264430 -3.575551 1.9740810
## X96 6.857203 1.274133 2.876338 4.749337 -7.706263 -4.074542 1.5686159
## X97 5.799150 1.274133 2.671032 4.204987 -8.078938 -4.767689 1.5686159
## X98 5.121987 1.274133 2.178537 5.325310 -7.706263 -4.135167 1.4586150
## X99 3.913012 1.289931 4.102821 4.479850 -7.849364 -3.506558 2.4849066
## X100 5.121987 1.264435 2.924466 5.170380 -7.849364 -4.342806 1.5475625
## X103 4.102821 1.282549 3.476091 6.225224 -7.849364 -3.057608 1.8245493
## X104 5.000000 1.309980 2.860031 6.705891 -7.542634 -3.816713 2.3978953
## X105 5.000000 1.289931 3.351388 4.802628 -7.849364 -3.863233 2.0412203
## X107 4.278004 1.286356 3.076971 6.705891 -7.264430 -3.473768 1.9740810
## X108 2.031412 1.286356 4.009916 4.749337 -6.927958 -3.411248 2.7080502
## X109 5.180840 1.264435 2.106497 6.225224 -7.264430 -4.815891 1.0296194
## X110 4.593226 1.274133 2.081821 4.204987 -7.354042 -4.509860 1.9740810
## X111 5.000000 1.299465 3.476091 5.630705 -7.542634 -3.575551 2.0668628
## X112 4.102821 1.302302 4.440875 4.749337 -6.725434 -2.918771 2.9444390
## X113 4.593226 1.286356 3.351388 3.924249 -7.118476 -3.506558 2.3025851
## X114 5.000000 1.274133 2.292540 2.728930 -7.849364 -4.422849 1.2089603
## X115 1.754800 1.278484 2.924466 4.149327 -7.264430 -3.963316 0.5877867
## X117 4.440875 1.278484 3.476091 5.731246 -7.058578 -3.649659 1.7404662
## X118 7.157766 1.286356 3.476091 5.325310 -7.369791 -3.649659 2.0149030
## X121 2.031412 1.274133 3.076971 2.407182 -7.751725 -4.017384 1.8082888
## X123 5.799150 1.274133 1.564217 4.749337 -7.849364 -4.815891 1.4586150
## X124 6.557896 1.286356 3.076971 7.174674 -7.542634 -3.816713 1.8245493
## X126 3.218759 1.282549 2.924466 6.225224 -7.662778 -4.509860 1.1939225
## X128 6.103215 1.282549 3.218759 4.149327 -7.662778 -4.074542 1.1939225
## X129 2.860031 1.278484 1.898648 4.149327 -7.264430 -4.422849 0.5877867
## X130 5.558929 1.286356 3.218759 4.749337 -7.581100 -4.342806 1.2237754
## X131 4.665910 1.282549 3.351388 2.005028 -8.294050 -3.729701 2.3978953
## X132 3.476091 1.282549 3.218759 5.325310 -7.469874 -4.074542 1.7404662
## X133 4.936704 1.289931 2.420557 2.407182 -7.278819 -3.729701 1.8082888
## X134 5.180840 1.289931 3.705506 4.749337 -6.437752 -4.135167 2.0918641
## X135 2.031412 1.286356 2.876338 6.225224 -7.581100 -3.611918 1.4586150
## X136 5.508162 1.293295 2.908553 4.695848 -7.418581 -4.199705 1.2089603
## X137 5.705637 1.269463 1.898648 5.427755 -7.264430 -4.074542 2.1400662
## X139 7.157766 1.264435 2.154845 4.749337 -8.180721 -4.767689 0.5306283
## X140 5.558929 1.269463 2.540305 4.204987 -7.581100 -3.963316 1.8082888
## X141 3.913012 1.269463 2.876338 4.749337 -7.706263 -4.422849 1.8082888
## X143 3.076971 1.282549 2.924466 3.578777 -7.264430 -3.324236 2.2407097
## X144 5.238363 1.274133 1.459970 2.407182 -5.952244 -4.268698 1.4109870
## X145 3.913012 1.286356 2.741908 4.749337 -7.354042 -3.816713 1.4586150
## X146 2.314505 1.286356 2.924466 3.924249 -7.195437 -3.324236 1.8082888
## X147 4.360856 1.278484 2.876338 4.204987 -7.775256 -4.074542 1.2237754
## X148 4.805045 1.320562 4.192081 4.037285 -6.725434 -2.918771 2.2617631
## X149 5.799150 1.282549 2.876338 2.791992 -7.849364 -3.575551 1.8245493
## X152 4.871752 1.293295 4.102821 3.637051 -6.725434 -2.882404 2.8903718
## X153 2.843587 1.282549 3.351388 2.407182 -7.523941 -3.506558 2.1747517
## X154 5.752800 1.274133 2.741908 4.149327 -7.264430 -4.135167 1.8245493
## X155 5.180840 1.274133 2.597435 6.225224 -7.469874 -4.017384 1.0296194
## X156 3.476091 1.278484 3.913012 5.427755 -7.156217 -3.442019 2.2192035
## X157 2.314505 1.289931 3.076971 5.325310 -7.264430 -3.540459 1.7404662
## X158 5.238363 1.269463 2.741908 3.461346 -7.264430 -4.074542 1.0296194
## X159 3.913012 1.289931 2.270306 6.225224 -7.751725 -4.342806 1.8082888
## X160 6.144037 1.286356 3.593860 7.174674 -7.561682 -3.079114 2.9957323
## X161 3.705506 1.286356 2.706796 4.149327 -7.849364 -3.912023 1.8082888
## X162 8.490785 1.293295 3.076971 6.225224 -7.824046 -4.342806 1.8245493
## X163 7.801137 1.296467 1.423676 7.174674 -8.016418 -4.509860 2.0668628
## X165 5.121987 1.274133 2.292540 3.637051 -7.849364 -4.422849 0.9555114
## X166 3.705506 1.282549 2.081821 3.578777 -7.849364 -4.074542 0.5877867
## X167 5.061733 1.296467 3.476091 5.731246 -7.264430 -3.442019 2.6390573
## X168 3.705506 1.282549 3.593860 2.791992 -7.957577 -3.381395 2.8332133
## X169 6.522658 1.282549 2.540305 5.325310 -7.641724 -3.772261 2.3025851
## X170 4.360856 1.278484 2.292540 4.204987 -7.849364 -4.342806 1.8082888
## X171 5.799150 1.282549 3.351388 5.170380 -7.523941 -4.199705 2.0149030
## X172 5.121987 1.274133 2.597435 3.578777 -7.264430 -3.863233 2.2407097
## X174 3.476091 1.302302 2.706796 5.376615 -7.662778 -3.729701 1.5475625
## X175 6.450860 1.282549 3.218759 3.637051 -7.706263 -3.816713 1.2237754
## X176 2.501234 1.293295 2.924466 6.705891 -7.106206 -4.135167 1.8082888
## X177 4.805045 1.312295 3.705506 5.731246 -7.047017 -3.352407 1.8245493
## X178 3.593860 1.264435 1.898648 4.642159 -8.334872 -4.656463 1.5475625
## X179 2.843587 1.299465 3.476091 3.924249 -7.118476 -3.244194 2.3025851
## X180 4.665910 1.286356 2.420557 2.728930 -7.581100 -3.324236 1.8082888
## X181 5.000000 1.289931 2.652897 7.174674 -8.016418 -4.422849 2.0668628
## X182 3.593860 1.282549 3.218759 5.325310 -7.182192 -3.729701 1.7404662
## X183 2.031412 1.282549 3.218759 6.225224 -7.106206 -3.540459 1.7404662
## X184 4.593226 1.289931 3.476091 3.342694 -7.369791 -3.649659 2.5649494
## X185 2.688997 1.282549 2.706796 5.630705 -7.293418 -4.135167 2.0149030
## X186 3.913012 1.278484 2.357662 5.325310 -8.180721 -4.199705 0.5306283
## X189 5.558929 1.274133 2.154845 4.749337 -7.849364 -4.342806 2.1747517
## X190 5.657628 1.289931 2.908553 6.705891 -7.824046 -3.688879 1.8245493
## X191 5.180840 1.299465 2.924466 4.037285 -7.684284 -3.912023 1.2089603
## X192 4.360856 1.304993 2.924466 5.325310 -7.418581 -3.912023 2.0668628
## X193 2.031412 1.282549 3.218759 1.796259 -7.402052 -3.729701 1.1939225
## X194 7.378459 1.299465 3.076971 3.402176 -7.487574 -3.244194 2.3978953
## X195 4.665910 1.282549 4.192081 5.427755 -7.338538 -3.688879 2.0412203
## X197 5.558929 1.274133 3.218759 3.040333 -7.849364 -4.017384 1.5686159
## X198 6.103215 1.296467 2.597435 4.370576 -7.684284 -3.863233 2.3978953
## X200 6.888655 1.278484 3.076971 5.731246 -7.581100 -3.912023 1.7404662
## X201 6.103215 1.274133 2.292540 5.325310 -7.542634 -4.017384 1.2089603
## X202 6.857203 1.269463 2.081821 4.749337 -7.354042 -3.863233 1.6094379
## X205 6.144037 1.269463 2.616102 3.810182 -7.684284 -3.963316 1.8245493
## X208 4.593226 1.296467 2.924466 3.402176 -7.222466 -3.963316 2.5649494
## X210 6.694714 1.286356 2.420557 4.749337 -7.369791 -4.656463 2.0149030
## X212 2.031412 1.278484 2.578583 1.796259 -7.849364 -4.074542 1.5475625
## X213 5.121987 1.282549 2.671032 5.731246 -7.278819 -4.135167 1.4109870
## X214 4.102821 1.274133 3.351388 4.149327 -8.180721 -3.772261 2.0412203
## X215 5.558929 1.278484 2.597435 6.225224 -7.523941 -4.074542 1.7404662
## X216 5.752800 1.286356 2.520871 8.081107 -7.264430 -4.645992 1.4816045
## X218 5.799150 1.296467 3.218759 4.695848 -7.047017 -3.123566 2.2617631
## X219 5.799150 1.264435 1.386542 1.434661 -7.264430 -4.779524 1.5475625
## X220 3.705506 1.296467 2.578583 3.578777 -7.523941 -4.017384 1.5475625
## X223 4.736472 1.286356 3.218759 4.749337 -6.927958 -3.611918 1.9740810
## X224 2.031412 1.278484 3.076971 4.749337 -7.581100 -3.540459 1.9740810
## X225 4.936704 1.278484 3.076971 5.325310 -7.354042 -3.912023 2.3025851
## X226 4.102821 1.286356 2.924466 7.174674 -7.684284 -3.540459 1.4816045
## X227 3.076971 1.289931 3.351388 4.749337 -6.907755 -3.381395 2.3025851
## X228 3.593860 1.278484 2.876338 2.978813 -7.469874 -3.912023 1.2809338
## X229 6.019723 1.274133 2.292540 4.204987 -7.929407 -4.199705 1.8082888
## X230 3.913012 1.274133 2.924466 4.204987 -7.849364 -3.963316 2.1747517
## X231 6.184269 1.286356 2.671032 5.325310 -7.469874 -4.342806 1.8082888
## X232 6.223931 1.302302 2.860031 5.731246 -7.542634 -3.912023 1.4816045
## X233 4.805045 1.296467 2.106497 4.695848 -8.016418 -3.963316 1.4816045
## X234 4.102821 1.289931 3.076971 5.325310 -7.369791 -3.772261 2.1747517
## X236 6.592710 1.282549 2.154845 4.749337 -7.706263 -4.688552 1.5686159
## X237 4.360856 1.286356 3.076971 5.630705 -7.849364 -3.506558 2.3025851
## X239 3.913012 1.282549 1.564217 4.204987 -7.706263 -3.912023 1.0296194
## X240 4.360856 1.286356 3.076971 3.578777 -7.024289 -4.017384 2.4849066
## X241 3.913012 1.282549 2.924466 5.066223 -7.469874 -4.135167 2.0149030
## X242 2.634588 1.316614 4.936704 2.791992 -6.948287 -2.453408 2.9957323
## X243 2.860031 1.264435 2.578583 1.052263 -7.264430 -4.268698 1.5475625
## X244 3.913012 1.274133 2.578583 5.376615 -7.849364 -4.268698 2.0149030
## X245 6.857203 1.264435 1.693661 7.174674 -7.751725 -5.472671 1.2089603
## X246 4.936704 1.293295 3.593860 2.978813 -6.907755 -3.079114 2.4849066
## X247 6.103215 1.286356 2.292540 7.174674 -8.217089 -4.976234 1.2089603
## X249 3.076971 1.269463 2.776394 4.204987 -7.469874 -3.912023 1.8082888
## X250 3.351388 1.278484 2.616102 4.149327 -8.047190 -3.912023 1.5260563
## X251 2.031412 1.289931 2.357662 3.578777 -7.662778 -4.509860 2.1860513
## X253 3.705506 1.278484 3.076971 2.407182 -7.402052 -3.057608 2.1860513
## X254 2.031412 1.289931 4.440875 5.325310 -7.354042 -3.324236 2.0668628
## X255 6.223931 1.286356 3.218759 4.149327 -7.751725 -3.863233 1.1939225
## X256 4.518270 1.269463 1.898648 3.040333 -7.264430 -4.815891 0.5877867
## X257 7.431248 1.264435 2.501234 5.630705 -8.047190 -4.656463 1.1939225
## X258 4.278004 1.269463 2.461332 4.149327 -7.264430 -4.509860 1.5260563
## X260 5.799150 1.274133 3.351388 3.402176 -7.824046 -3.963316 1.2089603
## X261 4.440875 1.278484 2.270306 4.642159 -8.047190 -5.132803 1.1939225
## X262 6.223931 1.282549 2.520871 6.705891 -7.684284 -4.645992 1.2089603
## X263 5.889532 1.293295 4.009916 4.037285 -7.182192 -3.244194 2.1747517
## X264 2.031412 1.302302 3.811702 5.170380 -6.502290 -3.194183 2.8903718
## X265 5.456396 1.278484 2.597435 5.731246 -8.016418 -3.912023 2.2617631
## X267 3.218759 1.286356 3.476091 3.637051 -7.581100 -3.688879 2.0149030
## X268 6.339666 1.286356 2.860031 8.081107 -7.600902 -3.912023 2.2617631
## X269 4.665910 1.278484 2.081821 4.204987 -7.706263 -4.268698 1.4586150
## X270 4.805045 1.302302 2.652897 5.325310 -7.824046 -3.863233 1.8245493
## X271 7.609273 1.299465 3.076971 5.325310 -7.751725 -3.912023 2.3978953
## X272 4.871752 1.282549 2.520871 8.520578 -7.824046 -4.074542 1.8245493
## X273 7.041123 1.286356 3.076971 6.705891 -8.016418 -4.268698 1.4816045
## X274 5.657628 1.289931 2.597435 4.695848 -7.824046 -4.199705 1.4816045
## X275 6.339666 1.282549 4.192081 3.578777 -6.812445 -3.218876 2.4849066
## X277 3.218759 1.278484 2.776394 3.637051 -7.641724 -4.199705 1.2237754
## X278 2.843587 1.293295 3.218759 4.749337 -7.354042 -3.506558 2.1517622
## X279 4.871752 1.269463 2.671032 3.637051 -7.581100 -4.135167 1.5686159
## X281 5.121987 1.293295 3.218759 4.204987 -7.706263 -3.863233 2.0149030
## X282 3.593860 1.274133 2.924466 4.802628 -7.264430 -3.575551 1.2089603
## X283 6.223931 1.296467 3.351388 5.325310 -7.418581 -3.688879 2.2617631
## X287 4.102821 1.289931 3.076971 5.427755 -8.047190 -3.688879 2.2192035
## X289 3.218759 1.274133 1.952975 5.325310 -7.581100 -4.199705 1.7404662
## X290 4.518270 1.274133 2.106497 2.791992 -7.264430 -4.422849 1.2089603
## X291 6.339666 1.274133 2.876338 5.066223 -7.581100 -4.017384 1.5686159
## X292 6.339666 1.286356 4.009916 4.204987 -7.182192 -3.688879 1.7404662
## X294 2.843587 1.278484 3.076971 3.578777 -7.354042 -3.244194 2.1517622
## X297 4.440875 1.269463 2.420557 4.642159 -7.849364 -4.017384 1.8082888
## X298 4.102821 1.274133 2.671032 3.461346 -8.294050 -3.296837 1.5260563
## X299 6.103215 1.278484 2.671032 5.325310 -7.469874 -4.422849 1.8082888
## X301 3.351388 1.286356 1.898648 4.642159 -8.517193 -4.422849 1.6863990
## X302 3.218759 1.293295 1.842554 5.731246 -7.182192 -4.074542 1.4586150
## X303 5.061733 1.293295 2.597435 3.402176 -7.684284 -4.199705 2.2617631
## X304 5.558929 1.278484 2.420557 5.731246 -7.264430 -4.656463 1.8082888
## X305 6.661108 1.307549 3.593860 6.705891 -7.047017 -3.611918 2.5649494
## X306 6.592710 1.282549 3.593860 5.731246 -7.354042 -3.540459 1.7404662
## X307 6.103215 1.302302 4.360856 5.325310 -6.812445 -3.079114 2.3025851
## X308 4.936704 1.289931 4.009916 4.749337 -6.645391 -2.813411 2.5649494
## X311 2.031412 1.286356 3.593860 3.282892 -7.293418 -3.816713 1.9169226
## X312 7.559432 1.264435 2.827004 5.170380 -7.264430 -4.268698 0.5877867
## X313 8.025855 1.293295 2.860031 1.866476 -7.824046 -3.729701 1.2089603
## X314 7.070709 1.274133 2.201921 5.731246 -7.264430 -4.199705 1.2089603
## X315 3.913012 1.293295 3.476091 4.204987 -6.907755 -3.352407 2.5649494
## X316 4.665910 1.278484 3.076971 6.225224 -7.849364 -3.912023 1.5260563
## X317 3.913012 1.274133 2.924466 3.461346 -7.849364 -3.863233 2.2192035
## X320 7.157766 1.286356 3.218759 4.802628 -8.294050 -3.963316 2.0412203
## X321 4.665910 1.286356 2.924466 2.407182 -7.264430 -3.649659 1.9459101
## X322 3.218759 1.293295 4.192081 7.632751 -6.725434 -3.244194 2.4849066
## X323 7.297547 1.293295 3.218759 6.705891 -7.684284 -4.268698 1.2089603
## X324 5.121987 1.293295 3.076971 4.204987 -7.354042 -4.074542 1.7404662
## X325 4.805045 1.307549 3.476091 5.325310 -7.222466 -3.442019 1.4816045
## X326 5.799150 1.282549 2.860031 5.325310 -7.264430 -4.791500 1.1939225
## X327 4.871752 1.274133 3.218759 3.637051 -7.849364 -3.649659 1.8082888
## X329 2.501234 1.282549 2.924466 5.630705 -7.849364 -4.074542 1.8082888
## X330 2.843587 1.278484 2.876338 4.749337 -8.047190 -4.268698 2.0668628
## X331 6.857203 1.293295 2.005655 5.325310 -8.111728 -3.963316 2.2617631
## X332 5.180840 1.282549 3.593860 6.705891 -7.323271 -3.863233 1.4816045
## X333 6.223931 1.293295 2.860031 4.695848 -7.418581 -3.863233 1.8245493
## IL_5 IL_6 IL_6_Receptor IL_7 IL_8
## X1 1.09861229 0.26936976 0.64279595 4.8050453 1.711325
## X2 0.69314718 0.09622438 0.43115645 3.7055056 1.675557
## X3 -0.24846136 0.18568645 0.09668586 1.0056222 1.691393
## X5 1.16315081 -0.07204658 0.09668586 4.2875620 1.764298
## X6 -0.40047757 0.18568645 -0.51727788 2.7763945 1.708270
## X7 0.83290912 0.09622438 0.43115645 4.0099156 1.698489
## X8 -0.09431068 1.00562217 -0.60969274 3.7055056 1.701858
## X9 -0.15082289 -0.64724718 0.27296583 0.6848724 1.691393
## X11 0.18232156 -1.09654116 0.35404039 2.9244660 1.719944
## X12 0.33647224 -0.39871863 0.09668586 2.9244660 1.675557
## X14 0.09531018 0.49280272 0.00000000 1.0056222 1.760954
## X16 0.26236426 0.42235886 0.18739989 1.2696362 1.705116
## X17 -0.17435339 0.26936976 -0.25138068 2.5785828 1.760954
## X18 -0.75502258 -0.17134851 0.00000000 2.7592279 1.573599
## X19 -0.30110509 -0.37116408 -0.33825519 1.3095734 1.719944
## X20 -0.67334455 -0.07204658 -0.39066087 2.7934108 1.750000
## X21 -0.54472718 -0.09342680 -0.30031103 0.5598079 1.701858
## X22 0.40546511 -1.01892829 0.35404039 3.5938596 1.764298
## X23 -0.13926207 0.62373057 -0.51727788 2.1548454 1.675557
## X24 0.47000363 -0.15990607 0.35404039 3.2187591 1.695003
## X25 -0.71334989 -0.33102365 -0.18121747 1.5642169 1.657003
## X26 -0.17435339 -0.24238905 -0.30031103 1.5642169 1.679744
## X28 0.33647224 -0.09342680 0.27296583 2.1548454 1.671202
## X29 0.09531018 -0.15990607 0.00000000 2.7763945 1.675557
## X30 1.94591015 0.09622438 -0.20419869 3.2187591 1.679744
## X31 0.64185389 0.34805188 -0.12541320 3.2187591 1.772079
## X34 0.00000000 1.53020362 -0.40410820 0.6848724 1.757464
## X35 -0.37106368 -0.64724718 -0.32548281 4.3608562 1.646447
## X36 0.64185389 0.34805188 0.18739989 4.3608562 1.717157
## X37 0.00000000 -0.83723396 0.00000000 1.5642169 1.701858
## X38 -0.37106368 -0.18290044 0.09668586 2.0567968 1.739622
## X39 0.58778666 -1.18086796 -0.05090066 3.9130123 1.657003
## X40 -0.13926207 0.26936976 0.00000000 1.8425543 1.730320
## X41 0.18232156 -0.99435191 0.27296583 3.9130123 1.717157
## X42 0.00000000 -0.18290044 0.18739989 2.1548454 1.711325
## X43 -0.30110509 0.49280272 -0.01003520 3.2187591 1.698489
## X44 0.33647224 -0.24238905 -0.06130466 3.8117017 1.760954
## X45 0.26236426 -0.41274719 0.35404039 3.2187591 1.725279
## X46 0.33647224 -0.07204658 0.00000000 1.8425543 1.727834
## X47 -1.04982212 0.34805188 -0.10371280 2.1548454 1.679744
## X48 0.64185389 -0.07204658 0.35404039 3.9130123 1.701858
## X50 0.58778666 -0.99435191 -0.13639307 2.9244660 1.725279
## X51 0.09531018 -1.45166590 0.50475301 2.3362105 1.661938
## X53 0.09531018 0.26936976 -0.26344327 3.4760910 1.708270
## X55 0.18232156 -0.45589516 0.27296583 2.7934108 1.730320
## X56 -0.15082289 0.00000000 -0.16987200 2.0567968 1.683772
## X57 0.58778666 -0.15990607 0.64279595 3.7055056 1.714286
## X59 -0.15082289 0.18568645 0.27296583 1.6936607 1.735094
## X60 -0.18632958 0.55980793 -0.04057305 2.1548454 1.705116
## X61 0.33647224 -0.17134851 -0.19265903 2.0567968 1.687652
## X62 -0.08338161 0.09622438 -0.12541320 5.1219873 1.695003
## X63 -0.65392647 -0.09342680 0.00000000 2.1548454 1.683772
## X64 0.33647224 1.30957344 0.18739989 1.2696362 1.711325
## X65 -0.67334455 -0.24238905 -0.31283574 1.8425543 1.714286
## X67 0.00000000 -0.27956244 0.27296583 1.2696362 1.675557
## X68 -0.56211892 -1.01892829 -0.08234738 2.7763945 1.695003
## X69 -0.75502258 -0.26704121 -0.13639307 2.1548454 1.683772
## X70 0.58778666 -0.24238905 -0.14746164 2.5785828 1.691393
## X71 -0.13926207 0.09622438 0.35404039 1.0056222 1.714286
## X72 1.19392247 -0.24238905 0.43115645 4.2780037 1.746000
## X73 0.09531018 0.09622438 0.18739989 2.3788658 1.691393
## X74 -1.42711636 0.34805188 -0.32548281 3.5938596 1.708270
## X75 0.26236426 1.26963623 -0.33825519 3.7055056 1.762644
## X76 0.33647224 0.18568645 0.09668586 1.2696362 1.732739
## X77 0.09531018 -0.06149412 0.27296583 3.4760910 1.722650
## X78 0.99325177 -0.09342680 0.50475301 3.4760910 1.779137
## X80 0.40546511 0.09622438 0.00000000 3.9130123 1.687652
## X81 0.47000363 -0.09342680 0.27296583 2.9244660 1.705116
## X82 0.00000000 -1.09654116 0.18739989 2.5785828 1.717157
## X83 0.09531018 0.79981129 0.35404039 3.5938596 1.727834
## X84 -0.15082289 0.00000000 -0.25138068 2.1548454 1.683772
## X85 0.83290912 -1.45166590 -0.03032047 4.0099156 1.725279
## X86 0.91629073 0.18568645 0.50475301 4.3608562 1.760954
## X88 -0.43078292 0.09622438 -0.18121747 2.1548454 1.751931
## X90 -0.56211892 0.00000000 -0.45939334 1.7245084 1.651845
## X93 0.69314718 -1.45166590 0.43115645 3.0769713 1.735094
## X94 0.91629073 0.49280272 0.18739989 4.1028210 1.794804
## X95 0.33647224 0.34805188 -0.07178642 3.7055056 1.705116
## X96 0.64185389 -1.53427578 -0.26344327 2.5785828 1.695003
## X97 0.00000000 -0.61296931 0.64279595 2.1548454 1.695003
## X98 0.00000000 -0.07204658 -0.43144357 2.7592279 1.634852
## X99 0.47000363 0.62373057 -0.12541320 3.0769713 1.767505
## X100 0.33647224 -0.64724718 0.50475301 2.3362105 1.666667
## X103 1.09861229 0.34805188 0.64279595 3.9130123 1.725279
## X104 0.09531018 0.00000000 -0.06130466 3.7055056 1.719944
## X105 0.64185389 -0.70078093 -0.10371280 3.4760910 1.725279
## X107 0.58778666 0.09622438 0.27296583 3.2187591 1.737387
## X108 0.26236426 0.34805188 0.27296583 3.9130123 1.711325
## X109 0.58778666 -0.24238905 0.27296583 2.1548454 1.661938
## X110 0.00000000 -0.50074709 -0.14746164 2.1548454 1.687652
## X111 0.40546511 -0.15990607 -0.16987200 3.5938596 1.714286
## X112 0.83290912 -0.07204658 0.64279595 5.3496753 1.737387
## X113 0.58778666 -0.24238905 0.27296583 3.9130123 1.725279
## X114 -0.17435339 0.09622438 -0.41770114 2.5785828 1.711325
## X115 -0.49429632 -0.18290044 -0.35115595 2.1548454 1.714286
## X117 0.53062825 0.00000000 0.50475301 3.4760910 1.711325
## X118 0.40546511 -0.24238905 0.27296583 2.9244660 1.730320
## X121 -0.15082289 0.95678949 0.64279595 1.2696362 1.711325
## X123 -0.18632958 -0.77658561 -0.19265903 2.1548454 1.657003
## X124 -0.18632958 -0.37116408 0.57519641 3.4760910 1.651845
## X126 0.00000000 0.34805188 -0.13639307 1.2696362 1.705116
## X128 0.47000363 -0.64724718 0.43115645 2.9244660 1.773545
## X129 -0.37106368 -0.51610326 -0.62582535 1.6936607 1.651845
## X130 0.00000000 -0.50074709 -0.05090066 0.5598079 1.687652
## X131 0.18232156 -0.83723396 0.09668586 3.4760910 1.691393
## X132 0.00000000 -0.26704121 0.35404039 2.0567968 1.717157
## X133 0.33647224 -1.09654116 0.09668586 3.4760910 1.671202
## X134 0.47000363 -0.61296931 0.35404039 2.9244660 1.735094
## X135 0.00000000 0.00000000 0.18739989 2.1548454 1.646447
## X136 -0.56211892 0.00000000 -0.16987200 3.7055056 1.698489
## X137 -0.13926207 -0.45589516 -0.21583851 2.3788658 1.661938
## X139 0.00000000 -0.24238905 0.00000000 0.5598079 1.646447
## X140 0.18232156 -1.53427578 -0.11452033 2.9244660 1.711325
## X141 0.33647224 -0.02016195 0.64279595 1.8708303 1.708270
## X143 0.00000000 0.09622438 -0.33825519 3.4760910 1.714286
## X144 0.00000000 0.74349177 -0.10371280 0.5598079 1.675557
## X145 0.18232156 -0.37116408 0.50475301 3.5938596 1.691393
## X146 0.64185389 -0.24238905 0.35404039 3.9130123 1.730320
## X147 0.33647224 0.18568645 0.57519641 2.1548454 1.737387
## X148 0.87546874 0.79981129 -0.27561748 5.0617331 1.769060
## X149 0.33647224 0.26936976 0.18739989 3.4760910 1.717157
## X152 0.99325177 -0.61296931 0.43115645 4.5182697 1.770584
## X153 0.74193734 1.30957344 -0.21583851 3.4760910 1.759228
## X154 0.18232156 -0.24238905 -0.04057305 1.4599700 1.657003
## X155 0.00000000 -0.07204658 0.09668586 2.1548454 1.701858
## X156 0.58778666 0.49280272 -0.06130466 3.7055056 1.739622
## X157 0.47000363 0.49280272 0.27296583 2.7592279 1.687652
## X158 0.09531018 0.26936976 0.18739989 1.8425543 1.691393
## X159 -0.65392647 -1.45166590 0.00000000 2.1548454 1.753817
## X160 0.69314718 -0.07204658 0.27296583 3.9130123 1.687652
## X161 0.18232156 -0.18290044 0.70781531 2.9244660 1.679744
## X162 0.09531018 -1.01892829 0.27296583 3.0769713 1.695003
## X163 -0.56211892 0.00000000 0.09668586 0.7434918 1.679744
## X165 -0.17435339 -1.45166590 0.27296583 0.5598079 1.708270
## X166 -0.05129329 -0.64724718 0.18739989 2.0567968 1.640789
## X167 0.87546874 -0.37116408 0.57519641 4.1920814 1.727834
## X168 1.02961942 -0.45589516 0.27296583 4.1920814 1.708270
## X169 -0.17435339 -0.24238905 0.00000000 2.5785828 1.666667
## X170 -0.40047757 0.26936976 -0.31283574 1.5642169 1.695003
## X171 0.58778666 -0.64724718 0.27296583 4.1920814 1.714286
## X172 0.00000000 -0.50074709 0.35404039 1.4236758 1.671202
## X174 0.33647224 0.42235886 0.09668586 2.0567968 1.719944
## X175 0.33647224 -0.09342680 -0.23942725 3.7055056 1.741801
## X176 0.00000000 -0.39871863 -0.15862068 2.5595409 1.727834
## X177 0.40546511 -0.15990607 0.57519641 4.1028210 1.675557
## X178 -0.37106368 0.00000000 -0.09298900 2.1548454 1.622036
## X179 0.64185389 0.09622438 0.35404039 5.0000000 1.760954
## X180 0.58778666 0.26936976 -0.67562020 2.5785828 1.748024
## X181 -0.09431068 -0.15990607 0.18739989 3.4760910 1.708270
## X182 0.33647224 -0.07204658 -0.31283574 2.0567968 1.698489
## X183 0.18232156 -0.07204658 -0.30031103 3.5938596 1.725279
## X184 0.58778666 -1.53427578 0.18739989 2.1548454 1.705116
## X185 0.26236426 -0.18290044 0.35404039 2.7763945 1.691393
## X186 0.00000000 -0.09342680 0.18739989 1.5642169 1.607768
## X189 -0.17435339 -0.61296931 0.27296583 2.1548454 1.657003
## X190 0.09531018 -1.01892829 0.09668586 2.7763945 1.683772
## X191 0.33647224 -0.81662520 -0.21583851 2.7763945 1.705116
## X192 0.83290912 -0.37116408 0.50475301 3.3513883 1.739622
## X193 0.47000363 -0.51610326 0.27296583 2.5595409 1.698489
## X194 0.26236426 0.00000000 0.18739989 3.9130123 1.666667
## X195 0.87546874 1.00562217 0.18739989 3.7055056 1.772079
## X197 0.58778666 -0.02016195 0.70781531 2.9244660 1.717157
## X198 0.26236426 -0.50074709 0.09668586 2.0567968 1.661938
## X200 0.33647224 0.34805188 0.57519641 3.4760910 1.732739
## X201 -0.09431068 -0.06149412 -0.02014161 3.8117017 1.708270
## X202 -0.43078292 -0.26704121 0.00000000 3.2187591 1.695003
## X205 0.47000363 -0.45589516 0.35404039 2.3788658 1.705116
## X208 0.26236426 -0.15990607 0.35404039 3.0769713 1.675557
## X210 0.09531018 -0.24238905 0.50475301 0.5598079 1.683772
## X212 0.00000000 -0.99435191 0.00000000 2.5595409 1.675557
## X213 0.18232156 -0.41274719 0.18739989 2.1548454 1.691393
## X214 0.18232156 0.85402456 0.50475301 3.2187591 1.806653
## X215 0.33647224 -0.26704121 0.00000000 2.0567968 1.719944
## X216 -0.56211892 0.34805188 -0.08234738 1.7245084 1.727834
## X218 0.09531018 -0.06149412 0.43115645 3.3513883 1.698489
## X219 -0.24846136 0.18568645 0.00000000 2.0567968 1.679744
## X220 0.18232156 -0.39871863 0.27296583 2.5595409 1.666667
## X223 0.33647224 -0.26704121 0.00000000 4.1028210 1.701858
## X224 0.53062825 -0.50074709 0.09668586 2.1548454 1.657003
## X225 0.33647224 -0.26704121 0.50475301 2.0567968 1.714286
## X226 0.78845736 0.49280272 0.57519641 2.3362105 1.711325
## X227 0.64185389 0.00000000 0.27296583 4.3608562 1.727834
## X228 -0.43078292 -0.07204658 -0.18121747 3.2187591 1.679744
## X229 -0.54472718 -0.61296931 -0.07178642 2.1548454 1.695003
## X230 0.00000000 0.55980793 0.09668586 2.1548454 1.719944
## X231 0.18232156 -0.41274719 0.09668586 1.5642169 1.695003
## X232 -0.09431068 0.18568645 0.35404039 3.0769713 1.691393
## X233 -0.30110509 0.00000000 -0.30031103 1.7245084 1.687652
## X234 0.18232156 -0.71923319 -0.07178642 3.4760910 1.675557
## X236 0.18232156 -0.15990607 0.00000000 2.1548454 1.634852
## X237 0.47000363 -0.64724718 0.35404039 3.4760910 1.732739
## X239 -0.18632958 0.79981129 -0.40410820 5.7056368 1.695003
## X240 0.53062825 0.09622438 0.18739989 2.1548454 1.737387
## X241 0.58778666 -1.45166590 0.00000000 3.9130123 1.657003
## X242 0.78845736 0.09622438 0.64279595 5.1219873 1.737387
## X243 -0.15082289 0.09622438 0.09668586 1.2696362 1.661938
## X244 0.00000000 0.79981129 0.18739989 1.2696362 1.797969
## X245 -0.41551544 -0.15990607 -0.67562020 1.7245084 1.687652
## X246 0.74193734 -0.26704121 -0.18121747 4.2780037 1.711325
## X247 -0.41551544 -0.37116408 -0.33825519 2.0567968 1.671202
## X249 0.58778666 -0.24238905 0.83099088 1.5642169 1.687652
## X250 0.18232156 -0.99435191 -0.05090066 3.0769713 1.739622
## X251 -1.04982212 0.18568645 0.18739989 1.2696362 1.691393
## X253 0.47000363 0.18641819 0.43115645 3.4760910 1.750000
## X254 1.16315081 -0.37116408 0.64279595 4.3608562 1.762644
## X255 0.64185389 -0.39871863 0.18739989 2.0567968 1.750000
## X256 0.00000000 -0.64724718 -0.18121747 2.0567968 1.646447
## X257 -0.15082289 -0.81662520 0.00000000 2.0567968 1.628609
## X258 0.18232156 0.90630094 -0.13639307 2.1548454 1.695003
## X260 -0.09431068 -0.64724718 -0.12541320 3.0769713 1.741801
## X261 -0.65392647 -0.27956244 -0.03032047 1.2696362 1.687652
## X262 -0.30110509 -0.15990607 0.18739989 1.7245084 1.666667
## X263 0.69314718 -0.15990607 0.50475301 3.9130123 1.741801
## X264 1.06471074 -0.64724718 -0.22758062 4.5182697 1.753817
## X265 0.33647224 -0.15990607 0.27296583 4.2780037 1.661938
## X267 0.33647224 0.26936976 0.57519641 2.9244660 1.719944
## X268 0.18232156 -0.37116408 0.00000000 3.7055056 1.732739
## X269 0.47000363 0.26936976 -0.19265903 2.7592279 1.657003
## X270 -0.09431068 -0.81662520 0.64279595 2.7763945 1.739622
## X271 0.26236426 -0.37116408 0.35404039 3.4760910 1.711325
## X272 -0.18632958 0.18568645 -0.25138068 3.7055056 1.687652
## X273 -0.30110509 0.68487244 0.57519641 2.3362105 1.746000
## X274 0.40546511 -0.15990607 0.27296583 0.7434918 1.675557
## X275 0.95551145 0.49280272 0.50475301 4.4408751 1.691393
## X277 -0.07257069 -0.41274719 0.18739989 2.5785828 1.717157
## X278 0.64185389 -0.07204658 0.35404039 3.9130123 1.719944
## X279 0.18232156 -1.27337604 0.00000000 2.5785828 1.675557
## X281 0.47000363 -0.09342680 0.35404039 2.5785828 1.705116
## X282 0.33647224 0.34805188 -0.48799216 1.8425543 1.743926
## X283 0.69314718 -0.15990607 0.09668586 3.4760910 1.753817
## X287 0.58778666 0.09622438 0.09668586 3.9130123 1.675557
## X289 -0.18632958 -0.07204658 -0.60969274 3.5938596 1.687652
## X290 -0.37106368 -0.24238905 -0.57808019 2.3788658 1.698489
## X291 0.33647224 0.49280272 0.09668586 3.2187591 1.759228
## X292 0.33647224 1.81380304 0.64279595 3.5938596 1.760954
## X294 0.18232156 -0.26704121 -0.48799216 3.9130123 1.671202
## X297 0.00000000 -0.39871863 0.57519641 1.2696362 1.640789
## X298 0.47000363 -0.24238905 -0.30031103 2.9244660 1.657003
## X299 -0.17435339 -0.83723396 0.27296583 2.1548454 1.675557
## X301 0.18232156 -0.39871863 0.18739989 2.1548454 1.607768
## X302 0.18232156 0.26936976 -0.45939334 2.1548454 1.708270
## X303 0.47000363 0.68487244 -0.12541320 2.3362105 1.717157
## X304 0.18232156 -0.18290044 0.00000000 2.1548454 1.701858
## X305 0.58778666 -0.64724718 -0.08234738 3.7055056 1.711325
## X306 0.58778666 -0.50074709 0.18739989 4.1920814 1.743926
## X307 1.16315081 -0.26704121 0.00000000 4.2780037 1.753817
## X308 0.83290912 0.09622438 0.57519641 4.6659102 1.691393
## X311 0.47000363 -0.39871863 -0.27561748 4.2780037 1.730320
## X312 0.09531018 0.00000000 -0.02014161 2.5595409 1.683772
## X313 -0.30110509 -0.25465110 0.43115645 3.0769713 1.705116
## X314 -0.56211892 -1.45166590 -0.06130466 2.5595409 1.661938
## X315 0.64185389 0.09622438 0.35404039 4.3608562 1.743926
## X316 0.18232156 -0.07204658 0.50475301 4.1028210 1.671202
## X317 0.18232156 -0.45589516 0.35404039 2.7934108 1.646447
## X320 -0.13926207 0.00000000 0.00000000 4.1028210 1.666667
## X321 -0.13926207 -0.07204658 -0.64218542 3.7055056 1.679744
## X322 0.58778666 -0.39871863 0.18739989 4.4408751 1.698489
## X323 0.09531018 0.00000000 -0.27561748 2.7763945 1.675557
## X324 0.18232156 -0.26704121 0.09668586 3.2187591 1.698489
## X325 -0.09431068 0.09622438 0.43115645 4.4408751 1.722650
## X326 -0.10503540 -0.81662520 0.35404039 2.0567968 1.701858
## X327 0.18232156 0.26936976 0.09668586 2.9244660 1.725279
## X329 0.64185389 0.18568645 0.09668586 2.1548454 1.714286
## X330 0.26236426 0.42235886 -0.05090066 3.7055056 1.727834
## X331 -0.56211892 -1.01892829 -0.06130466 3.0769713 1.600000
## X332 -0.09431068 -0.15990607 -0.35115595 3.3513883 1.717157
## X333 0.69314718 -1.27337604 0.43115645 3.9130123 1.727834
## IP_10_Inducible_Protein_10 IgA Insulin
## X1 6.242223 -6.812445 -0.6258253
## X2 5.686975 -6.377127 -0.9431406
## X3 5.049856 -6.319969 -1.4466191
## X5 6.369901 -4.645992 -0.3003110
## X6 5.480639 -5.809143 -1.3405481
## X7 5.451038 -6.645391 -0.8398078
## X8 5.968708 -5.083206 -1.0105157
## X9 5.375278 -6.645391 -1.4852687
## X11 6.144186 -5.776353 -1.3079612
## X12 5.164786 -6.502290 -1.0827874
## X14 6.313548 -5.599422 -1.3405481
## X16 5.598422 -5.449140 -1.4097335
## X17 6.063785 -5.496768 -1.1884825
## X18 5.036953 -6.214608 -1.6677387
## X19 7.383989 -7.323271 -1.3405481
## X20 5.375278 -4.509860 -1.3405481
## X21 6.218600 -5.339139 -1.4466191
## X22 5.789960 -5.403678 -1.1884825
## X23 5.056246 -5.952244 -1.2765538
## X24 5.683580 -6.119298 -0.8203007
## X25 5.416100 -7.402052 -1.2765538
## X26 5.843544 -6.165818 -1.4852687
## X28 5.758902 -6.502290 -0.7456014
## X29 5.480639 -6.437752 -1.3405481
## X30 5.837730 -7.293418 -1.3079612
## X31 6.428105 -6.074846 -0.9431406
## X34 5.484797 -5.278515 -1.1884825
## X35 4.905275 -5.744604 -1.8132213
## X36 6.612041 -4.803621 -0.7638043
## X37 6.086775 -6.074846 -1.2765538
## X38 5.902633 -6.907755 -1.3079612
## X39 5.181784 -6.119298 -0.7823131
## X40 6.527958 -6.119298 -1.5259022
## X41 5.484797 -5.496768 -1.2168953
## X42 5.541264 -6.214608 -1.8652431
## X43 5.937536 -6.265901 -1.4466191
## X44 6.675823 -6.437752 -1.2765538
## X45 6.118097 -5.744604 -1.0827874
## X46 5.204007 -6.571283 -1.2168953
## X47 5.389072 -6.907755 -1.8652431
## X48 5.758902 -6.032287 -0.8799269
## X50 5.723585 -5.572754 -1.1884825
## X51 5.451038 -6.948577 -1.5687868
## X53 5.983936 -5.360193 -1.1081246
## X55 5.476464 -6.725434 -1.5259022
## X56 5.913503 -6.437752 -1.4852687
## X57 6.156979 -5.259097 -1.0827874
## X59 6.565265 -5.472671 -1.8132213
## X60 5.817111 -5.572754 -1.3744281
## X61 5.147494 -6.502290 -1.4466191
## X62 5.817111 -6.265901 -1.3744281
## X63 5.981414 -6.032287 -2.1691668
## X64 6.059123 -5.360193 -1.4097335
## X65 5.129899 -6.645391 -1.3405481
## X67 5.468060 -6.812445 -2.1691668
## X68 5.318120 -6.725434 -1.2462272
## X69 5.225747 -6.119298 -1.3405481
## X70 5.765191 -7.236259 -1.1884825
## X71 5.153292 -7.035589 -1.2765538
## X72 6.565265 -5.201186 -0.4177011
## X73 5.805135 -6.032287 -1.1081246
## X74 5.758902 -5.572754 -2.1464071
## X75 6.115892 -4.791500 -1.0105157
## X76 5.141664 -6.165818 -1.3079612
## X77 5.420535 -5.360193 -1.2462272
## X78 6.700731 -5.744604 -0.9431406
## X80 5.855072 -5.991465 -1.0340201
## X81 5.891644 -7.195437 -1.1341535
## X82 5.846439 -6.502290 -1.2765538
## X83 5.983936 -6.437752 -1.2462272
## X84 5.690359 -6.907755 -1.4852687
## X85 6.359574 -5.776353 -0.9005739
## X86 6.023448 -5.020686 -0.5472920
## X88 5.958425 -6.502290 -1.3744281
## X90 5.505332 -6.645391 -1.4852687
## X93 5.799093 -5.067206 -1.2462272
## X94 6.813445 -4.268698 -0.7276925
## X95 5.697093 -6.725434 -1.0827874
## X96 6.300786 -6.725434 -1.3405481
## X97 5.905362 -6.645391 -2.0098877
## X98 5.327876 -6.927958 -1.5259022
## X99 5.525453 -6.437752 -0.9651041
## X100 5.662960 -6.377127 -1.6142515
## X103 6.115892 -8.047190 -0.8799269
## X104 5.686975 -6.214608 -1.1081246
## X105 5.068904 -6.645391 -0.9431406
## X107 5.361292 -6.725434 -0.9216381
## X108 6.326149 -6.437752 -0.7823131
## X109 5.384495 -6.319969 -1.6677387
## X110 5.752573 -7.250246 -1.4466191
## X111 5.529429 -6.377127 -1.0105157
## X112 6.423247 -5.083206 -0.3641883
## X113 6.322565 -4.699481 -0.8596776
## X114 5.468060 -5.521461 -2.0098877
## X115 6.879356 -4.879607 -1.4852687
## X117 5.793014 -6.812445 -1.0340201
## X118 6.579251 -6.319969 -0.8011407
## X121 5.673323 -5.318520 -1.7093141
## X123 5.451038 -6.502290 -2.1464071
## X124 5.075174 -6.074846 -0.7456014
## X126 5.049856 -6.319969 -1.8132213
## X128 6.651572 -5.914504 -1.4097335
## X129 5.934894 -6.437752 -1.8132213
## X130 5.793014 -5.259097 -1.1884825
## X131 4.962845 -7.082109 -1.1081246
## X132 5.852202 -6.214608 -1.2168953
## X133 6.107023 -5.083206 -0.9875535
## X134 5.743003 -5.472671 -0.9875535
## X135 5.332719 -5.546779 -1.0580989
## X136 6.410175 -5.083206 -1.2765538
## X137 4.934474 -5.713833 -1.2765538
## X139 5.501258 -6.265901 -1.8652431
## X140 6.406880 -6.265901 -1.0827874
## X141 5.429346 -6.645391 -1.2765538
## X143 6.068426 -5.991465 -1.2168953
## X144 6.013715 -6.214608 -1.8652431
## X145 5.513429 -6.032287 -1.3744281
## X146 6.646391 -4.879607 -0.7638043
## X147 6.651572 -6.938214 -1.1884825
## X148 6.588926 -5.952244 -0.2275806
## X149 5.720312 -7.338538 -1.0580989
## X152 6.431331 -5.683980 -0.3003110
## X153 6.165418 -5.099467 -0.8596776
## X154 4.990433 -7.013116 -1.2168953
## X155 5.616771 -6.265901 -1.3079612
## X156 5.472271 -5.240048 -0.8011407
## X157 4.927254 -6.571283 -1.0827874
## X158 4.997212 -5.914504 -1.4466191
## X159 6.259581 -5.914504 -1.4852687
## X160 4.962845 -5.496768 -0.8011407
## X161 6.444131 -5.952244 -1.2462272
## X162 5.846439 -7.118476 -1.2765538
## X163 5.641907 -6.907755 -1.4466191
## X165 6.184149 -6.645391 -1.7255647
## X166 5.613128 -6.571283 -1.4852687
## X167 6.220590 -6.907755 -0.8398078
## X168 5.111988 -6.725434 -0.7823131
## X169 5.575949 -5.599422 -1.2765538
## X170 6.336826 -5.952244 -1.7255647
## X171 5.899897 -5.149897 -1.1884825
## X172 5.389072 -6.645391 -1.1341535
## X174 5.648974 -5.521461 -1.2168953
## X175 5.828946 -4.625373 -1.0340201
## X176 6.169611 -6.437752 -1.4852687
## X177 5.198497 -6.812445 -0.9651041
## X178 5.897154 -6.907755 -1.8652431
## X179 6.073045 -4.828314 -0.8011407
## X180 6.220738 -6.119298 -1.1609217
## X181 5.135798 -6.571283 -1.4097335
## X182 5.214936 -10.519674 -1.0827874
## X183 4.990433 -5.809143 -1.0827874
## X184 5.739793 -6.812445 -1.0827874
## X185 5.863631 -5.809143 -1.4097335
## X186 4.779123 -6.265901 -1.4466191
## X189 5.720312 -5.878136 -1.3405481
## X190 5.968708 -5.654992 -1.2462272
## X191 5.575949 -6.119298 -1.3405481
## X192 6.315358 -6.165818 -0.9651041
## X193 5.752573 -7.082109 -1.1341535
## X194 5.493061 -6.165818 -1.0340201
## X195 5.805135 -6.165818 -0.7456014
## X197 5.777652 -5.449140 -1.1341535
## X198 5.958425 -6.725434 -1.1341535
## X200 5.549076 -6.725434 -1.2462272
## X201 6.063785 -6.165818 -1.2765538
## X202 5.659482 -6.991137 -1.4466191
## X205 5.135798 -5.878136 -1.1081246
## X208 6.903747 -6.265901 -1.0340201
## X210 6.001415 -6.502290 -1.7255647
## X212 5.407172 -7.799353 -1.4852687
## X213 5.424950 -5.713833 -1.1341535
## X214 5.298317 -6.319969 -0.8596776
## X215 5.278115 -6.571283 -1.3079612
## X216 5.934894 -5.878136 -1.4852687
## X218 6.456770 -4.840893 -0.8596776
## X219 5.986452 -6.119298 -1.8652431
## X220 5.361292 -7.452482 -1.0827874
## X223 5.442418 -5.298317 -0.9005739
## X224 5.733341 -5.713833 -1.0105157
## X225 5.752573 -6.377127 -1.1341535
## X226 5.575949 -5.521461 -1.2462272
## X227 5.996452 -5.318520 -0.9005739
## X228 5.652489 -6.812445 -1.2168953
## X229 5.648974 -5.221356 -1.4852687
## X230 5.579730 -5.426151 -1.2765538
## X231 5.863631 -6.502290 -1.5687868
## X232 5.384495 -5.599422 -1.1341535
## X233 5.937536 -7.106206 -1.5687868
## X234 4.969813 -5.184989 -1.0827874
## X236 5.198497 -6.812445 -1.7255647
## X237 5.953243 -6.980326 -0.9875535
## X239 5.030438 -5.843045 -1.5259022
## X240 5.288267 -7.523941 -1.1884825
## X241 5.288267 -6.319969 -1.0827874
## X242 5.537334 -4.342806 -0.1586207
## X243 5.093750 -5.683980 -1.6142515
## X244 5.902633 -6.645391 -1.6142515
## X245 4.700480 -6.377127 -1.3405481
## X246 6.298949 -4.947660 -0.7638043
## X247 5.817111 -6.645391 -1.7708847
## X249 5.590987 -7.182192 -1.1884825
## X250 5.746203 -5.914504 -1.1609217
## X251 5.686975 -6.571283 -1.4097335
## X253 6.003887 -4.976234 -1.2765538
## X254 6.793466 -5.914504 -0.8398078
## X255 5.993961 -5.184989 -1.2462272
## X256 4.941642 -6.907755 -1.8652431
## X257 5.123964 -7.293418 -1.4852687
## X258 5.323010 -6.927958 -1.2765538
## X260 5.872118 -5.878136 -1.1081246
## X261 5.648974 -6.265901 -1.8132213
## X262 4.844187 -6.074846 -1.3405481
## X263 6.077642 -7.082109 -0.7638043
## X264 6.070738 -5.472671 -0.6756202
## X265 5.303305 -5.713833 -1.2462272
## X267 6.063785 -5.599422 -1.1884825
## X268 6.013715 -6.725434 -1.1884825
## X269 5.087596 -8.145630 -1.6677387
## X270 5.620401 -5.843045 -1.2462272
## X271 5.924256 -5.472671 -1.2168953
## X272 5.820083 -5.381699 -1.2765538
## X273 6.173786 -6.119298 -1.2765538
## X274 5.587249 -6.502290 -1.4466191
## X275 6.122493 -5.991465 -0.7823131
## X277 6.137727 -5.683980 -1.3405481
## X278 6.357842 -5.878136 -0.8398078
## X279 6.186209 -5.572754 -1.3405481
## X281 5.631212 -5.221356 -1.0340201
## X282 5.356586 -5.991465 -0.9431406
## X283 6.873164 -5.744604 -1.2462272
## X287 5.135798 -5.809143 -0.9651041
## X289 5.501258 -5.952244 -1.3079612
## X290 5.517453 -5.991465 -1.4466191
## X291 5.389072 -5.381699 -1.2765538
## X292 6.617403 -6.265901 -1.0827874
## X294 5.840642 -6.571283 -1.0340201
## X297 5.517453 -5.952244 -1.4097335
## X298 4.317488 -6.119298 -1.0580989
## X299 6.098074 -6.725434 -1.4466191
## X301 5.590987 -7.542634 -1.9446703
## X302 5.241747 -6.165818 -1.1341535
## X303 5.720312 -6.119298 -1.2462272
## X304 5.796058 -6.437752 -1.8132213
## X305 5.361292 -5.713833 -1.0827874
## X306 5.497168 -5.472671 -1.0340201
## X307 6.532334 -5.546779 -0.6421854
## X308 6.054439 -5.521461 -0.6096927
## X311 6.278521 -5.221356 -1.0827874
## X312 5.874931 -6.032287 -1.4852687
## X313 6.059123 -6.502290 -1.3405481
## X314 5.087596 -7.035589 -1.9145792
## X315 6.208590 -5.339139 -0.7823131
## X316 4.356709 -6.119298 -1.0580989
## X317 5.971262 -6.907755 -1.1341535
## X320 5.252273 -4.710531 -1.3405481
## X321 5.111988 -7.024289 -1.2462272
## X322 6.011267 -5.051457 -0.6421854
## X323 6.897705 -6.214608 -1.4852687
## X324 6.208590 -7.169120 -1.1341535
## X325 7.501082 -6.319969 -0.9651041
## X326 5.560682 -6.812445 -1.5687868
## X327 5.587249 -5.240048 -1.2168953
## X329 5.926926 -6.812445 -1.2765538
## X330 5.267858 -4.199705 -1.3744281
## X331 5.293305 -6.265901 -1.5687868
## X332 5.273000 -5.914504 -1.2462272
## X333 6.746412 -6.074846 -1.0340201
## Kidney_Injury_Molecule_1_KIM_1 LOX_1 Leptin Lipoprotein_a MCP_1
## X1 -1.204295 1.7047481 -1.5290628 -4.268698 6.740519
## X2 -1.197703 1.5260563 -1.4660558 -4.933674 6.849066
## X3 -1.191191 1.1631508 -1.6622675 -5.843045 6.767343
## X5 -1.163800 1.3609766 -0.9151068 -2.937463 6.722630
## X6 -1.123868 0.6418539 -1.3613475 -4.509860 6.541030
## X7 -1.143534 1.2237754 -1.7051413 -6.319969 6.359574
## X8 -1.184754 1.4350845 -1.7517987 -3.863233 6.448889
## X9 -1.159695 1.0986123 -1.7833269 -4.961845 6.445720
## X11 -1.155616 1.4816045 -1.1867361 -5.572754 6.606650
## X12 -1.153587 1.4586150 -1.9987562 -5.083206 6.444131
## X14 -1.172093 1.0647107 -1.5087252 -3.442019 6.744059
## X16 -1.202089 1.8405496 -1.3294863 -5.914504 6.212606
## X17 -1.123868 0.5306283 -1.6420151 -2.120264 6.781058
## X18 -1.163800 0.9162907 -1.6832823 -6.032287 6.501290
## X19 -1.206511 0.9162907 -1.7397296 -3.540459 6.066108
## X20 -1.191191 0.8754687 -1.6622675 -2.302585 6.787845
## X21 -1.147537 0.7419373 -1.3294863 -6.032287 6.513230
## X22 -1.224597 1.8718022 -1.2134062 -2.995732 6.476972
## X23 -1.186891 0.9162907 -1.3294863 -3.863233 6.293419
## X24 -1.202089 1.2809338 -1.7221470 -5.035953 6.403574
## X25 -1.155616 0.9555114 -1.5047321 -5.599422 6.424869
## X26 -1.155616 1.4109870 -1.7221470 -4.733004 6.122493
## X28 -1.182624 1.0296194 -1.7457280 -3.324236 7.003065
## X29 -1.184754 1.0986123 -1.4294363 -4.135167 6.484635
## X30 -1.143534 1.0647107 -1.6272839 -4.017384 6.177944
## X31 -1.145532 0.9932518 -1.3294863 -4.645992 6.408529
## X34 -1.167932 0.9555114 -1.2134062 -4.342806 6.815640
## X35 -1.170009 0.5306283 -1.9987562 -5.083206 6.478510
## X36 -1.174184 1.5260563 -1.7517987 -2.207275 6.651572
## X37 -1.182624 1.2527630 -1.9877978 -4.074542 6.293419
## X38 -1.172093 1.5260563 -1.3613475 -5.184989 6.416732
## X39 -1.199892 1.5892352 -1.7164169 -4.645992 6.302619
## X40 -1.172093 1.4350845 -1.4660558 -6.812445 6.797940
## X41 -1.159695 1.1939225 -1.5673739 -4.199705 6.796824
## X42 -1.213217 1.4586150 -1.5127425 -5.472671 6.246107
## X43 -1.123868 1.0296194 -1.9471197 -3.352407 6.364751
## X44 -1.210972 1.5260563 -1.3946054 -4.635629 6.583409
## X45 -1.155616 1.4586150 -1.8032876 -5.914504 6.877296
## X46 -1.217737 1.2809338 -1.5988899 -3.649659 6.602588
## X47 -1.186891 1.1939225 -1.7221470 -4.667046 6.516193
## X48 -1.165862 1.5040774 -1.3294863 -5.599422 6.562444
## X50 -1.213217 1.7404662 -1.2409325 -5.278515 6.453625
## X51 -1.224597 1.6863990 -1.7965395 -5.221356 6.154858
## X53 -1.199892 1.0647107 -1.3294863 -4.268698 6.401917
## X55 -1.204295 1.0986123 -1.2988756 -5.318520 6.222576
## X56 -1.174184 1.3609766 -1.8170863 -4.803621 6.480045
## X57 -1.231557 1.3350011 -1.7107489 -4.645992 6.661855
## X59 -1.191191 1.2809338 -1.7221470 -4.688552 6.565265
## X60 -1.184754 0.8329091 -1.7338014 -5.449140 6.481577
## X61 -1.163800 0.9555114 -1.1608546 -5.449140 6.242223
## X62 -1.143534 0.6931472 -1.2693924 -5.472671 6.556778
## X63 -1.182624 1.5892352 -1.6995924 -5.381699 6.823286
## X64 -1.157652 1.5892352 -1.2988756 -2.847312 6.669498
## X65 -1.197703 1.2237754 -1.4660558 -5.496768 6.320768
## X67 -1.208737 1.9169226 -1.7517987 -3.442019 6.401917
## X68 -1.224597 1.1939225 -1.6520506 -4.342806 6.368187
## X69 -1.170009 0.5877867 -1.2409325 -5.259097 6.263398
## X70 -1.159695 1.0986123 -1.5762143 -5.843045 6.259581
## X71 -1.186891 1.4109870 -1.2693924 -5.546779 6.579251
## X72 -1.231557 1.9740810 -0.6206034 -3.164404 6.603944
## X73 -1.193353 1.5892352 -1.0641271 -4.721704 6.406880
## X74 -1.145532 0.3364722 -1.2988756 -4.815891 6.326149
## X75 -1.204295 0.8754687 -1.5415785 -2.847312 6.946976
## X76 -1.193353 1.9021075 -1.7221470 -5.360193 6.907755
## X77 -1.217737 1.6486586 -1.4294363 -3.649659 6.606650
## X78 -1.195524 1.2527630 -1.5249442 -3.146555 6.293419
## X80 -1.143534 1.1939225 -1.1608546 -4.840893 6.817831
## X81 -1.178389 1.3862944 -1.1608546 -5.259097 6.742881
## X82 -1.172093 1.1631508 -1.4660558 -3.146555 6.630683
## X83 -1.208737 1.2237754 -1.6370627 -3.688879 6.442540
## X84 -1.163800 1.1939225 -1.0873827 -6.165818 6.576470
## X85 -1.197703 1.7047481 -1.5630004 -6.265901 6.767343
## X86 -1.182624 1.4109870 -1.3294863 -3.170086 6.829794
## X88 -1.199892 1.1314021 -1.6832823 -3.170086 6.508769
## X90 -1.241005 0.0000000 -1.8101352 -5.403678 6.586172
## X93 -1.241005 1.7227666 -2.0809951 -5.472671 6.665684
## X94 -1.213217 2.0918641 -1.6224555 -3.442019 7.038784
## X95 -1.104733 1.1939225 -1.6622675 -3.146555 6.517671
## X96 -1.191191 1.0647107 -1.0414230 -4.605170 6.437752
## X97 -1.189037 1.3083328 -1.6420151 -5.360193 6.152733
## X98 -1.167932 0.5306283 -1.3294863 -5.572754 6.459904
## X99 -1.204295 1.5475625 -1.1357025 -3.146555 6.927558
## X100 -1.186891 1.9600948 -1.2134062 -5.878136 6.249975
## X103 -1.213217 1.8405496 -1.3294863 -4.605170 6.726233
## X104 -1.217737 1.8245493 -1.7641672 -3.381395 7.229839
## X105 -1.213217 1.5260563 -1.6995924 -5.654992 6.463029
## X107 -1.161744 1.2527630 -1.3294863 -3.963316 6.161207
## X108 -1.206511 1.0986123 -1.8770048 -4.342806 6.731018
## X109 -1.193353 0.8754687 -1.2693924 -3.963316 6.304449
## X110 -1.157652 0.7419373 -1.3294863 -5.381699 6.869014
## X111 -1.208737 1.5040774 -1.3946054 -3.506558 6.566672
## X112 -1.184754 1.9459101 -1.4294363 -2.796881 6.519147
## X113 -1.159695 1.2809338 -1.5249442 -2.207275 6.748760
## X114 -1.151564 0.6418539 -1.2693924 -5.521461 6.455199
## X115 -1.167932 1.1939225 -1.6674468 -3.411248 6.212606
## X117 -1.161744 1.7917595 -1.3946054 -4.710531 6.184149
## X118 -1.178389 1.7404662 -1.4660558 -5.472671 6.403574
## X121 -1.206511 1.9021075 -1.3613475 -3.381395 6.142037
## X123 -1.170009 0.7419373 -1.5806825 -4.268698 6.663133
## X124 -1.197703 1.7578579 -0.8954783 -5.318520 6.473891
## X126 -1.165862 1.7404662 -1.2988756 -3.772261 6.538140
## X128 -1.182624 1.3862944 -1.3946054 -3.775670 6.927558
## X129 -1.204295 1.0986123 -1.7221470 -2.733368 5.826000
## X130 -1.178389 1.4350845 -1.5047321 -3.963316 6.251904
## X131 -1.180503 1.0986123 -1.1357025 -4.919881 6.356108
## X132 -1.159695 1.0296194 -1.9104977 -5.259097 5.908083
## X133 -1.202089 0.9162907 -2.0809951 -3.273000 6.146329
## X134 -1.149547 1.1939225 -1.2988756 -2.375156 6.844815
## X135 -1.159695 1.5686159 -1.5047321 -5.744604 6.458338
## X136 -1.208737 1.1314021 -1.5087252 -3.270169 6.511745
## X137 -1.161744 1.1939225 -0.9975390 -3.381395 6.084499
## X139 -1.172093 0.7419373 -1.6779529 -5.221356 6.416732
## X140 -1.182624 1.1939225 -1.6571358 -5.878136 6.284134
## X141 -1.145532 1.1314021 -1.2988756 -5.240048 6.364751
## X143 -1.161744 0.4054651 -1.6321526 -3.015935 6.775366
## X144 -1.182624 0.5306283 -1.4294363 -2.659260 6.561031
## X145 -1.174184 1.4109870 -1.4294363 -5.776353 6.493754
## X146 -1.182624 1.3083328 -2.0738009 -2.302585 6.677083
## X147 -1.210972 1.2237754 -1.5373794 -3.270169 6.678342
## X148 -1.229225 1.2809338 -1.1867361 -3.317314 6.613384
## X149 -1.202089 1.0986123 -1.0192371 -4.268698 6.520621
## X152 -1.206511 1.8405496 -2.0738009 -4.017384 6.669498
## X153 -1.172093 0.9932518 -1.4294363 -2.120264 6.669498
## X154 -1.204295 1.0296194 -1.1867361 -4.625373 6.196444
## X155 -1.161744 1.2237754 -1.1608546 -3.473768 6.504288
## X156 -1.191191 1.3862944 -1.0641271 -4.879607 6.532334
## X157 -1.170009 1.4109870 -1.3946054 -4.688552 6.357842
## X158 -1.199892 1.2809338 -1.5806825 -3.442019 6.202536
## X159 -1.174184 1.1314021 -1.3294863 -4.135167 5.905362
## X160 -1.199892 2.0412203 -1.5673739 -5.298317 5.968708
## X161 -1.157652 1.6292405 -1.1867361 -3.079114 5.937536
## X162 -1.224597 1.7749524 -1.2409325 -3.816713 6.689599
## X163 -1.217737 1.3350011 -1.3294863 -6.265901 6.563856
## X165 -1.191191 0.9555114 -1.9877978 -3.649659 7.106606
## X166 -1.180503 1.5260563 -1.2693924 -3.772261 6.529419
## X167 -1.243398 2.2721259 -1.4660558 -4.199705 6.610696
## X168 -1.184754 1.4109870 -1.4660558 -4.342806 6.797940
## X169 -1.170009 1.1314021 -1.4660558 -3.912023 6.371612
## X170 -1.155616 0.5877867 -1.6082042 -4.422849 7.012115
## X171 -1.178389 1.6677068 -1.7833269 -3.381395 6.257668
## X172 -1.147537 1.1314021 -1.4294363 -4.919881 5.940171
## X174 -1.159695 1.2237754 -1.7517987 -2.956512 6.937314
## X175 -1.195524 1.2809338 -1.6779529 -1.386294 6.590301
## X176 -1.163800 1.3350011 -1.3946054 -4.933674 6.697034
## X177 -1.204295 1.9169226 -1.2988756 -5.099467 6.714171
## X178 -1.170009 1.4350845 -1.5897179 -4.947660 6.047372
## X179 -1.123868 0.9162907 -2.0809951 -3.170086 6.347389
## X180 -1.167932 1.0296194 -1.4294363 -6.165818 6.369901
## X181 -1.224597 1.0296194 -1.8313164 -5.626821 6.626718
## X182 -1.170009 0.9932518 -1.8770048 -4.342806 6.200509
## X183 -1.123868 0.9932518 -1.8313164 -4.135167 6.621406
## X184 -1.191191 1.2809338 -1.7221470 -6.214608 6.333280
## X185 -1.174184 1.4816045 -1.1608546 -2.302585 6.778785
## X186 -1.151564 0.9932518 -1.7457280 -2.937463 6.729824
## X189 -1.199892 0.9555114 -1.6571358 -5.298317 6.016157
## X190 -1.224597 1.3609766 -1.8690427 -5.083206 6.429719
## X191 -1.236256 1.0296194 -1.5415785 -3.381395 6.556778
## X192 -1.243398 2.1633230 -1.7397296 -3.816713 7.012115
## X193 -1.202089 1.9315214 -1.2988756 -5.599422 6.214608
## X194 -1.206511 0.9162907 -1.5087252 -4.199705 6.320768
## X195 -1.204295 1.9459101 -1.2693924 -4.767689 6.701960
## X197 -1.163800 1.4816045 -1.1867361 -5.809143 6.366470
## X198 -1.222299 1.4350845 -1.2693924 -3.688879 6.212606
## X200 -1.202089 1.2527630 -1.8770048 -5.167289 6.297109
## X201 -1.184754 1.2527630 -1.4660558 -5.496768 6.345636
## X202 -1.163800 0.8329091 -1.3294863 -4.017384 6.246107
## X205 -1.193353 1.4350845 -1.6886644 -4.961845 6.937314
## X208 -1.213217 1.3350011 -1.3294863 -4.767689 6.075346
## X210 -1.202089 1.1939225 -1.5373794 -5.132803 6.504288
## X212 -1.172093 1.1631508 -1.1867361 -5.051457 6.629363
## X213 -1.172093 1.2237754 -1.5047321 -3.772261 6.637258
## X214 -1.193353 1.3862944 -0.6516715 -3.506558 6.685861
## X215 -1.161744 1.4350845 -2.0466943 -4.199705 6.622736
## X216 -1.197703 1.1631508 -1.9987562 -2.513306 6.513230
## X218 -1.206511 1.4109870 -1.7641672 -3.473768 6.393591
## X219 -1.174184 1.3862944 -1.4294363 -3.473768 6.089045
## X220 -1.186891 1.3350011 -1.4294363 -5.914504 6.679599
## X223 -1.143534 1.3083328 -1.3613475 -4.199705 6.156979
## X224 -1.151564 0.9932518 -1.4660558 -4.933674 6.212606
## X225 -1.197703 1.6292405 -1.4660558 -5.403678 6.253829
## X226 -1.243398 2.2512918 -1.6470107 -5.099467 6.839476
## X227 -1.157652 1.2809338 -1.6272839 -3.575551 6.184149
## X228 -1.143534 1.1314021 -1.0414230 -4.509860 6.434547
## X229 -1.143534 0.2623643 -1.2409325 -5.472671 6.042633
## X230 -1.172093 1.1314021 -2.0738009 -4.422849 6.816736
## X231 -1.123868 0.8329091 -1.6420151 -2.780621 6.282267
## X232 -1.206511 1.3862944 -1.7965395 -3.473768 6.898715
## X233 -1.208737 1.2809338 -1.1608546 -5.360193 6.214608
## X234 -1.147537 1.0296194 -1.9193301 -2.688248 6.154858
## X236 -1.159695 1.3862944 -1.4660558 -6.032287 6.493754
## X237 -1.193353 1.0647107 -1.8170863 -4.422849 6.447306
## X239 -1.149547 0.5306283 -1.2693924 -6.119298 7.012115
## X240 -1.163800 0.6418539 -1.0414230 -5.203007 6.089045
## X241 -1.163800 1.2809338 -1.2134062 -3.649659 6.018593
## X242 -1.199892 0.6418539 -1.1608546 -1.427116 6.862758
## X243 -1.182624 1.3862944 -1.2409325 -4.755993 6.739337
## X244 -1.165862 1.6094379 -1.4294363 -3.015935 6.693324
## X245 -1.224597 0.3364722 -1.5762143 -4.422849 6.405228
## X246 -1.167932 0.9932518 -1.3613475 -4.990833 6.684612
## X247 -1.220013 1.1314021 -1.2134062 -5.449140 6.248043
## X249 -1.182624 1.8405496 -1.3613475 -4.933674 6.580639
## X250 -1.213217 1.0986123 -1.1608546 -4.828314 6.608001
## X251 -1.176283 1.3083328 -1.5047321 -6.119298 6.363028
## X253 -1.143534 1.7047481 -1.3946054 -4.342806 6.385194
## X254 -1.184754 2.0541237 -1.0873827 -5.626821 6.376727
## X255 -1.182624 2.1400662 -1.6370627 -2.364460 6.690842
## X256 -1.195524 1.4350845 -1.6995924 -5.744604 6.317165
## X257 -1.153587 0.8754687 -1.4294363 -4.342806 6.424869
## X258 -1.199892 1.5475625 -1.2409325 -4.074542 6.864848
## X260 -1.206511 1.6863990 -1.6622675 -2.688248 6.553933
## X261 -1.174184 0.8754687 -1.5249442 -6.165818 6.620073
## X262 -1.208737 1.0296194 -1.8934045 -3.649659 6.269096
## X263 -1.220013 1.2527630 -1.2988756 -4.199705 6.439350
## X264 -1.202089 1.6292405 -1.9987562 -4.767689 6.892642
## X265 -1.213217 1.3350011 -1.7965395 -5.426151 6.182085
## X267 -1.178389 1.2809338 -1.7704700 -5.713833 6.568078
## X268 -1.224597 1.7917595 -0.8954783 -2.882404 6.530878
## X269 -1.178389 1.1314021 -1.3294863 -4.688552 6.787845
## X270 -1.233900 1.9600948 -2.1468457 -5.099467 6.525030
## X271 -1.202089 2.0014800 -1.6520506 -3.270169 6.674561
## X272 -1.191191 1.2809338 -1.3946054 -5.572754 6.656727
## X273 -1.231557 1.8245493 -1.6272839 -6.437752 6.582025
## X274 -1.217737 1.2237754 -1.3946054 -5.426151 6.652863
## X275 -1.161744 1.1939225 -1.5415785 -3.912023 6.975414
## X277 -1.167932 0.8754687 -1.8770048 -5.914504 6.419995
## X278 -1.161744 1.0986123 -1.4660558 -5.449140 6.593045
## X279 -1.167932 1.1314021 -1.2988756 -3.540459 6.469250
## X281 -1.151564 0.7884574 -1.3946054 -4.422849 6.697034
## X282 -1.193353 0.4700036 -0.8572661 -3.015935 6.734592
## X283 -1.255574 2.2300144 -1.9987562 -5.426151 6.632002
## X287 -1.191191 1.6292405 -1.2409325 -4.866535 6.366470
## X289 -1.143534 0.7884574 -1.5673739 -5.683980 6.120297
## X290 -1.204295 1.0647107 -1.0414230 -3.079114 7.047517
## X291 -1.167932 0.8329091 -1.2988756 -3.816713 6.317165
## X292 -1.178389 1.6292405 -1.8770048 -5.020686 6.464588
## X294 -1.104733 0.8754687 -1.3294863 -4.767689 6.975414
## X297 -1.176283 1.3862944 -1.2988756 -4.605170 6.045005
## X298 -1.176283 0.9932518 -1.6176666 -3.411248 6.450470
## X299 -1.172093 1.3609766 -1.6571358 -5.713833 5.826000
## X301 -1.174184 1.1631508 -1.4660558 -4.779524 6.625392
## X302 -1.143534 0.4054651 -1.5415785 -5.381699 6.481577
## X303 -1.202089 1.9600948 -1.8313164 -4.268698 6.755769
## X304 -1.186891 2.0412203 -1.5415785 -5.626821 6.519147
## X305 -1.231557 1.7917595 -2.0599345 -5.020686 6.445720
## X306 -1.161744 1.8405496 -1.5673739 -3.218876 6.356108
## X307 -1.174184 1.5686159 -1.3946054 -5.005648 6.699500
## X308 -1.174184 1.2237754 -1.4660558 -2.590267 6.716595
## X311 -1.174184 1.1314021 -1.5762143 -2.995732 6.376727
## X312 -1.208737 1.6292405 -1.4294363 -3.506558 6.527958
## X313 -1.206511 1.6094379 -1.5988899 -4.422849 6.255750
## X314 -1.208737 2.0014800 -1.5586574 -6.377127 5.958425
## X315 -1.178389 0.8329091 -1.6622675 -3.729701 6.481577
## X316 -1.213217 1.0647107 -1.3946054 -4.422849 6.089045
## X317 -1.193353 1.3862944 -1.3946054 -5.572754 7.146772
## X320 -1.172093 0.8329091 -1.2988756 -1.427116 6.184149
## X321 -1.167932 0.5877867 -1.3613475 -2.975930 6.687109
## X322 -1.186891 1.5686159 -1.8170863 -4.828314 6.661855
## X323 -1.226905 1.5892352 -1.8313164 -3.057608 6.440947
## X324 -1.147537 1.0986123 -1.6272839 -5.298317 6.393591
## X325 -1.222299 1.3083328 -1.2693924 -4.947660 6.543912
## X326 -1.248226 1.6863990 -1.9987562 -5.221356 6.075346
## X327 -1.195524 0.9932518 -1.5167845 -4.976234 6.493754
## X329 -1.193353 1.4350845 -1.3946054 -5.149897 6.648985
## X330 -1.155616 0.9162907 -1.6082042 -2.617296 6.699500
## X331 -1.206511 1.1939225 -1.8690427 -4.342806 6.375025
## X332 -1.189037 0.8754687 -1.3613475 -5.051457 6.218600
## X333 -1.253110 2.0412203 -1.7107489 -5.051457 6.472346
## MCP_2 MIF MIP_1alpha MIP_1beta MMP_2 MMP_3 MMP10
## X1 1.9805094 -1.2378744 4.9684528 3.258097 4.47856632 -2.2072749 -3.270169
## X2 1.8088944 -1.8971200 3.6901597 3.135494 3.78147319 -2.4651040 -3.649659
## X3 0.4005958 -2.3025851 4.0495083 2.397895 2.86663136 -2.3025851 -2.733368
## X5 2.2208309 -1.8971200 6.4527639 3.526361 3.69015975 -1.5606477 -2.617296
## X6 2.3343863 -2.0402208 4.6034206 2.890372 2.91775974 -3.0365543 -3.324236
## X7 2.1030230 -2.1202635 3.5512079 2.564949 3.26560115 -2.1202635 -4.135167
## X8 2.6867663 -1.7719568 6.4527639 2.833213 1.55530341 -2.5257286 -3.688879
## X9 1.8527528 -2.2072749 2.1623278 2.219203 2.81511562 -2.5639499 -4.017384
## X11 4.0237466 -1.5141277 5.3589486 4.007333 3.26560115 -2.3025851 -3.963316
## X12 1.5303762 -1.7147984 3.9611107 2.639057 2.10460236 -2.3025851 -3.244194
## X14 2.4440754 -2.0402208 4.9684528 2.833213 3.16792675 -2.5133061 -3.575551
## X16 1.0483341 -1.5141277 4.4785663 2.564949 2.33213462 -2.6592600 -3.123566
## X17 2.8501989 -1.9661129 5.3589486 3.178054 3.26560115 -3.2188758 -3.411248
## X18 1.8527528 -2.3330443 2.7632020 2.639057 2.33213462 -2.3025851 -3.963316
## X19 2.8501989 -1.7147984 5.7354768 2.639057 2.65813701 -3.1941832 -4.074542
## X20 1.5303762 -2.3538784 4.9684528 2.890372 4.60342060 -1.9661129 -2.563950
## X21 2.8501989 -1.4696760 4.3519974 3.091042 3.26560115 -2.3859667 -3.324236
## X22 1.7643559 -1.4696760 4.9285621 2.639057 4.09336677 -1.1711830 -3.611918
## X23 1.8088944 -2.1202635 3.6901597 3.583519 4.04950827 -2.1202635 -4.135167
## X24 1.0483341 -1.7147984 4.6034206 2.833213 4.13700376 -2.7333680 -3.381395
## X25 2.1820549 -2.1202635 3.4097438 2.397895 3.87177749 -2.6736488 -3.506558
## X26 2.0219013 -1.5606477 4.0495083 2.944439 2.55134197 -1.8325815 -3.381395
## X28 1.6263611 -1.8971200 3.7359451 2.116256 3.26560115 -2.5902672 -3.381395
## X29 2.2969819 -1.8971200 3.5043402 2.564949 2.33213462 -2.9004221 -3.772261
## X30 2.1030230 -2.4079456 2.3321346 2.944439 2.81511562 -2.3126354 -3.863233
## X31 2.5152196 -2.1202635 5.3589486 3.688879 3.69015975 -2.3644605 -3.244194
## X34 2.7530556 -1.8971200 3.4097438 3.258097 2.33213462 -2.6592600 -3.270169
## X35 1.5303762 -1.8325815 3.4097438 2.564949 2.33213462 -2.5383074 -3.506558
## X36 1.8527528 -1.8325815 3.9611107 2.944439 1.86752075 -2.0402208 -3.218876
## X37 1.6263611 -1.4696760 4.3519974 2.944439 3.87177749 -1.6094379 -3.218876
## X38 1.8527528 -1.7147984 3.9611107 3.367296 3.21692675 -2.1202635 -3.270169
## X39 0.4005958 -1.8325815 3.2656012 1.945910 4.84829388 -2.6310892 -4.074542
## X40 2.6191813 -2.1202635 3.6901597 2.944439 2.49726361 -2.3025851 -3.912023
## X41 1.0483341 -1.5141277 2.7632020 2.995732 2.33213462 -2.7181005 -3.270169
## X42 1.0483341 -1.7719568 3.4097438 2.944439 2.33213462 -2.4889147 -3.816713
## X43 1.8527528 -2.2072749 3.8717775 2.186051 2.81511562 -2.4889147 -3.218876
## X44 1.8088944 -1.8971200 4.2236285 2.564949 4.04950827 -2.5133061 -3.123566
## X45 3.0369315 -1.3470736 5.3589486 3.218876 3.26560115 -1.4696760 -2.764621
## X46 1.1637797 -1.8325815 3.6901597 3.178054 4.04950827 -1.5141277 -3.270169
## X47 1.8527528 -1.8325815 3.9611107 2.240710 2.33213462 -3.2441936 -3.649659
## X48 1.5303762 -1.1711830 3.5512079 2.890372 3.69015975 -1.9661129 -3.816713
## X50 3.2434918 -1.6607312 4.2236285 3.044522 1.86752075 -2.3025851 -2.645075
## X51 1.7643559 -1.9661129 3.0188940 2.230014 3.55120786 -2.4534080 -4.074542
## X53 1.1637797 -1.8971200 5.3589486 2.833213 2.86663136 -2.3227878 -3.411248
## X55 1.6731213 -2.1202635 4.0495083 2.564949 3.50434016 -2.2072749 -3.540459
## X56 1.5303762 -1.8325815 3.1185934 2.833213 2.81511562 -2.5383074 -3.729701
## X57 1.9805094 -1.2729657 6.7959273 2.186051 4.60342060 -1.9661129 -3.442019
## X59 2.5848812 -1.7147984 4.6857433 2.944439 2.60496200 -2.3644605 -3.772261
## X60 1.6731213 -2.2072749 4.7266389 2.995732 2.55134197 -3.3813948 -4.074542
## X61 1.5303762 -2.1202635 2.7632020 2.639057 2.04628168 -3.2968374 -4.017384
## X62 1.8527528 -2.3538784 3.5512079 2.639057 2.33213462 -3.0791139 -4.422849
## X63 2.3713615 -1.5606477 3.9611107 2.240710 1.86752075 -2.5902672 -3.688879
## X64 2.1427912 -1.6607312 5.3589486 3.367296 1.08050280 -3.3813948 -3.101093
## X65 1.1637797 -2.0402208 3.2656012 3.178054 3.16792675 -2.2072749 -3.649659
## X67 1.5303762 -1.3470736 3.1185934 2.639057 2.33213462 -2.4889147 -3.772261
## X68 1.7643559 -1.1394343 6.0996440 2.079442 3.55120786 -2.5510465 -3.540459
## X69 1.1637797 -2.2072749 2.9685108 2.564949 2.33213462 -4.2686979 -4.342806
## X70 2.0219013 -1.6607312 2.9685108 2.995732 3.26560115 -1.8971200 -3.324236
## X71 1.3273591 -2.1202635 4.3519974 2.772589 3.78147319 -2.0402208 -4.135167
## X72 2.2591348 -1.7147984 5.3589486 3.737670 4.04950827 -1.6607312 -3.506558
## X73 1.1637797 -1.6094379 5.3589486 3.178054 4.84829388 -1.3470736 -3.324236
## X74 2.5152196 -2.3751558 3.8717775 2.772589 3.26560115 -2.8134107 -2.995732
## X75 1.8088944 -2.3330443 6.4527639 3.401197 3.16792675 -1.8971200 -3.015935
## X76 1.6731213 -1.5141277 3.4097438 3.044522 1.35792679 -1.4696760 -2.577022
## X77 1.5303762 -1.5606477 4.6034206 2.833213 2.33213462 -2.3126354 -3.473768
## X78 2.6191813 -1.6607312 5.7354768 3.044522 4.92856213 -1.8971200 -3.036554
## X80 1.8527528 -1.6094379 3.8717775 2.833213 3.69015975 -1.8325815 -3.411248
## X81 0.4005958 -1.8971200 3.4097438 2.397895 1.35792679 -3.0365543 -3.540459
## X82 2.0219013 -1.8971200 2.7632020 2.890372 3.26560115 -2.1202635 -3.473768
## X83 2.3713615 -1.8971200 6.4527639 2.397895 3.55120786 -1.9661129 -3.411248
## X84 2.1427912 -1.6607312 3.9611107 2.397895 3.21692675 -3.2441936 -3.575551
## X85 2.1427912 -1.7147984 3.2656012 2.564949 3.64411202 -2.1202635 -3.688879
## X86 2.1427912 -1.4696760 3.5512079 3.295837 1.86752075 -1.4271164 -3.123566
## X88 2.6867663 -1.2729657 5.3589486 2.995732 2.81511562 -2.2072749 -3.270169
## X90 2.1820549 -2.3025851 5.7354768 2.708050 1.55530341 -3.6496587 -4.509860
## X93 1.7643559 -1.8325815 3.8717775 2.116256 2.96851076 -2.4418472 -3.688879
## X94 3.1563503 -1.4271164 6.0996440 3.891820 3.21692675 -1.3470736 -2.645075
## X95 2.5152196 -2.1202635 3.5512079 3.044522 2.33213462 -2.8134107 -3.688879
## X96 2.0219013 -1.6094379 4.0495083 2.944439 3.26560115 -2.2072749 -3.816713
## X97 2.0219013 -2.0402208 2.7632020 2.639057 4.39438269 -2.1202635 -3.649659
## X98 1.5303762 -2.2072749 0.9345728 2.564949 3.26560115 -3.9120230 -4.342806
## X99 1.5303762 -2.1202635 5.3589486 2.944439 2.86663136 -1.3470736 -3.963316
## X100 1.5303762 -1.8971200 3.1185934 2.054124 2.81511562 -2.0402208 -3.649659
## X103 1.1637797 -1.8325815 3.6901597 2.944439 3.78147319 -1.2729657 -2.995732
## X104 2.5502306 -1.5606477 4.2666237 3.295837 1.92776515 -2.2072749 -3.963316
## X105 1.1637797 -1.8971200 3.2656012 2.833213 3.16792675 -2.6310892 -3.863233
## X107 1.8527528 -1.6607312 4.0495083 2.772589 3.50434016 -2.5770219 -3.575551
## X108 2.1030230 -2.0402208 2.9685108 2.833213 2.81511562 -2.8647040 -3.912023
## X109 0.4005958 -2.4304185 3.2656012 2.833213 2.49726361 -3.3524072 -4.667046
## X110 1.6731213 -2.2072749 3.5512079 3.465736 1.22143685 -3.4420194 -3.963316
## X111 1.7643559 -1.4271164 3.2656012 3.044522 3.82674905 -2.1202635 -3.575551
## X112 2.3343863 -1.5606477 5.7354768 2.944439 2.81511562 -1.7147984 -2.631089
## X113 2.0219013 -1.9661129 4.9684528 3.135494 1.80658378 -2.3126354 -2.995732
## X114 2.0219013 -2.1202635 3.4097438 2.484907 2.55134197 -3.0791139 -4.199705
## X115 2.1427912 -1.5606477 4.0933668 2.397895 1.86752075 -2.6310892 -3.381395
## X117 1.5303762 -1.8971200 2.5513420 2.772589 2.55134197 -1.7719568 -3.575551
## X118 2.0219013 -1.1086626 3.9165632 3.091042 3.87177749 -0.5276327 -2.207275
## X121 2.3713615 -1.6607312 4.4785663 3.091042 1.61931977 -1.5606477 -3.575551
## X123 2.6867663 -2.5510465 2.7632020 2.397895 1.80658378 -3.3813948 -4.199705
## X124 1.7643559 -1.7719568 3.5043402 2.833213 3.55120786 -1.8971200 -3.863233
## X126 1.5303762 -1.8971200 3.1185934 2.272126 1.35792679 -1.9661129 -4.268698
## X128 2.5848812 -1.8971200 3.1185934 2.833213 2.10460236 -2.3644605 -3.272534
## X129 0.4005958 -2.1202635 3.2656012 2.397895 0.78296569 -3.1235656 -4.017384
## X130 2.0219013 -1.9661129 4.3519974 3.737670 3.87177749 -1.8971200 -4.017384
## X131 0.4005958 -2.3126354 3.6901597 2.397895 3.16792675 -2.9565116 -3.863233
## X132 1.5303762 -2.2072749 4.0495083 2.639057 2.33213462 -1.8971200 -3.506558
## X133 2.3343863 -1.8325815 4.3519974 2.708050 1.80658378 -2.4769385 -3.912023
## X134 1.6263611 -1.0216512 5.3589486 3.178054 3.26560115 -1.3862944 -2.813411
## X135 1.8527528 -1.9661129 2.3321346 2.564949 2.33213462 -3.6496587 -4.017384
## X136 2.9135187 -2.0402208 4.2666237 2.397895 3.55120786 -2.3434071 -3.575551
## X137 0.4005958 -2.2072749 3.6901597 2.104134 3.16792675 -2.7806209 -3.963316
## X139 2.0219013 -1.7719568 4.0495083 2.890372 3.26560115 -2.4769385 -3.442019
## X140 1.6263611 -1.4271164 3.2169268 2.564949 2.55134197 -2.5639499 -3.729701
## X141 1.0483341 -1.8325815 3.4097438 2.564949 4.39438269 -2.3025851 -4.074542
## X143 2.6867663 -2.1202635 4.9684528 3.332205 3.69015975 -2.4889147 -3.688879
## X144 2.0219013 -2.0402208 4.1804231 3.091042 1.80658378 -3.0791139 -3.912023
## X145 1.6731213 -2.3025851 2.3321346 2.833213 1.22143685 -3.1700857 -4.074542
## X146 2.3343863 -1.6094379 4.6034206 2.397895 2.55134197 -1.6094379 -2.975930
## X147 2.8501989 -1.2378744 4.6034206 3.295837 2.55134197 -1.6607312 -3.270169
## X148 2.9757467 -1.8325815 5.7354768 3.332205 2.96851076 -2.1202635 -3.411248
## X149 1.5303762 -2.2072749 4.0495083 3.044522 2.49726361 -2.5133061 -3.688879
## X152 2.0219013 -0.8439701 4.1804231 2.272126 2.55134197 -1.6607312 -3.244194
## X153 2.6191813 -1.7147984 4.4785663 3.178054 3.87177749 -2.3859667 -3.473768
## X154 0.4005958 -2.1202635 3.0689186 2.151762 2.49726361 -2.9565116 -4.422849
## X155 2.3343863 -1.8971200 1.7449255 2.944439 1.22143685 -3.0791139 -3.963316
## X156 0.4005958 -2.3126354 4.9684528 2.772589 4.84829388 -2.6310892 -3.506558
## X157 1.1637797 -1.9661129 3.6901597 3.258097 2.33213462 -2.5770219 -3.912023
## X158 1.1637797 -2.0402208 3.4571875 2.772589 3.16792675 -2.2072749 -3.575551
## X159 3.0064666 -2.1202635 3.6901597 2.708050 2.33213462 -2.6592600 -4.074542
## X160 1.1637797 -1.8971200 3.2656012 2.708050 4.84829388 -1.7147984 -3.540459
## X161 2.3713615 -1.7147984 3.9611107 2.833213 2.10460236 -2.3644605 -3.963316
## X162 2.1820549 -1.2378744 4.7673608 3.135494 3.55120786 -2.9004221 -4.074542
## X163 1.5303762 -2.0402208 3.0188940 2.708050 2.33213462 -3.6496587 -4.509860
## X165 2.6191813 -1.6607312 3.7359451 2.772589 2.55134197 -2.7333680 -3.473768
## X166 1.5303762 -1.7719568 1.9277652 3.044522 0.78296569 -2.8134107 -4.074542
## X167 2.1820549 -1.4696760 4.9285621 2.995732 4.09336677 -1.6607312 -2.864704
## X168 1.5303762 -2.3025851 4.0495083 2.833213 2.49726361 -2.3644605 -3.772261
## X169 2.0219013 -2.1202635 4.0495083 2.639057 3.87177749 -2.6172958 -4.342806
## X170 2.6191813 -1.4696760 4.0495083 2.484907 2.55134197 -3.8167128 -4.933674
## X171 1.0483341 -1.8325815 3.8267490 2.397895 2.33213462 -1.8971200 -3.270169
## X172 1.1637797 -2.2072749 3.5512079 3.178054 2.33213462 -2.7488722 -4.074542
## X174 2.7530556 -1.7147984 4.4785663 3.178054 3.21692675 -1.7719568 -3.101093
## X175 2.6191813 -1.8325815 4.3519974 1.974081 2.21947889 -2.1202635 -2.343407
## X176 1.5303762 -1.7147984 4.5619880 2.833213 3.01889401 -2.8647040 -3.912023
## X177 1.7643559 -1.8325815 4.6034206 3.258097 3.82674905 -1.6607312 -3.473768
## X178 1.9805094 -1.9661129 2.7632020 2.484907 1.86752075 -2.7181005 -3.688879
## X179 2.0219013 -2.3751558 4.9684528 2.484907 4.39438269 -2.7333680 -2.659260
## X180 2.8501989 -1.8971200 5.7354768 3.178054 1.80658378 -2.3434071 -3.649659
## X181 1.7643559 -2.1202635 5.3589486 2.639057 2.96851076 -3.0365543 -4.135167
## X182 0.4005958 -1.8971200 3.1679268 2.890372 2.33213462 -2.2072749 -3.912023
## X183 2.1030230 -2.5133061 2.3321346 2.833213 1.22143685 -2.7488722 -3.611918
## X184 2.0219013 -1.3093333 4.6034206 3.135494 3.26560115 -2.4769385 -3.473768
## X185 1.0483341 -2.0402208 4.5619880 2.639057 2.10460236 -2.5133061 -3.324236
## X186 1.6263611 -1.8325815 3.9165632 2.708050 2.55134197 -2.6172958 -3.688879
## X189 1.0483341 -1.6607312 3.7359451 3.218876 4.92856213 -2.6736488 -3.772261
## X190 1.2195081 -1.6607312 5.3589486 2.208274 2.96851076 -1.5606477 -3.912023
## X191 1.7643559 -1.7147984 4.6034206 2.890372 2.65813701 -2.2072749 -3.101093
## X192 2.1820549 -1.4271164 4.2666237 2.708050 3.55120786 -2.7968814 -3.473768
## X193 0.4005958 -1.4696760 2.3876751 2.564949 0.78296569 -2.3644605 -3.473768
## X194 1.7643559 -2.0402208 3.5043402 2.163323 2.33213462 -3.0791139 -3.688879
## X195 2.0219013 -2.0402208 2.8151156 3.496508 3.78147319 -1.5606477 -3.473768
## X197 1.6263611 -0.9416085 4.1804231 3.044522 4.13700376 -2.3025851 -3.575551
## X198 1.9805094 -2.1202635 3.2656012 2.302585 0.62482405 -2.7646206 -4.135167
## X200 1.5303762 -1.6607312 2.3321346 2.484907 2.81511562 -2.6310892 -3.575551
## X201 1.9805094 -1.8325815 5.7354768 2.772589 2.33213462 -2.3434071 -3.540459
## X202 1.5303762 -2.2072749 2.7632020 2.639057 2.55134197 -3.2968374 -4.074542
## X205 1.8088944 -1.8971200 4.6857433 2.890372 3.78147319 -1.8971200 -3.411248
## X208 2.6867663 -2.0402208 4.9285621 2.772589 2.33213462 -2.9957323 -3.816713
## X210 4.0237466 -2.2072749 4.1804231 2.639057 2.55134197 -2.1202635 -3.170086
## X212 1.0483341 -1.8325815 2.3876751 2.054124 2.33213462 -2.4889147 -4.342806
## X213 1.6263611 -1.9661129 4.6034206 2.397895 2.55134197 -1.4696760 -3.101093
## X214 2.0219013 -2.0402208 4.8079117 2.772589 3.78147319 -2.9565116 -3.218876
## X215 2.1030230 -1.9661129 3.5512079 2.995732 2.33213462 -1.8971200 -3.912023
## X216 4.0237466 -2.1202635 5.7354768 2.944439 3.55120786 -2.7030627 -3.473768
## X218 2.1820549 -1.9661129 5.7354768 2.484907 2.65813701 -2.5010360 -3.381395
## X219 2.1427912 -1.8971200 3.1185934 2.639057 2.81511562 -2.9374634 -4.199705
## X220 1.0483341 -1.8325815 3.1185934 2.890372 1.86752075 -2.5902672 -3.816713
## X223 1.6731213 -2.1202635 4.1804231 3.044522 2.33213462 -2.6310892 -3.575551
## X224 1.8527528 -2.0402208 3.5512079 2.772589 3.26560115 -1.8971200 -3.912023
## X225 1.5303762 -1.8971200 2.5513420 3.178054 3.26560115 -2.5770219 -4.135167
## X226 1.9805094 -1.7147984 5.7354768 2.772589 4.80791166 -1.1394343 -3.575551
## X227 2.3343863 -2.3859667 3.8717775 2.890372 3.26560115 -1.8325815 -3.649659
## X228 1.9805094 -2.3025851 2.5513420 2.186051 1.22143685 -2.6310892 -3.963316
## X229 1.0483341 -2.0402208 3.4097438 2.564949 2.21947889 -2.4534080 -3.270169
## X230 2.1820549 -1.2729657 5.3589486 2.995732 3.26560115 -2.2072749 -3.123566
## X231 2.6191813 -1.9661129 3.7359451 2.397895 3.87177749 -3.3524072 -3.912023
## X232 2.6867663 -1.7719568 4.2666237 2.639057 3.55120786 -2.5510465 -4.135167
## X233 2.9135187 -2.1202635 4.2666237 3.496508 2.33213462 -2.6450754 -3.688879
## X234 1.0483341 -1.8971200 2.4972636 2.944439 3.26560115 -2.1202635 -3.352407
## X236 2.0219013 -2.0402208 3.2169268 2.772589 4.39438269 -2.5639499 -3.575551
## X237 1.5303762 -1.8971200 3.1185934 2.833213 1.86752075 -2.3644605 -3.688879
## X239 1.8527528 -2.3859667 4.6034206 2.890372 1.80658378 -3.3813948 -4.199705
## X240 1.5303762 -2.1202635 3.1679268 2.944439 2.55134197 -2.6310892 -4.017384
## X241 1.6263611 -1.6607312 2.7632020 3.178054 4.39438269 -2.3126354 -3.611918
## X242 1.5303762 -2.6736488 4.0495083 2.944439 1.68251524 -2.7030627 -3.506558
## X243 0.4005958 -2.0402208 3.6901597 2.484907 0.78296569 -3.2441936 -3.772261
## X244 2.3713615 -1.7147984 3.2656012 2.639057 1.86752075 -2.1202635 -3.079114
## X245 1.9805094 -2.3968958 5.3589486 3.044522 2.33213462 -3.4737681 -4.342806
## X246 3.1563503 -2.3330443 4.7266389 2.772589 1.80658378 -2.6310892 -3.324236
## X247 2.1820549 -1.8325815 4.2666237 2.708050 2.96851076 -3.4737681 -3.863233
## X249 1.0483341 -1.4696760 3.7359451 2.772589 5.35894856 -2.2072749 -3.863233
## X250 1.8088944 -2.3025851 2.8151156 3.178054 3.16792675 -2.6310892 -3.611918
## X251 1.8527528 -1.8325815 3.1185934 2.772589 2.33213462 -3.1700857 -4.017384
## X253 1.5303762 -1.8325815 4.9684528 3.218876 3.21692675 -2.9374634 -3.863233
## X254 1.8527528 -1.8325815 5.3589486 2.833213 3.69015975 -1.6094379 -3.036554
## X255 1.0483341 -1.4271164 2.3876751 2.944439 2.81511562 -2.1202635 -3.270169
## X256 0.4005958 -1.7719568 2.3876751 2.302585 1.35792679 -3.0365543 -4.342806
## X257 1.0483341 -2.3330443 3.1185934 2.639057 1.35792679 -2.4079456 -3.863233
## X258 2.5152196 -1.8971200 5.7354768 3.688879 3.78147319 -2.4191189 -3.270169
## X260 2.3713615 -1.7719568 4.9285621 3.367296 3.55120786 -2.1202635 -3.611918
## X261 1.8527528 -2.3751558 3.4097438 2.151762 1.86752075 -3.2968374 -4.342806
## X262 2.5502306 -1.6094379 2.4972636 2.564949 4.60342060 -2.5510465 -4.422849
## X263 1.9805094 -1.2378744 3.2656012 2.890372 3.55120786 -2.2072749 -3.772261
## X264 2.5848812 -2.0402208 3.8267490 2.484907 2.81511562 -2.0402208 -3.442019
## X265 1.2195081 -1.9661129 3.0188940 2.484907 2.33213462 -2.3126354 -3.863233
## X267 2.0219013 -1.4696760 4.8482939 3.044522 3.87177749 -2.2072749 -3.816713
## X268 1.9805094 -1.2729657 4.2666237 2.944439 2.96851076 -2.5510465 -3.296837
## X269 1.5303762 -2.2072749 4.1804231 2.772589 2.33213462 -3.1700857 -4.342806
## X270 2.3713615 -1.5606477 4.9285621 3.610918 2.96851076 -2.5639499 -4.135167
## X271 1.9805094 -1.5606477 5.7354768 3.258097 3.55120786 -2.3227878 -3.352407
## X272 2.1820549 -1.5141277 4.4365713 2.995732 2.96851076 -2.2072749 -4.605170
## X273 2.3713615 -1.3862944 4.7673608 2.890372 2.33213462 -2.5902672 -3.506558
## X274 1.9805094 -1.6094379 4.0933668 2.397895 2.96851076 -2.1202635 -3.963316
## X275 1.8527528 -1.7719568 3.1679268 3.044522 2.81511562 -1.9661129 -3.540459
## X277 2.0219013 -1.9661129 4.6034206 2.397895 3.87177749 -2.3025851 -3.611918
## X278 2.1030230 -2.2072749 4.4785663 2.944439 2.81511562 -2.3025851 -3.772261
## X279 1.6263611 -1.8971200 3.4097438 2.302585 2.55134197 -4.4228486 -4.017384
## X281 2.7200688 -1.7719568 4.7266389 3.135494 1.80658378 -2.7030627 -3.170086
## X282 1.1637797 -1.8971200 4.3519974 2.772589 3.16792675 -2.7806209 -3.194183
## X283 3.3286939 -1.5545112 4.6034206 3.526361 3.55120786 -2.0402208 -3.473768
## X287 1.1637797 -2.1202635 3.6901597 2.772589 3.78147319 -2.4191189 -3.218876
## X289 2.1030230 -2.5383074 3.5512079 2.302585 1.49042759 -3.2968374 -4.342806
## X290 2.2591348 -2.1202635 4.9684528 3.610918 3.16792675 -3.0159350 -3.649659
## X291 1.6263611 -1.4271164 4.6034206 2.833213 2.55134197 -0.9416085 -2.830218
## X292 1.8527528 -1.8325815 4.9684528 3.178054 3.69015975 -1.8325815 -3.381395
## X294 1.8527528 -2.4769385 4.6034206 3.610918 1.80658378 -3.2968374 -3.963316
## X297 2.1427912 -2.0402208 2.3876751 2.484907 2.81511562 -2.4889147 -4.199705
## X298 0.4005958 -2.5010360 4.3519974 2.564949 3.16792675 -2.6310892 -3.963316
## X299 2.0219013 -1.4271164 3.7359451 2.995732 3.87177749 -2.9374634 -3.772261
## X301 1.8527528 -1.8325815 2.1623278 2.639057 0.09808809 -2.7181005 -4.268698
## X302 2.1030230 -2.8473123 4.0495083 2.772589 2.81511562 -2.7488722 -3.863233
## X303 1.7643559 -1.9661129 5.3589486 2.397895 3.55120786 -2.7333680 -4.268698
## X304 1.5303762 -1.6094379 3.6901597 2.944439 1.86752075 -1.9661129 -3.079114
## X305 1.7643559 -1.3862944 5.3589486 2.484907 3.55120786 -2.1202635 -3.540459
## X306 1.8527528 -1.7147984 6.0996440 3.465736 3.26560115 -1.6094379 -3.729701
## X307 2.3343863 -1.8325815 5.7354768 3.401197 3.26560115 -2.2072749 -3.324236
## X308 1.8527528 -1.7719568 4.1804231 2.140066 2.81511562 -2.3227878 -3.816713
## X311 1.8527528 -2.1202635 3.6901597 2.564949 2.33213462 -3.0365543 -3.649659
## X312 1.8527528 -1.6607312 4.3519974 3.295837 4.00542427 -1.9661129 -3.296837
## X313 1.5303762 -1.7719568 3.5043402 2.772589 0.62482405 -2.8647040 -4.074542
## X314 1.5303762 -1.5141277 2.4972636 2.282382 3.26560115 -2.7333680 -3.863233
## X315 1.5303762 -1.9661129 4.1804231 3.367296 2.81511562 -3.4420194 -3.688879
## X316 0.4005958 -2.0402208 3.0689186 2.397895 4.30941221 -3.0791139 -3.688879
## X317 1.8088944 -2.2072749 4.2236285 2.944439 3.16792675 -2.2072749 -3.381395
## X320 1.1637797 -2.3025851 4.6857433 2.484907 2.49726361 -2.2072749 -3.381395
## X321 0.4005958 -2.6310892 3.6901597 3.401197 2.49726361 -3.1941832 -4.199705
## X322 1.5303762 -1.8971200 4.6857433 2.639057 4.00542427 -2.2072749 -3.649659
## X323 1.9805094 -1.3862944 5.3589486 2.772589 3.55120786 -2.0402208 -3.540459
## X324 1.8527528 -1.6607312 3.5512079 2.833213 2.33213462 -2.6882476 -3.963316
## X325 1.8959582 -1.7719568 3.8717775 2.944439 2.33213462 -2.3025851 -3.352407
## X326 2.1030230 -1.9661129 5.3589486 2.890372 2.96851076 -3.0791139 -3.352407
## X327 2.3343863 -1.1086626 5.3589486 2.484907 3.55120786 -1.6094379 -3.381395
## X329 2.1427912 -1.8971200 3.4097438 3.044522 3.21692675 -2.1202635 -3.506558
## X330 2.3343863 -2.5010360 4.4785663 2.708050 3.87177749 -2.4304185 -3.352407
## X331 1.8959582 -1.6607312 3.2656012 2.028148 0.62482405 -2.9957323 -3.912023
## X332 1.7643559 -1.2729657 4.2666237 2.116256 1.55530341 -2.5510465 -3.816713
## X333 2.6867663 -1.3093333 4.9285621 3.044522 4.09336677 -1.8971200 -3.772261
## MMP7 Myoglobin NT_proBNP NrCAM Osteopontin PAI_1
## X1 -3.7735027 -1.89711998 4.553877 5.003946 5.356586 1.00350156
## X2 -5.9681907 -0.75502258 4.219508 5.209486 6.003887 -0.03059880
## X3 -4.0302269 -1.38629436 4.248495 4.744932 5.017280 0.43837211
## X5 -0.2222222 -1.77195684 4.465908 5.198497 5.693732 0.25230466
## X6 -1.9223227 -1.13943428 4.189655 3.258097 4.736198 0.43837211
## X7 -5.9681907 -1.77195684 4.330733 4.521789 5.318120 0.00000000
## X8 -2.4721360 -1.20397280 3.828641 3.258097 4.983607 0.49054798
## X9 -5.8446454 -1.96611286 5.043425 3.912023 5.049856 -0.47754210
## X11 -3.7735027 -1.66073121 4.875197 4.488636 5.533389 0.25230466
## X12 -3.0000000 -1.42711636 4.727388 3.988984 5.099866 0.25230466
## X14 -1.3806170 -1.60943791 4.691348 4.174387 5.023881 0.32004747
## X16 -4.0302269 -2.55104645 5.323010 4.812184 5.690359 0.49054798
## X17 -2.8507125 -1.17118298 4.595120 3.761200 5.043425 0.32004747
## X18 -1.2879797 -2.35387839 3.931826 3.637586 4.927254 0.32004747
## X19 -3.3452248 -0.82098055 4.290459 3.044522 4.804021 0.53887915
## X20 -0.6037782 -0.03045921 3.784190 3.970292 4.969813 0.85893499
## X21 -3.3452248 -1.56064775 5.262690 3.828641 4.997212 -0.65480247
## X22 -4.0302269 -2.71810054 4.828314 5.429346 6.308098 -0.15428707
## X23 -6.3770782 -2.53830743 3.663562 4.382027 5.351858 -0.04107298
## X24 -4.3245553 0.74193734 4.709530 4.934474 5.743003 -0.21752413
## X25 -4.0302269 -2.12026354 4.672829 3.988984 4.653960 -0.72247798
## X26 -3.5470020 0.87546874 4.499810 4.836282 5.568345 0.09396047
## X28 -4.0302269 -0.02020271 4.465908 4.204693 5.609472 -0.05168998
## X29 -2.2640143 -1.42711636 3.931826 3.295837 4.615121 -0.87443088
## X30 -3.7735027 -2.04022083 4.317488 4.158883 5.087596 -0.14221210
## X31 -3.3452248 -1.42711636 4.828314 3.931826 5.236442 0.09396047
## X34 -2.8507125 -1.13943428 4.770685 3.526361 4.919981 0.58384004
## X35 -2.5883147 -0.73396918 4.605170 3.637586 4.744932 0.00000000
## X36 -0.7216553 -1.46967597 4.718499 4.060443 4.812184 0.00000000
## X37 -3.7735027 1.68639895 4.595120 4.836282 5.826000 0.09396047
## X38 -4.7040152 -2.04022083 4.605170 4.248495 4.976734 0.25230466
## X39 -4.5938047 -1.83258146 4.262680 5.129899 5.529429 0.09396047
## X40 -1.6514837 -1.77195684 4.499810 4.356709 4.890349 0.32004747
## X41 -3.7735027 -1.34707365 4.983607 3.806662 5.081404 0.25230466
## X42 -4.3245553 -1.46967597 4.700480 4.477337 5.262690 -0.11859478
## X43 -3.1639778 -2.71810054 4.304065 3.871201 5.323010 -0.28605071
## X44 -4.4888568 -1.17118298 4.736198 4.369448 5.147494 0.62582535
## X45 -2.1702883 0.18232156 4.634729 4.543295 5.192957 0.17742506
## X46 -1.1622777 -1.20397280 4.499810 5.010635 5.529429 0.17742506
## X47 -2.8507125 -1.96611286 4.976734 3.912023 4.727388 -0.11859478
## X48 -4.0302269 -1.89711998 4.919981 5.332719 5.765191 0.49054798
## X50 -3.5470020 -1.60943791 5.129899 4.532599 5.214936 0.17742506
## X51 -4.6666667 -1.96611286 4.795791 4.753590 5.416100 -0.40885871
## X53 -3.7735027 -1.60943791 4.127134 4.442651 5.283204 0.09396047
## X55 -6.6874449 -1.77195684 4.127134 4.836282 4.882802 0.09396047
## X56 -4.3245553 -0.59783700 5.062595 4.143135 5.017280 0.17742506
## X57 -2.8507125 -1.07880966 4.574711 4.709530 5.323010 0.49054798
## X59 -3.0000000 -1.71479843 5.036953 4.290459 5.062595 1.10005082
## X60 -4.3887656 -1.60943791 4.736198 3.912023 5.062595 -0.27188464
## X61 -3.5470020 -2.47693848 4.488636 3.713572 5.023881 -0.25795574
## X62 -6.7705802 -2.70306266 4.574711 3.713572 4.653960 -0.55204550
## X63 -3.7735027 -1.77195684 4.948760 4.465908 5.493061 -0.01006550
## X64 -1.0151134 -1.71479843 5.181784 3.526361 5.318120 0.76993928
## X65 -4.0302269 -1.60943791 4.143135 4.418841 5.117994 0.09396047
## X67 -6.3045480 -2.20727491 4.859812 4.897840 5.771441 -0.16654597
## X68 -4.3245553 -0.15082289 3.610918 4.564348 5.521461 -0.04107298
## X69 -5.7849894 -1.38629436 4.304065 4.094345 4.718499 -0.11859478
## X70 -3.3452248 -2.04022083 5.003946 5.023881 5.105945 0.17742506
## X71 -4.0302269 -1.13943428 4.605170 4.430817 4.941642 0.73700033
## X72 -4.0302269 -1.20397280 4.634729 5.472271 5.549076 0.09396047
## X73 -5.2074997 -0.67334455 4.795791 5.159055 5.605802 0.58384004
## X74 -2.0000000 -2.20727491 4.406719 3.258097 4.290459 0.49054798
## X75 -2.4721360 -0.82098055 4.820282 3.737670 5.288267 0.58384004
## X76 -2.7140452 -2.12026354 4.770685 4.955827 5.921578 0.73700033
## X77 -4.5582584 -1.13943428 4.727388 4.442651 5.501258 0.76993928
## X78 -3.1639778 -1.66073121 4.990433 4.969813 5.921578 0.83076041
## X80 -2.3643578 -2.34340709 4.770685 4.543295 5.068904 0.17742506
## X81 -3.7735027 -2.30258509 4.859812 4.356709 5.081404 -0.14221210
## X82 -4.0302269 -2.60369019 4.406719 4.174387 5.252273 0.17742506
## X83 -3.5470020 1.41098697 4.595120 4.077537 4.770685 -0.16654597
## X84 -3.3452248 -1.66073121 4.543295 4.007333 5.332719 0.32004747
## X85 -3.7735027 -1.30933332 5.468060 4.615121 5.442418 0.43837211
## X86 -2.7140452 -0.61618614 5.117994 4.248495 5.318120 0.25230466
## X88 -3.1639778 -1.10866262 4.727388 4.812184 5.365976 0.38177502
## X90 -8.3975049 -2.79688141 3.178054 2.708050 4.234107 -0.63330256
## X93 -3.5470020 -0.49429632 4.317488 3.828641 4.779123 0.38177502
## X94 -1.4299717 -0.56211892 5.886104 4.820282 5.780744 0.80114069
## X95 -2.7140452 -0.84397007 4.762174 3.970292 4.867534 0.17742506
## X96 -3.3452248 -0.82098055 4.521789 4.867534 5.384495 -0.23078200
## X97 -4.5938047 -3.01593498 4.543295 5.111988 5.288267 -0.05168998
## X98 -7.3250481 -2.97592965 4.477337 3.970292 5.087596 -0.51401261
## X99 -3.5935279 -1.51412773 4.290459 4.727388 5.840642 0.62582535
## X100 -5.1611487 -0.24846136 4.634729 5.030438 5.351858 0.25230466
## X103 -3.2335542 -1.60943791 4.663439 5.631212 5.407172 0.43837211
## X104 -4.8199434 -1.71479843 4.430817 4.795791 4.934474 -0.17899381
## X105 -5.5592895 -2.31263543 4.454347 4.962845 5.351858 -0.27188464
## X107 -1.3806170 -2.12026354 4.369448 4.812184 4.976734 0.00000000
## X108 -1.9223227 -1.27296568 4.682131 4.442651 5.438079 0.09396047
## X109 -7.5346259 -2.20727491 4.465908 4.127134 4.882802 -0.24425708
## X110 -4.3245553 -2.43041846 4.043051 3.713572 5.220356 -0.06245326
## X111 -1.2879797 -1.60943791 4.110874 5.075174 5.159055 -0.47754210
## X112 -3.3452248 -0.38566248 5.323010 5.003946 5.857933 0.17742506
## X113 -2.3643578 0.53062825 4.787492 4.204693 5.303305 0.70214496
## X114 -5.1156807 -2.56394986 4.543295 3.583519 4.595120 -0.24425708
## X115 -2.2640143 -0.86750057 4.700480 3.871201 4.912655 -0.13031621
## X117 -4.3564173 -1.96611286 4.812184 5.087596 5.605802 0.38177502
## X118 -2.3643578 -2.12026354 4.700480 5.030438 5.662960 0.83076041
## X121 -0.4253563 -1.10866262 5.062595 4.682131 5.863631 0.53887915
## X123 -2.0000000 -1.66073121 4.304065 3.610918 4.795791 -0.42552800
## X124 -3.1639778 -0.99425227 4.875197 4.143135 5.010635 0.00000000
## X126 -4.8199434 -2.48891467 4.912655 4.624973 4.983607 -0.19163579
## X128 -1.2025631 -2.31263543 4.962845 4.820282 5.488938 0.95939061
## X129 -5.9056942 -1.89711998 4.624973 3.871201 4.605170 -0.57168558
## X130 -3.7735027 -0.86750057 5.159055 4.564348 5.099866 0.25230466
## X131 -5.0710678 -2.76462055 4.025352 4.488636 5.129899 -0.34523643
## X132 -4.0302269 0.69314718 4.442651 4.369448 5.017280 -0.08443323
## X133 -2.4721360 -0.75502258 4.672829 4.219508 4.859812 0.09396047
## X134 -0.5000000 -1.34707365 4.727388 4.672829 5.602119 0.43837211
## X135 -4.3245553 -2.45340798 4.584967 5.105945 5.257495 0.00000000
## X136 -2.4721360 -0.77652879 4.727388 3.828641 4.110874 0.43837211
## X137 -4.6299354 -1.42711636 4.488636 4.204693 4.976734 -0.01006550
## X139 -3.3452248 -1.34707365 4.543295 3.931826 5.017280 -0.59176325
## X140 -4.0302269 -1.89711998 4.406719 4.465908 5.187386 0.00000000
## X141 -3.1639778 -1.56064775 4.820282 4.890349 5.509388 0.25230466
## X143 -3.5470020 0.33647224 4.574711 3.637586 4.867534 0.00000000
## X144 -3.7735027 -2.04022083 4.276666 4.077537 5.030438 0.49054798
## X145 -5.0272837 -2.46510402 4.276666 4.330733 5.187386 -0.63330256
## X146 -2.1702883 -0.59783700 4.406719 4.430817 4.836282 0.43837211
## X147 -3.7735027 -1.23787436 4.634729 4.867534 5.743003 0.43837211
## X148 -1.7139068 -0.44628710 4.543295 4.276666 5.537334 0.09396047
## X149 -1.7139068 -2.88240359 4.290459 4.382027 4.897840 -0.27188464
## X152 -2.0824829 -0.94160854 4.682131 5.298317 5.634790 0.88578467
## X153 -3.5470020 -0.06187540 4.672829 4.488636 5.323010 0.00000000
## X154 -5.9681907 -1.71479843 3.806662 4.330733 5.442418 -0.36070366
## X155 -5.2547625 -2.47693848 4.442651 4.406719 5.164786 -0.24425708
## X156 -1.1622777 -0.40047757 4.369448 4.653960 5.176150 0.43837211
## X157 -3.1639778 -2.12026354 4.770685 4.356709 5.568345 1.00350156
## X158 -5.1611487 -2.59026717 3.828641 4.634729 4.962845 -0.51401261
## X159 -4.3245553 -2.20727491 4.859812 4.174387 4.941642 0.17742506
## X160 -4.5582584 -1.51412773 4.454347 5.501258 5.564520 -0.07336643
## X161 -5.0710678 0.40546511 5.081404 4.955827 5.361292 -0.69936731
## X162 -3.7735027 -0.63487827 4.406719 4.890349 6.144186 -0.07336643
## X163 -6.6874449 -2.83021784 4.262680 4.143135 5.429346 -0.57168558
## X165 -3.5470020 -2.30258509 4.499810 4.672829 5.484797 0.25230466
## X166 -5.4023321 0.09531018 4.624973 4.499810 5.257495 -0.31512364
## X167 -1.5921060 0.18232156 4.605170 5.283204 5.783825 -0.42552800
## X168 -0.9814240 -2.31263543 4.025352 4.532599 4.962845 -0.42552800
## X169 -2.0000000 -0.38566248 4.465908 4.330733 5.164786 0.00000000
## X170 -2.0000000 -2.61729584 4.499810 3.610918 5.159055 -0.10704332
## X171 -4.9421013 -0.63487827 4.948760 4.700480 5.187386 -0.45985790
## X172 -5.2074997 -3.12356565 4.510860 4.553877 5.318120 -0.65480247
## X174 -1.5921060 1.41098697 4.595120 4.356709 5.176150 0.17742506
## X175 -2.5883147 -0.77652879 4.584967 4.709530 5.323010 0.58384004
## X176 -5.0710678 -2.32278780 5.003946 4.204693 4.934474 0.32004747
## X177 -4.7419986 -2.40794561 4.770685 4.584967 5.375278 0.25230466
## X178 -4.0302269 -3.07911388 4.682131 4.077537 4.820282 -0.82104815
## X179 -2.1884251 -1.07880966 4.983607 4.060443 4.442651 -0.01006550
## X180 -2.0000000 -1.23787436 4.727388 4.553877 5.568345 -0.10704332
## X181 -5.5592895 1.77495235 4.382027 3.555348 4.356709 0.17742506
## X182 -5.0710678 -1.38629436 4.553877 4.510860 5.187386 0.49054798
## X183 -3.7735027 -1.71479843 4.406719 2.833213 4.248495 0.17742506
## X184 -5.4023321 1.06471074 4.653960 4.727388 5.225747 0.38177502
## X185 -4.4549722 -1.42711636 4.948760 4.304065 5.278115 0.49054798
## X186 -5.0272837 -1.60943791 4.304065 4.234107 5.214936 -0.08443323
## X189 -6.0321933 -0.84397007 4.672829 4.867534 5.710427 0.09396047
## X190 -4.0302269 -0.63487827 4.174387 4.521789 5.509388 0.32004747
## X191 -6.8561489 -1.56064775 4.700480 4.158883 5.332719 -0.63330256
## X192 -4.3245553 0.26236426 4.382027 5.056246 5.899897 0.25230466
## X193 -3.5470020 -2.04022083 5.283204 4.543295 5.488938 1.00350156
## X194 -2.8507125 -1.07880966 4.787492 3.663562 4.927254 0.17742506
## X195 -1.1234752 -0.34249031 4.488636 6.011267 5.978886 0.43837211
## X197 -2.2640143 -0.07257069 5.204007 4.753590 5.313206 -0.25795574
## X198 -5.5058663 -2.90042209 4.077537 4.043051 5.288267 -0.82104815
## X200 -4.0302269 -1.34707365 4.812184 4.584967 5.370638 0.00000000
## X201 -3.3452248 -1.46967597 4.204693 3.850148 4.962845 -0.06245326
## X202 -6.6066297 -1.42711636 4.204693 3.912023 5.293305 -0.49558921
## X205 -2.0000000 -0.47803580 4.369448 4.859812 5.332719 0.32004747
## X208 -5.0710678 -1.83258146 4.382027 4.234107 5.379897 -0.27188464
## X210 -3.0000000 -0.21072103 5.241747 4.653960 5.278115 0.53887915
## X212 -4.0302269 -0.96758403 4.644391 3.850148 4.948760 -0.20447735
## X213 -3.0000000 -0.51082562 4.836282 4.488636 5.181784 -0.08443323
## X214 -3.3452248 -1.83258146 4.304065 4.584967 5.093750 1.16610855
## X215 -1.6514837 -2.37515579 4.430817 4.867534 5.676754 -0.39250510
## X216 -4.4549722 -1.46967597 3.663562 3.850148 5.187386 0.25230466
## X218 -2.2640143 -0.18632958 4.204693 3.555348 4.997212 0.66516665
## X219 -5.1611487 -1.71479843 4.787492 4.094345 5.214936 -0.15428707
## X220 -5.8446454 -2.86470401 4.897840 4.691348 5.384495 -0.65480247
## X223 -3.3452248 -0.84397007 4.828314 4.430817 5.583496 -0.51401261
## X224 -5.8446454 -1.66073121 4.304065 4.615121 5.293305 0.00000000
## X225 -5.5058663 -1.10866262 4.394449 5.347108 5.826000 0.17742506
## X226 -3.0000000 -0.89159812 4.442651 5.411646 5.693732 0.43837211
## X227 -3.0000000 -0.91629073 4.077537 4.770685 4.969813 0.00000000
## X228 -1.4299717 -2.81341072 4.553877 3.828641 5.429346 -0.63330256
## X229 -0.4077171 -1.07880966 4.248495 3.663562 4.990433 -0.21752413
## X230 -2.7140452 -1.13943428 4.691348 4.219508 4.499810 0.43837211
## X231 -4.4888568 1.75785792 4.595120 4.158883 4.948760 0.00000000
## X232 -5.3521462 -1.83258146 4.143135 4.043051 4.934474 0.00000000
## X233 -5.3029674 -2.04022083 4.043051 3.433987 5.030438 -0.24425708
## X234 -3.3452248 -1.02976542 4.521789 4.317488 4.890349 -0.61229604
## X236 -4.0302269 -3.17008566 4.382027 4.691348 5.488938 -0.65480247
## X237 -4.0302269 0.09531018 4.574711 4.317488 5.153292 -0.09565753
## X239 -4.0302269 -0.77652879 4.394449 3.044522 4.584967 0.09396047
## X240 -4.0302269 0.74193734 4.442651 3.912023 4.795791 -0.42552800
## X241 -3.7735027 -2.52572864 4.859812 4.919981 5.117994 0.00000000
## X242 -1.7796447 -1.10866262 3.828641 2.833213 4.330733 0.25230466
## X243 -4.6299354 -1.51412773 5.075174 3.526361 4.787492 0.49054798
## X244 -3.7735027 -0.27443685 5.225747 4.454347 5.003946 0.85893499
## X245 -6.4515425 -0.22314355 3.871201 3.044522 4.317488 -0.16654597
## X246 -2.7140452 0.26236426 4.510860 4.094345 5.105945 0.25230466
## X247 -4.7806350 -2.45340798 4.553877 3.850148 5.049856 -0.57168558
## X249 -5.4023321 -1.46553683 4.820282 5.545177 6.102559 0.00000000
## X250 -4.5582584 -2.04022083 4.234107 4.430817 5.093750 0.09396047
## X251 -4.6299354 -1.27296568 4.553877 4.143135 4.779123 -0.55204550
## X253 -2.7140452 -1.96611286 4.962845 4.143135 5.135798 0.58384004
## X254 -2.3643578 -1.60943791 5.411646 5.598422 5.739793 0.09396047
## X255 -2.2640143 -1.46967597 4.875197 4.682131 5.170484 0.09396047
## X256 -6.3770782 -1.20397280 4.859812 4.615121 5.262690 -0.59176325
## X257 -5.7266741 -2.04022083 4.543295 3.931826 4.700480 -0.37645673
## X258 -3.1639778 -0.91629073 4.553877 4.859812 5.549076 0.09396047
## X260 -6.6066297 -1.96611286 4.204693 4.510860 4.844187 0.09396047
## X261 -7.1287093 -2.20727491 4.406719 3.871201 4.948760 -0.07336643
## X262 -5.7266741 -2.33304430 4.077537 3.931826 4.672829 -0.53282641
## X263 -1.2879797 -2.20727491 3.871201 4.663439 5.645447 -0.15428707
## X264 -2.0824829 -0.22314355 5.707110 4.127134 5.267858 0.17742506
## X265 -6.0977633 -2.37515579 3.433987 4.356709 5.214936 0.09396047
## X267 -2.0000000 -1.07880966 4.882802 4.499810 5.739793 0.66516665
## X268 -3.5470020 -0.96758403 4.465908 4.700480 5.525453 -0.47754210
## X269 -5.5058663 -2.93746337 4.624973 4.077537 4.852030 -0.99084860
## X270 -1.8490018 -0.41551544 4.025352 5.030438 5.945421 -0.07336643
## X271 -2.2640143 -1.13943428 4.488636 4.234107 5.616771 -0.02026405
## X272 -4.4216130 -1.46967597 4.564348 4.127134 4.962845 -0.10704332
## X273 -3.0000000 -0.63487827 4.043051 4.532599 5.247024 0.32004747
## X274 -5.6696499 0.33647224 3.970292 4.488636 5.147494 -0.03059880
## X275 -4.0302269 -1.27296568 4.442651 4.867534 5.370638 0.17742506
## X277 -1.7139068 -1.04982212 4.143135 4.356709 5.010635 0.53887915
## X278 -3.1639778 -1.96611286 4.663439 4.394449 5.225747 -0.10704332
## X279 -3.1639778 -2.71810054 4.753590 4.025352 4.976734 -0.13031621
## X281 -3.3452248 -0.76744135 4.276666 4.691348 5.521461 0.70214496
## X282 -3.7735027 -0.93350237 3.828641 3.737670 4.644391 0.38177502
## X283 -4.0302269 -1.30933332 4.477337 5.147494 5.679253 0.43837211
## X287 -3.7735027 -1.66073121 4.454347 4.736198 5.886104 0.09396047
## X289 -5.3029674 -0.28768207 3.951244 3.663562 4.912655 -0.23078200
## X290 -3.5470020 -2.20727491 3.610918 3.828641 5.147494 0.09396047
## X291 -0.9814240 -1.77195684 4.356709 4.828314 5.472271 0.70214496
## X292 -4.0302269 -2.12026354 4.779123 5.003946 5.556828 0.32004747
## X294 -6.0977633 -1.13943428 4.553877 3.295837 5.257495 -0.55204550
## X297 -4.3887656 -1.77195684 4.564348 4.110874 4.663439 -0.16654597
## X298 -5.5058663 -2.04022083 3.951244 3.637586 4.532599 0.00000000
## X299 -5.1156807 -2.04022083 4.927254 4.488636 5.560682 0.09396047
## X301 -4.4549722 -2.32278780 4.356709 4.127134 4.875197 -0.17899381
## X302 -4.0302269 -2.04022083 4.343805 3.218876 4.343805 -0.63330256
## X303 -5.2547625 -1.83258146 4.442651 4.234107 5.288267 -0.20447735
## X304 -3.0000000 -2.35387839 5.111988 5.075174 6.304449 0.62582535
## X305 -3.7735027 -1.46967597 4.682131 4.094345 5.662960 0.73700033
## X306 -4.4216130 -0.77652879 4.595120 4.941642 5.267858 0.38177502
## X307 -3.5470020 -0.71334989 4.779123 4.962845 6.129050 0.85893499
## X308 -6.9442719 -0.84397007 4.595120 4.510860 5.135798 0.09396047
## X311 -3.7735027 -1.77195684 4.770685 4.043051 4.828314 -0.11859478
## X312 -3.7735027 -1.96611286 4.912655 5.075174 5.164786 0.32004747
## X313 -5.0710678 -0.35667494 4.317488 3.688879 5.288267 0.17742506
## X314 -6.5280287 -2.90042209 4.709530 4.406719 5.293305 -0.17899381
## X315 -3.7735027 -1.89711998 4.418841 4.007333 5.093750 -0.09565753
## X316 -5.1611487 -1.60943791 4.290459 4.736198 5.411646 0.25230466
## X317 -4.9421013 -2.12026354 4.653960 4.844187 5.081404 -0.04107298
## X320 -4.6299354 -1.23787436 4.465908 4.007333 4.304065 -0.28605071
## X321 -4.6666667 -1.46967597 3.784190 2.639057 4.454347 -0.10704332
## X322 -0.8867513 -0.77652879 4.912655 4.465908 5.393628 0.49054798
## X323 -3.5470020 -0.35667494 5.135798 4.382027 5.236442 0.32004747
## X324 -6.3045480 -1.13943428 4.875197 4.219508 5.170484 0.25230466
## X325 -4.3245553 -2.40794561 4.488636 4.442651 4.941642 0.85893499
## X326 -3.7735027 -0.38566248 4.510860 4.276666 5.288267 0.09396047
## X327 -0.7472113 0.33647224 4.890349 4.795791 5.236442 0.53887915
## X329 -4.9843030 -2.37515579 4.465908 5.192957 5.416100 0.17742506
## X330 -1.2025631 -0.52763274 4.744932 3.761200 4.488636 0.09396047
## X331 -6.1649658 -1.83258146 4.304065 3.931826 4.762174 -0.09565753
## X332 -3.7735027 -0.77652879 4.189655 3.465736 4.859812 0.17742506
## X333 -5.5058663 -0.63487827 4.465908 5.541264 6.102559 -0.53282641
## PAPP_A PLGF PYY Pancreatic_polypeptide Prolactin
## X1 -2.902226 4.442651 3.218876 0.57878085 0.00000000
## X2 -2.813276 4.025352 3.135494 0.33647224 -0.51082562
## X3 -2.935541 4.510860 2.890372 -0.89159812 -0.13926207
## X5 -2.935541 4.795791 3.663562 0.26236426 0.18232156
## X6 -2.935541 4.394449 3.332205 -0.47803580 -0.15082289
## X7 -2.590291 3.367296 2.833213 -0.59783700 -0.52763274
## X8 -2.669471 4.343805 2.397895 -0.31471074 -0.35667494
## X9 -2.786601 3.526361 2.833213 -0.52763274 0.40546511
## X11 -2.669471 4.356709 3.258097 -1.27296568 0.40546511
## X12 -2.971157 3.871201 2.995732 1.16315081 0.26236426
## X14 -2.841320 4.330733 2.772589 -0.37106368 0.09531018
## X16 -2.971157 4.189655 2.833213 0.33647224 -0.03045921
## X17 -2.691054 4.219508 2.639057 0.78845736 0.26236426
## X18 -2.841320 4.189655 2.833213 -0.59783700 -0.44628710
## X19 -2.713475 3.784190 2.833213 0.18232156 0.18232156
## X20 -2.813276 4.454347 2.302585 -0.26136476 0.26236426
## X21 -2.813276 4.007333 3.178054 0.69314718 0.18232156
## X22 -2.713475 3.258097 2.833213 -1.23787436 -0.22314355
## X23 -3.110843 4.262680 3.135494 -0.82098055 -0.21072103
## X24 -2.590291 3.465736 2.772589 -0.04082199 -0.05129329
## X25 -2.691054 3.433987 2.890372 -1.27296568 -1.30933332
## X26 -2.902226 3.688879 2.772589 0.09531018 0.18232156
## X28 -3.009464 3.713572 2.772589 0.40546511 -0.23572233
## X29 -2.736812 3.912023 2.995732 0.09531018 -0.10536052
## X30 -2.813276 3.583519 2.995732 0.09531018 -0.13926207
## X31 -2.590291 4.488636 3.218876 0.33647224 -0.10536052
## X34 -2.813276 4.727388 2.397895 0.91629073 -0.13926207
## X35 -3.050970 4.110874 2.833213 0.53062825 0.00000000
## X36 -2.736812 4.499810 2.833213 -0.75502258 0.09531018
## X37 -2.971157 3.912023 2.995732 -0.10536052 -0.03045921
## X38 -2.902226 3.871201 3.178054 -0.63487827 0.18232156
## X39 -2.841320 3.332205 3.367296 -0.71334989 -0.40047757
## X40 -2.761153 3.891820 3.218876 -0.51082562 -0.07230692
## X41 -2.813276 4.094345 2.833213 0.18232156 0.09531018
## X42 -2.902226 4.025352 3.367296 -1.27296568 0.47000363
## X43 -2.971157 3.806662 2.833213 0.00000000 0.40546511
## X44 -2.841320 4.532599 3.135494 0.47000363 0.40546511
## X45 -2.590291 4.143135 2.890372 0.64185389 0.00000000
## X46 -3.110843 4.382027 2.890372 -0.26136476 0.26236426
## X47 -2.971157 3.828641 2.995732 0.18232156 0.00000000
## X48 -2.691054 4.248495 3.496508 0.69314718 0.09531018
## X50 -2.713475 4.127134 3.850148 -0.41551544 0.18232156
## X51 -2.841320 3.295837 2.639057 -0.96758403 0.09531018
## X53 -2.902226 4.007333 3.332205 -0.34249031 0.09531018
## X55 -2.902226 3.871201 3.135494 0.26236426 -0.10536052
## X56 -2.841320 4.290459 2.833213 -0.46203546 -0.07257069
## X57 -2.813276 4.499810 3.295837 1.06471074 -0.13926207
## X59 -2.713475 4.663439 2.995732 -0.32850407 0.33647224
## X60 -2.736812 3.806662 2.833213 0.95551145 0.26236426
## X61 -2.761153 3.931826 3.433987 -0.09431068 -0.40047757
## X62 -3.009464 3.496508 2.708050 -0.73396918 -0.23572233
## X63 -2.628559 4.077537 3.135494 0.91629073 -0.30110509
## X64 -2.813276 4.343805 2.944439 0.83290912 -0.17435339
## X65 -2.971157 3.332205 2.890372 0.83290912 -0.18632958
## X67 -3.009464 3.850148 2.397895 -0.32850407 0.09531018
## X68 -2.691054 3.663562 2.995732 0.26236426 0.09531018
## X69 -2.935541 3.555348 2.995732 -0.16251893 -0.01005034
## X70 -2.935541 3.737670 3.091042 0.26236426 -0.31471074
## X71 -3.068611 4.369448 2.772589 0.40546511 -0.18632958
## X72 -2.813276 4.369448 2.890372 -0.59783700 0.58778666
## X73 -2.786601 4.615121 2.890372 0.26236426 0.99325177
## X74 -2.813276 3.871201 3.091042 0.53062825 -0.06187540
## X75 -2.935541 4.605170 2.833213 0.69314718 0.09531018
## X76 -2.813276 4.043051 3.135494 1.02961942 -0.26136476
## X77 -2.761153 3.761200 3.044522 0.83290912 0.69314718
## X78 -2.935541 4.418841 2.639057 1.52605630 0.18232156
## X80 -2.902226 3.891820 3.401197 0.33647224 0.09531018
## X81 -3.009464 4.189655 3.178054 -0.63487827 0.26236426
## X82 -2.761153 3.135494 2.995732 0.09531018 0.26236426
## X83 -2.971157 3.970292 3.178054 -0.40047757 0.18232156
## X84 -2.935541 3.871201 2.772589 -0.63487827 -0.02020271
## X85 -2.935541 3.761200 3.135494 -0.32850407 -0.17435339
## X86 -2.870902 4.317488 3.496508 1.93152141 -0.09431068
## X88 -2.669471 4.634729 3.465736 0.47000363 -0.06187540
## X90 -2.902226 3.555348 2.397895 -0.40047757 -0.75502258
## X93 -2.902226 3.761200 2.833213 0.18232156 -0.26136476
## X94 -2.902226 4.844187 3.218876 1.25276297 0.18232156
## X95 -2.736812 3.806662 3.367296 0.47000363 0.18232156
## X96 -3.068611 3.713572 3.332205 -0.79850770 -0.05129329
## X97 -2.971157 3.218876 2.772589 -0.67334455 -0.22314355
## X98 -2.870902 3.496508 2.995732 -1.02165125 0.33647224
## X99 -3.033945 4.465908 2.708050 0.91629073 0.53062825
## X100 -2.870902 3.828641 3.295837 -0.23572233 0.00000000
## X103 -2.841320 4.382027 2.564949 -0.19845094 0.00000000
## X104 -2.870902 3.891820 2.639057 0.26236426 -0.15082289
## X105 -2.648659 3.044522 3.044522 0.26236426 -0.19845094
## X107 -2.841320 3.332205 3.178054 -0.16251893 0.26236426
## X108 -2.590291 3.713572 2.833213 -0.03045921 -0.22314355
## X109 -3.110843 3.433987 3.044522 -0.71334989 0.18232156
## X110 -2.813276 3.713572 2.833213 -2.12026354 -0.30110509
## X111 -2.870902 3.784190 2.833213 -0.40047757 0.00000000
## X112 -2.713475 3.951244 2.995732 1.64865863 -0.21072103
## X113 -2.761153 4.595120 2.890372 0.69314718 0.09531018
## X114 -3.101129 3.526361 2.772589 -0.73396918 0.33647224
## X115 -2.648659 4.465908 2.708050 1.09861229 -0.16251893
## X117 -2.590291 3.784190 3.091042 0.18232156 -0.11653382
## X118 -2.648659 3.988984 3.583519 -1.27296568 0.09531018
## X121 -3.082278 4.330733 2.708050 0.18232156 0.26236426
## X123 -2.761153 3.526361 3.218876 -0.23572233 0.33647224
## X124 -2.609119 4.094345 3.258097 0.09531018 0.26236426
## X126 -2.786601 3.465736 2.995732 -0.52763274 0.09531018
## X128 -2.902226 3.828641 3.178054 0.47000363 0.26236426
## X129 -2.935541 3.433987 2.833213 -0.75502258 -0.07257069
## X130 -2.902226 4.143135 3.367296 0.58778666 0.40546511
## X131 -3.013461 2.995732 2.772589 0.78845736 0.00000000
## X132 -2.813276 3.806662 2.833213 -0.31471074 -0.23572233
## X133 -2.736812 4.204693 2.833213 -0.52763274 -0.08338161
## X134 -2.736812 4.204693 3.178054 1.25276297 0.00000000
## X135 -2.761153 3.637586 2.833213 -0.31471074 -0.27443685
## X136 -2.971157 4.094345 3.091042 0.69314718 0.91629073
## X137 -2.870902 4.094345 3.135494 -0.34249031 0.00000000
## X139 -2.870902 3.761200 3.526361 -0.47803580 0.26236426
## X140 -2.609119 3.828641 3.091042 1.19392247 0.33647224
## X141 -2.870902 3.332205 2.890372 0.18232156 0.09531018
## X143 -2.609119 4.317488 2.833213 0.99325177 -0.30110509
## X144 -2.902226 3.610918 3.178054 0.58778666 -0.04082199
## X145 -2.870902 3.295837 2.995732 -0.86750057 0.00000000
## X146 -2.813276 3.663562 2.186051 1.33500107 -0.09431068
## X147 -3.009464 3.496508 2.890372 0.78845736 -0.27443685
## X148 -2.870902 4.189655 2.639057 0.00000000 -0.18632958
## X149 -2.813276 3.761200 3.044522 -1.10866262 -0.12783337
## X152 -2.691054 4.488636 2.890372 1.13140211 -0.22314355
## X153 -2.648659 4.158883 2.995732 0.64185389 -0.07257069
## X154 -2.935541 3.496508 3.218876 -0.71334989 -0.02020271
## X155 -2.902226 3.784190 3.332205 -0.86750057 0.09531018
## X156 -2.870902 4.262680 3.044522 -0.26136476 0.18232156
## X157 -2.813276 4.304065 2.995732 0.26236426 0.33647224
## X158 -2.813276 4.077537 2.890372 -0.96758403 -0.01005034
## X159 -2.935541 4.043051 3.044522 0.18232156 -0.07257069
## X160 -2.902226 3.828641 3.332205 0.33647224 0.18232156
## X161 -2.870902 4.025352 3.135494 -1.27296568 0.18232156
## X162 -2.841320 3.367296 3.806662 -0.40047757 0.40546511
## X163 -2.935541 2.944439 3.465736 -0.96758403 -0.03045921
## X165 -2.971157 3.218876 2.890372 -1.07880966 -0.21072103
## X166 -2.841320 3.737670 2.944439 -0.23572233 -0.35667494
## X167 -2.691054 3.401197 2.944439 -1.34707365 0.00000000
## X168 -2.870902 3.610918 2.833213 -0.82098055 0.00000000
## X169 -3.017491 3.737670 3.178054 -0.47803580 0.18232156
## X170 -2.841320 3.737670 2.890372 -0.61618614 0.26236426
## X171 -2.786601 3.367296 3.526361 -0.09431068 -0.03045921
## X172 -2.813276 3.526361 3.218876 -0.16251893 0.53062825
## X174 -2.870902 4.624973 2.995732 0.83290912 0.53062825
## X175 -3.136040 3.850148 3.135494 0.33647224 -0.21072103
## X176 -2.971157 4.762174 2.708050 0.64185389 0.33647224
## X177 -2.841320 4.007333 2.397895 -0.16251893 -0.15082289
## X178 -2.971157 3.433987 2.995732 -0.99425227 0.18232156
## X179 -2.761153 4.077537 2.890372 -0.34249031 0.09531018
## X180 -2.971157 4.007333 2.833213 0.58194114 0.26236426
## X181 -2.902226 3.610918 2.833213 -0.47803580 -0.22314355
## X182 -2.713475 3.761200 3.091042 -0.09431068 0.00000000
## X183 -2.870902 4.077537 2.772589 -1.42711636 0.25361982
## X184 -2.669471 4.143135 2.639057 -0.31471074 0.09531018
## X185 -2.902226 4.007333 2.995732 0.78845736 -0.15082289
## X186 -3.033945 3.806662 2.944439 0.64185389 0.18232156
## X189 -2.971157 2.484907 2.890372 1.56861592 -0.09431068
## X190 -2.902226 3.583519 2.833213 -0.40047757 -0.06187540
## X191 -2.870902 4.077537 2.833213 -1.96611286 -0.67334455
## X192 -2.935541 3.295837 2.397895 1.30833282 -0.51082562
## X193 -2.813276 4.836282 2.708050 0.87546874 -0.16251893
## X194 -2.713475 3.713572 3.295837 -0.52763274 0.26236426
## X195 -3.009464 4.234107 3.135494 -0.46203546 0.00000000
## X197 -2.971157 3.713572 3.044522 -0.23572233 0.00000000
## X198 -2.609119 2.995732 3.295837 -1.23787436 0.18232156
## X200 -2.870902 3.496508 3.610918 -0.49429632 -0.16251893
## X201 -2.971157 4.127134 3.044522 -0.23572233 -0.46203546
## X202 -2.841320 3.091042 3.433987 -0.86750057 0.26236426
## X205 -2.736812 4.499810 3.218876 -0.41551544 -0.18632958
## X208 -2.935541 3.737670 2.397895 0.00000000 -0.27443685
## X210 -2.761153 4.394449 3.332205 0.47000363 0.18232156
## X212 -3.050970 3.850148 2.833213 1.93152141 0.40546511
## X213 -3.033945 3.737670 2.995732 1.19392247 0.33647224
## X214 -2.902226 4.219508 2.833213 0.87546874 -0.06187540
## X215 -2.935541 3.218876 3.367296 0.47000363 -0.28768207
## X216 -2.786601 4.189655 3.044522 -0.31471074 -0.01005034
## X218 -2.713475 4.234107 3.135494 -0.01005034 0.09531018
## X219 -2.971157 3.610918 3.295837 0.87546874 -0.40047757
## X220 -2.971157 3.970292 2.995732 -0.37106368 0.33647224
## X223 -2.935541 3.218876 3.091042 0.91629073 -0.12783337
## X224 -2.786601 3.496508 2.708050 -0.73396918 -0.41551544
## X225 -2.841320 3.806662 3.044522 -0.49429632 -0.46203546
## X226 -3.009464 3.401197 2.639057 0.18232156 0.00000000
## X227 -2.902226 4.127134 3.332205 1.19392247 -0.05129329
## X228 -2.935541 3.806662 2.833213 -0.31471074 -0.27443685
## X229 -3.009464 3.850148 3.178054 -0.73396918 -0.13926207
## X230 -3.179436 4.276666 2.890372 1.62924054 -0.05129329
## X231 -2.902226 4.330733 3.332205 -0.67334455 0.33647224
## X232 -2.736812 4.077537 3.218876 -0.40047757 -0.17435339
## X233 -2.813276 4.127134 2.639057 -0.63487827 0.18232156
## X234 -2.736812 3.828641 2.944439 0.74193734 -0.01005034
## X236 -3.009464 3.295837 3.178054 -0.94160854 0.09531018
## X237 -3.120760 4.060443 3.135494 1.09861229 -0.11653382
## X239 -2.971157 3.806662 3.091042 -0.16251893 0.09531018
## X240 -2.713475 3.784190 3.091042 0.18232156 -0.18632958
## X241 -2.935541 3.258097 2.708050 -0.31471074 0.58778666
## X242 -3.310880 4.208969 2.833213 0.99325177 0.09531018
## X243 -3.068611 4.219508 2.995732 -0.02020271 -0.54472718
## X244 -2.870902 4.060443 2.995732 0.74193734 0.53062825
## X245 -2.935541 3.850148 3.135494 -0.40047757 -0.47803580
## X246 -2.691054 3.988984 3.218876 0.58778666 0.09531018
## X247 -2.691054 3.828641 3.044522 -0.16251893 0.26236426
## X249 -2.736812 3.465736 2.484907 -1.07880966 0.18232156
## X250 -3.009464 4.110874 2.890372 -0.82098055 0.18232156
## X251 -2.971157 3.737670 2.944439 0.09531018 0.09531018
## X253 -3.120760 4.644391 3.218876 0.33647224 -0.26136476
## X254 -2.786601 4.025352 2.995732 -0.59783700 0.69314718
## X255 -2.870902 4.060443 3.367296 -0.63487827 0.33647224
## X256 -2.971157 3.367296 3.295837 0.53062825 -0.03045921
## X257 -2.870902 3.737670 3.688879 -0.09431068 0.47000363
## X258 -2.713475 4.317488 3.135494 0.33647224 0.09531018
## X260 -2.648659 3.713572 2.833213 -0.69314718 0.09531018
## X261 -3.136040 3.713572 3.295837 0.00000000 0.26236426
## X262 -2.669471 3.713572 3.044522 -0.69314718 -0.06187540
## X263 -2.870902 3.871201 3.135494 -1.13943428 -0.02020271
## X264 -2.813276 4.382027 2.833213 0.60449978 0.18232156
## X265 -2.786601 3.784190 2.639057 0.91629073 -0.09431068
## X267 -2.786601 4.234107 2.639057 0.83290912 0.09531018
## X268 -2.935541 3.555348 3.044522 0.40546511 0.26236426
## X269 -2.648659 3.737670 2.995732 -1.42711636 -0.08338161
## X270 -2.902226 3.737670 2.397895 -0.47803580 0.18232156
## X271 -2.609119 5.170484 3.433987 -0.23572233 0.00000000
## X272 -2.841320 3.218876 2.833213 -0.23572233 0.47000363
## X273 -2.609119 4.110874 3.295837 0.09531018 -0.43078292
## X274 -2.841320 3.555348 2.833213 -1.13943428 -0.49429632
## X275 -2.935541 3.433987 3.401197 -0.49429632 -0.40047757
## X277 -2.841320 4.110874 2.639057 0.53062825 0.33647224
## X278 -2.648659 3.871201 2.708050 0.18232156 0.09531018
## X279 -2.971157 3.091042 2.772589 -0.94160854 -0.01005034
## X281 -2.841320 4.499810 3.178054 0.18232156 -0.06187540
## X282 -3.068611 3.931826 2.890372 0.33647224 0.09531018
## X283 -2.554309 3.850148 3.135494 0.58778666 -0.13926207
## X287 -3.033945 3.610918 3.135494 0.26236426 0.18232156
## X289 -2.736812 4.158883 2.833213 -0.59783700 0.09531018
## X290 -2.870902 4.510860 3.091042 0.33647224 0.53062825
## X291 -2.935541 3.850148 3.044522 -0.10536052 0.18232156
## X292 -2.520328 3.610918 3.465736 -0.23572233 0.09531018
## X294 -2.971157 4.094345 2.708050 -1.02165125 -0.59783700
## X297 -2.971157 3.912023 2.995732 0.74193734 0.64185389
## X298 -2.713475 4.510860 2.772589 0.09531018 0.74193734
## X299 -2.691054 3.465736 3.332205 -0.94160854 0.91629073
## X301 -2.669471 3.828641 2.708050 -0.41551544 0.18232156
## X302 -2.648659 3.526361 3.091042 -0.86750057 -0.10536052
## X303 -2.628559 4.127134 2.639057 -0.16251893 -0.22314355
## X304 -2.841320 4.304065 3.367296 0.18232156 0.26236426
## X305 -2.669471 4.477337 3.135494 0.09531018 -0.06187540
## X306 -2.902226 4.219508 3.496508 0.18232156 0.26236426
## X307 -2.841320 4.110874 3.610918 0.99325177 -0.04082199
## X308 -2.786601 3.637586 3.295837 0.99325177 -0.02020271
## X311 -2.971157 4.174387 2.944439 -0.41551544 0.40546511
## X312 -3.196833 4.025352 3.931826 0.78845736 -0.43078292
## X313 -2.648659 4.127134 3.433987 0.00000000 0.18232156
## X314 -2.609119 3.555348 3.295837 -0.96758403 0.18232156
## X315 -2.935541 3.931826 2.995732 -0.16251893 0.91629073
## X316 -2.935541 3.784190 2.833213 0.09531018 0.09531018
## X317 -3.068611 3.295837 3.135494 -0.34249031 0.26236426
## X320 -2.786601 3.784190 3.761200 0.40546511 -0.11653382
## X321 -3.009464 4.043051 3.044522 0.26236426 0.40546511
## X322 -2.971157 4.454347 3.135494 -0.52763274 0.33647224
## X323 -2.813276 4.158883 3.367296 0.53062825 0.18232156
## X324 -3.009464 3.663562 3.044522 0.58778666 -0.04082199
## X325 -2.902226 4.234107 2.397895 0.78845736 0.64185389
## X326 -2.628559 3.135494 2.995732 -0.04082199 0.09531018
## X327 -3.033945 4.304065 2.639057 0.78845736 0.33647224
## X329 -3.157227 4.330733 2.708050 0.33647224 0.00000000
## X330 -2.902226 4.317488 3.178054 0.78845736 0.47000363
## X331 -3.091611 3.610918 3.218876 -0.96758403 0.47000363
## X332 -2.648659 4.276666 2.833213 -1.34707365 0.26236426
## X333 -2.609119 3.583519 2.944439 -0.52763274 -0.30110509
## Prostatic_Acid_Phosphatase Protein_S Pulmonary_and_Activation_Regulat
## X1 -1.620527 -1.784998 -0.8439701
## X2 -1.739232 -2.463991 -2.3025851
## X3 -1.636682 -2.259135 -1.6607312
## X5 -1.696685 -1.659842 -0.5621189
## X6 -1.755051 -2.357788 -1.1711830
## X7 -1.659412 -2.259135 -1.5606477
## X8 -1.724319 -2.081112 -1.1086626
## X9 -1.763357 -2.167156 -1.6607312
## X11 -1.690161 -2.081112 -1.2039728
## X12 -1.710172 -2.259135 -0.8439701
## X14 -1.548336 -2.081112 -1.0498221
## X16 -1.631218 -2.463991 -1.0216512
## X17 -1.677510 -2.000377 -1.0498221
## X18 -1.710172 -2.703458 -2.2072749
## X19 -1.636682 -2.357788 -0.5798185
## X20 -1.631218 -1.852753 -1.1711830
## X21 -1.724319 -2.259135 -1.1394343
## X22 -1.677510 -2.357788 -1.9661129
## X23 -1.671366 -2.578792 -2.0402208
## X24 -1.696685 -2.357788 -1.3862944
## X25 -1.755051 -2.578792 -2.1202635
## X26 -1.665336 -2.357788 -1.8971200
## X28 -1.677510 -2.000377 -1.7719568
## X29 -1.677510 -2.839536 -1.8325815
## X30 -1.615292 -2.703458 -1.8971200
## X31 -1.665336 -1.852753 -1.6094379
## X34 -1.659412 -2.167156 -1.2039728
## X35 -1.671366 -2.000377 -0.9942523
## X36 -1.659412 -1.720797 -0.7985077
## X37 -1.620527 -2.463991 -1.8971200
## X38 -1.696685 -2.167156 -1.5141277
## X39 -1.671366 -2.463991 -2.2072749
## X40 -1.647864 -2.167156 -2.1202635
## X41 -1.677510 -2.000377 -1.1394343
## X42 -1.647864 -2.259135 -0.8915981
## X43 -1.665336 -2.357788 -0.9942523
## X44 -1.659412 -2.259135 -1.8325815
## X45 -1.724319 -1.784998 -1.0498221
## X46 -1.696685 -2.081112 -1.2729657
## X47 -1.717157 -2.463991 -1.2039728
## X48 -1.755051 -2.000377 -1.8325815
## X50 -1.747018 -2.081112 -1.3862944
## X51 -1.843795 -2.357788 -2.2072749
## X53 -1.585271 -2.357788 -1.2378744
## X55 -1.690161 -2.357788 -1.9661129
## X56 -1.683772 -1.852753 -1.6607312
## X57 -1.690161 -1.924411 -0.2744368
## X59 -1.671366 -2.000377 -1.1711830
## X60 -1.755051 -3.338046 -1.5606477
## X61 -1.724319 -2.703458 -1.3862944
## X62 -1.653590 -2.703458 -1.9661129
## X63 -1.575736 -2.578792 -1.1394343
## X64 -1.647864 -2.000377 -0.6161861
## X65 -1.739232 -2.463991 -1.9661129
## X67 -1.683772 -2.357788 -0.6539265
## X68 -1.817791 -2.167156 -0.3011051
## X69 -1.755051 -3.154089 -1.6094379
## X70 -1.755051 -2.463991 -1.8971200
## X71 -1.671366 -2.000377 -1.4696760
## X72 -1.690161 -1.395242 -0.5447272
## X73 -1.595031 -1.924411 -1.5141277
## X74 -1.710172 -2.357788 -1.6094379
## X75 -1.690161 -1.924411 -0.7765288
## X76 -1.600000 -1.720797 -1.4696760
## X77 -1.631218 -2.167156 -1.5606477
## X78 -1.610128 -1.262002 -0.7985077
## X80 -1.665336 -2.259135 -1.5141277
## X81 -1.631218 -2.259135 -1.2378744
## X82 -1.724319 -2.578792 -2.2072749
## X83 -1.585271 -2.081112 -0.4942963
## X84 -1.659412 -2.357788 -1.3862944
## X85 -1.671366 -2.000377 -0.9416085
## X86 -1.610128 -1.546611 -1.2039728
## X88 -1.677510 -1.720797 -0.7550226
## X90 -1.790238 -3.154089 -0.8439701
## X93 -1.755051 -2.000377 -1.5606477
## X94 -1.642229 -1.220997 -0.5108256
## X95 -1.665336 -2.167156 -1.9661129
## X96 -1.690161 -2.357788 -1.7719568
## X97 -1.710172 -2.578792 -2.5010360
## X98 -1.790238 -2.703458 -1.8971200
## X99 -1.690161 -2.259135 -1.2729657
## X100 -1.659412 -2.357788 -1.7719568
## X103 -1.731672 -2.000377 -1.6607312
## X104 -1.653590 -2.259135 -1.6607312
## X105 -1.671366 -2.167156 -2.5133061
## X107 -1.731672 -2.463991 -1.2729657
## X108 -1.665336 -2.000377 -1.8325815
## X109 -1.933668 -3.338046 -2.1202635
## X110 -1.710172 -2.988944 -1.6094379
## X111 -1.710172 -2.357788 -2.0402208
## X112 -1.653590 -1.852753 -0.6161861
## X113 -1.600000 -1.720797 -1.3862944
## X114 -1.739232 -2.703458 -1.5141277
## X115 -1.747018 -2.000377 -0.7133499
## X117 -1.710172 -2.357788 -2.0402208
## X118 -1.636682 -2.259135 -1.7719568
## X121 -1.647864 -2.081112 -1.2039728
## X123 -1.790238 -2.578792 -1.6094379
## X124 -1.631218 -2.167156 -1.7147984
## X126 -1.647864 -2.463991 -1.6094379
## X128 -1.590122 -1.720797 -1.5606477
## X129 -1.717157 -2.578792 -1.3470736
## X130 -1.677510 -2.000377 -1.3093333
## X131 -1.690161 -2.578792 -1.3862944
## X132 -1.710172 -2.167156 -1.5141277
## X133 -1.771965 -1.924411 -1.7147984
## X134 -1.755051 -2.000377 -0.7985077
## X135 -1.739232 -2.357788 -1.7719568
## X136 -1.763357 -2.578792 -1.7719568
## X137 -1.703352 -2.703458 -1.8325815
## X139 -1.696685 -2.839536 -1.0498221
## X140 -1.710172 -2.259135 -1.9661129
## X141 -1.690161 -2.081112 -1.8971200
## X143 -1.724319 -2.081112 -1.1086626
## X144 -1.755051 -2.578792 -1.4696760
## X145 -1.815609 -2.703458 -2.1202635
## X146 -1.677510 -1.852753 -1.3862944
## X147 -1.690161 -2.081112 -1.9661129
## X148 -1.631218 -1.852753 -0.5447272
## X149 -1.696685 -2.703458 -1.3093333
## X152 -1.571048 -2.167156 -0.9675840
## X153 -1.696685 -1.443483 -0.8209806
## X154 -1.703352 -2.578792 -1.6607312
## X155 -1.710172 -2.259135 -1.6607312
## X156 -1.610128 -1.924411 -1.2729657
## X157 -1.710172 -2.167156 -1.5141277
## X158 -1.690161 -2.578792 -2.0402208
## X159 -1.653590 -2.259135 -1.3862944
## X160 -1.703352 -2.081112 -1.8971200
## X161 -1.590122 -1.924411 -1.0216512
## X162 -1.642229 -2.357788 -1.8325815
## X163 -1.690161 -2.703458 -2.3025851
## X165 -1.653590 -2.463991 -2.3025851
## X166 -1.671366 -2.578792 -1.7719568
## X167 -1.615292 -2.259135 -1.3470736
## X168 -1.631218 -2.357788 -1.2039728
## X169 -1.690161 -2.578792 -1.3470736
## X170 -1.690161 -2.259135 -1.5606477
## X171 -1.659412 -1.720797 -1.0498221
## X172 -1.696685 -2.578792 -1.7719568
## X174 -1.575736 -1.659842 -0.7339692
## X175 -1.665336 -1.852753 -1.5141277
## X176 -1.600000 -2.463991 -0.7985077
## X177 -1.690161 -2.259135 -1.5606477
## X178 -1.696685 -2.703458 -1.1711830
## X179 -1.600000 -1.493883 -1.3862944
## X180 -1.771965 -2.167156 -1.2729657
## X181 -1.710172 -2.703458 -1.0216512
## X182 -1.724319 -2.357788 -1.5141277
## X183 -1.755051 -2.000377 -2.4304185
## X184 -1.690161 -2.259135 -1.2729657
## X185 -1.683772 -2.081112 -0.7133499
## X186 -1.710172 -2.463991 -1.6607312
## X189 -1.696685 -2.578792 -2.0402208
## X190 -1.817791 -2.167156 -0.9942523
## X191 -1.710172 -2.357788 -1.7719568
## X192 -1.642229 -2.081112 -1.9661129
## X193 -1.671366 -1.852753 -1.3862944
## X194 -1.653590 -2.357788 -1.5141277
## X195 -1.585271 -2.167156 -1.8325815
## X197 -1.690161 -2.000377 -1.5606477
## X198 -1.724319 -2.578792 -1.8971200
## X200 -1.696685 -2.703458 -2.3538784
## X201 -1.665336 -2.357788 -0.8915981
## X202 -1.677510 -2.988944 -1.6094379
## X205 -1.763357 -2.167156 -1.6607312
## X208 -1.724319 -2.259135 -1.5141277
## X210 -1.665336 -2.167156 -1.8325815
## X212 -1.696685 -2.578792 -2.2072749
## X213 -1.530958 -2.081112 -1.5141277
## X214 -1.486191 -2.081112 -1.1394343
## X215 -1.755051 -2.463991 -1.2378744
## X216 -1.647864 -2.167156 -1.3470736
## X218 -1.724319 -2.000377 -0.8675006
## X219 -1.683772 -2.463991 -1.3862944
## X220 -1.590122 -2.463991 -1.4271164
## X223 -1.615292 -2.463991 -1.4696760
## X224 -1.642229 -2.578792 -1.9661129
## X225 -1.610128 -2.259135 -2.3859667
## X226 -1.690161 -2.357788 -1.3862944
## X227 -1.710172 -1.659842 -1.7719568
## X228 -1.739232 -2.463991 -2.0402208
## X229 -1.771965 -2.463991 -1.8325815
## X230 -1.710172 -1.924411 -0.7133499
## X231 -1.690161 -2.357788 -1.7719568
## X232 -1.724319 -2.357788 -1.8325815
## X233 -1.755051 -2.703458 -1.6094379
## X234 -1.696685 -1.720797 -2.0402208
## X236 -1.747018 -2.703458 -2.2072749
## X237 -1.647864 -1.924411 -1.4271164
## X239 -1.710172 -2.839536 -1.4271164
## X240 -1.659412 -2.463991 -1.4696760
## X241 -1.665336 -2.357788 -2.1202635
## X242 -1.631218 -1.262002 -1.8325815
## X243 -1.683772 -2.357788 -1.0498221
## X244 -1.600000 -2.081112 -1.5141277
## X245 -1.771965 -2.988944 -1.0788097
## X246 -1.696685 -1.924411 -1.1086626
## X247 -1.724319 -2.578792 -1.5606477
## X249 -1.717157 -2.259135 -1.7147984
## X250 -1.696685 -2.463991 -1.7147984
## X251 -1.671366 -2.259135 -1.7719568
## X253 -1.590122 -2.000377 -0.8915981
## X254 -1.605032 -1.546611 -1.3862944
## X255 -1.647864 -1.852753 -1.4271164
## X256 -1.747018 -2.578792 -1.9661129
## X257 -1.763357 -2.463991 -1.4696760
## X258 -1.671366 -1.784998 -0.6539265
## X260 -1.615292 -2.081112 -1.1711830
## X261 -1.717157 -2.703458 -1.6607312
## X262 -1.683772 -2.839536 -2.2072749
## X263 -1.780911 -1.852753 -2.0402208
## X264 -1.590122 -1.784998 -1.0788097
## X265 -1.739232 -2.463991 -1.7147984
## X267 -1.665336 -1.852753 -1.7147984
## X268 -1.677510 -2.357788 -1.6094379
## X269 -1.665336 -2.578792 -1.3470736
## X270 -1.690161 -2.357788 -1.7147984
## X271 -1.710172 -1.852753 -0.7550226
## X272 -1.631218 -2.259135 -1.5606477
## X273 -1.575736 -2.000377 -1.1086626
## X274 -1.717157 -2.463991 -1.8325815
## X275 -1.659412 -2.357788 -1.6094379
## X277 -1.677510 -2.357788 -1.4271164
## X278 -1.739232 -2.081112 -1.7147984
## X279 -1.710172 -2.703458 -1.6094379
## X281 -1.717157 -2.000377 -1.3862944
## X282 -1.690161 -2.081112 -1.5141277
## X283 -1.642229 -1.852753 -1.7719568
## X287 -1.690161 -2.259135 -2.2072749
## X289 -1.703352 -2.703458 -1.9661129
## X290 -1.763357 -2.463991 -1.8971200
## X291 -1.620527 -2.259135 -0.7133499
## X292 -1.423806 -1.546611 -1.4271164
## X294 -1.739232 -2.703458 -1.0216512
## X297 -1.717157 -2.167156 -1.7147984
## X298 -1.703352 -2.167156 -1.3862944
## X299 -1.671366 -2.000377 -1.6607312
## X301 -1.731672 -2.357788 -1.8971200
## X302 -1.771965 -2.703458 -1.3862944
## X303 -1.739232 -2.081112 -1.2039728
## X304 -1.671366 -2.167156 -1.9661129
## X305 -1.710172 -1.784998 -1.5141277
## X306 -1.724319 -1.659842 -0.5447272
## X307 -1.595031 -1.924411 -1.4696760
## X308 -1.631218 -2.259135 -1.7147984
## X311 -1.747018 -2.000377 -1.1394343
## X312 -1.683772 -2.167156 -1.3470736
## X313 -1.690161 -2.259135 -1.9661129
## X314 -1.724319 -2.578792 -2.3434071
## X315 -1.677510 -2.167156 -1.2729657
## X316 -1.690161 -2.463991 -2.1202635
## X317 -1.659412 -2.259135 -1.7719568
## X320 -1.671366 -1.659842 -1.0788097
## X321 -1.813452 -2.357788 -1.8971200
## X322 -1.731672 -1.546611 -0.9942523
## X323 -1.690161 -2.259135 -1.2729657
## X324 -1.620527 -2.357788 -1.8971200
## X325 -1.710172 -2.167156 -1.7147984
## X326 -1.665336 -2.463991 -1.5141277
## X327 -1.600000 -1.601860 -0.8915981
## X329 -1.717157 -2.357788 -1.4271164
## X330 -1.724319 -1.720797 -1.5141277
## X331 -1.771965 -2.578792 -1.7147984
## X332 -1.690161 -2.259135 -1.0216512
## X333 -1.642229 -2.167156 -1.8971200
## RANTES Resistin S100b SGOT SHBG SOD
## X1 -6.214608 -16.475315 1.5618560 -0.94160854 -1.897120 5.609472
## X2 -6.938214 -16.025283 1.7566212 -0.65392647 -1.560648 5.814131
## X3 -6.645391 -16.475315 1.4357282 0.33647224 -2.207275 5.723585
## X5 -6.319969 -11.092838 1.3012972 0.09531018 -2.430418 5.655992
## X6 -6.502290 -11.291369 1.0546073 -0.31471074 -2.645075 4.543295
## X7 -6.812445 -20.660678 1.3012972 -0.69314718 -3.123566 5.509388
## X8 -6.377127 -6.048172 1.0546073 -0.15082289 -2.396896 4.532599
## X9 -6.502290 -28.434991 1.0011977 -0.51082562 -1.714798 4.941642
## X11 -6.502290 -11.291369 1.7566212 -0.06187540 -1.560648 5.488938
## X12 -6.571283 -14.824999 1.5206598 -0.31471074 -2.312635 5.129899
## X14 -6.214608 -16.954608 1.5206598 -0.75502258 -2.577022 5.262690
## X16 -6.032287 -15.202379 1.1570961 -0.10536052 -1.108663 5.605802
## X17 -6.265901 -10.901667 1.5206598 -0.91629073 -2.207275 5.030438
## X18 -6.812445 -24.395099 1.1065417 -0.44628710 -2.813411 4.882802
## X19 -6.165818 -16.475315 0.5751964 -1.27296568 -2.207275 4.584967
## X20 -5.914504 -10.717434 1.5206598 -0.17435339 -2.847312 5.424950
## X21 -6.502290 -14.824999 0.7704814 -0.26136476 -2.353878 5.262690
## X22 -6.032287 -32.139553 1.1570961 -0.30110509 -3.688879 6.045005
## X23 -6.502290 -16.954608 1.7566212 -0.40047757 -2.900422 5.262690
## X24 -6.645391 -22.351393 1.5618560 -0.77652879 -3.244194 5.834811
## X25 -6.812445 -23.322142 1.3471128 -0.52763274 -1.897120 5.023881
## X26 -6.571283 -13.807280 1.5206598 -0.34249031 -2.441847 5.468060
## X28 -6.502290 -19.235033 1.3012972 0.09531018 -2.207275 5.468060
## X29 -6.725434 -24.395099 0.8309909 -0.52763274 -3.611918 4.779123
## X30 -6.980326 -22.351393 1.0011977 -0.73396918 -2.207275 4.941642
## X31 -6.502290 -18.014017 1.2063562 -0.24846136 -2.430418 5.192957
## X34 -6.571283 -18.014017 0.8895156 -0.57981850 -3.015935 5.062595
## X35 -6.725434 -15.202379 1.4357282 -0.40047757 -2.813411 4.859812
## X36 -6.502290 -14.467762 1.3012972 -0.71334989 -2.040221 5.442418
## X37 -6.502290 -16.025283 1.4786312 -0.24846136 -2.040221 5.521461
## X38 -6.377127 -26.925298 1.0011977 -0.22314355 -2.563950 5.327876
## X39 -6.907755 -23.322142 1.5618560 -0.51082562 -2.501036 5.634790
## X40 -6.812445 -18.601960 1.0546073 -0.69314718 -1.771957 5.342334
## X41 -6.502290 -8.576675 1.3919052 -0.71334989 -1.609438 5.010635
## X42 -6.377127 -16.954608 0.8309909 0.09531018 -2.207275 5.288267
## X43 -6.725434 -25.588488 1.1065417 -1.10866262 -2.333044 4.875197
## X44 -5.843045 -9.592564 1.1570961 -0.71334989 -2.302585 5.472271
## X45 -6.437752 -12.782746 1.5618560 -0.34249031 -2.748872 5.693732
## X46 -6.907755 -16.954608 1.3471128 -0.73396918 -3.079114 5.648974
## X47 -6.917806 -17.466301 0.5047530 -0.23572233 -2.207275 4.919981
## X48 -6.265901 -18.014017 1.6808260 -0.63487827 -2.501036 5.634790
## X50 -6.319969 -10.202587 1.1065417 -0.54472718 -2.847312 5.379897
## X51 -6.571283 -11.092838 1.1570961 0.26236426 -1.347074 5.730100
## X53 -6.319969 -3.316155 1.0546073 -0.96758403 -2.333044 5.398163
## X55 -6.502290 -18.601960 1.2543998 -0.77652879 -2.465104 5.455321
## X56 -6.725434 -13.807280 1.0011977 -0.49429632 -2.120264 5.472271
## X57 -6.437752 -16.025283 0.9462067 -0.09431068 -2.207275 5.517453
## X59 -5.843045 -13.807280 1.7935512 -0.19845094 -2.302585 5.480639
## X60 -7.106206 -25.588488 0.9462067 0.26236426 -2.302585 5.068904
## X61 -6.907755 -18.601960 1.0546073 0.47000363 -2.501036 4.962845
## X62 -7.208860 -24.395099 1.2543998 -0.54472718 -3.411248 4.672829
## X63 -6.377127 -18.601960 1.3471128 -0.07257069 -3.146555 5.433722
## X64 -5.546779 -12.168957 1.8656036 -0.40047757 -1.386294 5.036953
## X65 -6.725434 -20.660678 1.3919052 -0.59783700 -3.036554 5.476464
## X67 -6.907755 -25.588488 1.3919052 -0.26136476 -2.207275 5.831882
## X68 -6.319969 -20.660678 1.3012972 -0.30110509 -2.343407 5.389072
## X69 -7.058578 -16.475315 0.5751964 -0.99425227 -2.956512 4.875197
## X70 -6.812445 -19.918999 1.2063562 -0.54472718 -2.302585 5.564520
## X71 -6.437752 -18.014017 1.1570961 -0.61618614 -3.123566 5.384495
## X72 -6.032287 -11.712400 1.4786312 -0.43078292 -1.171183 6.045005
## X73 -6.119298 -9.737717 1.4786312 -0.59783700 -2.796881 5.905362
## X74 -6.812445 -15.601770 1.0546073 -0.46203546 -2.396896 4.418841
## X75 -6.074846 -21.468210 1.4786312 -0.69314718 -1.171183 4.955827
## X76 -6.319969 -3.509845 1.7190552 -0.19845094 -2.718101 5.723585
## X77 -6.214608 -12.931637 1.9353985 -0.96758403 -1.897120 5.420535
## X78 -6.119298 -12.931637 1.2543998 -0.61618614 -1.771957 5.929589
## X80 -6.502290 -18.601960 1.5206598 -0.96758403 -3.575551 5.273000
## X81 -6.265901 -25.588488 1.1065417 -0.31471074 -2.207275 5.379897
## X82 -6.437752 -20.660678 1.8656036 -0.31471074 -1.427116 5.273000
## X83 -6.319969 -13.807280 1.2543998 -0.89159812 -3.442019 4.934474
## X84 -6.645391 -20.660678 1.2543998 -0.61618614 -2.764621 5.225747
## X85 -6.214608 -19.235033 1.6022588 -0.22314355 -2.718101 5.641907
## X86 -6.265901 -9.737717 1.5618560 -0.82098055 -2.207275 5.476464
## X88 -6.502290 -11.712400 1.3919052 -0.11653382 -2.207275 5.451038
## X90 -5.809143 -26.925298 0.3540404 -0.69314718 -3.296837 4.317488
## X93 -6.437752 -11.935945 1.3012972 -0.59783700 -1.771957 5.192957
## X94 -6.032287 -9.887603 1.7190552 -0.03045921 -1.560648 6.317165
## X95 -6.645391 -18.014017 1.6022588 0.74193734 -1.714798 4.828314
## X96 -7.002066 -18.601960 1.3919052 -0.51082562 -2.364460 5.624018
## X97 -6.571283 -19.918999 0.9462067 0.00000000 -2.207275 5.869297
## X98 -6.938214 -22.351393 0.7704814 -0.04082199 -2.120264 5.056246
## X99 -6.119298 -11.935945 1.2543998 -0.82098055 -2.441847 5.855072
## X100 -6.571283 -24.395099 1.3012972 -0.11653382 -2.764621 5.572154
## X103 -6.074846 -12.168957 1.2543998 -0.24846136 -2.207275 6.222576
## X104 -6.571283 -23.322142 1.3012972 -0.44628710 -2.577022 5.497168
## X105 -6.571283 -28.434991 1.5206598 -0.27443685 -1.897120 5.680173
## X107 -6.319969 -19.235033 1.2063562 -0.34249031 -2.441847 5.579730
## X108 -6.571283 -18.014017 1.5206598 -0.24846136 -2.385967 5.308268
## X109 -6.812445 -21.468210 1.0546073 0.26236426 -3.772261 5.153292
## X110 -6.725434 -19.918999 1.0546073 -0.40047757 -2.780621 4.859812
## X111 -6.502290 -19.918999 1.2063562 -0.63487827 -2.551046 5.525453
## X112 -6.645391 -11.497723 1.6022588 -0.40047757 -1.203973 5.525453
## X113 -6.214608 -13.209714 1.6419042 -0.31471074 -1.771957 5.468060
## X114 -7.002066 -25.588488 0.8309909 0.09531018 -2.645075 4.836282
## X115 -6.571283 -14.824999 1.1065417 0.33647224 -1.609438 5.105945
## X117 -5.572754 -12.931637 1.6022588 -0.69314718 -1.386294 5.572154
## X118 -6.319969 -14.129014 1.5618560 -0.77652879 -2.590267 5.765191
## X121 -6.437752 -13.501240 1.3012972 -0.18632958 -1.560648 5.799093
## X123 -7.058578 -32.139553 0.5047530 0.58778666 -1.832581 4.770685
## X124 -6.437752 -18.014017 0.7704814 -0.63487827 -3.352407 5.379897
## X126 -6.645391 -20.660678 0.5751964 -1.13943428 -2.577022 5.468060
## X128 -6.074846 -16.475315 1.5618560 -0.21072103 -1.309333 5.648974
## X129 -6.725434 -22.351393 0.8309909 -0.75502258 -2.764621 4.976734
## X130 -6.377127 -11.092838 1.1570961 -0.63487827 -2.207275 5.529429
## X131 -7.156217 -26.925298 1.3919052 -0.69314718 -2.538307 5.262690
## X132 -6.725434 -12.931637 1.1065417 -0.99425227 -2.780621 5.198497
## X133 -6.571283 -12.168957 1.5206598 -0.23572233 -1.469676 5.308268
## X134 -6.067933 -10.901667 1.7935512 -0.94160854 -2.407946 5.497168
## X135 -6.725434 -14.129014 1.0546073 -0.09431068 -1.171183 5.780744
## X136 -6.319969 -3.509845 0.9462067 -0.57981850 -2.302585 