##################################
# Loading R libraries
##################################
library(DALEX)
library(caret)
library(randomForest)
library(e1071)
library(gbm)
library(skimr)
library(corrplot)
library(lares)
library(dplyr)
library(minerva)
library(CORElearn)
library(patchwork)
library(lime)
library(DALEXtra)
##################################
# Defining file paths
##################################
<- file.path("datasets","original")
DATASETS_ORIGINAL_PATH
##################################
# Loading source and
# formulating the analysis set
##################################
<- read.csv(file.path("..", DATASETS_ORIGINAL_PATH, "Life_Expectancy_Data.csv"),
LED na.strings=c("NA","NaN"," ",""),
stringsAsFactors = FALSE)
<- as.data.frame(LED)
LED
##################################
# Performing a general exploration of the data set
##################################
dim(LED)
## [1] 394 23
str(LED)
## 'data.frame': 394 obs. of 23 variables:
## $ COUNTRY: chr "Afghanistan" "Albania" "Algeria" "Angola" ...
## $ YEAR : int 2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 ...
## $ GENDER : chr "Female" "Female" "Female" "Female" ...
## $ CONTIN : chr "Asia" "Europe" "Africa" "Africa" ...
## $ LIFEXP : num 66.4 80.2 78.1 64 78.1 ...
## $ UNEMPR : num 14.06 11.32 18.63 7.84 8.26 ...
## $ INFMOR : num 42.9 7.7 18.6 44.5 5.1 ...
## $ GDP : num 1.88e+10 1.54e+10 1.72e+11 8.94e+10 1.69e+09 ...
## $ GNI : num 1.91e+10 1.52e+10 1.68e+11 8.19e+10 1.58e+09 ...
## $ CLTECH : num 36 80.7 99.3 49.6 100 ...
## $ PERCAP : num 494 5396 3990 2810 17377 ...
## $ RTIMOR : num 15.9 11.7 20.9 26.1 0 ...
## $ TUBINC : num 189 16 61 351 0 29 26 2.2 6.9 6 ...
## $ DPTIMM : num 66 99 91 57 95 ...
## $ HEPIMM : num 66 99 91 53 99 ...
## $ MEAIMM : num 64 95 80 51 93 ...
## $ HOSBED : num 0.432 3.052 1.8 0.8 2.581 ...
## $ SANSER : num 49 99.2 86.1 51.4 85.5 ...
## $ TUBTRT : num 91 88 86 69 72.3 ...
## $ URBPOP : num 25.8 61.2 73.2 66.2 24.5 ...
## $ RURPOP : num 74.2 38.8 26.8 33.8 75.5 ...
## $ NCOMOR : num 36.2 6 12.8 19.4 17.6 ...
## $ SUIRAT : num 3.6 2.7 1.8 2.3 0.8 ...
summary(LED)
## COUNTRY YEAR GENDER CONTIN
## Length:394 Min. :2019 Length:394 Length:394
## Class :character 1st Qu.:2019 Class :character Class :character
## Mode :character Median :2019 Mode :character Mode :character
## Mean :2019
## 3rd Qu.:2019
## Max. :2019
## LIFEXP UNEMPR INFMOR GDP
## Min. :51.20 Min. : 0.071 Min. : 1.40 Min. :1.880e+08
## 1st Qu.:67.61 1st Qu.: 3.560 1st Qu.: 6.00 1st Qu.:1.130e+10
## Median :74.33 Median : 5.663 Median :15.20 Median :3.865e+10
## Mean :73.07 Mean : 7.769 Mean :21.55 Mean :4.614e+11
## 3rd Qu.:79.30 3rd Qu.: 9.842 3rd Qu.:30.66 3rd Qu.:2.450e+11
## Max. :88.10 Max. :41.153 Max. :88.80 Max. :2.140e+13
## GNI CLTECH PERCAP RTIMOR
## Min. :3.754e+08 Min. : 0.00 Min. : 228.2 Min. : 0.0
## 1st Qu.:1.111e+10 1st Qu.: 33.50 1st Qu.: 2229.9 1st Qu.: 8.2
## Median :4.005e+10 Median : 79.50 Median : 6609.5 Median :16.0
## Mean :4.814e+11 Mean : 65.66 Mean : 16682.2 Mean :17.0
## 3rd Qu.:2.450e+11 3rd Qu.:100.00 3rd Qu.: 19303.5 3rd Qu.:23.9
## Max. :2.170e+13 Max. :100.00 Max. :175813.9 Max. :64.6
## TUBINC DPTIMM HEPIMM MEAIMM
## Min. : 0.0 Min. :35.00 Min. :35.00 Min. :37.00
## 1st Qu.: 12.0 1st Qu.:85.69 1st Qu.:81.31 1st Qu.:84.85
## Median : 46.0 Median :92.00 Median :91.00 Median :92.00
## Mean :103.5 Mean :87.87 Mean :86.64 Mean :87.21
## 3rd Qu.:140.0 3rd Qu.:97.00 3rd Qu.:96.00 3rd Qu.:96.00
## Max. :654.0 Max. :99.00 Max. :99.00 Max. :99.00
## HOSBED SANSER TUBTRT URBPOP
## Min. : 0.200 Min. : 8.632 Min. : 0.00 Min. : 13.25
## 1st Qu.: 1.300 1st Qu.: 63.898 1st Qu.: 73.00 1st Qu.: 41.61
## Median : 2.570 Median : 91.144 Median : 82.00 Median : 58.76
## Mean : 2.987 Mean : 77.495 Mean : 77.68 Mean : 59.09
## 3rd Qu.: 3.746 3rd Qu.: 98.516 3rd Qu.: 88.00 3rd Qu.: 77.94
## Max. :13.710 Max. :100.000 Max. :100.00 Max. :100.00
## RURPOP NCOMOR SUIRAT
## Min. : 0.00 Min. : 4.40 Min. : 0.000
## 1st Qu.:22.06 1st Qu.:13.60 1st Qu.: 3.300
## Median :41.24 Median :19.95 Median : 6.850
## Mean :40.91 Mean :20.02 Mean : 9.572
## 3rd Qu.:58.39 3rd Qu.:24.07 3rd Qu.: 11.175
## Max. :86.75 Max. :58.40 Max. :116.000
##################################
# Transforming to appropriate data types
##################################
$YEAR <- factor(LED$YEAR,
LEDlevels = c("2019"))
$GENDER <- factor(LED$GENDER,
LEDlevels = c("Male","Female"))
$CONTIN <- as.factor(LED$CONTIN)
LED
##################################
# Reducing the range of values
# for certain numeric predictors
##################################
$GDP <- LED$GDP/1000000000
LED$GNI <- LED$GNI/1000000000
LED$PERCAP <- LED$PERCAP/1000
LED
##################################
# Formulating a data type assessment summary
##################################
<- LED
PDA <- data.frame(
(PDA.Summary Column.Index=c(1:length(names(PDA))),
Column.Name= names(PDA),
Column.Type=sapply(PDA, function(x) class(x)),
row.names=NULL)
)
## Column.Index Column.Name Column.Type
## 1 1 COUNTRY character
## 2 2 YEAR factor
## 3 3 GENDER factor
## 4 4 CONTIN factor
## 5 5 LIFEXP numeric
## 6 6 UNEMPR numeric
## 7 7 INFMOR numeric
## 8 8 GDP numeric
## 9 9 GNI numeric
## 10 10 CLTECH numeric
## 11 11 PERCAP numeric
## 12 12 RTIMOR numeric
## 13 13 TUBINC numeric
## 14 14 DPTIMM numeric
## 15 15 HEPIMM numeric
## 16 16 MEAIMM numeric
## 17 17 HOSBED numeric
## 18 18 SANSER numeric
## 19 19 TUBTRT numeric
## 20 20 URBPOP numeric
## 21 21 RURPOP numeric
## 22 22 NCOMOR numeric
## 23 23 SUIRAT numeric
##################################
# Loading dataset
##################################
<- LED
DQA
##################################
# Formulating an overall data quality assessment summary
##################################
<- data.frame(
(DQA.Summary Column.Index=c(1:length(names(DQA))),
Column.Name= names(DQA),
Column.Type=sapply(DQA, function(x) class(x)),
Row.Count=sapply(DQA, function(x) nrow(DQA)),
NA.Count=sapply(DQA,function(x)sum(is.na(x))),
Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
row.names=NULL)
)
## Column.Index Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 1 1 COUNTRY character 394 0 1.000
## 2 2 YEAR factor 394 0 1.000
## 3 3 GENDER factor 394 0 1.000
## 4 4 CONTIN factor 394 0 1.000
## 5 5 LIFEXP numeric 394 0 1.000
## 6 6 UNEMPR numeric 394 0 1.000
## 7 7 INFMOR numeric 394 0 1.000
## 8 8 GDP numeric 394 0 1.000
## 9 9 GNI numeric 394 0 1.000
## 10 10 CLTECH numeric 394 0 1.000
## 11 11 PERCAP numeric 394 0 1.000
## 12 12 RTIMOR numeric 394 0 1.000
## 13 13 TUBINC numeric 394 0 1.000
## 14 14 DPTIMM numeric 394 0 1.000
## 15 15 HEPIMM numeric 394 0 1.000
## 16 16 MEAIMM numeric 394 0 1.000
## 17 17 HOSBED numeric 394 0 1.000
## 18 18 SANSER numeric 394 0 1.000
## 19 19 TUBTRT numeric 394 0 1.000
## 20 20 URBPOP numeric 394 0 1.000
## 21 21 RURPOP numeric 394 0 1.000
## 22 22 NCOMOR numeric 394 0 1.000
## 23 23 SUIRAT numeric 394 0 1.000
##################################
# Listing all Predictors
##################################
<- DQA[,!names(DQA) %in% c("COUNTRY","YEAR","LIFEXP")]
DQA.Predictors
##################################
# Listing all numeric Predictors
##################################
<- DQA.Predictors[,sapply(DQA.Predictors, is.numeric), drop = FALSE]
DQA.Predictors.Numeric
if (length(names(DQA.Predictors.Numeric))>0) {
print(paste0("There is (are) ",
length(names(DQA.Predictors.Numeric))),
(" numeric descriptor variable(s)."))
else {
} print("There are no numeric descriptor variables.")
}
## [1] "There is (are) 18 numeric descriptor variable(s)."
##################################
# Listing all factor Predictors
##################################
<- DQA.Predictors[,sapply(DQA.Predictors, is.factor), drop = FALSE]
DQA.Predictors.Factor
if (length(names(DQA.Predictors.Factor))>0) {
print(paste0("There is (are) ",
length(names(DQA.Predictors.Factor))),
(" factor descriptor variable(s)."))
else {
} print("There are no factor descriptor variables.")
}
## [1] "There is (are) 2 factor descriptor variable(s)."
##################################
# Formulating a data quality assessment summary for factor Predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {
##################################
# Formulating a function to determine the first mode
##################################
<- function(x) {
FirstModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab == max(tab)]
ux[tab
}
##################################
# Formulating a function to determine the second mode
##################################
<- function(x) {
SecondModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab = ux[tab == max(tab)]
fm = x[!(x %in% fm)]
sm <- unique(sm)
usm <- tabulate(match(sm, usm))
tabsm ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
return("x"),
return(usm[tabsm == max(tabsm)]))
}
<- data.frame(
(DQA.Predictors.Factor.Summary Column.Name= names(DQA.Predictors.Factor),
Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)),
Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
row.names=NULL)
)
}
## Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1 GENDER factor 2 Female x
## 2 CONTIN factor 6 Africa Asia
## First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 1 197 0 0.005 Inf
## 2 106 100 0.015 1.060
##################################
# Formulating a data quality assessment summary for numeric Predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {
##################################
# Formulating a function to determine the first mode
##################################
<- function(x) {
FirstModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab == max(tab)]
ux[tab
}
##################################
# Formulating a function to determine the second mode
##################################
<- function(x) {
SecondModes <- unique(na.omit(x))
ux <- tabulate(match(x, ux))
tab = ux[tab == max(tab)]
fm = na.omit(x)[!(na.omit(x) %in% fm)]
sm <- unique(sm)
usm <- tabulate(match(sm, usm))
tabsm ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
return(0.00001),
return(usm[tabsm == max(tabsm)]))
}
<- data.frame(
(DQA.Predictors.Numeric.Summary Column.Name= names(DQA.Predictors.Numeric),
Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)),
Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
row.names=NULL)
)
}
## Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 1 UNEMPR numeric 370 0.939 8.256
## 2 INFMOR numeric 245 0.622 30.235
## 3 GDP numeric 254 0.645 303.000
## 4 GNI numeric 253 0.642 2040.000
## 5 CLTECH numeric 112 0.284 100.000
## 6 PERCAP numeric 196 0.497 12.669
## 7 RTIMOR numeric 141 0.358 18.229
## 8 TUBINC numeric 146 0.371 136.043
## 9 DPTIMM numeric 45 0.114 99.000
## 10 HEPIMM numeric 45 0.114 81.308
## 11 MEAIMM numeric 48 0.122 99.000
## 12 HOSBED numeric 173 0.439 2.986
## 13 SANSER numeric 186 0.472 100.000
## 14 TUBTRT numeric 59 0.150 84.000
## 15 URBPOP numeric 191 0.485 100.000
## 16 RURPOP numeric 191 0.485 0.000
## 17 NCOMOR numeric 214 0.543 22.100
## 18 SUIRAT numeric 176 0.447 10.619
## Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 1 3.924 22 2 11.000
## 2 2.100 28 7 4.000
## 3 279.000 4 3 1.333
## 4 316.000 8 4 2.000
## 5 60.593 108 34 3.176
## 6 0.494 4 2 2.000
## 7 26.800 28 6 4.667
## 8 35.000 12 10 1.200
## 9 85.685 44 30 1.467
## 10 99.000 40 38 1.053
## 11 84.855 48 30 1.600
## 12 0.400 34 8 4.250
## 13 49.006 24 2 12.000
## 14 83.000 22 20 1.100
## 15 55.985 10 4 2.500
## 16 44.015 10 4 2.500
## 17 6.800 30 5 6.000
## 18 7.600 30 8 3.750
## Minimum Mean Median Maximum Skewness Kurtosis Percentile25th
## 1 0.071 7.769 5.663 41.153 1.751 3.680 3.560
## 2 1.400 21.546 15.200 88.800 1.084 0.567 6.000
## 3 0.188 461.374 38.653 21400.000 8.619 82.715 11.304
## 4 0.375 481.441 40.048 21700.000 8.547 82.139 11.110
## 5 0.000 65.660 79.500 100.000 -0.623 -1.141 33.500
## 6 0.228 16.682 6.610 175.814 2.810 10.880 2.230
## 7 0.000 17.003 16.000 64.600 0.740 1.028 8.200
## 8 0.000 103.489 46.000 654.000 1.864 3.177 12.000
## 9 35.000 87.875 92.000 99.000 -1.856 3.434 85.685
## 10 35.000 86.640 91.000 99.000 -1.595 2.477 81.308
## 11 37.000 87.207 92.000 99.000 -1.688 2.574 84.855
## 12 0.200 2.987 2.570 13.710 1.697 3.859 1.300
## 13 8.632 77.495 91.144 100.000 -1.122 -0.155 63.898
## 14 0.000 77.675 82.000 100.000 -2.194 5.571 73.000
## 15 13.250 59.094 58.760 100.000 -0.132 -0.991 41.612
## 16 0.000 40.906 41.240 86.750 0.132 -0.991 22.058
## 17 4.400 20.021 19.950 58.400 0.864 1.551 13.600
## 18 0.000 9.572 6.850 116.000 4.082 29.352 3.300
## Percentile75th
## 1 9.842
## 2 30.659
## 3 245.000
## 4 245.000
## 5 100.000
## 6 19.304
## 7 23.900
## 8 140.000
## 9 97.000
## 10 96.000
## 11 96.000
## 12 3.746
## 13 98.516
## 14 88.000
## 15 77.942
## 16 58.388
## 17 24.075
## 18 11.175
##################################
# Identifying potential data quality issues
##################################
##################################
# Checking for missing observations
##################################
if ((nrow(DQA.Summary[DQA.Summary$NA.Count>0,]))>0){
print(paste0("Missing observations noted for ",
nrow(DQA.Summary[DQA.Summary$NA.Count>0,])),
(" variable(s) with NA.Count>0 and Fill.Rate<1.0."))
$NA.Count>0,]
DQA.Summary[DQA.Summaryelse {
} print("No missing observations noted.")
}
## [1] "No missing observations noted."
##################################
# Checking for zero or near-zero variance Predictors
##################################
if (length(names(DQA.Predictors.Factor))==0) {
print("No factor Predictors noted.")
else if (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])>0){
} print(paste0("Low variance observed for ",
nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])),
(" factor variable(s) with First.Second.Mode.Ratio>5."))
as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,]
DQA.Predictors.Factor.Summary[else {
} print("No low variance factor Predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 1 factor variable(s) with First.Second.Mode.Ratio>5."
## Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1 GENDER factor 2 Female x
## First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 1 197 0 0.005 Inf
if (length(names(DQA.Predictors.Numeric))==0) {
print("No numeric Predictors noted.")
else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])>0){
} print(paste0("Low variance observed for ",
nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])),
(" numeric variable(s) with First.Second.Mode.Ratio>5."))
as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,]
DQA.Predictors.Numeric.Summary[else {
} print("No low variance numeric Predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 3 numeric variable(s) with First.Second.Mode.Ratio>5."
## Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 1 UNEMPR numeric 370 0.939 8.256
## 13 SANSER numeric 186 0.472 100.000
## 17 NCOMOR numeric 214 0.543 22.100
## Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 1 3.924 22 2 11.000
## 13 49.006 24 2 12.000
## 17 6.800 30 5 6.000
## Minimum Mean Median Maximum Skewness Kurtosis Percentile25th
## 1 0.071 7.769 5.663 41.153 1.751 3.680 3.560
## 13 8.632 77.495 91.144 100.000 -1.122 -0.155 63.898
## 17 4.400 20.021 19.950 58.400 0.864 1.551 13.600
## Percentile75th
## 1 9.842
## 13 98.516
## 17 24.075
if (length(names(DQA.Predictors.Numeric))==0) {
print("No numeric Predictors noted.")
else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])>0){
} print(paste0("Low variance observed for ",
nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])),
(" numeric variable(s) with Unique.Count.Ratio<0.01."))
as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,]
DQA.Predictors.Numeric.Summary[else {
} print("No low variance numeric Predictors due to low unique count ratio noted.")
}
## [1] "No low variance numeric Predictors due to low unique count ratio noted."
##################################
# Checking for skewed Predictors
##################################
if (length(names(DQA.Predictors.Numeric))==0) {
print("No numeric Predictors noted.")
else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
} as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])>0){
print(paste0("High skewness observed for ",
nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
(as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])),
" numeric variable(s) with Skewness>3 or Skewness<(-3)."))
as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),]
else {
} print("No skewed numeric Predictors noted.")
}
## [1] "High skewness observed for 3 numeric variable(s) with Skewness>3 or Skewness<(-3)."
## Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 3 GDP numeric 254 0.645 303.000
## 4 GNI numeric 253 0.642 2040.000
## 18 SUIRAT numeric 176 0.447 10.619
## Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 3 279.000 4 3 1.333
## 4 316.000 8 4 2.000
## 18 7.600 30 8 3.750
## Minimum Mean Median Maximum Skewness Kurtosis Percentile25th
## 3 0.188 461.374 38.653 21400.000 8.619 82.715 11.304
## 4 0.375 481.441 40.048 21700.000 8.547 82.139 11.110
## 18 0.000 9.572 6.850 116.000 4.082 29.352 3.300
## Percentile75th
## 3 245.000
## 4 245.000
## 18 11.175
##################################
# Loading dataset
##################################
<- LED
DPA
##################################
# Gathering descriptive statistics
##################################
<- skim(DPA)) (DPA_Skimmed
Name | DPA |
Number of rows | 394 |
Number of columns | 23 |
_______________________ | |
Column type frequency: | |
character | 1 |
factor | 3 |
numeric | 19 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
COUNTRY | 0 | 1 | 4 | 30 | 0 | 197 | 0 |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
YEAR | 0 | 1 | FALSE | 1 | 201: 394 |
GENDER | 0 | 1 | FALSE | 2 | Mal: 197, Fem: 197 |
CONTIN | 0 | 1 | FALSE | 6 | Afr: 106, Asi: 100, Eur: 86, Nor: 52 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
LIFEXP | 0 | 1 | 73.07 | 7.82 | 51.20 | 67.61 | 74.32 | 79.30 | 88.10 | ▁▃▆▇▃ |
UNEMPR | 0 | 1 | 7.77 | 6.35 | 0.07 | 3.56 | 5.66 | 9.84 | 41.15 | ▇▂▁▁▁ |
INFMOR | 0 | 1 | 21.55 | 18.67 | 1.40 | 6.00 | 15.20 | 30.66 | 88.80 | ▇▃▂▁▁ |
GDP | 0 | 1 | 461.37 | 1920.36 | 0.19 | 11.30 | 38.65 | 245.00 | 21400.00 | ▇▁▁▁▁ |
GNI | 0 | 1 | 481.44 | 1942.86 | 0.38 | 11.11 | 40.05 | 245.00 | 21700.00 | ▇▁▁▁▁ |
CLTECH | 0 | 1 | 65.66 | 36.33 | 0.00 | 33.50 | 79.50 | 100.00 | 100.00 | ▃▁▁▂▇ |
PERCAP | 0 | 1 | 16.68 | 24.32 | 0.23 | 2.23 | 6.61 | 19.30 | 175.81 | ▇▁▁▁▁ |
RTIMOR | 0 | 1 | 17.00 | 10.34 | 0.00 | 8.20 | 16.00 | 23.90 | 64.60 | ▇▇▅▁▁ |
TUBINC | 0 | 1 | 103.49 | 133.68 | 0.00 | 12.00 | 46.00 | 140.00 | 654.00 | ▇▂▁▁▁ |
DPTIMM | 0 | 1 | 87.87 | 12.41 | 35.00 | 85.69 | 92.00 | 97.00 | 99.00 | ▁▁▁▃▇ |
HEPIMM | 0 | 1 | 86.64 | 12.72 | 35.00 | 81.31 | 91.00 | 96.00 | 99.00 | ▁▁▁▃▇ |
MEAIMM | 0 | 1 | 87.21 | 13.17 | 37.00 | 84.85 | 92.00 | 96.00 | 99.00 | ▁▁▁▃▇ |
HOSBED | 0 | 1 | 2.99 | 2.35 | 0.20 | 1.30 | 2.57 | 3.75 | 13.71 | ▇▅▂▁▁ |
SANSER | 0 | 1 | 77.49 | 27.63 | 8.63 | 63.90 | 91.14 | 98.52 | 100.00 | ▁▁▁▂▇ |
TUBTRT | 0 | 1 | 77.68 | 16.97 | 0.00 | 73.00 | 82.00 | 88.00 | 100.00 | ▁▁▁▅▇ |
URBPOP | 0 | 1 | 59.09 | 23.24 | 13.25 | 41.61 | 58.76 | 77.94 | 100.00 | ▅▆▇▇▆ |
RURPOP | 0 | 1 | 40.91 | 23.24 | 0.00 | 22.06 | 41.24 | 58.39 | 86.75 | ▆▇▇▆▅ |
NCOMOR | 0 | 1 | 20.02 | 8.40 | 4.40 | 13.60 | 19.95 | 24.08 | 58.40 | ▅▇▂▁▁ |
SUIRAT | 0 | 1 | 9.57 | 10.49 | 0.00 | 3.30 | 6.85 | 11.17 | 116.00 | ▇▁▁▁▁ |
##################################
# Outlier Treatment
##################################
##################################
# Listing all Predictors
##################################
<- DPA[,!names(DPA) %in% c("COUNTRY","YEAR","LIFEXP")]
DPA.Predictors
##################################
# Listing all numeric predictors
##################################
<- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]
DPA.Predictors.Numeric
##################################
# Identifying outliers for the numeric predictors
##################################
<- c()
OutlierCountList
for (i in 1:ncol(DPA.Predictors.Numeric)) {
<- boxplot.stats(DPA.Predictors.Numeric[,i])$out
Outliers <- length(Outliers)
OutlierCount <- append(OutlierCountList,OutlierCount)
OutlierCountList <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
OutlierIndices print(
ggplot(DPA.Predictors.Numeric, aes(x=DPA.Predictors.Numeric[,i])) +
geom_boxplot() +
theme_bw() +
theme(axis.text.y=element_blank(),
axis.ticks.y=element_blank()) +
xlab(names(DPA.Predictors.Numeric)[i]) +
labs(title=names(DPA.Predictors.Numeric)[i],
subtitle=paste0(OutlierCount, " Outlier(s) Detected")))
}
##################################
# Formulating the histogram
# for the numeric predictors
##################################
for (i in 1:ncol(DPA.Predictors.Numeric)) {
<- format(round(median(DPA.Predictors.Numeric[,i],na.rm = TRUE),2), nsmall=2)
Median <- format(round(mean(DPA.Predictors.Numeric[,i],na.rm = TRUE),2), nsmall=2)
Mean <- format(round(skewness(DPA.Predictors.Numeric[,i],na.rm = TRUE),2), nsmall=2)
Skewness print(
ggplot(DPA.Predictors.Numeric, aes(x=DPA.Predictors.Numeric[,i])) +
geom_histogram(binwidth=1,color="black", fill="white") +
geom_vline(aes(xintercept=mean(DPA.Predictors.Numeric[,i])),
color="blue", size=1) +
geom_vline(aes(xintercept=median(DPA.Predictors.Numeric[,i])),
color="red", size=1) +
theme_bw() +
ylab("Count") +
xlab(names(DPA.Predictors.Numeric)[i]) +
labs(title=names(DPA.Predictors.Numeric)[i],
subtitle=paste0("Median = ", Median,
", Mean = ", Mean,
", Skewness = ", Skewness)))
}
##################################
# Investigating distributional anomalies
# observed for several predictors
##################################
<- DPA %>%
(INFMOR_Unique group_by(INFMOR) %>%
summarize(Distinct_INFMOR = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_INFMOR)) %>%
slice(1:5))
## # A tibble: 5 × 2
## INFMOR Distinct_INFMOR
## <dbl> <int>
## 1 30.2 14
## 2 2.1 7
## 3 6.4 6
## 4 1.7 4
## 5 2.5 4
<- DPA[round(DPA$INFMOR,digits=1)==30.2,c("COUNTRY")]) (INFMOR_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Liechtenstein" "Macao SAR, China"
## [11] "New Caledonia" "Puerto Rico"
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [15] "Aruba" "Bermuda"
## [17] "Channel Islands" "Faroe Islands"
## [19] "French Polynesia" "Guam"
## [21] "Hong Kong SAR, China" "Kosovo"
## [23] "Liechtenstein" "Macao SAR, China"
## [25] "New Caledonia" "Puerto Rico"
## [27] "St. Martin (French part)" "Virgin Islands (U.S.)"
%>%
DPA group_by(CLTECH) %>%
summarize(Distinct_CLTECH = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_CLTECH)) %>%
slice(1:5)
## # A tibble: 5 × 2
## CLTECH Distinct_CLTECH
## <dbl> <int>
## 1 100 54
## 2 60.6 17
## 3 9.30 3
## 4 99.9 3
## 5 0.2 2
<- DPA[round(DPA$CLTECH,digits=1)==60.6,c("COUNTRY")]) (CLTECH_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Lebanon" "Libya"
## [11] "Liechtenstein" "Macao SAR, China"
## [13] "New Caledonia" "Puerto Rico"
## [15] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [17] "West Bank and Gaza" "Aruba"
## [19] "Bermuda" "Channel Islands"
## [21] "Faroe Islands" "French Polynesia"
## [23] "Guam" "Hong Kong SAR, China"
## [25] "Kosovo" "Lebanon"
## [27] "Libya" "Liechtenstein"
## [29] "Macao SAR, China" "New Caledonia"
## [31] "Puerto Rico" "St. Martin (French part)"
## [33] "Virgin Islands (U.S.)" "West Bank and Gaza"
%>%
DPA group_by(RTIMOR) %>%
summarize(Distinct_RTIMOR = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_RTIMOR)) %>%
slice(1:5)
## # A tibble: 5 × 2
## RTIMOR Distinct_RTIMOR
## <dbl> <int>
## 1 18.2 14
## 2 3.9 3
## 3 5.1 3
## 4 5.3 3
## 5 12.7 3
<- DPA[round(DPA$RTIMOR,digits=1)==18.2,c("COUNTRY")]) (RTIMOR_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Liechtenstein" "Macao SAR, China"
## [11] "New Caledonia" "Puerto Rico"
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [15] "Aruba" "Bermuda"
## [17] "Channel Islands" "Faroe Islands"
## [19] "French Polynesia" "Guam"
## [21] "Hong Kong SAR, China" "Kosovo"
## [23] "Liechtenstein" "Macao SAR, China"
## [25] "New Caledonia" "Puerto Rico"
## [27] "St. Martin (French part)" "Virgin Islands (U.S.)"
%>%
DPA group_by(DPTIMM) %>%
summarize(Distinct_DPTIMM = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_DPTIMM)) %>%
slice(1:5)
## # A tibble: 5 × 2
## DPTIMM Distinct_DPTIMM
## <dbl> <int>
## 1 99 22
## 2 85.7 15
## 3 97 14
## 4 98 14
## 5 95 13
<- DPA[round(DPA$DPTIMM,digits=1)==85.7,c("COUNTRY")]) (DPTIMM_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Liechtenstein" "Macao SAR, China"
## [11] "New Caledonia" "Puerto Rico"
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [15] "West Bank and Gaza" "Aruba"
## [17] "Bermuda" "Channel Islands"
## [19] "Faroe Islands" "French Polynesia"
## [21] "Guam" "Hong Kong SAR, China"
## [23] "Kosovo" "Liechtenstein"
## [25] "Macao SAR, China" "New Caledonia"
## [27] "Puerto Rico" "St. Martin (French part)"
## [29] "Virgin Islands (U.S.)" "West Bank and Gaza"
%>%
DPA group_by(HEPIMM) %>%
summarize(Distinct_HEPIMM = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_HEPIMM)) %>%
slice(1:5)
## # A tibble: 5 × 2
## HEPIMM Distinct_HEPIMM
## <dbl> <int>
## 1 81.3 20
## 2 99 19
## 3 97 17
## 4 98 11
## 5 92 10
<- DPA[round(DPA$HEPIMM,digits=1)==81.3,c("COUNTRY")]) (HEPIMM_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Denmark"
## [5] "Faroe Islands" "Finland"
## [7] "French Polynesia" "Guam"
## [9] "Hong Kong SAR, China" "Hungary"
## [11] "Iceland" "Kosovo"
## [13] "Liechtenstein" "Macao SAR, China"
## [15] "New Caledonia" "Puerto Rico"
## [17] "Slovenia" "St. Martin (French part)"
## [19] "Virgin Islands (U.S.)" "West Bank and Gaza"
## [21] "Aruba" "Bermuda"
## [23] "Channel Islands" "Denmark"
## [25] "Faroe Islands" "Finland"
## [27] "French Polynesia" "Guam"
## [29] "Hong Kong SAR, China" "Hungary"
## [31] "Iceland" "Kosovo"
## [33] "Liechtenstein" "Macao SAR, China"
## [35] "New Caledonia" "Puerto Rico"
## [37] "Slovenia" "St. Martin (French part)"
## [39] "Virgin Islands (U.S.)" "West Bank and Gaza"
%>%
DPA group_by(MEAIMM) %>%
summarize(Distinct_MEAIMM = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_MEAIMM)) %>%
slice(1:5)
## # A tibble: 5 × 2
## MEAIMM Distinct_MEAIMM
## <dbl> <int>
## 1 99 24
## 2 84.9 15
## 3 95 14
## 4 96 14
## 5 98 13
<- DPA[round(DPA$MEAIMM,digits=1)==84.9,c("COUNTRY")]) (MEAIMM_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Liechtenstein" "Macao SAR, China"
## [11] "New Caledonia" "Puerto Rico"
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [15] "West Bank and Gaza" "Aruba"
## [17] "Bermuda" "Channel Islands"
## [19] "Faroe Islands" "French Polynesia"
## [21] "Guam" "Hong Kong SAR, China"
## [23] "Kosovo" "Liechtenstein"
## [25] "Macao SAR, China" "New Caledonia"
## [27] "Puerto Rico" "St. Martin (French part)"
## [29] "Virgin Islands (U.S.)" "West Bank and Gaza"
%>%
DPA group_by(HOSBED) %>%
summarize(Distinct_HOSBED = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_HOSBED)) %>%
slice(1:5)
## # A tibble: 5 × 2
## HOSBED Distinct_HOSBED
## <dbl> <int>
## 1 2.99 17
## 2 0.4 4
## 3 0.8 2
## 4 0.85 2
## 5 0.9 2
<- DPA[round(DPA$HOSBED,digits=1)==3.0,c("COUNTRY")]) (HOSBED_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Liechtenstein" "Macao SAR, China"
## [11] "Namibia" "New Caledonia"
## [13] "Papua New Guinea" "Puerto Rico"
## [15] "South Sudan" "St. Martin (French part)"
## [17] "Virgin Islands (U.S.)" "West Bank and Gaza"
## [19] "Aruba" "Bermuda"
## [21] "Channel Islands" "Faroe Islands"
## [23] "French Polynesia" "Guam"
## [25] "Hong Kong SAR, China" "Kosovo"
## [27] "Liechtenstein" "Macao SAR, China"
## [29] "Namibia" "New Caledonia"
## [31] "Papua New Guinea" "Puerto Rico"
## [33] "South Sudan" "St. Martin (French part)"
## [35] "Virgin Islands (U.S.)" "West Bank and Gaza"
%>%
DPA group_by(NCOMOR) %>%
summarize(Distinct_NCOMOR = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_NCOMOR)) %>%
slice(1:5)
## # A tibble: 5 × 2
## NCOMOR Distinct_NCOMOR
## <dbl> <int>
## 1 22.1 15
## 2 6.8 5
## 3 13.6 5
## 4 15.2 5
## 5 17.5 5
<- DPA[round(DPA$NCOMOR,digits=1)==22.1,c("COUNTRY")]) (NCOMOR_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Burkina Faso" "Channel Islands"
## [5] "Faroe Islands" "French Polynesia"
## [7] "Guam" "Hong Kong SAR, China"
## [9] "Kosovo" "Liechtenstein"
## [11] "Macao SAR, China" "New Caledonia"
## [13] "Puerto Rico" "St. Martin (French part)"
## [15] "Virgin Islands (U.S.)" "West Bank and Gaza"
## [17] "Aruba" "Bermuda"
## [19] "Channel Islands" "Dominican Republic"
## [21] "Equatorial Guinea" "Estonia"
## [23] "Faroe Islands" "French Polynesia"
## [25] "Guam" "Hong Kong SAR, China"
## [27] "Kosovo" "Liechtenstein"
## [29] "Macao SAR, China" "New Caledonia"
## [31] "Puerto Rico" "Sierra Leone"
## [33] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [35] "West Bank and Gaza"
%>%
DPA group_by(SUIRAT) %>%
summarize(Distinct_SUIRAT = n_distinct(COUNTRY)) %>%
arrange(desc(Distinct_SUIRAT)) %>%
slice(1:5)
## # A tibble: 5 × 2
## SUIRAT Distinct_SUIRAT
## <dbl> <int>
## 1 10.6 15
## 2 7.6 8
## 3 1.7 7
## 4 2 7
## 5 2.8 7
<- DPA[round(DPA$SUIRAT,digits=1)==10.6,c("COUNTRY")]) (SUIRAT_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Liechtenstein" "Macao SAR, China"
## [11] "New Caledonia" "Puerto Rico"
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [15] "West Bank and Gaza" "Aruba"
## [17] "Bermuda" "Channel Islands"
## [19] "Congo, Dem. Rep." "Faroe Islands"
## [21] "French Polynesia" "Guam"
## [23] "Hong Kong SAR, China" "Kosovo"
## [25] "Liechtenstein" "Macao SAR, China"
## [27] "New Caledonia" "Puerto Rico"
## [29] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [31] "West Bank and Gaza"
<- MEAIMM_Unique_Country) (AnomalousVariables_Unique_Country
## [1] "Aruba" "Bermuda"
## [3] "Channel Islands" "Faroe Islands"
## [5] "French Polynesia" "Guam"
## [7] "Hong Kong SAR, China" "Kosovo"
## [9] "Liechtenstein" "Macao SAR, China"
## [11] "New Caledonia" "Puerto Rico"
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"
## [15] "West Bank and Gaza" "Aruba"
## [17] "Bermuda" "Channel Islands"
## [19] "Faroe Islands" "French Polynesia"
## [21] "Guam" "Hong Kong SAR, China"
## [23] "Kosovo" "Liechtenstein"
## [25] "Macao SAR, China" "New Caledonia"
## [27] "Puerto Rico" "St. Martin (French part)"
## [29] "Virgin Islands (U.S.)" "West Bank and Gaza"
##################################
# Removing rows with anomalous values
##################################
dim(DPA)
## [1] 394 23
<- DPA[!(DPA$COUNTRY %in% AnomalousVariables_Unique_Country),]
DPA dim(DPA)
## [1] 364 23
##################################
# Listing all Predictors
# for the updated data
##################################
<- DPA[,!names(DPA) %in% c("COUNTRY","YEAR","LIFEXP")]
DPA.Predictors
##################################
# Listing all numeric predictors
# for the updated data
##################################
<- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)] DPA.Predictors.Numeric
##################################
# Zero and Near-Zero Variance
##################################
##################################
# Identifying columns with low variance
###################################
<- nearZeroVar(DPA,
DPA_LowVariance freqCut = 80/20,
uniqueCut = 10,
saveMetrics= TRUE)
$nzv,]) (DPA_LowVariance[DPA_LowVariance
## freqRatio percentUnique zeroVar nzv
## YEAR 0 0.2747253 TRUE TRUE
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
print("No low variance predictors noted.")
else {
}
print(paste0("Low variance observed for ",
nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
(" numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
<- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
DPA_LowVarianceForRemoval
print(paste0("Low variance can be resolved by removing ",
nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
(" numeric variable(s)."))
for (j in 1:DPA_LowVarianceForRemoval) {
<- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
DPA_LowVarianceRemovedVariable print(paste0("Variable ",
j," for removal: ",
DPA_LowVarianceRemovedVariable))
}
%>%
DPA skim() %>%
::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))
dplyr
}
## [1] "Low variance observed for 1 numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."
## [1] "Low variance can be resolved by removing 1 numeric variable(s)."
## [1] "Variable 1 for removal: YEAR"
Name | Piped data |
Number of rows | 364 |
Number of columns | 23 |
_______________________ | |
Column type frequency: | |
factor | 1 |
________________________ | |
Group variables | None |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
YEAR | 0 | 1 | FALSE | 1 | 201: 364 |
##################################
# Collinearity
##################################
##################################
# Visualizing pairwise correlation between predictors
##################################
<- cor(DPA.Predictors.Numeric,
(DPA_Correlation method = "pearson",
use="pairwise.complete.obs"))
## UNEMPR INFMOR GDP GNI CLTECH PERCAP
## UNEMPR 1.00000000 0.08921802 -0.09715921 -0.09686799 0.06069602 -0.18518395
## INFMOR 0.08921802 1.00000000 -0.16691246 -0.16605106 -0.77581569 -0.51823250
## GDP -0.09715921 -0.16691246 1.00000000 0.99990577 0.13752124 0.26220470
## GNI -0.09686799 -0.16605106 0.99990577 1.00000000 0.13685071 0.26229594
## CLTECH 0.06069602 -0.77581569 0.13752124 0.13685071 1.00000000 0.52998364
## PERCAP -0.18518395 -0.51823250 0.26220470 0.26229594 0.52998364 1.00000000
## RTIMOR 0.13453252 0.65132565 -0.11475473 -0.11451028 -0.59183716 -0.56088001
## TUBINC 0.16124757 0.58376872 -0.09323916 -0.09283727 -0.55243739 -0.38062151
## DPTIMM -0.12876443 -0.58547646 0.10789977 0.10739430 0.45449772 0.31093085
## HEPIMM -0.09314054 -0.51310504 0.08470102 0.08441932 0.38820759 0.19114586
## MEAIMM -0.15097736 -0.58103197 0.10108399 0.10027512 0.50455989 0.31282969
## HOSBED -0.09030568 -0.52521834 0.13340127 0.13526591 0.43901930 0.32835573
## SANSER 0.01743227 -0.82413990 0.15602727 0.15526943 0.86208147 0.48509427
## TUBTRT -0.05294186 0.30145355 -0.02991535 -0.02993892 -0.32585084 -0.38908786
## URBPOP 0.08774280 -0.53383928 0.16951798 0.16915063 0.64092796 0.57384548
## RURPOP -0.08774280 0.53383928 -0.16951798 -0.16915063 -0.64092796 -0.57384548
## NCOMOR 0.08876876 0.47793168 -0.15463824 -0.15418319 -0.47327879 -0.51434429
## SUIRAT 0.04227853 0.01383619 0.05563045 0.05591448 0.05255453 0.08998525
## RTIMOR TUBINC DPTIMM HEPIMM MEAIMM HOSBED
## UNEMPR 0.13453252 0.16124757 -0.1287644 -0.09314054 -0.15097736 -0.09030568
## INFMOR 0.65132565 0.58376872 -0.5854765 -0.51310504 -0.58103197 -0.52521834
## GDP -0.11475473 -0.09323916 0.1078998 0.08470102 0.10108399 0.13340127
## GNI -0.11451028 -0.09283727 0.1073943 0.08441932 0.10027512 0.13526591
## CLTECH -0.59183716 -0.55243739 0.4544977 0.38820759 0.50455989 0.43901930
## PERCAP -0.56088001 -0.38062151 0.3109309 0.19114586 0.31282969 0.32835573
## RTIMOR 1.00000000 0.41804642 -0.3375163 -0.26020225 -0.30876424 -0.49070005
## TUBINC 0.41804642 1.00000000 -0.3789808 -0.32542031 -0.38118795 -0.19831333
## DPTIMM -0.33751628 -0.37898079 1.0000000 0.95025399 0.88174261 0.32804245
## HEPIMM -0.26020225 -0.32542031 0.9502540 1.00000000 0.86420155 0.27828765
## MEAIMM -0.30876424 -0.38118795 0.8817426 0.86420155 1.00000000 0.33921761
## HOSBED -0.49070005 -0.19831333 0.3280425 0.27828765 0.33921761 1.00000000
## SANSER -0.65108358 -0.55657212 0.4749098 0.41097807 0.52634353 0.48298288
## TUBTRT 0.32106450 0.23187021 -0.1508346 -0.10718796 -0.15128872 -0.20100265
## URBPOP -0.39930232 -0.33604248 0.2477115 0.16791625 0.27392265 0.29499246
## RURPOP 0.39930232 0.33604248 -0.2477115 -0.16791625 -0.27392265 -0.29499246
## NCOMOR 0.27623132 0.44177318 -0.2463052 -0.18345234 -0.25685607 -0.14297975
## SUIRAT -0.08928389 0.13461778 0.1016538 0.07309085 0.07173647 0.23601976
## SANSER TUBTRT URBPOP RURPOP NCOMOR SUIRAT
## UNEMPR 0.01743227 -0.05294186 0.08774280 -0.08774280 0.08876876 0.04227853
## INFMOR -0.82413990 0.30145355 -0.53383928 0.53383928 0.47793168 0.01383619
## GDP 0.15602727 -0.02991535 0.16951798 -0.16951798 -0.15463824 0.05563045
## GNI 0.15526943 -0.02993892 0.16915063 -0.16915063 -0.15418319 0.05591448
## CLTECH 0.86208147 -0.32585084 0.64092796 -0.64092796 -0.47327879 0.05255453
## PERCAP 0.48509427 -0.38908786 0.57384548 -0.57384548 -0.51434429 0.08998525
## RTIMOR -0.65108358 0.32106450 -0.39930232 0.39930232 0.27623132 -0.08928389
## TUBINC -0.55657212 0.23187021 -0.33604248 0.33604248 0.44177318 0.13461778
## DPTIMM 0.47490980 -0.15083460 0.24771148 -0.24771148 -0.24630524 0.10165384
## HEPIMM 0.41097807 -0.10718796 0.16791625 -0.16791625 -0.18345234 0.07309085
## MEAIMM 0.52634353 -0.15128872 0.27392265 -0.27392265 -0.25685607 0.07173647
## HOSBED 0.48298288 -0.20100265 0.29499246 -0.29499246 -0.14297975 0.23601976
## SANSER 1.00000000 -0.29773553 0.57044364 -0.57044364 -0.38904255 0.06984751
## TUBTRT -0.29773553 1.00000000 -0.31075615 0.31075615 0.24910749 -0.03195240
## URBPOP 0.57044364 -0.31075615 1.00000000 -1.00000000 -0.49977042 0.00916115
## RURPOP -0.57044364 0.31075615 -1.00000000 1.00000000 0.49977042 -0.00916115
## NCOMOR -0.38904255 0.24910749 -0.49977042 0.49977042 1.00000000 0.43953077
## SUIRAT 0.06984751 -0.03195240 0.00916115 -0.00916115 0.43953077 1.00000000
<- cor.mtest(DPA.Predictors.Numeric,
DPA_CorrelationTest method = "pearson",
conf.level = 0.95)
corrplot(cor(DPA.Predictors.Numeric,
method = "pearson",
use="pairwise.complete.obs"),
method = "circle",
type = "upper",
order = "original",
tl.col = "black",
tl.cex = 0.75,
tl.srt = 90,
sig.level = 0.05,
p.mat = DPA_CorrelationTest$p,
insig = "blank")
corrplot(cor(DPA.Predictors.Numeric,
method = "pearson",
use="pairwise.complete.obs"),
method = "number",
type = "upper",
order = "original",
tl.col = "black",
tl.cex = 0.75,
tl.srt = 90,
sig.level = 0.05,
p.mat = DPA_CorrelationTest$p,
insig = "blank")
##################################
# Identifying the highly correlated variables
##################################
<- cor(DPA.Predictors.Numeric,
DPA_Correlation method = "pearson",
use="pairwise.complete.obs")
<- sum(abs(DPA_Correlation[upper.tri(DPA_Correlation)])>0.80)) (DPA_HighlyCorrelatedCount
## [1] 7
if (DPA_HighlyCorrelatedCount > 0) {
<- findCorrelation(DPA_Correlation, cutoff = 0.80)
DPA_HighlyCorrelated
<- length(DPA_HighlyCorrelated))
(DPA_HighlyCorrelatedForRemoval
print(paste0("High correlation can be resolved by removing ",
(DPA_HighlyCorrelatedForRemoval)," numeric variable(s)."))
for (j in 1:DPA_HighlyCorrelatedForRemoval) {
<- colnames(DPA.Predictors.Numeric)[DPA_HighlyCorrelated[j]]
DPA_HighlyCorrelatedRemovedVariable print(paste0("Variable ",
j," for removal: ",
DPA_HighlyCorrelatedRemovedVariable))
}
}
## [1] "High correlation can be resolved by removing 6 numeric variable(s)."
## [1] "Variable 1 for removal: INFMOR"
## [1] "Variable 2 for removal: CLTECH"
## [1] "Variable 3 for removal: URBPOP"
## [1] "Variable 4 for removal: MEAIMM"
## [1] "Variable 5 for removal: DPTIMM"
## [1] "Variable 6 for removal: GNI"
##################################
# Linear Dependencies
##################################
##################################
# Finding linear dependencies
##################################
<- findLinearCombos(DPA.Predictors.Numeric)
DPA_LinearlyDependent
##################################
# Identifying the linearly dependent variables
##################################
<- findLinearCombos(DPA.Predictors.Numeric)
DPA_LinearlyDependent
<- length(DPA_LinearlyDependent$linearCombos)) (DPA_LinearlyDependentCount
## [1] 0
if (DPA_LinearlyDependentCount == 0) {
print("No linearly dependent predictors noted.")
else {
} print(paste0("Linear dependency observed for ",
(DPA_LinearlyDependentCount)," subset(s) of numeric variable(s)."))
for (i in 1:DPA_LinearlyDependentCount) {
<- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$linearCombos[[i]]]
DPA_LinearlyDependentSubset print(paste0("Linear dependent variable(s) for subset ",
i," include: ",
DPA_LinearlyDependentSubset))
}
}
## [1] "No linearly dependent predictors noted."
##################################
# Identifying the linearly dependent variables for removal
##################################
if (DPA_LinearlyDependentCount > 0) {
<- findLinearCombos(DPA.Predictors.Numeric)
DPA_LinearlyDependent
<- length(DPA_LinearlyDependent$remove)
DPA_LinearlyDependentForRemoval
print(paste0("Linear dependency can be resolved by removing ",
(DPA_LinearlyDependentForRemoval)," numeric variable(s)."))
for (j in 1:DPA_LinearlyDependentForRemoval) {
<- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$remove[j]]
DPA_LinearlyDependentRemovedVariable print(paste0("Variable ",
j," for removal: ",
DPA_LinearlyDependentRemovedVariable))
}
}
##################################
# Shape Transformation
##################################
##################################
# Applying a Box-Cox transformation
##################################
<- preProcess(DPA.Predictors.Numeric, method = c("BoxCox"))
DPA_BoxCox <- predict(DPA_BoxCox, DPA.Predictors.Numeric)
DPA_BoxCoxTransformed
for (i in 1:ncol(DPA_BoxCoxTransformed)) {
<- format(round(median(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
Median <- format(round(mean(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
Mean <- format(round(skewness(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
Skewness print(
ggplot(DPA_BoxCoxTransformed, aes(x=DPA_BoxCoxTransformed[,i])) +
geom_histogram(binwidth=1,color="black", fill="white") +
geom_vline(aes(xintercept=mean(DPA_BoxCoxTransformed[,i])),
color="blue", size=1) +
geom_vline(aes(xintercept=median(DPA_BoxCoxTransformed[,i])),
color="red", size=1) +
theme_bw() +
ylab("Count") +
xlab(names(DPA_BoxCoxTransformed)[i]) +
labs(title=names(DPA_BoxCoxTransformed)[i],
subtitle=paste0("Median = ", Median,
", Mean = ", Mean,
", Skewness = ", Skewness)))
}
##################################
# Identifying outliers for the numeric predictors
##################################
<- c()
OutlierCountList
for (i in 1:ncol(DPA_BoxCoxTransformed)) {
<- boxplot.stats(DPA_BoxCoxTransformed[,i])$out
Outliers <- length(Outliers)
OutlierCount <- append(OutlierCountList,OutlierCount)
OutlierCountList <- which(DPA_BoxCoxTransformed[,i] %in% c(Outliers))
OutlierIndices print(
ggplot(DPA_BoxCoxTransformed, aes(x=DPA_BoxCoxTransformed[,i])) +
geom_boxplot() +
theme_bw() +
theme(axis.text.y=element_blank(),
axis.ticks.y=element_blank()) +
xlab(names(DPA_BoxCoxTransformed)[i]) +
labs(title=names(DPA_BoxCoxTransformed)[i],
subtitle=paste0(OutlierCount, " Outlier(s) Detected")))
}
<- cbind(DPA_BoxCoxTransformed,DPA[,c("COUNTRY",
DPA_BoxCoxTransformed "YEAR",
"GENDER",
"CONTIN",
"LIFEXP")])
##################################
# Creating the pre-modelling
# train set
##################################
<- DPA_BoxCoxTransformed[,!names(DPA_BoxCoxTransformed) %in% c("YEAR",
PMA "GNI",
"DPTIMM",
"MEAIMM",
"URBPOP",
"SANSER",
"TUBINC",
"TUBTRT",
"SUIRAT")]
##################################
# Gathering descriptive statistics
##################################
<- skim(PMA)) (PMA_Skimmed
Name | PMA |
Number of rows | 364 |
Number of columns | 14 |
_______________________ | |
Column type frequency: | |
character | 1 |
factor | 2 |
numeric | 11 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
COUNTRY | 0 | 1 | 4 | 30 | 0 | 182 | 0 |
Variable type: factor
skim_variable | n_missing | complete_rate | ordered | n_unique | top_counts |
---|---|---|---|---|---|
GENDER | 0 | 1 | FALSE | 2 | Mal: 182, Fem: 182 |
CONTIN | 0 | 1 | FALSE | 6 | Afr: 106, Asi: 94, Eur: 78, Nor: 42 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
UNEMPR | 0 | 1 | 2.13 | 1.21 | -2.05 | 1.42 | 2.00 | 2.90 | 5.26 | ▁▂▇▅▂ |
INFMOR | 0 | 1 | 2.56 | 1.06 | 0.34 | 1.70 | 2.63 | 3.49 | 4.49 | ▅▆▇▇▆ |
GDP | 0 | 1 | 3.85 | 2.21 | -1.67 | 2.55 | 3.76 | 5.53 | 9.97 | ▂▇▇▆▁ |
CLTECH | 0 | 1 | 66.08 | 37.77 | 0.00 | 30.30 | 83.95 | 100.00 | 100.00 | ▃▁▁▂▇ |
PERCAP | 0 | 1 | 1.75 | 1.40 | -1.48 | 0.65 | 1.80 | 2.82 | 4.73 | ▂▆▇▆▃ |
RTIMOR | 0 | 1 | 16.97 | 10.72 | 0.00 | 8.00 | 15.30 | 25.60 | 64.60 | ▇▆▅▁▁ |
HEPIMM | 0 | 1 | 3877.07 | 1006.71 | 612.00 | 3304.98 | 4231.50 | 4704.00 | 4900.00 | ▁▁▁▃▇ |
HOSBED | 0 | 1 | 0.76 | 0.86 | -1.61 | 0.14 | 0.83 | 1.40 | 2.62 | ▁▅▇▇▃ |
RURPOP | 0 | 1 | 41.73 | 22.68 | 0.00 | 22.62 | 41.64 | 59.76 | 86.75 | ▅▇▇▆▅ |
NCOMOR | 0 | 1 | 4.67 | 1.08 | 1.87 | 3.93 | 4.72 | 5.38 | 7.96 | ▂▅▇▃▁ |
LIFEXP | 0 | 1 | 72.50 | 7.77 | 51.20 | 66.93 | 73.53 | 78.54 | 87.45 | ▁▃▆▇▅ |
##################################
# Loading dataset
##################################
<- PMA
PME <- PME[,sapply(PME, is.numeric), drop = FALSE]
PME.Numeric
##################################
# Listing all Predictors
##################################
<- PME[,!names(PME) %in% c("COUNTRY","LIFEXP")]
PME.Predictors
##################################
# Listing all numeric Predictors
##################################
<- PME.Predictors[,sapply(PME.Predictors, is.numeric), drop = FALSE]
PME.Predictors.Numeric ncol(PME.Predictors.Numeric)
## [1] 10
##################################
# Listing all numeric Predictors
##################################
<- PME.Predictors[,sapply(PME.Predictors, is.factor), drop = FALSE]
PME.Predictors.Factor ncol(PME.Predictors.Factor)
## [1] 2
##################################
# Formulating the scatter plot
##################################
featurePlot(x = PME.Predictors.Numeric,
y = PME$LIFEXP,
plot = "scatter",
type = c("p", "smooth"),
span = .5,
layout = c(4, 3))
##################################
# Formulating the box plot
##################################
featurePlot(x = PME.Numeric,
y = PME$GENDER,
plot = "box",
scales = list(x = list(relation="free", rot = 90),
y = list(relation="free")),
adjust = 1.5,
layout = c(4, 3))
##################################
# Formulating the box plot
##################################
featurePlot(x = PME.Numeric,
y = PME$CONTIN,
plot = "box",
scales = list(x = list(relation="free", rot = 90),
y = list(relation="free")),
adjust = 1.5,
layout = c(4, 3))
##################################
# Evaluating model-independent
# feature importance metrics
##################################
##################################
# Obtaining the LOWESSPR pseudo-R-Squared
##################################
<- filterVarImp(x = PME.Predictors.Numeric,
FE_LOWESSPR y = PME$LIFEXP,
nonpara = TRUE)
##################################
# Formulating the summary table
##################################
<- FE_LOWESSPR
FE_LOWESSPR_Summary
$Predictor <- rownames(FE_LOWESSPR)
FE_LOWESSPR_Summarynames(FE_LOWESSPR_Summary)[1] <- "LOWESSPR"
$Metric <- rep("LOWESSPR",nrow(FE_LOWESSPR))
FE_LOWESSPR_Summary
FE_LOWESSPR_Summary
## LOWESSPR Predictor Metric
## UNEMPR 0.03707208 UNEMPR LOWESSPR
## INFMOR 0.82546121 INFMOR LOWESSPR
## GDP 0.25427692 GDP LOWESSPR
## CLTECH 0.58186548 CLTECH LOWESSPR
## PERCAP 0.62170474 PERCAP LOWESSPR
## RTIMOR 0.51428354 RTIMOR LOWESSPR
## HEPIMM 0.18618812 HEPIMM LOWESSPR
## HOSBED 0.34642501 HOSBED LOWESSPR
## RURPOP 0.35023499 RURPOP LOWESSPR
## NCOMOR 0.59655877 NCOMOR LOWESSPR
##################################
# Exploring predictor performance
# using LOWESS
##################################
dotplot(Predictor ~ LOWESSPR | Metric,
FE_LOWESSPR_Summary,origin = 0,
type = c("p", "h"),
pch = 16,
cex = 2,
alpha = 0.45,
prepanel = function(x, y) {
list(ylim = levels(reorder(y, x)))
},panel = function(x, y, ...) {
panel.dotplot(x, reorder(y, x), ...)
})
##################################
# Obtaining the Pearson correlation coefficient
##################################
<- abs(cor(PME.Numeric, method="pearson")[-11,11])) (FE_PCC
## UNEMPR INFMOR GDP CLTECH PERCAP RTIMOR HEPIMM
## 0.01518356 0.87964210 0.45844159 0.75234946 0.78523930 0.65975953 0.43149521
## HOSBED RURPOP NCOMOR
## 0.56281916 0.57322144 0.73325984
##################################
# Formulating the summary table
##################################
<- data.frame(Predictor = names(PME.Numeric)[1:(ncol(PME.Numeric)-1)],
FE_PCC_Summary PCC = FE_PCC,
Metric = rep("PCC", length(FE_PCC)),
row.names = NULL)
FE_PCC_Summary
## Predictor PCC Metric
## 1 UNEMPR 0.01518356 PCC
## 2 INFMOR 0.87964210 PCC
## 3 GDP 0.45844159 PCC
## 4 CLTECH 0.75234946 PCC
## 5 PERCAP 0.78523930 PCC
## 6 RTIMOR 0.65975953 PCC
## 7 HEPIMM 0.43149521 PCC
## 8 HOSBED 0.56281916 PCC
## 9 RURPOP 0.57322144 PCC
## 10 NCOMOR 0.73325984 PCC
##################################
# Exploring predictor performance
# using PCC
##################################
dotplot(Predictor ~ PCC | Metric,
FE_PCC_Summary,origin = 0,
type = c("p", "h"),
pch = 16,
cex = 2,
alpha = 0.45,
prepanel = function(x, y) {
list(ylim = levels(reorder(y, x)))
},panel = function(x, y, ...) {
panel.dotplot(x, reorder(y, x), ...)
})
##################################
# Obtaining the Spearman's rank correlation coefficient
##################################
<- abs(cor(PME.Numeric, method="spearman")[-11,11])) (FE_SRCC
## UNEMPR INFMOR GDP CLTECH PERCAP RTIMOR
## 0.003729075 0.891871299 0.499048543 0.783732221 0.798156088 0.698820899
## HEPIMM HOSBED RURPOP NCOMOR
## 0.382149849 0.555871706 0.600468144 0.789128052
##################################
# Formulating the summary table
##################################
<- data.frame(Predictor = names(PME.Numeric)[1:(ncol(PME.Numeric)-1)],
FE_SRCC_Summary SRCC = FE_SRCC,
Metric = rep("SRCC", length(FE_SRCC)),
row.names = NULL)
FE_SRCC_Summary
## Predictor SRCC Metric
## 1 UNEMPR 0.003729075 SRCC
## 2 INFMOR 0.891871299 SRCC
## 3 GDP 0.499048543 SRCC
## 4 CLTECH 0.783732221 SRCC
## 5 PERCAP 0.798156088 SRCC
## 6 RTIMOR 0.698820899 SRCC
## 7 HEPIMM 0.382149849 SRCC
## 8 HOSBED 0.555871706 SRCC
## 9 RURPOP 0.600468144 SRCC
## 10 NCOMOR 0.789128052 SRCC
##################################
# Exploring predictor performance
# using SRCC
##################################
dotplot(Predictor ~ SRCC | Metric,
FE_SRCC_Summary,origin = 0,
type = c("p", "h"),
pch = 16,
cex = 2,
alpha = 0.45,
prepanel = function(x, y) {
list(ylim = levels(reorder(y, x)))
},panel = function(x, y, ...) {
panel.dotplot(x, reorder(y, x), ...)
})
##################################
# Obtaining the maximal information coefficient
##################################
<- mine(x = PME.Numeric[,!names(PME.Numeric) %in% c("LIFEXP")],
FE_MIC y = PME$LIFEXP)$MIC
##################################
# Formulating the summary table
##################################
<- data.frame(Predictor = names(PME.Numeric)[1:(ncol(PME.Numeric)-1)],
FE_MIC_Summary MIC = FE_MIC[,1],
Metric = rep("MIC", length(FE_MIC)))
FE_MIC_Summary
## Predictor MIC Metric
## 1 UNEMPR 0.1911950 MIC
## 2 INFMOR 0.7083938 MIC
## 3 GDP 0.3234249 MIC
## 4 CLTECH 0.5099735 MIC
## 5 PERCAP 0.5502257 MIC
## 6 RTIMOR 0.4771528 MIC
## 7 HEPIMM 0.2652364 MIC
## 8 HOSBED 0.3711493 MIC
## 9 RURPOP 0.4097827 MIC
## 10 NCOMOR 0.6438989 MIC
##################################
# Exploring predictor performance
# using MIC
##################################
dotplot(Predictor ~ MIC | Metric,
FE_MIC_Summary,origin = 0,
type = c("p", "h"),
pch = 16,
cex = 2,
alpha = 0.45,
prepanel = function(x, y) {
list(ylim = levels(reorder(y, x)))
},panel = function(x, y, ...) {
panel.dotplot(x, reorder(y, x), ...)
})
##################################
# Obtaining the relief values
##################################
<- attrEval(LIFEXP ~ .,
FE_RV data = PME.Numeric,
estimator = "RReliefFequalK")
##################################
# Formulating the summary table
##################################
<- data.frame(Predictor = names(FE_RV),
FE_RV_Summary RV = FE_RV,
Metric = rep("RV", length(FE_RV)))
FE_RV_Summary
## Predictor RV Metric
## UNEMPR UNEMPR -0.01810789 RV
## INFMOR INFMOR 0.09365306 RV
## GDP GDP -0.09938056 RV
## CLTECH CLTECH 0.02105440 RV
## PERCAP PERCAP -0.04869230 RV
## RTIMOR RTIMOR 0.01046617 RV
## HEPIMM HEPIMM -0.03530648 RV
## HOSBED HOSBED -0.06597469 RV
## RURPOP RURPOP -0.10732377 RV
## NCOMOR NCOMOR 0.29910591 RV
##################################
# Exploring predictor performance
##################################
dotplot(Predictor ~ RV | Metric,
FE_RV_Summary,origin = 0,
type = c("p", "h"),
pch = 16,
cex = 2,
alpha = 0.45,
prepanel = function(x, y) {
list(ylim = levels(reorder(y, x)))
},panel = function(x, y, ...) {
panel.dotplot(x, reorder(y, x), ...)
})
##################################
# Preparing the dataset for
# model development and test
##################################
set.seed(12345678)
<- createDataPartition(PME$LIFEXP,
trainIndex p = 0.8,
list = FALSE,
times = 1)
##################################
# Formulating the model development data
##################################
<- PME[ trainIndex,]
MD
##################################
# Formulating the model test data
##################################
<- PME[-trainIndex,]
MT
##################################
# Preparing the dataset for
# model development
##################################
<- MD[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")]
MD dim(MD)
## [1] 292 7
<- MD[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR")]
MD.Model.Predictors
##################################
# Preparing the dataset for
# model test
##################################
<- MT[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")]
MT dim(MT)
## [1] 72 7
<- MT[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR")]
MT.Model.Predictors
##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
<- createFolds(MD$LIFEXP,
KFold_Indices k = 10,
returnTrain=TRUE)
<- trainControl(method="cv",
KFold_Control index=KFold_Indices)
##################################
# No hyperparameter tuning process conducted
# for the LR model
# hyperparameter=intercept fixed to TRUE
##################################
##################################
# Running the LR model
# by setting the caret method to 'lm'
##################################
set.seed(12345678)
<- train(x = MD.Model.Predictors,
LR_Tune y = MD$LIFEXP,
method = "lm",
trControl = KFold_Control)
##################################
# Reporting the apparent results
# for the LR model
##################################
<- DALEX::explain(LR_Tune,
LR_DALEX data = MD.Model.Predictors,
y = MD$LIFEXP,
verbose = FALSE,
label = "LR")
<- model_performance(LR_DALEX)) (LR_DALEX_Performance
## Measures for: regression
## mse : 5.58016
## rmse : 2.362236
## r2 : 0.9098275
## mad : 1.395866
##
## Residuals:
## 0% 10% 20% 30% 40% 50%
## -7.54609872 -2.70120396 -1.67144520 -1.06388223 -0.49677829 0.05953136
## 60% 70% 80% 90% 100%
## 0.56643413 1.03111778 1.80727895 2.72612936 7.57156135
<- model_diagnostics(LR_DALEX)) (LR_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :139 Africa :89 Min. :0.3365 Min. :-1.4775
## Female:153 Asia :73 1st Qu.:1.7047 1st Qu.: 0.6183
## Europe :62 Median :2.6100 Median : 1.7960
## North America:31 Mean :2.5569 Mean : 1.7571
## Oceania :18 3rd Qu.:3.5025 3rd Qu.: 2.7938
## South America:19 Max. :4.4864 Max. : 4.7293
## CLTECH NCOMOR y y_hat
## Min. : 0.00 Min. :1.866 Min. :52.84 Min. :58.11
## 1st Qu.: 24.35 1st Qu.:3.944 1st Qu.:66.93 1st Qu.:66.54
## Median : 82.80 Median :4.717 Median :73.53 Median :73.13
## Mean : 64.60 Mean :4.652 Mean :72.47 Mean :72.47
## 3rd Qu.:100.00 3rd Qu.:5.347 3rd Qu.:78.54 3rd Qu.:78.29
## Max. :100.00 Max. :7.959 Max. :87.45 Max. :87.96
## residuals abs_residuals label ids
## Min. :-7.54610 Min. :0.01202 Length:292 Min. : 1.00
## 1st Qu.:-1.32434 1st Qu.:0.72522 Class :character 1st Qu.: 73.75
## Median : 0.05953 Median :1.39587 Mode :character Median :146.50
## Mean : 0.00000 Mean :1.80627 Mean :146.50
## 3rd Qu.: 1.52469 3rd Qu.:2.52337 3rd Qu.:219.25
## Max. : 7.57156 Max. :7.57156 Max. :292.00
plot(LR_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("LR: Observed and Predicted LIFEXP")
<- model_parts(LR_DALEX,
(LR_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL))
## variable mean_dropout_loss label
## 1 _full_model_ 2.362236 LR
## 2 PERCAP 2.427498 LR
## 3 GENDER 3.063092 LR
## 4 CLTECH 3.101405 LR
## 5 CONTIN 3.184817 LR
## 6 NCOMOR 3.231935 LR
## 7 INFMOR 7.153165 LR
## 8 _baseline_ 10.873968 LR
plot(LR_DALEX_VariableImportance)
##################################
# Reporting the cross-validation results
# for the LR model
##################################
LR_Tune
## Linear Regression
##
## 292 samples
## 6 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ...
## Resampling results:
##
## RMSE Rsquared MAE
## 2.407871 0.9116813 1.866752
##
## Tuning parameter 'intercept' was held constant at a value of TRUE
$finalModel LR_Tune
##
## Call:
## lm(formula = .outcome ~ ., data = dat)
##
## Coefficients:
## (Intercept) GENDERFemale CONTINAsia
## 85.69806 2.76133 2.83144
## CONTINEurope CONTINNorth America CONTINOceania
## 0.83630 3.33009 4.69879
## CONTINSouth America INFMOR PERCAP
## 2.83668 -4.48540 -0.28654
## CLTECH NCOMOR
## 0.03709 -1.46345
<- LR_Tune$results$RMSE) (LR_Tune_RMSE
## [1] 2.407871
<- LR_Tune$results$Rsquared) (LR_Tune_Rsquared
## [1] 0.9116813
<- LR_Tune$results$MAE) (LR_Tune_MAE
## [1] 1.866752
##################################
# Defining the model hyperparameter values
# for the GBM model
##################################
= expand.grid(n.trees = c(100, 200, 300),
GBM_Grid interaction.depth = c(1, 2, 3),
shrinkage = c(0.001, 0.005, 0.01, 0.05, 0.10),
n.minobsinnode = c(5,10,15))
##################################
# Running the GBM model
# by setting the caret method to 'gbm'
##################################
set.seed(12345678)
<- train(x = MD.Model.Predictors,
GBM_Tune y = MD$LIFEXP,
method = "gbm",
tuneGrid = GBM_Grid,
trControl = KFold_Control)
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7314 nan 0.0010 0.0780
## 2 61.6543 nan 0.0010 0.0792
## 3 61.5721 nan 0.0010 0.0781
## 4 61.4926 nan 0.0010 0.0804
## 5 61.4149 nan 0.0010 0.0754
## 6 61.3306 nan 0.0010 0.0770
## 7 61.2518 nan 0.0010 0.0757
## 8 61.1722 nan 0.0010 0.0833
## 9 61.0935 nan 0.0010 0.0752
## 10 61.0129 nan 0.0010 0.0748
## 20 60.2445 nan 0.0010 0.0733
## 40 58.7200 nan 0.0010 0.0773
## 60 57.2706 nan 0.0010 0.0717
## 80 55.8823 nan 0.0010 0.0701
## 100 54.5229 nan 0.0010 0.0638
## 120 53.2573 nan 0.0010 0.0556
## 140 52.0028 nan 0.0010 0.0602
## 160 50.8054 nan 0.0010 0.0610
## 180 49.6447 nan 0.0010 0.0520
## 200 48.5316 nan 0.0010 0.0564
## 220 47.4646 nan 0.0010 0.0511
## 240 46.4091 nan 0.0010 0.0539
## 260 45.3734 nan 0.0010 0.0478
## 280 44.3893 nan 0.0010 0.0430
## 300 43.4344 nan 0.0010 0.0462
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7313 nan 0.0010 0.0840
## 2 61.6556 nan 0.0010 0.0834
## 3 61.5752 nan 0.0010 0.0734
## 4 61.4928 nan 0.0010 0.0777
## 5 61.4123 nan 0.0010 0.0799
## 6 61.3340 nan 0.0010 0.0748
## 7 61.2575 nan 0.0010 0.0800
## 8 61.1802 nan 0.0010 0.0770
## 9 61.1002 nan 0.0010 0.0737
## 10 61.0217 nan 0.0010 0.0798
## 20 60.2516 nan 0.0010 0.0778
## 40 58.7593 nan 0.0010 0.0746
## 60 57.3038 nan 0.0010 0.0725
## 80 55.9301 nan 0.0010 0.0646
## 100 54.5806 nan 0.0010 0.0619
## 120 53.3059 nan 0.0010 0.0659
## 140 52.0803 nan 0.0010 0.0598
## 160 50.8867 nan 0.0010 0.0509
## 180 49.7405 nan 0.0010 0.0504
## 200 48.6028 nan 0.0010 0.0575
## 220 47.5184 nan 0.0010 0.0524
## 240 46.4776 nan 0.0010 0.0559
## 260 45.4597 nan 0.0010 0.0468
## 280 44.4720 nan 0.0010 0.0488
## 300 43.5004 nan 0.0010 0.0433
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7351 nan 0.0010 0.0762
## 2 61.6580 nan 0.0010 0.0777
## 3 61.5791 nan 0.0010 0.0778
## 4 61.5073 nan 0.0010 0.0720
## 5 61.4254 nan 0.0010 0.0800
## 6 61.3415 nan 0.0010 0.0759
## 7 61.2588 nan 0.0010 0.0780
## 8 61.1750 nan 0.0010 0.0739
## 9 61.0973 nan 0.0010 0.0784
## 10 61.0197 nan 0.0010 0.0851
## 20 60.2483 nan 0.0010 0.0755
## 40 58.7606 nan 0.0010 0.0726
## 60 57.3260 nan 0.0010 0.0689
## 80 55.9485 nan 0.0010 0.0690
## 100 54.6024 nan 0.0010 0.0656
## 120 53.3241 nan 0.0010 0.0628
## 140 52.0591 nan 0.0010 0.0627
## 160 50.8655 nan 0.0010 0.0594
## 180 49.7229 nan 0.0010 0.0521
## 200 48.5814 nan 0.0010 0.0538
## 220 47.5180 nan 0.0010 0.0399
## 240 46.4554 nan 0.0010 0.0522
## 260 45.4579 nan 0.0010 0.0486
## 280 44.4455 nan 0.0010 0.0501
## 300 43.4889 nan 0.0010 0.0431
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7201 nan 0.0010 0.0854
## 2 61.6258 nan 0.0010 0.0949
## 3 61.5260 nan 0.0010 0.0940
## 4 61.4306 nan 0.0010 0.0912
## 5 61.3391 nan 0.0010 0.0985
## 6 61.2418 nan 0.0010 0.0869
## 7 61.1516 nan 0.0010 0.0873
## 8 61.0537 nan 0.0010 0.0948
## 9 60.9615 nan 0.0010 0.0912
## 10 60.8696 nan 0.0010 0.0894
## 20 59.9468 nan 0.0010 0.0952
## 40 58.1300 nan 0.0010 0.0809
## 60 56.4221 nan 0.0010 0.0836
## 80 54.7529 nan 0.0010 0.0825
## 100 53.1414 nan 0.0010 0.0804
## 120 51.6032 nan 0.0010 0.0785
## 140 50.0992 nan 0.0010 0.0715
## 160 48.6598 nan 0.0010 0.0730
## 180 47.2284 nan 0.0010 0.0685
## 200 45.8811 nan 0.0010 0.0665
## 220 44.5544 nan 0.0010 0.0676
## 240 43.2702 nan 0.0010 0.0599
## 260 42.0382 nan 0.0010 0.0578
## 280 40.8483 nan 0.0010 0.0547
## 300 39.7296 nan 0.0010 0.0539
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7113 nan 0.0010 0.0859
## 2 61.6179 nan 0.0010 0.0928
## 3 61.5268 nan 0.0010 0.0878
## 4 61.4370 nan 0.0010 0.0871
## 5 61.3408 nan 0.0010 0.0993
## 6 61.2469 nan 0.0010 0.0888
## 7 61.1542 nan 0.0010 0.0952
## 8 61.0602 nan 0.0010 0.0886
## 9 60.9637 nan 0.0010 0.0884
## 10 60.8777 nan 0.0010 0.0938
## 20 59.9508 nan 0.0010 0.0968
## 40 58.0867 nan 0.0010 0.0819
## 60 56.3661 nan 0.0010 0.0880
## 80 54.6466 nan 0.0010 0.0820
## 100 53.0423 nan 0.0010 0.0805
## 120 51.4870 nan 0.0010 0.0775
## 140 49.9750 nan 0.0010 0.0707
## 160 48.5256 nan 0.0010 0.0824
## 180 47.1204 nan 0.0010 0.0691
## 200 45.7841 nan 0.0010 0.0735
## 220 44.4623 nan 0.0010 0.0579
## 240 43.1808 nan 0.0010 0.0562
## 260 41.9844 nan 0.0010 0.0618
## 280 40.7925 nan 0.0010 0.0603
## 300 39.6186 nan 0.0010 0.0576
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7136 nan 0.0010 0.0934
## 2 61.6240 nan 0.0010 0.0880
## 3 61.5316 nan 0.0010 0.0941
## 4 61.4317 nan 0.0010 0.0987
## 5 61.3373 nan 0.0010 0.0883
## 6 61.2421 nan 0.0010 0.0945
## 7 61.1504 nan 0.0010 0.0871
## 8 61.0478 nan 0.0010 0.0967
## 9 60.9566 nan 0.0010 0.0979
## 10 60.8696 nan 0.0010 0.0918
## 20 59.9503 nan 0.0010 0.0929
## 40 58.1775 nan 0.0010 0.0847
## 60 56.4318 nan 0.0010 0.0856
## 80 54.7720 nan 0.0010 0.0783
## 100 53.1415 nan 0.0010 0.0616
## 120 51.5664 nan 0.0010 0.0756
## 140 50.0444 nan 0.0010 0.0738
## 160 48.5833 nan 0.0010 0.0805
## 180 47.1628 nan 0.0010 0.0628
## 200 45.8081 nan 0.0010 0.0718
## 220 44.4877 nan 0.0010 0.0497
## 240 43.1951 nan 0.0010 0.0544
## 260 41.9651 nan 0.0010 0.0556
## 280 40.7801 nan 0.0010 0.0451
## 300 39.6168 nan 0.0010 0.0527
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7080 nan 0.0010 0.0974
## 2 61.6023 nan 0.0010 0.1004
## 3 61.4982 nan 0.0010 0.0864
## 4 61.3928 nan 0.0010 0.0918
## 5 61.2911 nan 0.0010 0.1057
## 6 61.1927 nan 0.0010 0.0902
## 7 61.0898 nan 0.0010 0.0928
## 8 60.9895 nan 0.0010 0.0866
## 9 60.8911 nan 0.0010 0.0936
## 10 60.7860 nan 0.0010 0.0994
## 20 59.7724 nan 0.0010 0.0963
## 40 57.8179 nan 0.0010 0.0914
## 60 55.9283 nan 0.0010 0.0919
## 80 54.1246 nan 0.0010 0.0844
## 100 52.3815 nan 0.0010 0.0792
## 120 50.7052 nan 0.0010 0.0836
## 140 49.0909 nan 0.0010 0.0757
## 160 47.5459 nan 0.0010 0.0724
## 180 46.0338 nan 0.0010 0.0730
## 200 44.5860 nan 0.0010 0.0685
## 220 43.1886 nan 0.0010 0.0610
## 240 41.8444 nan 0.0010 0.0596
## 260 40.5416 nan 0.0010 0.0635
## 280 39.2901 nan 0.0010 0.0542
## 300 38.1023 nan 0.0010 0.0541
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7091 nan 0.0010 0.0971
## 2 61.6084 nan 0.0010 0.1041
## 3 61.5049 nan 0.0010 0.1023
## 4 61.4018 nan 0.0010 0.1071
## 5 61.2987 nan 0.0010 0.1103
## 6 61.1953 nan 0.0010 0.1030
## 7 61.0931 nan 0.0010 0.0947
## 8 60.9913 nan 0.0010 0.1003
## 9 60.8912 nan 0.0010 0.1030
## 10 60.7859 nan 0.0010 0.0990
## 20 59.7562 nan 0.0010 0.1005
## 40 57.8095 nan 0.0010 0.0834
## 60 55.9319 nan 0.0010 0.0902
## 80 54.1349 nan 0.0010 0.0789
## 100 52.3922 nan 0.0010 0.0880
## 120 50.7286 nan 0.0010 0.0817
## 140 49.1227 nan 0.0010 0.0746
## 160 47.5622 nan 0.0010 0.0752
## 180 46.0526 nan 0.0010 0.0722
## 200 44.6092 nan 0.0010 0.0779
## 220 43.1962 nan 0.0010 0.0641
## 240 41.8514 nan 0.0010 0.0696
## 260 40.5439 nan 0.0010 0.0578
## 280 39.2912 nan 0.0010 0.0619
## 300 38.0903 nan 0.0010 0.0578
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7096 nan 0.0010 0.1065
## 2 61.6043 nan 0.0010 0.1063
## 3 61.5045 nan 0.0010 0.1064
## 4 61.3964 nan 0.0010 0.1141
## 5 61.2963 nan 0.0010 0.0956
## 6 61.1991 nan 0.0010 0.1074
## 7 61.0923 nan 0.0010 0.1113
## 8 60.9959 nan 0.0010 0.1005
## 9 60.8997 nan 0.0010 0.1054
## 10 60.8018 nan 0.0010 0.1021
## 20 59.7954 nan 0.0010 0.0870
## 40 57.8340 nan 0.0010 0.0998
## 60 55.9669 nan 0.0010 0.0868
## 80 54.1436 nan 0.0010 0.0891
## 100 52.3856 nan 0.0010 0.0810
## 120 50.7033 nan 0.0010 0.0818
## 140 49.0821 nan 0.0010 0.0823
## 160 47.5361 nan 0.0010 0.0671
## 180 46.0683 nan 0.0010 0.0741
## 200 44.6018 nan 0.0010 0.0692
## 220 43.2035 nan 0.0010 0.0644
## 240 41.8568 nan 0.0010 0.0733
## 260 40.5665 nan 0.0010 0.0582
## 280 39.3430 nan 0.0010 0.0615
## 300 38.1464 nan 0.0010 0.0603
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.4247 nan 0.0050 0.3927
## 2 61.0355 nan 0.0050 0.3811
## 3 60.6968 nan 0.0050 0.3881
## 4 60.3335 nan 0.0050 0.3873
## 5 59.9376 nan 0.0050 0.3754
## 6 59.5562 nan 0.0050 0.3775
## 7 59.1511 nan 0.0050 0.3662
## 8 58.7980 nan 0.0050 0.3743
## 9 58.4148 nan 0.0050 0.3935
## 10 58.0474 nan 0.0050 0.3725
## 20 54.5219 nan 0.0050 0.3011
## 40 48.5185 nan 0.0050 0.2530
## 60 43.4335 nan 0.0050 0.1997
## 80 39.0295 nan 0.0050 0.2008
## 100 35.2016 nan 0.0050 0.1716
## 120 31.9302 nan 0.0050 0.1456
## 140 29.1019 nan 0.0050 0.1324
## 160 26.5452 nan 0.0050 0.1149
## 180 24.3358 nan 0.0050 0.0931
## 200 22.4131 nan 0.0050 0.0727
## 220 20.7158 nan 0.0050 0.0724
## 240 19.2342 nan 0.0050 0.0613
## 260 17.8414 nan 0.0050 0.0607
## 280 16.6490 nan 0.0050 0.0501
## 300 15.5555 nan 0.0050 0.0431
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.4173 nan 0.0050 0.3816
## 2 61.0478 nan 0.0050 0.3884
## 3 60.6619 nan 0.0050 0.3965
## 4 60.2674 nan 0.0050 0.3843
## 5 59.8641 nan 0.0050 0.3812
## 6 59.4762 nan 0.0050 0.3855
## 7 59.0631 nan 0.0050 0.3901
## 8 58.6878 nan 0.0050 0.3801
## 9 58.3200 nan 0.0050 0.4004
## 10 57.9925 nan 0.0050 0.3532
## 20 54.5518 nan 0.0050 0.3219
## 40 48.4622 nan 0.0050 0.2648
## 60 43.4209 nan 0.0050 0.2067
## 80 39.1640 nan 0.0050 0.2042
## 100 35.3025 nan 0.0050 0.1841
## 120 31.9725 nan 0.0050 0.1462
## 140 29.1019 nan 0.0050 0.1257
## 160 26.5990 nan 0.0050 0.1030
## 180 24.3783 nan 0.0050 0.0851
## 200 22.4160 nan 0.0050 0.0989
## 220 20.7149 nan 0.0050 0.0742
## 240 19.2137 nan 0.0050 0.0665
## 260 17.8177 nan 0.0050 0.0631
## 280 16.6084 nan 0.0050 0.0551
## 300 15.4976 nan 0.0050 0.0374
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3816 nan 0.0050 0.4107
## 2 60.9847 nan 0.0050 0.3927
## 3 60.6109 nan 0.0050 0.3711
## 4 60.2468 nan 0.0050 0.3230
## 5 59.8645 nan 0.0050 0.3919
## 6 59.4517 nan 0.0050 0.3860
## 7 59.0930 nan 0.0050 0.3490
## 8 58.7249 nan 0.0050 0.3640
## 9 58.3603 nan 0.0050 0.4007
## 10 57.9911 nan 0.0050 0.3508
## 20 54.5850 nan 0.0050 0.3369
## 40 48.6356 nan 0.0050 0.2748
## 60 43.4471 nan 0.0050 0.2395
## 80 39.1858 nan 0.0050 0.1921
## 100 35.4071 nan 0.0050 0.1676
## 120 32.0656 nan 0.0050 0.1538
## 140 29.1513 nan 0.0050 0.1261
## 160 26.5742 nan 0.0050 0.1087
## 180 24.4029 nan 0.0050 0.0835
## 200 22.4413 nan 0.0050 0.0887
## 220 20.7474 nan 0.0050 0.0589
## 240 19.1727 nan 0.0050 0.0647
## 260 17.7907 nan 0.0050 0.0625
## 280 16.5546 nan 0.0050 0.0533
## 300 15.4377 nan 0.0050 0.0534
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3183 nan 0.0050 0.4876
## 2 60.8492 nan 0.0050 0.4594
## 3 60.3518 nan 0.0050 0.4423
## 4 59.9113 nan 0.0050 0.4776
## 5 59.4253 nan 0.0050 0.4608
## 6 58.9370 nan 0.0050 0.4401
## 7 58.4892 nan 0.0050 0.4357
## 8 58.0379 nan 0.0050 0.4529
## 9 57.5703 nan 0.0050 0.4634
## 10 57.1655 nan 0.0050 0.4319
## 20 52.9620 nan 0.0050 0.4146
## 40 45.7776 nan 0.0050 0.3745
## 60 39.6726 nan 0.0050 0.2757
## 80 34.3010 nan 0.0050 0.2296
## 100 30.0047 nan 0.0050 0.2047
## 120 26.3439 nan 0.0050 0.1414
## 140 23.2501 nan 0.0050 0.1473
## 160 20.6512 nan 0.0050 0.1015
## 180 18.4366 nan 0.0050 0.1074
## 200 16.5790 nan 0.0050 0.0781
## 220 14.9212 nan 0.0050 0.0643
## 240 13.5187 nan 0.0050 0.0443
## 260 12.2996 nan 0.0050 0.0524
## 280 11.2470 nan 0.0050 0.0463
## 300 10.3624 nan 0.0050 0.0431
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3281 nan 0.0050 0.4959
## 2 60.8400 nan 0.0050 0.4515
## 3 60.3679 nan 0.0050 0.4682
## 4 59.8972 nan 0.0050 0.4882
## 5 59.4713 nan 0.0050 0.4463
## 6 59.0338 nan 0.0050 0.4229
## 7 58.6122 nan 0.0050 0.4238
## 8 58.1729 nan 0.0050 0.4370
## 9 57.7493 nan 0.0050 0.4365
## 10 57.3423 nan 0.0050 0.4293
## 20 53.1743 nan 0.0050 0.3420
## 40 45.9690 nan 0.0050 0.3232
## 60 39.7048 nan 0.0050 0.2887
## 80 34.6085 nan 0.0050 0.2706
## 100 30.2483 nan 0.0050 0.1994
## 120 26.4919 nan 0.0050 0.1735
## 140 23.3849 nan 0.0050 0.1502
## 160 20.7488 nan 0.0050 0.1143
## 180 18.5069 nan 0.0050 0.1038
## 200 16.5961 nan 0.0050 0.0790
## 220 14.9226 nan 0.0050 0.0808
## 240 13.5931 nan 0.0050 0.0598
## 260 12.3717 nan 0.0050 0.0419
## 280 11.3383 nan 0.0050 0.0434
## 300 10.4187 nan 0.0050 0.0385
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3132 nan 0.0050 0.4832
## 2 60.8305 nan 0.0050 0.4159
## 3 60.3857 nan 0.0050 0.4552
## 4 59.9519 nan 0.0050 0.4422
## 5 59.4675 nan 0.0050 0.4922
## 6 59.0084 nan 0.0050 0.4453
## 7 58.5887 nan 0.0050 0.4213
## 8 58.1446 nan 0.0050 0.4156
## 9 57.7243 nan 0.0050 0.4845
## 10 57.3011 nan 0.0050 0.4325
## 20 53.2001 nan 0.0050 0.3714
## 40 45.8054 nan 0.0050 0.2775
## 60 39.7707 nan 0.0050 0.2795
## 80 34.5800 nan 0.0050 0.2288
## 100 30.1995 nan 0.0050 0.2101
## 120 26.4604 nan 0.0050 0.1636
## 140 23.4614 nan 0.0050 0.1386
## 160 20.8516 nan 0.0050 0.1203
## 180 18.6040 nan 0.0050 0.0806
## 200 16.6551 nan 0.0050 0.0962
## 220 15.0651 nan 0.0050 0.0573
## 240 13.6762 nan 0.0050 0.0389
## 260 12.5008 nan 0.0050 0.0460
## 280 11.4454 nan 0.0050 0.0418
## 300 10.5181 nan 0.0050 0.0413
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2965 nan 0.0050 0.4630
## 2 60.7673 nan 0.0050 0.5376
## 3 60.2610 nan 0.0050 0.5351
## 4 59.7501 nan 0.0050 0.4393
## 5 59.2423 nan 0.0050 0.5374
## 6 58.7616 nan 0.0050 0.5020
## 7 58.2913 nan 0.0050 0.4252
## 8 57.8056 nan 0.0050 0.4545
## 9 57.3446 nan 0.0050 0.4572
## 10 56.8928 nan 0.0050 0.4419
## 20 52.4219 nan 0.0050 0.4211
## 40 44.5994 nan 0.0050 0.3508
## 60 38.1464 nan 0.0050 0.2810
## 80 32.7632 nan 0.0050 0.2527
## 100 28.2622 nan 0.0050 0.1794
## 120 24.4678 nan 0.0050 0.1673
## 140 21.2787 nan 0.0050 0.1257
## 160 18.5928 nan 0.0050 0.1227
## 180 16.3531 nan 0.0050 0.0776
## 200 14.4769 nan 0.0050 0.0881
## 220 12.9282 nan 0.0050 0.0626
## 240 11.5860 nan 0.0050 0.0550
## 260 10.4411 nan 0.0050 0.0443
## 280 9.4774 nan 0.0050 0.0372
## 300 8.6676 nan 0.0050 0.0318
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3026 nan 0.0050 0.4722
## 2 60.7909 nan 0.0050 0.4977
## 3 60.2783 nan 0.0050 0.5161
## 4 59.7878 nan 0.0050 0.4935
## 5 59.2696 nan 0.0050 0.5251
## 6 58.7793 nan 0.0050 0.5116
## 7 58.2909 nan 0.0050 0.4509
## 8 57.7947 nan 0.0050 0.4880
## 9 57.3085 nan 0.0050 0.4177
## 10 56.8342 nan 0.0050 0.4469
## 20 52.3362 nan 0.0050 0.3965
## 40 44.5028 nan 0.0050 0.3664
## 60 38.0418 nan 0.0050 0.2665
## 80 32.6329 nan 0.0050 0.2474
## 100 28.1768 nan 0.0050 0.1930
## 120 24.4039 nan 0.0050 0.1632
## 140 21.3089 nan 0.0050 0.1419
## 160 18.6493 nan 0.0050 0.1447
## 180 16.4301 nan 0.0050 0.0964
## 200 14.5578 nan 0.0050 0.0824
## 220 12.9799 nan 0.0050 0.0620
## 240 11.6491 nan 0.0050 0.0520
## 260 10.5148 nan 0.0050 0.0357
## 280 9.5391 nan 0.0050 0.0397
## 300 8.7204 nan 0.0050 0.0371
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2691 nan 0.0050 0.4829
## 2 60.7439 nan 0.0050 0.4850
## 3 60.2346 nan 0.0050 0.4987
## 4 59.7348 nan 0.0050 0.5476
## 5 59.2410 nan 0.0050 0.4521
## 6 58.7536 nan 0.0050 0.4424
## 7 58.2607 nan 0.0050 0.4742
## 8 57.7913 nan 0.0050 0.4585
## 9 57.3150 nan 0.0050 0.4869
## 10 56.8442 nan 0.0050 0.4820
## 20 52.3889 nan 0.0050 0.4029
## 40 44.5993 nan 0.0050 0.3464
## 60 38.1328 nan 0.0050 0.3073
## 80 32.8046 nan 0.0050 0.2354
## 100 28.3479 nan 0.0050 0.2270
## 120 24.5326 nan 0.0050 0.1497
## 140 21.4164 nan 0.0050 0.1383
## 160 18.7505 nan 0.0050 0.1135
## 180 16.5811 nan 0.0050 0.0891
## 200 14.7176 nan 0.0050 0.0836
## 220 13.1545 nan 0.0050 0.0643
## 240 11.8073 nan 0.0050 0.0477
## 260 10.6733 nan 0.0050 0.0475
## 280 9.7384 nan 0.0050 0.0447
## 300 8.9193 nan 0.0050 0.0360
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.0259 nan 0.0100 0.7957
## 2 60.2660 nan 0.0100 0.8207
## 3 59.5667 nan 0.0100 0.6617
## 4 58.8095 nan 0.0100 0.7140
## 5 58.0253 nan 0.0100 0.7517
## 6 57.2912 nan 0.0100 0.7289
## 7 56.5374 nan 0.0100 0.6663
## 8 55.8036 nan 0.0100 0.7069
## 9 55.0182 nan 0.0100 0.7044
## 10 54.3776 nan 0.0100 0.6594
## 20 48.4372 nan 0.0100 0.5332
## 40 39.0501 nan 0.0100 0.3402
## 60 31.9590 nan 0.0100 0.2954
## 80 26.6543 nan 0.0100 0.2302
## 100 22.4259 nan 0.0100 0.2001
## 120 19.2032 nan 0.0100 0.1285
## 140 16.5708 nan 0.0100 0.1072
## 160 14.5227 nan 0.0100 0.0859
## 180 12.8266 nan 0.0100 0.0568
## 200 11.4716 nan 0.0100 0.0590
## 220 10.3608 nan 0.0100 0.0326
## 240 9.4100 nan 0.0100 0.0306
## 260 8.6169 nan 0.0100 0.0241
## 280 7.9377 nan 0.0100 0.0282
## 300 7.3442 nan 0.0100 0.0152
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.0814 nan 0.0100 0.7907
## 2 60.2514 nan 0.0100 0.7743
## 3 59.4094 nan 0.0100 0.7930
## 4 58.6600 nan 0.0100 0.7966
## 5 57.9474 nan 0.0100 0.7079
## 6 57.1818 nan 0.0100 0.7516
## 7 56.4825 nan 0.0100 0.6847
## 8 55.8397 nan 0.0100 0.6299
## 9 55.1527 nan 0.0100 0.6924
## 10 54.4888 nan 0.0100 0.6545
## 20 48.4554 nan 0.0100 0.5276
## 40 38.9476 nan 0.0100 0.3780
## 60 31.7902 nan 0.0100 0.2759
## 80 26.4888 nan 0.0100 0.2076
## 100 22.2980 nan 0.0100 0.1510
## 120 19.0910 nan 0.0100 0.1341
## 140 16.5701 nan 0.0100 0.1059
## 160 14.4824 nan 0.0100 0.1143
## 180 12.8322 nan 0.0100 0.0625
## 200 11.4923 nan 0.0100 0.0563
## 220 10.3602 nan 0.0100 0.0364
## 240 9.4092 nan 0.0100 0.0390
## 260 8.6119 nan 0.0100 0.0259
## 280 7.9145 nan 0.0100 0.0227
## 300 7.3296 nan 0.0100 0.0180
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.0671 nan 0.0100 0.7792
## 2 60.2315 nan 0.0100 0.7638
## 3 59.4733 nan 0.0100 0.7846
## 4 58.7222 nan 0.0100 0.7790
## 5 58.0447 nan 0.0100 0.7248
## 6 57.2937 nan 0.0100 0.7220
## 7 56.6312 nan 0.0100 0.6948
## 8 55.9248 nan 0.0100 0.6805
## 9 55.2476 nan 0.0100 0.6856
## 10 54.5930 nan 0.0100 0.6725
## 20 48.3398 nan 0.0100 0.5264
## 40 39.0411 nan 0.0100 0.3951
## 60 32.0237 nan 0.0100 0.3134
## 80 26.5445 nan 0.0100 0.2452
## 100 22.4129 nan 0.0100 0.1822
## 120 19.1531 nan 0.0100 0.1184
## 140 16.6034 nan 0.0100 0.1088
## 160 14.5498 nan 0.0100 0.0674
## 180 12.8573 nan 0.0100 0.0552
## 200 11.5291 nan 0.0100 0.0491
## 220 10.4064 nan 0.0100 0.0517
## 240 9.4760 nan 0.0100 0.0429
## 260 8.6838 nan 0.0100 0.0167
## 280 7.9801 nan 0.0100 0.0218
## 300 7.3726 nan 0.0100 0.0171
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8992 nan 0.0100 0.9126
## 2 59.9128 nan 0.0100 0.9075
## 3 59.0474 nan 0.0100 0.8692
## 4 58.1807 nan 0.0100 0.8340
## 5 57.2786 nan 0.0100 0.8972
## 6 56.4909 nan 0.0100 0.7975
## 7 55.5981 nan 0.0100 0.8828
## 8 54.7066 nan 0.0100 0.8425
## 9 53.8495 nan 0.0100 0.8164
## 10 53.1001 nan 0.0100 0.7709
## 20 45.8305 nan 0.0100 0.6532
## 40 34.4791 nan 0.0100 0.3490
## 60 26.3919 nan 0.0100 0.3377
## 80 20.5346 nan 0.0100 0.2135
## 100 16.5371 nan 0.0100 0.1639
## 120 13.4933 nan 0.0100 0.1027
## 140 11.3140 nan 0.0100 0.0565
## 160 9.5838 nan 0.0100 0.0655
## 180 8.2633 nan 0.0100 0.0314
## 200 7.2523 nan 0.0100 0.0439
## 220 6.4841 nan 0.0100 0.0301
## 240 5.8374 nan 0.0100 0.0244
## 260 5.3348 nan 0.0100 0.0146
## 280 4.9464 nan 0.0100 0.0070
## 300 4.6325 nan 0.0100 0.0127
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9490 nan 0.0100 0.8696
## 2 60.0335 nan 0.0100 0.8668
## 3 59.1876 nan 0.0100 0.7986
## 4 58.2273 nan 0.0100 0.9547
## 5 57.3208 nan 0.0100 0.9097
## 6 56.5093 nan 0.0100 0.8691
## 7 55.6579 nan 0.0100 0.8855
## 8 54.8031 nan 0.0100 0.8957
## 9 53.9360 nan 0.0100 0.7772
## 10 53.1756 nan 0.0100 0.7192
## 20 45.7907 nan 0.0100 0.7218
## 40 34.5109 nan 0.0100 0.4867
## 60 26.5776 nan 0.0100 0.2989
## 80 20.7947 nan 0.0100 0.1947
## 100 16.7472 nan 0.0100 0.1567
## 120 13.7496 nan 0.0100 0.1137
## 140 11.4284 nan 0.0100 0.0861
## 160 9.7080 nan 0.0100 0.0581
## 180 8.4437 nan 0.0100 0.0494
## 200 7.3566 nan 0.0100 0.0391
## 220 6.5726 nan 0.0100 0.0208
## 240 5.9168 nan 0.0100 0.0230
## 260 5.4290 nan 0.0100 0.0137
## 280 5.0539 nan 0.0100 0.0056
## 300 4.7373 nan 0.0100 0.0083
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9365 nan 0.0100 0.7847
## 2 60.0191 nan 0.0100 0.8861
## 3 59.1064 nan 0.0100 0.9121
## 4 58.1848 nan 0.0100 0.8694
## 5 57.2883 nan 0.0100 0.8085
## 6 56.4124 nan 0.0100 0.8571
## 7 55.5699 nan 0.0100 0.8311
## 8 54.7537 nan 0.0100 0.7562
## 9 53.9323 nan 0.0100 0.7686
## 10 53.0774 nan 0.0100 0.8794
## 20 45.6775 nan 0.0100 0.6815
## 40 34.3273 nan 0.0100 0.4085
## 60 26.1986 nan 0.0100 0.2648
## 80 20.6354 nan 0.0100 0.2196
## 100 16.5685 nan 0.0100 0.1601
## 120 13.6057 nan 0.0100 0.1250
## 140 11.4132 nan 0.0100 0.0773
## 160 9.7243 nan 0.0100 0.0796
## 180 8.4128 nan 0.0100 0.0563
## 200 7.4161 nan 0.0100 0.0389
## 220 6.6031 nan 0.0100 0.0283
## 240 6.0109 nan 0.0100 0.0124
## 260 5.5255 nan 0.0100 0.0184
## 280 5.1231 nan 0.0100 0.0058
## 300 4.8033 nan 0.0100 0.0142
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8320 nan 0.0100 0.9874
## 2 59.8158 nan 0.0100 0.9658
## 3 58.8192 nan 0.0100 0.9144
## 4 57.8154 nan 0.0100 0.9664
## 5 56.9260 nan 0.0100 1.0306
## 6 56.0139 nan 0.0100 0.9234
## 7 55.0791 nan 0.0100 0.8274
## 8 54.2060 nan 0.0100 0.8090
## 9 53.2759 nan 0.0100 0.9091
## 10 52.3863 nan 0.0100 0.9540
## 20 44.5841 nan 0.0100 0.7099
## 40 32.7282 nan 0.0100 0.4816
## 60 24.5785 nan 0.0100 0.3229
## 80 18.7484 nan 0.0100 0.2126
## 100 14.6501 nan 0.0100 0.1688
## 120 11.7573 nan 0.0100 0.1336
## 140 9.6034 nan 0.0100 0.0899
## 160 7.9960 nan 0.0100 0.0619
## 180 6.8335 nan 0.0100 0.0428
## 200 5.9452 nan 0.0100 0.0387
## 220 5.2929 nan 0.0100 0.0233
## 240 4.7893 nan 0.0100 0.0146
## 260 4.3890 nan 0.0100 0.0115
## 280 4.0727 nan 0.0100 0.0086
## 300 3.8032 nan 0.0100 0.0042
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.7904 nan 0.0100 0.9557
## 2 59.7730 nan 0.0100 1.0454
## 3 58.7917 nan 0.0100 1.0417
## 4 57.8315 nan 0.0100 0.9792
## 5 56.9066 nan 0.0100 0.8869
## 6 55.9281 nan 0.0100 0.9816
## 7 55.0769 nan 0.0100 0.8482
## 8 54.1720 nan 0.0100 0.8625
## 9 53.3030 nan 0.0100 0.8170
## 10 52.3861 nan 0.0100 0.9409
## 20 44.6284 nan 0.0100 0.7512
## 40 32.7364 nan 0.0100 0.5014
## 60 24.5003 nan 0.0100 0.2941
## 80 18.7508 nan 0.0100 0.2436
## 100 14.6621 nan 0.0100 0.1474
## 120 11.7826 nan 0.0100 0.1067
## 140 9.6512 nan 0.0100 0.0743
## 160 8.0976 nan 0.0100 0.0475
## 180 6.9165 nan 0.0100 0.0305
## 200 6.0396 nan 0.0100 0.0288
## 220 5.3353 nan 0.0100 0.0250
## 240 4.8169 nan 0.0100 0.0081
## 260 4.4316 nan 0.0100 0.0081
## 280 4.1213 nan 0.0100 0.0112
## 300 3.8813 nan 0.0100 0.0089
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8081 nan 0.0100 0.9900
## 2 59.7973 nan 0.0100 1.0073
## 3 58.7935 nan 0.0100 1.0323
## 4 57.8178 nan 0.0100 1.0066
## 5 56.7987 nan 0.0100 1.0428
## 6 55.8656 nan 0.0100 0.8628
## 7 54.9656 nan 0.0100 0.8988
## 8 54.0472 nan 0.0100 0.9129
## 9 53.1807 nan 0.0100 0.8804
## 10 52.2988 nan 0.0100 0.8608
## 20 44.5616 nan 0.0100 0.6756
## 40 32.7940 nan 0.0100 0.4907
## 60 24.5151 nan 0.0100 0.3260
## 80 18.7760 nan 0.0100 0.2158
## 100 14.7725 nan 0.0100 0.1636
## 120 11.8296 nan 0.0100 0.0990
## 140 9.7265 nan 0.0100 0.0777
## 160 8.2204 nan 0.0100 0.0601
## 180 7.0602 nan 0.0100 0.0458
## 200 6.1641 nan 0.0100 0.0306
## 220 5.4894 nan 0.0100 0.0202
## 240 4.9914 nan 0.0100 0.0153
## 260 4.6193 nan 0.0100 0.0117
## 280 4.3293 nan 0.0100 0.0086
## 300 4.1106 nan 0.0100 -0.0039
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.6367 nan 0.0500 3.7829
## 2 54.1927 nan 0.0500 2.9824
## 3 51.1455 nan 0.0500 2.9591
## 4 48.1393 nan 0.0500 2.8497
## 5 45.6493 nan 0.0500 2.5293
## 6 43.2058 nan 0.0500 2.2645
## 7 40.7404 nan 0.0500 2.3167
## 8 38.5356 nan 0.0500 2.2107
## 9 36.6174 nan 0.0500 2.0769
## 10 34.8477 nan 0.0500 1.5948
## 20 22.0342 nan 0.0500 0.8360
## 40 11.3991 nan 0.0500 0.3324
## 60 7.2507 nan 0.0500 0.0992
## 80 5.4196 nan 0.0500 0.0357
## 100 4.6045 nan 0.0500 0.0130
## 120 4.1839 nan 0.0500 -0.0155
## 140 3.9602 nan 0.0500 -0.0099
## 160 3.8138 nan 0.0500 -0.0058
## 180 3.7117 nan 0.0500 -0.0033
## 200 3.6061 nan 0.0500 -0.0165
## 220 3.5128 nan 0.0500 -0.0034
## 240 3.4413 nan 0.0500 -0.0108
## 260 3.3928 nan 0.0500 -0.0027
## 280 3.3415 nan 0.0500 -0.0067
## 300 3.2966 nan 0.0500 -0.0117
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.9054 nan 0.0500 3.8857
## 2 54.3030 nan 0.0500 3.4940
## 3 51.2208 nan 0.0500 3.0389
## 4 48.2572 nan 0.0500 3.1144
## 5 45.3278 nan 0.0500 2.4434
## 6 42.6968 nan 0.0500 2.4270
## 7 40.5577 nan 0.0500 2.1199
## 8 38.3126 nan 0.0500 2.1356
## 9 36.4973 nan 0.0500 1.7005
## 10 34.6338 nan 0.0500 1.7883
## 20 21.5674 nan 0.0500 0.7282
## 40 10.9142 nan 0.0500 0.2002
## 60 7.1152 nan 0.0500 0.0735
## 80 5.4089 nan 0.0500 0.0449
## 100 4.5409 nan 0.0500 0.0085
## 120 4.1214 nan 0.0500 -0.0001
## 140 3.9205 nan 0.0500 -0.0085
## 160 3.7963 nan 0.0500 -0.0164
## 180 3.7049 nan 0.0500 -0.0182
## 200 3.6339 nan 0.0500 -0.0035
## 220 3.5570 nan 0.0500 -0.0055
## 240 3.5027 nan 0.0500 -0.0032
## 260 3.4655 nan 0.0500 -0.0096
## 280 3.4122 nan 0.0500 -0.0129
## 300 3.3558 nan 0.0500 -0.0096
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.2305 nan 0.0500 3.9085
## 2 54.7853 nan 0.0500 3.3344
## 3 51.5226 nan 0.0500 3.3525
## 4 48.5667 nan 0.0500 2.8294
## 5 45.7910 nan 0.0500 2.4082
## 6 43.3759 nan 0.0500 2.1217
## 7 41.0817 nan 0.0500 2.2774
## 8 38.7663 nan 0.0500 2.1823
## 9 36.5169 nan 0.0500 1.8743
## 10 34.7807 nan 0.0500 1.7050
## 20 22.2531 nan 0.0500 0.7362
## 40 11.2829 nan 0.0500 0.2258
## 60 7.3259 nan 0.0500 0.1276
## 80 5.5680 nan 0.0500 0.0351
## 100 4.7147 nan 0.0500 0.0055
## 120 4.3297 nan 0.0500 0.0054
## 140 4.1335 nan 0.0500 -0.0074
## 160 4.0020 nan 0.0500 -0.0092
## 180 3.9211 nan 0.0500 -0.0069
## 200 3.8576 nan 0.0500 0.0008
## 220 3.7740 nan 0.0500 -0.0108
## 240 3.7133 nan 0.0500 -0.0080
## 260 3.6554 nan 0.0500 0.0009
## 280 3.6029 nan 0.0500 -0.0106
## 300 3.5605 nan 0.0500 -0.0041
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.4503 nan 0.0500 4.4528
## 2 52.9398 nan 0.0500 4.1806
## 3 49.0146 nan 0.0500 3.7527
## 4 45.3843 nan 0.0500 3.7903
## 5 42.4031 nan 0.0500 2.7306
## 6 39.8386 nan 0.0500 2.4538
## 7 37.0293 nan 0.0500 2.7359
## 8 34.4023 nan 0.0500 2.3397
## 9 31.8148 nan 0.0500 2.1953
## 10 29.7094 nan 0.0500 1.9236
## 20 16.2992 nan 0.0500 0.8451
## 40 7.1653 nan 0.0500 0.1844
## 60 4.6180 nan 0.0500 0.0473
## 80 3.7778 nan 0.0500 0.0064
## 100 3.3986 nan 0.0500 -0.0065
## 120 3.1764 nan 0.0500 -0.0015
## 140 3.0100 nan 0.0500 -0.0101
## 160 2.8751 nan 0.0500 -0.0070
## 180 2.7546 nan 0.0500 -0.0055
## 200 2.6581 nan 0.0500 -0.0140
## 220 2.5630 nan 0.0500 -0.0061
## 240 2.4538 nan 0.0500 -0.0067
## 260 2.3795 nan 0.0500 -0.0085
## 280 2.2839 nan 0.0500 -0.0142
## 300 2.2192 nan 0.0500 -0.0145
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.0723 nan 0.0500 4.3820
## 2 52.6643 nan 0.0500 3.8235
## 3 48.5900 nan 0.0500 4.1792
## 4 44.8559 nan 0.0500 3.5430
## 5 41.4246 nan 0.0500 3.4289
## 6 38.7557 nan 0.0500 2.6508
## 7 35.9352 nan 0.0500 2.6063
## 8 33.3089 nan 0.0500 2.1359
## 9 30.8391 nan 0.0500 2.3369
## 10 28.9206 nan 0.0500 2.1003
## 20 16.2028 nan 0.0500 0.8256
## 40 7.0065 nan 0.0500 0.1624
## 60 4.6302 nan 0.0500 0.0392
## 80 3.8074 nan 0.0500 0.0035
## 100 3.4752 nan 0.0500 -0.0192
## 120 3.2392 nan 0.0500 -0.0062
## 140 3.0759 nan 0.0500 -0.0094
## 160 2.9289 nan 0.0500 -0.0164
## 180 2.8173 nan 0.0500 -0.0188
## 200 2.7131 nan 0.0500 -0.0099
## 220 2.6112 nan 0.0500 -0.0175
## 240 2.5456 nan 0.0500 -0.0102
## 260 2.4779 nan 0.0500 -0.0024
## 280 2.4042 nan 0.0500 -0.0113
## 300 2.3505 nan 0.0500 -0.0099
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.7684 nan 0.0500 3.8894
## 2 53.1666 nan 0.0500 4.2435
## 3 49.3629 nan 0.0500 3.8022
## 4 45.5040 nan 0.0500 3.8475
## 5 42.3453 nan 0.0500 3.0308
## 6 39.1540 nan 0.0500 3.3306
## 7 36.6976 nan 0.0500 2.6829
## 8 34.3849 nan 0.0500 2.5129
## 9 32.0814 nan 0.0500 2.4229
## 10 29.8997 nan 0.0500 1.8279
## 20 16.1290 nan 0.0500 0.7897
## 40 7.3229 nan 0.0500 0.1302
## 60 4.8530 nan 0.0500 0.0345
## 80 4.0995 nan 0.0500 0.0129
## 100 3.7455 nan 0.0500 -0.0139
## 120 3.5456 nan 0.0500 -0.0292
## 140 3.3553 nan 0.0500 -0.0058
## 160 3.2244 nan 0.0500 -0.0032
## 180 3.1015 nan 0.0500 -0.0163
## 200 3.0004 nan 0.0500 -0.0115
## 220 2.9326 nan 0.0500 -0.0190
## 240 2.8497 nan 0.0500 -0.0091
## 260 2.7820 nan 0.0500 -0.0065
## 280 2.7062 nan 0.0500 -0.0066
## 300 2.6457 nan 0.0500 -0.0346
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.8320 nan 0.0500 4.7680
## 2 52.3853 nan 0.0500 4.8503
## 3 48.4297 nan 0.0500 3.4382
## 4 44.7212 nan 0.0500 3.6736
## 5 41.3924 nan 0.0500 3.4279
## 6 38.1576 nan 0.0500 3.0952
## 7 35.4374 nan 0.0500 2.6561
## 8 32.8001 nan 0.0500 2.5846
## 9 30.4555 nan 0.0500 2.4770
## 10 28.2191 nan 0.0500 2.3488
## 20 14.2285 nan 0.0500 0.8097
## 40 5.7770 nan 0.0500 0.1912
## 60 3.7045 nan 0.0500 0.0345
## 80 3.0621 nan 0.0500 -0.0097
## 100 2.7720 nan 0.0500 -0.0083
## 120 2.5784 nan 0.0500 -0.0237
## 140 2.3980 nan 0.0500 -0.0034
## 160 2.2078 nan 0.0500 -0.0156
## 180 2.0766 nan 0.0500 -0.0104
## 200 1.9768 nan 0.0500 -0.0023
## 220 1.8854 nan 0.0500 -0.0088
## 240 1.8070 nan 0.0500 -0.0093
## 260 1.7241 nan 0.0500 -0.0184
## 280 1.6545 nan 0.0500 -0.0052
## 300 1.5879 nan 0.0500 -0.0112
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.8497 nan 0.0500 4.8386
## 2 52.4863 nan 0.0500 4.4785
## 3 48.1555 nan 0.0500 3.9833
## 4 44.3572 nan 0.0500 3.2813
## 5 40.8570 nan 0.0500 3.4341
## 6 37.7221 nan 0.0500 2.7754
## 7 34.9781 nan 0.0500 2.7129
## 8 32.3076 nan 0.0500 2.6170
## 9 30.0510 nan 0.0500 2.4223
## 10 27.7476 nan 0.0500 1.8976
## 20 14.1932 nan 0.0500 0.7534
## 40 5.9201 nan 0.0500 0.1045
## 60 4.0067 nan 0.0500 0.0221
## 80 3.3741 nan 0.0500 0.0030
## 100 3.0452 nan 0.0500 -0.0267
## 120 2.8261 nan 0.0500 -0.0118
## 140 2.6483 nan 0.0500 -0.0130
## 160 2.4960 nan 0.0500 -0.0213
## 180 2.3863 nan 0.0500 -0.0080
## 200 2.2920 nan 0.0500 -0.0002
## 220 2.1874 nan 0.0500 -0.0018
## 240 2.1048 nan 0.0500 -0.0093
## 260 2.0098 nan 0.0500 -0.0165
## 280 1.9314 nan 0.0500 -0.0168
## 300 1.8766 nan 0.0500 -0.0147
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.9244 nan 0.0500 5.1171
## 2 52.4571 nan 0.0500 4.6444
## 3 48.1993 nan 0.0500 3.1985
## 4 44.3256 nan 0.0500 3.9093
## 5 40.9387 nan 0.0500 3.3371
## 6 37.8626 nan 0.0500 2.5901
## 7 34.9852 nan 0.0500 2.5577
## 8 32.3301 nan 0.0500 2.6774
## 9 29.9433 nan 0.0500 2.1083
## 10 27.7714 nan 0.0500 2.2560
## 20 14.3742 nan 0.0500 0.8475
## 40 6.0227 nan 0.0500 0.1771
## 60 4.0113 nan 0.0500 0.0170
## 80 3.4283 nan 0.0500 -0.0105
## 100 3.1594 nan 0.0500 -0.0122
## 120 2.9644 nan 0.0500 -0.0196
## 140 2.8001 nan 0.0500 -0.0173
## 160 2.6724 nan 0.0500 -0.0115
## 180 2.5816 nan 0.0500 -0.0161
## 200 2.4819 nan 0.0500 -0.0052
## 220 2.4003 nan 0.0500 -0.0140
## 240 2.3195 nan 0.0500 -0.0153
## 260 2.2276 nan 0.0500 -0.0047
## 280 2.1602 nan 0.0500 -0.0104
## 300 2.0971 nan 0.0500 -0.0051
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.3433 nan 0.1000 7.2148
## 2 48.2822 nan 0.1000 6.1631
## 3 42.9661 nan 0.1000 4.6968
## 4 38.6355 nan 0.1000 4.1501
## 5 34.5418 nan 0.1000 3.6537
## 6 31.2170 nan 0.1000 3.1128
## 7 28.0413 nan 0.1000 3.5156
## 8 25.3631 nan 0.1000 2.9212
## 9 23.3109 nan 0.1000 1.9813
## 10 21.3265 nan 0.1000 1.7683
## 20 11.1729 nan 0.1000 0.3999
## 40 5.5902 nan 0.1000 0.0192
## 60 4.2209 nan 0.1000 0.0152
## 80 3.8460 nan 0.1000 0.0043
## 100 3.6546 nan 0.1000 -0.0200
## 120 3.4935 nan 0.1000 -0.0112
## 140 3.3707 nan 0.1000 -0.0154
## 160 3.2773 nan 0.1000 -0.0278
## 180 3.1866 nan 0.1000 -0.0016
## 200 3.0995 nan 0.1000 -0.0203
## 220 3.0396 nan 0.1000 -0.0089
## 240 2.9781 nan 0.1000 -0.0002
## 260 2.9254 nan 0.1000 -0.0097
## 280 2.8698 nan 0.1000 -0.0137
## 300 2.8346 nan 0.1000 -0.0302
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.2265 nan 0.1000 7.1163
## 2 48.6576 nan 0.1000 6.7157
## 3 43.3939 nan 0.1000 5.4547
## 4 39.1375 nan 0.1000 3.8792
## 5 35.1892 nan 0.1000 3.6797
## 6 31.7823 nan 0.1000 3.2926
## 7 29.0199 nan 0.1000 2.6872
## 8 26.2560 nan 0.1000 2.5243
## 9 24.0254 nan 0.1000 2.1068
## 10 22.0876 nan 0.1000 1.8066
## 20 11.2781 nan 0.1000 0.4406
## 40 5.4104 nan 0.1000 0.1236
## 60 4.2618 nan 0.1000 -0.0026
## 80 3.9181 nan 0.1000 -0.0045
## 100 3.7332 nan 0.1000 -0.0036
## 120 3.5872 nan 0.1000 -0.0068
## 140 3.4643 nan 0.1000 -0.0017
## 160 3.3637 nan 0.1000 -0.0343
## 180 3.2859 nan 0.1000 -0.0340
## 200 3.2221 nan 0.1000 -0.0231
## 220 3.1691 nan 0.1000 -0.0073
## 240 3.0955 nan 0.1000 -0.0079
## 260 3.0492 nan 0.1000 -0.0262
## 280 2.9865 nan 0.1000 -0.0069
## 300 2.9380 nan 0.1000 -0.0176
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.5896 nan 0.1000 7.2854
## 2 47.2658 nan 0.1000 6.3954
## 3 42.6525 nan 0.1000 4.3513
## 4 37.5398 nan 0.1000 4.4499
## 5 33.4385 nan 0.1000 3.6988
## 6 30.4646 nan 0.1000 3.0329
## 7 27.3210 nan 0.1000 2.5673
## 8 25.1630 nan 0.1000 1.9908
## 9 22.9821 nan 0.1000 1.6630
## 10 21.1884 nan 0.1000 1.6891
## 20 11.6206 nan 0.1000 0.3988
## 40 5.4796 nan 0.1000 0.0868
## 60 4.3355 nan 0.1000 -0.0441
## 80 4.0089 nan 0.1000 -0.0224
## 100 3.8022 nan 0.1000 -0.0101
## 120 3.6473 nan 0.1000 -0.0070
## 140 3.5454 nan 0.1000 -0.0202
## 160 3.4319 nan 0.1000 -0.0074
## 180 3.3575 nan 0.1000 -0.0116
## 200 3.3045 nan 0.1000 -0.0150
## 220 3.2355 nan 0.1000 -0.0074
## 240 3.1843 nan 0.1000 -0.0134
## 260 3.1475 nan 0.1000 -0.0263
## 280 3.0981 nan 0.1000 -0.0145
## 300 3.0611 nan 0.1000 -0.0057
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.3253 nan 0.1000 9.0578
## 2 44.9801 nan 0.1000 7.4187
## 3 38.6441 nan 0.1000 6.7459
## 4 33.5339 nan 0.1000 5.3417
## 5 29.0168 nan 0.1000 4.2637
## 6 25.0130 nan 0.1000 3.5301
## 7 22.0532 nan 0.1000 2.2281
## 8 19.7221 nan 0.1000 2.3725
## 9 17.6946 nan 0.1000 2.1436
## 10 15.9447 nan 0.1000 1.8126
## 20 7.2957 nan 0.1000 0.4078
## 40 3.8740 nan 0.1000 0.0048
## 60 3.2939 nan 0.1000 -0.0107
## 80 2.9777 nan 0.1000 -0.0428
## 100 2.7342 nan 0.1000 -0.0276
## 120 2.5645 nan 0.1000 -0.0194
## 140 2.3557 nan 0.1000 -0.0009
## 160 2.2340 nan 0.1000 -0.0187
## 180 2.1065 nan 0.1000 -0.0149
## 200 1.9824 nan 0.1000 -0.0176
## 220 1.8480 nan 0.1000 -0.0096
## 240 1.7487 nan 0.1000 -0.0057
## 260 1.6816 nan 0.1000 -0.0298
## 280 1.6078 nan 0.1000 -0.0216
## 300 1.5328 nan 0.1000 -0.0178
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.1920 nan 0.1000 8.4287
## 2 45.6560 nan 0.1000 7.6100
## 3 39.0527 nan 0.1000 6.2033
## 4 33.8656 nan 0.1000 5.0410
## 5 29.2611 nan 0.1000 4.5767
## 6 25.9289 nan 0.1000 3.9663
## 7 22.6981 nan 0.1000 3.2224
## 8 19.9674 nan 0.1000 2.5695
## 9 18.0166 nan 0.1000 1.8034
## 10 16.1158 nan 0.1000 1.8290
## 20 7.3542 nan 0.1000 0.3304
## 40 4.0083 nan 0.1000 0.0100
## 60 3.4565 nan 0.1000 -0.0362
## 80 3.1531 nan 0.1000 -0.0207
## 100 2.9160 nan 0.1000 -0.0298
## 120 2.7438 nan 0.1000 -0.0135
## 140 2.5858 nan 0.1000 -0.0233
## 160 2.4474 nan 0.1000 -0.0231
## 180 2.3484 nan 0.1000 -0.0482
## 200 2.2436 nan 0.1000 -0.0224
## 220 2.1506 nan 0.1000 -0.0364
## 240 2.0510 nan 0.1000 -0.0081
## 260 1.9908 nan 0.1000 -0.0107
## 280 1.9431 nan 0.1000 -0.0290
## 300 1.8669 nan 0.1000 -0.0130
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.3275 nan 0.1000 9.4974
## 2 44.2549 nan 0.1000 7.6157
## 3 38.6369 nan 0.1000 5.9531
## 4 33.4839 nan 0.1000 5.0089
## 5 29.2254 nan 0.1000 4.3562
## 6 25.6599 nan 0.1000 3.8464
## 7 22.6107 nan 0.1000 3.0290
## 8 20.2821 nan 0.1000 2.5958
## 9 18.2525 nan 0.1000 1.4180
## 10 16.4281 nan 0.1000 1.7547
## 20 7.0672 nan 0.1000 0.3417
## 40 4.0312 nan 0.1000 -0.0068
## 60 3.4853 nan 0.1000 -0.0167
## 80 3.2674 nan 0.1000 -0.0048
## 100 3.0778 nan 0.1000 -0.0106
## 120 2.9331 nan 0.1000 -0.0378
## 140 2.7580 nan 0.1000 -0.0313
## 160 2.6134 nan 0.1000 -0.0342
## 180 2.4682 nan 0.1000 -0.0143
## 200 2.3750 nan 0.1000 -0.0194
## 220 2.2613 nan 0.1000 -0.0112
## 240 2.1905 nan 0.1000 -0.0090
## 260 2.1189 nan 0.1000 -0.0141
## 280 2.0420 nan 0.1000 -0.0335
## 300 1.9699 nan 0.1000 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.9265 nan 0.1000 8.7612
## 2 43.8835 nan 0.1000 8.1881
## 3 37.3005 nan 0.1000 6.0563
## 4 31.8111 nan 0.1000 5.3362
## 5 27.4137 nan 0.1000 4.6490
## 6 23.4880 nan 0.1000 3.4302
## 7 20.1364 nan 0.1000 2.5398
## 8 17.6012 nan 0.1000 2.3238
## 9 15.5160 nan 0.1000 2.0101
## 10 13.6728 nan 0.1000 1.6297
## 20 5.6776 nan 0.1000 0.2772
## 40 3.1189 nan 0.1000 -0.0087
## 60 2.6115 nan 0.1000 -0.0255
## 80 2.2601 nan 0.1000 -0.0272
## 100 2.0398 nan 0.1000 -0.0170
## 120 1.8655 nan 0.1000 -0.0194
## 140 1.7149 nan 0.1000 -0.0254
## 160 1.5710 nan 0.1000 -0.0068
## 180 1.4608 nan 0.1000 -0.0085
## 200 1.3697 nan 0.1000 -0.0194
## 220 1.2765 nan 0.1000 -0.0187
## 240 1.1875 nan 0.1000 -0.0129
## 260 1.1115 nan 0.1000 -0.0232
## 280 1.0552 nan 0.1000 -0.0025
## 300 1.0118 nan 0.1000 -0.0227
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.5487 nan 0.1000 9.2113
## 2 43.7437 nan 0.1000 6.9570
## 3 37.1399 nan 0.1000 6.4899
## 4 32.0482 nan 0.1000 5.3504
## 5 27.3076 nan 0.1000 4.1418
## 6 23.6405 nan 0.1000 3.6704
## 7 20.2073 nan 0.1000 3.1131
## 8 17.8362 nan 0.1000 2.4140
## 9 15.7391 nan 0.1000 2.0090
## 10 13.8770 nan 0.1000 1.9535
## 20 5.7722 nan 0.1000 0.3817
## 40 3.2480 nan 0.1000 -0.0183
## 60 2.7303 nan 0.1000 0.0037
## 80 2.4467 nan 0.1000 -0.0066
## 100 2.2034 nan 0.1000 -0.0174
## 120 2.0286 nan 0.1000 -0.0261
## 140 1.8625 nan 0.1000 -0.0134
## 160 1.7286 nan 0.1000 -0.0166
## 180 1.6334 nan 0.1000 -0.0250
## 200 1.5486 nan 0.1000 -0.0197
## 220 1.4927 nan 0.1000 -0.0132
## 240 1.4073 nan 0.1000 -0.0208
## 260 1.3326 nan 0.1000 -0.0211
## 280 1.2626 nan 0.1000 -0.0113
## 300 1.2000 nan 0.1000 -0.0158
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.9039 nan 0.1000 9.4957
## 2 44.0682 nan 0.1000 8.3789
## 3 37.2209 nan 0.1000 6.2207
## 4 31.8807 nan 0.1000 5.4912
## 5 27.7441 nan 0.1000 4.4991
## 6 23.7615 nan 0.1000 3.9009
## 7 20.3627 nan 0.1000 2.9989
## 8 17.8239 nan 0.1000 2.0788
## 9 15.5639 nan 0.1000 1.7318
## 10 13.7400 nan 0.1000 1.5380
## 20 5.8499 nan 0.1000 0.3245
## 40 3.5452 nan 0.1000 -0.0382
## 60 2.9582 nan 0.1000 -0.0419
## 80 2.6949 nan 0.1000 -0.0237
## 100 2.4741 nan 0.1000 0.0003
## 120 2.3281 nan 0.1000 -0.0204
## 140 2.1966 nan 0.1000 -0.0129
## 160 2.0623 nan 0.1000 -0.0341
## 180 1.9241 nan 0.1000 -0.0240
## 200 1.8304 nan 0.1000 -0.0366
## 220 1.7530 nan 0.1000 -0.0252
## 240 1.6707 nan 0.1000 -0.0285
## 260 1.6037 nan 0.1000 -0.0147
## 280 1.5368 nan 0.1000 -0.0180
## 300 1.4784 nan 0.1000 -0.0205
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9047 nan 0.0010 0.0788
## 2 61.8279 nan 0.0010 0.0761
## 3 61.7481 nan 0.0010 0.0787
## 4 61.6664 nan 0.0010 0.0775
## 5 61.5810 nan 0.0010 0.0783
## 6 61.5040 nan 0.0010 0.0759
## 7 61.4260 nan 0.0010 0.0763
## 8 61.3528 nan 0.0010 0.0783
## 9 61.2725 nan 0.0010 0.0740
## 10 61.1975 nan 0.0010 0.0697
## 20 60.4555 nan 0.0010 0.0777
## 40 58.9680 nan 0.0010 0.0722
## 60 57.5325 nan 0.0010 0.0731
## 80 56.1118 nan 0.0010 0.0667
## 100 54.7654 nan 0.0010 0.0635
## 120 53.4871 nan 0.0010 0.0629
## 140 52.2557 nan 0.0010 0.0615
## 160 51.0256 nan 0.0010 0.0595
## 180 49.8596 nan 0.0010 0.0572
## 200 48.7126 nan 0.0010 0.0503
## 220 47.6063 nan 0.0010 0.0528
## 240 46.5243 nan 0.0010 0.0528
## 260 45.4936 nan 0.0010 0.0494
## 280 44.4961 nan 0.0010 0.0415
## 300 43.5359 nan 0.0010 0.0495
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9063 nan 0.0010 0.0749
## 2 61.8334 nan 0.0010 0.0766
## 3 61.7574 nan 0.0010 0.0749
## 4 61.6811 nan 0.0010 0.0717
## 5 61.6026 nan 0.0010 0.0755
## 6 61.5221 nan 0.0010 0.0851
## 7 61.4374 nan 0.0010 0.0815
## 8 61.3619 nan 0.0010 0.0749
## 9 61.2967 nan 0.0010 0.0593
## 10 61.2210 nan 0.0010 0.0737
## 20 60.4294 nan 0.0010 0.0753
## 40 58.9290 nan 0.0010 0.0626
## 60 57.4533 nan 0.0010 0.0715
## 80 56.0471 nan 0.0010 0.0654
## 100 54.6910 nan 0.0010 0.0663
## 120 53.3973 nan 0.0010 0.0631
## 140 52.1601 nan 0.0010 0.0588
## 160 50.9380 nan 0.0010 0.0601
## 180 49.7538 nan 0.0010 0.0618
## 200 48.6307 nan 0.0010 0.0565
## 220 47.5321 nan 0.0010 0.0491
## 240 46.4709 nan 0.0010 0.0524
## 260 45.4613 nan 0.0010 0.0454
## 280 44.4670 nan 0.0010 0.0481
## 300 43.4806 nan 0.0010 0.0495
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9090 nan 0.0010 0.0793
## 2 61.8353 nan 0.0010 0.0767
## 3 61.7586 nan 0.0010 0.0774
## 4 61.6753 nan 0.0010 0.0801
## 5 61.5921 nan 0.0010 0.0790
## 6 61.5092 nan 0.0010 0.0786
## 7 61.4324 nan 0.0010 0.0758
## 8 61.3539 nan 0.0010 0.0771
## 9 61.2769 nan 0.0010 0.0804
## 10 61.1994 nan 0.0010 0.0724
## 20 60.4473 nan 0.0010 0.0789
## 40 58.9810 nan 0.0010 0.0737
## 60 57.5474 nan 0.0010 0.0735
## 80 56.1389 nan 0.0010 0.0679
## 100 54.7820 nan 0.0010 0.0673
## 120 53.5155 nan 0.0010 0.0614
## 140 52.2711 nan 0.0010 0.0592
## 160 51.0785 nan 0.0010 0.0583
## 180 49.8919 nan 0.0010 0.0547
## 200 48.7708 nan 0.0010 0.0539
## 220 47.6624 nan 0.0010 0.0454
## 240 46.6294 nan 0.0010 0.0518
## 260 45.6064 nan 0.0010 0.0503
## 280 44.5913 nan 0.0010 0.0457
## 300 43.6070 nan 0.0010 0.0462
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8925 nan 0.0010 0.0980
## 2 61.8005 nan 0.0010 0.0960
## 3 61.7061 nan 0.0010 0.0874
## 4 61.6107 nan 0.0010 0.1019
## 5 61.5165 nan 0.0010 0.0872
## 6 61.4140 nan 0.0010 0.0973
## 7 61.3136 nan 0.0010 0.0979
## 8 61.2262 nan 0.0010 0.0893
## 9 61.1303 nan 0.0010 0.0982
## 10 61.0349 nan 0.0010 0.0904
## 20 60.1110 nan 0.0010 0.0891
## 40 58.2950 nan 0.0010 0.0842
## 60 56.5682 nan 0.0010 0.0872
## 80 54.8649 nan 0.0010 0.0798
## 100 53.2125 nan 0.0010 0.0763
## 120 51.6491 nan 0.0010 0.0754
## 140 50.0973 nan 0.0010 0.0699
## 160 48.6284 nan 0.0010 0.0765
## 180 47.2307 nan 0.0010 0.0675
## 200 45.8426 nan 0.0010 0.0624
## 220 44.5136 nan 0.0010 0.0473
## 240 43.2237 nan 0.0010 0.0482
## 260 41.9802 nan 0.0010 0.0655
## 280 40.7712 nan 0.0010 0.0556
## 300 39.6414 nan 0.0010 0.0651
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8950 nan 0.0010 0.0944
## 2 61.8004 nan 0.0010 0.0890
## 3 61.7074 nan 0.0010 0.0884
## 4 61.6198 nan 0.0010 0.0957
## 5 61.5233 nan 0.0010 0.0870
## 6 61.4285 nan 0.0010 0.0964
## 7 61.3329 nan 0.0010 0.0996
## 8 61.2386 nan 0.0010 0.0978
## 9 61.1415 nan 0.0010 0.0932
## 10 61.0518 nan 0.0010 0.0949
## 20 60.0968 nan 0.0010 0.0945
## 40 58.2794 nan 0.0010 0.0834
## 60 56.5040 nan 0.0010 0.0831
## 80 54.8189 nan 0.0010 0.0797
## 100 53.1943 nan 0.0010 0.0817
## 120 51.6208 nan 0.0010 0.0748
## 140 50.0731 nan 0.0010 0.0694
## 160 48.5785 nan 0.0010 0.0766
## 180 47.1601 nan 0.0010 0.0732
## 200 45.7723 nan 0.0010 0.0721
## 220 44.4162 nan 0.0010 0.0602
## 240 43.1308 nan 0.0010 0.0647
## 260 41.8912 nan 0.0010 0.0574
## 280 40.6619 nan 0.0010 0.0544
## 300 39.4911 nan 0.0010 0.0606
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8939 nan 0.0010 0.0970
## 2 61.8033 nan 0.0010 0.0920
## 3 61.7176 nan 0.0010 0.0911
## 4 61.6219 nan 0.0010 0.0865
## 5 61.5231 nan 0.0010 0.0890
## 6 61.4310 nan 0.0010 0.0927
## 7 61.3342 nan 0.0010 0.0937
## 8 61.2413 nan 0.0010 0.0920
## 9 61.1501 nan 0.0010 0.0893
## 10 61.0603 nan 0.0010 0.0919
## 20 60.1365 nan 0.0010 0.0930
## 40 58.2989 nan 0.0010 0.0989
## 60 56.5295 nan 0.0010 0.0908
## 80 54.8734 nan 0.0010 0.0832
## 100 53.2157 nan 0.0010 0.0801
## 120 51.5992 nan 0.0010 0.0733
## 140 50.0701 nan 0.0010 0.0746
## 160 48.5910 nan 0.0010 0.0786
## 180 47.1369 nan 0.0010 0.0618
## 200 45.7277 nan 0.0010 0.0685
## 220 44.4081 nan 0.0010 0.0625
## 240 43.1267 nan 0.0010 0.0590
## 260 41.8871 nan 0.0010 0.0617
## 280 40.7131 nan 0.0010 0.0614
## 300 39.5575 nan 0.0010 0.0547
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8827 nan 0.0010 0.1070
## 2 61.7783 nan 0.0010 0.0971
## 3 61.6700 nan 0.0010 0.1018
## 4 61.5667 nan 0.0010 0.1041
## 5 61.4567 nan 0.0010 0.1142
## 6 61.3540 nan 0.0010 0.1023
## 7 61.2553 nan 0.0010 0.0904
## 8 61.1544 nan 0.0010 0.0978
## 9 61.0538 nan 0.0010 0.0993
## 10 60.9490 nan 0.0010 0.1009
## 20 59.9341 nan 0.0010 0.0969
## 40 57.9569 nan 0.0010 0.0958
## 60 56.0609 nan 0.0010 0.0888
## 80 54.2418 nan 0.0010 0.0850
## 100 52.5003 nan 0.0010 0.0853
## 120 50.7959 nan 0.0010 0.0798
## 140 49.1706 nan 0.0010 0.0758
## 160 47.5828 nan 0.0010 0.0799
## 180 46.0902 nan 0.0010 0.0656
## 200 44.6376 nan 0.0010 0.0741
## 220 43.2198 nan 0.0010 0.0688
## 240 41.8695 nan 0.0010 0.0663
## 260 40.5633 nan 0.0010 0.0659
## 280 39.3079 nan 0.0010 0.0602
## 300 38.0952 nan 0.0010 0.0572
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8778 nan 0.0010 0.1140
## 2 61.7649 nan 0.0010 0.1242
## 3 61.6661 nan 0.0010 0.1039
## 4 61.5644 nan 0.0010 0.1064
## 5 61.4634 nan 0.0010 0.1006
## 6 61.3601 nan 0.0010 0.1157
## 7 61.2519 nan 0.0010 0.1038
## 8 61.1437 nan 0.0010 0.0969
## 9 61.0480 nan 0.0010 0.1115
## 10 60.9519 nan 0.0010 0.0951
## 20 59.9242 nan 0.0010 0.0980
## 40 57.9651 nan 0.0010 0.1000
## 60 56.0711 nan 0.0010 0.0898
## 80 54.2514 nan 0.0010 0.0913
## 100 52.4817 nan 0.0010 0.0805
## 120 50.7792 nan 0.0010 0.0885
## 140 49.1295 nan 0.0010 0.0801
## 160 47.5467 nan 0.0010 0.0714
## 180 46.0508 nan 0.0010 0.0779
## 200 44.5978 nan 0.0010 0.0689
## 220 43.1913 nan 0.0010 0.0682
## 240 41.8383 nan 0.0010 0.0679
## 260 40.5343 nan 0.0010 0.0660
## 280 39.2916 nan 0.0010 0.0569
## 300 38.0885 nan 0.0010 0.0563
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8810 nan 0.0010 0.1037
## 2 61.7810 nan 0.0010 0.0998
## 3 61.6741 nan 0.0010 0.0967
## 4 61.5719 nan 0.0010 0.1012
## 5 61.4701 nan 0.0010 0.0908
## 6 61.3687 nan 0.0010 0.0921
## 7 61.2697 nan 0.0010 0.0879
## 8 61.1612 nan 0.0010 0.1011
## 9 61.0514 nan 0.0010 0.1052
## 10 60.9537 nan 0.0010 0.1013
## 20 59.9534 nan 0.0010 0.1117
## 40 58.0093 nan 0.0010 0.0987
## 60 56.0976 nan 0.0010 0.0930
## 80 54.2795 nan 0.0010 0.0890
## 100 52.5243 nan 0.0010 0.0807
## 120 50.8528 nan 0.0010 0.0703
## 140 49.2364 nan 0.0010 0.0767
## 160 47.6559 nan 0.0010 0.0796
## 180 46.1496 nan 0.0010 0.0626
## 200 44.7147 nan 0.0010 0.0747
## 220 43.3037 nan 0.0010 0.0667
## 240 41.9526 nan 0.0010 0.0681
## 260 40.6585 nan 0.0010 0.0563
## 280 39.4218 nan 0.0010 0.0629
## 300 38.2281 nan 0.0010 0.0551
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5838 nan 0.0050 0.3776
## 2 61.2126 nan 0.0050 0.3971
## 3 60.7948 nan 0.0050 0.3947
## 4 60.4021 nan 0.0050 0.3835
## 5 60.0199 nan 0.0050 0.3769
## 6 59.6285 nan 0.0050 0.3810
## 7 59.2699 nan 0.0050 0.3722
## 8 58.8817 nan 0.0050 0.3530
## 9 58.5091 nan 0.0050 0.3400
## 10 58.1730 nan 0.0050 0.3437
## 20 54.6311 nan 0.0050 0.3303
## 40 48.7001 nan 0.0050 0.2664
## 60 43.5251 nan 0.0050 0.2302
## 80 39.1526 nan 0.0050 0.1842
## 100 35.2249 nan 0.0050 0.1585
## 120 31.8066 nan 0.0050 0.1378
## 140 28.8709 nan 0.0050 0.1489
## 160 26.3299 nan 0.0050 0.0943
## 180 24.0053 nan 0.0050 0.1064
## 200 22.0425 nan 0.0050 0.0792
## 220 20.3029 nan 0.0050 0.0773
## 240 18.8179 nan 0.0050 0.0397
## 260 17.4593 nan 0.0050 0.0572
## 280 16.2437 nan 0.0050 0.0582
## 300 15.1450 nan 0.0050 0.0307
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.6057 nan 0.0050 0.4000
## 2 61.2221 nan 0.0050 0.3945
## 3 60.8513 nan 0.0050 0.4147
## 4 60.4704 nan 0.0050 0.3650
## 5 60.0813 nan 0.0050 0.3976
## 6 59.7098 nan 0.0050 0.3789
## 7 59.3254 nan 0.0050 0.3635
## 8 58.9752 nan 0.0050 0.3750
## 9 58.6043 nan 0.0050 0.3537
## 10 58.2653 nan 0.0050 0.3439
## 20 54.7686 nan 0.0050 0.3338
## 40 48.7975 nan 0.0050 0.2641
## 60 43.6001 nan 0.0050 0.2286
## 80 39.1019 nan 0.0050 0.1995
## 100 35.3410 nan 0.0050 0.1794
## 120 31.9597 nan 0.0050 0.1566
## 140 29.0816 nan 0.0050 0.1291
## 160 26.5036 nan 0.0050 0.1160
## 180 24.1868 nan 0.0050 0.0923
## 200 22.2687 nan 0.0050 0.0740
## 220 20.5152 nan 0.0050 0.0770
## 240 18.9836 nan 0.0050 0.0643
## 260 17.6441 nan 0.0050 0.0483
## 280 16.4509 nan 0.0050 0.0443
## 300 15.3557 nan 0.0050 0.0468
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5996 nan 0.0050 0.4038
## 2 61.1802 nan 0.0050 0.3783
## 3 60.7942 nan 0.0050 0.3802
## 4 60.4187 nan 0.0050 0.3387
## 5 60.0539 nan 0.0050 0.3741
## 6 59.6725 nan 0.0050 0.3583
## 7 59.2997 nan 0.0050 0.3809
## 8 58.8908 nan 0.0050 0.3565
## 9 58.5239 nan 0.0050 0.3680
## 10 58.1522 nan 0.0050 0.3538
## 20 54.6267 nan 0.0050 0.3277
## 40 48.5676 nan 0.0050 0.2769
## 60 43.3566 nan 0.0050 0.2563
## 80 38.9514 nan 0.0050 0.1957
## 100 35.0628 nan 0.0050 0.1634
## 120 31.7286 nan 0.0050 0.1464
## 140 28.7776 nan 0.0050 0.1333
## 160 26.2184 nan 0.0050 0.1074
## 180 23.9497 nan 0.0050 0.0982
## 200 21.9962 nan 0.0050 0.0516
## 220 20.3043 nan 0.0050 0.0741
## 240 18.8196 nan 0.0050 0.0613
## 260 17.5071 nan 0.0050 0.0525
## 280 16.3158 nan 0.0050 0.0490
## 300 15.2406 nan 0.0050 0.0442
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5136 nan 0.0050 0.4677
## 2 61.0485 nan 0.0050 0.4603
## 3 60.5376 nan 0.0050 0.4764
## 4 60.0854 nan 0.0050 0.4668
## 5 59.6132 nan 0.0050 0.4287
## 6 59.2168 nan 0.0050 0.4291
## 7 58.7750 nan 0.0050 0.4396
## 8 58.2769 nan 0.0050 0.4328
## 9 57.8464 nan 0.0050 0.4518
## 10 57.4241 nan 0.0050 0.4158
## 20 53.1846 nan 0.0050 0.3887
## 40 45.8286 nan 0.0050 0.2997
## 60 39.5568 nan 0.0050 0.2834
## 80 34.3061 nan 0.0050 0.2441
## 100 29.8980 nan 0.0050 0.1768
## 120 26.2652 nan 0.0050 0.1633
## 140 23.1813 nan 0.0050 0.1145
## 160 20.6021 nan 0.0050 0.1367
## 180 18.3214 nan 0.0050 0.0954
## 200 16.4004 nan 0.0050 0.0929
## 220 14.7688 nan 0.0050 0.0660
## 240 13.3590 nan 0.0050 0.0474
## 260 12.1764 nan 0.0050 0.0466
## 280 11.1142 nan 0.0050 0.0272
## 300 10.2269 nan 0.0050 0.0480
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5145 nan 0.0050 0.4536
## 2 61.0338 nan 0.0050 0.4747
## 3 60.5275 nan 0.0050 0.4441
## 4 60.0900 nan 0.0050 0.4584
## 5 59.6394 nan 0.0050 0.4347
## 6 59.2108 nan 0.0050 0.4500
## 7 58.7544 nan 0.0050 0.4283
## 8 58.2813 nan 0.0050 0.4536
## 9 57.8770 nan 0.0050 0.4299
## 10 57.4612 nan 0.0050 0.4173
## 20 53.2654 nan 0.0050 0.3888
## 40 45.8598 nan 0.0050 0.3170
## 60 39.6788 nan 0.0050 0.2668
## 80 34.6332 nan 0.0050 0.2639
## 100 30.1561 nan 0.0050 0.2160
## 120 26.4140 nan 0.0050 0.1470
## 140 23.2288 nan 0.0050 0.1565
## 160 20.6222 nan 0.0050 0.1240
## 180 18.4062 nan 0.0050 0.0939
## 200 16.4371 nan 0.0050 0.0887
## 220 14.8249 nan 0.0050 0.0506
## 240 13.4287 nan 0.0050 0.0517
## 260 12.1850 nan 0.0050 0.0501
## 280 11.0954 nan 0.0050 0.0438
## 300 10.1937 nan 0.0050 0.0381
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5067 nan 0.0050 0.4745
## 2 61.0438 nan 0.0050 0.4923
## 3 60.5558 nan 0.0050 0.4782
## 4 60.1171 nan 0.0050 0.4546
## 5 59.6729 nan 0.0050 0.4482
## 6 59.2445 nan 0.0050 0.4273
## 7 58.7910 nan 0.0050 0.4392
## 8 58.3442 nan 0.0050 0.4329
## 9 57.8976 nan 0.0050 0.4433
## 10 57.4031 nan 0.0050 0.4624
## 20 53.1874 nan 0.0050 0.4508
## 40 45.8524 nan 0.0050 0.3340
## 60 39.6618 nan 0.0050 0.2725
## 80 34.4494 nan 0.0050 0.2398
## 100 30.0344 nan 0.0050 0.2212
## 120 26.3723 nan 0.0050 0.1316
## 140 23.3253 nan 0.0050 0.1501
## 160 20.6844 nan 0.0050 0.1026
## 180 18.3982 nan 0.0050 0.0974
## 200 16.5662 nan 0.0050 0.0770
## 220 14.9218 nan 0.0050 0.0721
## 240 13.5218 nan 0.0050 0.0641
## 260 12.3441 nan 0.0050 0.0570
## 280 11.3213 nan 0.0050 0.0400
## 300 10.4189 nan 0.0050 0.0351
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.4904 nan 0.0050 0.5337
## 2 60.9983 nan 0.0050 0.4824
## 3 60.5082 nan 0.0050 0.5115
## 4 60.0012 nan 0.0050 0.4798
## 5 59.5169 nan 0.0050 0.4754
## 6 59.0343 nan 0.0050 0.5435
## 7 58.5425 nan 0.0050 0.4225
## 8 58.0438 nan 0.0050 0.4746
## 9 57.5690 nan 0.0050 0.4644
## 10 57.1062 nan 0.0050 0.4604
## 20 52.5808 nan 0.0050 0.4154
## 40 44.5657 nan 0.0050 0.3592
## 60 37.9675 nan 0.0050 0.3059
## 80 32.5680 nan 0.0050 0.2518
## 100 28.0471 nan 0.0050 0.1691
## 120 24.2891 nan 0.0050 0.1781
## 140 21.1475 nan 0.0050 0.1364
## 160 18.4843 nan 0.0050 0.1203
## 180 16.2742 nan 0.0050 0.0920
## 200 14.3969 nan 0.0050 0.0599
## 220 12.8219 nan 0.0050 0.0708
## 240 11.4906 nan 0.0050 0.0571
## 260 10.3502 nan 0.0050 0.0524
## 280 9.3488 nan 0.0050 0.0395
## 300 8.5199 nan 0.0050 0.0299
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.4712 nan 0.0050 0.5428
## 2 60.9357 nan 0.0050 0.5044
## 3 60.4083 nan 0.0050 0.4592
## 4 59.8728 nan 0.0050 0.5041
## 5 59.3532 nan 0.0050 0.4577
## 6 58.8717 nan 0.0050 0.4901
## 7 58.3679 nan 0.0050 0.5134
## 8 57.8809 nan 0.0050 0.4427
## 9 57.3886 nan 0.0050 0.4774
## 10 56.9089 nan 0.0050 0.4646
## 20 52.3585 nan 0.0050 0.4183
## 40 44.4832 nan 0.0050 0.3639
## 60 38.0073 nan 0.0050 0.2568
## 80 32.5360 nan 0.0050 0.2652
## 100 28.0732 nan 0.0050 0.2221
## 120 24.3781 nan 0.0050 0.1795
## 140 21.2191 nan 0.0050 0.1430
## 160 18.5691 nan 0.0050 0.1168
## 180 16.3796 nan 0.0050 0.1047
## 200 14.5112 nan 0.0050 0.0715
## 220 12.9230 nan 0.0050 0.0601
## 240 11.5432 nan 0.0050 0.0568
## 260 10.3986 nan 0.0050 0.0365
## 280 9.3960 nan 0.0050 0.0358
## 300 8.5501 nan 0.0050 0.0376
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.4575 nan 0.0050 0.4843
## 2 60.9044 nan 0.0050 0.4772
## 3 60.4030 nan 0.0050 0.5515
## 4 59.8773 nan 0.0050 0.5502
## 5 59.3586 nan 0.0050 0.5091
## 6 58.8752 nan 0.0050 0.5258
## 7 58.3885 nan 0.0050 0.4934
## 8 57.9025 nan 0.0050 0.5055
## 9 57.4366 nan 0.0050 0.4785
## 10 56.9395 nan 0.0050 0.4952
## 20 52.3806 nan 0.0050 0.4154
## 40 44.5719 nan 0.0050 0.3438
## 60 38.0191 nan 0.0050 0.2931
## 80 32.5481 nan 0.0050 0.2326
## 100 28.0696 nan 0.0050 0.1914
## 120 24.3590 nan 0.0050 0.1548
## 140 21.2711 nan 0.0050 0.1457
## 160 18.6787 nan 0.0050 0.1002
## 180 16.4865 nan 0.0050 0.0937
## 200 14.6553 nan 0.0050 0.0755
## 220 13.0453 nan 0.0050 0.0670
## 240 11.7304 nan 0.0050 0.0584
## 260 10.6182 nan 0.0050 0.0476
## 280 9.6328 nan 0.0050 0.0355
## 300 8.7926 nan 0.0050 0.0375
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1647 nan 0.0100 0.7958
## 2 60.4184 nan 0.0100 0.7308
## 3 59.6617 nan 0.0100 0.7604
## 4 58.8795 nan 0.0100 0.6617
## 5 58.1211 nan 0.0100 0.7319
## 6 57.4102 nan 0.0100 0.7038
## 7 56.7681 nan 0.0100 0.5891
## 8 56.0452 nan 0.0100 0.5955
## 9 55.3560 nan 0.0100 0.6838
## 10 54.6679 nan 0.0100 0.6653
## 20 48.7185 nan 0.0100 0.5932
## 40 38.9655 nan 0.0100 0.4302
## 60 31.6075 nan 0.0100 0.3131
## 80 26.0135 nan 0.0100 0.2300
## 100 21.8443 nan 0.0100 0.1669
## 120 18.6030 nan 0.0100 0.1301
## 140 16.1664 nan 0.0100 0.1086
## 160 14.1995 nan 0.0100 0.1024
## 180 12.5449 nan 0.0100 0.0652
## 200 11.1439 nan 0.0100 0.0501
## 220 10.0136 nan 0.0100 0.0258
## 240 9.0506 nan 0.0100 0.0385
## 260 8.2394 nan 0.0100 0.0340
## 280 7.5689 nan 0.0100 0.0242
## 300 6.9672 nan 0.0100 0.0149
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.0612 nan 0.0100 0.7739
## 2 60.2529 nan 0.0100 0.8061
## 3 59.5110 nan 0.0100 0.7994
## 4 58.7806 nan 0.0100 0.7220
## 5 58.0413 nan 0.0100 0.6966
## 6 57.2843 nan 0.0100 0.6762
## 7 56.5701 nan 0.0100 0.7149
## 8 55.8487 nan 0.0100 0.6590
## 9 55.1714 nan 0.0100 0.6461
## 10 54.5320 nan 0.0100 0.6298
## 20 48.5313 nan 0.0100 0.5561
## 40 38.7675 nan 0.0100 0.4444
## 60 31.7667 nan 0.0100 0.3425
## 80 26.3317 nan 0.0100 0.2341
## 100 22.1340 nan 0.0100 0.1822
## 120 18.8317 nan 0.0100 0.1527
## 140 16.2717 nan 0.0100 0.0753
## 160 14.1850 nan 0.0100 0.0697
## 180 12.5596 nan 0.0100 0.0586
## 200 11.2117 nan 0.0100 0.0538
## 220 10.0717 nan 0.0100 0.0361
## 240 9.1421 nan 0.0100 0.0333
## 260 8.3361 nan 0.0100 0.0250
## 280 7.6434 nan 0.0100 0.0279
## 300 7.0757 nan 0.0100 0.0176
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1350 nan 0.0100 0.8268
## 2 60.3614 nan 0.0100 0.7308
## 3 59.5993 nan 0.0100 0.7852
## 4 58.8697 nan 0.0100 0.7366
## 5 58.1389 nan 0.0100 0.7654
## 6 57.4051 nan 0.0100 0.7113
## 7 56.7211 nan 0.0100 0.6514
## 8 55.9486 nan 0.0100 0.6761
## 9 55.2822 nan 0.0100 0.6640
## 10 54.6432 nan 0.0100 0.6759
## 20 48.6373 nan 0.0100 0.5669
## 40 39.2733 nan 0.0100 0.3748
## 60 31.9783 nan 0.0100 0.2920
## 80 26.4304 nan 0.0100 0.1938
## 100 22.1040 nan 0.0100 0.1775
## 120 18.8225 nan 0.0100 0.1145
## 140 16.2903 nan 0.0100 0.1043
## 160 14.2438 nan 0.0100 0.0789
## 180 12.5710 nan 0.0100 0.0591
## 200 11.1820 nan 0.0100 0.0442
## 220 10.0968 nan 0.0100 0.0308
## 240 9.1536 nan 0.0100 0.0396
## 260 8.3563 nan 0.0100 0.0236
## 280 7.6635 nan 0.0100 0.0268
## 300 7.0737 nan 0.0100 0.0250
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.0813 nan 0.0100 0.9560
## 2 60.1693 nan 0.0100 0.8947
## 3 59.2099 nan 0.0100 0.8246
## 4 58.3814 nan 0.0100 0.9145
## 5 57.4507 nan 0.0100 0.9151
## 6 56.4787 nan 0.0100 0.8431
## 7 55.5940 nan 0.0100 0.7894
## 8 54.7846 nan 0.0100 0.7725
## 9 53.9017 nan 0.0100 0.8412
## 10 53.0266 nan 0.0100 0.7087
## 20 45.5582 nan 0.0100 0.6563
## 40 34.3385 nan 0.0100 0.4672
## 60 26.2703 nan 0.0100 0.3706
## 80 20.5450 nan 0.0100 0.2244
## 100 16.4244 nan 0.0100 0.1702
## 120 13.4518 nan 0.0100 0.0666
## 140 11.2132 nan 0.0100 0.0884
## 160 9.5317 nan 0.0100 0.0722
## 180 8.1808 nan 0.0100 0.0487
## 200 7.1755 nan 0.0100 0.0381
## 220 6.3119 nan 0.0100 0.0371
## 240 5.6668 nan 0.0100 0.0273
## 260 5.1639 nan 0.0100 0.0123
## 280 4.7436 nan 0.0100 0.0113
## 300 4.4007 nan 0.0100 0.0112
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8838 nan 0.0100 0.9030
## 2 59.9458 nan 0.0100 0.8540
## 3 59.0217 nan 0.0100 0.9065
## 4 58.1106 nan 0.0100 0.8486
## 5 57.1446 nan 0.0100 0.8531
## 6 56.2847 nan 0.0100 0.8226
## 7 55.4163 nan 0.0100 0.8505
## 8 54.5545 nan 0.0100 0.7708
## 9 53.7624 nan 0.0100 0.7723
## 10 52.9333 nan 0.0100 0.7893
## 20 45.6396 nan 0.0100 0.7183
## 40 34.0875 nan 0.0100 0.4915
## 60 26.1272 nan 0.0100 0.2707
## 80 20.4035 nan 0.0100 0.2211
## 100 16.3394 nan 0.0100 0.1919
## 120 13.3583 nan 0.0100 0.1230
## 140 11.0178 nan 0.0100 0.0958
## 160 9.4029 nan 0.0100 0.0685
## 180 8.1120 nan 0.0100 0.0499
## 200 7.1160 nan 0.0100 0.0349
## 220 6.2919 nan 0.0100 0.0329
## 240 5.6321 nan 0.0100 0.0194
## 260 5.1521 nan 0.0100 0.0251
## 280 4.7263 nan 0.0100 0.0044
## 300 4.4220 nan 0.0100 0.0114
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.0333 nan 0.0100 0.9402
## 2 60.1486 nan 0.0100 0.9863
## 3 59.2171 nan 0.0100 0.9476
## 4 58.2447 nan 0.0100 0.8741
## 5 57.3390 nan 0.0100 0.8947
## 6 56.4662 nan 0.0100 0.9065
## 7 55.5860 nan 0.0100 0.8406
## 8 54.7600 nan 0.0100 0.7740
## 9 53.8861 nan 0.0100 0.9077
## 10 52.9691 nan 0.0100 0.8299
## 20 45.5702 nan 0.0100 0.6426
## 40 34.1324 nan 0.0100 0.4517
## 60 26.1674 nan 0.0100 0.3195
## 80 20.5080 nan 0.0100 0.2498
## 100 16.3443 nan 0.0100 0.1683
## 120 13.4534 nan 0.0100 0.1259
## 140 11.2539 nan 0.0100 0.0766
## 160 9.6076 nan 0.0100 0.0590
## 180 8.2741 nan 0.0100 0.0335
## 200 7.2699 nan 0.0100 0.0342
## 220 6.4809 nan 0.0100 0.0303
## 240 5.8841 nan 0.0100 0.0273
## 260 5.3916 nan 0.0100 0.0112
## 280 4.9940 nan 0.0100 0.0104
## 300 4.6855 nan 0.0100 0.0047
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9872 nan 0.0100 1.0890
## 2 59.9774 nan 0.0100 1.0370
## 3 58.9653 nan 0.0100 1.0081
## 4 57.9526 nan 0.0100 0.9607
## 5 56.9279 nan 0.0100 0.9191
## 6 56.0253 nan 0.0100 0.9521
## 7 55.1040 nan 0.0100 0.9674
## 8 54.1964 nan 0.0100 0.9441
## 9 53.3243 nan 0.0100 0.8896
## 10 52.4392 nan 0.0100 0.8392
## 20 44.5560 nan 0.0100 0.7174
## 40 32.6754 nan 0.0100 0.5510
## 60 24.3277 nan 0.0100 0.2933
## 80 18.4884 nan 0.0100 0.2457
## 100 14.4181 nan 0.0100 0.1763
## 120 11.4948 nan 0.0100 0.1148
## 140 9.4056 nan 0.0100 0.0977
## 160 7.8124 nan 0.0100 0.0508
## 180 6.6020 nan 0.0100 0.0401
## 200 5.6959 nan 0.0100 0.0358
## 220 5.0296 nan 0.0100 0.0233
## 240 4.5105 nan 0.0100 0.0118
## 260 4.0991 nan 0.0100 0.0143
## 280 3.7803 nan 0.0100 0.0058
## 300 3.5483 nan 0.0100 0.0088
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9609 nan 0.0100 1.0500
## 2 59.9385 nan 0.0100 1.0232
## 3 58.9577 nan 0.0100 0.9980
## 4 57.9773 nan 0.0100 0.8821
## 5 57.0379 nan 0.0100 0.9165
## 6 56.1190 nan 0.0100 1.0049
## 7 55.1745 nan 0.0100 0.9355
## 8 54.2590 nan 0.0100 0.8135
## 9 53.3314 nan 0.0100 0.9974
## 10 52.3967 nan 0.0100 0.9167
## 20 44.6137 nan 0.0100 0.7029
## 40 32.5796 nan 0.0100 0.4813
## 60 24.2693 nan 0.0100 0.3399
## 80 18.5295 nan 0.0100 0.2506
## 100 14.3730 nan 0.0100 0.1522
## 120 11.4961 nan 0.0100 0.1000
## 140 9.3377 nan 0.0100 0.0570
## 160 7.7016 nan 0.0100 0.0504
## 180 6.5687 nan 0.0100 0.0352
## 200 5.6922 nan 0.0100 0.0329
## 220 5.0193 nan 0.0100 0.0225
## 240 4.5271 nan 0.0100 0.0041
## 260 4.1554 nan 0.0100 0.0153
## 280 3.8604 nan 0.0100 0.0068
## 300 3.6335 nan 0.0100 0.0071
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9859 nan 0.0100 1.0270
## 2 59.9441 nan 0.0100 0.9545
## 3 59.0000 nan 0.0100 0.9373
## 4 57.9834 nan 0.0100 0.9870
## 5 57.0868 nan 0.0100 0.9415
## 6 56.1159 nan 0.0100 1.0084
## 7 55.2131 nan 0.0100 0.9263
## 8 54.3198 nan 0.0100 0.8925
## 9 53.4255 nan 0.0100 0.8983
## 10 52.5792 nan 0.0100 0.9115
## 20 44.6467 nan 0.0100 0.6834
## 40 32.5454 nan 0.0100 0.4411
## 60 24.3081 nan 0.0100 0.3089
## 80 18.6229 nan 0.0100 0.2473
## 100 14.5670 nan 0.0100 0.1281
## 120 11.7029 nan 0.0100 0.0859
## 140 9.6454 nan 0.0100 0.0775
## 160 8.0488 nan 0.0100 0.0633
## 180 6.8790 nan 0.0100 0.0347
## 200 6.0007 nan 0.0100 0.0329
## 220 5.3424 nan 0.0100 0.0224
## 240 4.8462 nan 0.0100 0.0181
## 260 4.4433 nan 0.0100 0.0147
## 280 4.1454 nan 0.0100 0.0086
## 300 3.9159 nan 0.0100 0.0030
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.3406 nan 0.0500 3.6100
## 2 54.8376 nan 0.0500 3.5943
## 3 51.6376 nan 0.0500 2.9496
## 4 48.7875 nan 0.0500 3.0223
## 5 45.9671 nan 0.0500 2.5645
## 6 43.3504 nan 0.0500 2.2556
## 7 40.9930 nan 0.0500 2.2145
## 8 38.6440 nan 0.0500 1.9215
## 9 36.5424 nan 0.0500 1.9080
## 10 34.7890 nan 0.0500 1.7267
## 20 21.6082 nan 0.0500 0.8681
## 40 10.9810 nan 0.0500 0.3097
## 60 6.8696 nan 0.0500 0.1304
## 80 5.0664 nan 0.0500 0.0423
## 100 4.1643 nan 0.0500 0.0276
## 120 3.6756 nan 0.0500 0.0014
## 140 3.4485 nan 0.0500 -0.0090
## 160 3.3275 nan 0.0500 -0.0028
## 180 3.2376 nan 0.0500 -0.0134
## 200 3.1617 nan 0.0500 -0.0079
## 220 3.0980 nan 0.0500 -0.0167
## 240 3.0510 nan 0.0500 -0.0077
## 260 2.9982 nan 0.0500 -0.0135
## 280 2.9322 nan 0.0500 -0.0064
## 300 2.9115 nan 0.0500 -0.0082
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.1631 nan 0.0500 3.6160
## 2 54.4058 nan 0.0500 3.5224
## 3 51.2331 nan 0.0500 3.0876
## 4 48.2793 nan 0.0500 3.0026
## 5 45.7939 nan 0.0500 2.4321
## 6 43.0283 nan 0.0500 2.5027
## 7 40.6083 nan 0.0500 2.1154
## 8 38.6153 nan 0.0500 2.0846
## 9 36.4825 nan 0.0500 1.9096
## 10 34.3867 nan 0.0500 1.7707
## 20 21.9291 nan 0.0500 0.8479
## 40 11.2009 nan 0.0500 0.2573
## 60 7.0674 nan 0.0500 0.0848
## 80 5.1370 nan 0.0500 0.0587
## 100 4.2747 nan 0.0500 0.0264
## 120 3.8531 nan 0.0500 -0.0019
## 140 3.6265 nan 0.0500 -0.0006
## 160 3.4898 nan 0.0500 -0.0083
## 180 3.3791 nan 0.0500 -0.0159
## 200 3.3041 nan 0.0500 -0.0231
## 220 3.2286 nan 0.0500 -0.0042
## 240 3.1636 nan 0.0500 -0.0025
## 260 3.1096 nan 0.0500 -0.0083
## 280 3.0635 nan 0.0500 -0.0055
## 300 3.0338 nan 0.0500 -0.0021
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.0815 nan 0.0500 3.9049
## 2 54.4389 nan 0.0500 3.0603
## 3 51.4887 nan 0.0500 2.5421
## 4 48.3038 nan 0.0500 2.9980
## 5 45.6288 nan 0.0500 2.7591
## 6 42.9723 nan 0.0500 2.2922
## 7 40.6824 nan 0.0500 2.2699
## 8 38.5272 nan 0.0500 2.0421
## 9 36.6396 nan 0.0500 1.7796
## 10 34.9800 nan 0.0500 1.5705
## 20 21.7975 nan 0.0500 0.9844
## 40 11.0331 nan 0.0500 0.2067
## 60 7.1457 nan 0.0500 0.0926
## 80 5.3386 nan 0.0500 0.0384
## 100 4.5243 nan 0.0500 0.0173
## 120 4.1071 nan 0.0500 0.0127
## 140 3.9024 nan 0.0500 -0.0184
## 160 3.7637 nan 0.0500 0.0023
## 180 3.6729 nan 0.0500 -0.0044
## 200 3.6010 nan 0.0500 -0.0075
## 220 3.5278 nan 0.0500 -0.0016
## 240 3.4552 nan 0.0500 -0.0107
## 260 3.3825 nan 0.0500 -0.0249
## 280 3.3146 nan 0.0500 -0.0063
## 300 3.2644 nan 0.0500 -0.0033
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.0822 nan 0.0500 4.5350
## 2 53.1920 nan 0.0500 4.3482
## 3 49.0676 nan 0.0500 4.5919
## 4 45.4201 nan 0.0500 3.6448
## 5 42.4360 nan 0.0500 2.8953
## 6 39.2181 nan 0.0500 2.9422
## 7 36.5558 nan 0.0500 2.4219
## 8 33.8519 nan 0.0500 2.5676
## 9 31.7862 nan 0.0500 1.9308
## 10 29.6750 nan 0.0500 2.2506
## 20 16.2357 nan 0.0500 0.8649
## 40 7.0019 nan 0.0500 0.1715
## 60 4.4630 nan 0.0500 0.0369
## 80 3.5934 nan 0.0500 -0.0159
## 100 3.2175 nan 0.0500 -0.0032
## 120 2.9647 nan 0.0500 -0.0063
## 140 2.8101 nan 0.0500 0.0063
## 160 2.6601 nan 0.0500 -0.0154
## 180 2.5126 nan 0.0500 -0.0084
## 200 2.3973 nan 0.0500 -0.0108
## 220 2.2945 nan 0.0500 -0.0152
## 240 2.2071 nan 0.0500 -0.0114
## 260 2.1369 nan 0.0500 -0.0147
## 280 2.0419 nan 0.0500 -0.0131
## 300 1.9695 nan 0.0500 -0.0071
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.1889 nan 0.0500 4.2978
## 2 52.8319 nan 0.0500 4.2209
## 3 48.5002 nan 0.0500 4.6319
## 4 44.9872 nan 0.0500 3.5194
## 5 41.5698 nan 0.0500 3.3478
## 6 38.9664 nan 0.0500 2.6736
## 7 36.1042 nan 0.0500 2.7678
## 8 33.6160 nan 0.0500 2.4856
## 9 31.4214 nan 0.0500 2.1666
## 10 29.2768 nan 0.0500 1.9314
## 20 16.0683 nan 0.0500 0.8117
## 40 6.9752 nan 0.0500 0.1579
## 60 4.4902 nan 0.0500 0.0450
## 80 3.6336 nan 0.0500 -0.0101
## 100 3.3173 nan 0.0500 -0.0007
## 120 3.0948 nan 0.0500 -0.0185
## 140 2.9128 nan 0.0500 -0.0009
## 160 2.7752 nan 0.0500 -0.0090
## 180 2.6654 nan 0.0500 -0.0142
## 200 2.5714 nan 0.0500 -0.0227
## 220 2.4831 nan 0.0500 -0.0079
## 240 2.4103 nan 0.0500 -0.0073
## 260 2.3361 nan 0.0500 -0.0078
## 280 2.2774 nan 0.0500 -0.0042
## 300 2.2133 nan 0.0500 -0.0052
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.0342 nan 0.0500 4.4961
## 2 52.8230 nan 0.0500 4.0789
## 3 49.0417 nan 0.0500 3.9235
## 4 45.4260 nan 0.0500 3.3557
## 5 41.8591 nan 0.0500 3.8067
## 6 38.5487 nan 0.0500 3.1670
## 7 36.1062 nan 0.0500 2.4307
## 8 33.4894 nan 0.0500 2.5642
## 9 31.1210 nan 0.0500 2.4336
## 10 28.9905 nan 0.0500 2.0548
## 20 15.7379 nan 0.0500 0.8003
## 40 7.0411 nan 0.0500 0.1531
## 60 4.4777 nan 0.0500 0.0520
## 80 3.7185 nan 0.0500 -0.0131
## 100 3.4273 nan 0.0500 -0.0253
## 120 3.2396 nan 0.0500 -0.0117
## 140 3.0712 nan 0.0500 -0.0039
## 160 2.9422 nan 0.0500 -0.0109
## 180 2.8399 nan 0.0500 -0.0092
## 200 2.7412 nan 0.0500 -0.0053
## 220 2.6648 nan 0.0500 -0.0021
## 240 2.5749 nan 0.0500 -0.0023
## 260 2.5142 nan 0.0500 -0.0113
## 280 2.4506 nan 0.0500 -0.0101
## 300 2.3913 nan 0.0500 -0.0110
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.8439 nan 0.0500 5.1196
## 2 52.1836 nan 0.0500 4.0785
## 3 48.0675 nan 0.0500 4.1071
## 4 44.3136 nan 0.0500 3.9526
## 5 40.8429 nan 0.0500 3.1805
## 6 37.6835 nan 0.0500 3.0092
## 7 34.7897 nan 0.0500 2.9148
## 8 32.0832 nan 0.0500 2.1908
## 9 29.8040 nan 0.0500 2.0844
## 10 27.7402 nan 0.0500 2.1527
## 20 14.1468 nan 0.0500 0.8592
## 40 5.5997 nan 0.0500 0.1799
## 60 3.5173 nan 0.0500 0.0261
## 80 2.8544 nan 0.0500 -0.0133
## 100 2.5544 nan 0.0500 -0.0203
## 120 2.3411 nan 0.0500 -0.0013
## 140 2.1714 nan 0.0500 -0.0115
## 160 2.0142 nan 0.0500 -0.0087
## 180 1.9045 nan 0.0500 -0.0157
## 200 1.7973 nan 0.0500 -0.0045
## 220 1.7014 nan 0.0500 -0.0092
## 240 1.6043 nan 0.0500 -0.0030
## 260 1.5483 nan 0.0500 -0.0077
## 280 1.4847 nan 0.0500 -0.0044
## 300 1.4220 nan 0.0500 -0.0067
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.0483 nan 0.0500 5.2854
## 2 52.2865 nan 0.0500 4.6184
## 3 47.9988 nan 0.0500 3.5869
## 4 44.3251 nan 0.0500 3.8253
## 5 41.1108 nan 0.0500 3.5265
## 6 37.9991 nan 0.0500 3.0439
## 7 35.0440 nan 0.0500 2.4667
## 8 32.5812 nan 0.0500 2.4444
## 9 30.1370 nan 0.0500 2.2520
## 10 28.1206 nan 0.0500 1.7663
## 20 14.1672 nan 0.0500 0.7067
## 40 5.7655 nan 0.0500 0.1638
## 60 3.7812 nan 0.0500 0.0188
## 80 3.1687 nan 0.0500 0.0034
## 100 2.8823 nan 0.0500 -0.0020
## 120 2.6905 nan 0.0500 -0.0234
## 140 2.5091 nan 0.0500 -0.0127
## 160 2.3883 nan 0.0500 -0.0150
## 180 2.2657 nan 0.0500 -0.0235
## 200 2.1526 nan 0.0500 -0.0130
## 220 2.0644 nan 0.0500 -0.0060
## 240 1.9774 nan 0.0500 -0.0165
## 260 1.8967 nan 0.0500 -0.0077
## 280 1.8302 nan 0.0500 -0.0108
## 300 1.7662 nan 0.0500 -0.0081
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.8050 nan 0.0500 5.0140
## 2 52.0361 nan 0.0500 4.2447
## 3 47.8615 nan 0.0500 4.0182
## 4 44.3698 nan 0.0500 3.8011
## 5 40.9006 nan 0.0500 3.3083
## 6 37.7024 nan 0.0500 3.0409
## 7 34.8810 nan 0.0500 2.7991
## 8 32.2393 nan 0.0500 2.5359
## 9 29.8549 nan 0.0500 2.2440
## 10 27.6664 nan 0.0500 2.0211
## 20 14.4270 nan 0.0500 1.0210
## 40 5.9805 nan 0.0500 0.1906
## 60 3.9463 nan 0.0500 0.0352
## 80 3.3943 nan 0.0500 -0.0078
## 100 3.0919 nan 0.0500 -0.0174
## 120 2.8465 nan 0.0500 -0.0074
## 140 2.6928 nan 0.0500 -0.0014
## 160 2.5514 nan 0.0500 -0.0041
## 180 2.4254 nan 0.0500 -0.0043
## 200 2.3324 nan 0.0500 -0.0145
## 220 2.2486 nan 0.0500 -0.0094
## 240 2.1501 nan 0.0500 -0.0096
## 260 2.0865 nan 0.0500 -0.0047
## 280 2.0129 nan 0.0500 -0.0068
## 300 1.9556 nan 0.0500 -0.0178
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.9121 nan 0.1000 7.4315
## 2 48.5845 nan 0.1000 6.0045
## 3 43.8312 nan 0.1000 4.8603
## 4 38.4251 nan 0.1000 4.6192
## 5 34.4334 nan 0.1000 3.7980
## 6 31.1216 nan 0.1000 3.3404
## 7 28.3596 nan 0.1000 2.8261
## 8 25.8323 nan 0.1000 2.5244
## 9 23.2232 nan 0.1000 2.6930
## 10 21.2334 nan 0.1000 2.0096
## 20 11.0616 nan 0.1000 0.5831
## 40 4.9473 nan 0.1000 0.0667
## 60 3.7326 nan 0.1000 0.0219
## 80 3.4144 nan 0.1000 -0.0083
## 100 3.1935 nan 0.1000 -0.0007
## 120 3.0636 nan 0.1000 -0.0105
## 140 2.9600 nan 0.1000 -0.0217
## 160 2.8791 nan 0.1000 -0.0031
## 180 2.8091 nan 0.1000 -0.0102
## 200 2.7477 nan 0.1000 -0.0025
## 220 2.6876 nan 0.1000 -0.0061
## 240 2.6407 nan 0.1000 -0.0103
## 260 2.6001 nan 0.1000 -0.0152
## 280 2.5749 nan 0.1000 -0.0225
## 300 2.5307 nan 0.1000 -0.0254
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.2148 nan 0.1000 7.3864
## 2 48.2950 nan 0.1000 6.0476
## 3 43.0202 nan 0.1000 5.0165
## 4 38.2326 nan 0.1000 4.3455
## 5 34.2887 nan 0.1000 3.5050
## 6 30.7665 nan 0.1000 3.5456
## 7 27.7987 nan 0.1000 2.8402
## 8 25.4344 nan 0.1000 2.3078
## 9 22.9854 nan 0.1000 2.0686
## 10 21.3471 nan 0.1000 1.6071
## 20 10.8164 nan 0.1000 0.5374
## 40 5.0398 nan 0.1000 0.0803
## 60 3.8078 nan 0.1000 0.0003
## 80 3.4920 nan 0.1000 0.0042
## 100 3.3100 nan 0.1000 -0.0126
## 120 3.1760 nan 0.1000 -0.0217
## 140 3.0664 nan 0.1000 -0.0042
## 160 2.9876 nan 0.1000 -0.0100
## 180 2.9107 nan 0.1000 -0.0327
## 200 2.8476 nan 0.1000 -0.0227
## 220 2.7819 nan 0.1000 -0.0088
## 240 2.7289 nan 0.1000 -0.0138
## 260 2.6829 nan 0.1000 -0.0140
## 280 2.6178 nan 0.1000 -0.0132
## 300 2.5711 nan 0.1000 -0.0223
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.2812 nan 0.1000 8.5123
## 2 47.6133 nan 0.1000 5.6541
## 3 42.1697 nan 0.1000 5.4322
## 4 37.8215 nan 0.1000 3.8891
## 5 33.7367 nan 0.1000 4.2834
## 6 30.5024 nan 0.1000 3.3270
## 7 27.8132 nan 0.1000 2.7797
## 8 25.3126 nan 0.1000 2.6102
## 9 22.9212 nan 0.1000 2.0698
## 10 21.0742 nan 0.1000 1.8068
## 20 10.7568 nan 0.1000 0.4479
## 40 5.0763 nan 0.1000 0.0703
## 60 3.9888 nan 0.1000 0.0072
## 80 3.6971 nan 0.1000 -0.0257
## 100 3.5362 nan 0.1000 0.0073
## 120 3.3926 nan 0.1000 -0.0090
## 140 3.2708 nan 0.1000 -0.0005
## 160 3.1838 nan 0.1000 -0.0010
## 180 3.0927 nan 0.1000 -0.0454
## 200 3.0170 nan 0.1000 -0.0022
## 220 2.9626 nan 0.1000 -0.0251
## 240 2.8947 nan 0.1000 -0.0054
## 260 2.8306 nan 0.1000 -0.0141
## 280 2.7785 nan 0.1000 -0.0111
## 300 2.7469 nan 0.1000 -0.0146
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.6408 nan 0.1000 8.6365
## 2 45.7096 nan 0.1000 7.0176
## 3 38.9234 nan 0.1000 6.9578
## 4 33.4433 nan 0.1000 5.7451
## 5 28.6404 nan 0.1000 4.1381
## 6 24.9271 nan 0.1000 3.2045
## 7 21.9680 nan 0.1000 2.7443
## 8 19.3427 nan 0.1000 2.4943
## 9 16.9798 nan 0.1000 2.0831
## 10 15.2603 nan 0.1000 1.7460
## 20 6.5731 nan 0.1000 0.3682
## 40 3.4559 nan 0.1000 -0.0031
## 60 2.9010 nan 0.1000 0.0062
## 80 2.6370 nan 0.1000 -0.0339
## 100 2.4506 nan 0.1000 -0.0184
## 120 2.2681 nan 0.1000 -0.0315
## 140 2.1066 nan 0.1000 -0.0081
## 160 1.9878 nan 0.1000 -0.0193
## 180 1.8726 nan 0.1000 -0.0202
## 200 1.7560 nan 0.1000 -0.0134
## 220 1.6735 nan 0.1000 -0.0153
## 240 1.5781 nan 0.1000 -0.0173
## 260 1.4883 nan 0.1000 -0.0087
## 280 1.4370 nan 0.1000 -0.0085
## 300 1.3575 nan 0.1000 -0.0145
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.5001 nan 0.1000 9.0345
## 2 46.2983 nan 0.1000 7.1671
## 3 39.3178 nan 0.1000 6.6901
## 4 34.5022 nan 0.1000 5.3388
## 5 29.8965 nan 0.1000 4.2990
## 6 26.2545 nan 0.1000 3.5709
## 7 23.2597 nan 0.1000 2.8078
## 8 20.1441 nan 0.1000 2.9103
## 9 18.1489 nan 0.1000 1.9750
## 10 16.3128 nan 0.1000 1.9434
## 20 6.9948 nan 0.1000 0.3623
## 40 3.7730 nan 0.1000 0.0136
## 60 3.1966 nan 0.1000 -0.0060
## 80 2.8918 nan 0.1000 -0.0107
## 100 2.7135 nan 0.1000 -0.0428
## 120 2.5042 nan 0.1000 -0.0211
## 140 2.3312 nan 0.1000 -0.0049
## 160 2.1887 nan 0.1000 -0.0270
## 180 2.0816 nan 0.1000 -0.0171
## 200 2.0033 nan 0.1000 -0.0276
## 220 1.9192 nan 0.1000 -0.0279
## 240 1.8431 nan 0.1000 -0.0225
## 260 1.7768 nan 0.1000 -0.0081
## 280 1.6974 nan 0.1000 -0.0207
## 300 1.6430 nan 0.1000 -0.0101
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.4953 nan 0.1000 10.2753
## 2 45.1567 nan 0.1000 7.0394
## 3 38.6851 nan 0.1000 6.2842
## 4 33.4988 nan 0.1000 4.6885
## 5 29.3604 nan 0.1000 3.8766
## 6 25.6678 nan 0.1000 4.0648
## 7 22.3451 nan 0.1000 2.9846
## 8 19.6402 nan 0.1000 2.0801
## 9 17.4188 nan 0.1000 2.2269
## 10 15.4389 nan 0.1000 1.7248
## 20 6.9057 nan 0.1000 0.3909
## 40 3.8441 nan 0.1000 0.0087
## 60 3.3870 nan 0.1000 -0.0245
## 80 3.0457 nan 0.1000 -0.0291
## 100 2.8391 nan 0.1000 -0.0415
## 120 2.6431 nan 0.1000 -0.0278
## 140 2.5185 nan 0.1000 -0.0178
## 160 2.3983 nan 0.1000 -0.0391
## 180 2.2918 nan 0.1000 -0.0163
## 200 2.2119 nan 0.1000 -0.0238
## 220 2.1361 nan 0.1000 -0.0181
## 240 2.0684 nan 0.1000 -0.0131
## 260 1.9967 nan 0.1000 -0.0129
## 280 1.9491 nan 0.1000 -0.0152
## 300 1.8864 nan 0.1000 -0.0148
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.7282 nan 0.1000 9.6703
## 2 43.4594 nan 0.1000 8.7364
## 3 36.9107 nan 0.1000 5.4281
## 4 31.1231 nan 0.1000 4.2147
## 5 27.4326 nan 0.1000 3.6018
## 6 23.4869 nan 0.1000 3.3213
## 7 20.1302 nan 0.1000 2.7392
## 8 17.6290 nan 0.1000 2.4668
## 9 15.4407 nan 0.1000 2.2859
## 10 13.5710 nan 0.1000 1.9470
## 20 5.3500 nan 0.1000 0.2728
## 40 2.8285 nan 0.1000 -0.0139
## 60 2.3325 nan 0.1000 -0.0165
## 80 2.0824 nan 0.1000 -0.0278
## 100 1.8687 nan 0.1000 -0.0199
## 120 1.7068 nan 0.1000 -0.0363
## 140 1.5669 nan 0.1000 -0.0180
## 160 1.4492 nan 0.1000 -0.0253
## 180 1.3330 nan 0.1000 -0.0021
## 200 1.2323 nan 0.1000 -0.0066
## 220 1.1409 nan 0.1000 -0.0200
## 240 1.0611 nan 0.1000 -0.0184
## 260 0.9884 nan 0.1000 -0.0146
## 280 0.9277 nan 0.1000 -0.0089
## 300 0.8569 nan 0.1000 -0.0102
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.0862 nan 0.1000 9.6627
## 2 44.4768 nan 0.1000 8.2155
## 3 37.5703 nan 0.1000 7.5586
## 4 31.7847 nan 0.1000 5.0706
## 5 27.2804 nan 0.1000 4.2598
## 6 23.9999 nan 0.1000 2.1671
## 7 20.4015 nan 0.1000 3.0058
## 8 17.6562 nan 0.1000 2.7762
## 9 15.4641 nan 0.1000 1.8034
## 10 13.6100 nan 0.1000 1.5997
## 20 5.6733 nan 0.1000 0.3334
## 40 3.1525 nan 0.1000 0.0137
## 60 2.5912 nan 0.1000 -0.0161
## 80 2.3404 nan 0.1000 -0.0309
## 100 2.1362 nan 0.1000 -0.0283
## 120 1.9919 nan 0.1000 -0.0267
## 140 1.8682 nan 0.1000 -0.0347
## 160 1.7477 nan 0.1000 -0.0215
## 180 1.6412 nan 0.1000 -0.0215
## 200 1.5457 nan 0.1000 -0.0158
## 220 1.4500 nan 0.1000 -0.0325
## 240 1.3573 nan 0.1000 -0.0169
## 260 1.2916 nan 0.1000 -0.0164
## 280 1.2304 nan 0.1000 -0.0152
## 300 1.1758 nan 0.1000 -0.0033
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.0757 nan 0.1000 9.2442
## 2 44.5695 nan 0.1000 8.4028
## 3 37.7659 nan 0.1000 6.5388
## 4 32.0082 nan 0.1000 5.5434
## 5 27.6184 nan 0.1000 3.9919
## 6 23.9451 nan 0.1000 3.8542
## 7 20.6457 nan 0.1000 3.1952
## 8 18.1607 nan 0.1000 2.6427
## 9 15.9040 nan 0.1000 2.0111
## 10 13.7742 nan 0.1000 2.0305
## 20 5.8150 nan 0.1000 0.2879
## 40 3.3884 nan 0.1000 -0.0358
## 60 2.8704 nan 0.1000 -0.0093
## 80 2.5522 nan 0.1000 -0.0317
## 100 2.3093 nan 0.1000 -0.0156
## 120 2.1395 nan 0.1000 -0.0102
## 140 1.9988 nan 0.1000 -0.0113
## 160 1.8605 nan 0.1000 -0.0266
## 180 1.7333 nan 0.1000 -0.0210
## 200 1.6265 nan 0.1000 -0.0331
## 220 1.5523 nan 0.1000 -0.0174
## 240 1.4749 nan 0.1000 -0.0205
## 260 1.4142 nan 0.1000 -0.0179
## 280 1.3592 nan 0.1000 -0.0154
## 300 1.3119 nan 0.1000 -0.0182
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1795 nan 0.0010 0.0778
## 2 60.1037 nan 0.0010 0.0772
## 3 60.0279 nan 0.0010 0.0714
## 4 59.9488 nan 0.0010 0.0743
## 5 59.8722 nan 0.0010 0.0738
## 6 59.7964 nan 0.0010 0.0767
## 7 59.7162 nan 0.0010 0.0740
## 8 59.6449 nan 0.0010 0.0766
## 9 59.5654 nan 0.0010 0.0718
## 10 59.4929 nan 0.0010 0.0671
## 20 58.7401 nan 0.0010 0.0708
## 40 57.2916 nan 0.0010 0.0666
## 60 55.8836 nan 0.0010 0.0675
## 80 54.5519 nan 0.0010 0.0638
## 100 53.2471 nan 0.0010 0.0649
## 120 52.0218 nan 0.0010 0.0577
## 140 50.7918 nan 0.0010 0.0575
## 160 49.6785 nan 0.0010 0.0566
## 180 48.5702 nan 0.0010 0.0551
## 200 47.4983 nan 0.0010 0.0538
## 220 46.4525 nan 0.0010 0.0455
## 240 45.4227 nan 0.0010 0.0496
## 260 44.4429 nan 0.0010 0.0444
## 280 43.5156 nan 0.0010 0.0466
## 300 42.5703 nan 0.0010 0.0470
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1723 nan 0.0010 0.0737
## 2 60.0953 nan 0.0010 0.0725
## 3 60.0182 nan 0.0010 0.0675
## 4 59.9470 nan 0.0010 0.0707
## 5 59.8714 nan 0.0010 0.0767
## 6 59.7983 nan 0.0010 0.0740
## 7 59.7255 nan 0.0010 0.0779
## 8 59.6508 nan 0.0010 0.0759
## 9 59.5767 nan 0.0010 0.0766
## 10 59.5011 nan 0.0010 0.0708
## 20 58.7670 nan 0.0010 0.0707
## 40 57.3122 nan 0.0010 0.0688
## 60 55.9166 nan 0.0010 0.0688
## 80 54.5722 nan 0.0010 0.0569
## 100 53.2639 nan 0.0010 0.0633
## 120 52.0380 nan 0.0010 0.0593
## 140 50.8574 nan 0.0010 0.0512
## 160 49.7285 nan 0.0010 0.0513
## 180 48.5877 nan 0.0010 0.0582
## 200 47.4931 nan 0.0010 0.0450
## 220 46.4460 nan 0.0010 0.0524
## 240 45.4405 nan 0.0010 0.0460
## 260 44.4584 nan 0.0010 0.0459
## 280 43.5087 nan 0.0010 0.0426
## 300 42.5903 nan 0.0010 0.0454
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1695 nan 0.0010 0.0722
## 2 60.0882 nan 0.0010 0.0750
## 3 60.0148 nan 0.0010 0.0718
## 4 59.9362 nan 0.0010 0.0796
## 5 59.8627 nan 0.0010 0.0769
## 6 59.7831 nan 0.0010 0.0725
## 7 59.7096 nan 0.0010 0.0784
## 8 59.6339 nan 0.0010 0.0671
## 9 59.5649 nan 0.0010 0.0770
## 10 59.4918 nan 0.0010 0.0743
## 20 58.7445 nan 0.0010 0.0735
## 40 57.2885 nan 0.0010 0.0705
## 60 55.8851 nan 0.0010 0.0616
## 80 54.5386 nan 0.0010 0.0624
## 100 53.2502 nan 0.0010 0.0629
## 120 51.9912 nan 0.0010 0.0589
## 140 50.8001 nan 0.0010 0.0590
## 160 49.6279 nan 0.0010 0.0559
## 180 48.5151 nan 0.0010 0.0570
## 200 47.4149 nan 0.0010 0.0559
## 220 46.4053 nan 0.0010 0.0529
## 240 45.4026 nan 0.0010 0.0494
## 260 44.3934 nan 0.0010 0.0429
## 280 43.4496 nan 0.0010 0.0469
## 300 42.5239 nan 0.0010 0.0447
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1451 nan 0.0010 0.0930
## 2 60.0488 nan 0.0010 0.0917
## 3 59.9524 nan 0.0010 0.0959
## 4 59.8640 nan 0.0010 0.0830
## 5 59.7736 nan 0.0010 0.0888
## 6 59.6892 nan 0.0010 0.0815
## 7 59.6001 nan 0.0010 0.0920
## 8 59.5158 nan 0.0010 0.0876
## 9 59.4340 nan 0.0010 0.0788
## 10 59.3422 nan 0.0010 0.1011
## 20 58.4477 nan 0.0010 0.0835
## 40 56.7033 nan 0.0010 0.0795
## 60 55.0206 nan 0.0010 0.0855
## 80 53.3875 nan 0.0010 0.0827
## 100 51.8031 nan 0.0010 0.0777
## 120 50.2945 nan 0.0010 0.0746
## 140 48.8366 nan 0.0010 0.0686
## 160 47.4607 nan 0.0010 0.0632
## 180 46.0926 nan 0.0010 0.0727
## 200 44.7854 nan 0.0010 0.0595
## 220 43.5004 nan 0.0010 0.0613
## 240 42.2318 nan 0.0010 0.0698
## 260 41.0266 nan 0.0010 0.0631
## 280 39.8913 nan 0.0010 0.0577
## 300 38.7674 nan 0.0010 0.0560
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1505 nan 0.0010 0.1005
## 2 60.0561 nan 0.0010 0.0804
## 3 59.9636 nan 0.0010 0.0915
## 4 59.8664 nan 0.0010 0.0854
## 5 59.7736 nan 0.0010 0.0887
## 6 59.6742 nan 0.0010 0.0910
## 7 59.5767 nan 0.0010 0.0960
## 8 59.4883 nan 0.0010 0.0894
## 9 59.3957 nan 0.0010 0.0892
## 10 59.2982 nan 0.0010 0.0904
## 20 58.4019 nan 0.0010 0.0916
## 40 56.6455 nan 0.0010 0.0904
## 60 54.9682 nan 0.0010 0.0730
## 80 53.3338 nan 0.0010 0.0823
## 100 51.7800 nan 0.0010 0.0805
## 120 50.2965 nan 0.0010 0.0793
## 140 48.8445 nan 0.0010 0.0700
## 160 47.4108 nan 0.0010 0.0727
## 180 46.0477 nan 0.0010 0.0634
## 200 44.7298 nan 0.0010 0.0676
## 220 43.4575 nan 0.0010 0.0599
## 240 42.2051 nan 0.0010 0.0630
## 260 41.0173 nan 0.0010 0.0656
## 280 39.8527 nan 0.0010 0.0535
## 300 38.7667 nan 0.0010 0.0540
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1607 nan 0.0010 0.0843
## 2 60.0752 nan 0.0010 0.0860
## 3 59.9899 nan 0.0010 0.0875
## 4 59.9018 nan 0.0010 0.0912
## 5 59.8153 nan 0.0010 0.0912
## 6 59.7186 nan 0.0010 0.0935
## 7 59.6257 nan 0.0010 0.0921
## 8 59.5419 nan 0.0010 0.0811
## 9 59.4561 nan 0.0010 0.0823
## 10 59.3711 nan 0.0010 0.0930
## 20 58.4471 nan 0.0010 0.0801
## 40 56.6909 nan 0.0010 0.0915
## 60 54.9991 nan 0.0010 0.0863
## 80 53.3788 nan 0.0010 0.0747
## 100 51.7886 nan 0.0010 0.0745
## 120 50.2626 nan 0.0010 0.0846
## 140 48.8012 nan 0.0010 0.0726
## 160 47.3692 nan 0.0010 0.0629
## 180 46.0266 nan 0.0010 0.0574
## 200 44.7143 nan 0.0010 0.0618
## 220 43.4199 nan 0.0010 0.0681
## 240 42.1896 nan 0.0010 0.0553
## 260 40.9956 nan 0.0010 0.0525
## 280 39.8586 nan 0.0010 0.0513
## 300 38.7238 nan 0.0010 0.0584
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1474 nan 0.0010 0.0974
## 2 60.0504 nan 0.0010 0.0976
## 3 59.9533 nan 0.0010 0.1027
## 4 59.8540 nan 0.0010 0.1079
## 5 59.7616 nan 0.0010 0.0967
## 6 59.6590 nan 0.0010 0.0896
## 7 59.5630 nan 0.0010 0.1013
## 8 59.4690 nan 0.0010 0.0924
## 9 59.3745 nan 0.0010 0.0882
## 10 59.2729 nan 0.0010 0.0867
## 20 58.2802 nan 0.0010 0.0968
## 40 56.3925 nan 0.0010 0.0996
## 60 54.5630 nan 0.0010 0.0900
## 80 52.8236 nan 0.0010 0.0873
## 100 51.1328 nan 0.0010 0.0766
## 120 49.5026 nan 0.0010 0.0817
## 140 47.9354 nan 0.0010 0.0743
## 160 46.4279 nan 0.0010 0.0758
## 180 44.9773 nan 0.0010 0.0717
## 200 43.5537 nan 0.0010 0.0586
## 220 42.1957 nan 0.0010 0.0617
## 240 40.8848 nan 0.0010 0.0651
## 260 39.6294 nan 0.0010 0.0593
## 280 38.4234 nan 0.0010 0.0568
## 300 37.2529 nan 0.0010 0.0577
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1460 nan 0.0010 0.1009
## 2 60.0483 nan 0.0010 0.0889
## 3 59.9490 nan 0.0010 0.0974
## 4 59.8510 nan 0.0010 0.0991
## 5 59.7492 nan 0.0010 0.0926
## 6 59.6502 nan 0.0010 0.0919
## 7 59.5497 nan 0.0010 0.0964
## 8 59.4560 nan 0.0010 0.1039
## 9 59.3626 nan 0.0010 0.0944
## 10 59.2681 nan 0.0010 0.0964
## 20 58.2859 nan 0.0010 0.1004
## 40 56.3956 nan 0.0010 0.0894
## 60 54.5705 nan 0.0010 0.0860
## 80 52.8157 nan 0.0010 0.0861
## 100 51.1443 nan 0.0010 0.0882
## 120 49.5222 nan 0.0010 0.0791
## 140 47.9672 nan 0.0010 0.0813
## 160 46.4739 nan 0.0010 0.0722
## 180 45.0183 nan 0.0010 0.0721
## 200 43.6075 nan 0.0010 0.0685
## 220 42.2669 nan 0.0010 0.0565
## 240 40.9615 nan 0.0010 0.0524
## 260 39.6929 nan 0.0010 0.0514
## 280 38.4661 nan 0.0010 0.0588
## 300 37.3093 nan 0.0010 0.0536
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1459 nan 0.0010 0.1016
## 2 60.0466 nan 0.0010 0.0948
## 3 59.9522 nan 0.0010 0.1013
## 4 59.8542 nan 0.0010 0.0993
## 5 59.7540 nan 0.0010 0.1048
## 6 59.6592 nan 0.0010 0.0891
## 7 59.5603 nan 0.0010 0.1008
## 8 59.4589 nan 0.0010 0.1031
## 9 59.3585 nan 0.0010 0.0941
## 10 59.2555 nan 0.0010 0.0927
## 20 58.2854 nan 0.0010 0.0732
## 40 56.4116 nan 0.0010 0.0868
## 60 54.5824 nan 0.0010 0.0891
## 80 52.8282 nan 0.0010 0.0782
## 100 51.1547 nan 0.0010 0.0745
## 120 49.5337 nan 0.0010 0.0759
## 140 47.9688 nan 0.0010 0.0790
## 160 46.4801 nan 0.0010 0.0733
## 180 45.0313 nan 0.0010 0.0744
## 200 43.6488 nan 0.0010 0.0682
## 220 42.3293 nan 0.0010 0.0598
## 240 41.0258 nan 0.0010 0.0635
## 260 39.7824 nan 0.0010 0.0586
## 280 38.5672 nan 0.0010 0.0604
## 300 37.4175 nan 0.0010 0.0547
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.8603 nan 0.0050 0.4031
## 2 59.4903 nan 0.0050 0.3718
## 3 59.1198 nan 0.0050 0.3488
## 4 58.8240 nan 0.0050 0.2815
## 5 58.4584 nan 0.0050 0.3805
## 6 58.0735 nan 0.0050 0.3662
## 7 57.7309 nan 0.0050 0.3408
## 8 57.3426 nan 0.0050 0.4121
## 9 56.9939 nan 0.0050 0.3507
## 10 56.6416 nan 0.0050 0.3215
## 20 53.2745 nan 0.0050 0.3276
## 40 47.4974 nan 0.0050 0.2886
## 60 42.5039 nan 0.0050 0.2358
## 80 38.2588 nan 0.0050 0.1864
## 100 34.5607 nan 0.0050 0.1524
## 120 31.3641 nan 0.0050 0.1549
## 140 28.5353 nan 0.0050 0.1255
## 160 26.0335 nan 0.0050 0.1080
## 180 23.9345 nan 0.0050 0.1001
## 200 22.0489 nan 0.0050 0.0854
## 220 20.3931 nan 0.0050 0.0695
## 240 18.9093 nan 0.0050 0.0627
## 260 17.6078 nan 0.0050 0.0619
## 280 16.4413 nan 0.0050 0.0471
## 300 15.3687 nan 0.0050 0.0517
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.8479 nan 0.0050 0.3577
## 2 59.4820 nan 0.0050 0.3800
## 3 59.1054 nan 0.0050 0.3741
## 4 58.7191 nan 0.0050 0.3659
## 5 58.4005 nan 0.0050 0.3353
## 6 58.0550 nan 0.0050 0.3377
## 7 57.6767 nan 0.0050 0.3519
## 8 57.3352 nan 0.0050 0.3364
## 9 56.9935 nan 0.0050 0.3625
## 10 56.6638 nan 0.0050 0.3560
## 20 53.3599 nan 0.0050 0.3140
## 40 47.6534 nan 0.0050 0.2615
## 60 42.7898 nan 0.0050 0.2351
## 80 38.5239 nan 0.0050 0.1837
## 100 34.8724 nan 0.0050 0.1590
## 120 31.6929 nan 0.0050 0.1474
## 140 28.8287 nan 0.0050 0.1243
## 160 26.3477 nan 0.0050 0.1172
## 180 24.1505 nan 0.0050 0.0781
## 200 22.2551 nan 0.0050 0.0913
## 220 20.5226 nan 0.0050 0.0754
## 240 19.0759 nan 0.0050 0.0575
## 260 17.7774 nan 0.0050 0.0530
## 280 16.6066 nan 0.0050 0.0570
## 300 15.5389 nan 0.0050 0.0503
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.8666 nan 0.0050 0.3734
## 2 59.4857 nan 0.0050 0.3645
## 3 59.0859 nan 0.0050 0.3770
## 4 58.7216 nan 0.0050 0.3589
## 5 58.3594 nan 0.0050 0.3502
## 6 57.9903 nan 0.0050 0.3521
## 7 57.6224 nan 0.0050 0.3545
## 8 57.2522 nan 0.0050 0.3329
## 9 56.8613 nan 0.0050 0.3217
## 10 56.5014 nan 0.0050 0.3701
## 20 53.2087 nan 0.0050 0.3097
## 40 47.3626 nan 0.0050 0.2384
## 60 42.5151 nan 0.0050 0.2259
## 80 38.3375 nan 0.0050 0.1924
## 100 34.6662 nan 0.0050 0.1562
## 120 31.4444 nan 0.0050 0.1455
## 140 28.6494 nan 0.0050 0.1386
## 160 26.1786 nan 0.0050 0.1011
## 180 24.0134 nan 0.0050 0.0970
## 200 22.0808 nan 0.0050 0.0910
## 220 20.4084 nan 0.0050 0.0595
## 240 18.9476 nan 0.0050 0.0714
## 260 17.6737 nan 0.0050 0.0624
## 280 16.4856 nan 0.0050 0.0514
## 300 15.4404 nan 0.0050 0.0457
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.7844 nan 0.0050 0.4356
## 2 59.3497 nan 0.0050 0.4760
## 3 58.9256 nan 0.0050 0.4086
## 4 58.4704 nan 0.0050 0.3945
## 5 57.9849 nan 0.0050 0.4529
## 6 57.5637 nan 0.0050 0.3994
## 7 57.1482 nan 0.0050 0.4292
## 8 56.7035 nan 0.0050 0.4009
## 9 56.2806 nan 0.0050 0.4622
## 10 55.8344 nan 0.0050 0.3577
## 20 51.7912 nan 0.0050 0.3392
## 40 44.6975 nan 0.0050 0.2976
## 60 38.7142 nan 0.0050 0.2424
## 80 33.5923 nan 0.0050 0.2354
## 100 29.4211 nan 0.0050 0.1738
## 120 25.9355 nan 0.0050 0.1209
## 140 22.9055 nan 0.0050 0.1387
## 160 20.3279 nan 0.0050 0.1224
## 180 18.1981 nan 0.0050 0.0939
## 200 16.3293 nan 0.0050 0.0937
## 220 14.7595 nan 0.0050 0.0674
## 240 13.3745 nan 0.0050 0.0547
## 260 12.2148 nan 0.0050 0.0477
## 280 11.1740 nan 0.0050 0.0385
## 300 10.3050 nan 0.0050 0.0362
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.7996 nan 0.0050 0.4785
## 2 59.3508 nan 0.0050 0.4311
## 3 58.9062 nan 0.0050 0.4804
## 4 58.4770 nan 0.0050 0.4116
## 5 58.0830 nan 0.0050 0.4254
## 6 57.6517 nan 0.0050 0.4328
## 7 57.2424 nan 0.0050 0.4435
## 8 56.7670 nan 0.0050 0.4511
## 9 56.3638 nan 0.0050 0.4191
## 10 55.9542 nan 0.0050 0.4418
## 20 51.7745 nan 0.0050 0.4002
## 40 44.6058 nan 0.0050 0.3056
## 60 38.7128 nan 0.0050 0.2688
## 80 33.6956 nan 0.0050 0.2293
## 100 29.5647 nan 0.0050 0.1843
## 120 25.9797 nan 0.0050 0.1440
## 140 22.9497 nan 0.0050 0.1234
## 160 20.3802 nan 0.0050 0.1141
## 180 18.2485 nan 0.0050 0.0998
## 200 16.3900 nan 0.0050 0.0812
## 220 14.8734 nan 0.0050 0.0427
## 240 13.5097 nan 0.0050 0.0363
## 260 12.3139 nan 0.0050 0.0569
## 280 11.2663 nan 0.0050 0.0366
## 300 10.3684 nan 0.0050 0.0365
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.7475 nan 0.0050 0.4592
## 2 59.2860 nan 0.0050 0.4591
## 3 58.8085 nan 0.0050 0.4537
## 4 58.3419 nan 0.0050 0.4315
## 5 57.8839 nan 0.0050 0.4263
## 6 57.4582 nan 0.0050 0.4147
## 7 57.0238 nan 0.0050 0.4673
## 8 56.5912 nan 0.0050 0.4551
## 9 56.1580 nan 0.0050 0.4188
## 10 55.7567 nan 0.0050 0.4363
## 20 51.7612 nan 0.0050 0.3489
## 40 44.5973 nan 0.0050 0.3144
## 60 38.6315 nan 0.0050 0.2962
## 80 33.6052 nan 0.0050 0.2098
## 100 29.3460 nan 0.0050 0.1780
## 120 25.7600 nan 0.0050 0.1563
## 140 22.8141 nan 0.0050 0.1436
## 160 20.3560 nan 0.0050 0.1246
## 180 18.2660 nan 0.0050 0.1023
## 200 16.4538 nan 0.0050 0.0705
## 220 14.9202 nan 0.0050 0.0715
## 240 13.5895 nan 0.0050 0.0459
## 260 12.4486 nan 0.0050 0.0403
## 280 11.4480 nan 0.0050 0.0305
## 300 10.5485 nan 0.0050 0.0379
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.7437 nan 0.0050 0.5467
## 2 59.2648 nan 0.0050 0.5210
## 3 58.7697 nan 0.0050 0.4746
## 4 58.3020 nan 0.0050 0.4657
## 5 57.8372 nan 0.0050 0.4202
## 6 57.3710 nan 0.0050 0.4225
## 7 56.9051 nan 0.0050 0.4257
## 8 56.4279 nan 0.0050 0.4773
## 9 55.9832 nan 0.0050 0.4336
## 10 55.5204 nan 0.0050 0.3896
## 20 51.1079 nan 0.0050 0.4059
## 40 43.5650 nan 0.0050 0.3709
## 60 37.2961 nan 0.0050 0.2624
## 80 32.0736 nan 0.0050 0.2413
## 100 27.7240 nan 0.0050 0.1899
## 120 24.1386 nan 0.0050 0.1391
## 140 21.0723 nan 0.0050 0.1428
## 160 18.4861 nan 0.0050 0.1144
## 180 16.2344 nan 0.0050 0.1017
## 200 14.4245 nan 0.0050 0.0727
## 220 12.8418 nan 0.0050 0.0700
## 240 11.5015 nan 0.0050 0.0553
## 260 10.3445 nan 0.0050 0.0500
## 280 9.3997 nan 0.0050 0.0365
## 300 8.5620 nan 0.0050 0.0374
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.7618 nan 0.0050 0.4742
## 2 59.2765 nan 0.0050 0.4774
## 3 58.8054 nan 0.0050 0.4848
## 4 58.3361 nan 0.0050 0.4751
## 5 57.8637 nan 0.0050 0.4625
## 6 57.3638 nan 0.0050 0.4666
## 7 56.9144 nan 0.0050 0.4735
## 8 56.4340 nan 0.0050 0.4632
## 9 55.9335 nan 0.0050 0.5124
## 10 55.4452 nan 0.0050 0.4786
## 20 51.1518 nan 0.0050 0.3808
## 40 43.5937 nan 0.0050 0.3265
## 60 37.3159 nan 0.0050 0.2844
## 80 32.0826 nan 0.0050 0.2454
## 100 27.6830 nan 0.0050 0.1990
## 120 24.0165 nan 0.0050 0.1638
## 140 21.0011 nan 0.0050 0.1387
## 160 18.4479 nan 0.0050 0.1163
## 180 16.2814 nan 0.0050 0.1017
## 200 14.4243 nan 0.0050 0.0765
## 220 12.8808 nan 0.0050 0.0692
## 240 11.5543 nan 0.0050 0.0540
## 260 10.4186 nan 0.0050 0.0350
## 280 9.4382 nan 0.0050 0.0436
## 300 8.5822 nan 0.0050 0.0265
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.7261 nan 0.0050 0.5060
## 2 59.2185 nan 0.0050 0.4943
## 3 58.7666 nan 0.0050 0.4778
## 4 58.2780 nan 0.0050 0.5044
## 5 57.7743 nan 0.0050 0.4754
## 6 57.3205 nan 0.0050 0.4277
## 7 56.8310 nan 0.0050 0.4938
## 8 56.3748 nan 0.0050 0.4058
## 9 55.8795 nan 0.0050 0.5029
## 10 55.4226 nan 0.0050 0.4150
## 20 51.1310 nan 0.0050 0.4092
## 40 43.4552 nan 0.0050 0.3219
## 60 37.2154 nan 0.0050 0.2743
## 80 32.0370 nan 0.0050 0.2246
## 100 27.7077 nan 0.0050 0.1868
## 120 24.1239 nan 0.0050 0.1621
## 140 21.1307 nan 0.0050 0.1256
## 160 18.5764 nan 0.0050 0.1054
## 180 16.4427 nan 0.0050 0.0986
## 200 14.6420 nan 0.0050 0.0853
## 220 13.0988 nan 0.0050 0.0666
## 240 11.8210 nan 0.0050 0.0403
## 260 10.7052 nan 0.0050 0.0488
## 280 9.7551 nan 0.0050 0.0301
## 300 8.9399 nan 0.0050 0.0390
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5301 nan 0.0100 0.7121
## 2 58.7557 nan 0.0100 0.7238
## 3 58.0288 nan 0.0100 0.7509
## 4 57.3049 nan 0.0100 0.7483
## 5 56.6425 nan 0.0100 0.6792
## 6 55.9880 nan 0.0100 0.7523
## 7 55.3099 nan 0.0100 0.6834
## 8 54.5972 nan 0.0100 0.6280
## 9 53.9108 nan 0.0100 0.6188
## 10 53.2549 nan 0.0100 0.6996
## 20 47.3159 nan 0.0100 0.5227
## 40 38.0748 nan 0.0100 0.3057
## 60 31.2711 nan 0.0100 0.2870
## 80 26.1392 nan 0.0100 0.2147
## 100 22.1332 nan 0.0100 0.1594
## 120 18.9530 nan 0.0100 0.1246
## 140 16.4653 nan 0.0100 0.0946
## 160 14.4619 nan 0.0100 0.0833
## 180 12.8350 nan 0.0100 0.0573
## 200 11.4477 nan 0.0100 0.0377
## 220 10.3397 nan 0.0100 0.0512
## 240 9.4086 nan 0.0100 0.0321
## 260 8.6175 nan 0.0100 0.0331
## 280 7.9549 nan 0.0100 0.0289
## 300 7.3609 nan 0.0100 0.0233
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5025 nan 0.0100 0.7670
## 2 58.7792 nan 0.0100 0.7396
## 3 58.0228 nan 0.0100 0.6962
## 4 57.3227 nan 0.0100 0.6367
## 5 56.6319 nan 0.0100 0.5897
## 6 55.9651 nan 0.0100 0.6187
## 7 55.3250 nan 0.0100 0.6897
## 8 54.6190 nan 0.0100 0.6896
## 9 54.0017 nan 0.0100 0.5919
## 10 53.3662 nan 0.0100 0.6411
## 20 47.5606 nan 0.0100 0.5612
## 40 38.4455 nan 0.0100 0.3616
## 60 31.4149 nan 0.0100 0.2690
## 80 26.1982 nan 0.0100 0.2095
## 100 22.1650 nan 0.0100 0.1689
## 120 19.0083 nan 0.0100 0.1105
## 140 16.4846 nan 0.0100 0.0967
## 160 14.4699 nan 0.0100 0.0943
## 180 12.7560 nan 0.0100 0.0482
## 200 11.4073 nan 0.0100 0.0440
## 220 10.3047 nan 0.0100 0.0315
## 240 9.3806 nan 0.0100 0.0350
## 260 8.5782 nan 0.0100 0.0269
## 280 7.8870 nan 0.0100 0.0191
## 300 7.2898 nan 0.0100 0.0224
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.4379 nan 0.0100 0.7410