4.828314
## X137 -6.725434 -21.468210 1.3471128 -0.47803580 -4.135167 5.153292
## X139 -7.094085 -20.660678 1.0546073 -0.23572233 -2.538307 5.111988
## X140 -6.571283 -9.737717 1.2543998 -0.04082199 -2.673649 5.529429
## X141 -5.843045 -18.014017 1.2543998 -0.84397007 -2.207275 5.468060
## X143 -6.265901 -21.468210 0.6427959 -0.67334455 -2.040221 4.820282
## X144 -6.645391 -18.601960 1.2063562 -0.47803580 -2.407946 5.262690
## X145 -6.917806 -28.434991 0.8895156 -0.18632958 -2.488915 5.093750
## X146 -5.878136 -13.209714 1.2063562 -0.35667494 -1.771957 5.613128
## X147 -6.812445 -2.239355 1.4786312 -0.21072103 -2.322788 5.598422
## X148 -6.165818 -16.025283 1.8298706 0.26236426 -2.207275 5.342334
## X149 -6.917806 -23.322142 0.8309909 -0.43078292 -2.764621 5.164786
## X152 -6.571283 -15.601770 1.3919052 0.09531018 -2.207275 5.869297
## X153 -6.502290 -19.235033 2.3725662 -0.41551544 -2.207275 5.379897
## X154 -6.812445 -22.351393 1.3919052 -0.40047757 -3.611918 5.198497
## X155 -6.645391 -20.660678 1.2543998 -0.37106368 -3.244194 5.262690
## X156 -6.319969 -15.601770 1.6808260 -0.67334455 -2.577022 5.583496
## X157 -6.377127 -13.807280 1.0546073 -0.67334455 -2.577022 5.278115
## X158 -6.917806 -20.660678 1.1065417 -0.51082562 -2.813411 5.517453
## X159 -6.377127 -20.460441 1.1065417 -0.34249031 -3.442019 5.170484
## X160 -6.571283 -8.047964 1.7935512 0.53062825 -2.631089 5.940171
## X161 -6.319969 -10.368242 1.3012972 -0.41551544 -3.270169 5.669881
## X162 -6.377127 -20.660678 1.4357282 -1.17118298 -2.975930 5.686975
## X163 -6.812445 -25.588488 1.3012972 0.09531018 -2.703063 4.948760
## X165 -6.571283 -19.235033 1.3919052 -0.12783337 -2.577022 5.796058
## X166 -6.502290 -28.434991 1.2063562 -0.26136476 -3.611918 5.323010
## X167 -6.502290 -12.666051 1.6022588 -0.89159812 -1.897120 5.869297
## X168 -6.917806 -18.601960 1.5618560 -0.65392647 -2.918771 5.365976
## X169 -7.118476 -20.660678 0.6427959 -0.40047757 -2.513306 5.164786
## X170 -6.571283 -15.601770 1.5618560 -0.35667494 -2.207275 5.105945
## X171 -6.571283 -10.717434 1.5206598 -0.84397007 -2.501036 5.517453
## X172 -6.938214 -22.351393 0.8309909 0.09531018 -2.040221 5.147494
## X174 -6.214608 -10.539746 1.3012972 -0.43078292 -2.207275 5.262690
## X175 -6.265901 -10.539746 1.3919052 -0.27443685 -1.771957 5.669881
## X176 -5.776353 -16.954608 0.9462067 -0.77652879 -1.771957 5.075174
## X177 -6.725434 -19.918999 0.9462067 -0.35667494 -2.353878 5.433722
## X178 -7.143478 -19.235033 0.6427959 -0.31471074 -2.882404 4.905275
## X179 -6.214608 -6.464363 1.7190552 -0.69314718 -2.096274 5.164786
## X180 -6.074846 -14.824999 1.2543998 -0.18632958 -2.040221 5.572154
## X181 -6.645391 -26.925298 0.7078153 -1.13943428 -3.324236 4.859812
## X182 -6.645391 -25.588488 0.9462067 -0.32850407 -2.603690 5.187386
## X183 -6.938214 -18.014017 0.6427959 -0.96758403 -1.609438 4.553877
## X184 -6.377127 -16.025283 1.3012972 -0.94160854 -2.796881 5.680173
## X185 -6.571283 -13.209714 1.3919052 -0.96758403 -3.079114 5.525453
## X186 -7.156217 -21.468210 1.3471128 -0.71334989 -2.882404 5.198497
## X189 -6.645391 -18.601960 0.9462067 -0.43078292 -2.364460 5.765191
## X190 -6.377127 -23.322142 1.3471128 0.18232156 -2.538307 5.293305
## X191 -6.165818 -23.322142 1.4786312 -0.52763274 -3.101093 5.389072
## X192 -6.265901 -19.918999 1.8656036 -0.57981850 -2.631089 6.079933
## X193 -6.265901 -14.824999 1.7190552 -0.34249031 -2.407946 5.613128
## X194 -6.319969 -17.466301 0.9462067 -0.84397007 -1.771957 4.927254
## X195 -6.265901 -21.468210 1.7190552 -0.44628710 -2.501036 6.269096
## X197 -6.265901 -11.935945 1.3012972 -0.22314355 -2.302585 5.438079
## X198 -6.907755 -23.322142 0.6427959 -0.63487827 -2.302585 5.117994
## X200 -6.725434 -19.918999 1.9695015 -0.26136476 -2.937463 5.262690
## X201 -6.265901 -22.351393 0.9462067 -0.11653382 -3.352407 5.068904
## X202 -6.812445 -34.966595 0.9462067 -0.35667494 -3.194183 4.867534
## X205 -6.812445 -15.601770 1.6419042 0.40546511 -2.937463 5.710427
## X208 -6.502290 -26.925298 1.1570961 -0.27443685 -2.396896 5.181784
## X210 -6.502290 -2.450735 1.6808260 -0.18632958 -2.813411 5.513429
## X212 -6.119298 -22.351393 1.4357282 -0.34249031 -2.718101 5.209486
## X213 -6.725434 -18.014017 1.4357282 -0.19845094 -1.897120 5.513429
## X214 -6.265901 -10.539746 0.7704814 -0.73396918 -3.057608 5.634790
## X215 -7.156217 -16.475315 1.1065417 -0.15082289 -3.411248 5.451038
## X216 -6.437752 -12.931637 1.6022588 -0.47803580 -2.396896 5.023881
## X218 -6.319969 -23.322142 1.3919052 -0.46203546 -1.897120 4.836282
## X219 -6.812445 -19.235033 0.8309909 -0.02020271 -2.764621 5.273000
## X220 -7.222466 -30.156007 0.6427959 -0.40047757 -4.074542 5.293305
## X223 -6.907755 -14.467762 1.6808260 -0.41551544 -2.302585 5.455321
## X224 -6.980326 -13.807280 1.0546073 -0.13926207 -2.551046 5.393628
## X225 -6.725434 -25.588488 1.9007725 -0.61618614 -1.897120 6.171701
## X226 -6.265901 -12.931637 1.6022588 -0.40047757 -2.780621 5.991465
## X227 -6.725434 -16.475315 1.5618560 -0.99425227 -1.660731 5.204007
## X228 -6.938214 -13.501240 0.8309909 -0.24846136 -3.473768 4.897840
## X229 -7.002066 -25.588488 1.0011977 -0.63487827 -3.540459 5.093750
## X230 -6.502290 -11.935945 0.8309909 -0.21072103 -1.771957 5.468060
## X231 -6.571283 -16.025283 1.5206598 -0.40047757 -2.764621 5.075174
## X232 -6.437752 -26.925298 0.9462067 -0.04082199 -2.430418 5.056246
## X233 -6.725434 -21.468210 0.8895156 0.26236426 -2.407946 4.744932
## X234 -6.725434 -14.467762 1.1065417 -0.61618614 -1.560648 5.298317
## X236 -6.907755 -23.322142 1.0546073 -0.52763274 -2.501036 5.572154
## X237 -6.119298 -14.467762 1.4357282 0.00000000 -1.897120 5.236442
## X239 -6.725434 -18.601960 0.1873999 -0.62623564 -2.813411 4.430817
## X240 -6.907755 -14.129014 0.9462067 -1.30933332 -3.218876 4.744932
## X241 -5.843045 -21.468210 1.1065417 -0.94160854 -1.139434 5.662960
## X242 -6.502290 -9.592564 1.4357282 -0.52763274 -1.660731 4.553877
## X243 -6.571283 -21.468210 1.1570961 -0.17435339 -2.120264 4.983607
## X244 -5.991465 -14.824999 1.0546073 -0.49429632 -2.207275 5.517453
## X245 -6.645391 -13.501240 1.0546073 -0.37106368 -3.729701 4.330733
## X246 -6.165818 -13.209714 0.9462067 -0.47803580 -2.040221 5.075174
## X247 -6.725434 -17.466301 0.7704814 0.00000000 -3.170086 4.859812
## X249 -6.377127 -16.954608 1.8298706 -0.19845094 -2.718101 6.082219
## X250 -6.437752 -17.466301 1.6022588 -0.43078292 -2.513306 5.347108
## X251 -6.812445 -24.395099 1.1065417 -0.22314355 -2.918771 5.303305
## X253 -6.377127 -16.025283 1.3471128 -0.40047757 -2.551046 5.398163
## X254 -6.214608 -12.931637 1.7935512 -0.67334455 -2.603690 6.317165
## X255 -5.626821 -18.601960 1.3471128 -0.56211892 -2.120264 5.703782
## X256 -6.812445 -25.588488 1.1570961 -0.26136476 -2.718101 5.332719
## X257 -6.725434 -25.588488 1.0546073 -0.17435339 -2.780621 4.867534
## X258 -6.265901 -4.873381 1.6022588 -0.54472718 -2.040221 5.891644
## X260 -6.377127 -23.322142 1.3471128 -0.34249031 -2.603690 5.420535
## X261 -6.437752 -16.954608 1.0011977 -0.54472718 -2.513306 4.828314
## X262 -6.645391 -23.322142 1.0011977 -0.91629073 -2.441847 4.804021
## X263 -6.165818 -15.202379 1.1570961 -0.26136476 -1.609438 5.446737
## X264 -6.319969 -11.291369 1.5618560 -0.56211892 -2.120264 5.123964
## X265 -6.571283 -23.322142 0.9462067 -0.56211892 -2.419119 5.459586
## X267 -6.437752 -10.539746 1.8298706 -0.10536052 -2.918771 5.616771
## X268 -6.571283 -15.601770 1.3919052 -0.11653382 -2.312635 5.484797
## X269 -6.725434 -28.434991 0.9462067 -0.73396918 -3.218876 5.192957
## X270 -6.319969 -14.824999 0.7704814 0.00000000 -2.563950 5.993961
## X271 -6.319969 -12.666051 1.4786312 -0.38566248 -1.660731 5.402677
## X272 -6.437752 -15.601770 1.4357282 -0.54472718 -2.937463 5.087596
## X273 -6.377127 -12.666051 1.2543998 -0.34249031 -3.352407 5.379897
## X274 -6.074846 -28.434991 0.9462067 -0.26136476 -3.170086 5.170484
## X275 -6.571283 -28.434991 1.7935512 -0.63487827 -2.688248 5.620401
## X277 -6.074846 -14.129014 1.2543998 -0.35667494 -2.488915 5.262690
## X278 -6.119298 -14.467762 0.9462067 -0.34249031 -3.101093 5.451038
## X279 -6.980326 -16.954608 1.4357282 -0.73396918 -2.937463 5.209486
## X281 -6.074846 -3.723928 1.3919052 -0.47803580 -2.631089 5.407172
## X282 -6.165818 -20.660678 1.1570961 -0.31471074 -3.123566 5.252273
## X283 -5.843045 -7.247686 1.4786312 -0.57981850 -1.771957 5.826000
## X287 -6.917806 -18.014017 1.3919052 -0.22314355 -2.120264 5.783825
## X289 -6.812445 -19.235033 0.7078153 -0.27443685 -2.937463 4.787492
## X290 -6.165818 -16.025283 1.0011977 -0.61618614 -3.057608 5.093750
## X291 -6.265901 -20.660678 1.1570961 -0.61618614 -2.207275 5.572154
## X292 -6.165818 -26.925298 1.1065417 -0.89159812 -2.617296 5.669881
## X294 -7.024289 -22.293116 1.0011977 -0.43078292 -3.649659 4.691348
## X297 -6.907755 -16.475315 0.9462067 0.09531018 -2.796881 5.257495
## X298 -7.047017 -22.351393 0.5047530 -0.12783337 -2.673649 5.036953
## X299 -6.571283 -26.925298 0.9462067 0.00000000 -2.476938 5.613128
## X301 -6.502290 -19.235033 0.8309909 -0.02020271 -3.611918 5.220356
## X302 -7.208860 -19.235033 0.9462067 -1.34707365 -3.079114 4.418841
## X303 -6.645391 -18.014017 1.3012972 -0.34249031 -3.101093 5.303305
## X304 -6.645391 -22.351393 1.9695015 -0.06187540 -2.207275 5.755742
## X305 -6.319969 -16.954608 1.6419042 -0.40047757 -1.966113 5.351858
## X306 -6.377127 -12.412086 1.6419042 -0.79850770 -2.302585 5.891644
## X307 -6.319969 -11.497723 1.9695015 -0.82098055 -1.560648 5.755742
## X308 -6.437752 -13.501240 1.5206598 0.09531018 -2.764621 5.501258
## X311 -6.377127 -16.954608 1.0546073 -0.99425227 -1.897120 5.081404
## X312 -6.377127 -18.601960 1.4357282 -0.31471074 -3.101093 5.843544
## X313 -6.319969 -19.235033 1.2543998 0.00000000 -1.771957 5.117994
## X314 -6.571283 -26.925298 0.8895156 0.00000000 -2.476938 5.278115
## X315 -6.571283 -16.475315 1.3471128 -0.73396918 -2.748872 5.117994
## X316 -6.917806 -26.925298 1.1570961 -0.09431068 -2.563950 5.583496
## X317 -6.645391 -21.468210 1.0546073 0.00000000 -2.590267 5.710427
## X320 -6.812445 -13.501240 1.0546073 -0.56211892 -2.302585 5.056246
## X321 -6.938214 -14.467762 1.1570961 -0.61618614 -2.718101 4.394449
## X322 -6.377127 -8.930136 1.8656036 -0.49429632 -1.966113 5.398163
## X323 -6.437752 -12.666051 1.0011977 -0.37106368 -2.882404 5.342334
## X324 -6.812445 -16.954608 1.2063562 -0.54472718 -2.882404 5.093750
## X325 -6.119298 -23.322142 0.9462067 -0.30110509 -2.513306 5.375278
## X326 -6.214608 -13.501240 1.3012972 0.00000000 -2.465104 5.347108
## X327 -6.437752 -14.467762 1.3471128 -0.01005034 -2.733368 5.676754
## X329 -6.571283 -28.434991 0.8895156 -0.69314718 -3.611918 5.693732
## X330 -6.571283 -14.824999 1.2063562 0.09531018 -2.040221 4.875197
## X331 -6.645391 -20.660678 1.0546073 -0.11653382 -1.966113 4.948760
## X332 -6.437752 -18.601960 0.8895156 -0.31471074 -2.847312 4.709530
## X333 -6.214608 -19.918999 1.9007725 -0.13926207 -2.120264 6.013715
## Serum_Amyloid_P Sortilin Stem_Cell_Factor TGF_alpha TIMP_1 TNF_RII
## X1 -5.599422 4.908629 4.174387 8.649098 15.204651 -0.06187540
## X2 -6.119298 5.478731 3.713572 11.331619 11.266499 -0.32850407
## X3 -5.381699 3.810182 3.433987 10.858497 12.282857 -0.41551544
## X5 -5.203007 3.402176 4.060443 8.323453 13.748016 -0.34249031
## X6 -5.115996 2.978813 2.564949 10.008788 11.266499 -0.94160854
## X7 -6.032287 4.037285 3.401197 8.649098 12.422205 -0.77652879
## X8 -5.083206 2.665456 2.772589 10.097662 14.492423 -0.91629073
## X9 -7.013116 2.141223 3.295837 10.777165 10.000000 -0.94160854
## X11 -6.119298 4.802628 2.995732 10.777165 10.489996 -0.51082562
## X12 -5.449140 4.093428 3.091042 9.549474 10.961481 -0.71334989
## X14 -6.032287 3.752748 3.044522 10.008788 13.491933 -0.61618614
## X16 -6.032287 4.479850 3.135494 10.777165 12.696938 -0.28768207
## X17 -5.035953 4.093428 2.944439 9.736307 10.961481 -0.69314718
## X18 -5.952244 2.916923 3.044522 8.542148 10.328828 -0.77652879
## X19 -6.319969 2.341451 2.944439 10.612220 13.620499 -0.79850770
## X20 -4.779524 2.728930 2.772589 10.185606 13.748016 -0.75502258
## X21 -6.645391 2.601557 3.178054 8.649098 10.165525 -0.65392647
## X22 -5.991465 4.315608 3.891820 11.998865 10.961481 -0.04082199
## X23 -6.377127 3.040333 2.890372 9.828139 9.661904 -0.59783700
## X24 -6.032287 6.225224 3.526361 9.454406 11.266499 -0.43078292
## X25 -6.437752 3.695039 2.995732 9.162164 9.832160 -0.82098055
## X26 -6.319969 4.855724 3.367296 10.272644 10.649111 -0.43078292
## X28 -6.265901 4.802628 3.367296 9.358191 11.416408 -0.22314355
## X29 -6.725434 2.791992 2.708050 9.260790 10.165525 -1.02165125
## X30 -6.437752 3.461346 2.708050 7.113891 9.313708 -0.89159812
## X31 -5.298317 2.978813 3.401197 7.982407 13.099669 -0.73396918
## X34 -5.654992 2.916923 2.944439 7.245150 11.856406 -0.65392647
## X35 -6.032287 3.695039 2.944439 9.828139 10.328828 -0.89159812
## X36 -4.919881 3.342694 3.401197 10.358802 12.696938 -0.67334455
## X37 -6.214608 4.802628 3.367296 9.549474 10.806248 -0.30110509
## X38 -6.265901 3.520211 3.663562 9.454406 12.000000 -0.65392647
## X39 -6.074846 5.325310 3.583519 10.097662 12.142136 -0.46203546
## X40 -6.074846 3.101492 3.258097 9.358191 12.966630 -0.44628710
## X41 -5.099467 3.924249 3.178054 10.612220 13.748016 -0.75502258
## X42 -6.319969 3.637051 3.091042 10.008788 10.961481 -0.69314718
## X43 -6.725434 3.282892 3.044522 7.623847 10.328828 -0.86750057
## X44 -6.165818 4.093428 3.496508 10.858497 13.748016 -0.24846136
## X45 -5.776353 3.461346 3.688879 11.331619 12.142136 -0.02020271
## X46 -6.032287 4.093428 3.637586 11.176634 13.099669 -0.38566248
## X47 -6.725434 2.472433 2.944439 8.211578 10.000000 -0.79850770
## X48 -6.377127 5.325310 4.060443 9.162164 11.856406 -0.27443685
## X50 -6.074846 5.170380 3.555348 10.858497 11.266499 -0.54472718
## X51 -6.437752 3.578777 3.295837 9.918956 10.649111 -0.38566248
## X53 -5.991465 3.342694 3.258097 10.097662 13.620499 -0.71334989
## X55 -6.265901 3.520211 3.135494 10.858497 11.266499 -0.63487827
## X56 -5.713833 3.867347 3.178054 11.331619 14.370706 -0.63487827
## X57 -5.991465 4.370576 3.891820 11.484041 14.613248 -0.31471074
## X59 -5.878136 3.867347 3.135494 11.018969 14.000000 -0.30110509
## X60 -6.319969 2.275226 2.890372 8.097921 12.560220 -0.59783700
## X61 -6.377127 2.791992 3.044522 7.623847 10.165525 -1.04982212
## X62 -6.377127 2.472433 2.890372 7.623847 9.661904 -1.20397280
## X63 -5.878136 3.402176 3.178054 10.185606 11.564660 -0.27443685
## X64 -5.744604 4.534163 2.772589 10.858497 13.099669 -0.44628710
## X65 -7.385791 4.425322 3.258097 10.528568 10.489996 -0.73396918
## X67 -6.980326 4.425322 3.583519 10.185606 9.832160 -0.18632958
## X68 -5.449140 3.637051 3.526361 10.695079 12.560220 -0.51082562
## X69 -7.505592 2.407182 3.178054 6.842982 9.489125 -1.04982212
## X70 -7.195437 3.924249 3.367296 10.528568 10.328828 -0.61618614
## X71 -6.119298 3.867347 3.258097 10.358802 12.000000 -0.46203546
## X72 -5.386185 3.980894 4.174387 11.781632 16.439089 0.33647224
## X73 -5.952244 3.924249 3.713572 10.939092 12.560220 -0.03045921
## X74 -5.914504 1.866476 2.251292 6.979888 10.489996 -1.34707365
## X75 -5.339139 2.728930 2.890372 9.358191 15.320508 -0.67334455
## X76 -5.654992 5.427755 3.555348 10.939092 14.970563 0.00000000
## X77 -5.626821 4.315608 3.401197 10.528568 13.874508 -0.41551544
## X78 -5.878136 4.695848 3.951244 11.559326 14.970563 -0.06187540
## X80 -5.496768 4.315608 3.526361 8.649098 10.489996 -0.65392647
## X81 -6.265901 4.370576 2.944439 10.444102 10.806248 -0.59783700
## X82 -6.265901 4.315608 3.401197 8.858503 11.266499 -0.44628710
## X83 -5.744604 3.867347 3.465736 9.643429 11.266499 -0.82098055
## X84 -6.214608 3.637051 2.944439 8.211578 10.649111 -0.57981850
## X85 -5.878136 5.170380 3.496508 9.260790 13.491933 -0.31471074
## X86 -5.318520 4.479850 3.555348 10.777165 14.124515 -0.26136476
## X88 -5.914504 3.520211 3.555348 8.961066 14.000000 -0.30110509
## X90 -6.502290 1.653813 2.564949 8.542148 8.954451 -1.38629436
## X93 -5.991465 2.978813 3.555348 10.272644 13.620499 -0.24846136
## X94 -5.546779 4.204987 3.871201 10.858497 18.880613 0.47000363
## X95 -6.571283 3.867347 2.890372 8.323453 9.661904 -0.63487827
## X96 -6.032287 4.749337 3.401197 10.185606 11.416408 -0.63487827
## X97 -6.812445 4.425322 3.367296 10.444102 10.328828 -0.51082562
## X98 -6.645391 3.040333 3.044522 7.245150 9.489125 -1.10866262
## X99 -5.843045 3.402176 3.761200 10.358802 14.733201 -0.19845094
## X100 -5.914504 5.066223 3.663562 11.854592 11.114877 -0.49429632
## X103 -6.377127 3.810182 4.060443 12.211323 13.362291 -0.05129329
## X104 -5.426151 3.040333 3.784190 11.559326 12.696938 -0.44628710
## X105 -6.502290 4.908629 3.135494 10.272644 11.711309 -0.59783700
## X107 -6.165818 4.479850 3.465736 8.323453 11.266499 -0.59783700
## X108 -5.626821 4.908629 3.713572 8.649098 12.142136 -0.51082562
## X109 -6.571283 3.461346 2.890372 9.454406 10.000000 -0.94160854
## X110 -7.354042 3.402176 3.044522 7.745463 9.313708 -0.89159812
## X111 -6.265901 3.520211 3.637586 10.858497 11.114877 -0.77652879
## X112 -5.449140 4.479850 3.784190 8.097921 12.282857 -0.27443685
## X113 -4.803621 4.908629 3.465736 11.098144 12.696938 0.00000000
## X114 -6.032287 2.665456 2.833213 9.454406 8.770330 -1.07880966
## X115 -5.240048 2.854653 3.091042 9.062271 11.856406 -0.71334989
## X117 -6.502290 5.427755 3.555348 9.162164 10.961481 -0.47803580
## X118 -6.119298 5.118391 3.688879 9.062271 14.733201 -0.18632958
## X121 -6.645391 4.908629 3.583519 10.444102 14.970563 0.09531018
## X123 -6.502290 1.653813 2.484907 7.500000 10.165525 -1.13943428
## X124 -5.809143 2.472433 3.465736 10.939092 12.832397 -0.44628710
## X126 -6.119298 2.854653 3.496508 9.828139 10.000000 -0.84397007
## X128 -5.318520 4.204987 3.295837 10.858497 17.390719 -0.43078292
## X129 -6.502290 3.162299 2.564949 8.858503 10.000000 -1.23787436
## X130 -5.381699 3.867347 3.367296 12.822626 11.114877 -0.44628710
## X131 -6.032287 3.637051 3.295837 9.260790 10.328828 -0.94160854
## X132 -5.035953 2.791992 3.465736 8.433621 11.266499 -0.67334455
## X133 -5.083206 4.260413 3.091042 10.528568 12.422205 -0.57981850
## X134 -5.572754 5.118391 3.828641 12.555529 12.282857 -0.44628710
## X135 -6.319969 3.695039 3.637586 8.211578 12.000000 -0.52763274
## X136 -6.571283 2.728930 3.044522 10.097662 12.696938 -0.65392647
## X137 -6.165818 3.752748 2.890372 9.454406 10.489996 -1.13943428
## X139 -7.130899 3.752748 2.944439 10.097662 10.165525 -0.86750057
## X140 -5.776353 3.695039 3.135494 8.858503 11.114877 -0.69314718
## X141 -5.472671 5.681052 3.465736 10.097662 11.856406 -0.41551544
## X143 -5.713833 2.208489 3.178054 7.982407 11.856406 -1.02165125
## X144 -5.713833 3.637051 2.995732 9.358191 11.114877 -0.52763274
## X145 -7.338538 4.260413 3.218876 8.542148 10.165525 -0.89159812
## X146 -5.298317 3.695039 3.610918 9.358191 13.099669 -0.17435339
## X147 -6.032287 5.478731 3.258097 9.454406 11.856406 -0.15082289
## X148 -5.051457 3.867347 3.295837 8.858503 14.733201 -0.52763274
## X149 -6.645391 3.924249 3.135494 9.828139 11.416408 -0.71334989
## X152 -5.051457 5.478731 3.688879 8.542148 14.370706 0.00000000
## X153 -5.626821 4.749337 3.295837 10.528568 13.231546 -0.56211892
## X154 -5.914504 3.980894 2.772589 8.542148 10.489996 -0.86750057
## X155 -5.776353 4.260413 3.295837 8.433621 9.313708 -0.79850770
## X156 -5.472671 4.037285 3.496508 10.528568 14.000000 -0.41551544
## X157 -6.119298 4.370576 3.295837 8.858503 14.733201 -0.67334455
## X158 -6.319969 3.695039 2.890372 10.444102 10.489996 -0.79850770
## X159 -6.571283 3.637051 3.091042 10.444102 9.661904 -0.91629073
## X160 -5.991465 6.225224 3.496508 11.559326 12.142136 -0.26136476
## X161 -5.991465 4.149327 3.091042 11.926999 10.489996 -0.43078292
## X162 -7.308233 3.810182 3.784190 10.528568 10.806248 -0.38566248
## X163 -6.725434 4.093428 2.944439 10.939092 8.583005 -0.94160854
## X165 -6.645391 3.867347 3.367296 8.961066 11.856406 -0.40047757
## X166 -6.571283 4.315608 2.772589 9.736307 9.313708 -0.75502258
## X167 -6.265901 5.222195 4.007333 12.419275 11.564660 -0.26136476
## X168 -5.843045 3.924249 3.135494 10.272644 11.856406 -0.38566248
## X169 -6.725434 4.149327 3.135494 9.549474 9.489125 -0.86750057
## X170 -5.426151 4.315608 2.833213 9.062271 9.832160 -0.75502258
## X171 -5.572754 4.425322 3.806662 11.176634 11.266499 -0.59783700
## X172 -6.437752 3.695039 3.555348 7.982407 9.135529 -1.10866262
## X174 -5.654992 4.370576 3.178054 11.018969 14.000000 -0.51082562
## X175 -5.099467 3.810182 3.526361 8.754531 14.613248 -0.24846136
## X176 -5.952244 3.578777 3.367296 9.549474 11.564660 -0.69314718
## X177 -6.437752 3.282892 3.891820 11.018969 11.856406 -0.54472718
## X178 -6.074846 2.791992 2.772589 8.961066 8.392305 -1.30933332
## X179 -5.521461 4.204987 3.610918 10.185606 14.492423 -0.26136476
## X180 -6.319969 3.924249 3.258097 9.736307 11.266499 0.09531018
## X181 -6.214608 2.275226 3.044522 11.408143 11.564660 -0.91629073
## X182 -6.074846 3.924249 3.526361 8.323453 11.564660 -0.75502258
## X183 -5.683980 2.005028 3.295837 8.097921 11.266499 -0.86750057
## X184 -5.809143 3.752748 3.761200 12.822626 12.560220 -0.63487827
## X185 -6.645391 3.461346 3.401197 11.018969 12.696938 -0.56211892
## X186 -6.437752 3.867347 2.995732 10.939092 9.489125 -0.82098055
## X189 -6.571283 4.479850 3.367296 7.113891 9.661904 -0.52763274
## X190 -5.991465 3.867347 3.178054 11.634012 12.282857 -0.35667494
## X191 -5.572754 3.282892 3.401197 10.358802 11.114877 -0.69314718
## X192 -6.265901 4.037285 3.713572 10.444102 13.362291 -0.15082289
## X193 -6.119298 4.961345 3.295837 10.444102 15.320508 -0.32850407
## X194 -6.214608 3.402176 3.044522 9.828139 12.000000 -0.75502258
## X195 -6.074846 5.731246 3.988984 11.559326 12.000000 -0.24846136
## X197 -5.809143 5.630705 3.367296 10.444102 11.266499 -0.24846136
## X198 -6.502290 3.162299 3.044522 9.454406 9.489125 -0.91629073
## X200 -6.917806 5.222195 3.295837 8.754531 10.806248 -0.59783700
## X201 -5.776353 2.916923 2.772589 10.695079 12.560220 -0.77652879
## X202 -6.265901 3.867347 2.890372 7.500000 9.832160 -1.13943428
## X205 -5.809143 4.315608 3.135494 10.695079 11.114877 -0.73396918
## X208 -5.572754 4.315608 3.178054 10.358802 12.282857 -0.54472718
## X210 -6.214608 4.749337 3.367296 12.141017 13.099669 -0.28768207
## X212 -6.214608 3.924249 3.091042 9.828139 10.489996 -0.89159812
## X213 -6.214608 4.149327 3.091042 10.008788 9.661904 -0.46203546
## X214 -5.654992 3.101492 3.433987 10.008788 16.547237 -0.32850407
## X215 -6.725434 3.695039 3.465736 8.542148 9.832160 -0.75502258
## X216 -5.203007 3.222763 2.944439 8.961066 10.649111 -1.07880966
## X218 -4.906275 3.461346 2.944439 10.185606 13.362291 -0.82098055
## X219 -6.214608 3.162299 2.772589 9.736307 10.806248 -1.02165125
## X220 -6.319969 4.260413 3.583519 8.754531 10.489996 -0.96758403
## X223 -6.214608 4.149327 3.850148 8.754531 11.564660 -0.59783700
## X224 -6.032287 4.204987 3.555348 7.623847 11.266499 -0.89159812
## X225 -6.437752 5.325310 4.060443 9.162164 12.000000 -0.26136476
## X226 -5.991465 4.642159 3.891820 10.528568 13.231546 0.09531018
## X227 -4.645992 3.461346 3.526361 8.858503 11.711309 -0.63487827
## X228 -6.645391 3.342694 3.295837 7.982407 9.661904 -0.94160854
## X229 -5.991465 3.402176 2.833213 10.097662 9.489125 -1.07880966
## X230 -5.809143 2.791992 3.258097 9.454406 12.282857 -0.26136476
## X231 -5.809143 3.461346 3.367296 13.827158 1.741657 -0.65392647
## X232 -5.809143 4.149327 3.044522 11.634012 11.856406 -0.73396918
## X233 -6.214608 2.978813 2.995732 10.358802 10.649111 -0.96758403
## X234 -5.546779 3.578777 3.367296 8.754531 10.328828 -0.79850770
## X236 -7.169120 3.752748 2.995732 9.162164 8.954451 -0.84397007
## X237 -5.496768 5.118391 2.564949 7.500000 11.856406 -0.67334455
## X239 -7.293418 1.725381 3.044522 7.500000 9.661904 -0.99425227
## X240 -6.571283 3.402176 3.401197 7.745463 10.165525 -0.96758403
## X241 -5.744604 4.749337 3.496508 9.549474 10.000000 -0.65392647
## X242 -4.866535 2.728930 3.135494 9.643429 12.422205 -0.44628710
## X243 -5.654992 4.315608 2.772589 9.260790 11.711309 -1.07880966
## X244 -6.377127 3.461346 3.258097 10.272644 12.000000 -0.30110509
## X245 -6.502290 2.341451 2.397895 10.185606 9.135529 -1.38629436
## X246 -5.259097 3.282892 3.401197 7.745463 13.620499 -0.51082562
## X247 -6.917806 3.222763 2.944439 8.097921 9.832160 -1.07880966
## X249 -6.502290 5.731246 3.891820 10.444102 11.114877 -0.03045921
## X250 -5.713833 3.461346 3.135494 9.918956 11.856406 -0.51082562
## X251 -6.725434 2.854653 2.944439 10.272644 9.832160 -0.82098055
## X253 -5.496768 3.810182 3.295837 9.828139 15.888544 -0.41551544
## X254 -5.878136 4.425322 4.276666 10.358802 12.966630 0.26236426
## X255 -5.744604 4.802628 3.663562 11.254454 12.832397 -0.22314355
## X256 -7.402052 3.980894 3.178054 9.358191 8.954451 -1.04982212
## X257 -6.074846 3.342694 2.944439 10.185606 9.135529 -1.13943428
## X258 -6.571283 4.370576 3.332205 10.695079 13.099669 -0.34249031
## X260 -4.906275 4.425322 3.401197 10.358802 12.142136 -0.69314718
## X261 -6.645391 3.637051 2.944439 10.272644 8.954451 -0.91629073
## X262 -5.914504 3.101492 3.135494 10.185606 9.135529 -1.10866262
## X263 -5.776353 3.980894 3.891820 11.854592 14.492423 -0.47803580
## X264 -5.599422 4.479850 3.583519 9.260790 14.248077 -0.38566248
## X265 -5.744604 3.101492 3.401197 10.777165 12.696938 -0.75502258
## X267 -6.032287 5.013876 3.258097 11.018969 13.099669 -0.02020271
## X268 -6.319969 4.479850 3.637586 10.272644 10.165525 -0.34249031
## X269 -7.035589 2.472433 3.044522 6.842982 9.489125 -0.75502258
## X270 -6.377127 3.578777 3.951244 11.708110 10.649111 -0.19845094
## X271 -5.776353 4.093428 3.637586 13.273934 17.899749 -0.17435339
## X272 -5.744604 3.980894 3.401197 8.323453 10.328828 -0.77652879
## X273 -5.952244 3.980894 3.555348 9.358191 12.560220 -0.22314355
## X274 -6.074846 3.461346 3.258097 12.350442 11.416408 -0.57981850
## X275 -5.776353 4.695848 3.713572 7.982407 13.231546 -0.26136476
## X277 -5.020686 4.749337 3.135494 10.185606 12.142136 -0.57981850
## X278 -5.403678 3.637051 3.637586 8.649098 12.560220 -0.41551544
## X279 -6.377127 3.924249 3.258097 8.961066 10.328828 -0.61618614
## X281 -5.914504 5.170380 3.367296 12.555529 12.282857 -0.44628710
## X282 -5.298317 2.791992 2.890372 6.842982 13.491933 -0.82098055
## X283 -6.265901 5.170380 3.663562 10.858497 15.088007 -0.10536052
## X287 -6.119298 4.370576 3.433987 9.549474 11.266499 -0.40047757
## X289 -6.032287 2.665456 3.178054 7.982407 9.489125 -1.07880966
## X290 -6.319969 2.728930 3.135494 9.549474 11.114877 -0.71334989
## X291 -5.744604 4.204987 3.465736 10.695079 14.370706 -0.17435339
## X292 -5.878136 4.749337 3.850148 9.454406 13.362291 -0.26136476
## X294 -5.683980 2.854653 2.890372 7.373808 10.165525 -1.02165125
## X297 -6.571283 3.342694 2.944439 9.549474 10.806248 -0.89159812
## X298 -5.132803 2.341451 2.890372 10.358802 12.282857 -0.96758403
## X299 -7.338538 3.578777 3.465736 9.828139 10.961481 -0.54472718
## X301 -5.521461 2.916923 3.091042 10.528568 9.832160 -0.99425227
## X302 -5.843045 2.073409 3.178054 7.373808 9.489125 -1.66073121
## X303 -5.203007 3.578777 3.401197 11.559326 11.564660 -0.82098055
## X304 -6.502290 5.478731 3.583519 11.559326 11.564660 -0.19845094
## X305 -5.952244 5.066223 3.401197 11.998865 14.970563 -0.40047757
## X306 -5.654992 4.037285 4.007333 10.008788 13.874508 -0.15082289
## X307 -5.318520 5.118391 3.850148 7.982407 16.110770 -0.16251893
## X308 -5.360193 4.855724 3.465736 8.649098 12.142136 -0.56211892
## X311 -6.165818 3.461346 3.178054 9.918956 11.114877 -0.67334455
## X312 -6.119298 4.425322 3.496508 11.708110 12.422205 -0.46203546
## X313 -5.776353 3.637051 3.295837 11.176634 12.000000 -0.82098055
## X314 -6.725434 4.370576 2.944439 10.444102 11.416408 -0.77652879
## X315 -5.149897 3.924249 3.401197 7.113891 12.142136 -0.67334455
## X316 -6.571283 3.695039 2.890372 10.008788 11.711309 -0.52763274
## X317 -6.214608 3.402176 3.258097 8.649098 12.000000 -0.37106368
## X320 -5.184989 3.282892 3.044522 9.454406 11.856406 -0.91629073
## X321 -5.259097 2.854653 2.397895 8.433621 11.114877 -1.02165125
## X322 -5.099467 4.749337 3.663562 11.408143 10.961481 -0.40047757
## X323 -6.165818 3.222763 3.401197 10.008788 12.696938 -0.46203546
## X324 -6.725434 3.637051 3.465736 8.211578 11.416408 -0.71334989
## X325 -6.032287 3.222763 3.465736 10.008788 14.733201 -0.47803580
## X326 -7.182192 3.637051 3.401197 9.549474 11.711309 -0.40047757
## X327 -5.878136 3.752748 3.258097 9.643429 12.142136 -0.27443685
## X329 -6.214608 4.037285 3.496508 9.918956 10.961481 -0.61618614
## X330 -5.132803 3.402176 2.833213 8.754531 10.961481 -0.79850770
## X331 -6.645391 3.752748 3.044522 10.358802 10.165525 -1.17118298
## X332 -5.403678 3.222763 2.944439 10.777165 12.560220 -1.02165125
## X333 -5.952244 5.273838 3.713572 11.408143 11.564660 -0.21072103
## TRAIL_R3 TTR_prealbumin Tamm_Horsfall_Protein_THP Thrombomodulin
## X1 -0.18290044 2.944439 -3.095810 -1.3405665
## X2 -0.50074709 2.833213 -3.111190 -1.6752524
## X3 -0.92403445 2.944439 -3.166721 -1.5342758
## X5 -0.85825911 3.044522 -3.038017 -1.2107086
## X6 -0.73800921 3.044522 -3.125574 -1.4516659
## X7 -0.62997381 2.890372 -3.133732 -1.6752524
## X8 -0.56347899 2.708050 -3.056473 -1.2107086
## X9 -0.75712204 2.772589 -3.128881 -1.4130880
## X11 -0.37116408 2.833213 -3.111190 -1.5342758
## X12 -0.68264012 2.833213 -3.126226 -1.2733760
## X14 -0.54746226 2.890372 -3.100676 -1.2733760
## X16 -0.48559774 2.890372 -3.128881 -1.3761017
## X17 0.00000000 2.833213 -3.074400 -1.4130880
## X18 -0.75712204 2.833213 -3.123014 -2.0376622
## X19 -0.41274719 2.890372 -3.111190 -1.7844998
## X20 -0.85825911 2.772589 -3.123014 -1.1238408
## X21 0.26936976 3.044522 -3.156593 -1.7280531
## X22 -0.20634242 2.639057 -3.139636 -1.5787229
## X23 -0.56347899 3.091042 -3.132318 -1.6752524
## X24 -0.25465110 2.639057 -3.100676 -1.3405665
## X25 -0.70078093 2.772589 -3.123014 -1.5787229
## X26 -0.37116408 2.639057 -3.116914 -1.4516659
## X28 -0.70078093 2.772589 -3.125574 -1.5787229
## X29 -0.83723396 2.708050 -3.123014 -1.6256074
## X30 -0.94693458 3.091042 -3.105791 -1.7844998
## X31 -0.62997381 2.944439 -3.116914 -1.4130880
## X34 -0.13734056 3.091042 -3.111190 -1.2415199
## X35 -0.64724718 2.833213 -3.116914 -1.2733760
## X36 -0.68264012 2.833213 -3.040908 -1.1238408
## X37 -0.34425042 2.833213 -3.095810 -1.5787229
## X38 -0.56347899 2.772589 -3.126226 -1.3405665
## X39 -0.57973042 2.772589 -3.144357 -1.4516659
## X40 -0.47064906 2.772589 -3.135170 -1.3761017
## X41 -0.47064906 2.944439 -3.050006 -1.3405665
## X42 -0.73800921 2.833213 -3.095810 -1.4516659
## X43 -0.48559774 2.890372 -3.125574 -1.6752524
## X44 -0.64724718 2.708050 -3.100676 -1.2107086
## X45 -0.21823750 2.890372 -3.078354 -1.5342758
## X46 -0.57973042 2.772589 -3.158511 -1.4516659
## X47 -0.64724718 2.890372 -3.135170 -1.5787229
## X48 -0.13734056 2.772589 -3.123014 -1.5787229
## X50 0.00000000 2.772589 -3.105791 -1.1808680
## X51 -0.73800921 2.639057 -3.074400 -1.6752524
## X53 -0.53167272 2.944439 -3.095810 -1.4516659
## X55 -0.47064906 2.708050 -3.138121 -1.5342758
## X56 -0.37116408 2.944439 -3.074400 -1.1238408
## X57 -0.27956244 2.772589 -3.116914 -1.5787229
## X59 -0.56347899 2.995732 -3.095810 -1.3761017
## X60 -0.53167272 2.995732 -3.095810 -1.9461072
## X61 -0.79641472 2.944439 -3.133732 -1.8452133
## X62 -1.09654116 3.091042 -3.095810 -1.8708654
## X63 -0.33102365 2.995732 -3.116914 -1.4130880
## X64 -0.44133043 2.708050 -3.070582 -1.2733760
## X65 -0.68264012 2.833213 -3.154723 -1.7280531
## X67 -0.56347899 2.890372 -3.205541 -1.4130880
## X68 -0.31794508 2.708050 -3.105791 -1.2733760
## X69 -1.09654116 2.833213 -3.143551 -1.9248483
## X70 -0.39871863 2.772589 -3.111190 -1.5342758
## X71 -0.61296931 3.178054 -3.147663 -1.4919984
## X72 -0.21823750 2.833213 -3.074400 -1.3761017
## X73 -0.30501103 2.639057 -3.158511 -1.3063602
## X74 -0.90163769 2.944439 -3.086722 -1.6752524
## X75 -0.77658561 2.833213 -3.111190 -1.3063602
## X76 -0.30501103 2.890372 -3.111190 -1.2733760
## X77 -0.31794508 2.708050 -3.111190 -1.2107086
## X78 -0.10425819 2.833213 -3.082457 -1.3405665
## X80 -0.47064906 3.135494 -3.133732 -1.6256074
## X81 -0.62997381 2.833213 -3.126226 -1.3063602
## X82 -0.68264012 2.708050 -3.095810 -1.6256074
## X83 -0.44133043 2.890372 -3.111190 -1.2415199
## X84 -0.54746226 2.772589 -3.126226 -1.3405665
## X85 -0.37116408 2.890372 -3.078354 -1.3063602
## X86 -0.30501103 2.944439 -3.070582 -1.2415199
## X88 -0.17134851 2.772589 -3.125574 -1.3405665
## X90 -0.81662520 2.833213 -3.146824 -2.0295903
## X93 -0.44133043 2.890372 -3.086722 -1.4919984
## X94 0.00000000 2.995732 -3.086722 -0.8166252
## X95 -0.54746226 2.639057 -3.091166 -1.4130880
## X96 -0.54746226 2.772589 -3.168929 -1.5787229
## X97 -0.71923319 2.772589 -3.139636 -1.5787229
## X98 -0.92403445 2.995732 -3.136633 -1.9109957
## X99 -0.57973042 2.890372 -3.171207 -1.6256074
## X100 -0.48559774 2.639057 -3.100676 -1.3063602
## X103 -0.38485910 2.772589 -3.144357 -1.4516659
## X104 -0.45589516 2.833213 -3.105791 -1.5787229
## X105 -0.75712204 2.708050 -3.105791 -1.5787229
## X107 -0.47064906 2.944439 -3.116914 -1.6752524
## X108 -0.61296931 2.944439 -3.053196 -1.4919984
## X109 -1.21070858 2.995732 -3.154723 -1.5787229
## X110 -0.75712204 2.944439 -3.166721 -1.9109957
## X111 -0.75712204 2.708050 -3.074400 -1.6752524
## X112 -0.27956244 3.091042 -3.091166 -1.4516659
## X113 -0.42694948 2.890372 -3.091166 -1.3405665
## X114 -0.83723396 2.890372 -3.139636 -1.6752524
## X115 -0.42694948 3.044522 -3.059843 -1.0965412
## X117 -0.42694948 2.708050 -3.100676 -1.7280531
## X118 -0.42694948 2.944439 -3.123014 -1.4516659
## X121 -0.13734056 2.772589 -3.086722 -1.2415199
## X123 -0.99435191 2.833213 -3.143551 -1.8708654
## X124 -0.20634242 2.708050 -3.095810 -1.4919984
## X126 -0.38485910 2.564949 -3.123014 -1.4130880
## X128 -0.27956244 2.639057 -3.100676 -1.1808680
## X129 -0.70078093 2.772589 -3.153804 -1.4130880
## X130 -0.39871863 2.833213 -3.111190 -1.3761017
## X131 -0.87972006 2.772589 -3.123647 -1.7280531
## X132 -0.62997381 2.890372 -3.116914 -1.4919984
## X133 -0.92403445 3.044522 -3.053196 -1.4130880
## X134 -0.31794508 2.772589 -3.136633 -1.3405665
## X135 -0.53167272 2.772589 -3.086722 -1.7844998
## X136 -0.38485910 2.639057 -3.100676 -1.4516659
## X137 -1.04412698 2.639057 -3.171207 -1.7280531
## X139 -0.47064906 2.995732 -3.136633 -1.7844998
## X140 -0.48559774 2.833213 -3.168929 -1.5342758
## X141 -0.34425042 2.639057 -3.086722 -1.3063602
## X143 -0.61296931 3.258097 -3.100676 -1.4919984
## X144 -0.64724718 2.708050 -3.145993 -1.6752524
## X145 -0.39871863 2.944439 -3.166721 -1.7844998
## X146 -0.53167272 2.772589 -3.074400 -1.3063602
## X147 -0.47064906 2.564949 -3.149369 -1.3761017
## X148 -0.94693458 3.044522 -3.100676 -1.2415199
## X149 -0.97036428 2.772589 -3.176003 -1.5787229
## X152 -0.18290044 2.772589 -3.111190 -1.2415199
## X153 -0.41274719 2.833213 -3.086722 -1.0441270
## X154 -0.85825911 2.833213 -3.138121 -1.9461072
## X155 -0.75712204 2.890372 -3.091166 -1.7280531
## X156 -0.61296931 2.833213 -3.100676 -1.2107086
## X157 -0.42694948 2.944439 -3.116914 -1.4919984
## X158 -0.81662520 2.890372 -3.105791 -1.7280531
## X159 -0.75712204 2.890372 -3.095810 -1.3761017
## X160 -0.59622443 2.944439 -3.105791 -1.3405665
## X161 -0.30501103 2.890372 -3.138875 -1.3405665
## X162 -0.42694948 2.833213 -3.126882 -1.6256074
## X163 -0.75712204 2.995732 -3.139636 -1.6752524
## X165 -0.44133043 2.833213 -3.136633 -1.7280531
## X166 -0.79641472 2.944439 -3.149369 -1.6256074
## X167 -0.30501103 2.708050 -3.111190 -1.5342758
## X168 -0.62997381 2.995732 -3.123014 -1.3761017
## X169 -0.51610326 2.890372 -3.091166 -1.6256074
## X170 -0.47064906 3.044522 -3.105791 -1.5342758
## X171 -0.38485910 2.564949 -3.100676 -1.0189283
## X172 -0.62997381 2.890372 -3.140405 -1.7844998
## X174 -0.51610326 3.044522 -3.111190 -1.1238408
## X175 -0.31794508 2.772589 -3.074400 -1.4919984
## X176 -0.56347899 2.772589 -3.095810 -1.3063602
## X177 -0.68264012 2.708050 -3.095810 -1.7280531
## X178 -0.51610326 2.833213 -3.141963 -1.4130880
## X179 -0.54746226 2.833213 -3.100676 -1.0965412
## X180 -0.21823750 2.833213 -3.145993 -1.5342758
## X181 -0.97036428 2.708050 -3.126882 -1.9041616
## X182 -0.61296931 2.772589 -3.105791 -1.7280531
## X183 -0.68264012 2.995732 -3.116914 -1.5342758
## X184 -0.37116408 2.708050 -3.136633 -1.4130880
## X185 -0.15990607 2.833213 -3.056473 -1.3405665
## X186 -0.30501103 2.890372 -3.125574 -1.6256074
## X189 -0.68264012 2.639057 -3.160479 -1.7280531
## X190 -0.47064906 2.944439 -3.100676 -1.5342758
## X191 -0.68264012 2.833213 -3.126882 -1.6256074
## X192 -0.38485910 2.708050 -3.123647 -1.2733760
## X193 -0.47064906 2.772589 -3.111190 -1.3761017
## X194 -0.70078093 3.044522 -3.139636 -1.4130880
## X195 -0.47064906 2.564949 -3.091166 -1.3405665
## X197 -0.06149412 2.639057 -3.133732 -1.3063602
## X198 -0.79641472 2.833213 -3.082457 -1.6752524
## X200 -0.79641472 2.772589 -3.095810 -1.8452133
## X201 -0.38485910 2.772589 -3.155652 -1.4919984
## X202 -0.79641472 2.995732 -3.166721 -1.9754065
## X205 -0.59622443 2.708050 -3.205541 -1.2733760
## X208 -0.62997381 2.833213 -3.082457 -1.4516659
## X210 -0.21823750 2.772589 -3.139636 -1.2733760
## X212 -0.71923319 2.890372 -3.074400 -1.6256074
## X213 -0.41274719 2.833213 -3.123014 -1.4516659
## X214 -0.71923319 2.833213 -3.147663 -1.7280531
## X215 -0.68264012 2.890372 -3.125574 -1.8452133
## X216 -0.38485910 2.890372 -3.066890 -1.5342758
## X218 -0.51610326 2.772589 -3.082457 -1.5342758
## X219 -0.68264012 2.944439 -3.171207 -1.5787229
## X220 -0.71923319 2.890372 -3.145993 -1.3405665
## X223 -0.62997381 3.044522 -3.091166 -1.6256074
## X224 -0.70078093 3.044522 -3.130927 -1.8708654
## X225 -0.34425042 2.833213 -3.116914 -1.5342758
## X226 -0.41274719 2.833213 -3.116914 -1.9389551
## X227 -0.50074709 3.135494 -3.086722 -1.3405665
## X228 -0.71923319 2.879892 -3.143551 -1.9606157
## X229 -0.57973042 2.944439 -3.130927 -1.7844998
## X230 -0.42694948 2.944439 -3.123014 -1.4130880
## X231 -0.51610326 2.708050 -3.100676 -1.3761017
## X232 -0.42694948 2.944439 -3.123014 -1.4919984
## X233 -0.90163769 2.890372 -3.129558 -1.6752524
## X234 -0.56347899 2.890372 -3.053196 -1.3761017
## X236 -0.56347899 2.639057 -3.160479 -1.6256074
## X237 -0.51610326 2.890372 -3.082457 -1.4130880
## X239 -0.77658561 2.708050 -3.140405 -1.9248483
## X240 -0.83723396 3.091042 -3.166721 -1.9248483
## X241 -0.54746226 2.639057 -3.095810 -1.5342758
## X242 -0.35762924 3.178054 -2.994538 -1.2415199
## X243 -0.75712204 2.890372 -3.105791 -1.4130880
## X244 -0.41274719 2.772589 -3.116914 -1.2733760
## X245 -0.77658561 2.890372 -3.205541 -1.9041616
## X246 -0.41274719 2.995732 -3.111190 -1.5787229
## X247 -0.70078093 2.564949 -3.155652 -1.6256074
## X249 -0.15990607 2.564949 -3.152897 -1.6256074
## X250 -0.50074709 3.044522 -3.123014 -1.8452133
## X251 -0.68264012 2.944439 -3.123014 -1.4919984
## X253 -0.42694948 2.833213 -3.095810 -1.1519318
## X254 0.18568645 2.995732 -3.123014 -1.2733760
## X255 0.00000000 2.708050 -3.038017 -1.1519318
## X256 -0.64724718 2.833213 -3.123014 -1.5342758
## X257 -0.64724718 2.772589 -3.145993 -1.6752524
## X258 -0.34425042 2.772589 -3.151113 -1.4130880
## X260 -0.41274719 2.890372 -3.105791 -1.7844998
## X261 -0.71923319 2.772589 -3.116914 -1.5342758
## X262 -0.90163769 2.833213 -3.091166 -1.7844998
## X263 -0.47064906 3.044522 -3.086722 -1.6256074
## X264 -0.06149412 2.890372 -3.063313 -0.8582591
## X265 -0.81662520 2.890372 -3.126882 -1.8452133
## X267 -0.18290044 2.708050 -3.100676 -1.3405665
## X268 -0.44133043 2.708050 -3.135898 -1.5787229
## X269 -0.34425042 3.178054 -3.136633 -1.9754065
## X270 -0.41274719 2.944439 -3.142753 -1.5787229
## X271 -0.20634242 2.944439 -3.095810 -1.3063602
## X272 -0.53167272 2.833213 -3.082457 -1.4130880
## X273 -0.38485910 2.564949 -3.105791 -1.3405665
## X274 -0.38485910 2.833213 -3.105791 -1.9389551
## X275 -0.85825911 2.772589 -3.105791 -1.4919984
## X277 -0.48559774 2.772589 -3.116914 -1.4516659
## X278 -0.53167272 2.890372 -3.128210 -1.8452133
## X279 -0.57973042 2.708050 -3.123014 -1.6256074
## X281 -0.21823750 2.772589 -3.100676 -1.6752524
## X282 -0.73800921 2.890372 -3.158511 -1.4130880
## X283 -0.29221795 2.772589 -3.126882 -1.0189283
## X287 -0.42694948 2.833213 -3.126226 -1.5342758
## X289 -0.92403445 3.044522 -3.116914 -1.7844998
## X290 -0.42694948 2.639057 -3.147663 -1.6752524
## X291 -0.35762924 2.890372 -3.149369 -1.5787229
## X292 -0.37116408 3.332205 -3.123014 -1.3063602
## X294 -0.50074709 3.044522 -3.136633 -1.9248483
## X297 -0.64724718 2.890372 -3.091166 -1.4919984
## X298 -0.77658561 3.044522 -3.176003 -1.5342758
## X299 -0.37116408 2.944439 -3.152897 -1.5787229
## X301 -0.71923319 3.044522 -3.145993 -1.5787229
## X302 -0.87972006 2.833213 -3.100676 -1.4919984
## X303 -0.70078093 2.890372 -3.095810 -1.5787229
## X304 -0.29221795 2.890372 -3.138875 -1.5342758
## X305 -0.54746226 2.833213 -3.105791 -1.4919984
## X306 -0.48559774 2.890372 -3.105791 -1.3063602
## X307 -0.21823750 2.833213 -3.095810 -1.2415199
## X308 -0.56347899 2.995732 -3.086722 -1.6256074
## X311 -0.35762924 2.833213 -3.086722 -1.2733760
## X312 -0.21823750 2.890372 -3.091166 -1.2733760
## X313 -0.83723396 3.044522 -3.205541 -1.5787229
## X314 -0.66479918 2.484907 -3.135898 -1.7280531
## X315 -0.56347899 3.091042 -3.050006 -1.5342758
## X316 -1.15193183 2.772589 -3.166721 -1.4516659
## X317 -0.59622443 2.890372 -3.205541 -1.3761017
## X320 -0.75712204 3.091042 -3.086722 -1.1808680
## X321 -1.01892829 2.708050 -3.095810 -1.5787229
## X322 -0.37116408 2.772589 -3.056473 -0.9943519
## X323 -0.31794508 2.833213 -3.123014 -1.3405665
## X324 -0.59622443 2.708050 -3.143551 -1.5787229
## X325 -0.68264012 2.890372 -3.105791 -1.7844998
## X326 -0.42694948 2.890372 -3.123647 -1.6256074
## X327 -0.41274719 2.995732 -3.149369 -1.2107086
## X329 -0.68264012 2.995732 -3.111190 -1.4919984
## X330 -0.77658561 3.135494 -3.035191 -1.2107086
## X331 -1.01892829 2.833213 -3.095810 -1.5787229
## X332 -0.94693458 2.890372 -3.091166 -1.4516659
## X333 -0.38485910 2.772589 -3.056473 -1.5787229
## Thrombopoietin Thymus_Expressed_Chemokine_TECK Thyroid_Stimulating_Hormone
## X1 -0.1026334 4.149327 -3.863233
## X2 -0.6733501 3.810182 -4.828314
## X3 -0.9229670 2.791992 -4.990833
## X5 0.0976177 4.534163 -4.645992
## X6 -1.0000000 4.534163 -4.422849
## X7 -0.3386752 3.342694 -3.963316
## X8 -0.6583592 4.037285 -4.017384
## X9 -0.8864471 3.637051 -4.605170
## X11 -0.8000000 4.908629 -3.442019
## X12 -0.5577795 3.637051 -4.605170
## X14 -1.0834849 4.534163 -3.816713
## X16 -0.8000000 4.093428 -4.892852
## X17 -0.6885123 5.273838 -4.422849
## X18 -1.0619168 2.407182 -5.005648
## X19 -0.9801961 4.260413 -4.509860
## X20 -1.2254033 3.810182 -4.422849
## X21 -1.1282202 4.908629 -4.509860
## X22 -0.5857864 3.578777 -4.199705
## X23 -1.0834849 3.810182 -5.381699
## X24 -0.7193752 4.534163 -5.449140
## X25 -1.0619168 2.472433 -4.422849
## X26 -0.8000000 4.149327 -4.615221
## X28 -0.8000000 3.282892 -5.449140
## X29 -0.5577795 3.578777 -4.074542
## X30 -0.6435340 2.407182 -4.342806
## X31 -0.4900331 2.854653 -4.509860
## X34 -1.5395654 4.093428 -4.605170
## X35 -0.7038519 4.093428 -3.863233
## X36 -0.4508067 4.479850 -5.298317
## X37 -0.6885123 4.149327 -4.879607
## X38 -0.7038519 4.093428 -5.298317
## X39 -0.7038519 4.315608 -5.496768
## X40 -0.9607695 1.936058 -4.342806
## X41 -0.8000000 3.637051 -4.733004
## X42 -1.1753789 4.093428 -4.605170
## X43 -0.7350889 3.342694 -5.005648
## X44 -0.7038519 2.791992 -4.767689
## X45 -0.7193752 4.908629 -3.649659
## X46 -0.9607695 4.315608 -5.167289
## X47 -1.0202041 3.867347 -5.599422
## X48 -0.3629294 3.752748 -4.509860
## X50 -0.8338096 4.093428 -4.135167
## X51 -0.7510004 3.810182 -4.017384
## X53 -0.7834475 3.810182 -4.990833
## X55 -0.9607695 2.791992 -4.699481
## X56 -0.8864471 2.601557 -5.599422
## X57 -0.4637709 6.225224 -5.083206
## X59 -1.0202041 3.101492 -4.509860
## X60 -0.7834475 1.796259 -3.912023
## X61 -0.8510875 2.854653 -3.611918
## X62 -0.2111456 2.854653 -4.645992
## X63 -0.8864471 4.479850 -4.342806
## X64 -0.8864471 4.479850 -6.189915
## X65 -0.9607695 3.810182 -4.635629
## X67 -1.1753789 4.855724 -3.816713
## X68 -0.5303062 6.225224 -5.083206
## X69 -0.6733501 2.854653 -5.259097
## X70 -0.8510875 2.791992 -4.268698
## X71 -0.9607695 3.810182 -4.422849
## X72 -0.3147700 4.749337 -4.135167
## X73 -0.8686292 4.961345 -3.611918
## X74 -1.0619168 3.752748 -4.199705
## X75 -0.6288691 3.810182 -3.611918
## X76 -0.8864471 4.479850 -3.442019
## X77 -0.6583592 5.325310 -3.473768
## X78 -0.7193752 6.225224 -6.189915
## X80 -0.7350889 3.342694 -2.673649
## X81 -0.6288691 3.637051 -4.342806
## X82 -0.8000000 3.282892 -5.221356
## X83 -0.6583592 4.908629 -4.733004
## X84 -0.8864471 3.637051 -4.605170
## X85 -0.6288691 4.479850 -4.509860
## X86 -0.2679492 4.479850 -3.816713
## X88 -0.8510875 4.149327 -3.442019
## X90 -0.9045549 3.040333 -3.688879
## X93 -0.8510875 4.037285 -4.342806
## X94 -0.7510004 5.222195 -6.189915
## X95 -0.5577795 3.752748 -5.259097
## X96 -0.8000000 3.980894 -3.963316
## X97 -1.1282202 4.149327 -4.615221
## X98 -0.7350889 1.508487 -4.645992
## X99 -0.6288691 3.810182 -5.167289
## X100 -1.1753789 3.101492 -6.189915
## X103 -0.5717143 4.534163 -2.813411
## X104 -0.6583592 4.037285 -4.605170
## X105 -0.7834475 3.810182 -5.381699
## X107 -0.4379501 3.752748 -3.863233
## X108 -0.2911993 3.342694 -4.475594
## X109 -0.9607695 2.208489 -4.268698
## X110 -0.8510875 2.854653 -5.259097
## X111 -0.6583592 3.040333 -3.688879
## X112 -0.3147700 4.149327 -4.268698
## X113 -0.4251984 4.149327 -4.199705
## X114 -1.2788897 2.791992 -3.324236
## X115 -1.0202041 3.637051 -6.189915
## X117 -0.5577795 4.315608 -4.422849
## X118 -0.8864471 4.149327 -4.615221
## X121 -0.8338096 3.637051 -3.649659
## X123 -0.6733501 2.854653 -4.645992
## X124 -0.7038519 3.040333 -4.803621
## X126 -0.7038519 3.867347 -6.189915
## X128 -0.8338096 4.093428 -3.963316
## X129 -1.3071797 3.101492 -6.189915
## X130 -0.8864471 4.908629 -4.733004
## X131 -0.7038519 3.578777 -4.342806
## X132 -0.5577795 3.752748 -3.963316
## X133 -0.6583592 4.149327 -4.268698
## X134 -0.8864471 6.225224 -3.218876
## X135 -0.7350889 3.342694 -3.649659
## X136 -0.5857864 3.578777 -4.017384
## X137 -1.0202041 2.791992 -4.990833
## X139 -1.0000000 3.282892 -4.199705
## X140 -0.9416995 4.149327 -1.714798
## X141 -1.0000000 4.149327 -3.296837
## X143 -0.5577795 3.752748 -4.268698
## X144 -1.0000000 3.752748 -4.947660
## X145 -0.7350889 2.854653 -5.259097
## X146 -0.6583592 3.980894 -4.422849
## X147 -0.8000000 3.752748 -3.611918
## X148 -0.2564404 4.479850 -4.733004
## X149 -0.7038519 3.342694 -5.381699
## X152 -0.2679492 5.580204 -3.218876
## X153 -0.7193752 4.149327 -4.879607
## X154 -1.0834849 2.537220 -4.342806
## X155 -0.7350889 3.342694 -4.803621
## X156 -0.6733501 4.315608 -5.626821
## X157 -0.4125492 3.752748 -4.422849
## X158 -1.0834849 3.342694 -5.381699
## X159 -0.8864471 3.637051 -4.605170
## X160 -0.5717143 4.315608 -4.605170
## X161 -1.1753789 4.479850 -4.509860
## X162 -0.6583592 3.578777 -6.189915
## X163 -0.8510875 4.479850 -5.083206
## X165 -1.0000000 3.040333 -5.035953
## X166 -1.0202041 3.637051 -4.892852
## X167 -0.5303062 4.908629 -4.342806
## X168 -0.7038519 3.342694 -4.906275
## X169 -0.8000000 3.282892 -6.189915
## X170 -0.9416995 3.752748 -5.035953
## X171 -0.7038519 4.855724 -4.605170
## X172 -0.7350889 3.752748 -3.649659
## X174 -0.8000000 4.093428 -4.976234
## X175 -0.8864471 4.149327 -3.688879
## X176 -0.8864471 4.093428 -3.442019
## X177 -0.3147700 3.578777 -4.199705
## X178 -1.1753789 3.637051 -6.189915
## X179 -0.1026334 5.273838 -2.975930
## X180 -0.7193752 5.580204 -3.816713
## X181 -0.7510004 4.037285 -5.318520
## X182 -0.6435340 3.520211 -2.847312
## X183 -0.5577795 2.407182 -4.135167
## X184 -0.5303062 4.908629 -4.268698
## X185 -1.0202041 4.093428 -4.342806
## X186 -1.0000000 4.149327 -5.035953
## X189 -1.0619168 3.520211 -5.221356
## X190 -0.6583592 4.479850 -3.772261
## X191 -0.8510875 4.037285 -4.199705
## X192 -0.8000000 4.479850 -5.083206
## X193 -0.6288691 3.637051 -2.322788
## X194 -0.5303062 4.037285 -3.649659
## X195 -0.7834475 3.810182 -4.199705
## X197 -0.6583592 3.980894 -4.803621
## X198 -0.6583592 4.037285 -6.189915
## X200 -0.6435340 2.854653 -5.259097
## X201 -0.7510004 4.908629 -4.199705
## X202 -0.8510875 3.342694 -4.074542
## X205 -0.9607695 4.315608 -4.990833
## X208 -0.6288691 4.037285 -3.963316
## X210 -1.0000000 4.534163 -4.074542
## X212 -1.1753789 1.936058 -4.422849
## X213 -0.8000000 4.534163 -3.912023
## X214 -0.8686292 3.342694 -2.764621
## X215 -0.7350889 3.752748 -4.645992
## X216 -1.0619168 4.479850 -4.422849
## X218 -0.4125492 4.908629 -3.352407
## X219 -1.1753789 3.637051 -5.298317
## X220 -0.8864471 3.637051 -4.892852
## X223 -0.3875485 4.149327 -4.342806
## X224 -0.5577795 2.854653 -4.509860
## X225 -0.7350889 3.752748 -4.803621
## X226 -0.6583592 4.037285 -4.268698
## X227 -0.3875485 3.752748 -3.863233
## X228 -0.5303062 1.796259 -3.649659
## X229 -1.0000000 3.520211 -5.449140
## X230 -0.8000000 4.908629 -4.074542
## X231 -0.8864471 3.752748 -3.963316
## X232 -0.8510875 4.479850 -4.976234
## X233 -0.8510875 3.040333 -4.656463
## X234 -0.7193752 3.752748 -4.509860
## X236 -0.8864471 3.282892 -4.509860
## X237 -0.8000000 3.637051 -4.017384
## X239 -0.3875485 3.342694 -5.259097
## X240 -0.4900331 2.854653 -4.268698
## X241 -0.5857864 4.149327 -4.422849
## X242 -0.2000000 2.791992 -2.688248
## X243 -0.8338096 3.637051 -5.083206
## X244 -1.0202041 4.093428 -3.540459
## X245 -0.9045549 4.479850 -4.892852
## X246 -0.3386752 3.752748 -4.268698
## X247 -0.8510875 4.479850 -4.733004
## X249 -0.8000000 4.149327 -4.803621
## X250 -1.0834849 3.040333 -4.828314
## X251 -0.7510004 3.101492 -6.189915
## X253 -0.6288691 4.093428 -4.199705
## X254 -0.4900331 4.149327 -4.304754
## X255 -1.0834849 3.637051 -3.540459
## X256 -0.8864471 3.101492 -5.298317
## X257 -0.6733501 3.637051 -6.189915
## X258 -1.2254033 5.580204 -3.772261
## X260 -0.5857864 4.037285 -4.605170
## X261 -1.0202041 3.101492 -4.605170
## X262 -0.7510004 4.037285 -3.772261
## X263 -0.4379501 4.037285 -4.733004
## X264 -0.5577795 4.093428 -5.083206
## X265 -0.6583592 3.810182 -4.199705
## X267 -0.7193752 4.149327 -6.189915
## X268 -0.8510875 4.479850 -5.626821
## X269 -1.0619168 3.520211 -4.017384
## X270 -0.5857864 3.578777 -3.540459
## X271 -0.6583592 4.908629 -4.892852
## X272 -0.5577795 4.908629 -4.892852
## X273 -0.6583592 4.479850 -4.892852
## X274 -0.7510004 3.578777 -4.892852
## X275 -0.3386752 3.342694 -5.132803
## X277 -1.0000000 4.534163 -3.688879
## X278 -0.4900331 3.101492 -4.135167
## X279 -0.7671172 3.980894 -3.729701
## X281 -0.8864471 4.908629 -4.268698
## X282 -0.7834475 4.315608 -4.699481
## X283 -0.9801961 4.479850 -4.268698
## X287 -0.7834475 2.791992 -3.442019
## X289 -1.0619168 2.407182 -4.803621
## X290 -0.9607695 3.342694 -4.074542
## X291 -0.8864471 5.580204 -4.733004
## X292 -0.4900331 4.149327 -3.816713
## X294 -0.4379501 2.407182 -5.005648
## X297 -0.8864471 2.601557 -5.426151
## X298 -0.7834475 2.208489 -4.605170
## X299 -1.0000000 4.534163 -5.035953
## X301 -1.0202041 3.101492 -4.733004
## X302 -0.4900331 3.342694 -4.509860
## X303 -0.6288691 4.908629 -5.083206
## X304 -1.0202041 3.867347 -5.083206
## X305 -0.3147700 4.908629 -4.074542
## X306 -0.5577795 4.534163 -3.863233
## X307 -0.3147700 4.315608 -3.729701
## X308 -0.2450071 1.796259 -3.816713
## X311 -0.5303062 4.479850 -5.083206
## X312 -1.0202041 3.637051 -4.199705
## X313 -0.6583592 3.040333 -4.422849
## X314 -0.8510875 4.037285 -4.605170
## X315 -0.4900331 2.854653 -4.645992
## X316 -0.8686292 3.810182 -5.167289
## X317 -1.0834849 3.810182 -4.828314
## X320 -0.6288691 3.342694 -4.422849
## X321 -0.7834475 2.791992 -4.605170
## X322 -0.4508067 4.093428 -3.863233
## X323 -0.8510875 4.037285 -3.540459
## X324 -0.7350889 3.342694 -4.803621
## X325 -0.4379501 3.578777 -4.074542
## X326 -1.2000000 4.037285 -3.729701
## X327 -0.7193752 5.273838 -4.199705
## X329 -0.8864471 3.637051 -6.189915
## X330 -0.5717143 4.534163 -3.688879
## X331 -0.7510004 4.260413 -4.733004
## X332 -0.5857864 4.479850 -4.509860
## X333 -0.6583592 4.037285 -4.733004
## Thyroxine_Binding_Globulin Tissue_Factor Transferrin Trefoil_Factor_3_TFF3
## X1 -1.4271164 2.04122033 3.332205 -3.381395
## X2 -1.6094379 2.02814825 2.890372 -3.912023
## X3 -1.8971200 1.43508453 2.890372 -3.729701
## X5 -0.4780358 1.98787435 3.496508 -3.442019
## X6 -1.2378744 -0.01005034 2.995732 -4.342806
## X7 -2.1202635 1.64865863 2.708050 -3.649659
## X8 -1.3470736 0.40546511 2.833213 -4.268698
## X9 -1.4696760 0.64185389 2.564949 -4.199705
## X11 -1.3470736 1.41098697 2.772589 -4.017384
## X12 -1.2729657 1.02961942 2.995732 -4.135167
## X14 -1.2378744 1.09861229 2.995732 -3.963316
## X16 -1.1711830 1.66770682 3.091042 -2.956512
## X17 -0.9675840 0.69314718 2.708050 -4.135167
## X18 -1.9661129 0.47000363 2.564949 -4.017384
## X19 -1.8325815 0.18232156 2.639057 -4.342806
## X20 -1.1394343 1.09861229 3.091042 -4.017384
## X21 -1.8325815 0.33647224 2.564949 -3.816713
## X22 -1.7719568 1.91692261 3.178054 -3.649659
## X23 -1.6094379 0.69314718 2.302585 -4.268698
## X24 -1.6607312 1.66770682 2.995732 -3.772261
## X25 -1.9661129 0.69314718 2.564949 -4.268698
## X26 -1.6607312 1.48160454 2.772589 -3.863233
## X28 -1.7147984 1.52605630 2.890372 -3.816713
## X29 -1.7719568 0.26236426 2.484907 -4.422849
## X30 -1.8971200 0.95551145 2.564949 -4.017384
## X31 -1.3862944 0.87546874 3.091042 -3.324236
## X34 -1.2729657 0.74193734 2.772589 -3.863233
## X35 -1.3093333 0.26236426 2.833213 -4.199705
## X36 -0.6733446 0.91629073 3.526361 -3.729701
## X37 -1.7147984 1.68639895 2.890372 -3.863233
## X38 -1.6607312 1.02961942 2.772589 -4.017384
## X39 -2.0402208 1.87180218 2.944439 -3.863233
## X40 -1.2729657 0.99325177 3.091042 -3.729701
## X41 -1.2378744 0.69314718 3.178054 -4.074542
## X42 -1.7147984 1.22377543 2.708050 -4.074542
## X43 -1.7147984 0.64185389 2.772589 -4.199705
## X44 -1.5141277 1.25276297 3.091042 -3.442019
## X45 -1.2039728 1.62924054 3.044522 -3.575551
## X46 -2.0402208 1.75785792 2.944439 -3.729701
## X47 -1.7147984 0.53062825 2.484907 -4.268698
## X48 -1.8325815 1.84054963 2.639057 -3.575551
## X50 -1.6094379 1.33500107 2.944439 -4.135167
## X51 -1.4696760 1.19392247 3.044522 -3.575551
## X53 -1.5141277 1.02961942 2.772589 -3.912023
## X55 -1.6607312 1.48160454 2.833213 -3.963316
## X56 -1.0498221 1.02961942 2.944439 -3.772261
## X57 -1.3862944 1.70474809 2.944439 -3.270169
## X59 -1.4271164 1.19392247 2.944439 -3.772261
## X60 -1.8325815 0.99325177 2.708050 -3.863233
## X61 -1.8325815 0.47000363 2.833213 -3.963316
## X62 -2.3538784 0.69314718 2.564949 -4.268698
## X63 -1.8325815 1.33500107 2.708050 -3.688879
## X64 -0.6161861 0.64185389 3.218876 -3.442019
## X65 -2.4769385 1.25276297 2.708050 -4.268698
## X67 -1.9661129 1.66770682 2.890372 -4.074542
## X68 -1.3862944 1.54756251 2.890372 -3.772261
## X69 -1.9661129 0.53062825 2.397895 -4.422849
## X70 -1.9661129 1.30833282 2.708050 -4.074542
## X71 -1.7147984 1.30833282 2.833213 -3.729701
## X72 -0.7339692 2.39789527 3.555348 -3.036554
## X73 -1.6094379 1.62924054 2.995732 -3.270169
## X74 -1.6607312 -0.12783337 2.708050 -4.074542
## X75 -0.7550226 0.33647224 3.135494 -3.688879
## X76 -1.5606477 1.58923521 3.044522 -3.816713
## X77 -0.9416085 1.43508453 2.995732 -3.863233
## X78 -1.2729657 1.82454929 3.367296 -3.123566
## X80 -0.4942963 0.99325177 2.833213 -3.963316
## X81 -1.3862944 1.06471074 2.833213 -4.017384
## X82 -1.5141277 1.06471074 2.890372 -3.963316
## X83 -1.0498221 1.30833282 2.890372 -3.729701
## X84 -1.3470736 0.95551145 2.708050 -4.199705
## X85 -1.2039728 1.52605630 3.218876 -3.575551
## X86 -0.9416085 1.13140211 3.135494 -3.218876
## X88 -1.2039728 1.48160454 2.708050 -3.324236
## X90 -2.3025851 -0.21072103 1.945910 -4.677741
## X93 -1.4696760 1.02961942 2.890372 -3.649659
## X94 -0.6733446 1.82454929 3.496508 -3.079114
## X95 -1.5606477 0.74193734 2.639057 -3.963316
## X96 -1.6094379 1.48160454 2.772589 -3.963316
## X97 -1.8325815 1.66770682 2.944439 -3.772261
## X98 -1.8971200 0.87546874 2.708050 -4.074542
## X99 -1.6607312 1.75785792 3.091042 -3.473768
## X100 -1.4696760 1.43508453 3.044522 -3.912023
## X103 -1.7719568 2.16332303 3.332205 -3.352407
## X104 -1.4271164 1.30833282 2.833213 -3.963316
## X105 -1.4271164 1.62924054 3.135494 -3.772261
## X107 -1.4696760 1.45861502 3.091042 -4.017384
## X108 -0.7765288 1.38629436 3.218876 -3.218876
## X109 -2.3025851 1.02961942 2.564949 -4.268698
## X110 -1.7719568 0.58778666 2.302585 -4.268698
## X111 -1.6607312 1.38629436 2.890372 -4.074542
## X112 -1.1394343 2.11625551 3.526361 -3.442019
## X113 -0.8439701 1.43508453 3.178054 -3.863233
## X114 -1.5606477 0.33647224 2.639057 -4.199705
## X115 -0.9675840 0.91629073 2.890372 -4.074542
## X117 -1.4696760 1.28093385 3.044522 -3.411248
## X118 -1.8325815 1.64865863 2.772589 -3.540459
## X121 -1.6607312 1.68639895 3.178054 -3.442019
## X123 -1.3093333 0.18232156 2.639057 -4.017384
## X124 -0.9675840 1.16315081 2.944439 -3.729701
## X126 -1.5141277 1.19392247 2.639057 -4.268698
## X128 -0.7985077 1.13140211 3.332205 -3.381395
## X129 -1.5606477 0.58778666 2.484907 -4.135167
## X130 -1.2039728 1.22377543 3.044522 -3.649659
## X131 -1.6607312 1.28093385 2.708050 -4.268698
## X132 -1.2729657 1.33500107 3.091042 -3.611918
## X133 -1.0498221 1.02961942 3.295837 -3.729701
## X134 -1.3093333 1.54756251 2.833213 -3.729701
## X135 -1.1711830 1.66770682 3.258097 -3.244194
## X136 -1.3093333 0.69314718 2.995732 -4.017384
## X137 -1.8325815 0.99325177 2.772589 -4.342806
## X139 -1.7147984 0.74193734 2.772589 -4.135167
## X140 -1.7719568 1.45861502 2.833213 -3.912023
## X141 -0.8675006 1.36097655 2.995732 -4.199705
## X143 -1.6607312 0.33647224 2.890372 -3.649659
## X144 -1.9661129 0.99325177 2.639057 -4.342806
## X145 -2.0402208 1.28093385 2.484907 -4.342806
## X146 -0.7133499 1.22377543 3.218876 -3.540459
## X147 -1.4271164 1.68639895 2.944439 -3.729701
## X148 -0.2107210 1.30833282 3.401197 -3.688879
## X149 -2.0402208 1.16315081 2.772589 -4.268698
## X152 -1.0216512 2.17475172 3.295837 -3.411248
## X153 -0.6161861 1.19392247 3.367296 -3.963316
## X154 -2.0402208 1.22377543 2.833213 -3.863233
## X155 -1.3470736 1.22377543 2.772589 -4.199705
## X156 -1.2039728 1.43508453 3.135494 -3.772261
## X157 -1.4696760 1.38629436 2.890372 -3.729701
## X158 -1.2039728 1.54756251 2.708050 -4.074542
## X159 -1.6607312 0.83290912 2.639057 -4.342806
## X160 -1.8971200 1.74046617 3.218876 -3.863233
## X161 -1.2039728 1.06471074 3.091042 -3.729701
## X162 -2.0402208 1.75785792 2.708050 -4.017384
## X163 -2.0402208 1.09861229 2.708050 -4.422849
## X165 -2.0402208 1.62924054 2.639057 -3.963316
## X166 -2.3025851 1.13140211 2.708050 -4.199705
## X167 -1.5606477 1.96009478 3.218876 -3.575551
## X168 -1.6094379 1.48160454 2.890372 -4.017384
## X169 -1.7719568 0.69314718 2.890372 -4.199705
## X170 -1.3862944 0.33647224 2.772589 -4.268698
## X171 -0.9942523 1.48160454 3.178054 -3.688879
## X172 -1.6607312 1.19392247 2.772589 -4.199705
## X174 -0.9675840 0.87546874 3.135494 -3.688879
## X175 -0.8439701 1.41098697 3.135494 -3.611918
## X176 -1.0788097 1.06471074 2.890372 -3.863233
## X177 -1.7147984 1.52605630 3.044522 -3.729701
## X178 -1.8971200 0.53062825 2.564949 -4.017384
## X179 -0.8728085 0.58778666 3.583519 -3.079114
## X180 -1.5606477 1.45861502 2.944439 -3.649659
## X181 -1.8325815 0.47000363 2.564949 -4.268698
## X182 -1.7719568 1.19392247 2.833213 -3.863233
## X183 -1.3862944 0.00000000 3.091042 -3.816713
## X184 -1.8325815 1.25276297 3.218876 -3.688879
## X185 -1.0788097 1.06471074 3.178054 -3.863233
## X186 -1.7147984 0.95551145 2.833213 -4.017384
## X189 -1.9661129 1.30833282 2.708050 -4.744432
## X190 -1.5141277 1.62924054 2.772589 -3.912023
## X191 -1.5606477 1.09861229 2.833213 -4.135167
## X192 -1.5606477 2.10413415 3.091042 -3.688879
## X193 -1.3862944 1.54756251 3.044522 -3.772261
## X194 -1.5141277 0.83290912 2.639057 -4.135167
## X195 -1.7719568 2.11625551 3.258097 -3.688879
## X197 -1.2378744 1.54756251 3.044522 -3.575551
## X198 -1.5141277 0.78845736 2.708050 -4.342806
## X200 -1.8971200 1.38629436 3.178054 -3.912023
## X201 -1.3470736 0.74193734 2.708050 -3.863233
## X202 -2.1202635 0.58778666 2.564949 -4.199705
## X205 -1.7147984 1.36097655 2.772589 -3.772261
## X208 -0.7133499 1.25276297 3.135494 -3.912023
## X210 -1.2729657 1.36097655 3.135494 -3.506558
## X212 -1.4696760 0.91629073 2.772589 -3.863233
## X213 -1.0788097 1.41098697 3.044522 -3.772261
## X214 -1.7147984 1.38629436 2.833213 -3.540459
## X215 -1.9661129 1.38629436 2.772589 -4.135167
## X216 -1.1394343 0.74193734 2.890372 -4.268698
## X218 -0.8675006 0.83290912 3.295837 -3.729701
## X219 -2.0402208 0.83290912 2.639057 -3.963316
## X220 -1.7147984 1.16315081 2.772589 -4.135167
## X223 -1.3470736 1.41098697 3.218876 -3.863233
## X224 -1.8325815 1.48160454 2.944439 -4.199705
## X225 -1.5606477 2.39789527 2.995732 -3.473768
## X226 -1.5606477 1.85629799 3.044522 -3.352407
## X227 -0.9675840 1.16315081 3.496508 -3.912023
## X228 -1.8971200 1.06471074 2.708050 -4.509860
## X229 -1.6607312 0.69314718 2.772589 -4.199705
## X230 -1.8325815 0.95551145 2.890372 -3.649659
## X231 -1.4696760 0.83290912 2.639057 -4.268698
## X232 -1.3470736 0.91629073 2.833213 -4.135167
## X233 -1.4696760 0.47000363 2.639057 -4.422849
## X234 -1.1394343 0.95551145 2.833213 -4.017384
## X236 -1.8971200 1.13140211 2.484907 -4.342806
## X237 -0.9675840 1.19392247 2.890372 -3.506558
## X239 -1.9661129 0.18232156 2.302585 -4.268698
## X240 -1.7147984 0.47000363 2.639057 -4.074542
## X241 -0.9942523 1.43508453 3.044522 -3.540459
## X242 -0.9535408 0.47000363 3.285794 -3.729701
## X243 -1.2378744 0.58778666 2.772589 -4.135167
## X244 -1.4271164 1.36097655 2.833213 -3.611918
## X245 -2.0402208 0.09531018 1.931521 -4.744432
## X246 -1.2039728 0.78845736 3.178054 -3.411248
## X247 -2.1202635 0.74193734 2.397895 -4.199705
## X249 -2.1202635 2.11625551 2.833213 -3.649659
## X250 -1.5141277 1.38629436 2.944439 -3.772261
## X251 -1.7147984 0.83290912 2.708050 -4.135167
## X253 -0.8439701 1.06471074 2.890372 -3.729701
## X254 -1.0788097 2.48490665 3.367296 -3.123566
## X255 -1.1086626 1.70474809 3.218876 -3.381395
## X256 -2.2072749 1.19392247 2.564949 -4.199705
## X257 -1.9661129 0.64185389 2.302585 -4.509860
## X258 -1.2039728 1.41098697 3.401197 -3.442019
## X260 -1.2729657 1.16315081 2.772589 -4.135167
## X261 -1.7147984 0.58778666 2.564949 -4.199705
## X262 -1.8325815 0.78845736 2.484907 -4.605170
## X263 -0.9675840 1.48160454 3.091042 -3.194183
## X264 -0.6539265 1.28093385 2.944439 -3.772261
## X265 -1.3470736 1.30833282 2.890372 -3.816713
## X267 -1.7147984 1.43508453 3.091042 -3.473768
## X268 -1.7719568 1.50407740 2.772589 -3.688879
## X269 -1.7719568 0.74193734 2.772589 -4.135167
## X270 -1.8971200 1.85629799 2.995732 -3.729701
## X271 -1.2378744 1.41098697 2.995732 -3.506558
## X272 -1.1394343 1.36097655 2.995732 -3.772261
## X273 -1.5141277 1.28093385 2.772589 -3.540459
## X274 -1.5141277 1.30833282 2.833213 -4.342806
## X275 -1.3093333 1.98787435 3.044522 -3.381395
## X277 -1.0788097 0.87546874 3.091042 -4.509860
## X278 -1.3862944 1.25276297 3.044522 -3.442019
## X279 -1.4271164 0.58778666 2.890372 -3.772261
## X281 -1.5606477 1.38629436 2.944439 -3.863233
## X282 -1.2378744 0.83290912 2.890372 -4.199705
## X283 -1.2378744 1.56861592 3.135494 -3.244194
## X287 -1.7147984 1.70474809 3.044522 -3.912023
## X289 -1.7147984 0.64185389 2.708050 -4.422849
## X290 -1.7719568 0.95551145 2.708050 -4.017384
## X291 -1.5606477 1.72276660 2.890372 -4.017384
## X292 -1.0216512 1.87180218 3.135494 -3.411248
## X294 -1.8971200 0.47000363 2.564949 -4.135167
## X297 -1.6607312 1.13140211 2.772589 -3.963316
## X298 -1.7719568 0.53062825 3.044522 -3.963316
## X299 -1.8325815 1.19392247 2.890372 -3.816713
## X301 -1.8971200 0.40546511 2.639057 -4.017384
## X302 -1.4696760 0.09531018 2.772589 -4.135167
## X303 -1.3470736 1.16315081 2.995732 -3.816713
## X304 -1.6607312 2.02814825 2.944439 -3.912023
## X305 -1.4271164 1.22377543 2.890372 -3.575551
## X306 -0.8915981 1.84054963 3.761200 -3.218876
## X307 -0.8209806 1.52605630 3.367296 -3.352407
## X308 -1.2729657 1.58923521 3.258097 -3.473768
## X311 -1.2039728 0.87546874 2.833213 -3.912023
## X312 -1.2378744 1.56861592 2.995732 -3.729701
## X313 -1.2729657 0.99325177 2.944439 -4.017384
## X314 -1.7147984 1.43508453 2.708050 -4.074542
## X315 -0.9942523 0.99325177 3.295837 -3.540459
## X316 -1.7719568 1.64865863 2.890372 -4.268698
## X317 -1.6607312 1.70474809 2.890372 -3.772261
## X320 -1.3093333 0.74193734 3.332205 -3.816713
## X321 -1.2378744 -0.06187540 3.044522 -4.017384
## X322 -1.2729657 1.56861592 3.218876 -3.575551
## X323 -1.3862944 1.45861502 2.944439 -3.649659
## X324 -2.0402208 0.91629073 2.282382 -3.863233
## X325 -0.9675840 1.33500107 3.044522 -3.575551
## X326 -1.6607312 0.91629073 2.772589 -3.963316
## X327 -1.5606477 1.28093385 2.995732 -4.074542
## X329 -1.8971200 1.41098697 2.944439 -3.863233
## X330 -0.4780358 0.47000363 3.496508 -4.268698
## X331 -1.6607312 0.74193734 2.639057 -4.605170
## X332 -1.2729657 0.18232156 2.890372 -4.074542
## X333 -1.4696760 2.17475172 3.367296 -3.863233
## VCAM_1 VEGF Vitronectin von_Willebrand_Factor E4 E3 E2
## X1 3.258097 22.03456 -0.04082199 -3.146555 1 2 1
## X2 2.708050 18.60184 -0.38566248 -3.863233 2 2 1
## X3 2.639057 17.47619 -0.22314355 -3.540459 2 2 1
## X5 3.044522 20.77860 0.16621555 -3.816713 1 2 1
## X6 2.208274 13.19761 0.26236426 -4.509860 2 1 1
## X7 2.639057 17.91139 -0.37106368 -4.017384 1 2 2
## X8 2.564949 13.26878 0.00000000 -4.199705 1 2 2
## X9 2.564949 15.77258 -0.82098055 -4.268698 1 2 1
## X11 2.708050 15.65264 -0.11653382 -3.611918 2 2 1
## X12 2.397895 17.16420 -0.15082289 -4.199705 1 2 2
## X14 2.833213 15.95757 -0.09431068 -3.442019 2 2 1
## X16 3.218876 17.47619 -0.19845094 -3.863233 2 2 1
## X17 3.135494 13.14977 -0.30110509 -4.199705 1 2 1
## X18 2.564949 14.00853 -0.57981850 -3.816713 2 2 1
## X19 2.890372 15.09899 -0.49429632 -4.268698 1 2 1
## X20 2.639057 17.29317 -0.11653382 -3.506558 2 1 2
## X21 2.639057 13.72601 -0.65392647 -4.268698 2 2 1
## X22 2.944439 19.75007 -0.63487827 -3.611918 1 2 1
## X23 1.945910 14.83572 -0.44628710 -4.342806 2 2 1
## X24 2.890372 17.17862 -0.63487827 -3.649659 1 2 1
## X25 2.302585 15.38951 -0.49429632 -4.342806 2 1 1
## X26 2.397895 16.85569 -0.73396918 -3.863233 2 2 1
## X28 2.833213 16.42640 -0.12783337 -4.342806 1 2 1
## X29 2.230014 14.70067 -0.51082562 -4.342806 2 1 1
## X30 2.397895 15.08048 -0.52763274 -4.342806 1 2 2
## X31 2.995732 17.09173 -0.17435339 -3.863233 1 2 1
## X34 2.772589 15.53091 -0.09431068 -4.074542 2 2 1
## X35 2.028148 14.98724 -0.23572233 -4.342806 2 2 1
## X36 3.135494 15.72139 0.33647224 -3.611918 1 2 2
## X37 2.564949 17.14975 -0.75502258 -3.729701 2 2 1
## X38 2.639057 15.66988 -0.61618614 -3.963316 1 2 1
## X39 2.833213 18.65101 -0.49429632 -3.575551 1 2 1
## X40 2.639057 16.10590 -0.21072103 -3.575551 1 2 1
## X41 2.708050 14.91184 0.09531018 -4.017384 1 2 1
## X42 2.708050 17.34988 -0.43078292 -4.074542 2 2 1
## X43 2.302585 14.96846 -0.40047757 -4.135167 1 2 1
## X44 2.995732 18.23746 -0.22314355 -3.575551 2 2 1
## X45 3.258097 17.09173 -0.26136476 -3.912023 1 2 1
## X46 2.708050 18.91693 -0.65392647 -3.411248 1 2 1
## X47 2.397895 15.35377 -0.49429632 -4.342806 1 2 1
## X48 3.091042 19.83721 -0.69314718 -3.170086 1 2 2
## X50 2.890372 17.14975 -0.19845094 -3.688879 1 2 1
## X51 2.944439 19.04716 -0.01005034 -3.381395 1 2 1
## X53 2.772589 17.76415 -0.30110509 -4.074542 1 2 1
## X55 2.564949 18.18606 -0.43078292 -3.912023 2 1 1
## X56 2.708050 16.78059 -0.01005034 -3.863233 1 2 1
## X57 2.944439 19.62899 -0.65392647 -3.506558 1 2 1
## X59 3.091042 16.05675 -0.44628710 -3.218876 2 2 1
## X60 2.708050 15.77258 -0.37106368 -4.135167 1 2 1
## X61 2.708050 15.53091 -0.40047757 -3.912023 1 2 1
## X62 2.028148 16.61303 -0.61618614 -4.342806 1 2 1
## X63 2.833213 16.70483 -0.31471074 -3.649659 1 2 1
## X64 2.708050 15.75555 0.09531018 -3.963316 2 2 1
## X65 2.564949 16.42640 -0.96758403 -3.863233 1 2 1
## X67 2.484907 17.44828 -0.96758403 -3.963316 2 2 1
## X68 2.639057 18.14732 -0.26136476 -4.342806 1 2 1
## X69 2.282382 14.70067 -0.43078292 -3.963316 1 2 1
## X70 2.890372 18.25027 -0.63487827 -3.816713 1 2 1
## X71 2.484907 17.81797 -0.37106368 -3.649659 1 2 2
## X72 3.610918 19.86969 0.47000363 -3.490408 1 2 1
## X73 3.091042 19.29097 -0.56211892 -3.411248 1 2 2
## X74 2.302585 13.98717 -0.05129329 -4.605170 1 2 1
## X75 2.772589 15.02467 -0.01005034 -3.575551 1 2 1
## X76 2.772589 18.14732 -0.40047757 -3.863233 2 2 1
## X77 2.639057 17.53176 -0.01005034 -3.442019 2 2 1
## X78 3.044522 20.00922 -0.09431068 -3.352407 2 2 1
## X80 3.091042 19.12912 0.09531018 -3.912023 1 2 1
## X81 2.639057 15.77258 -0.23572233 -4.017384 1 2 1
## X82 2.772589 16.28369 -0.51082562 -4.017384 2 2 1
## X83 2.772589 17.50402 0.00000000 -4.721704 1 2 2
## X84 2.484907 16.95974 -0.47803580 -3.963316 2 2 1
## X85 2.890372 20.15734 -0.09431068 -3.442019 1 2 1
## X86 3.295837 16.73521 -0.04082199 -3.218876 1 2 2
## X88 3.178054 17.84476 -0.31471074 -3.729701 2 2 1
## X90 2.292535 14.07222 -1.13943428 -4.990833 1 2 1
## X93 2.833213 18.09542 -0.51082562 -3.442019 2 2 1
## X94 3.688879 20.79835 0.18232156 -3.218876 1 2 1
## X95 2.890372 15.80652 -0.57981850 -3.688879 1 2 1
## X96 2.639057 17.61447 -0.32850407 -3.863233 2 2 1
## X97 2.564949 17.23608 -0.89159812 -4.199705 2 2 1
## X98 2.197225 16.02382 -0.46203546 -4.509860 1 2 2
## X99 2.944439 17.62818 -0.41551544 -3.079114 1 2 1
## X100 2.397895 18.36473 0.09531018 -3.772261 2 2 1
## X103 3.044522 20.92578 -0.65392647 -3.324236 1 2 2
## X104 2.772589 19.23348 -0.40047757 -3.688879 2 2 1
## X105 2.833213 18.41515 -0.23572233 -3.912023 1 2 1
## X107 2.708050 18.12141 -0.07257069 -3.912023 2 2 1
## X108 2.833213 18.67549 0.18232156 -4.074542 1 2 1
## X109 2.128232 15.75555 -0.77652879 -4.342806 1 2 2
## X110 1.960095 13.38584 -0.99425227 -3.912023 1 2 2
## X111 2.772589 19.35952 -0.59783700 -4.017384 2 2 1
## X112 3.044522 18.88110 0.26236426 -3.575551 1 2 1
## X113 2.944439 15.68709 0.26236426 -3.506558 2 2 1
## X114 2.079442 13.36258 -0.15082289 -4.268698 2 2 1
## X115 2.833213 15.13589 -0.02020271 -4.017384 2 2 1
## X117 2.995732 17.92466 -0.22314355 -3.816713 1 2 1
## X118 2.995732 17.66918 -0.57981850 -3.575551 1 2 1
## X121 3.044522 16.82573 -0.41551544 -3.194183 2 2 1
## X123 2.251292 14.19800 -0.54472718 -4.017384 2 2 1
## X124 2.708050 16.94495 0.33647224 -3.729701 1 2 1
## X126 2.564949 15.99076 -0.57981850 -4.074542 2 2 1
## X128 2.708050 18.65101 0.18232156 -3.816713 2 2 1
## X129 2.397895 13.92275 -0.61618614 -4.605170 2 2 1
## X130 2.772589 17.46224 -0.16251893 -3.863233 1 2 1
## X131 2.282382 17.01865 -0.49429632 -4.422849 1 2 1
## X132 2.639057 18.17317 -0.22314355 -3.963316 2 1 1
## X133 2.944439 16.26768 -0.08338161 -3.963316 2 2 1
## X134 2.944439 17.40624 -0.27443685 -3.816713 2 2 1
## X135 2.833213 18.51518 -0.18632958 -3.611918 1 2 2
## X136 2.708050 17.68281 -0.23572233 -3.649659 2 2 1
## X137 2.128232 16.61303 -0.51082562 -3.649659 2 1 2
## X139 2.251292 15.82344 -0.19845094 -4.268698 2 2 1
## X140 2.639057 16.75036 -0.24846136 -3.963316 2 1 2
## X141 2.564949 17.96435 0.09531018 -4.017384 2 2 1
## X143 2.772589 16.65905 -0.03045921 -4.074542 1 2 1
## X144 2.708050 14.19800 -0.27443685 -3.863233 2 2 1
## X145 2.302585 16.07317 -0.77652879 -4.342806 1 2 1
## X146 3.044522 17.62818 -0.09431068 -3.442019 2 2 1
## X147 2.708050 17.37811 -0.52763274 -3.381395 2 2 1
## X148 2.833213 18.63874 0.47000363 -4.017384 1 2 1
## X149 2.302585 16.68960 -0.35667494 -3.963316 1 2 2
## X152 3.332205 17.76415 -0.04082199 -3.218876 2 2 1
## X153 2.890372 16.81071 0.18232156 -3.912023 1 2 1
## X154 2.397895 16.13851 -0.41551544 -4.199705 1 2 1
## X155 2.302585 15.40733 -0.15082289 -4.135167 2 1 1
## X156 2.833213 18.62646 -0.09431068 -3.540459 1 2 1
## X157 3.135494 17.07716 -0.40047757 -3.324236 1 2 2
## X158 2.639057 17.89810 -0.59783700 -3.772261 2 2 1
## X159 2.772589 14.70067 -0.38566248 -3.611918 1 2 1
## X160 2.944439 19.49518 -0.35667494 -3.729701 1 2 2
## X161 2.833213 17.61447 -0.02020271 -3.963316 1 2 1
## X162 2.564949 18.42771 -0.73396918 -3.963316 1 2 1
## X163 2.066863 16.10590 -0.57981850 -4.615221 2 2 1
## X165 2.890372 16.47344 -0.94160854 -3.575551 2 2 1
## X166 2.208274 16.18718 -0.71334989 -4.135167 1 2 1
## X167 2.995732 19.88049 -0.71334989 -4.422849 1 2 1
## X168 2.772589 16.95974 -0.08338161 -4.199705 1 2 1
## X169 2.251292 15.51337 -0.54472718 -4.199705 1 2 2
## X170 2.397895 13.85775 -0.02020271 -3.963316 1 2 1
## X171 3.091042 16.41066 0.09531018 -4.074542 1 2 1
## X172 2.564949 17.60073 -0.30110509 -4.509860 1 2 1
## X174 2.772589 16.73521 0.26236426 -3.912023 1 2 1
## X175 2.772589 16.56675 0.09531018 -4.268698 1 2 1
## X176 2.708050 16.25164 -0.01005034 -3.575551 1 2 1
## X177 2.708050 18.49027 -0.47803580 -3.772261 1 2 1
## X178 1.931521 15.02467 -1.42711636 -4.422849 1 2 1
## X179 2.772589 18.27583 0.53062825 -3.772261 1 2 2
## X180 3.295837 15.87400 -0.51082562 -3.912023 1 2 1
## X181 2.397895 16.28369 -0.34249031 -4.268698 1 2 1
## X182 2.564949 18.41515 -0.49429632 -3.649659 1 2 2
## X183 2.484907 14.54339 -0.04082199 -3.863233 2 2 1
## X184 2.708050 18.33941 -0.69314718 -3.611918 2 2 1
## X185 2.302585 18.06935 -0.01005034 -3.649659 2 2 1
## X186 2.261763 15.42510 -0.47803580 -4.074542 2 2 1
## X189 2.484907 17.47619 -0.84397007 -3.772261 1 2 1
## X190 2.772589 19.25652 -0.59783700 -3.963316 1 2 2
## X191 2.708050 16.88555 -0.10536052 -3.963316 2 1 1
## X192 3.044522 19.21038 -0.47803580 -4.074542 2 1 2
## X193 3.178054 15.78957 -0.37106368 -3.381395 2 1 1
## X194 2.302585 16.44211 -0.41551544 -4.074542 2 2 1
## X195 3.044522 17.64187 -0.31471074 -3.540459 1 2 1
## X197 3.044522 17.95114 0.00000000 -3.611918 2 2 1
## X198 2.484907 15.75555 -0.46203546 -4.755993 2 1 2
## X200 2.772589 19.40495 -0.51082562 -3.575551 2 2 1
## X201 2.484907 18.08239 -0.22314355 -4.268698 1 2 1
## X202 2.302585 14.23946 -0.69314718 -4.422849 2 2 1
## X205 2.772589 16.93014 -0.54472718 -3.863233 1 2 1
## X208 2.772589 17.96435 0.26236426 -3.649659 2 2 1
## X210 2.772589 16.88555 -0.41551544 -3.473768 2 2 1
## X212 2.772589 15.17262 -0.21072103 -4.342806 2 1 1
## X213 2.708050 16.72003 -0.05129329 -3.611918 2 2 1
## X214 2.995732 16.08955 -0.18632958 -2.956512 1 2 1
## X215 2.302585 17.06257 -0.89159812 -3.963316 1 2 1
## X216 2.708050 17.60073 0.09531018 -4.342806 2 2 1
## X218 2.833213 16.28369 0.33647224 -4.074542 1 2 1
## X219 2.397895 16.55127 -0.41551544 -4.268698 1 2 1
## X220 2.302585 15.40733 -0.44628710 -4.135167 1 2 1
## X223 2.639057 17.14975 0.00000000 -4.135167 2 2 1
## X224 2.639057 17.83137 -0.37106368 -3.729701 1 2 1
## X225 3.135494 20.29296 -0.69314718 -3.473768 1 2 1
## X226 3.091042 21.33654 -0.41551544 -3.442019 1 2 1
## X227 2.708050 18.37736 0.24233051 -3.772261 1 2 1
## X228 2.272126 14.75884 -0.63487827 -4.268698 1 2 1
## X229 2.230014 12.70378 -0.15082289 -4.755993 2 1 1
## X230 2.833213 18.03012 -0.26136476 -3.411248 1 2 2
## X231 2.484907 17.17862 -0.26136476 -3.912023 1 2 1
## X232 2.397895 18.19894 -0.24846136 -4.135167 1 2 2
## X233 2.041220 15.19092 -0.22314355 -4.656463 2 1 1
## X234 2.708050 15.75555 -0.12783337 -4.268698 1 2 2
## X236 2.208274 15.63536 -0.44628710 -4.268698 1 2 1
## X237 2.564949 16.78059 0.00000000 -4.199705 1 2 1
## X239 2.302585 11.83075 -0.82098055 -4.268698 1 2 1
## X240 2.564949 15.58331 -0.47803580 -3.912023 1 2 1
## X241 2.397895 17.88480 0.26236426 -3.912023 1 2 1
## X242 2.995732 14.34213 0.14249286 -3.729701 1 2 1
## X243 2.484907 14.05105 0.18232156 -3.963316 1 2 1
## X244 2.944439 17.43429 -0.43078292 -3.506558 2 2 1
## X245 1.722767 13.50102 -0.77652879 -4.422849 1 2 1
## X246 2.890372 17.23608 0.18232156 -3.473768 1 2 2
## X247 2.151762 16.26768 -0.73396918 -4.342806 2 2 1
## X249 3.044522 19.12912 -0.65392647 -3.270169 2 1 2
## X250 2.639057 17.88480 -0.02020271 -3.772261 2 1 2
## X251 2.564949 17.32157 -0.67334455 -4.017384 2 2 1
## X253 2.944439 17.50402 -0.03045921 -3.411248 1 2 1
## X254 3.637586 22.38015 0.00000000 -3.218876 1 2 1
## X255 2.890372 17.26467 0.00000000 -3.473768 2 2 1
## X256 2.282382 14.83572 -0.84397007 -4.268698 2 2 1
## X257 2.272126 14.89288 -0.63487827 -4.199705 2 2 1
## X258 2.890372 18.73643 0.00000000 -3.296837 2 2 1
## X260 2.639057 17.26467 0.09531018 -4.017384 1 2 1
## X261 2.128232 14.13537 -0.59783700 -4.199705 1 2 1
## X262 2.079442 16.90044 -0.44628710 -4.422849 1 2 1
## X263 2.890372 19.52881 0.26236426 -3.270169 1 2 1
## X264 3.044522 17.51790 0.09531018 -4.074542 2 2 1
## X265 2.639057 17.89810 -0.22314355 -4.422849 1 2 1
## X267 2.944439 18.18606 -0.56211892 -3.352407 2 2 1
## X268 2.564949 18.60184 -0.21072103 -3.963316 1 2 1
## X269 2.397895 16.85569 -0.47803580 -4.509860 2 2 1
## X270 3.178054 18.19894 -0.65392647 -3.729701 1 2 1
## X271 2.944439 18.09542 -0.09431068 -3.442019 2 2 1
## X272 2.484907 18.73643 0.09531018 -4.509860 1 2 2
## X273 3.044522 17.51790 -0.34249031 -4.074542 1 2 1
## X274 2.564949 17.20740 -0.23572233 -3.912023 1 2 1
## X275 2.833213 18.21180 -0.13926207 -3.611918 1 2 2
## X277 2.833213 16.10590 0.18232156 -3.611918 1 2 1
## X278 3.044522 17.61447 -0.08338161 -3.863233 1 2 1
## X279 2.639057 16.39490 -0.21072103 -3.963316 2 2 1
## X281 2.833213 15.90753 -0.47803580 -3.912023 2 2 1
## X282 2.484907 17.12079 0.09531018 -3.540459 2 2 1
## X283 3.091042 21.12839 -0.32850407 -3.649659 1 2 2
## X287 2.302585 17.87147 -0.22314355 -3.540459 1 2 2
## X289 2.397895 14.91184 -0.21072103 -4.342806 1 2 1
## X290 2.564949 14.77813 -0.57981850 -3.729701 1 2 1
## X291 2.292535 15.22740 -0.31471074 -3.729701 1 2 2
## X292 3.218876 19.42759 0.09531018 -4.199705 1 2 1
## X294 2.564949 13.92275 -0.47803580 -4.342806 1 1 2
## X297 2.564949 16.62839 -0.56211892 -4.017384 1 2 1
## X298 2.772589 16.37910 -0.12783337 -3.772261 1 2 1
## X299 2.708050 16.87063 -0.69314718 -3.863233 2 2 1
## X301 2.890372 15.19092 0.00000000 -4.268698 2 2 1
## X302 2.066863 14.40307 -0.19845094 -4.947660 1 2 1
## X303 2.772589 17.76415 0.18232156 -4.074542 1 2 1
## X304 2.708050 17.80454 -0.75502258 -3.688879 2 1 1
## X305 3.135494 21.09010 -0.43078292 -4.017384 1 2 1
## X306 2.995732 19.25652 0.26236426 -3.352407 1 2 2
## X307 2.772589 18.45279 0.18232156 -3.575551 1 2 1
## X308 2.944439 17.92466 -0.10536052 -3.816713 2 2 1
## X311 2.484907 15.42510 -0.18632958 -3.912023 2 2 1
## X312 2.833213 20.78848 -0.05129329 -3.772261 2 1 2
## X313 2.708050 16.41066 0.09531018 -4.268698 1 2 1
## X314 2.708050 16.88555 -0.71334989 -4.268698 1 2 1
## X315 2.833213 16.58220 0.18232156 -3.729701 1 2 1
## X316 2.564949 17.49011 -0.61618614 -4.017384 1 2 1
## X317 2.639057 17.61447 -0.40047757 -3.296837 1 2 1
## X320 2.944439 16.41066 0.47000363 -4.605170 2 2 1
## X321 2.397895 12.70378 0.26236426 -4.635629 1 2 1
## X322 3.178054 17.73712 -0.04082199 -3.575551 1 1 2
## X323 3.135494 18.54002 -0.61618614 -3.352407 1 2 1
## X324 2.484907 15.87400 -0.69314718 -3.473768 2 2 1
## X325 3.044522 18.42771 0.18232156 -3.575551 1 2 2
## X326 2.890372 16.97451 -0.69314718 -4.268698 2 2 1
## X327 2.564949 19.05891 -0.44628710 -3.649659 2 2 1
## X329 2.292535 17.51790 -0.44628710 -3.729701 1 2 1
## X330 2.564949 15.61805 0.20543916 -4.509860 2 2 1
## X331 2.302585 14.54339 -0.47803580 -4.509860 1 2 1
## X332 2.564949 16.36327 0.18232156 -4.342806 1 2 1
## X333 2.944439 22.34608 -0.32850407 -4.074542 2 2 1
##
## $usekernel
## [1] TRUE
##
## $varnames
## [1] "ACE_CD143_Angiotensin_Converti" "ACTH_Adrenocorticotropic_Hormon"
## [3] "AXL" "Adiponectin"
## [5] "Alpha_1_Antichymotrypsin" "Alpha_1_Antitrypsin"
## [7] "Alpha_1_Microglobulin" "Alpha_2_Macroglobulin"
## [9] "Angiopoietin_2_ANG_2" "Angiotensinogen"
## [11] "Apolipoprotein_A_IV" "Apolipoprotein_A1"
## [13] "Apolipoprotein_A2" "Apolipoprotein_B"
## [15] "Apolipoprotein_CI" "Apolipoprotein_CIII"
## [17] "Apolipoprotein_D" "Apolipoprotein_E"
## [19] "Apolipoprotein_H" "B_Lymphocyte_Chemoattractant_BL"
## [21] "BMP_6" "Beta_2_Microglobulin"
## [23] "Betacellulin" "C_Reactive_Protein"
## [25] "CD40" "CD5L"
## [27] "Calbindin" "Calcitonin"
## [29] "CgA" "Clusterin_Apo_J"
## [31] "Complement_3" "Complement_Factor_H"
## [33] "Connective_Tissue_Growth_Factor" "Cortisol"
## [35] "Creatine_Kinase_MB" "Cystatin_C"
## [37] "EGF_R" "EN_RAGE"
## [39] "ENA_78" "Eotaxin_3"
## [41] "FAS" "FSH_Follicle_Stimulation_Hormon"
## [43] "Fas_Ligand" "Fatty_Acid_Binding_Protein"
## [45] "Ferritin" "Fetuin_A"
## [47] "Fibrinogen" "GRO_alpha"
## [49] "Gamma_Interferon_induced_Monokin" "Glutathione_S_Transferase_alpha"
## [51] "HB_EGF" "HCC_4"
## [53] "Hepatocyte_Growth_Factor_HGF" "I_309"
## [55] "ICAM_1" "IGF_BP_2"
## [57] "IL_11" "IL_13"
## [59] "IL_16" "IL_17E"
## [61] "IL_1alpha" "IL_3"
## [63] "IL_4" "IL_5"
## [65] "IL_6" "IL_6_Receptor"
## [67] "IL_7" "IL_8"
## [69] "IP_10_Inducible_Protein_10" "IgA"
## [71] "Insulin" "Kidney_Injury_Molecule_1_KIM_1"
## [73] "LOX_1" "Leptin"
## [75] "Lipoprotein_a" "MCP_1"
## [77] "MCP_2" "MIF"
## [79] "MIP_1alpha" "MIP_1beta"
## [81] "MMP_2" "MMP_3"
## [83] "MMP10" "MMP7"
## [85] "Myoglobin" "NT_proBNP"
## [87] "NrCAM" "Osteopontin"
## [89] "PAI_1" "PAPP_A"
## [91] "PLGF" "PYY"
## [93] "Pancreatic_polypeptide" "Prolactin"
## [95] "Prostatic_Acid_Phosphatase" "Protein_S"
## [97] "Pulmonary_and_Activation_Regulat" "RANTES"
## [99] "Resistin" "S100b"
## [101] "SGOT" "SHBG"
## [103] "SOD" "Serum_Amyloid_P"
## [105] "Sortilin" "Stem_Cell_Factor"
## [107] "TGF_alpha" "TIMP_1"
## [109] "TNF_RII" "TRAIL_R3"
## [111] "TTR_prealbumin" "Tamm_Horsfall_Protein_THP"
## [113] "Thrombomodulin" "Thrombopoietin"
## [115] "Thymus_Expressed_Chemokine_TECK" "Thyroid_Stimulating_Hormone"
## [117] "Thyroxine_Binding_Globulin" "Tissue_Factor"
## [119] "Transferrin" "Trefoil_Factor_3_TFF3"
## [121] "VCAM_1" "VEGF"
## [123] "Vitronectin" "von_Willebrand_Factor"
## [125] "E4" "E3"
## [127] "E2"
##
## $xNames
## [1] "ACE_CD143_Angiotensin_Converti" "ACTH_Adrenocorticotropic_Hormon"
## [3] "AXL" "Adiponectin"
## [5] "Alpha_1_Antichymotrypsin" "Alpha_1_Antitrypsin"
## [7] "Alpha_1_Microglobulin" "Alpha_2_Macroglobulin"
## [9] "Angiopoietin_2_ANG_2" "Angiotensinogen"
## [11] "Apolipoprotein_A_IV" "Apolipoprotein_A1"
## [13] "Apolipoprotein_A2" "Apolipoprotein_B"
## [15] "Apolipoprotein_CI" "Apolipoprotein_CIII"
## [17] "Apolipoprotein_D" "Apolipoprotein_E"
## [19] "Apolipoprotein_H" "B_Lymphocyte_Chemoattractant_BL"
## [21] "BMP_6" "Beta_2_Microglobulin"
## [23] "Betacellulin" "C_Reactive_Protein"
## [25] "CD40" "CD5L"
## [27] "Calbindin" "Calcitonin"
## [29] "CgA" "Clusterin_Apo_J"
## [31] "Complement_3" "Complement_Factor_H"
## [33] "Connective_Tissue_Growth_Factor" "Cortisol"
## [35] "Creatine_Kinase_MB" "Cystatin_C"
## [37] "EGF_R" "EN_RAGE"
## [39] "ENA_78" "Eotaxin_3"
## [41] "FAS" "FSH_Follicle_Stimulation_Hormon"
## [43] "Fas_Ligand" "Fatty_Acid_Binding_Protein"
## [45] "Ferritin" "Fetuin_A"
## [47] "Fibrinogen" "GRO_alpha"
## [49] "Gamma_Interferon_induced_Monokin" "Glutathione_S_Transferase_alpha"
## [51] "HB_EGF" "HCC_4"
## [53] "Hepatocyte_Growth_Factor_HGF" "I_309"
## [55] "ICAM_1" "IGF_BP_2"
## [57] "IL_11" "IL_13"
## [59] "IL_16" "IL_17E"
## [61] "IL_1alpha" "IL_3"
## [63] "IL_4" "IL_5"
## [65] "IL_6" "IL_6_Receptor"
## [67] "IL_7" "IL_8"
## [69] "IP_10_Inducible_Protein_10" "IgA"
## [71] "Insulin" "Kidney_Injury_Molecule_1_KIM_1"
## [73] "LOX_1" "Leptin"
## [75] "Lipoprotein_a" "MCP_1"
## [77] "MCP_2" "MIF"
## [79] "MIP_1alpha" "MIP_1beta"
## [81] "MMP_2" "MMP_3"
## [83] "MMP10" "MMP7"
## [85] "Myoglobin" "NT_proBNP"
## [87] "NrCAM" "Osteopontin"
## [89] "PAI_1" "PAPP_A"
## [91] "PLGF" "PYY"
## [93] "Pancreatic_polypeptide" "Prolactin"
## [95] "Prostatic_Acid_Phosphatase" "Protein_S"
## [97] "Pulmonary_and_Activation_Regulat" "RANTES"
## [99] "Resistin" "S100b"
## [101] "SGOT" "SHBG"
## [103] "SOD" "Serum_Amyloid_P"
## [105] "Sortilin" "Stem_Cell_Factor"
## [107] "TGF_alpha" "TIMP_1"
## [109] "TNF_RII" "TRAIL_R3"
## [111] "TTR_prealbumin" "Tamm_Horsfall_Protein_THP"
## [113] "Thrombomodulin" "Thrombopoietin"
## [115] "Thymus_Expressed_Chemokine_TECK" "Thyroid_Stimulating_Hormone"
## [117] "Thyroxine_Binding_Globulin" "Tissue_Factor"
## [119] "Transferrin" "Trefoil_Factor_3_TFF3"
## [121] "VCAM_1" "VEGF"
## [123] "Vitronectin" "von_Willebrand_Factor"
## [125] "E4" "E3"
## [127] "E2"
##
## $problemType
## [1] "Classification"
##
## $tuneValue
## fL usekernel adjust
## 2 0 TRUE 1
##
## $obsLevels
## [1] "Impaired" "Control"
## attr(,"ordered")
## [1] FALSE
##
## $param
## list()
##
## attr(,"class")
## [1] "NaiveBayes"
$results NB_FULL_Tune
## usekernel fL adjust ROC Sens Spec Accuracy Kappa
## 1 FALSE 0 1 0.7333788 0.6089286 0.7363158 0.7006410 0.3162972
## 2 TRUE 0 1 0.7390414 0.5821429 0.7518421 0.7043549 0.3064041
## ROCSD SensSD SpecSD AccuracySD KappaSD
## 1 0.1214378 0.2417062 0.1481122 0.1188615 0.2321727
## 2 0.1170132 0.2432769 0.1230640 0.1032011 0.2332805
<- NB_FULL_Tune$results[NB_FULL_Tune$results$usekernel==NB_FULL_Tune$bestTune$usekernel,
(NB_FULL_Train_ROCCurveAUC c("ROC")])
## [1] 0.7390414
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(NB_FULL_Observed = PMA_PreModelling_Test$Class,
NB_FULL_Test NB_FULL_Predicted = predict(NB_FULL_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = NB_FULL_Test$NB_FULL_Observed,
NB_FULL_Test_ROC predictor = NB_FULL_Test$NB_FULL_Predicted.Impaired,
levels = rev(levels(NB_FULL_Test$NB_FULL_Observed)))
<- auc(NB_FULL_Test_ROC)[1]) (NB_FULL_Test_ROCCurveAUC
## [1] 0.6793981
##################################
# Running the logistic regression model
# by setting the caret method to 'glm'
##################################
set.seed(12345678)
<- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
LR_FULL_Tune y = PMA_PreModelling_Train$Class,
method = "glm",
metric = "ROC",
trControl = KFold_TrainControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