## 2 58.6478 nan 0.0100 0.7647
## 3 57.9257 nan 0.0100 0.7299
## 4 57.2356 nan 0.0100 0.7545
## 5 56.5742 nan 0.0100 0.6628
## 6 55.8594 nan 0.0100 0.6682
## 7 55.1789 nan 0.0100 0.6331
## 8 54.5105 nan 0.0100 0.6045
## 9 53.8799 nan 0.0100 0.5812
## 10 53.2213 nan 0.0100 0.6400
## 20 47.2757 nan 0.0100 0.5458
## 40 38.0557 nan 0.0100 0.3920
## 60 31.2341 nan 0.0100 0.3090
## 80 25.8533 nan 0.0100 0.2244
## 100 21.7828 nan 0.0100 0.1777
## 120 18.7267 nan 0.0100 0.1334
## 140 16.3387 nan 0.0100 0.0867
## 160 14.4160 nan 0.0100 0.0813
## 180 12.7616 nan 0.0100 0.0636
## 200 11.4273 nan 0.0100 0.0489
## 220 10.3186 nan 0.0100 0.0387
## 240 9.4409 nan 0.0100 0.0324
## 260 8.6969 nan 0.0100 0.0266
## 280 8.0304 nan 0.0100 0.0242
## 300 7.4719 nan 0.0100 0.0129
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.3279 nan 0.0100 0.9335
## 2 58.3807 nan 0.0100 0.9140
## 3 57.4267 nan 0.0100 0.8765
## 4 56.5539 nan 0.0100 0.8451
## 5 55.7523 nan 0.0100 0.6643
## 6 54.9846 nan 0.0100 0.7482
## 7 54.1062 nan 0.0100 0.8696
## 8 53.3126 nan 0.0100 0.7473
## 9 52.4951 nan 0.0100 0.8363
## 10 51.6730 nan 0.0100 0.7740
## 20 44.5239 nan 0.0100 0.6623
## 40 33.5092 nan 0.0100 0.4765
## 60 25.7755 nan 0.0100 0.3151
## 80 20.2420 nan 0.0100 0.2195
## 100 16.3169 nan 0.0100 0.1444
## 120 13.3336 nan 0.0100 0.1099
## 140 11.1305 nan 0.0100 0.0714
## 160 9.4807 nan 0.0100 0.0625
## 180 8.2087 nan 0.0100 0.0401
## 200 7.1880 nan 0.0100 0.0309
## 220 6.4012 nan 0.0100 0.0296
## 240 5.7566 nan 0.0100 0.0332
## 260 5.2300 nan 0.0100 0.0203
## 280 4.8163 nan 0.0100 0.0053
## 300 4.4735 nan 0.0100 0.0110
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2937 nan 0.0100 0.8528
## 2 58.3829 nan 0.0100 0.8335
## 3 57.4928 nan 0.0100 0.8818
## 4 56.5719 nan 0.0100 0.8709
## 5 55.7264 nan 0.0100 0.8367
## 6 54.8647 nan 0.0100 0.8706
## 7 54.0510 nan 0.0100 0.7981
## 8 53.2680 nan 0.0100 0.8063
## 9 52.4768 nan 0.0100 0.8153
## 10 51.7084 nan 0.0100 0.8145
## 20 44.5023 nan 0.0100 0.6304
## 40 33.6787 nan 0.0100 0.4127
## 60 25.8800 nan 0.0100 0.3685
## 80 20.3155 nan 0.0100 0.2628
## 100 16.3839 nan 0.0100 0.1613
## 120 13.3850 nan 0.0100 0.1262
## 140 11.2099 nan 0.0100 0.0691
## 160 9.5074 nan 0.0100 0.0633
## 180 8.2201 nan 0.0100 0.0529
## 200 7.2295 nan 0.0100 0.0418
## 220 6.4306 nan 0.0100 0.0365
## 240 5.8156 nan 0.0100 0.0200
## 260 5.3021 nan 0.0100 0.0220
## 280 4.8863 nan 0.0100 0.0094
## 300 4.5524 nan 0.0100 0.0020
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.3458 nan 0.0100 0.9447
## 2 58.4801 nan 0.0100 0.8597
## 3 57.5790 nan 0.0100 0.8684
## 4 56.7152 nan 0.0100 0.8660
## 5 55.8615 nan 0.0100 0.8794
## 6 54.9927 nan 0.0100 0.8379
## 7 54.1352 nan 0.0100 0.8406
## 8 53.2912 nan 0.0100 0.7745
## 9 52.4999 nan 0.0100 0.8266
## 10 51.7232 nan 0.0100 0.7589
## 20 44.4926 nan 0.0100 0.7387
## 40 33.5892 nan 0.0100 0.3962
## 60 25.8645 nan 0.0100 0.3257
## 80 20.2375 nan 0.0100 0.1955
## 100 16.3022 nan 0.0100 0.1587
## 120 13.5019 nan 0.0100 0.1066
## 140 11.3529 nan 0.0100 0.0646
## 160 9.6748 nan 0.0100 0.0596
## 180 8.4075 nan 0.0100 0.0520
## 200 7.4900 nan 0.0100 0.0356
## 220 6.7147 nan 0.0100 0.0307
## 240 6.0887 nan 0.0100 0.0297
## 260 5.5958 nan 0.0100 0.0153
## 280 5.2038 nan 0.0100 0.0120
## 300 4.8790 nan 0.0100 0.0096
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2867 nan 0.0100 0.8900
## 2 58.2498 nan 0.0100 1.0645
## 3 57.3169 nan 0.0100 0.9356
## 4 56.3990 nan 0.0100 0.9202
## 5 55.4437 nan 0.0100 0.9580
## 6 54.5730 nan 0.0100 0.9240
## 7 53.7357 nan 0.0100 0.9093
## 8 52.8665 nan 0.0100 0.9115
## 9 52.0433 nan 0.0100 0.8780
## 10 51.2267 nan 0.0100 0.7975
## 20 43.5791 nan 0.0100 0.6996
## 40 32.3413 nan 0.0100 0.5134
## 60 24.2072 nan 0.0100 0.3154
## 80 18.5195 nan 0.0100 0.2265
## 100 14.4210 nan 0.0100 0.1525
## 120 11.4767 nan 0.0100 0.1010
## 140 9.3660 nan 0.0100 0.0794
## 160 7.8236 nan 0.0100 0.0429
## 180 6.6703 nan 0.0100 0.0394
## 200 5.8099 nan 0.0100 0.0300
## 220 5.1330 nan 0.0100 0.0216
## 240 4.5887 nan 0.0100 0.0222
## 260 4.1674 nan 0.0100 0.0120
## 280 3.8615 nan 0.0100 0.0085
## 300 3.6184 nan 0.0100 0.0061
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.3172 nan 0.0100 0.9388
## 2 58.3219 nan 0.0100 0.8678
## 3 57.3643 nan 0.0100 0.9162
## 4 56.4423 nan 0.0100 0.9423
## 5 55.5326 nan 0.0100 0.8155
## 6 54.6090 nan 0.0100 0.9197
## 7 53.7418 nan 0.0100 0.8800
## 8 52.8922 nan 0.0100 0.9002
## 9 51.9833 nan 0.0100 0.8495
## 10 51.1142 nan 0.0100 0.8545
## 20 43.6640 nan 0.0100 0.7057
## 40 32.2619 nan 0.0100 0.4472
## 60 24.2101 nan 0.0100 0.3324
## 80 18.6397 nan 0.0100 0.2035
## 100 14.5378 nan 0.0100 0.1596
## 120 11.6281 nan 0.0100 0.0865
## 140 9.5128 nan 0.0100 0.0664
## 160 7.9413 nan 0.0100 0.0597
## 180 6.7344 nan 0.0100 0.0463
## 200 5.8501 nan 0.0100 0.0288
## 220 5.1961 nan 0.0100 0.0236
## 240 4.6940 nan 0.0100 0.0122
## 260 4.3067 nan 0.0100 0.0124
## 280 3.9938 nan 0.0100 0.0073
## 300 3.7397 nan 0.0100 0.0069
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2635 nan 0.0100 0.9178
## 2 58.2982 nan 0.0100 0.9042
## 3 57.3010 nan 0.0100 0.9459
## 4 56.3472 nan 0.0100 0.9760
## 5 55.4844 nan 0.0100 0.9373
## 6 54.5326 nan 0.0100 0.8566
## 7 53.6754 nan 0.0100 0.7365
## 8 52.7681 nan 0.0100 0.8704
## 9 51.9101 nan 0.0100 0.8760
## 10 51.0392 nan 0.0100 0.8254
## 20 43.4013 nan 0.0100 0.6912
## 40 32.1634 nan 0.0100 0.4103
## 60 24.2525 nan 0.0100 0.2974
## 80 18.6018 nan 0.0100 0.1645
## 100 14.6755 nan 0.0100 0.1842
## 120 11.8420 nan 0.0100 0.1077
## 140 9.7650 nan 0.0100 0.0767
## 160 8.2853 nan 0.0100 0.0443
## 180 7.1396 nan 0.0100 0.0443
## 200 6.2290 nan 0.0100 0.0338
## 220 5.5752 nan 0.0100 0.0253
## 240 5.0699 nan 0.0100 0.0118
## 260 4.6659 nan 0.0100 0.0110
## 280 4.3719 nan 0.0100 0.0029
## 300 4.1274 nan 0.0100 0.0087
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.5478 nan 0.0500 3.6882
## 2 52.9560 nan 0.0500 3.1827
## 3 49.8560 nan 0.0500 2.9290
## 4 46.7298 nan 0.0500 3.1035
## 5 44.1532 nan 0.0500 2.4554
## 6 41.7505 nan 0.0500 1.9597
## 7 39.5955 nan 0.0500 1.9121
## 8 37.4853 nan 0.0500 1.9040
## 9 35.6351 nan 0.0500 1.6778
## 10 33.7467 nan 0.0500 1.6390
## 20 21.7512 nan 0.0500 0.9606
## 40 11.1563 nan 0.0500 0.2683
## 60 7.1306 nan 0.0500 0.1043
## 80 5.2208 nan 0.0500 0.0213
## 100 4.3192 nan 0.0500 0.0206
## 120 3.8543 nan 0.0500 0.0024
## 140 3.5937 nan 0.0500 -0.0035
## 160 3.4771 nan 0.0500 -0.0003
## 180 3.3891 nan 0.0500 -0.0081
## 200 3.3179 nan 0.0500 -0.0026
## 220 3.2396 nan 0.0500 -0.0076
## 240 3.1552 nan 0.0500 -0.0117
## 260 3.1001 nan 0.0500 -0.0062
## 280 3.0501 nan 0.0500 -0.0195
## 300 3.0045 nan 0.0500 -0.0032
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.4586 nan 0.0500 3.8686
## 2 53.1814 nan 0.0500 3.3968
## 3 50.1428 nan 0.0500 2.9569
## 4 47.3283 nan 0.0500 2.7298
## 5 44.6403 nan 0.0500 2.3233
## 6 42.0990 nan 0.0500 2.1398
## 7 39.8159 nan 0.0500 2.3457
## 8 37.6828 nan 0.0500 2.0014
## 9 35.7014 nan 0.0500 1.9536
## 10 34.0483 nan 0.0500 1.6874
## 20 21.5385 nan 0.0500 0.8393
## 40 11.3067 nan 0.0500 0.2403
## 60 7.2000 nan 0.0500 0.1139
## 80 5.3380 nan 0.0500 0.0114
## 100 4.4461 nan 0.0500 0.0327
## 120 3.9339 nan 0.0500 -0.0098
## 140 3.6891 nan 0.0500 -0.0060
## 160 3.5228 nan 0.0500 0.0036
## 180 3.4127 nan 0.0500 -0.0126
## 200 3.3179 nan 0.0500 -0.0067
## 220 3.2445 nan 0.0500 -0.0061
## 240 3.1786 nan 0.0500 -0.0043
## 260 3.1267 nan 0.0500 -0.0062
## 280 3.0669 nan 0.0500 -0.0109
## 300 3.0258 nan 0.0500 -0.0037
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.5169 nan 0.0500 3.4327
## 2 53.1301 nan 0.0500 3.3331
## 3 50.1149 nan 0.0500 2.9409
## 4 47.3597 nan 0.0500 2.7068
## 5 45.1506 nan 0.0500 2.1826
## 6 42.6249 nan 0.0500 2.5142
## 7 40.2458 nan 0.0500 2.5013
## 8 37.9532 nan 0.0500 1.9599
## 9 35.9453 nan 0.0500 1.8534
## 10 34.3348 nan 0.0500 1.6849
## 20 21.8063 nan 0.0500 0.8525
## 40 11.4615 nan 0.0500 0.2026
## 60 7.4609 nan 0.0500 0.1156
## 80 5.6260 nan 0.0500 0.0564
## 100 4.7297 nan 0.0500 0.0161
## 120 4.2963 nan 0.0500 0.0033
## 140 4.0892 nan 0.0500 -0.0020
## 160 3.9575 nan 0.0500 -0.0036
## 180 3.8549 nan 0.0500 -0.0060
## 200 3.7678 nan 0.0500 -0.0176
## 220 3.6726 nan 0.0500 -0.0091
## 240 3.6145 nan 0.0500 -0.0026
## 260 3.5361 nan 0.0500 -0.0050
## 280 3.4791 nan 0.0500 -0.0221
## 300 3.4137 nan 0.0500 -0.0038
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.7740 nan 0.0500 4.0245
## 2 51.4753 nan 0.0500 3.5262
## 3 47.8405 nan 0.0500 3.4442
## 4 44.2474 nan 0.0500 3.6493
## 5 41.0586 nan 0.0500 2.9592
## 6 38.2337 nan 0.0500 2.6567
## 7 35.5399 nan 0.0500 2.4215
## 8 33.4934 nan 0.0500 1.8823
## 9 31.1984 nan 0.0500 2.3343
## 10 29.0450 nan 0.0500 1.9876
## 20 16.0399 nan 0.0500 0.7374
## 40 7.0124 nan 0.0500 0.1564
## 60 4.4400 nan 0.0500 0.0499
## 80 3.5027 nan 0.0500 0.0149
## 100 3.0900 nan 0.0500 0.0015
## 120 2.8543 nan 0.0500 -0.0005
## 140 2.6859 nan 0.0500 0.0038
## 160 2.5553 nan 0.0500 -0.0116
## 180 2.4359 nan 0.0500 -0.0060
## 200 2.3327 nan 0.0500 -0.0114
## 220 2.2432 nan 0.0500 -0.0179
## 240 2.1780 nan 0.0500 -0.0178
## 260 2.1092 nan 0.0500 -0.0047
## 280 2.0451 nan 0.0500 -0.0144
## 300 1.9866 nan 0.0500 -0.0122
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.2700 nan 0.0500 4.5715
## 2 50.9228 nan 0.0500 3.7653
## 3 47.2806 nan 0.0500 3.5590
## 4 43.9280 nan 0.0500 3.2875
## 5 41.0981 nan 0.0500 3.0518
## 6 38.2152 nan 0.0500 2.8586
## 7 35.5367 nan 0.0500 2.4637
## 8 32.9167 nan 0.0500 2.4383
## 9 30.5307 nan 0.0500 2.0516
## 10 28.6581 nan 0.0500 1.8414
## 20 15.8320 nan 0.0500 0.8739
## 40 6.9770 nan 0.0500 0.1664
## 60 4.5397 nan 0.0500 0.0276
## 80 3.6381 nan 0.0500 -0.0045
## 100 3.3304 nan 0.0500 -0.0103
## 120 3.1267 nan 0.0500 -0.0039
## 140 2.9503 nan 0.0500 -0.0092
## 160 2.8024 nan 0.0500 -0.0013
## 180 2.6996 nan 0.0500 -0.0027
## 200 2.6192 nan 0.0500 -0.0103
## 220 2.5369 nan 0.0500 -0.0118
## 240 2.4602 nan 0.0500 -0.0088
## 260 2.3960 nan 0.0500 -0.0150
## 280 2.3308 nan 0.0500 -0.0142
## 300 2.2648 nan 0.0500 -0.0103
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.7213 nan 0.0500 4.6688
## 2 51.7321 nan 0.0500 4.0763
## 3 47.8623 nan 0.0500 3.4833
## 4 44.4081 nan 0.0500 3.2962
## 5 41.3645 nan 0.0500 2.9971
## 6 38.6021 nan 0.0500 2.4006
## 7 35.7745 nan 0.0500 2.6068
## 8 33.1662 nan 0.0500 2.3257
## 9 30.9573 nan 0.0500 1.9084
## 10 29.0350 nan 0.0500 2.0797
## 20 16.5571 nan 0.0500 0.6464
## 40 7.5841 nan 0.0500 0.0948
## 60 4.9780 nan 0.0500 0.0361
## 80 4.1854 nan 0.0500 0.0116
## 100 3.7796 nan 0.0500 -0.0022
## 120 3.5582 nan 0.0500 -0.0124
## 140 3.3944 nan 0.0500 -0.0118
## 160 3.2428 nan 0.0500 -0.0019
## 180 3.1342 nan 0.0500 -0.0052
## 200 3.0410 nan 0.0500 -0.0112
## 220 2.9416 nan 0.0500 -0.0141
## 240 2.8588 nan 0.0500 -0.0120
## 260 2.7756 nan 0.0500 -0.0161
## 280 2.7219 nan 0.0500 -0.0109
## 300 2.6644 nan 0.0500 -0.0062
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.2701 nan 0.0500 5.1863
## 2 51.0344 nan 0.0500 4.7472
## 3 46.8458 nan 0.0500 4.6638
## 4 43.1859 nan 0.0500 3.1811
## 5 39.7185 nan 0.0500 3.4908
## 6 36.5141 nan 0.0500 3.2510
## 7 33.8681 nan 0.0500 2.7073
## 8 31.4515 nan 0.0500 2.6161
## 9 29.3647 nan 0.0500 2.2113
## 10 27.3934 nan 0.0500 2.0472
## 20 14.1183 nan 0.0500 0.8636
## 40 5.7964 nan 0.0500 0.1960
## 60 3.5883 nan 0.0500 0.0155
## 80 3.0078 nan 0.0500 -0.0027
## 100 2.6754 nan 0.0500 -0.0099
## 120 2.4486 nan 0.0500 -0.0057
## 140 2.3034 nan 0.0500 -0.0029
## 160 2.1708 nan 0.0500 -0.0175
## 180 2.0383 nan 0.0500 -0.0120
## 200 1.9251 nan 0.0500 -0.0089
## 220 1.8301 nan 0.0500 -0.0118
## 240 1.7517 nan 0.0500 -0.0087
## 260 1.6867 nan 0.0500 -0.0124
## 280 1.6084 nan 0.0500 -0.0064
## 300 1.5271 nan 0.0500 -0.0027
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.2600 nan 0.0500 4.4398
## 2 50.7526 nan 0.0500 4.4028
## 3 46.8272 nan 0.0500 3.7879
## 4 43.2540 nan 0.0500 3.4182
## 5 39.9372 nan 0.0500 3.4231
## 6 36.7336 nan 0.0500 2.8722
## 7 34.1287 nan 0.0500 2.5602
## 8 31.6628 nan 0.0500 2.0893
## 9 29.2717 nan 0.0500 2.0020
## 10 27.1558 nan 0.0500 1.8754
## 20 14.4907 nan 0.0500 0.8304
## 40 5.8307 nan 0.0500 0.1650
## 60 3.7309 nan 0.0500 0.0146
## 80 3.0997 nan 0.0500 -0.0203
## 100 2.8136 nan 0.0500 -0.0082
## 120 2.5819 nan 0.0500 -0.0113
## 140 2.4285 nan 0.0500 -0.0209
## 160 2.3090 nan 0.0500 -0.0085
## 180 2.1922 nan 0.0500 -0.0154
## 200 2.0896 nan 0.0500 -0.0154
## 220 2.0186 nan 0.0500 -0.0285
## 240 1.9496 nan 0.0500 -0.0127
## 260 1.8690 nan 0.0500 -0.0046
## 280 1.8010 nan 0.0500 -0.0143
## 300 1.7421 nan 0.0500 -0.0123
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.1588 nan 0.0500 5.0826
## 2 50.8569 nan 0.0500 4.5910
## 3 47.0256 nan 0.0500 3.8204
## 4 43.4280 nan 0.0500 3.7800
## 5 40.0490 nan 0.0500 3.1138
## 6 37.1788 nan 0.0500 2.8038
## 7 34.2593 nan 0.0500 2.4781
## 8 31.5909 nan 0.0500 2.5895
## 9 29.3312 nan 0.0500 2.1735
## 10 27.2546 nan 0.0500 2.0750
## 20 14.1653 nan 0.0500 0.7210
## 40 6.0663 nan 0.0500 0.1603
## 60 4.0416 nan 0.0500 0.0342
## 80 3.4186 nan 0.0500 -0.0028
## 100 3.1879 nan 0.0500 -0.0005
## 120 2.9848 nan 0.0500 -0.0221
## 140 2.8146 nan 0.0500 -0.0051
## 160 2.7192 nan 0.0500 -0.0056
## 180 2.6202 nan 0.0500 -0.0154
## 200 2.5166 nan 0.0500 -0.0154
## 220 2.4207 nan 0.0500 -0.0026
## 240 2.3362 nan 0.0500 -0.0114
## 260 2.2724 nan 0.0500 -0.0120
## 280 2.2100 nan 0.0500 -0.0103
## 300 2.1386 nan 0.0500 -0.0192
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.7506 nan 0.1000 7.1763
## 2 47.0920 nan 0.1000 6.0234
## 3 42.3567 nan 0.1000 4.5566
## 4 37.9987 nan 0.1000 4.2984
## 5 34.4241 nan 0.1000 3.8144
## 6 31.0418 nan 0.1000 3.2506
## 7 28.7072 nan 0.1000 1.9377
## 8 26.0735 nan 0.1000 2.5086
## 9 23.9450 nan 0.1000 2.2169
## 10 22.0010 nan 0.1000 1.8381
## 20 11.0767 nan 0.1000 0.4340
## 40 5.3297 nan 0.1000 0.0626
## 60 3.9995 nan 0.1000 0.0336
## 80 3.5982 nan 0.1000 -0.0121
## 100 3.3890 nan 0.1000 0.0000
## 120 3.2635 nan 0.1000 -0.0011
## 140 3.1550 nan 0.1000 -0.0033
## 160 3.0579 nan 0.1000 -0.0257
## 180 2.9935 nan 0.1000 -0.0121
## 200 2.9279 nan 0.1000 -0.0212
## 220 2.8696 nan 0.1000 -0.0138
## 240 2.7978 nan 0.1000 -0.0160
## 260 2.7562 nan 0.1000 -0.0135
## 280 2.7077 nan 0.1000 -0.0150
## 300 2.6812 nan 0.1000 -0.0139
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.4895 nan 0.1000 6.7067
## 2 47.6072 nan 0.1000 5.4591
## 3 42.7737 nan 0.1000 4.9773
## 4 38.1240 nan 0.1000 4.1375
## 5 34.3879 nan 0.1000 3.5969
## 6 31.1107 nan 0.1000 2.9325
## 7 28.1514 nan 0.1000 2.6520
## 8 25.6167 nan 0.1000 2.1981
## 9 23.6287 nan 0.1000 1.9418
## 10 21.6287 nan 0.1000 1.5102
## 20 11.2716 nan 0.1000 0.2185
## 40 5.3970 nan 0.1000 0.1180
## 60 4.0855 nan 0.1000 0.0166
## 80 3.6601 nan 0.1000 -0.0054
## 100 3.4478 nan 0.1000 -0.0093
## 120 3.3129 nan 0.1000 0.0041
## 140 3.1946 nan 0.1000 -0.0135
## 160 3.1082 nan 0.1000 -0.0176
## 180 3.0312 nan 0.1000 0.0025
## 200 2.9617 nan 0.1000 -0.0157
## 220 2.9237 nan 0.1000 -0.0228
## 240 2.8573 nan 0.1000 -0.0102
## 260 2.8250 nan 0.1000 -0.0216
## 280 2.7831 nan 0.1000 -0.0142
## 300 2.7375 nan 0.1000 -0.0037
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.4135 nan 0.1000 6.9011
## 2 47.1608 nan 0.1000 6.0421
## 3 42.0795 nan 0.1000 4.6584
## 4 37.4784 nan 0.1000 4.6792
## 5 33.7501 nan 0.1000 3.1221
## 6 30.3582 nan 0.1000 3.5393
## 7 27.5512 nan 0.1000 2.8099
## 8 25.0929 nan 0.1000 2.1795
## 9 23.3808 nan 0.1000 1.5307
## 10 21.1300 nan 0.1000 2.0990
## 20 11.0073 nan 0.1000 0.5348
## 40 5.8692 nan 0.1000 0.0955
## 60 4.6087 nan 0.1000 -0.0144
## 80 4.1453 nan 0.1000 -0.0028
## 100 3.8734 nan 0.1000 -0.0175
## 120 3.7216 nan 0.1000 -0.0134
## 140 3.5858 nan 0.1000 -0.0018
## 160 3.4894 nan 0.1000 -0.0102
## 180 3.3700 nan 0.1000 -0.0157
## 200 3.3196 nan 0.1000 -0.0167
## 220 3.2501 nan 0.1000 -0.0110
## 240 3.2076 nan 0.1000 -0.0283
## 260 3.1164 nan 0.1000 -0.0455
## 280 3.0558 nan 0.1000 -0.0298
## 300 3.0051 nan 0.1000 -0.0144
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.0281 nan 0.1000 8.7641
## 2 43.5306 nan 0.1000 7.6911
## 3 37.7776 nan 0.1000 5.4204
## 4 33.1069 nan 0.1000 4.8355
## 5 28.7307 nan 0.1000 4.0763
## 6 25.1086 nan 0.1000 3.7259
## 7 21.9585 nan 0.1000 3.0868
## 8 19.6549 nan 0.1000 2.3523
## 9 17.2967 nan 0.1000 2.1958
## 10 15.3565 nan 0.1000 1.9368
## 20 6.9850 nan 0.1000 0.3441
## 40 3.7130 nan 0.1000 -0.0266
## 60 3.0886 nan 0.1000 -0.0235
## 80 2.7270 nan 0.1000 -0.0253
## 100 2.4717 nan 0.1000 -0.0152
## 120 2.3085 nan 0.1000 -0.0102
## 140 2.1622 nan 0.1000 -0.0140
## 160 2.0465 nan 0.1000 -0.0107
## 180 1.9217 nan 0.1000 -0.0234
## 200 1.8410 nan 0.1000 -0.0215
## 220 1.7437 nan 0.1000 -0.0179
## 240 1.6534 nan 0.1000 -0.0188
## 260 1.5732 nan 0.1000 -0.0257
## 280 1.5114 nan 0.1000 -0.0117
## 300 1.4437 nan 0.1000 -0.0140
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.4574 nan 0.1000 8.5511
## 2 43.6292 nan 0.1000 7.4864
## 3 38.3152 nan 0.1000 4.7751
## 4 33.0019 nan 0.1000 4.5809
## 5 28.3030 nan 0.1000 3.8723
## 6 24.6753 nan 0.1000 3.5918
## 7 22.1672 nan 0.1000 2.6385
## 8 19.7101 nan 0.1000 2.5135
## 9 17.5791 nan 0.1000 2.2540
## 10 15.6014 nan 0.1000 1.7681
## 20 7.3561 nan 0.1000 0.3211
## 40 4.0734 nan 0.1000 0.0111
## 60 3.2907 nan 0.1000 -0.0115
## 80 3.0237 nan 0.1000 -0.0054
## 100 2.7609 nan 0.1000 -0.0041
## 120 2.6178 nan 0.1000 -0.0357
## 140 2.4793 nan 0.1000 -0.0356
## 160 2.3521 nan 0.1000 -0.0151
## 180 2.2526 nan 0.1000 -0.0126
## 200 2.1392 nan 0.1000 -0.0085
## 220 2.0344 nan 0.1000 -0.0252
## 240 1.9688 nan 0.1000 -0.0214
## 260 1.9119 nan 0.1000 -0.0079
## 280 1.8396 nan 0.1000 -0.0153
## 300 1.7940 nan 0.1000 -0.0219
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.9822 nan 0.1000 9.0965
## 2 44.4752 nan 0.1000 7.7664
## 3 37.7836 nan 0.1000 6.3289
## 4 32.8874 nan 0.1000 4.8919
## 5 28.9346 nan 0.1000 3.5495
## 6 25.2904 nan 0.1000 3.7228
## 7 22.1820 nan 0.1000 2.7445
## 8 19.5773 nan 0.1000 2.0650
## 9 17.3918 nan 0.1000 1.9651
## 10 15.4182 nan 0.1000 1.9007
## 20 7.4054 nan 0.1000 0.4873
## 40 3.9401 nan 0.1000 0.0317
## 60 3.4042 nan 0.1000 0.0036
## 80 3.1202 nan 0.1000 -0.0145
## 100 2.9249 nan 0.1000 -0.0159
## 120 2.8269 nan 0.1000 -0.0433
## 140 2.6982 nan 0.1000 -0.0334
## 160 2.5672 nan 0.1000 -0.0291
## 180 2.4792 nan 0.1000 -0.0078
## 200 2.3850 nan 0.1000 -0.0322
## 220 2.3127 nan 0.1000 -0.0097
## 240 2.2386 nan 0.1000 -0.0205
## 260 2.1881 nan 0.1000 -0.0046
## 280 2.1275 nan 0.1000 -0.0241
## 300 2.0611 nan 0.1000 -0.0345
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.0240 nan 0.1000 9.7028
## 2 42.9325 nan 0.1000 6.7644
## 3 36.2273 nan 0.1000 5.6676
## 4 31.2167 nan 0.1000 5.5483
## 5 26.7668 nan 0.1000 5.0129
## 6 23.3127 nan 0.1000 3.3081
## 7 20.2583 nan 0.1000 2.9563
## 8 17.8008 nan 0.1000 2.5952
## 9 15.5352 nan 0.1000 2.0502
## 10 14.1459 nan 0.1000 1.1390
## 20 5.8211 nan 0.1000 0.3927
## 40 3.0564 nan 0.1000 0.0117
## 60 2.5176 nan 0.1000 -0.0211
## 80 2.2175 nan 0.1000 -0.0280
## 100 1.9533 nan 0.1000 -0.0098
## 120 1.7455 nan 0.1000 -0.0031
## 140 1.5479 nan 0.1000 -0.0128
## 160 1.4244 nan 0.1000 -0.0490
## 180 1.2917 nan 0.1000 -0.0039
## 200 1.1962 nan 0.1000 -0.0120
## 220 1.1048 nan 0.1000 -0.0234
## 240 1.0309 nan 0.1000 -0.0089
## 260 0.9776 nan 0.1000 -0.0045
## 280 0.9093 nan 0.1000 -0.0064
## 300 0.8666 nan 0.1000 -0.0092
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 50.9763 nan 0.1000 8.6060
## 2 43.6799 nan 0.1000 7.1181
## 3 36.9160 nan 0.1000 6.2173
## 4 31.6626 nan 0.1000 5.6476
## 5 27.2356 nan 0.1000 4.4415
## 6 23.3880 nan 0.1000 3.6540
## 7 20.2227 nan 0.1000 2.8091
## 8 17.6812 nan 0.1000 2.4228
## 9 15.5394 nan 0.1000 2.1536
## 10 13.5147 nan 0.1000 1.9567
## 20 5.4812 nan 0.1000 0.2823
## 40 3.0979 nan 0.1000 0.0123
## 60 2.6104 nan 0.1000 -0.0203
## 80 2.3769 nan 0.1000 -0.0026
## 100 2.1959 nan 0.1000 -0.0202
## 120 1.9909 nan 0.1000 -0.0311
## 140 1.8432 nan 0.1000 -0.0349
## 160 1.7461 nan 0.1000 -0.0151
## 180 1.6309 nan 0.1000 -0.0199
## 200 1.5354 nan 0.1000 -0.0150
## 220 1.4513 nan 0.1000 -0.0194
## 240 1.3796 nan 0.1000 -0.0290
## 260 1.2975 nan 0.1000 -0.0096
## 280 1.2348 nan 0.1000 -0.0036
## 300 1.1840 nan 0.1000 -0.0167
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 50.7784 nan 0.1000 8.5421
## 2 42.8726 nan 0.1000 8.2604
## 3 36.1711 nan 0.1000 5.7266
## 4 31.2270 nan 0.1000 4.8707
## 5 26.7869 nan 0.1000 4.1884
## 6 23.3459 nan 0.1000 3.6392
## 7 20.4667 nan 0.1000 2.9572
## 8 18.0280 nan 0.1000 2.2395
## 9 15.9711 nan 0.1000 1.9120
## 10 14.1127 nan 0.1000 1.7284
## 20 5.8302 nan 0.1000 0.3171
## 40 3.4830 nan 0.1000 -0.0135
## 60 2.9413 nan 0.1000 -0.0300
## 80 2.6941 nan 0.1000 0.0056
## 100 2.5068 nan 0.1000 -0.0259
## 120 2.3335 nan 0.1000 -0.0226
## 140 2.2173 nan 0.1000 -0.0089
## 160 2.1126 nan 0.1000 -0.0125
## 180 2.0073 nan 0.1000 -0.0206
## 200 1.9139 nan 0.1000 -0.0151
## 220 1.8036 nan 0.1000 -0.0129
## 240 1.7371 nan 0.1000 -0.0438
## 260 1.6486 nan 0.1000 -0.0286
## 280 1.5572 nan 0.1000 -0.0155
## 300 1.4898 nan 0.1000 -0.0210
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8825 nan 0.0010 0.0755
## 2 62.7997 nan 0.0010 0.0820
## 3 62.7120 nan 0.0010 0.0796
## 4 62.6326 nan 0.0010 0.0841
## 5 62.5551 nan 0.0010 0.0738
## 6 62.4732 nan 0.0010 0.0726
## 7 62.3862 nan 0.0010 0.0820
## 8 62.3102 nan 0.0010 0.0814
## 9 62.2316 nan 0.0010 0.0783
## 10 62.1526 nan 0.0010 0.0818
## 20 61.3510 nan 0.0010 0.0770
## 40 59.8002 nan 0.0010 0.0694
## 60 58.3362 nan 0.0010 0.0768
## 80 56.9166 nan 0.0010 0.0689
## 100 55.5448 nan 0.0010 0.0647
## 120 54.2010 nan 0.0010 0.0642
## 140 52.9172 nan 0.0010 0.0648
## 160 51.6832 nan 0.0010 0.0575
## 180 50.4842 nan 0.0010 0.0533
## 200 49.3385 nan 0.0010 0.0500
## 220 48.2520 nan 0.0010 0.0476
## 240 47.1634 nan 0.0010 0.0495
## 260 46.1139 nan 0.0010 0.0488
## 280 45.1019 nan 0.0010 0.0446
## 300 44.1103 nan 0.0010 0.0452
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8828 nan 0.0010 0.0751
## 2 62.7995 nan 0.0010 0.0753
## 3 62.7190 nan 0.0010 0.0784
## 4 62.6363 nan 0.0010 0.0811
## 5 62.5592 nan 0.0010 0.0777
## 6 62.4789 nan 0.0010 0.0788
## 7 62.3993 nan 0.0010 0.0792
## 8 62.3167 nan 0.0010 0.0809
## 9 62.2358 nan 0.0010 0.0825
## 10 62.1565 nan 0.0010 0.0753
## 20 61.3640 nan 0.0010 0.0788
## 40 59.8455 nan 0.0010 0.0707
## 60 58.3551 nan 0.0010 0.0687
## 80 56.9296 nan 0.0010 0.0692
## 100 55.5428 nan 0.0010 0.0552
## 120 54.2217 nan 0.0010 0.0657
## 140 52.9408 nan 0.0010 0.0657
## 160 51.6988 nan 0.0010 0.0570
## 180 50.5058 nan 0.0010 0.0579
## 200 49.3670 nan 0.0010 0.0550
## 220 48.2158 nan 0.0010 0.0528
## 240 47.1228 nan 0.0010 0.0517
## 260 46.0582 nan 0.0010 0.0500
## 280 45.0281 nan 0.0010 0.0468
## 300 44.0362 nan 0.0010 0.0452
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8894 nan 0.0010 0.0834
## 2 62.8133 nan 0.0010 0.0824
## 3 62.7347 nan 0.0010 0.0792
## 4 62.6511 nan 0.0010 0.0779
## 5 62.5693 nan 0.0010 0.0762
## 6 62.4917 nan 0.0010 0.0856
## 7 62.4120 nan 0.0010 0.0830
## 8 62.3332 nan 0.0010 0.0747
## 9 62.2501 nan 0.0010 0.0834
## 10 62.1663 nan 0.0010 0.0815
## 20 61.3436 nan 0.0010 0.0844
## 40 59.8015 nan 0.0010 0.0829
## 60 58.3296 nan 0.0010 0.0727
## 80 56.8960 nan 0.0010 0.0727
## 100 55.4990 nan 0.0010 0.0656
## 120 54.1787 nan 0.0010 0.0626
## 140 52.8811 nan 0.0010 0.0620
## 160 51.6447 nan 0.0010 0.0635
## 180 50.4761 nan 0.0010 0.0585
## 200 49.3177 nan 0.0010 0.0582
## 220 48.1919 nan 0.0010 0.0590
## 240 47.0805 nan 0.0010 0.0536
## 260 46.0283 nan 0.0010 0.0453
## 280 44.9761 nan 0.0010 0.0454
## 300 44.0107 nan 0.0010 0.0455
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8705 nan 0.0010 0.0940
## 2 62.7711 nan 0.0010 0.0987
## 3 62.6753 nan 0.0010 0.1006
## 4 62.5810 nan 0.0010 0.0927
## 5 62.4932 nan 0.0010 0.0833
## 6 62.3977 nan 0.0010 0.0958
## 7 62.3018 nan 0.0010 0.0961
## 8 62.2118 nan 0.0010 0.0940
## 9 62.1195 nan 0.0010 0.0897
## 10 62.0211 nan 0.0010 0.0884
## 20 61.0489 nan 0.0010 0.0916
## 40 59.1646 nan 0.0010 0.0865
## 60 57.3869 nan 0.0010 0.0937
## 80 55.6710 nan 0.0010 0.0769
## 100 54.0054 nan 0.0010 0.0779
## 120 52.3845 nan 0.0010 0.0796
## 140 50.8262 nan 0.0010 0.0748
## 160 49.3052 nan 0.0010 0.0755
## 180 47.8376 nan 0.0010 0.0756
## 200 46.4600 nan 0.0010 0.0652
## 220 45.1119 nan 0.0010 0.0592
## 240 43.7933 nan 0.0010 0.0608
## 260 42.5485 nan 0.0010 0.0559
## 280 41.3122 nan 0.0010 0.0547
## 300 40.1469 nan 0.0010 0.0580
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8680 nan 0.0010 0.0844
## 2 62.7739 nan 0.0010 0.0947
## 3 62.6754 nan 0.0010 0.0945
## 4 62.5748 nan 0.0010 0.0949
## 5 62.4805 nan 0.0010 0.0982
## 6 62.3797 nan 0.0010 0.0966
## 7 62.2897 nan 0.0010 0.0969
## 8 62.1902 nan 0.0010 0.0962
## 9 62.0904 nan 0.0010 0.0881
## 10 61.9928 nan 0.0010 0.0969
## 20 61.0198 nan 0.0010 0.0923
## 40 59.1671 nan 0.0010 0.0861
## 60 57.4029 nan 0.0010 0.0832
## 80 55.7065 nan 0.0010 0.0812
## 100 54.0255 nan 0.0010 0.0818
## 120 52.4131 nan 0.0010 0.0740
## 140 50.8422 nan 0.0010 0.0732
## 160 49.3551 nan 0.0010 0.0751
## 180 47.8968 nan 0.0010 0.0816
## 200 46.5059 nan 0.0010 0.0666
## 220 45.1002 nan 0.0010 0.0657
## 240 43.8084 nan 0.0010 0.0679
## 260 42.5300 nan 0.0010 0.0564
## 280 41.3304 nan 0.0010 0.0595
## 300 40.1824 nan 0.0010 0.0553
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8673 nan 0.0010 0.1020
## 2 62.7661 nan 0.0010 0.0997
## 3 62.6578 nan 0.0010 0.1055
## 4 62.5510 nan 0.0010 0.0944
## 5 62.4572 nan 0.0010 0.0942
## 6 62.3576 nan 0.0010 0.1012
## 7 62.2729 nan 0.0010 0.0880
## 8 62.1791 nan 0.0010 0.0852
## 9 62.0808 nan 0.0010 0.0947
## 10 61.9835 nan 0.0010 0.0890
## 20 61.0357 nan 0.0010 0.0837
## 40 59.2085 nan 0.0010 0.0855
## 60 57.4224 nan 0.0010 0.0791
## 80 55.6938 nan 0.0010 0.0783
## 100 54.0295 nan 0.0010 0.0810
## 120 52.4082 nan 0.0010 0.0681
## 140 50.8936 nan 0.0010 0.0789
## 160 49.3878 nan 0.0010 0.0733
## 180 47.9130 nan 0.0010 0.0684
## 200 46.5216 nan 0.0010 0.0582
## 220 45.1630 nan 0.0010 0.0646
## 240 43.8802 nan 0.0010 0.0653
## 260 42.5901 nan 0.0010 0.0728
## 280 41.3988 nan 0.0010 0.0537
## 300 40.2071 nan 0.0010 0.0602
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8576 nan 0.0010 0.1126
## 2 62.7556 nan 0.0010 0.0988
## 3 62.6522 nan 0.0010 0.1084
## 4 62.5466 nan 0.0010 0.1049
## 5 62.4423 nan 0.0010 0.1117
## 6 62.3333 nan 0.0010 0.1007
## 7 62.2282 nan 0.0010 0.1070
## 8 62.1231 nan 0.0010 0.0948
## 9 62.0199 nan 0.0010 0.0970
## 10 61.9177 nan 0.0010 0.0973
## 20 60.8747 nan 0.0010 0.1074
## 40 58.8721 nan 0.0010 0.1054
## 60 56.9608 nan 0.0010 0.0946
## 80 55.1109 nan 0.0010 0.0970
## 100 53.3344 nan 0.0010 0.0834
## 120 51.6122 nan 0.0010 0.0824
## 140 49.9604 nan 0.0010 0.0768
## 160 48.3568 nan 0.0010 0.0776
## 180 46.8296 nan 0.0010 0.0732
## 200 45.3755 nan 0.0010 0.0658
## 220 43.9424 nan 0.0010 0.0630
## 240 42.5839 nan 0.0010 0.0692
## 260 41.2639 nan 0.0010 0.0581
## 280 39.9943 nan 0.0010 0.0656
## 300 38.7702 nan 0.0010 0.0564
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8565 nan 0.0010 0.1032
## 2 62.7514 nan 0.0010 0.1020
## 3 62.6455 nan 0.0010 0.1107
## 4 62.5387 nan 0.0010 0.1094
## 5 62.4388 nan 0.0010 0.1019
## 6 62.3373 nan 0.0010 0.0906
## 7 62.2367 nan 0.0010 0.1054
## 8 62.1247 nan 0.0010 0.1081
## 9 62.0194 nan 0.0010 0.0936
## 10 61.9096 nan 0.0010 0.1033
## 20 60.8853 nan 0.0010 0.1056
## 40 58.8871 nan 0.0010 0.1048
## 60 56.9849 nan 0.0010 0.0974
## 80 55.1396 nan 0.0010 0.0847
## 100 53.3622 nan 0.0010 0.0845
## 120 51.6691 nan 0.0010 0.0826
## 140 50.0052 nan 0.0010 0.0831
## 160 48.4000 nan 0.0010 0.0728
## 180 46.8521 nan 0.0010 0.0773
## 200 45.3608 nan 0.0010 0.0681
## 220 43.9282 nan 0.0010 0.0719
## 240 42.5511 nan 0.0010 0.0588
## 260 41.2406 nan 0.0010 0.0664
## 280 39.9618 nan 0.0010 0.0665
## 300 38.7291 nan 0.0010 0.0590
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8594 nan 0.0010 0.1052
## 2 62.7608 nan 0.0010 0.0983
## 3 62.6549 nan 0.0010 0.1057
## 4 62.5509 nan 0.0010 0.0922
## 5 62.4491 nan 0.0010 0.0958
## 6 62.3442 nan 0.0010 0.0981
## 7 62.2430 nan 0.0010 0.0977
## 8 62.1394 nan 0.0010 0.0973
## 9 62.0406 nan 0.0010 0.1024
## 10 61.9395 nan 0.0010 0.0962
## 20 60.9170 nan 0.0010 0.1024
## 40 58.9414 nan 0.0010 0.0995
## 60 57.0164 nan 0.0010 0.0958
## 80 55.1626 nan 0.0010 0.1011
## 100 53.3940 nan 0.0010 0.0801
## 120 51.6518 nan 0.0010 0.0868
## 140 50.0027 nan 0.0010 0.0793
## 160 48.4367 nan 0.0010 0.0702
## 180 46.9079 nan 0.0010 0.0752
## 200 45.4325 nan 0.0010 0.0680
## 220 44.0047 nan 0.0010 0.0658
## 240 42.6343 nan 0.0010 0.0657
## 260 41.3117 nan 0.0010 0.0626
## 280 40.0529 nan 0.0010 0.0600
## 300 38.8229 nan 0.0010 0.0545
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5443 nan 0.0050 0.4123
## 2 62.1294 nan 0.0050 0.4006
## 3 61.7335 nan 0.0050 0.3669
## 4 61.3477 nan 0.0050 0.3546
## 5 60.9614 nan 0.0050 0.3642
## 6 60.5639 nan 0.0050 0.3925
## 7 60.1730 nan 0.0050 0.3654
## 8 59.7960 nan 0.0050 0.3739
## 9 59.4221 nan 0.0050 0.3514
## 10 59.0802 nan 0.0050 0.3865
## 20 55.5907 nan 0.0050 0.3005
## 40 49.3976 nan 0.0050 0.2884
## 60 44.0938 nan 0.0050 0.2247
## 80 39.5131 nan 0.0050 0.1870
## 100 35.6475 nan 0.0050 0.1748
## 120 32.3292 nan 0.0050 0.1458
## 140 29.4415 nan 0.0050 0.1443
## 160 26.8428 nan 0.0050 0.1161
## 180 24.5699 nan 0.0050 0.0963
## 200 22.6197 nan 0.0050 0.0849
## 220 20.8872 nan 0.0050 0.0673
## 240 19.3118 nan 0.0050 0.0530
## 260 17.9601 nan 0.0050 0.0403
## 280 16.7009 nan 0.0050 0.0531
## 300 15.5695 nan 0.0050 0.0449
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5641 nan 0.0050 0.3788
## 2 62.1480 nan 0.0050 0.3904
## 3 61.7432 nan 0.0050 0.3944
## 4 61.3425 nan 0.0050 0.3867
## 5 60.9461 nan 0.0050 0.4089
## 6 60.5935 nan 0.0050 0.3892
## 7 60.2017 nan 0.0050 0.3748
## 8 59.8305 nan 0.0050 0.3686
## 9 59.4536 nan 0.0050 0.3759
## 10 59.0793 nan 0.0050 0.3706
## 20 55.5030 nan 0.0050 0.3150
## 40 49.2377 nan 0.0050 0.2771
## 60 44.0767 nan 0.0050 0.2376
## 80 39.5487 nan 0.0050 0.1882
## 100 35.6495 nan 0.0050 0.1720
## 120 32.2667 nan 0.0050 0.1438
## 140 29.3976 nan 0.0050 0.1269
## 160 26.8571 nan 0.0050 0.1208
## 180 24.6034 nan 0.0050 0.0973
## 200 22.6600 nan 0.0050 0.0844
## 220 20.9145 nan 0.0050 0.0678
## 240 19.3771 nan 0.0050 0.0689
## 260 17.9575 nan 0.0050 0.0581
## 280 16.7070 nan 0.0050 0.0562
## 300 15.6028 nan 0.0050 0.0488
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5366 nan 0.0050 0.4190
## 2 62.1282 nan 0.0050 0.4008
## 3 61.7460 nan 0.0050 0.4005
## 4 61.3495 nan 0.0050 0.4097
## 5 60.9497 nan 0.0050 0.3877
## 6 60.5882 nan 0.0050 0.3742
## 7 60.2097 nan 0.0050 0.3915
## 8 59.8656 nan 0.0050 0.3565
## 9 59.4731 nan 0.0050 0.3559
## 10 59.1312 nan 0.0050 0.3704
## 20 55.4832 nan 0.0050 0.3082
## 40 49.3011 nan 0.0050 0.2728
## 60 44.0469 nan 0.0050 0.1943
## 80 39.5898 nan 0.0050 0.1732
## 100 35.7208 nan 0.0050 0.1650
## 120 32.4376 nan 0.0050 0.1636
## 140 29.4313 nan 0.0050 0.1364
## 160 26.9361 nan 0.0050 0.1189
## 180 24.6651 nan 0.0050 0.0973
## 200 22.6274 nan 0.0050 0.0939
## 220 20.8496 nan 0.0050 0.0667
## 240 19.3040 nan 0.0050 0.0612
## 260 17.9533 nan 0.0050 0.0686
## 280 16.7214 nan 0.0050 0.0399
## 300 15.5876 nan 0.0050 0.0463
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.4947 nan 0.0050 0.4614
## 2 61.9637 nan 0.0050 0.5007
## 3 61.4507 nan 0.0050 0.5398
## 4 60.9477 nan 0.0050 0.4846
## 5 60.4779 nan 0.0050 0.4546
## 6 60.0206 nan 0.0050 0.4877
## 7 59.5934 nan 0.0050 0.3916
## 8 59.1511 nan 0.0050 0.4381
## 9 58.6977 nan 0.0050 0.4291
## 10 58.2525 nan 0.0050 0.4170
## 20 53.8940 nan 0.0050 0.3731
## 40 46.3653 nan 0.0050 0.3225
## 60 40.0471 nan 0.0050 0.2577
## 80 34.7208 nan 0.0050 0.2374
## 100 30.3358 nan 0.0050 0.2124
## 120 26.5822 nan 0.0050 0.1632
## 140 23.3909 nan 0.0050 0.1274
## 160 20.7285 nan 0.0050 0.1225
## 180 18.5170 nan 0.0050 0.0729
## 200 16.6332 nan 0.0050 0.0893
## 220 14.9693 nan 0.0050 0.0789
## 240 13.5296 nan 0.0050 0.0460
## 260 12.2969 nan 0.0050 0.0581
## 280 11.2336 nan 0.0050 0.0470
## 300 10.3231 nan 0.0050 0.0403
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5093 nan 0.0050 0.4526
## 2 62.0194 nan 0.0050 0.4762
## 3 61.5546 nan 0.0050 0.4784
## 4 61.0610 nan 0.0050 0.4403
## 5 60.5772 nan 0.0050 0.4973
## 6 60.1530 nan 0.0050 0.4457
## 7 59.6603 nan 0.0050 0.4744
## 8 59.1793 nan 0.0050 0.4457
## 9 58.7270 nan 0.0050 0.4476
## 10 58.2987 nan 0.0050 0.4349
## 20 53.9819 nan 0.0050 0.3783
## 40 46.6053 nan 0.0050 0.3651
## 60 40.4000 nan 0.0050 0.2748
## 80 35.0193 nan 0.0050 0.2172
## 100 30.5072 nan 0.0050 0.1893
## 120 26.7728 nan 0.0050 0.1865
## 140 23.5792 nan 0.0050 0.1606
## 160 20.9317 nan 0.0050 0.1017
## 180 18.6735 nan 0.0050 0.0994
## 200 16.7612 nan 0.0050 0.0628
## 220 15.0966 nan 0.0050 0.0751
## 240 13.6953 nan 0.0050 0.0478
## 260 12.4609 nan 0.0050 0.0433
## 280 11.4007 nan 0.0050 0.0411
## 300 10.4659 nan 0.0050 0.0494
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.4850 nan 0.0050 0.5007
## 2 61.9966 nan 0.0050 0.5226
## 3 61.5164 nan 0.0050 0.4424
## 4 61.0297 nan 0.0050 0.4936
## 5 60.5098 nan 0.0050 0.4665
## 6 60.0319 nan 0.0050 0.4727
## 7 59.5881 nan 0.0050 0.4474
## 8 59.0855 nan 0.0050 0.4730
## 9 58.6597 nan 0.0050 0.4520
## 10 58.2233 nan 0.0050 0.4178
## 20 53.9253 nan 0.0050 0.3854
## 40 46.3772 nan 0.0050 0.3394
## 60 40.0139 nan 0.0050 0.2881
## 80 34.7016 nan 0.0050 0.2193
## 100 30.4297 nan 0.0050 0.2051
## 120 26.6371 nan 0.0050 0.1938
## 140 23.5429 nan 0.0050 0.1365
## 160 20.8405 nan 0.0050 0.1210
## 180 18.5786 nan 0.0050 0.1054
## 200 16.6523 nan 0.0050 0.0855
## 220 15.0039 nan 0.0050 0.0672
## 240 13.6114 nan 0.0050 0.0577
## 260 12.4537 nan 0.0050 0.0512
## 280 11.4039 nan 0.0050 0.0396
## 300 10.4946 nan 0.0050 0.0418
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.4128 nan 0.0050 0.4943
## 2 61.8977 nan 0.0050 0.5442
## 3 61.3554 nan 0.0050 0.5066
## 4 60.8273 nan 0.0050 0.5228
## 5 60.3267 nan 0.0050 0.5455
## 6 59.8153 nan 0.0050 0.4762
## 7 59.3352 nan 0.0050 0.3969
## 8 58.8379 nan 0.0050 0.5082
## 9 58.3447 nan 0.0050 0.4775
## 10 57.8298 nan 0.0050 0.4571
## 20 53.3008 nan 0.0050 0.4280
## 40 45.3115 nan 0.0050 0.3569
## 60 38.6625 nan 0.0050 0.2861
## 80 33.2519 nan 0.0050 0.2217
## 100 28.6592 nan 0.0050 0.1889
## 120 24.8250 nan 0.0050 0.1562
## 140 21.5765 nan 0.0050 0.1501
## 160 18.8668 nan 0.0050 0.0999
## 180 16.6056 nan 0.0050 0.0961
## 200 14.7381 nan 0.0050 0.0872
## 220 13.1185 nan 0.0050 0.0589
## 240 11.7304 nan 0.0050 0.0537
## 260 10.5744 nan 0.0050 0.0512
## 280 9.5780 nan 0.0050 0.0439
## 300 8.7036 nan 0.0050 0.0381
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.4183 nan 0.0050 0.5485
## 2 61.8812 nan 0.0050 0.5069
## 3 61.3987 nan 0.0050 0.4995
## 4 60.9045 nan 0.0050 0.5417
## 5 60.3836 nan 0.0050 0.5030
## 6 59.8698 nan 0.0050 0.5244
## 7 59.3998 nan 0.0050 0.4873
## 8 58.9069 nan 0.0050 0.5269
## 9 58.4164 nan 0.0050 0.4375
## 10 57.9417 nan 0.0050 0.5022
## 20 53.3145 nan 0.0050 0.4109
## 40 45.2842 nan 0.0050 0.3383
## 60 38.6862 nan 0.0050 0.3079
## 80 33.1948 nan 0.0050 0.2087
## 100 28.6031 nan 0.0050 0.2194
## 120 24.7347 nan 0.0050 0.1646
## 140 21.5871 nan 0.0050 0.1410
## 160 18.8401 nan 0.0050 0.1174
## 180 16.5791 nan 0.0050 0.1034
## 200 14.6648 nan 0.0050 0.0802
## 220 13.0324 nan 0.0050 0.0749
## 240 11.6701 nan 0.0050 0.0583
## 260 10.5020 nan 0.0050 0.0516
## 280 9.4895 nan 0.0050 0.0391
## 300 8.6464 nan 0.0050 0.0373
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.4536 nan 0.0050 0.4462
## 2 61.9527 nan 0.0050 0.5013
## 3 61.4442 nan 0.0050 0.4758
## 4 60.9338 nan 0.0050 0.5248
## 5 60.4440 nan 0.0050 0.4786
## 6 59.9355 nan 0.0050 0.4982
## 7 59.4205 nan 0.0050 0.4997
## 8 58.9278 nan 0.0050 0.5293
## 9 58.4334 nan 0.0050 0.4685
## 10 57.9502 nan 0.0050 0.5018
## 20 53.2793 nan 0.0050 0.4341
## 40 45.3563 nan 0.0050 0.3742
## 60 38.8085 nan 0.0050 0.3011
## 80 33.3215 nan 0.0050 0.2101
## 100 28.7079 nan 0.0050 0.2057
## 120 24.9046 nan 0.0050 0.1734
## 140 21.7300 nan 0.0050 0.1271
## 160 19.0929 nan 0.0050 0.1252
## 180 16.8283 nan 0.0050 0.1007
## 200 14.9044 nan 0.0050 0.0923
## 220 13.2995 nan 0.0050 0.0673
## 240 11.9476 nan 0.0050 0.0540
## 260 10.8039 nan 0.0050 0.0525
## 280 9.8041 nan 0.0050 0.0326
## 300 8.9619 nan 0.0050 0.0352
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.2832 nan 0.0100 0.7593
## 2 61.5187 nan 0.0100 0.8200
## 3 60.7769 nan 0.0100 0.8081
## 4 60.0223 nan 0.0100 0.7141
## 5 59.2521 nan 0.0100 0.7612
## 6 58.5466 nan 0.0100 0.7627
## 7 57.8354 nan 0.0100 0.7742
## 8 57.1303 nan 0.0100 0.7151
## 9 56.4053 nan 0.0100 0.7120
## 10 55.7060 nan 0.0100 0.6593
## 20 49.4151 nan 0.0100 0.5558
## 40 39.8415 nan 0.0100 0.3337
## 60 32.4128 nan 0.0100 0.2766
## 80 26.9617 nan 0.0100 0.2131
## 100 22.7569 nan 0.0100 0.1708
## 120 19.3905 nan 0.0100 0.1535
## 140 16.7968 nan 0.0100 0.1120
## 160 14.6390 nan 0.0100 0.1150
## 180 12.9285 nan 0.0100 0.0594
## 200 11.4895 nan 0.0100 0.0564
## 220 10.3511 nan 0.0100 0.0387
## 240 9.3876 nan 0.0100 0.0369
## 260 8.6016 nan 0.0100 0.0342
## 280 7.8811 nan 0.0100 0.0249
## 300 7.2874 nan 0.0100 0.0171
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.1303 nan 0.0100 0.7596
## 2 61.3487 nan 0.0100 0.8112
## 3 60.5803 nan 0.0100 0.7970
## 4 59.7105 nan 0.0100 0.7761
## 5 58.9840 nan 0.0100 0.7453
## 6 58.2432 nan 0.0100 0.6903
## 7 57.5329 nan 0.0100 0.7628
## 8 56.8050 nan 0.0100 0.6369
## 9 56.0654 nan 0.0100 0.6482
## 10 55.4168 nan 0.0100 0.6654
## 20 49.2600 nan 0.0100 0.5343
## 40 39.5204 nan 0.0100 0.3867
## 60 32.2767 nan 0.0100 0.2953
## 80 26.7313 nan 0.0100 0.2242
## 100 22.5613 nan 0.0100 0.1556
## 120 19.3024 nan 0.0100 0.1316
## 140 16.7283 nan 0.0100 0.0938
## 160 14.6220 nan 0.0100 0.0701
## 180 12.9381 nan 0.0100 0.0733
## 200 11.5245 nan 0.0100 0.0696
## 220 10.3718 nan 0.0100 0.0484
## 240 9.4058 nan 0.0100 0.0410
## 260 8.6053 nan 0.0100 0.0328
## 280 7.9061 nan 0.0100 0.0247
## 300 7.3118 nan 0.0100 0.0209
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.1296 nan 0.0100 0.7923
## 2 61.2609 nan 0.0100 0.7581
## 3 60.4651 nan 0.0100 0.7682
## 4 59.7437 nan 0.0100 0.6775
## 5 58.9556 nan 0.0100 0.6944
## 6 58.1828 nan 0.0100 0.6887
## 7 57.5069 nan 0.0100 0.6583
## 8 56.8514 nan 0.0100 0.7161
## 9 56.1973 nan 0.0100 0.6659
## 10 55.4878 nan 0.0100 0.6687
## 20 49.3368 nan 0.0100 0.5697
## 40 39.5327 nan 0.0100 0.3834
## 60 32.2825 nan 0.0100 0.2970
## 80 26.7848 nan 0.0100 0.2432
## 100 22.5853 nan 0.0100 0.1668
## 120 19.2204 nan 0.0100 0.1296
## 140 16.5807 nan 0.0100 0.1156
## 160 14.4859 nan 0.0100 0.0765
## 180 12.8220 nan 0.0100 0.0615
## 200 11.4859 nan 0.0100 0.0503
## 220 10.3590 nan 0.0100 0.0489
## 240 9.4267 nan 0.0100 0.0373
## 260 8.6299 nan 0.0100 0.0322
## 280 7.9595 nan 0.0100 0.0202
## 300 7.3913 nan 0.0100 0.0259
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0265 nan 0.0100 0.9466
## 2 61.0405 nan 0.0100 0.9829
## 3 60.1110 nan 0.0100 0.9778
## 4 59.2260 nan 0.0100 0.7881
## 5 58.2664 nan 0.0100 0.8659
## 6 57.3761 nan 0.0100 0.9128
## 7 56.4714 nan 0.0100 0.8299
## 8 55.6599 nan 0.0100 0.7751
## 9 54.8167 nan 0.0100 0.8207
## 10 53.9728 nan 0.0100 0.8368
## 20 46.4957 nan 0.0100 0.6579
## 40 34.6954 nan 0.0100 0.4551
## 60 26.6026 nan 0.0100 0.3450
## 80 20.7573 nan 0.0100 0.2486
## 100 16.6759 nan 0.0100 0.1193
## 120 13.5909 nan 0.0100 0.1388
## 140 11.3341 nan 0.0100 0.0988
## 160 9.6004 nan 0.0100 0.0635
## 180 8.2673 nan 0.0100 0.0438
## 200 7.2993 nan 0.0100 0.0291
## 220 6.4684 nan 0.0100 0.0206
## 240 5.8224 nan 0.0100 0.0177
## 260 5.3056 nan 0.0100 0.0191
## 280 4.9022 nan 0.0100 0.0121
## 300 4.5771 nan 0.0100 0.0118
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9812 nan 0.0100 0.8935
## 2 61.0941 nan 0.0100 0.9517
## 3 60.2356 nan 0.0100 0.9473
## 4 59.3107 nan 0.0100 0.8518
## 5 58.4150 nan 0.0100 0.9311
## 6 57.4737 nan 0.0100 0.9340
## 7 56.6270 nan 0.0100 0.8186
## 8 55.7824 nan 0.0100 0.8570
## 9 54.9617 nan 0.0100 0.8788
## 10 54.1662 nan 0.0100 0.7202
## 20 46.5075 nan 0.0100 0.7249
## 40 35.0839 nan 0.0100 0.4038
## 60 26.7777 nan 0.0100 0.3235
## 80 20.9176 nan 0.0100 0.2466
## 100 16.6498 nan 0.0100 0.1577
## 120 13.5756 nan 0.0100 0.1300
## 140 11.2711 nan 0.0100 0.0954
## 160 9.5958 nan 0.0100 0.0701
## 180 8.2889 nan 0.0100 0.0504
## 200 7.2850 nan 0.0100 0.0353
## 220 6.4869 nan 0.0100 0.0303
## 240 5.8473 nan 0.0100 0.0171
## 260 5.3383 nan 0.0100 0.0208
## 280 4.9322 nan 0.0100 0.0087
## 300 4.6080 nan 0.0100 0.0119
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9835 nan 0.0100 0.9180
## 2 61.0386 nan 0.0100 0.9597
## 3 60.0669 nan 0.0100 0.8599
## 4 59.1528 nan 0.0100 0.9600
## 5 58.2846 nan 0.0100 0.8888
## 6 57.4729 nan 0.0100 0.8625
## 7 56.6703 nan 0.0100 0.7663
## 8 55.8268 nan 0.0100 0.7843
## 9 54.9574 nan 0.0100 0.8056
## 10 54.1580 nan 0.0100 0.7095
## 20 46.7363 nan 0.0100 0.6395
## 40 34.9272 nan 0.0100 0.4673
## 60 26.6414 nan 0.0100 0.3474
## 80 20.7724 nan 0.0100 0.2316
## 100 16.5789 nan 0.0100 0.1811
## 120 13.5580 nan 0.0100 0.1075
## 140 11.3287 nan 0.0100 0.0922
## 160 9.6847 nan 0.0100 0.0528
## 180 8.4003 nan 0.0100 0.0532
## 200 7.4142 nan 0.0100 0.0289
## 220 6.6162 nan 0.0100 0.0337
## 240 5.9880 nan 0.0100 0.0250
## 260 5.4691 nan 0.0100 0.0134
## 280 5.0700 nan 0.0100 0.0121
## 300 4.7567 nan 0.0100 0.0107
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9718 nan 0.0100 1.0062
## 2 60.9290 nan 0.0100 1.0526
## 3 59.9158 nan 0.0100 0.9299
## 4 58.9358 nan 0.0100 1.0271
## 5 57.9589 nan 0.0100 0.9050
## 6 57.0092 nan 0.0100 0.9522
## 7 56.0500 nan 0.0100 0.9347
## 8 55.1699 nan 0.0100 0.9476
## 9 54.2829 nan 0.0100 0.9042
## 10 53.4473 nan 0.0100 0.7897
## 20 45.2667 nan 0.0100 0.7336
## 40 33.0906 nan 0.0100 0.4758
## 60 24.6686 nan 0.0100 0.3522
## 80 18.7450 nan 0.0100 0.2074
## 100 14.6281 nan 0.0100 0.1703
## 120 11.6418 nan 0.0100 0.1292
## 140 9.4984 nan 0.0100 0.0793
## 160 7.8969 nan 0.0100 0.0625
## 180 6.7307 nan 0.0100 0.0417
## 200 5.8369 nan 0.0100 0.0221
## 220 5.1777 nan 0.0100 0.0165
## 240 4.6481 nan 0.0100 0.0190
## 260 4.2370 nan 0.0100 0.0091
## 280 3.9336 nan 0.0100 0.0123
## 300 3.7106 nan 0.0100 0.0009
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9523 nan 0.0100 1.0302
## 2 60.9029 nan 0.0100 1.0564
## 3 59.9044 nan 0.0100 0.9834
## 4 58.9090 nan 0.0100 0.9552
## 5 57.8715 nan 0.0100 1.0070
## 6 56.9527 nan 0.0100 0.9590
## 7 55.9839 nan 0.0100 1.0339
## 8 55.0795 nan 0.0100 0.8628
## 9 54.1876 nan 0.0100 0.8848
## 10 53.3092 nan 0.0100 0.8672
## 20 45.3455 nan 0.0100 0.7517
## 40 33.0585 nan 0.0100 0.4707
## 60 24.7653 nan 0.0100 0.3255
## 80 18.8183 nan 0.0100 0.2304
## 100 14.5638 nan 0.0100 0.1705
## 120 11.6369 nan 0.0100 0.1051
## 140 9.5104 nan 0.0100 0.0742
## 160 7.9323 nan 0.0100 0.0526
## 180 6.7641 nan 0.0100 0.0386
## 200 5.8887 nan 0.0100 0.0262
## 220 5.2114 nan 0.0100 0.0234
## 240 4.7267 nan 0.0100 0.0123
## 260 4.3584 nan 0.0100 0.0080
## 280 4.0592 nan 0.0100 0.0083
## 300 3.8280 nan 0.0100 0.0023
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8541 nan 0.0100 1.0920
## 2 60.8349 nan 0.0100 1.0603
## 3 59.8210 nan 0.0100 1.0862
## 4 58.8215 nan 0.0100 0.9297
## 5 57.8793 nan 0.0100 0.9705
## 6 56.9583 nan 0.0100 0.9763
## 7 56.0094 nan 0.0100 0.8294
## 8 55.0675 nan 0.0100 0.8296
## 9 54.1923 nan 0.0100 0.9959
## 10 53.2587 nan 0.0100 0.9622
## 20 45.3744 nan 0.0100 0.6940
## 40 33.1086 nan 0.0100 0.5425
## 60 24.7941 nan 0.0100 0.3704
## 80 18.9226 nan 0.0100 0.2100
## 100 14.7729 nan 0.0100 0.1807
## 120 11.8164 nan 0.0100 0.1178
## 140 9.6831 nan 0.0100 0.0905
## 160 8.1212 nan 0.0100 0.0601
## 180 6.9524 nan 0.0100 0.0441
## 200 6.0679 nan 0.0100 0.0260
## 220 5.4396 nan 0.0100 0.0194
## 240 4.9613 nan 0.0100 0.0150
## 260 4.5627 nan 0.0100 0.0107
## 280 4.2839 nan 0.0100 0.0088
## 300 4.0595 nan 0.0100 0.0049
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.9560 nan 0.0500 3.9126
## 2 55.4464 nan 0.0500 3.6260
## 3 52.3374 nan 0.0500 3.0506
## 4 49.1235 nan 0.0500 2.8797
## 5 46.4583 nan 0.0500 2.7381
## 6 43.8846 nan 0.0500 2.4026
## 7 41.7459 nan 0.0500 2.0138
## 8 39.3495 nan 0.0500 1.6954
## 9 37.1760 nan 0.0500 2.0041
## 10 35.3079 nan 0.0500 1.8952
## 20 22.1902 nan 0.0500 0.7900
## 40 11.1745 nan 0.0500 0.1686
## 60 7.1261 nan 0.0500 0.1005
## 80 5.4424 nan 0.0500 0.0385
## 100 4.5119 nan 0.0500 0.0078
## 120 4.0047 nan 0.0500 0.0059
## 140 3.7283 nan 0.0500 -0.0052
## 160 3.5990 nan 0.0500 -0.0099
## 180 3.4927 nan 0.0500 0.0002
## 200 3.3995 nan 0.0500 -0.0073
## 220 3.3365 nan 0.0500 -0.0179
## 240 3.2969 nan 0.0500 -0.0105
## 260 3.2312 nan 0.0500 -0.0082
## 280 3.1758 nan 0.0500 -0.0047
## 300 3.1406 nan 0.0500 0.0001
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2009 nan 0.0500 3.8766
## 2 55.4665 nan 0.0500 3.8148
## 3 52.1513 nan 0.0500 3.2395
## 4 48.8655 nan 0.0500 3.0102
## 5 46.2337 nan 0.0500 2.8353
## 6 43.5528 nan 0.0500 2.2328
## 7 40.9806 nan 0.0500 2.1283
## 8 38.9168 nan 0.0500 1.7609
## 9 36.8546 nan 0.0500 1.9170
## 10 34.8653 nan 0.0500 1.7486
## 20 22.0435 nan 0.0500 1.0976
## 40 11.0833 nan 0.0500 0.2799
## 60 7.1348 nan 0.0500 0.0754
## 80 5.3257 nan 0.0500 0.0205
## 100 4.4745 nan 0.0500 0.0176
## 120 3.9883 nan 0.0500 -0.0004
## 140 3.7704 nan 0.0500 -0.0411
## 160 3.6182 nan 0.0500 0.0006
## 180 3.5220 nan 0.0500 -0.0112
## 200 3.4582 nan 0.0500 -0.0087
## 220 3.3865 nan 0.0500 -0.0046
## 240 3.3348 nan 0.0500 -0.0080
## 260 3.2857 nan 0.0500 -0.0062
## 280 3.2513 nan 0.0500 -0.0066
## 300 3.2108 nan 0.0500 -0.0106
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.8908 nan 0.0500 3.7807
## 2 55.3866 nan 0.0500 3.5097
## 3 52.2867 nan 0.0500 3.0657
## 4 49.0731 nan 0.0500 2.8417
## 5 46.3454 nan 0.0500 2.8423
## 6 43.7798 nan 0.0500 2.5147
## 7 41.5543 nan 0.0500 2.2554
## 8 39.4487 nan 0.0500 1.9483
## 9 37.3667 nan 0.0500 1.9094
## 10 35.7581 nan 0.0500 1.5139
## 20 22.4795 nan 0.0500 0.9439
## 40 11.5463 nan 0.0500 0.2498
## 60 7.3063 nan 0.0500 0.0996
## 80 5.5200 nan 0.0500 0.0676
## 100 4.6024 nan 0.0500 0.0100
## 120 4.1813 nan 0.0500 -0.0063
## 140 3.9967 nan 0.0500 -0.0198
## 160 3.8590 nan 0.0500 0.0011
## 180 3.7715 nan 0.0500 -0.0087
## 200 3.6948 nan 0.0500 -0.0062
## 220 3.6163 nan 0.0500 -0.0040
## 240 3.5500 nan 0.0500 -0.0053
## 260 3.4945 nan 0.0500 -0.0131
## 280 3.4488 nan 0.0500 -0.0020
## 300 3.4098 nan 0.0500 -0.0069
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.4253 nan 0.0500 4.6966
## 2 53.9634 nan 0.0500 4.2847
## 3 49.6699 nan 0.0500 4.2125
## 4 45.8868 nan 0.0500 3.4409
## 5 42.5473 nan 0.0500 2.8862
## 6 39.4897 nan 0.0500 3.1276
## 7 36.8568 nan 0.0500 2.6366
## 8 34.3117 nan 0.0500 2.5762
## 9 31.9347 nan 0.0500 2.2020
## 10 29.8940 nan 0.0500 2.0525
## 20 16.2273 nan 0.0500 0.8444
## 40 7.1071 nan 0.0500 0.1970
## 60 4.5823 nan 0.0500 0.0107
## 80 3.7161 nan 0.0500 -0.0327
## 100 3.3541 nan 0.0500 -0.0088
## 120 3.1400 nan 0.0500 -0.0062
## 140 2.9777 nan 0.0500 -0.0189
## 160 2.8196 nan 0.0500 -0.0056
## 180 2.7033 nan 0.0500 -0.0013
## 200 2.5965 nan 0.0500 0.0001
## 220 2.4976 nan 0.0500 -0.0091
## 240 2.3981 nan 0.0500 -0.0184
## 260 2.3302 nan 0.0500 -0.0103
## 280 2.2701 nan 0.0500 -0.0029
## 300 2.1938 nan 0.0500 -0.0107
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.3477 nan 0.0500 4.9084
## 2 54.2934 nan 0.0500 4.1647
## 3 50.5579 nan 0.0500 3.7938
## 4 46.6384 nan 0.0500 3.8896
## 5 43.2614 nan 0.0500 3.7164
## 6 40.4865 nan 0.0500 2.7945
## 7 37.6723 nan 0.0500 2.6833
## 8 35.0591 nan 0.0500 2.7825
## 9 32.6547 nan 0.0500 2.2913
## 10 30.5994 nan 0.0500 1.8844
## 20 16.5453 nan 0.0500 0.8423
## 40 7.0239 nan 0.0500 0.1771
## 60 4.5198 nan 0.0500 0.0671
## 80 3.7063 nan 0.0500 -0.0013
## 100 3.4010 nan 0.0500 -0.0085
## 120 3.2212 nan 0.0500 -0.0199
## 140 3.0743 nan 0.0500 -0.0077
## 160 2.9758 nan 0.0500 -0.0244
## 180 2.8691 nan 0.0500 -0.0093
## 200 2.7814 nan 0.0500 -0.0059
## 220 2.6954 nan 0.0500 -0.0181
## 240 2.6443 nan 0.0500 -0.0172
## 260 2.5788 nan 0.0500 -0.0189
## 280 2.5264 nan 0.0500 -0.0149
## 300 2.4591 nan 0.0500 -0.0142
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.3862 nan 0.0500 4.5864
## 2 53.9667 nan 0.0500 4.4729
## 3 50.0131 nan 0.0500 3.6939
## 4 46.5729 nan 0.0500 3.4156
## 5 43.0388 nan 0.0500 3.3756
## 6 39.7824 nan 0.0500 3.1427
## 7 36.7714 nan 0.0500 2.7450
## 8 34.3757 nan 0.0500 2.5446
## 9 32.0169 nan 0.0500 2.0726
## 10 29.7659 nan 0.0500 2.0759
## 20 16.3807 nan 0.0500 0.7579
## 40 7.0608 nan 0.0500 0.1909
## 60 4.6775 nan 0.0500 0.0091
## 80 3.9415 nan 0.0500 0.0070
## 100 3.6294 nan 0.0500 -0.0017
## 120 3.4239 nan 0.0500 -0.0064
## 140 3.2621 nan 0.0500 -0.0209
## 160 3.1462 nan 0.0500 0.0000
## 180 3.0543 nan 0.0500 -0.0089
## 200 2.9797 nan 0.0500 -0.0066
## 220 2.9046 nan 0.0500 -0.0213
## 240 2.8206 nan 0.0500 -0.0272
## 260 2.7621 nan 0.0500 -0.0151
## 280 2.6814 nan 0.0500 -0.0102
## 300 2.6183 nan 0.0500 -0.0059
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.9247 nan 0.0500 5.4546
## 2 53.0553 nan 0.0500 4.3184
## 3 48.9382 nan 0.0500 4.3181
## 4 45.1291 nan 0.0500 3.4513
## 5 41.4989 nan 0.0500 3.2036
## 6 38.1482 nan 0.0500 3.1123
## 7 35.0341 nan 0.0500 2.4355
## 8 32.3123 nan 0.0500 2.7390
## 9 30.0885 nan 0.0500 2.4174
## 10 27.9827 nan 0.0500 2.1111
## 20 14.4365 nan 0.0500 0.8682
## 40 5.9348 nan 0.0500 0.1653
## 60 3.7934 nan 0.0500 0.0469
## 80 3.1225 nan 0.0500 -0.0145
## 100 2.8022 nan 0.0500 -0.0271
## 120 2.5658 nan 0.0500 -0.0200
## 140 2.4117 nan 0.0500 -0.0190
## 160 2.2681 nan 0.0500 -0.0055
## 180 2.1425 nan 0.0500 -0.0135
## 200 2.0489 nan 0.0500 -0.0078
## 220 1.9526 nan 0.0500 -0.0094
## 240 1.8625 nan 0.0500 -0.0199
## 260 1.7897 nan 0.0500 -0.0090
## 280 1.6920 nan 0.0500 -0.0026
## 300 1.6074 nan 0.0500 -0.0130
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.9036 nan 0.0500 4.9821
## 2 53.2876 nan 0.0500 4.6603
## 3 48.9071 nan 0.0500 3.3489
## 4 44.9750 nan 0.0500 4.0076
## 5 41.3711 nan 0.0500 3.4419
## 6 38.1743 nan 0.0500 3.3251
## 7 35.2947 nan 0.0500 2.9852
## 8 32.7600 nan 0.0500 2.5656
## 9 30.4111 nan 0.0500 2.3776
## 10 28.1840 nan 0.0500 2.2222
## 20 14.1924 nan 0.0500 0.7508
## 40 5.7796 nan 0.0500 0.1948
## 60 3.8388 nan 0.0500 0.0197
## 80 3.2693 nan 0.0500 -0.0056
## 100 3.0105 nan 0.0500 -0.0142
## 120 2.8090 nan 0.0500 -0.0040
## 140 2.6581 nan 0.0500 -0.0110
## 160 2.5307 nan 0.0500 -0.0066
## 180 2.4038 nan 0.0500 -0.0138
## 200 2.2980 nan 0.0500 -0.0203
## 220 2.2061 nan 0.0500 -0.0058
## 240 2.1266 nan 0.0500 -0.0030
## 260 2.0378 nan 0.0500 -0.0117
## 280 1.9636 nan 0.0500 -0.0215
## 300 1.8878 nan 0.0500 -0.0054
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.5635 nan 0.0500 5.5358
## 2 52.7612 nan 0.0500 4.1533
## 3 48.4721 nan 0.0500 4.3334
## 4 44.6635 nan 0.0500 3.9356
## 5 41.1353 nan 0.0500 3.4570
## 6 38.0138 nan 0.0500 3.2370
## 7 35.1633 nan 0.0500 2.4116
## 8 32.4939 nan 0.0500 2.3436
## 9 30.0283 nan 0.0500 2.1785
## 10 28.0504 nan 0.0500 1.8232
## 20 14.6118 nan 0.0500 0.6705
## 40 6.0048 nan 0.0500 0.1580
## 60 4.0608 nan 0.0500 0.0167
## 80 3.4826 nan 0.0500 -0.0108
## 100 3.2351 nan 0.0500 -0.0187
## 120 3.0370 nan 0.0500 -0.0069
## 140 2.9091 nan 0.0500 -0.0109
## 160 2.8012 nan 0.0500 -0.0030
## 180 2.6941 nan 0.0500 -0.0102
## 200 2.5856 nan 0.0500 -0.0099
## 220 2.4865 nan 0.0500 -0.0144
## 240 2.3915 nan 0.0500 -0.0164
## 260 2.2967 nan 0.0500 -0.0084
## 280 2.2343 nan 0.0500 -0.0148
## 300 2.1527 nan 0.0500 -0.0176
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.1894 nan 0.1000 8.1645
## 2 48.7712 nan 0.1000 6.0979
## 3 43.1874 nan 0.1000 5.6211
## 4 39.2351 nan 0.1000 3.3671
## 5 35.3567 nan 0.1000 3.8516
## 6 31.4599 nan 0.1000 3.4232
## 7 28.3864 nan 0.1000 2.7887
## 8 25.7380 nan 0.1000 2.4851
## 9 23.4115 nan 0.1000 1.9785
## 10 21.5754 nan 0.1000 1.8081
## 20 11.1188 nan 0.1000 0.5856
## 40 5.3030 nan 0.1000 0.0966
## 60 4.0478 nan 0.1000 0.0050
## 80 3.6946 nan 0.1000 -0.0089
## 100 3.4906 nan 0.1000 0.0024
## 120 3.3449 nan 0.1000 -0.0092
## 140 3.2623 nan 0.1000 -0.0240
## 160 3.1720 nan 0.1000 -0.0145
## 180 3.1180 nan 0.1000 -0.0177
## 200 3.0466 nan 0.1000 -0.0119
## 220 2.9882 nan 0.1000 -0.0202
## 240 2.9425 nan 0.1000 -0.0180
## 260 2.8880 nan 0.1000 -0.0119
## 280 2.8390 nan 0.1000 -0.0040
## 300 2.8089 nan 0.1000 -0.0156
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.2207 nan 0.1000 7.4919
## 2 49.3055 nan 0.1000 7.0614
## 3 44.1252 nan 0.1000 5.2466
## 4 39.0990 nan 0.1000 4.3420
## 5 35.3445 nan 0.1000 3.5938
## 6 32.2056 nan 0.1000 3.3937
## 7 29.2746 nan 0.1000 2.5903
## 8 26.6296 nan 0.1000 2.4777
## 9 24.0747 nan 0.1000 2.5288
## 10 22.0669 nan 0.1000 1.8022
## 20 11.4280 nan 0.1000 0.5227
## 40 5.5032 nan 0.1000 0.0536
## 60 4.2231 nan 0.1000 0.0032
## 80 3.8656 nan 0.1000 -0.0162
## 100 3.6289 nan 0.1000 -0.0257
## 120 3.5064 nan 0.1000 -0.0480
## 140 3.3960 nan 0.1000 -0.0164
## 160 3.3056 nan 0.1000 -0.0402
## 180 3.2261 nan 0.1000 -0.0099
## 200 3.1557 nan 0.1000 -0.0148
## 220 3.0827 nan 0.1000 -0.0052
## 240 3.0329 nan 0.1000 -0.0001
## 260 2.9908 nan 0.1000 -0.0213
## 280 2.9422 nan 0.1000 -0.0101
## 300 2.8850 nan 0.1000 -0.0082
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.7292 nan 0.1000 7.4132
## 2 48.9532 nan 0.1000 5.9585
## 3 43.1526 nan 0.1000 5.4617
## 4 39.0325 nan 0.1000 3.9653
## 5 34.7299 nan 0.1000 4.3476
## 6 31.3903 nan 0.1000 3.4092
## 7 28.3504 nan 0.1000 2.8893
## 8 25.9729 nan 0.1000 2.2227
## 9 23.8565 nan 0.1000 1.6207
## 10 21.9310 nan 0.1000 2.0034
## 20 11.2952 nan 0.1000 0.5602
## 40 5.6801 nan 0.1000 0.0951
## 60 4.3684 nan 0.1000 -0.0058
## 80 4.0509 nan 0.1000 -0.0023
## 100 3.8592 nan 0.1000 -0.0393
## 120 3.7005 nan 0.1000 -0.0297
## 140 3.6225 nan 0.1000 -0.0094
## 160 3.5269 nan 0.1000 0.0061
## 180 3.4300 nan 0.1000 -0.0104
## 200 3.3479 nan 0.1000 -0.0067
## 220 3.3077 nan 0.1000 -0.0331
## 240 3.2482 nan 0.1000 -0.0085
## 260 3.1953 nan 0.1000 -0.0066
## 280 3.1469 nan 0.1000 -0.0215
## 300 3.1032 nan 0.1000 -0.0313
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.3270 nan 0.1000 9.0819
## 2 47.1392 nan 0.1000 6.6043
## 3 39.9644 nan 0.1000 7.2879
## 4 34.3592 nan 0.1000 4.8366
## 5 29.5060 nan 0.1000 4.8310
## 6 25.7510 nan 0.1000 3.7869
## 7 23.0138 nan 0.1000 2.6363
## 8 20.4468 nan 0.1000 2.9760
## 9 18.0784 nan 0.1000 1.8520
## 10 16.0114 nan 0.1000 1.9658
## 20 7.2342 nan 0.1000 0.4119
## 40 3.7900 nan 0.1000 0.0074
## 60 3.1928 nan 0.1000 0.0253
## 80 2.9038 nan 0.1000 -0.0263
## 100 2.6707 nan 0.1000 -0.0268
## 120 2.4715 nan 0.1000 -0.0114
## 140 2.2991 nan 0.1000 -0.0244
## 160 2.1687 nan 0.1000 -0.0322
## 180 2.0346 nan 0.1000 -0.0112
## 200 1.9457 nan 0.1000 -0.0023
## 220 1.8656 nan 0.1000 -0.0071
## 240 1.7740 nan 0.1000 -0.0150
## 260 1.6980 nan 0.1000 -0.0094
## 280 1.6220 nan 0.1000 -0.0210
## 300 1.5671 nan 0.1000 -0.0149
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.6831 nan 0.1000 9.0721
## 2 46.4280 nan 0.1000 7.0710
## 3 39.8552 nan 0.1000 7.3381
## 4 34.5378 nan 0.1000 5.3747
## 5 29.9505 nan 0.1000 4.4544
## 6 25.9402 nan 0.1000 3.5993
## 7 23.1706 nan 0.1000 2.9278
## 8 20.3547 nan 0.1000 2.7626
## 9 18.0146 nan 0.1000 2.4197
## 10 16.1002 nan 0.1000 1.7348
## 20 6.9855 nan 0.1000 0.2788
## 40 3.7808 nan 0.1000 -0.0154
## 60 3.2258 nan 0.1000 -0.0082
## 80 2.9397 nan 0.1000 -0.0210
## 100 2.7509 nan 0.1000 -0.0394
## 120 2.5953 nan 0.1000 -0.0192
## 140 2.4550 nan 0.1000 -0.0146
## 160 2.3373 nan 0.1000 -0.0175
## 180 2.2584 nan 0.1000 -0.0140
## 200 2.1437 nan 0.1000 -0.0220
## 220 2.0670 nan 0.1000 -0.0281
## 240 1.9765 nan 0.1000 -0.0002
## 260 1.9128 nan 0.1000 -0.0126
## 280 1.8364 nan 0.1000 -0.0091
## 300 1.7651 nan 0.1000 -0.0140
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.1603 nan 0.1000 9.7853
## 2 45.8323 nan 0.1000 7.3745
## 3 39.3094 nan 0.1000 6.3458
## 4 33.3852 nan 0.1000 5.8287
## 5 29.0606 nan 0.1000 4.2428
## 6 25.3724 nan 0.1000 3.6521
## 7 22.3883 nan 0.1000 2.8241
## 8 19.6891 nan 0.1000 2.7569
## 9 17.5758 nan 0.1000 2.0377
## 10 15.7740 nan 0.1000 1.8435
## 20 7.4286 nan 0.1000 0.2978
## 40 4.1604 nan 0.1000 -0.0267
## 60 3.5721 nan 0.1000 -0.0399
## 80 3.2842 nan 0.1000 -0.0379
## 100 3.1012 nan 0.1000 -0.0738
## 120 2.9069 nan 0.1000 -0.0128
## 140 2.7739 nan 0.1000 -0.0108
## 160 2.6722 nan 0.1000 -0.0226
## 180 2.5828 nan 0.1000 -0.0277
## 200 2.4907 nan 0.1000 -0.0163
## 220 2.3875 nan 0.1000 -0.0284
## 240 2.2929 nan 0.1000 -0.0152
## 260 2.2223 nan 0.1000 -0.0203
## 280 2.1446 nan 0.1000 -0.0220
## 300 2.0825 nan 0.1000 -0.0114
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.8156 nan 0.1000 10.5213
## 2 44.8592 nan 0.1000 7.9080
## 3 38.2722 nan 0.1000 6.6073
## 4 32.7236 nan 0.1000 5.9504
## 5 27.8298 nan 0.1000 4.7160
## 6 23.9039 nan 0.1000 3.5995
## 7 20.7601 nan 0.1000 3.0650
## 8 18.2769 nan 0.1000 2.4035
## 9 16.2765 nan 0.1000 1.7914
## 10 14.3314 nan 0.1000 2.0182
## 20 5.7663 nan 0.1000 0.3200
## 40 3.1898 nan 0.1000 -0.0166
## 60 2.7281 nan 0.1000 -0.0246
## 80 2.3428 nan 0.1000 -0.0151
## 100 2.0928 nan 0.1000 -0.0294
## 120 1.8788 nan 0.1000 -0.0201
## 140 1.6880 nan 0.1000 -0.0123
## 160 1.5617 nan 0.1000 -0.0189
## 180 1.4270 nan 0.1000 -0.0184
## 200 1.2965 nan 0.1000 -0.0212
## 220 1.1970 nan 0.1000 -0.0220
## 240 1.1205 nan 0.1000 -0.0156
## 260 1.0302 nan 0.1000 -0.0126
## 280 0.9657 nan 0.1000 -0.0097
## 300 0.8995 nan 0.1000 -0.0099
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.5023 nan 0.1000 9.7758
## 2 45.2671 nan 0.1000 8.8786
## 3 38.1544 nan 0.1000 7.1530
## 4 32.2568 nan 0.1000 5.1619
## 5 27.6907 nan 0.1000 4.6288
## 6 24.0925 nan 0.1000 3.4815
## 7 20.9987 nan 0.1000 2.9457
## 8 18.3045 nan 0.1000 2.6403
## 9 16.0962 nan 0.1000 2.3654
## 10 14.2805 nan 0.1000 1.6842
## 20 5.9841 nan 0.1000 0.3651
## 40 3.4505 nan 0.1000 0.0137
## 60 2.9644 nan 0.1000 -0.0216
## 80 2.6487 nan 0.1000 -0.0272
## 100 2.3888 nan 0.1000 -0.0368
## 120 2.2058 nan 0.1000 -0.0095
## 140 2.0607 nan 0.1000 -0.0310
## 160 1.9291 nan 0.1000 -0.0345
## 180 1.7701 nan 0.1000 -0.0175
## 200 1.6591 nan 0.1000 -0.0224
## 220 1.5634 nan 0.1000 -0.0205
## 240 1.4723 nan 0.1000 -0.0247
## 260 1.4070 nan 0.1000 -0.0203
## 280 1.3344 nan 0.1000 -0.0234
## 300 1.2593 nan 0.1000 -0.0111
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.1113 nan 0.1000 9.7405
## 2 44.6201 nan 0.1000 8.4768
## 3 37.5756 nan 0.1000 6.2506
## 4 32.4154 nan 0.1000 5.5917
## 5 27.7011 nan 0.1000 4.4278
## 6 23.7170 nan 0.1000 3.6125
## 7 20.6222 nan 0.1000 2.8187
## 8 17.9091 nan 0.1000 2.7193
## 9 15.9112 nan 0.1000 2.0140
## 10 14.0945 nan 0.1000 1.7599
## 20 5.8625 nan 0.1000 0.2498
## 40 3.5433 nan 0.1000 0.0199
## 60 3.0875 nan 0.1000 -0.0250
## 80 2.8222 nan 0.1000 -0.0201
## 100 2.5823 nan 0.1000 -0.0427
## 120 2.4317 nan 0.1000 -0.0483
## 140 2.2946 nan 0.1000 -0.0405
## 160 2.1290 nan 0.1000 -0.0229
## 180 1.9872 nan 0.1000 -0.0137
## 200 1.8534 nan 0.1000 -0.0134
## 220 1.7533 nan 0.1000 -0.0130
## 240 1.6620 nan 0.1000 -0.0158
## 260 1.5805 nan 0.1000 -0.0099
## 280 1.5122 nan 0.1000 -0.0156
## 300 1.4484 nan 0.1000 -0.0080
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5714 nan 0.0010 0.0765
## 2 59.4889 nan 0.0010 0.0660
## 3 59.4069 nan 0.0010 0.0735
## 4 59.3334 nan 0.0010 0.0758
## 5 59.2577 nan 0.0010 0.0763
## 6 59.1820 nan 0.0010 0.0750
## 7 59.1121 nan 0.0010 0.0748
## 8 59.0301 nan 0.0010 0.0738
## 9 58.9530 nan 0.0010 0.0733
## 10 58.8731 nan 0.0010 0.0811
## 20 58.1518 nan 0.0010 0.0742
## 40 56.7037 nan 0.0010 0.0694
## 60 55.3138 nan 0.0010 0.0685
## 80 53.9618 nan 0.0010 0.0663
## 100 52.6756 nan 0.0010 0.0613
## 120 51.4299 nan 0.0010 0.0566
## 140 50.2703 nan 0.0010 0.0590
## 160 49.1187 nan 0.0010 0.0557
## 180 48.0066 nan 0.0010 0.0555
## 200 46.9486 nan 0.0010 0.0526
## 220 45.9101 nan 0.0010 0.0541
## 240 44.8878 nan 0.0010 0.0460
## 260 43.9263 nan 0.0010 0.0445
## 280 42.9937 nan 0.0010 0.0447
## 300 42.0759 nan 0.0010 0.0411
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5788 nan 0.0010 0.0742
## 2 59.5058 nan 0.0010 0.0752
## 3 59.4326 nan 0.0010 0.0727
## 4 59.3584 nan 0.0010 0.0743
## 5 59.2874 nan 0.0010 0.0719
## 6 59.2162 nan 0.0010 0.0739
## 7 59.1371 nan 0.0010 0.0732
## 8 59.0673 nan 0.0010 0.0740
## 9 58.9950 nan 0.0010 0.0732
## 10 58.9181 nan 0.0010 0.0726
## 20 58.1898 nan 0.0010 0.0711
## 40 56.7483 nan 0.0010 0.0682
## 60 55.3633 nan 0.0010 0.0667
## 80 54.0276 nan 0.0010 0.0631
## 100 52.7573 nan 0.0010 0.0640
## 120 51.5615 nan 0.0010 0.0558
## 140 50.3498 nan 0.0010 0.0551
## 160 49.1852 nan 0.0010 0.0570
## 180 48.0943 nan 0.0010 0.0528
## 200 47.0333 nan 0.0010 0.0511
## 220 46.0055 nan 0.0010 0.0534
## 240 44.9920 nan 0.0010 0.0493
## 260 44.0198 nan 0.0010 0.0402
## 280 43.0598 nan 0.0010 0.0467
## 300 42.1469 nan 0.0010 0.0407
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5681 nan 0.0010 0.0702
## 2 59.4927 nan 0.0010 0.0755
## 3 59.4211 nan 0.0010 0.0815
## 4 59.3580 nan 0.0010 0.0708
## 5 59.2801 nan 0.0010 0.0716
## 6 59.1989 nan 0.0010 0.0798
## 7 59.1289 nan 0.0010 0.0762
## 8 59.0489 nan 0.0010 0.0758
## 9 58.9711 nan 0.0010 0.0759
## 10 58.8950 nan 0.0010 0.0743
## 20 58.1650 nan 0.0010 0.0718
## 40 56.7193 nan 0.0010 0.0712
## 60 55.3498 nan 0.0010 0.0671
## 80 54.0319 nan 0.0010 0.0509
## 100 52.7360 nan 0.0010 0.0628
## 120 51.4889 nan 0.0010 0.0611
## 140 50.2933 nan 0.0010 0.0596
## 160 49.1561 nan 0.0010 0.0546
## 180 48.0278 nan 0.0010 0.0585
## 200 46.9688 nan 0.0010 0.0486
## 220 45.9148 nan 0.0010 0.0515
## 240 44.9133 nan 0.0010 0.0477
## 260 43.9302 nan 0.0010 0.0517
## 280 42.9541 nan 0.0010 0.0430
## 300 42.0399 nan 0.0010 0.0462
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5599 nan 0.0010 0.0872
## 2 59.4716 nan 0.0010 0.0909
## 3 59.3815 nan 0.0010 0.0891
## 4 59.2960 nan 0.0010 0.0813
## 5 59.2043 nan 0.0010 0.0849
## 6 59.1155 nan 0.0010 0.0949
## 7 59.0204 nan 0.0010 0.0832
## 8 58.9256 nan 0.0010 0.0904
## 9 58.8387 nan 0.0010 0.0942
## 10 58.7488 nan 0.0010 0.0889
## 20 57.8567 nan 0.0010 0.0956
## 40 56.1372 nan 0.0010 0.0795
## 60 54.4342 nan 0.0010 0.0849
## 80 52.8150 nan 0.0010 0.0763
## 100 51.2411 nan 0.0010 0.0787
## 120 49.7433 nan 0.0010 0.0694
## 140 48.2853 nan 0.0010 0.0736
## 160 46.8812 nan 0.0010 0.0692
## 180 45.5423 nan 0.0010 0.0652
## 200 44.2322 nan 0.0010 0.0573
## 220 42.9570 nan 0.0010 0.0567
## 240 41.7240 nan 0.0010 0.0602
## 260 40.5274 nan 0.0010 0.0556
## 280 39.4111 nan 0.0010 0.0510
## 300 38.3169 nan 0.0010 0.0490
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5576 nan 0.0010 0.0905
## 2 59.4684 nan 0.0010 0.0917
## 3 59.3722 nan 0.0010 0.0843
## 4 59.2781 nan 0.0010 0.0943
## 5 59.1898 nan 0.0010 0.0856
## 6 59.0984 nan 0.0010 0.0923
## 7 59.0122 nan 0.0010 0.0855
## 8 58.9184 nan 0.0010 0.0857
## 9 58.8309 nan 0.0010 0.0865
## 10 58.7354 nan 0.0010 0.0896
## 20 57.8437 nan 0.0010 0.0920
## 40 56.1234 nan 0.0010 0.0809
## 60 54.4110 nan 0.0010 0.0841
## 80 52.8125 nan 0.0010 0.0814
## 100 51.2467 nan 0.0010 0.0769
## 120 49.7340 nan 0.0010 0.0745
## 140 48.2677 nan 0.0010 0.0689
## 160 46.8628 nan 0.0010 0.0589
## 180 45.5023 nan 0.0010 0.0674
## 200 44.1864 nan 0.0010 0.0607
## 220 42.9139 nan 0.0010 0.0663
## 240 41.7054 nan 0.0010 0.0564
## 260 40.5361 nan 0.0010 0.0542
## 280 39.4026 nan 0.0010 0.0514
## 300 38.2904 nan 0.0010 0.0453
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5658 nan 0.0010 0.0939
## 2 59.4750 nan 0.0010 0.0909
## 3 59.3837 nan 0.0010 0.0901
## 4 59.2968 nan 0.0010 0.0903
## 5 59.2065 nan 0.0010 0.0888
## 6 59.1106 nan 0.0010 0.0878
## 7 59.0182 nan 0.0010 0.0865
## 8 58.9233 nan 0.0010 0.0889
## 9 58.8322 nan 0.0010 0.0900
## 10 58.7415 nan 0.0010 0.0859
## 20 57.8645 nan 0.0010 0.0868
## 40 56.1446 nan 0.0010 0.0831
## 60 54.4643 nan 0.0010 0.0814
## 80 52.8235 nan 0.0010 0.0874
## 100 51.2648 nan 0.0010 0.0729
## 120 49.7670 nan 0.0010 0.0707
## 140 48.3156 nan 0.0010 0.0787
## 160 46.9064 nan 0.0010 0.0608
## 180 45.5443 nan 0.0010 0.0643
## 200 44.1945 nan 0.0010 0.0723
## 220 42.9267 nan 0.0010 0.0612
## 240 41.6925 nan 0.0010 0.0601
## 260 40.4895 nan 0.0010 0.0622
## 280 39.3869 nan 0.0010 0.0544
## 300 38.2731 nan 0.0010 0.0482
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5470 nan 0.0010 0.0908
## 2 59.4500 nan 0.0010 0.0943
## 3 59.3515 nan 0.0010 0.0938
## 4 59.2493 nan 0.0010 0.0980
## 5 59.1532 nan 0.0010 0.0997
## 6 59.0565 nan 0.0010 0.0984
## 7 58.9631 nan 0.0010 0.1016
## 8 58.8662 nan 0.0010 0.0915
## 9 58.7732 nan 0.0010 0.0971
## 10 58.6779 nan 0.0010 0.0916
## 20 57.6883 nan 0.0010 0.0942
## 40 55.8015 nan 0.0010 0.0895
## 60 53.9821 nan 0.0010 0.0867
## 80 52.2475 nan 0.0010 0.0923
## 100 50.5712 nan 0.0010 0.0821
## 120 48.9408 nan 0.0010 0.0799
## 140 47.3870 nan 0.0010 0.0731
## 160 45.9013 nan 0.0010 0.0741
## 180 44.4489 nan 0.0010 0.0648
## 200 43.0537 nan 0.0010 0.0671
## 220 41.7030 nan 0.0010 0.0665
## 240 40.4211 nan 0.0010 0.0601
## 260 39.1788 nan 0.0010 0.0541
## 280 37.9772 nan 0.0010 0.0555
## 300 36.8256 nan 0.0010 0.0490
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5537 nan 0.0010 0.0984
## 2 59.4551 nan 0.0010 0.1000
## 3 59.3569 nan 0.0010 0.0948
## 4 59.2540 nan 0.0010 0.0975
## 5 59.1558 nan 0.0010 0.0835
## 6 59.0500 nan 0.0010 0.0972
## 7 58.9510 nan 0.0010 0.0774
## 8 58.8500 nan 0.0010 0.1028
## 9 58.7551 nan 0.0010 0.0985
## 10 58.6604 nan 0.0010 0.0952
## 20 57.6967 nan 0.0010 0.0957
## 40 55.8017 nan 0.0010 0.0934
## 60 53.9986 nan 0.0010 0.0875
## 80 52.2343 nan 0.0010 0.0853
## 100 50.5515 nan 0.0010 0.0812
## 120 48.9445 nan 0.0010 0.0749
## 140 47.4054 nan 0.0010 0.0741
## 160 45.9036 nan 0.0010 0.0642
## 180 44.4511 nan 0.0010 0.0653
## 200 43.0599 nan 0.0010 0.0646
## 220 41.7246 nan 0.0010 0.0602
## 240 40.4479 nan 0.0010 0.0566
## 260 39.1941 nan 0.0010 0.0588
## 280 37.9824 nan 0.0010 0.0575
## 300 36.8102 nan 0.0010 0.0553
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.5513 nan 0.0010 0.1110
## 2 59.4528 nan 0.0010 0.0953
## 3 59.3534 nan 0.0010 0.1017
## 4 59.2539 nan 0.0010 0.0896
## 5 59.1615 nan 0.0010 0.1021
## 6 59.0610 nan 0.0010 0.0911
## 7 58.9609 nan 0.0010 0.0965
## 8 58.8657 nan 0.0010 0.0959
## 9 58.7643 nan 0.0010 0.1123
## 10 58.6665 nan 0.0010 0.0974
## 20 57.6975 nan 0.0010 0.0887
## 40 55.8190 nan 0.0010 0.0820
## 60 54.0095 nan 0.0010 0.0778
## 80 52.2602 nan 0.0010 0.0821
## 100 50.5943 nan 0.0010 0.0886
## 120 48.9517 nan 0.0010 0.0781
## 140 47.4033 nan 0.0010 0.0773
## 160 45.8951 nan 0.0010 0.0716
## 180 44.4570 nan 0.0010 0.0641
## 200 43.0668 nan 0.0010 0.0715
## 220 41.7307 nan 0.0010 0.0644
## 240 40.4381 nan 0.0010 0.0641
## 260 39.1723 nan 0.0010 0.0570
## 280 37.9853 nan 0.0010 0.0547
## 300 36.8361 nan 0.0010 0.0468
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.3025 nan 0.0050 0.3688
## 2 58.9251 nan 0.0050 0.3679
## 3 58.5507 nan 0.0050 0.3682
## 4 58.2212 nan 0.0050 0.3342
## 5 57.8288 nan 0.0050 0.3552
## 6 57.4801 nan 0.0050 0.3360
## 7 57.1349 nan 0.0050 0.3554
## 8 56.7641 nan 0.0050 0.3849
## 9 56.4216 nan 0.0050 0.3384
## 10 56.0597 nan 0.0050 0.3622
## 20 52.7858 nan 0.0050 0.2850
## 40 47.0334 nan 0.0050 0.2741
## 60 42.0588 nan 0.0050 0.2194
## 80 37.7482 nan 0.0050 0.1921
## 100 34.1221 nan 0.0050 0.1632
## 120 30.9786 nan 0.0050 0.1395
## 140 28.2168 nan 0.0050 0.1049
## 160 25.7150 nan 0.0050 0.1088
## 180 23.5705 nan 0.0050 0.0894
## 200 21.6794 nan 0.0050 0.0881
## 220 19.9951 nan 0.0050 0.0629
## 240 18.4876 nan 0.0050 0.0678
## 260 17.1988 nan 0.0050 0.0418
## 280 16.0177 nan 0.0050 0.0344
## 300 14.9621 nan 0.0050 0.0418
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2661 nan 0.0050 0.3922
## 2 58.8722 nan 0.0050 0.3908
## 3 58.5167 nan 0.0050 0.3482
## 4 58.1672 nan 0.0050 0.3687
## 5 57.8057 nan 0.0050 0.3585
## 6 57.4283 nan 0.0050 0.3532
## 7 57.0564 nan 0.0050 0.3476
## 8 56.6888 nan 0.0050 0.3539
## 9 56.3058 nan 0.0050 0.3691
## 10 55.9424 nan 0.0050 0.3380
## 20 52.7648 nan 0.0050 0.2956
## 40 46.9851 nan 0.0050 0.2107
## 60 42.0694 nan 0.0050 0.2172
## 80 37.8881 nan 0.0050 0.1847
## 100 34.2119 nan 0.0050 0.1617
## 120 31.0120 nan 0.0050 0.1344
## 140 28.2579 nan 0.0050 0.1423
## 160 25.7418 nan 0.0050 0.1165
## 180 23.5724 nan 0.0050 0.0959
## 200 21.6476 nan 0.0050 0.0817
## 220 20.0237 nan 0.0050 0.0698
## 240 18.5949 nan 0.0050 0.0701
## 260 17.2569 nan 0.0050 0.0544
## 280 16.1022 nan 0.0050 0.0457
## 300 15.0679 nan 0.0050 0.0415
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2640 nan 0.0050 0.3846
## 2 58.8530 nan 0.0050 0.3418
## 3 58.4793 nan 0.0050 0.3577
## 4 58.1036 nan 0.0050 0.3494
## 5 57.7146 nan 0.0050 0.3464
## 6 57.3369 nan 0.0050 0.3321
## 7 56.9902 nan 0.0050 0.3547
## 8 56.6196 nan 0.0050 0.3256
## 9 56.2672 nan 0.0050 0.3467
## 10 55.9348 nan 0.0050 0.3048
## 20 52.6626 nan 0.0050 0.3100
## 40 47.0400 nan 0.0050 0.2569
## 60 42.1217 nan 0.0050 0.2205
## 80 37.7672 nan 0.0050 0.1743
## 100 34.0151 nan 0.0050 0.1612
## 120 30.8615 nan 0.0050 0.1413
## 140 28.0355 nan 0.0050 0.1155
## 160 25.6077 nan 0.0050 0.1008
## 180 23.4440 nan 0.0050 0.0959
## 200 21.5513 nan 0.0050 0.0853
## 220 19.9099 nan 0.0050 0.0839
## 240 18.4587 nan 0.0050 0.0646
## 260 17.1783 nan 0.0050 0.0397
## 280 16.0085 nan 0.0050 0.0552
## 300 14.9978 nan 0.0050 0.0437
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.1847 nan 0.0050 0.4977
## 2 58.7493 nan 0.0050 0.4471
## 3 58.2545 nan 0.0050 0.4573
## 4 57.7937 nan 0.0050 0.4816
## 5 57.3816 nan 0.0050 0.4137
## 6 56.9294 nan 0.0050 0.4112
## 7 56.5026 nan 0.0050 0.4443
## 8 56.0682 nan 0.0050 0.4658
## 9 55.6752 nan 0.0050 0.3953
## 10 55.2676 nan 0.0050 0.3879
## 20 51.2750 nan 0.0050 0.4036
## 40 44.2523 nan 0.0050 0.3323
## 60 38.0585 nan 0.0050 0.2290
## 80 33.0879 nan 0.0050 0.2307
## 100 28.9130 nan 0.0050 0.1777
## 120 25.4148 nan 0.0050 0.1561
## 140 22.4377 nan 0.0050 0.1146
## 160 19.9323 nan 0.0050 0.1220
## 180 17.8349 nan 0.0050 0.0938
## 200 15.9814 nan 0.0050 0.0654
## 220 14.4190 nan 0.0050 0.0575
## 240 13.1022 nan 0.0050 0.0572
## 260 11.9316 nan 0.0050 0.0475
## 280 10.8958 nan 0.0050 0.0385
## 300 10.0672 nan 0.0050 0.0398
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.1783 nan 0.0050 0.4364
## 2 58.7436 nan 0.0050 0.4727
## 3 58.3183 nan 0.0050 0.4391
## 4 57.8887 nan 0.0050 0.4463
## 5 57.4855 nan 0.0050 0.4376
## 6 57.0171 nan 0.0050 0.4466
## 7 56.5529 nan 0.0050 0.4272
## 8 56.1267 nan 0.0050 0.4175
## 9 55.7087 nan 0.0050 0.4127
## 10 55.2601 nan 0.0050 0.4129
## 20 51.3557 nan 0.0050 0.4220
## 40 44.3741 nan 0.0050 0.3229
## 60 38.3149 nan 0.0050 0.2764
## 80 33.3392 nan 0.0050 0.2357
## 100 29.1321 nan 0.0050 0.2009
## 120 25.5921 nan 0.0050 0.1625
## 140 22.5795 nan 0.0050 0.1467
## 160 20.0043 nan 0.0050 0.1118
## 180 17.8847 nan 0.0050 0.0968
## 200 16.0481 nan 0.0050 0.0887
## 220 14.5000 nan 0.0050 0.0560
## 240 13.1651 nan 0.0050 0.0572
## 260 11.9826 nan 0.0050 0.0480
## 280 10.9972 nan 0.0050 0.0374
## 300 10.1184 nan 0.0050 0.0397
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2243 nan 0.0050 0.4371
## 2 58.7588 nan 0.0050 0.4726
## 3 58.3236 nan 0.0050 0.4515
## 4 57.8659 nan 0.0050 0.4217
## 5 57.4322 nan 0.0050 0.4157
## 6 56.9515 nan 0.0050 0.4135
## 7 56.5301 nan 0.0050 0.4294
## 8 56.0553 nan 0.0050 0.4654
## 9 55.6204 nan 0.0050 0.4202
## 10 55.2171 nan 0.0050 0.4269
## 20 51.1196 nan 0.0050 0.3300
## 40 44.1430 nan 0.0050 0.3060
## 60 38.2550 nan 0.0050 0.2377
## 80 33.1503 nan 0.0050 0.2381
## 100 28.9784 nan 0.0050 0.1847
## 120 25.4704 nan 0.0050 0.1630
## 140 22.4020 nan 0.0050 0.1398
## 160 19.9101 nan 0.0050 0.1054
## 180 17.7899 nan 0.0050 0.0917
## 200 16.0575 nan 0.0050 0.0804
## 220 14.4908 nan 0.0050 0.0636
## 240 13.1619 nan 0.0050 0.0275
## 260 12.0674 nan 0.0050 0.0323
## 280 11.0814 nan 0.0050 0.0401
## 300 10.2452 nan 0.0050 0.0286
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.1471 nan 0.0050 0.4522
## 2 58.6471 nan 0.0050 0.4757
## 3 58.1456 nan 0.0050 0.5858
## 4 57.6530 nan 0.0050 0.4858
## 5 57.1960 nan 0.0050 0.4826
## 6 56.7366 nan 0.0050 0.4646
## 7 56.2460 nan 0.0050 0.4802
## 8 55.7910 nan 0.0050 0.4622
## 9 55.3190 nan 0.0050 0.4668
## 10 54.8835 nan 0.0050 0.4390
## 20 50.5877 nan 0.0050 0.3924
## 40 42.9824 nan 0.0050 0.3511
## 60 36.7384 nan 0.0050 0.2752
## 80 31.5540 nan 0.0050 0.2248
## 100 27.1604 nan 0.0050 0.2106
## 120 23.5555 nan 0.0050 0.1578
## 140 20.4984 nan 0.0050 0.1309
## 160 17.9931 nan 0.0050 0.1209
## 180 15.9056 nan 0.0050 0.0947
## 200 14.0983 nan 0.0050 0.0823
## 220 12.6539 nan 0.0050 0.0704
## 240 11.3624 nan 0.0050 0.0516
## 260 10.2534 nan 0.0050 0.0353
## 280 9.3008 nan 0.0050 0.0402
## 300 8.5048 nan 0.0050 0.0352
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.1459 nan 0.0050 0.4408
## 2 58.6347 nan 0.0050 0.4520
## 3 58.1688 nan 0.0050 0.5088
## 4 57.6825 nan 0.0050 0.4473
## 5 57.2184 nan 0.0050 0.4402
## 6 56.7491 nan 0.0050 0.4149
## 7 56.2824 nan 0.0050 0.4406
## 8 55.8451 nan 0.0050 0.3514
## 9 55.3840 nan 0.0050 0.5000
## 10 54.9115 nan 0.0050 0.4698
## 20 50.6563 nan 0.0050 0.4048
## 40 43.1024 nan 0.0050 0.3110
## 60 36.8658 nan 0.0050 0.2971
## 80 31.6553 nan 0.0050 0.2304
## 100 27.3907 nan 0.0050 0.1966
## 120 23.7882 nan 0.0050 0.1535
## 140 20.7277 nan 0.0050 0.1308
## 160 18.1462 nan 0.0050 0.1011
## 180 16.0358 nan 0.0050 0.0966
## 200 14.2505 nan 0.0050 0.0790
## 220 12.6978 nan 0.0050 0.0710
## 240 11.3667 nan 0.0050 0.0514
## 260 10.2758 nan 0.0050 0.0394
## 280 9.3680 nan 0.0050 0.0387
## 300 8.5550 nan 0.0050 0.0299
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.1654 nan 0.0050 0.4830
## 2 58.6623 nan 0.0050 0.5097
## 3 58.1429 nan 0.0050 0.4828
## 4 57.6626 nan 0.0050 0.4930
## 5 57.1917 nan 0.0050 0.4984
## 6 56.7124 nan 0.0050 0.4424
## 7 56.2205 nan 0.0050 0.4562
## 8 55.7700 nan 0.0050 0.5015
## 9 55.3152 nan 0.0050 0.4580
## 10 54.8627 nan 0.0050 0.4376
## 20 50.5369 nan 0.0050 0.3925
## 40 42.9148 nan 0.0050 0.3402
## 60 36.6752 nan 0.0050 0.2621
## 80 31.5037 nan 0.0050 0.2459
## 100 27.2090 nan 0.0050 0.1866
## 120 23.5999 nan 0.0050 0.1286
## 140 20.6605 nan 0.0050 0.1304
## 160 18.1518 nan 0.0050 0.1041
## 180 16.0882 nan 0.0050 0.0903
## 200 14.3170 nan 0.0050 0.0657
## 220 12.8518 nan 0.0050 0.0641
## 240 11.5965 nan 0.0050 0.0573
## 260 10.4822 nan 0.0050 0.0455
## 280 9.5434 nan 0.0050 0.0405
## 300 8.7541 nan 0.0050 0.0305
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.8503 nan 0.0100 0.7371
## 2 58.0740 nan 0.0100 0.7366
## 3 57.3338 nan 0.0100 0.7233
## 4 56.5857 nan 0.0100 0.7353
## 5 55.9324 nan 0.0100 0.6040
## 6 55.3326 nan 0.0100 0.6830
## 7 54.6463 nan 0.0100 0.6545
## 8 54.0078 nan 0.0100 0.5557
## 9 53.3597 nan 0.0100 0.6219
## 10 52.6800 nan 0.0100 0.6058
## 20 46.9001 nan 0.0100 0.5413
## 40 37.8270 nan 0.0100 0.3849
## 60 31.0544 nan 0.0100 0.2891
## 80 25.7197 nan 0.0100 0.2079
## 100 21.6668 nan 0.0100 0.1691
## 120 18.4801 nan 0.0100 0.1290
## 140 15.9918 nan 0.0100 0.1023
## 160 14.0545 nan 0.0100 0.0844
## 180 12.4217 nan 0.0100 0.0565
## 200 11.1141 nan 0.0100 0.0439
## 220 9.9883 nan 0.0100 0.0341
## 240 9.0599 nan 0.0100 0.0299
## 260 8.2702 nan 0.0100 0.0213
## 280 7.5801 nan 0.0100 0.0296
## 300 7.0160 nan 0.0100 0.0278
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.9315 nan 0.0100 0.7804
## 2 58.2199 nan 0.0100 0.7073
## 3 57.5114 nan 0.0100 0.6930
## 4 56.7300 nan 0.0100 0.6982
## 5 56.0081 nan 0.0100 0.6962
## 6 55.3403 nan 0.0100 0.7324
## 7 54.6589 nan 0.0100 0.6405
## 8 54.0003 nan 0.0100 0.6239
## 9 53.2917 nan 0.0100 0.6882
## 10 52.6570 nan 0.0100 0.6040
## 20 47.0268 nan 0.0100 0.4968
## 40 37.8962 nan 0.0100 0.3963
## 60 30.9899 nan 0.0100 0.2882
## 80 25.6423 nan 0.0100 0.2063
## 100 21.6630 nan 0.0100 0.1854
## 120 18.5145 nan 0.0100 0.1293
## 140 16.1097 nan 0.0100 0.1090
## 160 14.1073 nan 0.0100 0.0743
## 180 12.5162 nan 0.0100 0.0740
## 200 11.1868 nan 0.0100 0.0397
## 220 10.0831 nan 0.0100 0.0273
## 240 9.1373 nan 0.0100 0.0350
## 260 8.3624 nan 0.0100 0.0205
## 280 7.6866 nan 0.0100 0.0269
## 300 7.1149 nan 0.0100 0.0221
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.8695 nan 0.0100 0.7053
## 2 58.0667 nan 0.0100 0.7255
## 3 57.3164 nan 0.0100 0.7433
## 4 56.6419 nan 0.0100 0.7028
## 5 55.9184 nan 0.0100 0.7063
## 6 55.2344 nan 0.0100 0.6972
## 7 54.5527 nan 0.0100 0.6270
## 8 53.8480 nan 0.0100 0.6739
## 9 53.2315 nan 0.0100 0.6457
## 10 52.5685 nan 0.0100 0.6208
## 20 46.7250 nan 0.0100 0.4497
## 40 37.7681 nan 0.0100 0.3590
## 60 30.8683 nan 0.0100 0.2931
## 80 25.6518 nan 0.0100 0.2159
## 100 21.6874 nan 0.0100 0.1706
## 120 18.5682 nan 0.0100 0.1231
## 140 16.1192 nan 0.0100 0.0941
## 160 14.1430 nan 0.0100 0.0822
## 180 12.5917 nan 0.0100 0.0648
## 200 11.2646 nan 0.0100 0.0527
## 220 10.1965 nan 0.0100 0.0297
## 240 9.2557 nan 0.0100 0.0265
## 260 8.5124 nan 0.0100 0.0273
## 280 7.8586 nan 0.0100 0.0273
## 300 7.3111 nan 0.0100 0.0146
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.7597 nan 0.0100 0.8734
## 2 57.8571 nan 0.0100 0.9190
## 3 56.9814 nan 0.0100 0.9099
## 4 56.1311 nan 0.0100 0.8209
## 5 55.2369 nan 0.0100 0.8673
## 6 54.3813 nan 0.0100 0.8863
## 7 53.5819 nan 0.0100 0.7924
## 8 52.7972 nan 0.0100 0.7377
## 9 52.1052 nan 0.0100 0.7436
## 10 51.2606 nan 0.0100 0.7919
## 20 44.3463 nan 0.0100 0.6847
## 40 33.1541 nan 0.0100 0.4288
## 60 25.4597 nan 0.0100 0.3044
## 80 19.9277 nan 0.0100 0.2386
## 100 16.0249 nan 0.0100 0.1413
## 120 13.0885 nan 0.0100 0.1123
## 140 10.9339 nan 0.0100 0.0914
## 160 9.2844 nan 0.0100 0.0574
## 180 8.0133 nan 0.0100 0.0464
## 200 7.0737 nan 0.0100 0.0327
## 220 6.3161 nan 0.0100 0.0177
## 240 5.7300 nan 0.0100 0.0284
## 260 5.2539 nan 0.0100 0.0121
## 280 4.8622 nan 0.0100 0.0086
## 300 4.5410 nan 0.0100 0.0056
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.6951 nan 0.0100 1.0009
## 2 57.7980 nan 0.0100 0.8697
## 3 56.9383 nan 0.0100 0.8209
## 4 55.9911 nan 0.0100 0.9060
## 5 55.1492 nan 0.0100 0.8354
## 6 54.3039 nan 0.0100 0.8639
## 7 53.4652 nan 0.0100 0.8916
## 8 52.6529 nan 0.0100 0.8217
## 9 51.8923 nan 0.0100 0.7885
## 10 51.1326 nan 0.0100 0.8093
## 20 43.9984 nan 0.0100 0.6958
## 40 33.0146 nan 0.0100 0.5040
## 60 25.4888 nan 0.0100 0.3125
## 80 19.9494 nan 0.0100 0.2075
## 100 15.9994 nan 0.0100 0.1252
## 120 13.0921 nan 0.0100 0.1103
## 140 10.9070 nan 0.0100 0.0633
## 160 9.2684 nan 0.0100 0.0659
## 180 8.0167 nan 0.0100 0.0416
## 200 7.0817 nan 0.0100 0.0370
## 220 6.3398 nan 0.0100 0.0300
## 240 5.7398 nan 0.0100 0.0210
## 260 5.2441 nan 0.0100 0.0146
## 280 4.8570 nan 0.0100 0.0123
## 300 4.5487 nan 0.0100 0.0089
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.7840 nan 0.0100 0.9425
## 2 57.8916 nan 0.0100 0.8897
## 3 56.9442 nan 0.0100 0.8754
## 4 56.1027 nan 0.0100 0.8879
## 5 55.2485 nan 0.0100 0.8307
## 6 54.4309 nan 0.0100 0.7749
## 7 53.5478 nan 0.0100 0.8318
## 8 52.7002 nan 0.0100 0.8819
## 9 51.8681 nan 0.0100 0.8176
## 10 51.0783 nan 0.0100 0.7235
## 20 43.9810 nan 0.0100 0.6892
## 40 33.2028 nan 0.0100 0.4678
## 60 25.2375 nan 0.0100 0.3364
## 80 19.8892 nan 0.0100 0.2044
## 100 16.0245 nan 0.0100 0.1868
## 120 13.2024 nan 0.0100 0.0988
## 140 11.1362 nan 0.0100 0.0841
## 160 9.5157 nan 0.0100 0.0631
## 180 8.2435 nan 0.0100 0.0520
## 200 7.2815 nan 0.0100 0.0332
## 220 6.5598 nan 0.0100 0.0229
## 240 5.9582 nan 0.0100 0.0173
## 260 5.4808 nan 0.0100 0.0180
## 280 5.1085 nan 0.0100 0.0160
## 300 4.8138 nan 0.0100 0.0093
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.6934 nan 0.0100 0.9663
## 2 57.6878 nan 0.0100 0.9790
## 3 56.7059 nan 0.0100 1.0982
## 4 55.7813 nan 0.0100 0.9209
## 5 54.8446 nan 0.0100 0.8619
## 6 53.9289 nan 0.0100 0.8014
## 7 53.0513 nan 0.0100 0.9268
## 8 52.1992 nan 0.0100 0.9063
## 9 51.3464 nan 0.0100 0.8025
## 10 50.5034 nan 0.0100 0.7730
## 20 42.9669 nan 0.0100 0.6467
## 40 31.5783 nan 0.0100 0.4589
## 60 23.5904 nan 0.0100 0.3473
## 80 17.9990 nan 0.0100 0.2071
## 100 14.1539 nan 0.0100 0.1701
## 120 11.3130 nan 0.0100 0.1110
## 140 9.2651 nan 0.0100 0.0761
## 160 7.7626 nan 0.0100 0.0638
## 180 6.6730 nan 0.0100 0.0279
## 200 5.8247 nan 0.0100 0.0386
## 220 5.1549 nan 0.0100 0.0182
## 240 4.6707 nan 0.0100 0.0155
## 260 4.2734 nan 0.0100 0.0128
## 280 3.9623 nan 0.0100 0.0143
## 300 3.7172 nan 0.0100 0.0059
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.6774 nan 0.0100 0.9844
## 2 57.6782 nan 0.0100 0.9327
## 3 56.7397 nan 0.0100 0.9015
## 4 55.7948 nan 0.0100 1.0461
## 5 54.8234 nan 0.0100 0.8805
## 6 53.9229 nan 0.0100 0.9492
## 7 53.0343 nan 0.0100 0.7720
## 8 52.1536 nan 0.0100 0.8320
## 9 51.2699 nan 0.0100 0.8025
## 10 50.4389 nan 0.0100 0.8372
## 20 42.9050 nan 0.0100 0.6959
## 40 31.4256 nan 0.0100 0.4952
## 60 23.4013 nan 0.0100 0.2298
## 80 17.9653 nan 0.0100 0.1820
## 100 14.1099 nan 0.0100 0.1340
## 120 11.3123 nan 0.0100 0.0961
## 140 9.2883 nan 0.0100 0.0758
## 160 7.8166 nan 0.0100 0.0545
## 180 6.6861 nan 0.0100 0.0416
## 200 5.8556 nan 0.0100 0.0383
## 220 5.1912 nan 0.0100 0.0246
## 240 4.6930 nan 0.0100 0.0161
## 260 4.3214 nan 0.0100 0.0053
## 280 4.0395 nan 0.0100 0.0064
## 300 3.8086 nan 0.0100 0.0066
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.6064 nan 0.0100 0.8560
## 2 57.6024 nan 0.0100 0.9689
## 3 56.6807 nan 0.0100 0.9434
## 4 55.7853 nan 0.0100 0.9291
## 5 54.9180 nan 0.0100 0.8725
## 6 54.0584 nan 0.0100 0.8657
## 7 53.1538 nan 0.0100 0.9383
## 8 52.2965 nan 0.0100 0.8360
## 9 51.4440 nan 0.0100 0.8220
## 10 50.6101 nan 0.0100 0.7213
## 20 43.0651 nan 0.0100 0.6688
## 40 31.6880 nan 0.0100 0.4242
## 60 23.6973 nan 0.0100 0.2871
## 80 18.1670 nan 0.0100 0.1946
## 100 14.2736 nan 0.0100 0.1532
## 120 11.5861 nan 0.0100 0.0978
## 140 9.5584 nan 0.0100 0.0771
## 160 8.0359 nan 0.0100 0.0622
## 180 6.9369 nan 0.0100 0.0403
## 200 6.0977 nan 0.0100 0.0309
## 220 5.4603 nan 0.0100 0.0183
## 240 4.9941 nan 0.0100 0.0111
## 260 4.6054 nan 0.0100 0.0096
## 280 4.3446 nan 0.0100 0.0016
## 300 4.1289 nan 0.0100 0.0043
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.7986 nan 0.0500 3.8679
## 2 53.3147 nan 0.0500 2.1023
## 3 50.1649 nan 0.0500 3.2145
## 4 47.3472 nan 0.0500 2.7631
## 5 44.4748 nan 0.0500 2.6487
## 6 41.9895 nan 0.0500 2.3947
## 7 39.5767 nan 0.0500 2.3417
## 8 37.6887 nan 0.0500 1.8809
## 9 35.7839 nan 0.0500 1.9975
## 10 33.9672 nan 0.0500 1.7112
## 20 21.3141 nan 0.0500 0.7023
## 40 11.0635 nan 0.0500 0.2854
## 60 7.1167 nan 0.0500 0.0927
## 80 5.3513 nan 0.0500 0.0404
## 100 4.4498 nan 0.0500 0.0125
## 120 4.0179 nan 0.0500 0.0021
## 140 3.8013 nan 0.0500 -0.0036
## 160 3.6832 nan 0.0500 -0.0020
## 180 3.5935 nan 0.0500 -0.0066
## 200 3.5123 nan 0.0500 -0.0062
## 220 3.4427 nan 0.0500 -0.0022
## 240 3.3829 nan 0.0500 -0.0060
## 260 3.3260 nan 0.0500 -0.0037
## 280 3.2716 nan 0.0500 -0.0092
## 300 3.2232 nan 0.0500 -0.0054
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.1052 nan 0.0500 3.7811
## 2 52.7838 nan 0.0500 3.4427
## 3 49.9888 nan 0.0500 3.1056
## 4 47.1342 nan 0.0500 2.8877
## 5 44.7924 nan 0.0500 2.1100
## 6 42.4371 nan 0.0500 2.1411
## 7 40.1394 nan 0.0500 2.1918
## 8 37.9276 nan 0.0500 2.0878
## 9 36.0751 nan 0.0500 1.7324
## 10 34.3491 nan 0.0500 1.6561
## 20 21.5960 nan 0.0500 0.9516
## 40 11.0862 nan 0.0500 0.2998
## 60 7.1061 nan 0.0500 0.0958
## 80 5.2770 nan 0.0500 0.0629
## 100 4.4383 nan 0.0500 0.0037
## 120 3.9883 nan 0.0500 0.0076
## 140 3.7822 nan 0.0500 0.0044
## 160 3.6610 nan 0.0500 -0.0072
## 180 3.5677 nan 0.0500 -0.0096
## 200 3.4887 nan 0.0500 -0.0117
## 220 3.4273 nan 0.0500 -0.0050
## 240 3.3611 nan 0.0500 -0.0089
## 260 3.3133 nan 0.0500 -0.0127
## 280 3.2729 nan 0.0500 -0.0128
## 300 3.2229 nan 0.0500 -0.0113
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.5064 nan 0.0500 2.4904
## 2 53.2053 nan 0.0500 3.6197
## 3 49.9153 nan 0.0500 3.2209
## 4 46.8455 nan 0.0500 2.7264
## 5 44.4453 nan 0.0500 2.6662
## 6 42.1787 nan 0.0500 2.3988
## 7 39.8152 nan 0.0500 2.2722
## 8 37.6397 nan 0.0500 2.0297
## 9 35.6649 nan 0.0500 1.7540
## 10 33.8947 nan 0.0500 1.4580
## 20 21.2277 nan 0.0500 0.7368
## 40 10.9772 nan 0.0500 0.2418
## 60 7.1149 nan 0.0500 0.0837
## 80 5.3890 nan 0.0500 0.0414
## 100 4.5994 nan 0.0500 0.0190
## 120 4.1752 nan 0.0500 -0.0017
## 140 3.9478 nan 0.0500 0.0003
## 160 3.8239 nan 0.0500 0.0015
## 180 3.7375 nan 0.0500 -0.0019
## 200 3.6503 nan 0.0500 0.0024
## 220 3.5874 nan 0.0500 -0.0067
## 240 3.5257 nan 0.0500 -0.0045
## 260 3.4669 nan 0.0500 -0.0132
## 280 3.4213 nan 0.0500 -0.0068
## 300 3.3709 nan 0.0500 -0.0069
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.1620 nan 0.0500 5.0655
## 2 51.0959 nan 0.0500 3.9277
## 3 47.1748 nan 0.0500 3.6034
## 4 43.7815 nan 0.0500 3.0503
## 5 40.7692 nan 0.0500 3.1918
## 6 37.8439 nan 0.0500 2.8220
## 7 35.5383 nan 0.0500 2.4943
## 8 33.1914 nan 0.0500 2.2203
## 9 31.1688 nan 0.0500 1.7723
## 10 29.0892 nan 0.0500 2.0486
## 20 16.0024 nan 0.0500 0.8313
## 40 7.1533 nan 0.0500 0.1995
## 60 4.5544 nan 0.0500 0.0412
## 80 3.6875 nan 0.0500 0.0125
## 100 3.2757 nan 0.0500 -0.0281
## 120 3.0219 nan 0.0500 0.0019
## 140 2.8492 nan 0.0500 -0.0059
## 160 2.7393 nan 0.0500 -0.0034
## 180 2.6045 nan 0.0500 -0.0104
## 200 2.5132 nan 0.0500 -0.0121
## 220 2.4188 nan 0.0500 -0.0007
## 240 2.3272 nan 0.0500 -0.0054
## 260 2.2449 nan 0.0500 -0.0071
## 280 2.1794 nan 0.0500 -0.0070
## 300 2.1131 nan 0.0500 -0.0078
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.5142 nan 0.0500 4.2308
## 2 51.5200 nan 0.0500 4.3398
## 3 47.4252 nan 0.0500 4.4951
## 4 44.2181 nan 0.0500 3.5408
## 5 41.0811 nan 0.0500 3.1503
## 6 38.3071 nan 0.0500 2.7498
## 7 35.7095 nan 0.0500 2.5640
## 8 33.4049 nan 0.0500 2.4072
## 9 31.1691 nan 0.0500 1.8059
## 10 29.0447 nan 0.0500 1.8717
## 20 15.8205 nan 0.0500 0.7104
## 40 7.0577 nan 0.0500 0.1395
## 60 4.5449 nan 0.0500 0.0638
## 80 3.7821 nan 0.0500 0.0132
## 100 3.4644 nan 0.0500 -0.0007
## 120 3.2606 nan 0.0500 -0.0060
## 140 3.1329 nan 0.0500 0.0015
## 160 3.0010 nan 0.0500 -0.0138
## 180 2.9037 nan 0.0500 -0.0067
## 200 2.8164 nan 0.0500 -0.0071
## 220 2.7461 nan 0.0500 -0.0269
## 240 2.6728 nan 0.0500 -0.0121
## 260 2.6071 nan 0.0500 -0.0205
## 280 2.5368 nan 0.0500 -0.0034
## 300 2.4740 nan 0.0500 -0.0098
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.2258 nan 0.0500 4.5104
## 2 51.3597 nan 0.0500 4.1836
## 3 47.8141 nan 0.0500 3.6867
## 4 44.3092 nan 0.0500 3.8225
## 5 41.2351 nan 0.0500 3.1737
## 6 38.4684 nan 0.0500 2.8401
## 7 35.7428 nan 0.0500 2.5644
## 8 33.3835 nan 0.0500 2.4454
## 9 31.0325 nan 0.0500 2.0494
## 10 28.9473 nan 0.0500 2.0106
## 20 15.8430 nan 0.0500 0.8303
## 40 7.1832 nan 0.0500 0.1871
## 60 4.6657 nan 0.0500 0.0335
## 80 3.9353 nan 0.0500 0.0094
## 100 3.6434 nan 0.0500 -0.0053
## 120 3.4392 nan 0.0500 -0.0135
## 140 3.2833 nan 0.0500 -0.0112
## 160 3.1500 nan 0.0500 -0.0091
## 180 3.0611 nan 0.0500 -0.0139
## 200 2.9628 nan 0.0500 -0.0099
## 220 2.9036 nan 0.0500 -0.0066
## 240 2.8233 nan 0.0500 -0.0097
## 260 2.7619 nan 0.0500 -0.0150
## 280 2.7054 nan 0.0500 -0.0131
## 300 2.6551 nan 0.0500 -0.0094
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.0528 nan 0.0500 4.7554
## 2 50.7458 nan 0.0500 4.0408
## 3 46.6107 nan 0.0500 3.7203
## 4 42.9040 nan 0.0500 3.7333
## 5 39.5581 nan 0.0500 3.3377
## 6 36.6423 nan 0.0500 2.6218
## 7 33.8319 nan 0.0500 2.9567
## 8 31.1860 nan 0.0500 2.4240
## 9 28.7470 nan 0.0500 2.6280
## 10 26.7831 nan 0.0500 2.2524
## 20 13.9519 nan 0.0500 0.7861
## 40 5.6283 nan 0.0500 0.1213
## 60 3.6480 nan 0.0500 0.0297
## 80 3.0997 nan 0.0500 -0.0214
## 100 2.8050 nan 0.0500 -0.0044
## 120 2.6232 nan 0.0500 -0.0221
## 140 2.4542 nan 0.0500 -0.0077
## 160 2.3110 nan 0.0500 -0.0167
## 180 2.1943 nan 0.0500 -0.0032
## 200 2.0976 nan 0.0500 -0.0125
## 220 1.9886 nan 0.0500 -0.0125
## 240 1.8730 nan 0.0500 -0.0061
## 260 1.7637 nan 0.0500 -0.0138
## 280 1.6968 nan 0.0500 -0.0041
## 300 1.6241 nan 0.0500 -0.0135
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.7289 nan 0.0500 4.6093
## 2 50.2329 nan 0.0500 4.3619
## 3 46.3616 nan 0.0500 3.8176
## 4 42.6564 nan 0.0500 3.5858
## 5 39.1024 nan 0.0500 3.7746
## 6 36.2297 nan 0.0500 3.1421
## 7 33.4449 nan 0.0500 2.5422
## 8 30.7653 nan 0.0500 2.2533
## 9 28.4560 nan 0.0500 2.1769
## 10 26.5012 nan 0.0500 2.0048
## 20 13.6393 nan 0.0500 0.8258
## 40 5.7009 nan 0.0500 0.1683
## 60 3.7860 nan 0.0500 0.0192
## 80 3.2758 nan 0.0500 0.0005
## 100 3.0206 nan 0.0500 -0.0099
## 120 2.8367 nan 0.0500 -0.0159
## 140 2.6654 nan 0.0500 -0.0193
## 160 2.5615 nan 0.0500 -0.0119
## 180 2.4506 nan 0.0500 -0.0161
## 200 2.3620 nan 0.0500 -0.0071
## 220 2.2536 nan 0.0500 -0.0154
## 240 2.1633 nan 0.0500 -0.0130
## 260 2.0827 nan 0.0500 -0.0146
## 280 2.0156 nan 0.0500 -0.0122
## 300 1.9445 nan 0.0500 -0.0174
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.7315 nan 0.0500 4.6801
## 2 50.0436 nan 0.0500 4.5964
## 3 46.0848 nan 0.0500 3.4795
## 4 42.7370 nan 0.0500 3.4789
## 5 39.5424 nan 0.0500 3.2035
## 6 36.7130 nan 0.0500 2.5667
## 7 33.9377 nan 0.0500 2.8607
## 8 31.5607 nan 0.0500 2.6515
## 9 29.2278 nan 0.0500 2.3905
## 10 27.2331 nan 0.0500 1.9801
## 20 14.2619 nan 0.0500 0.8776
## 40 6.1707 nan 0.0500 0.1589
## 60 4.1949 nan 0.0500 0.0444
## 80 3.5735 nan 0.0500 -0.0006
## 100 3.2728 nan 0.0500 0.0010
## 120 3.0675 nan 0.0500 -0.0235
## 140 2.9141 nan 0.0500 -0.0081
## 160 2.7929 nan 0.0500 -0.0132
## 180 2.7006 nan 0.0500 -0.0133
## 200 2.5867 nan 0.0500 -0.0216
## 220 2.4892 nan 0.0500 -0.0070
## 240 2.3948 nan 0.0500 -0.0103
## 260 2.3370 nan 0.0500 -0.0155
## 280 2.2661 nan 0.0500 -0.0064
## 300 2.1946 nan 0.0500 -0.0132
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.6492 nan 0.1000 6.6088
## 2 46.7282 nan 0.1000 6.3337
## 3 41.9816 nan 0.1000 5.0165
## 4 38.0328 nan 0.1000 3.4439
## 5 33.2840 nan 0.1000 4.2033
## 6 30.3330 nan 0.1000 2.9563
## 7 27.4567 nan 0.1000 2.4438
## 8 25.0494 nan 0.1000 3.0866
## 9 22.7678 nan 0.1000 2.3257
## 10 21.2039 nan 0.1000 1.1158
## 20 10.9991 nan 0.1000 0.6453
## 40 5.4567 nan 0.1000 0.0209
## 60 4.1300 nan 0.1000 0.0071
## 80 3.7590 nan 0.1000 -0.0226
## 100 3.5752 nan 0.1000 -0.0096
## 120 3.4589 nan 0.1000 -0.0221
## 140 3.3778 nan 0.1000 -0.0104
## 160 3.2847 nan 0.1000 -0.0186
## 180 3.2048 nan 0.1000 -0.0134
## 200 3.1568 nan 0.1000 -0.0336
## 220 3.1043 nan 0.1000 -0.0215
## 240 3.0367 nan 0.1000 -0.0037
## 260 2.9780 nan 0.1000 -0.0049
## 280 2.9482 nan 0.1000 -0.0226
## 300 2.9005 nan 0.1000 -0.0133
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.1566 nan 0.1000 7.5262
## 2 46.0565 nan 0.1000 5.3690
## 3 41.2095 nan 0.1000 5.0009
## 4 37.0191 nan 0.1000 3.6095
## 5 33.2801 nan 0.1000 3.5941
## 6 30.5109 nan 0.1000 2.5915
## 7 27.1862 nan 0.1000 2.9254
## 8 24.8311 nan 0.1000 2.0353
## 9 22.9399 nan 0.1000 1.8004
## 10 20.8144 nan 0.1000 1.8479
## 20 10.7750 nan 0.1000 0.6284
## 40 5.3679 nan 0.1000 0.1061
## 60 4.2066 nan 0.1000 0.0161
## 80 3.8680 nan 0.1000 0.0016
## 100 3.6720 nan 0.1000 -0.0140
## 120 3.5252 nan 0.1000 -0.0160
## 140 3.4117 nan 0.1000 -0.0083
## 160 3.3112 nan 0.1000 -0.0184
## 180 3.2424 nan 0.1000 -0.0247
## 200 3.1727 nan 0.1000 -0.0141
## 220 3.1197 nan 0.1000 -0.0127
## 240 3.0537 nan 0.1000 -0.0066
## 260 2.9819 nan 0.1000 -0.0102
## 280 2.9507 nan 0.1000 -0.0147
## 300 2.9140 nan 0.1000 -0.0505
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.4166 nan 0.1000 6.7994
## 2 46.1015 nan 0.1000 5.6284
## 3 41.8985 nan 0.1000 4.4637
## 4 37.0611 nan 0.1000 4.6415
## 5 33.5874 nan 0.1000 3.7693
## 6 30.4580 nan 0.1000 3.0871
## 7 27.8549 nan 0.1000 2.6185
## 8 25.4735 nan 0.1000 2.3308
## 9 23.1769 nan 0.1000 2.2162
## 10 21.2951 nan 0.1000 1.6230
## 20 11.0563 nan 0.1000 0.3328
## 40 5.6066 nan 0.1000 0.0601
## 60 4.4037 nan 0.1000 0.0134
## 80 4.1298 nan 0.1000 -0.0320
## 100 3.9002 nan 0.1000 -0.0327
## 120 3.7311 nan 0.1000 -0.0031
## 140 3.5930 nan 0.1000 0.0006
## 160 3.4885 nan 0.1000 -0.0479
## 180 3.3940 nan 0.1000 -0.0182
## 200 3.3089 nan 0.1000 -0.0210
## 220 3.2389 nan 0.1000 -0.0025
## 240 3.1835 nan 0.1000 -0.0267
## 260 3.1374 nan 0.1000 -0.0381
## 280 3.0917 nan 0.1000 -0.0051
## 300 3.0165 nan 0.1000 -0.0164
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.9629 nan 0.1000 8.3524
## 2 45.1382 nan 0.1000 6.9513
## 3 39.4094 nan 0.1000 5.3773
## 4 34.0295 nan 0.1000 5.6664
## 5 29.6293 nan 0.1000 3.9833
## 6 26.0513 nan 0.1000 3.8766
## 7 22.5509 nan 0.1000 3.2369
## 8 20.4022 nan 0.1000 2.3937
## 9 18.6089 nan 0.1000 1.5739
## 10 16.9086 nan 0.1000 1.4503
## 20 7.2399 nan 0.1000 0.4464
## 40 3.8305 nan 0.1000 -0.0003
## 60 3.2032 nan 0.1000 -0.0018
## 80 2.8607 nan 0.1000 0.0023
## 100 2.6814 nan 0.1000 -0.0050
## 120 2.4544 nan 0.1000 -0.0102
## 140 2.3354 nan 0.1000 -0.0138
## 160 2.2178 nan 0.1000 -0.0169
## 180 2.1155 nan 0.1000 -0.0513
## 200 2.0189 nan 0.1000 -0.0409
## 220 1.9069 nan 0.1000 -0.0018
## 240 1.8171 nan 0.1000 -0.0157
## 260 1.7087 nan 0.1000 -0.0149
## 280 1.6325 nan 0.1000 -0.0142
## 300 1.5869 nan 0.1000 -0.0189
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 50.8131 nan 0.1000 8.4391
## 2 44.2397 nan 0.1000 7.2852
## 3 38.0332 nan 0.1000 6.6342
## 4 33.1136 nan 0.1000 4.5136
## 5 28.9646 nan 0.1000 4.3288
## 6 25.7153 nan 0.1000 3.1572
## 7 22.5713 nan 0.1000 2.7024
## 8 20.0624 nan 0.1000 2.1572
## 9 17.8230 nan 0.1000 1.9878
## 10 15.8480 nan 0.1000 2.1032
## 20 6.8749 nan 0.1000 0.3159
## 40 3.8476 nan 0.1000 0.0298
## 60 3.3034 nan 0.1000 -0.0185
## 80 3.0018 nan 0.1000 -0.0388
## 100 2.8162 nan 0.1000 -0.0311
## 120 2.6487 nan 0.1000 -0.0223
## 140 2.4891 nan 0.1000 -0.0240
## 160 2.3496 nan 0.1000 -0.0296
## 180 2.2497 nan 0.1000 -0.0091
## 200 2.1517 nan 0.1000 -0.0385
## 220 2.0746 nan 0.1000 -0.0192
## 240 2.0025 nan 0.1000 -0.0239
## 260 1.9303 nan 0.1000 -0.0100
## 280 1.8532 nan 0.1000 -0.0099
## 300 1.8108 nan 0.1000 -0.0180
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.0718 nan 0.1000 9.0098
## 2 44.3032 nan 0.1000 7.2810
## 3 37.9179 nan 0.1000 6.1666
## 4 33.0849 nan 0.1000 4.7564
## 5 28.6652 nan 0.1000 4.4392
## 6 24.9974 nan 0.1000 3.0720
## 7 22.1668 nan 0.1000 2.5081
## 8 19.8961 nan 0.1000 2.2252
## 9 17.6588 nan 0.1000 2.0929
## 10 15.8546 nan 0.1000 1.8732
## 20 7.6767 nan 0.1000 0.4151
## 40 4.1126 nan 0.1000 -0.0018
## 60 3.4913 nan 0.1000 -0.0534
## 80 3.1750 nan 0.1000 -0.0110
## 100 2.9718 nan 0.1000 -0.0087
## 120 2.7725 nan 0.1000 -0.0231
## 140 2.6348 nan 0.1000 -0.0116
## 160 2.4904 nan 0.1000 -0.0537
## 180 2.4163 nan 0.1000 -0.0117
## 200 2.3268 nan 0.1000 -0.0200
## 220 2.2621 nan 0.1000 -0.0176
## 240 2.1954 nan 0.1000 -0.0288
## 260 2.1083 nan 0.1000 -0.0063
## 280 2.0528 nan 0.1000 -0.0296
## 300 1.9942 nan 0.1000 -0.0138
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 50.5587 nan 0.1000 9.7414
## 2 42.2869 nan 0.1000 8.0399
## 3 36.0708 nan 0.1000 6.4832
## 4 30.9783 nan 0.1000 4.8195
## 5 26.6741 nan 0.1000 4.3823
## 6 23.0961 nan 0.1000 3.3437
## 7 20.5164 nan 0.1000 2.6984
## 8 17.8371 nan 0.1000 2.5631
## 9 15.6695 nan 0.1000 2.1614
## 10 14.0200 nan 0.1000 1.6510
## 20 5.5289 nan 0.1000 0.2164
## 40 3.2157 nan 0.1000 -0.0152
## 60 2.6939 nan 0.1000 -0.0356
## 80 2.3908 nan 0.1000 -0.0173
## 100 2.1639 nan 0.1000 -0.0088
## 120 1.9734 nan 0.1000 -0.0279
## 140 1.7908 nan 0.1000 -0.0098
## 160 1.6276 nan 0.1000 -0.0135
## 180 1.4960 nan 0.1000 -0.0162
## 200 1.3789 nan 0.1000 -0.0127
## 220 1.2674 nan 0.1000 -0.0095
## 240 1.1742 nan 0.1000 -0.0094
## 260 1.1089 nan 0.1000 -0.0212
## 280 1.0310 nan 0.1000 -0.0131
## 300 0.9691 nan 0.1000 -0.0099
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 50.1099 nan 0.1000 8.5182
## 2 42.5973 nan 0.1000 7.6629
## 3 36.2938 nan 0.1000 6.2767
## 4 30.9391 nan 0.1000 4.8675
## 5 26.4392 nan 0.1000 4.0551
## 6 22.6503 nan 0.1000 3.3578
## 7 19.7384 nan 0.1000 3.0101
## 8 17.1336 nan 0.1000 2.2121
## 9 15.1410 nan 0.1000 1.9040
## 10 13.3741 nan 0.1000 1.6802
## 20 5.7223 nan 0.1000 0.2792
## 40 3.3763 nan 0.1000 0.0166
## 60 2.8494 nan 0.1000 -0.0130
## 80 2.5471 nan 0.1000 -0.0143
## 100 2.3253 nan 0.1000 -0.0436
## 120 2.1423 nan 0.1000 -0.0241
## 140 1.9896 nan 0.1000 -0.0132
## 160 1.8563 nan 0.1000 -0.0234
## 180 1.7481 nan 0.1000 -0.0268
## 200 1.6556 nan 0.1000 -0.0218
## 220 1.5671 nan 0.1000 -0.0342
## 240 1.4925 nan 0.1000 -0.0217
## 260 1.4168 nan 0.1000 -0.0235
## 280 1.3428 nan 0.1000 -0.0147
## 300 1.2818 nan 0.1000 -0.0103
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 50.4312 nan 0.1000 8.6752
## 2 42.6376 nan 0.1000 7.3731
## 3 36.2058 nan 0.1000 6.3062
## 4 30.8987 nan 0.1000 4.4518
## 5 26.4779 nan 0.1000 4.5392
## 6 22.8577 nan 0.1000 3.1431
## 7 20.1302 nan 0.1000 3.1664
## 8 17.7638 nan 0.1000 2.3428
## 9 15.8844 nan 0.1000 1.7483
## 10 14.1652 nan 0.1000 1.7142
## 20 6.1019 nan 0.1000 0.3326
## 40 3.6255 nan 0.1000 -0.0207
## 60 3.1304 nan 0.1000 -0.0262
## 80 2.8411 nan 0.1000 -0.0353
## 100 2.6300 nan 0.1000 -0.0191
## 120 2.4585 nan 0.1000 -0.0192
## 140 2.3077 nan 0.1000 -0.0257
## 160 2.1753 nan 0.1000 -0.0160
## 180 2.0396 nan 0.1000 -0.0253
## 200 1.9303 nan 0.1000 -0.0218
## 220 1.8385 nan 0.1000 -0.0074
## 240 1.7624 nan 0.1000 -0.0314
## 260 1.6740 nan 0.1000 -0.0169
## 280 1.6111 nan 0.1000 -0.0146
## 300 1.5313 nan 0.1000 -0.0131
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5819 nan 0.0010 0.0840
## 2 61.5096 nan 0.0010 0.0818
## 3 61.4262 nan 0.0010 0.0785
## 4 61.3437 nan 0.0010 0.0753
## 5 61.2652 nan 0.0010 0.0815
## 6 61.1952 nan 0.0010 0.0774
## 7 61.1137 nan 0.0010 0.0800
## 8 61.0388 nan 0.0010 0.0753
## 9 60.9599 nan 0.0010 0.0731
## 10 60.8774 nan 0.0010 0.0833
## 20 60.0916 nan 0.0010 0.0734
## 40 58.5839 nan 0.0010 0.0722
## 60 57.1462 nan 0.0010 0.0763
## 80 55.7732 nan 0.0010 0.0680
## 100 54.4454 nan 0.0010 0.0634
## 120 53.2010 nan 0.0010 0.0662
## 140 51.9269 nan 0.0010 0.0610
## 160 50.7140 nan 0.0010 0.0577
## 180 49.5809 nan 0.0010 0.0584
## 200 48.4524 nan 0.0010 0.0520
## 220 47.3703 nan 0.0010 0.0463
## 240 46.3446 nan 0.0010 0.0431
## 260 45.3411 nan 0.0010 0.0498
## 280 44.3628 nan 0.0010 0.0461
## 300 43.4240 nan 0.0010 0.0474
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5914 nan 0.0010 0.0776
## 2 61.5144 nan 0.0010 0.0780
## 3 61.4362 nan 0.0010 0.0786
## 4 61.3581 nan 0.0010 0.0766
## 5 61.2780 nan 0.0010 0.0780
## 6 61.2038 nan 0.0010 0.0780
## 7 61.1233 nan 0.0010 0.0724
## 8 61.0420 nan 0.0010 0.0794
## 9 60.9632 nan 0.0010 0.0785
## 10 60.8806 nan 0.0010 0.0829
## 20 60.0914 nan 0.0010 0.0754
## 40 58.5928 nan 0.0010 0.0748
## 60 57.1269 nan 0.0010 0.0589
## 80 55.7036 nan 0.0010 0.0652
## 100 54.3270 nan 0.0010 0.0652
## 120 53.0211 nan 0.0010 0.0632
## 140 51.8029 nan 0.0010 0.0534
## 160 50.6064 nan 0.0010 0.0603
## 180 49.4728 nan 0.0010 0.0456
## 200 48.3569 nan 0.0010 0.0524
## 220 47.2812 nan 0.0010 0.0496
## 240 46.2351 nan 0.0010 0.0533
## 260 45.2367 nan 0.0010 0.0413
## 280 44.2623 nan 0.0010 0.0472
## 300 43.3357 nan 0.0010 0.0480
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5883 nan 0.0010 0.0911
## 2 61.5121 nan 0.0010 0.0796
## 3 61.4337 nan 0.0010 0.0785
## 4 61.3490 nan 0.0010 0.0806
## 5 61.2668 nan 0.0010 0.0762
## 6 61.1830 nan 0.0010 0.0801
## 7 61.1001 nan 0.0010 0.0717
## 8 61.0271 nan 0.0010 0.0758
## 9 60.9493 nan 0.0010 0.0798
## 10 60.8758 nan 0.0010 0.0757
## 20 60.1106 nan 0.0010 0.0705
## 40 58.6189 nan 0.0010 0.0772
## 60 57.1710 nan 0.0010 0.0648
## 80 55.7648 nan 0.0010 0.0686
## 100 54.4065 nan 0.0010 0.0650
## 120 53.0962 nan 0.0010 0.0614
## 140 51.8630 nan 0.0010 0.0593
## 160 50.6629 nan 0.0010 0.0579
## 180 49.5008 nan 0.0010 0.0565
## 200 48.4018 nan 0.0010 0.0526
## 220 47.3248 nan 0.0010 0.0504
## 240 46.2634 nan 0.0010 0.0388
## 260 45.2455 nan 0.0010 0.0481
## 280 44.2495 nan 0.0010 0.0468
## 300 43.2921 nan 0.0010 0.0407
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5786 nan 0.0010 0.0976
## 2 61.4821 nan 0.0010 0.1000
## 3 61.3838 nan 0.0010 0.0965
## 4 61.2883 nan 0.0010 0.0929
## 5 61.2015 nan 0.0010 0.0862
## 6 61.1042 nan 0.0010 0.0891
## 7 61.0115 nan 0.0010 0.0974
## 8 60.9217 nan 0.0010 0.0909
## 9 60.8259 nan 0.0010 0.1040
## 10 60.7307 nan 0.0010 0.1039
## 20 59.8146 nan 0.0010 0.0821
## 40 58.0000 nan 0.0010 0.0867
## 60 56.2415 nan 0.0010 0.0838
## 80 54.5801 nan 0.0010 0.0917
## 100 52.9708 nan 0.0010 0.0784
## 120 51.3769 nan 0.0010 0.0767
## 140 49.8337 nan 0.0010 0.0748
## 160 48.3733 nan 0.0010 0.0712
## 180 46.9186 nan 0.0010 0.0718
## 200 45.5223 nan 0.0010 0.0743
## 220 44.2012 nan 0.0010 0.0604
## 240 42.9215 nan 0.0010 0.0638
## 260 41.7022 nan 0.0010 0.0616
## 280 40.4996 nan 0.0010 0.0559
## 300 39.3649 nan 0.0010 0.0521
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5809 nan 0.0010 0.0903
## 2 61.4846 nan 0.0010 0.0962
## 3 61.3886 nan 0.0010 0.0904
## 4 61.2959 nan 0.0010 0.0896
## 5 61.1949 nan 0.0010 0.0979
## 6 61.1037 nan 0.0010 0.0873
## 7 61.0145 nan 0.0010 0.0957
## 8 60.9245 nan 0.0010 0.0918
## 9 60.8305 nan 0.0010 0.0861
## 10 60.7369 nan 0.0010 0.0913
## 20 59.8287 nan 0.0010 0.0873
## 40 58.0342 nan 0.0010 0.0893
## 60 56.2879 nan 0.0010 0.0826
## 80 54.5968 nan 0.0010 0.0755
## 100 52.9811 nan 0.0010 0.0731
## 120 51.4063 nan 0.0010 0.0871
## 140 49.8936 nan 0.0010 0.0659
## 160 48.4470 nan 0.0010 0.0731
## 180 47.0378 nan 0.0010 0.0601
## 200 45.6551 nan 0.0010 0.0675
## 220 44.3409 nan 0.0010 0.0690
## 240 43.0432 nan 0.0010 0.0579
## 260 41.8072 nan 0.0010 0.0552
## 280 40.6348 nan 0.0010 0.0592
## 300 39.4990 nan 0.0010 0.0482
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5766 nan 0.0010 0.0947
## 2 61.4815 nan 0.0010 0.0895
## 3 61.3844 nan 0.0010 0.0923
## 4 61.2856 nan 0.0010 0.0882
## 5 61.1931 nan 0.0010 0.0922
## 6 61.0959 nan 0.0010 0.0990
## 7 60.9973 nan 0.0010 0.0879
## 8 60.9063 nan 0.0010 0.0913
## 9 60.8076 nan 0.0010 0.0952
## 10 60.7081 nan 0.0010 0.0899
## 20 59.7729 nan 0.0010 0.0961
## 40 57.9701 nan 0.0010 0.0889
## 60 56.2240 nan 0.0010 0.0940
## 80 54.5298 nan 0.0010 0.0813
## 100 52.9020 nan 0.0010 0.0764
## 120 51.3119 nan 0.0010 0.0739
## 140 49.7923 nan 0.0010 0.0785
## 160 48.3276 nan 0.0010 0.0689
## 180 46.9266 nan 0.0010 0.0685
## 200 45.5479 nan 0.0010 0.0667
## 220 44.2092 nan 0.0010 0.0667
## 240 42.9476 nan 0.0010 0.0608
## 260 41.7201 nan 0.0010 0.0569
## 280 40.5467 nan 0.0010 0.0582
## 300 39.3919 nan 0.0010 0.0612
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5697 nan 0.0010 0.1048
## 2 61.4666 nan 0.0010 0.0914
## 3 61.3595 nan 0.0010 0.0965
## 4 61.2535 nan 0.0010 0.1005
## 5 61.1488 nan 0.0010 0.1000
## 6 61.0501 nan 0.0010 0.0998
## 7 60.9498 nan 0.0010 0.0972
## 8 60.8487 nan 0.0010 0.1043
## 9 60.7442 nan 0.0010 0.0919
## 10 60.6474 nan 0.0010 0.1033
## 20 59.6469 nan 0.0010 0.0846
## 40 57.6772 nan 0.0010 0.0915
## 60 55.7847 nan 0.0010 0.1049
## 80 53.9686 nan 0.0010 0.0891
## 100 52.2309 nan 0.0010 0.0842
## 120 50.5462 nan 0.0010 0.0836
## 140 48.9301 nan 0.0010 0.0732
## 160 47.3817 nan 0.0010 0.0793
## 180 45.8852 nan 0.0010 0.0632
## 200 44.4214 nan 0.0010 0.0655
## 220 43.0310 nan 0.0010 0.0672
## 240 41.7068 nan 0.0010 0.0649
## 260 40.4156 nan 0.0010 0.0614
## 280 39.1734 nan 0.0010 0.0572
## 300 37.9752 nan 0.0010 0.0640
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5685 nan 0.0010 0.1070
## 2 61.4631 nan 0.0010 0.0970
## 3 61.3581 nan 0.0010 0.0959
## 4 61.2470 nan 0.0010 0.1093
## 5 61.1449 nan 0.0010 0.1022
## 6 61.0376 nan 0.0010 0.1138
## 7 60.9349 nan 0.0010 0.1024
## 8 60.8316 nan 0.0010 0.0924
## 9 60.7333 nan 0.0010 0.1037
## 10 60.6308 nan 0.0010 0.0987
## 20 59.6389 nan 0.0010 0.1004
## 40 57.6674 nan 0.0010 0.1041
## 60 55.7743 nan 0.0010 0.0946
## 80 53.9575 nan 0.0010 0.0818
## 100 52.2163 nan 0.0010 0.0739
## 120 50.5329 nan 0.0010 0.0779
## 140 48.9195 nan 0.0010 0.0728
## 160 47.3688 nan 0.0010 0.0729
## 180 45.8644 nan 0.0010 0.0681
## 200 44.4097 nan 0.0010 0.0729
## 220 43.0319 nan 0.0010 0.0680
## 240 41.7031 nan 0.0010 0.0584
## 260 40.4167 nan 0.0010 0.0624
## 280 39.1712 nan 0.0010 0.0557
## 300 37.9616 nan 0.0010 0.0620
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5752 nan 0.0010 0.0918
## 2 61.4665 nan 0.0010 0.1041
## 3 61.3694 nan 0.0010 0.1002
## 4 61.2602 nan 0.0010 0.1075
## 5 61.1575 nan 0.0010 0.1022
## 6 61.0566 nan 0.0010 0.0918
## 7 60.9513 nan 0.0010 0.0931
## 8 60.8466 nan 0.0010 0.1055
## 9 60.7483 nan 0.0010 0.0942
## 10 60.6509 nan 0.0010 0.1004
## 20 59.6563 nan 0.0010 0.0924
## 40 57.7118 nan 0.0010 0.1032
## 60 55.8277 nan 0.0010 0.0923
## 80 54.0062 nan 0.0010 0.0846
## 100 52.2773 nan 0.0010 0.0860
## 120 50.6081 nan 0.0010 0.0723
## 140 49.0017 nan 0.0010 0.0755
## 160 47.4488 nan 0.0010 0.0786
## 180 45.9643 nan 0.0010 0.0679
## 200 44.5389 nan 0.0010 0.0662
## 220 43.1518 nan 0.0010 0.0711
## 240 41.8186 nan 0.0010 0.0630
## 260 40.5275 nan 0.0010 0.0573
## 280 39.2799 nan 0.0010 0.0581
## 300 38.0747 nan 0.0010 0.0640
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2783 nan 0.0050 0.3971
## 2 60.9015 nan 0.0050 0.3813
## 3 60.5092 nan 0.0050 0.3856
## 4 60.1043 nan 0.0050 0.3929
## 5 59.7192 nan 0.0050 0.3542
## 6 59.3430 nan 0.0050 0.3422
## 7 58.9605 nan 0.0050 0.3800
## 8 58.6070 nan 0.0050 0.3623
## 9 58.2257 nan 0.0050 0.3569
## 10 57.8269 nan 0.0050 0.4067
## 20 54.4708 nan 0.0050 0.3298
## 40 48.4795 nan 0.0050 0.2272
## 60 43.3999 nan 0.0050 0.2242
## 80 39.0252 nan 0.0050 0.1907
## 100 35.2994 nan 0.0050 0.1672
## 120 31.9936 nan 0.0050 0.1323
## 140 29.1616 nan 0.0050 0.1132
## 160 26.6106 nan 0.0050 0.1247
## 180 24.4169 nan 0.0050 0.0942
## 200 22.4278 nan 0.0050 0.1037
## 220 20.7022 nan 0.0050 0.0673
## 240 19.2136 nan 0.0050 0.0589
## 260 17.8531 nan 0.0050 0.0514
## 280 16.6172 nan 0.0050 0.0627
## 300 15.5361 nan 0.0050 0.0559
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2776 nan 0.0050 0.4051
## 2 60.8472 nan 0.0050 0.4086
## 3 60.4971 nan 0.0050 0.3753
## 4 60.1151 nan 0.0050 0.3856
## 5 59.7731 nan 0.0050 0.3583
## 6 59.4182 nan 0.0050 0.3817
## 7 59.0349 nan 0.0050 0.3691
## 8 58.6929 nan 0.0050 0.3481
## 9 58.3439 nan 0.0050 0.3704
## 10 57.9935 nan 0.0050 0.3816
## 20 54.5136 nan 0.0050 0.3409
## 40 48.3992 nan 0.0050 0.2631
## 60 43.2174 nan 0.0050 0.2064
## 80 38.8553 nan 0.0050 0.1993
## 100 35.0900 nan 0.0050 0.1819
## 120 31.7898 nan 0.0050 0.1474
## 140 28.8808 nan 0.0050 0.1301
## 160 26.3854 nan 0.0050 0.1055
## 180 24.1791 nan 0.0050 0.0917
## 200 22.2288 nan 0.0050 0.0814
## 220 20.4739 nan 0.0050 0.0792
## 240 18.9397 nan 0.0050 0.0614
## 260 17.6010 nan 0.0050 0.0605
## 280 16.4316 nan 0.0050 0.0509
## 300 15.3380 nan 0.0050 0.0443
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2697 nan 0.0050 0.4000
## 2 60.8698 nan 0.0050 0.3973
## 3 60.4941 nan 0.0050 0.3869
## 4 60.0983 nan 0.0050 0.3722
## 5 59.6942 nan 0.0050 0.3950
## 6 59.3163 nan 0.0050 0.3786
## 7 58.9599 nan 0.0050 0.3796
## 8 58.6013 nan 0.0050 0.3646
## 9 58.2537 nan 0.0050 0.3642
## 10 57.9199 nan 0.0050 0.3671
## 20 54.5207 nan 0.0050 0.2980
## 40 48.6491 nan 0.0050 0.2845
## 60 43.5175 nan 0.0050 0.2450
## 80 39.1604 nan 0.0050 0.2098
## 100 35.2864 nan 0.0050 0.1683
## 120 32.0071 nan 0.0050 0.1350
## 140 29.1216 nan 0.0050 0.1129
## 160 26.5547 nan 0.0050 0.1107
## 180 24.3734 nan 0.0050 0.0964
## 200 22.3564 nan 0.0050 0.0853
## 220 20.6550 nan 0.0050 0.0795
## 240 19.1932 nan 0.0050 0.0617
## 260 17.8295 nan 0.0050 0.0608
## 280 16.6175 nan 0.0050 0.0524
## 300 15.5674 nan 0.0050 0.0524
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1830 nan 0.0050 0.4654
## 2 60.7067 nan 0.0050 0.4476
## 3 60.2429 nan 0.0050 0.4359
## 4 59.7364 nan 0.0050 0.5290
## 5 59.2780 nan 0.0050 0.4256
## 6 58.8459 nan 0.0050 0.4108
## 7 58.3823 nan 0.0050 0.4594
## 8 57.9352 nan 0.0050 0.4539
## 9 57.4938 nan 0.0050 0.4368
## 10 57.0639 nan 0.0050 0.4294
## 20 52.8591 nan 0.0050 0.3744
## 40 45.5390 nan 0.0050 0.3305
## 60 39.4490 nan 0.0050 0.2687
## 80 34.2821 nan 0.0050 0.2125
## 100 29.8812 nan 0.0050 0.1934
## 120 26.2000 nan 0.0050 0.1677
## 140 23.1070 nan 0.0050 0.1303
## 160 20.4523 nan 0.0050 0.1073
## 180 18.2760 nan 0.0050 0.0761
## 200 16.4371 nan 0.0050 0.0852
## 220 14.8167 nan 0.0050 0.0700
## 240 13.4373 nan 0.0050 0.0597
## 260 12.2621 nan 0.0050 0.0524
## 280 11.1978 nan 0.0050 0.0454
## 300 10.3088 nan 0.0050 0.0420
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2151 nan 0.0050 0.4906
## 2 60.7572 nan 0.0050 0.4373
## 3 60.3042 nan 0.0050 0.4558
## 4 59.8199 nan 0.0050 0.4555
## 5 59.3291 nan 0.0050 0.4720
## 6 58.8662 nan 0.0050 0.4283
## 7 58.4213 nan 0.0050 0.4443
## 8 57.9658 nan 0.0050 0.4381
## 9 57.5262 nan 0.0050 0.4438
## 10 57.0856 nan 0.0050 0.4167
## 20 52.8812 nan 0.0050 0.4257
## 40 45.5575 nan 0.0050 0.3653
## 60 39.3184 nan 0.0050 0.2947
## 80 34.2376 nan 0.0050 0.2148
## 100 29.9311 nan 0.0050 0.1894
## 120 26.1990 nan 0.0050 0.2031
## 140 23.0655 nan 0.0050 0.1695
## 160 20.4377 nan 0.0050 0.1192
## 180 18.1880 nan 0.0050 0.0998
## 200 16.3384 nan 0.0050 0.0808
## 220 14.7296 nan 0.0050 0.0636
## 240 13.3731 nan 0.0050 0.0435
## 260 12.1940 nan 0.0050 0.0368
## 280 11.1771 nan 0.0050 0.0441
## 300 10.2979 nan 0.0050 0.0383
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1808 nan 0.0050 0.4316
## 2 60.7659 nan 0.0050 0.4467
## 3 60.2800 nan 0.0050 0.4696
## 4 59.8213 nan 0.0050 0.4357
## 5 59.3509 nan 0.0050 0.5039
## 6 58.9090 nan 0.0050 0.4500
## 7 58.4616 nan 0.0050 0.4423
## 8 58.0778 nan 0.0050 0.3849
## 9 57.6241 nan 0.0050 0.4718
## 10 57.2040 nan 0.0050 0.4311
## 20 52.9591 nan 0.0050 0.4080
## 40 45.6287 nan 0.0050 0.3136
## 60 39.4698 nan 0.0050 0.2880
## 80 34.3286 nan 0.0050 0.2232
## 100 30.0043 nan 0.0050 0.1744
## 120 26.3162 nan 0.0050 0.1648
## 140 23.2419 nan 0.0050 0.1391
## 160 20.5391 nan 0.0050 0.1085
## 180 18.2934 nan 0.0050 0.0940
## 200 16.4200 nan 0.0050 0.0679
## 220 14.8335 nan 0.0050 0.0722
## 240 13.4723 nan 0.0050 0.0529
## 260 12.3257 nan 0.0050 0.0559
## 280 11.2918 nan 0.0050 0.0400
## 300 10.4362 nan 0.0050 0.0363
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1330 nan 0.0050 0.5091
## 2 60.6447 nan 0.0050 0.4587
## 3 60.1690 nan 0.0050 0.5010
## 4 59.6856 nan 0.0050 0.4901
## 5 59.2059 nan 0.0050 0.5075
## 6 58.7084 nan 0.0050 0.4618
## 7 58.2163 nan 0.0050 0.4813
## 8 57.7228 nan 0.0050 0.4496
## 9 57.2316 nan 0.0050 0.4614
## 10 56.7380 nan 0.0050 0.5005
## 20 52.2279 nan 0.0050 0.4698
## 40 44.4269 nan 0.0050 0.3353
## 60 37.9684 nan 0.0050 0.3374
## 80 32.5646 nan 0.0050 0.2188
## 100 28.1377 nan 0.0050 0.2214
## 120 24.3674 nan 0.0050 0.1764
## 140 21.2805 nan 0.0050 0.1468
## 160 18.6353 nan 0.0050 0.1180
## 180 16.4544 nan 0.0050 0.1111
## 200 14.5591 nan 0.0050 0.0849
## 220 12.9890 nan 0.0050 0.0747
## 240 11.6074 nan 0.0050 0.0515
## 260 10.4024 nan 0.0050 0.0508
## 280 9.4173 nan 0.0050 0.0434
## 300 8.5815 nan 0.0050 0.0339
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1602 nan 0.0050 0.5203
## 2 60.6272 nan 0.0050 0.4734
## 3 60.1305 nan 0.0050 0.4727
## 4 59.6543 nan 0.0050 0.4816
## 5 59.1605 nan 0.0050 0.4878
## 6 58.6749 nan 0.0050 0.4950
## 7 58.1919 nan 0.0050 0.4677
## 8 57.7188 nan 0.0050 0.4518
## 9 57.2534 nan 0.0050 0.4748
## 10 56.7775 nan 0.0050 0.4909
## 20 52.2916 nan 0.0050 0.3899
## 40 44.4493 nan 0.0050 0.3818
## 60 38.0357 nan 0.0050 0.2793
## 80 32.6369 nan 0.0050 0.2218
## 100 28.1632 nan 0.0050 0.1984
## 120 24.4238 nan 0.0050 0.1775
## 140 21.3026 nan 0.0050 0.1445
## 160 18.6428 nan 0.0050 0.1136
## 180 16.4251 nan 0.0050 0.0945
## 200 14.5807 nan 0.0050 0.0757
## 220 13.0117 nan 0.0050 0.0722
## 240 11.6507 nan 0.0050 0.0517
## 260 10.4713 nan 0.0050 0.0503
## 280 9.4801 nan 0.0050 0.0318
## 300 8.6375 nan 0.0050 0.0344
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1812 nan 0.0050 0.5249
## 2 60.6427 nan 0.0050 0.5566
## 3 60.1340 nan 0.0050 0.4682
## 4 59.6046 nan 0.0050 0.4825
## 5 59.1073 nan 0.0050 0.4719
## 6 58.6292 nan 0.0050 0.4658
## 7 58.1536 nan 0.0050 0.4856
## 8 57.6924 nan 0.0050 0.4635
## 9 57.2128 nan 0.0050 0.4135
## 10 56.7449 nan 0.0050 0.4880
## 20 52.2989 nan 0.0050 0.3770
## 40 44.5443 nan 0.0050 0.3144
## 60 38.0760 nan 0.0050 0.2804
## 80 32.7469 nan 0.0050 0.2337
## 100 28.2767 nan 0.0050 0.1800
## 120 24.5490 nan 0.0050 0.1628
## 140 21.4318 nan 0.0050 0.1291
## 160 18.8402 nan 0.0050 0.1113
## 180 16.6371 nan 0.0050 0.1004
## 200 14.7545 nan 0.0050 0.0864
## 220 13.1628 nan 0.0050 0.0588
## 240 11.8352 nan 0.0050 0.0558
## 260 10.7015 nan 0.0050 0.0469
## 280 9.7504 nan 0.0050 0.0394
## 300 8.8867 nan 0.0050 0.0399
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9075 nan 0.0100 0.7719
## 2 60.1673 nan 0.0100 0.7468
## 3 59.5463 nan 0.0100 0.5723
## 4 58.7560 nan 0.0100 0.7225
## 5 57.9708 nan 0.0100 0.7583
## 6 57.2757 nan 0.0100 0.6932
## 7 56.5644 nan 0.0100 0.7256
## 8 55.8482 nan 0.0100 0.6384
## 9 55.1271 nan 0.0100 0.6793
## 10 54.3911 nan 0.0100 0.6805
## 20 48.3563 nan 0.0100 0.5674
## 40 38.8726 nan 0.0100 0.3889
## 60 31.8602 nan 0.0100 0.2683
## 80 26.5258 nan 0.0100 0.2438
## 100 22.3383 nan 0.0100 0.1609
## 120 19.1096 nan 0.0100 0.1399
## 140 16.5319 nan 0.0100 0.1029
## 160 14.4076 nan 0.0100 0.0796
## 180 12.7199 nan 0.0100 0.0627
## 200 11.3448 nan 0.0100 0.0524
## 220 10.2360 nan 0.0100 0.0487
## 240 9.2499 nan 0.0100 0.0291
## 260 8.4665 nan 0.0100 0.0201
## 280 7.7449 nan 0.0100 0.0233
## 300 7.1551 nan 0.0100 0.0153
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8810 nan 0.0100 0.7627
## 2 60.1482 nan 0.0100 0.7512
## 3 59.3725 nan 0.0100 0.7462
## 4 58.6402 nan 0.0100 0.7107
## 5 57.8960 nan 0.0100 0.7169
## 6 57.0935 nan 0.0100 0.7421
## 7 56.3902 nan 0.0100 0.6938
## 8 55.6675 nan 0.0100 0.7050
## 9 54.9745 nan 0.0100 0.6438
## 10 54.2310 nan 0.0100 0.6057
## 20 48.0588 nan 0.0100 0.5211
## 40 38.8998 nan 0.0100 0.4072
## 60 31.7863 nan 0.0100 0.2860
## 80 26.3803 nan 0.0100 0.2056
## 100 22.3363 nan 0.0100 0.1652
## 120 19.0405 nan 0.0100 0.1184
## 140 16.5070 nan 0.0100 0.1081
## 160 14.4062 nan 0.0100 0.0854
## 180 12.7706 nan 0.0100 0.0607
## 200 11.3793 nan 0.0100 0.0418
## 220 10.2799 nan 0.0100 0.0479
## 240 9.2884 nan 0.0100 0.0276
## 260 8.4693 nan 0.0100 0.0315
## 280 7.7748 nan 0.0100 0.0262
## 300 7.1924 nan 0.0100 0.0215
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8597 nan 0.0100 0.8147
## 2 60.0959 nan 0.0100 0.7461
## 3 59.3919 nan 0.0100 0.7224
## 4 58.6858 nan 0.0100 0.7244
## 5 57.9643 nan 0.0100 0.6853
## 6 57.2426 nan 0.0100 0.7211
## 7 56.5006 nan 0.0100 0.7536
## 8 55.8149 nan 0.0100 0.7068
## 9 55.1183 nan 0.0100 0.6647
## 10 54.4176 nan 0.0100 0.6585
## 20 48.4027 nan 0.0100 0.5115
## 40 39.0868 nan 0.0100 0.3812
## 60 32.1574 nan 0.0100 0.3059
## 80 26.7617 nan 0.0100 0.2117
## 100 22.5894 nan 0.0100 0.1831
## 120 19.3037 nan 0.0100 0.1291
## 140 16.6352 nan 0.0100 0.1092
## 160 14.5590 nan 0.0100 0.0874
## 180 12.8659 nan 0.0100 0.0782
## 200 11.4568 nan 0.0100 0.0454
## 220 10.3422 nan 0.0100 0.0312
## 240 9.4072 nan 0.0100 0.0359
## 260 8.5922 nan 0.0100 0.0211
## 280 7.9025 nan 0.0100 0.0310
## 300 7.3207 nan 0.0100 0.0211
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.6783 nan 0.0100 0.9775
## 2 59.6991 nan 0.0100 1.0078
## 3 58.8186 nan 0.0100 0.9251
## 4 57.8871 nan 0.0100 0.8702
## 5 57.0640 nan 0.0100 0.8302
## 6 56.1475 nan 0.0100 0.9264
## 7 55.3042 nan 0.0100 0.8706
## 8 54.5235 nan 0.0100 0.7700
## 9 53.7293 nan 0.0100 0.7438
## 10 52.8892 nan 0.0100 0.7783
## 20 45.4102 nan 0.0100 0.6396
## 40 34.1831 nan 0.0100 0.4932
## 60 26.2401 nan 0.0100 0.3355
## 80 20.4376 nan 0.0100 0.2002
## 100 16.3589 nan 0.0100 0.1633
## 120 13.4698 nan 0.0100 0.1374
## 140 11.2289 nan 0.0100 0.0678
## 160 9.5090 nan 0.0100 0.0729
## 180 8.1624 nan 0.0100 0.0557
## 200 7.1380 nan 0.0100 0.0414
## 220 6.3042 nan 0.0100 0.0342
## 240 5.6461 nan 0.0100 0.0218
## 260 5.1547 nan 0.0100 0.0196
## 280 4.7323 nan 0.0100 0.0133
## 300 4.4152 nan 0.0100 0.0122
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.6727 nan 0.0100 0.9012
## 2 59.7470 nan 0.0100 0.9457
## 3 58.7797 nan 0.0100 0.8480
## 4 57.9443 nan 0.0100 0.9127
## 5 57.0877 nan 0.0100 0.8463
## 6 56.2177 nan 0.0100 0.8476
## 7 55.3670 nan 0.0100 0.8475
## 8 54.5885 nan 0.0100 0.7700
## 9 53.7459 nan 0.0100 0.8317
## 10 52.9154 nan 0.0100 0.7974
## 20 45.6334 nan 0.0100 0.6307
## 40 34.1926 nan 0.0100 0.5088
## 60 26.1890 nan 0.0100 0.3524
## 80 20.3465 nan 0.0100 0.2354
## 100 16.2138 nan 0.0100 0.1529
## 120 13.2621 nan 0.0100 0.0917
## 140 11.1115 nan 0.0100 0.0949
## 160 9.4296 nan 0.0100 0.0879
## 180 8.1197 nan 0.0100 0.0446
## 200 7.1164 nan 0.0100 0.0309
## 220 6.3283 nan 0.0100 0.0296
## 240 5.7065 nan 0.0100 0.0167
## 260 5.2171 nan 0.0100 0.0093
## 280 4.8251 nan 0.0100 0.0112
## 300 4.5045 nan 0.0100 0.0105
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.7133 nan 0.0100 1.0327
## 2 59.7679 nan 0.0100 0.9286
## 3 58.8603 nan 0.0100 0.9304
## 4 57.9225 nan 0.0100 0.8650
## 5 57.0058 nan 0.0100 0.8081
## 6 56.1865 nan 0.0100 0.8451
## 7 55.3374 nan 0.0100 0.7808
## 8 54.5196 nan 0.0100 0.8598
## 9 53.6796 nan 0.0100 0.8297
## 10 52.8977 nan 0.0100 0.7434
## 20 45.4212 nan 0.0100 0.6695
## 40 33.8910 nan 0.0100 0.3997
## 60 25.9667 nan 0.0100 0.2979
## 80 20.3147 nan 0.0100 0.2107
## 100 16.2948 nan 0.0100 0.1688
## 120 13.4299 nan 0.0100 0.1209
## 140 11.2619 nan 0.0100 0.0814
## 160 9.6418 nan 0.0100 0.0523
## 180 8.4043 nan 0.0100 0.0527
## 200 7.4223 nan 0.0100 0.0326
## 220 6.6061 nan 0.0100 0.0261
## 240 6.0130 nan 0.0100 0.0181
## 260 5.5250 nan 0.0100 0.0218
## 280 5.1170 nan 0.0100 0.0132
## 300 4.8022 nan 0.0100 0.0114
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.6367 nan 0.0100 1.0849
## 2 59.6517 nan 0.0100 0.9519
## 3 58.6415 nan 0.0100 0.8643
## 4 57.6936 nan 0.0100 0.8567
## 5 56.7017 nan 0.0100 0.9336
## 6 55.8332 nan 0.0100 0.9269
## 7 54.9221 nan 0.0100 0.8480
## 8 53.9662 nan 0.0100 0.9649
## 9 53.1204 nan 0.0100 0.8142
## 10 52.2155 nan 0.0100 0.9533
## 20 44.4108 nan 0.0100 0.6595
## 40 32.3732 nan 0.0100 0.5001
## 60 24.1623 nan 0.0100 0.2891
## 80 18.4263 nan 0.0100 0.2347
## 100 14.2943 nan 0.0100 0.1618
## 120 11.3320 nan 0.0100 0.1275
## 140 9.2280 nan 0.0100 0.0800
## 160 7.6760 nan 0.0100 0.0634
## 180 6.5379 nan 0.0100 0.0414
## 200 5.6392 nan 0.0100 0.0255
## 220 4.9844 nan 0.0100 0.0273
## 240 4.5098 nan 0.0100 0.0121
## 260 4.1147 nan 0.0100 0.0124
## 280 3.8155 nan 0.0100 0.0062
## 300 3.5595 nan 0.0100 0.0003
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.5890 nan 0.0100 0.9595
## 2 59.5816 nan 0.0100 0.8968
## 3 58.5775 nan 0.0100 0.9467
## 4 57.6077 nan 0.0100 0.9741
## 5 56.6631 nan 0.0100 0.9679
## 6 55.6878 nan 0.0100 0.9826
## 7 54.7981 nan 0.0100 0.8726
## 8 53.9340 nan 0.0100 0.7607
## 9 53.0132 nan 0.0100 0.8446
## 10 52.1460 nan 0.0100 0.8106
## 20 44.3836 nan 0.0100 0.7440
## 40 32.4936 nan 0.0100 0.4909
## 60 24.2776 nan 0.0100 0.3345
## 80 18.5524 nan 0.0100 0.2482
## 100 14.5040 nan 0.0100 0.1620
## 120 11.5814 nan 0.0100 0.1209
## 140 9.4508 nan 0.0100 0.0575
## 160 7.8671 nan 0.0100 0.0605
## 180 6.6977 nan 0.0100 0.0416
## 200 5.8383 nan 0.0100 0.0286
## 220 5.1542 nan 0.0100 0.0248
## 240 4.6535 nan 0.0100 0.0131
## 260 4.2437 nan 0.0100 0.0136
## 280 3.9533 nan 0.0100 0.0087
## 300 3.7142 nan 0.0100 0.0066
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.6183 nan 0.0100 0.9044
## 2 59.5731 nan 0.0100 1.0981
## 3 58.6662 nan 0.0100 0.9714
## 4 57.7146 nan 0.0100 0.9618
## 5 56.8149 nan 0.0100 0.9901
## 6 55.8779 nan 0.0100 0.8153
## 7 54.9436 nan 0.0100 0.9303
## 8 53.9921 nan 0.0100 1.0013
## 9 53.0976 nan 0.0100 0.8245
## 10 52.2514 nan 0.0100 0.8046
## 20 44.4107 nan 0.0100 0.7137
## 40 32.6014 nan 0.0100 0.4834
## 60 24.5004 nan 0.0100 0.3067
## 80 18.6944 nan 0.0100 0.2504
## 100 14.6717 nan 0.0100 0.1576
## 120 11.7949 nan 0.0100 0.0935
## 140 9.7117 nan 0.0100 0.0870
## 160 8.1107 nan 0.0100 0.0480
## 180 6.9391 nan 0.0100 0.0374
## 200 6.0577 nan 0.0100 0.0225
## 220 5.3802 nan 0.0100 0.0260
## 240 4.8672 nan 0.0100 0.0173
## 260 4.4711 nan 0.0100 0.0111
## 280 4.1721 nan 0.0100 0.0085
## 300 3.9453 nan 0.0100 0.0076
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.9290 nan 0.0500 3.9218
## 2 54.6661 nan 0.0500 3.3910
## 3 51.6968 nan 0.0500 3.2650
## 4 48.8555 nan 0.0500 2.9078
## 5 46.2909 nan 0.0500 2.7390
## 6 43.6238 nan 0.0500 2.5137
## 7 41.3781 nan 0.0500 2.2461
## 8 39.2703 nan 0.0500 1.8191
## 9 37.2724 nan 0.0500 1.8410
## 10 35.4808 nan 0.0500 1.8330
## 20 22.6059 nan 0.0500 0.8573
## 40 11.3374 nan 0.0500 0.3004
## 60 7.2637 nan 0.0500 0.0901
## 80 5.2316 nan 0.0500 0.0444
## 100 4.2985 nan 0.0500 0.0031
## 120 3.8198 nan 0.0500 0.0030
## 140 3.6001 nan 0.0500 -0.0075
## 160 3.4479 nan 0.0500 -0.0197
## 180 3.3379 nan 0.0500 -0.0158
## 200 3.2366 nan 0.0500 -0.0166
## 220 3.1642 nan 0.0500 -0.0029
## 240 3.0982 nan 0.0500 -0.0024
## 260 3.0434 nan 0.0500 -0.0054
## 280 2.9935 nan 0.0500 -0.0118
## 300 2.9538 nan 0.0500 -0.0059
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.0208 nan 0.0500 4.1267
## 2 54.2695 nan 0.0500 3.3565
## 3 51.3393 nan 0.0500 3.0732
## 4 48.5633 nan 0.0500 2.8138
## 5 45.7020 nan 0.0500 2.7222
## 6 43.3309 nan 0.0500 2.5179
## 7 41.1164 nan 0.0500 1.9959
## 8 39.0289 nan 0.0500 1.6523
## 9 36.8639 nan 0.0500 1.9991
## 10 35.0592 nan 0.0500 1.8613
## 20 22.1900 nan 0.0500 0.9783
## 40 11.1411 nan 0.0500 0.2189
## 60 6.9161 nan 0.0500 0.1071
## 80 5.1912 nan 0.0500 0.0536
## 100 4.2815 nan 0.0500 0.0261
## 120 3.8364 nan 0.0500 -0.0010
## 140 3.5945 nan 0.0500 -0.0188
## 160 3.4477 nan 0.0500 0.0016
## 180 3.3750 nan 0.0500 -0.0020
## 200 3.2920 nan 0.0500 -0.0033
## 220 3.2279 nan 0.0500 -0.0056
## 240 3.1713 nan 0.0500 -0.0051
## 260 3.1272 nan 0.0500 -0.0011
## 280 3.0844 nan 0.0500 -0.0135
## 300 3.0449 nan 0.0500 -0.0071
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.6185 nan 0.0500 3.6999
## 2 54.2918 nan 0.0500 3.4201
## 3 51.3733 nan 0.0500 3.2330
## 4 48.4261 nan 0.0500 2.8030
## 5 45.8065 nan 0.0500 2.0887
## 6 43.2685 nan 0.0500 2.4809
## 7 40.9358 nan 0.0500 2.0922
## 8 38.8393 nan 0.0500 2.0829
## 9 37.1247 nan 0.0500 1.8230
## 10 35.2782 nan 0.0500 1.7651
## 20 21.8898 nan 0.0500 0.7843
## 40 11.3344 nan 0.0500 0.2862
## 60 7.3124 nan 0.0500 0.1312
## 80 5.4660 nan 0.0500 0.0372
## 100 4.5970 nan 0.0500 0.0145
## 120 4.1428 nan 0.0500 0.0085
## 140 3.9176 nan 0.0500 -0.0018
## 160 3.7573 nan 0.0500 -0.0030
## 180 3.6503 nan 0.0500 -0.0156
## 200 3.5509 nan 0.0500 -0.0104
## 220 3.4659 nan 0.0500 -0.0043
## 240 3.3905 nan 0.0500 -0.0031
## 260 3.3234 nan 0.0500 -0.0131
## 280 3.2740 nan 0.0500 -0.0068
## 300 3.2419 nan 0.0500 -0.0050
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.9041 nan 0.0500 4.5379
## 2 52.6425 nan 0.0500 4.2821
## 3 48.5497 nan 0.0500 3.9687
## 4 44.8775 nan 0.0500 3.8780
## 5 41.7358 nan 0.0500 3.1236
## 6 39.0221 nan 0.0500 2.8241
## 7 36.2595 nan 0.0500 2.9064
## 8 33.6910 nan 0.0500 2.4489
## 9 31.5008 nan 0.0500 1.9663
## 10 29.2807 nan 0.0500 2.1807
## 20 16.1838 nan 0.0500 0.9192
## 40 7.2604 nan 0.0500 0.2079
## 60 4.5476 nan 0.0500 0.0138
## 80 3.6329 nan 0.0500 -0.0078
## 100 3.2440 nan 0.0500 -0.0160
## 120 2.9911 nan 0.0500 -0.0105
## 140 2.8058 nan 0.0500 -0.0278
## 160 2.6569 nan 0.0500 -0.0076
## 180 2.5331 nan 0.0500 -0.0084
## 200 2.4369 nan 0.0500 -0.0060
## 220 2.3383 nan 0.0500 -0.0096
## 240 2.2542 nan 0.0500 -0.0115
## 260 2.1719 nan 0.0500 -0.0117
## 280 2.1032 nan 0.0500 -0.0015
## 300 2.0252 nan 0.0500 -0.0008
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.8312 nan 0.0500 4.9747
## 2 52.8577 nan 0.0500 4.1456
## 3 48.7576 nan 0.0500 3.6971
## 4 45.2963 nan 0.0500 3.4640
## 5 41.6868 nan 0.0500 3.5017
## 6 38.7881 nan 0.0500 2.8659
## 7 36.0464 nan 0.0500 2.2475
## 8 33.5846 nan 0.0500 2.2149
## 9 31.3158 nan 0.0500 2.5227
## 10 29.2207 nan 0.0500 2.0970
## 20 15.8127 nan 0.0500 0.6990
## 40 7.0275 nan 0.0500 0.1679
## 60 4.5008 nan 0.0500 0.0398
## 80 3.7005 nan 0.0500 0.0031
## 100 3.3385 nan 0.0500 -0.0072
## 120 3.1661 nan 0.0500 0.0002
## 140 3.0046 nan 0.0500 -0.0054
## 160 2.8677 nan 0.0500 -0.0062
## 180 2.7345 nan 0.0500 -0.0038
## 200 2.6368 nan 0.0500 -0.0115
## 220 2.5515 nan 0.0500 -0.0105
## 240 2.4681 nan 0.0500 -0.0138
## 260 2.3986 nan 0.0500 -0.0082
## 280 2.3388 nan 0.0500 -0.0152
## 300 2.2692 nan 0.0500 -0.0162
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.8431 nan 0.0500 4.8625
## 2 52.3324 nan 0.0500 4.1389
## 3 48.9190 nan 0.0500 3.5556
## 4 45.2067 nan 0.0500 4.1151
## 5 42.0855 nan 0.0500 3.3221
## 6 39.2637 nan 0.0500 2.6631
## 7 36.3941 nan 0.0500 2.5900
## 8 34.2319 nan 0.0500 2.2766
## 9 31.8765 nan 0.0500 2.3301
## 10 29.6670 nan 0.0500 2.1790
## 20 16.3291 nan 0.0500 0.7847
## 40 7.2622 nan 0.0500 0.2108
## 60 4.6258 nan 0.0500 0.0344
## 80 3.8425 nan 0.0500 0.0105
## 100 3.5106 nan 0.0500 -0.0065
## 120 3.3045 nan 0.0500 -0.0083
## 140 3.1337 nan 0.0500 -0.0107
## 160 3.0281 nan 0.0500 -0.0134
## 180 2.9150 nan 0.0500 -0.0153
## 200 2.8093 nan 0.0500 -0.0090
## 220 2.7182 nan 0.0500 -0.0034
## 240 2.6258 nan 0.0500 -0.0055
## 260 2.5556 nan 0.0500 -0.0110
## 280 2.4834 nan 0.0500 -0.0086
## 300 2.4192 nan 0.0500 -0.0057
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.6223 nan 0.0500 4.6068
## 2 52.0454 nan 0.0500 3.9362
## 3 47.7987 nan 0.0500 4.6124
## 4 44.0973 nan 0.0500 3.4244
## 5 40.7177 nan 0.0500 2.6974
## 6 37.7195 nan 0.0500 2.9861
## 7 34.9662 nan 0.0500 2.8790
## 8 32.4238 nan 0.0500 2.5195
## 9 30.2543 nan 0.0500 1.9335
## 10 28.0770 nan 0.0500 1.9197
## 20 14.2186 nan 0.0500 0.8444
## 40 5.7110 nan 0.0500 0.1690
## 60 3.5959 nan 0.0500 0.0323
## 80 2.9164 nan 0.0500 0.0051
## 100 2.5708 nan 0.0500 -0.0241
## 120 2.3789 nan 0.0500 -0.0129
## 140 2.1883 nan 0.0500 -0.0177
## 160 2.0574 nan 0.0500 -0.0091
## 180 1.9402 nan 0.0500 -0.0130
## 200 1.8390 nan 0.0500 -0.0056
## 220 1.7449 nan 0.0500 -0.0071
## 240 1.6560 nan 0.0500 -0.0126
## 260 1.5858 nan 0.0500 -0.0075
## 280 1.5177 nan 0.0500 -0.0201
## 300 1.4318 nan 0.0500 -0.0135
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.4385 nan 0.0500 4.9379
## 2 51.7482 nan 0.0500 4.4645
## 3 47.6996 nan 0.0500 3.3198
## 4 43.8418 nan 0.0500 3.8115
## 5 40.2513 nan 0.0500 3.6624
## 6 37.1164 nan 0.0500 3.0519
## 7 34.4391 nan 0.0500 2.8207
## 8 31.7655 nan 0.0500 2.4583
## 9 29.4455 nan 0.0500 2.1095
## 10 27.2464 nan 0.0500 2.1886
## 20 14.0516 nan 0.0500 0.8260
## 40 5.7598 nan 0.0500 0.1895
## 60 3.6920 nan 0.0500 0.0364
## 80 3.0467 nan 0.0500 -0.0043
## 100 2.7392 nan 0.0500 -0.0107
## 120 2.5398 nan 0.0500 -0.0094
## 140 2.3832 nan 0.0500 -0.0130
## 160 2.2694 nan 0.0500 -0.0144
## 180 2.1617 nan 0.0500 -0.0203
## 200 2.0633 nan 0.0500 -0.0156
## 220 1.9811 nan 0.0500 -0.0212
## 240 1.9088 nan 0.0500 -0.0078
## 260 1.8377 nan 0.0500 -0.0128
## 280 1.7720 nan 0.0500 -0.0127
## 300 1.7060 nan 0.0500 -0.0126
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.7177 nan 0.0500 5.4157
## 2 52.1714 nan 0.0500 4.2955
## 3 47.9535 nan 0.0500 4.2112
## 4 44.3927 nan 0.0500 3.4936
## 5 40.8297 nan 0.0500 3.2385
## 6 37.8011 nan 0.0500 3.0375
## 7 35.1115 nan 0.0500 2.7470
## 8 32.5726 nan 0.0500 2.5793
## 9 30.2418 nan 0.0500 2.2640
## 10 27.9758 nan 0.0500 2.2615
## 20 14.4773 nan 0.0500 0.7936
## 40 6.0493 nan 0.0500 0.1634
## 60 4.0228 nan 0.0500 0.0262
## 80 3.4006 nan 0.0500 -0.0057
## 100 3.1356 nan 0.0500 -0.0093
## 120 2.9304 nan 0.0500 -0.0084
## 140 2.7850 nan 0.0500 -0.0087
## 160 2.6224 nan 0.0500 -0.0067
## 180 2.5142 nan 0.0500 -0.0078
## 200 2.4106 nan 0.0500 -0.0208
## 220 2.3186 nan 0.0500 -0.0127
## 240 2.2317 nan 0.0500 -0.0085
## 260 2.1436 nan 0.0500 -0.0178
## 280 2.0814 nan 0.0500 -0.0205
## 300 2.0171 nan 0.0500 -0.0104
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.0598 nan 0.1000 7.2866
## 2 47.9948 nan 0.1000 6.3642
## 3 42.4859 nan 0.1000 4.8873
## 4 38.3385 nan 0.1000 4.2293
## 5 34.5869 nan 0.1000 3.8770
## 6 31.3167 nan 0.1000 3.1863
## 7 28.1506 nan 0.1000 2.7186
## 8 25.3070 nan 0.1000 2.3453
## 9 23.3236 nan 0.1000 2.1318
## 10 21.4285 nan 0.1000 1.8041
## 20 11.1266 nan 0.1000 0.4477
## 40 5.2272 nan 0.1000 0.0964
## 60 3.9630 nan 0.1000 0.0187
## 80 3.6233 nan 0.1000 -0.0003
## 100 3.4320 nan 0.1000 -0.0404
## 120 3.2812 nan 0.1000 -0.0169
## 140 3.1827 nan 0.1000 -0.0189
## 160 3.1222 nan 0.1000 -0.0055
## 180 3.0392 nan 0.1000 -0.0470
## 200 2.9652 nan 0.1000 -0.0340
## 220 2.8975 nan 0.1000 -0.0179
## 240 2.8218 nan 0.1000 -0.0223
## 260 2.7744 nan 0.1000 -0.0098
## 280 2.7264 nan 0.1000 -0.0152
## 300 2.6785 nan 0.1000 -0.0092
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.2518 nan 0.1000 7.4043
## 2 47.7944 nan 0.1000 5.0742
## 3 42.7655 nan 0.1000 5.2990
## 4 38.2346 nan 0.1000 3.9695
## 5 34.3370 nan 0.1000 3.9339
## 6 31.1457 nan 0.1000 3.2594
## 7 28.5165 nan 0.1000 2.3665
## 8 25.8359 nan 0.1000 2.5402
## 9 23.6250 nan 0.1000 1.8117
## 10 21.8261 nan 0.1000 1.4364
## 20 11.0295 nan 0.1000 0.5868
## 40 5.2531 nan 0.1000 0.1007
## 60 3.9786 nan 0.1000 0.0030
## 80 3.5962 nan 0.1000 -0.0140
## 100 3.3644 nan 0.1000 -0.0046
## 120 3.2620 nan 0.1000 -0.0173
## 140 3.1390 nan 0.1000 -0.0248
## 160 3.0458 nan 0.1000 -0.0151
## 180 2.9810 nan 0.1000 -0.0224
## 200 2.9291 nan 0.1000 -0.0114
## 220 2.8816 nan 0.1000 -0.0096
## 240 2.8265 nan 0.1000 -0.0166
## 260 2.7695 nan 0.1000 -0.0260
## 280 2.7177 nan 0.1000 -0.0045
## 300 2.6865 nan 0.1000 -0.0080
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.1124 nan 0.1000 6.9832
## 2 47.9142 nan 0.1000 6.2010
## 3 42.3839 nan 0.1000 4.8740
## 4 38.2091 nan 0.1000 4.0357
## 5 34.3341 nan 0.1000 3.6121
## 6 30.5874 nan 0.1000 3.2451
## 7 27.8728 nan 0.1000 2.7444
## 8 25.5231 nan 0.1000 2.0417
## 9 23.2312 nan 0.1000 2.1470
## 10 21.2622 nan 0.1000 1.7860
## 20 10.9756 nan 0.1000 0.4736
## 40 5.4669 nan 0.1000 0.0957
## 60 4.4244 nan 0.1000 -0.0473
## 80 3.9725 nan 0.1000 -0.0260
## 100 3.7472 nan 0.1000 -0.0220
## 120 3.6015 nan 0.1000 -0.0139
## 140 3.4816 nan 0.1000 -0.0150
## 160 3.3760 nan 0.1000 -0.0254
## 180 3.2681 nan 0.1000 -0.0122
## 200 3.1714 nan 0.1000 -0.0068
## 220 3.0939 nan 0.1000 -0.0122
## 240 3.0515 nan 0.1000 -0.0227
## 260 2.9867 nan 0.1000 -0.0164
## 280 2.9525 nan 0.1000 -0.0126
## 300 2.8962 nan 0.1000 0.0000
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.9418 nan 0.1000 9.3326
## 2 45.1815 nan 0.1000 7.3196
## 3 39.5278 nan 0.1000 5.5540
## 4 33.5997 nan 0.1000 5.9612
## 5 29.4046 nan 0.1000 3.6667
## 6 26.2024 nan 0.1000 3.3637
## 7 22.7600 nan 0.1000 3.2535
## 8 20.0869 nan 0.1000 2.3040
## 9 18.1397 nan 0.1000 1.9147
## 10 16.2126 nan 0.1000 1.9464
## 20 7.3232 nan 0.1000 0.2543
## 40 3.7898 nan 0.1000 0.0363
## 60 3.0802 nan 0.1000 -0.0146
## 80 2.7411 nan 0.1000 -0.0123
## 100 2.4984 nan 0.1000 -0.0114
## 120 2.3317 nan 0.1000 -0.0115
## 140 2.1381 nan 0.1000 -0.0160
## 160 2.0341 nan 0.1000 -0.0169
## 180 1.9099 nan 0.1000 -0.0164
## 200 1.8182 nan 0.1000 -0.0130
## 220 1.7156 nan 0.1000 -0.0074
## 240 1.6612 nan 0.1000 -0.0254
## 260 1.5879 nan 0.1000 -0.0093
## 280 1.4984 nan 0.1000 -0.0059
## 300 1.4249 nan 0.1000 -0.0101
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.6823 nan 0.1000 9.1523
## 2 45.3434 nan 0.1000 7.6009
## 3 38.8219 nan 0.1000 5.6742
## 4 33.6203 nan 0.1000 4.9950
## 5 29.0713 nan 0.1000 4.0821
## 6 25.7435 nan 0.1000 3.3386
## 7 22.8253 nan 0.1000 2.7281
## 8 19.9594 nan 0.1000 2.8263
## 9 17.9356 nan 0.1000 1.5026
## 10 16.1776 nan 0.1000 1.6883
## 20 7.1688 nan 0.1000 0.3313
## 40 3.8383 nan 0.1000 0.0322
## 60 3.3134 nan 0.1000 -0.0158
## 80 2.9797 nan 0.1000 -0.0518
## 100 2.7037 nan 0.1000 -0.0004
## 120 2.5440 nan 0.1000 -0.0292
## 140 2.3539 nan 0.1000 -0.0184
## 160 2.2383 nan 0.1000 -0.0215
## 180 2.1575 nan 0.1000 -0.0179
## 200 2.0480 nan 0.1000 -0.0375
## 220 1.9663 nan 0.1000 -0.0459
## 240 1.8793 nan 0.1000 -0.0123
## 260 1.8121 nan 0.1000 -0.0164
## 280 1.7382 nan 0.1000 -0.0305
## 300 1.6582 nan 0.1000 -0.0281
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.4690 nan 0.1000 9.4976
## 2 44.8057 nan 0.1000 7.7418
## 3 38.5701 nan 0.1000 6.6249
## 4 33.2365 nan 0.1000 5.4920
## 5 29.3714 nan 0.1000 3.8651
## 6 25.3243 nan 0.1000 3.5589
## 7 22.5731 nan 0.1000 2.5740
## 8 19.8800 nan 0.1000 2.4364
## 9 17.6773 nan 0.1000 2.0926
## 10 15.8730 nan 0.1000 1.7744
## 20 7.2862 nan 0.1000 0.3651
## 40 4.0259 nan 0.1000 -0.0104
## 60 3.4738 nan 0.1000 -0.0254
## 80 3.2282 nan 0.1000 -0.0190
## 100 3.0004 nan 0.1000 -0.0467
## 120 2.8340 nan 0.1000 -0.0312
## 140 2.6902 nan 0.1000 -0.0123
## 160 2.5789 nan 0.1000 -0.0051
## 180 2.4674 nan 0.1000 -0.0137
## 200 2.3727 nan 0.1000 -0.0085
## 220 2.3198 nan 0.1000 -0.0169
## 240 2.2201 nan 0.1000 -0.0171
## 260 2.1508 nan 0.1000 -0.0164
## 280 2.0899 nan 0.1000 -0.0079
## 300 2.0041 nan 0.1000 -0.0114
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.9906 nan 0.1000 9.6537
## 2 43.9974 nan 0.1000 8.6625
## 3 37.6306 nan 0.1000 6.4437
## 4 32.0207 nan 0.1000 5.1644
## 5 27.7357 nan 0.1000 4.3199
## 6 23.8435 nan 0.1000 3.4573
## 7 20.4407 nan 0.1000 3.2926
## 8 17.8327 nan 0.1000 2.4255
## 9 15.8026 nan 0.1000 1.9861
## 10 13.9106 nan 0.1000 1.6433
## 20 5.5909 nan 0.1000 0.2542
## 40 2.8854 nan 0.1000 -0.0114
## 60 2.3899 nan 0.1000 -0.0386
## 80 2.0836 nan 0.1000 -0.0149
## 100 1.8118 nan 0.1000 -0.0134
## 120 1.6492 nan 0.1000 -0.0235
## 140 1.4961 nan 0.1000 -0.0134
## 160 1.3638 nan 0.1000 -0.0304
## 180 1.2470 nan 0.1000 -0.0137
## 200 1.1363 nan 0.1000 -0.0134
## 220 1.0520 nan 0.1000 -0.0106
## 240 0.9864 nan 0.1000 -0.0090
## 260 0.9071 nan 0.1000 -0.0028
## 280 0.8331 nan 0.1000 -0.0110
## 300 0.7727 nan 0.1000 -0.0038
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.3198 nan 0.1000 9.7593
## 2 43.2054 nan 0.1000 6.8824
## 3 36.6717 nan 0.1000 6.1212
## 4 31.0776 nan 0.1000 5.3124
## 5 26.7404 nan 0.1000 4.3729
## 6 23.2743 nan 0.1000 3.4932
## 7 19.9500 nan 0.1000 2.3761
## 8 17.5450 nan 0.1000 2.3272
## 9 15.3022 nan 0.1000 1.9909
## 10 13.5702 nan 0.1000 1.6874
## 20 5.5380 nan 0.1000 0.3129
## 40 2.9542 nan 0.1000 -0.0043
## 60 2.4476 nan 0.1000 -0.0081
## 80 2.2055 nan 0.1000 -0.0237
## 100 2.0474 nan 0.1000 -0.0287
## 120 1.8576 nan 0.1000 -0.0326
## 140 1.7082 nan 0.1000 -0.0088
## 160 1.5925 nan 0.1000 -0.0295
## 180 1.4972 nan 0.1000 -0.0180
## 200 1.4077 nan 0.1000 -0.0221
## 220 1.3142 nan 0.1000 -0.0208
## 240 1.2418 nan 0.1000 -0.0113
## 260 1.1849 nan 0.1000 -0.0089
## 280 1.1275 nan 0.1000 -0.0148
## 300 1.0760 nan 0.1000 -0.0138
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.9398 nan 0.1000 8.2044
## 2 43.7461 nan 0.1000 8.0085
## 3 37.2025 nan 0.1000 5.7411
## 4 31.5718 nan 0.1000 4.9478
## 5 27.2026 nan 0.1000 4.7527
## 6 23.4781 nan 0.1000 3.8720
## 7 20.3650 nan 0.1000 3.3211
## 8 17.9138 nan 0.1000 2.7380
## 9 15.8855 nan 0.1000 1.9018
## 10 14.0019 nan 0.1000 1.7848
## 20 5.8361 nan 0.1000 0.3750
## 40 3.3499 nan 0.1000 -0.0010
## 60 2.9246 nan 0.1000 -0.0259
## 80 2.6657 nan 0.1000 -0.0322
## 100 2.4401 nan 0.1000 -0.0239
## 120 2.2681 nan 0.1000 -0.0340
## 140 2.1163 nan 0.1000 -0.0199
## 160 1.9838 nan 0.1000 -0.0313
## 180 1.8764 nan 0.1000 -0.0170
## 200 1.7663 nan 0.1000 -0.0281
## 220 1.6758 nan 0.1000 -0.0235
## 240 1.6178 nan 0.1000 -0.0220
## 260 1.5440 nan 0.1000 -0.0076
## 280 1.4613 nan 0.1000 -0.0117
## 300 1.3975 nan 0.1000 -0.0121
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9772 nan 0.0010 0.0788
## 2 62.9002 nan 0.0010 0.0802
## 3 62.8198 nan 0.0010 0.0820
## 4 62.7419 nan 0.0010 0.0781
## 5 62.6598 nan 0.0010 0.0788
## 6 62.5759 nan 0.0010 0.0774
## 7 62.5000 nan 0.0010 0.0773
## 8 62.4176 nan 0.0010 0.0805
## 9 62.3419 nan 0.0010 0.0785
## 10 62.2650 nan 0.0010 0.0757
## 20 61.4854 nan 0.0010 0.0759
## 40 59.9726 nan 0.0010 0.0710
## 60 58.5356 nan 0.0010 0.0623
## 80 57.1168 nan 0.0010 0.0671
## 100 55.7660 nan 0.0010 0.0642
## 120 54.4601 nan 0.0010 0.0635
## 140 53.1853 nan 0.0010 0.0687
## 160 51.9460 nan 0.0010 0.0633
## 180 50.7689 nan 0.0010 0.0608
## 200 49.6280 nan 0.0010 0.0571
## 220 48.5059 nan 0.0010 0.0546
## 240 47.4263 nan 0.0010 0.0477
## 260 46.4013 nan 0.0010 0.0438
## 280 45.3917 nan 0.0010 0.0477
## 300 44.4110 nan 0.0010 0.0479
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9861 nan 0.0010 0.0732
## 2 62.9009 nan 0.0010 0.0810
## 3 62.8185 nan 0.0010 0.0684
## 4 62.7456 nan 0.0010 0.0759
## 5 62.6587 nan 0.0010 0.0830
## 6 62.5838 nan 0.0010 0.0756
## 7 62.4984 nan 0.0010 0.0774
## 8 62.4166 nan 0.0010 0.0807
## 9 62.3383 nan 0.0010 0.0792
## 10 62.2638 nan 0.0010 0.0759
## 20 61.4875 nan 0.0010 0.0732
## 40 59.9634 nan 0.0010 0.0766
## 60 58.4709 nan 0.0010 0.0682
## 80 57.0113 nan 0.0010 0.0678
## 100 55.6518 nan 0.0010 0.0587
## 120 54.3365 nan 0.0010 0.0643
## 140 53.0664 nan 0.0010 0.0630
## 160 51.8359 nan 0.0010 0.0575
## 180 50.6564 nan 0.0010 0.0552
## 200 49.5457 nan 0.0010 0.0516
## 220 48.4427 nan 0.0010 0.0538
## 240 47.3903 nan 0.0010 0.0511
## 260 46.3697 nan 0.0010 0.0487
## 280 45.3524 nan 0.0010 0.0501
## 300 44.3813 nan 0.0010 0.0492
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9849 nan 0.0010 0.0843
## 2 62.9094 nan 0.0010 0.0822
## 3 62.8239 nan 0.0010 0.0832
## 4 62.7443 nan 0.0010 0.0779
## 5 62.6644 nan 0.0010 0.0803
## 6 62.5837 nan 0.0010 0.0761
## 7 62.5104 nan 0.0010 0.0743
## 8 62.4327 nan 0.0010 0.0808
## 9 62.3587 nan 0.0010 0.0730
## 10 62.2810 nan 0.0010 0.0723
## 20 61.4997 nan 0.0010 0.0779
## 40 59.9699 nan 0.0010 0.0761
## 60 58.5298 nan 0.0010 0.0693
## 80 57.1313 nan 0.0010 0.0694
## 100 55.7691 nan 0.0010 0.0658
## 120 54.4583 nan 0.0010 0.0657
## 140 53.1745 nan 0.0010 0.0625
## 160 51.9558 nan 0.0010 0.0619
## 180 50.7679 nan 0.0010 0.0634
## 200 49.6110 nan 0.0010 0.0496
## 220 48.5084 nan 0.0010 0.0546
## 240 47.4265 nan 0.0010 0.0515
## 260 46.3792 nan 0.0010 0.0474
## 280 45.3606 nan 0.0010 0.0449
## 300 44.3680 nan 0.0010 0.0457
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9721 nan 0.0010 0.0910
## 2 62.8807 nan 0.0010 0.0904
## 3 62.7846 nan 0.0010 0.0969
## 4 62.6904 nan 0.0010 0.0942
## 5 62.5974 nan 0.0010 0.0952
## 6 62.5051 nan 0.0010 0.0943
## 7 62.4022 nan 0.0010 0.0908
## 8 62.3088 nan 0.0010 0.0899
## 9 62.2183 nan 0.0010 0.0966
## 10 62.1230 nan 0.0010 0.0971
## 20 61.1687 nan 0.0010 0.0897
## 40 59.3064 nan 0.0010 0.0960
## 60 57.5451 nan 0.0010 0.0877
## 80 55.8329 nan 0.0010 0.0780
## 100 54.1936 nan 0.0010 0.0777
## 120 52.6022 nan 0.0010 0.0718
## 140 51.0388 nan 0.0010 0.0799
## 160 49.5648 nan 0.0010 0.0778
## 180 48.1340 nan 0.0010 0.0636
## 200 46.7582 nan 0.0010 0.0620
## 220 45.4282 nan 0.0010 0.0642
## 240 44.1261 nan 0.0010 0.0620
## 260 42.8847 nan 0.0010 0.0646
## 280 41.6424 nan 0.0010 0.0538
## 300 40.4398 nan 0.0010 0.0516
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9723 nan 0.0010 0.0898
## 2 62.8771 nan 0.0010 0.0926
## 3 62.7810 nan 0.0010 0.0941
## 4 62.6786 nan 0.0010 0.0972
## 5 62.5839 nan 0.0010 0.1042
## 6 62.4873 nan 0.0010 0.0904
## 7 62.3931 nan 0.0010 0.0894
## 8 62.3030 nan 0.0010 0.0738
## 9 62.2080 nan 0.0010 0.0806
## 10 62.1061 nan 0.0010 0.0997
## 20 61.1844 nan 0.0010 0.0879
## 40 59.3491 nan 0.0010 0.0898
## 60 57.5373 nan 0.0010 0.0804
## 80 55.8352 nan 0.0010 0.0816
## 100 54.1587 nan 0.0010 0.0802
## 120 52.5803 nan 0.0010 0.0789
## 140 51.0381 nan 0.0010 0.0798
## 160 49.5370 nan 0.0010 0.0718
## 180 48.1229 nan 0.0010 0.0708
## 200 46.7165 nan 0.0010 0.0727
## 220 45.3789 nan 0.0010 0.0732
## 240 44.0690 nan 0.0010 0.0636
## 260 42.8034 nan 0.0010 0.0572
## 280 41.6009 nan 0.0010 0.0593
## 300 40.4380 nan 0.0010 0.0596
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9676 nan 0.0010 0.0927
## 2 62.8681 nan 0.0010 0.0916
## 3 62.7696 nan 0.0010 0.0969
## 4 62.6743 nan 0.0010 0.0984
## 5 62.5833 nan 0.0010 0.0906
## 6 62.4870 nan 0.0010 0.0992
## 7 62.3885 nan 0.0010 0.0950
## 8 62.2982 nan 0.0010 0.0957
## 9 62.2068 nan 0.0010 0.0883
## 10 62.1015 nan 0.0010 0.1068
## 20 61.1469 nan 0.0010 0.0943
## 40 59.3127 nan 0.0010 0.0956
## 60 57.5521 nan 0.0010 0.0855
## 80 55.8728 nan 0.0010 0.0961
## 100 54.2359 nan 0.0010 0.0872
## 120 52.6036 nan 0.0010 0.0768
## 140 51.0372 nan 0.0010 0.0673
## 160 49.5369 nan 0.0010 0.0845
## 180 48.0778 nan 0.0010 0.0742
## 200 46.6714 nan 0.0010 0.0641
## 220 45.3382 nan 0.0010 0.0644
## 240 44.0314 nan 0.0010 0.0630
## 260 42.7675 nan 0.0010 0.0584
## 280 41.5496 nan 0.0010 0.0583
## 300 40.3609 nan 0.0010 0.0679
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9567 nan 0.0010 0.1014
## 2 62.8510 nan 0.0010 0.1117
## 3 62.7437 nan 0.0010 0.1128
## 4 62.6371 nan 0.0010 0.1021
## 5 62.5391 nan 0.0010 0.0970
## 6 62.4388 nan 0.0010 0.1005
## 7 62.3349 nan 0.0010 0.1009
## 8 62.2322 nan 0.0010 0.0995
## 9 62.1331 nan 0.0010 0.1031
## 10 62.0302 nan 0.0010 0.1077
## 20 61.0054 nan 0.0010 0.0969
## 40 59.0211 nan 0.0010 0.0895
## 60 57.1032 nan 0.0010 0.0990
## 80 55.2613 nan 0.0010 0.1030
## 100 53.4862 nan 0.0010 0.0925
## 120 51.7350 nan 0.0010 0.0963
## 140 50.0874 nan 0.0010 0.0827
## 160 48.4954 nan 0.0010 0.0785
## 180 46.9455 nan 0.0010 0.0794
## 200 45.4588 nan 0.0010 0.0739
## 220 44.0186 nan 0.0010 0.0683
## 240 42.6526 nan 0.0010 0.0636
## 260 41.3250 nan 0.0010 0.0591
## 280 40.0448 nan 0.0010 0.0567
## 300 38.8026 nan 0.0010 0.0576
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9555 nan 0.0010 0.1066
## 2 62.8493 nan 0.0010 0.1062
## 3 62.7468 nan 0.0010 0.1032
## 4 62.6493 nan 0.0010 0.0930
## 5 62.5473 nan 0.0010 0.1145
## 6 62.4391 nan 0.0010 0.0982
## 7 62.3311 nan 0.0010 0.1020
## 8 62.2293 nan 0.0010 0.0957
## 9 62.1293 nan 0.0010 0.0878
## 10 62.0309 nan 0.0010 0.1063
## 20 61.0124 nan 0.0010 0.0922
## 40 59.0211 nan 0.0010 0.0935
## 60 57.0808 nan 0.0010 0.0815
## 80 55.2080 nan 0.0010 0.0907
## 100 53.3943 nan 0.0010 0.0831
## 120 51.6753 nan 0.0010 0.0821
## 140 50.0199 nan 0.0010 0.0776
## 160 48.4254 nan 0.0010 0.0733
## 180 46.8692 nan 0.0010 0.0734
## 200 45.3882 nan 0.0010 0.0707
## 220 43.9512 nan 0.0010 0.0706
## 240 42.5842 nan 0.0010 0.0696
## 260 41.2757 nan 0.0010 0.0702
## 280 40.0141 nan 0.0010 0.0563
## 300 38.7864 nan 0.0010 0.0558
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9598 nan 0.0010 0.1120
## 2 62.8557 nan 0.0010 0.0905
## 3 62.7501 nan 0.0010 0.1067
## 4 62.6509 nan 0.0010 0.0914
## 5 62.5456 nan 0.0010 0.0968
## 6 62.4444 nan 0.0010 0.1057
## 7 62.3410 nan 0.0010 0.1003
## 8 62.2405 nan 0.0010 0.1035
## 9 62.1376 nan 0.0010 0.1106
## 10 62.0343 nan 0.0010 0.0976
## 20 61.0000 nan 0.0010 0.0947
## 40 58.9954 nan 0.0010 0.0909
## 60 57.0737 nan 0.0010 0.0857
## 80 55.2124 nan 0.0010 0.0784
## 100 53.4334 nan 0.0010 0.0898
## 120 51.7168 nan 0.0010 0.0837
## 140 50.0613 nan 0.0010 0.0841
## 160 48.4708 nan 0.0010 0.0798
## 180 46.9386 nan 0.0010 0.0679
## 200 45.4867 nan 0.0010 0.0673
## 220 44.0676 nan 0.0010 0.0684
## 240 42.6874 nan 0.0010 0.0544
## 260 41.3671 nan 0.0010 0.0679
## 280 40.0949 nan 0.0010 0.0576
## 300 38.8562 nan 0.0010 0.0580
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.6851 nan 0.0050 0.4062
## 2 62.3034 nan 0.0050 0.4051
## 3 61.9049 nan 0.0050 0.3839
## 4 61.5127 nan 0.0050 0.3657
## 5 61.1111 nan 0.0050 0.3840
## 6 60.7507 nan 0.0050 0.3768
## 7 60.3924 nan 0.0050 0.3776
## 8 59.9964 nan 0.0050 0.3612
## 9 59.6236 nan 0.0050 0.3781
## 10 59.2605 nan 0.0050 0.3671
## 20 55.7154 nan 0.0050 0.3249
## 40 49.5171 nan 0.0050 0.2847
## 60 44.3561 nan 0.0050 0.2445
## 80 39.9500 nan 0.0050 0.1936
## 100 36.0328 nan 0.0050 0.1836
## 120 32.6145 nan 0.0050 0.1557
## 140 29.6945 nan 0.0050 0.1324
## 160 27.1685 nan 0.0050 0.1085
## 180 24.9341 nan 0.0050 0.1077
## 200 22.9206 nan 0.0050 0.0876
## 220 21.1691 nan 0.0050 0.0775
## 240 19.5731 nan 0.0050 0.0658
## 260 18.1946 nan 0.0050 0.0554
## 280 16.9206 nan 0.0050 0.0583
## 300 15.8444 nan 0.0050 0.0454
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.6349 nan 0.0050 0.3949
## 2 62.2243 nan 0.0050 0.3918
## 3 61.8495 nan 0.0050 0.3992
## 4 61.4750 nan 0.0050 0.3628
## 5 61.1172 nan 0.0050 0.3992
## 6 60.7562 nan 0.0050 0.3791
## 7 60.3986 nan 0.0050 0.3826
## 8 60.0431 nan 0.0050 0.3701
## 9 59.6519 nan 0.0050 0.3923
## 10 59.2908 nan 0.0050 0.3742
## 20 55.7391 nan 0.0050 0.3324
## 40 49.5081 nan 0.0050 0.2648
## 60 44.4301 nan 0.0050 0.2109
## 80 39.9034 nan 0.0050 0.2064
## 100 36.0382 nan 0.0050 0.1714
## 120 32.7463 nan 0.0050 0.1231
## 140 29.8129 nan 0.0050 0.1377
## 160 27.2332 nan 0.0050 0.1144
## 180 24.9951 nan 0.0050 0.0952
## 200 22.9899 nan 0.0050 0.0870
## 220 21.2041 nan 0.0050 0.0729
## 240 19.6306 nan 0.0050 0.0729
## 260 18.2385 nan 0.0050 0.0654
## 280 17.0032 nan 0.0050 0.0495
## 300 15.8439 nan 0.0050 0.0386
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.6575 nan 0.0050 0.3998
## 2 62.2451 nan 0.0050 0.3941
## 3 61.8397 nan 0.0050 0.3971
## 4 61.4595 nan 0.0050 0.3831
## 5 61.0975 nan 0.0050 0.3905
## 6 60.7015 nan 0.0050 0.3864
## 7 60.3225 nan 0.0050 0.3650
## 8 59.9630 nan 0.0050 0.3799
## 9 59.5926 nan 0.0050 0.3859
## 10 59.2163 nan 0.0050 0.3500
## 20 55.7430 nan 0.0050 0.3357
## 40 49.6278 nan 0.0050 0.2368
## 60 44.3970 nan 0.0050 0.2549
## 80 39.9309 nan 0.0050 0.1958
## 100 36.0821 nan 0.0050 0.1837
## 120 32.6403 nan 0.0050 0.1507
## 140 29.7181 nan 0.0050 0.1428
## 160 27.1231 nan 0.0050 0.1176
## 180 24.8533 nan 0.0050 0.1017
## 200 22.8613 nan 0.0050 0.0876
## 220 21.1231 nan 0.0050 0.0779
## 240 19.5137 nan 0.0050 0.0718
## 260 18.1180 nan 0.0050 0.0692
## 280 16.8518 nan 0.0050 0.0438
## 300 15.7440 nan 0.0050 0.0437
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5605 nan 0.0050 0.4817
## 2 62.0636 nan 0.0050 0.5017
## 3 61.5633 nan 0.0050 0.4614
## 4 61.1254 nan 0.0050 0.4362
## 5 60.6900 nan 0.0050 0.4641
## 6 60.2751 nan 0.0050 0.4775
## 7 59.8056 nan 0.0050 0.4368
## 8 59.3725 nan 0.0050 0.4452
## 9 58.9001 nan 0.0050 0.4309
## 10 58.4605 nan 0.0050 0.4478
## 20 54.1163 nan 0.0050 0.4073
## 40 46.8531 nan 0.0050 0.3534
## 60 40.5963 nan 0.0050 0.3171
## 80 35.3357 nan 0.0050 0.2594
## 100 30.8028 nan 0.0050 0.1912
## 120 27.0026 nan 0.0050 0.1727
## 140 23.8681 nan 0.0050 0.1219
## 160 21.1862 nan 0.0050 0.0837
## 180 18.8327 nan 0.0050 0.1082
## 200 16.8592 nan 0.0050 0.0974
## 220 15.1513 nan 0.0050 0.0743
## 240 13.7102 nan 0.0050 0.0586
## 260 12.4618 nan 0.0050 0.0543
## 280 11.3905 nan 0.0050 0.0409
## 300 10.4957 nan 0.0050 0.0267
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.6020 nan 0.0050 0.4339
## 2 62.1598 nan 0.0050 0.4388
## 3 61.6941 nan 0.0050 0.5006
## 4 61.2321 nan 0.0050 0.4635
## 5 60.7693 nan 0.0050 0.4297
## 6 60.3293 nan 0.0050 0.4416
## 7 59.8496 nan 0.0050 0.4255
## 8 59.3662 nan 0.0050 0.4715
## 9 58.8964 nan 0.0050 0.4312
## 10 58.4514 nan 0.0050 0.4377
## 20 54.2805 nan 0.0050 0.3924
## 40 46.7217 nan 0.0050 0.3328
## 60 40.4133 nan 0.0050 0.2898
## 80 35.0189 nan 0.0050 0.2858
## 100 30.5835 nan 0.0050 0.2236
## 120 26.8397 nan 0.0050 0.1686
## 140 23.6455 nan 0.0050 0.1182
## 160 21.0097 nan 0.0050 0.1024
## 180 18.7503 nan 0.0050 0.1021
## 200 16.8019 nan 0.0050 0.0915
## 220 15.1397 nan 0.0050 0.0794
## 240 13.6748 nan 0.0050 0.0659
## 260 12.4348 nan 0.0050 0.0493
## 280 11.3883 nan 0.0050 0.0493
## 300 10.4533 nan 0.0050 0.0411
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5584 nan 0.0050 0.5293
## 2 62.0778 nan 0.0050 0.4856
## 3 61.6208 nan 0.0050 0.4814
## 4 61.2057 nan 0.0050 0.4879
## 5 60.7424 nan 0.0050 0.4739
## 6 60.2810 nan 0.0050 0.4620
## 7 59.8473 nan 0.0050 0.4456
## 8 59.4032 nan 0.0050 0.4188
## 9 59.0061 nan 0.0050 0.4557
## 10 58.5305 nan 0.0050 0.4491
## 20 54.3381 nan 0.0050 0.4363
## 40 46.8736 nan 0.0050 0.4113
## 60 40.6137 nan 0.0050 0.2905
## 80 35.1936 nan 0.0050 0.2276
## 100 30.7409 nan 0.0050 0.2067
## 120 27.0557 nan 0.0050 0.1706
## 140 23.9370 nan 0.0050 0.1464
## 160 21.2735 nan 0.0050 0.1333
## 180 19.0477 nan 0.0050 0.0892
## 200 17.0644 nan 0.0050 0.0877
## 220 15.4244 nan 0.0050 0.0708
## 240 13.9385 nan 0.0050 0.0611
## 260 12.7256 nan 0.0050 0.0511
## 280 11.7057 nan 0.0050 0.0513
## 300 10.7435 nan 0.0050 0.0450
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5399 nan 0.0050 0.5474
## 2 62.0205 nan 0.0050 0.5043
## 3 61.5083 nan 0.0050 0.5518
## 4 61.0230 nan 0.0050 0.4798
## 5 60.5325 nan 0.0050 0.4728
## 6 60.0218 nan 0.0050 0.5582
## 7 59.5142 nan 0.0050 0.4724
## 8 59.0403 nan 0.0050 0.4394
## 9 58.5800 nan 0.0050 0.4977
## 10 58.1053 nan 0.0050 0.4624
## 20 53.4971 nan 0.0050 0.4031
## 40 45.5169 nan 0.0050 0.3548
## 60 38.8347 nan 0.0050 0.2574
## 80 33.2636 nan 0.0050 0.2276
## 100 28.6068 nan 0.0050 0.1883
## 120 24.8016 nan 0.0050 0.1737
## 140 21.5715 nan 0.0050 0.1272
## 160 18.8972 nan 0.0050 0.1182
## 180 16.6434 nan 0.0050 0.1007
## 200 14.6962 nan 0.0050 0.0718
## 220 13.0864 nan 0.0050 0.0716
## 240 11.7553 nan 0.0050 0.0505
## 260 10.5736 nan 0.0050 0.0498
## 280 9.5455 nan 0.0050 0.0414
## 300 8.6899 nan 0.0050 0.0383
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5547 nan 0.0050 0.5189
## 2 62.0007 nan 0.0050 0.5162
## 3 61.4961 nan 0.0050 0.4987
## 4 60.9734 nan 0.0050 0.5048
## 5 60.4648 nan 0.0050 0.4941
## 6 59.9566 nan 0.0050 0.4945
## 7 59.4484 nan 0.0050 0.4925
## 8 58.9605 nan 0.0050 0.5035
## 9 58.4682 nan 0.0050 0.5282
## 10 57.9789 nan 0.0050 0.4974
## 20 53.3108 nan 0.0050 0.4759
## 40 45.3842 nan 0.0050 0.3383
## 60 38.7152 nan 0.0050 0.3173
## 80 33.1353 nan 0.0050 0.2368
## 100 28.5152 nan 0.0050 0.2252
## 120 24.7551 nan 0.0050 0.1617
## 140 21.6098 nan 0.0050 0.1291
## 160 18.8810 nan 0.0050 0.1219
## 180 16.6481 nan 0.0050 0.0923
## 200 14.7583 nan 0.0050 0.0697
## 220 13.1385 nan 0.0050 0.0717
## 240 11.7667 nan 0.0050 0.0519
## 260 10.6081 nan 0.0050 0.0474
## 280 9.6064 nan 0.0050 0.0392
## 300 8.7389 nan 0.0050 0.0438
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.5239 nan 0.0050 0.5205
## 2 62.0050 nan 0.0050 0.5360
## 3 61.4834 nan 0.0050 0.5312
## 4 60.9881 nan 0.0050 0.4918
## 5 60.4578 nan 0.0050 0.4916
## 6 59.9636 nan 0.0050 0.4475
## 7 59.4953 nan 0.0050 0.4820
## 8 59.0092 nan 0.0050 0.4931
## 9 58.5045 nan 0.0050 0.4342
## 10 58.0207 nan 0.0050 0.4775
## 20 53.4302 nan 0.0050 0.4699
## 40 45.4335 nan 0.0050 0.3413
## 60 38.8380 nan 0.0050 0.3203
## 80 33.3460 nan 0.0050 0.2453
## 100 28.8069 nan 0.0050 0.2086
## 120 25.0200 nan 0.0050 0.1971
## 140 21.8516 nan 0.0050 0.1431
## 160 19.1717 nan 0.0050 0.1140
## 180 16.9014 nan 0.0050 0.0895
## 200 15.0111 nan 0.0050 0.0775
## 220 13.4223 nan 0.0050 0.0684
## 240 12.0754 nan 0.0050 0.0535
## 260 10.9226 nan 0.0050 0.0450
## 280 9.9334 nan 0.0050 0.0421
## 300 9.0626 nan 0.0050 0.0290
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.2435 nan 0.0100 0.7869
## 2 61.5045 nan 0.0100 0.7899
## 3 60.7562 nan 0.0100 0.7604
## 4 60.0425 nan 0.0100 0.7498
## 5 59.2995 nan 0.0100 0.7819
## 6 58.5706 nan 0.0100 0.7384
## 7 57.8551 nan 0.0100 0.7269
## 8 57.1299 nan 0.0100 0.6729
## 9 56.4070 nan 0.0100 0.6745
## 10 55.7131 nan 0.0100 0.6431
## 20 49.4460 nan 0.0100 0.5883
## 40 39.8086 nan 0.0100 0.3986
## 60 32.4983 nan 0.0100 0.3092
## 80 27.0483 nan 0.0100 0.2481
## 100 22.8155 nan 0.0100 0.1560
## 120 19.4017 nan 0.0100 0.1262
## 140 16.7921 nan 0.0100 0.1264
## 160 14.6423 nan 0.0100 0.0777
## 180 12.9035 nan 0.0100 0.0816
## 200 11.5609 nan 0.0100 0.0470
## 220 10.3994 nan 0.0100 0.0434
## 240 9.4303 nan 0.0100 0.0336
## 260 8.6259 nan 0.0100 0.0313
## 280 7.9288 nan 0.0100 0.0141
## 300 7.3370 nan 0.0100 0.0244
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.2585 nan 0.0100 0.8301