LR_FULL_Tune
## Generalized Linear Model
##
## 267 samples
## 127 predictors
## 2 classes: 'Impaired', 'Control'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ...
## Resampling results:
##
## ROC Sens Spec Accuracy Kappa
## 0.7073308 0.5785714 0.7626316 0.7121998 0.3195053
$finalModel LR_FULL_Tune
##
## Call: NULL
##
## Coefficients:
## (Intercept) ACE_CD143_Angiotensin_Converti
## 388.06098 18.32098
## ACTH_Adrenocorticotropic_Hormon AXL
## -12.20990 -3.45911
## Adiponectin Alpha_1_Antichymotrypsin
## 2.32446 14.80819
## Alpha_1_Antitrypsin Alpha_1_Microglobulin
## 1.16444 -36.94176
## Alpha_2_Macroglobulin Angiopoietin_2_ANG_2
## 0.15646 -20.14245
## Angiotensinogen Apolipoprotein_A_IV
## 15.06727 -5.74660
## Apolipoprotein_A1 Apolipoprotein_A2
## 65.72600 27.28822
## Apolipoprotein_B Apolipoprotein_CI
## -3.55107 -30.47327
## Apolipoprotein_CIII Apolipoprotein_D
## -11.37076 -16.53210
## Apolipoprotein_E Apolipoprotein_H
## 9.03550 -6.17398
## B_Lymphocyte_Chemoattractant_BL BMP_6
## 14.70988 -10.29325
## Beta_2_Microglobulin Betacellulin
## 40.61789 -0.49887
## C_Reactive_Protein CD40
## -8.22874 -27.50459
## CD5L Calbindin
## -4.14634 -0.61489
## Calcitonin CgA
## 2.92788 0.05034
## Clusterin_Apo_J Complement_3
## -63.28971 0.04768
## Complement_Factor_H Connective_Tissue_Growth_Factor
## 11.86463 -40.70041
## Cortisol Creatine_Kinase_MB
## -3.89047 13.21449
## Cystatin_C EGF_R
## 49.19880 1.26931
## EN_RAGE ENA_78
## -0.13826 133.68092
## Eotaxin_3 FAS
## -0.21024 20.80349
## FSH_Follicle_Stimulation_Hormon Fas_Ligand
## 28.17017 2.03818
## Fatty_Acid_Binding_Protein Ferritin
## -20.21994 3.11387
## Fetuin_A Fibrinogen
## -64.75019 -3.78237
## GRO_alpha Gamma_Interferon_induced_Monokin
## -119.57073 36.33642
## Glutathione_S_Transferase_alpha HB_EGF
## 14.56088 3.55343
## HCC_4 Hepatocyte_Growth_Factor_HGF
## -10.83310 -66.62893
## I_309 ICAM_1
## 34.30972 0.33369
## IGF_BP_2 IL_11
## -3.23873 0.05103
## IL_13 IL_16
## -197.21726 -3.36357
## IL_17E IL_1alpha
## 5.23043 -6.53111
## IL_3 IL_4
## -1.35180 4.18246
## IL_5 IL_6
## 17.16601 3.03229
## IL_6_Receptor IL_7
## -9.96758 5.91157
## IL_8 IP_10_Inducible_Protein_10
## -59.02272 16.16684
## IgA Insulin
## 2.72264 -31.22159
## Kidney_Injury_Molecule_1_KIM_1 LOX_1
## 108.41959 10.84599
## Leptin Lipoprotein_a
## 22.72144 5.35564
## MCP_1 MCP_2
## 6.80700 -20.31103
## MIF MIP_1alpha
## 3.02394 6.99887
## MIP_1beta MMP_2
## -16.77570 -10.02623
## MMP_3 MMP10
## -2.94442 -18.03783
## MMP7 Myoglobin
## -2.01746 3.74592
## NT_proBNP NrCAM
## -21.39214 52.65219
## Osteopontin PAI_1
## -40.34847 -33.94504
## PAPP_A PLGF
## 9.86822 8.89102
## PYY Pancreatic_polypeptide
## -29.52340 -2.33873
## Prolactin Prostatic_Acid_Phosphatase
## -15.99474 -22.41757
## Protein_S Pulmonary_and_Activation_Regulat
## 27.50578 -19.51313
## RANTES Resistin
## 54.11654 0.71871
## S100b SGOT
## 33.96157 11.46625
## SHBG SOD
## 4.30953 -88.42860
## Serum_Amyloid_P Sortilin
## 8.34079 -9.71997
## Stem_Cell_Factor TGF_alpha
## 36.95818 -13.10608
## TIMP_1 TNF_RII
## 5.55468 -58.39813
## TRAIL_R3 TTR_prealbumin
## -22.47826 26.23333
## Tamm_Horsfall_Protein_THP Thrombomodulin
## -253.91848 45.05838
## Thrombopoietin Thymus_Expressed_Chemokine_TECK
## -53.44490 -2.59744
## Thyroid_Stimulating_Hormone Thyroxine_Binding_Globulin
## -5.79247 -26.53832
## Tissue_Factor Transferrin
## 3.95910 35.13990
## Trefoil_Factor_3_TFF3 VCAM_1
## 13.94216 -11.77542
## VEGF Vitronectin
## 10.17582 27.52795
## von_Willebrand_Factor E4
## 9.14891 0.93127
## E3 E2
## 3.42334 9.53015
##
## Degrees of Freedom: 266 Total (i.e. Null); 139 Residual
## Null Deviance: 313.3
## Residual Deviance: 6.654e-09 AIC: 256
$results LR_FULL_Tune
## parameter ROC Sens Spec Accuracy Kappa ROCSD
## 1 none 0.7073308 0.5785714 0.7626316 0.7121998 0.3195053 0.06575141
## SensSD SpecSD AccuracySD KappaSD
## 1 0.1453649 0.08268725 0.06290438 0.141295
<- LR_FULL_Tune$results[,c("ROC")]) (LR_FULL_Train_ROCCurveAUC
## [1] 0.7073308
##################################
# Identifying and plotting the
# best model predictors
##################################
<- varImp(LR_FULL_Tune, scale = TRUE)
LR_FULL_VarImp plot(LR_FULL_VarImp,
top=25,
scales=list(y=list(cex = .95)),
main="Ranked Variable Importance : Logistic Regression",
xlab="Scaled Variable Importance Metrics",
ylab="Predictors",
cex=2,
origin=0,
alpha=0.45)
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(LR_FULL_Observed = PMA_PreModelling_Test$Class,
LR_FULL_Test LR_FULL_Predicted = predict(LR_FULL_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = LR_FULL_Test$LR_FULL_Observed,
LR_FULL_Test_ROC predictor = LR_FULL_Test$LR_FULL_Predicted.Impaired,
levels = rev(levels(LR_FULL_Test$LR_FULL_Observed)))
<- auc(LR_FULL_Test_ROC)[1]) (LR_FULL_Test_ROCCurveAUC
## [1] 0.7719907
##################################
# Running the support vector machine (radial basis function kernel) model
# by setting the caret method to 'svmRadial'
##################################
set.seed(12345678)
<- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
SVM_R_FULL_Tune y = PMA_PreModelling_Train$Class,
method = "svmRadial",
metric = "ROC",
tuneLength = 10,
preProc = c("center", "scale"),
trControl = KFold_TrainControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_R_FULL_Tune
## Support Vector Machines with Radial Basis Function Kernel
##
## 267 samples
## 127 predictors
## 2 classes: 'Impaired', 'Control'
##
## Pre-processing: centered (127), scaled (127)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ...
## Resampling results across tuning parameters:
##
## C ROC Sens Spec Accuracy Kappa
## 0.25 0.8156015 0.5660714 0.8913158 0.8021164 0.4673266
## 0.50 0.8156015 0.5660714 0.8913158 0.8021164 0.4673266
## 1.00 0.8218233 0.5500000 0.9018421 0.8059727 0.4665589
## 2.00 0.8366494 0.5392857 0.9328947 0.8249186 0.4988373
## 4.00 0.8524436 0.4803571 0.9484211 0.8213573 0.4700460
## 8.00 0.8569079 0.4946429 0.9378947 0.8173687 0.4713105
## 16.00 0.8555263 0.4517857 0.9428947 0.8092593 0.4385548
## 32.00 0.8555263 0.4660714 0.9431579 0.8133801 0.4515947
## 64.00 0.8555263 0.5089286 0.9378947 0.8209300 0.4850754
## 128.00 0.8555263 0.4785714 0.9171053 0.7982804 0.4292607
##
## Tuning parameter 'sigma' was held constant at a value of 0.004554698
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.004554698 and C = 8.
$finalModel SVM_R_FULL_Tune
## Support Vector Machine object of class "ksvm"
##
## SV type: C-svc (classification)
## parameter : cost C = 8
##
## Gaussian Radial Basis kernel function.
## Hyperparameter : sigma = 0.00455469842134126
##
## Number of Support Vectors : 199
##
## Objective Function Value : -215.1357
## Training error : 0
## Probability model included.
$results SVM_R_FULL_Tune
## sigma C ROC Sens Spec Accuracy Kappa
## 1 0.004554698 0.25 0.8156015 0.5660714 0.8913158 0.8021164 0.4673266
## 2 0.004554698 0.50 0.8156015 0.5660714 0.8913158 0.8021164 0.4673266
## 3 0.004554698 1.00 0.8218233 0.5500000 0.9018421 0.8059727 0.4665589
## 4 0.004554698 2.00 0.8366494 0.5392857 0.9328947 0.8249186 0.4988373
## 5 0.004554698 4.00 0.8524436 0.4803571 0.9484211 0.8213573 0.4700460
## 6 0.004554698 8.00 0.8569079 0.4946429 0.9378947 0.8173687 0.4713105
## 7 0.004554698 16.00 0.8555263 0.4517857 0.9428947 0.8092593 0.4385548
## 8 0.004554698 32.00 0.8555263 0.4660714 0.9431579 0.8133801 0.4515947
## 9 0.004554698 64.00 0.8555263 0.5089286 0.9378947 0.8209300 0.4850754
## 10 0.004554698 128.00 0.8555263 0.4785714 0.9171053 0.7982804 0.4292607
## ROCSD SensSD SpecSD AccuracySD KappaSD
## 1 0.12019683 0.2363103 0.06636648 0.06853518 0.2022444
## 2 0.12019683 0.2363103 0.06636648 0.06853518 0.2022444
## 3 0.11799422 0.2392531 0.05594882 0.06404731 0.1977729
## 4 0.10578558 0.2601129 0.04920498 0.06403128 0.2220275
## 5 0.09773967 0.2545574 0.03424874 0.07658472 0.2535540
## 6 0.09104174 0.2247842 0.04111032 0.05779809 0.1972180
## 7 0.09317267 0.2084268 0.03897443 0.05440848 0.1858882
## 8 0.09317267 0.2219927 0.03823998 0.05976578 0.2011546
## 9 0.09317267 0.2246580 0.04801700 0.07321576 0.2297742
## 10 0.09317267 0.1919216 0.04999615 0.05274999 0.1644813
<- SVM_R_FULL_Tune$results[SVM_R_FULL_Tune$results$C==SVM_R_FULL_Tune$bestTune$C,
(SVM_R_FULL_Train_ROCCurveAUC c("ROC")])
## [1] 0.8569079
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(SVM_R_FULL_Observed = PMA_PreModelling_Test$Class,
SVM_R_FULL_Test SVM_R_FULL_Predicted = predict(SVM_R_FULL_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = SVM_R_FULL_Test$SVM_R_FULL_Observed,
SVM_R_FULL_Test_ROC predictor = SVM_R_FULL_Test$SVM_R_FULL_Predicted.Impaired,
levels = rev(levels(SVM_R_FULL_Test$SVM_R_FULL_Observed)))
<- auc(SVM_R_FULL_Test_ROC)[1]) (SVM_R_FULL_Test_ROCCurveAUC
## [1] 0.8206019
##################################
# Running the k-nearest neighbors model
# by setting the caret method to 'knn'
##################################
set.seed(12345678)
<- caret::train(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
KNN_FULL_Tune y = PMA_PreModelling_Train$Class,
method = "knn",
metric = "ROC",
tuneLength = 10,
preProc = c("center", "scale"),
trControl = KFold_TrainControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
KNN_FULL_Tune
## k-Nearest Neighbors
##
## 267 samples
## 127 predictors
## 2 classes: 'Impaired', 'Control'
##
## Pre-processing: centered (127), scaled (127)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 239, 241, 240, 241, 241, ...
## Resampling results across tuning parameters:
##
## k ROC Sens Spec Accuracy Kappa
## 5 0.6983788 0.3910714 0.8555263 0.7277066 0.2512403
## 7 0.7346217 0.3607143 0.8865789 0.7423891 0.2720487
## 9 0.7408318 0.3196429 0.9278947 0.7609381 0.2829851
## 11 0.7322462 0.3196429 0.9126316 0.7500916 0.2669541
## 13 0.7658271 0.3160714 0.9534211 0.7794770 0.3195973
## 15 0.7627961 0.2642857 0.9484211 0.7612129 0.2527805
## 17 0.7790202 0.2482143 0.9586842 0.7647843 0.2455628
## 19 0.7988322 0.2500000 0.9589474 0.7649267 0.2490637
## 21 0.7975752 0.2642857 0.9794737 0.7836081 0.2974036
## 23 0.7988651 0.2214286 0.9744737 0.7687831 0.2380964
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 23.
$finalModel KNN_FULL_Tune
## 23-nearest neighbor model
## Training set outcome distribution:
##
## Impaired Control
## 73 194
$results KNN_FULL_Tune
## k ROC Sens Spec Accuracy Kappa ROCSD SensSD
## 1 5 0.6983788 0.3910714 0.8555263 0.7277066 0.2512403 0.1691065 0.2954025
## 2 7 0.7346217 0.3607143 0.8865789 0.7423891 0.2720487 0.1571726 0.2204471
## 3 9 0.7408318 0.3196429 0.9278947 0.7609381 0.2829851 0.1495604 0.1953343
## 4 11 0.7322462 0.3196429 0.9126316 0.7500916 0.2669541 0.1437392 0.1414740
## 5 13 0.7658271 0.3160714 0.9534211 0.7794770 0.3195973 0.1186339 0.1588405
## 6 15 0.7627961 0.2642857 0.9484211 0.7612129 0.2527805 0.1254370 0.1838120
## 7 17 0.7790202 0.2482143 0.9586842 0.7647843 0.2455628 0.1166273 0.1949711
## 8 19 0.7988322 0.2500000 0.9589474 0.7649267 0.2490637 0.1221173 0.1874764
## 9 21 0.7975752 0.2642857 0.9794737 0.7836081 0.2974036 0.1217746 0.1838120
## 10 23 0.7988651 0.2214286 0.9744737 0.7687831 0.2380964 0.1149696 0.2025909
## SpecSD AccuracySD KappaSD
## 1 0.07537176 0.12825365 0.3645445
## 2 0.07874682 0.10527834 0.2954716
## 3 0.05564751 0.07468878 0.2398829
## 4 0.05897190 0.05920734 0.1581750
## 5 0.05168818 0.04777909 0.1595109
## 6 0.05928942 0.06024148 0.1921446
## 7 0.04756376 0.05033696 0.1912615
## 8 0.04050694 0.05296725 0.1931351
## 9 0.02651387 0.05660022 0.2105880
## 10 0.03578367 0.06781507 0.2476633
<- KNN_FULL_Tune$results[KNN_FULL_Tune$results$k==KNN_FULL_Tune$bestTune$k,
(KNN_FULL_Train_ROCCurveAUC c("ROC")])
## [1] 0.7988651
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(KNN_FULL_Observed = PMA_PreModelling_Test$Class,
KNN_FULL_Test KNN_FULL_Predicted = predict(KNN_FULL_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = KNN_FULL_Test$KNN_FULL_Observed,
KNN_FULL_Test_ROC predictor = KNN_FULL_Test$KNN_FULL_Predicted.Impaired,
levels = rev(levels(KNN_FULL_Test$KNN_FULL_Observed)))
<- auc(KNN_FULL_Test_ROC)[1]) (KNN_FULL_Test_ROCCurveAUC
## [1] 0.7916667
##################################
# Running the random forest model
# by setting the caret method to 'rf'
# with implementation of recursive feature elimination
##################################
$functions <- rfFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary
KFold_RFEControl
set.seed(12345678)
<- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
RF_RFE_Tune y = PMA_PreModelling_Train$Class,
sizes = VariableSubset,
metric = "ROC",
ntree = 100,
rfeControl = KFold_RFEControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
RF_RFE_Tune
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
## Resampling performance over subset size:
##
## Variables ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD
## 1 0.5659 0.3143 0.8287 0.6883 0.1559 0.1200 0.1935 0.12183
## 21 0.7939 0.3625 0.9432 0.7839 0.3501 0.1300 0.1882 0.05190
## 41 0.8153 0.2786 0.9589 0.7733 0.2720 0.1111 0.2618 0.05246
## 61 0.7913 0.3339 0.9692 0.7954 0.3590 0.1326 0.2064 0.04330
## 81 0.8069 0.3357 0.9589 0.7881 0.3402 0.1237 0.2354 0.05246
## 101 0.7845 0.3446 0.9639 0.7950 0.3566 0.1215 0.2257 0.04232
## 121 0.7938 0.3161 0.9379 0.7686 0.2903 0.1082 0.2115 0.05845
## 127 0.7805 0.2518 0.9587 0.7652 0.2488 0.1221 0.2066 0.04058
## AccuracySD KappaSD Selected
## 0.09918 0.2561
## 0.05994 0.2040
## 0.08411 0.2996 *
## 0.07272 0.2420
## 0.07653 0.2597
## 0.05929 0.2232
## 0.05791 0.2021
## 0.06769 0.2405
##
## The top 5 variables (out of 41):
## MMP10, Cystatin_C, TRAIL_R3, PAI_1, GRO_alpha
$fit RF_RFE_Tune
##
## Call:
## randomForest(x = x, y = y, ntree = 100, importance = TRUE)
## Type of random forest: classification
## Number of trees: 100
## No. of variables tried at each split: 6
##
## OOB estimate of error rate: 21.35%
## Confusion matrix:
## Impaired Control class.error
## Impaired 32 41 0.56164384
## Control 16 178 0.08247423
$results RF_RFE_Tune
## Variables ROC Sens Spec Accuracy Kappa ROCSD
## 1 1 0.5659234 0.3142857 0.8286842 0.6882784 0.1558500 0.1199506
## 2 21 0.7938534 0.3625000 0.9431579 0.7838726 0.3500941 0.1299852
## 3 41 0.8153477 0.2785714 0.9589474 0.7733109 0.2719906 0.1111441
## 4 61 0.7912758 0.3339286 0.9692105 0.7954212 0.3590385 0.1325685
## 5 81 0.8068515 0.3357143 0.9589474 0.7881359 0.3401538 0.1237378
## 6 101 0.7844901 0.3446429 0.9639474 0.7949939 0.3566195 0.1214807
## 7 121 0.7938252 0.3160714 0.9378947 0.7686304 0.2903298 0.1082441
## 8 127 0.7804652 0.2517857 0.9586842 0.7652015 0.2487579 0.1220921
## SensSD SpecSD AccuracySD KappaSD
## 1 0.1934661 0.12182850 0.09917501 0.2561487
## 2 0.1882402 0.05189840 0.05994328 0.2040432
## 3 0.2617965 0.05245878 0.08411383 0.2995929
## 4 0.2063769 0.04329549 0.07271831 0.2419879
## 5 0.2353713 0.05245878 0.07653029 0.2597450
## 6 0.2257279 0.04232490 0.05929101 0.2231779
## 7 0.2114646 0.05845292 0.05790773 0.2021318
## 8 0.2066171 0.04058001 0.06768834 0.2404506
<- RF_RFE_Tune$results[RF_RFE_Tune$results$ROC==max(RF_RFE_Tune$results$ROC),
(RF_RFE_Train_ROCCurveAUC c("ROC")])
## [1] 0.8153477
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(RF_RFE_Observed = PMA_PreModelling_Test$Class,
RF_RFE_Test RF_RFE_Predicted = predict(RF_RFE_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = RF_RFE_Test$RF_RFE_Observed,
RF_RFE_Test_ROC predictor = RF_RFE_Test$RF_RFE_Predicted.Impaired,
levels = rev(levels(RF_RFE_Test$RF_RFE_Observed)))
<- auc(RF_RFE_Test_ROC)[1]) (RF_RFE_Test_ROCCurveAUC
## [1] 0.8420139
##################################
# Running the linear discriminant analysis model
# by setting the caret method to 'lda'
# with implementation of recursive feature elimination
##################################
$functions <- ldaFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary
KFold_RFEControl
set.seed(12345678)
<- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
LDA_RFE_Tune y = PMA_PreModelling_Train$Class,
sizes = VariableSubset,
metric = "ROC",
tol = 1.0e-12,
rfeControl = KFold_RFEControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
LDA_RFE_Tune
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
## Resampling performance over subset size:
##
## Variables ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD
## 1 0.7185 0.1536 0.9537 0.7343 0.1316 0.09278 0.12576 0.03870
## 21 0.7659 0.4714 0.8908 0.7756 0.3780 0.13447 0.24313 0.07164
## 41 0.8337 0.6357 0.8913 0.8212 0.5283 0.10420 0.24946 0.05791
## 61 0.8338 0.6054 0.8916 0.8131 0.5147 0.07940 0.17220 0.07928
## 81 0.8357 0.6304 0.8647 0.8012 0.4961 0.06676 0.14484 0.06700
## 101 0.7910 0.6018 0.8342 0.7711 0.4318 0.06160 0.10103 0.06039
## 121 0.8175 0.6304 0.8037 0.7564 0.4166 0.05993 0.09185 0.07279
## 127 0.8015 0.6429 0.8142 0.7675 0.4377 0.07919 0.12959 0.05583
## AccuracySD KappaSD Selected
## 0.03391 0.1362
## 0.07717 0.2363
## 0.08662 0.2503
## 0.08582 0.2162
## 0.04516 0.1091 *
## 0.04707 0.1051
## 0.05361 0.1054
## 0.05778 0.1371
##
## The top 5 variables (out of 81):
## MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
$fit LDA_RFE_Tune
## Call:
## lda(x, y, tol = 1e-12)
##
## Prior probabilities of groups:
## Impaired Control
## 0.2734082 0.7265918
##
## Group means:
## MMP10 GRO_alpha TRAIL_R3 Fibrinogen PAI_1 MMP7
## Impaired -3.404275 1.399543 -0.4163806 -7.090535 0.275440319 -3.156452
## Control -3.721335 1.370087 -0.5856845 -7.456059 0.002927648 -4.027631
## NT_proBNP MIF Pancreatic_polypeptide FAS Eotaxin_3
## Impaired 4.720840 -1.724998 0.3059723 -0.3996292 64.00000
## Control 4.488264 -1.916871 -0.1333379 -0.5778808 55.97938
## Gamma_Interferon_induced_Monokin Thymus_Expressed_Chemokine_TECK
## Impaired 2.829613 4.152730
## Control 2.769219 3.733299
## TNF_RII Alpha_1_Antitrypsin IGF_BP_2 Creatine_Kinase_MB MCP_2
## Impaired -0.4725251 -12.54310 5.384293 -1.702831 2.104018
## Control -0.6396312 -13.24365 5.291718 -1.663646 1.780639
## Resistin Cortisol E4 Fatty_Acid_Binding_Protein
## Impaired -15.66720 13.42740 1.589041 1.614389
## Control -18.38319 11.44124 1.329897 1.254534
## Pulmonary_and_Activation_Regulat VEGF CD5L Cystatin_C
## Impaired -1.368849 16.49858 0.05894109 8.472553
## Control -1.532822 17.17183 -0.09525496 8.628643
## HCC_4 Complement_3 Alpha_1_Microglobulin
## Impaired -3.394734 -14.85689 -2.812275
## Control -3.539563 -15.89379 -2.977260
## Hepatocyte_Growth_Factor_HGF Osteopontin
## Impaired 0.2821109 5.313664
## Control 0.1639794 5.162882
## B_Lymphocyte_Chemoattractant_BL PLGF Alpha_1_Antichymotrypsin
## Impaired 2.191212 4.012400 1.461656
## Control 1.952112 3.874869 1.322478
## MIP_1alpha Sortilin IL_7 Apolipoprotein_D S100b
## Impaired 4.281621 4.101578 2.525637 1.534726 1.339447
## Control 3.961372 3.757482 2.957174 1.404988 1.217084
## Apolipoprotein_CIII Fetuin_A IP_10_Inducible_Protein_10 IgA
## Impaired -2.402152 1.434358 5.875371 -5.928985
## Control -2.528993 1.318421 5.709495 -6.193464
## Protein_S Thrombomodulin Fas_Ligand Clusterin_Apo_J Adiponectin
## Impaired -2.161885 -1.448956 3.240515 2.952344 -5.062015
## Control -2.268898 -1.526102 2.865447 2.855998 -5.252821
## HB_EGF Thrombopoietin Alpha_2_Macroglobulin VCAM_1 MCP_1
## Impaired 7.177725 -0.8002665 -149.8084 2.750947 6.548438
## Control 6.703511 -0.7368538 -161.9286 2.663773 6.477030
## IL_8 Calbindin Apolipoprotein_B SHBG Angiotensinogen
## Impaired 1.713003 23.27885 -5.290980 -2.373962 2.358407
## Control 1.701045 22.11405 -5.686514 -2.515326 2.302900
## RANTES Kidney_Injury_Molecule_1_KIM_1 TIMP_1 I_309
## Impaired -6.453900 -1.179252 12.17891 3.023617
## Control -6.532627 -1.186509 11.58805 2.933276
## Apolipoprotein_H MMP_3 Ferritin Myoglobin SOD
## Impaired -0.2462583 -2.324019 2.931628 -1.246804 5.389265
## Control -0.3494279 -2.491243 2.701751 -1.412393 5.316217
## Thyroxine_Binding_Globulin MIP_1beta ICAM_1 MMP_2
## Impaired -1.413281 2.877145 -0.5474443 2.781498
## Control -1.503474 2.790792 -0.6071264 2.910655
## Prostatic_Acid_Phosphatase Angiopoietin_2_ANG_2 Beta_2_Microglobulin
## Impaired -1.673206 0.7189962 0.2010301
## Control -1.689756 0.6556583 0.1549796
## E2 IL_17E Leptin von_Willebrand_Factor
## Impaired 1.082192 4.671603 -1.544007 -3.848044
## Control 1.190722 4.923843 -1.489273 -3.927726
## ACTH_Adrenocorticotropic_Hormon C_Reactive_Protein Lipoprotein_a
## Impaired -1.512663 -6.014766 -4.277014
## Control -1.547922 -5.820661 -4.470063
##
## Coefficients of linear discriminants:
## LD1
## MMP10 -0.6778495578
## GRO_alpha -5.8437118089
## TRAIL_R3 -0.6406081642
## Fibrinogen -0.2338360045
## PAI_1 -0.8288542918
## MMP7 -0.0647822072
## NT_proBNP -1.3006873141
## MIF -0.6160160807
## Pancreatic_polypeptide -0.3090868060
## FAS -0.0217693800
## Eotaxin_3 -0.0081983194
## Gamma_Interferon_induced_Monokin 1.3299434140
## Thymus_Expressed_Chemokine_TECK -0.0379784241
## TNF_RII -2.0226999320
## Alpha_1_Antitrypsin -0.0923019597
## IGF_BP_2 0.3528864700
## Creatine_Kinase_MB -1.4732172451
## MCP_2 -0.2703185599
## Resistin -0.0022397928
## Cortisol -0.0556646218
## E4 -0.1667885539
## Fatty_Acid_Binding_Protein -0.4987214377
## Pulmonary_and_Activation_Regulat -0.2718329526
## VEGF 0.5807820405
## CD5L -0.1114035816
## Cystatin_C 1.7422669646
## HCC_4 0.0516411901
## Complement_3 -0.0292668839
## Alpha_1_Microglobulin -0.1467706659
## Hepatocyte_Growth_Factor_HGF -0.8418183018
## Osteopontin -0.6631915643
## B_Lymphocyte_Chemoattractant_BL 0.0358254216
## PLGF -0.0188978088
## Alpha_1_Antichymotrypsin 0.4087597274
## MIP_1alpha -0.0198960923
## Sortilin 0.1028037448
## IL_7 0.2580105214
## Apolipoprotein_D -0.0009247194
## S100b 0.4332472881
## Apolipoprotein_CIII 0.3843202615
## Fetuin_A -0.6985063910
## IP_10_Inducible_Protein_10 0.0281079434
## IgA 0.1446875319
## Protein_S 0.7699018297
## Thrombomodulin 1.0022010369
## Fas_Ligand 0.0494800814
## Clusterin_Apo_J -2.1319265640
## Adiponectin -0.2105422918
## HB_EGF 0.0225477869
## Thrombopoietin -1.0566751745
## Alpha_2_Macroglobulin 0.0102508716
## VCAM_1 0.1011044898
## MCP_1 0.1938058549
## IL_8 2.2639303597
## Calbindin -0.0237902831
## Apolipoprotein_B -0.0864330504
## SHBG 0.4018868518
## Angiotensinogen -0.6517305684
## RANTES 1.0839214997
## Kidney_Injury_Molecule_1_KIM_1 2.0403487925
## TIMP_1 -0.0447283524
## I_309 1.3638576115
## Apolipoprotein_H 0.2782456208
## MMP_3 -0.0679830388
## Ferritin -0.1086841200
## Myoglobin 0.1733153003
## SOD -0.6356300096
## Thyroxine_Binding_Globulin 0.0970457989
## MIP_1beta -0.3645585898
## ICAM_1 -0.2155873261
## MMP_2 -0.1528205683
## Prostatic_Acid_Phosphatase 1.3130124532
## Angiopoietin_2_ANG_2 -0.4535763314
## Beta_2_Microglobulin 1.5619497473
## E2 0.3302873155
## IL_17E -0.0366544919
## Leptin 0.8891369897
## von_Willebrand_Factor 0.5191263748
## ACTH_Adrenocorticotropic_Hormon 0.2546402469
## C_Reactive_Protein -0.1502267622
## Lipoprotein_a -0.0047476341
$results LDA_RFE_Tune
## Variables ROC Sens Spec Accuracy Kappa ROCSD
## 1 1 0.7185197 0.1535714 0.9536842 0.7343000 0.1316428 0.09278394
## 2 21 0.7658788 0.4714286 0.8907895 0.7756207 0.3779921 0.13446771
## 3 41 0.8336842 0.6357143 0.8913158 0.8212047 0.5282533 0.10419508
## 4 61 0.8338158 0.6053571 0.8915789 0.8131054 0.5146507 0.07940192
## 5 81 0.8356861 0.6303571 0.8647368 0.8011701 0.4960627 0.06676256
## 6 101 0.7909539 0.6017857 0.8342105 0.7710928 0.4317545 0.06159587
## 7 121 0.8175376 0.6303571 0.8036842 0.7564001 0.4166117 0.05993414
## 8 127 0.8015132 0.6428571 0.8142105 0.7675417 0.4377465 0.07919456
## SensSD SpecSD AccuracySD KappaSD
## 1 0.12576298 0.03870002 0.03391046 0.1362022
## 2 0.24313126 0.07164310 0.07716516 0.2363455
## 3 0.24946087 0.05790869 0.08661968 0.2502905
## 4 0.17219776 0.07927612 0.08582429 0.2162227
## 5 0.14483991 0.06700285 0.04516015 0.1091275
## 6 0.10103279 0.06039268 0.04706861 0.1050703
## 7 0.09184815 0.07279328 0.05361003 0.1053563
## 8 0.12959251 0.05582698 0.05778037 0.1370938
<- LDA_RFE_Tune$results[LDA_RFE_Tune$results$ROC==max(LDA_RFE_Tune$results$ROC),
(LDA_RFE_Train_ROCCurveAUC c("ROC")])
## [1] 0.8356861
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(LDA_RFE_Observed = PMA_PreModelling_Test$Class,
LDA_RFE_Test LDA_RFE_Predicted = predict(LDA_RFE_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = LDA_RFE_Test$LDA_RFE_Observed,
LDA_RFE_Test_ROC predictor = LDA_RFE_Test$LDA_RFE_Predicted.Impaired,
levels = rev(levels(LDA_RFE_Test$LDA_RFE_Observed)))
<- auc(LDA_RFE_Test_ROC)[1]) (LDA_RFE_Test_ROCCurveAUC
## [1] 0.8530093
##################################
# Running the naive bayes model
# by setting the caret method to 'nb'
# with implementation of recursive feature elimination
##################################
$functions <- nbFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary
KFold_RFEControl
set.seed(12345678)
<- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
NB_RFE_Tune y = PMA_PreModelling_Train$Class,
sizes = VariableSubset,
metric = "ROC",
rfeControl = KFold_RFEControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
NB_RFE_Tune
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
## Resampling performance over subset size:
##
## Variables ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD
## 1 0.7191 0.2089 0.9439 0.7425 0.1842 0.08707 0.1539 0.04367
## 21 0.7682 0.6107 0.7521 0.7126 0.3373 0.10731 0.2147 0.13773
## 41 0.7474 0.6232 0.7621 0.7234 0.3630 0.11767 0.2137 0.14673
## 61 0.7524 0.6375 0.7624 0.7276 0.3760 0.10482 0.2146 0.14897
## 81 0.7438 0.6232 0.7521 0.7162 0.3498 0.10873 0.2241 0.14828
## 101 0.7434 0.6232 0.7626 0.7237 0.3605 0.10817 0.2241 0.13800
## 121 0.7444 0.5946 0.7574 0.7120 0.3257 0.11227 0.2192 0.11968
## 127 0.7390 0.5821 0.7518 0.7044 0.3064 0.11701 0.2433 0.12306
## AccuracySD KappaSD Selected
## 0.05824 0.1962
## 0.10835 0.2126 *
## 0.11474 0.2210
## 0.12326 0.2361
## 0.11875 0.2276
## 0.11294 0.2227
## 0.09692 0.2052
## 0.10320 0.2333
##
## The top 5 variables (out of 21):
## MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
$fit NB_RFE_Tune
## $apriori
## grouping
## Impaired Control
## 0.2734082 0.7265918
##
## $tables
## $tables$MMP10
## $tables$MMP10$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1366
##
## x y
## Min. :-5.343 Min. :0.0004474
## 1st Qu.:-4.457 1st Qu.:0.0326114
## Median :-3.570 Median :0.1316350
## Mean :-3.570 Mean :0.2814658
## 3rd Qu.:-2.684 3rd Qu.:0.4407209
## Max. :-1.798 Max. :1.1131115
##
## $tables$MMP10$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1146
##
## x y
## Min. :-5.011 Min. :0.0002376
## 1st Qu.:-4.313 1st Qu.:0.0639220
## Median :-3.615 Median :0.1883134
## Mean :-3.615 Mean :0.3575896
## 3rd Qu.:-2.918 3rd Qu.:0.7256202
## Max. :-2.220 Max. :0.9695254
##
##
## $tables$GRO_alpha
## $tables$GRO_alpha$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.01539
##
## x y
## Min. :1.263 Min. : 0.00406
## 1st Qu.:1.332 1st Qu.: 0.54230
## Median :1.402 Median : 2.71917
## Mean :1.402 Mean : 3.59086
## 3rd Qu.:1.471 3rd Qu.: 6.17618
## Max. :1.541 Max. :10.69562
##
## $tables$GRO_alpha$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.01113
##
## x y
## Min. :1.238 Min. : 0.002945
## 1st Qu.:1.300 1st Qu.: 0.969398
## Median :1.363 Median : 3.049909
## Mean :1.363 Mean : 3.994613
## 3rd Qu.:1.425 3rd Qu.: 7.200400
## Max. :1.488 Max. :10.071952
##
##
## $tables$TRAIL_R3
## $tables$TRAIL_R3$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.08757
##
## x y
## Min. :-1.1644 Min. :0.0006967
## 1st Qu.:-0.7402 1st Qu.:0.0605912
## Median :-0.3161 Median :0.3641310
## Mean :-0.3161 Mean :0.5882954
## 3rd Qu.: 0.1080 3rd Qu.:1.1507193
## Max. : 0.5321 Max. :1.6012376
##
## $tables$TRAIL_R3$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.071
##
## x y
## Min. :-1.42370 Min. :0.0003239
## 1st Qu.:-0.96810 1st Qu.:0.0299211
## Median :-0.51251 Median :0.2241354
## Mean :-0.51251 Mean :0.5476573
## 3rd Qu.:-0.05692 3rd Qu.:1.1322475
## Max. : 0.39867 Max. :1.6594882
##
##
## $tables$Fibrinogen
## $tables$Fibrinogen$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2039
##
## x y
## Min. :-9.352 Min. :0.0002994
## 1st Qu.:-8.340 1st Qu.:0.0297491
## Median :-7.327 Median :0.1176966
## Mean :-7.327 Mean :0.2464541
## 3rd Qu.:-6.315 3rd Qu.:0.4605718
## Max. :-5.303 Max. :0.7646276
##
## $tables$Fibrinogen$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1616
##
## x y
## Min. :-9.359 Min. :0.0001768
## 1st Qu.:-8.359 1st Qu.:0.0386225
## Median :-7.358 Median :0.1268076
## Mean :-7.358 Mean :0.2494747
## 3rd Qu.:-6.358 3rd Qu.:0.4809641
## Max. :-5.358 Max. :0.7047324
##
##
## $tables$PAI_1
## $tables$PAI_1$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1684
##
## x y
## Min. :-1.3796 Min. :0.0003683
## 1st Qu.:-0.6169 1st Qu.:0.0433878
## Median : 0.1458 Median :0.2047515
## Mean : 0.1458 Mean :0.3271269
## 3rd Qu.: 0.9085 3rd Qu.:0.6651820
## Max. : 1.6713 Max. :0.7845451
##
## $tables$PAI_1$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1155
##
## x y
## Min. :-1.337358 Min. :0.0002009
## 1st Qu.:-0.665516 1st Qu.:0.0465423
## Median : 0.006326 Median :0.2552360
## Mean : 0.006326 Mean :0.3713764
## 3rd Qu.: 0.678169 3rd Qu.:0.6258449
## Max. : 1.350011 Max. :1.0998865
##
##
## $tables$MMP7
## $tables$MMP7$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4298
##
## x y
## Min. :-7.8961 Min. :0.0001877
## 1st Qu.:-5.7017 1st Qu.:0.0296373
## Median :-3.5072 Median :0.0703373
## Mean :-3.5072 Mean :0.1136922
## 3rd Qu.:-1.3127 3rd Qu.:0.2118599
## Max. : 0.8818 Max. :0.3283795
##
## $tables$MMP7$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4545
##
## x y
## Min. :-9.761 Min. :5.049e-05
## 1st Qu.:-7.035 1st Qu.:7.595e-03
## Median :-4.310 Median :7.733e-02
## Mean :-4.310 Mean :9.155e-02
## 3rd Qu.:-1.584 3rd Qu.:1.513e-01
## Max. : 1.141 Max. :2.707e-01
##
##
## $tables$NT_proBNP
## $tables$NT_proBNP$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1278
##
## x y
## Min. :3.488 Min. :0.0004799
## 1st Qu.:4.183 1st Qu.:0.0472861
## Median :4.879 Median :0.1644620
## Mean :4.879 Mean :0.3587442
## 3rd Qu.:5.574 3rd Qu.:0.6206068
## Max. :6.270 Max. :1.2352851
##
## $tables$NT_proBNP$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09443
##
## x y
## Min. :2.895 Min. :0.0002446
## 1st Qu.:3.609 1st Qu.:0.0257804
## Median :4.323 Median :0.1530335
## Mean :4.323 Mean :0.3493812
## 3rd Qu.:5.037 3rd Qu.:0.5785926
## Max. :5.751 Max. :1.3532174
##
##
## $tables$MIF
## $tables$MIF$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1116
##
## x y
## Min. :-2.7318 Min. :0.0005472
## 1st Qu.:-2.1761 1st Qu.:0.0505520
## Median :-1.6204 Median :0.1858068
## Mean :-1.6204 Mean :0.4490134
## 3rd Qu.:-1.0648 3rd Qu.:0.9965195
## Max. :-0.5091 Max. :1.1763069
##
## $tables$MIF$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09496
##
## x y
## Min. :-3.1322 Min. :0.0002408
## 1st Qu.:-2.5133 1st Qu.:0.0326868
## Median :-1.8945 Median :0.2730891
## Mean :-1.8945 Mean :0.4031727
## 3rd Qu.:-1.2756 3rd Qu.:0.7351494
## Max. :-0.6567 Max. :1.2561687
##
##
## $tables$Pancreatic_polypeptide
## $tables$Pancreatic_polypeptide$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2937
##
## x y
## Min. :-2.1541 Min. :0.0004183
## 1st Qu.:-0.9124 1st Qu.:0.0345638
## Median : 0.3293 Median :0.1788613
## Mean : 0.3293 Mean :0.2009313
## 3rd Qu.: 1.5710 3rd Qu.:0.3209413
## Max. : 2.8126 Max. :0.5212213
##
## $tables$Pancreatic_polypeptide$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.2106
##
## x y
## Min. :-2.7520 Min. :0.0001181
## 1st Qu.:-1.4939 1st Qu.:0.0177924
## Median :-0.2358 Median :0.1181308
## Mean :-0.2358 Mean :0.1983245
## 3rd Qu.: 1.0223 3rd Qu.:0.3748847
## Max. : 2.2803 Max. :0.5971506
##
##
## $tables$FAS
## $tables$FAS$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.112
##
## x y
## Min. :-1.3860 Min. :0.0005482
## 1st Qu.:-0.8713 1st Qu.:0.0744882
## Median :-0.3567 Median :0.4050701
## Mean :-0.3567 Mean :0.4847868
## 3rd Qu.: 0.1580 3rd Qu.:0.8069833
## Max. : 0.6726 Max. :1.3560508
##
## $tables$FAS$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.08631
##
## x y
## Min. :-1.7731 Min. :0.0002668
## 1st Qu.:-1.2412 1st Qu.:0.0228707
## Median :-0.7094 Median :0.3094483
## Mean :-0.7094 Mean :0.4691546
## 3rd Qu.:-0.1776 3rd Qu.:0.8467171
## Max. : 0.3542 Max. :1.4115039
##
##
## $tables$Eotaxin_3
## $tables$Eotaxin_3$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 4.556
##
## x y
## Min. : 9.332 Min. :1.337e-05
## 1st Qu.: 37.166 1st Qu.:1.129e-03
## Median : 65.000 Median :5.511e-03
## Mean : 65.000 Mean :8.964e-03
## 3rd Qu.: 92.834 3rd Qu.:1.491e-02
## Max. :120.668 Max. :2.988e-02
##
## $tables$Eotaxin_3$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 4.684
##
## x y
## Min. : -7.052 Min. :4.901e-06
## 1st Qu.: 22.224 1st Qu.:4.092e-04
## Median : 51.500 Median :4.572e-03
## Mean : 51.500 Mean :8.523e-03
## 3rd Qu.: 80.776 3rd Qu.:1.856e-02
## Max. :110.052 Max. :2.364e-02
##
##
## $tables$Gamma_Interferon_induced_Monokin
## $tables$Gamma_Interferon_induced_Monokin$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.03894
##
## x y
## Min. :2.497 Min. :0.00164
## 1st Qu.:2.669 1st Qu.:0.17739
## Median :2.840 Median :1.25904
## Mean :2.840 Mean :1.45720
## 3rd Qu.:3.011 3rd Qu.:2.70076
## Max. :3.182 Max. :3.51052
##
## $tables$Gamma_Interferon_induced_Monokin$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.03562
##
## x y
## Min. :2.286 Min. :0.000645
## 1st Qu.:2.496 1st Qu.:0.054709
## Median :2.707 Median :0.799942
## Mean :2.707 Mean :1.187958
## 3rd Qu.:2.917 3rd Qu.:2.388599
## Max. :3.127 Max. :3.377959
##
##
## $tables$Thymus_Expressed_Chemokine_TECK
## $tables$Thymus_Expressed_Chemokine_TECK$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.2555
##
## x y
## Min. :1.170 Min. :0.000239
## 1st Qu.:2.625 1st Qu.:0.017862
## Median :4.081 Median :0.079276
## Mean :4.081 Mean :0.171420
## 3rd Qu.:5.536 3rd Qu.:0.310995
## Max. :6.992 Max. :0.559876
##
## $tables$Thymus_Expressed_Chemokine_TECK$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1889
##
## x y
## Min. :0.9418 Min. :0.0001233
## 1st Qu.:2.4043 1st Qu.:0.0171002
## Median :3.8669 Median :0.0722106
## Mean :3.8669 Mean :0.1705975
## 3rd Qu.:5.3294 3rd Qu.:0.2912266
## Max. :6.7920 Max. :0.5967206
##
##
## $tables$TNF_RII
## $tables$TNF_RII$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.1287
##
## x y
## Min. :-1.7724 Min. :0.0004729
## 1st Qu.:-1.1153 1st Qu.:0.0399146
## Median :-0.4581 Median :0.1767396
## Mean :-0.4581 Mean :0.3796843
## 3rd Qu.: 0.1990 3rd Qu.:0.7846294
## Max. : 0.8561 Max. :1.0878833
##
## $tables$TNF_RII$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.09976
##
## x y
## Min. :-1.96002 Min. :0.0002298
## 1st Qu.:-1.31108 1st Qu.:0.0216834
## Median :-0.66213 Median :0.1367883
## Mean :-0.66213 Mean :0.3844817
## 3rd Qu.:-0.01318 3rd Qu.:0.7880589
## Max. : 0.63577 Max. :1.1788242
##
##
## $tables$Alpha_1_Antitrypsin
## $tables$Alpha_1_Antitrypsin$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.4782
##
## x y
## Min. :-17.980 Min. :0.0001293
## 1st Qu.:-15.174 1st Qu.:0.0145127
## Median :-12.369 Median :0.0298018
## Mean :-12.369 Mean :0.0889250
## 3rd Qu.: -9.563 3rd Qu.:0.1573948
## Max. : -6.757 Max. :0.2894396
##
## $tables$Alpha_1_Antitrypsin$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.4461
##
## x y
## Min. :-18.367 Min. :5.246e-05
## 1st Qu.:-15.545 1st Qu.:6.361e-03
## Median :-12.723 Median :4.263e-02
## Mean :-12.723 Mean :8.842e-02
## 3rd Qu.: -9.901 3rd Qu.:1.639e-01
## Max. : -7.079 Max. :2.904e-01
##
##
## $tables$IGF_BP_2
## $tables$IGF_BP_2$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.08533
##
## x y
## Min. :4.407 Min. :0.0007146
## 1st Qu.:4.857 1st Qu.:0.0626516
## Median :5.306 Median :0.1648390
## Mean :5.306 Mean :0.5555022
## 3rd Qu.:5.755 3rd Qu.:1.1485396
## Max. :6.204 Max. :1.6617362
##
## $tables$IGF_BP_2$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.05889
##
## x y
## Min. :4.458 Min. :0.0004143
## 1st Qu.:4.833 1st Qu.:0.0413745
## Median :5.208 Median :0.3285500
## Mean :5.208 Mean :0.6656293
## 3rd Qu.:5.583 3rd Qu.:1.2894544
## Max. :5.957 Max. :1.9852384
##
##
## $tables$Creatine_Kinase_MB
## $tables$Creatine_Kinase_MB$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.02774
##
## x y
## Min. :-1.955 Min. :0.002195
## 1st Qu.:-1.810 1st Qu.:0.178288
## Median :-1.666 Median :0.807714
## Mean :-1.666 Mean :1.724376
## 3rd Qu.:-1.521 3rd Qu.:3.478317
## Max. :-1.376 Max. :5.171466
##
## $tables$Creatine_Kinase_MB$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.02971
##
## x y
## Min. :-1.961 Min. :0.000774
## 1st Qu.:-1.794 1st Qu.:0.209347
## Median :-1.628 Median :0.920239
## Mean :-1.628 Mean :1.497037
## 3rd Qu.:-1.461 3rd Qu.:2.710941
## Max. :-1.294 Max. :4.648178
##
##
## $tables$MCP_2
## $tables$MCP_2$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.258
##
## x y
## Min. :-0.3735 Min. :0.0002363
## 1st Qu.: 0.9194 1st Qu.:0.0270400
## Median : 2.2122 Median :0.0879011
## Mean : 2.2122 Mean :0.1929878
## 3rd Qu.: 3.5050 3rd Qu.:0.3588776
## Max. : 4.7978 Max. :0.6183413
##
## $tables$MCP_2$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1411
##
## x y
## Min. :-0.02269 Min. :0.0001634
## 1st Qu.: 1.09474 1st Qu.:0.0145562
## Median : 2.21217 Median :0.1157047
## Mean : 2.21217 Mean :0.2232678
## 3rd Qu.: 3.32960 3rd Qu.:0.3212348
## Max. : 4.44703 Max. :0.8582897
##
##
## $tables$Resistin
## $tables$Resistin$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 2.203
##
## x y
## Min. :-41.576 Min. :2.761e-05
## 1st Qu.:-30.090 1st Qu.:2.149e-03
## Median :-18.603 Median :1.134e-02
## Mean :-18.603 Mean :2.172e-02
## 3rd Qu.: -7.116 3rd Qu.:4.033e-02
## Max. : 4.370 Max. :7.083e-02
##
## $tables$Resistin$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 1.737
##
## x y
## Min. :-37.350 Min. :1.384e-05
## 1st Qu.:-27.539 1st Qu.:2.849e-03
## Median :-17.728 Median :1.740e-02
## Mean :-17.728 Mean :2.543e-02
## 3rd Qu.: -7.917 3rd Qu.:4.768e-02
## Max. : 1.895 Max. :6.878e-02
##
##
## $tables$Cortisol
## $tables$Cortisol$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 1.139
##
## x y
## Min. : 0.5829 Min. :5.413e-05
## 1st Qu.: 8.5415 1st Qu.:3.530e-03
## Median :16.5000 Median :9.513e-03
## Mean :16.5000 Mean :3.135e-02
## 3rd Qu.:24.4585 3rd Qu.:4.559e-02
## Max. :32.4171 Max. :1.342e-01
##
## $tables$Cortisol$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 1.095
##
## x y
## Min. :-3.185 Min. :6.292e-05
## 1st Qu.: 3.933 1st Qu.:5.135e-03
## Median :11.050 Median :1.130e-02
## Mean :11.050 Mean :3.506e-02
## 3rd Qu.:18.167 3rd Qu.:6.465e-02
## Max. :25.285 Max. :1.183e-01
##
##
## $tables$E4
## $tables$E4$Impaired
##
## Call:
## density.default(x = xx)
##
## Data: xx (73 obs.); Bandwidth 'bw' = 0.189
##
## x y
## Min. :0.4329 Min. :0.00965
## 1st Qu.:0.9664 1st Qu.:0.11395
## Median :1.5000 Median :0.37933
## Mean :1.5000 Mean :0.46703
## 3rd Qu.:2.0336 3rd Qu.:0.78142
## Max. :2.5671 Max. :1.24269
##
## $tables$E4$Control
##
## Call:
## density.default(x = xx)
##
## Data: xx (194 obs.); Bandwidth 'bw' = 0.1479
##
## x y
## Min. :0.5562 Min. :0.008364
## 1st Qu.:1.0281 1st Qu.:0.071217
## Median :1.5000 Median :0.345225
## Mean :1.5000 Mean :0.528053
## 3rd Qu.:1.9719 3rd Qu.:0.833414
## Max. :2.4438 Max. :1.806542
##
##
##
## $levels
## [1] "Impaired" "Control"
##
## $call
## NaiveBayes.default(x = x, grouping = y, usekernel = TRUE, fL = 2)
##
## $x
## MMP10 GRO_alpha TRAIL_R3 Fibrinogen PAI_1 MMP7 NT_proBNP
## 1 -3.270169 1.381830 -0.18290044 -7.035589 1.00350156 -3.7735027 4.553877
## 2 -3.649659 1.372438 -0.50074709 -8.047190 -0.03059880 -5.9681907 4.219508
## 3 -2.733368 1.412679 -0.92403445 -7.195437 0.43837211 -4.0302269 4.248495
## 5 -2.617296 1.398431 -0.85825911 -6.980326 0.25230466 -0.2222222 4.465908
## 6 -3.324236 1.398431 -0.73800921 -6.437752 0.43837211 -1.9223227 4.189655
## 7 -4.135167 1.338425 -0.62997381 -7.621105 0.00000000 -5.9681907 4.330733
## 8 -3.688879 1.350892 -0.56347899 -6.502290 0.49054798 -2.4721360 3.828641
## 9 -4.017384 1.381830 -0.75712204 -7.902008 -0.47754210 -5.8446454 5.043425
## 11 -3.963316 1.412679 -0.37116408 -7.523941 0.25230466 -3.7735027 4.875197
## 12 -3.244194 1.398431 -0.68264012 -7.278819 0.25230466 -3.0000000 4.727388
## 14 -3.575551 1.440955 -0.54746226 -6.991137 0.32004747 -1.3806170 4.691348
## 16 -3.123566 1.412679 -0.48559774 -7.222466 0.49054798 -4.0302269 5.323010
## 17 -3.411248 1.419083 0.00000000 -6.319969 0.32004747 -2.8507125 4.595120
## 18 -3.963316 1.324552 -0.75712204 -7.402052 0.32004747 -1.2879797 3.931826
## 19 -4.074542 1.405814 -0.41274719 -6.959049 0.53887915 -3.3452248 4.290459
## 20 -2.563950 1.430692 -0.85825911 -5.843045 0.85893499 -0.6037782 3.784190
## 21 -3.324236 1.398431 0.26936976 -7.182192 -0.65480247 -3.3452248 5.262690
## 22 -3.611918 1.405814 -0.20634242 -7.385791 -0.15428707 -4.0302269 4.828314
## 23 -4.135167 1.338425 -0.56347899 -7.641724 -0.04107298 -6.3770782 3.663562
## 24 -3.381395 1.372438 -0.25465110 -7.600902 -0.21752413 -4.3245553 4.709530
## 25 -3.506558 1.308996 -0.70078093 -7.435388 -0.72247798 -4.0302269 4.672829
## 26 -3.381395 1.381830 -0.37116408 -7.452482 0.09396047 -3.5470020 4.499810
## 28 -3.381395 1.350892 -0.70078093 -7.323271 -0.05168998 -4.0302269 4.465908
## 29 -3.772261 1.338425 -0.83723396 -7.875339 -0.87443088 -2.2640143 3.931826
## 30 -3.863233 1.398431 -0.94693458 -7.875339 -0.14221210 -3.7735027 4.317488
## 31 -3.244194 1.381830 -0.62997381 -6.645391 0.09396047 -3.3452248 4.828314
## 34 -3.270169 1.458333 -0.13734056 -6.969631 0.58384004 -2.8507125 4.770685
## 35 -3.506558 1.362172 -0.64724718 -7.236259 0.00000000 -2.5883147 4.605170
## 36 -3.218876 1.445658 -0.68264012 -6.571283 0.00000000 -0.7216553 4.718499
## 37 -3.218876 1.398431 -0.34425042 -7.505592 0.09396047 -3.7735027 4.595120
## 38 -3.270169 1.398431 -0.56347899 -7.561682 0.25230466 -4.7040152 4.605170
## 39 -4.074542 1.291400 -0.57973042 -8.111728 0.09396047 -4.5938047 4.262680
## 40 -3.912023 1.430692 -0.47064906 -7.824046 0.32004747 -1.6514837 4.499810
## 41 -3.270169 1.398431 -0.47064906 -6.377127 0.25230466 -3.7735027 4.983607
## 42 -3.816713 1.398431 -0.73800921 -7.487574 -0.11859478 -4.3245553 4.700480
## 43 -3.218876 1.362172 -0.48559774 -7.143478 -0.28605071 -3.1639778 4.304065
## 44 -3.123566 1.362172 -0.64724718 -6.812445 0.62582535 -4.4888568 4.736198
## 45 -2.764621 1.425073 -0.21823750 -6.571283 0.17742506 -2.1702883 4.634729
## 46 -3.270169 1.372438 -0.57973042 -8.180721 0.17742506 -1.1622777 4.499810
## 47 -3.649659 1.405814 -0.64724718 -7.505592 -0.11859478 -2.8507125 4.976734
## 48 -3.816713 1.405814 -0.13734056 -8.111728 0.49054798 -4.0302269 4.919981
## 50 -2.645075 1.435976 0.00000000 -7.354042 0.17742506 -3.5470020 5.129899
## 51 -4.074542 1.338425 -0.73800921 -7.278819 -0.40885871 -4.6666667 4.795791
## 53 -3.411248 1.390462 -0.53167272 -6.907755 0.09396047 -3.7735027 4.127134
## 55 -3.540459 1.372438 -0.47064906 -7.641724 0.09396047 -6.6874449 4.127134
## 56 -3.729701 1.390462 -0.37116408 -7.208860 0.17742506 -4.3245553 5.062595
## 57 -3.442019 1.338425 -0.27956244 -7.264430 0.49054798 -2.8507125 4.574711
## 59 -3.772261 1.430692 -0.56347899 -7.082109 1.10005082 -3.0000000 5.036953
## 60 -4.074542 1.381830 -0.53167272 -6.812445 -0.27188464 -4.3887656 4.736198
## 61 -4.017384 1.362172 -0.79641472 -7.013116 -0.25795574 -3.5470020 4.488636
## 62 -4.422849 1.324552 -1.09654116 -7.662778 -0.55204550 -6.7705802 4.574711
## 63 -3.688879 1.390462 -0.33102365 -7.250246 -0.01006550 -3.7735027 4.948760
## 64 -3.101093 1.430692 -0.44133043 -7.195437 0.76993928 -1.0151134 5.181784
## 65 -3.649659 1.372438 -0.68264012 -8.254829 0.09396047 -4.0302269 4.143135
## 67 -3.772261 1.390462 -0.56347899 -7.523941 -0.16654597 -6.3045480 4.859812
## 68 -3.540459 1.308996 -0.31794508 -7.278819 -0.04107298 -4.3245553 3.610918
## 69 -4.342806 1.308996 -1.09654116 -7.957577 -0.11859478 -5.7849894 4.304065
## 70 -3.324236 1.381830 -0.39871863 -7.957577 0.17742506 -3.3452248 5.003946
## 71 -4.135167 1.350892 -0.61296931 -7.505592 0.73700033 -4.0302269 4.605170
## 72 -3.506558 1.372438 -0.21823750 -6.505132 0.09396047 -4.0302269 4.634729
## 73 -3.324236 1.338425 -0.30501103 -7.354042 0.58384004 -5.2074997 4.795791
## 74 -2.995732 1.362172 -0.90163769 -7.143478 0.49054798 -2.0000000 4.406719
## 75 -3.015935 1.430692 -0.77658561 -6.437752 0.58384004 -2.4721360 4.820282
## 76 -2.577022 1.430692 -0.30501103 -7.130899 0.73700033 -2.7140452 4.770685
## 77 -3.473768 1.462144 -0.31794508 -6.319969 0.76993928 -4.5582584 4.727388
## 78 -3.036554 1.445658 -0.10425819 -6.502290 0.83076041 -3.1639778 4.990433
## 80 -3.411248 1.338425 -0.47064906 -6.917806 0.17742506 -2.3643578 4.770685
## 81 -3.540459 1.419083 -0.62997381 -7.902008 -0.14221210 -3.7735027 4.859812
## 82 -3.473768 1.350892 -0.68264012 -7.338538 0.17742506 -4.0302269 4.406719
## 83 -3.411248 1.372438 -0.44133043 -8.804875 -0.16654597 -3.5470020 4.595120
## 84 -3.575551 1.435976 -0.54746226 -7.250246 0.32004747 -3.3452248 4.543295
## 85 -3.688879 1.362172 -0.37116408 -7.182192 0.43837211 -3.7735027 5.468060
## 86 -3.123566 1.435976 -0.30501103 -6.214608 0.25230466 -2.7140452 5.117994
## 88 -3.270169 1.430692 -0.17134851 -6.917806 0.38177502 -3.1639778 4.727388
## 90 -4.509860 1.350892 -0.81662520 -8.873868 -0.63330256 -8.3975049 3.178054
## 93 -3.688879 1.372438 -0.44133043 -6.959049 0.38177502 -3.5470020 4.317488
## 94 -2.645075 1.475713 0.00000000 -6.502290 0.80114069 -1.4299717 5.886104
## 95 -3.688879 1.405814 -0.54746226 -7.469874 0.17742506 -2.7140452 4.762174
## 96 -3.816713 1.381830 -0.54746226 -7.986565 -0.23078200 -3.3452248 4.521789
## 97 -3.649659 1.381830 -0.71923319 -7.875339 -0.05168998 -4.5938047 4.543295
## 98 -4.342806 1.324552 -0.92403445 -8.468403 -0.51401261 -7.3250481 4.477337
## 99 -3.963316 1.405814 -0.57973042 -6.812445 0.62582535 -3.5935279 4.290459
## 100 -3.649659 1.362172 -0.48559774 -7.751725 0.25230466 -5.1611487 4.634729
## 103 -2.995732 1.405814 -0.38485910 -7.799353 0.43837211 -3.2335542 4.663439
## 104 -3.963316 1.372438 -0.45589516 -7.323271 -0.17899381 -4.8199434 4.430817
## 105 -3.863233 1.372438 -0.75712204 -7.706263 -0.27188464 -5.5592895 4.454347
## 107 -3.575551 1.398431 -0.47064906 -7.208860 0.00000000 -1.3806170 4.369448
## 108 -3.912023 1.338425 -0.61296931 -7.070274 0.09396047 -1.9223227 4.682131
## 109 -4.667046 1.350892 -1.21070858 -8.517193 -0.24425708 -7.5346259 4.465908
## 110 -3.963316 1.435976 -0.75712204 -8.334872 -0.06245326 -4.3245553 4.043051
## 111 -3.575551 1.350892 -0.75712204 -7.293418 -0.47754210 -1.2879797 4.110874
## 112 -2.631089 1.425073 -0.27956244 -6.214608 0.17742506 -3.3452248 5.323010
## 113 -2.995732 1.390462 -0.42694948 -5.991465 0.70214496 -2.3643578 4.787492
## 114 -4.199705 1.381830 -0.83723396 -7.035589 -0.24425708 -5.1156807 4.543295
## 115 -3.381395 1.450108 -0.42694948 -6.437752 -0.13031621 -2.2640143 4.700480
## 117 -3.575551 1.398431 -0.42694948 -7.452482 0.38177502 -4.3564173 4.812184
## 118 -2.207275 1.435976 -0.42694948 -7.452482 0.83076041 -2.3643578 4.700480
## 121 -3.575551 1.398431 -0.13734056 -7.250246 0.53887915 -0.4253563 5.062595
## 123 -4.199705 1.350892 -0.99435191 -8.334872 -0.42552800 -2.0000000 4.304065
## 124 -3.863233 1.338425 -0.20634242 -7.182192 0.00000000 -3.1639778 4.875197
## 126 -4.268698 1.381830 -0.38485910 -7.195437 -0.19163579 -4.8199434 4.912655
## 128 -3.272534 1.454327 -0.27956244 -6.725434 0.95939061 -1.2025631 4.962845
## 129 -4.017384 1.338425 -0.70078093 -7.600902 -0.57168558 -5.9056942 4.624973
## 130 -4.017384 1.372438 -0.39871863 -6.571283 0.25230466 -3.7735027 5.159055
## 131 -3.863233 1.372438 -0.87972006 -7.418581 -0.34523643 -5.0710678 4.025352
## 132 -3.506558 1.362172 -0.62997381 -7.143478 -0.08443323 -4.0302269 4.442651
## 133 -3.912023 1.271288 -0.92403445 -5.914504 0.09396047 -2.4721360 4.672829
## 134 -2.813411 1.398431 -0.31794508 -6.812445 0.43837211 -0.5000000 4.727388
## 135 -4.017384 1.308996 -0.53167272 -7.250246 0.00000000 -4.3245553 4.584967
## 136 -3.575551 1.412679 -0.38485910 -6.907755 0.43837211 -2.4721360 4.727388
## 137 -3.963316 1.381830 -1.04412698 -7.902008 -0.01006550 -4.6299354 4.488636
## 139 -3.442019 1.338425 -0.47064906 -7.662778 -0.59176325 -3.3452248 4.543295
## 140 -3.729701 1.398431 -0.48559774 -7.250246 0.00000000 -4.0302269 4.406719
## 141 -4.074542 1.419083 -0.34425042 -6.437752 0.25230466 -3.1639778 4.820282
## 143 -3.688879 1.350892 -0.61296931 -7.561682 0.00000000 -3.5470020 4.574711
## 144 -3.912023 1.372438 -0.64724718 -7.070274 0.49054798 -3.7735027 4.276666
## 145 -4.074542 1.350892 -0.39871863 -8.180721 -0.63330256 -5.0272837 4.276666
## 146 -2.975930 1.381830 -0.53167272 -6.725434 0.43837211 -2.1702883 4.406719
## 147 -3.270169 1.412679 -0.47064906 -7.024289 0.43837211 -3.7735027 4.634729
## 148 -3.411248 1.425073 -0.94693458 -6.907755 0.09396047 -1.7139068 4.543295
## 149 -3.688879 1.381830 -0.97036428 -7.875339 -0.27188464 -1.7139068 4.290459
## 152 -3.244194 1.494568 -0.18290044 -6.571283 0.88578467 -2.0824829 4.682131
## 153 -3.473768 1.372438 -0.41274719 -8.111728 0.00000000 -3.5470020 4.672829
## 154 -4.422849 1.308996 -0.85825911 -7.542634 -0.36070366 -5.9681907 3.806662
## 155 -3.963316 1.372438 -0.75712204 -7.986565 -0.24425708 -5.2547625 4.442651
## 156 -3.506558 1.390462 -0.61296931 -6.991137 0.43837211 -1.1622777 4.369448
## 157 -3.912023 1.324552 -0.42694948 -7.957577 1.00350156 -3.1639778 4.770685
## 158 -3.575551 1.350892 -0.81662520 -7.799353 -0.51401261 -5.1611487 3.828641
## 159 -4.074542 1.450108 -0.75712204 -6.917806 0.17742506 -4.3245553 4.859812
## 160 -3.540459 1.350892 -0.59622443 -7.452482 -0.07336643 -4.5582584 4.454347
## 161 -3.963316 1.419083 -0.30501103 -7.706263 -0.69936731 -5.0710678 5.081404
## 162 -4.074542 1.405814 -0.42694948 -7.751725 -0.07336643 -3.7735027 4.406719
## 163 -4.509860 1.390462 -0.75712204 -7.561682 -0.57168558 -6.6874449 4.262680
## 165 -3.473768 1.390462 -0.44133043 -7.402052 0.25230466 -3.5470020 4.499810
## 166 -4.074542 1.350892 -0.79641472 -7.728736 -0.31512364 -5.4023321 4.624973
## 167 -2.864704 1.372438 -0.30501103 -7.875339 -0.42552800 -1.5921060 4.605170
## 168 -3.772261 1.350892 -0.62997381 -7.418581 -0.42552800 -0.9814240 4.025352
## 169 -4.342806 1.324552 -0.51610326 -7.182192 0.00000000 -2.0000000 4.465908
## 170 -4.933674 1.372438 -0.47064906 -7.013116 -0.10704332 -2.0000000 4.499810
## 171 -3.270169 1.381830 -0.38485910 -7.323271 -0.45985790 -4.9421013 4.948760
## 172 -4.074542 1.381830 -0.62997381 -7.323271 -0.65480247 -5.2074997 4.510860
## 174 -3.101093 1.412679 -0.51610326 -8.421883 0.17742506 -1.5921060 4.595120
## 175 -2.343407 1.435976 -0.31794508 -5.914504 0.58384004 -2.5883147 4.584967
## 176 -3.912023 1.419083 -0.56347899 -8.873868 0.32004747 -5.0710678 5.003946
## 177 -3.473768 1.338425 -0.68264012 -8.016418 0.25230466 -4.7419986 4.770685
## 178 -3.688879 1.412679 -0.51610326 -7.799353 -0.82104815 -4.0302269 4.682131
## 179 -2.659260 1.398431 -0.54746226 -7.323271 -0.01006550 -2.1884251 4.983607
## 180 -3.649659 1.398431 -0.21823750 -7.369791 -0.10704332 -2.0000000 4.727388
## 181 -4.135167 1.291400 -0.97036428 -8.254829 0.17742506 -5.5592895 4.382027
## 182 -3.912023 1.324552 -0.61296931 -7.435388 0.49054798 -5.0710678 4.553877
## 183 -3.611918 1.372438 -0.68264012 -6.645391 0.17742506 -3.7735027 4.406719
## 184 -3.473768 1.372438 -0.37116408 -7.561682 0.38177502 -5.4023321 4.653960
## 185 -3.324236 1.435976 -0.15990607 -6.812445 0.49054798 -4.4549722 4.948760
## 186 -3.688879 1.308996 -0.30501103 -7.208860 -0.08443323 -5.0272837 4.304065
## 189 -3.772261 1.338425 -0.68264012 -7.487574 0.09396047 -6.0321933 4.672829
## 190 -3.912023 1.291400 -0.47064906 -7.293418 0.32004747 -4.0302269 4.174387
## 191 -3.101093 1.308996 -0.68264012 -7.338538 -0.63330256 -6.8561489 4.700480
## 192 -3.473768 1.425073 -0.38485910 -7.684284 0.25230466 -4.3245553 4.382027
## 193 -3.473768 1.405814 -0.47064906 -7.278819 1.00350156 -3.5470020 5.283204
## 194 -3.688879 1.308996 -0.70078093 -7.469874 0.17742506 -2.8507125 4.787492
## 195 -3.473768 1.412679 -0.47064906 -7.523941 0.43837211 -1.1234752 4.488636
## 197 -3.575551 1.405814 -0.06149412 -7.118476 -0.25795574 -2.2640143 5.204007
## 198 -4.135167 1.350892 -0.79641472 -7.418581 -0.82104815 -5.5058663 4.077537
## 200 -3.575551 1.372438 -0.79641472 -7.662778 0.00000000 -4.0302269 4.812184
## 201 -3.540459 1.381830 -0.38485910 -7.561682 -0.06245326 -3.3452248 4.204693
## 202 -4.074542 1.308996 -0.79641472 -8.294050 -0.49558921 -6.6066297 4.204693
## 205 -3.411248 1.390462 -0.59622443 -7.487574 0.32004747 -2.0000000 4.369448
## 208 -3.816713 1.291400 -0.62997381 -6.948577 -0.27188464 -5.0710678 4.382027
## 210 -3.170086 1.398431 -0.21823750 -7.106206 0.53887915 -3.0000000 5.241747
## 212 -4.342806 1.390462 -0.71923319 -7.621105 -0.20447735 -4.0302269 4.644391
## 213 -3.101093 1.405814 -0.41274719 -6.812445 -0.08443323 -3.0000000 4.836282
## 214 -3.218876 1.462144 -0.71923319 -7.013116 1.16610855 -3.3452248 4.304065
## 215 -3.912023 1.324552 -0.68264012 -7.824046 -0.39250510 -1.6514837 4.430817
## 216 -3.473768 1.425073 -0.38485910 -6.119298 0.25230466 -4.4549722 3.663562
## 218 -3.381395 1.398431 -0.51610326 -6.571283 0.66516665 -2.2640143 4.204693
## 219 -4.199705 1.412679 -0.68264012 -7.684284 -0.15428707 -5.1611487 4.787492
## 220 -3.816713 1.390462 -0.71923319 -7.849364 -0.65480247 -5.8446454 4.897840
## 223 -3.575551 1.338425 -0.62997381 -6.917806 -0.51401261 -3.3452248 4.828314
## 224 -3.912023 1.308996 -0.70078093 -7.264430 0.00000000 -5.8446454 4.304065
## 225 -4.135167 1.372438 -0.34425042 -7.418581 0.17742506 -5.5058663 4.394449
## 226 -3.575551 1.398431 -0.41274719 -7.024289 0.43837211 -3.0000000 4.442651
## 227 -3.649659 1.398431 -0.50074709 -6.214608 0.00000000 -3.0000000 4.077537
## 228 -3.963316 1.362172 -0.71923319 -7.070274 -0.63330256 -1.4299717 4.553877
## 229 -3.270169 1.381830 -0.57973042 -7.621105 -0.21752413 -0.4077171 4.248495
## 230 -3.123566 1.390462 -0.42694948 -7.293418 0.43837211 -2.7140452 4.691348
## 231 -3.912023 1.381830 -0.51610326 -6.907755 0.00000000 -4.4888568 4.595120
## 232 -4.135167 1.362172 -0.42694948 -7.143478 0.00000000 -5.3521462 4.143135
## 233 -3.688879 1.398431 -0.90163769 -7.469874 -0.24425708 -5.3029674 4.043051
## 234 -3.352407 1.271288 -0.56347899 -7.250246 -0.61229604 -3.3452248 4.521789
## 236 -3.575551 1.324552 -0.56347899 -7.621105 -0.65480247 -4.0302269 4.382027
## 237 -3.688879 1.390462 -0.51610326 -7.182192 -0.09565753 -4.0302269 4.574711
## 239 -4.199705 1.271288 -0.77658561 -8.217089 0.09396047 -4.0302269 4.394449
## 240 -4.017384 1.324552 -0.83723396 -8.145630 -0.42552800 -4.0302269 4.442651
## 241 -3.611918 1.338425 -0.54746226 -8.047190 0.00000000 -3.7735027 4.859812
## 242 -3.506558 1.372438 -0.35762924 -7.600902 0.25230466 -1.7796447 3.828641
## 243 -3.772261 1.362172 -0.75712204 -6.938214 0.49054798 -4.6299354 5.075174
## 244 -3.079114 1.435976 -0.41274719 -7.799353 0.85893499 -3.7735027 5.225747
## 245 -4.342806 1.390462 -0.77658561 -8.740337 -0.16654597 -6.4515425 3.871201
## 246 -3.324236 1.362172 -0.41274719 -7.208860 0.25230466 -2.7140452 4.510860
## 247 -3.863233 1.398431 -0.70078093 -8.180721 -0.57168558 -4.7806350 4.553877
## 249 -3.863233 1.398431 -0.15990607 -7.581100 0.00000000 -5.4023321 4.820282
## 250 -3.611918 1.381830 -0.50074709 -7.600902 0.09396047 -4.5582584 4.234107
## 251 -4.017384 1.362172 -0.68264012 -7.775256 -0.55204550 -4.6299354 4.553877
## 253 -3.863233 1.405814 -0.42694948 -6.502290 0.58384004 -2.7140452 4.962845
## 254 -3.036554 1.398431 0.18568645 -7.250246 0.09396047 -2.3643578 5.411646
## 255 -3.270169 1.405814 0.00000000 -8.740337 0.09396047 -2.2640143 4.875197
## 256 -4.342806 1.324552 -0.64724718 -8.334872 -0.59176325 -6.3770782 4.859812
## 257 -3.863233 1.362172 -0.64724718 -7.775256 -0.37645673 -5.7266741 4.543295
## 258 -3.270169 1.390462 -0.34425042 -6.948577 0.09396047 -3.1639778 4.553877
## 260 -3.611918 1.440955 -0.41274719 -6.938214 0.09396047 -6.6066297 4.204693
## 261 -4.342806 1.398431 -0.71923319 -8.111728 -0.07336643 -7.1287093 4.406719
## 262 -4.422849 1.390462 -0.90163769 -7.308233 -0.53282641 -5.7266741 4.077537
## 263 -3.772261 1.372438 -0.47064906 -7.561682 -0.15428707 -1.2879797 3.871201
## 264 -3.442019 1.350892 -0.06149412 -6.502290 0.17742506 -2.0824829 5.707110
## 265 -3.863233 1.350892 -0.81662520 -7.775256 0.09396047 -6.0977633 3.433987
## 267 -3.816713 1.390462 -0.18290044 -7.047017 0.66516665 -2.0000000 4.882802
## 268 -3.296837 1.362172 -0.44133043 -7.600902 -0.47754210 -3.5470020 4.465908
## 269 -4.342806 1.324552 -0.34425042 -7.875339 -0.99084860 -5.5058663 4.624973
## 270 -4.135167 1.440955 -0.41274719 -7.662778 -0.07336643 -1.8490018 4.025352
## 271 -3.352407 1.398431 -0.20634242 -6.959049 -0.02026405 -2.2640143 4.488636
## 272 -4.605170 1.350892 -0.53167272 -7.824046 -0.10704332 -4.4216130 4.564348
## 273 -3.506558 1.350892 -0.38485910 -7.222466 0.32004747 -3.0000000 4.043051
## 274 -3.963316 1.398431 -0.38485910 -7.505592 -0.03059880 -5.6696499 3.970292
## 275 -3.540459 1.338425 -0.85825911 -8.047190 0.17742506 -4.0302269 4.442651
## 277 -3.611918 1.405814 -0.48559774 -6.725434 0.53887915 -1.7139068 4.143135
## 278 -3.772261 1.324552 -0.53167272 -6.725434 -0.10704332 -3.1639778 4.663439
## 279 -4.017384 1.381830 -0.57973042 -7.706263 -0.13031621 -3.1639778 4.753590
## 281 -3.170086 1.398431 -0.21823750 -6.571283 0.70214496 -3.3452248 4.276666
## 282 -3.194183 1.419083 -0.73800921 -8.740337 0.38177502 -3.7735027 3.828641
## 283 -3.473768 1.435976 -0.29221795 -6.725434 0.43837211 -4.0302269 4.477337
## 287 -3.218876 1.372438 -0.42694948 -7.775256 0.09396047 -3.7735027 4.454347
## 289 -4.342806 1.338425 -0.92403445 -7.542634 -0.23078200 -5.3029674 3.951244
## 290 -3.649659 1.445658 -0.42694948 -7.824046 0.09396047 -3.5470020 3.610918
## 291 -2.830218 1.475713 -0.35762924 -7.058578 0.70214496 -0.9814240 4.356709
## 292 -3.381395 1.350892 -0.37116408 -7.236259 0.32004747 -4.0302269 4.779123
## 294 -3.963316 1.308996 -0.50074709 -7.662778 -0.55204550 -6.0977633 4.553877
## 297 -4.199705 1.350892 -0.64724718 -8.016418 -0.16654597 -4.3887656 4.564348
## 298 -3.963316 1.291400 -0.77658561 -7.082109 0.00000000 -5.5058663 3.951244
## 299 -3.772261 1.372438 -0.37116408 -7.581100 0.09396047 -5.1156807 4.927254
## 301 -4.268698 1.362172 -0.71923319 -8.047190 -0.17899381 -4.4549722 4.356709
## 302 -3.863233 1.271288 -0.87972006 -7.469874 -0.63330256 -4.0302269 4.343805
## 303 -4.268698 1.308996 -0.70078093 -7.156217 -0.20447735 -5.2547625 4.442651
## 304 -3.079114 1.445658 -0.29221795 -7.728736 0.62582535 -3.0000000 5.111988
## 305 -3.540459 1.390462 -0.54746226 -6.980326 0.73700033 -3.7735027 4.682131
## 306 -3.729701 1.412679 -0.48559774 -7.106206 0.38177502 -4.4216130 4.595120
## 307 -3.324236 1.372438 -0.21823750 -5.914504 0.85893499 -3.5470020 4.779123
## 308 -3.816713 1.381830 -0.56347899 -6.725434 0.09396047 -6.9442719 4.595120
## 311 -3.649659 1.412679 -0.35762924 -7.600902 -0.11859478 -3.7735027 4.770685
## 312 -3.296837 1.390462 -0.21823750 -7.293418 0.32004747 -3.7735027 4.912655
## 313 -4.074542 1.440955 -0.83723396 -7.505592 0.17742506 -5.0710678 4.317488
## 314 -3.863233 1.324552 -0.66479918 -8.334872 -0.17899381 -6.5280287 4.709530
## 315 -3.688879 1.372438 -0.56347899 -7.024289 -0.09565753 -3.7735027 4.418841
## 316 -3.688879 1.338425 -1.15193183 -7.799353 0.25230466 -5.1611487 4.290459
## 317 -3.381395 1.350892 -0.59622443 -7.581100 -0.04107298 -4.9421013 4.653960
## 320 -3.381395 1.308996 -0.75712204 -6.725434 -0.28605071 -4.6299354 4.465908
## 321 -4.199705 1.324552 -1.01892829 -7.728736 -0.10704332 -4.6666667 3.784190
## 322 -3.649659 1.398431 -0.37116408 -6.377127 0.49054798 -0.8867513 4.912655
## 323 -3.540459 1.338425 -0.31794508 -7.195437 0.32004747 -3.5470020 5.135798
## 324 -3.963316 1.271288 -0.59622443 -8.468403 0.25230466 -6.3045480 4.875197
## 325 -3.352407 1.398431 -0.68264012 -6.907755 0.85893499 -4.3245553 4.488636
## 326 -3.352407 1.398431 -0.42694948 -7.986565 0.09396047 -3.7735027 4.510860
## 327 -3.381395 1.398431 -0.41274719 -7.293418 0.53887915 -0.7472113 4.890349
## 329 -3.506558 1.405814 -0.68264012 -7.775256 0.17742506 -4.9843030 4.465908
## 330 -3.352407 1.381830 -0.77658561 -6.571283 0.09396047 -1.2025631 4.744932
## 331 -3.912023 1.372438 -1.01892829 -7.236259 -0.09565753 -6.1649658 4.304065
## 332 -3.816713 1.362172 -0.94693458 -7.024289 0.17742506 -3.7735027 4.189655
## 333 -3.772261 1.350892 -0.38485910 -7.236259 -0.53282641 -5.5058663 4.465908
## MIF Pancreatic_polypeptide FAS Eotaxin_3
## 1 -1.2378744 0.57878085 -0.08338161 53
## 2 -1.8971200 0.33647224 -0.52763274 62
## 3 -2.3025851 -0.89159812 -0.63487827 62
## 5 -1.8971200 0.26236426 -0.12783337 64
## 6 -2.0402208 -0.47803580 -0.32850407 57
## 7 -2.1202635 -0.59783700 -0.71334989 64
## 8 -1.7719568 -0.31471074 -0.71334989 64
## 9 -2.2072749 -0.52763274 -0.82098055 64
## 11 -1.5141277 -1.27296568 -0.02020271 82
## 12 -1.7147984 1.16315081 -0.71334989 73
## 14 -2.0402208 -0.37106368 -0.44628710 67
## 16 -1.5141277 0.33647224 -0.41551544 69
## 17 -1.9661129 0.78845736 -0.02020271 76
## 18 -2.3330443 -0.59783700 -0.82098055 33
## 19 -1.7147984 0.18232156 -0.47803580 54
## 20 -2.3538784 -0.26136476 -0.63487827 77
## 21 -1.4696760 0.69314718 -0.07257069 64
## 22 -1.4696760 -1.23787436 -0.30110509 73
## 23 -2.1202635 -0.82098055 -0.86750057 30
## 24 -1.7147984 -0.04082199 -0.07257069 82
## 25 -2.1202635 -1.27296568 -0.57981850 82
## 26 -1.5606477 0.09531018 -0.16251893 70
## 28 -1.8971200 0.40546511 -0.49429632 76
## 29 -1.8971200 0.09531018 -1.04982212 34
## 30 -2.4079456 0.09531018 -0.96758403 43
## 31 -2.1202635 0.33647224 -0.82098055 64
## 34 -1.8971200 0.91629073 -0.82098055 44
## 35 -1.8325815 0.53062825 -0.82098055 44
## 36 -1.8325815 -0.75502258 -0.49429632 64
## 37 -1.4696760 -0.10536052 -0.28768207 70
## 38 -1.7147984 -0.63487827 -0.82098055 34
## 39 -1.8325815 -0.71334989 -0.44628710 62
## 40 -2.1202635 -0.51082562 -0.63487827 62
## 41 -1.5141277 0.18232156 -0.52763274 54
## 42 -1.7719568 -1.27296568 -0.61618614 92
## 43 -2.2072749 0.00000000 -0.57981850 43
## 44 -1.8971200 0.47000363 -0.63487827 72
## 45 -1.3470736 0.64185389 -0.05129329 82
## 46 -1.8325815 -0.26136476 -0.44628710 72
## 47 -1.8325815 0.18232156 -0.75502258 64
## 48 -1.1711830 0.69314718 -0.30110509 96
## 50 -1.6607312 -0.41551544 -0.44628710 73
## 51 -1.9661129 -0.96758403 -0.65392647 54
## 53 -1.8971200 -0.34249031 -0.52763274 52
## 55 -2.1202635 0.26236426 -0.63487827 30
## 56 -1.8325815 -0.46203546 -0.71334989 54
## 57 -1.2729657 1.06471074 -0.11653382 49
## 59 -1.7147984 -0.32850407 -0.71334989 64
## 60 -2.2072749 0.95551145 -0.82098055 53
## 61 -2.1202635 -0.09431068 -0.71334989 43
## 62 -2.3538784 -0.73396918 -1.10866262 33
## 63 -1.5606477 0.91629073 -0.37106368 64
## 64 -1.6607312 0.83290912 -0.44628710 54
## 65 -2.0402208 0.83290912 -0.73396918 52
## 67 -1.3470736 -0.32850407 -0.44628710 54
## 68 -1.1394343 0.26236426 -0.08338161 64
## 69 -2.2072749 -0.16251893 -0.96758403 43
## 70 -1.6607312 0.26236426 -0.44628710 70
## 71 -2.1202635 0.40546511 -0.52763274 52
## 72 -1.7147984 -0.59783700 0.09531018 83
## 73 -1.6094379 0.26236426 -0.15082289 83
## 74 -2.3751558 0.53062825 -0.89159812 53
## 75 -2.3330443 0.69314718 -0.52763274 83
## 76 -1.5141277 1.02961942 -0.31471074 54
## 77 -1.5606477 0.83290912 -0.47803580 44
## 78 -1.6607312 1.52605630 0.33647224 70
## 80 -1.6094379 0.33647224 -0.52763274 53
## 81 -1.8971200 -0.63487827 -0.71334989 44
## 82 -1.8971200 0.09531018 -0.57981850 70
## 83 -1.8971200 -0.40047757 -0.26136476 44
## 84 -1.6607312 -0.63487827 -0.94160854 69
## 85 -1.7147984 -0.32850407 -0.31471074 44
## 86 -1.4696760 1.93152141 -0.31471074 78
## 88 -1.2729657 0.47000363 -0.24846136 64
## 90 -2.3025851 -0.40047757 -0.71334989 39
## 93 -1.8325815 0.18232156 -0.47803580 64
## 94 -1.4271164 1.25276297 0.09531018 83
## 95 -2.1202635 0.47000363 -0.82098055 43
## 96 -1.6094379 -0.79850770 -0.32850407 70
## 97 -2.0402208 -0.67334455 -0.57981850 70
## 98 -2.2072749 -1.02165125 -1.51412773 33
## 99 -2.1202635 0.91629073 -0.63487827 83
## 100 -1.8971200 -0.23572233 -0.71334989 39
## 103 -1.8325815 -0.19845094 -0.35667494 93
## 104 -1.5606477 0.26236426 -0.71334989 44
## 105 -1.8971200 0.26236426 -0.52763274 52
## 107 -1.6607312 -0.16251893 -0.52763274 48
## 108 -2.0402208 -0.03045921 -0.61618614 64
## 109 -2.4304185 -0.71334989 -0.94160854 41
## 110 -2.2072749 -2.12026354 -1.02165125 38
## 111 -1.4271164 -0.40047757 -0.34249031 64
## 112 -1.5606477 1.64865863 -0.18632958 59
## 113 -1.9661129 0.69314718 -0.02020271 70
## 114 -2.1202635 -0.73396918 -0.69314718 70
## 115 -1.5606477 1.09861229 -0.71334989 64
## 117 -1.8971200 0.18232156 -0.52763274 64
## 118 -1.1086626 -1.27296568 -0.26136476 95
## 121 -1.6607312 0.18232156 -0.56211892 64
## 123 -2.5510465 -0.23572233 -1.10866262 69
## 124 -1.7719568 0.09531018 -1.04982212 44
## 126 -1.8971200 -0.52763274 -0.61618614 59
## 128 -1.8971200 0.47000363 -0.31471074 44
## 129 -2.1202635 -0.75502258 -1.07880966 54
## 130 -1.9661129 0.58778666 -0.07257069 57
## 131 -2.3126354 0.78845736 -0.57981850 52
## 132 -2.2072749 -0.31471074 -0.71334989 64
## 133 -1.8325815 -0.52763274 -0.32850407 82
## 134 -1.0216512 1.25276297 0.18232156 70
## 135 -1.9661129 -0.31471074 -0.57981850 64
## 136 -2.0402208 0.69314718 -1.04982212 64
## 137 -2.2072749 -0.34249031 -0.73396918 41
## 139 -1.7719568 -0.47803580 -0.49429632 57
## 140 -1.4271164 1.19392247 -0.26136476 70
## 141 -1.8325815 0.18232156 -0.22314355 70
## 143 -2.1202635 0.99325177 -0.82098055 64
## 144 -2.0402208 0.58778666 -0.32850407 64
## 145 -2.3025851 -0.86750057 -0.96758403 33
## 146 -1.6094379 1.33500107 -0.18632958 88
## 147 -1.2378744 0.78845736 -0.32850407 70
## 148 -1.8325815 0.00000000 -0.30110509 73
## 149 -2.2072749 -1.10866262 -0.52763274 52
## 152 -0.8439701 1.13140211 0.09531018 107
## 153 -1.7147984 0.64185389 -0.18632958 95
## 154 -2.1202635 -0.71334989 -0.73396918 62
## 155 -1.8971200 -0.86750057 -0.96758403 59
## 156 -2.3126354 -0.26136476 -0.63487827 67
## 157 -1.9661129 0.26236426 -0.52763274 85
## 158 -2.0402208 -0.96758403 -0.73396918 62
## 159 -2.1202635 0.18232156 -0.71334989 23
## 160 -1.8971200 0.33647224 -0.28768207 62
## 161 -1.7147984 -1.27296568 -0.31471074 64
## 162 -1.2378744 -0.40047757 -0.30110509 49
## 163 -2.0402208 -0.96758403 -1.27296568 34
## 165 -1.6607312 -1.07880966 -0.75502258 57
## 166 -1.7719568 -0.23572233 -0.94160854 64
## 167 -1.4696760 -1.34707365 -0.18632958 64
## 168 -2.3025851 -0.82098055 -0.28768207 46
## 169 -2.1202635 -0.47803580 -0.32850407 70
## 170 -1.4696760 -0.61618614 -0.32850407 82
## 171 -1.8325815 -0.09431068 -0.44628710 54
## 172 -2.2072749 -0.16251893 -0.71334989 43
## 174 -1.7147984 0.83290912 -0.24846136 54
## 175 -1.8325815 0.33647224 -0.26136476 70
## 176 -1.7147984 0.64185389 -0.37106368 64
## 177 -1.8325815 -0.16251893 -0.57981850 44
## 178 -1.9661129 -0.99425227 -0.94160854 34
## 179 -2.3751558 -0.34249031 -0.02020271 70
## 180 -1.8971200 0.58194114 -0.12783337 82
## 181 -2.1202635 -0.47803580 -0.57981850 29
## 182 -1.8971200 -0.09431068 -0.44628710 64
## 183 -2.5133061 -1.42711636 -0.96758403 64
## 184 -1.3093333 -0.31471074 0.00000000 70
## 185 -2.0402208 0.78845736 -0.31471074 59
## 186 -1.8325815 0.64185389 -0.26136476 45
## 189 -1.6607312 1.56861592 -0.57981850 33
## 190 -1.6607312 -0.40047757 -0.38566248 54
## 191 -1.7147984 -1.96611286 -0.57981850 44
## 192 -1.4271164 1.30833282 -0.22314355 54
## 193 -1.4696760 0.87546874 -0.52763274 73
## 194 -2.0402208 -0.52763274 -0.71334989 44
## 195 -2.0402208 -0.46203546 -0.28768207 67
## 197 -0.9416085 -0.23572233 -0.26136476 82
## 198 -2.1202635 -1.23787436 -1.04982212 44
## 200 -1.6607312 -0.49429632 -0.96758403 43
## 201 -1.8325815 -0.23572233 -0.34249031 44
## 202 -2.2072749 -0.86750057 -0.96758403 48
## 205 -1.8971200 -0.41551544 -0.63487827 77
## 208 -2.0402208 0.00000000 -0.57981850 44
## 210 -2.2072749 0.47000363 -0.18632958 76
## 212 -1.8325815 1.93152141 -0.94160854 44
## 213 -1.9661129 1.19392247 -0.12783337 70
## 214 -2.0402208 0.87546874 -0.35667494 41
## 215 -1.9661129 0.47000363 -0.44628710 43
## 216 -2.1202635 -0.31471074 -0.47803580 44
## 218 -1.9661129 -0.01005034 -0.26136476 54
## 219 -1.8971200 0.87546874 -1.07880966 44
## 220 -1.8325815 -0.37106368 -0.71334989 44
## 223 -2.1202635 0.91629073 -0.61618614 43
## 224 -2.0402208 -0.73396918 -0.96758403 43
## 225 -1.8971200 -0.49429632 -0.37106368 53
## 226 -1.7147984 0.18232156 -0.15082289 83
## 227 -2.3859667 1.19392247 -0.44628710 74
## 228 -2.3025851 -0.31471074 -0.96758403 33
## 229 -2.0402208 -0.73396918 -0.57981850 45
## 230 -1.2729657 1.62924054 -0.02020271 70
## 231 -1.9661129 -0.67334455 -0.26136476 57
## 232 -1.7719568 -0.40047757 -0.86750057 54
## 233 -2.1202635 -0.63487827 -1.04982212 34
## 234 -1.8971200 0.74193734 -0.40047757 70
## 236 -2.0402208 -0.94160854 -0.40047757 57
## 237 -1.8971200 1.09861229 -0.61618614 44
## 239 -2.3859667 -0.16251893 -0.96758403 33
## 240 -2.1202635 0.18232156 -0.96758403 43
## 241 -1.6607312 -0.31471074 -0.40047757 45
## 242 -2.6736488 0.99325177 -0.67334455 72
## 243 -2.0402208 -0.02020271 -0.82098055 44
## 244 -1.7147984 0.74193734 -0.71334989 64
## 245 -2.3968958 -0.40047757 -0.47803580 23
## 246 -2.3330443 0.58778666 -0.49429632 64
## 247 -1.8325815 -0.16251893 -0.65392647 39
## 249 -1.4696760 -1.07880966 -0.05129329 82
## 250 -2.3025851 -0.82098055 -0.52763274 72
## 251 -1.8325815 0.09531018 -1.07880966 54
## 253 -1.8325815 0.33647224 -0.52763274 64
## 254 -1.8325815 -0.59783700 -0.03045921 80
## 255 -1.4271164 -0.63487827 -0.52763274 73
## 256 -1.7719568 0.53062825 -1.07880966 34
## 257 -2.3330443 -0.09431068 -0.82098055 44
## 258 -1.8971200 0.33647224 -0.35667494 72
## 260 -1.7719568 -0.69314718 -0.30110509 64
## 261 -2.3751558 0.00000000 -1.07880966 7
## 262 -1.6094379 -0.69314718 -0.86750057 39
## 263 -1.2378744 -1.13943428 -0.30110509 64
## 264 -2.0402208 0.60449978 -0.52763274 69
## 265 -1.9661129 0.91629073 -0.57981850 54
## 267 -1.4696760 0.83290912 -0.02020271 70
## 268 -1.2729657 0.40546511 -0.57981850 44
## 269 -2.2072749 -1.42711636 -0.71334989 33
## 270 -1.5606477 -0.47803580 -0.22314355 49
## 271 -1.5606477 -0.23572233 -0.30110509 64
## 272 -1.5141277 -0.23572233 -0.57981850 49
## 273 -1.3862944 0.09531018 -0.22314355 78
## 274 -1.6094379 -1.13943428 -0.47803580 39
## 275 -1.7719568 -0.49429632 -0.61618614 53
## 277 -1.9661129 0.53062825 -0.32850407 33
## 278 -2.2072749 0.18232156 -0.96758403 53
## 279 -1.8971200 -0.94160854 -0.40047757 51
## 281 -1.7719568 0.18232156 -0.07257069 82
## 282 -1.8971200 0.33647224 -0.52763274 72
## 283 -1.5545112 0.58778666 -0.38566248 92
## 287 -2.1202635 0.26236426 -0.63487827 52
## 289 -2.5383074 -0.59783700 -0.96758403 33
## 290 -2.1202635 0.33647224 -0.63487827 46
## 291 -1.4271164 -0.10536052 0.00000000 57
## 292 -1.8325815 -0.23572233 -0.37106368 74
## 294 -2.4769385 -1.02165125 -0.82098055 43
## 297 -2.0402208 0.74193734 -0.94160854 54
## 298 -2.5010360 0.09531018 -0.94160854 62
## 299 -1.4271164 -0.94160854 -0.40047757 82
## 301 -1.8325815 -0.41551544 -0.94160854 54
## 302 -2.8473123 -0.86750057 -0.96758403 33
## 303 -1.9661129 -0.16251893 -0.38566248 54
## 304 -1.6094379 0.18232156 -0.31471074 59
## 305 -1.3862944 0.09531018 -0.30110509 73
## 306 -1.7147984 0.18232156 -0.24846136 74
## 307 -1.8325815 0.99325177 -0.37106368 64
## 308 -1.7719568 0.99325177 -0.96758403 33
## 311 -2.1202635 -0.41551544 -0.71334989 54
## 312 -1.6607312 0.78845736 -0.52763274 64
## 313 -1.7719568 0.00000000 -0.71334989 54
## 314 -1.5141277 -0.96758403 -0.38566248 44
## 315 -1.9661129 -0.16251893 -0.61618614 48
## 316 -2.0402208 0.09531018 -0.57981850 41
## 317 -2.2072749 -0.34249031 -0.52763274 62
## 320 -2.3025851 0.40546511 -0.44628710 62
## 321 -2.6310892 0.26236426 -0.86750057 52
## 322 -1.8971200 -0.52763274 -0.41551544 64
## 323 -1.3862944 0.53062825 -0.15082289 54
## 324 -1.6607312 0.58778666 -0.71334989 43
## 325 -1.7719568 0.78845736 -0.47803580 54
## 326 -1.9661129 -0.04082199 -0.71334989 44
## 327 -1.1086626 0.78845736 -0.02020271 82
## 329 -1.8971200 0.33647224 -0.61618614 44
## 330 -2.5010360 0.78845736 -0.26136476 70
## 331 -1.6607312 -0.96758403 -0.71334989 49
## 332 -1.2729657 -1.34707365 -0.57981850 54
## 333 -1.3093333 -0.52763274 -0.08338161 69
## Gamma_Interferon_induced_Monokin Thymus_Expressed_Chemokine_TECK
## 1 2.949822 4.149327
## 2 2.721793 3.810182
## 3 2.762231 2.791992
## 5 2.851987 4.534163
## 6 2.822442 4.534163
## 7 2.739315 3.342694
## 8 2.966101 4.037285
## 9 2.584357 3.637051
## 11 2.701785 4.908629
## 12 2.769220 3.637051
## 14 2.924402 4.534163
## 16 2.911527 4.093428
## 17 2.845167 5.273838
## 18 2.956388 2.407182
## 19 3.019718 4.260413
## 20 2.708297 3.810182
## 21 2.929867 4.908629
## 22 2.724975 3.578777
## 23 2.568127 3.810182
## 24 2.614139 4.534163
## 25 2.667835 2.472433
## 26 2.788951 4.149327
## 28 2.680311 3.282892
## 29 2.713850 3.578777
## 30 2.766469 2.407182
## 31 2.790112 2.854653
## 34 2.883453 4.093428
## 35 2.802914 4.093428
## 36 2.848747 4.479850
## 37 2.786199 4.149327
## 38 2.919789 4.093428
## 39 2.620513 4.315608
## 40 2.876049 1.936058
## 41 2.825646 3.637051
## 42 2.603403 4.093428
## 43 2.927719 3.342694
## 44 2.908388 2.791992
## 45 2.792403 4.908629
## 46 2.762231 4.315608
## 47 2.757357 3.867347
## 48 2.879640 3.752748
## 50 2.787386 4.093428
## 51 2.829324 3.810182
## 53 2.848276 3.810182
## 55 2.637144 2.791992
## 56 2.852215 2.601557
## 57 2.864362 6.225224
## 59 2.974175 3.101492
## 60 2.936028 1.796259
## 61 2.742679 2.854653
## 62 2.684529 2.854653
## 63 2.726228 4.479850
## 64 3.065368 4.479850
## 65 2.632564 3.810182
## 67 2.674201 4.855724
## 68 2.713850 6.225224
## 69 2.732330 2.854653
## 70 2.809013 2.791992
## 71 2.780093 3.810182
## 72 2.928799 4.749337
## 73 2.939917 4.961345
## 74 2.916177 3.752748
## 75 2.939917 3.810182
## 76 2.818539 4.479850
## 77 2.946345 5.325310
## 78 2.943646 6.225224
## 80 2.735867 3.342694
## 81 2.760303 3.637051
## 82 2.757852 3.282892
## 83 2.668760 4.908629
## 84 2.774554 3.637051
## 85 2.851530 4.479850
## 86 2.851530 4.479850
## 88 2.909446 4.149327
## 90 2.668760 3.040333
## 93 2.881737 4.037285
## 94 3.032417 5.222195
## 95 2.868085 3.752748
## 96 2.827923 3.980894
## 97 2.778414 4.149327
## 98 2.694967 1.508487
## 99 2.873869 3.810182
## 100 2.722435 3.101492
## 103 2.876049 4.534163
## 104 2.705439 4.037285
## 105 2.579644 3.810182
## 107 2.752296 3.752748
## 108 2.832888 3.342694
## 109 2.646995 2.208489
## 110 2.750740 2.854653
## 111 2.636011 3.040333
## 112 2.893035 4.149327
## 113 2.875131 4.149327
## 114 2.694190 2.791992
## 115 2.845409 3.637051
## 117 2.806678 4.315608
## 118 2.968193 4.149327
## 121 3.000719 3.637051
## 123 2.706159 2.854653
## 124 2.872708 3.040333
## 126 2.715877 3.867347
## 128 2.763185 4.093428
## 129 2.690241 3.101492
## 130 2.901221 4.908629
## 131 2.532501 3.578777
## 132 2.766469 3.752748
## 133 2.786199 4.149327
## 134 2.791263 6.225224
## 135 2.893035 3.342694
## 136 2.905282 3.578777
## 137 2.568127 2.791992
## 139 2.665023 3.282892
## 140 2.860121 4.149327
## 141 2.604783 4.149327
## 143 2.767852 3.752748
## 144 2.911270 3.752748
## 145 2.674201 2.854653
## 146 2.950670 3.980894
## 147 2.858842 3.752748
## 148 2.908918 4.479850
## 149 2.790112 3.342694
## 152 2.984412 5.580204
## 153 2.731131 4.149327
## 154 2.579644 2.537220
## 155 2.691833 3.342694
## 156 2.926626 4.315608
## 157 2.903482 3.752748
## 158 2.557619 3.342694
## 159 2.845892 3.637051
## 160 2.769220 4.315608
## 161 2.843211 4.479850
## 162 2.875866 3.578777
## 163 2.678590 4.479850
## 165 2.788951 3.040333
## 166 2.662160 3.637051
## 167 2.843948 4.908629
## 168 2.681164 3.342694
## 169 2.824491 3.282892
## 170 2.881391 3.752748
## 171 2.823909 4.855724
## 172 2.694967 3.752748
## 174 2.886307 4.093428
## 175 2.786199 4.149327
## 176 2.823031 4.093428
## 177 2.760303 3.578777
## 178 2.704715 3.637051
## 179 2.891000 5.273838
## 180 3.008161 5.580204
## 181 2.596327 4.037285
## 182 2.773241 3.520211
## 183 2.823325 2.407182
## 184 2.654255 4.908629
## 185 2.771914 4.093428
## 186 2.701785 4.149327
## 189 2.777140 3.520211
## 190 2.839703 4.479850
## 191 2.715205 4.037285
## 192 2.845409 4.479850
## 193 2.852896 3.637051
## 194 2.771023 4.037285
## 195 2.708297 3.810182
## 197 2.815134 3.980894
## 198 2.743782 4.037285
## 200 2.735867 2.854653
## 201 2.785402 4.908629
## 202 2.712482 3.342694
## 205 2.557619 4.315608
## 208 2.824491 4.037285
## 210 2.919789 4.534163
## 212 2.700297 1.936058
## 213 2.754850 4.534163
## 214 2.874020 3.342694
## 215 2.656269 3.752748
## 216 2.752811 4.479850
## 218 2.890046 4.908629
## 219 2.687819 3.637051
## 220 2.594876 3.637051
## 223 2.710405 4.149327
## 224 2.735867 2.854653
## 225 2.744330 3.752748
## 226 2.768310 4.037285
## 227 2.763659 3.752748
## 228 2.653238 1.796259
## 229 2.665023 3.520211
## 230 2.963228 4.908629
## 231 2.767393 3.752748
## 232 2.697275 4.479850
## 233 2.771023 3.040333
## 234 2.715877 3.752748
## 236 2.767393 3.282892
## 237 2.763185 3.637051
## 239 2.875683 3.342694
## 240 2.791263 2.854653
## 241 2.724975 4.149327
## 242 2.654255 2.791992
## 243 2.665966 3.637051
## 244 2.783386 4.093428
## 245 2.692623 4.479850
## 246 2.883623 3.752748
## 247 2.792403 4.479850
## 249 2.665023 4.149327
## 250 2.870614 3.040333
## 251 2.737602 3.101492
## 253 3.008576 4.093428
## 254 3.011822 4.149327
## 255 2.769220 3.637051
## 256 2.393337 3.101492
## 257 2.584357 3.637051
## 258 2.906102 5.580204
## 260 2.822737 4.037285
## 261 2.695741 3.101492
## 262 2.530419 4.037285
## 263 2.807684 4.037285
## 264 2.763185 4.093428
## 265 2.611519 3.810182
## 267 3.009810 4.149327
## 268 2.906780 4.479850
## 269 2.524026 3.520211
## 270 2.735284 3.578777
## 271 2.910232 4.908629
## 272 2.735284 4.908629
## 273 2.842468 4.479850
## 274 2.785402 3.578777
## 275 2.825933 3.342694
## 277 2.943646 4.534163
## 278 2.937016 3.101492
## 279 2.788951 3.980894
## 281 2.875131 4.908629
## 282 2.900935 4.315608
## 283 2.953166 4.479850
## 287 2.666903 2.791992
## 289 2.786596 2.407182
## 290 2.701785 3.342694
## 291 2.839193 5.580204
## 292 2.848747 4.149327
## 294 2.627850 2.407182
## 297 2.751261 2.601557
## 298 2.657266 2.208489
## 299 2.788951 4.534163
## 301 2.620513 3.101492
## 302 2.584357 3.342694
## 303 2.760303 4.908629
## 304 2.700297 3.867347
## 305 2.905965 4.908629
## 306 2.732330 4.534163
## 307 2.945455 4.315608
## 308 2.781750 1.796259
## 311 2.854245 4.479850
## 312 2.810980 3.637051
## 313 2.800812 3.040333
## 314 2.568127 4.037285
## 315 2.846133 2.854653
## 316 2.603403 3.810182
## 317 2.766469 3.810182
## 320 2.666903 3.342694
## 321 2.738746 2.791992
## 322 2.863047 4.093428
## 323 2.913692 4.037285
## 324 2.847566 3.342694
## 325 3.006900 3.578777
## 326 2.864685 4.037285
## 327 2.897137 5.273838
## 329 2.749166 3.637051
## 330 2.713850 4.534163
## 331 2.678590 4.260413
## 332 2.748106 4.479850
## 333 2.862841 4.037285
## TNF_RII Alpha_1_Antitrypsin IGF_BP_2 Creatine_Kinase_MB MCP_2
## 1 -0.06187540 -12.631361 5.609472 -1.710172 1.9805094
## 2 -0.32850407 -11.909882 5.347108 -1.751002 1.8088944
## 3 -0.41551544 -13.642963 5.181784 -1.383559 0.4005958
## 5 -0.34249031 -11.133063 5.420535 -1.625834 2.2208309
## 6 -0.94160854 -12.134638 5.056246 -1.671366 2.3343863
## 7 -0.77652879 -12.813142 5.438079 -1.739232 2.1030230
## 8 -0.91629073 -13.310348 5.365976 -1.571048 2.6867663
## 9 -0.94160854 -12.907477 5.273000 -1.671366 1.8527528
## 11 -0.51082562 -13.310348 5.505332 -1.751002 4.0237466
## 12 -0.71334989 -11.838035 5.081404 -1.671366 1.5303762
## 14 -0.61618614 -11.909882 5.209486 -1.683772 2.4440754
## 16 -0.28768207 -11.983227 5.375278 -1.671366 1.0483341
## 17 -0.69314718 -11.499497 5.455321 -1.871938 2.8501989
## 18 -0.77652879 -14.135373 5.087596 -1.780911 1.8527528
## 19 -0.79850770 -12.292758 5.379897 -1.647864 2.8501989
## 20 -0.75502258 -8.932463 5.513429 -1.518336 1.5303762
## 21 -0.65392647 -14.135373 5.361292 -1.671366 2.8501989
## 22 -0.04082199 -15.344812 5.141664 -1.647864 1.7643559
## 23 -0.59783700 -13.642963 4.955827 -1.590122 1.8088944
## 24 -0.43078292 -13.310348 5.472271 -1.751002 1.0483341
## 25 -0.82098055 -13.528896 5.187386 -1.724319 2.1820549
## 26 -0.43078292 -13.205557 5.257495 -1.724319 2.0219013
## 28 -0.22314355 -11.909882 5.438079 -1.755051 1.6263611
## 29 -1.02165125 -14.135373 4.997212 -1.647864 2.2969819
## 30 -0.89159812 -13.760451 5.147494 -1.710172 2.1030230
## 31 -0.73396918 -12.058126 5.513429 -1.653590 2.5152196
## 34 -0.65392647 -11.435607 5.273000 -1.625834 2.7530556
## 35 -0.89159812 -12.458129 4.836282 -1.625834 1.5303762
## 36 -0.67334455 -11.909882 5.598422 -1.671366 1.8527528
## 37 -0.30110509 -14.548755 5.351858 -1.780911 1.6263611
## 38 -0.65392647 -13.528896 5.141664 -1.585271 1.8527528
## 39 -0.46203546 -16.321511 5.252273 -1.683772 0.4005958
## 40 -0.44628710 -13.418078 5.407172 -1.590122 2.6191813
## 41 -0.75502258 -8.191715 5.327876 -1.671366 1.0483341
## 42 -0.69314718 -13.881545 5.420535 -1.724319 1.0483341
## 43 -0.86750057 -13.004247 5.198497 -1.710172 1.8527528
## 44 -0.24846136 -12.907477 5.420535 -1.590122 1.8088944
## 45 -0.02020271 -12.058126 5.645447 -1.780911 3.0369315
## 46 -0.38566248 -15.008176 5.267858 -1.590122 1.1637797
## 47 -0.79850770 -11.630963 5.351858 -1.868851 1.8527528
## 48 -0.27443685 -15.344812 5.700444 -1.780911 1.5303762
## 50 -0.54472718 -11.698625 5.262690 -1.671366 3.2434918
## 51 -0.38566248 -12.374500 5.398163 -1.571048 1.7643559
## 53 -0.71334989 -13.881545 5.278115 -1.518336 1.1637797
## 55 -0.63487827 -15.344812 5.030438 -1.590122 1.6731213
## 56 -0.63487827 -11.698625 5.262690 -1.696685 1.5303762
## 57 -0.31471074 -12.212827 5.641907 -1.571048 1.9805094
## 59 -0.30110509 -11.250842 5.616771 -1.671366 2.5848812
## 60 -0.59783700 -13.103567 5.438079 -1.653590 1.6731213
## 61 -1.04982212 -14.006447 5.192957 -1.710172 1.5303762
## 62 -1.20397280 -15.008176 5.123964 -1.653590 1.8527528
## 63 -0.27443685 -12.907477 5.283204 -1.724319 2.3713615
## 64 -0.44628710 -12.631361 5.370638 -1.671366 2.1427912
## 65 -0.73396918 -15.523564 5.164786 -1.590122 1.1637797
## 67 -0.18632958 -14.406260 5.356586 -1.868851 1.5303762
## 68 -0.51082562 -14.268559 5.429346 -1.647864 1.7643559
## 69 -1.04982212 -15.008176 5.141664 -1.653590 1.1637797
## 70 -0.61618614 -14.406260 5.594711 -1.755051 2.0219013
## 71 -0.46203546 -12.134638 5.068904 -1.683772 1.3273591
## 72 0.33647224 -10.963846 5.780744 -1.751002 2.2591348
## 73 -0.03045921 -14.135373 5.509388 -1.459630 1.1637797
## 74 -1.34707365 -10.802885 5.241747 -1.605032 2.5152196
## 75 -0.67334455 -12.907477 5.337538 -1.631218 1.8088944
## 76 0.00000000 -10.363053 5.549076 -1.755051 1.6731213
## 77 -0.41551544 -11.564602 5.129899 -1.751002 1.5303762
## 78 -0.06187540 -11.311317 5.624018 -1.780911 2.6191813
## 80 -0.65392647 -13.205557 5.204007 -1.605032 1.8527528
## 81 -0.59783700 -12.292758 5.111988 -1.780911 0.4005958
## 82 -0.44628710 -12.292758 5.521461 -1.871938 2.0219013
## 83 -0.82098055 -12.374500 4.905275 -1.441430 2.3713615
## 84 -0.57981850 -11.564602 5.043425 -1.671366 2.1427912
## 85 -0.31471074 -12.212827 5.370638 -1.671366 2.1427912
## 86 -0.26136476 -11.019298 5.590987 -1.724319 2.1427912
## 88 -0.30110509 -13.418078 5.501258 -1.710172 2.6867663
## 90 -1.38629436 -14.849365 4.634729 -1.571048 2.1820549
## 93 -0.24846136 -13.004247 5.497168 -1.830294 1.7643559
## 94 0.47000363 -12.292758 5.948035 -1.724319 3.1563503
## 95 -0.63487827 -12.058126 5.327876 -1.751002 2.5152196
## 96 -0.63487827 -14.406260 5.509388 -1.724319 2.0219013
## 97 -0.51082562 -13.881545 5.356586 -1.780911 2.0219013
## 98 -1.10866262 -15.344812 5.075174 -1.710172 1.5303762
## 99 -0.19845094 -14.268559 5.370638 -1.590122 1.5303762
## 100 -0.49429632 -15.008176 5.187386 -1.724319 1.5303762
## 103 -0.05129329 -13.310348 5.641907 -1.590122 1.1637797
## 104 -0.44628710 -13.881545 5.159055 -1.830294 2.5502306
## 105 -0.59783700 -12.374500 5.231109 -1.751002 1.1637797
## 107 -0.59783700 -13.004247 5.214936 -1.653590 1.8527528
## 108 -0.51082562 -13.103567 5.579730 -1.653590 2.1030230
## 109 -0.94160854 -16.780588 5.003946 -1.552786 0.4005958
## 110 -0.89159812 -15.173178 5.062595 -1.653590 1.6731213
## 111 -0.77652879 -14.268559 5.347108 -1.647864 1.7643559
## 112 -0.27443685 -12.058126 5.609472 -1.653590 2.3343863
## 113 0.00000000 -11.191436 5.398163 -1.821115 2.0219013
## 114 -1.07880966 -13.418078 5.081404 -1.780911 2.0219013
## 115 -0.71334989 -11.499497 5.420535 -1.724319 2.1427912
## 117 -0.47803580 -14.006447 5.293305 -1.653590 1.5303762
## 118 -0.18632958 -13.881545 5.616771 -1.755051 2.0219013
## 121 0.09531018 -9.562842 5.420535 -1.671366 2.3713615
## 123 -1.13943428 -13.103567 5.407172 -1.677510 2.6867663
## 124 -0.44628710 -13.004247 5.402677 -1.647864 1.7643559
## 126 -0.84397007 -13.418078 5.135798 -1.671366 1.5303762
## 128 -0.43078292 -10.750945 5.303305 -1.868851 2.5848812
## 129 -1.23787436 -13.103567 5.257495 -1.671366 0.4005958
## 130 -0.44628710 -10.363053 5.433722 -1.696685 2.0219013
## 131 -0.94160854 -13.642963 4.969813 -1.590122 0.4005958
## 132 -0.67334455 -12.058126 5.375278 -1.653590 1.5303762
## 133 -0.57981850 -11.983227 5.620401 -1.780911 2.3343863
## 134 -0.44628710 -12.813142 5.521461 -1.631218 1.6263611
## 135 -0.52763274 -11.499497 5.455321 -1.710172 1.8527528
## 136 -0.65392647 -12.374500 5.451038 -1.647864 2.9135187
## 137 -1.13943428 -14.135373 5.159055 -1.747018 0.4005958
## 139 -0.86750057 -14.406260 5.153292 -1.671366 2.0219013
## 140 -0.69314718 -13.881545 5.433722 -1.871938 1.6263611
## 141 -0.41551544 -11.250842 5.293305 -1.871938 1.0483341
## 143 -1.02165125 -12.134638 5.313206 -1.653590 2.6867663
## 144 -0.52763274 -13.528896 5.356586 -1.751002 2.0219013
## 145 -0.89159812 -14.696346 5.164786 -1.710172 1.6731213
## 146 -0.17435339 -13.103567 5.645447 -1.631218 2.3343863
## 147 -0.15082289 -13.881545 5.342334 -1.755051 2.8501989
## 148 -0.52763274 -12.907477 5.468060 -1.571048 2.9757467
## 149 -0.71334989 -15.008176 5.081404 -1.518336 1.5303762
## 152 0.00000000 -12.458129 5.758902 -1.724319 2.0219013
## 153 -0.56211892 -12.374500 5.609472 -1.724319 2.6191813
## 154 -0.86750057 -14.696346 5.181784 -1.518336 0.4005958
## 155 -0.79850770 -12.631361 5.062595 -1.605032 2.3343863
## 156 -0.41551544 -12.543721 5.332719 -1.631218 0.4005958
## 157 -0.67334455 -13.310348 5.613128 -1.653590 1.1637797
## 158 -0.79850770 -14.268559 5.198497 -1.590122 1.1637797
## 159 -0.91629073 -11.838035 5.093750 -1.585271 3.0064666
## 160 -0.26136476 -12.721137 5.389072 -1.683772 1.1637797
## 161 -0.43078292 -12.458129 5.135798 -1.671366 2.3713615
## 162 -0.38566248 -15.523564 5.342334 -1.647864 2.1820549
## 163 -0.94160854 -15.709974 5.030438 -1.647864 1.5303762
## 165 -0.40047757 -14.135373 5.455321 -1.653590 2.6191813
## 166 -0.75502258 -14.135373 5.379897 -1.868851 1.5303762
## 167 -0.26136476 -14.406260 5.342334 -1.647864 2.1820549
## 168 -0.38566248 -14.006447 5.209486 -1.683772 1.5303762
## 169 -0.86750057 -13.205557 5.153292 -1.631218 2.0219013
## 170 -0.75502258 -12.134638 5.187386 -1.724319 2.6191813
## 171 -0.59783700 -10.599937 5.117994 -1.671366 1.0483341
## 172 -1.10866262 -12.631361 5.075174 -1.677510 1.1637797
## 174 -0.51082562 -11.435607 5.298317 -1.625834 2.7530556
## 175 -0.24846136 -11.838035 5.476464 -1.724319 2.6191813
## 176 -0.69314718 -11.133063 5.056246 -1.671366 1.5303762
## 177 -0.54472718 -14.548755 5.468060 -1.647864 1.7643559
## 178 -1.30933332 -14.135373 4.983607 -1.724319 1.9805094
## 179 -0.26136476 -13.103567 5.517453 -1.671366 2.0219013
## 180 0.09531018 -13.103567 5.655992 -1.653590 2.8501989
## 181 -0.91629073 -15.173178 5.093750 -1.478464 1.7643559
## 182 -0.75502258 -15.173178 5.424950 -1.710172 0.4005958
## 183 -0.86750057 -13.205557 5.365976 -1.653590 2.1030230
## 184 -0.63487827 -12.813142 5.648974 -1.590122 2.0219013
## 185 -0.56211892 -12.212827 5.204007 -1.585271 1.0483341
## 186 -0.82098055 -16.545310 5.198497 -1.724319 1.6263611
## 189 -0.52763274 -13.205557 5.164786 -1.653590 1.0483341
## 190 -0.35667494 -14.406260 5.323010 -1.647864 1.2195081
## 191 -0.69314718 -13.528896 4.983607 -1.647864 1.7643559
## 192 -0.15082289 -13.881545 5.327876 -1.441430 2.1820549
## 193 -0.32850407 -11.191436 5.645447 -1.671366 0.4005958
## 194 -0.75502258 -12.907477 5.209486 -1.647864 1.7643559
## 195 -0.24846136 -12.907477 5.303305 -1.751002 2.0219013
## 197 -0.24846136 -11.983227 5.560682 -1.780911 1.6263611
## 198 -0.91629073 -15.904641 5.159055 -1.518336 1.9805094
## 200 -0.59783700 -12.721137 5.323010 -1.653590 1.5303762
## 201 -0.77652879 -13.642963 5.247024 -1.605032 1.9805094
## 202 -1.13943428 -14.696346 5.105945 -1.710172 1.5303762
## 205 -0.73396918 -17.028429 5.488938 -1.751002 1.8088944
## 208 -0.54472718 -13.881545 5.192957 -1.571048 2.6867663
## 210 -0.28768207 -10.699822 5.613128 -1.780911 4.0237466
## 212 -0.89159812 -12.631361 5.187386 -1.780911 1.0483341
## 213 -0.46203546 -12.458129 5.407172 -1.590122 1.6263611
## 214 -0.32850407 -12.543721 5.293305 -1.459630 2.0219013
## 215 -0.75502258 -14.696346 5.288267 -1.653590 2.1030230
## 216 -1.07880966 -13.004247 5.105945 -1.647864 4.0237466
## 218 -0.82098055 -13.103567 5.327876 -1.543930 2.1820549
## 219 -1.02165125 -13.760451 5.327876 -1.671366 2.1427912
## 220 -0.96758403 -14.406260 5.030438 -1.671366 1.0483341
## 223 -0.59783700 -12.212827 5.303305 -1.605032 1.6731213
## 224 -0.89159812 -12.721137 5.147494 -1.710172 1.8527528
## 225 -0.26136476 -13.528896 5.472271 -1.653590 1.5303762
## 226 0.09531018 -13.205557 5.620401 -1.647864 1.9805094
## 227 -0.63487827 -12.813142 5.293305 -1.780911 2.3343863
## 228 -0.94160854 -14.696346 5.023881 -1.653590 1.9805094
## 229 -1.07880966 -14.006447 5.192957 -1.780911 1.0483341
## 230 -0.26136476 -12.292758 5.342334 -1.871938 2.1820549
## 231 -0.65392647 -11.767633 5.187386 -1.590122 2.6191813
## 232 -0.73396918 -12.907477 5.389072 -1.571048 2.6867663
## 233 -0.96758403 -13.205557 5.187386 -1.751002 2.9135187
## 234 -0.79850770 -11.983227 5.407172 -1.448638 1.0483341
## 236 -0.84397007 -13.004247 5.081404 -1.724319 2.0219013
## 237 -0.67334455 -10.185537 5.192957 -1.724319 1.5303762
## 239 -0.99425227 -13.418078 5.141664 -1.605032 1.8527528
## 240 -0.96758403 -14.548755 5.093750 -1.557281 1.5303762
## 241 -0.65392647 -11.983227 5.129899 -1.780911 1.6263611
## 242 -0.44628710 -14.135373 5.288267 -1.518336 1.5303762
## 243 -1.07880966 -10.317725 5.252273 -1.625834 0.4005958
## 244 -0.30110509 -11.698625 5.365976 -1.671366 2.3713615
## 245 -1.38629436 -15.904641 4.663439 -1.571048 1.9805094
## 246 -0.51082562 -11.698625 5.583496 -1.710172 3.1563503
## 247 -1.07880966 -15.709974 5.093750 -1.751002 2.1820549
## 249 -0.03045921 -14.849365 5.609472 -1.724319 1.0483341
## 250 -0.51082562 -13.310348 5.303305 -1.518336 1.8088944
## 251 -0.82098055 -12.721137 5.257495 -1.625834 1.8527528
## 253 -0.41551544 -10.750945 5.342334 -1.724319 1.5303762
## 254 0.26236426 -12.721137 5.598422 -1.710172 1.8527528
## 255 -0.22314355 -11.191436 5.472271 -1.671366 1.0483341
## 256 -1.04982212 -15.523564 5.176150 -1.724319 0.4005958
## 257 -1.13943428 -15.523564 5.093750 -1.625834 1.0483341
## 258 -0.34249031 -10.802885 5.351858 -1.590122 2.5152196
## 260 -0.69314718 -13.310348 5.273000 -1.830294 2.3713615
## 261 -0.91629073 -13.004247 4.682131 -1.647864 1.8527528
## 262 -1.10866262 -14.135373 4.976734 -1.571048 2.5502306
## 263 -0.47803580 -13.004247 5.407172 -1.830294 1.9805094
## 264 -0.38566248 -8.191715 5.327876 -1.724319 2.5848812
## 265 -0.75502258 -14.406260 5.252273 -1.830294 1.2195081
## 267 -0.02020271 -13.310348 5.624018 -1.751002 2.0219013
## 268 -0.34249031 -13.103567 5.283204 -1.571048 1.9805094
## 269 -0.75502258 -14.696346 5.262690 -1.653590 1.5303762
## 270 -0.19845094 -14.268559 5.220356 -1.647864 2.3713615
## 271 -0.17435339 -12.458129 5.438079 -1.571048 1.9805094
## 272 -0.77652879 -11.564602 5.192957 -1.647864 2.1820549
## 273 -0.22314355 -13.881545 5.594711 -1.647864 2.3713615
## 274 -0.57981850 -13.418078 5.159055 -1.647864 1.9805094
## 275 -0.26136476 -13.205557 5.342334 -1.780911 1.8527528
## 277 -0.57981850 -11.838035 5.075174 -1.696685 2.0219013
## 278 -0.41551544 -12.292758 5.579730 -1.710172 2.1030230
## 279 -0.61618614 -12.058126 5.087596 -1.780911 1.6263611
## 281 -0.44628710 -13.205557 5.517453 -1.631218 2.7200688
## 282 -0.82098055 -12.458129 5.288267 -1.518336 1.1637797
## 283 -0.10536052 -12.907477 5.777652 -1.571048 3.3286939
## 287 -0.40047757 -14.548755 5.135798 -1.683772 1.1637797
## 289 -1.07880966 -13.004247 5.087596 -1.605032 2.1030230
## 290 -0.71334989 -14.268559 5.327876 -1.590122 2.2591348
## 291 -0.17435339 -12.721137 5.365976 -1.871938 1.6263611
## 292 -0.26136476 -12.374500 5.525453 -1.710172 1.8527528
## 294 -1.02165125 -15.709974 5.442418 -1.557281 1.8527528
## 297 -0.89159812 -14.006447 5.323010 -1.671366 2.1427912
## 298 -0.96758403 -13.205557 5.521461 -1.751002 0.4005958
## 299 -0.54472718 -12.721137 5.662960 -1.780911 2.0219013
## 301 -0.99425227 -12.721137 5.257495 -1.671366 1.8527528
## 302 -1.66073121 -11.311317 4.962845 -1.653590 2.1030230
## 303 -0.82098055 -13.310348 5.384495 -1.830294 1.7643559
## 304 -0.19845094 -11.499497 5.587249 -1.780911 1.5303762
## 305 -0.40047757 -15.904641 5.693732 -1.647864 1.7643559
## 306 -0.15082289 -11.133063 5.480639 -1.653590 1.8527528
## 307 -0.16251893 -11.191436 5.541264 -1.710172 2.3343863
## 308 -0.56211892 -12.458129 5.181784 -1.653590 1.8527528
## 311 -0.67334455 -11.019298 5.225747 -1.724319 1.8527528
## 312 -0.46203546 -8.417032 5.214936 -1.724319 1.8527528
## 313 -0.82098055 -14.406260 5.638355 -1.571048 1.5303762
## 314 -0.77652879 -15.523564 5.236442 -1.518336 1.5303762
## 315 -0.67334455 -12.721137 5.262690 -1.710172 1.5303762
## 316 -0.52763274 -13.310348 5.332719 -1.590122 0.4005958
## 317 -0.37106368 -13.418078 5.505332 -1.751002 1.8088944
## 320 -0.91629073 -11.630963 5.323010 -1.459630 1.1637797
## 321 -1.02165125 -12.292758 4.976734 -1.590122 0.4005958
## 322 -0.40047757 -10.551134 5.402677 -1.724319 1.5303762
## 323 -0.46203546 -13.418078 5.424950 -1.830294 1.9805094
## 324 -0.71334989 -14.849365 5.135798 -1.780911 1.8527528
## 325 -0.47803580 -12.907477 5.472271 -1.571048 1.8959582
## 326 -0.40047757 -14.006447 5.389072 -1.518336 2.1030230
## 327 -0.27443685 -11.838035 5.609472 -1.871938 2.3343863
## 329 -0.61618614 -16.321511 5.278115 -1.868851 2.1427912
## 330 -0.79850770 -11.838035 5.209486 -1.780911 2.3343863
## 331 -1.17118298 -14.406260 5.087596 -1.605032 1.8959582
## 332 -1.02165125 -12.543721 5.411646 -1.571048 1.7643559
## 333 -0.21072103 -12.907477 5.552960 -1.647864 2.6867663
## Resistin Cortisol E4
## 1 -16.475315 10.0 1
## 2 -16.025283 12.0 2
## 3 -16.475315 10.0 2
## 5 -11.092838 11.0 1
## 6 -11.291369 13.0 2
## 7 -20.660678 4.9 1
## 8 -6.048172 13.0 1
## 9 -28.434991 12.0 1
## 11 -11.291369 6.8 2
## 12 -14.824999 12.0 1
## 14 -16.954608 15.0 2
## 16 -15.202379 12.0 2
## 17 -10.901667 12.0 1
## 18 -24.395099 0.1 2
## 19 -16.475315 10.0 1
## 20 -10.717434 18.0 2
## 21 -14.824999 26.0 2
## 22 -32.139553 14.0 1
## 23 -16.954608 16.0 2
## 24 -22.351393 7.8 1
## 25 -23.322142 8.6 2
## 26 -13.807280 14.0 2
## 28 -19.235033 8.9 1
## 29 -24.395099 15.0 2
## 30 -22.351393 1.8 1
## 31 -18.014017 19.0 1
## 34 -18.014017 14.0 2
## 35 -15.202379 14.0 2
## 36 -14.467762 9.8 1
## 37 -16.025283 14.0 2
## 38 -26.925298 9.5 1
## 39 -23.322142 15.0 1
## 40 -18.601960 12.0 1
## 41 -8.576675 13.0 1
## 42 -16.954608 11.0 2
## 43 -25.588488 10.0 1
## 44 -9.592564 9.5 2
## 45 -12.782746 15.0 1
## 46 -16.954608 15.0 1
## 47 -17.466301 15.0 1
## 48 -18.014017 15.0 1
## 50 -10.202587 9.8 1
## 51 -11.092838 10.0 1
## 53 -3.316155 11.0 1
## 55 -18.601960 15.0 2
## 56 -13.807280 12.0 1
## 57 -16.025283 11.0 1
## 59 -13.807280 11.0 2
## 60 -25.588488 7.0 1
## 61 -18.601960 17.0 1
## 62 -24.395099 7.1 1
## 63 -18.601960 13.0 1
## 64 -12.168957 10.0 2
## 65 -20.660678 13.0 1
## 67 -25.588488 18.0 2
## 68 -20.660678 15.0 1
## 69 -16.475315 7.4 1
## 70 -19.918999 14.0 1
## 71 -18.014017 15.0 1
## 72 -11.712400 15.0 1
## 73 -9.737717 11.0 1
## 74 -15.601770 13.0 1
## 75 -21.468210 16.0 1
## 76 -3.509845 12.0 2
## 77 -12.931637 17.0 2
## 78 -12.931637 11.0 2
## 80 -18.601960 11.0 1
## 81 -25.588488 12.0 1
## 82 -20.660678 14.0 2
## 83 -13.807280 12.0 1
## 84 -20.660678 14.0 2
## 85 -19.235033 12.0 1
## 86 -9.737717 12.0 1
## 88 -11.712400 12.0 2
## 90 -26.925298 9.9 1
## 93 -11.935945 12.0 2
## 94 -9.887603 18.0 1
## 95 -18.014017 5.9 1
## 96 -18.601960 11.0 2
## 97 -19.918999 8.2 2
## 98 -22.351393 8.3 1
## 99 -11.935945 15.0 1
## 100 -24.395099 6.5 2
## 103 -12.168957 16.0 1
## 104 -23.322142 14.0 2
## 105 -28.434991 9.0 1
## 107 -19.235033 10.0 2
## 108 -18.014017 13.0 1
## 109 -21.468210 14.0 1
## 110 -19.918999 11.0 1
## 111 -19.918999 9.1 2
## 112 -11.497723 13.0 1
## 113 -13.209714 13.0 2
## 114 -25.588488 13.0 2
## 115 -14.824999 29.0 2
## 117 -12.931637 13.0 1
## 118 -14.129014 11.0 1
## 121 -13.501240 18.0 2
## 123 -32.139553 9.5 2
## 124 -18.014017 13.0 1
## 126 -20.660678 10.0 2
## 128 -16.475315 8.9 2
## 129 -22.351393 8.4 2
## 130 -11.092838 4.0 1
## 131 -26.925298 10.0 1
## 132 -12.931637 12.0 2
## 133 -12.168957 13.0 2
## 134 -10.901667 12.0 2
## 135 -14.129014 8.7 1
## 136 -3.509845 29.0 2
## 137 -21.468210 9.7 2
## 139 -20.660678 13.0 2
## 140 -9.737717 22.0 2
## 141 -18.014017 12.0 2
## 143 -21.468210 7.1 1
## 144 -18.601960 12.0 2
## 145 -28.434991 9.8 1
## 146 -13.209714 15.0 2
## 147 -2.239355 11.0 2
## 148 -16.025283 9.7 1
## 149 -23.322142 8.9 1
## 152 -15.601770 14.0 2
## 153 -19.235033 8.8 1
## 154 -22.351393 8.9 1
## 155 -20.660678 8.1 2
## 156 -15.601770 9.0 1
## 157 -13.807280 11.0 1
## 158 -20.660678 7.0 2
## 159 -20.460441 9.3 1
## 160 -8.047964 8.5 1
## 161 -10.368242 13.0 1
## 162 -20.660678 9.1 1
## 163 -25.588488 11.0 2
## 165 -19.235033 14.0 2
## 166 -28.434991 13.0 1
## 167 -12.666051 10.0 1
## 168 -18.601960 7.7 1
## 169 -20.660678 12.0 1
## 170 -15.601770 14.0 1
## 171 -10.717434 13.0 1
## 172 -22.351393 8.5 1
## 174 -10.539746 12.0 1
## 175 -10.539746 18.0 1
## 176 -16.954608 17.0 1
## 177 -19.918999 12.0 1
## 178 -19.235033 8.3 1
## 179 -6.464363 13.0 1
## 180 -14.824999 16.0 1
## 181 -26.925298 11.0 1
## 182 -25.588488 11.0 1
## 183 -18.014017 6.5 2
## 184 -16.025283 14.0 2
## 185 -13.209714 12.0 2
## 186 -21.468210 18.0 2
## 189 -18.601960 13.0 1
## 190 -23.322142 14.0 1
## 191 -23.322142 8.1 2
## 192 -19.918999 19.0 2
## 193 -14.824999 11.0 2
## 194 -17.466301 9.5 2
## 195 -21.468210 12.0 1
## 197 -11.935945 15.0 2
## 198 -23.322142 5.2 2
## 200 -19.918999 12.0 2
## 201 -22.351393 14.0 1
## 202 -34.966595 10.0 2
## 205 -15.601770 12.0 1
## 208 -26.925298 20.0 2
## 210 -2.450735 18.0 2
## 212 -22.351393 11.0 2
## 213 -18.014017 11.0 2
## 214 -10.539746 5.5 1
## 215 -16.475315 11.0 1
## 216 -12.931637 11.0 2
## 218 -23.322142 14.0 1
## 219 -19.235033 14.0 1
## 220 -30.156007 11.0 1
## 223 -14.467762 12.0 2
## 224 -13.807280 11.0 1
## 225 -25.588488 13.0 1
## 226 -12.931637 17.0 1
## 227 -16.475315 4.8 1
## 228 -13.501240 15.0 1
## 229 -25.588488 11.0 2
## 230 -11.935945 9.4 1
## 231 -16.025283 11.0 1
## 232 -26.925298 14.0 1
## 233 -21.468210 9.0 2
## 234 -14.467762 9.8 1
## 236 -23.322142 8.1 1
## 237 -14.467762 16.0 1
## 239 -18.601960 13.0 1
## 240 -14.129014 11.0 1
## 241 -21.468210 15.0 1
## 242 -9.592564 13.0 1
## 243 -21.468210 9.1 1
## 244 -14.824999 15.0 2
## 245 -13.501240 12.0 1
## 246 -13.209714 11.0 1
## 247 -17.466301 12.0 2
## 249 -16.954608 17.0 2
## 250 -17.466301 12.0 2
## 251 -24.395099 12.0 2
## 253 -16.025283 13.0 1
## 254 -12.931637 10.0 1
## 255 -18.601960 22.0 2
## 256 -25.588488 10.0 2
## 257 -25.588488 10.0 2
## 258 -4.873381 13.0 2
## 260 -23.322142 13.0 1
## 261 -16.954608 12.0 1
## 262 -23.322142 9.9 1
## 263 -15.202379 14.0 1
## 264 -11.291369 11.0 2
## 265 -23.322142 18.0 1
## 267 -10.539746 14.0 2
## 268 -15.601770 12.0 1
## 269 -28.434991 7.8 2
## 270 -14.824999 11.0 1
## 271 -12.666051 15.0 2
## 272 -15.601770 17.0 1
## 273 -12.666051 16.0 1
## 274 -28.434991 9.0 1
## 275 -28.434991 11.0 1
## 277 -14.129014 9.7 1
## 278 -14.467762 6.9 1
## 279 -16.954608 14.0 2
## 281 -3.723928 13.0 2
## 282 -20.660678 11.0 2
## 283 -7.247686 22.0 1
## 287 -18.014017 12.0 1
## 289 -19.235033 11.0 1
## 290 -16.025283 15.0 1
## 291 -20.660678 20.0 1
## 292 -26.925298 10.0 1
## 294 -22.293116 0.1 1
## 297 -16.475315 7.6 1
## 298 -22.351393 12.0 1
## 299 -26.925298 12.0 2
## 301 -19.235033 3.4 2
## 302 -19.235033 8.6 1
## 303 -18.014017 13.0 1
## 304 -22.351393 18.0 2
## 305 -16.954608 18.0 1
## 306 -12.412086 17.0 1
## 307 -11.497723 12.0 1
## 308 -13.501240 14.0 2
## 311 -16.954608 9.0 2
## 312 -18.601960 15.0 2
## 313 -19.235033 9.1 1
## 314 -26.925298 10.0 1
## 315 -16.475315 14.0 1
## 316 -26.925298 12.0 1
## 317 -21.468210 7.4 1
## 320 -13.501240 6.4 2
## 321 -14.467762 4.3 1
## 322 -8.930136 14.0 1
## 323 -12.666051 9.9 1
## 324 -16.954608 9.5 2
## 325 -23.322142 20.0 1
## 326 -13.501240 12.0 2
## 327 -14.467762 0.1 2
## 329 -28.434991 7.1 1
## 330 -14.824999 11.0 2
## 331 -20.660678 14.0 1
## 332 -18.601960 11.0 1
## 333 -19.918999 7.2 2
##
## $usekernel
## [1] TRUE
##
## $varnames
## [1] "MMP10" "GRO_alpha"
## [3] "TRAIL_R3" "Fibrinogen"
## [5] "PAI_1" "MMP7"
## [7] "NT_proBNP" "MIF"
## [9] "Pancreatic_polypeptide" "FAS"
## [11] "Eotaxin_3" "Gamma_Interferon_induced_Monokin"
## [13] "Thymus_Expressed_Chemokine_TECK" "TNF_RII"
## [15] "Alpha_1_Antitrypsin" "IGF_BP_2"
## [17] "Creatine_Kinase_MB" "MCP_2"
## [19] "Resistin" "Cortisol"
## [21] "E4"
##
## attr(,"class")
## [1] "NaiveBayes"
$results NB_RFE_Tune
## Variables ROC Sens Spec Accuracy Kappa ROCSD
## 1 1 0.7190930 0.2089286 0.9439474 0.7425417 0.1841923 0.08707182
## 2 21 0.7682472 0.6107143 0.7521053 0.7125865 0.3373127 0.10730612
## 3 41 0.7474013 0.6232143 0.7621053 0.7234432 0.3629843 0.11767270
## 4 61 0.7523731 0.6375000 0.7623684 0.7275641 0.3759538 0.10481520
## 5 81 0.7438064 0.6232143 0.7521053 0.7161681 0.3498289 0.10873176
## 6 101 0.7434164 0.6232143 0.7626316 0.7237179 0.3604692 0.10817177
## 7 121 0.7444220 0.5946429 0.7573684 0.7120472 0.3257190 0.11227352
## 8 127 0.7390414 0.5821429 0.7518421 0.7043549 0.3064041 0.11701325
## SensSD SpecSD AccuracySD KappaSD
## 1 0.1538549 0.04366712 0.05823576 0.1961714
## 2 0.2147482 0.13772656 0.10835094 0.2125839
## 3 0.2136979 0.14672583 0.11474056 0.2210172
## 4 0.2146244 0.14897335 0.12326383 0.2361289
## 5 0.2240579 0.14827831 0.11874534 0.2275762
## 6 0.2240579 0.13800005 0.11294404 0.2227129
## 7 0.2191980 0.11967690 0.09691544 0.2051666
## 8 0.2432769 0.12306395 0.10320115 0.2332805
<- NB_RFE_Tune$results[NB_RFE_Tune$results$ROC==max(NB_RFE_Tune$results$ROC),
(NB_RFE_Train_ROCCurveAUC c("ROC")])
## [1] 0.7682472
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(NB_RFE_Observed = PMA_PreModelling_Test$Class,
NB_RFE_Test NB_RFE_Predicted = predict(NB_RFE_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = NB_RFE_Test$NB_RFE_Observed,
NB_RFE_Test_ROC predictor = NB_RFE_Test$NB_RFE_Predicted.Impaired,
levels = rev(levels(NB_RFE_Test$NB_RFE_Observed)))
<- auc(NB_RFE_Test_ROC)[1]) (NB_RFE_Test_ROCCurveAUC
## [1] 0.7523148
##################################
# Running the logistic regression model
# by setting the caret method to 'glm'
# with implementation of recursive feature elimination
##################################
$functions <- lrFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary
KFold_RFEControl
set.seed(12345678)
<- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
LR_RFE_Tune y = PMA_PreModelling_Train$Class,
sizes = VariableSubset,
metric = "ROC",
rfeControl = KFold_RFEControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
LR_RFE_Tune
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
## Resampling performance over subset size:
##
## Variables ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD
## 1 0.6415 0.02679 1.0000 0.7342 0.03654 0.06950 0.05663 0.00000
## 21 0.8030 0.56250 0.8755 0.7902 0.45093 0.07628 0.12235 0.04509
## 41 0.7884 0.56429 0.7939 0.7306 0.34840 0.08024 0.16392 0.11014
## 61 0.6941 0.52143 0.7787 0.7082 0.28982 0.07069 0.10708 0.06353
## 81 0.7082 0.55000 0.7682 0.7088 0.30000 0.07954 0.15878 0.07380
## 101 0.6967 0.52143 0.7576 0.6932 0.26488 0.08321 0.16577 0.09132
## 121 0.7055 0.55000 0.7626 0.7045 0.29461 0.06840 0.14380 0.08269
## 127 0.7073 0.57857 0.7626 0.7122 0.31951 0.06575 0.14536 0.08269
## AccuracySD KappaSD Selected
## 0.01806 0.07728
## 0.03639 0.10371 *
## 0.08904 0.19484
## 0.04230 0.09026
## 0.06390 0.15137
## 0.07411 0.17107
## 0.05400 0.11994
## 0.06290 0.14129
##
## The top 5 variables (out of 21):
## Cortisol, RANTES, I_309, MCP_2, Clusterin_Apo_J
$fit LR_RFE_Tune
##
## Call: glm(formula = Class ~ ., family = "binomial", data = tmp)
##
## Coefficients:
## (Intercept) Cortisol
## 25.28358 -0.17458
## RANTES I_309
## 1.81740 0.69368
## MCP_2 Clusterin_Apo_J
## -0.86484 -6.62826
## Fetuin_A Apolipoprotein_A1
## -3.50171 2.88160
## VEGF Protein_S
## 1.20472 1.68572
## Cystatin_C PAI_1
## 5.43369 -2.90334
## SOD Leptin
## -3.22998 1.20938
## Complement_Factor_H C_Reactive_Protein
## 0.09791 -0.21416
## Fatty_Acid_Binding_Protein TGF_alpha
## -1.31378 -0.34938
## Thrombopoietin Myoglobin
## -0.51341 0.21488
## Betacellulin MMP_2
## -0.06691 -0.50738
##
## Degrees of Freedom: 266 Total (i.e. Null); 245 Residual
## Null Deviance: 313.3
## Residual Deviance: 153.4 AIC: 197.4
$results LR_RFE_Tune
## Variables ROC Sens Spec Accuracy Kappa ROCSD
## 1 1 0.6415367 0.02678571 1.0000000 0.7341779 0.03653678 0.06949685
## 2 21 0.8029605 0.56250000 0.8755263 0.7902015 0.45093180 0.07627619
## 3 41 0.7884398 0.56428571 0.7939474 0.7305963 0.34840368 0.08024416
## 4 61 0.6940742 0.52142857 0.7786842 0.7082214 0.28982065 0.07068925
## 5 81 0.7082213 0.55000000 0.7681579 0.7087709 0.30000469 0.07954371
## 6 101 0.6966729 0.52142857 0.7576316 0.6932438 0.26488351 0.08321054
## 7 121 0.7055381 0.55000000 0.7626316 0.7045075 0.29461432 0.06840188
## 8 127 0.7073308 0.57857143 0.7626316 0.7121998 0.31950527 0.06575141
## SensSD SpecSD AccuracySD KappaSD
## 1 0.05662589 0.00000000 0.01806173 0.07727694
## 2 0.12235003 0.04508891 0.03638724 0.10370583
## 3 0.16392300 0.11014310 0.08903578 0.19483605
## 4 0.10707670 0.06352779 0.04229518 0.09025537
## 5 0.15878471 0.07380368 0.06390018 0.15136651
## 6 0.16577141 0.09131617 0.07410602 0.17106952
## 7 0.14379651 0.08268725 0.05400302 0.11993918
## 8 0.14536489 0.08268725 0.06290438 0.14129499
<- LR_RFE_Tune$results[LR_RFE_Tune$results$ROC==max(LR_RFE_Tune$results$ROC),
(LR_RFE_Train_ROCCurveAUC c("ROC")])
## [1] 0.8029605
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(LR_RFE_Observed = PMA_PreModelling_Test$Class,
LR_RFE_Test LR_RFE_Predicted = predict(LR_RFE_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = LR_RFE_Test$LR_RFE_Observed,
LR_RFE_Test_ROC predictor = LR_RFE_Test$LR_RFE_Predicted.Impaired,
levels = rev(levels(LR_RFE_Test$LR_RFE_Observed)))
<- auc(LR_RFE_Test_ROC)[1]) (LR_RFE_Test_ROCCurveAUC
## [1] 0.869213
##################################
# Running the support vector machine (radial basis function kernel) model
# by setting the caret method to 'svmRadial'
# with implementation of recursive feature elimination
##################################
$functions <- caretFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary
KFold_RFEControl
<- trainControl(method = "cv",
KFold_RFETrainControl verboseIter = FALSE,
classProbs = TRUE,
allowParallel = FALSE)
set.seed(12345678)
<- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
SVM_R_RFE_Tune y = PMA_PreModelling_Train$Class,
method = "svmRadial",
metric = "ROC",
tuneLength = 10,
preProc = c("center", "scale"),
trControl = KFold_RFETrainControl,
sizes = VariableSubset,
rfeControl = KFold_RFEControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
SVM_R_RFE_Tune
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
## Resampling performance over subset size:
##
## Variables ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD
## 1 0.6601 0.02857 0.9900 0.7272 0.02546 0.13251 0.06023 0.02108
## 21 0.7625 0.48750 0.9432 0.8182 0.47705 0.14977 0.22447 0.06168
## 41 0.8337 0.49643 0.9068 0.7946 0.42860 0.10199 0.21541 0.06400
## 61 0.8399 0.53571 0.9326 0.8245 0.50350 0.09070 0.20893 0.04308
## 81 0.8402 0.52321 0.9066 0.8021 0.45772 0.09906 0.19270 0.07614
## 101 0.8332 0.49643 0.9329 0.8138 0.46519 0.08115 0.24554 0.05401
## 121 0.8416 0.53929 0.9074 0.8067 0.46317 0.08825 0.26011 0.05787
## 127 0.8400 0.50714 0.9174 0.8060 0.45494 0.09705 0.22559 0.06928
## AccuracySD KappaSD Selected
## 0.02866 0.09407
## 0.08411 0.25302
## 0.06225 0.19226
## 0.05577 0.17978
## 0.05138 0.13790
## 0.08346 0.26062
## 0.07806 0.24220 *
## 0.07662 0.22004
##
## The top 5 variables (out of 121):
## MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
$fit SVM_R_RFE_Tune
## Support Vector Machines with Radial Basis Function Kernel
##
## 267 samples
## 121 predictors
## 2 classes: 'Impaired', 'Control'
##
## Pre-processing: centered (121), scaled (121)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 241, 241, 240, 241, 240, ...
## Resampling results across tuning parameters:
##
## C Accuracy Kappa
## 0.25 0.8058913 0.4883727
## 0.50 0.8020452 0.4799836
## 1.00 0.7986162 0.4619809
## 2.00 0.8131665 0.4834344
## 4.00 0.8019129 0.4249401
## 8.00 0.7945055 0.4078516
## 16.00 0.7908018 0.3938628
## 32.00 0.7869556 0.3877159
## 64.00 0.7945055 0.4157865
## 128.00 0.7870981 0.3701294
##
## Tuning parameter 'sigma' was held constant at a value of 0.004773811
## Accuracy was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.004773811 and C = 2.
$results SVM_R_RFE_Tune
## Variables ROC Sens Spec Accuracy Kappa ROCSD
## 1 1 0.6600893 0.02857143 0.9900000 0.7271775 0.0254649 0.13250867
## 2 21 0.7624765 0.48750000 0.9431579 0.8181929 0.4770529 0.14976671
## 3 41 0.8337500 0.49642857 0.9068421 0.7945767 0.4286033 0.10198864
## 4 61 0.8398966 0.53571429 0.9326316 0.8245116 0.5034982 0.09069509
## 5 81 0.8401504 0.52321429 0.9065789 0.8021266 0.4577169 0.09906229
## 6 101 0.8332425 0.49642857 0.9328947 0.8137973 0.4651928 0.08114792
## 7 121 0.8415508 0.53928571 0.9073684 0.8066545 0.4631669 0.08825037
## 8 127 0.8400235 0.50714286 0.9173684 0.8059626 0.4549365 0.09705472
## SensSD SpecSD AccuracySD KappaSD
## 1 0.06023386 0.02108185 0.02865582 0.09407459
## 2 0.22446870 0.06168108 0.08410730 0.25301541
## 3 0.21540712 0.06399542 0.06224683 0.19226314
## 4 0.20892772 0.04308438 0.05576925 0.17978225
## 5 0.19270460 0.07614166 0.05137542 0.13790138
## 6 0.24553842 0.05400617 0.08346028 0.26062474
## 7 0.26011292 0.05786549 0.07805508 0.24219532
## 8 0.22559445 0.06928381 0.07662446 0.22003693
<- SVM_R_RFE_Tune$results[SVM_R_RFE_Tune$results$ROC==max(SVM_R_RFE_Tune$results$ROC),
(SVM_R_RFE_Train_ROCCurveAUC c("ROC")])
## [1] 0.8415508
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(SVM_R_RFE_Observed = PMA_PreModelling_Test$Class,
SVM_R_RFE_Test SVM_R_RFE_Predicted = predict(SVM_R_RFE_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = SVM_R_RFE_Test$SVM_R_RFE_Observed,
SVM_R_RFE_Test_ROC predictor = SVM_R_RFE_Test$SVM_R_RFE_Predicted.Impaired,
levels = rev(levels(SVM_R_RFE_Test$SVM_R_RFE_Observed)))
<- auc(SVM_R_RFE_Test_ROC)[1]) (SVM_R_RFE_Test_ROCCurveAUC
## [1] 0.8599537
##################################
# Running the k-nearest neighbors model
# by setting the caret method to 'knn'
# with implementation of recursive feature elimination
##################################
$functions <- caretFuncs
KFold_RFEControl$functions$summary <- FiveMetricsSummary
KFold_RFEControl
<- trainControl(method = "cv",
KFold_RFETrainControl verboseIter = FALSE,
classProbs = TRUE,
allowParallel = FALSE)
set.seed(12345678)
<- caret::rfe(x = PMA_PreModelling_Train[,!names(PMA_PreModelling_Train) %in% c("Class")],
KNN_RFE_Tune y = PMA_PreModelling_Train$Class,
method = "knn",
metric = "ROC",
tuneLength = 10,
preProc = c("center", "scale"),
trControl = KFold_RFETrainControl,
sizes = VariableSubset,
rfeControl = KFold_RFEControl)
##################################
# Reporting the cross-validation results
# for the train set
##################################
KNN_RFE_Tune
##
## Recursive feature selection
##
## Outer resampling method: Cross-Validated (10 fold)
##
## Resampling performance over subset size:
##
## Variables ROC Sens Spec Accuracy Kappa ROCSD SensSD SpecSD
## 1 0.7133 0.3964 0.8813 0.7491 0.3014 0.08153 0.1472 0.05522
## 21 0.7568 0.4161 0.9379 0.7951 0.3940 0.12900 0.2531 0.07130
## 41 0.7922 0.4143 0.9534 0.8062 0.4120 0.11749 0.2559 0.05628
## 61 0.7780 0.3054 0.9229 0.7544 0.2699 0.10890 0.1860 0.09598
## 81 0.7851 0.3607 0.9432 0.7839 0.3574 0.11967 0.1577 0.06968
## 101 0.7794 0.3321 0.9539 0.7837 0.3319 0.11815 0.1978 0.03788
## 121 0.7611 0.2339 0.9271 0.7377 0.1909 0.12715 0.1853 0.07551
## 127 0.7711 0.2750 0.9234 0.7465 0.2372 0.13122 0.1358 0.08669
## AccuracySD KappaSD Selected
## 0.05439 0.1650
## 0.08946 0.2676
## 0.07162 0.2409 *
## 0.09683 0.2413
## 0.07482 0.2026
## 0.06240 0.2232
## 0.07824 0.2275
## 0.06278 0.1420
##
## The top 5 variables (out of 41):
## MMP10, GRO_alpha, TRAIL_R3, Fibrinogen, PAI_1
$fit KNN_RFE_Tune
## k-Nearest Neighbors
##
## 267 samples
## 41 predictor
## 2 classes: 'Impaired', 'Control'
##
## Pre-processing: centered (41), scaled (41)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 240, 241, 241, 239, 241, 241, ...
## Resampling results across tuning parameters:
##
## k Accuracy Kappa
## 5 0.7980057 0.4217501
## 7 0.7947192 0.4291988
## 9 0.7948616 0.4266179
## 11 0.8028388 0.4401765
## 13 0.8138278 0.4665307
## 15 0.8135429 0.4537696
## 17 0.8397538 0.5157486
## 19 0.8247965 0.4751949
## 21 0.8360501 0.5056444
## 23 0.8322039 0.4919978
##
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was k = 17.
$results KNN_RFE_Tune
## Variables ROC Sens Spec Accuracy Kappa ROCSD
## 1 1 0.7133130 0.3964286 0.8813158 0.7491249 0.3013735 0.08153297
## 2 21 0.7567763 0.4160714 0.9378947 0.7951262 0.3939577 0.12900410
## 3 41 0.7921523 0.4142857 0.9534211 0.8062475 0.4120084 0.11749349
## 4 61 0.7779911 0.3053571 0.9228947 0.7543549 0.2699427 0.10889505
## 5 81 0.7851316 0.3607143 0.9431579 0.7838726 0.3574155 0.11966688
## 6 101 0.7794267 0.3321429 0.9539474 0.7837302 0.3318665 0.11814945
## 7 121 0.7610526 0.2339286 0.9271053 0.7377289 0.1909460 0.12715001
## 8 127 0.7710879 0.2750000 0.9234211 0.7465201 0.2372464 0.13122350
## SensSD SpecSD AccuracySD KappaSD
## 1 0.1472056 0.05522067 0.05438564 0.1650017
## 2 0.2531057 0.07129804 0.08945859 0.2676203
## 3 0.2558555 0.05627793 0.07161739 0.2408532
## 4 0.1860440 0.09597991 0.09683044 0.2413189
## 5 0.1576651 0.06968248 0.07482452 0.2026297
## 6 0.1978126 0.03787707 0.06240487 0.2231843
## 7 0.1852807 0.07551047 0.07824282 0.2275205
## 8 0.1357874 0.08669090 0.06277844 0.1420277
<- KNN_RFE_Tune$results[KNN_RFE_Tune$results$ROC==max(KNN_RFE_Tune$results$ROC),
(KNN_RFE_Train_ROCCurveAUC c("ROC")])
## [1] 0.7921523
##################################
# Independently evaluating the model and
# reporting the independent evaluation results
# on the test set
##################################
<- data.frame(KNN_RFE_Observed = PMA_PreModelling_Test$Class,
KNN_RFE_Test KNN_RFE_Predicted = predict(KNN_RFE_Tune,
!names(PMA_PreModelling_Test) %in% c("Class")],
PMA_PreModelling_Test[,type = "prob"))
##################################
# Reporting the independent evaluation results
# for the test set
##################################
<- roc(response = KNN_RFE_Test$KNN_RFE_Observed,
KNN_RFE_Test_ROC predictor = KNN_RFE_Test$KNN_RFE_Predicted.Impaired,
levels = rev(levels(KNN_RFE_Test$KNN_RFE_Observed)))
<- auc(KNN_RFE_Test_ROC)[1]) (KNN_RFE_Test_ROCCurveAUC
## [1] 0.8414352
##################################
# Consolidating all evaluation results
# for the train and test sets
# using the AUROC metric
##################################
<- c('RF_FULL','LDA_FULL','NB_FULL','LR_FULL','SVM_R_FULL','KNN_FULL','RF_RFE','LDA_RFE','NB_RFE','LR_RFE','SVM_R_RFE','KNN_RFE',
Model 'RF_FULL','LDA_FULL','NB_FULL','LR_FULL','SVM_R_FULL','KNN_FULL','RF_RFE','LDA_RFE','NB_RFE','LR_RFE','SVM_R_RFE','KNN_RFE')
<- c(rep('Cross-Validation',12),rep('Test',12))
Set
<- c(RF_FULL_Train_ROCCurveAUC,
ROCCurveAUC
LDA_FULL_Train_ROCCurveAUC,
NB_FULL_Train_ROCCurveAUC,
LR_FULL_Train_ROCCurveAUC,
SVM_R_FULL_Train_ROCCurveAUC,
KNN_FULL_Train_ROCCurveAUC,
RF_RFE_Train_ROCCurveAUC,
LDA_RFE_Train_ROCCurveAUC,
NB_RFE_Train_ROCCurveAUC,
LR_RFE_Train_ROCCurveAUC,
SVM_R_RFE_Train_ROCCurveAUC,
KNN_RFE_Train_ROCCurveAUC,
RF_FULL_Test_ROCCurveAUC,
LDA_FULL_Test_ROCCurveAUC,
NB_FULL_Test_ROCCurveAUC,
LR_FULL_Test_ROCCurveAUC,
SVM_R_FULL_Test_ROCCurveAUC,
KNN_FULL_Test_ROCCurveAUC,
RF_RFE_Test_ROCCurveAUC,
LDA_RFE_Test_ROCCurveAUC,
NB_RFE_Test_ROCCurveAUC,
LR_RFE_Test_ROCCurveAUC,
SVM_R_RFE_Test_ROCCurveAUC,
KNN_RFE_Test_ROCCurveAUC)
<- as.data.frame(cbind(Model,Set,ROCCurveAUC))
ROCCurveAUC_Summary
$ROCCurveAUC <- as.numeric(as.character(ROCCurveAUC_Summary$ROCCurveAUC))
ROCCurveAUC_Summary$Set <- factor(ROCCurveAUC_Summary$Set,
ROCCurveAUC_Summarylevels = c("Cross-Validation",
"Test"))
$Model <- factor(ROCCurveAUC_Summary$Model,
ROCCurveAUC_Summarylevels = c('RF_FULL',
'RF_RFE',
'LDA_FULL',
'LDA_RFE',
'NB_FULL',
'NB_RFE',
'LR_FULL',
'LR_RFE',
'SVM_R_FULL',
'SVM_R_RFE',
'KNN_FULL',
'KNN_RFE'))
print(ROCCurveAUC_Summary, row.names=FALSE)
## Model Set ROCCurveAUC
## RF_FULL Cross-Validation 0.7826833
## LDA_FULL Cross-Validation 0.8015132
## NB_FULL Cross-Validation 0.7390414
## LR_FULL Cross-Validation 0.7073308
## SVM_R_FULL Cross-Validation 0.8569079
## KNN_FULL Cross-Validation 0.7988651
## RF_RFE Cross-Validation 0.8153477
## LDA_RFE Cross-Validation 0.8356861
## NB_RFE Cross-Validation 0.7682472
## LR_RFE Cross-Validation 0.8029605
## SVM_R_RFE Cross-Validation 0.8415508
## KNN_RFE Cross-Validation 0.7921523
## RF_FULL Test 0.7980324
## LDA_FULL Test 0.7719907
## NB_FULL Test 0.6793981
## LR_FULL Test 0.7719907
## SVM_R_FULL Test 0.8206019
## KNN_FULL Test 0.7916667
## RF_RFE Test 0.8420139
## LDA_RFE Test 0.8530093
## NB_RFE Test 0.7523148
## LR_RFE Test 0.8692130
## SVM_R_RFE Test 0.8599537
## KNN_RFE Test 0.8414352
<- dotplot(Model ~ ROCCurveAUC,
(ROCCurveAUC_Plot data = ROCCurveAUC_Summary,
groups = Set,
main = "Classification Model Performance Comparison",
ylab = "Model",
xlab = "AUROC",
auto.key = list(adj=1, space="top", columns=2),
type=c("p", "h"),
origin = 0,
alpha = 0.45,
pch = 16,
cex = 2))