## 2 61.5166 nan 0.0100 0.7757
## 3 60.7757 nan 0.0100 0.8009
## 4 59.9791 nan 0.0100 0.7176
## 5 59.2216 nan 0.0100 0.8296
## 6 58.4757 nan 0.0100 0.7389
## 7 57.7660 nan 0.0100 0.6983
## 8 57.0677 nan 0.0100 0.7025
## 9 56.3934 nan 0.0100 0.6861
## 10 55.7122 nan 0.0100 0.6880
## 20 49.5649 nan 0.0100 0.6358
## 40 39.7465 nan 0.0100 0.3827
## 60 32.4565 nan 0.0100 0.2990
## 80 26.9488 nan 0.0100 0.2376
## 100 22.7048 nan 0.0100 0.1776
## 120 19.4083 nan 0.0100 0.1306
## 140 16.8247 nan 0.0100 0.1008
## 160 14.7543 nan 0.0100 0.0920
## 180 13.0077 nan 0.0100 0.0644
## 200 11.6085 nan 0.0100 0.0537
## 220 10.4563 nan 0.0100 0.0375
## 240 9.5164 nan 0.0100 0.0333
## 260 8.7321 nan 0.0100 0.0287
## 280 8.0053 nan 0.0100 0.0268
## 300 7.4077 nan 0.0100 0.0227
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.2734 nan 0.0100 0.7702
## 2 61.5126 nan 0.0100 0.7853
## 3 60.7088 nan 0.0100 0.7805
## 4 59.9259 nan 0.0100 0.7542
## 5 59.2098 nan 0.0100 0.6704
## 6 58.4287 nan 0.0100 0.7033
## 7 57.7222 nan 0.0100 0.7287
## 8 57.0173 nan 0.0100 0.6972
## 9 56.3540 nan 0.0100 0.5614
## 10 55.6823 nan 0.0100 0.5926
## 20 49.5165 nan 0.0100 0.5657
## 40 39.9318 nan 0.0100 0.4009
## 60 32.6486 nan 0.0100 0.2912
## 80 27.2098 nan 0.0100 0.2224
## 100 22.9202 nan 0.0100 0.1563
## 120 19.5458 nan 0.0100 0.1445
## 140 16.8402 nan 0.0100 0.1117
## 160 14.7088 nan 0.0100 0.0750
## 180 13.0289 nan 0.0100 0.0655
## 200 11.6638 nan 0.0100 0.0466
## 220 10.5441 nan 0.0100 0.0412
## 240 9.5877 nan 0.0100 0.0331
## 260 8.7480 nan 0.0100 0.0221
## 280 8.0547 nan 0.0100 0.0269
## 300 7.4710 nan 0.0100 0.0132
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0979 nan 0.0100 0.7865
## 2 61.1691 nan 0.0100 0.9918
## 3 60.2471 nan 0.0100 0.9804
## 4 59.4047 nan 0.0100 0.9063
## 5 58.4328 nan 0.0100 0.9295
## 6 57.5765 nan 0.0100 0.8250
## 7 56.6263 nan 0.0100 0.8396
## 8 55.7156 nan 0.0100 0.8250
## 9 54.9202 nan 0.0100 0.7518
## 10 54.1154 nan 0.0100 0.7442
## 20 46.6654 nan 0.0100 0.6889
## 40 35.0654 nan 0.0100 0.5300
## 60 26.9369 nan 0.0100 0.3522
## 80 20.9926 nan 0.0100 0.2148
## 100 16.7565 nan 0.0100 0.1765
## 120 13.6765 nan 0.0100 0.0902
## 140 11.3890 nan 0.0100 0.0786
## 160 9.7048 nan 0.0100 0.0592
## 180 8.3261 nan 0.0100 0.0438
## 200 7.2690 nan 0.0100 0.0341
## 220 6.4377 nan 0.0100 0.0341
## 240 5.8123 nan 0.0100 0.0224
## 260 5.2915 nan 0.0100 0.0198
## 280 4.9034 nan 0.0100 0.0100
## 300 4.5680 nan 0.0100 0.0128
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.1369 nan 0.0100 0.8606
## 2 61.1297 nan 0.0100 0.9188
## 3 60.2536 nan 0.0100 0.8952
## 4 59.3615 nan 0.0100 0.9120
## 5 58.5190 nan 0.0100 0.8267
## 6 57.6849 nan 0.0100 0.8418
## 7 56.8270 nan 0.0100 0.8363
## 8 55.9556 nan 0.0100 0.9189
## 9 55.1427 nan 0.0100 0.8770
## 10 54.3849 nan 0.0100 0.8272
## 20 46.7035 nan 0.0100 0.6358
## 40 35.0676 nan 0.0100 0.4596
## 60 26.9316 nan 0.0100 0.3784
## 80 21.0438 nan 0.0100 0.2164
## 100 16.8994 nan 0.0100 0.1766
## 120 13.7973 nan 0.0100 0.1299
## 140 11.5320 nan 0.0100 0.0798
## 160 9.7427 nan 0.0100 0.0677
## 180 8.4333 nan 0.0100 0.0526
## 200 7.4068 nan 0.0100 0.0326
## 220 6.5431 nan 0.0100 0.0281
## 240 5.8935 nan 0.0100 0.0220
## 260 5.4008 nan 0.0100 0.0214
## 280 4.9743 nan 0.0100 0.0115
## 300 4.6491 nan 0.0100 0.0077
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.1470 nan 0.0100 0.9614
## 2 61.1982 nan 0.0100 0.9385
## 3 60.1999 nan 0.0100 0.9230
## 4 59.3238 nan 0.0100 0.9274
## 5 58.4464 nan 0.0100 0.9488
## 6 57.5387 nan 0.0100 0.9324
## 7 56.6734 nan 0.0100 0.8208
## 8 55.7840 nan 0.0100 0.9035
## 9 54.9485 nan 0.0100 0.7938
## 10 54.0379 nan 0.0100 0.8238
## 20 46.6236 nan 0.0100 0.6969
## 40 35.1494 nan 0.0100 0.4373
## 60 26.9329 nan 0.0100 0.3304
## 80 21.2500 nan 0.0100 0.2290
## 100 17.0013 nan 0.0100 0.1789
## 120 13.9248 nan 0.0100 0.1110
## 140 11.5740 nan 0.0100 0.0903
## 160 9.9356 nan 0.0100 0.0620
## 180 8.5978 nan 0.0100 0.0504
## 200 7.5387 nan 0.0100 0.0422
## 220 6.7036 nan 0.0100 0.0311
## 240 6.0637 nan 0.0100 0.0212
## 260 5.5575 nan 0.0100 0.0209
## 280 5.1502 nan 0.0100 0.0138
## 300 4.8486 nan 0.0100 0.0084
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0677 nan 0.0100 0.9927
## 2 61.1070 nan 0.0100 0.8863
## 3 60.1048 nan 0.0100 0.9546
## 4 59.0937 nan 0.0100 0.9177
## 5 58.1484 nan 0.0100 0.9650
## 6 57.2218 nan 0.0100 0.9912
## 7 56.2307 nan 0.0100 0.9871
## 8 55.3457 nan 0.0100 0.9614
## 9 54.4416 nan 0.0100 0.8438
## 10 53.5176 nan 0.0100 0.7842
## 20 45.4773 nan 0.0100 0.7451
## 40 33.0908 nan 0.0100 0.5087
## 60 24.7155 nan 0.0100 0.3274
## 80 18.8603 nan 0.0100 0.2393
## 100 14.7124 nan 0.0100 0.1705
## 120 11.7491 nan 0.0100 0.0978
## 140 9.6454 nan 0.0100 0.0873
## 160 8.0157 nan 0.0100 0.0568
## 180 6.7865 nan 0.0100 0.0396
## 200 5.8444 nan 0.0100 0.0208
## 220 5.1798 nan 0.0100 0.0168
## 240 4.6531 nan 0.0100 0.0175
## 260 4.2468 nan 0.0100 0.0098
## 280 3.9264 nan 0.0100 0.0106
## 300 3.6698 nan 0.0100 0.0038
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0095 nan 0.0100 1.0144
## 2 60.9580 nan 0.0100 1.1364
## 3 59.9735 nan 0.0100 1.0367
## 4 58.9592 nan 0.0100 1.0433
## 5 57.9279 nan 0.0100 1.0403
## 6 56.9431 nan 0.0100 0.8858
## 7 55.9624 nan 0.0100 0.9379
## 8 55.0711 nan 0.0100 0.8256
## 9 54.1465 nan 0.0100 0.9141
## 10 53.1898 nan 0.0100 0.8359
## 20 45.2231 nan 0.0100 0.7400
## 40 33.0158 nan 0.0100 0.5100
## 60 24.6964 nan 0.0100 0.3428
## 80 18.8415 nan 0.0100 0.2504
## 100 14.6692 nan 0.0100 0.1595
## 120 11.6614 nan 0.0100 0.1331
## 140 9.4933 nan 0.0100 0.0877
## 160 7.9276 nan 0.0100 0.0530
## 180 6.7770 nan 0.0100 0.0377
## 200 5.8786 nan 0.0100 0.0356
## 220 5.1993 nan 0.0100 0.0201
## 240 4.6763 nan 0.0100 0.0200
## 260 4.2702 nan 0.0100 0.0050
## 280 3.9634 nan 0.0100 0.0066
## 300 3.7362 nan 0.0100 0.0068
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.9922 nan 0.0100 1.0260
## 2 60.9800 nan 0.0100 1.0586
## 3 59.9634 nan 0.0100 0.9294
## 4 59.0231 nan 0.0100 0.9318
## 5 58.0392 nan 0.0100 0.8607
## 6 57.1028 nan 0.0100 1.0221
## 7 56.1625 nan 0.0100 0.9658
## 8 55.2909 nan 0.0100 0.9054
## 9 54.3489 nan 0.0100 0.9446
## 10 53.4096 nan 0.0100 0.8695
## 20 45.3492 nan 0.0100 0.7784
## 40 33.4414 nan 0.0100 0.4817
## 60 24.9574 nan 0.0100 0.3455
## 80 19.0813 nan 0.0100 0.2437
## 100 14.9656 nan 0.0100 0.1229
## 120 12.0815 nan 0.0100 0.1042
## 140 9.9368 nan 0.0100 0.0803
## 160 8.3176 nan 0.0100 0.0536
## 180 7.1041 nan 0.0100 0.0455
## 200 6.1681 nan 0.0100 0.0390
## 220 5.5173 nan 0.0100 0.0259
## 240 5.0231 nan 0.0100 0.0171
## 260 4.6274 nan 0.0100 0.0106
## 280 4.3130 nan 0.0100 0.0087
## 300 4.0777 nan 0.0100 0.0013
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.9225 nan 0.0500 3.8951
## 2 55.3841 nan 0.0500 3.2621
## 3 52.5621 nan 0.0500 3.2808
## 4 49.6807 nan 0.0500 2.4797
## 5 46.8703 nan 0.0500 2.7765
## 6 44.0847 nan 0.0500 2.7743
## 7 41.4837 nan 0.0500 2.0418
## 8 39.2219 nan 0.0500 2.1373
## 9 37.1297 nan 0.0500 1.8864
## 10 35.3605 nan 0.0500 1.6945
## 20 22.3779 nan 0.0500 0.8073
## 40 11.3675 nan 0.0500 0.2447
## 60 7.3038 nan 0.0500 0.0493
## 80 5.4879 nan 0.0500 0.0659
## 100 4.5652 nan 0.0500 0.0143
## 120 4.0699 nan 0.0500 0.0010
## 140 3.8286 nan 0.0500 0.0096
## 160 3.6560 nan 0.0500 -0.0049
## 180 3.5241 nan 0.0500 -0.0018
## 200 3.4224 nan 0.0500 -0.0073
## 220 3.3305 nan 0.0500 -0.0091
## 240 3.2509 nan 0.0500 -0.0113
## 260 3.1560 nan 0.0500 -0.0031
## 280 3.1021 nan 0.0500 -0.0138
## 300 3.0442 nan 0.0500 -0.0101
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.8677 nan 0.0500 3.7310
## 2 55.2605 nan 0.0500 3.3792
## 3 51.9458 nan 0.0500 3.2189
## 4 49.0196 nan 0.0500 2.9033
## 5 46.4713 nan 0.0500 2.5210
## 6 43.8873 nan 0.0500 2.4765
## 7 41.7062 nan 0.0500 2.1375
## 8 39.6457 nan 0.0500 1.8179
## 9 37.6867 nan 0.0500 1.9095
## 10 35.7315 nan 0.0500 1.8632
## 20 22.6660 nan 0.0500 0.7583
## 40 11.6429 nan 0.0500 0.2264
## 60 7.4843 nan 0.0500 0.1373
## 80 5.6275 nan 0.0500 0.0356
## 100 4.6918 nan 0.0500 0.0153
## 120 4.2179 nan 0.0500 0.0077
## 140 3.9430 nan 0.0500 0.0008
## 160 3.7848 nan 0.0500 -0.0068
## 180 3.6600 nan 0.0500 0.0016
## 200 3.5711 nan 0.0500 -0.0055
## 220 3.4721 nan 0.0500 -0.0018
## 240 3.3917 nan 0.0500 0.0000
## 260 3.3183 nan 0.0500 -0.0082
## 280 3.2438 nan 0.0500 -0.0046
## 300 3.1789 nan 0.0500 -0.0096
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2350 nan 0.0500 4.0732
## 2 55.4429 nan 0.0500 3.4303
## 3 52.2621 nan 0.0500 3.2178
## 4 49.5781 nan 0.0500 2.8125
## 5 46.7568 nan 0.0500 2.6740
## 6 44.2605 nan 0.0500 2.3875
## 7 42.0634 nan 0.0500 2.3446
## 8 39.8059 nan 0.0500 2.1980
## 9 38.0049 nan 0.0500 1.5175
## 10 36.1817 nan 0.0500 1.7165
## 20 22.9018 nan 0.0500 0.9219
## 40 11.6413 nan 0.0500 0.3010
## 60 7.5302 nan 0.0500 0.0677
## 80 5.6587 nan 0.0500 0.0417
## 100 4.6917 nan 0.0500 0.0102
## 120 4.2663 nan 0.0500 0.0045
## 140 4.0229 nan 0.0500 0.0021
## 160 3.8753 nan 0.0500 -0.0173
## 180 3.7430 nan 0.0500 -0.0028
## 200 3.6272 nan 0.0500 -0.0055
## 220 3.5430 nan 0.0500 -0.0037
## 240 3.4774 nan 0.0500 -0.0119
## 260 3.4037 nan 0.0500 -0.0061
## 280 3.3349 nan 0.0500 -0.0063
## 300 3.2738 nan 0.0500 -0.0085
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.1141 nan 0.0500 4.5889
## 2 54.0823 nan 0.0500 4.0722
## 3 50.1933 nan 0.0500 4.1815
## 4 46.3683 nan 0.0500 3.4141
## 5 42.8779 nan 0.0500 3.1653
## 6 39.7175 nan 0.0500 2.8937
## 7 37.1556 nan 0.0500 2.7559
## 8 34.6357 nan 0.0500 2.5024
## 9 32.4365 nan 0.0500 2.0707
## 10 30.1385 nan 0.0500 2.0227
## 20 16.5111 nan 0.0500 0.8021
## 40 7.0895 nan 0.0500 0.2033
## 60 4.5946 nan 0.0500 0.0508
## 80 3.7091 nan 0.0500 0.0183
## 100 3.2541 nan 0.0500 0.0004
## 120 2.9878 nan 0.0500 -0.0162
## 140 2.7970 nan 0.0500 -0.0141
## 160 2.6399 nan 0.0500 0.0009
## 180 2.4864 nan 0.0500 -0.0048
## 200 2.3904 nan 0.0500 -0.0205
## 220 2.2982 nan 0.0500 -0.0065
## 240 2.2166 nan 0.0500 -0.0075
## 260 2.1286 nan 0.0500 -0.0052
## 280 2.0593 nan 0.0500 -0.0034
## 300 2.0058 nan 0.0500 -0.0062
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.7744 nan 0.0500 4.2356
## 2 54.4584 nan 0.0500 3.9659
## 3 50.5120 nan 0.0500 3.7956
## 4 46.7373 nan 0.0500 4.2426
## 5 43.4983 nan 0.0500 3.2240
## 6 40.4439 nan 0.0500 3.1049
## 7 37.8241 nan 0.0500 2.9411
## 8 35.1225 nan 0.0500 2.7024
## 9 32.7481 nan 0.0500 2.2673
## 10 30.4388 nan 0.0500 2.2020
## 20 16.5893 nan 0.0500 0.8829
## 40 7.1451 nan 0.0500 0.2801
## 60 4.5542 nan 0.0500 0.0006
## 80 3.6820 nan 0.0500 0.0126
## 100 3.2764 nan 0.0500 -0.0040
## 120 3.0542 nan 0.0500 -0.0142
## 140 2.8773 nan 0.0500 -0.0116
## 160 2.7413 nan 0.0500 -0.0192
## 180 2.6358 nan 0.0500 -0.0095
## 200 2.5447 nan 0.0500 -0.0131
## 220 2.4457 nan 0.0500 -0.0098
## 240 2.3410 nan 0.0500 -0.0069
## 260 2.2765 nan 0.0500 -0.0006
## 280 2.2186 nan 0.0500 -0.0092
## 300 2.1682 nan 0.0500 -0.0162
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.7821 nan 0.0500 4.8911
## 2 53.5577 nan 0.0500 4.3252
## 3 49.6252 nan 0.0500 3.7515
## 4 46.0784 nan 0.0500 3.7207
## 5 42.8917 nan 0.0500 3.1984
## 6 39.6332 nan 0.0500 3.0048
## 7 36.7458 nan 0.0500 2.9910
## 8 34.2008 nan 0.0500 2.2970
## 9 31.7751 nan 0.0500 2.3925
## 10 29.6931 nan 0.0500 1.8856
## 20 16.7333 nan 0.0500 0.8608
## 40 7.4618 nan 0.0500 0.2224
## 60 4.9018 nan 0.0500 0.0535
## 80 4.0473 nan 0.0500 0.0029
## 100 3.6745 nan 0.0500 0.0007
## 120 3.4140 nan 0.0500 -0.0044
## 140 3.2345 nan 0.0500 -0.0104
## 160 3.0627 nan 0.0500 -0.0073
## 180 2.9288 nan 0.0500 -0.0096
## 200 2.7985 nan 0.0500 -0.0099
## 220 2.6994 nan 0.0500 -0.0017
## 240 2.6215 nan 0.0500 -0.0039
## 260 2.5466 nan 0.0500 -0.0065
## 280 2.4737 nan 0.0500 -0.0096
## 300 2.4017 nan 0.0500 -0.0118
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.7437 nan 0.0500 5.1823
## 2 52.8912 nan 0.0500 4.6337
## 3 48.6834 nan 0.0500 4.6497
## 4 44.7312 nan 0.0500 3.7475
## 5 41.2665 nan 0.0500 3.7965
## 6 38.1005 nan 0.0500 3.5332
## 7 35.2320 nan 0.0500 3.1552
## 8 32.4554 nan 0.0500 2.6942
## 9 30.2999 nan 0.0500 2.5313
## 10 28.2957 nan 0.0500 2.1916
## 20 14.6008 nan 0.0500 0.8531
## 40 5.8068 nan 0.0500 0.1461
## 60 3.6100 nan 0.0500 0.0218
## 80 2.9798 nan 0.0500 -0.0017
## 100 2.6317 nan 0.0500 0.0006
## 120 2.3776 nan 0.0500 -0.0022
## 140 2.1719 nan 0.0500 -0.0086
## 160 2.0389 nan 0.0500 -0.0155
## 180 1.9160 nan 0.0500 -0.0210
## 200 1.8089 nan 0.0500 -0.0046
## 220 1.7051 nan 0.0500 -0.0071
## 240 1.6278 nan 0.0500 -0.0079
## 260 1.5512 nan 0.0500 -0.0039
## 280 1.4769 nan 0.0500 -0.0074
## 300 1.4067 nan 0.0500 -0.0042
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.8892 nan 0.0500 5.0801
## 2 53.1891 nan 0.0500 4.4378
## 3 48.7995 nan 0.0500 4.2671
## 4 44.9932 nan 0.0500 4.1260
## 5 41.5483 nan 0.0500 3.4567
## 6 38.3856 nan 0.0500 3.3647
## 7 35.5622 nan 0.0500 3.0173
## 8 32.9487 nan 0.0500 2.4053
## 9 30.5648 nan 0.0500 2.4723
## 10 28.3859 nan 0.0500 2.1107
## 20 14.8122 nan 0.0500 0.8391
## 40 5.9221 nan 0.0500 0.1835
## 60 3.7335 nan 0.0500 0.0412
## 80 3.1116 nan 0.0500 -0.0210
## 100 2.7618 nan 0.0500 -0.0143
## 120 2.5017 nan 0.0500 -0.0203
## 140 2.3354 nan 0.0500 -0.0137
## 160 2.1900 nan 0.0500 -0.0106
## 180 2.0583 nan 0.0500 -0.0101
## 200 1.9828 nan 0.0500 -0.0111
## 220 1.8784 nan 0.0500 -0.0088
## 240 1.8063 nan 0.0500 -0.0100
## 260 1.7315 nan 0.0500 -0.0114
## 280 1.6609 nan 0.0500 -0.0103
## 300 1.6037 nan 0.0500 -0.0088
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.8813 nan 0.0500 5.2839
## 2 53.3371 nan 0.0500 4.6904
## 3 49.0496 nan 0.0500 4.6023
## 4 45.0824 nan 0.0500 4.1415
## 5 41.5500 nan 0.0500 3.7558
## 6 38.4122 nan 0.0500 3.0629
## 7 35.7095 nan 0.0500 3.0510
## 8 33.2005 nan 0.0500 2.6959
## 9 30.7604 nan 0.0500 2.4886
## 10 28.7016 nan 0.0500 2.0400
## 20 14.9256 nan 0.0500 0.9068
## 40 6.2590 nan 0.0500 0.1522
## 60 4.1223 nan 0.0500 -0.0010
## 80 3.5152 nan 0.0500 -0.0088
## 100 3.1293 nan 0.0500 -0.0054
## 120 2.8869 nan 0.0500 -0.0223
## 140 2.7052 nan 0.0500 -0.0199
## 160 2.5557 nan 0.0500 -0.0215
## 180 2.4077 nan 0.0500 -0.0209
## 200 2.3099 nan 0.0500 -0.0105
## 220 2.2315 nan 0.0500 -0.0115
## 240 2.1320 nan 0.0500 -0.0169
## 260 2.0582 nan 0.0500 -0.0147
## 280 1.9771 nan 0.0500 -0.0098
## 300 1.9179 nan 0.0500 -0.0180
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.5592 nan 0.1000 7.2056
## 2 49.4507 nan 0.1000 6.2454
## 3 44.9878 nan 0.1000 4.6773
## 4 40.4450 nan 0.1000 4.7366
## 5 36.4740 nan 0.1000 3.5317
## 6 32.9616 nan 0.1000 3.4821
## 7 29.6976 nan 0.1000 3.1852
## 8 26.9124 nan 0.1000 2.4894
## 9 24.6731 nan 0.1000 2.2316
## 10 22.6749 nan 0.1000 1.8785
## 20 11.6485 nan 0.1000 0.8172
## 40 5.5192 nan 0.1000 0.0667
## 60 4.2399 nan 0.1000 0.0254
## 80 3.7789 nan 0.1000 -0.0096
## 100 3.5407 nan 0.1000 -0.0080
## 120 3.3788 nan 0.1000 -0.0213
## 140 3.2450 nan 0.1000 -0.0236
## 160 3.1223 nan 0.1000 -0.0254
## 180 3.0478 nan 0.1000 -0.0349
## 200 2.9765 nan 0.1000 -0.0312
## 220 2.9148 nan 0.1000 -0.0145
## 240 2.8509 nan 0.1000 -0.0105
## 260 2.7903 nan 0.1000 -0.0203
## 280 2.7413 nan 0.1000 -0.0170
## 300 2.6876 nan 0.1000 -0.0074
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.5172 nan 0.1000 7.9091
## 2 49.2460 nan 0.1000 6.0050
## 3 44.0925 nan 0.1000 5.1603
## 4 39.5639 nan 0.1000 4.1429
## 5 35.6149 nan 0.1000 3.6449
## 6 32.1879 nan 0.1000 3.3452
## 7 29.1690 nan 0.1000 2.8689
## 8 26.9872 nan 0.1000 1.4260
## 9 24.5380 nan 0.1000 2.4033
## 10 22.4896 nan 0.1000 1.8869
## 20 11.5772 nan 0.1000 0.5964
## 40 5.3327 nan 0.1000 0.0539
## 60 4.0717 nan 0.1000 0.0136
## 80 3.6564 nan 0.1000 0.0040
## 100 3.4494 nan 0.1000 -0.0085
## 120 3.2753 nan 0.1000 0.0015
## 140 3.1525 nan 0.1000 -0.0157
## 160 3.0611 nan 0.1000 -0.0221
## 180 2.9802 nan 0.1000 -0.0181
## 200 2.9100 nan 0.1000 -0.0217
## 220 2.8476 nan 0.1000 -0.0071
## 240 2.7877 nan 0.1000 -0.0139
## 260 2.7251 nan 0.1000 -0.0072
## 280 2.6739 nan 0.1000 -0.0142
## 300 2.6195 nan 0.1000 -0.0090
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.6790 nan 0.1000 7.1350
## 2 48.1823 nan 0.1000 5.7483
## 3 43.5998 nan 0.1000 4.9276
## 4 39.2330 nan 0.1000 4.0294
## 5 35.1486 nan 0.1000 4.0109
## 6 32.2055 nan 0.1000 3.0630
## 7 28.9351 nan 0.1000 2.3628
## 8 26.5850 nan 0.1000 2.6222
## 9 24.4507 nan 0.1000 2.0523
## 10 22.2555 nan 0.1000 2.0099
## 20 11.6335 nan 0.1000 0.6642
## 40 5.7993 nan 0.1000 0.0768
## 60 4.5320 nan 0.1000 -0.0203
## 80 4.2259 nan 0.1000 -0.0173
## 100 3.9692 nan 0.1000 0.0030
## 120 3.7457 nan 0.1000 -0.0160
## 140 3.5968 nan 0.1000 -0.0223
## 160 3.4562 nan 0.1000 0.0024
## 180 3.3520 nan 0.1000 -0.0135
## 200 3.3067 nan 0.1000 -0.0219
## 220 3.2335 nan 0.1000 -0.0105
## 240 3.1409 nan 0.1000 -0.0065
## 260 3.0931 nan 0.1000 -0.0098
## 280 3.0230 nan 0.1000 -0.0114
## 300 2.9618 nan 0.1000 -0.0192
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.3843 nan 0.1000 9.1318
## 2 45.8034 nan 0.1000 7.1961
## 3 39.3968 nan 0.1000 6.1120
## 4 33.8782 nan 0.1000 5.8476
## 5 29.3514 nan 0.1000 4.5068
## 6 25.9107 nan 0.1000 3.3347
## 7 22.9405 nan 0.1000 2.9449
## 8 20.0139 nan 0.1000 2.3924
## 9 17.6338 nan 0.1000 2.2205
## 10 15.7271 nan 0.1000 1.7723
## 20 6.9148 nan 0.1000 0.4317
## 40 3.6421 nan 0.1000 0.0048
## 60 3.0587 nan 0.1000 0.0015
## 80 2.7025 nan 0.1000 -0.0219
## 100 2.4415 nan 0.1000 -0.0081
## 120 2.2232 nan 0.1000 -0.0167
## 140 2.0697 nan 0.1000 0.0026
## 160 1.9610 nan 0.1000 -0.0059
## 180 1.8429 nan 0.1000 -0.0101
## 200 1.7591 nan 0.1000 -0.0212
## 220 1.6675 nan 0.1000 -0.0132
## 240 1.6116 nan 0.1000 -0.0190
## 260 1.5358 nan 0.1000 -0.0155
## 280 1.4640 nan 0.1000 -0.0078
## 300 1.4041 nan 0.1000 -0.0103
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.7819 nan 0.1000 9.1721
## 2 45.5996 nan 0.1000 7.9902
## 3 38.9345 nan 0.1000 6.4271
## 4 33.4925 nan 0.1000 4.4002
## 5 28.7884 nan 0.1000 4.1930
## 6 25.2573 nan 0.1000 3.4799
## 7 22.1783 nan 0.1000 2.8627
## 8 19.8720 nan 0.1000 2.2615
## 9 17.7070 nan 0.1000 1.9271
## 10 15.9230 nan 0.1000 1.8037
## 20 7.0199 nan 0.1000 0.3900
## 40 3.6359 nan 0.1000 -0.0012
## 60 3.0996 nan 0.1000 0.0018
## 80 2.7806 nan 0.1000 -0.0283
## 100 2.5150 nan 0.1000 -0.0111
## 120 2.3614 nan 0.1000 -0.0084
## 140 2.2095 nan 0.1000 -0.0159
## 160 2.0907 nan 0.1000 -0.0095
## 180 1.9944 nan 0.1000 -0.0154
## 200 1.8741 nan 0.1000 -0.0096
## 220 1.7875 nan 0.1000 -0.0215
## 240 1.7171 nan 0.1000 -0.0187
## 260 1.6560 nan 0.1000 -0.0247
## 280 1.5934 nan 0.1000 -0.0162
## 300 1.5309 nan 0.1000 -0.0068
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.1563 nan 0.1000 9.1890
## 2 47.1863 nan 0.1000 7.4860
## 3 40.5223 nan 0.1000 6.5973
## 4 35.0471 nan 0.1000 5.6348
## 5 30.5790 nan 0.1000 4.4031
## 6 26.9536 nan 0.1000 3.9411
## 7 23.7367 nan 0.1000 2.9762
## 8 21.0344 nan 0.1000 2.8311
## 9 18.6237 nan 0.1000 2.3509
## 10 16.9030 nan 0.1000 1.7766
## 20 7.5894 nan 0.1000 0.4691
## 40 4.2389 nan 0.1000 0.0239
## 60 3.5309 nan 0.1000 0.0059
## 80 3.0933 nan 0.1000 0.0011
## 100 2.8676 nan 0.1000 -0.0095
## 120 2.6494 nan 0.1000 -0.0116
## 140 2.4690 nan 0.1000 -0.0215
## 160 2.3283 nan 0.1000 -0.0267
## 180 2.2070 nan 0.1000 0.0005
## 200 2.1131 nan 0.1000 -0.0069
## 220 2.0109 nan 0.1000 -0.0085
## 240 1.9468 nan 0.1000 -0.0138
## 260 1.8766 nan 0.1000 -0.0273
## 280 1.8151 nan 0.1000 -0.0319
## 300 1.7568 nan 0.1000 -0.0061
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.9707 nan 0.1000 9.7861
## 2 44.6811 nan 0.1000 8.5758
## 3 38.0107 nan 0.1000 7.3145
## 4 32.6135 nan 0.1000 5.6445
## 5 27.9218 nan 0.1000 4.5815
## 6 24.1235 nan 0.1000 3.0533
## 7 20.9760 nan 0.1000 2.9903
## 8 18.0233 nan 0.1000 2.6554
## 9 15.8965 nan 0.1000 2.1371
## 10 13.8534 nan 0.1000 2.0530
## 20 5.5321 nan 0.1000 0.3555
## 40 2.9857 nan 0.1000 -0.0135
## 60 2.4533 nan 0.1000 -0.0049
## 80 2.0999 nan 0.1000 -0.0183
## 100 1.8238 nan 0.1000 -0.0019
## 120 1.6132 nan 0.1000 -0.0171
## 140 1.4482 nan 0.1000 -0.0144
## 160 1.3141 nan 0.1000 -0.0105
## 180 1.2308 nan 0.1000 -0.0128
## 200 1.1207 nan 0.1000 -0.0176
## 220 1.0379 nan 0.1000 -0.0112
## 240 0.9759 nan 0.1000 -0.0154
## 260 0.8945 nan 0.1000 -0.0102
## 280 0.8453 nan 0.1000 -0.0163
## 300 0.7891 nan 0.1000 -0.0083
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.2139 nan 0.1000 9.2980
## 2 44.6503 nan 0.1000 7.8656
## 3 38.0646 nan 0.1000 5.9041
## 4 32.6175 nan 0.1000 4.9176
## 5 27.9081 nan 0.1000 4.9373
## 6 24.3612 nan 0.1000 3.4839
## 7 21.0771 nan 0.1000 3.3119
## 8 18.2194 nan 0.1000 2.4167
## 9 16.0306 nan 0.1000 2.1591
## 10 14.1805 nan 0.1000 1.5558
## 20 5.7325 nan 0.1000 0.2454
## 40 3.2500 nan 0.1000 0.0113
## 60 2.6177 nan 0.1000 -0.0285
## 80 2.2816 nan 0.1000 -0.0196
## 100 2.0208 nan 0.1000 -0.0141
## 120 1.8317 nan 0.1000 -0.0233
## 140 1.6910 nan 0.1000 -0.0131
## 160 1.5778 nan 0.1000 -0.0106
## 180 1.4780 nan 0.1000 -0.0296
## 200 1.3784 nan 0.1000 -0.0274
## 220 1.2999 nan 0.1000 -0.0141
## 240 1.2365 nan 0.1000 -0.0123
## 260 1.1727 nan 0.1000 -0.0117
## 280 1.1066 nan 0.1000 -0.0061
## 300 1.0491 nan 0.1000 -0.0177
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.9383 nan 0.1000 8.6129
## 2 44.4343 nan 0.1000 8.8080
## 3 37.9714 nan 0.1000 6.4109
## 4 32.3280 nan 0.1000 6.3096
## 5 27.6423 nan 0.1000 4.1043
## 6 23.8484 nan 0.1000 3.1454
## 7 20.8135 nan 0.1000 3.1513
## 8 18.0614 nan 0.1000 2.4603
## 9 16.0158 nan 0.1000 1.8716
## 10 13.9073 nan 0.1000 2.1067
## 20 5.6968 nan 0.1000 0.2579
## 40 3.3720 nan 0.1000 -0.0007
## 60 2.8287 nan 0.1000 -0.0240
## 80 2.5373 nan 0.1000 -0.0132
## 100 2.2631 nan 0.1000 -0.0126
## 120 2.1034 nan 0.1000 -0.0166
## 140 1.9515 nan 0.1000 -0.0266
## 160 1.8362 nan 0.1000 -0.0282
## 180 1.7153 nan 0.1000 -0.0199
## 200 1.6567 nan 0.1000 -0.0148
## 220 1.5679 nan 0.1000 -0.0141
## 240 1.4944 nan 0.1000 -0.0118
## 260 1.4229 nan 0.1000 -0.0148
## 280 1.3772 nan 0.1000 -0.0179
## 300 1.3275 nan 0.1000 -0.0147
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0754 nan 0.0010 0.0752
## 2 61.9944 nan 0.0010 0.0749
## 3 61.9148 nan 0.0010 0.0745
## 4 61.8449 nan 0.0010 0.0772
## 5 61.7667 nan 0.0010 0.0757
## 6 61.6902 nan 0.0010 0.0715
## 7 61.6166 nan 0.0010 0.0794
## 8 61.5397 nan 0.0010 0.0824
## 9 61.4628 nan 0.0010 0.0789
## 10 61.3853 nan 0.0010 0.0717
## 20 60.6293 nan 0.0010 0.0757
## 40 59.1500 nan 0.0010 0.0752
## 60 57.7111 nan 0.0010 0.0667
## 80 56.3488 nan 0.0010 0.0683
## 100 55.0360 nan 0.0010 0.0636
## 120 53.7516 nan 0.0010 0.0647
## 140 52.5220 nan 0.0010 0.0580
## 160 51.3006 nan 0.0010 0.0645
## 180 50.1342 nan 0.0010 0.0540
## 200 49.0267 nan 0.0010 0.0529
## 220 47.9267 nan 0.0010 0.0511
## 240 46.8907 nan 0.0010 0.0504
## 260 45.8579 nan 0.0010 0.0477
## 280 44.8637 nan 0.0010 0.0408
## 300 43.9017 nan 0.0010 0.0472
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0732 nan 0.0010 0.0847
## 2 61.9964 nan 0.0010 0.0809
## 3 61.9168 nan 0.0010 0.0783
## 4 61.8338 nan 0.0010 0.0767
## 5 61.7634 nan 0.0010 0.0719
## 6 61.6853 nan 0.0010 0.0748
## 7 61.6082 nan 0.0010 0.0767
## 8 61.5272 nan 0.0010 0.0793
## 9 61.4484 nan 0.0010 0.0762
## 10 61.3695 nan 0.0010 0.0737
## 20 60.5923 nan 0.0010 0.0756
## 40 59.1248 nan 0.0010 0.0728
## 60 57.7153 nan 0.0010 0.0668
## 80 56.3447 nan 0.0010 0.0657
## 100 55.0031 nan 0.0010 0.0646
## 120 53.7289 nan 0.0010 0.0598
## 140 52.4527 nan 0.0010 0.0600
## 160 51.2282 nan 0.0010 0.0564
## 180 50.0588 nan 0.0010 0.0531
## 200 48.9181 nan 0.0010 0.0562
## 220 47.8340 nan 0.0010 0.0513
## 240 46.7881 nan 0.0010 0.0466
## 260 45.7916 nan 0.0010 0.0475
## 280 44.8138 nan 0.0010 0.0450
## 300 43.8557 nan 0.0010 0.0447
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0735 nan 0.0010 0.0789
## 2 61.9908 nan 0.0010 0.0718
## 3 61.9064 nan 0.0010 0.0772
## 4 61.8243 nan 0.0010 0.0781
## 5 61.7413 nan 0.0010 0.0768
## 6 61.6634 nan 0.0010 0.0827
## 7 61.5913 nan 0.0010 0.0773
## 8 61.5169 nan 0.0010 0.0743
## 9 61.4387 nan 0.0010 0.0768
## 10 61.3648 nan 0.0010 0.0730
## 20 60.5969 nan 0.0010 0.0777
## 40 59.1104 nan 0.0010 0.0785
## 60 57.6582 nan 0.0010 0.0720
## 80 56.2899 nan 0.0010 0.0702
## 100 54.9670 nan 0.0010 0.0645
## 120 53.6760 nan 0.0010 0.0677
## 140 52.4357 nan 0.0010 0.0632
## 160 51.2431 nan 0.0010 0.0562
## 180 50.0923 nan 0.0010 0.0513
## 200 48.9661 nan 0.0010 0.0513
## 220 47.8768 nan 0.0010 0.0478
## 240 46.8224 nan 0.0010 0.0528
## 260 45.7887 nan 0.0010 0.0512
## 280 44.8007 nan 0.0010 0.0487
## 300 43.8565 nan 0.0010 0.0461
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0569 nan 0.0010 0.0932
## 2 61.9628 nan 0.0010 0.0914
## 3 61.8697 nan 0.0010 0.0942
## 4 61.7765 nan 0.0010 0.0890
## 5 61.6767 nan 0.0010 0.0957
## 6 61.5796 nan 0.0010 0.0888
## 7 61.4921 nan 0.0010 0.0835
## 8 61.4007 nan 0.0010 0.0924
## 9 61.3097 nan 0.0010 0.0998
## 10 61.2124 nan 0.0010 0.0911
## 20 60.2761 nan 0.0010 0.0920
## 40 58.4661 nan 0.0010 0.0877
## 60 56.7267 nan 0.0010 0.0886
## 80 55.0407 nan 0.0010 0.0769
## 100 53.4041 nan 0.0010 0.0794
## 120 51.8241 nan 0.0010 0.0733
## 140 50.3060 nan 0.0010 0.0657
## 160 48.8152 nan 0.0010 0.0754
## 180 47.4212 nan 0.0010 0.0800
## 200 46.0678 nan 0.0010 0.0632
## 220 44.7154 nan 0.0010 0.0605
## 240 43.4422 nan 0.0010 0.0578
## 260 42.1901 nan 0.0010 0.0558
## 280 40.9969 nan 0.0010 0.0550
## 300 39.8451 nan 0.0010 0.0538
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0615 nan 0.0010 0.0869
## 2 61.9636 nan 0.0010 0.0919
## 3 61.8716 nan 0.0010 0.0934
## 4 61.7685 nan 0.0010 0.0908
## 5 61.6683 nan 0.0010 0.0832
## 6 61.5808 nan 0.0010 0.0941
## 7 61.4821 nan 0.0010 0.0957
## 8 61.3881 nan 0.0010 0.0988
## 9 61.2893 nan 0.0010 0.0948
## 10 61.1931 nan 0.0010 0.0948
## 20 60.2597 nan 0.0010 0.0944
## 40 58.4710 nan 0.0010 0.0846
## 60 56.7432 nan 0.0010 0.0823
## 80 55.0708 nan 0.0010 0.0974
## 100 53.4444 nan 0.0010 0.0774
## 120 51.8646 nan 0.0010 0.0800
## 140 50.3739 nan 0.0010 0.0724
## 160 48.9230 nan 0.0010 0.0712
## 180 47.4990 nan 0.0010 0.0703
## 200 46.1278 nan 0.0010 0.0723
## 220 44.8230 nan 0.0010 0.0651
## 240 43.5413 nan 0.0010 0.0635
## 260 42.3069 nan 0.0010 0.0621
## 280 41.1161 nan 0.0010 0.0542
## 300 39.9609 nan 0.0010 0.0484
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0533 nan 0.0010 0.0953
## 2 61.9562 nan 0.0010 0.0936
## 3 61.8628 nan 0.0010 0.0897
## 4 61.7658 nan 0.0010 0.1000
## 5 61.6749 nan 0.0010 0.0965
## 6 61.5776 nan 0.0010 0.0882
## 7 61.4912 nan 0.0010 0.0863
## 8 61.3948 nan 0.0010 0.0960
## 9 61.3015 nan 0.0010 0.0895
## 10 61.2091 nan 0.0010 0.0971
## 20 60.2833 nan 0.0010 0.0852
## 40 58.4648 nan 0.0010 0.0949
## 60 56.7434 nan 0.0010 0.0840
## 80 55.0648 nan 0.0010 0.0748
## 100 53.4397 nan 0.0010 0.0759
## 120 51.9124 nan 0.0010 0.0674
## 140 50.4004 nan 0.0010 0.0620
## 160 48.9113 nan 0.0010 0.0655
## 180 47.4650 nan 0.0010 0.0709
## 200 46.1079 nan 0.0010 0.0691
## 220 44.7768 nan 0.0010 0.0658
## 240 43.5088 nan 0.0010 0.0661
## 260 42.2929 nan 0.0010 0.0612
## 280 41.1244 nan 0.0010 0.0642
## 300 39.9607 nan 0.0010 0.0547
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0535 nan 0.0010 0.0949
## 2 61.9470 nan 0.0010 0.0964
## 3 61.8497 nan 0.0010 0.1027
## 4 61.7501 nan 0.0010 0.1037
## 5 61.6474 nan 0.0010 0.1051
## 6 61.5460 nan 0.0010 0.0935
## 7 61.4427 nan 0.0010 0.1046
## 8 61.3427 nan 0.0010 0.0963
## 9 61.2398 nan 0.0010 0.1018
## 10 61.1381 nan 0.0010 0.0887
## 20 60.1035 nan 0.0010 0.1012
## 40 58.1467 nan 0.0010 0.0974
## 60 56.2556 nan 0.0010 0.0902
## 80 54.4396 nan 0.0010 0.0928
## 100 52.7017 nan 0.0010 0.0865
## 120 51.0138 nan 0.0010 0.0816
## 140 49.3754 nan 0.0010 0.0830
## 160 47.8065 nan 0.0010 0.0801
## 180 46.2919 nan 0.0010 0.0686
## 200 44.8338 nan 0.0010 0.0677
## 220 43.4370 nan 0.0010 0.0680
## 240 42.1054 nan 0.0010 0.0577
## 260 40.8063 nan 0.0010 0.0572
## 280 39.5524 nan 0.0010 0.0640
## 300 38.3426 nan 0.0010 0.0642
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0484 nan 0.0010 0.0982
## 2 61.9410 nan 0.0010 0.0972
## 3 61.8399 nan 0.0010 0.0963
## 4 61.7362 nan 0.0010 0.1019
## 5 61.6293 nan 0.0010 0.1058
## 6 61.5222 nan 0.0010 0.0980
## 7 61.4175 nan 0.0010 0.1011
## 8 61.3186 nan 0.0010 0.0989
## 9 61.2162 nan 0.0010 0.0911
## 10 61.1142 nan 0.0010 0.1026
## 20 60.1100 nan 0.0010 0.0991
## 40 58.1639 nan 0.0010 0.0997
## 60 56.2672 nan 0.0010 0.0912
## 80 54.4613 nan 0.0010 0.0894
## 100 52.7050 nan 0.0010 0.0746
## 120 50.9962 nan 0.0010 0.0813
## 140 49.3956 nan 0.0010 0.0796
## 160 47.8326 nan 0.0010 0.0732
## 180 46.3232 nan 0.0010 0.0718
## 200 44.8864 nan 0.0010 0.0732
## 220 43.4862 nan 0.0010 0.0672
## 240 42.1325 nan 0.0010 0.0636
## 260 40.8369 nan 0.0010 0.0569
## 280 39.5922 nan 0.0010 0.0644
## 300 38.3999 nan 0.0010 0.0622
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.0482 nan 0.0010 0.0885
## 2 61.9460 nan 0.0010 0.0887
## 3 61.8374 nan 0.0010 0.0976
## 4 61.7402 nan 0.0010 0.0968
## 5 61.6362 nan 0.0010 0.1005
## 6 61.5349 nan 0.0010 0.0952
## 7 61.4314 nan 0.0010 0.0934
## 8 61.3271 nan 0.0010 0.0995
## 9 61.2319 nan 0.0010 0.0889
## 10 61.1332 nan 0.0010 0.1136
## 20 60.1121 nan 0.0010 0.1031
## 40 58.1720 nan 0.0010 0.0901
## 60 56.2782 nan 0.0010 0.0914
## 80 54.4693 nan 0.0010 0.0897
## 100 52.7310 nan 0.0010 0.0738
## 120 51.0239 nan 0.0010 0.0821
## 140 49.4025 nan 0.0010 0.0896
## 160 47.8426 nan 0.0010 0.0719
## 180 46.3611 nan 0.0010 0.0741
## 200 44.9207 nan 0.0010 0.0633
## 220 43.5344 nan 0.0010 0.0641
## 240 42.1867 nan 0.0010 0.0667
## 260 40.8935 nan 0.0010 0.0680
## 280 39.6392 nan 0.0010 0.0646
## 300 38.4372 nan 0.0010 0.0556
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.8013 nan 0.0050 0.3940
## 2 61.4273 nan 0.0050 0.3905
## 3 61.0467 nan 0.0050 0.3918
## 4 60.6320 nan 0.0050 0.3714
## 5 60.2337 nan 0.0050 0.3179
## 6 59.8424 nan 0.0050 0.3419
## 7 59.4652 nan 0.0050 0.3339
## 8 59.1070 nan 0.0050 0.3760
## 9 58.7424 nan 0.0050 0.3551
## 10 58.3652 nan 0.0050 0.3639
## 20 55.0203 nan 0.0050 0.3101
## 40 49.0159 nan 0.0050 0.2469
## 60 43.8181 nan 0.0050 0.2182
## 80 39.4206 nan 0.0050 0.1882
## 100 35.6427 nan 0.0050 0.1617
## 120 32.3715 nan 0.0050 0.1455
## 140 29.5224 nan 0.0050 0.1120
## 160 26.9839 nan 0.0050 0.1260
## 180 24.7179 nan 0.0050 0.0860
## 200 22.7791 nan 0.0050 0.0821
## 220 20.9972 nan 0.0050 0.0782
## 240 19.4274 nan 0.0050 0.0594
## 260 18.0247 nan 0.0050 0.0466
## 280 16.7899 nan 0.0050 0.0554
## 300 15.7104 nan 0.0050 0.0394
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7913 nan 0.0050 0.3838
## 2 61.3752 nan 0.0050 0.3916
## 3 61.0056 nan 0.0050 0.4250
## 4 60.6271 nan 0.0050 0.3433
## 5 60.2587 nan 0.0050 0.3902
## 6 59.9070 nan 0.0050 0.3567
## 7 59.5344 nan 0.0050 0.3827
## 8 59.1644 nan 0.0050 0.3657
## 9 58.8051 nan 0.0050 0.3604
## 10 58.4409 nan 0.0050 0.3521
## 20 54.9780 nan 0.0050 0.3185
## 40 48.8883 nan 0.0050 0.3307
## 60 43.7430 nan 0.0050 0.2296
## 80 39.2672 nan 0.0050 0.1936
## 100 35.4982 nan 0.0050 0.1458
## 120 32.2430 nan 0.0050 0.1452
## 140 29.4027 nan 0.0050 0.1282
## 160 26.8808 nan 0.0050 0.1120
## 180 24.7364 nan 0.0050 0.0744
## 200 22.7793 nan 0.0050 0.0846
## 220 21.0258 nan 0.0050 0.0763
## 240 19.5173 nan 0.0050 0.0676
## 260 18.1663 nan 0.0050 0.0578
## 280 16.9240 nan 0.0050 0.0535
## 300 15.8113 nan 0.0050 0.0475
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7560 nan 0.0050 0.3837
## 2 61.3484 nan 0.0050 0.3826
## 3 60.9640 nan 0.0050 0.3581
## 4 60.5900 nan 0.0050 0.3724
## 5 60.1948 nan 0.0050 0.3657
## 6 59.7810 nan 0.0050 0.3692
## 7 59.3983 nan 0.0050 0.3535
## 8 59.0475 nan 0.0050 0.3617
## 9 58.6901 nan 0.0050 0.3500
## 10 58.3794 nan 0.0050 0.3273
## 20 54.9717 nan 0.0050 0.3237
## 40 48.8789 nan 0.0050 0.2684
## 60 43.7436 nan 0.0050 0.2438
## 80 39.4726 nan 0.0050 0.1802
## 100 35.7320 nan 0.0050 0.1541
## 120 32.4690 nan 0.0050 0.1327
## 140 29.4687 nan 0.0050 0.1267
## 160 27.0201 nan 0.0050 0.1009
## 180 24.8866 nan 0.0050 0.0940
## 200 22.9038 nan 0.0050 0.0760
## 220 21.1575 nan 0.0050 0.0749
## 240 19.6249 nan 0.0050 0.0643
## 260 18.2312 nan 0.0050 0.0554
## 280 17.0024 nan 0.0050 0.0573
## 300 15.9227 nan 0.0050 0.0424
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.6587 nan 0.0050 0.4437
## 2 61.2363 nan 0.0050 0.4538
## 3 60.7644 nan 0.0050 0.4669
## 4 60.2862 nan 0.0050 0.4880
## 5 59.8129 nan 0.0050 0.4637
## 6 59.3794 nan 0.0050 0.4647
## 7 58.9161 nan 0.0050 0.4315
## 8 58.4572 nan 0.0050 0.4613
## 9 58.0083 nan 0.0050 0.4438
## 10 57.5568 nan 0.0050 0.4408
## 20 53.3935 nan 0.0050 0.4252
## 40 46.0538 nan 0.0050 0.3058
## 60 40.0296 nan 0.0050 0.2736
## 80 34.8097 nan 0.0050 0.2314
## 100 30.4461 nan 0.0050 0.1895
## 120 26.7644 nan 0.0050 0.1835
## 140 23.5844 nan 0.0050 0.1271
## 160 20.9156 nan 0.0050 0.1111
## 180 18.6935 nan 0.0050 0.1102
## 200 16.7587 nan 0.0050 0.0854
## 220 15.0980 nan 0.0050 0.0672
## 240 13.6913 nan 0.0050 0.0702
## 260 12.4581 nan 0.0050 0.0520
## 280 11.4309 nan 0.0050 0.0420
## 300 10.5095 nan 0.0050 0.0213
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.6371 nan 0.0050 0.5024
## 2 61.1131 nan 0.0050 0.4550
## 3 60.6149 nan 0.0050 0.5436
## 4 60.1676 nan 0.0050 0.4702
## 5 59.6905 nan 0.0050 0.4529
## 6 59.2430 nan 0.0050 0.4597
## 7 58.8313 nan 0.0050 0.4781
## 8 58.4044 nan 0.0050 0.4121
## 9 57.9581 nan 0.0050 0.4352
## 10 57.5030 nan 0.0050 0.4686
## 20 53.3394 nan 0.0050 0.3906
## 40 45.9382 nan 0.0050 0.3348
## 60 39.9076 nan 0.0050 0.2553
## 80 34.7763 nan 0.0050 0.2135
## 100 30.4254 nan 0.0050 0.1878
## 120 26.7179 nan 0.0050 0.1648
## 140 23.6075 nan 0.0050 0.1191
## 160 20.9111 nan 0.0050 0.1107
## 180 18.6767 nan 0.0050 0.0942
## 200 16.7609 nan 0.0050 0.0864
## 220 15.1449 nan 0.0050 0.0657
## 240 13.7362 nan 0.0050 0.0499
## 260 12.5057 nan 0.0050 0.0515
## 280 11.4558 nan 0.0050 0.0457
## 300 10.5327 nan 0.0050 0.0425
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.7045 nan 0.0050 0.4555
## 2 61.2307 nan 0.0050 0.4956
## 3 60.7374 nan 0.0050 0.4572
## 4 60.2460 nan 0.0050 0.4735
## 5 59.7690 nan 0.0050 0.4614
## 6 59.3268 nan 0.0050 0.4613
## 7 58.8671 nan 0.0050 0.4747
## 8 58.4424 nan 0.0050 0.4954
## 9 57.9534 nan 0.0050 0.4837
## 10 57.5284 nan 0.0050 0.4115
## 20 53.3126 nan 0.0050 0.3864
## 40 46.0677 nan 0.0050 0.3219
## 60 39.8460 nan 0.0050 0.2811
## 80 34.6812 nan 0.0050 0.2289
## 100 30.3641 nan 0.0050 0.1810
## 120 26.7799 nan 0.0050 0.1989
## 140 23.6737 nan 0.0050 0.1408
## 160 20.9643 nan 0.0050 0.1129
## 180 18.7490 nan 0.0050 0.0968
## 200 16.8292 nan 0.0050 0.0800
## 220 15.2089 nan 0.0050 0.0690
## 240 13.7859 nan 0.0050 0.0659
## 260 12.5957 nan 0.0050 0.0528
## 280 11.5883 nan 0.0050 0.0334
## 300 10.6699 nan 0.0050 0.0384
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.6353 nan 0.0050 0.5519
## 2 61.1346 nan 0.0050 0.4299
## 3 60.6312 nan 0.0050 0.5632
## 4 60.1312 nan 0.0050 0.5109
## 5 59.6430 nan 0.0050 0.4553
## 6 59.1545 nan 0.0050 0.5314
## 7 58.6790 nan 0.0050 0.4636
## 8 58.2003 nan 0.0050 0.4864
## 9 57.7212 nan 0.0050 0.4980
## 10 57.2296 nan 0.0050 0.4971
## 20 52.7991 nan 0.0050 0.4115
## 40 44.9785 nan 0.0050 0.3521
## 60 38.4985 nan 0.0050 0.2877
## 80 33.0659 nan 0.0050 0.2245
## 100 28.6096 nan 0.0050 0.2130
## 120 24.7756 nan 0.0050 0.1801
## 140 21.5699 nan 0.0050 0.1478
## 160 18.8711 nan 0.0050 0.1035
## 180 16.6246 nan 0.0050 0.0911
## 200 14.7360 nan 0.0050 0.0734
## 220 13.0971 nan 0.0050 0.0705
## 240 11.7674 nan 0.0050 0.0582
## 260 10.5959 nan 0.0050 0.0433
## 280 9.5910 nan 0.0050 0.0491
## 300 8.7180 nan 0.0050 0.0361
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.5865 nan 0.0050 0.5113
## 2 61.0476 nan 0.0050 0.5011
## 3 60.5360 nan 0.0050 0.4920
## 4 60.0268 nan 0.0050 0.4581
## 5 59.5429 nan 0.0050 0.5235
## 6 59.0419 nan 0.0050 0.5127
## 7 58.5302 nan 0.0050 0.4670
## 8 58.0035 nan 0.0050 0.4708
## 9 57.5166 nan 0.0050 0.4024
## 10 57.0574 nan 0.0050 0.4480
## 20 52.4945 nan 0.0050 0.4518
## 40 44.6545 nan 0.0050 0.3537
## 60 38.1660 nan 0.0050 0.2886
## 80 32.7930 nan 0.0050 0.1976
## 100 28.3346 nan 0.0050 0.2098
## 120 24.5394 nan 0.0050 0.1753
## 140 21.3893 nan 0.0050 0.1292
## 160 18.6919 nan 0.0050 0.1317
## 180 16.5379 nan 0.0050 0.0956
## 200 14.6294 nan 0.0050 0.0867
## 220 13.0218 nan 0.0050 0.0646
## 240 11.6787 nan 0.0050 0.0602
## 260 10.5161 nan 0.0050 0.0485
## 280 9.5395 nan 0.0050 0.0365
## 300 8.6836 nan 0.0050 0.0328
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.6303 nan 0.0050 0.5324
## 2 61.1122 nan 0.0050 0.4753
## 3 60.6015 nan 0.0050 0.5356
## 4 60.1255 nan 0.0050 0.5246
## 5 59.6110 nan 0.0050 0.5368
## 6 59.1192 nan 0.0050 0.4898
## 7 58.6151 nan 0.0050 0.3927
## 8 58.1453 nan 0.0050 0.4577
## 9 57.6599 nan 0.0050 0.4935
## 10 57.1819 nan 0.0050 0.4550
## 20 52.6634 nan 0.0050 0.4508
## 40 44.7811 nan 0.0050 0.3208
## 60 38.2726 nan 0.0050 0.2798
## 80 32.7781 nan 0.0050 0.2245
## 100 28.3698 nan 0.0050 0.1496
## 120 24.6218 nan 0.0050 0.1621
## 140 21.5323 nan 0.0050 0.1353
## 160 18.9178 nan 0.0050 0.1127
## 180 16.6798 nan 0.0050 0.0957
## 200 14.8004 nan 0.0050 0.0766
## 220 13.2281 nan 0.0050 0.0552
## 240 11.9034 nan 0.0050 0.0542
## 260 10.7549 nan 0.0050 0.0521
## 280 9.8052 nan 0.0050 0.0374
## 300 8.9338 nan 0.0050 0.0324
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.4231 nan 0.0100 0.8007
## 2 60.7208 nan 0.0100 0.7756
## 3 59.9001 nan 0.0100 0.7900
## 4 59.1177 nan 0.0100 0.7659
## 5 58.3836 nan 0.0100 0.7124
## 6 57.6161 nan 0.0100 0.7293
## 7 56.8811 nan 0.0100 0.6741
## 8 56.1679 nan 0.0100 0.6680
## 9 55.5531 nan 0.0100 0.6362
## 10 54.8288 nan 0.0100 0.6887
## 20 48.6874 nan 0.0100 0.5202
## 40 39.1993 nan 0.0100 0.4011
## 60 32.2603 nan 0.0100 0.2767
## 80 26.8401 nan 0.0100 0.2053
## 100 22.6455 nan 0.0100 0.1506
## 120 19.3788 nan 0.0100 0.1090
## 140 16.8443 nan 0.0100 0.0934
## 160 14.8269 nan 0.0100 0.0572
## 180 13.0820 nan 0.0100 0.0579
## 200 11.6962 nan 0.0100 0.0491
## 220 10.5427 nan 0.0100 0.0422
## 240 9.5580 nan 0.0100 0.0314
## 260 8.7387 nan 0.0100 0.0221
## 280 8.0300 nan 0.0100 0.0282
## 300 7.4375 nan 0.0100 0.0257
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3600 nan 0.0100 0.7558
## 2 60.5459 nan 0.0100 0.7606
## 3 59.8105 nan 0.0100 0.6519
## 4 59.0659 nan 0.0100 0.7656
## 5 58.4513 nan 0.0100 0.5058
## 6 57.7034 nan 0.0100 0.7403
## 7 56.8966 nan 0.0100 0.6698
## 8 56.1876 nan 0.0100 0.6694
## 9 55.4623 nan 0.0100 0.6713
## 10 54.9447 nan 0.0100 0.4854
## 20 48.9004 nan 0.0100 0.5285
## 40 39.4029 nan 0.0100 0.3740
## 60 32.2775 nan 0.0100 0.3039
## 80 26.9283 nan 0.0100 0.2215
## 100 22.7089 nan 0.0100 0.1393
## 120 19.3981 nan 0.0100 0.1489
## 140 16.8380 nan 0.0100 0.0653
## 160 14.7673 nan 0.0100 0.0835
## 180 13.0935 nan 0.0100 0.0619
## 200 11.7356 nan 0.0100 0.0524
## 220 10.5807 nan 0.0100 0.0485
## 240 9.6269 nan 0.0100 0.0359
## 260 8.8225 nan 0.0100 0.0325
## 280 8.1045 nan 0.0100 0.0348
## 300 7.5061 nan 0.0100 0.0099
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3586 nan 0.0100 0.8241
## 2 60.5408 nan 0.0100 0.7626
## 3 59.8011 nan 0.0100 0.7361
## 4 59.0550 nan 0.0100 0.6870
## 5 58.3047 nan 0.0100 0.7764
## 6 57.5439 nan 0.0100 0.6770
## 7 56.8631 nan 0.0100 0.7005
## 8 56.1105 nan 0.0100 0.6625
## 9 55.4377 nan 0.0100 0.5817
## 10 54.7771 nan 0.0100 0.6422
## 20 48.7684 nan 0.0100 0.4473
## 40 39.4221 nan 0.0100 0.3602
## 60 32.3534 nan 0.0100 0.2953
## 80 26.9362 nan 0.0100 0.2254
## 100 22.8215 nan 0.0100 0.1521
## 120 19.5177 nan 0.0100 0.1340
## 140 16.8965 nan 0.0100 0.1114
## 160 14.8573 nan 0.0100 0.0807
## 180 13.1023 nan 0.0100 0.0639
## 200 11.7385 nan 0.0100 0.0601
## 220 10.5853 nan 0.0100 0.0426
## 240 9.6286 nan 0.0100 0.0461
## 260 8.8038 nan 0.0100 0.0226
## 280 8.1240 nan 0.0100 0.0223
## 300 7.5596 nan 0.0100 0.0196
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1748 nan 0.0100 0.9225
## 2 60.2262 nan 0.0100 0.9542
## 3 59.3208 nan 0.0100 0.8691
## 4 58.4785 nan 0.0100 0.8508
## 5 57.6143 nan 0.0100 0.8536
## 6 56.7702 nan 0.0100 0.8668
## 7 55.9189 nan 0.0100 0.8224
## 8 55.1185 nan 0.0100 0.7958
## 9 54.2883 nan 0.0100 0.8005
## 10 53.5089 nan 0.0100 0.7170
## 20 46.0659 nan 0.0100 0.6700
## 40 34.5527 nan 0.0100 0.4690
## 60 26.4129 nan 0.0100 0.3331
## 80 20.8487 nan 0.0100 0.2085
## 100 16.7351 nan 0.0100 0.1743
## 120 13.6380 nan 0.0100 0.1527
## 140 11.3874 nan 0.0100 0.1108
## 160 9.5951 nan 0.0100 0.0553
## 180 8.2782 nan 0.0100 0.0510
## 200 7.2325 nan 0.0100 0.0406
## 220 6.4308 nan 0.0100 0.0139
## 240 5.8039 nan 0.0100 0.0250
## 260 5.3053 nan 0.0100 0.0156
## 280 4.8806 nan 0.0100 0.0100
## 300 4.5602 nan 0.0100 0.0126
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1454 nan 0.0100 0.9078
## 2 60.2830 nan 0.0100 0.7886
## 3 59.3483 nan 0.0100 0.9177
## 4 58.4292 nan 0.0100 0.8745
## 5 57.6168 nan 0.0100 0.7712
## 6 56.8135 nan 0.0100 0.8537
## 7 55.9700 nan 0.0100 0.9300
## 8 55.1174 nan 0.0100 0.8293
## 9 54.2800 nan 0.0100 0.8292
## 10 53.4601 nan 0.0100 0.7988
## 20 46.3006 nan 0.0100 0.6585
## 40 34.7816 nan 0.0100 0.4409
## 60 26.5888 nan 0.0100 0.3491
## 80 20.9903 nan 0.0100 0.2292
## 100 16.7414 nan 0.0100 0.2018
## 120 13.6748 nan 0.0100 0.1464
## 140 11.4045 nan 0.0100 0.0893
## 160 9.7239 nan 0.0100 0.0755
## 180 8.4059 nan 0.0100 0.0479
## 200 7.3742 nan 0.0100 0.0383
## 220 6.5432 nan 0.0100 0.0306
## 240 5.9193 nan 0.0100 0.0289
## 260 5.4264 nan 0.0100 0.0126
## 280 5.0076 nan 0.0100 0.0148
## 300 4.6764 nan 0.0100 0.0070
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2702 nan 0.0100 0.9618
## 2 60.3370 nan 0.0100 0.9253
## 3 59.4564 nan 0.0100 0.7831
## 4 58.5665 nan 0.0100 0.8549
## 5 57.6848 nan 0.0100 0.8334
## 6 56.7458 nan 0.0100 0.8260
## 7 55.9088 nan 0.0100 0.8905
## 8 55.0837 nan 0.0100 0.7875
## 9 54.1972 nan 0.0100 0.7993
## 10 53.4028 nan 0.0100 0.7641
## 20 45.9579 nan 0.0100 0.6195
## 40 34.7245 nan 0.0100 0.5085
## 60 26.6143 nan 0.0100 0.3099
## 80 20.7812 nan 0.0100 0.2808
## 100 16.5976 nan 0.0100 0.1782
## 120 13.5938 nan 0.0100 0.1216
## 140 11.3720 nan 0.0100 0.0809
## 160 9.7018 nan 0.0100 0.0634
## 180 8.4303 nan 0.0100 0.0399
## 200 7.4665 nan 0.0100 0.0333
## 220 6.6889 nan 0.0100 0.0318
## 240 6.0548 nan 0.0100 0.0232
## 260 5.5558 nan 0.0100 0.0139
## 280 5.1671 nan 0.0100 0.0080
## 300 4.8670 nan 0.0100 0.0109
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1397 nan 0.0100 0.9481
## 2 60.1652 nan 0.0100 0.9431
## 3 59.1255 nan 0.0100 1.0902
## 4 58.1310 nan 0.0100 0.9447
## 5 57.1268 nan 0.0100 1.0498
## 6 56.1676 nan 0.0100 0.9156
## 7 55.1973 nan 0.0100 0.8430
## 8 54.3437 nan 0.0100 0.9172
## 9 53.4160 nan 0.0100 0.8079
## 10 52.5049 nan 0.0100 0.8152
## 20 44.5611 nan 0.0100 0.6963
## 40 32.6146 nan 0.0100 0.4615
## 60 24.3069 nan 0.0100 0.3361
## 80 18.5712 nan 0.0100 0.2420
## 100 14.5428 nan 0.0100 0.1673
## 120 11.5675 nan 0.0100 0.1213
## 140 9.4294 nan 0.0100 0.0781
## 160 7.8655 nan 0.0100 0.0512
## 180 6.7116 nan 0.0100 0.0410
## 200 5.8183 nan 0.0100 0.0333
## 220 5.1399 nan 0.0100 0.0197
## 240 4.6297 nan 0.0100 0.0157
## 260 4.2213 nan 0.0100 0.0136
## 280 3.9168 nan 0.0100 0.0047
## 300 3.6971 nan 0.0100 0.0035
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.1740 nan 0.0100 1.0519
## 2 60.1188 nan 0.0100 1.0716
## 3 59.1260 nan 0.0100 0.9244
## 4 58.1686 nan 0.0100 1.0022
## 5 57.2757 nan 0.0100 0.9846
## 6 56.3190 nan 0.0100 0.9525
## 7 55.4157 nan 0.0100 0.8928
## 8 54.5039 nan 0.0100 0.8966
## 9 53.5836 nan 0.0100 0.8538
## 10 52.7147 nan 0.0100 0.8452
## 20 44.8009 nan 0.0100 0.7050
## 40 32.8674 nan 0.0100 0.4990
## 60 24.5232 nan 0.0100 0.3374
## 80 18.7407 nan 0.0100 0.2479
## 100 14.6645 nan 0.0100 0.1871
## 120 11.6529 nan 0.0100 0.1183
## 140 9.4896 nan 0.0100 0.0790
## 160 7.8928 nan 0.0100 0.0618
## 180 6.7143 nan 0.0100 0.0515
## 200 5.8534 nan 0.0100 0.0226
## 220 5.1790 nan 0.0100 0.0203
## 240 4.6851 nan 0.0100 0.0218
## 260 4.3072 nan 0.0100 0.0118
## 280 4.0149 nan 0.0100 0.0108
## 300 3.7968 nan 0.0100 0.0037
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.0917 nan 0.0100 0.9678
## 2 60.0817 nan 0.0100 0.9216
## 3 59.0580 nan 0.0100 0.9021
## 4 58.0686 nan 0.0100 0.9090
## 5 57.1175 nan 0.0100 0.9171
## 6 56.1692 nan 0.0100 0.8902
## 7 55.2549 nan 0.0100 0.7393
## 8 54.3358 nan 0.0100 0.9887
## 9 53.4711 nan 0.0100 0.7550
## 10 52.5489 nan 0.0100 0.9925
## 20 44.7001 nan 0.0100 0.7138
## 40 32.8364 nan 0.0100 0.5034
## 60 24.6005 nan 0.0100 0.3416
## 80 18.7804 nan 0.0100 0.1957
## 100 14.7232 nan 0.0100 0.1479
## 120 11.8868 nan 0.0100 0.1117
## 140 9.7532 nan 0.0100 0.0749
## 160 8.1380 nan 0.0100 0.0572
## 180 6.9660 nan 0.0100 0.0390
## 200 6.0923 nan 0.0100 0.0238
## 220 5.4283 nan 0.0100 0.0267
## 240 4.9539 nan 0.0100 0.0133
## 260 4.5813 nan 0.0100 0.0067
## 280 4.2816 nan 0.0100 0.0120
## 300 4.0674 nan 0.0100 0.0072
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.2534 nan 0.0500 3.6030
## 2 54.8797 nan 0.0500 3.4165
## 3 51.6796 nan 0.0500 3.5804
## 4 48.5075 nan 0.0500 2.5901
## 5 45.6180 nan 0.0500 2.6803
## 6 43.3479 nan 0.0500 2.3455
## 7 41.3246 nan 0.0500 1.8857
## 8 39.2339 nan 0.0500 2.1609
## 9 37.3741 nan 0.0500 1.8928
## 10 35.6579 nan 0.0500 1.7235
## 20 22.8101 nan 0.0500 0.7521
## 40 11.6224 nan 0.0500 0.2937
## 60 7.2572 nan 0.0500 0.1362
## 80 5.4200 nan 0.0500 0.0318
## 100 4.5073 nan 0.0500 0.0226
## 120 4.0736 nan 0.0500 0.0134
## 140 3.8111 nan 0.0500 0.0018
## 160 3.6503 nan 0.0500 -0.0048
## 180 3.5491 nan 0.0500 -0.0096
## 200 3.4563 nan 0.0500 -0.0176
## 220 3.3759 nan 0.0500 -0.0038
## 240 3.3072 nan 0.0500 -0.0066
## 260 3.2591 nan 0.0500 -0.0192
## 280 3.2157 nan 0.0500 -0.0172
## 300 3.1639 nan 0.0500 -0.0119
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.2560 nan 0.0500 3.5064
## 2 54.5276 nan 0.0500 3.5875
## 3 51.3591 nan 0.0500 3.1184
## 4 48.7859 nan 0.0500 2.7443
## 5 46.1874 nan 0.0500 2.9085
## 6 43.7173 nan 0.0500 2.1134
## 7 41.4212 nan 0.0500 2.0850
## 8 39.1853 nan 0.0500 1.8946
## 9 37.0825 nan 0.0500 2.0729
## 10 35.1468 nan 0.0500 1.7580
## 20 22.5776 nan 0.0500 0.8031
## 40 11.6206 nan 0.0500 0.2715
## 60 7.4707 nan 0.0500 0.0856
## 80 5.5864 nan 0.0500 0.0548
## 100 4.7037 nan 0.0500 0.0244
## 120 4.3023 nan 0.0500 -0.0080
## 140 4.0861 nan 0.0500 -0.0147
## 160 3.9502 nan 0.0500 -0.0048
## 180 3.8571 nan 0.0500 -0.0060
## 200 3.7622 nan 0.0500 -0.0150
## 220 3.6900 nan 0.0500 -0.0074
## 240 3.6125 nan 0.0500 -0.0118
## 260 3.5447 nan 0.0500 -0.0112
## 280 3.4844 nan 0.0500 -0.0074
## 300 3.4308 nan 0.0500 -0.0057
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.2425 nan 0.0500 3.6402
## 2 54.8341 nan 0.0500 3.5455
## 3 51.7669 nan 0.0500 3.2467
## 4 48.6089 nan 0.0500 2.8844
## 5 45.8432 nan 0.0500 2.4904
## 6 43.2550 nan 0.0500 2.4954
## 7 41.0027 nan 0.0500 2.1900
## 8 38.8791 nan 0.0500 2.1152
## 9 36.9871 nan 0.0500 1.9220
## 10 35.0691 nan 0.0500 1.7293
## 20 22.2124 nan 0.0500 0.8149
## 40 11.5265 nan 0.0500 0.1819
## 60 7.3282 nan 0.0500 0.1251
## 80 5.6070 nan 0.0500 0.0244
## 100 4.7250 nan 0.0500 0.0150
## 120 4.3044 nan 0.0500 0.0200
## 140 4.0935 nan 0.0500 0.0040
## 160 3.9500 nan 0.0500 -0.0147
## 180 3.8562 nan 0.0500 -0.0123
## 200 3.7650 nan 0.0500 -0.0117
## 220 3.6867 nan 0.0500 -0.0127
## 240 3.6261 nan 0.0500 -0.0037
## 260 3.5463 nan 0.0500 -0.0204
## 280 3.4972 nan 0.0500 -0.0127
## 300 3.4403 nan 0.0500 -0.0092
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.4434 nan 0.0500 4.5156
## 2 53.2742 nan 0.0500 4.4939
## 3 49.1448 nan 0.0500 3.3021
## 4 45.5540 nan 0.0500 3.1519
## 5 42.1434 nan 0.0500 2.9959
## 6 39.4618 nan 0.0500 2.8469
## 7 36.7950 nan 0.0500 2.8181
## 8 34.1095 nan 0.0500 2.3468
## 9 31.7386 nan 0.0500 2.3273
## 10 29.7039 nan 0.0500 1.9393
## 20 16.1708 nan 0.0500 0.8734
## 40 7.1538 nan 0.0500 0.1835
## 60 4.6287 nan 0.0500 0.0427
## 80 3.8657 nan 0.0500 0.0184
## 100 3.5266 nan 0.0500 -0.0049
## 120 3.2687 nan 0.0500 -0.0006
## 140 3.0761 nan 0.0500 -0.0121
## 160 2.9144 nan 0.0500 -0.0268
## 180 2.7923 nan 0.0500 -0.0160
## 200 2.6766 nan 0.0500 -0.0114
## 220 2.5744 nan 0.0500 -0.0122
## 240 2.4883 nan 0.0500 -0.0117
## 260 2.4030 nan 0.0500 -0.0101
## 280 2.3266 nan 0.0500 -0.0097
## 300 2.2621 nan 0.0500 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.4215 nan 0.0500 4.7022
## 2 53.3549 nan 0.0500 4.0126
## 3 49.7375 nan 0.0500 3.6852
## 4 46.0470 nan 0.0500 3.7257
## 5 42.6467 nan 0.0500 3.1709
## 6 39.6984 nan 0.0500 3.0781
## 7 36.8379 nan 0.0500 2.5795
## 8 34.2619 nan 0.0500 2.4993
## 9 31.9214 nan 0.0500 2.3402
## 10 29.9630 nan 0.0500 1.9617
## 20 16.6153 nan 0.0500 0.8801
## 40 7.2706 nan 0.0500 0.1712
## 60 4.6658 nan 0.0500 0.0499
## 80 3.8380 nan 0.0500 0.0122
## 100 3.5136 nan 0.0500 -0.0095
## 120 3.2897 nan 0.0500 -0.0095
## 140 3.1280 nan 0.0500 -0.0066
## 160 2.9705 nan 0.0500 -0.0041
## 180 2.8401 nan 0.0500 -0.0093
## 200 2.7415 nan 0.0500 -0.0201
## 220 2.6642 nan 0.0500 -0.0099
## 240 2.5819 nan 0.0500 -0.0080
## 260 2.4961 nan 0.0500 -0.0059
## 280 2.4364 nan 0.0500 -0.0130
## 300 2.3777 nan 0.0500 -0.0156
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.4194 nan 0.0500 4.5859
## 2 53.3151 nan 0.0500 4.0257
## 3 49.2358 nan 0.0500 3.7990
## 4 45.7718 nan 0.0500 3.4503
## 5 42.4331 nan 0.0500 3.3947
## 6 39.5492 nan 0.0500 2.7945
## 7 36.6082 nan 0.0500 2.8091
## 8 34.0460 nan 0.0500 2.5424
## 9 31.6251 nan 0.0500 2.1926
## 10 29.4588 nan 0.0500 1.8479
## 20 16.3896 nan 0.0500 0.7353
## 40 7.3636 nan 0.0500 0.1819
## 60 5.0105 nan 0.0500 0.0612
## 80 4.1535 nan 0.0500 -0.0134
## 100 3.8049 nan 0.0500 -0.0029
## 120 3.5872 nan 0.0500 -0.0050
## 140 3.4155 nan 0.0500 -0.0062
## 160 3.2761 nan 0.0500 -0.0034
## 180 3.1730 nan 0.0500 -0.0067
## 200 3.0738 nan 0.0500 -0.0294
## 220 3.0040 nan 0.0500 -0.0159
## 240 2.9184 nan 0.0500 -0.0045
## 260 2.8470 nan 0.0500 -0.0215
## 280 2.7782 nan 0.0500 -0.0089
## 300 2.7206 nan 0.0500 -0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.1493 nan 0.0500 5.2840
## 2 52.7253 nan 0.0500 4.6258
## 3 48.3251 nan 0.0500 4.0881
## 4 44.4757 nan 0.0500 4.0895
## 5 40.7156 nan 0.0500 3.3888
## 6 37.4532 nan 0.0500 3.2934
## 7 34.6238 nan 0.0500 2.7885
## 8 32.0164 nan 0.0500 2.3052
## 9 29.6723 nan 0.0500 2.0828
## 10 27.5223 nan 0.0500 1.5096
## 20 14.3407 nan 0.0500 0.8260
## 40 5.7545 nan 0.0500 0.1174
## 60 3.7773 nan 0.0500 -0.0004
## 80 3.1813 nan 0.0500 0.0023
## 100 2.8447 nan 0.0500 -0.0035
## 120 2.6232 nan 0.0500 -0.0167
## 140 2.4141 nan 0.0500 -0.0141
## 160 2.2726 nan 0.0500 -0.0046
## 180 2.1268 nan 0.0500 -0.0158
## 200 2.0063 nan 0.0500 -0.0075
## 220 1.9087 nan 0.0500 -0.0072
## 240 1.8250 nan 0.0500 -0.0148
## 260 1.7466 nan 0.0500 -0.0121
## 280 1.6703 nan 0.0500 -0.0028
## 300 1.5950 nan 0.0500 -0.0132
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.9273 nan 0.0500 4.9560
## 2 52.4925 nan 0.0500 4.0922
## 3 48.4572 nan 0.0500 3.7872
## 4 44.6431 nan 0.0500 3.8221
## 5 41.0599 nan 0.0500 3.4251
## 6 38.0074 nan 0.0500 3.3214
## 7 35.3221 nan 0.0500 2.8608
## 8 32.4084 nan 0.0500 2.5341
## 9 29.9304 nan 0.0500 2.2079
## 10 27.7384 nan 0.0500 1.7318
## 20 13.9907 nan 0.0500 0.7589
## 40 5.8195 nan 0.0500 0.1374
## 60 3.7736 nan 0.0500 0.0294
## 80 3.2198 nan 0.0500 -0.0111
## 100 2.9317 nan 0.0500 -0.0085
## 120 2.7332 nan 0.0500 -0.0119
## 140 2.5712 nan 0.0500 -0.0231
## 160 2.4465 nan 0.0500 -0.0048
## 180 2.3270 nan 0.0500 -0.0084
## 200 2.2186 nan 0.0500 -0.0097
## 220 2.1390 nan 0.0500 -0.0075
## 240 2.0454 nan 0.0500 -0.0121
## 260 1.9721 nan 0.0500 -0.0173
## 280 1.9142 nan 0.0500 -0.0077
## 300 1.8510 nan 0.0500 -0.0082
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.2062 nan 0.0500 5.2387
## 2 52.4758 nan 0.0500 4.6808
## 3 48.3354 nan 0.0500 3.6956
## 4 44.6485 nan 0.0500 3.7159
## 5 41.2736 nan 0.0500 3.2717
## 6 38.1773 nan 0.0500 2.9922
## 7 35.1989 nan 0.0500 2.9896
## 8 32.7926 nan 0.0500 2.4158
## 9 30.4482 nan 0.0500 2.1849
## 10 28.3454 nan 0.0500 2.0143
## 20 14.8611 nan 0.0500 0.7733
## 40 6.1952 nan 0.0500 0.1526
## 60 4.1152 nan 0.0500 0.0192
## 80 3.5772 nan 0.0500 -0.0132
## 100 3.2644 nan 0.0500 0.0089
## 120 3.0493 nan 0.0500 -0.0218
## 140 2.8741 nan 0.0500 -0.0316
## 160 2.7429 nan 0.0500 -0.0241
## 180 2.6357 nan 0.0500 -0.0275
## 200 2.5340 nan 0.0500 -0.0157
## 220 2.4447 nan 0.0500 -0.0112
## 240 2.3516 nan 0.0500 -0.0086
## 260 2.2655 nan 0.0500 -0.0161
## 280 2.2006 nan 0.0500 -0.0092
## 300 2.1331 nan 0.0500 -0.0183
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.2519 nan 0.1000 7.2808
## 2 48.8385 nan 0.1000 5.3792
## 3 43.1370 nan 0.1000 4.8991
## 4 38.7180 nan 0.1000 3.9991
## 5 34.6270 nan 0.1000 3.8094
## 6 31.1423 nan 0.1000 3.3074
## 7 28.3977 nan 0.1000 2.3973
## 8 25.8556 nan 0.1000 2.7475
## 9 23.7521 nan 0.1000 1.6160
## 10 21.6798 nan 0.1000 2.0473
## 20 11.3759 nan 0.1000 0.5226
## 40 5.5797 nan 0.1000 0.0719
## 60 4.1778 nan 0.1000 0.0239
## 80 3.8465 nan 0.1000 -0.0045
## 100 3.6747 nan 0.1000 -0.0146
## 120 3.5126 nan 0.1000 -0.0338
## 140 3.4040 nan 0.1000 -0.0182
## 160 3.2990 nan 0.1000 -0.0456
## 180 3.2227 nan 0.1000 -0.0378
## 200 3.1460 nan 0.1000 -0.0185
## 220 3.0808 nan 0.1000 -0.0153
## 240 3.0104 nan 0.1000 -0.0078
## 260 2.9527 nan 0.1000 -0.0396
## 280 2.8942 nan 0.1000 -0.0176
## 300 2.8480 nan 0.1000 -0.0083
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.4694 nan 0.1000 8.0310
## 2 47.9874 nan 0.1000 5.7711
## 3 42.9927 nan 0.1000 5.1930
## 4 38.6800 nan 0.1000 4.3663
## 5 34.7808 nan 0.1000 3.8020
## 6 31.4920 nan 0.1000 3.1924
## 7 28.7341 nan 0.1000 2.5443
## 8 26.3758 nan 0.1000 2.0459
## 9 24.1956 nan 0.1000 2.0098
## 10 22.1605 nan 0.1000 1.9664
## 20 11.3139 nan 0.1000 0.6063
## 40 5.5003 nan 0.1000 0.0833
## 60 4.2280 nan 0.1000 -0.0127
## 80 3.8615 nan 0.1000 -0.0060
## 100 3.7079 nan 0.1000 -0.0082
## 120 3.5857 nan 0.1000 -0.0140
## 140 3.4467 nan 0.1000 -0.0024
## 160 3.3587 nan 0.1000 -0.0279
## 180 3.2646 nan 0.1000 -0.0062
## 200 3.1941 nan 0.1000 0.0036
## 220 3.1277 nan 0.1000 -0.0144
## 240 3.0489 nan 0.1000 -0.0119
## 260 2.9967 nan 0.1000 -0.0102
## 280 2.9404 nan 0.1000 -0.0122
## 300 2.8758 nan 0.1000 -0.0137
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.4587 nan 0.1000 7.6187
## 2 47.9437 nan 0.1000 6.2158
## 3 43.1259 nan 0.1000 4.6328
## 4 38.5314 nan 0.1000 4.4688
## 5 34.6663 nan 0.1000 3.7476
## 6 31.3711 nan 0.1000 3.5992
## 7 28.5502 nan 0.1000 2.7294
## 8 26.0573 nan 0.1000 2.4504
## 9 23.6538 nan 0.1000 2.3747
## 10 21.9882 nan 0.1000 1.6029
## 20 11.3682 nan 0.1000 0.5170
## 40 5.7459 nan 0.1000 0.1119
## 60 4.5166 nan 0.1000 0.0139
## 80 4.2393 nan 0.1000 0.0082
## 100 4.0394 nan 0.1000 -0.0150
## 120 3.8616 nan 0.1000 -0.0010
## 140 3.7425 nan 0.1000 -0.0924
## 160 3.6142 nan 0.1000 -0.0031
## 180 3.5234 nan 0.1000 -0.0044
## 200 3.4781 nan 0.1000 -0.0529
## 220 3.3943 nan 0.1000 -0.0102
## 240 3.3243 nan 0.1000 -0.0173
## 260 3.2759 nan 0.1000 -0.0120
## 280 3.2320 nan 0.1000 -0.0114
## 300 3.1724 nan 0.1000 -0.0102
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.3096 nan 0.1000 8.5314
## 2 45.4998 nan 0.1000 6.7912
## 3 38.7594 nan 0.1000 6.5171
## 4 33.8719 nan 0.1000 5.0580
## 5 29.0378 nan 0.1000 4.1145
## 6 25.4573 nan 0.1000 3.3477
## 7 22.6303 nan 0.1000 2.8379
## 8 19.9825 nan 0.1000 2.3083
## 9 17.9873 nan 0.1000 1.9695
## 10 16.1727 nan 0.1000 1.5339
## 20 7.2310 nan 0.1000 0.4441
## 40 3.8311 nan 0.1000 -0.0245
## 60 3.2329 nan 0.1000 -0.0186
## 80 2.9147 nan 0.1000 -0.0448
## 100 2.6836 nan 0.1000 -0.0201
## 120 2.4390 nan 0.1000 -0.0113
## 140 2.3024 nan 0.1000 -0.0216
## 160 2.1839 nan 0.1000 -0.0127
## 180 2.0588 nan 0.1000 -0.0063
## 200 1.9567 nan 0.1000 -0.0079
## 220 1.8538 nan 0.1000 -0.0232
## 240 1.7650 nan 0.1000 -0.0150
## 260 1.6779 nan 0.1000 -0.0216
## 280 1.6037 nan 0.1000 -0.0072
## 300 1.5452 nan 0.1000 -0.0209
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.8403 nan 0.1000 8.6354
## 2 46.1187 nan 0.1000 7.9219
## 3 39.5187 nan 0.1000 5.8935
## 4 34.1482 nan 0.1000 4.8524
## 5 29.9186 nan 0.1000 4.3602
## 6 26.0963 nan 0.1000 3.5270
## 7 22.7955 nan 0.1000 2.7100
## 8 20.1212 nan 0.1000 2.7340
## 9 18.1685 nan 0.1000 2.0491
## 10 16.0809 nan 0.1000 1.9504
## 20 7.3458 nan 0.1000 0.4680
## 40 3.9806 nan 0.1000 -0.0433
## 60 3.4534 nan 0.1000 -0.0373
## 80 3.1162 nan 0.1000 -0.0349
## 100 2.8808 nan 0.1000 -0.0286
## 120 2.6949 nan 0.1000 -0.0313
## 140 2.5612 nan 0.1000 -0.0274
## 160 2.4452 nan 0.1000 -0.0118
## 180 2.3093 nan 0.1000 -0.0110
## 200 2.1774 nan 0.1000 -0.0211
## 220 2.0661 nan 0.1000 -0.0149
## 240 1.9620 nan 0.1000 -0.0153
## 260 1.8949 nan 0.1000 -0.0340
## 280 1.8361 nan 0.1000 -0.0092
## 300 1.7833 nan 0.1000 -0.0426
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.2139 nan 0.1000 9.4245
## 2 45.6649 nan 0.1000 7.5648
## 3 39.0282 nan 0.1000 6.1342
## 4 33.5679 nan 0.1000 4.7540
## 5 29.3337 nan 0.1000 4.4004
## 6 25.6204 nan 0.1000 3.2573
## 7 22.4464 nan 0.1000 3.1265
## 8 19.8619 nan 0.1000 2.7744
## 9 17.8559 nan 0.1000 1.6435
## 10 16.0163 nan 0.1000 1.5528
## 20 6.9525 nan 0.1000 0.3251
## 40 3.9836 nan 0.1000 0.0039
## 60 3.4919 nan 0.1000 -0.0002
## 80 3.2220 nan 0.1000 -0.0073
## 100 3.0092 nan 0.1000 -0.0309
## 120 2.8362 nan 0.1000 -0.0085
## 140 2.6935 nan 0.1000 -0.0212
## 160 2.5758 nan 0.1000 -0.0162
## 180 2.4543 nan 0.1000 -0.0250
## 200 2.3784 nan 0.1000 -0.0245
## 220 2.2779 nan 0.1000 -0.0212
## 240 2.2115 nan 0.1000 -0.0294
## 260 2.1506 nan 0.1000 -0.0178
## 280 2.0607 nan 0.1000 -0.0197
## 300 2.0014 nan 0.1000 -0.0006
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.6153 nan 0.1000 8.4321
## 2 44.2954 nan 0.1000 8.3473
## 3 37.4082 nan 0.1000 6.3862
## 4 31.9636 nan 0.1000 5.3846
## 5 27.2449 nan 0.1000 4.5080
## 6 23.2462 nan 0.1000 3.6538
## 7 20.1999 nan 0.1000 2.8267
## 8 17.6731 nan 0.1000 2.2228
## 9 15.5209 nan 0.1000 1.9011
## 10 13.8604 nan 0.1000 1.6398
## 20 5.6648 nan 0.1000 0.2788
## 40 3.1494 nan 0.1000 -0.0405
## 60 2.6485 nan 0.1000 -0.0182
## 80 2.3594 nan 0.1000 -0.0319
## 100 2.1243 nan 0.1000 -0.0320
## 120 1.9257 nan 0.1000 -0.0339
## 140 1.7458 nan 0.1000 -0.0097
## 160 1.5714 nan 0.1000 -0.0087
## 180 1.4227 nan 0.1000 -0.0151
## 200 1.3388 nan 0.1000 -0.0307
## 220 1.2382 nan 0.1000 -0.0045
## 240 1.1606 nan 0.1000 -0.0154
## 260 1.0775 nan 0.1000 -0.0059
## 280 1.0092 nan 0.1000 -0.0176
## 300 0.9604 nan 0.1000 -0.0101
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.5860 nan 0.1000 10.9157
## 2 44.1911 nan 0.1000 7.4573
## 3 37.4138 nan 0.1000 6.0457
## 4 31.8673 nan 0.1000 4.4237
## 5 27.1001 nan 0.1000 4.8438
## 6 23.2851 nan 0.1000 3.6523
## 7 20.1336 nan 0.1000 2.9804
## 8 17.7856 nan 0.1000 2.3090
## 9 15.5223 nan 0.1000 2.0453
## 10 13.8175 nan 0.1000 1.6056
## 20 5.6989 nan 0.1000 0.2499
## 40 3.4330 nan 0.1000 0.0047
## 60 2.8632 nan 0.1000 -0.0266
## 80 2.5942 nan 0.1000 -0.0343
## 100 2.3447 nan 0.1000 -0.0230
## 120 2.1551 nan 0.1000 -0.0233
## 140 2.0124 nan 0.1000 -0.0231
## 160 1.8754 nan 0.1000 -0.0199
## 180 1.7682 nan 0.1000 -0.0349
## 200 1.6536 nan 0.1000 -0.0211
## 220 1.5559 nan 0.1000 -0.0212
## 240 1.4795 nan 0.1000 -0.0255
## 260 1.3988 nan 0.1000 -0.0312
## 280 1.3280 nan 0.1000 -0.0245
## 300 1.2605 nan 0.1000 -0.0094
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.2222 nan 0.1000 9.7520
## 2 44.2249 nan 0.1000 6.6681
## 3 37.8111 nan 0.1000 6.5418
## 4 32.1561 nan 0.1000 5.9792
## 5 27.6798 nan 0.1000 4.0953
## 6 24.2646 nan 0.1000 3.5137
## 7 21.0487 nan 0.1000 3.6537
## 8 18.4753 nan 0.1000 2.5513
## 9 16.0060 nan 0.1000 2.3638
## 10 14.2300 nan 0.1000 1.7477
## 20 5.9290 nan 0.1000 0.3327
## 40 3.5796 nan 0.1000 -0.0425
## 60 3.1047 nan 0.1000 -0.0211
## 80 2.7799 nan 0.1000 -0.0433
## 100 2.5470 nan 0.1000 -0.0328
## 120 2.3886 nan 0.1000 -0.0143
## 140 2.2461 nan 0.1000 -0.0225
## 160 2.1077 nan 0.1000 -0.0159
## 180 1.9705 nan 0.1000 -0.0369
## 200 1.8882 nan 0.1000 -0.0129
## 220 1.7932 nan 0.1000 -0.0199
## 240 1.7224 nan 0.1000 -0.0095
## 260 1.6360 nan 0.1000 -0.0303
## 280 1.5634 nan 0.1000 -0.0255
## 300 1.4883 nan 0.1000 -0.0183
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7976 nan 0.0010 0.0825
## 2 63.7191 nan 0.0010 0.0814
## 3 63.6293 nan 0.0010 0.0772
## 4 63.5522 nan 0.0010 0.0815
## 5 63.4738 nan 0.0010 0.0782
## 6 63.3841 nan 0.0010 0.0804
## 7 63.2936 nan 0.0010 0.0810
## 8 63.2160 nan 0.0010 0.0807
## 9 63.1447 nan 0.0010 0.0793
## 10 63.0633 nan 0.0010 0.0824
## 20 62.2502 nan 0.0010 0.0743
## 40 60.6882 nan 0.0010 0.0743
## 60 59.2090 nan 0.0010 0.0693
## 80 57.7725 nan 0.0010 0.0691
## 100 56.3916 nan 0.0010 0.0754
## 120 55.0718 nan 0.0010 0.0671
## 140 53.8158 nan 0.0010 0.0624
## 160 52.5636 nan 0.0010 0.0595
## 180 51.3826 nan 0.0010 0.0491
## 200 50.2389 nan 0.0010 0.0534
## 220 49.1362 nan 0.0010 0.0523
## 240 48.0150 nan 0.0010 0.0566
## 260 46.9600 nan 0.0010 0.0551
## 280 45.9263 nan 0.0010 0.0441
## 300 44.9133 nan 0.0010 0.0446
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7868 nan 0.0010 0.0803
## 2 63.7015 nan 0.0010 0.0790
## 3 63.6202 nan 0.0010 0.0788
## 4 63.5370 nan 0.0010 0.0812
## 5 63.4541 nan 0.0010 0.0780
## 6 63.3738 nan 0.0010 0.0793
## 7 63.2869 nan 0.0010 0.0822
## 8 63.2098 nan 0.0010 0.0809
## 9 63.1302 nan 0.0010 0.0831
## 10 63.0485 nan 0.0010 0.0782
## 20 62.2479 nan 0.0010 0.0761
## 40 60.7239 nan 0.0010 0.0739
## 60 59.2214 nan 0.0010 0.0852
## 80 57.7879 nan 0.0010 0.0728
## 100 56.4212 nan 0.0010 0.0699
## 120 55.0999 nan 0.0010 0.0641
## 140 53.7960 nan 0.0010 0.0633
## 160 52.5424 nan 0.0010 0.0597
## 180 51.3378 nan 0.0010 0.0569
## 200 50.1731 nan 0.0010 0.0558
## 220 49.0710 nan 0.0010 0.0443
## 240 48.0023 nan 0.0010 0.0470
## 260 46.9697 nan 0.0010 0.0494
## 280 45.9347 nan 0.0010 0.0528
## 300 44.9777 nan 0.0010 0.0512
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7893 nan 0.0010 0.0821
## 2 63.7105 nan 0.0010 0.0778
## 3 63.6335 nan 0.0010 0.0816
## 4 63.5519 nan 0.0010 0.0791
## 5 63.4669 nan 0.0010 0.0798
## 6 63.3842 nan 0.0010 0.0803
## 7 63.3005 nan 0.0010 0.0811
## 8 63.2244 nan 0.0010 0.0791
## 9 63.1499 nan 0.0010 0.0738
## 10 63.0668 nan 0.0010 0.0774
## 20 62.2674 nan 0.0010 0.0773
## 40 60.7583 nan 0.0010 0.0782
## 60 59.2267 nan 0.0010 0.0734
## 80 57.7977 nan 0.0010 0.0672
## 100 56.4198 nan 0.0010 0.0704
## 120 55.0706 nan 0.0010 0.0685
## 140 53.7477 nan 0.0010 0.0643
## 160 52.5420 nan 0.0010 0.0580
## 180 51.3302 nan 0.0010 0.0581
## 200 50.1600 nan 0.0010 0.0557
## 220 49.0133 nan 0.0010 0.0535
## 240 47.9221 nan 0.0010 0.0505
## 260 46.8751 nan 0.0010 0.0446
## 280 45.8415 nan 0.0010 0.0490
## 300 44.8573 nan 0.0010 0.0478
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7761 nan 0.0010 0.0962
## 2 63.6782 nan 0.0010 0.0884
## 3 63.5730 nan 0.0010 0.0929
## 4 63.4830 nan 0.0010 0.0893
## 5 63.3878 nan 0.0010 0.0941
## 6 63.2908 nan 0.0010 0.0934
## 7 63.1954 nan 0.0010 0.0872
## 8 63.1044 nan 0.0010 0.0940
## 9 63.0111 nan 0.0010 0.0951
## 10 62.9121 nan 0.0010 0.0874
## 20 61.9500 nan 0.0010 0.0995
## 40 60.1057 nan 0.0010 0.0911
## 60 58.3349 nan 0.0010 0.0708
## 80 56.6241 nan 0.0010 0.0716
## 100 54.9640 nan 0.0010 0.0826
## 120 53.3469 nan 0.0010 0.0727
## 140 51.7707 nan 0.0010 0.0792
## 160 50.2779 nan 0.0010 0.0719
## 180 48.8283 nan 0.0010 0.0702
## 200 47.4466 nan 0.0010 0.0651
## 220 46.0683 nan 0.0010 0.0638
## 240 44.7518 nan 0.0010 0.0623
## 260 43.4903 nan 0.0010 0.0607
## 280 42.2750 nan 0.0010 0.0648
## 300 41.1076 nan 0.0010 0.0551
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7803 nan 0.0010 0.1021
## 2 63.6833 nan 0.0010 0.0916
## 3 63.5894 nan 0.0010 0.0983
## 4 63.4947 nan 0.0010 0.0934
## 5 63.3992 nan 0.0010 0.1003
## 6 63.3129 nan 0.0010 0.0958
## 7 63.2180 nan 0.0010 0.0953
## 8 63.1211 nan 0.0010 0.0962
## 9 63.0287 nan 0.0010 0.0992
## 10 62.9235 nan 0.0010 0.1007
## 20 61.9919 nan 0.0010 0.0940
## 40 60.1210 nan 0.0010 0.0844
## 60 58.3906 nan 0.0010 0.0927
## 80 56.6686 nan 0.0010 0.0806
## 100 55.0006 nan 0.0010 0.0787
## 120 53.3700 nan 0.0010 0.0761
## 140 51.8487 nan 0.0010 0.0732
## 160 50.3262 nan 0.0010 0.0801
## 180 48.8563 nan 0.0010 0.0730
## 200 47.4548 nan 0.0010 0.0701
## 220 46.0734 nan 0.0010 0.0631
## 240 44.7460 nan 0.0010 0.0566
## 260 43.4945 nan 0.0010 0.0673
## 280 42.2294 nan 0.0010 0.0606
## 300 41.0425 nan 0.0010 0.0532
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7747 nan 0.0010 0.0963
## 2 63.6808 nan 0.0010 0.0853
## 3 63.5824 nan 0.0010 0.1033
## 4 63.4807 nan 0.0010 0.0980
## 5 63.3816 nan 0.0010 0.1024
## 6 63.2818 nan 0.0010 0.1021
## 7 63.1951 nan 0.0010 0.0963
## 8 63.1015 nan 0.0010 0.0931
## 9 63.0037 nan 0.0010 0.1019
## 10 62.9097 nan 0.0010 0.0878
## 20 61.9506 nan 0.0010 0.0865
## 40 60.0968 nan 0.0010 0.1002
## 60 58.3258 nan 0.0010 0.0810
## 80 56.5582 nan 0.0010 0.0933
## 100 54.8983 nan 0.0010 0.0795
## 120 53.2809 nan 0.0010 0.0820
## 140 51.7103 nan 0.0010 0.0667
## 160 50.2203 nan 0.0010 0.0713
## 180 48.7652 nan 0.0010 0.0671
## 200 47.3852 nan 0.0010 0.0706
## 220 46.0058 nan 0.0010 0.0661
## 240 44.6825 nan 0.0010 0.0625
## 260 43.3756 nan 0.0010 0.0660
## 280 42.1308 nan 0.0010 0.0617
## 300 40.9609 nan 0.0010 0.0601
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7664 nan 0.0010 0.1154
## 2 63.6601 nan 0.0010 0.1074
## 3 63.5505 nan 0.0010 0.1121
## 4 63.4409 nan 0.0010 0.1114
## 5 63.3351 nan 0.0010 0.1075
## 6 63.2307 nan 0.0010 0.1052
## 7 63.1336 nan 0.0010 0.1009
## 8 63.0305 nan 0.0010 0.1068
## 9 62.9262 nan 0.0010 0.1004
## 10 62.8166 nan 0.0010 0.0877
## 20 61.7764 nan 0.0010 0.1098
## 40 59.7509 nan 0.0010 0.1003
## 60 57.8079 nan 0.0010 0.1053
## 80 55.9330 nan 0.0010 0.0979
## 100 54.1147 nan 0.0010 0.0789
## 120 52.3772 nan 0.0010 0.0837
## 140 50.7008 nan 0.0010 0.0742
## 160 49.0947 nan 0.0010 0.0741
## 180 47.5479 nan 0.0010 0.0768
## 200 46.0509 nan 0.0010 0.0725
## 220 44.6105 nan 0.0010 0.0686
## 240 43.2277 nan 0.0010 0.0610
## 260 41.8730 nan 0.0010 0.0636
## 280 40.5878 nan 0.0010 0.0622
## 300 39.3675 nan 0.0010 0.0627
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7696 nan 0.0010 0.0984
## 2 63.6612 nan 0.0010 0.1021
## 3 63.5487 nan 0.0010 0.1016
## 4 63.4423 nan 0.0010 0.1058
## 5 63.3373 nan 0.0010 0.1036
## 6 63.2385 nan 0.0010 0.0959
## 7 63.1402 nan 0.0010 0.0996
## 8 63.0363 nan 0.0010 0.1072
## 9 62.9320 nan 0.0010 0.1012
## 10 62.8284 nan 0.0010 0.1010
## 20 61.7994 nan 0.0010 0.0943
## 40 59.7983 nan 0.0010 0.1018
## 60 57.8627 nan 0.0010 0.0907
## 80 55.9810 nan 0.0010 0.0876
## 100 54.1896 nan 0.0010 0.0788
## 120 52.4772 nan 0.0010 0.0818
## 140 50.8092 nan 0.0010 0.0848
## 160 49.2015 nan 0.0010 0.0742
## 180 47.6802 nan 0.0010 0.0788
## 200 46.1951 nan 0.0010 0.0712
## 220 44.7634 nan 0.0010 0.0788
## 240 43.3808 nan 0.0010 0.0590
## 260 42.0442 nan 0.0010 0.0685
## 280 40.7677 nan 0.0010 0.0586
## 300 39.5152 nan 0.0010 0.0574
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.7746 nan 0.0010 0.1062
## 2 63.6663 nan 0.0010 0.0910
## 3 63.5527 nan 0.0010 0.1027
## 4 63.4461 nan 0.0010 0.0992
## 5 63.3401 nan 0.0010 0.1125
## 6 63.2336 nan 0.0010 0.1059
## 7 63.1283 nan 0.0010 0.1070
## 8 63.0259 nan 0.0010 0.1086
## 9 62.9242 nan 0.0010 0.0914
## 10 62.8105 nan 0.0010 0.1010
## 20 61.7623 nan 0.0010 0.1061
## 40 59.7313 nan 0.0010 0.0967
## 60 57.7695 nan 0.0010 0.0875
## 80 55.9153 nan 0.0010 0.0931
## 100 54.1133 nan 0.0010 0.0849
## 120 52.3695 nan 0.0010 0.0795
## 140 50.6930 nan 0.0010 0.0752
## 160 49.0910 nan 0.0010 0.0796
## 180 47.5136 nan 0.0010 0.0746
## 200 46.0264 nan 0.0010 0.0693
## 220 44.5939 nan 0.0010 0.0681
## 240 43.1947 nan 0.0010 0.0650
## 260 41.8713 nan 0.0010 0.0704
## 280 40.5937 nan 0.0010 0.0472
## 300 39.3529 nan 0.0010 0.0626
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.4674 nan 0.0050 0.3942
## 2 63.0404 nan 0.0050 0.3799
## 3 62.6887 nan 0.0050 0.3692
## 4 62.2734 nan 0.0050 0.3956
## 5 61.8859 nan 0.0050 0.4082
## 6 61.5086 nan 0.0050 0.3512
## 7 61.1209 nan 0.0050 0.3848
## 8 60.7714 nan 0.0050 0.3452
## 9 60.4047 nan 0.0050 0.3670
## 10 60.0606 nan 0.0050 0.3515
## 20 56.5705 nan 0.0050 0.3240
## 40 50.2310 nan 0.0050 0.2640
## 60 44.9187 nan 0.0050 0.1900
## 80 40.3511 nan 0.0050 0.1941
## 100 36.4239 nan 0.0050 0.1758
## 120 33.0351 nan 0.0050 0.1602
## 140 30.0522 nan 0.0050 0.1319
## 160 27.4180 nan 0.0050 0.1043
## 180 25.1644 nan 0.0050 0.1023
## 200 23.1370 nan 0.0050 0.0873
## 220 21.3319 nan 0.0050 0.0730
## 240 19.7347 nan 0.0050 0.0837
## 260 18.3810 nan 0.0050 0.0572
## 280 17.1238 nan 0.0050 0.0549
## 300 16.0522 nan 0.0050 0.0348
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.5019 nan 0.0050 0.3648
## 2 63.1174 nan 0.0050 0.4059
## 3 62.7012 nan 0.0050 0.4015
## 4 62.3150 nan 0.0050 0.3714
## 5 61.9318 nan 0.0050 0.4048
## 6 61.5673 nan 0.0050 0.3764
## 7 61.1731 nan 0.0050 0.3916
## 8 60.8034 nan 0.0050 0.3576
## 9 60.4358 nan 0.0050 0.3312
## 10 60.0459 nan 0.0050 0.3838
## 20 56.5657 nan 0.0050 0.3557
## 40 50.3314 nan 0.0050 0.2928
## 60 44.9119 nan 0.0050 0.2382
## 80 40.4034 nan 0.0050 0.1981
## 100 36.4403 nan 0.0050 0.1845
## 120 32.9311 nan 0.0050 0.1328
## 140 29.9776 nan 0.0050 0.1362
## 160 27.3738 nan 0.0050 0.1318
## 180 25.1451 nan 0.0050 0.1154
## 200 23.0938 nan 0.0050 0.0813
## 220 21.3222 nan 0.0050 0.0806
## 240 19.7733 nan 0.0050 0.0602
## 260 18.3795 nan 0.0050 0.0604
## 280 17.1463 nan 0.0050 0.0529
## 300 16.0359 nan 0.0050 0.0548
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.4644 nan 0.0050 0.3810
## 2 63.0547 nan 0.0050 0.3635
## 3 62.6711 nan 0.0050 0.3577
## 4 62.2519 nan 0.0050 0.3982
## 5 61.8314 nan 0.0050 0.4140
## 6 61.4540 nan 0.0050 0.3919
## 7 61.0668 nan 0.0050 0.3798
## 8 60.6760 nan 0.0050 0.3555
## 9 60.2737 nan 0.0050 0.3743
## 10 59.8952 nan 0.0050 0.3619
## 20 56.3401 nan 0.0050 0.3026
## 40 50.1040 nan 0.0050 0.2380
## 60 44.8081 nan 0.0050 0.2419
## 80 40.2672 nan 0.0050 0.1859
## 100 36.3501 nan 0.0050 0.1694
## 120 32.9973 nan 0.0050 0.1670
## 140 30.0120 nan 0.0050 0.1215
## 160 27.4002 nan 0.0050 0.1185
## 180 25.0618 nan 0.0050 0.1073
## 200 23.1066 nan 0.0050 0.0858
## 220 21.2885 nan 0.0050 0.0852
## 240 19.7367 nan 0.0050 0.0673
## 260 18.3070 nan 0.0050 0.0704
## 280 17.0554 nan 0.0050 0.0500
## 300 15.9582 nan 0.0050 0.0416
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.4203 nan 0.0050 0.4590
## 2 62.9699 nan 0.0050 0.4433
## 3 62.5010 nan 0.0050 0.4675
## 4 62.0154 nan 0.0050 0.4805
## 5 61.5497 nan 0.0050 0.4652
## 6 61.0957 nan 0.0050 0.4501
## 7 60.6408 nan 0.0050 0.4339
## 8 60.1705 nan 0.0050 0.4474
## 9 59.7030 nan 0.0050 0.4528
## 10 59.2418 nan 0.0050 0.4748
## 20 54.9169 nan 0.0050 0.4404
## 40 47.3257 nan 0.0050 0.3872
## 60 40.9852 nan 0.0050 0.2847
## 80 35.5579 nan 0.0050 0.2823
## 100 31.1244 nan 0.0050 0.1859
## 120 27.3711 nan 0.0050 0.1676
## 140 24.1833 nan 0.0050 0.1545
## 160 21.4516 nan 0.0050 0.1324
## 180 19.1332 nan 0.0050 0.1029
## 200 17.1821 nan 0.0050 0.0888
## 220 15.5305 nan 0.0050 0.0678
## 240 14.0430 nan 0.0050 0.0701
## 260 12.8028 nan 0.0050 0.0468
## 280 11.7073 nan 0.0050 0.0466
## 300 10.7546 nan 0.0050 0.0333
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.3896 nan 0.0050 0.5014
## 2 62.9053 nan 0.0050 0.3826
## 3 62.4609 nan 0.0050 0.4897
## 4 61.9466 nan 0.0050 0.5186
## 5 61.4992 nan 0.0050 0.4682
## 6 61.0674 nan 0.0050 0.4477
## 7 60.6351 nan 0.0050 0.4113
## 8 60.1825 nan 0.0050 0.4271
## 9 59.7037 nan 0.0050 0.4576
## 10 59.2240 nan 0.0050 0.4696
## 20 54.9342 nan 0.0050 0.4478
## 40 47.3982 nan 0.0050 0.3320
## 60 41.0255 nan 0.0050 0.2735
## 80 35.6536 nan 0.0050 0.2746
## 100 31.2776 nan 0.0050 0.1940
## 120 27.4126 nan 0.0050 0.1784
## 140 24.1430 nan 0.0050 0.1436
## 160 21.3627 nan 0.0050 0.1187
## 180 18.9854 nan 0.0050 0.1093
## 200 17.0234 nan 0.0050 0.0800
## 220 15.3482 nan 0.0050 0.0725
## 240 13.9431 nan 0.0050 0.0615
## 260 12.6894 nan 0.0050 0.0558
## 280 11.6279 nan 0.0050 0.0482
## 300 10.6818 nan 0.0050 0.0412
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.3946 nan 0.0050 0.4739
## 2 62.9228 nan 0.0050 0.3986
## 3 62.4229 nan 0.0050 0.4925
## 4 61.9190 nan 0.0050 0.5063
## 5 61.4816 nan 0.0050 0.4545
## 6 61.0171 nan 0.0050 0.4614
## 7 60.5965 nan 0.0050 0.4200
## 8 60.1261 nan 0.0050 0.4555
## 9 59.6872 nan 0.0050 0.4346
## 10 59.2506 nan 0.0050 0.4181
## 20 55.0161 nan 0.0050 0.4072
## 40 47.5413 nan 0.0050 0.3075
## 60 41.1528 nan 0.0050 0.2720
## 80 35.8599 nan 0.0050 0.2550
## 100 31.3621 nan 0.0050 0.1993
## 120 27.5580 nan 0.0050 0.1757
## 140 24.4298 nan 0.0050 0.1414
## 160 21.6233 nan 0.0050 0.1230
## 180 19.2239 nan 0.0050 0.1090
## 200 17.2827 nan 0.0050 0.0799
## 220 15.5887 nan 0.0050 0.0690
## 240 14.1321 nan 0.0050 0.0444
## 260 12.8699 nan 0.0050 0.0550
## 280 11.8005 nan 0.0050 0.0465
## 300 10.8819 nan 0.0050 0.0333
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.3539 nan 0.0050 0.5291
## 2 62.8472 nan 0.0050 0.5148
## 3 62.3256 nan 0.0050 0.5615
## 4 61.8231 nan 0.0050 0.5085
## 5 61.2986 nan 0.0050 0.4573
## 6 60.8042 nan 0.0050 0.4617
## 7 60.3078 nan 0.0050 0.4826
## 8 59.8048 nan 0.0050 0.5541
## 9 59.2967 nan 0.0050 0.5091
## 10 58.7943 nan 0.0050 0.4522
## 20 54.2201 nan 0.0050 0.4669
## 40 46.2110 nan 0.0050 0.3711
## 60 39.5405 nan 0.0050 0.3122
## 80 33.9269 nan 0.0050 0.2346
## 100 29.2088 nan 0.0050 0.2196
## 120 25.3202 nan 0.0050 0.1589
## 140 22.0389 nan 0.0050 0.1338
## 160 19.2469 nan 0.0050 0.1114
## 180 16.9169 nan 0.0050 0.1064
## 200 14.9491 nan 0.0050 0.0958
## 220 13.2891 nan 0.0050 0.0840
## 240 11.9033 nan 0.0050 0.0645
## 260 10.6988 nan 0.0050 0.0400
## 280 9.6920 nan 0.0050 0.0354
## 300 8.8232 nan 0.0050 0.0390
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.3550 nan 0.0050 0.4955
## 2 62.8441 nan 0.0050 0.4425
## 3 62.3170 nan 0.0050 0.5559
## 4 61.8043 nan 0.0050 0.5415
## 5 61.3099 nan 0.0050 0.5088
## 6 60.8169 nan 0.0050 0.5234
## 7 60.3114 nan 0.0050 0.5195
## 8 59.8323 nan 0.0050 0.5021
## 9 59.3140 nan 0.0050 0.5236
## 10 58.8000 nan 0.0050 0.4585
## 20 54.1642 nan 0.0050 0.4318
## 40 46.1248 nan 0.0050 0.3574
## 60 39.4864 nan 0.0050 0.3011
## 80 33.9530 nan 0.0050 0.2503
## 100 29.3146 nan 0.0050 0.2098
## 120 25.3959 nan 0.0050 0.1804
## 140 22.1409 nan 0.0050 0.1401
## 160 19.3851 nan 0.0050 0.1160
## 180 17.0665 nan 0.0050 0.0898
## 200 15.0991 nan 0.0050 0.0925
## 220 13.4374 nan 0.0050 0.0650
## 240 12.0816 nan 0.0050 0.0591
## 260 10.8589 nan 0.0050 0.0529
## 280 9.8579 nan 0.0050 0.0396
## 300 8.9954 nan 0.0050 0.0337
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.3233 nan 0.0050 0.5511
## 2 62.7912 nan 0.0050 0.5421
## 3 62.2845 nan 0.0050 0.5355
## 4 61.7936 nan 0.0050 0.4570
## 5 61.3079 nan 0.0050 0.5103
## 6 60.7982 nan 0.0050 0.4911
## 7 60.3074 nan 0.0050 0.4782
## 8 59.8178 nan 0.0050 0.4445
## 9 59.2946 nan 0.0050 0.5320
## 10 58.8115 nan 0.0050 0.4910
## 20 54.1326 nan 0.0050 0.4659
## 40 46.0654 nan 0.0050 0.3498
## 60 39.4205 nan 0.0050 0.3172
## 80 33.8791 nan 0.0050 0.2172
## 100 29.2109 nan 0.0050 0.1956
## 120 25.3015 nan 0.0050 0.1794
## 140 22.1023 nan 0.0050 0.1435
## 160 19.4280 nan 0.0050 0.1149
## 180 17.1721 nan 0.0050 0.0994
## 200 15.2451 nan 0.0050 0.0777
## 220 13.5884 nan 0.0050 0.0636
## 240 12.1977 nan 0.0050 0.0569
## 260 10.9707 nan 0.0050 0.0535
## 280 9.9619 nan 0.0050 0.0388
## 300 9.0910 nan 0.0050 0.0332
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.1187 nan 0.0100 0.7301
## 2 62.2898 nan 0.0100 0.8245
## 3 61.4983 nan 0.0100 0.7790
## 4 60.7161 nan 0.0100 0.7725
## 5 59.9853 nan 0.0100 0.7290
## 6 59.2002 nan 0.0100 0.7101
## 7 58.4913 nan 0.0100 0.7128
## 8 57.7196 nan 0.0100 0.7222
## 9 56.9701 nan 0.0100 0.6871
## 10 56.2561 nan 0.0100 0.6631
## 20 50.2336 nan 0.0100 0.5501
## 40 40.4117 nan 0.0100 0.4194
## 60 33.1186 nan 0.0100 0.3145
## 80 27.5209 nan 0.0100 0.2553
## 100 23.1767 nan 0.0100 0.1926
## 120 19.8104 nan 0.0100 0.1574
## 140 17.1786 nan 0.0100 0.1159
## 160 15.0377 nan 0.0100 0.0959
## 180 13.2857 nan 0.0100 0.0611
## 200 11.8797 nan 0.0100 0.0547
## 220 10.6674 nan 0.0100 0.0480
## 240 9.6904 nan 0.0100 0.0395
## 260 8.8408 nan 0.0100 0.0333
## 280 8.1298 nan 0.0100 0.0225
## 300 7.5182 nan 0.0100 0.0179
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.0534 nan 0.0100 0.7959
## 2 62.2782 nan 0.0100 0.6823
## 3 61.5161 nan 0.0100 0.7751
## 4 60.7051 nan 0.0100 0.7443
## 5 59.9362 nan 0.0100 0.7616
## 6 59.2488 nan 0.0100 0.7596
## 7 58.5195 nan 0.0100 0.7143
## 8 57.8121 nan 0.0100 0.7362
## 9 57.1589 nan 0.0100 0.7098
## 10 56.4465 nan 0.0100 0.6425
## 20 50.2163 nan 0.0100 0.5976
## 40 40.4308 nan 0.0100 0.3120
## 60 32.9868 nan 0.0100 0.2833
## 80 27.3578 nan 0.0100 0.2339
## 100 23.0574 nan 0.0100 0.1505
## 120 19.7009 nan 0.0100 0.1491
## 140 17.0911 nan 0.0100 0.1184
## 160 14.9543 nan 0.0100 0.0744
## 180 13.2090 nan 0.0100 0.0613
## 200 11.7883 nan 0.0100 0.0569
## 220 10.6489 nan 0.0100 0.0561
## 240 9.6363 nan 0.0100 0.0455
## 260 8.7935 nan 0.0100 0.0286
## 280 8.0879 nan 0.0100 0.0207
## 300 7.4775 nan 0.0100 0.0106
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 63.0395 nan 0.0100 0.7873
## 2 62.2575 nan 0.0100 0.7611
## 3 61.4700 nan 0.0100 0.7086
## 4 60.8097 nan 0.0100 0.7749
## 5 60.0545 nan 0.0100 0.6756
## 6 59.2917 nan 0.0100 0.7249
## 7 58.5824 nan 0.0100 0.7228
## 8 57.8311 nan 0.0100 0.6818
## 9 57.1021 nan 0.0100 0.6993
## 10 56.4598 nan 0.0100 0.6588
## 20 50.0881 nan 0.0100 0.5736
## 40 40.2976 nan 0.0100 0.4073
## 60 32.8515 nan 0.0100 0.2946
## 80 27.3661 nan 0.0100 0.2204
## 100 23.1187 nan 0.0100 0.1399
## 120 19.7358 nan 0.0100 0.1462
## 140 17.0784 nan 0.0100 0.1272
## 160 15.0129 nan 0.0100 0.0848
## 180 13.3216 nan 0.0100 0.0666
## 200 11.9383 nan 0.0100 0.0436
## 220 10.7497 nan 0.0100 0.0360
## 240 9.7622 nan 0.0100 0.0354
## 260 8.9095 nan 0.0100 0.0313
## 280 8.1754 nan 0.0100 0.0335
## 300 7.5702 nan 0.0100 0.0196
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8684 nan 0.0100 1.0937
## 2 61.8236 nan 0.0100 1.0068
## 3 60.9776 nan 0.0100 0.7579
## 4 60.0451 nan 0.0100 0.9114
## 5 59.2121 nan 0.0100 0.8572
## 6 58.3310 nan 0.0100 0.7819
## 7 57.4558 nan 0.0100 0.7237
## 8 56.5984 nan 0.0100 0.8191
## 9 55.7826 nan 0.0100 0.8060
## 10 54.9996 nan 0.0100 0.8372
## 20 47.3398 nan 0.0100 0.7404
## 40 35.5824 nan 0.0100 0.4760
## 60 27.2966 nan 0.0100 0.3232
## 80 21.3859 nan 0.0100 0.2249
## 100 17.0897 nan 0.0100 0.1579
## 120 13.9455 nan 0.0100 0.1185
## 140 11.5940 nan 0.0100 0.1109
## 160 9.8650 nan 0.0100 0.0711
## 180 8.5463 nan 0.0100 0.0471
## 200 7.4863 nan 0.0100 0.0493
## 220 6.6695 nan 0.0100 0.0295
## 240 6.0197 nan 0.0100 0.0273
## 260 5.5223 nan 0.0100 0.0202
## 280 5.1134 nan 0.0100 0.0089
## 300 4.7640 nan 0.0100 0.0098
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9040 nan 0.0100 1.0194
## 2 61.9881 nan 0.0100 0.9725
## 3 61.0589 nan 0.0100 0.9402
## 4 60.0695 nan 0.0100 0.9331
## 5 59.1250 nan 0.0100 0.9717
## 6 58.2694 nan 0.0100 0.9120
## 7 57.4192 nan 0.0100 0.7778
## 8 56.5699 nan 0.0100 0.8716
## 9 55.7622 nan 0.0100 0.7789
## 10 54.9841 nan 0.0100 0.8133
## 20 47.2715 nan 0.0100 0.5918
## 40 35.5678 nan 0.0100 0.4558
## 60 27.1774 nan 0.0100 0.3432
## 80 21.4160 nan 0.0100 0.2214
## 100 17.1433 nan 0.0100 0.1913
## 120 13.9807 nan 0.0100 0.1016
## 140 11.6055 nan 0.0100 0.0729
## 160 9.9555 nan 0.0100 0.0534
## 180 8.5879 nan 0.0100 0.0541
## 200 7.5576 nan 0.0100 0.0355
## 220 6.6955 nan 0.0100 0.0321
## 240 6.0455 nan 0.0100 0.0209
## 260 5.5154 nan 0.0100 0.0180
## 280 5.0800 nan 0.0100 0.0153
## 300 4.7549 nan 0.0100 0.0093
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.9697 nan 0.0100 0.9658
## 2 61.9916 nan 0.0100 0.8860
## 3 61.0790 nan 0.0100 0.8960
## 4 60.1895 nan 0.0100 0.9014
## 5 59.2605 nan 0.0100 0.9590
## 6 58.4464 nan 0.0100 0.8741
## 7 57.5006 nan 0.0100 0.8192
## 8 56.6507 nan 0.0100 0.8712
## 9 55.8626 nan 0.0100 0.7036
## 10 55.0868 nan 0.0100 0.8383
## 20 47.5600 nan 0.0100 0.6302
## 40 35.6210 nan 0.0100 0.4697
## 60 27.4234 nan 0.0100 0.3309
## 80 21.3492 nan 0.0100 0.2327
## 100 17.0267 nan 0.0100 0.1512
## 120 13.9216 nan 0.0100 0.1208
## 140 11.5711 nan 0.0100 0.0898
## 160 9.8578 nan 0.0100 0.0724
## 180 8.5418 nan 0.0100 0.0509
## 200 7.5090 nan 0.0100 0.0345
## 220 6.6761 nan 0.0100 0.0257
## 240 6.0298 nan 0.0100 0.0237
## 260 5.5247 nan 0.0100 0.0176
## 280 5.1512 nan 0.0100 0.0091
## 300 4.8475 nan 0.0100 0.0085
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.7797 nan 0.0100 1.0344
## 2 61.7457 nan 0.0100 0.9608
## 3 60.7251 nan 0.0100 1.0004
## 4 59.8299 nan 0.0100 0.9580
## 5 58.8490 nan 0.0100 0.9777
## 6 57.9327 nan 0.0100 1.0278
## 7 56.9927 nan 0.0100 0.9260
## 8 56.0847 nan 0.0100 0.9441
## 9 55.1767 nan 0.0100 0.9194
## 10 54.2412 nan 0.0100 0.9972
## 20 46.1715 nan 0.0100 0.6311
## 40 33.8257 nan 0.0100 0.4720
## 60 25.2068 nan 0.0100 0.3131
## 80 19.1087 nan 0.0100 0.2366
## 100 14.8729 nan 0.0100 0.1732
## 120 11.8418 nan 0.0100 0.1162
## 140 9.6806 nan 0.0100 0.0766
## 160 8.1006 nan 0.0100 0.0552
## 180 6.9074 nan 0.0100 0.0475
## 200 5.9815 nan 0.0100 0.0351
## 220 5.2542 nan 0.0100 0.0231
## 240 4.7328 nan 0.0100 0.0154
## 260 4.3297 nan 0.0100 0.0156
## 280 4.0200 nan 0.0100 0.0061
## 300 3.7901 nan 0.0100 0.0036
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.8220 nan 0.0100 1.0386
## 2 61.7777 nan 0.0100 1.0572
## 3 60.7368 nan 0.0100 1.0330
## 4 59.7392 nan 0.0100 0.9455
## 5 58.7486 nan 0.0100 0.9190
## 6 57.7722 nan 0.0100 0.9013
## 7 56.8135 nan 0.0100 0.8688
## 8 55.8820 nan 0.0100 1.0466
## 9 54.9864 nan 0.0100 0.8636
## 10 54.1164 nan 0.0100 0.9750
## 20 46.0173 nan 0.0100 0.7293
## 40 33.8254 nan 0.0100 0.5208
## 60 25.2884 nan 0.0100 0.3212
## 80 19.3457 nan 0.0100 0.2365
## 100 15.0832 nan 0.0100 0.1521
## 120 12.0464 nan 0.0100 0.1337
## 140 9.7907 nan 0.0100 0.0941
## 160 8.1618 nan 0.0100 0.0681
## 180 6.9723 nan 0.0100 0.0452
## 200 6.0862 nan 0.0100 0.0298
## 220 5.3935 nan 0.0100 0.0246
## 240 4.8362 nan 0.0100 0.0203
## 260 4.4571 nan 0.0100 0.0073
## 280 4.1633 nan 0.0100 0.0088
## 300 3.9345 nan 0.0100 0.0052
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 62.7771 nan 0.0100 1.0694
## 2 61.7205 nan 0.0100 1.0368
## 3 60.6971 nan 0.0100 0.9702
## 4 59.7020 nan 0.0100 0.9066
## 5 58.7453 nan 0.0100 0.8955
## 6 57.7855 nan 0.0100 0.9076
## 7 56.8222 nan 0.0100 0.9006
## 8 55.8464 nan 0.0100 0.9693
## 9 54.9444 nan 0.0100 0.9771
## 10 54.0380 nan 0.0100 0.9134
## 20 46.1611 nan 0.0100 0.7059
## 40 33.9471 nan 0.0100 0.5206
## 60 25.2988 nan 0.0100 0.3359
## 80 19.2295 nan 0.0100 0.2558
## 100 15.0580 nan 0.0100 0.1623
## 120 12.1206 nan 0.0100 0.1088
## 140 9.9437 nan 0.0100 0.0848
## 160 8.3790 nan 0.0100 0.0594
## 180 7.1751 nan 0.0100 0.0547
## 200 6.2726 nan 0.0100 0.0327
## 220 5.5944 nan 0.0100 0.0168
## 240 5.0873 nan 0.0100 0.0161
## 260 4.6986 nan 0.0100 0.0160
## 280 4.4069 nan 0.0100 0.0125
## 300 4.1750 nan 0.0100 0.0074
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.1873 nan 0.0500 4.1264
## 2 56.3682 nan 0.0500 3.5490
## 3 53.0606 nan 0.0500 3.1280
## 4 49.8666 nan 0.0500 2.9589
## 5 47.1936 nan 0.0500 2.3663
## 6 44.6219 nan 0.0500 2.6201
## 7 42.0441 nan 0.0500 2.7006
## 8 39.9026 nan 0.0500 2.1551
## 9 37.9972 nan 0.0500 1.9812
## 10 36.1740 nan 0.0500 1.8826
## 20 22.7090 nan 0.0500 0.8494
## 40 11.5902 nan 0.0500 0.2499
## 60 7.3828 nan 0.0500 0.1074
## 80 5.4229 nan 0.0500 0.0325
## 100 4.5896 nan 0.0500 0.0088
## 120 4.0883 nan 0.0500 0.0042
## 140 3.8639 nan 0.0500 -0.0029
## 160 3.7204 nan 0.0500 -0.0101
## 180 3.6142 nan 0.0500 -0.0081
## 200 3.5337 nan 0.0500 -0.0023
## 220 3.4545 nan 0.0500 -0.0065
## 240 3.3958 nan 0.0500 -0.0160
## 260 3.3418 nan 0.0500 -0.0062
## 280 3.2945 nan 0.0500 -0.0084
## 300 3.2469 nan 0.0500 -0.0015
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.6722 nan 0.0500 3.9408
## 2 56.0382 nan 0.0500 3.5966
## 3 52.6950 nan 0.0500 3.2117
## 4 49.8672 nan 0.0500 2.6333
## 5 46.9628 nan 0.0500 2.5370
## 6 44.5233 nan 0.0500 2.3469
## 7 42.2052 nan 0.0500 2.3142
## 8 40.2895 nan 0.0500 1.8495
## 9 38.3073 nan 0.0500 1.9342
## 10 36.3038 nan 0.0500 1.9545
## 20 22.9704 nan 0.0500 0.9358
## 40 11.7293 nan 0.0500 0.2743
## 60 7.3802 nan 0.0500 0.0924
## 80 5.5698 nan 0.0500 0.0598
## 100 4.6871 nan 0.0500 0.0165
## 120 4.2413 nan 0.0500 0.0110
## 140 4.0242 nan 0.0500 0.0047
## 160 3.8707 nan 0.0500 -0.0039
## 180 3.7637 nan 0.0500 -0.0049
## 200 3.6714 nan 0.0500 -0.0030
## 220 3.5920 nan 0.0500 -0.0078
## 240 3.5326 nan 0.0500 -0.0124
## 260 3.4740 nan 0.0500 -0.0109
## 280 3.4205 nan 0.0500 -0.0002
## 300 3.3756 nan 0.0500 -0.0081
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.8951 nan 0.0500 3.9937
## 2 56.2020 nan 0.0500 3.4622
## 3 52.9403 nan 0.0500 3.0880
## 4 49.9655 nan 0.0500 3.0908
## 5 47.2631 nan 0.0500 2.8906
## 6 44.6638 nan 0.0500 2.7407
## 7 42.4214 nan 0.0500 2.2730
## 8 40.3551 nan 0.0500 2.1814
## 9 38.2207 nan 0.0500 1.9950
## 10 36.2813 nan 0.0500 1.8771
## 20 22.7886 nan 0.0500 0.9181
## 40 11.8105 nan 0.0500 0.2482
## 60 7.6381 nan 0.0500 0.1255
## 80 5.7600 nan 0.0500 0.0090
## 100 4.8983 nan 0.0500 0.0202
## 120 4.5222 nan 0.0500 0.0002
## 140 4.3043 nan 0.0500 -0.0028
## 160 4.1627 nan 0.0500 -0.0133
## 180 4.0494 nan 0.0500 -0.0005
## 200 3.9521 nan 0.0500 -0.0044
## 220 3.8681 nan 0.0500 -0.0059
## 240 3.8060 nan 0.0500 -0.0120
## 260 3.7394 nan 0.0500 -0.0025
## 280 3.6865 nan 0.0500 -0.0088
## 300 3.6372 nan 0.0500 -0.0070
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.2457 nan 0.0500 4.5520
## 2 54.9560 nan 0.0500 3.6346
## 3 50.8252 nan 0.0500 4.2503
## 4 47.2164 nan 0.0500 3.3636
## 5 43.7899 nan 0.0500 3.2541
## 6 40.7973 nan 0.0500 3.0524
## 7 38.2580 nan 0.0500 2.6974
## 8 35.7681 nan 0.0500 2.4008
## 9 33.3210 nan 0.0500 2.5542
## 10 31.0363 nan 0.0500 2.2947
## 20 16.7185 nan 0.0500 0.7959
## 40 7.2782 nan 0.0500 0.1742
## 60 4.6169 nan 0.0500 0.0563
## 80 3.6608 nan 0.0500 0.0104
## 100 3.3270 nan 0.0500 -0.0022
## 120 3.0830 nan 0.0500 -0.0285
## 140 2.9157 nan 0.0500 -0.0183
## 160 2.7773 nan 0.0500 -0.0104
## 180 2.6744 nan 0.0500 -0.0080
## 200 2.5679 nan 0.0500 -0.0103
## 220 2.4606 nan 0.0500 -0.0144
## 240 2.3717 nan 0.0500 -0.0088
## 260 2.3153 nan 0.0500 -0.0061
## 280 2.2474 nan 0.0500 -0.0103
## 300 2.1844 nan 0.0500 -0.0078
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.3365 nan 0.0500 4.6431
## 2 55.0075 nan 0.0500 4.0446
## 3 51.2266 nan 0.0500 3.9180
## 4 47.2848 nan 0.0500 3.3316
## 5 44.1710 nan 0.0500 3.3286
## 6 40.9356 nan 0.0500 2.9639
## 7 38.1772 nan 0.0500 2.6446
## 8 35.5012 nan 0.0500 2.4875
## 9 33.2951 nan 0.0500 1.8721
## 10 30.8166 nan 0.0500 2.3438
## 20 16.6566 nan 0.0500 0.7818
## 40 7.3475 nan 0.0500 0.1306
## 60 4.8227 nan 0.0500 0.0647
## 80 3.9124 nan 0.0500 -0.0204
## 100 3.5693 nan 0.0500 -0.0072
## 120 3.3367 nan 0.0500 -0.0004
## 140 3.1752 nan 0.0500 -0.0012
## 160 3.0551 nan 0.0500 -0.0075
## 180 2.8942 nan 0.0500 -0.0113
## 200 2.7901 nan 0.0500 -0.0047
## 220 2.7068 nan 0.0500 -0.0124
## 240 2.6359 nan 0.0500 -0.0093
## 260 2.5788 nan 0.0500 -0.0033
## 280 2.5069 nan 0.0500 -0.0129
## 300 2.4526 nan 0.0500 -0.0053
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 59.1854 nan 0.0500 4.8339
## 2 54.7981 nan 0.0500 4.3418
## 3 50.8347 nan 0.0500 4.1350
## 4 47.0637 nan 0.0500 3.6262
## 5 43.9761 nan 0.0500 3.0775
## 6 41.0451 nan 0.0500 2.8421
## 7 38.3019 nan 0.0500 2.4921
## 8 35.4977 nan 0.0500 2.7606
## 9 33.1351 nan 0.0500 2.2459
## 10 30.9980 nan 0.0500 1.9753
## 20 16.5976 nan 0.0500 0.7380
## 40 7.3894 nan 0.0500 0.1322
## 60 4.7284 nan 0.0500 0.0308
## 80 3.9501 nan 0.0500 0.0207
## 100 3.5972 nan 0.0500 -0.0083
## 120 3.3892 nan 0.0500 -0.0162
## 140 3.2307 nan 0.0500 -0.0091
## 160 3.1292 nan 0.0500 -0.0138
## 180 3.0200 nan 0.0500 -0.0313
## 200 2.9121 nan 0.0500 -0.0112
## 220 2.8335 nan 0.0500 -0.0060
## 240 2.7669 nan 0.0500 -0.0136
## 260 2.6929 nan 0.0500 -0.0052
## 280 2.6126 nan 0.0500 -0.0048
## 300 2.5632 nan 0.0500 -0.0074
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.7382 nan 0.0500 5.1757
## 2 54.1948 nan 0.0500 4.4922
## 3 50.0890 nan 0.0500 3.9259
## 4 46.3220 nan 0.0500 3.6182
## 5 42.6545 nan 0.0500 3.5540
## 6 39.5324 nan 0.0500 3.2442
## 7 36.6310 nan 0.0500 3.0783
## 8 33.8894 nan 0.0500 2.6078
## 9 31.2713 nan 0.0500 1.9894
## 10 29.0404 nan 0.0500 2.1621
## 20 14.6515 nan 0.0500 0.7654
## 40 5.9713 nan 0.0500 0.1517
## 60 3.8588 nan 0.0500 0.0211
## 80 3.2128 nan 0.0500 -0.0136
## 100 2.8959 nan 0.0500 -0.0141
## 120 2.6305 nan 0.0500 -0.0065
## 140 2.4551 nan 0.0500 -0.0032
## 160 2.2807 nan 0.0500 -0.0056
## 180 2.1382 nan 0.0500 -0.0111
## 200 2.0324 nan 0.0500 -0.0075
## 220 1.9414 nan 0.0500 -0.0064
## 240 1.8509 nan 0.0500 -0.0149
## 260 1.7563 nan 0.0500 -0.0127
## 280 1.6663 nan 0.0500 -0.0056
## 300 1.5943 nan 0.0500 -0.0085
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.4620 nan 0.0500 5.2450
## 2 53.5525 nan 0.0500 4.5384
## 3 49.3747 nan 0.0500 3.9132
## 4 45.4858 nan 0.0500 4.0586
## 5 41.8914 nan 0.0500 3.5271
## 6 39.0139 nan 0.0500 3.3394
## 7 35.9564 nan 0.0500 2.8440
## 8 33.1692 nan 0.0500 2.4592
## 9 30.7593 nan 0.0500 2.1300
## 10 28.4374 nan 0.0500 2.2211
## 20 14.4924 nan 0.0500 0.8855
## 40 6.0720 nan 0.0500 0.2179
## 60 3.9571 nan 0.0500 0.0390
## 80 3.3912 nan 0.0500 0.0038
## 100 3.1032 nan 0.0500 -0.0099
## 120 2.8811 nan 0.0500 -0.0208
## 140 2.6726 nan 0.0500 -0.0179
## 160 2.5368 nan 0.0500 -0.0190
## 180 2.4068 nan 0.0500 -0.0211
## 200 2.3112 nan 0.0500 -0.0105
## 220 2.2195 nan 0.0500 -0.0131
## 240 2.1232 nan 0.0500 -0.0060
## 260 2.0437 nan 0.0500 -0.0209
## 280 1.9714 nan 0.0500 -0.0121
## 300 1.8877 nan 0.0500 -0.0154
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 58.5419 nan 0.0500 5.0344
## 2 54.0088 nan 0.0500 4.5100
## 3 49.5820 nan 0.0500 4.3312
## 4 45.6695 nan 0.0500 3.7617
## 5 42.1316 nan 0.0500 3.6102
## 6 39.0149 nan 0.0500 3.2880
## 7 36.0435 nan 0.0500 2.8719
## 8 33.2602 nan 0.0500 2.7663
## 9 30.9096 nan 0.0500 2.4396
## 10 28.7352 nan 0.0500 1.9050
## 20 14.8826 nan 0.0500 0.8164
## 40 6.0535 nan 0.0500 0.1701
## 60 4.0629 nan 0.0500 0.0223
## 80 3.5069 nan 0.0500 0.0015
## 100 3.2431 nan 0.0500 -0.0158
## 120 3.0746 nan 0.0500 -0.0287
## 140 2.9361 nan 0.0500 -0.0123
## 160 2.7747 nan 0.0500 -0.0202
## 180 2.6410 nan 0.0500 -0.0211
## 200 2.5159 nan 0.0500 -0.0037
## 220 2.4197 nan 0.0500 -0.0064
## 240 2.3467 nan 0.0500 -0.0122
## 260 2.2579 nan 0.0500 -0.0137
## 280 2.1957 nan 0.0500 -0.0084
## 300 2.1330 nan 0.0500 -0.0097
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.1202 nan 0.1000 8.0301
## 2 50.4675 nan 0.1000 5.2155
## 3 44.7587 nan 0.1000 5.5338
## 4 39.8436 nan 0.1000 4.9209
## 5 35.6929 nan 0.1000 4.0811
## 6 32.1379 nan 0.1000 3.2839
## 7 29.1961 nan 0.1000 2.7432
## 8 26.6098 nan 0.1000 2.2173
## 9 24.2577 nan 0.1000 2.0747
## 10 22.0856 nan 0.1000 2.0069
## 20 11.6940 nan 0.1000 0.5429
## 40 5.7729 nan 0.1000 0.1433
## 60 4.4393 nan 0.1000 0.0220
## 80 4.0652 nan 0.1000 -0.0448
## 100 3.7847 nan 0.1000 0.0047
## 120 3.5983 nan 0.1000 0.0003
## 140 3.4868 nan 0.1000 -0.0182
## 160 3.3847 nan 0.1000 -0.0030
## 180 3.2876 nan 0.1000 -0.0192
## 200 3.2041 nan 0.1000 -0.0221
## 220 3.1324 nan 0.1000 -0.0135
## 240 3.0725 nan 0.1000 -0.0108
## 260 3.0088 nan 0.1000 -0.0113
## 280 2.9479 nan 0.1000 -0.0148
## 300 2.9143 nan 0.1000 -0.0344
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 55.9969 nan 0.1000 7.5328
## 2 49.5695 nan 0.1000 5.4782
## 3 44.6735 nan 0.1000 5.2042
## 4 40.1271 nan 0.1000 4.5760
## 5 36.0738 nan 0.1000 4.0403
## 6 32.3825 nan 0.1000 3.5299
## 7 29.6804 nan 0.1000 2.3444
## 8 26.7630 nan 0.1000 2.6804
## 9 24.6898 nan 0.1000 2.0587
## 10 22.7428 nan 0.1000 1.7268
## 20 11.8709 nan 0.1000 0.6001
## 40 5.7245 nan 0.1000 0.0920
## 60 4.3709 nan 0.1000 0.0019
## 80 4.0358 nan 0.1000 -0.0113
## 100 3.8609 nan 0.1000 -0.0073
## 120 3.7288 nan 0.1000 -0.0171
## 140 3.5954 nan 0.1000 -0.0239
## 160 3.4990 nan 0.1000 -0.0045
## 180 3.4148 nan 0.1000 -0.0114
## 200 3.3412 nan 0.1000 -0.0120
## 220 3.2774 nan 0.1000 -0.0114
## 240 3.2172 nan 0.1000 -0.0095
## 260 3.1427 nan 0.1000 -0.0189
## 280 3.0964 nan 0.1000 -0.0069
## 300 3.0392 nan 0.1000 -0.0190
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.1640 nan 0.1000 7.5770
## 2 49.2641 nan 0.1000 6.4141
## 3 44.0752 nan 0.1000 4.7745
## 4 39.6976 nan 0.1000 4.2276
## 5 35.5207 nan 0.1000 3.8692
## 6 32.3879 nan 0.1000 2.8614
## 7 29.0951 nan 0.1000 2.9609
## 8 26.5306 nan 0.1000 2.7709
## 9 24.3528 nan 0.1000 1.8141
## 10 22.3293 nan 0.1000 1.9860
## 20 11.7621 nan 0.1000 0.6568
## 40 5.7106 nan 0.1000 0.0869
## 60 4.4755 nan 0.1000 0.0016
## 80 4.1515 nan 0.1000 -0.0148
## 100 3.9749 nan 0.1000 -0.0163
## 120 3.7960 nan 0.1000 -0.0477
## 140 3.6784 nan 0.1000 -0.0011
## 160 3.5580 nan 0.1000 -0.0014
## 180 3.4762 nan 0.1000 -0.0149
## 200 3.4115 nan 0.1000 -0.0137
## 220 3.3653 nan 0.1000 -0.0163
## 240 3.3025 nan 0.1000 -0.0167
## 260 3.2565 nan 0.1000 -0.0069
## 280 3.2238 nan 0.1000 -0.0072
## 300 3.1812 nan 0.1000 0.0012
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.9901 nan 0.1000 10.1981
## 2 47.8890 nan 0.1000 7.4647
## 3 40.9534 nan 0.1000 7.1913
## 4 35.7510 nan 0.1000 4.4552
## 5 30.7941 nan 0.1000 4.7447
## 6 26.9355 nan 0.1000 3.7898
## 7 23.6228 nan 0.1000 3.4735
## 8 21.1905 nan 0.1000 2.4656
## 9 18.5172 nan 0.1000 2.5268
## 10 16.4628 nan 0.1000 1.6927
## 20 7.0552 nan 0.1000 0.3199
## 40 3.8720 nan 0.1000 0.0092
## 60 3.1492 nan 0.1000 -0.0323
## 80 2.8081 nan 0.1000 -0.0147
## 100 2.5705 nan 0.1000 -0.0214
## 120 2.3937 nan 0.1000 -0.0087
## 140 2.2210 nan 0.1000 -0.0308
## 160 2.0942 nan 0.1000 -0.0350
## 180 1.9889 nan 0.1000 -0.0416
## 200 1.8985 nan 0.1000 -0.0128
## 220 1.8203 nan 0.1000 -0.0169
## 240 1.7347 nan 0.1000 -0.0353
## 260 1.6521 nan 0.1000 -0.0164
## 280 1.5828 nan 0.1000 -0.0182
## 300 1.5188 nan 0.1000 -0.0101
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.1717 nan 0.1000 8.7761
## 2 46.3164 nan 0.1000 8.0179
## 3 40.3913 nan 0.1000 5.6585
## 4 35.5041 nan 0.1000 5.3546
## 5 30.6585 nan 0.1000 4.3823
## 6 26.9349 nan 0.1000 3.4264
## 7 23.7000 nan 0.1000 3.5626
## 8 21.0122 nan 0.1000 2.7902
## 9 18.4413 nan 0.1000 2.4077
## 10 16.4957 nan 0.1000 1.8312
## 20 7.1085 nan 0.1000 0.3845
## 40 3.9351 nan 0.1000 0.0344
## 60 3.3948 nan 0.1000 -0.0265
## 80 3.0477 nan 0.1000 -0.0058
## 100 2.8156 nan 0.1000 -0.0119
## 120 2.6299 nan 0.1000 -0.0055
## 140 2.5145 nan 0.1000 -0.0341
## 160 2.4142 nan 0.1000 -0.0187
## 180 2.2878 nan 0.1000 -0.0089
## 200 2.1921 nan 0.1000 -0.0241
## 220 2.1146 nan 0.1000 -0.0369
## 240 2.0301 nan 0.1000 -0.0162
## 260 1.9273 nan 0.1000 -0.0195
## 280 1.8637 nan 0.1000 -0.0254
## 300 1.8072 nan 0.1000 -0.0168
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.2193 nan 0.1000 8.5623
## 2 46.1174 nan 0.1000 6.9997
## 3 39.9801 nan 0.1000 5.1663
## 4 34.3154 nan 0.1000 5.3349
## 5 30.1830 nan 0.1000 4.0992
## 6 26.1250 nan 0.1000 4.0987
## 7 23.1763 nan 0.1000 3.1158
## 8 20.2859 nan 0.1000 2.3976
## 9 18.0310 nan 0.1000 2.1460
## 10 16.1756 nan 0.1000 1.5967
## 20 7.2317 nan 0.1000 0.3488
## 40 4.0914 nan 0.1000 0.0253
## 60 3.5108 nan 0.1000 -0.0206
## 80 3.2002 nan 0.1000 -0.0167
## 100 2.9695 nan 0.1000 0.0055
## 120 2.8404 nan 0.1000 -0.0232
## 140 2.7114 nan 0.1000 -0.0247
## 160 2.5754 nan 0.1000 -0.0135
## 180 2.4901 nan 0.1000 -0.0260
## 200 2.3899 nan 0.1000 -0.0047
## 220 2.3037 nan 0.1000 -0.0270
## 240 2.2291 nan 0.1000 -0.0154
## 260 2.1607 nan 0.1000 -0.0105
## 280 2.0755 nan 0.1000 -0.0054
## 300 2.0261 nan 0.1000 -0.0092
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.3483 nan 0.1000 9.7868
## 2 45.5288 nan 0.1000 8.8127
## 3 38.8180 nan 0.1000 7.1202
## 4 33.1333 nan 0.1000 5.2940
## 5 28.4913 nan 0.1000 3.9627
## 6 24.4988 nan 0.1000 3.6822
## 7 21.2260 nan 0.1000 3.1019
## 8 18.3302 nan 0.1000 2.7653
## 9 15.9967 nan 0.1000 2.0661
## 10 14.1034 nan 0.1000 1.8126
## 20 5.5898 nan 0.1000 0.2816
## 40 3.1196 nan 0.1000 -0.0180
## 60 2.5170 nan 0.1000 -0.0408
## 80 2.1583 nan 0.1000 -0.0358
## 100 1.9170 nan 0.1000 -0.0045
## 120 1.7576 nan 0.1000 -0.0087
## 140 1.6117 nan 0.1000 -0.0155
## 160 1.4706 nan 0.1000 -0.0118
## 180 1.3591 nan 0.1000 -0.0189
## 200 1.2533 nan 0.1000 -0.0115
## 220 1.1723 nan 0.1000 -0.0114
## 240 1.0939 nan 0.1000 -0.0169
## 260 1.0204 nan 0.1000 -0.0146
## 280 0.9520 nan 0.1000 -0.0125
## 300 0.8952 nan 0.1000 -0.0121
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.2911 nan 0.1000 9.8543
## 2 44.6798 nan 0.1000 7.8135
## 3 38.1791 nan 0.1000 6.1061
## 4 32.5972 nan 0.1000 5.1100
## 5 28.1571 nan 0.1000 4.2547
## 6 24.3310 nan 0.1000 3.6034
## 7 20.9073 nan 0.1000 3.2402
## 8 18.2344 nan 0.1000 2.4535
## 9 15.9229 nan 0.1000 2.2876
## 10 14.2336 nan 0.1000 1.5907
## 20 5.8674 nan 0.1000 0.3149
## 40 3.4749 nan 0.1000 -0.0290
## 60 2.9610 nan 0.1000 -0.0251
## 80 2.6886 nan 0.1000 -0.0215
## 100 2.4512 nan 0.1000 -0.0241
## 120 2.2463 nan 0.1000 -0.0022
## 140 2.0790 nan 0.1000 -0.0186
## 160 1.9524 nan 0.1000 -0.0347
## 180 1.8162 nan 0.1000 -0.0226
## 200 1.7069 nan 0.1000 -0.0269
## 220 1.6161 nan 0.1000 -0.0153
## 240 1.5303 nan 0.1000 -0.0187
## 260 1.4326 nan 0.1000 -0.0209
## 280 1.3782 nan 0.1000 -0.0201
## 300 1.3169 nan 0.1000 -0.0099
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.3016 nan 0.1000 8.8383
## 2 45.7606 nan 0.1000 7.9709
## 3 38.5692 nan 0.1000 6.4787
## 4 33.0389 nan 0.1000 5.2313
## 5 28.4766 nan 0.1000 3.9661
## 6 24.2143 nan 0.1000 3.9407
## 7 20.8897 nan 0.1000 2.5696
## 8 18.2209 nan 0.1000 2.5567
## 9 16.0597 nan 0.1000 2.1353
## 10 14.2399 nan 0.1000 1.5543
## 20 6.0245 nan 0.1000 0.3129
## 40 3.4904 nan 0.1000 -0.0470
## 60 3.0247 nan 0.1000 -0.0006
## 80 2.7839 nan 0.1000 -0.0434
## 100 2.6055 nan 0.1000 -0.0339
## 120 2.3969 nan 0.1000 -0.0354
## 140 2.2629 nan 0.1000 -0.0136
## 160 2.0980 nan 0.1000 -0.0231
## 180 1.9848 nan 0.1000 -0.0135
## 200 1.8598 nan 0.1000 -0.0233
## 220 1.7641 nan 0.1000 -0.0180
## 240 1.6690 nan 0.1000 -0.0172
## 260 1.5996 nan 0.1000 -0.0100
## 280 1.5215 nan 0.1000 -0.0048
## 300 1.4536 nan 0.1000 -0.0143
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.3050 nan 0.0010 0.0778
## 2 61.2296 nan 0.0010 0.0740
## 3 61.1509 nan 0.0010 0.0806
## 4 61.0768 nan 0.0010 0.0740
## 5 61.0005 nan 0.0010 0.0750
## 6 60.9189 nan 0.0010 0.0710
## 7 60.8404 nan 0.0010 0.0782
## 8 60.7653 nan 0.0010 0.0670
## 9 60.6903 nan 0.0010 0.0790
## 10 60.6161 nan 0.0010 0.0731
## 20 59.8420 nan 0.0010 0.0772
## 40 58.3605 nan 0.0010 0.0682
## 60 56.9177 nan 0.0010 0.0694
## 80 55.5344 nan 0.0010 0.0673
## 100 54.1889 nan 0.0010 0.0634
## 120 52.9019 nan 0.0010 0.0600
## 140 51.6700 nan 0.0010 0.0639
## 160 50.4857 nan 0.0010 0.0565
## 180 49.3303 nan 0.0010 0.0566
## 200 48.2094 nan 0.0010 0.0522
## 220 47.1338 nan 0.0010 0.0512
## 240 46.0838 nan 0.0010 0.0478
## 260 45.0865 nan 0.0010 0.0478
## 280 44.1253 nan 0.0010 0.0504
## 300 43.2060 nan 0.0010 0.0460
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2980 nan 0.0010 0.0834
## 2 61.2210 nan 0.0010 0.0791
## 3 61.1407 nan 0.0010 0.0714
## 4 61.0653 nan 0.0010 0.0781
## 5 60.9884 nan 0.0010 0.0761
## 6 60.9114 nan 0.0010 0.0747
## 7 60.8313 nan 0.0010 0.0782
## 8 60.7514 nan 0.0010 0.0777
## 9 60.6809 nan 0.0010 0.0760
## 10 60.6132 nan 0.0010 0.0741
## 20 59.8617 nan 0.0010 0.0682
## 40 58.3935 nan 0.0010 0.0751
## 60 56.9617 nan 0.0010 0.0675
## 80 55.6059 nan 0.0010 0.0627
## 100 54.2835 nan 0.0010 0.0630
## 120 52.9883 nan 0.0010 0.0629
## 140 51.7736 nan 0.0010 0.0606
## 160 50.5749 nan 0.0010 0.0559
## 180 49.4081 nan 0.0010 0.0538
## 200 48.3129 nan 0.0010 0.0507
## 220 47.2333 nan 0.0010 0.0531
## 240 46.1895 nan 0.0010 0.0444
## 260 45.1857 nan 0.0010 0.0492
## 280 44.2116 nan 0.0010 0.0443
## 300 43.2490 nan 0.0010 0.0415
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2998 nan 0.0010 0.0816
## 2 61.2184 nan 0.0010 0.0792
## 3 61.1440 nan 0.0010 0.0802
## 4 61.0650 nan 0.0010 0.0697
## 5 60.9873 nan 0.0010 0.0739
## 6 60.9088 nan 0.0010 0.0741
## 7 60.8348 nan 0.0010 0.0790
## 8 60.7560 nan 0.0010 0.0700
## 9 60.6792 nan 0.0010 0.0775
## 10 60.5994 nan 0.0010 0.0817
## 20 59.8237 nan 0.0010 0.0714
## 40 58.3549 nan 0.0010 0.0734
## 60 56.9221 nan 0.0010 0.0639
## 80 55.5557 nan 0.0010 0.0634
## 100 54.2309 nan 0.0010 0.0680
## 120 52.9574 nan 0.0010 0.0605
## 140 51.7152 nan 0.0010 0.0573
## 160 50.4959 nan 0.0010 0.0525
## 180 49.3455 nan 0.0010 0.0533
## 200 48.2470 nan 0.0010 0.0548
## 220 47.1678 nan 0.0010 0.0509
## 240 46.1238 nan 0.0010 0.0471
## 260 45.1104 nan 0.0010 0.0489
## 280 44.1320 nan 0.0010 0.0408
## 300 43.2098 nan 0.0010 0.0443
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2829 nan 0.0010 0.0917
## 2 61.1820 nan 0.0010 0.0890
## 3 61.0973 nan 0.0010 0.0883
## 4 61.0034 nan 0.0010 0.0962
## 5 60.9151 nan 0.0010 0.0921
## 6 60.8172 nan 0.0010 0.0972
## 7 60.7248 nan 0.0010 0.0908
## 8 60.6322 nan 0.0010 0.0867
## 9 60.5417 nan 0.0010 0.0778
## 10 60.4524 nan 0.0010 0.0816
## 20 59.5537 nan 0.0010 0.0877
## 40 57.7859 nan 0.0010 0.0896
## 60 56.0704 nan 0.0010 0.0845
## 80 54.4164 nan 0.0010 0.0705
## 100 52.7857 nan 0.0010 0.0758
## 120 51.2454 nan 0.0010 0.0724
## 140 49.7628 nan 0.0010 0.0779
## 160 48.2994 nan 0.0010 0.0727
## 180 46.9065 nan 0.0010 0.0654
## 200 45.5620 nan 0.0010 0.0577
## 220 44.2629 nan 0.0010 0.0591
## 240 43.0104 nan 0.0010 0.0620
## 260 41.7648 nan 0.0010 0.0542
## 280 40.5854 nan 0.0010 0.0510
## 300 39.4477 nan 0.0010 0.0570
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2811 nan 0.0010 0.0955
## 2 61.1862 nan 0.0010 0.0948
## 3 61.0964 nan 0.0010 0.0893
## 4 61.0040 nan 0.0010 0.0835
## 5 60.9079 nan 0.0010 0.0941
## 6 60.8102 nan 0.0010 0.1022
## 7 60.7157 nan 0.0010 0.0883
## 8 60.6254 nan 0.0010 0.0922
## 9 60.5333 nan 0.0010 0.0912
## 10 60.4331 nan 0.0010 0.0872
## 20 59.4970 nan 0.0010 0.0811
## 40 57.7082 nan 0.0010 0.0876
## 60 56.0004 nan 0.0010 0.0830
## 80 54.3509 nan 0.0010 0.0762
## 100 52.7391 nan 0.0010 0.0803
## 120 51.1755 nan 0.0010 0.0818
## 140 49.6804 nan 0.0010 0.0630
## 160 48.2248 nan 0.0010 0.0781
## 180 46.8062 nan 0.0010 0.0704
## 200 45.4408 nan 0.0010 0.0610
## 220 44.1263 nan 0.0010 0.0580
## 240 42.8840 nan 0.0010 0.0562
## 260 41.6287 nan 0.0010 0.0636
## 280 40.4512 nan 0.0010 0.0528
## 300 39.3205 nan 0.0010 0.0535
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2876 nan 0.0010 0.1010
## 2 61.1912 nan 0.0010 0.0938
## 3 61.0965 nan 0.0010 0.0999
## 4 61.0030 nan 0.0010 0.0911
## 5 60.9114 nan 0.0010 0.0934
## 6 60.8187 nan 0.0010 0.0947
## 7 60.7266 nan 0.0010 0.0889
## 8 60.6323 nan 0.0010 0.0968
## 9 60.5362 nan 0.0010 0.1096
## 10 60.4437 nan 0.0010 0.0956
## 20 59.5319 nan 0.0010 0.0859
## 40 57.7624 nan 0.0010 0.0842
## 60 56.0241 nan 0.0010 0.0865
## 80 54.3543 nan 0.0010 0.0841
## 100 52.7535 nan 0.0010 0.0746
## 120 51.2186 nan 0.0010 0.0732
## 140 49.7484 nan 0.0010 0.0694
## 160 48.2550 nan 0.0010 0.0721
## 180 46.8744 nan 0.0010 0.0665
## 200 45.5248 nan 0.0010 0.0708
## 220 44.2176 nan 0.0010 0.0648
## 240 42.9163 nan 0.0010 0.0636
## 260 41.6940 nan 0.0010 0.0610
## 280 40.5209 nan 0.0010 0.0575
## 300 39.3925 nan 0.0010 0.0554
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2738 nan 0.0010 0.1078
## 2 61.1689 nan 0.0010 0.0953
## 3 61.0652 nan 0.0010 0.0876
## 4 60.9650 nan 0.0010 0.1067
## 5 60.8693 nan 0.0010 0.1031
## 6 60.7688 nan 0.0010 0.0943
## 7 60.6686 nan 0.0010 0.1011
## 8 60.5672 nan 0.0010 0.1050
## 9 60.4695 nan 0.0010 0.1073
## 10 60.3710 nan 0.0010 0.1014
## 20 59.3773 nan 0.0010 0.0924
## 40 57.4741 nan 0.0010 0.0872
## 60 55.6074 nan 0.0010 0.0845
## 80 53.8231 nan 0.0010 0.0820
## 100 52.1141 nan 0.0010 0.0889
## 120 50.4489 nan 0.0010 0.0798
## 140 48.8407 nan 0.0010 0.0740
## 160 47.2862 nan 0.0010 0.0759
## 180 45.7918 nan 0.0010 0.0668
## 200 44.3511 nan 0.0010 0.0712
## 220 42.9692 nan 0.0010 0.0592
## 240 41.6461 nan 0.0010 0.0563
## 260 40.3613 nan 0.0010 0.0658
## 280 39.1243 nan 0.0010 0.0689
## 300 37.9270 nan 0.0010 0.0519
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2763 nan 0.0010 0.1135
## 2 61.1751 nan 0.0010 0.1077
## 3 61.0786 nan 0.0010 0.1021
## 4 60.9765 nan 0.0010 0.0995
## 5 60.8743 nan 0.0010 0.0974
## 6 60.7735 nan 0.0010 0.1028
## 7 60.6742 nan 0.0010 0.0895
## 8 60.5671 nan 0.0010 0.1080
## 9 60.4690 nan 0.0010 0.0977
## 10 60.3661 nan 0.0010 0.0984
## 20 59.3781 nan 0.0010 0.0919
## 40 57.4356 nan 0.0010 0.1019
## 60 55.5655 nan 0.0010 0.0834
## 80 53.7784 nan 0.0010 0.0871
## 100 52.0701 nan 0.0010 0.0818
## 120 50.4246 nan 0.0010 0.0795
## 140 48.8167 nan 0.0010 0.0816
## 160 47.2672 nan 0.0010 0.0691
## 180 45.8046 nan 0.0010 0.0682
## 200 44.3870 nan 0.0010 0.0594
## 220 42.9841 nan 0.0010 0.0691
## 240 41.6727 nan 0.0010 0.0656
## 260 40.3962 nan 0.0010 0.0632
## 280 39.1536 nan 0.0010 0.0557
## 300 37.9587 nan 0.0010 0.0562
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 61.2832 nan 0.0010 0.1058
## 2 61.1835 nan 0.0010 0.1027
## 3 61.0788 nan 0.0010 0.1062
## 4 60.9828 nan 0.0010 0.0968
## 5 60.8795 nan 0.0010 0.1003
## 6 60.7720 nan 0.0010 0.0957
## 7 60.6763 nan 0.0010 0.0941
## 8 60.5640 nan 0.0010 0.1129
## 9 60.4657 nan 0.0010 0.0961
## 10 60.3672 nan 0.0010 0.1001
## 20 59.3763 nan 0.0010 0.0992
## 40 57.4659 nan 0.0010 0.0934
## 60 55.5953 nan 0.0010 0.0867
## 80 53.8031 nan 0.0010 0.0819
## 100 52.0904 nan 0.0010 0.0790
## 120 50.4284 nan 0.0010 0.0835
## 140 48.8247 nan 0.0010 0.0787
## 160 47.2855 nan 0.0010 0.0742
## 180 45.8110 nan 0.0010 0.0737
## 200 44.3832 nan 0.0010 0.0570
## 220 42.9910 nan 0.0010 0.0693
## 240 41.6482 nan 0.0010 0.0582
## 260 40.3751 nan 0.0010 0.0644
## 280 39.1772 nan 0.0010 0.0605
## 300 38.0023 nan 0.0010 0.0559
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9915 nan 0.0050 0.3792
## 2 60.5795 nan 0.0050 0.4111
## 3 60.1972 nan 0.0050 0.3884
## 4 59.8127 nan 0.0050 0.4141
## 5 59.4312 nan 0.0050 0.3711
## 6 59.0679 nan 0.0050 0.3462
## 7 58.6962 nan 0.0050 0.3360
## 8 58.3144 nan 0.0050 0.3495
## 9 57.9228 nan 0.0050 0.3329
## 10 57.5712 nan 0.0050 0.3251
## 20 54.1479 nan 0.0050 0.3013
## 40 48.1420 nan 0.0050 0.2784
## 60 43.1125 nan 0.0050 0.2073
## 80 38.8450 nan 0.0050 0.1771
## 100 35.1038 nan 0.0050 0.1509
## 120 31.8389 nan 0.0050 0.1375
## 140 28.9750 nan 0.0050 0.1259
## 160 26.5377 nan 0.0050 0.1085
## 180 24.3557 nan 0.0050 0.1005
## 200 22.4261 nan 0.0050 0.0827
## 220 20.7116 nan 0.0050 0.0583
## 240 19.2394 nan 0.0050 0.0611
## 260 17.9091 nan 0.0050 0.0521
## 280 16.7094 nan 0.0050 0.0482
## 300 15.6210 nan 0.0050 0.0304
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9800 nan 0.0050 0.3594
## 2 60.5867 nan 0.0050 0.3928
## 3 60.2024 nan 0.0050 0.3788
## 4 59.8375 nan 0.0050 0.3750
## 5 59.4911 nan 0.0050 0.3496
## 6 59.0921 nan 0.0050 0.3720
## 7 58.7135 nan 0.0050 0.3483
## 8 58.3367 nan 0.0050 0.3438
## 9 58.0176 nan 0.0050 0.3482
## 10 57.6604 nan 0.0050 0.3419
## 20 54.1990 nan 0.0050 0.3346
## 40 48.2499 nan 0.0050 0.2712
## 60 43.3316 nan 0.0050 0.2327
## 80 38.9384 nan 0.0050 0.1942
## 100 35.2056 nan 0.0050 0.1678
## 120 31.9451 nan 0.0050 0.1569
## 140 29.0245 nan 0.0050 0.1321
## 160 26.5684 nan 0.0050 0.1088
## 180 24.3656 nan 0.0050 0.0986
## 200 22.4909 nan 0.0050 0.0895
## 220 20.8020 nan 0.0050 0.0522
## 240 19.2714 nan 0.0050 0.0731
## 260 17.9153 nan 0.0050 0.0562
## 280 16.7123 nan 0.0050 0.0545
## 300 15.6677 nan 0.0050 0.0424
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.9911 nan 0.0050 0.3906
## 2 60.6381 nan 0.0050 0.3866
## 3 60.2510 nan 0.0050 0.3714
## 4 59.8685 nan 0.0050 0.4022
## 5 59.4908 nan 0.0050 0.3813
## 6 59.1554 nan 0.0050 0.3244
## 7 58.7571 nan 0.0050 0.3671
## 8 58.4250 nan 0.0050 0.3652
## 9 58.0628 nan 0.0050 0.3512
## 10 57.7055 nan 0.0050 0.3425
## 20 54.2628 nan 0.0050 0.3277
## 40 48.2028 nan 0.0050 0.2614
## 60 43.1401 nan 0.0050 0.2153
## 80 38.9957 nan 0.0050 0.1738
## 100 35.2817 nan 0.0050 0.1660
## 120 31.9945 nan 0.0050 0.1404
## 140 29.1494 nan 0.0050 0.1231
## 160 26.6311 nan 0.0050 0.1119
## 180 24.4322 nan 0.0050 0.0805
## 200 22.4830 nan 0.0050 0.0829
## 220 20.7883 nan 0.0050 0.0788
## 240 19.2767 nan 0.0050 0.0384
## 260 17.9334 nan 0.0050 0.0530
## 280 16.7446 nan 0.0050 0.0287
## 300 15.6826 nan 0.0050 0.0407
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8980 nan 0.0050 0.4720
## 2 60.4101 nan 0.0050 0.4099
## 3 59.9456 nan 0.0050 0.4498
## 4 59.4628 nan 0.0050 0.4461
## 5 58.9768 nan 0.0050 0.4481
## 6 58.5212 nan 0.0050 0.4737
## 7 58.1010 nan 0.0050 0.4029
## 8 57.6449 nan 0.0050 0.4311
## 9 57.2147 nan 0.0050 0.4436
## 10 56.7885 nan 0.0050 0.4154
## 20 52.6712 nan 0.0050 0.3813
## 40 45.4392 nan 0.0050 0.3604
## 60 39.3128 nan 0.0050 0.2320
## 80 34.1754 nan 0.0050 0.2237
## 100 29.9032 nan 0.0050 0.2108
## 120 26.3305 nan 0.0050 0.1751
## 140 23.3418 nan 0.0050 0.0955
## 160 20.6747 nan 0.0050 0.1169
## 180 18.4239 nan 0.0050 0.1060
## 200 16.5778 nan 0.0050 0.0805
## 220 15.0194 nan 0.0050 0.0535
## 240 13.6624 nan 0.0050 0.0431
## 260 12.5085 nan 0.0050 0.0539
## 280 11.4737 nan 0.0050 0.0428
## 300 10.5440 nan 0.0050 0.0326
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8814 nan 0.0050 0.4389
## 2 60.4169 nan 0.0050 0.4691
## 3 59.9516 nan 0.0050 0.4893
## 4 59.5156 nan 0.0050 0.4397
## 5 59.0377 nan 0.0050 0.4367
## 6 58.5580 nan 0.0050 0.4632
## 7 58.1026 nan 0.0050 0.4654
## 8 57.6756 nan 0.0050 0.4494
## 9 57.2880 nan 0.0050 0.3627
## 10 56.8471 nan 0.0050 0.4352
## 20 52.7689 nan 0.0050 0.4499
## 40 45.5530 nan 0.0050 0.3384
## 60 39.4441 nan 0.0050 0.2900
## 80 34.2711 nan 0.0050 0.2337
## 100 29.8654 nan 0.0050 0.1899
## 120 26.2758 nan 0.0050 0.1674
## 140 23.2530 nan 0.0050 0.1367
## 160 20.6178 nan 0.0050 0.1196
## 180 18.4180 nan 0.0050 0.0981
## 200 16.5708 nan 0.0050 0.0769
## 220 14.9746 nan 0.0050 0.0769
## 240 13.6065 nan 0.0050 0.0719
## 260 12.4230 nan 0.0050 0.0564
## 280 11.3889 nan 0.0050 0.0367
## 300 10.5012 nan 0.0050 0.0369
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8846 nan 0.0050 0.4423
## 2 60.3917 nan 0.0050 0.5044
## 3 59.9230 nan 0.0050 0.4774
## 4 59.4540 nan 0.0050 0.4627
## 5 59.0013 nan 0.0050 0.4477
## 6 58.5356 nan 0.0050 0.4444
## 7 58.0857 nan 0.0050 0.4249
## 8 57.6528 nan 0.0050 0.4278
## 9 57.2160 nan 0.0050 0.4158
## 10 56.7927 nan 0.0050 0.4267
## 20 52.7017 nan 0.0050 0.3559
## 40 45.4237 nan 0.0050 0.3033
## 60 39.3463 nan 0.0050 0.2895
## 80 34.2820 nan 0.0050 0.2023
## 100 29.8355 nan 0.0050 0.1881
## 120 26.2725 nan 0.0050 0.1590
## 140 23.2574 nan 0.0050 0.1370
## 160 20.7286 nan 0.0050 0.1246
## 180 18.5704 nan 0.0050 0.0993
## 200 16.7542 nan 0.0050 0.0747
## 220 15.1521 nan 0.0050 0.0629
## 240 13.7240 nan 0.0050 0.0481
## 260 12.5545 nan 0.0050 0.0494
## 280 11.5484 nan 0.0050 0.0430
## 300 10.6518 nan 0.0050 0.0388
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8741 nan 0.0050 0.5048
## 2 60.3483 nan 0.0050 0.5068
## 3 59.8592 nan 0.0050 0.5249
## 4 59.3537 nan 0.0050 0.4952
## 5 58.8787 nan 0.0050 0.4298
## 6 58.3937 nan 0.0050 0.4720
## 7 57.9319 nan 0.0050 0.4422
## 8 57.4647 nan 0.0050 0.4970
## 9 56.9896 nan 0.0050 0.4631
## 10 56.5036 nan 0.0050 0.4575
## 20 52.0445 nan 0.0050 0.4337
## 40 44.3915 nan 0.0050 0.3141
## 60 37.9449 nan 0.0050 0.2728
## 80 32.5522 nan 0.0050 0.2410
## 100 28.0892 nan 0.0050 0.1816
## 120 24.3749 nan 0.0050 0.1651
## 140 21.2973 nan 0.0050 0.1263
## 160 18.6406 nan 0.0050 0.1204
## 180 16.4269 nan 0.0050 0.1006
## 200 14.6186 nan 0.0050 0.0926
## 220 13.0646 nan 0.0050 0.0564
## 240 11.7030 nan 0.0050 0.0603
## 260 10.5691 nan 0.0050 0.0573
## 280 9.6007 nan 0.0050 0.0359
## 300 8.7647 nan 0.0050 0.0346
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8440 nan 0.0050 0.5194
## 2 60.3472 nan 0.0050 0.4589
## 3 59.8497 nan 0.0050 0.4421
## 4 59.3548 nan 0.0050 0.5125
## 5 58.8527 nan 0.0050 0.4795
## 6 58.3859 nan 0.0050 0.4746
## 7 57.9140 nan 0.0050 0.4215
## 8 57.4473 nan 0.0050 0.4543
## 9 57.0079 nan 0.0050 0.4951
## 10 56.5685 nan 0.0050 0.4170
## 20 52.1506 nan 0.0050 0.3542
## 40 44.4238 nan 0.0050 0.3894
## 60 38.0353 nan 0.0050 0.2775
## 80 32.7611 nan 0.0050 0.2204
## 100 28.3105 nan 0.0050 0.1951
## 120 24.5087 nan 0.0050 0.1819
## 140 21.4324 nan 0.0050 0.1391
## 160 18.8351 nan 0.0050 0.1243
## 180 16.5972 nan 0.0050 0.1103
## 200 14.7621 nan 0.0050 0.0786
## 220 13.1985 nan 0.0050 0.0653
## 240 11.8523 nan 0.0050 0.0533
## 260 10.7044 nan 0.0050 0.0491
## 280 9.7101 nan 0.0050 0.0422
## 300 8.8415 nan 0.0050 0.0356
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.8695 nan 0.0050 0.4972
## 2 60.3537 nan 0.0050 0.4919
## 3 59.8600 nan 0.0050 0.4463
## 4 59.3775 nan 0.0050 0.5035
## 5 58.8852 nan 0.0050 0.5830
## 6 58.4030 nan 0.0050 0.4768
## 7 57.9153 nan 0.0050 0.5377
## 8 57.4505 nan 0.0050 0.4879
## 9 57.0138 nan 0.0050 0.4205
## 10 56.5570 nan 0.0050 0.4480
## 20 52.1363 nan 0.0050 0.4306
## 40 44.4333 nan 0.0050 0.4044
## 60 38.0620 nan 0.0050 0.2801
## 80 32.6732 nan 0.0050 0.2534
## 100 28.3360 nan 0.0050 0.2119
## 120 24.6022 nan 0.0050 0.1411
## 140 21.4487 nan 0.0050 0.1487
## 160 18.8256 nan 0.0050 0.1145
## 180 16.6508 nan 0.0050 0.0915
## 200 14.8243 nan 0.0050 0.0747
## 220 13.2690 nan 0.0050 0.0668
## 240 11.9385 nan 0.0050 0.0644
## 260 10.8122 nan 0.0050 0.0460
## 280 9.8490 nan 0.0050 0.0388
## 300 9.0394 nan 0.0050 0.0267
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.6087 nan 0.0100 0.7814
## 2 59.9348 nan 0.0100 0.7172
## 3 59.2057 nan 0.0100 0.6888
## 4 58.4760 nan 0.0100 0.7339
## 5 57.7460 nan 0.0100 0.7225
## 6 57.0797 nan 0.0100 0.7238
## 7 56.3629 nan 0.0100 0.7190
## 8 55.6847 nan 0.0100 0.6703
## 9 55.0477 nan 0.0100 0.6715
## 10 54.4214 nan 0.0100 0.6766
## 20 48.4091 nan 0.0100 0.5627
## 40 38.9320 nan 0.0100 0.4027
## 60 32.1655 nan 0.0100 0.3030
## 80 26.7627 nan 0.0100 0.2374
## 100 22.6824 nan 0.0100 0.1531
## 120 19.4550 nan 0.0100 0.1336
## 140 16.9917 nan 0.0100 0.0691
## 160 14.9851 nan 0.0100 0.0705
## 180 13.2540 nan 0.0100 0.0577
## 200 11.8272 nan 0.0100 0.0350
## 220 10.6504 nan 0.0100 0.0527
## 240 9.6395 nan 0.0100 0.0397
## 260 8.8304 nan 0.0100 0.0305
## 280 8.1246 nan 0.0100 0.0255
## 300 7.5247 nan 0.0100 0.0209
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.5846 nan 0.0100 0.7242
## 2 59.7189 nan 0.0100 0.7393
## 3 59.0176 nan 0.0100 0.7543
## 4 58.3235 nan 0.0100 0.7454
## 5 57.5604 nan 0.0100 0.7132
## 6 56.7919 nan 0.0100 0.7508
## 7 56.1039 nan 0.0100 0.6678
## 8 55.4683 nan 0.0100 0.6032
## 9 54.7708 nan 0.0100 0.6721
## 10 54.0753 nan 0.0100 0.6242
## 20 47.9552 nan 0.0100 0.4831
## 40 38.6719 nan 0.0100 0.3784
## 60 31.9243 nan 0.0100 0.2498
## 80 26.5724 nan 0.0100 0.2274
## 100 22.4586 nan 0.0100 0.1794
## 120 19.3018 nan 0.0100 0.1301
## 140 16.7553 nan 0.0100 0.1061
## 160 14.7202 nan 0.0100 0.0787
## 180 13.0101 nan 0.0100 0.0610
## 200 11.6386 nan 0.0100 0.0573
## 220 10.5231 nan 0.0100 0.0436
## 240 9.5749 nan 0.0100 0.0335
## 260 8.7575 nan 0.0100 0.0214
## 280 8.0925 nan 0.0100 0.0247
## 300 7.5071 nan 0.0100 0.0271
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.6512 nan 0.0100 0.7558
## 2 59.8782 nan 0.0100 0.7704
## 3 59.1220 nan 0.0100 0.7379
## 4 58.3188 nan 0.0100 0.7142
## 5 57.6126 nan 0.0100 0.7419
## 6 56.8656 nan 0.0100 0.7135
## 7 56.1957 nan 0.0100 0.6645
## 8 55.5677 nan 0.0100 0.6713
## 9 54.8911 nan 0.0100 0.6590
## 10 54.2479 nan 0.0100 0.6107
## 20 48.3741 nan 0.0100 0.5458
## 40 38.8227 nan 0.0100 0.3727
## 60 31.8189 nan 0.0100 0.2026
## 80 26.6205 nan 0.0100 0.1783
## 100 22.4773 nan 0.0100 0.1320
## 120 19.3225 nan 0.0100 0.1337
## 140 16.8582 nan 0.0100 0.1096
## 160 14.8255 nan 0.0100 0.0738
## 180 13.1824 nan 0.0100 0.0578
## 200 11.7807 nan 0.0100 0.0458
## 220 10.6462 nan 0.0100 0.0474
## 240 9.6826 nan 0.0100 0.0268
## 260 8.8830 nan 0.0100 0.0319
## 280 8.2203 nan 0.0100 0.0226
## 300 7.6250 nan 0.0100 0.0237
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.3731 nan 0.0100 0.8727
## 2 59.4232 nan 0.0100 0.9901
## 3 58.5814 nan 0.0100 0.8225
## 4 57.6375 nan 0.0100 0.8170
## 5 56.8245 nan 0.0100 0.8464
## 6 55.9499 nan 0.0100 0.8119
## 7 55.1086 nan 0.0100 0.8434
## 8 54.3080 nan 0.0100 0.7694
## 9 53.5831 nan 0.0100 0.7170
## 10 52.8120 nan 0.0100 0.7951
## 20 45.4330 nan 0.0100 0.6382
## 40 34.1513 nan 0.0100 0.4739
## 60 26.1179 nan 0.0100 0.3541
## 80 20.5181 nan 0.0100 0.2119
## 100 16.4831 nan 0.0100 0.1636
## 120 13.5907 nan 0.0100 0.1170
## 140 11.3483 nan 0.0100 0.0788
## 160 9.6996 nan 0.0100 0.0774
## 180 8.4230 nan 0.0100 0.0506
## 200 7.4145 nan 0.0100 0.0354
## 220 6.6393 nan 0.0100 0.0255
## 240 6.0196 nan 0.0100 0.0168
## 260 5.4898 nan 0.0100 0.0164
## 280 5.1034 nan 0.0100 0.0167
## 300 4.7671 nan 0.0100 0.0090
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.4031 nan 0.0100 0.8763
## 2 59.5255 nan 0.0100 0.9611
## 3 58.6023 nan 0.0100 0.8128
## 4 57.6573 nan 0.0100 0.8575
## 5 56.7815 nan 0.0100 0.9129
## 6 55.9637 nan 0.0100 0.7676
## 7 55.1146 nan 0.0100 0.8829
## 8 54.3317 nan 0.0100 0.7571
## 9 53.5131 nan 0.0100 0.7943
## 10 52.6691 nan 0.0100 0.8224
## 20 45.7139 nan 0.0100 0.5879
## 40 34.4832 nan 0.0100 0.4407
## 60 26.4799 nan 0.0100 0.3230
## 80 20.7467 nan 0.0100 0.2424
## 100 16.6708 nan 0.0100 0.1602
## 120 13.6659 nan 0.0100 0.1141
## 140 11.3802 nan 0.0100 0.0959
## 160 9.7364 nan 0.0100 0.0581
## 180 8.4653 nan 0.0100 0.0337
## 200 7.4330 nan 0.0100 0.0352
## 220 6.6554 nan 0.0100 0.0285
## 240 6.0159 nan 0.0100 0.0216
## 260 5.5248 nan 0.0100 0.0127
## 280 5.1283 nan 0.0100 0.0149
## 300 4.8262 nan 0.0100 0.0098
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.4083 nan 0.0100 0.8183
## 2 59.5480 nan 0.0100 0.9328
## 3 58.6494 nan 0.0100 0.8520
## 4 57.8535 nan 0.0100 0.8869
## 5 56.9004 nan 0.0100 0.9171
## 6 56.0789 nan 0.0100 0.7483
## 7 55.2061 nan 0.0100 0.8247
## 8 54.4097 nan 0.0100 0.7241
## 9 53.5671 nan 0.0100 0.7891
## 10 52.7188 nan 0.0100 0.9011
## 20 45.4237 nan 0.0100 0.6637
## 40 34.0460 nan 0.0100 0.4780
## 60 26.1934 nan 0.0100 0.3477
## 80 20.6276 nan 0.0100 0.2209
## 100 16.6789 nan 0.0100 0.1532
## 120 13.8552 nan 0.0100 0.1197
## 140 11.7327 nan 0.0100 0.0697
## 160 10.0283 nan 0.0100 0.0567
## 180 8.7399 nan 0.0100 0.0428
## 200 7.7108 nan 0.0100 0.0348
## 220 6.9022 nan 0.0100 0.0283
## 240 6.2768 nan 0.0100 0.0202
## 260 5.7934 nan 0.0100 0.0134
## 280 5.3973 nan 0.0100 0.0110
## 300 5.0810 nan 0.0100 0.0116
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.2910 nan 0.0100 0.9729
## 2 59.2984 nan 0.0100 0.9945
## 3 58.2858 nan 0.0100 1.0976
## 4 57.3115 nan 0.0100 0.8716
## 5 56.3680 nan 0.0100 1.0176
## 6 55.4747 nan 0.0100 0.9490
## 7 54.6408 nan 0.0100 0.8683
## 8 53.7158 nan 0.0100 0.8603
## 9 52.7953 nan 0.0100 0.8392
## 10 51.9204 nan 0.0100 0.7746
## 20 44.1672 nan 0.0100 0.6810
## 40 32.4008 nan 0.0100 0.4626
## 60 24.2603 nan 0.0100 0.3069
## 80 18.5819 nan 0.0100 0.2240
## 100 14.5456 nan 0.0100 0.1405
## 120 11.7106 nan 0.0100 0.1213
## 140 9.6018 nan 0.0100 0.0862
## 160 8.0393 nan 0.0100 0.0472
## 180 6.8978 nan 0.0100 0.0353
## 200 6.0285 nan 0.0100 0.0364
## 220 5.3115 nan 0.0100 0.0212
## 240 4.7986 nan 0.0100 0.0146
## 260 4.3851 nan 0.0100 0.0083
## 280 4.0904 nan 0.0100 0.0050
## 300 3.8419 nan 0.0100 0.0029
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.3339 nan 0.0100 1.0052
## 2 59.3097 nan 0.0100 0.9652
## 3 58.3582 nan 0.0100 0.8627
## 4 57.3773 nan 0.0100 0.9509
## 5 56.4616 nan 0.0100 0.9115
## 6 55.5899 nan 0.0100 0.8482
## 7 54.7107 nan 0.0100 0.8661
## 8 53.8037 nan 0.0100 0.8558
## 9 52.8990 nan 0.0100 0.8947
## 10 52.0355 nan 0.0100 0.8474
## 20 44.3375 nan 0.0100 0.7369
## 40 32.6241 nan 0.0100 0.5083
## 60 24.3435 nan 0.0100 0.3356
## 80 18.6181 nan 0.0100 0.2336
## 100 14.6389 nan 0.0100 0.1528
## 120 11.7542 nan 0.0100 0.1102
## 140 9.6929 nan 0.0100 0.0712
## 160 8.1231 nan 0.0100 0.0618
## 180 6.9334 nan 0.0100 0.0474
## 200 6.0594 nan 0.0100 0.0257
## 220 5.3947 nan 0.0100 0.0205
## 240 4.8969 nan 0.0100 0.0182
## 260 4.5118 nan 0.0100 0.0120
## 280 4.2243 nan 0.0100 0.0084
## 300 3.9934 nan 0.0100 0.0078
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 60.3801 nan 0.0100 1.0206
## 2 59.4205 nan 0.0100 0.8794
## 3 58.4217 nan 0.0100 0.9464
## 4 57.4588 nan 0.0100 1.0547
## 5 56.4757 nan 0.0100 0.9703
## 6 55.5432 nan 0.0100 0.7711
## 7 54.6354 nan 0.0100 0.9901
## 8 53.6872 nan 0.0100 1.0242
## 9 52.8363 nan 0.0100 0.7776
## 10 51.9890 nan 0.0100 0.8386
## 20 44.4202 nan 0.0100 0.7184
## 40 32.6710 nan 0.0100 0.4728
## 60 24.4048 nan 0.0100 0.3197
## 80 18.6802 nan 0.0100 0.2441
## 100 14.7475 nan 0.0100 0.1466
## 120 11.9100 nan 0.0100 0.1106
## 140 9.8708 nan 0.0100 0.0700
## 160 8.3541 nan 0.0100 0.0510
## 180 7.2178 nan 0.0100 0.0500
## 200 6.3647 nan 0.0100 0.0297
## 220 5.6888 nan 0.0100 0.0228
## 240 5.1741 nan 0.0100 0.0161
## 260 4.7836 nan 0.0100 0.0120
## 280 4.4735 nan 0.0100 0.0087
## 300 4.2426 nan 0.0100 0.0025
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.6882 nan 0.0500 3.7264
## 2 54.1214 nan 0.0500 3.6922
## 3 51.0108 nan 0.0500 3.0275
## 4 48.0237 nan 0.0500 2.9646
## 5 45.4477 nan 0.0500 1.9907
## 6 43.0769 nan 0.0500 2.0015
## 7 40.6490 nan 0.0500 2.2378
## 8 38.4082 nan 0.0500 2.2304
## 9 36.2285 nan 0.0500 2.2400
## 10 34.4423 nan 0.0500 1.7992
## 20 22.1371 nan 0.0500 0.8527
## 40 11.4004 nan 0.0500 0.2431
## 60 7.4596 nan 0.0500 0.1114
## 80 5.6228 nan 0.0500 0.0667
## 100 4.7329 nan 0.0500 -0.0051
## 120 4.3002 nan 0.0500 0.0049
## 140 4.0450 nan 0.0500 -0.0077
## 160 3.9214 nan 0.0500 -0.0149
## 180 3.8183 nan 0.0500 -0.0022
## 200 3.7300 nan 0.0500 -0.0166
## 220 3.6477 nan 0.0500 0.0002
## 240 3.6053 nan 0.0500 -0.0041
## 260 3.5557 nan 0.0500 -0.0198
## 280 3.4957 nan 0.0500 -0.0153
## 300 3.4574 nan 0.0500 -0.0052
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.9618 nan 0.0500 3.7907
## 2 54.5807 nan 0.0500 3.3574
## 3 51.2795 nan 0.0500 3.0127
## 4 48.2549 nan 0.0500 2.8350
## 5 45.5926 nan 0.0500 2.6133
## 6 43.2301 nan 0.0500 2.3709
## 7 40.9553 nan 0.0500 2.1129
## 8 38.8228 nan 0.0500 2.0239
## 9 36.6671 nan 0.0500 1.9774
## 10 34.8223 nan 0.0500 1.6304
## 20 22.5753 nan 0.0500 0.5825
## 40 11.7541 nan 0.0500 0.2609
## 60 7.5536 nan 0.0500 0.0978
## 80 5.5796 nan 0.0500 0.0501
## 100 4.6596 nan 0.0500 -0.0077
## 120 4.2357 nan 0.0500 0.0023
## 140 4.0180 nan 0.0500 -0.0197
## 160 3.9100 nan 0.0500 -0.0004
## 180 3.8130 nan 0.0500 -0.0096
## 200 3.7452 nan 0.0500 -0.0074
## 220 3.6842 nan 0.0500 -0.0064
## 240 3.6391 nan 0.0500 -0.0120
## 260 3.5887 nan 0.0500 -0.0086
## 280 3.5282 nan 0.0500 -0.0025
## 300 3.4887 nan 0.0500 -0.0088
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.7157 nan 0.0500 3.7902
## 2 54.4730 nan 0.0500 3.5571
## 3 51.2612 nan 0.0500 3.0139
## 4 48.4374 nan 0.0500 2.9287
## 5 45.8258 nan 0.0500 2.7731
## 6 43.4560 nan 0.0500 2.4347
## 7 41.2749 nan 0.0500 2.1689
## 8 39.2471 nan 0.0500 2.0858
## 9 37.3553 nan 0.0500 1.9186
## 10 35.5429 nan 0.0500 1.4827
## 20 22.6926 nan 0.0500 0.8077
## 40 11.5969 nan 0.0500 0.2417
## 60 7.5349 nan 0.0500 0.1207
## 80 5.7729 nan 0.0500 0.0333
## 100 4.9486 nan 0.0500 0.0103
## 120 4.6154 nan 0.0500 0.0080
## 140 4.4340 nan 0.0500 -0.0057
## 160 4.3125 nan 0.0500 -0.0034
## 180 4.2215 nan 0.0500 -0.0031
## 200 4.1518 nan 0.0500 -0.0019
## 220 4.0751 nan 0.0500 -0.0070
## 240 4.0050 nan 0.0500 -0.0188
## 260 3.9343 nan 0.0500 -0.0116
## 280 3.8924 nan 0.0500 -0.0041
## 300 3.8494 nan 0.0500 -0.0056
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.1146 nan 0.0500 4.2013
## 2 52.7674 nan 0.0500 4.4111
## 3 48.5013 nan 0.0500 3.7474
## 4 44.8904 nan 0.0500 3.3747
## 5 41.5746 nan 0.0500 3.1724
## 6 38.7357 nan 0.0500 2.7897
## 7 35.9903 nan 0.0500 2.4036
## 8 33.6283 nan 0.0500 2.3189
## 9 31.2150 nan 0.0500 2.1451
## 10 29.1025 nan 0.0500 1.9996
## 20 16.0208 nan 0.0500 0.7012
## 40 7.2263 nan 0.0500 0.1697
## 60 4.7670 nan 0.0500 0.0496
## 80 3.9325 nan 0.0500 -0.0230
## 100 3.5795 nan 0.0500 -0.0041
## 120 3.3324 nan 0.0500 0.0015
## 140 3.1494 nan 0.0500 -0.0117
## 160 2.9964 nan 0.0500 -0.0207
## 180 2.8915 nan 0.0500 -0.0122
## 200 2.7611 nan 0.0500 -0.0052
## 220 2.6514 nan 0.0500 -0.0218
## 240 2.5364 nan 0.0500 -0.0137
## 260 2.4665 nan 0.0500 -0.0068
## 280 2.3663 nan 0.0500 -0.0045
## 300 2.3023 nan 0.0500 -0.0065
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 57.1705 nan 0.0500 4.8351
## 2 52.4498 nan 0.0500 4.6638
## 3 48.7307 nan 0.0500 4.0931
## 4 45.4616 nan 0.0500 3.6567
## 5 42.2666 nan 0.0500 3.2523
## 6 39.1474 nan 0.0500 2.6656
## 7 36.5001 nan 0.0500 2.5567
## 8 33.8819 nan 0.0500 2.3102
## 9 31.6082 nan 0.0500 2.3739
## 10 29.6210 nan 0.0500 2.0300
## 20 16.3954 nan 0.0500 0.8491
## 40 7.3771 nan 0.0500 0.1640
## 60 4.8171 nan 0.0500 0.0354
## 80 4.0234 nan 0.0500 0.0068
## 100 3.7025 nan 0.0500 -0.0124
## 120 3.4790 nan 0.0500 -0.0070
## 140 3.2970 nan 0.0500 -0.0096
## 160 3.1685 nan 0.0500 -0.0107
## 180 3.0306 nan 0.0500 -0.0064
## 200 2.9091 nan 0.0500 -0.0156
## 220 2.8304 nan 0.0500 -0.0061
## 240 2.7377 nan 0.0500 -0.0023
## 260 2.6643 nan 0.0500 -0.0169
## 280 2.5905 nan 0.0500 -0.0136
## 300 2.5232 nan 0.0500 -0.0093
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.6348 nan 0.0500 4.6225
## 2 52.4694 nan 0.0500 3.7606
## 3 48.5963 nan 0.0500 4.0450
## 4 45.0871 nan 0.0500 3.5413
## 5 41.6694 nan 0.0500 3.3137
## 6 38.6958 nan 0.0500 2.8070
## 7 35.9355 nan 0.0500 2.4924
## 8 33.7207 nan 0.0500 2.5786
## 9 31.3958 nan 0.0500 2.3025
## 10 29.2146 nan 0.0500 2.1472
## 20 16.3355 nan 0.0500 0.8080
## 40 7.6533 nan 0.0500 0.1513
## 60 5.1388 nan 0.0500 0.0260
## 80 4.4322 nan 0.0500 -0.0105
## 100 4.1080 nan 0.0500 0.0124
## 120 3.8669 nan 0.0500 -0.0207
## 140 3.6824 nan 0.0500 0.0031
## 160 3.5314 nan 0.0500 -0.0178
## 180 3.4259 nan 0.0500 -0.0021
## 200 3.3248 nan 0.0500 -0.0061
## 220 3.2123 nan 0.0500 -0.0127
## 240 3.1107 nan 0.0500 -0.0154
## 260 3.0467 nan 0.0500 -0.0117
## 280 2.9485 nan 0.0500 -0.0003
## 300 2.8980 nan 0.0500 -0.0043
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.3250 nan 0.0500 5.0922
## 2 51.7477 nan 0.0500 4.5414
## 3 47.6791 nan 0.0500 3.1199
## 4 43.8283 nan 0.0500 3.4493
## 5 40.2507 nan 0.0500 3.9363
## 6 37.0763 nan 0.0500 3.0207
## 7 34.2556 nan 0.0500 2.6370
## 8 31.7667 nan 0.0500 2.6951
## 9 29.3437 nan 0.0500 2.5884
## 10 27.1487 nan 0.0500 2.0298
## 20 14.0526 nan 0.0500 0.7788
## 40 5.9096 nan 0.0500 0.1619
## 60 3.9038 nan 0.0500 0.0490
## 80 3.3237 nan 0.0500 -0.0057
## 100 2.9846 nan 0.0500 -0.0265
## 120 2.7467 nan 0.0500 -0.0146
## 140 2.5292 nan 0.0500 -0.0003
## 160 2.3695 nan 0.0500 -0.0060
## 180 2.2468 nan 0.0500 -0.0011
## 200 2.1216 nan 0.0500 -0.0102
## 220 2.0160 nan 0.0500 -0.0105
## 240 1.8943 nan 0.0500 -0.0095
## 260 1.8067 nan 0.0500 -0.0089
## 280 1.7407 nan 0.0500 -0.0203
## 300 1.6589 nan 0.0500 -0.0120
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.6059 nan 0.0500 4.7659
## 2 51.8746 nan 0.0500 4.4082
## 3 47.7055 nan 0.0500 4.3091
## 4 44.0528 nan 0.0500 3.5901
## 5 40.6229 nan 0.0500 3.6865
## 6 37.5765 nan 0.0500 3.2741
## 7 34.7931 nan 0.0500 2.8820
## 8 32.1875 nan 0.0500 2.5819
## 9 30.0306 nan 0.0500 2.2995
## 10 27.8643 nan 0.0500 1.8225
## 20 14.4092 nan 0.0500 0.7605
## 40 6.2091 nan 0.0500 0.1379
## 60 4.1547 nan 0.0500 0.0194
## 80 3.4843 nan 0.0500 -0.0162
## 100 3.1868 nan 0.0500 -0.0199
## 120 2.9505 nan 0.0500 -0.0080
## 140 2.7974 nan 0.0500 -0.0116
## 160 2.6195 nan 0.0500 -0.0100
## 180 2.5195 nan 0.0500 -0.0145
## 200 2.3792 nan 0.0500 -0.0245
## 220 2.2649 nan 0.0500 -0.0216
## 240 2.1802 nan 0.0500 -0.0177
## 260 2.0822 nan 0.0500 -0.0124
## 280 2.0024 nan 0.0500 -0.0097
## 300 1.9366 nan 0.0500 -0.0062
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 56.1381 nan 0.0500 4.9662
## 2 51.5903 nan 0.0500 4.5598
## 3 47.6521 nan 0.0500 4.1743
## 4 44.0038 nan 0.0500 3.6158
## 5 40.6796 nan 0.0500 3.4670
## 6 37.7221 nan 0.0500 3.1771
## 7 34.8723 nan 0.0500 2.9813
## 8 32.4565 nan 0.0500 2.4640
## 9 29.9121 nan 0.0500 2.4437
## 10 27.7147 nan 0.0500 1.9066
## 20 14.5889 nan 0.0500 0.8273
## 40 6.2761 nan 0.0500 0.1564
## 60 4.4009 nan 0.0500 0.0213
## 80 3.7915 nan 0.0500 -0.0145
## 100 3.5119 nan 0.0500 -0.0183
## 120 3.2782 nan 0.0500 -0.0108
## 140 3.0963 nan 0.0500 -0.0215
## 160 2.9562 nan 0.0500 -0.0204
## 180 2.8366 nan 0.0500 -0.0147
## 200 2.7168 nan 0.0500 -0.0334
## 220 2.5897 nan 0.0500 -0.0331
## 240 2.5027 nan 0.0500 -0.0122
## 260 2.4055 nan 0.0500 -0.0125
## 280 2.3071 nan 0.0500 -0.0130
## 300 2.2348 nan 0.0500 -0.0047
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.0511 nan 0.1000 7.4470
## 2 48.0730 nan 0.1000 6.2893
## 3 42.9137 nan 0.1000 5.7309
## 4 38.9768 nan 0.1000 3.8048
## 5 35.0757 nan 0.1000 3.8720
## 6 31.6451 nan 0.1000 3.4137
## 7 28.9549 nan 0.1000 2.5916
## 8 26.4066 nan 0.1000 2.4956
## 9 24.1186 nan 0.1000 2.1687
## 10 22.2171 nan 0.1000 1.8771
## 20 11.4115 nan 0.1000 0.5844
## 40 5.5103 nan 0.1000 0.0831
## 60 4.2041 nan 0.1000 0.0297
## 80 3.8950 nan 0.1000 -0.0077
## 100 3.7144 nan 0.1000 -0.0202
## 120 3.6071 nan 0.1000 -0.0215
## 140 3.5005 nan 0.1000 -0.0134
## 160 3.4110 nan 0.1000 -0.0142
## 180 3.3550 nan 0.1000 -0.0120
## 200 3.3006 nan 0.1000 -0.0265
## 220 3.2540 nan 0.1000 -0.0124
## 240 3.1952 nan 0.1000 -0.0219
## 260 3.1353 nan 0.1000 -0.0255
## 280 3.0900 nan 0.1000 -0.0077
## 300 3.0473 nan 0.1000 -0.0190
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 54.1760 nan 0.1000 7.5596
## 2 48.0382 nan 0.1000 5.9079
## 3 43.2254 nan 0.1000 4.6278
## 4 38.2898 nan 0.1000 4.6497
## 5 34.3780 nan 0.1000 3.6527
## 6 31.1397 nan 0.1000 3.0744
## 7 28.2313 nan 0.1000 2.4522
## 8 25.7199 nan 0.1000 2.2999
## 9 23.5771 nan 0.1000 2.2082
## 10 21.6845 nan 0.1000 1.6815
## 20 11.3320 nan 0.1000 0.6270
## 40 5.5327 nan 0.1000 0.1256
## 60 4.3182 nan 0.1000 0.0135
## 80 4.0410 nan 0.1000 -0.0218
## 100 3.8594 nan 0.1000 -0.0263
## 120 3.7146 nan 0.1000 -0.0087
## 140 3.6140 nan 0.1000 -0.0322
## 160 3.5345 nan 0.1000 -0.0181
## 180 3.4658 nan 0.1000 -0.0179
## 200 3.3861 nan 0.1000 -0.0021
## 220 3.3146 nan 0.1000 -0.0056
## 240 3.2587 nan 0.1000 -0.0311
## 260 3.2158 nan 0.1000 -0.0130
## 280 3.1566 nan 0.1000 -0.0089
## 300 3.1112 nan 0.1000 -0.0072
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.6222 nan 0.1000 6.9997
## 2 47.7152 nan 0.1000 6.1036
## 3 42.8654 nan 0.1000 5.2936
## 4 38.2126 nan 0.1000 3.7290
## 5 34.3675 nan 0.1000 3.5378
## 6 31.2233 nan 0.1000 3.0342
## 7 28.1663 nan 0.1000 2.9720
## 8 25.9866 nan 0.1000 1.8346
## 9 23.7570 nan 0.1000 1.8758
## 10 21.8411 nan 0.1000 1.8274
## 20 11.3201 nan 0.1000 0.5119
## 40 5.7803 nan 0.1000 0.0014
## 60 4.6669 nan 0.1000 -0.1086
## 80 4.3375 nan 0.1000 -0.0083
## 100 4.1794 nan 0.1000 0.0009
## 120 4.0511 nan 0.1000 -0.0100
## 140 3.9279 nan 0.1000 -0.0232
## 160 3.8468 nan 0.1000 -0.0134
## 180 3.7459 nan 0.1000 -0.0098
## 200 3.6681 nan 0.1000 -0.0173
## 220 3.6003 nan 0.1000 -0.0337
## 240 3.5134 nan 0.1000 -0.0279
## 260 3.4500 nan 0.1000 -0.0095
## 280 3.4156 nan 0.1000 -0.0276
## 300 3.3623 nan 0.1000 -0.0051
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.4543 nan 0.1000 8.8288
## 2 45.1435 nan 0.1000 7.1661
## 3 39.9473 nan 0.1000 5.9227
## 4 34.2414 nan 0.1000 5.7911
## 5 29.4939 nan 0.1000 4.4633
## 6 26.1296 nan 0.1000 3.4533
## 7 23.0367 nan 0.1000 3.0520
## 8 20.3436 nan 0.1000 2.5860
## 9 18.1701 nan 0.1000 2.2819
## 10 16.2282 nan 0.1000 1.7298
## 20 7.3187 nan 0.1000 0.3315
## 40 3.9578 nan 0.1000 0.0183
## 60 3.3513 nan 0.1000 -0.0139
## 80 3.0463 nan 0.1000 -0.0255
## 100 2.7655 nan 0.1000 -0.0223
## 120 2.6062 nan 0.1000 -0.0433
## 140 2.4302 nan 0.1000 -0.0306
## 160 2.2944 nan 0.1000 -0.0376
## 180 2.2064 nan 0.1000 -0.0321
## 200 2.0947 nan 0.1000 -0.0341
## 220 1.9897 nan 0.1000 -0.0190
## 240 1.8858 nan 0.1000 -0.0157
## 260 1.7795 nan 0.1000 -0.0131
## 280 1.7256 nan 0.1000 -0.0226
## 300 1.6404 nan 0.1000 -0.0286
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.7198 nan 0.1000 8.9661
## 2 45.0838 nan 0.1000 8.4291
## 3 38.7068 nan 0.1000 5.6103
## 4 33.5098 nan 0.1000 5.4622
## 5 29.0018 nan 0.1000 3.9602
## 6 25.5633 nan 0.1000 3.2245
## 7 22.1440 nan 0.1000 3.5392
## 8 19.5018 nan 0.1000 2.2691
## 9 17.3466 nan 0.1000 1.5646
## 10 15.6200 nan 0.1000 1.2512
## 20 7.3559 nan 0.1000 0.2580
## 40 4.3307 nan 0.1000 -0.0034
## 60 3.6644 nan 0.1000 -0.0089
## 80 3.3807 nan 0.1000 -0.0228
## 100 3.2044 nan 0.1000 -0.0532
## 120 3.0454 nan 0.1000 -0.0091
## 140 2.8497 nan 0.1000 -0.0219
## 160 2.6854 nan 0.1000 -0.0275
## 180 2.5570 nan 0.1000 -0.0206
## 200 2.4336 nan 0.1000 -0.0250
## 220 2.3321 nan 0.1000 -0.0102
## 240 2.2112 nan 0.1000 -0.0137
## 260 2.1257 nan 0.1000 -0.0147
## 280 2.0437 nan 0.1000 -0.0108
## 300 1.9677 nan 0.1000 -0.0154
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 52.5449 nan 0.1000 8.9548
## 2 45.0377 nan 0.1000 7.2808
## 3 38.3929 nan 0.1000 6.3621
## 4 33.2648 nan 0.1000 5.0845
## 5 28.9591 nan 0.1000 3.6344
## 6 25.2955 nan 0.1000 3.4867
## 7 22.4019 nan 0.1000 2.7471
## 8 19.6107 nan 0.1000 2.6846
## 9 17.5319 nan 0.1000 1.8879
## 10 15.9018 nan 0.1000 1.5416
## 20 7.5429 nan 0.1000 0.2950
## 40 4.3503 nan 0.1000 0.0123
## 60 3.8390 nan 0.1000 -0.0211
## 80 3.4364 nan 0.1000 -0.0454
## 100 3.1916 nan 0.1000 -0.0299
## 120 2.9673 nan 0.1000 -0.0369
## 140 2.8281 nan 0.1000 -0.0199
## 160 2.6847 nan 0.1000 -0.0292
## 180 2.5461 nan 0.1000 -0.0218
## 200 2.4456 nan 0.1000 -0.0381
## 220 2.3418 nan 0.1000 -0.0180
## 240 2.2678 nan 0.1000 -0.0186
## 260 2.2220 nan 0.1000 -0.0119
## 280 2.1485 nan 0.1000 -0.0367
## 300 2.0460 nan 0.1000 -0.0241
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.9125 nan 0.1000 9.5619
## 2 44.4070 nan 0.1000 7.6436
## 3 37.3621 nan 0.1000 6.4708
## 4 32.3396 nan 0.1000 5.5120
## 5 27.9934 nan 0.1000 4.7985
## 6 24.2663 nan 0.1000 3.9704
## 7 21.0644 nan 0.1000 2.8949
## 8 18.4280 nan 0.1000 2.4830
## 9 16.0999 nan 0.1000 2.2418
## 10 14.3210 nan 0.1000 1.4878
## 20 5.8213 nan 0.1000 0.2121
## 40 3.3022 nan 0.1000 -0.0023
## 60 2.8089 nan 0.1000 -0.0104
## 80 2.4721 nan 0.1000 -0.0073
## 100 2.2128 nan 0.1000 -0.0165
## 120 2.0029 nan 0.1000 -0.0187
## 140 1.8132 nan 0.1000 -0.0427
## 160 1.6690 nan 0.1000 -0.0233
## 180 1.5517 nan 0.1000 -0.0195
## 200 1.4094 nan 0.1000 -0.0098
## 220 1.3046 nan 0.1000 -0.0128
## 240 1.2221 nan 0.1000 -0.0125
## 260 1.1281 nan 0.1000 -0.0130
## 280 1.0505 nan 0.1000 -0.0146
## 300 0.9869 nan 0.1000 -0.0139
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.4003 nan 0.1000 9.7223
## 2 43.0963 nan 0.1000 7.1128
## 3 36.4246 nan 0.1000 5.8032
## 4 31.2149 nan 0.1000 5.5649
## 5 26.9804 nan 0.1000 4.2742
## 6 23.2808 nan 0.1000 3.2729
## 7 20.1759 nan 0.1000 3.0445
## 8 17.7103 nan 0.1000 2.4145
## 9 15.4871 nan 0.1000 1.9867
## 10 13.6888 nan 0.1000 1.7878
## 20 5.7012 nan 0.1000 0.3060
## 40 3.3413 nan 0.1000 -0.0052
## 60 2.8868 nan 0.1000 -0.0241
## 80 2.6458 nan 0.1000 -0.0190
## 100 2.4248 nan 0.1000 -0.0272
## 120 2.2227 nan 0.1000 -0.0312
## 140 2.0796 nan 0.1000 -0.0194
## 160 1.9289 nan 0.1000 -0.0245
## 180 1.7985 nan 0.1000 -0.0384
## 200 1.6894 nan 0.1000 -0.0224
## 220 1.6028 nan 0.1000 -0.0219
## 240 1.5138 nan 0.1000 -0.0211
## 260 1.4177 nan 0.1000 -0.0170
## 280 1.3434 nan 0.1000 -0.0088
## 300 1.2859 nan 0.1000 -0.0161
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 51.8236 nan 0.1000 9.4686
## 2 44.1260 nan 0.1000 7.6190
## 3 37.3698 nan 0.1000 6.5661
## 4 31.9490 nan 0.1000 4.9936
## 5 27.2653 nan 0.1000 3.7567
## 6 23.7565 nan 0.1000 3.4070
## 7 20.9600 nan 0.1000 2.9619
## 8 18.5509 nan 0.1000 2.3997
## 9 16.2715 nan 0.1000 2.1540
## 10 14.4458 nan 0.1000 1.5925
## 20 5.9190 nan 0.1000 0.3579
## 40 3.6127 nan 0.1000 0.0113
## 60 3.2691 nan 0.1000 -0.0259
## 80 2.9166 nan 0.1000 -0.0551
## 100 2.6298 nan 0.1000 -0.0219
## 120 2.4335 nan 0.1000 -0.0101
## 140 2.2570 nan 0.1000 -0.0072
## 160 2.0904 nan 0.1000 -0.0461
## 180 1.9581 nan 0.1000 -0.0254
## 200 1.8692 nan 0.1000 -0.0292
## 220 1.7666 nan 0.1000 -0.0146
## 240 1.6599 nan 0.1000 -0.0155
## 260 1.5904 nan 0.1000 -0.0177
## 280 1.5153 nan 0.1000 -0.0151
## 300 1.4591 nan 0.1000 -0.0245
##
## Iter TrainDeviance ValidDeviance StepSize Improve
## 1 53.1719 nan 0.1000 9.4665
## 2 45.9121 nan 0.1000 6.9589
## 3 39.7406 nan 0.1000 5.4936
## 4 34.3692 nan 0.1000 4.6713
## 5 29.9825 nan 0.1000 4.5305
## 6 25.9262 nan 0.1000 4.2774
## 7 22.9292 nan 0.1000 2.8950
## 8 20.0190 nan 0.1000 2.3834
## 9 17.8571 nan 0.1000 2.2697
## 10 15.9527 nan 0.1000 1.8092
## 20 7.4563 nan 0.1000 0.2106
## 40 3.8987 nan 0.1000 0.0195
## 60 3.2508 nan 0.1000 -0.0078
## 80 2.9713 nan 0.1000 -0.0225
## 100 2.7113 nan 0.1000 -0.0084
## 120 2.5043 nan 0.1000 -0.0216
## 140 2.3299 nan 0.1000 -0.0166
## 160 2.2254 nan 0.1000 -0.0163
## 180 2.1006 nan 0.1000 -0.0129
## 200 1.9965 nan 0.1000 -0.0234
## 220 1.9027 nan 0.1000 -0.0049
## 240 1.8455 nan 0.1000 -0.0139
## 260 1.7373 nan 0.1000 -0.0210
## 280 1.6627 nan 0.1000 -0.0301
## 300 1.5958 nan 0.1000 -0.0100
##################################
# Reporting the apparent results
# for the GBM model
##################################
<- DALEX::explain(GBM_Tune,
GBM_DALEX data = MD.Model.Predictors,
y = MD$LIFEXP,
verbose = FALSE,
label = "GBM")
<- model_performance(GBM_DALEX)) (GBM_DALEX_Performance
## Measures for: regression
## mse : 1.59583
## rmse : 1.263262
## r2 : 0.9742122
## mad : 0.6901519
##
## Residuals:
## 0% 10% 20% 30% 40% 50%
## -5.14895174 -1.37469335 -0.86109715 -0.58821296 -0.29421757 -0.02188095
## 60% 70% 80% 90% 100%
## 0.19929179 0.54567671 0.89833729 1.60070669 4.04954295
<- model_diagnostics(GBM_DALEX)) (GBM_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :139 Africa :89 Min. :0.3365 Min. :-1.4775
## Female:153 Asia :73 1st Qu.:1.7047 1st Qu.: 0.6183
## Europe :62 Median :2.6100 Median : 1.7960
## North America:31 Mean :2.5569 Mean : 1.7571
## Oceania :18 3rd Qu.:3.5025 3rd Qu.: 2.7938
## South America:19 Max. :4.4864 Max. : 4.7293
## CLTECH NCOMOR y y_hat
## Min. : 0.00 Min. :1.866 Min. :52.84 Min. :53.13
## 1st Qu.: 24.35 1st Qu.:3.944 1st Qu.:66.93 1st Qu.:66.84
## Median : 82.80 Median :4.717 Median :73.53 Median :73.46
## Mean : 64.60 Mean :4.652 Mean :72.47 Mean :72.47
## 3rd Qu.:100.00 3rd Qu.:5.347 3rd Qu.:78.54 3rd Qu.:78.63
## Max. :100.00 Max. :7.959 Max. :87.45 Max. :85.25
## residuals abs_residuals label ids
## Min. :-5.148952 Min. :0.00237 Length:292 Min. : 1.00
## 1st Qu.:-0.693640 1st Qu.:0.29973 Class :character 1st Qu.: 73.75
## Median :-0.021881 Median :0.69015 Mode :character Median :146.50
## Mean : 0.005138 Mean :0.93475 Mean :146.50
## 3rd Qu.: 0.687602 3rd Qu.:1.29094 3rd Qu.:219.25
## Max. : 4.049543 Max. :5.14895 Max. :292.00
plot(GBM_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("GBM: Observed and Predicted LIFEXP")
<- model_parts(GBM_DALEX,
(GBM_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL))
## variable mean_dropout_loss label
## 1 _full_model_ 1.263262 GBM
## 2 PERCAP 1.524005 GBM
## 3 CLTECH 1.839900 GBM
## 4 GENDER 1.916960 GBM
## 5 CONTIN 1.928607 GBM
## 6 NCOMOR 3.569763 GBM
## 7 INFMOR 7.071063 GBM
## 8 _baseline_ 11.021426 GBM
plot(GBM_DALEX_VariableImportance)
##################################
# Reporting the cross-validation results
# for the GBM model
##################################
GBM_Tune
## Stochastic Gradient Boosting
##
## 292 samples
## 6 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ...
## Resampling results across tuning parameters:
##
## shrinkage interaction.depth n.minobsinnode n.trees RMSE Rsquared
## 0.001 1 5 100 7.377266 0.6960237
## 0.001 1 5 200 6.966222 0.7209826
## 0.001 1 5 300 6.597909 0.7441613
## 0.001 1 10 100 7.377949 0.6935879
## 0.001 1 10 200 6.966416 0.7208317
## 0.001 1 10 300 6.598121 0.7461646
## 0.001 1 15 100 7.377966 0.6917668
## 0.001 1 15 200 6.965878 0.7195112
## 0.001 1 15 300 6.596459 0.7448704
## 0.001 2 5 100 7.275870 0.8226732
## 0.001 2 5 200 6.762629 0.8370384
## 0.001 2 5 300 6.295943 0.8464683
## 0.001 2 10 100 7.275447 0.8240470
## 0.001 2 10 200 6.762739 0.8357535
## 0.001 2 10 300 6.299257 0.8457916
## 0.001 2 15 100 7.277399 0.8212853
## 0.001 2 15 200 6.760586 0.8360518
## 0.001 2 15 300 6.295997 0.8452784
## 0.001 3 5 100 7.231044 0.8682652
## 0.001 3 5 200 6.676028 0.8727234
## 0.001 3 5 300 6.182773 0.8763560
## 0.001 3 10 100 7.231374 0.8681444
## 0.001 3 10 200 6.680187 0.8716595
## 0.001 3 10 300 6.186029 0.8754754
## 0.001 3 15 100 7.233646 0.8658641
## 0.001 3 15 200 6.684882 0.8700754
## 0.001 3 15 300 6.193834 0.8724538
## 0.005 1 5 100 5.956976 0.7830051
## 0.005 1 5 200 4.792539 0.8329608
## 0.005 1 5 300 4.037847 0.8559526
## 0.005 1 10 100 5.963486 0.7866110
## 0.005 1 10 200 4.797846 0.8324357
## 0.005 1 10 300 4.050994 0.8556736
## 0.005 1 15 100 5.958365 0.7883867
## 0.005 1 15 200 4.797231 0.8331380
## 0.005 1 15 300 4.048700 0.8558011
## 0.005 2 5 100 5.500503 0.8577534
## 0.005 2 5 200 4.143717 0.8764977
## 0.005 2 5 300 3.357272 0.8909948
## 0.005 2 10 100 5.509140 0.8584730
## 0.005 2 10 200 4.143287 0.8761927
## 0.005 2 10 300 3.364624 0.8904997
## 0.005 2 15 100 5.504265 0.8577953
## 0.005 2 15 200 4.155921 0.8736943
## 0.005 2 15 300 3.388745 0.8881356
## 0.005 3 5 100 5.343316 0.8815099
## 0.005 3 5 200 3.909402 0.8962557
## 0.005 3 5 300 3.099679 0.9077613
## 0.005 3 10 100 5.342606 0.8825193
## 0.005 3 10 200 3.913986 0.8952557
## 0.005 3 10 300 3.104638 0.9066329
## 0.005 3 15 100 5.349350 0.8789039
## 0.005 3 15 200 3.942905 0.8909316
## 0.005 3 15 300 3.158405 0.9026099
## 0.010 1 5 100 4.785905 0.8365957
## 0.010 1 5 200 3.513753 0.8738534
## 0.010 1 5 300 2.880870 0.8972201
## 0.010 1 10 100 4.785535 0.8344965
## 0.010 1 10 200 3.519973 0.8734344
## 0.010 1 10 300 2.882445 0.8972143
## 0.010 1 15 100 4.794296 0.8332018
## 0.010 1 15 200 3.536103 0.8703625
## 0.010 1 15 300 2.926290 0.8926247
## 0.010 2 5 100 4.134028 0.8765837
## 0.010 2 5 200 2.885180 0.9023326
## 0.010 2 5 300 2.410639 0.9167652
## 0.010 2 10 100 4.146583 0.8765373
## 0.010 2 10 200 2.885874 0.9035827
## 0.010 2 10 300 2.401671 0.9178631
## 0.010 2 15 100 4.130967 0.8750381
## 0.010 2 15 200 2.918106 0.9006076
## 0.010 2 15 300 2.455977 0.9142649
## 0.010 3 5 100 3.909713 0.8952399
## 0.010 3 5 200 2.663648 0.9143332
## 0.010 3 5 300 2.274084 0.9230714
## 0.010 3 10 100 3.915620 0.8947741
## 0.010 3 10 200 2.660830 0.9144843
## 0.010 3 10 300 2.279239 0.9226394
## 0.010 3 15 100 3.919520 0.8927569
## 0.010 3 15 200 2.698192 0.9117988
## 0.010 3 15 300 2.323679 0.9202826
## 0.050 1 5 100 2.368670 0.9155076
## 0.050 1 5 200 2.194300 0.9242561
## 0.050 1 5 300 2.175057 0.9255193
## 0.050 1 10 100 2.356209 0.9166591
## 0.050 1 10 200 2.162508 0.9268045
## 0.050 1 10 300 2.145778 0.9276575
## 0.050 1 15 100 2.409980 0.9135821
## 0.050 1 15 200 2.255478 0.9217689
## 0.050 1 15 300 2.215643 0.9236305
## 0.050 2 5 100 2.223779 0.9224629
## 0.050 2 5 200 2.176185 0.9256471
## 0.050 2 5 300 2.156758 0.9263352
## 0.050 2 10 100 2.200024 0.9246320
## 0.050 2 10 200 2.174896 0.9256411
## 0.050 2 10 300 2.149895 0.9266258
## 0.050 2 15 100 2.229941 0.9222895
## 0.050 2 15 200 2.148962 0.9268146
## 0.050 2 15 300 2.140697 0.9269695
## 0.050 3 5 100 2.169569 0.9259392
## 0.050 3 5 200 2.172464 0.9251291
## 0.050 3 5 300 2.169582 0.9250868
## 0.050 3 10 100 2.185536 0.9249803
## 0.050 3 10 200 2.152994 0.9263177
## 0.050 3 10 300 2.148798 0.9262594
## 0.050 3 15 100 2.198534 0.9241099
## 0.050 3 15 200 2.169993 0.9255660
## 0.050 3 15 300 2.163552 0.9253829
## 0.100 1 5 100 2.208789 0.9219656
## 0.100 1 5 200 2.176595 0.9240653
## 0.100 1 5 300 2.176525 0.9235917
## 0.100 1 10 100 2.221531 0.9213379
## 0.100 1 10 200 2.165187 0.9250069
## 0.100 1 10 300 2.160528 0.9252803
## 0.100 1 15 100 2.222324 0.9220769
## 0.100 1 15 200 2.180369 0.9245016
## 0.100 1 15 300 2.150839 0.9263505
## 0.100 2 5 100 2.108652 0.9285686
## 0.100 2 5 200 2.110590 0.9279673
## 0.100 2 5 300 2.097843 0.9288204
## 0.100 2 10 100 2.184963 0.9240327
## 0.100 2 10 200 2.196965 0.9228255
## 0.100 2 10 300 2.201076 0.9221509
## 0.100 2 15 100 2.216480 0.9225563
## 0.100 2 15 200 2.192126 0.9231873
## 0.100 2 15 300 2.200571 0.9220875
## 0.100 3 5 100 2.205014 0.9239297
## 0.100 3 5 200 2.163422 0.9257538
## 0.100 3 5 300 2.210707 0.9218679
## 0.100 3 10 100 2.173034 0.9248470
## 0.100 3 10 200 2.165420 0.9244402
## 0.100 3 10 300 2.168710 0.9240569
## 0.100 3 15 100 2.206916 0.9238262
## 0.100 3 15 200 2.204289 0.9231056
## 0.100 3 15 300 2.192318 0.9234358
## MAE
## 6.147721
## 5.779464
## 5.455970
## 6.148010
## 5.780973
## 5.454359
## 6.149646
## 5.783358
## 5.454089
## 6.071049
## 5.621430
## 5.217508
## 6.070565
## 5.621452
## 5.220069
## 6.072811
## 5.619098
## 5.216703
## 6.059105
## 5.588782
## 5.169935
## 6.059887
## 5.593238
## 5.173991
## 6.060150
## 5.594574
## 5.174572
## 4.888478
## 3.873259
## 3.256497
## 4.894389
## 3.881221
## 3.270713
## 4.887381
## 3.879311
## 3.260956
## 4.542649
## 3.394213
## 2.730622
## 4.547507
## 3.382926
## 2.732000
## 4.538989
## 3.391199
## 2.737812
## 4.469254
## 3.246403
## 2.520197
## 4.459693
## 3.241521
## 2.517426
## 4.461381
## 3.257064
## 2.549622
## 3.873518
## 2.832869
## 2.284277
## 3.873192
## 2.835963
## 2.279827
## 3.873785
## 2.845547
## 2.312822
## 3.386359
## 2.300962
## 1.866370
## 3.389520
## 2.302218
## 1.851959
## 3.363637
## 2.304560
## 1.871229
## 3.245379
## 2.111343
## 1.731292
## 3.242745
## 2.101940
## 1.722644
## 3.238655
## 2.108107
## 1.737609
## 1.793937
## 1.615079
## 1.598225
## 1.782247
## 1.599494
## 1.568559
## 1.830035
## 1.682260
## 1.642767
## 1.654957
## 1.602377
## 1.589340
## 1.642846
## 1.597405
## 1.581444
## 1.638179
## 1.580946
## 1.580974
## 1.616842
## 1.607067
## 1.615612
## 1.591912
## 1.568460
## 1.567069
## 1.600684
## 1.587525
## 1.584272
## 1.635785
## 1.601813
## 1.608526
## 1.636636
## 1.588658
## 1.593587
## 1.637832
## 1.586292
## 1.569520
## 1.579722
## 1.578614
## 1.577171
## 1.602153
## 1.613135
## 1.620481
## 1.636962
## 1.612915
## 1.615130
## 1.602353
## 1.586244
## 1.644167
## 1.592651
## 1.595324
## 1.611267
## 1.613429
## 1.632831
## 1.617914
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 300, interaction.depth =
## 2, shrinkage = 0.1 and n.minobsinnode = 5.
$finalModel GBM_Tune
## A gradient boosted model with gaussian loss function.
## 300 iterations were performed.
## There were 6 predictors of which 6 had non-zero influence.
<- GBM_Tune$results[GBM_Tune$results$shrinkage==GBM_Tune$bestTune$shrinkage &
(GBM_Tune_RMSE $results$interaction.depth==GBM_Tune$bestTune$interaction.depth &
GBM_Tune$results$n.minobsinnode==GBM_Tune$bestTune$n.minobsinnode &
GBM_Tune$results$n.trees==GBM_Tune$bestTune$n.trees,
GBM_Tunec("RMSE")])
## [1] 2.097843
<- GBM_Tune$results[GBM_Tune$results$shrinkage==GBM_Tune$bestTune$shrinkage &
(GBM_Tune_Rsquared $results$interaction.depth==GBM_Tune$bestTune$interaction.depth &
GBM_Tune$results$n.minobsinnode==GBM_Tune$bestTune$n.minobsinnode &
GBM_Tune$results$n.trees==GBM_Tune$bestTune$n.trees,
GBM_Tunec("Rsquared")])
## [1] 0.9288204
<- GBM_Tune$results[GBM_Tune$results$shrinkage==GBM_Tune$bestTune$shrinkage &
(GBM_Tune_MAE $results$interaction.depth==GBM_Tune$bestTune$interaction.depth &
GBM_Tune$results$n.minobsinnode==GBM_Tune$bestTune$n.minobsinnode &
GBM_Tune$results$n.trees==GBM_Tune$bestTune$n.trees,
GBM_Tunec("MAE")])
## [1] 1.577171
##################################
# Defining the model hyperparameter values
# for the RF model
##################################
= data.frame(mtry = c(100, 200, 300, 400, 500,
RF_Grid 600, 700, 800, 900, 1000))
##################################
# Running the RF model
# by setting the caret method to 'RF'
##################################
set.seed(12345678)
<- train(x = MD.Model.Predictors,
RF_Tune y = MD$LIFEXP,
method = "rf",
tuneGrid = RF_Grid,
trControl = KFold_Control)
##################################
# Reporting the apparent results
# for the RF model
##################################
<- DALEX::explain(RF_Tune,
RF_DALEX data = MD.Model.Predictors,
y = MD$LIFEXP,
verbose = FALSE,
label = "RF")
<- model_performance(RF_DALEX)) (RF_DALEX_Performance
## Measures for: regression
## mse : 0.9404626
## rmse : 0.9697745
## r2 : 0.9848026
## mad : 0.493929
##
## Residuals:
## 0% 10% 20% 30% 40% 50%
## -3.89311943 -1.04739946 -0.63797813 -0.37774333 -0.17489179 -0.02355452
## 60% 70% 80% 90% 100%
## 0.11686047 0.37368288 0.59428965 1.20572149 3.83678360
<- model_diagnostics(RF_DALEX)) (RF_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :139 Africa :89 Min. :0.3365 Min. :-1.4775
## Female:153 Asia :73 1st Qu.:1.7047 1st Qu.: 0.6183
## Europe :62 Median :2.6100 Median : 1.7960
## North America:31 Mean :2.5569 Mean : 1.7571
## Oceania :18 3rd Qu.:3.5025 3rd Qu.: 2.7938
## South America:19 Max. :4.4864 Max. : 4.7293
## CLTECH NCOMOR y y_hat
## Min. : 0.00 Min. :1.866 Min. :52.84 Min. :54.37
## 1st Qu.: 24.35 1st Qu.:3.944 1st Qu.:66.93 1st Qu.:67.15
## Median : 82.80 Median :4.717 Median :73.53 Median :73.58
## Mean : 64.60 Mean :4.652 Mean :72.47 Mean :72.49
## 3rd Qu.:100.00 3rd Qu.:5.347 3rd Qu.:78.54 3rd Qu.:78.49
## Max. :100.00 Max. :7.959 Max. :87.45 Max. :86.25
## residuals abs_residuals label ids
## Min. :-3.89312 Min. :0.004567 Length:292 Min. : 1.00
## 1st Qu.:-0.49373 1st Qu.:0.228644 Class :character 1st Qu.: 73.75
## Median :-0.02355 Median :0.493929 Mode :character Median :146.50
## Mean :-0.01104 Mean :0.695743 Mean :146.50
## 3rd Qu.: 0.49410 3rd Qu.:0.996858 3rd Qu.:219.25
## Max. : 3.83678 Max. :3.893119 Max. :292.00
plot(RF_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("RF: Observed and Predicted LIFEXP")
<- model_parts(RF_DALEX,
(RF_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL))
## variable mean_dropout_loss label
## 1 _full_model_ 0.9697745 RF
## 2 PERCAP 1.2486580 RF
## 3 CLTECH 1.2756382 RF
## 4 GENDER 1.3578694 RF
## 5 CONTIN 1.4558017 RF
## 6 NCOMOR 4.2303790 RF
## 7 INFMOR 8.3874253 RF
## 8 _baseline_ 10.9599787 RF
plot(RF_DALEX_VariableImportance)
##################################
# Reporting the cross-validation results
# for the RF model
##################################
RF_Tune
## Random Forest
##
## 292 samples
## 6 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ...
## Resampling results across tuning parameters:
##
## mtry RMSE Rsquared MAE
## 100 2.244547 0.9196737 1.619943
## 200 2.249565 0.9196008 1.620459
## 300 2.251214 0.9194065 1.628754
## 400 2.239011 0.9201778 1.618476
## 500 2.244594 0.9199741 1.623557
## 600 2.250218 0.9195438 1.627748
## 700 2.250948 0.9195926 1.627966
## 800 2.252804 0.9194439 1.626298
## 900 2.256902 0.9191818 1.630857
## 1000 2.245525 0.9198362 1.618343
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was mtry = 400.
$finalModel RF_Tune
##
## Call:
## randomForest(x = x, y = y, mtry = param$mtry)
## Type of random forest: regression
## Number of trees: 500
## No. of variables tried at each split: 6
##
## Mean of squared residuals: 5.126832
## % Var explained: 91.72
<- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
(RF_Tune_RMSE c("RMSE")])
## [1] 2.239011
<- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
(RF_Tune_Rsquared c("Rsquared")])
## [1] 0.9201778
<- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
(RF_Tune_MAE c("MAE")])
## [1] 1.618476
##################################
# Defining the model hyperparameter values
# for the NN model
##################################
= expand.grid(size = c(2, 5, 10, 15, 20),
NN_Grid decay = c(0, 0.00001, 0.0001, 0.001, 0.1))
##################################
# Running the NN model
# by setting the caret method to 'NN'
##################################
set.seed(12345678)
<- train(x = MD.Model.Predictors,
NN_Tune y = MD$LIFEXP,
method = "nnet",
linout = TRUE,
preProcess = c('center', 'scale'),
maxit = 500,
tuneGrid = NN_Grid,
trControl = KFold_Control)
## # weights: 25
## initial value 1400339.778929
## iter 10 value 68496.910319
## iter 20 value 5956.174709
## iter 30 value 5844.262957
## iter 40 value 5352.739998
## iter 50 value 5259.580299
## iter 60 value 5258.019066
## iter 70 value 5205.090145
## iter 80 value 5196.195489
## iter 90 value 4833.831031
## iter 100 value 4569.510587
## iter 110 value 4553.721628
## iter 120 value 4553.045122
## iter 130 value 4553.015144
## iter 140 value 4552.876106
## iter 150 value 4550.489828
## iter 160 value 4550.208091
## iter 170 value 4550.152984
## iter 180 value 4550.031282
## iter 190 value 4549.764089
## iter 200 value 4549.444274
## iter 210 value 4548.348059
## iter 220 value 4548.157434
## iter 220 value 4548.157430
## iter 220 value 4548.157430
## final value 4548.157430
## converged
## # weights: 61
## initial value 1419402.900363
## iter 10 value 5466.160778
## iter 20 value 4136.215442
## iter 30 value 3233.377310
## iter 40 value 2184.748970
## iter 50 value 1482.694097
## iter 60 value 1341.742361
## iter 70 value 1297.232211
## iter 80 value 1213.738131
## iter 90 value 1146.376381
## iter 100 value 1070.241735
## iter 110 value 1030.232654
## iter 120 value 1015.217766
## iter 130 value 1005.639574
## iter 140 value 998.773821
## iter 150 value 992.324116
## iter 160 value 980.531489
## iter 170 value 978.495782
## iter 180 value 978.409744
## iter 190 value 978.361243
## iter 200 value 978.318025
## iter 210 value 978.296926
## iter 220 value 968.807011
## iter 230 value 939.853517
## iter 240 value 925.037978
## iter 250 value 919.646061
## iter 260 value 919.163802
## iter 270 value 917.547708
## iter 280 value 914.888136
## iter 290 value 911.397634
## iter 300 value 909.574590
## iter 310 value 908.742002
## iter 320 value 908.217371
## iter 330 value 907.307508
## iter 340 value 906.728904
## iter 350 value 906.413133
## iter 360 value 906.376723
## iter 370 value 906.329715
## iter 380 value 906.279582
## iter 390 value 906.271020
## iter 400 value 906.268970
## final value 906.268949
## converged
## # weights: 121
## initial value 1369973.913442
## iter 10 value 1456.280282
## iter 20 value 981.019262
## iter 30 value 820.891644
## iter 40 value 691.064010
## iter 50 value 615.847093
## iter 60 value 552.618476
## iter 70 value 501.933326
## iter 80 value 465.287566
## iter 90 value 435.639678
## iter 100 value 411.632837
## iter 110 value 377.319124
## iter 120 value 355.295277
## iter 130 value 332.770009
## iter 140 value 319.998174
## iter 150 value 311.670112
## iter 160 value 296.995967
## iter 170 value 289.673758
## iter 180 value 286.817395
## iter 190 value 285.327350
## iter 200 value 283.822117
## iter 210 value 281.823769
## iter 220 value 280.604183
## iter 230 value 279.960985
## iter 240 value 279.298747
## iter 250 value 278.767676
## iter 260 value 278.387227
## iter 270 value 277.570900
## iter 280 value 276.221841
## iter 290 value 273.862125
## iter 300 value 271.110331
## iter 310 value 269.686949
## iter 320 value 268.329167
## iter 330 value 266.353429
## iter 340 value 263.244321
## iter 350 value 262.025670
## iter 360 value 260.468974
## iter 370 value 259.082188
## iter 380 value 258.024935
## iter 390 value 257.709959
## iter 400 value 257.192116
## iter 410 value 256.946798
## iter 420 value 256.805007
## iter 430 value 256.770626
## iter 440 value 256.766595
## iter 450 value 256.763944
## iter 460 value 256.762805
## iter 470 value 256.759951
## iter 480 value 256.742706
## final value 256.731685
## converged
## # weights: 181
## initial value 1369859.779729
## iter 10 value 1218.791825
## iter 20 value 844.152299
## iter 30 value 679.366662
## iter 40 value 572.273305
## iter 50 value 466.657882
## iter 60 value 383.138573
## iter 70 value 339.951431
## iter 80 value 283.173217
## iter 90 value 257.527205
## iter 100 value 237.333601
## iter 110 value 223.739667
## iter 120 value 215.169024
## iter 130 value 208.082918
## iter 140 value 199.329810
## iter 150 value 191.342838
## iter 160 value 184.771082
## iter 170 value 174.014610
## iter 180 value 167.789067
## iter 190 value 161.398029
## iter 200 value 156.888476
## iter 210 value 153.435980
## iter 220 value 149.579761
## iter 230 value 146.046728
## iter 240 value 142.808104
## iter 250 value 140.214188
## iter 260 value 137.517961
## iter 270 value 135.175708
## iter 280 value 132.482019
## iter 290 value 129.935560
## iter 300 value 127.301305
## iter 310 value 124.632966
## iter 320 value 122.671009
## iter 330 value 119.063976
## iter 340 value 115.950398
## iter 350 value 113.321558
## iter 360 value 110.553146
## iter 370 value 109.537855
## iter 380 value 108.980326
## iter 390 value 108.142979
## iter 400 value 107.033356
## iter 410 value 106.482910
## iter 420 value 105.642504
## iter 430 value 104.684540
## iter 440 value 103.914639
## iter 450 value 102.861627
## iter 460 value 101.598500
## iter 470 value 99.744133
## iter 480 value 97.351172
## iter 490 value 95.563516
## iter 500 value 93.616614
## final value 93.616614
## stopped after 500 iterations
## # weights: 241
## initial value 1362136.072048
## iter 10 value 1398.158403
## iter 20 value 813.986040
## iter 30 value 623.314450
## iter 40 value 451.572085
## iter 50 value 343.423349
## iter 60 value 299.481028
## iter 70 value 258.539324
## iter 80 value 218.722855
## iter 90 value 189.014309
## iter 100 value 172.421623
## iter 110 value 152.085135
## iter 120 value 140.177393
## iter 130 value 130.443034
## iter 140 value 121.601687
## iter 150 value 114.523579
## iter 160 value 107.718749
## iter 170 value 97.564388
## iter 180 value 92.637160
## iter 190 value 87.632255
## iter 200 value 83.334630
## iter 210 value 78.936737
## iter 220 value 74.404872
## iter 230 value 71.245308
## iter 240 value 69.350806
## iter 250 value 66.556843
## iter 260 value 63.476653
## iter 270 value 61.090865
## iter 280 value 59.602674
## iter 290 value 58.022193
## iter 300 value 55.931747
## iter 310 value 54.279973
## iter 320 value 52.788004
## iter 330 value 52.144060
## iter 340 value 51.520501
## iter 350 value 50.937822
## iter 360 value 50.600355
## iter 370 value 50.390622
## iter 380 value 50.202609
## iter 390 value 49.915583
## iter 400 value 49.675294
## iter 410 value 49.500596
## iter 420 value 49.385656
## iter 430 value 49.276835
## iter 440 value 49.181953
## iter 450 value 49.072194
## iter 460 value 48.923516
## iter 470 value 48.704723
## iter 480 value 48.485576
## iter 490 value 48.352389
## iter 500 value 48.312069
## final value 48.312069
## stopped after 500 iterations
## # weights: 25
## initial value 1384018.334099
## iter 10 value 14826.537515
## iter 20 value 5813.028843
## iter 30 value 4170.983208
## iter 40 value 2733.681626
## iter 50 value 1945.456766
## iter 60 value 1798.543289
## iter 70 value 1746.423017
## iter 80 value 1721.963093
## iter 90 value 1682.718888
## iter 100 value 1642.738696
## iter 110 value 1567.875475
## iter 120 value 1176.466252
## iter 130 value 940.171012
## iter 140 value 903.533021
## iter 150 value 899.315161
## iter 160 value 898.513967
## iter 170 value 888.514572
## iter 180 value 877.111204
## iter 190 value 875.630959
## iter 200 value 875.372479
## iter 210 value 875.220123
## iter 220 value 874.350179
## iter 230 value 873.796905
## iter 240 value 873.553053
## iter 250 value 873.524197
## iter 260 value 873.523434
## iter 270 value 873.508109
## iter 280 value 873.466496
## iter 290 value 873.412895
## iter 300 value 873.386788
## final value 873.386557
## converged
## # weights: 61
## initial value 1394097.657047
## iter 10 value 23565.379437
## iter 20 value 8413.870422
## iter 30 value 5669.603306
## iter 40 value 4961.340411
## iter 50 value 4636.688563
## iter 60 value 3698.652166
## iter 70 value 2908.454914
## iter 80 value 2733.688942
## iter 90 value 2432.062689
## iter 100 value 1825.325196
## iter 110 value 1387.504599
## iter 120 value 1257.609294
## iter 130 value 1216.167382
## iter 140 value 1114.359333
## iter 150 value 1087.913181
## iter 160 value 1071.689478
## iter 170 value 1065.937468
## iter 180 value 1043.151373
## iter 190 value 1033.117999
## iter 200 value 1026.374711
## iter 210 value 1026.256408
## iter 220 value 1024.932352
## iter 230 value 1016.981513
## iter 240 value 1011.378658
## iter 250 value 1008.021987
## iter 260 value 1007.075277
## iter 270 value 1005.158200
## iter 280 value 1002.378160
## iter 290 value 1000.597307
## iter 300 value 1000.366193
## iter 310 value 1000.243465
## iter 320 value 999.781314
## iter 330 value 999.689851
## iter 340 value 999.641768
## iter 350 value 998.495273
## iter 360 value 998.449789
## iter 370 value 996.522899
## iter 380 value 990.443838
## iter 390 value 990.276533
## iter 400 value 982.049946
## iter 410 value 978.892299
## iter 420 value 978.788357
## iter 430 value 978.419060
## iter 440 value 977.609602
## iter 450 value 977.277746
## iter 460 value 976.232075
## iter 470 value 975.840442
## iter 480 value 975.215593
## iter 490 value 974.549835
## iter 500 value 974.431056
## final value 974.431056
## stopped after 500 iterations
## # weights: 121
## initial value 1387426.161256
## iter 10 value 1363.935777
## iter 20 value 850.046899
## iter 30 value 721.609125
## iter 40 value 621.253964
## iter 50 value 563.129927
## iter 60 value 522.376227
## iter 70 value 494.041852
## iter 80 value 470.156676
## iter 90 value 451.146528
## iter 100 value 437.843172
## iter 110 value 424.776453
## iter 120 value 412.809607
## iter 130 value 398.943760
## iter 140 value 383.669666
## iter 150 value 367.430345
## iter 160 value 352.351479
## iter 170 value 345.287850
## iter 180 value 334.098915
## iter 190 value 319.785746
## iter 200 value 310.996565
## iter 210 value 305.272890
## iter 220 value 300.642349
## iter 230 value 295.645225
## iter 240 value 292.478342
## iter 250 value 290.610043
## iter 260 value 289.716597
## iter 270 value 287.762983
## iter 280 value 282.801935
## iter 290 value 275.772296
## iter 300 value 270.836127
## iter 310 value 268.800980
## iter 320 value 265.811862
## iter 330 value 264.203125
## iter 340 value 262.256124
## iter 350 value 256.609959
## iter 360 value 252.285118
## iter 370 value 248.845421
## iter 380 value 247.669521
## iter 390 value 247.134768
## iter 400 value 246.209804
## iter 410 value 246.011067
## iter 420 value 245.721485
## iter 430 value 245.444598
## iter 440 value 245.118051
## iter 450 value 244.785869
## iter 460 value 244.481425
## iter 470 value 243.750911
## iter 480 value 243.460047
## iter 490 value 243.335108
## iter 500 value 243.299919
## final value 243.299919
## stopped after 500 iterations
## # weights: 181
## initial value 1353088.590211
## iter 10 value 1200.855364
## iter 20 value 862.423893
## iter 30 value 638.924966
## iter 40 value 515.881183
## iter 50 value 423.974738
## iter 60 value 363.855071
## iter 70 value 318.412839
## iter 80 value 279.564421
## iter 90 value 256.645780
## iter 100 value 234.226068
## iter 110 value 217.935518
## iter 120 value 208.240589
## iter 130 value 197.982033
## iter 140 value 190.884779
## iter 150 value 184.849018
## iter 160 value 175.019583
## iter 170 value 163.831747
## iter 180 value 155.353446
## iter 190 value 145.165648
## iter 200 value 132.190096
## iter 210 value 119.618724
## iter 220 value 110.133950
## iter 230 value 105.104571
## iter 240 value 101.738922
## iter 250 value 98.651487
## iter 260 value 96.744166
## iter 270 value 95.528520
## iter 280 value 93.861923
## iter 290 value 92.862412
## iter 300 value 92.294037
## iter 310 value 91.936898
## iter 320 value 91.626466
## iter 330 value 91.228236
## iter 340 value 90.750629
## iter 350 value 90.504841
## iter 360 value 90.148519
## iter 370 value 89.868360
## iter 380 value 89.789402
## iter 390 value 89.667183
## iter 400 value 89.542679
## iter 410 value 89.412659
## iter 420 value 89.199209
## iter 430 value 88.823828
## iter 440 value 88.419007
## iter 450 value 88.151321
## iter 460 value 87.869862
## iter 470 value 87.407789
## iter 480 value 87.159277
## iter 490 value 86.818416
## iter 500 value 85.405875
## final value 85.405875
## stopped after 500 iterations
## # weights: 241
## initial value 1379423.815877
## iter 10 value 1212.490627
## iter 20 value 826.304721
## iter 30 value 688.182359
## iter 40 value 562.121823
## iter 50 value 472.835657
## iter 60 value 350.842187
## iter 70 value 296.861777
## iter 80 value 256.663023
## iter 90 value 217.838346
## iter 100 value 186.250487
## iter 110 value 163.986479
## iter 120 value 144.961596
## iter 130 value 130.613571
## iter 140 value 118.863368
## iter 150 value 111.640801
## iter 160 value 107.487869
## iter 170 value 102.357184
## iter 180 value 97.265481
## iter 190 value 92.402226
## iter 200 value 87.397011
## iter 210 value 83.550229
## iter 220 value 79.749999
## iter 230 value 76.829520
## iter 240 value 74.607394
## iter 250 value 71.586380
## iter 260 value 69.319480
## iter 270 value 67.156921
## iter 280 value 65.487652
## iter 290 value 63.806603
## iter 300 value 62.045510
## iter 310 value 59.025337
## iter 320 value 56.536648
## iter 330 value 54.530216
## iter 340 value 52.949551
## iter 350 value 50.290994
## iter 360 value 48.564132
## iter 370 value 46.782066
## iter 380 value 45.044281
## iter 390 value 43.646564
## iter 400 value 42.074783
## iter 410 value 40.995858
## iter 420 value 39.924201
## iter 430 value 38.357228
## iter 440 value 36.913940
## iter 450 value 35.861560
## iter 460 value 35.161194
## iter 470 value 34.664702
## iter 480 value 34.192998
## iter 490 value 33.989409
## iter 500 value 33.915094
## final value 33.915094
## stopped after 500 iterations
## # weights: 25
## initial value 1423891.578229
## iter 10 value 12529.170147
## iter 20 value 8281.402632
## iter 30 value 5518.987759
## iter 40 value 1535.127285
## iter 50 value 1423.569703
## iter 60 value 1398.147001
## iter 70 value 1390.201194
## iter 80 value 1284.484692
## iter 90 value 1122.089275
## iter 100 value 1096.450793
## iter 110 value 1094.341697
## iter 120 value 1094.234374
## iter 130 value 1092.987405
## iter 140 value 1089.733515
## iter 150 value 1087.422242
## iter 160 value 1083.523149
## iter 170 value 1081.839197
## iter 180 value 1080.256824
## iter 190 value 1063.195888
## iter 200 value 1056.974917
## iter 210 value 1056.822488
## final value 1056.820260
## converged
## # weights: 61
## initial value 1412917.860609
## iter 10 value 47303.008875
## iter 20 value 11755.994091
## iter 30 value 9630.615274
## iter 40 value 7061.767878
## iter 50 value 3671.746883
## iter 60 value 2269.630245
## iter 70 value 1566.915852
## iter 80 value 1154.112397
## iter 90 value 994.364982
## iter 100 value 920.055939
## iter 110 value 870.035266
## iter 120 value 851.376139
## iter 130 value 841.852135
## iter 140 value 835.441454
## iter 150 value 820.760988
## iter 160 value 806.356269
## iter 170 value 796.200061
## iter 180 value 785.582221
## iter 190 value 774.211518
## iter 200 value 767.656056
## iter 210 value 765.963927
## iter 220 value 763.602010
## iter 230 value 756.650247
## iter 240 value 746.249244
## iter 250 value 738.857296
## iter 260 value 733.862419
## iter 270 value 728.965572
## iter 280 value 725.766578
## iter 290 value 724.561077
## iter 300 value 723.246828
## iter 310 value 722.738505
## iter 320 value 722.028971
## iter 330 value 722.001350
## iter 340 value 721.866481
## iter 350 value 721.556103
## iter 360 value 721.041872
## iter 370 value 719.225066
## iter 380 value 710.243949
## iter 390 value 704.092263
## iter 400 value 703.679017
## iter 410 value 703.262148
## iter 420 value 702.610407
## iter 430 value 701.030334
## iter 440 value 696.191268
## iter 450 value 695.386565
## iter 460 value 694.796474
## iter 470 value 691.777508
## iter 480 value 679.412645
## iter 490 value 675.719101
## iter 500 value 674.866048
## final value 674.866048
## stopped after 500 iterations
## # weights: 121
## initial value 1433584.736785
## iter 10 value 2355.633008
## iter 20 value 1145.165498
## iter 30 value 888.745905
## iter 40 value 740.750670
## iter 50 value 652.352440
## iter 60 value 579.453174
## iter 70 value 533.512412
## iter 80 value 501.887607
## iter 90 value 480.145595
## iter 100 value 452.926209
## iter 110 value 418.571258
## iter 120 value 398.418778
## iter 130 value 367.963748
## iter 140 value 355.856524
## iter 150 value 344.709922
## iter 160 value 316.521292
## iter 170 value 296.958742
## iter 180 value 288.218375
## iter 190 value 283.501525
## iter 200 value 278.529992
## iter 210 value 274.454205
## iter 220 value 271.984171
## iter 230 value 268.788966
## iter 240 value 266.940387
## iter 250 value 265.976592
## iter 260 value 265.269076
## iter 270 value 264.025511
## iter 280 value 262.008363
## iter 290 value 258.589585
## iter 300 value 254.944058
## iter 310 value 252.642300
## iter 320 value 250.436015
## iter 330 value 248.987485
## iter 340 value 247.967461
## iter 350 value 247.175458
## iter 360 value 245.863814
## iter 370 value 245.426204
## iter 380 value 244.876518
## iter 390 value 244.433892
## iter 400 value 244.271522
## iter 410 value 244.101593
## iter 420 value 243.978259
## iter 430 value 243.897746
## iter 440 value 243.602521
## iter 450 value 242.994047
## iter 460 value 242.719987
## iter 470 value 242.589912
## iter 480 value 242.524848
## iter 490 value 242.488644
## iter 500 value 242.486574
## final value 242.486574
## stopped after 500 iterations
## # weights: 181
## initial value 1394930.770230
## iter 10 value 1278.433344
## iter 20 value 867.435994
## iter 30 value 719.637140
## iter 40 value 560.797710
## iter 50 value 463.830026
## iter 60 value 413.533914
## iter 70 value 375.492235
## iter 80 value 325.290445
## iter 90 value 290.500881
## iter 100 value 264.171293
## iter 110 value 241.862985
## iter 120 value 220.347735
## iter 130 value 208.322945
## iter 140 value 201.847675
## iter 150 value 194.425185
## iter 160 value 186.123240
## iter 170 value 178.587558
## iter 180 value 169.763034
## iter 190 value 161.150333
## iter 200 value 154.748984
## iter 210 value 151.180712
## iter 220 value 148.303556
## iter 230 value 145.716415
## iter 240 value 144.031496
## iter 250 value 142.300933
## iter 260 value 139.819694
## iter 270 value 138.086617
## iter 280 value 135.912843
## iter 290 value 133.315703
## iter 300 value 128.545775
## iter 310 value 126.335958
## iter 320 value 124.833328
## iter 330 value 123.167218
## iter 340 value 121.853375
## iter 350 value 119.601071
## iter 360 value 118.326189
## iter 370 value 117.760933
## iter 380 value 117.580183
## iter 390 value 117.234835
## iter 400 value 116.967163
## iter 410 value 116.619706
## iter 420 value 116.112447
## iter 430 value 115.606349
## iter 440 value 114.773383
## iter 450 value 114.107146
## iter 460 value 113.784346
## iter 470 value 113.342229
## iter 480 value 112.653800
## iter 490 value 111.503313
## iter 500 value 109.248090
## final value 109.248090
## stopped after 500 iterations
## # weights: 241
## initial value 1415446.964867
## iter 10 value 1559.904251
## iter 20 value 899.437584
## iter 30 value 645.422803
## iter 40 value 490.676667
## iter 50 value 402.901605
## iter 60 value 347.541350
## iter 70 value 305.427727
## iter 80 value 260.382951
## iter 90 value 226.823135
## iter 100 value 195.587129
## iter 110 value 172.105460
## iter 120 value 157.255997
## iter 130 value 141.977027
## iter 140 value 129.923376
## iter 150 value 119.082894
## iter 160 value 113.660080
## iter 170 value 105.773010
## iter 180 value 96.837696
## iter 190 value 90.623692
## iter 200 value 84.304154
## iter 210 value 79.525586
## iter 220 value 76.154848
## iter 230 value 72.182218
## iter 240 value 69.672286
## iter 250 value 67.164232
## iter 260 value 64.373258
## iter 270 value 61.866617
## iter 280 value 58.117691
## iter 290 value 56.229528
## iter 300 value 53.144085
## iter 310 value 50.844936
## iter 320 value 48.063442
## iter 330 value 46.222540
## iter 340 value 44.664173
## iter 350 value 43.717416
## iter 360 value 42.949110
## iter 370 value 42.474388
## iter 380 value 42.099466
## iter 390 value 41.512779
## iter 400 value 41.068240
## iter 410 value 40.688048
## iter 420 value 40.265663
## iter 430 value 39.806252
## iter 440 value 39.542293
## iter 450 value 39.401378
## iter 460 value 39.201674
## iter 470 value 38.968486
## iter 480 value 38.710956
## iter 490 value 38.610006
## iter 500 value 38.584482
## final value 38.584482
## stopped after 500 iterations
## # weights: 25
## initial value 1386870.685250
## iter 10 value 16096.471266
## iter 20 value 7895.328241
## iter 30 value 6087.506933
## iter 40 value 5104.670168
## iter 50 value 3630.386403
## iter 60 value 2773.128290
## iter 70 value 2393.977512
## iter 80 value 1607.519203
## iter 90 value 1475.617424
## iter 100 value 1387.224873
## iter 110 value 1345.284467
## iter 120 value 1331.915665
## iter 130 value 1303.517843
## iter 140 value 1301.718018
## iter 150 value 1301.679570
## iter 160 value 1297.529432
## iter 170 value 1287.716432
## iter 180 value 1286.356977
## iter 190 value 1285.930443
## iter 200 value 1285.776334
## iter 210 value 1283.497109
## iter 220 value 1273.992883
## iter 230 value 1271.547993
## iter 240 value 1271.544315
## iter 250 value 1270.779669
## iter 260 value 1269.735827
## iter 270 value 1265.694381
## iter 280 value 1207.879898
## iter 290 value 1205.349504
## iter 300 value 1204.744104
## iter 310 value 1204.514356
## iter 320 value 1204.508441
## iter 330 value 1204.473451
## final value 1204.461200
## converged
## # weights: 61
## initial value 1369944.319004
## iter 10 value 4815.533687
## iter 20 value 2684.248773
## iter 30 value 1954.654699
## iter 40 value 1542.342820
## iter 50 value 1289.962786
## iter 60 value 1045.067110
## iter 70 value 919.847384
## iter 80 value 896.148679
## iter 90 value 884.573744
## iter 100 value 873.210237
## iter 110 value 862.848267
## iter 120 value 855.586184
## iter 130 value 843.390593
## iter 140 value 830.357310
## iter 150 value 825.114538
## iter 160 value 808.230715
## iter 170 value 804.029122
## iter 180 value 796.540522
## iter 190 value 784.852192
## iter 200 value 731.280183
## iter 210 value 705.757076
## iter 220 value 700.473408
## iter 230 value 699.952963
## iter 240 value 690.589191
## iter 250 value 671.335386
## iter 260 value 668.833203
## iter 270 value 662.458878
## iter 280 value 645.331457
## iter 290 value 640.232688
## iter 300 value 639.088208
## iter 310 value 638.383079
## iter 320 value 638.068420
## iter 330 value 637.827135
## iter 340 value 637.665301
## iter 350 value 637.664812
## iter 360 value 637.658093
## iter 370 value 637.635611
## iter 380 value 637.571904
## iter 390 value 637.503709
## iter 400 value 637.496327
## iter 410 value 637.493522
## iter 420 value 637.493030
## iter 430 value 637.492572
## final value 637.492519
## converged
## # weights: 121
## initial value 1448634.135786
## iter 10 value 13365.381127
## iter 20 value 4048.021931
## iter 30 value 2851.895676
## iter 40 value 2734.337610
## iter 50 value 2371.632887
## iter 60 value 2094.972978
## iter 70 value 2009.984258
## iter 80 value 1963.551893
## iter 90 value 1885.140175
## iter 100 value 1599.503527
## iter 110 value 1436.861610
## iter 120 value 1156.369592
## iter 130 value 1021.150333
## iter 140 value 946.898959
## iter 150 value 924.618764
## iter 160 value 883.056511
## iter 170 value 821.074645
## iter 180 value 799.166493
## iter 190 value 793.100919
## iter 200 value 787.226783
## iter 210 value 773.556025
## iter 220 value 753.958909
## iter 230 value 726.659188
## iter 240 value 673.795286
## iter 250 value 629.018011
## iter 260 value 598.290840
## iter 270 value 580.995586
## iter 280 value 572.452078
## iter 290 value 562.352859
## iter 300 value 556.040845
## iter 310 value 540.950431
## iter 320 value 531.160877
## iter 330 value 523.745793
## iter 340 value 518.478188
## iter 350 value 515.889307
## iter 360 value 513.289931
## iter 370 value 512.436723
## iter 380 value 510.708493
## iter 390 value 509.897700
## iter 400 value 509.127533
## iter 410 value 507.906190
## iter 420 value 506.970431
## iter 430 value 502.539285
## iter 440 value 498.732152
## iter 450 value 497.380738
## iter 460 value 496.074611
## iter 470 value 495.443510
## iter 480 value 494.677278
## iter 490 value 494.097700
## iter 500 value 493.701644
## final value 493.701644
## stopped after 500 iterations
## # weights: 181
## initial value 1413917.792341
## iter 10 value 1209.209651
## iter 20 value 781.180139
## iter 30 value 660.681676
## iter 40 value 535.339485
## iter 50 value 439.783484
## iter 60 value 384.779747
## iter 70 value 350.780786
## iter 80 value 310.437744
## iter 90 value 284.751520
## iter 100 value 269.092355
## iter 110 value 255.889663
## iter 120 value 246.819273
## iter 130 value 239.313843
## iter 140 value 227.371294
## iter 150 value 218.447996
## iter 160 value 210.150042
## iter 170 value 202.216542
## iter 180 value 190.991035
## iter 190 value 181.720333
## iter 200 value 174.487776
## iter 210 value 168.872305
## iter 220 value 164.342339
## iter 230 value 161.785695
## iter 240 value 159.525292
## iter 250 value 157.139495
## iter 260 value 155.497255
## iter 270 value 154.290638
## iter 280 value 153.086053
## iter 290 value 151.881036
## iter 300 value 150.688515
## iter 310 value 149.622267
## iter 320 value 148.610854
## iter 330 value 147.673193
## iter 340 value 146.337755
## iter 350 value 145.311585
## iter 360 value 144.606343
## iter 370 value 144.419216
## iter 380 value 144.316154
## iter 390 value 144.089826
## iter 400 value 143.775295
## iter 410 value 143.426275
## iter 420 value 142.999176
## iter 430 value 142.646198
## iter 440 value 142.294229
## iter 450 value 141.820627
## iter 460 value 140.931534
## iter 470 value 140.331481
## iter 480 value 139.870960
## iter 490 value 139.585490
## iter 500 value 139.499069
## final value 139.499069
## stopped after 500 iterations
## # weights: 241
## initial value 1408462.479376
## iter 10 value 1697.627145
## iter 20 value 835.887614
## iter 30 value 645.274833
## iter 40 value 501.988260
## iter 50 value 397.050465
## iter 60 value 349.365470
## iter 70 value 298.601990
## iter 80 value 262.996628
## iter 90 value 235.612282
## iter 100 value 218.350036
## iter 110 value 203.339997
## iter 120 value 186.829090
## iter 130 value 171.993714
## iter 140 value 158.699635
## iter 150 value 150.852576
## iter 160 value 144.441632
## iter 170 value 136.303637
## iter 180 value 127.347627
## iter 190 value 120.376089
## iter 200 value 114.277419
## iter 210 value 108.263683
## iter 220 value 102.802914
## iter 230 value 96.707401
## iter 240 value 93.019455
## iter 250 value 89.935334
## iter 260 value 87.083839
## iter 270 value 85.219510
## iter 280 value 84.032196
## iter 290 value 82.206957
## iter 300 value 79.992722
## iter 310 value 77.602812
## iter 320 value 75.675769
## iter 330 value 73.800070
## iter 340 value 72.297664
## iter 350 value 70.973439
## iter 360 value 69.184427
## iter 370 value 67.649322
## iter 380 value 66.548076
## iter 390 value 65.234160
## iter 400 value 64.389556
## iter 410 value 63.675854
## iter 420 value 62.902501
## iter 430 value 61.969867
## iter 440 value 61.270260
## iter 450 value 60.348626
## iter 460 value 59.618829
## iter 470 value 59.076608
## iter 480 value 58.516615
## iter 490 value 58.353411
## iter 500 value 58.316900
## final value 58.316900
## stopped after 500 iterations
## # weights: 25
## initial value 1372477.240115
## iter 10 value 68000.716832
## iter 20 value 45384.622598
## iter 30 value 18763.404622
## iter 40 value 7417.209929
## iter 50 value 6881.877909
## iter 60 value 5819.556644
## iter 70 value 4081.634645
## iter 80 value 3165.419431
## iter 90 value 2575.796798
## iter 100 value 1911.298732
## iter 110 value 1606.869769
## iter 120 value 1511.470006
## iter 130 value 1473.188656
## iter 140 value 1433.762599
## iter 150 value 1401.289902
## iter 160 value 1386.813004
## iter 170 value 1380.408583
## iter 180 value 1379.317008
## iter 190 value 1373.748811
## iter 200 value 1372.146333
## final value 1372.145916
## converged
## # weights: 61
## initial value 1407939.343260
## iter 10 value 3092.687067
## iter 20 value 1931.688936
## iter 30 value 1432.669659
## iter 40 value 1205.261041
## iter 50 value 1077.690698
## iter 60 value 1013.913512
## iter 70 value 976.294824
## iter 80 value 963.875827
## iter 90 value 945.000181
## iter 100 value 935.902340
## iter 110 value 915.538520
## iter 120 value 888.588209
## iter 130 value 878.106035
## iter 140 value 869.710834
## iter 150 value 857.096332
## iter 160 value 839.747821
## iter 170 value 824.377096
## iter 180 value 799.610261
## iter 190 value 787.952188
## iter 200 value 779.409241
## iter 210 value 779.329603
## iter 220 value 779.316042
## iter 220 value 779.316035
## iter 220 value 779.316035
## final value 779.316035
## converged
## # weights: 121
## initial value 1400960.980227
## iter 10 value 4073.998877
## iter 20 value 2031.977876
## iter 30 value 1677.958612
## iter 40 value 1447.062631
## iter 50 value 1360.666864
## iter 60 value 1314.471303
## iter 70 value 1249.882354
## iter 80 value 1173.154791
## iter 90 value 1085.830693
## iter 100 value 976.662591
## iter 110 value 907.427418
## iter 120 value 860.814474
## iter 130 value 818.373187
## iter 140 value 792.797002
## iter 150 value 748.859847
## iter 160 value 720.918962
## iter 170 value 696.636924
## iter 180 value 682.767414
## iter 190 value 671.126480
## iter 200 value 665.804198
## iter 210 value 657.184339
## iter 220 value 633.140966
## iter 230 value 624.170437
## iter 240 value 617.709966
## iter 250 value 614.288745
## iter 260 value 610.853614
## iter 270 value 603.887383
## iter 280 value 596.819356
## iter 290 value 587.660064
## iter 300 value 582.085943
## iter 310 value 578.839603
## iter 320 value 577.192081
## iter 330 value 576.041276
## iter 340 value 574.957140
## iter 350 value 574.764805
## iter 360 value 574.627474
## iter 370 value 574.463076
## iter 380 value 574.375052
## iter 390 value 574.371756
## iter 400 value 574.371076
## final value 574.370901
## converged
## # weights: 181
## initial value 1436383.758015
## iter 10 value 1536.550524
## iter 20 value 919.896062
## iter 30 value 790.892651
## iter 40 value 674.554759
## iter 50 value 614.419624
## iter 60 value 583.936787
## iter 70 value 550.146021
## iter 80 value 530.297297
## iter 90 value 518.322629
## iter 100 value 510.657793
## iter 110 value 504.887218
## iter 120 value 499.473850
## iter 130 value 493.350208
## iter 140 value 486.415350
## iter 150 value 480.327480
## iter 160 value 475.618453
## iter 170 value 472.483206
## iter 180 value 469.491265
## iter 190 value 465.900970
## iter 200 value 462.907095
## iter 210 value 459.966260
## iter 220 value 456.353593
## iter 230 value 452.828305
## iter 240 value 450.624938
## iter 250 value 448.622059
## iter 260 value 445.648443
## iter 270 value 443.132678
## iter 280 value 439.970704
## iter 290 value 437.676754
## iter 300 value 436.330583
## iter 310 value 435.436812
## iter 320 value 433.281107
## iter 330 value 431.059264
## iter 340 value 428.688555
## iter 350 value 422.583928
## iter 360 value 418.544006
## iter 370 value 417.347830
## iter 380 value 416.674099
## iter 390 value 415.287281
## iter 400 value 414.275928
## iter 410 value 413.704906
## iter 420 value 412.242230
## iter 430 value 410.228318
## iter 440 value 408.551319
## iter 450 value 407.113968
## iter 460 value 405.964912
## iter 470 value 405.196618
## iter 480 value 404.779265
## iter 490 value 404.378579
## iter 500 value 402.785654
## final value 402.785654
## stopped after 500 iterations
## # weights: 241
## initial value 1361340.947693
## iter 10 value 1333.030230
## iter 20 value 961.495114
## iter 30 value 774.958407
## iter 40 value 684.194412
## iter 50 value 633.213059
## iter 60 value 569.100717
## iter 70 value 529.119334
## iter 80 value 505.940657
## iter 90 value 495.207525
## iter 100 value 487.456296
## iter 110 value 478.726657
## iter 120 value 472.177350
## iter 130 value 465.961060
## iter 140 value 460.878310
## iter 150 value 454.710167
## iter 160 value 449.366294
## iter 170 value 444.724931
## iter 180 value 440.020484
## iter 190 value 434.048099
## iter 200 value 428.369074
## iter 210 value 422.549961
## iter 220 value 415.317116
## iter 230 value 409.829144
## iter 240 value 403.903396
## iter 250 value 397.399969
## iter 260 value 393.366711
## iter 270 value 389.615690
## iter 280 value 386.529896
## iter 290 value 384.005067
## iter 300 value 381.520446
## iter 310 value 379.813014
## iter 320 value 378.344202
## iter 330 value 376.984890
## iter 340 value 375.143021
## iter 350 value 373.548547
## iter 360 value 371.882479
## iter 370 value 370.084481
## iter 380 value 368.409556
## iter 390 value 366.629486
## iter 400 value 363.880307
## iter 410 value 360.051411
## iter 420 value 357.655096
## iter 430 value 355.559870
## iter 440 value 353.156278
## iter 450 value 350.548607
## iter 460 value 348.115628
## iter 470 value 346.204603
## iter 480 value 345.117220
## iter 490 value 344.408435
## iter 500 value 343.333897
## final value 343.333897
## stopped after 500 iterations
## # weights: 25
## initial value 1387099.627384
## iter 10 value 6884.863381
## iter 20 value 5742.708364
## iter 30 value 5648.924554
## iter 40 value 5489.348356
## iter 50 value 5294.227643
## iter 60 value 4191.619062
## iter 70 value 3439.820488
## iter 80 value 1865.159081
## iter 90 value 1354.174023
## iter 100 value 1230.275976
## iter 110 value 1213.606377
## iter 120 value 1203.457053
## iter 130 value 1172.423722
## iter 140 value 1157.156416
## iter 150 value 1149.554267
## iter 160 value 1148.385147
## iter 170 value 1145.328761
## iter 180 value 1133.782683
## iter 190 value 1115.050236
## iter 200 value 1098.741020
## iter 210 value 1071.941371
## iter 220 value 1069.565696
## iter 230 value 1068.972566
## iter 240 value 1065.824168
## iter 250 value 1063.384913
## iter 260 value 1061.492019
## iter 270 value 1061.043238
## iter 280 value 1061.026919
## iter 290 value 1060.383288
## iter 300 value 1059.598781
## iter 310 value 1058.796290
## iter 320 value 1058.548991
## iter 330 value 1058.546728
## iter 340 value 1058.471061
## iter 350 value 1057.953294
## iter 360 value 1057.525014
## iter 370 value 1057.265463
## iter 380 value 1057.261163
## iter 380 value 1057.261161
## iter 380 value 1057.261157
## final value 1057.261157
## converged
## # weights: 61
## initial value 1409061.029459
## iter 10 value 1454.501398
## iter 20 value 1173.662421
## iter 30 value 948.423994
## iter 40 value 818.321733
## iter 50 value 723.675688
## iter 60 value 669.952133
## iter 70 value 632.214352
## iter 80 value 621.930101
## iter 90 value 612.884284
## iter 100 value 610.410488
## iter 110 value 608.256095
## iter 120 value 607.334157
## iter 130 value 606.911674
## iter 140 value 606.777125
## iter 150 value 606.119864
## iter 160 value 604.317289
## iter 170 value 600.597374
## iter 180 value 593.442563
## iter 190 value 589.851119
## iter 200 value 587.664736
## iter 210 value 585.790198
## iter 220 value 584.125603
## iter 230 value 582.950025
## iter 240 value 582.386864
## iter 250 value 582.116854
## iter 260 value 582.086040
## iter 270 value 581.971393
## iter 280 value 581.690192
## iter 290 value 581.460932
## iter 300 value 581.353291
## iter 310 value 581.149949
## iter 320 value 580.848503
## iter 330 value 580.611379
## iter 340 value 580.393534
## iter 350 value 580.266394
## iter 360 value 580.141481
## iter 370 value 579.957066
## iter 380 value 579.953258
## iter 390 value 579.941049
## iter 400 value 579.880828
## iter 410 value 579.788238
## iter 420 value 579.685639
## iter 430 value 579.303637
## iter 440 value 579.152107
## iter 450 value 578.975600
## iter 460 value 578.868404
## iter 470 value 578.775307
## iter 480 value 578.687300
## iter 490 value 578.665848
## final value 578.663563
## converged
## # weights: 121
## initial value 1416636.374166
## iter 10 value 1671.478236
## iter 20 value 1000.629062
## iter 30 value 821.121997
## iter 40 value 713.814097
## iter 50 value 641.158097
## iter 60 value 608.680645
## iter 70 value 586.740869
## iter 80 value 567.069916
## iter 90 value 553.661699
## iter 100 value 545.983177
## iter 110 value 542.387548
## iter 120 value 538.795445
## iter 130 value 532.736078
## iter 140 value 527.976666
## iter 150 value 518.717146
## iter 160 value 509.550051
## iter 170 value 494.733760
## iter 180 value 487.147887
## iter 190 value 468.792136
## iter 200 value 454.176554
## iter 210 value 446.169427
## iter 220 value 438.455061
## iter 230 value 430.930929
## iter 240 value 415.480240
## iter 250 value 394.001123
## iter 260 value 387.039195
## iter 270 value 384.757568
## iter 280 value 382.687809
## iter 290 value 379.690969
## iter 300 value 378.106648
## iter 310 value 377.187713
## iter 320 value 375.975369
## iter 330 value 374.850924
## iter 340 value 374.210535
## iter 350 value 373.882347
## iter 360 value 373.618886
## iter 370 value 373.397226
## iter 380 value 373.393873
## iter 390 value 373.385757
## iter 400 value 373.367752
## iter 410 value 373.349413
## iter 420 value 373.338195
## iter 430 value 373.331903
## iter 440 value 373.321640
## iter 450 value 373.295236
## iter 460 value 373.258294
## iter 470 value 372.411457
## iter 480 value 371.348802
## iter 490 value 370.902117
## iter 500 value 370.609300
## final value 370.609300
## stopped after 500 iterations
## # weights: 181
## initial value 1381719.005892
## iter 10 value 1467.172498
## iter 20 value 786.635499
## iter 30 value 620.697677
## iter 40 value 515.593629
## iter 50 value 431.749592
## iter 60 value 362.889480
## iter 70 value 319.911837
## iter 80 value 275.422756
## iter 90 value 248.714420
## iter 100 value 230.661755
## iter 110 value 212.389696
## iter 120 value 200.509538
## iter 130 value 188.212657
## iter 140 value 178.478457
## iter 150 value 166.196181
## iter 160 value 155.862943
## iter 170 value 144.901767
## iter 180 value 134.984710
## iter 190 value 128.138283
## iter 200 value 123.781473
## iter 210 value 120.680937
## iter 220 value 116.928077
## iter 230 value 114.145371
## iter 240 value 112.195092
## iter 250 value 110.962329
## iter 260 value 108.867038
## iter 270 value 107.311021
## iter 280 value 106.083067
## iter 290 value 105.115520
## iter 300 value 104.299323
## iter 310 value 103.735284
## iter 320 value 103.177508
## iter 330 value 102.788422
## iter 340 value 102.494317
## iter 350 value 102.231510
## iter 360 value 102.058439
## iter 370 value 101.984354
## iter 380 value 101.943327
## iter 390 value 101.862886
## iter 400 value 101.732656
## iter 410 value 101.610271
## iter 420 value 101.527765
## iter 430 value 101.409239
## iter 440 value 101.299359
## iter 450 value 101.010618
## iter 460 value 100.526020
## iter 470 value 100.185451
## iter 480 value 99.605011
## iter 490 value 99.192383
## iter 500 value 98.901575
## final value 98.901575
## stopped after 500 iterations
## # weights: 241
## initial value 1406575.679480
## iter 10 value 1475.842726
## iter 20 value 810.414268
## iter 30 value 656.808281
## iter 40 value 565.655535
## iter 50 value 446.121098
## iter 60 value 353.930487
## iter 70 value 297.073127
## iter 80 value 264.388584
## iter 90 value 236.573331
## iter 100 value 202.989764
## iter 110 value 183.267716
## iter 120 value 169.714214
## iter 130 value 160.201311
## iter 140 value 151.958332
## iter 150 value 144.941023
## iter 160 value 139.131706
## iter 170 value 133.951261
## iter 180 value 129.112631
## iter 190 value 121.705868
## iter 200 value 114.814578
## iter 210 value 109.074391
## iter 220 value 104.472022
## iter 230 value 101.252522
## iter 240 value 97.580645
## iter 250 value 94.504699
## iter 260 value 92.713906
## iter 270 value 91.167732
## iter 280 value 88.978635
## iter 290 value 87.362266
## iter 300 value 86.082114
## iter 310 value 84.627525
## iter 320 value 83.374603
## iter 330 value 81.261878
## iter 340 value 79.186915
## iter 350 value 78.093975
## iter 360 value 76.713596
## iter 370 value 74.926649
## iter 380 value 72.850564
## iter 390 value 71.190179
## iter 400 value 69.651247
## iter 410 value 68.466478
## iter 420 value 67.145333
## iter 430 value 65.799797
## iter 440 value 64.284767
## iter 450 value 63.308524
## iter 460 value 62.314202
## iter 470 value 61.325149
## iter 480 value 60.164964
## iter 490 value 59.507512
## iter 500 value 59.326190
## final value 59.326190
## stopped after 500 iterations
## # weights: 25
## initial value 1383669.158062
## iter 10 value 12914.764786
## iter 20 value 10739.940816
## iter 30 value 10664.882768
## iter 40 value 10589.066325
## iter 50 value 10582.126502
## iter 60 value 10531.342944
## iter 70 value 10392.163059
## iter 80 value 10297.587548
## iter 90 value 10289.698008
## iter 100 value 10289.460185
## iter 110 value 10289.034671
## iter 120 value 10288.251586
## iter 130 value 6060.146755
## iter 140 value 6010.284788
## iter 150 value 5741.776331
## iter 160 value 5409.137393
## iter 170 value 5113.823906
## iter 180 value 5050.082562
## iter 190 value 5012.614178
## iter 200 value 4996.693418
## iter 210 value 4982.943420
## iter 220 value 4981.624847
## iter 230 value 4948.471680
## iter 240 value 4933.575068
## iter 250 value 4871.345741
## iter 260 value 4738.526092
## iter 270 value 4563.749275
## iter 280 value 3954.337876
## iter 290 value 2142.029339
## iter 300 value 1410.599572
## iter 310 value 1274.274054
## iter 320 value 1243.388607
## iter 330 value 1239.065502
## iter 340 value 1210.815776
## iter 350 value 1201.565346
## iter 360 value 1197.881404
## iter 370 value 1196.585397
## iter 380 value 1196.290971
## iter 390 value 1196.205017
## iter 400 value 1195.321295
## iter 410 value 1194.507769
## iter 420 value 1193.877934
## iter 430 value 1193.583957
## iter 440 value 1193.577372
## final value 1193.577021
## converged
## # weights: 61
## initial value 1386500.939009
## iter 10 value 7716.560988
## iter 20 value 4133.235806
## iter 30 value 3131.441764
## iter 40 value 2435.051421
## iter 50 value 2360.403970
## iter 60 value 2311.603489
## iter 70 value 2132.716946
## iter 80 value 2091.443471
## iter 90 value 1954.374295
## iter 100 value 1949.554188
## iter 110 value 1939.576503
## iter 120 value 1935.078174
## iter 130 value 1907.436000
## iter 140 value 1885.300534
## iter 150 value 1841.639207
## iter 160 value 1747.840731
## iter 170 value 1555.891742
## iter 180 value 1345.507381
## iter 190 value 1209.348706
## iter 200 value 1140.414671
## iter 210 value 1119.165944
## iter 220 value 1095.259044
## iter 230 value 1086.568009
## iter 240 value 1081.662160
## iter 250 value 1079.701230
## iter 260 value 1078.750457
## iter 270 value 1077.419206
## iter 280 value 1075.270745
## iter 290 value 1074.090393
## iter 300 value 1070.418840
## iter 310 value 1069.979448
## iter 320 value 1069.860002
## iter 330 value 1069.499510
## iter 340 value 1069.233642
## iter 350 value 1069.091124
## iter 360 value 1068.999060
## iter 370 value 1068.952981
## iter 380 value 1068.929235
## iter 390 value 1068.866437
## iter 390 value 1068.866433
## final value 1068.866347
## converged
## # weights: 121
## initial value 1413501.596255
## iter 10 value 3108.897693
## iter 20 value 1569.354039
## iter 30 value 1011.071874
## iter 40 value 734.254163
## iter 50 value 657.806415
## iter 60 value 599.191033
## iter 70 value 545.185862
## iter 80 value 499.605607
## iter 90 value 454.964681
## iter 100 value 438.276542
## iter 110 value 433.809153
## iter 120 value 429.942272
## iter 130 value 427.971234
## iter 140 value 424.416137
## iter 150 value 420.982493
## iter 160 value 411.806448
## iter 170 value 400.822048
## iter 180 value 390.764241
## iter 190 value 385.246443
## iter 200 value 375.438897
## iter 210 value 361.103408
## iter 220 value 348.599128
## iter 230 value 343.941908
## iter 240 value 342.419757
## iter 250 value 341.766065
## iter 260 value 340.991168
## iter 270 value 340.194500
## iter 280 value 339.441532
## iter 290 value 338.696976
## iter 300 value 337.991445
## iter 310 value 337.313739
## iter 320 value 336.953002
## iter 330 value 336.576572
## iter 340 value 336.450712
## iter 350 value 336.399707
## iter 360 value 336.378936
## iter 370 value 336.377771
## iter 380 value 336.375665
## iter 390 value 336.372203
## iter 400 value 336.362318
## iter 410 value 336.347331
## iter 420 value 336.303123
## iter 430 value 336.232174
## iter 440 value 336.077844
## iter 450 value 335.849954
## iter 460 value 335.726770
## iter 470 value 335.616470
## iter 480 value 335.526235
## iter 490 value 335.481676
## iter 500 value 335.461019
## final value 335.461019
## stopped after 500 iterations
## # weights: 181
## initial value 1341342.110612
## iter 10 value 1094.906120
## iter 20 value 779.320779
## iter 30 value 628.016802
## iter 40 value 494.235553
## iter 50 value 414.181204
## iter 60 value 343.785850
## iter 70 value 306.192745
## iter 80 value 275.896913
## iter 90 value 260.616736
## iter 100 value 249.761017
## iter 110 value 239.900241
## iter 120 value 229.187410
## iter 130 value 217.482503
## iter 140 value 209.750916
## iter 150 value 200.708648
## iter 160 value 190.775432
## iter 170 value 186.224202
## iter 180 value 182.475082
## iter 190 value 178.936579
## iter 200 value 175.656530
## iter 210 value 172.375262
## iter 220 value 167.273615
## iter 230 value 164.096168
## iter 240 value 161.203456
## iter 250 value 159.229025
## iter 260 value 157.504239
## iter 270 value 156.587575
## iter 280 value 155.531746
## iter 290 value 154.559980
## iter 300 value 153.656472
## iter 310 value 152.946523
## iter 320 value 152.485074
## iter 330 value 151.835283
## iter 340 value 151.434099
## iter 350 value 150.980317
## iter 360 value 150.521845
## iter 370 value 150.389598
## iter 380 value 150.329004
## iter 390 value 150.260145
## iter 400 value 150.121005
## iter 410 value 149.872528
## iter 420 value 149.606853
## iter 430 value 149.517933
## iter 440 value 149.389873
## iter 450 value 149.013867
## iter 460 value 148.653535
## iter 470 value 148.380377
## iter 480 value 148.058668
## iter 490 value 147.527118
## iter 500 value 146.731923
## final value 146.731923
## stopped after 500 iterations
## # weights: 241
## initial value 1423332.312985
## iter 10 value 1711.667087
## iter 20 value 868.528121
## iter 30 value 688.813149
## iter 40 value 587.147446
## iter 50 value 482.381212
## iter 60 value 411.170262
## iter 70 value 376.495682
## iter 80 value 334.255103
## iter 90 value 293.125713
## iter 100 value 251.968242
## iter 110 value 211.566565
## iter 120 value 183.699796
## iter 130 value 166.672231
## iter 140 value 157.579414
## iter 150 value 150.516988
## iter 160 value 144.747334
## iter 170 value 138.492563
## iter 180 value 133.034369
## iter 190 value 126.406924
## iter 200 value 118.835651
## iter 210 value 111.344415
## iter 220 value 105.616896
## iter 230 value 102.232064
## iter 240 value 99.314047
## iter 250 value 95.878706
## iter 260 value 91.871182
## iter 270 value 89.226402
## iter 280 value 86.800995
## iter 290 value 82.717203
## iter 300 value 80.240551
## iter 310 value 78.847920
## iter 320 value 76.261684
## iter 330 value 74.247712
## iter 340 value 72.619933
## iter 350 value 71.275721
## iter 360 value 69.793623
## iter 370 value 67.668785
## iter 380 value 65.957361
## iter 390 value 64.350427
## iter 400 value 62.802094
## iter 410 value 60.879695
## iter 420 value 58.978189
## iter 430 value 57.246998
## iter 440 value 55.370175
## iter 450 value 53.998019
## iter 460 value 52.439343
## iter 470 value 51.101911
## iter 480 value 50.347936
## iter 490 value 50.053463
## iter 500 value 49.895207
## final value 49.895207
## stopped after 500 iterations
## # weights: 25
## initial value 1375188.416442
## iter 10 value 16102.055508
## iter 20 value 15853.925861
## iter 30 value 15328.540602
## iter 40 value 14085.586455
## iter 50 value 12085.447237
## iter 60 value 11918.166806
## iter 70 value 11805.179982
## iter 80 value 11660.798775
## iter 90 value 11361.537171
## iter 100 value 10984.839138
## iter 110 value 9566.969003
## iter 120 value 6432.531781
## iter 130 value 5313.224592
## iter 140 value 4829.569025
## iter 150 value 4787.592748
## iter 160 value 4787.216112
## iter 170 value 4782.023428
## iter 180 value 4775.394195
## iter 190 value 4775.062232
## iter 200 value 4775.042270
## iter 210 value 4775.038984
## iter 210 value 4775.038958
## iter 210 value 4775.038929
## final value 4775.038929
## converged
## # weights: 61
## initial value 1399511.969281
## iter 10 value 3293.173425
## iter 20 value 1038.467858
## iter 30 value 862.750973
## iter 40 value 791.531697
## iter 50 value 730.586649
## iter 60 value 694.421961
## iter 70 value 659.394090
## iter 80 value 631.015748
## iter 90 value 618.964032
## iter 100 value 604.168017
## iter 110 value 586.138578
## iter 120 value 575.347708
## iter 130 value 573.700660
## iter 140 value 572.929843
## iter 150 value 571.471589
## iter 160 value 566.918886
## iter 170 value 553.565112
## iter 180 value 533.985698
## iter 190 value 525.757770
## iter 200 value 517.304148
## iter 210 value 512.639343
## iter 220 value 506.827291
## iter 230 value 501.505795
## iter 240 value 494.073676
## iter 250 value 491.070789
## iter 260 value 490.781011
## iter 270 value 489.768830
## iter 280 value 487.691058
## iter 290 value 485.771755
## iter 300 value 484.509492
## iter 310 value 483.772653
## iter 320 value 482.555982
## iter 330 value 481.813600
## iter 340 value 481.267303
## iter 350 value 480.700841
## iter 360 value 480.208391
## iter 370 value 480.113350
## iter 380 value 480.110838
## iter 390 value 480.106432
## iter 400 value 480.099015
## iter 410 value 480.095670
## iter 420 value 480.093227
## iter 430 value 480.090775
## iter 440 value 480.075095
## iter 450 value 480.021294
## iter 460 value 479.989083
## iter 470 value 479.949530
## iter 480 value 479.689558
## iter 490 value 478.469520
## iter 500 value 478.262142
## final value 478.262142
## stopped after 500 iterations
## # weights: 121
## initial value 1318817.031447
## iter 10 value 1452.690276
## iter 20 value 920.789955
## iter 30 value 705.021923
## iter 40 value 593.892554
## iter 50 value 547.201897
## iter 60 value 512.945591
## iter 70 value 469.972578
## iter 80 value 443.416354
## iter 90 value 421.526308
## iter 100 value 399.509812
## iter 110 value 378.941153
## iter 120 value 367.745631
## iter 130 value 358.122082
## iter 140 value 347.815019
## iter 150 value 339.654914
## iter 160 value 332.856470
## iter 170 value 329.203483
## iter 180 value 328.408538
## iter 190 value 327.836173
## iter 200 value 327.012733
## iter 210 value 325.731887
## iter 220 value 323.769168
## iter 230 value 322.509952
## iter 240 value 321.791758
## iter 250 value 321.645405
## iter 260 value 321.494315
## iter 270 value 321.292225
## iter 280 value 320.932134
## iter 290 value 320.131915
## iter 300 value 318.050179
## iter 310 value 315.271354
## iter 320 value 308.540896
## iter 330 value 303.641128
## iter 340 value 299.036088
## iter 350 value 297.768825
## iter 360 value 296.612252
## iter 370 value 295.314253
## iter 380 value 293.666531
## iter 390 value 291.298371
## iter 400 value 289.680911
## iter 410 value 287.424119
## iter 420 value 286.003609
## iter 430 value 284.617791
## iter 440 value 282.837933
## iter 450 value 281.002749
## iter 460 value 280.312862
## iter 470 value 280.151889
## iter 480 value 280.033600
## iter 490 value 279.956148
## iter 500 value 279.935351
## final value 279.935351
## stopped after 500 iterations
## # weights: 181
## initial value 1419080.385443
## iter 10 value 1099.176085
## iter 20 value 763.320358
## iter 30 value 627.198542
## iter 40 value 498.793937
## iter 50 value 428.821184
## iter 60 value 377.207061
## iter 70 value 326.546398
## iter 80 value 283.956340
## iter 90 value 249.944164
## iter 100 value 230.013294
## iter 110 value 212.683989
## iter 120 value 201.491946
## iter 130 value 194.927140
## iter 140 value 186.967490
## iter 150 value 178.334234
## iter 160 value 172.606286
## iter 170 value 168.853309
## iter 180 value 165.760347
## iter 190 value 162.684110
## iter 200 value 160.301357
## iter 210 value 156.677693
## iter 220 value 153.794567
## iter 230 value 150.806763
## iter 240 value 147.263456
## iter 250 value 144.142852
## iter 260 value 142.104375
## iter 270 value 140.816288
## iter 280 value 138.667484
## iter 290 value 135.043878
## iter 300 value 133.332483
## iter 310 value 131.647369
## iter 320 value 130.467763
## iter 330 value 129.513158
## iter 340 value 128.464299
## iter 350 value 127.378719
## iter 360 value 126.620460
## iter 370 value 126.426343
## iter 380 value 126.299678
## iter 390 value 125.993729
## iter 400 value 125.539814
## iter 410 value 124.996695
## iter 420 value 124.368893
## iter 430 value 123.774151
## iter 440 value 123.202444
## iter 450 value 122.573415
## iter 460 value 121.814210
## iter 470 value 119.929884
## iter 480 value 116.092060
## iter 490 value 114.143457
## iter 500 value 113.301216
## final value 113.301216
## stopped after 500 iterations
## # weights: 241
## initial value 1397038.253488
## iter 10 value 1210.230408
## iter 20 value 772.781019
## iter 30 value 588.911979
## iter 40 value 445.445295
## iter 50 value 354.771998
## iter 60 value 317.702059
## iter 70 value 279.779209
## iter 80 value 248.415090
## iter 90 value 223.218063
## iter 100 value 200.310837
## iter 110 value 184.394847
## iter 120 value 174.854907
## iter 130 value 165.330989
## iter 140 value 155.447832
## iter 150 value 151.102038
## iter 160 value 145.614241
## iter 170 value 140.925140
## iter 180 value 137.193774
## iter 190 value 132.915430
## iter 200 value 129.208818
## iter 210 value 126.324587
## iter 220 value 121.485535
## iter 230 value 117.497486
## iter 240 value 112.973179
## iter 250 value 109.497220
## iter 260 value 106.493104
## iter 270 value 103.366171
## iter 280 value 97.718667
## iter 290 value 92.993132
## iter 300 value 88.150764
## iter 310 value 84.340032
## iter 320 value 80.740909
## iter 330 value 78.310154
## iter 340 value 76.507338
## iter 350 value 74.233285
## iter 360 value 71.475236
## iter 370 value 70.308184
## iter 380 value 69.167438
## iter 390 value 67.874402
## iter 400 value 66.918406
## iter 410 value 66.045371
## iter 420 value 65.219368
## iter 430 value 63.366190
## iter 440 value 61.455906
## iter 450 value 59.484782
## iter 460 value 58.133184
## iter 470 value 56.931597
## iter 480 value 56.303462
## iter 490 value 56.017572
## iter 500 value 55.907166
## final value 55.907166
## stopped after 500 iterations
## # weights: 25
## initial value 1403525.149577
## iter 10 value 21697.277037
## iter 20 value 18083.651237
## iter 30 value 13265.431241
## iter 40 value 6016.758970
## iter 50 value 4798.537113
## iter 60 value 3094.872443
## iter 70 value 1812.653947
## iter 80 value 1388.665597
## iter 90 value 1285.069171
## iter 100 value 1252.334838
## iter 110 value 1125.059730
## iter 120 value 1027.811915
## iter 130 value 984.305717
## iter 140 value 967.528777
## iter 150 value 961.547041
## iter 160 value 948.668359
## iter 170 value 944.960938
## iter 180 value 943.767075
## iter 190 value 941.297172
## iter 200 value 940.509674
## iter 210 value 935.160095
## iter 220 value 927.458181
## iter 230 value 911.523977
## iter 240 value 883.110578
## iter 250 value 881.326236
## iter 260 value 873.092846
## iter 270 value 863.467400
## iter 280 value 860.166048
## iter 290 value 853.938736
## iter 300 value 853.683547
## iter 310 value 852.069672
## iter 320 value 848.330435
## iter 330 value 846.235303
## iter 340 value 846.101308
## iter 350 value 846.100112
## iter 360 value 845.986112
## iter 370 value 845.844756
## iter 380 value 845.813079
## final value 845.810777
## converged
## # weights: 61
## initial value 1366580.539952
## iter 10 value 4029.233090
## iter 20 value 3297.549745
## iter 30 value 2846.511707
## iter 40 value 1739.584966
## iter 50 value 1412.511289
## iter 60 value 1240.922593
## iter 70 value 1190.954967
## iter 80 value 1115.833784
## iter 90 value 1033.781017
## iter 100 value 979.058558
## iter 110 value 939.559569
## iter 120 value 903.399078
## iter 130 value 892.295059
## iter 140 value 887.091645
## iter 150 value 873.580442
## iter 160 value 835.563134
## iter 170 value 799.726986
## iter 180 value 795.371841
## iter 190 value 787.976033
## iter 200 value 778.654653
## iter 210 value 776.827259
## iter 220 value 771.742956
## iter 230 value 766.903550
## iter 240 value 756.423729
## iter 250 value 752.548226
## iter 260 value 749.999683
## iter 270 value 742.633434
## iter 280 value 733.156446
## iter 290 value 726.455629
## iter 300 value 710.369141
## iter 310 value 707.283238
## iter 320 value 698.066635
## iter 330 value 676.707596
## iter 340 value 668.695456
## iter 350 value 663.630547
## iter 360 value 662.375458
## iter 370 value 660.647564
## iter 380 value 660.499859
## iter 390 value 660.494775
## iter 400 value 660.399953
## iter 410 value 659.444728
## iter 420 value 656.576271
## iter 430 value 640.663787
## iter 440 value 631.993177
## iter 450 value 629.609871
## iter 460 value 629.198758
## iter 470 value 629.029796
## iter 480 value 628.984517
## iter 490 value 628.975119
## iter 500 value 628.848685
## final value 628.848685
## stopped after 500 iterations
## # weights: 121
## initial value 1428452.441692
## iter 10 value 6384.768307
## iter 20 value 1988.095661
## iter 30 value 1049.000430
## iter 40 value 802.580215
## iter 50 value 707.224527
## iter 60 value 608.402405
## iter 70 value 544.484021
## iter 80 value 510.788642
## iter 90 value 480.915831
## iter 100 value 442.152837
## iter 110 value 429.589723
## iter 120 value 419.771159
## iter 130 value 407.868940
## iter 140 value 401.898617
## iter 150 value 394.783838
## iter 160 value 387.245566
## iter 170 value 378.854766
## iter 180 value 374.491843
## iter 190 value 367.947580
## iter 200 value 358.880884
## iter 210 value 349.035210
## iter 220 value 340.740584
## iter 230 value 329.937497
## iter 240 value 325.733237
## iter 250 value 324.551150
## iter 260 value 321.971947
## iter 270 value 320.434203
## iter 280 value 319.729849
## iter 290 value 319.469373
## iter 300 value 319.431822
## iter 310 value 319.396934
## iter 320 value 319.387271
## iter 330 value 319.383439
## iter 340 value 319.382102
## iter 350 value 319.381910
## iter 360 value 319.381769
## iter 370 value 319.381622
## iter 380 value 319.381546
## final value 319.381539
## converged
## # weights: 181
## initial value 1404235.441782
## iter 10 value 1034.280273
## iter 20 value 732.884134
## iter 30 value 592.594287
## iter 40 value 450.857814
## iter 50 value 379.943521
## iter 60 value 339.925313
## iter 70 value 299.428528
## iter 80 value 264.566854
## iter 90 value 245.507529
## iter 100 value 226.728438
## iter 110 value 205.813100
## iter 120 value 185.088295
## iter 130 value 175.121314
## iter 140 value 167.679262
## iter 150 value 161.304719
## iter 160 value 156.056370
## iter 170 value 152.121413
## iter 180 value 148.396516
## iter 190 value 144.239963
## iter 200 value 139.574057
## iter 210 value 136.150019
## iter 220 value 132.371316
## iter 230 value 128.954634
## iter 240 value 126.587177
## iter 250 value 123.673748
## iter 260 value 120.347411
## iter 270 value 117.702960
## iter 280 value 115.982896
## iter 290 value 113.982161
## iter 300 value 112.848898
## iter 310 value 111.855295
## iter 320 value 110.924533
## iter 330 value 109.984496
## iter 340 value 109.312298
## iter 350 value 108.752643
## iter 360 value 108.396991
## iter 370 value 108.199091
## iter 380 value 108.129401
## iter 390 value 108.011112
## iter 400 value 107.811455
## iter 410 value 107.545364
## iter 420 value 106.687093
## iter 430 value 105.543324
## iter 440 value 104.858482
## iter 450 value 104.396878
## iter 460 value 103.728063
## iter 470 value 102.963561
## iter 480 value 102.582412
## iter 490 value 102.385875
## iter 500 value 102.220620
## final value 102.220620
## stopped after 500 iterations
## # weights: 241
## initial value 1297007.428320
## iter 10 value 1364.629397
## iter 20 value 846.744067
## iter 30 value 621.105766
## iter 40 value 508.430751
## iter 50 value 384.974974
## iter 60 value 307.208297
## iter 70 value 259.296425
## iter 80 value 228.767269
## iter 90 value 203.948715
## iter 100 value 187.451558
## iter 110 value 174.177514
## iter 120 value 166.003290
## iter 130 value 160.684567
## iter 140 value 153.146459
## iter 150 value 145.604708
## iter 160 value 137.190086
## iter 170 value 129.776538
## iter 180 value 124.785137
## iter 190 value 120.812841
## iter 200 value 114.762096
## iter 210 value 107.401399
## iter 220 value 100.549706
## iter 230 value 95.320181
## iter 240 value 91.206744
## iter 250 value 87.373292
## iter 260 value 84.474361
## iter 270 value 79.818937
## iter 280 value 75.926767
## iter 290 value 73.069538
## iter 300 value 71.151305
## iter 310 value 69.059229
## iter 320 value 67.217814
## iter 330 value 65.041050
## iter 340 value 63.765513
## iter 350 value 61.899823
## iter 360 value 60.433662
## iter 370 value 58.543606
## iter 380 value 57.194785
## iter 390 value 55.736398
## iter 400 value 54.427956
## iter 410 value 53.580331
## iter 420 value 52.714788
## iter 430 value 51.033733
## iter 440 value 48.907358
## iter 450 value 47.405408
## iter 460 value 46.246342
## iter 470 value 45.492758
## iter 480 value 44.957521
## iter 490 value 44.733160
## iter 500 value 44.644663
## final value 44.644663
## stopped after 500 iterations
## # weights: 25
## initial value 1401353.258151
## iter 10 value 53063.045787
## iter 20 value 17955.323222
## iter 30 value 11996.595551
## iter 40 value 6092.357487
## iter 50 value 3078.535761
## iter 60 value 2715.678783
## iter 70 value 2362.002626
## iter 80 value 1771.989386
## iter 90 value 1302.469755
## iter 100 value 1174.013261
## iter 110 value 1161.729185
## iter 120 value 1154.528299
## iter 130 value 1118.315849
## iter 140 value 1103.237555
## iter 150 value 1098.728427
## iter 160 value 1097.823329
## iter 170 value 1097.704053
## iter 180 value 1097.274693
## final value 1097.274586
## converged
## # weights: 61
## initial value 1390333.053511
## iter 10 value 55214.502560
## iter 20 value 12495.215956
## iter 30 value 8730.314220
## iter 40 value 6775.553821
## iter 50 value 4466.270691
## iter 60 value 2640.081380
## iter 70 value 2004.347231
## iter 80 value 1664.952214
## iter 90 value 1423.511818
## iter 100 value 1327.091562
## iter 110 value 1262.007427
## iter 120 value 1212.537456
## iter 130 value 1142.876234
## iter 140 value 1120.186174
## iter 150 value 1085.433733
## iter 160 value 1048.021857
## iter 170 value 1022.884528
## iter 180 value 992.164664
## iter 190 value 983.581385
## iter 200 value 966.950661
## iter 210 value 940.513744
## iter 220 value 911.125720
## iter 230 value 880.584376
## iter 240 value 860.620180
## iter 250 value 848.544184
## iter 260 value 830.379415
## iter 270 value 815.790142
## iter 280 value 807.709292
## iter 290 value 802.525052
## iter 300 value 798.023993
## iter 310 value 797.385334
## iter 320 value 797.088218
## iter 330 value 796.774697
## iter 340 value 796.556291
## iter 350 value 796.519108
## final value 796.517893
## converged
## # weights: 121
## initial value 1372743.445145
## iter 10 value 1505.299243
## iter 20 value 982.333079
## iter 30 value 853.635196
## iter 40 value 789.995905
## iter 50 value 737.244506
## iter 60 value 692.005357
## iter 70 value 669.265706
## iter 80 value 652.478759
## iter 90 value 631.808700
## iter 100 value 597.074935
## iter 110 value 585.942659
## iter 120 value 573.542749
## iter 130 value 564.486505
## iter 140 value 559.994245
## iter 150 value 553.160677
## iter 160 value 546.373547
## iter 170 value 542.095502
## iter 180 value 535.621822
## iter 190 value 528.001022
## iter 200 value 522.081695
## iter 210 value 518.381062
## iter 220 value 516.220621
## iter 230 value 513.946237
## iter 240 value 511.816142
## iter 250 value 509.637226
## iter 260 value 507.933784
## iter 270 value 504.512788
## iter 280 value 502.121514
## iter 290 value 499.634333
## iter 300 value 496.926506
## iter 310 value 495.407402
## iter 320 value 494.653847
## iter 330 value 493.408566
## iter 340 value 491.961507
## iter 350 value 490.941754
## iter 360 value 490.469934
## iter 370 value 490.026014
## iter 380 value 489.701960
## iter 390 value 489.535360
## iter 400 value 489.484940
## iter 410 value 489.475937
## final value 489.475601
## converged
## # weights: 181
## initial value 1378447.756449
## iter 10 value 2081.694421
## iter 20 value 901.641352
## iter 30 value 713.522440
## iter 40 value 599.756131
## iter 50 value 530.663255
## iter 60 value 501.452674
## iter 70 value 475.153144
## iter 80 value 461.554184
## iter 90 value 453.125121
## iter 100 value 444.849367
## iter 110 value 436.332107
## iter 120 value 429.072659
## iter 130 value 422.599480
## iter 140 value 417.436343
## iter 150 value 408.762541
## iter 160 value 399.278466
## iter 170 value 393.829839
## iter 180 value 390.116159
## iter 190 value 388.448405
## iter 200 value 387.175758
## iter 210 value 386.115151
## iter 220 value 384.820198
## iter 230 value 383.844095
## iter 240 value 382.783976
## iter 250 value 381.574879
## iter 260 value 380.247991
## iter 270 value 377.801323
## iter 280 value 376.605938
## iter 290 value 375.198512
## iter 300 value 374.047719
## iter 310 value 372.216405
## iter 320 value 369.718948
## iter 330 value 367.896975
## iter 340 value 365.678460
## iter 350 value 363.040314
## iter 360 value 361.475565
## iter 370 value 360.635766
## iter 380 value 360.092402
## iter 390 value 359.436765
## iter 400 value 359.172401
## iter 410 value 359.027522
## iter 420 value 358.945907
## iter 430 value 358.887058
## iter 440 value 358.862257
## iter 450 value 358.853670
## iter 460 value 358.845485
## iter 470 value 358.743233
## iter 480 value 358.462279
## iter 490 value 358.242103
## iter 500 value 358.099635
## final value 358.099635
## stopped after 500 iterations
## # weights: 241
## initial value 1365946.721509
## iter 10 value 1311.348535
## iter 20 value 868.368024
## iter 30 value 749.670659
## iter 40 value 650.977204
## iter 50 value 568.875882
## iter 60 value 516.537894
## iter 70 value 479.628075
## iter 80 value 455.872591
## iter 90 value 424.128935
## iter 100 value 402.299205
## iter 110 value 388.556264
## iter 120 value 381.076329
## iter 130 value 376.846879
## iter 140 value 373.218833
## iter 150 value 369.193003
## iter 160 value 366.254966
## iter 170 value 363.296215
## iter 180 value 360.223131
## iter 190 value 357.635851
## iter 200 value 354.192492
## iter 210 value 351.164814
## iter 220 value 348.757273
## iter 230 value 346.129622
## iter 240 value 343.440193
## iter 250 value 341.976460
## iter 260 value 340.046225
## iter 270 value 338.227225
## iter 280 value 336.389291
## iter 290 value 332.001434
## iter 300 value 325.998337
## iter 310 value 321.495704
## iter 320 value 318.018718
## iter 330 value 315.334151
## iter 340 value 312.652233
## iter 350 value 310.204898
## iter 360 value 307.965005
## iter 370 value 306.620540
## iter 380 value 305.425614
## iter 390 value 304.514942
## iter 400 value 303.868719
## iter 410 value 303.474343
## iter 420 value 303.136935
## iter 430 value 302.738887
## iter 440 value 302.258472
## iter 450 value 301.819825
## iter 460 value 301.281834
## iter 470 value 300.648678
## iter 480 value 300.156362
## iter 490 value 299.928554
## iter 500 value 299.631879
## final value 299.631879
## stopped after 500 iterations
## # weights: 25
## initial value 1369311.602739
## iter 10 value 6820.461951
## iter 20 value 5446.843389
## iter 30 value 5295.517703
## iter 40 value 4906.365573
## iter 50 value 4273.899997
## iter 60 value 3727.361713
## iter 70 value 1766.238133
## iter 80 value 1402.899845
## iter 90 value 1346.814811
## iter 100 value 1328.122741
## iter 110 value 1301.694360
## iter 120 value 1287.661388
## iter 130 value 1282.648408
## iter 140 value 1280.563819
## iter 150 value 1278.920853
## iter 160 value 1278.912377
## final value 1278.911363
## converged
## # weights: 61
## initial value 1377040.387857
## iter 10 value 8571.316210
## iter 20 value 6387.743023
## iter 30 value 5753.483085
## iter 40 value 5440.730456
## iter 50 value 4714.881211
## iter 60 value 3345.592322
## iter 70 value 2573.088092
## iter 80 value 2317.392581
## iter 90 value 2283.694066
## iter 100 value 2258.226956
## iter 110 value 2225.707491
## iter 120 value 2201.629906
## iter 130 value 2176.421395
## iter 140 value 2137.332954
## iter 150 value 2121.353478
## iter 160 value 2100.527564
## iter 170 value 2000.596293
## iter 180 value 1818.544666
## iter 190 value 1789.426629
## iter 200 value 1787.530658
## iter 210 value 1773.212944
## iter 220 value 1760.690107
## iter 230 value 1749.447440
## iter 240 value 1746.319286
## iter 250 value 1745.545835
## iter 260 value 1744.931662
## iter 270 value 1744.452723
## iter 280 value 1743.533941
## iter 290 value 1717.677648
## iter 300 value 1698.646441
## iter 310 value 1652.563573
## iter 320 value 1644.484688
## iter 330 value 1642.039126
## iter 340 value 1622.964985
## iter 350 value 1603.421679
## iter 360 value 1583.012274
## iter 370 value 1563.759331
## iter 380 value 1512.874144
## iter 390 value 1348.064613
## iter 400 value 1019.306111
## iter 410 value 952.625567
## iter 420 value 912.827907
## iter 430 value 898.958324
## iter 440 value 892.346428
## iter 450 value 868.011342
## iter 460 value 865.222298
## iter 470 value 854.609702
## iter 480 value 848.468739
## iter 490 value 848.260851
## iter 500 value 844.915794
## final value 844.915794
## stopped after 500 iterations
## # weights: 121
## initial value 1426097.473036
## iter 10 value 3019.134982
## iter 20 value 1534.369030
## iter 30 value 1048.182910
## iter 40 value 762.735738
## iter 50 value 650.644900
## iter 60 value 591.275378
## iter 70 value 558.046179
## iter 80 value 531.574389
## iter 90 value 516.034614
## iter 100 value 491.111659
## iter 110 value 471.965378
## iter 120 value 463.287524
## iter 130 value 454.202281
## iter 140 value 448.749844
## iter 150 value 440.021249
## iter 160 value 421.566852
## iter 170 value 387.683424
## iter 180 value 363.415541
## iter 190 value 352.033622
## iter 200 value 339.449921
## iter 210 value 330.497241
## iter 220 value 320.776998
## iter 230 value 311.420873
## iter 240 value 307.067459
## iter 250 value 304.823497
## iter 260 value 303.881504
## iter 270 value 302.709914
## iter 280 value 301.279212
## iter 290 value 300.125644
## iter 300 value 298.034447
## iter 310 value 295.206864
## iter 320 value 291.522073
## iter 330 value 285.937588
## iter 340 value 280.633593
## iter 350 value 274.581599
## iter 360 value 269.913173
## iter 370 value 268.154113
## iter 380 value 267.271312
## iter 390 value 266.459392
## iter 400 value 265.622675
## iter 410 value 265.390142
## iter 420 value 264.988448
## iter 430 value 264.924035
## iter 440 value 264.911706
## iter 450 value 264.892737
## iter 460 value 264.807567
## iter 470 value 264.470707
## iter 480 value 264.101405
## iter 490 value 263.905791
## iter 500 value 263.901083
## final value 263.901083
## stopped after 500 iterations
## # weights: 181
## initial value 1386961.737673
## iter 10 value 1078.049854
## iter 20 value 742.927129
## iter 30 value 636.335191
## iter 40 value 520.049415
## iter 50 value 415.406605
## iter 60 value 363.600726
## iter 70 value 322.840754
## iter 80 value 288.649996
## iter 90 value 259.843976
## iter 100 value 241.239006
## iter 110 value 226.494650
## iter 120 value 216.959256
## iter 130 value 204.070140
## iter 140 value 194.045034
## iter 150 value 186.977582
## iter 160 value 180.402468
## iter 170 value 174.068486
## iter 180 value 167.872786
## iter 190 value 163.612426
## iter 200 value 160.190966
## iter 210 value 155.173493
## iter 220 value 149.317242
## iter 230 value 143.899695
## iter 240 value 139.524960
## iter 250 value 136.284133
## iter 260 value 133.210503
## iter 270 value 131.087484
## iter 280 value 129.408533
## iter 290 value 127.455007
## iter 300 value 125.898964
## iter 310 value 124.852046
## iter 320 value 123.913197
## iter 330 value 122.251699
## iter 340 value 121.052997
## iter 350 value 120.318208
## iter 360 value 119.802849
## iter 370 value 119.478780
## iter 380 value 119.317299
## iter 390 value 119.151819
## iter 400 value 118.567606
## iter 410 value 117.932442
## iter 420 value 117.282406
## iter 430 value 116.378003
## iter 440 value 115.116117
## iter 450 value 113.857906
## iter 460 value 112.988796
## iter 470 value 112.437231
## iter 480 value 111.998950
## iter 490 value 111.572933
## iter 500 value 110.859297
## final value 110.859297
## stopped after 500 iterations
## # weights: 241
## initial value 1330168.016794
## iter 10 value 1354.057588
## iter 20 value 735.288960
## iter 30 value 597.233265
## iter 40 value 461.802342
## iter 50 value 359.972501
## iter 60 value 289.409395
## iter 70 value 242.612727
## iter 80 value 209.506249
## iter 90 value 186.474628
## iter 100 value 169.072803
## iter 110 value 153.979989
## iter 120 value 141.134093
## iter 130 value 127.000045
## iter 140 value 116.141903
## iter 150 value 109.717238
## iter 160 value 104.958974
## iter 170 value 97.674274
## iter 180 value 91.368282
## iter 190 value 85.742121
## iter 200 value 81.929063
## iter 210 value 78.274056
## iter 220 value 74.237042
## iter 230 value 67.501049
## iter 240 value 62.110533
## iter 250 value 58.471807
## iter 260 value 54.540970
## iter 270 value 50.742982
## iter 280 value 47.718846
## iter 290 value 45.321280
## iter 300 value 43.246547
## iter 310 value 41.025847
## iter 320 value 38.058901
## iter 330 value 35.478419
## iter 340 value 33.212874
## iter 350 value 30.464264
## iter 360 value 28.765378
## iter 370 value 27.351663
## iter 380 value 25.782100
## iter 390 value 24.665799
## iter 400 value 23.769805
## iter 410 value 23.257431
## iter 420 value 22.891011
## iter 430 value 22.369908
## iter 440 value 21.935227
## iter 450 value 21.638614
## iter 460 value 21.338875
## iter 470 value 20.627857
## iter 480 value 20.050029
## iter 490 value 19.814863
## iter 500 value 19.753910
## final value 19.753910
## stopped after 500 iterations
## # weights: 25
## initial value 1356805.109099
## iter 10 value 59222.119487
## iter 20 value 9417.890232
## iter 30 value 9246.746354
## iter 40 value 6902.246588
## iter 50 value 6726.021739
## iter 60 value 6684.140998
## iter 70 value 6643.029436
## iter 80 value 6319.357460
## iter 90 value 6235.343275
## iter 100 value 6235.244068
## iter 110 value 6172.187747
## iter 120 value 6142.233453
## iter 130 value 6142.101684
## iter 140 value 6141.228948
## iter 150 value 6133.958899
## iter 160 value 5621.871668
## iter 170 value 5530.558889
## iter 180 value 5330.100058
## iter 190 value 5290.709249
## iter 200 value 5164.637480
## iter 210 value 5126.026976
## iter 220 value 5095.071735
## iter 230 value 5072.876329
## iter 240 value 5066.573246
## iter 250 value 5065.550255
## iter 260 value 5064.784612
## iter 270 value 5049.894687
## iter 280 value 5048.100747
## iter 290 value 5047.538351
## iter 300 value 4679.655423
## iter 310 value 4382.686243
## iter 320 value 4248.856572
## iter 330 value 4169.446145
## iter 340 value 4157.848439
## iter 350 value 4154.638534
## iter 360 value 3982.154433
## iter 370 value 3752.922755
## iter 380 value 3397.184381
## iter 390 value 3197.633765
## iter 400 value 2816.612607
## iter 410 value 2289.036268
## iter 420 value 2092.562306
## iter 430 value 2037.751338
## iter 440 value 2028.852138
## iter 450 value 2028.382772
## iter 460 value 2027.240235
## final value 2027.211106
## converged
## # weights: 61
## initial value 1366094.035726
## iter 10 value 14594.371374
## iter 20 value 3703.204313
## iter 30 value 2886.847629
## iter 40 value 2562.392877
## iter 50 value 2493.333089
## iter 60 value 2379.144228
## iter 70 value 2298.212668
## iter 80 value 2289.076637
## iter 90 value 2171.722245
## iter 100 value 2097.324863
## iter 110 value 1891.723820
## iter 120 value 1561.579193
## iter 130 value 1481.331588
## iter 140 value 1463.427491
## iter 150 value 1461.339548
## iter 160 value 1460.824174
## iter 170 value 1460.724207
## iter 180 value 1456.202838
## iter 190 value 1450.734090
## iter 200 value 1449.824705
## iter 210 value 1449.418029
## iter 220 value 1447.830406
## iter 230 value 1447.429410
## iter 240 value 1447.134912
## iter 250 value 1447.108561
## iter 260 value 1447.105605
## iter 270 value 1447.087742
## iter 280 value 1447.085697
## final value 1447.077655
## converged
## # weights: 121
## initial value 1409073.718393
## iter 10 value 1737.906640
## iter 20 value 951.608409
## iter 30 value 739.761715
## iter 40 value 644.752321
## iter 50 value 579.252648
## iter 60 value 548.734764
## iter 70 value 533.790576
## iter 80 value 523.944789
## iter 90 value 511.135769
## iter 100 value 493.955447
## iter 110 value 469.549577
## iter 120 value 453.538929
## iter 130 value 442.651043
## iter 140 value 434.989608
## iter 150 value 429.445562
## iter 160 value 418.673603
## iter 170 value 407.802071
## iter 180 value 396.497072
## iter 190 value 388.232433
## iter 200 value 383.878534
## iter 210 value 375.744446
## iter 220 value 366.697908
## iter 230 value 361.283529
## iter 240 value 359.598320
## iter 250 value 359.050364
## iter 260 value 358.788190
## iter 270 value 358.114289
## iter 280 value 357.462971
## iter 290 value 356.733742
## iter 300 value 356.038466
## iter 310 value 354.559289
## iter 320 value 352.557699
## iter 330 value 350.808445
## iter 340 value 346.500381
## iter 350 value 338.025057
## iter 360 value 328.605527
## iter 370 value 326.839992
## iter 380 value 326.195609
## iter 390 value 325.361250
## iter 400 value 325.094774
## iter 410 value 324.850723
## iter 420 value 324.705346
## iter 430 value 324.511860
## iter 440 value 324.134060
## iter 450 value 323.430420
## iter 460 value 320.903335
## iter 470 value 320.718395
## iter 480 value 320.527931
## iter 490 value 320.188330
## iter 500 value 320.025528
## final value 320.025528
## stopped after 500 iterations
## # weights: 181
## initial value 1420843.867292
## iter 10 value 1553.878919
## iter 20 value 783.985886
## iter 30 value 549.826976
## iter 40 value 440.165903
## iter 50 value 357.013814
## iter 60 value 311.903325
## iter 70 value 273.129877
## iter 80 value 250.112370
## iter 90 value 232.659705
## iter 100 value 220.296688
## iter 110 value 205.859366
## iter 120 value 191.913094
## iter 130 value 179.971842
## iter 140 value 171.584758
## iter 150 value 164.055834
## iter 160 value 157.771779
## iter 170 value 154.593005
## iter 180 value 152.389330
## iter 190 value 150.316412
## iter 200 value 147.779605
## iter 210 value 145.050627
## iter 220 value 142.083187
## iter 230 value 139.375397
## iter 240 value 137.427783
## iter 250 value 136.112916
## iter 260 value 134.252522
## iter 270 value 132.364169
## iter 280 value 131.302994
## iter 290 value 130.404729
## iter 300 value 128.421451
## iter 310 value 125.839618
## iter 320 value 124.094197
## iter 330 value 122.371954
## iter 340 value 120.926141
## iter 350 value 119.566828
## iter 360 value 118.600702
## iter 370 value 118.375184
## iter 380 value 118.325507
## iter 390 value 118.240402
## iter 400 value 118.128036
## iter 410 value 117.997047
## iter 420 value 117.803511
## iter 430 value 117.546840
## iter 440 value 117.266092
## iter 450 value 116.862985
## iter 460 value 116.293996
## iter 470 value 116.057361
## iter 480 value 115.938455
## iter 490 value 115.674717
## iter 500 value 115.343990
## final value 115.343990
## stopped after 500 iterations
## # weights: 241
## initial value 1440668.147904
## iter 10 value 1502.928511
## iter 20 value 835.596188
## iter 30 value 696.855528
## iter 40 value 498.244616
## iter 50 value 383.102391
## iter 60 value 318.736438
## iter 70 value 279.277861
## iter 80 value 238.541646
## iter 90 value 205.585552
## iter 100 value 175.467187
## iter 110 value 153.186976
## iter 120 value 135.226145
## iter 130 value 122.768024
## iter 140 value 113.093941
## iter 150 value 103.993975
## iter 160 value 94.817869
## iter 170 value 85.041852
## iter 180 value 74.534872
## iter 190 value 67.869491
## iter 200 value 62.272400
## iter 210 value 59.505032
## iter 220 value 56.959957
## iter 230 value 55.007171
## iter 240 value 53.477949
## iter 250 value 52.251961
## iter 260 value 50.989739
## iter 270 value 49.853158
## iter 280 value 48.386716
## iter 290 value 46.766237
## iter 300 value 45.142317
## iter 310 value 43.781358
## iter 320 value 42.418068
## iter 330 value 40.671757
## iter 340 value 38.593174
## iter 350 value 36.870450
## iter 360 value 36.042975
## iter 370 value 35.244790
## iter 380 value 34.699879
## iter 390 value 34.135125
## iter 400 value 33.376765
## iter 410 value 32.855154
## iter 420 value 32.373534
## iter 430 value 31.954689
## iter 440 value 31.314648
## iter 450 value 30.678883
## iter 460 value 29.672448
## iter 470 value 29.015203
## iter 480 value 28.446649
## iter 490 value 28.015522
## iter 500 value 27.865818
## final value 27.865818
## stopped after 500 iterations
## # weights: 25
## initial value 1402172.745191
## iter 10 value 63295.391174
## iter 20 value 15374.565679
## iter 30 value 8149.580330
## iter 40 value 7944.096117
## iter 50 value 7466.367668
## iter 60 value 7176.665746
## iter 70 value 7122.777303
## iter 80 value 6483.588255
## iter 90 value 4857.515929
## iter 100 value 4198.845859
## iter 110 value 4082.456045
## iter 120 value 4045.246330
## iter 130 value 3862.711111
## iter 140 value 3708.210015
## iter 150 value 3246.142211
## iter 160 value 3084.976258
## iter 170 value 3015.979565
## iter 180 value 3006.828731
## iter 190 value 2971.701250
## iter 200 value 2960.393376
## iter 210 value 2937.801232
## iter 220 value 2908.290003
## iter 230 value 2901.760090
## iter 240 value 2900.015925
## iter 250 value 2899.367701
## iter 260 value 2897.093539
## iter 270 value 2637.842843
## iter 280 value 2362.602928
## iter 290 value 1964.999855
## iter 300 value 1724.391243
## iter 310 value 1350.318145
## iter 320 value 1196.249954
## iter 330 value 1137.614444
## iter 340 value 1136.492860
## iter 350 value 1136.027795
## iter 360 value 1133.170187
## iter 370 value 1131.707272
## iter 380 value 1131.149459
## iter 390 value 1130.969477
## iter 400 value 1130.967831
## final value 1130.967783
## converged
## # weights: 61
## initial value 1400054.190012
## iter 10 value 4847.551767
## iter 20 value 1550.798989
## iter 30 value 1223.374323
## iter 40 value 947.169354
## iter 50 value 838.567825
## iter 60 value 790.987311
## iter 70 value 746.761026
## iter 80 value 718.900976
## iter 90 value 689.319768
## iter 100 value 650.472045
## iter 110 value 623.530055
## iter 120 value 610.924475
## iter 130 value 605.671804
## iter 140 value 604.391065
## iter 150 value 599.055364
## iter 160 value 590.904882
## iter 170 value 585.484653
## iter 180 value 582.880373
## iter 190 value 581.727608
## iter 200 value 579.933918
## iter 210 value 578.469396
## iter 220 value 578.065713
## iter 230 value 577.828920
## iter 240 value 577.628304
## iter 250 value 577.591399
## iter 260 value 577.589082
## iter 270 value 577.586269
## iter 280 value 577.579977
## iter 290 value 577.565120
## iter 300 value 577.550947
## iter 310 value 577.385000
## iter 320 value 577.275677
## iter 330 value 577.270027
## iter 340 value 576.970083
## iter 350 value 572.034129
## iter 360 value 570.931307
## iter 370 value 570.776523
## iter 380 value 570.677631
## iter 390 value 570.624846
## iter 400 value 570.596008
## iter 410 value 570.583740
## iter 420 value 570.582022
## final value 570.580708
## converged
## # weights: 121
## initial value 1358554.316834
## iter 10 value 1337.243323
## iter 20 value 850.364392
## iter 30 value 696.314543
## iter 40 value 616.218629
## iter 50 value 579.380382
## iter 60 value 536.830502
## iter 70 value 501.950865
## iter 80 value 473.882623
## iter 90 value 449.413838
## iter 100 value 406.869833
## iter 110 value 369.309203
## iter 120 value 347.648195
## iter 130 value 335.300049
## iter 140 value 323.425022
## iter 150 value 315.228826
## iter 160 value 305.182860
## iter 170 value 295.144182
## iter 180 value 290.205309
## iter 190 value 285.394013
## iter 200 value 280.228982
## iter 210 value 276.542393
## iter 220 value 272.233011
## iter 230 value 268.197440
## iter 240 value 266.264726
## iter 250 value 265.375063
## iter 260 value 264.867079
## iter 270 value 264.312464
## iter 280 value 263.597141
## iter 290 value 262.296595
## iter 300 value 260.210630
## iter 310 value 258.413407
## iter 320 value 256.326209
## iter 330 value 254.403211
## iter 340 value 249.939388
## iter 350 value 246.000583
## iter 360 value 242.325533
## iter 370 value 241.778214
## iter 380 value 241.409336
## iter 390 value 241.023325
## iter 400 value 240.730920
## iter 410 value 240.607571
## iter 420 value 240.511108
## iter 430 value 240.341820
## iter 440 value 240.219244
## iter 450 value 240.099095
## iter 460 value 240.046430
## iter 470 value 239.897886
## iter 480 value 239.854673
## iter 490 value 239.845293
## iter 500 value 239.844892
## final value 239.844892
## stopped after 500 iterations
## # weights: 181
## initial value 1389840.670094
## iter 10 value 1193.112946
## iter 20 value 772.948197
## iter 30 value 563.392355
## iter 40 value 463.042753
## iter 50 value 387.066107
## iter 60 value 334.413835
## iter 70 value 305.819553
## iter 80 value 261.772386
## iter 90 value 232.820311
## iter 100 value 215.460830
## iter 110 value 208.243489
## iter 120 value 198.912361
## iter 130 value 190.603035
## iter 140 value 181.922901
## iter 150 value 166.217408
## iter 160 value 157.503755
## iter 170 value 150.037209
## iter 180 value 144.289776
## iter 190 value 141.074906
## iter 200 value 138.498399
## iter 210 value 134.747672
## iter 220 value 132.047677
## iter 230 value 128.514963
## iter 240 value 123.386204
## iter 250 value 117.419340
## iter 260 value 114.207343
## iter 270 value 111.189121
## iter 280 value 108.889660
## iter 290 value 105.100057
## iter 300 value 101.704964
## iter 310 value 99.259772
## iter 320 value 97.655341
## iter 330 value 96.401790
## iter 340 value 95.338264
## iter 350 value 94.652644
## iter 360 value 94.290776
## iter 370 value 94.103856
## iter 380 value 94.032265
## iter 390 value 93.876083
## iter 400 value 93.709753
## iter 410 value 93.263465
## iter 420 value 92.831659
## iter 430 value 92.428810
## iter 440 value 92.085753
## iter 450 value 91.775611
## iter 460 value 91.354353
## iter 470 value 90.924158
## iter 480 value 90.499642
## iter 490 value 89.994242
## iter 500 value 89.724758
## final value 89.724758
## stopped after 500 iterations
## # weights: 241
## initial value 1372968.271570
## iter 10 value 1169.447193
## iter 20 value 734.379773
## iter 30 value 630.625105
## iter 40 value 540.218707
## iter 50 value 416.238418
## iter 60 value 341.865356
## iter 70 value 292.271601
## iter 80 value 258.782885
## iter 90 value 231.371683
## iter 100 value 210.301325
## iter 110 value 195.034096
## iter 120 value 179.928877
## iter 130 value 166.640731
## iter 140 value 155.425600
## iter 150 value 145.473971
## iter 160 value 135.095350
## iter 170 value 126.886617
## iter 180 value 121.279100
## iter 190 value 115.572185
## iter 200 value 109.950461
## iter 210 value 106.398344
## iter 220 value 102.904828
## iter 230 value 99.566074
## iter 240 value 94.888514
## iter 250 value 89.523929
## iter 260 value 84.624778
## iter 270 value 81.497959
## iter 280 value 78.965338
## iter 290 value 75.984896
## iter 300 value 73.173065
## iter 310 value 70.775972
## iter 320 value 68.617223
## iter 330 value 66.245945
## iter 340 value 64.914521
## iter 350 value 63.388993
## iter 360 value 62.185103
## iter 370 value 60.325627
## iter 380 value 58.460396
## iter 390 value 56.293493
## iter 400 value 54.345842
## iter 410 value 53.352981
## iter 420 value 52.169025
## iter 430 value 51.399806
## iter 440 value 50.752780
## iter 450 value 50.231516
## iter 460 value 49.471509
## iter 470 value 48.753595
## iter 480 value 48.020965
## iter 490 value 47.598918
## iter 500 value 47.475638
## final value 47.475638
## stopped after 500 iterations
## # weights: 25
## initial value 1430460.441402
## iter 10 value 6206.095093
## iter 20 value 5170.355729
## iter 30 value 5108.006007
## iter 40 value 5079.732627
## iter 50 value 5061.111948
## iter 60 value 5042.033389
## iter 70 value 4949.563582
## iter 80 value 4669.476968
## iter 90 value 4173.069659
## iter 100 value 3137.667881
## iter 110 value 1628.904006
## iter 120 value 1403.689002
## iter 130 value 1355.649351
## iter 140 value 1338.357360
## iter 150 value 1304.816752
## iter 160 value 1293.729286
## iter 170 value 1288.007615
## iter 180 value 1230.642831
## iter 190 value 1229.807419
## iter 200 value 1191.204463
## iter 210 value 1131.813695
## iter 220 value 1067.320486
## iter 230 value 1049.763818
## iter 240 value 1049.089184
## iter 250 value 1045.635535
## iter 260 value 1041.206350
## iter 270 value 1041.182860
## iter 280 value 1039.589491
## iter 290 value 1036.335076
## iter 300 value 1027.348826
## iter 310 value 1019.563504
## iter 320 value 1013.542916
## iter 330 value 1013.154546
## iter 340 value 1013.112380
## iter 350 value 1012.465654
## iter 360 value 1012.113972
## iter 370 value 1012.092908
## iter 380 value 1012.090442
## iter 390 value 1012.090009
## final value 1012.089810
## converged
## # weights: 61
## initial value 1396403.619978
## iter 10 value 156807.623316
## iter 20 value 9277.858256
## iter 30 value 5841.608563
## iter 40 value 4158.880567
## iter 50 value 2694.421949
## iter 60 value 2311.134320
## iter 70 value 1879.328450
## iter 80 value 1722.876553
## iter 90 value 1506.950809
## iter 100 value 1267.473436
## iter 110 value 965.050359
## iter 120 value 858.584727
## iter 130 value 825.948972
## iter 140 value 807.065973
## iter 150 value 794.735339
## iter 160 value 781.821053
## iter 170 value 773.306241
## iter 180 value 765.169721
## iter 190 value 761.949115
## iter 200 value 759.635461
## iter 210 value 755.273682
## iter 220 value 746.580924
## iter 230 value 739.310766
## iter 240 value 734.232944
## iter 250 value 727.777104
## iter 260 value 721.177983
## iter 270 value 719.829543
## iter 280 value 717.217856
## iter 290 value 712.350097
## iter 300 value 707.065399
## iter 310 value 703.444815
## iter 320 value 701.629494
## iter 330 value 697.949614
## iter 340 value 692.080993
## iter 350 value 684.884469
## iter 360 value 681.653392
## iter 370 value 681.193241
## iter 380 value 680.827170
## iter 390 value 680.718647
## iter 400 value 680.704108
## iter 410 value 680.693648
## iter 420 value 680.692984
## iter 420 value 680.692980
## iter 420 value 680.692980
## final value 680.692980
## converged
## # weights: 121
## initial value 1388293.378420
## iter 10 value 1384.067018
## iter 20 value 886.202745
## iter 30 value 696.684586
## iter 40 value 593.566926
## iter 50 value 531.447636
## iter 60 value 481.552453
## iter 70 value 464.088052
## iter 80 value 451.420028
## iter 90 value 427.962696
## iter 100 value 412.762701
## iter 110 value 397.424848
## iter 120 value 388.062244
## iter 130 value 384.805558
## iter 140 value 381.432716
## iter 150 value 378.825993
## iter 160 value 370.598125
## iter 170 value 363.364242
## iter 180 value 353.103424
## iter 190 value 345.763187
## iter 200 value 339.653630
## iter 210 value 333.745967
## iter 220 value 328.467242
## iter 230 value 324.709951
## iter 240 value 319.860229
## iter 250 value 318.091221
## iter 260 value 316.764580
## iter 270 value 312.674001
## iter 280 value 308.156721
## iter 290 value 303.624590
## iter 300 value 299.714807
## iter 310 value 296.654030
## iter 320 value 293.340140
## iter 330 value 290.897347
## iter 340 value 288.778735
## iter 350 value 286.586079
## iter 360 value 284.743212
## iter 370 value 282.717461
## iter 380 value 280.720739
## iter 390 value 277.785514
## iter 400 value 272.768451
## iter 410 value 271.172047
## iter 420 value 269.870611
## iter 430 value 269.429404
## iter 440 value 269.309635
## iter 450 value 269.253951
## iter 460 value 269.219156
## iter 470 value 269.194542
## iter 480 value 269.153507
## iter 490 value 269.129900
## iter 500 value 269.129010
## final value 269.129010
## stopped after 500 iterations
## # weights: 181
## initial value 1359360.688678
## iter 10 value 1402.715958
## iter 20 value 876.057823
## iter 30 value 632.749836
## iter 40 value 518.746265
## iter 50 value 451.017909
## iter 60 value 392.669477
## iter 70 value 321.529549
## iter 80 value 285.980037
## iter 90 value 262.077291
## iter 100 value 236.912880
## iter 110 value 215.360026
## iter 120 value 202.064635
## iter 130 value 190.264386
## iter 140 value 179.088567
## iter 150 value 170.644241
## iter 160 value 162.666186
## iter 170 value 155.642596
## iter 180 value 151.367639
## iter 190 value 148.081351
## iter 200 value 144.464575
## iter 210 value 142.025098
## iter 220 value 138.710272
## iter 230 value 134.909411
## iter 240 value 132.614013
## iter 250 value 131.552435
## iter 260 value 130.885668
## iter 270 value 129.959879
## iter 280 value 129.060966
## iter 290 value 127.652744
## iter 300 value 125.945256
## iter 310 value 123.776784
## iter 320 value 122.299535
## iter 330 value 121.160575
## iter 340 value 120.365795
## iter 350 value 119.820059
## iter 360 value 119.390031
## iter 370 value 119.208085
## iter 380 value 119.136206
## iter 390 value 118.864128
## iter 400 value 118.593850
## iter 410 value 118.100189
## iter 420 value 117.633176
## iter 430 value 117.237786
## iter 440 value 116.973163
## iter 450 value 116.749047
## iter 460 value 116.539267
## iter 470 value 116.196349
## iter 480 value 115.850095
## iter 490 value 115.562332
## iter 500 value 115.401642
## final value 115.401642
## stopped after 500 iterations
## # weights: 241
## initial value 1339079.616359
## iter 10 value 2297.776587
## iter 20 value 944.942186
## iter 30 value 716.169257
## iter 40 value 569.136564
## iter 50 value 494.647146
## iter 60 value 426.861710
## iter 70 value 359.347475
## iter 80 value 323.851713
## iter 90 value 288.880175
## iter 100 value 265.437948
## iter 110 value 244.167808
## iter 120 value 231.157760
## iter 130 value 222.780869
## iter 140 value 212.869069
## iter 150 value 198.393105
## iter 160 value 185.579339
## iter 170 value 175.596738
## iter 180 value 166.264200
## iter 190 value 159.348511
## iter 200 value 153.635095
## iter 210 value 146.849711
## iter 220 value 141.412719
## iter 230 value 137.385671
## iter 240 value 133.888510
## iter 250 value 130.668026
## iter 260 value 126.500650
## iter 270 value 122.101962
## iter 280 value 118.204913
## iter 290 value 113.039082
## iter 300 value 109.943139
## iter 310 value 106.898056
## iter 320 value 104.740651
## iter 330 value 103.370125
## iter 340 value 102.140599
## iter 350 value 101.031816
## iter 360 value 99.749392
## iter 370 value 98.567229
## iter 380 value 97.202470
## iter 390 value 96.027127
## iter 400 value 95.006720
## iter 410 value 94.014557
## iter 420 value 93.220764
## iter 430 value 92.470245
## iter 440 value 91.492829
## iter 450 value 90.283563
## iter 460 value 89.039802
## iter 470 value 88.032305
## iter 480 value 87.201536
## iter 490 value 86.801475
## iter 500 value 86.682918
## final value 86.682918
## stopped after 500 iterations
## # weights: 25
## initial value 1371307.473023
## iter 10 value 15198.454565
## iter 20 value 13424.974703
## iter 30 value 7708.284801
## iter 40 value 7019.938824
## iter 50 value 6607.383671
## iter 60 value 4766.709751
## iter 70 value 3912.487889
## iter 80 value 2912.286175
## iter 90 value 2067.287807
## iter 100 value 1513.932988
## iter 110 value 1378.612337
## iter 120 value 1299.062479
## iter 130 value 1220.955045
## iter 140 value 1174.507340
## iter 150 value 1149.508775
## iter 160 value 1143.481910
## iter 170 value 1140.135914
## iter 180 value 1134.747246
## iter 190 value 1134.393424
## final value 1134.390374
## converged
## # weights: 61
## initial value 1356620.562293
## iter 10 value 2490.611049
## iter 20 value 1865.698456
## iter 30 value 1675.396022
## iter 40 value 1434.572826
## iter 50 value 1210.173809
## iter 60 value 1111.015977
## iter 70 value 1043.066295
## iter 80 value 1020.711397
## iter 90 value 977.000704
## iter 100 value 912.409472
## iter 110 value 892.135557
## iter 120 value 864.765033
## iter 130 value 835.987469
## iter 140 value 827.535275
## iter 150 value 817.588272
## iter 160 value 803.160297
## iter 170 value 795.643846
## iter 180 value 790.225914
## iter 190 value 780.234656
## iter 200 value 777.383537
## iter 210 value 762.666911
## iter 220 value 756.679514
## iter 230 value 755.367366
## iter 240 value 754.771889
## iter 250 value 754.692662
## iter 260 value 754.680180
## iter 270 value 754.669297
## iter 280 value 754.657558
## iter 290 value 754.645262
## iter 300 value 754.545669
## iter 310 value 751.733486
## iter 320 value 747.851729
## iter 330 value 747.124173
## iter 340 value 747.023182
## iter 350 value 746.971489
## iter 360 value 746.946542
## iter 370 value 746.945016
## iter 370 value 746.945015
## final value 746.945015
## converged
## # weights: 121
## initial value 1414506.620687
## iter 10 value 1373.171126
## iter 20 value 961.260999
## iter 30 value 843.875867
## iter 40 value 723.157828
## iter 50 value 648.466088
## iter 60 value 618.791851
## iter 70 value 602.481407
## iter 80 value 590.388422
## iter 90 value 573.283002
## iter 100 value 551.931943
## iter 110 value 536.687349
## iter 120 value 519.791853
## iter 130 value 506.877803
## iter 140 value 496.528787
## iter 150 value 489.187647
## iter 160 value 483.805888
## iter 170 value 479.614300
## iter 180 value 474.420378
## iter 190 value 470.713794
## iter 200 value 460.259525
## iter 210 value 452.796128
## iter 220 value 449.202228
## iter 230 value 446.281934
## iter 240 value 443.920325
## iter 250 value 442.077375
## iter 260 value 440.360018
## iter 270 value 438.347816
## iter 280 value 437.025350
## iter 290 value 436.381221
## iter 300 value 435.874778
## iter 310 value 435.339594
## iter 320 value 434.665166
## iter 330 value 433.591479
## iter 340 value 430.732099
## iter 350 value 427.611230
## iter 360 value 426.097113
## iter 370 value 425.671512
## iter 380 value 425.077531
## iter 390 value 424.409720
## iter 400 value 424.324645
## iter 410 value 424.316766
## iter 420 value 424.316240
## final value 424.316229
## converged
## # weights: 181
## initial value 1386843.327339
## iter 10 value 1192.188935
## iter 20 value 861.519545
## iter 30 value 715.760897
## iter 40 value 582.660882
## iter 50 value 534.227353
## iter 60 value 512.751215
## iter 70 value 481.538898
## iter 80 value 448.615759
## iter 90 value 425.691874
## iter 100 value 412.779702
## iter 110 value 399.709068
## iter 120 value 388.541904
## iter 130 value 383.513679
## iter 140 value 380.045142
## iter 150 value 377.548172
## iter 160 value 375.988572
## iter 170 value 374.114694
## iter 180 value 371.619410
## iter 190 value 368.502684
## iter 200 value 365.450238
## iter 210 value 363.257109
## iter 220 value 361.335223
## iter 230 value 358.309546
## iter 240 value 355.176908
## iter 250 value 351.531824
## iter 260 value 346.175896
## iter 270 value 341.818587
## iter 280 value 338.631150
## iter 290 value 336.500291
## iter 300 value 333.669243
## iter 310 value 329.850394
## iter 320 value 327.501830
## iter 330 value 326.122515
## iter 340 value 324.981953
## iter 350 value 324.022441
## iter 360 value 323.079683
## iter 370 value 322.658694
## iter 380 value 322.316042
## iter 390 value 321.925787
## iter 400 value 321.582726
## iter 410 value 321.380535
## iter 420 value 321.138927
## iter 430 value 320.806764
## iter 440 value 320.332402
## iter 450 value 319.750061
## iter 460 value 318.997866
## iter 470 value 318.308580
## iter 480 value 317.926626
## iter 490 value 317.494332
## iter 500 value 317.146502
## final value 317.146502
## stopped after 500 iterations
## # weights: 241
## initial value 1399983.448408
## iter 10 value 3386.743941
## iter 20 value 1123.405333
## iter 30 value 877.659532
## iter 40 value 691.585588
## iter 50 value 638.305708
## iter 60 value 587.475056
## iter 70 value 553.179688
## iter 80 value 531.812287
## iter 90 value 518.447979
## iter 100 value 505.691247
## iter 110 value 487.957638
## iter 120 value 477.140808
## iter 130 value 468.820133
## iter 140 value 461.697226
## iter 150 value 452.153126
## iter 160 value 441.513830
## iter 170 value 432.105296
## iter 180 value 421.540010
## iter 190 value 414.022875
## iter 200 value 407.354768
## iter 210 value 400.634649
## iter 220 value 393.918373
## iter 230 value 386.743917
## iter 240 value 381.672362
## iter 250 value 376.498965
## iter 260 value 372.833179
## iter 270 value 369.309377
## iter 280 value 367.095217
## iter 290 value 365.027830
## iter 300 value 362.006914
## iter 310 value 358.539945
## iter 320 value 356.021626
## iter 330 value 354.035638
## iter 340 value 351.639933
## iter 350 value 349.677160
## iter 360 value 347.789196
## iter 370 value 346.460745
## iter 380 value 344.922865
## iter 390 value 344.042027
## iter 400 value 343.328032
## iter 410 value 342.739669
## iter 420 value 342.088866
## iter 430 value 341.432676
## iter 440 value 340.839160
## iter 450 value 340.221096
## iter 460 value 339.357998
## iter 470 value 338.622392
## iter 480 value 337.361249
## iter 490 value 336.741196
## iter 500 value 336.175094
## final value 336.175094
## stopped after 500 iterations
## # weights: 25
## initial value 1396719.500964
## iter 10 value 14442.509209
## iter 20 value 8318.877569
## iter 30 value 2449.613836
## iter 40 value 1442.390049
## iter 50 value 1264.974398
## iter 60 value 1229.307221
## iter 70 value 1192.892924
## iter 80 value 1180.448678
## iter 90 value 1176.394756
## iter 100 value 1172.649592
## iter 110 value 1151.043775
## iter 120 value 1139.618268
## iter 130 value 1137.936695
## iter 140 value 1135.762766
## iter 150 value 1135.621121
## iter 160 value 1135.604907
## iter 170 value 1135.571068
## iter 180 value 1135.545407
## final value 1135.531521
## converged
## # weights: 61
## initial value 1395559.158788
## iter 10 value 2965.362259
## iter 20 value 1648.111629
## iter 30 value 1078.679235
## iter 40 value 858.968683
## iter 50 value 763.990663
## iter 60 value 728.855353
## iter 70 value 688.317954
## iter 80 value 659.053913
## iter 90 value 640.301413
## iter 100 value 622.044528
## iter 110 value 610.951452
## iter 120 value 600.766610
## iter 130 value 595.506993
## iter 140 value 593.075413
## iter 150 value 588.107703
## iter 160 value 579.301858
## iter 170 value 571.500934
## iter 180 value 565.002137
## iter 190 value 563.150493
## iter 200 value 561.290695
## iter 210 value 560.476340
## iter 220 value 560.281806
## iter 230 value 560.173274
## iter 240 value 560.024207
## iter 250 value 559.949920
## iter 260 value 559.567576
## iter 270 value 558.756010
## iter 280 value 558.186569
## iter 290 value 556.313216
## iter 300 value 555.890766
## iter 310 value 555.799140
## iter 320 value 555.623466
## iter 330 value 555.556972
## iter 340 value 555.511387
## iter 350 value 555.476564
## iter 360 value 555.468100
## iter 360 value 555.468096
## iter 360 value 555.468093
## final value 555.468093
## converged
## # weights: 121
## initial value 1367573.323344
## iter 10 value 1387.922761
## iter 20 value 902.438461
## iter 30 value 741.281949
## iter 40 value 620.089931
## iter 50 value 553.786006
## iter 60 value 507.241444
## iter 70 value 462.427228
## iter 80 value 433.559924
## iter 90 value 413.686746
## iter 100 value 395.764417
## iter 110 value 381.836097
## iter 120 value 374.803124
## iter 130 value 366.707894
## iter 140 value 362.038174
## iter 150 value 355.314352
## iter 160 value 349.264977
## iter 170 value 343.676292
## iter 180 value 337.771236
## iter 190 value 333.605960
## iter 200 value 329.821507
## iter 210 value 324.452005
## iter 220 value 320.154650
## iter 230 value 317.146476
## iter 240 value 315.115750
## iter 250 value 314.159772
## iter 260 value 313.338361
## iter 270 value 312.229241
## iter 280 value 309.663396
## iter 290 value 306.046459
## iter 300 value 302.279587
## iter 310 value 298.687355
## iter 320 value 294.957058
## iter 330 value 291.051472
## iter 340 value 289.002688
## iter 350 value 285.647698
## iter 360 value 282.719438
## iter 370 value 280.046920
## iter 380 value 277.528513
## iter 390 value 274.400966
## iter 400 value 271.914406
## iter 410 value 269.263666
## iter 420 value 266.516046
## iter 430 value 265.142300
## iter 440 value 263.885987
## iter 450 value 262.816387
## iter 460 value 261.020055
## iter 470 value 258.699086
## iter 480 value 255.618241
## iter 490 value 253.725632
## iter 500 value 253.034260
## final value 253.034260
## stopped after 500 iterations
## # weights: 181
## initial value 1376459.602667
## iter 10 value 1127.345852
## iter 20 value 832.945479
## iter 30 value 674.005026
## iter 40 value 583.374431
## iter 50 value 505.273381
## iter 60 value 469.719277
## iter 70 value 435.532127
## iter 80 value 389.899075
## iter 90 value 352.911699
## iter 100 value 323.992758
## iter 110 value 298.214756
## iter 120 value 274.799992
## iter 130 value 260.649590
## iter 140 value 248.773487
## iter 150 value 230.974150
## iter 160 value 213.545800
## iter 170 value 204.372007
## iter 180 value 198.059819
## iter 190 value 192.314134
## iter 200 value 185.412410
## iter 210 value 177.952262
## iter 220 value 170.755753
## iter 230 value 166.903620
## iter 240 value 163.051089
## iter 250 value 160.017337
## iter 260 value 157.171586
## iter 270 value 154.385850
## iter 280 value 152.290162
## iter 290 value 149.698070
## iter 300 value 147.543353
## iter 310 value 143.980594
## iter 320 value 141.781824
## iter 330 value 139.406858
## iter 340 value 136.832988
## iter 350 value 135.208600
## iter 360 value 134.298948
## iter 370 value 133.566552
## iter 380 value 133.280880
## iter 390 value 132.588687
## iter 400 value 131.662410
## iter 410 value 130.859474
## iter 420 value 129.970304
## iter 430 value 128.990268
## iter 440 value 127.352780
## iter 450 value 126.228489
## iter 460 value 123.407267
## iter 470 value 120.238405
## iter 480 value 118.793030
## iter 490 value 117.143551
## iter 500 value 113.849053
## final value 113.849053
## stopped after 500 iterations
## # weights: 241
## initial value 1389790.278838
## iter 10 value 1263.565629
## iter 20 value 793.948900
## iter 30 value 632.273659
## iter 40 value 520.049714
## iter 50 value 407.226424
## iter 60 value 347.868354
## iter 70 value 310.508556
## iter 80 value 279.572911
## iter 90 value 246.255188
## iter 100 value 212.968424
## iter 110 value 187.778570
## iter 120 value 169.578705
## iter 130 value 159.193569
## iter 140 value 151.159279
## iter 150 value 142.326458
## iter 160 value 134.003837
## iter 170 value 123.380027
## iter 180 value 116.739004
## iter 190 value 109.334043
## iter 200 value 104.365390
## iter 210 value 100.136316
## iter 220 value 97.064740
## iter 230 value 93.927804
## iter 240 value 88.875125
## iter 250 value 86.337503
## iter 260 value 83.020601
## iter 270 value 80.476937
## iter 280 value 78.064533
## iter 290 value 76.258054
## iter 300 value 74.680371
## iter 310 value 73.122328
## iter 320 value 71.469310
## iter 330 value 69.455467
## iter 340 value 67.549627
## iter 350 value 65.934425
## iter 360 value 64.218492
## iter 370 value 62.305616
## iter 380 value 60.605498
## iter 390 value 59.204247
## iter 400 value 57.526085
## iter 410 value 55.349930
## iter 420 value 53.616819
## iter 430 value 52.351348
## iter 440 value 51.393803
## iter 450 value 50.241243
## iter 460 value 48.883759
## iter 470 value 47.611422
## iter 480 value 46.592423
## iter 490 value 46.342161
## iter 500 value 46.248030
## final value 46.248030
## stopped after 500 iterations
## # weights: 25
## initial value 1386822.146307
## iter 10 value 14758.691254
## iter 20 value 13613.304801
## iter 30 value 8755.508514
## iter 40 value 4991.430592
## iter 50 value 3005.528418
## iter 60 value 2621.036090
## iter 70 value 2147.142279
## iter 80 value 1257.147981
## iter 90 value 1161.661720
## iter 100 value 1109.774475
## iter 110 value 1092.326060
## iter 120 value 1082.133413
## iter 130 value 1067.663090
## iter 140 value 1060.198884
## iter 150 value 1055.210596
## iter 160 value 1053.988824
## iter 170 value 1053.731418
## iter 180 value 1052.494035
## iter 190 value 1050.944192
## iter 200 value 1050.132522
## iter 210 value 1049.156963
## iter 220 value 1049.144095
## iter 230 value 1048.981006
## iter 240 value 1048.606674
## iter 250 value 1048.380446
## iter 260 value 1047.970885
## final value 1047.970373
## converged
## # weights: 61
## initial value 1364692.269724
## iter 10 value 14569.135330
## iter 20 value 1891.128270
## iter 30 value 1454.398815
## iter 40 value 1049.877971
## iter 50 value 859.491542
## iter 60 value 779.312336
## iter 70 value 755.070073
## iter 80 value 724.757249
## iter 90 value 714.987765
## iter 100 value 701.640617
## iter 110 value 685.953080
## iter 120 value 649.384215
## iter 130 value 635.876683
## iter 140 value 631.082722
## iter 150 value 624.505241
## iter 160 value 622.794205
## iter 170 value 621.416019
## iter 180 value 620.298981
## iter 190 value 619.023519
## iter 200 value 618.746234
## iter 210 value 618.672495
## iter 220 value 618.426620
## iter 230 value 618.277612
## iter 240 value 616.757977
## iter 250 value 610.268468
## iter 260 value 605.363652
## iter 270 value 602.949895
## iter 280 value 601.682288
## iter 290 value 600.983493
## iter 300 value 600.940224
## iter 310 value 600.870214
## iter 320 value 600.743880
## iter 330 value 600.732386
## iter 340 value 600.696382
## iter 350 value 600.211524
## iter 360 value 595.784453
## iter 370 value 594.303371
## iter 380 value 594.256917
## iter 390 value 594.252164
## iter 400 value 594.246596
## iter 410 value 594.144556
## iter 420 value 594.056982
## iter 430 value 594.029995
## iter 440 value 593.987343
## iter 450 value 593.747009
## iter 460 value 593.548432
## iter 470 value 593.465973
## iter 480 value 593.433626
## iter 490 value 593.366650
## iter 500 value 593.331932
## final value 593.331932
## stopped after 500 iterations
## # weights: 121
## initial value 1380306.925375
## iter 10 value 1796.975280
## iter 20 value 956.682140
## iter 30 value 730.590416
## iter 40 value 648.999940
## iter 50 value 574.828066
## iter 60 value 526.571574
## iter 70 value 488.096177
## iter 80 value 466.317588
## iter 90 value 450.726358
## iter 100 value 420.909893
## iter 110 value 390.946389
## iter 120 value 381.265758
## iter 130 value 369.243039
## iter 140 value 362.628998
## iter 150 value 355.243032
## iter 160 value 346.734662
## iter 170 value 340.188420
## iter 180 value 333.848740
## iter 190 value 329.395647
## iter 200 value 327.441805
## iter 210 value 325.773196
## iter 220 value 322.687089
## iter 230 value 317.942934
## iter 240 value 315.072677
## iter 250 value 314.434756
## iter 260 value 314.282927
## iter 270 value 313.841842
## iter 280 value 312.618385
## iter 290 value 311.798407
## iter 300 value 311.148985
## iter 310 value 310.174415
## iter 320 value 309.101831
## iter 330 value 307.728284
## iter 340 value 305.756319
## iter 350 value 305.330433
## iter 360 value 305.173889
## iter 370 value 304.911819
## iter 380 value 304.316681
## iter 390 value 303.547096
## iter 400 value 303.297998
## iter 410 value 303.247007
## iter 420 value 303.117714
## iter 430 value 302.848002
## iter 440 value 302.651211
## iter 450 value 302.576747
## iter 460 value 302.498832
## iter 470 value 302.344937
## iter 480 value 302.210673
## iter 490 value 302.008628
## iter 500 value 302.002043
## final value 302.002043
## stopped after 500 iterations
## # weights: 181
## initial value 1374834.001642
## iter 10 value 1041.763264
## iter 20 value 753.462948
## iter 30 value 630.508967
## iter 40 value 536.934338
## iter 50 value 461.531264
## iter 60 value 430.049964
## iter 70 value 399.533571
## iter 80 value 371.573880
## iter 90 value 346.650688
## iter 100 value 320.754454
## iter 110 value 305.563875
## iter 120 value 295.607409
## iter 130 value 279.495763
## iter 140 value 264.526390
## iter 150 value 245.489088
## iter 160 value 233.442654
## iter 170 value 220.266882
## iter 180 value 208.751093
## iter 190 value 195.641029
## iter 200 value 186.163638
## iter 210 value 176.447340
## iter 220 value 167.362909
## iter 230 value 160.729707
## iter 240 value 155.176391
## iter 250 value 150.545048
## iter 260 value 146.949657
## iter 270 value 143.719608
## iter 280 value 139.244742
## iter 290 value 136.821424
## iter 300 value 135.057174
## iter 310 value 133.290552
## iter 320 value 132.388302
## iter 330 value 131.223890
## iter 340 value 130.216436
## iter 350 value 129.212844
## iter 360 value 128.425485
## iter 370 value 128.191847
## iter 380 value 128.162997
## iter 390 value 128.083893
## iter 400 value 127.942262
## iter 410 value 127.649829
## iter 420 value 127.139189
## iter 430 value 126.668606
## iter 440 value 126.159912
## iter 450 value 125.450507
## iter 460 value 124.625467
## iter 470 value 123.465608
## iter 480 value 121.995942
## iter 490 value 119.570577
## iter 500 value 118.379093
## final value 118.379093
## stopped after 500 iterations
## # weights: 241
## initial value 1433425.845934
## iter 10 value 1418.347192
## iter 20 value 848.451721
## iter 30 value 651.940273
## iter 40 value 514.993324
## iter 50 value 428.626059
## iter 60 value 361.363296
## iter 70 value 307.808712
## iter 80 value 279.274923
## iter 90 value 245.555383
## iter 100 value 220.156774
## iter 110 value 200.180852
## iter 120 value 182.727169
## iter 130 value 167.284332
## iter 140 value 153.572687
## iter 150 value 144.546942
## iter 160 value 133.758743
## iter 170 value 126.032042
## iter 180 value 119.364127
## iter 190 value 111.435947
## iter 200 value 105.706657
## iter 210 value 100.898103
## iter 220 value 96.323629
## iter 230 value 93.341106
## iter 240 value 89.343520
## iter 250 value 84.195830
## iter 260 value 78.843328
## iter 270 value 73.789160
## iter 280 value 70.342980
## iter 290 value 67.843959
## iter 300 value 66.253075
## iter 310 value 64.765701
## iter 320 value 63.268244
## iter 330 value 61.849995
## iter 340 value 60.674126
## iter 350 value 59.329761
## iter 360 value 58.490432
## iter 370 value 58.023112
## iter 380 value 57.575610
## iter 390 value 56.854088
## iter 400 value 56.186604
## iter 410 value 55.612506
## iter 420 value 54.813184
## iter 430 value 53.935890
## iter 440 value 53.499389
## iter 450 value 52.896335
## iter 460 value 52.027712
## iter 470 value 51.287010
## iter 480 value 50.592392
## iter 490 value 50.206121
## iter 500 value 50.072026
## final value 50.072026
## stopped after 500 iterations
## # weights: 25
## initial value 1386845.219292
## iter 10 value 6234.479225
## iter 20 value 5406.964881
## iter 30 value 5356.124906
## iter 40 value 5350.207260
## iter 50 value 5340.630402
## iter 60 value 5297.997641
## iter 70 value 5276.670635
## iter 80 value 5214.360104
## iter 90 value 4663.959358
## iter 100 value 2984.359093
## iter 110 value 1594.270374
## iter 120 value 1362.043905
## iter 130 value 1331.732543
## iter 140 value 1302.732600
## iter 150 value 1286.217848
## iter 160 value 1281.932086
## iter 170 value 1279.866320
## iter 180 value 1278.789596
## iter 190 value 1278.392124
## iter 200 value 1277.449697
## iter 210 value 1277.087888
## iter 220 value 1277.008591
## iter 220 value 1277.008589
## final value 1277.008543
## converged
## # weights: 61
## initial value 1398990.272598
## iter 10 value 300254.329701
## iter 20 value 17563.231329
## iter 30 value 10215.571366
## iter 40 value 6200.663432
## iter 50 value 3771.642449
## iter 60 value 1990.800145
## iter 70 value 1240.192049
## iter 80 value 976.883910
## iter 90 value 918.298142
## iter 100 value 867.222602
## iter 110 value 836.188787
## iter 120 value 784.152801
## iter 130 value 759.369803
## iter 140 value 754.520122
## iter 150 value 741.451391
## iter 160 value 727.393741
## iter 170 value 711.333201
## iter 180 value 696.666318
## iter 190 value 685.020378
## iter 200 value 674.604879
## iter 210 value 667.370293
## iter 220 value 665.023372
## iter 230 value 660.756506
## iter 240 value 652.992470
## iter 250 value 649.435856
## iter 260 value 649.284499
## iter 270 value 648.703618
## iter 280 value 647.597440
## iter 290 value 646.265642
## iter 300 value 645.384172
## iter 310 value 644.820615
## iter 320 value 644.039012
## iter 330 value 643.728189
## iter 340 value 640.170921
## iter 350 value 637.539117
## iter 360 value 636.065879
## iter 370 value 633.465009
## iter 380 value 633.042814
## iter 390 value 632.782505
## iter 400 value 632.750505
## iter 410 value 632.660685
## iter 420 value 632.341191
## iter 430 value 631.787403
## iter 440 value 631.584815
## iter 450 value 630.813054
## iter 460 value 628.532258
## iter 470 value 624.910962
## iter 480 value 616.279701
## iter 490 value 609.244685
## iter 500 value 605.962555
## final value 605.962555
## stopped after 500 iterations
## # weights: 121
## initial value 1294845.386479
## iter 10 value 3143.101005
## iter 20 value 1378.632729
## iter 30 value 883.265741
## iter 40 value 657.668806
## iter 50 value 539.714600
## iter 60 value 481.895520
## iter 70 value 448.040850
## iter 80 value 428.097304
## iter 90 value 411.906951
## iter 100 value 394.012376
## iter 110 value 375.478782
## iter 120 value 366.802302
## iter 130 value 356.457617
## iter 140 value 336.086046
## iter 150 value 324.733302
## iter 160 value 319.451380
## iter 170 value 313.457866
## iter 180 value 308.023178
## iter 190 value 304.468976
## iter 200 value 299.497429
## iter 210 value 296.604846
## iter 220 value 293.486605
## iter 230 value 291.807898
## iter 240 value 290.595371
## iter 250 value 289.005105
## iter 260 value 287.824966
## iter 270 value 286.178377
## iter 280 value 282.250462
## iter 290 value 279.485224
## iter 300 value 274.483384
## iter 310 value 271.181324
## iter 320 value 266.693185
## iter 330 value 263.318588
## iter 340 value 260.122163
## iter 350 value 257.678373
## iter 360 value 257.345367
## iter 370 value 257.029698
## iter 380 value 256.519825
## iter 390 value 255.993569
## iter 400 value 255.602315
## iter 410 value 255.373675
## iter 420 value 254.972708
## iter 430 value 254.790765
## iter 440 value 254.715969
## iter 450 value 254.668313
## iter 460 value 254.612589
## iter 470 value 254.553764
## iter 480 value 254.507317
## iter 490 value 254.491763
## iter 500 value 254.491273
## final value 254.491273
## stopped after 500 iterations
## # weights: 181
## initial value 1398210.103005
## iter 10 value 1211.759364
## iter 20 value 789.957312
## iter 30 value 598.807709
## iter 40 value 460.262528
## iter 50 value 374.926380
## iter 60 value 326.548254
## iter 70 value 293.543312
## iter 80 value 248.195114
## iter 90 value 229.732562
## iter 100 value 211.842193
## iter 110 value 200.975140
## iter 120 value 192.633301
## iter 130 value 186.991528
## iter 140 value 181.741896
## iter 150 value 176.564284
## iter 160 value 170.555251
## iter 170 value 164.676218
## iter 180 value 159.344026
## iter 190 value 155.962911
## iter 200 value 153.682668
## iter 210 value 149.764170
## iter 220 value 145.288855
## iter 230 value 140.781665
## iter 240 value 137.807980
## iter 250 value 134.672404
## iter 260 value 131.663121
## iter 270 value 128.546234
## iter 280 value 125.395541
## iter 290 value 122.945153
## iter 300 value 121.198671
## iter 310 value 117.891340
## iter 320 value 115.296904
## iter 330 value 112.638274
## iter 340 value 110.519754
## iter 350 value 108.989938
## iter 360 value 107.715602
## iter 370 value 107.145638
## iter 380 value 106.879029
## iter 390 value 106.289640
## iter 400 value 105.711425
## iter 410 value 104.831169
## iter 420 value 104.452535
## iter 430 value 104.155444
## iter 440 value 103.651788
## iter 450 value 102.966424
## iter 460 value 102.442953
## iter 470 value 101.882753
## iter 480 value 101.559917
## iter 490 value 101.295982
## iter 500 value 101.069302
## final value 101.069302
## stopped after 500 iterations
## # weights: 241
## initial value 1459404.043101
## iter 10 value 1486.503902
## iter 20 value 856.155235
## iter 30 value 643.226072
## iter 40 value 465.143008
## iter 50 value 355.763037
## iter 60 value 298.920475
## iter 70 value 254.775556
## iter 80 value 218.204974
## iter 90 value 184.268593
## iter 100 value 166.339803
## iter 110 value 151.753736
## iter 120 value 138.054342
## iter 130 value 126.414446
## iter 140 value 116.779863
## iter 150 value 110.109757
## iter 160 value 105.083876
## iter 170 value 100.293631
## iter 180 value 95.433625
## iter 190 value 92.439980
## iter 200 value 89.161658
## iter 210 value 85.004467
## iter 220 value 79.555503
## iter 230 value 75.010279
## iter 240 value 72.023815
## iter 250 value 69.895407
## iter 260 value 68.197122
## iter 270 value 65.957895
## iter 280 value 64.203616
## iter 290 value 62.551615
## iter 300 value 60.535929
## iter 310 value 59.233305
## iter 320 value 58.170379
## iter 330 value 57.059287
## iter 340 value 55.942992
## iter 350 value 55.151995
## iter 360 value 54.619430
## iter 370 value 54.107868
## iter 380 value 53.779659
## iter 390 value 53.451496
## iter 400 value 53.128894
## iter 410 value 52.851728
## iter 420 value 52.613213
## iter 430 value 52.204536
## iter 440 value 51.832136
## iter 450 value 51.355028
## iter 460 value 50.910264
## iter 470 value 50.599515
## iter 480 value 50.340153
## iter 490 value 50.196699
## iter 500 value 50.151775
## final value 50.151775
## stopped after 500 iterations
## # weights: 25
## initial value 1348348.568952
## iter 10 value 16521.196490
## iter 20 value 16513.519187
## iter 30 value 16511.529537
## iter 40 value 16510.226362
## iter 50 value 16386.286072
## iter 60 value 11092.568026
## iter 70 value 4972.688104
## iter 80 value 4380.726480
## iter 90 value 2642.819615
## iter 100 value 1536.097036
## iter 110 value 1364.388184
## iter 120 value 1351.265650
## iter 130 value 1323.585662
## iter 140 value 1304.025848
## iter 150 value 1298.032747
## iter 160 value 1296.225809
## iter 170 value 1294.495974
## iter 180 value 1291.470218
## iter 190 value 1290.894359
## final value 1290.791926
## converged
## # weights: 61
## initial value 1396640.521541
## iter 10 value 4735.734594
## iter 20 value 3431.801461
## iter 30 value 2729.839993
## iter 40 value 1810.630954
## iter 50 value 1263.671301
## iter 60 value 1088.124646
## iter 70 value 1026.108606
## iter 80 value 955.404618
## iter 90 value 874.225475
## iter 100 value 848.252381
## iter 110 value 834.146056
## iter 120 value 812.637153
## iter 130 value 788.429505
## iter 140 value 761.760663
## iter 150 value 732.542376
## iter 160 value 712.281087
## iter 170 value 683.564423
## iter 180 value 649.834224
## iter 190 value 635.224130
## iter 200 value 617.509948
## iter 210 value 610.111253
## iter 220 value 607.551811
## iter 230 value 606.602745
## iter 240 value 603.385901
## iter 250 value 598.628657
## iter 260 value 592.881351
## iter 270 value 583.193944
## iter 280 value 574.091850
## iter 290 value 567.869939
## iter 300 value 563.742917
## iter 310 value 562.954203
## iter 320 value 561.805471
## iter 330 value 560.643147
## iter 340 value 560.401149
## iter 350 value 560.396960
## iter 360 value 560.383085
## iter 370 value 560.355335
## iter 380 value 560.275899
## iter 390 value 560.233462
## iter 400 value 560.228906
## iter 410 value 560.227107
## final value 560.226619
## converged
## # weights: 121
## initial value 1348256.371483
## iter 10 value 1482.302039
## iter 20 value 891.019299
## iter 30 value 729.297626
## iter 40 value 635.054310
## iter 50 value 576.609604
## iter 60 value 502.418666
## iter 70 value 470.147482
## iter 80 value 449.127288
## iter 90 value 419.145150
## iter 100 value 391.010236
## iter 110 value 377.403800
## iter 120 value 368.340699
## iter 130 value 360.325957
## iter 140 value 355.895272
## iter 150 value 348.027086
## iter 160 value 341.082669
## iter 170 value 337.704146
## iter 180 value 334.427184
## iter 190 value 331.657082
## iter 200 value 329.952044
## iter 210 value 327.942152
## iter 220 value 325.872857
## iter 230 value 323.828099
## iter 240 value 322.660892
## iter 250 value 322.151421
## iter 260 value 322.028181
## iter 270 value 321.750831
## iter 280 value 321.410148
## iter 290 value 320.444048
## iter 300 value 318.534927
## iter 310 value 316.373709
## iter 320 value 314.307332
## iter 330 value 309.381160
## iter 340 value 307.301700
## iter 350 value 306.296468
## iter 360 value 305.998798
## iter 370 value 305.846880
## iter 380 value 305.755962
## iter 390 value 305.735937
## iter 400 value 305.670328
## iter 410 value 305.031412
## iter 420 value 304.667012
## iter 430 value 304.610438
## iter 440 value 304.566569
## iter 450 value 304.497683
## iter 460 value 304.421004
## iter 470 value 304.087328
## iter 480 value 303.883454
## iter 490 value 303.816294
## iter 500 value 303.785664
## final value 303.785664
## stopped after 500 iterations
## # weights: 181
## initial value 1445155.065072
## iter 10 value 1612.195514
## iter 20 value 863.589961
## iter 30 value 611.124240
## iter 40 value 521.158031
## iter 50 value 420.536551
## iter 60 value 338.363160
## iter 70 value 308.064454
## iter 80 value 286.373679
## iter 90 value 272.674227
## iter 100 value 261.049460
## iter 110 value 253.363119
## iter 120 value 245.548995
## iter 130 value 239.247472
## iter 140 value 232.041641
## iter 150 value 225.784434
## iter 160 value 221.199671
## iter 170 value 217.937491
## iter 180 value 215.066282
## iter 190 value 211.069815
## iter 200 value 208.297822
## iter 210 value 206.954880
## iter 220 value 204.173804
## iter 230 value 200.044367
## iter 240 value 197.843177
## iter 250 value 196.753830
## iter 260 value 195.994183
## iter 270 value 195.094603
## iter 280 value 192.421969
## iter 290 value 190.297561
## iter 300 value 188.987167
## iter 310 value 188.065129
## iter 320 value 187.293543
## iter 330 value 186.867012
## iter 340 value 186.340055
## iter 350 value 185.687692
## iter 360 value 184.328675
## iter 370 value 182.653736
## iter 380 value 181.963533
## iter 390 value 180.267459
## iter 400 value 178.371729
## iter 410 value 174.800284
## iter 420 value 169.932697
## iter 430 value 165.504277
## iter 440 value 162.163749
## iter 450 value 160.198875
## iter 460 value 158.661723
## iter 470 value 157.245569
## iter 480 value 155.577815
## iter 490 value 154.271843
## iter 500 value 153.429292
## final value 153.429292
## stopped after 500 iterations
## # weights: 241
## initial value 1409936.961826
## iter 10 value 1074.598124
## iter 20 value 799.530464
## iter 30 value 673.827798
## iter 40 value 530.852029
## iter 50 value 436.929998
## iter 60 value 365.147352
## iter 70 value 327.504515
## iter 80 value 289.654408
## iter 90 value 251.539523
## iter 100 value 225.657049
## iter 110 value 205.715962
## iter 120 value 183.333877
## iter 130 value 170.383326
## iter 140 value 161.498266
## iter 150 value 152.583423
## iter 160 value 145.671386
## iter 170 value 139.467493
## iter 180 value 131.873794
## iter 190 value 120.861561
## iter 200 value 116.355138
## iter 210 value 110.624756
## iter 220 value 104.948002
## iter 230 value 99.151733
## iter 240 value 94.737263
## iter 250 value 89.409982
## iter 260 value 85.117986
## iter 270 value 81.435695
## iter 280 value 77.388827
## iter 290 value 74.122955
## iter 300 value 71.216731
## iter 310 value 67.632336
## iter 320 value 65.786146
## iter 330 value 64.191643
## iter 340 value 62.577057
## iter 350 value 61.492389
## iter 360 value 60.354464
## iter 370 value 58.582051
## iter 380 value 57.522936
## iter 390 value 56.611027
## iter 400 value 55.708567
## iter 410 value 54.498988
## iter 420 value 53.826479
## iter 430 value 53.271556
## iter 440 value 52.953259
## iter 450 value 52.727548
## iter 460 value 52.520889
## iter 470 value 52.370173
## iter 480 value 52.191273
## iter 490 value 52.086549
## iter 500 value 52.061239
## final value 52.061239
## stopped after 500 iterations
## # weights: 25
## initial value 1373823.877108
## iter 10 value 8346.833099
## iter 20 value 7317.507624
## iter 30 value 5736.358830
## iter 40 value 4837.763140
## iter 50 value 3976.395594
## iter 60 value 2609.910168
## iter 70 value 2061.369149
## iter 80 value 1589.035749
## iter 90 value 1377.114427
## iter 100 value 1265.699358
## iter 110 value 1215.465328
## iter 120 value 1203.826230
## iter 130 value 1158.823290
## iter 140 value 1132.622241
## iter 150 value 1131.544574
## iter 160 value 1131.440096
## iter 170 value 1131.436787
## iter 170 value 1131.436781
## final value 1131.436061
## converged
## # weights: 61
## initial value 1364399.719744
## iter 10 value 12411.792567
## iter 20 value 4385.524585
## iter 30 value 3306.080165
## iter 40 value 2381.877519
## iter 50 value 1800.919025
## iter 60 value 1450.703771
## iter 70 value 1281.875946
## iter 80 value 1169.404774
## iter 90 value 1093.636862
## iter 100 value 1050.375105
## iter 110 value 1016.363968
## iter 120 value 984.641656
## iter 130 value 943.291833
## iter 140 value 935.838769
## iter 150 value 926.006264
## iter 160 value 915.340078
## iter 170 value 905.719883
## iter 180 value 899.501033
## iter 190 value 889.741915
## iter 200 value 885.612599
## iter 210 value 880.076582
## iter 220 value 870.160674
## iter 230 value 854.023507
## iter 240 value 849.554827
## iter 250 value 847.219122
## iter 260 value 846.411616
## iter 270 value 845.334312
## iter 280 value 840.934147
## iter 290 value 836.448128
## iter 300 value 832.198823
## iter 310 value 829.872270
## iter 320 value 828.380135
## iter 330 value 828.191698
## final value 828.188391
## converged
## # weights: 121
## initial value 1356509.974064
## iter 10 value 1352.283819
## iter 20 value 1021.570701
## iter 30 value 852.018777
## iter 40 value 763.744886
## iter 50 value 705.815262
## iter 60 value 654.014585
## iter 70 value 629.357613
## iter 80 value 609.806058
## iter 90 value 592.569539
## iter 100 value 576.163000
## iter 110 value 568.861813
## iter 120 value 564.598316
## iter 130 value 559.927610
## iter 140 value 554.686089
## iter 150 value 544.723541
## iter 160 value 537.692386
## iter 170 value 531.633504
## iter 180 value 527.056981
## iter 190 value 525.129761
## iter 200 value 523.605036
## iter 210 value 522.857258
## iter 220 value 522.355931
## iter 230 value 521.993979
## iter 240 value 521.869306
## iter 250 value 521.825514
## iter 260 value 521.794785
## iter 270 value 521.754447
## iter 280 value 521.691793
## iter 290 value 521.275867
## iter 300 value 519.686553
## iter 310 value 518.397664
## iter 320 value 517.893704
## iter 330 value 517.409070
## iter 340 value 517.014686
## iter 350 value 516.600890
## iter 360 value 515.868488
## iter 370 value 515.790898
## iter 380 value 515.785372
## final value 515.785339
## converged
## # weights: 181
## initial value 1336743.119793
## iter 10 value 1271.872298
## iter 20 value 887.296210
## iter 30 value 734.820821
## iter 40 value 637.274875
## iter 50 value 595.848226
## iter 60 value 553.364815
## iter 70 value 523.914196
## iter 80 value 506.813947
## iter 90 value 494.619346
## iter 100 value 483.631667
## iter 110 value 476.547829
## iter 120 value 470.114906
## iter 130 value 461.301889
## iter 140 value 456.371675
## iter 150 value 451.288071
## iter 160 value 444.605983
## iter 170 value 439.253968
## iter 180 value 436.218404
## iter 190 value 434.361932
## iter 200 value 432.991508
## iter 210 value 431.420930
## iter 220 value 429.305871
## iter 230 value 426.505852
## iter 240 value 424.578481
## iter 250 value 422.395024
## iter 260 value 418.544733
## iter 270 value 414.049453
## iter 280 value 410.657265
## iter 290 value 407.781410
## iter 300 value 405.979941
## iter 310 value 403.688532
## iter 320 value 401.693440
## iter 330 value 400.455367
## iter 340 value 400.020235
## iter 350 value 399.738381
## iter 360 value 399.521537
## iter 370 value 399.439507
## iter 380 value 399.346929
## iter 390 value 399.202045
## iter 400 value 399.058412
## iter 410 value 398.970161
## iter 420 value 398.888930
## iter 430 value 398.827606
## iter 440 value 398.584730
## iter 450 value 397.597378
## iter 460 value 396.357425
## iter 470 value 395.271910
## iter 480 value 393.549059
## iter 490 value 391.942472
## iter 500 value 390.676871
## final value 390.676871
## stopped after 500 iterations
## # weights: 241
## initial value 1399192.634958
## iter 10 value 1650.521607
## iter 20 value 975.523645
## iter 30 value 768.177963
## iter 40 value 665.977503
## iter 50 value 570.613723
## iter 60 value 517.907833
## iter 70 value 482.681104
## iter 80 value 463.018172
## iter 90 value 441.662705
## iter 100 value 427.635038
## iter 110 value 415.483999
## iter 120 value 404.646058
## iter 130 value 398.789124
## iter 140 value 394.964420
## iter 150 value 392.053515
## iter 160 value 388.803196
## iter 170 value 386.388577
## iter 180 value 383.956446
## iter 190 value 381.459073
## iter 200 value 379.465445
## iter 210 value 376.858117
## iter 220 value 373.692316
## iter 230 value 370.064071
## iter 240 value 367.178500
## iter 250 value 364.099852
## iter 260 value 361.017839
## iter 270 value 358.132685
## iter 280 value 356.364485
## iter 290 value 354.692926
## iter 300 value 353.855252
## iter 310 value 353.189226
## iter 320 value 352.674380
## iter 330 value 352.349086
## iter 340 value 351.833982
## iter 350 value 350.802342
## iter 360 value 349.838105
## iter 370 value 348.887282
## iter 380 value 347.971209
## iter 390 value 347.376435
## iter 400 value 346.983460
## iter 410 value 346.783310
## iter 420 value 346.637376
## iter 430 value 346.462829
## iter 440 value 346.341123
## iter 450 value 346.242188
## iter 460 value 346.179828
## iter 470 value 346.134334
## iter 480 value 346.098322
## iter 490 value 346.079459
## iter 500 value 346.043604
## final value 346.043604
## stopped after 500 iterations
## # weights: 25
## initial value 1403786.083865
## iter 10 value 109090.575854
## iter 20 value 12235.275131
## iter 30 value 10458.293873
## iter 40 value 7729.915632
## iter 50 value 7098.728154
## iter 60 value 6936.036218
## iter 70 value 6845.601719
## iter 80 value 6831.785691
## iter 90 value 5306.701518
## iter 100 value 5273.013103
## iter 110 value 5161.193596
## iter 120 value 5115.887293
## iter 130 value 5036.311116
## iter 140 value 4924.146262
## iter 150 value 4875.879097
## iter 160 value 4874.923199
## iter 170 value 4874.905242
## iter 180 value 4874.893180
## iter 190 value 4874.847029
## iter 200 value 4874.809686
## iter 210 value 4874.799255
## iter 220 value 4851.453366
## iter 230 value 4849.099113
## iter 240 value 4846.060725
## iter 250 value 4843.024676
## iter 260 value 4842.887685
## final value 4842.871187
## converged
## # weights: 61
## initial value 1393088.021461
## iter 10 value 3260.795846
## iter 20 value 1384.820038
## iter 30 value 1155.267180
## iter 40 value 994.360390
## iter 50 value 869.922356
## iter 60 value 785.870009
## iter 70 value 731.120828
## iter 80 value 678.912984
## iter 90 value 659.770267
## iter 100 value 649.324934
## iter 110 value 643.098544
## iter 120 value 639.799592
## iter 130 value 639.135584
## iter 140 value 638.384518
## iter 150 value 636.736730
## iter 160 value 633.972176
## iter 170 value 628.206410
## iter 180 value 616.282653
## iter 190 value 595.848528
## iter 200 value 569.711816
## iter 210 value 553.979811
## iter 220 value 545.787447
## iter 230 value 534.945899
## iter 240 value 527.557535
## iter 250 value 525.554159
## iter 260 value 525.277297
## iter 270 value 523.367951
## iter 280 value 521.871232
## iter 290 value 520.658230
## iter 300 value 520.458818
## iter 310 value 518.787633
## iter 320 value 512.649611
## iter 330 value 512.040457
## iter 340 value 511.492133
## iter 350 value 509.990577
## iter 360 value 508.364601
## iter 370 value 508.250028
## iter 380 value 508.247649
## iter 390 value 508.231024
## iter 400 value 508.211727
## iter 410 value 508.064736
## iter 420 value 507.918188
## iter 430 value 507.804248
## iter 440 value 507.720711
## iter 450 value 507.574598
## iter 460 value 507.561893
## iter 470 value 507.561175
## iter 480 value 507.558771
## iter 490 value 507.550793
## final value 507.550416
## converged
## # weights: 121
## initial value 1412465.598450
## iter 10 value 3644.689711
## iter 20 value 1284.277922
## iter 30 value 927.686067
## iter 40 value 858.829070
## iter 50 value 826.437010
## iter 60 value 792.697973
## iter 70 value 734.664321
## iter 80 value 705.302068
## iter 90 value 669.431413
## iter 100 value 615.021180
## iter 110 value 585.162706
## iter 120 value 561.139588
## iter 130 value 531.179863
## iter 140 value 514.026613
## iter 150 value 504.161953
## iter 160 value 490.860952
## iter 170 value 482.631429
## iter 180 value 481.610414
## iter 190 value 479.876922
## iter 200 value 477.322793
## iter 210 value 476.408946
## iter 220 value 476.174850
## iter 230 value 475.395736
## iter 240 value 474.708554
## iter 250 value 473.786295
## iter 260 value 473.523383
## iter 270 value 473.304851
## iter 280 value 472.774154
## iter 290 value 472.398132
## iter 300 value 471.855370
## iter 310 value 470.562349
## iter 320 value 469.715299
## iter 330 value 469.553279
## iter 340 value 469.370841
## iter 350 value 468.942093
## iter 360 value 468.300864
## iter 370 value 468.043216
## iter 380 value 467.725542
## iter 390 value 467.626573
## iter 400 value 467.561666
## iter 410 value 467.513369
## iter 420 value 467.451402
## iter 430 value 467.431944
## iter 440 value 467.405126
## iter 450 value 467.400114
## iter 460 value 467.398315
## final value 467.397823
## converged
## # weights: 181
## initial value 1378212.034278
## iter 10 value 1703.541153
## iter 20 value 1101.212112
## iter 30 value 731.917070
## iter 40 value 568.798338
## iter 50 value 462.899902
## iter 60 value 398.317097
## iter 70 value 360.462422
## iter 80 value 327.909791
## iter 90 value 304.697749
## iter 100 value 282.805433
## iter 110 value 262.578836
## iter 120 value 245.889765
## iter 130 value 229.466097
## iter 140 value 215.270058
## iter 150 value 207.713023
## iter 160 value 200.510845
## iter 170 value 195.583108
## iter 180 value 192.284509
## iter 190 value 188.651419
## iter 200 value 185.605565
## iter 210 value 183.961976
## iter 220 value 182.321087
## iter 230 value 181.391753
## iter 240 value 180.220902
## iter 250 value 178.327857
## iter 260 value 176.647529
## iter 270 value 173.243753
## iter 280 value 170.589587
## iter 290 value 168.088739
## iter 300 value 165.664329
## iter 310 value 164.400616
## iter 320 value 163.630390
## iter 330 value 162.671111
## iter 340 value 161.375750
## iter 350 value 159.708574
## iter 360 value 158.172092
## iter 370 value 157.059211
## iter 380 value 156.773046
## iter 390 value 156.177545
## iter 400 value 154.012173
## iter 410 value 150.051945
## iter 420 value 143.356092
## iter 430 value 139.358932
## iter 440 value 137.001456
## iter 450 value 135.145501
## iter 460 value 133.658801
## iter 470 value 132.715739
## iter 480 value 131.910983
## iter 490 value 131.344263
## iter 500 value 130.791752
## final value 130.791752
## stopped after 500 iterations
## # weights: 241
## initial value 1414928.952290
## iter 10 value 1112.083537
## iter 20 value 820.314474
## iter 30 value 627.938497
## iter 40 value 471.243433
## iter 50 value 352.983889
## iter 60 value 304.959582
## iter 70 value 263.290683
## iter 80 value 200.116239
## iter 90 value 156.462294
## iter 100 value 126.919666
## iter 110 value 108.706463
## iter 120 value 99.617129
## iter 130 value 92.514948
## iter 140 value 86.640786
## iter 150 value 80.254759
## iter 160 value 74.218510
## iter 170 value 68.952178
## iter 180 value 65.317075
## iter 190 value 62.231048
## iter 200 value 59.476403
## iter 210 value 56.405730
## iter 220 value 52.293064
## iter 230 value 47.774677
## iter 240 value 45.708373
## iter 250 value 43.545619
## iter 260 value 41.375606
## iter 270 value 38.989487
## iter 280 value 36.060379
## iter 290 value 34.187959
## iter 300 value 32.880289
## iter 310 value 31.892459
## iter 320 value 31.052977
## iter 330 value 30.432835
## iter 340 value 29.467565
## iter 350 value 28.509170
## iter 360 value 27.523931
## iter 370 value 26.181882
## iter 380 value 25.403279
## iter 390 value 24.759019
## iter 400 value 24.351240
## iter 410 value 24.029185
## iter 420 value 23.818087
## iter 430 value 23.649284
## iter 440 value 23.488856
## iter 450 value 23.266357
## iter 460 value 22.540332
## iter 470 value 22.050322
## iter 480 value 21.749350
## iter 490 value 21.343178
## iter 500 value 21.085269
## final value 21.085269
## stopped after 500 iterations
## # weights: 25
## initial value 1403838.724969
## iter 10 value 467805.038397
## iter 20 value 11392.209253
## iter 30 value 8422.305423
## iter 40 value 7850.990075
## iter 50 value 6677.790107
## iter 60 value 6274.880099
## iter 70 value 6249.848331
## final value 6249.769698
## converged
## # weights: 61
## initial value 1355728.880421
## iter 10 value 10407.679513
## iter 20 value 5099.180005
## iter 30 value 3987.600455
## iter 40 value 3546.285167
## iter 50 value 2324.452152
## iter 60 value 1358.978036
## iter 70 value 1094.979872
## iter 80 value 1013.692245
## iter 90 value 982.523732
## iter 100 value 969.702595
## iter 110 value 957.274600
## iter 120 value 940.949276
## iter 130 value 916.360015
## iter 140 value 902.921530
## iter 150 value 871.075490
## iter 160 value 867.281607
## iter 170 value 860.376931
## iter 180 value 852.532379
## iter 190 value 844.571415
## iter 200 value 833.322692
## iter 210 value 831.413157
## iter 220 value 818.966745
## iter 230 value 803.113286
## iter 240 value 790.685463
## iter 250 value 781.799586
## iter 260 value 776.535270
## iter 270 value 773.907870
## iter 280 value 772.368616
## iter 290 value 770.129233
## iter 300 value 768.860095
## iter 310 value 767.879103
## iter 320 value 767.274230
## iter 330 value 767.147535
## iter 340 value 767.092600
## iter 350 value 766.972061
## iter 360 value 766.780158
## iter 370 value 765.178563
## iter 380 value 764.158257
## iter 390 value 759.055855
## iter 400 value 753.503197
## iter 410 value 751.863998
## iter 420 value 750.986147
## iter 430 value 750.935055
## iter 440 value 750.610583
## iter 450 value 750.197399
## iter 460 value 750.062897
## iter 470 value 749.888634
## iter 480 value 749.857000
## iter 490 value 749.829474
## final value 749.824813
## converged
## # weights: 121
## initial value 1403071.617497
## iter 10 value 1931.552172
## iter 20 value 1236.977604
## iter 30 value 933.765223
## iter 40 value 799.882182
## iter 50 value 696.721855
## iter 60 value 628.922876
## iter 70 value 578.377230
## iter 80 value 523.157891
## iter 90 value 467.835952
## iter 100 value 446.056316
## iter 110 value 438.865551
## iter 120 value 424.501050
## iter 130 value 393.026991
## iter 140 value 385.466125
## iter 150 value 380.896582
## iter 160 value 360.744278
## iter 170 value 354.704515
## iter 180 value 351.415033
## iter 190 value 348.229318
## iter 200 value 343.065371
## iter 210 value 339.240022
## iter 220 value 334.209677
## iter 230 value 329.941862
## iter 240 value 327.221762
## iter 250 value 326.427815
## iter 260 value 326.237711
## iter 270 value 325.745894
## iter 280 value 324.949633
## iter 290 value 323.136105
## iter 300 value 321.068616
## iter 310 value 317.176306
## iter 320 value 314.964486
## iter 330 value 314.187318
## iter 340 value 311.949995
## iter 350 value 310.957591
## iter 360 value 310.468637
## iter 370 value 309.789518
## iter 380 value 309.631159
## iter 390 value 309.578582
## iter 400 value 309.465207
## iter 410 value 309.406272
## iter 420 value 309.340425
## iter 430 value 309.306432
## iter 440 value 309.217946
## iter 450 value 309.205797
## iter 460 value 309.189461
## iter 470 value 309.143120
## iter 480 value 308.893846
## iter 490 value 308.740661
## iter 500 value 308.712782
## final value 308.712782
## stopped after 500 iterations
## # weights: 181
## initial value 1392522.887724
## iter 10 value 1234.036373
## iter 20 value 835.317109
## iter 30 value 629.904187
## iter 40 value 484.802041
## iter 50 value 397.423150
## iter 60 value 342.743211
## iter 70 value 294.914209
## iter 80 value 255.889993
## iter 90 value 229.810480
## iter 100 value 205.657024
## iter 110 value 189.604267
## iter 120 value 178.885032
## iter 130 value 170.538044
## iter 140 value 153.334458
## iter 150 value 140.965724
## iter 160 value 131.934706
## iter 170 value 124.964455
## iter 180 value 115.785500
## iter 190 value 111.080273
## iter 200 value 106.442400
## iter 210 value 102.847104
## iter 220 value 100.760044
## iter 230 value 98.912403
## iter 240 value 96.494754
## iter 250 value 93.042436
## iter 260 value 89.893218
## iter 270 value 88.623298
## iter 280 value 87.338593
## iter 290 value 86.028526
## iter 300 value 84.721301
## iter 310 value 83.772887
## iter 320 value 83.125523
## iter 330 value 82.695398
## iter 340 value 82.284161
## iter 350 value 82.000315
## iter 360 value 81.609023
## iter 370 value 81.434014
## iter 380 value 81.391211
## iter 390 value 81.308633
## iter 400 value 81.200809
## iter 410 value 81.117219
## iter 420 value 80.983710
## iter 430 value 80.834665
## iter 440 value 80.741919
## iter 450 value 80.648608
## iter 460 value 80.529615
## iter 470 value 80.436395
## iter 480 value 80.342289
## iter 490 value 80.155999
## iter 500 value 80.089463
## final value 80.089463
## stopped after 500 iterations
## # weights: 241
## initial value 1389315.386128
## iter 10 value 1233.160722
## iter 20 value 874.956845
## iter 30 value 681.976203
## iter 40 value 569.841441
## iter 50 value 458.040884
## iter 60 value 353.806906
## iter 70 value 300.486355
## iter 80 value 257.183185
## iter 90 value 218.254253
## iter 100 value 186.352017
## iter 110 value 159.571506
## iter 120 value 135.365425
## iter 130 value 119.477747
## iter 140 value 105.290692
## iter 150 value 93.070601
## iter 160 value 85.261614
## iter 170 value 81.178695
## iter 180 value 77.271974
## iter 190 value 72.789957
## iter 200 value 67.658961
## iter 210 value 63.573676
## iter 220 value 59.835160
## iter 230 value 55.788748
## iter 240 value 52.685638
## iter 250 value 50.079542
## iter 260 value 47.692557
## iter 270 value 45.667134
## iter 280 value 43.770170
## iter 290 value 42.297308
## iter 300 value 41.212650
## iter 310 value 40.027586
## iter 320 value 38.636684
## iter 330 value 36.758823
## iter 340 value 35.591527
## iter 350 value 34.971704
## iter 360 value 34.408698
## iter 370 value 33.734417
## iter 380 value 33.035674
## iter 390 value 31.887369
## iter 400 value 29.761628
## iter 410 value 28.346488
## iter 420 value 27.088922
## iter 430 value 26.001425
## iter 440 value 25.057206
## iter 450 value 24.308093
## iter 460 value 23.785298
## iter 470 value 23.192337
## iter 480 value 22.843276
## iter 490 value 22.683109
## iter 500 value 22.629903
## final value 22.629903
## stopped after 500 iterations
## # weights: 25
## initial value 1416069.580900
## iter 10 value 2233.288751
## iter 20 value 1733.766696
## iter 30 value 1278.531529
## iter 40 value 1124.724144
## iter 50 value 1072.460482
## iter 60 value 1058.060960
## iter 70 value 1041.528385
## iter 80 value 980.961994
## iter 90 value 961.364185
## iter 100 value 955.299157
## iter 110 value 953.152901
## iter 120 value 952.810428
## iter 130 value 946.424913
## iter 140 value 945.647620
## iter 150 value 945.221449
## iter 160 value 945.204951
## iter 160 value 945.204947
## final value 945.204852
## converged
## # weights: 61
## initial value 1365216.092234
## iter 10 value 6416.649421
## iter 20 value 2298.410356
## iter 30 value 1768.637657
## iter 40 value 1499.822271
## iter 50 value 1417.286127
## iter 60 value 1382.169762
## iter 70 value 1324.322800
## iter 80 value 1259.012024
## iter 90 value 1230.302167
## iter 100 value 1098.248477
## iter 110 value 892.895261
## iter 120 value 798.256199
## iter 130 value 784.031712
## iter 140 value 778.144316
## iter 150 value 772.597074
## iter 160 value 769.678746
## iter 170 value 760.945185
## iter 180 value 758.714528
## iter 190 value 758.664483
## iter 200 value 758.554190
## iter 210 value 757.883488
## iter 220 value 757.400110
## iter 230 value 757.102811
## iter 240 value 755.714949
## iter 250 value 754.530482
## iter 260 value 754.434587
## iter 270 value 754.428572
## iter 280 value 754.414156
## iter 290 value 753.831086
## iter 300 value 753.466332
## iter 310 value 753.005204
## iter 320 value 752.432792
## iter 330 value 752.277620
## iter 340 value 751.775657
## iter 350 value 751.530673
## iter 360 value 751.405878
## iter 370 value 751.339085
## iter 380 value 750.619538
## iter 390 value 749.455091
## iter 400 value 748.955694
## iter 410 value 748.907529
## iter 420 value 748.865658
## iter 430 value 748.850836
## iter 440 value 748.834891
## iter 450 value 748.794357
## iter 460 value 748.790097
## iter 470 value 748.773317
## iter 480 value 748.581506
## iter 490 value 748.465941
## iter 500 value 748.218082
## final value 748.218082
## stopped after 500 iterations
## # weights: 121
## initial value 1403325.747769
## iter 10 value 1121.625909
## iter 20 value 869.338122
## iter 30 value 725.860472
## iter 40 value 617.203567
## iter 50 value 574.767551
## iter 60 value 519.314607
## iter 70 value 477.314192
## iter 80 value 433.332822
## iter 90 value 412.396499
## iter 100 value 395.124042
## iter 110 value 379.798945
## iter 120 value 363.523277
## iter 130 value 351.861846
## iter 140 value 346.702130
## iter 150 value 339.096821
## iter 160 value 333.813317
## iter 170 value 327.940737
## iter 180 value 313.110562
## iter 190 value 304.635062
## iter 200 value 300.102053
## iter 210 value 293.662057
## iter 220 value 288.076665
## iter 230 value 282.438116
## iter 240 value 277.091824
## iter 250 value 274.074841
## iter 260 value 273.381229
## iter 270 value 272.478494
## iter 280 value 270.452217
## iter 290 value 268.112408
## iter 300 value 263.005908
## iter 310 value 259.991395
## iter 320 value 258.399237
## iter 330 value 256.420556
## iter 340 value 254.113383
## iter 350 value 250.984189
## iter 360 value 249.631940
## iter 370 value 248.573483
## iter 380 value 247.377351
## iter 390 value 245.788539
## iter 400 value 244.975518
## iter 410 value 244.115202
## iter 420 value 242.648870
## iter 430 value 241.532369
## iter 440 value 240.676464
## iter 450 value 239.682503
## iter 460 value 238.821715
## iter 470 value 238.354329
## iter 480 value 237.773365
## iter 490 value 237.364001
## iter 500 value 237.248085
## final value 237.248085
## stopped after 500 iterations
## # weights: 181
## initial value 1361206.644015
## iter 10 value 1295.081431
## iter 20 value 827.221187
## iter 30 value 639.083692
## iter 40 value 508.015842
## iter 50 value 426.223322
## iter 60 value 364.745698
## iter 70 value 315.248164
## iter 80 value 282.910192
## iter 90 value 262.415659
## iter 100 value 248.434733
## iter 110 value 231.487214
## iter 120 value 218.535737
## iter 130 value 209.914851
## iter 140 value 199.932877
## iter 150 value 189.765576
## iter 160 value 180.087381
## iter 170 value 172.108117
## iter 180 value 158.754977
## iter 190 value 148.500678
## iter 200 value 142.990147
## iter 210 value 137.999583
## iter 220 value 135.049784
## iter 230 value 130.465210
## iter 240 value 125.552931
## iter 250 value 123.077583
## iter 260 value 120.507028
## iter 270 value 118.254286
## iter 280 value 115.327057
## iter 290 value 112.565449
## iter 300 value 110.964645
## iter 310 value 110.339379
## iter 320 value 109.851580
## iter 330 value 109.547759
## iter 340 value 109.073022
## iter 350 value 108.679720
## iter 360 value 108.051798
## iter 370 value 107.829152
## iter 380 value 107.735420
## iter 390 value 107.623775
## iter 400 value 107.523135
## iter 410 value 107.278322
## iter 420 value 106.737017
## iter 430 value 106.184689
## iter 440 value 105.355085
## iter 450 value 104.499800
## iter 460 value 103.863369
## iter 470 value 103.205372
## iter 480 value 102.985298
## iter 490 value 102.776386
## iter 500 value 102.130350
## final value 102.130350
## stopped after 500 iterations
## # weights: 241
## initial value 1354588.702198
## iter 10 value 1082.053888
## iter 20 value 748.451437
## iter 30 value 610.417281
## iter 40 value 468.071077
## iter 50 value 358.605975
## iter 60 value 293.332382
## iter 70 value 248.282412
## iter 80 value 212.892238
## iter 90 value 182.904838
## iter 100 value 155.987415
## iter 110 value 132.865633
## iter 120 value 119.084999
## iter 130 value 109.374074
## iter 140 value 104.222856
## iter 150 value 101.997664
## iter 160 value 96.692292
## iter 170 value 92.318064
## iter 180 value 87.695033
## iter 190 value 82.931393
## iter 200 value 77.766094
## iter 210 value 74.283059
## iter 220 value 70.264362
## iter 230 value 65.418074
## iter 240 value 61.793995
## iter 250 value 58.344102
## iter 260 value 55.958299
## iter 270 value 53.631386
## iter 280 value 52.155395
## iter 290 value 50.820845
## iter 300 value 49.168196
## iter 310 value 47.049008
## iter 320 value 45.327784
## iter 330 value 43.980108
## iter 340 value 42.360933
## iter 350 value 40.517543
## iter 360 value 38.053190
## iter 370 value 36.578345
## iter 380 value 35.504093
## iter 390 value 34.388482
## iter 400 value 33.354074
## iter 410 value 32.423610
## iter 420 value 31.728371
## iter 430 value 31.104129
## iter 440 value 30.299798
## iter 450 value 29.053194
## iter 460 value 28.035386
## iter 470 value 27.522929
## iter 480 value 27.061861
## iter 490 value 26.898156
## iter 500 value 26.867678
## final value 26.867678
## stopped after 500 iterations
## # weights: 25
## initial value 1433122.294702
## iter 10 value 9360.827216
## iter 20 value 3548.104939
## iter 30 value 1828.757462
## iter 40 value 1538.019291
## iter 50 value 1434.983849
## iter 60 value 1401.227032
## iter 70 value 1296.548675
## iter 80 value 1232.864416
## iter 90 value 1230.064981
## iter 100 value 1230.029680
## iter 110 value 1227.170144
## iter 120 value 1222.964461
## iter 130 value 1206.582303
## iter 140 value 1203.023485
## iter 150 value 1163.534253
## iter 160 value 1151.910138
## iter 170 value 1149.139101
## iter 180 value 1147.662378
## iter 190 value 1147.608209
## iter 200 value 1147.481206
## iter 210 value 1147.251078
## iter 220 value 1144.997073
## iter 230 value 1144.986783
## iter 230 value 1144.986780
## final value 1144.986780
## converged
## # weights: 61
## initial value 1409890.584048
## iter 10 value 57202.181972
## iter 20 value 19856.984649
## iter 30 value 15185.460073
## iter 40 value 9031.224390
## iter 50 value 5765.498439
## iter 60 value 2569.549833
## iter 70 value 1416.345116
## iter 80 value 1182.619775
## iter 90 value 1035.880291
## iter 100 value 931.581225
## iter 110 value 918.483307
## iter 120 value 900.880758
## iter 130 value 892.034805
## iter 140 value 889.695598
## iter 150 value 887.347891
## iter 160 value 881.670694
## iter 170 value 861.712258
## iter 180 value 834.226458
## iter 190 value 813.551990
## iter 200 value 800.340154
## iter 210 value 786.045908
## iter 220 value 772.423239
## iter 230 value 764.745118
## iter 240 value 760.966738
## iter 250 value 754.974839
## iter 260 value 754.033978
## iter 270 value 752.664371
## iter 280 value 744.468779
## iter 290 value 733.804352
## iter 300 value 709.444997
## iter 310 value 676.724838
## iter 320 value 668.621720
## iter 330 value 654.375534
## iter 340 value 647.569663
## iter 350 value 642.553857
## iter 360 value 634.363850
## iter 370 value 628.350132
## iter 380 value 628.068889
## iter 390 value 627.642486
## iter 400 value 626.554954
## iter 410 value 624.504100
## iter 420 value 619.862308
## iter 430 value 612.605044
## iter 440 value 608.493222
## iter 450 value 606.476827
## iter 460 value 605.837539
## iter 470 value 603.843750
## iter 480 value 602.307989
## iter 490 value 602.163033
## iter 500 value 601.838512
## final value 601.838512
## stopped after 500 iterations
## # weights: 121
## initial value 1435570.118935
## iter 10 value 161053.626564
## iter 20 value 9356.626293
## iter 30 value 5964.638567
## iter 40 value 4918.458631
## iter 50 value 4060.683958
## iter 60 value 3637.247145
## iter 70 value 3120.965219
## iter 80 value 2595.030683
## iter 90 value 1960.011851
## iter 100 value 1479.037191
## iter 110 value 1128.203085
## iter 120 value 939.834594
## iter 130 value 900.295765
## iter 140 value 847.085840
## iter 150 value 828.311682
## iter 160 value 822.574233
## iter 170 value 806.075804
## iter 180 value 786.756193
## iter 190 value 774.643403
## iter 200 value 733.783020
## iter 210 value 715.188564
## iter 220 value 688.933997
## iter 230 value 654.311719
## iter 240 value 612.451996
## iter 250 value 580.869317
## iter 260 value 565.724973
## iter 270 value 556.472675
## iter 280 value 545.162574
## iter 290 value 538.051991
## iter 300 value 531.259746
## iter 310 value 527.112035
## iter 320 value 524.575159
## iter 330 value 521.273437
## iter 340 value 510.562388
## iter 350 value 494.490763
## iter 360 value 478.210956
## iter 370 value 460.965528
## iter 380 value 455.876400
## iter 390 value 454.142033
## iter 400 value 454.010827
## iter 410 value 453.178418
## iter 420 value 452.434551
## iter 430 value 450.979370
## iter 440 value 449.736590
## iter 450 value 448.647606
## iter 460 value 446.549175
## iter 470 value 443.935430
## iter 480 value 442.468451
## iter 490 value 441.512449
## iter 500 value 440.262670
## final value 440.262670
## stopped after 500 iterations
## # weights: 181
## initial value 1393214.632643
## iter 10 value 1045.133634
## iter 20 value 833.851758
## iter 30 value 694.559719
## iter 40 value 538.508881
## iter 50 value 430.378516
## iter 60 value 364.212597
## iter 70 value 316.351943
## iter 80 value 277.774322
## iter 90 value 249.256913
## iter 100 value 224.999845
## iter 110 value 207.658312
## iter 120 value 196.044953
## iter 130 value 183.778856
## iter 140 value 177.130141
## iter 150 value 168.884648
## iter 160 value 161.353432
## iter 170 value 148.116151
## iter 180 value 143.310243
## iter 190 value 141.101703
## iter 200 value 139.264757
## iter 210 value 138.254670
## iter 220 value 137.104903
## iter 230 value 136.106182
## iter 240 value 135.025169
## iter 250 value 133.052214
## iter 260 value 130.949318
## iter 270 value 129.937411
## iter 280 value 129.149093
## iter 290 value 128.435611
## iter 300 value 127.970171
## iter 310 value 127.557354
## iter 320 value 126.625503
## iter 330 value 125.878897
## iter 340 value 125.147887
## iter 350 value 123.884684
## iter 360 value 122.947513
## iter 370 value 122.407778
## iter 380 value 122.167152
## iter 390 value 121.534666
## iter 400 value 121.004856
## iter 410 value 119.932231
## iter 420 value 118.725358
## iter 430 value 117.210332
## iter 440 value 116.023056
## iter 450 value 115.007399
## iter 460 value 114.042509
## iter 470 value 112.266588
## iter 480 value 111.513998
## iter 490 value 111.062775
## iter 500 value 110.770678
## final value 110.770678
## stopped after 500 iterations
## # weights: 241
## initial value 1375678.733273
## iter 10 value 1634.519642
## iter 20 value 854.592346
## iter 30 value 678.919219
## iter 40 value 556.385617
## iter 50 value 449.007278
## iter 60 value 381.418700
## iter 70 value 337.241582
## iter 80 value 309.725322
## iter 90 value 274.301871
## iter 100 value 254.062754
## iter 110 value 218.847808
## iter 120 value 194.616061
## iter 130 value 179.827021
## iter 140 value 169.418698
## iter 150 value 158.849237
## iter 160 value 149.890362
## iter 170 value 140.095389
## iter 180 value 132.933575
## iter 190 value 126.345840
## iter 200 value 121.023117
## iter 210 value 115.248283
## iter 220 value 108.457774
## iter 230 value 101.772667
## iter 240 value 98.550832
## iter 250 value 95.013244
## iter 260 value 91.556698
## iter 270 value 88.583953
## iter 280 value 86.245129
## iter 290 value 83.730638
## iter 300 value 81.020359
## iter 310 value 78.550774
## iter 320 value 76.723813
## iter 330 value 75.461131
## iter 340 value 73.590049
## iter 350 value 72.166695
## iter 360 value 70.925007
## iter 370 value 69.748412
## iter 380 value 68.596247
## iter 390 value 67.381465
## iter 400 value 66.433061
## iter 410 value 65.476551
## iter 420 value 64.537093
## iter 430 value 63.921520
## iter 440 value 63.288798
## iter 450 value 62.671571
## iter 460 value 62.132217
## iter 470 value 61.664097
## iter 480 value 61.146123
## iter 490 value 60.886427
## iter 500 value 60.755120
## final value 60.755120
## stopped after 500 iterations
## # weights: 25
## initial value 1393796.348214
## iter 10 value 19571.050607
## iter 20 value 9476.654328
## iter 30 value 5852.498933
## iter 40 value 5066.136792
## iter 50 value 3882.342399
## iter 60 value 2961.085838
## iter 70 value 1619.537789
## iter 80 value 1412.207797
## iter 90 value 1311.748099
## iter 100 value 1292.813827
## iter 110 value 1266.534189
## iter 120 value 1205.144314
## iter 130 value 1178.052809
## iter 140 value 1169.472609
## iter 150 value 1168.399745
## iter 160 value 1168.274983
## iter 170 value 1167.679891
## final value 1167.679280
## converged
## # weights: 61
## initial value 1415136.075140
## iter 10 value 70404.839772
## iter 20 value 24626.167051
## iter 30 value 16151.825018
## iter 40 value 9895.325113
## iter 50 value 7509.701126
## iter 60 value 5177.551323
## iter 70 value 4094.814305
## iter 80 value 3527.310647
## iter 90 value 3030.592918
## iter 100 value 2478.211603
## iter 110 value 1994.297486
## iter 120 value 1656.658641
## iter 130 value 1583.818421
## iter 140 value 1553.083453
## iter 150 value 1469.364920
## iter 160 value 1351.327976
## iter 170 value 1217.678827
## iter 180 value 1145.679797
## iter 190 value 1095.086160
## iter 200 value 1072.679163
## iter 210 value 1056.394533
## iter 220 value 1046.373876
## iter 230 value 1035.050997
## iter 240 value 1017.575045
## iter 250 value 1002.974967
## iter 260 value 997.641113
## iter 270 value 988.071609
## iter 280 value 978.952721
## iter 290 value 971.717646
## iter 300 value 964.053719
## iter 310 value 954.530484
## iter 320 value 946.602119
## iter 330 value 941.060731
## iter 340 value 937.317776
## iter 350 value 934.052520
## iter 360 value 931.021992
## iter 370 value 927.137414
## iter 380 value 925.913220
## iter 390 value 924.930438
## iter 400 value 923.917843
## iter 410 value 923.163259
## iter 420 value 921.408289
## iter 430 value 917.050750
## iter 440 value 911.172805
## iter 450 value 904.153786
## iter 460 value 884.694632
## iter 470 value 869.549345
## iter 480 value 865.349557
## iter 490 value 860.127791
## iter 500 value 858.773960
## final value 858.773960
## stopped after 500 iterations
## # weights: 121
## initial value 1400988.897317
## iter 10 value 2283.435955
## iter 20 value 1106.143541
## iter 30 value 968.917216
## iter 40 value 849.839066
## iter 50 value 775.685396
## iter 60 value 740.585542
## iter 70 value 717.303632
## iter 80 value 702.607206
## iter 90 value 695.947479
## iter 100 value 687.220125
## iter 110 value 680.283469
## iter 120 value 672.647119
## iter 130 value 664.858215
## iter 140 value 654.880438
## iter 150 value 647.431448
## iter 160 value 642.692633
## iter 170 value 629.454122
## iter 180 value 612.023490
## iter 190 value 604.072145
## iter 200 value 593.938572
## iter 210 value 578.917754
## iter 220 value 558.608445
## iter 230 value 548.051104
## iter 240 value 540.738814
## iter 250 value 537.857540
## iter 260 value 535.241481
## iter 270 value 531.884257
## iter 280 value 528.233239
## iter 290 value 522.434968
## iter 300 value 517.462780
## iter 310 value 515.458596
## iter 320 value 514.158911
## iter 330 value 511.656022
## iter 340 value 510.415382
## iter 350 value 503.576147
## iter 360 value 497.666672
## iter 370 value 494.781383
## iter 380 value 492.654376
## iter 390 value 491.997814
## iter 400 value 491.769525
## iter 410 value 491.633076
## iter 420 value 491.602675
## iter 430 value 491.595537
## final value 491.594925
## converged
## # weights: 181
## initial value 1389591.719339
## iter 10 value 1298.996607
## iter 20 value 903.170374
## iter 30 value 789.832417
## iter 40 value 665.928866
## iter 50 value 584.547994
## iter 60 value 535.706191
## iter 70 value 498.626787
## iter 80 value 465.717750
## iter 90 value 446.731586
## iter 100 value 430.921874
## iter 110 value 418.816181
## iter 120 value 407.152824
## iter 130 value 398.738609
## iter 140 value 391.778183
## iter 150 value 383.573883
## iter 160 value 377.977210
## iter 170 value 372.476959
## iter 180 value 368.714206
## iter 190 value 365.709175
## iter 200 value 362.432001
## iter 210 value 359.696889
## iter 220 value 357.746057
## iter 230 value 355.589074
## iter 240 value 354.215089
## iter 250 value 353.250236
## iter 260 value 352.215233
## iter 270 value 349.923612
## iter 280 value 346.874297
## iter 290 value 344.724721
## iter 300 value 342.755655
## iter 310 value 339.479435
## iter 320 value 337.475403
## iter 330 value 336.420979
## iter 340 value 335.563394
## iter 350 value 334.943699
## iter 360 value 334.646674
## iter 370 value 334.476884
## iter 380 value 334.084946
## iter 390 value 333.592646
## iter 400 value 333.126607
## iter 410 value 332.872565
## iter 420 value 332.609265
## iter 430 value 332.351947
## iter 440 value 332.246377
## iter 450 value 332.175295
## iter 460 value 332.126913
## iter 470 value 332.109201
## iter 480 value 332.105966
## iter 490 value 332.105232
## final value 332.105162
## converged
## # weights: 241
## initial value 1482969.531612
## iter 10 value 1286.452760
## iter 20 value 922.676067
## iter 30 value 799.564248
## iter 40 value 707.891174
## iter 50 value 587.338630
## iter 60 value 501.319504
## iter 70 value 458.269465
## iter 80 value 443.504672
## iter 90 value 425.893038
## iter 100 value 413.211067
## iter 110 value 400.196849
## iter 120 value 390.564602
## iter 130 value 383.224563
## iter 140 value 375.946459
## iter 150 value 369.842945
## iter 160 value 364.483673
## iter 170 value 358.131351
## iter 180 value 351.790671
## iter 190 value 346.219261
## iter 200 value 340.350476
## iter 210 value 335.726234
## iter 220 value 331.099034
## iter 230 value 326.221870
## iter 240 value 322.859162
## iter 250 value 320.379006
## iter 260 value 317.695285
## iter 270 value 315.293078
## iter 280 value 312.698703
## iter 290 value 310.604322
## iter 300 value 308.541830
## iter 310 value 306.100915
## iter 320 value 304.557246
## iter 330 value 303.126682
## iter 340 value 301.699122
## iter 350 value 300.768361
## iter 360 value 300.107587
## iter 370 value 299.559455
## iter 380 value 299.223095
## iter 390 value 298.974363
## iter 400 value 298.730892
## iter 410 value 298.537765
## iter 420 value 298.400348
## iter 430 value 298.337541
## iter 440 value 298.300917
## iter 450 value 298.265225
## iter 460 value 298.168940
## iter 470 value 297.963515
## iter 480 value 297.774846
## iter 490 value 297.715234
## iter 500 value 297.657659
## final value 297.657659
## stopped after 500 iterations
## # weights: 25
## initial value 1385756.953187
## iter 10 value 48172.563992
## iter 20 value 5626.046095
## iter 30 value 4827.184454
## iter 40 value 4684.994733
## iter 50 value 4676.847180
## iter 60 value 4411.624885
## iter 70 value 4337.236652
## iter 80 value 4305.803371
## iter 90 value 4189.023750
## iter 100 value 4111.053620
## iter 110 value 4097.388796
## iter 120 value 4077.868661
## iter 130 value 4058.186724
## iter 140 value 4024.363131
## iter 150 value 4001.599711
## iter 160 value 3992.031933
## iter 170 value 3985.928854
## iter 180 value 3844.621387
## iter 190 value 3731.034289
## iter 200 value 3079.219451
## iter 210 value 2651.403268
## iter 220 value 1869.076982
## iter 230 value 1447.981206
## iter 240 value 1348.279574
## iter 250 value 1315.701274
## iter 260 value 1311.012222
## iter 270 value 1296.442451
## iter 280 value 1286.097193
## iter 290 value 1282.492933
## iter 300 value 1280.901038
## iter 310 value 1280.461069
## iter 320 value 1280.174577
## iter 330 value 1278.815732
## iter 340 value 1277.895013
## iter 350 value 1277.342544
## iter 360 value 1277.152740
## final value 1277.152420
## converged
## # weights: 61
## initial value 1399122.577923
## iter 10 value 8492.495248
## iter 20 value 3737.440331
## iter 30 value 3164.521992
## iter 40 value 2751.922036
## iter 50 value 2329.764530
## iter 60 value 1958.142304
## iter 70 value 1797.442093
## iter 80 value 1754.922723
## iter 90 value 1736.232238
## iter 100 value 1695.533168
## iter 110 value 1665.867370
## iter 120 value 1661.013312
## iter 130 value 1658.112296
## iter 140 value 1625.844994
## iter 150 value 1467.383800
## iter 160 value 1287.902896
## iter 170 value 1170.546110
## iter 180 value 1132.947532
## iter 190 value 1105.897044
## iter 200 value 1067.354388
## iter 210 value 1050.529468
## iter 220 value 1040.752608
## iter 230 value 1033.392759
## iter 240 value 1025.014724
## iter 250 value 1020.459613
## iter 260 value 1019.574775
## iter 270 value 1013.798544
## iter 280 value 1011.793458
## iter 290 value 1011.217186
## iter 300 value 1009.965131
## iter 310 value 1008.592208
## iter 320 value 1007.325138
## iter 330 value 1005.693383
## iter 340 value 1005.025584
## iter 350 value 1004.531955
## iter 360 value 1004.318232
## iter 370 value 1003.417727
## iter 380 value 1002.715534
## iter 390 value 1002.463412
## iter 400 value 1002.380161
## final value 1002.380055
## converged
## # weights: 121
## initial value 1413298.565646
## iter 10 value 1430.562028
## iter 20 value 831.031857
## iter 30 value 658.690126
## iter 40 value 549.857548
## iter 50 value 492.301158
## iter 60 value 457.480271
## iter 70 value 433.811995
## iter 80 value 416.642943
## iter 90 value 398.975130
## iter 100 value 381.526442
## iter 110 value 361.337671
## iter 120 value 340.486234
## iter 130 value 330.183381
## iter 140 value 317.941881
## iter 150 value 309.763997
## iter 160 value 301.814000
## iter 170 value 296.264440
## iter 180 value 292.844882
## iter 190 value 288.592533
## iter 200 value 284.673743
## iter 210 value 278.572477
## iter 220 value 273.092553
## iter 230 value 265.569153
## iter 240 value 259.581992
## iter 250 value 257.438313
## iter 260 value 256.415332
## iter 270 value 253.732371
## iter 280 value 250.500840
## iter 290 value 247.289329
## iter 300 value 244.434309
## iter 310 value 241.818178
## iter 320 value 239.240053
## iter 330 value 236.289890
## iter 340 value 230.583178
## iter 350 value 224.751983
## iter 360 value 222.301082
## iter 370 value 220.534332
## iter 380 value 219.531307
## iter 390 value 219.156432
## iter 400 value 218.913938
## iter 410 value 218.709599
## iter 420 value 218.642769
## iter 430 value 218.467114
## iter 440 value 218.375785
## iter 450 value 218.158281
## iter 460 value 218.078756
## iter 470 value 217.957158
## iter 480 value 217.891003
## iter 490 value 217.872053
## iter 500 value 217.871202
## final value 217.871202
## stopped after 500 iterations
## # weights: 181
## initial value 1411394.011152
## iter 10 value 1138.201808
## iter 20 value 771.813077
## iter 30 value 609.921321
## iter 40 value 473.322909
## iter 50 value 382.024387
## iter 60 value 338.760105
## iter 70 value 295.291145
## iter 80 value 251.255562
## iter 90 value 214.970369
## iter 100 value 199.301783
## iter 110 value 188.836892
## iter 120 value 177.175882
## iter 130 value 167.993402
## iter 140 value 157.269320
## iter 150 value 143.186740
## iter 160 value 129.694431
## iter 170 value 121.078541
## iter 180 value 111.482796
## iter 190 value 102.003307
## iter 200 value 96.673977
## iter 210 value 91.251334
## iter 220 value 85.943837
## iter 230 value 82.719689
## iter 240 value 79.065838
## iter 250 value 76.309919
## iter 260 value 74.108705
## iter 270 value 73.123644
## iter 280 value 72.172961
## iter 290 value 71.759515
## iter 300 value 71.367803
## iter 310 value 70.968709
## iter 320 value 70.501713
## iter 330 value 70.255363
## iter 340 value 70.122502
## iter 350 value 69.962639
## iter 360 value 69.874514
## iter 370 value 69.825143
## iter 380 value 69.794042
## iter 390 value 69.718004
## iter 400 value 69.618456
## iter 410 value 69.513349
## iter 420 value 69.303430
## iter 430 value 69.182564
## iter 440 value 69.093405
## iter 450 value 68.982104
## iter 460 value 68.868635
## iter 470 value 68.715874
## iter 480 value 68.271789
## iter 490 value 66.847164
## iter 500 value 65.995674
## final value 65.995674
## stopped after 500 iterations
## # weights: 241
## initial value 1442424.607015
## iter 10 value 1308.114413
## iter 20 value 739.043313
## iter 30 value 607.718410
## iter 40 value 519.468246
## iter 50 value 433.357689
## iter 60 value 362.754740
## iter 70 value 324.148434
## iter 80 value 295.712863
## iter 90 value 263.848253
## iter 100 value 240.841996
## iter 110 value 212.429790
## iter 120 value 185.662652
## iter 130 value 164.931948
## iter 140 value 141.721610
## iter 150 value 126.710512
## iter 160 value 117.472936
## iter 170 value 108.069620
## iter 180 value 101.634520
## iter 190 value 90.423121
## iter 200 value 81.015868
## iter 210 value 73.964015
## iter 220 value 67.833524
## iter 230 value 64.017169
## iter 240 value 60.042701
## iter 250 value 56.459999
## iter 260 value 54.295065
## iter 270 value 52.049504
## iter 280 value 49.624346
## iter 290 value 48.404838
## iter 300 value 46.712110
## iter 310 value 44.551690
## iter 320 value 43.024047
## iter 330 value 41.128716
## iter 340 value 39.114657
## iter 350 value 36.356922
## iter 360 value 34.593786
## iter 370 value 33.541986
## iter 380 value 32.857202
## iter 390 value 32.321888
## iter 400 value 31.713845
## iter 410 value 31.328039
## iter 420 value 30.922180
## iter 430 value 30.410621
## iter 440 value 29.946491
## iter 450 value 29.559267
## iter 460 value 29.084275
## iter 470 value 28.642889
## iter 480 value 28.374166
## iter 490 value 28.220594
## iter 500 value 28.154890
## final value 28.154890
## stopped after 500 iterations
## # weights: 25
## initial value 1410405.364464
## iter 10 value 16664.137787
## iter 20 value 15096.748951
## iter 30 value 12549.236408
## iter 40 value 11488.462747
## iter 50 value 7730.009277
## iter 60 value 3793.641618
## iter 70 value 2986.832676
## iter 80 value 2114.680223
## iter 90 value 1279.480849
## iter 100 value 1028.456384
## iter 110 value 941.902481
## iter 120 value 926.447840
## iter 130 value 889.953454
## iter 140 value 867.020889
## iter 150 value 857.125815
## iter 160 value 854.331166
## iter 170 value 854.176895
## iter 180 value 852.988232
## iter 190 value 850.543506
## iter 200 value 848.972516
## iter 210 value 848.346179
## iter 220 value 848.333211
## iter 230 value 848.055292
## iter 240 value 847.497789
## iter 250 value 847.118298
## iter 260 value 846.716988
## iter 270 value 846.709071
## final value 846.708572
## converged
## # weights: 61
## initial value 1390494.402350
## iter 10 value 3920.683475
## iter 20 value 2679.867948
## iter 30 value 2268.604656
## iter 40 value 1804.375165
## iter 50 value 1464.608669
## iter 60 value 1305.769231
## iter 70 value 1210.473193
## iter 80 value 1160.840842
## iter 90 value 1027.435471
## iter 100 value 988.448282
## iter 110 value 960.952427
## iter 120 value 845.086061
## iter 130 value 794.561948
## iter 140 value 782.381227
## iter 150 value 765.159884
## iter 160 value 751.340148
## iter 170 value 739.901372
## iter 180 value 735.366379
## iter 190 value 731.712903
## iter 200 value 730.147909
## iter 210 value 728.299518
## iter 220 value 725.789405
## iter 230 value 724.661036
## iter 240 value 722.525929
## iter 250 value 721.248565
## iter 260 value 721.233440
## iter 270 value 721.205966
## iter 280 value 721.114458
## iter 290 value 720.876453
## iter 300 value 720.197837
## iter 310 value 718.291994
## iter 320 value 717.380814
## iter 330 value 717.104662
## iter 340 value 716.700801
## iter 350 value 716.162642
## iter 360 value 715.939400
## iter 370 value 715.851920
## iter 380 value 715.848299
## iter 390 value 715.845399
## iter 400 value 715.839034
## iter 410 value 715.830027
## iter 420 value 715.804616
## iter 430 value 715.765376
## iter 440 value 715.612316
## iter 450 value 715.555917
## iter 460 value 715.545258
## iter 470 value 715.539839
## iter 480 value 715.539297
## iter 490 value 715.530198
## final value 715.529994
## converged
## # weights: 121
## initial value 1428210.442718
## iter 10 value 3390.762202
## iter 20 value 1801.886234
## iter 30 value 1179.026094
## iter 40 value 813.285969
## iter 50 value 690.819183
## iter 60 value 625.521516
## iter 70 value 602.402370
## iter 80 value 548.350256
## iter 90 value 518.641264
## iter 100 value 503.641161
## iter 110 value 493.832452
## iter 120 value 478.040246
## iter 130 value 461.136961
## iter 140 value 440.975706
## iter 150 value 430.139750
## iter 160 value 421.354500
## iter 170 value 415.665601
## iter 180 value 406.506078
## iter 190 value 402.150036
## iter 200 value 398.078584
## iter 210 value 394.139184
## iter 220 value 392.732523
## iter 230 value 390.354931
## iter 240 value 384.309650
## iter 250 value 380.998841
## iter 260 value 379.519453
## iter 270 value 377.106422
## iter 280 value 375.036614
## iter 290 value 374.284669
## iter 300 value 373.637429
## iter 310 value 371.908679
## iter 320 value 367.877168
## iter 330 value 366.700537
## iter 340 value 366.463469
## iter 350 value 364.134473
## iter 360 value 363.452765
## iter 370 value 362.243557
## iter 380 value 360.870761
## iter 390 value 360.123664
## iter 400 value 359.881283
## iter 410 value 359.724910
## iter 420 value 359.644382
## iter 430 value 359.589874
## iter 440 value 359.518467
## iter 450 value 359.440554
## iter 460 value 359.377742
## iter 470 value 359.346419
## iter 480 value 359.327435
## iter 490 value 359.313169
## iter 500 value 359.312913
## final value 359.312913
## stopped after 500 iterations
## # weights: 181
## initial value 1345792.096119
## iter 10 value 1174.282494
## iter 20 value 768.282517
## iter 30 value 596.651961
## iter 40 value 507.606054
## iter 50 value 410.633526
## iter 60 value 360.014228
## iter 70 value 317.639030
## iter 80 value 271.423348
## iter 90 value 247.916813
## iter 100 value 234.825048
## iter 110 value 228.005411
## iter 120 value 219.566846
## iter 130 value 212.110614
## iter 140 value 200.605065
## iter 150 value 186.383900
## iter 160 value 177.815437
## iter 170 value 170.649608
## iter 180 value 163.958014
## iter 190 value 158.196504
## iter 200 value 153.983588
## iter 210 value 150.478467
## iter 220 value 147.349998
## iter 230 value 143.880609
## iter 240 value 140.625682
## iter 250 value 137.668604
## iter 260 value 135.583163
## iter 270 value 133.416740
## iter 280 value 130.527921
## iter 290 value 127.926023
## iter 300 value 124.752405
## iter 310 value 121.563491
## iter 320 value 117.780278
## iter 330 value 113.916933
## iter 340 value 111.516500
## iter 350 value 109.267477
## iter 360 value 106.957609
## iter 370 value 105.779048
## iter 380 value 105.306271
## iter 390 value 104.403557
## iter 400 value 103.748148
## iter 410 value 103.170995
## iter 420 value 102.460405
## iter 430 value 101.600687
## iter 440 value 100.956194
## iter 450 value 100.481635
## iter 460 value 99.830135
## iter 470 value 98.790680
## iter 480 value 97.709273
## iter 490 value 96.487754
## iter 500 value 95.160196
## final value 95.160196
## stopped after 500 iterations
## # weights: 241
## initial value 1442889.707335
## iter 10 value 1723.728390
## iter 20 value 801.483978
## iter 30 value 526.210784
## iter 40 value 404.632305
## iter 50 value 318.327677
## iter 60 value 267.449580
## iter 70 value 222.362614
## iter 80 value 187.403288
## iter 90 value 164.927384
## iter 100 value 143.823540
## iter 110 value 127.183956
## iter 120 value 112.526731
## iter 130 value 103.862060
## iter 140 value 99.006115
## iter 150 value 96.316981
## iter 160 value 93.536886
## iter 170 value 90.201088
## iter 180 value 86.080168
## iter 190 value 80.470265
## iter 200 value 75.733526
## iter 210 value 72.020386
## iter 220 value 68.936432
## iter 230 value 66.844755
## iter 240 value 65.211033
## iter 250 value 63.229894
## iter 260 value 61.913655
## iter 270 value 60.308873
## iter 280 value 59.018638
## iter 290 value 58.153902
## iter 300 value 57.429537
## iter 310 value 56.909952
## iter 320 value 56.047197
## iter 330 value 55.212237
## iter 340 value 54.564767
## iter 350 value 53.740030
## iter 360 value 52.964369
## iter 370 value 52.073067
## iter 380 value 51.326150
## iter 390 value 50.626134
## iter 400 value 49.878547
## iter 410 value 49.403758
## iter 420 value 49.079103
## iter 430 value 48.801552
## iter 440 value 48.528490
## iter 450 value 48.321530
## iter 460 value 48.155074
## iter 470 value 47.947754
## iter 480 value 47.707952
## iter 490 value 47.527944
## iter 500 value 47.488937
## final value 47.488937
## stopped after 500 iterations
## # weights: 25
## initial value 1376505.550904
## iter 10 value 13853.247941
## iter 20 value 8513.701664
## iter 30 value 6375.718420
## iter 40 value 5001.200360
## iter 50 value 4739.486851
## iter 60 value 2078.972254
## iter 70 value 1497.582259
## iter 80 value 1347.645026
## iter 90 value 1317.106995
## iter 100 value 1304.382577
## iter 110 value 1300.326450
## iter 120 value 1292.750085
## iter 130 value 1286.669082
## iter 140 value 1284.572262
## iter 150 value 1282.474793
## iter 160 value 1282.104395
## iter 170 value 1282.094926
## iter 180 value 1282.093685
## iter 180 value 1282.093679
## iter 190 value 1282.093443
## iter 190 value 1282.093443
## final value 1282.093417
## converged
## # weights: 61
## initial value 1408902.175492
## iter 10 value 12072.597288
## iter 20 value 5299.304668
## iter 30 value 3756.796458
## iter 40 value 2230.129503
## iter 50 value 1405.522609
## iter 60 value 1286.749558
## iter 70 value 1246.362382
## iter 80 value 1176.939889
## iter 90 value 1108.524103
## iter 100 value 1101.579532
## iter 110 value 1085.843427
## iter 120 value 1069.897277
## iter 130 value 1064.382055
## iter 140 value 1050.946462
## iter 150 value 1048.329715
## iter 160 value 1031.836250
## iter 170 value 993.830921
## iter 180 value 983.369739
## iter 190 value 982.161259
## iter 200 value 979.799929
## iter 210 value 979.017682
## iter 220 value 977.373647
## iter 230 value 976.804989
## iter 240 value 967.947720
## iter 250 value 959.977623
## iter 260 value 955.454946
## iter 270 value 949.031736
## iter 280 value 872.512769
## iter 290 value 782.945693
## iter 300 value 721.463288
## iter 310 value 706.631699
## iter 320 value 696.501937
## iter 330 value 694.569701
## iter 340 value 692.815238
## iter 350 value 688.003245
## iter 360 value 686.455761
## iter 370 value 686.348245
## iter 380 value 686.025445
## iter 390 value 684.892606
## iter 400 value 680.410171
## iter 410 value 660.073055
## iter 420 value 641.227943
## iter 430 value 639.112830
## iter 440 value 638.844849
## iter 450 value 635.054568
## iter 460 value 627.046984
## iter 470 value 621.586960
## iter 480 value 615.410465
## iter 490 value 612.881790
## iter 500 value 611.632346
## final value 611.632346
## stopped after 500 iterations
## # weights: 121
## initial value 1411255.943615
## iter 10 value 1489.192374
## iter 20 value 904.662110
## iter 30 value 682.182114
## iter 40 value 595.949818
## iter 50 value 530.822908
## iter 60 value 434.284974
## iter 70 value 402.604829
## iter 80 value 380.086795
## iter 90 value 362.611397
## iter 100 value 350.866009
## iter 110 value 333.697895
## iter 120 value 313.809907
## iter 130 value 302.175383
## iter 140 value 293.679026
## iter 150 value 287.247597
## iter 160 value 282.130826
## iter 170 value 277.043860
## iter 180 value 273.442509
## iter 190 value 269.121053
## iter 200 value 265.354960
## iter 210 value 259.979844
## iter 220 value 254.864155
## iter 230 value 249.163637
## iter 240 value 243.838952
## iter 250 value 240.947723
## iter 260 value 240.096199
## iter 270 value 238.193440
## iter 280 value 236.023634
## iter 290 value 234.551347
## iter 300 value 232.120841
## iter 310 value 226.717081
## iter 320 value 218.164881
## iter 330 value 214.066433
## iter 340 value 212.773693
## iter 350 value 212.036970
## iter 360 value 211.323280
## iter 370 value 210.173596
## iter 380 value 209.234614
## iter 390 value 208.405040
## iter 400 value 207.482467
## iter 410 value 206.610139
## iter 420 value 205.917796
## iter 430 value 205.262412
## iter 440 value 204.325445
## iter 450 value 203.393154
## iter 460 value 202.741896
## iter 470 value 202.104181
## iter 480 value 201.885197
## iter 490 value 201.567738
## iter 500 value 201.500105
## final value 201.500105
## stopped after 500 iterations
## # weights: 181
## initial value 1434844.637540
## iter 10 value 1184.427642
## iter 20 value 728.082910
## iter 30 value 584.601597
## iter 40 value 491.174552
## iter 50 value 379.578607
## iter 60 value 316.269424
## iter 70 value 290.097992
## iter 80 value 261.800176
## iter 90 value 236.470335
## iter 100 value 217.895509
## iter 110 value 202.447591
## iter 120 value 190.090521
## iter 130 value 180.668630
## iter 140 value 171.543709
## iter 150 value 163.590712
## iter 160 value 155.321165
## iter 170 value 147.927595
## iter 180 value 143.257079
## iter 190 value 136.846862
## iter 200 value 128.905755
## iter 210 value 122.553276
## iter 220 value 117.719034
## iter 230 value 114.749678
## iter 240 value 112.599718
## iter 250 value 110.594173
## iter 260 value 108.804690
## iter 270 value 106.961556
## iter 280 value 105.031687
## iter 290 value 103.089569
## iter 300 value 101.232549
## iter 310 value 100.160108
## iter 320 value 98.861558
## iter 330 value 97.954943
## iter 340 value 97.395861
## iter 350 value 96.343697
## iter 360 value 94.533335
## iter 370 value 94.095014
## iter 380 value 93.795050
## iter 390 value 93.438168
## iter 400 value 93.025029
## iter 410 value 92.777496
## iter 420 value 92.491373
## iter 430 value 92.207522
## iter 440 value 91.758916
## iter 450 value 91.199482
## iter 460 value 90.486687
## iter 470 value 89.854643
## iter 480 value 89.213082
## iter 490 value 88.360184
## iter 500 value 87.870045
## final value 87.870045
## stopped after 500 iterations
## # weights: 241
## initial value 1382697.243098
## iter 10 value 1493.267698
## iter 20 value 710.446704
## iter 30 value 522.101126
## iter 40 value 412.268971
## iter 50 value 307.041334
## iter 60 value 245.734747
## iter 70 value 195.892458
## iter 80 value 171.936008
## iter 90 value 150.794560
## iter 100 value 129.363700
## iter 110 value 114.482431
## iter 120 value 105.113263
## iter 130 value 97.599127
## iter 140 value 89.554702
## iter 150 value 82.529855
## iter 160 value 76.982194
## iter 170 value 72.438439
## iter 180 value 67.404799
## iter 190 value 62.159889
## iter 200 value 57.526342
## iter 210 value 52.566246
## iter 220 value 48.292203
## iter 230 value 45.053868
## iter 240 value 43.139785
## iter 250 value 41.246862
## iter 260 value 39.656709
## iter 270 value 38.424544
## iter 280 value 37.678135
## iter 290 value 37.163558
## iter 300 value 36.699897
## iter 310 value 35.984027
## iter 320 value 35.219021
## iter 330 value 34.563968
## iter 340 value 33.658823
## iter 350 value 33.229745
## iter 360 value 32.886542
## iter 370 value 32.588148
## iter 380 value 32.322135
## iter 390 value 32.139654
## iter 400 value 32.017677
## iter 410 value 31.884429
## iter 420 value 31.735473
## iter 430 value 31.592573
## iter 440 value 31.398102
## iter 450 value 31.171639
## iter 460 value 31.000879
## iter 470 value 30.802598
## iter 480 value 30.682696
## iter 490 value 30.630241
## iter 500 value 30.622676
## final value 30.622676
## stopped after 500 iterations
## # weights: 25
## initial value 1409918.068392
## iter 10 value 16905.025602
## iter 20 value 15330.283983
## iter 30 value 12017.812397
## iter 40 value 9351.245414
## iter 50 value 9160.275017
## iter 60 value 8264.798017
## iter 70 value 5493.784567
## iter 80 value 4263.450085
## iter 90 value 3455.930936
## iter 100 value 3110.788606
## iter 110 value 2439.891365
## iter 120 value 1543.696445
## iter 130 value 1334.505194
## iter 140 value 1306.235537
## iter 150 value 1189.961690
## iter 160 value 1097.234368
## iter 170 value 1069.640702
## iter 180 value 1048.418999
## iter 190 value 1045.881461
## iter 200 value 1044.436021
## iter 210 value 1042.579737
## iter 220 value 1039.292606
## iter 230 value 1039.045307
## iter 240 value 1039.038680
## iter 250 value 1039.034621
## iter 260 value 1039.007116
## iter 270 value 1038.892412
## iter 280 value 1032.219834
## iter 290 value 1028.889223
## iter 300 value 981.947968
## iter 310 value 950.125371
## iter 320 value 942.638197
## iter 330 value 922.043655
## iter 340 value 856.699774
## iter 350 value 838.178891
## iter 360 value 835.730654
## iter 370 value 835.399445
## iter 380 value 835.377402
## iter 390 value 833.583750
## iter 400 value 830.919136
## iter 410 value 830.567582
## iter 420 value 830.546002
## iter 430 value 830.521693
## iter 440 value 830.507614
## final value 830.506138
## converged
## # weights: 61
## initial value 1408705.017691
## iter 10 value 42025.741640
## iter 20 value 18670.554170
## iter 30 value 8602.447370
## iter 40 value 5177.466722
## iter 50 value 3277.005152
## iter 60 value 1748.064409
## iter 70 value 1229.721630
## iter 80 value 1180.004060
## iter 90 value 1124.657431
## iter 100 value 1050.231514
## iter 110 value 1011.624649
## iter 120 value 991.110461
## iter 130 value 971.244701
## iter 140 value 969.923877
## iter 150 value 967.619506
## iter 160 value 960.798756
## iter 170 value 903.852460
## iter 180 value 829.554698
## iter 190 value 773.912048
## iter 200 value 745.529011
## iter 210 value 740.994945
## iter 220 value 734.454413
## iter 230 value 715.310730
## iter 240 value 700.505797
## iter 250 value 700.361044
## iter 260 value 697.756764
## iter 270 value 694.266614
## iter 280 value 643.096759
## iter 290 value 626.870769
## iter 300 value 621.766025
## iter 310 value 618.279765
## iter 320 value 615.252026
## iter 330 value 614.298803
## iter 340 value 611.049181
## iter 350 value 608.613538
## iter 360 value 606.915875
## iter 370 value 606.211874
## iter 380 value 604.504552
## iter 390 value 602.339734
## iter 400 value 601.401862
## iter 410 value 601.305742
## iter 420 value 601.274790
## iter 430 value 601.263726
## iter 440 value 601.258588
## iter 450 value 601.258197
## iter 460 value 601.256424
## iter 470 value 601.255349
## iter 480 value 601.252471
## final value 601.251998
## converged
## # weights: 121
## initial value 1472655.832292
## iter 10 value 1956.723679
## iter 20 value 967.530446
## iter 30 value 722.712671
## iter 40 value 606.824269
## iter 50 value 538.172570
## iter 60 value 492.956037
## iter 70 value 463.905162
## iter 80 value 445.866921
## iter 90 value 424.805603
## iter 100 value 404.385967
## iter 110 value 393.156150
## iter 120 value 383.676734
## iter 130 value 375.305907
## iter 140 value 348.045402
## iter 150 value 334.103718
## iter 160 value 321.654543
## iter 170 value 314.269519
## iter 180 value 309.615040
## iter 190 value 306.760189
## iter 200 value 304.609987
## iter 210 value 298.944764
## iter 220 value 291.634758
## iter 230 value 286.634740
## iter 240 value 283.484222
## iter 250 value 282.695660
## iter 260 value 282.382013
## iter 270 value 281.284241
## iter 280 value 279.302152
## iter 290 value 275.753761
## iter 300 value 272.669915
## iter 310 value 267.508058
## iter 320 value 262.474602
## iter 330 value 259.271182
## iter 340 value 257.264964
## iter 350 value 255.115456
## iter 360 value 253.426470
## iter 370 value 252.821986
## iter 380 value 251.673142
## iter 390 value 251.007288
## iter 400 value 250.590097
## iter 410 value 250.518220
## iter 420 value 250.501716
## iter 430 value 250.491816
## iter 440 value 250.482799
## iter 450 value 250.477572
## iter 460 value 250.474448
## iter 470 value 250.473641
## iter 480 value 250.473350
## final value 250.473239
## converged
## # weights: 181
## initial value 1383724.947353
## iter 10 value 1141.441234
## iter 20 value 687.837505
## iter 30 value 560.186222
## iter 40 value 468.965350
## iter 50 value 390.780950
## iter 60 value 344.855503
## iter 70 value 317.745115
## iter 80 value 296.916820
## iter 90 value 267.648670
## iter 100 value 243.713436
## iter 110 value 229.074624
## iter 120 value 218.386094
## iter 130 value 204.742126
## iter 140 value 191.763859
## iter 150 value 180.676860
## iter 160 value 170.006734
## iter 170 value 160.574999
## iter 180 value 151.451518
## iter 190 value 144.772767
## iter 200 value 138.301370
## iter 210 value 135.517179
## iter 220 value 131.485237
## iter 230 value 127.375693
## iter 240 value 123.559587
## iter 250 value 120.663533
## iter 260 value 118.902348
## iter 270 value 116.919639
## iter 280 value 115.526535
## iter 290 value 114.504503
## iter 300 value 112.747905
## iter 310 value 111.441066
## iter 320 value 110.312505
## iter 330 value 109.682260
## iter 340 value 109.266066
## iter 350 value 108.891778
## iter 360 value 108.589258
## iter 370 value 108.429458
## iter 380 value 108.350093
## iter 390 value 108.262623
## iter 400 value 108.032119
## iter 410 value 107.837030
## iter 420 value 107.478651
## iter 430 value 107.177203
## iter 440 value 106.949142
## iter 450 value 106.592870
## iter 460 value 106.036549
## iter 470 value 105.528440
## iter 480 value 105.190372
## iter 490 value 105.032831
## iter 500 value 104.872168
## final value 104.872168
## stopped after 500 iterations
## # weights: 241
## initial value 1394784.461153
## iter 10 value 1254.868237
## iter 20 value 743.546752
## iter 30 value 579.260979
## iter 40 value 491.045670
## iter 50 value 399.669947
## iter 60 value 339.592065
## iter 70 value 304.862690
## iter 80 value 278.848958
## iter 90 value 244.516066
## iter 100 value 224.609553
## iter 110 value 203.230965
## iter 120 value 186.101552
## iter 130 value 170.314600
## iter 140 value 159.154036
## iter 150 value 151.384445
## iter 160 value 144.478857
## iter 170 value 137.649443
## iter 180 value 130.706335
## iter 190 value 123.681111
## iter 200 value 115.600829
## iter 210 value 107.295331
## iter 220 value 99.042349
## iter 230 value 90.505848
## iter 240 value 83.123374
## iter 250 value 76.939334
## iter 260 value 73.020836
## iter 270 value 69.414517
## iter 280 value 67.016704
## iter 290 value 65.744524
## iter 300 value 64.576142
## iter 310 value 63.254679
## iter 320 value 62.058139
## iter 330 value 60.765607
## iter 340 value 59.616480
## iter 350 value 58.558523
## iter 360 value 57.898782
## iter 370 value 57.199478
## iter 380 value 56.354760
## iter 390 value 55.762647
## iter 400 value 55.118274
## iter 410 value 54.397593
## iter 420 value 53.909854
## iter 430 value 53.472602
## iter 440 value 53.066389
## iter 450 value 52.730105
## iter 460 value 52.472489
## iter 470 value 52.235832
## iter 480 value 52.024723
## iter 490 value 51.930110
## iter 500 value 51.897325
## final value 51.897325
## stopped after 500 iterations
## # weights: 25
## initial value 1407645.059689
## iter 10 value 17200.353710
## iter 20 value 13395.357940
## iter 30 value 10851.070805
## iter 40 value 8308.190995
## iter 50 value 4183.084482
## iter 60 value 2845.354584
## iter 70 value 2009.425469
## iter 80 value 1598.702813
## iter 90 value 1355.288664
## iter 100 value 1290.089562
## iter 110 value 1285.166909
## iter 120 value 1283.278964
## iter 130 value 1280.074542
## final value 1280.057176
## converged
## # weights: 61
## initial value 1397989.962445
## iter 10 value 3819.153986
## iter 20 value 2167.693736
## iter 30 value 1797.264819
## iter 40 value 1472.521922
## iter 50 value 1287.770839
## iter 60 value 1082.473093
## iter 70 value 1023.151361
## iter 80 value 970.952859
## iter 90 value 952.539949
## iter 100 value 915.474004
## iter 110 value 863.842786
## iter 120 value 833.536273
## iter 130 value 823.406921
## iter 140 value 815.611268
## iter 150 value 799.934818
## iter 160 value 785.962972
## iter 170 value 780.731542
## iter 180 value 778.888381
## iter 190 value 778.670342
## iter 200 value 778.668461
## final value 778.668447
## converged
## # weights: 121
## initial value 1358737.149062
## iter 10 value 2855.760148
## iter 20 value 1752.350888
## iter 30 value 1452.438511
## iter 40 value 1243.620664
## iter 50 value 1150.618492
## iter 60 value 1055.306998
## iter 70 value 999.681056
## iter 80 value 965.319083
## iter 90 value 918.640567
## iter 100 value 865.603177
## iter 110 value 805.575375
## iter 120 value 771.238712
## iter 130 value 732.616237
## iter 140 value 689.037386
## iter 150 value 655.625879
## iter 160 value 645.330984
## iter 170 value 635.692341
## iter 180 value 621.863449
## iter 190 value 610.855319
## iter 200 value 605.861610
## iter 210 value 599.872485
## iter 220 value 593.218425
## iter 230 value 587.587458
## iter 240 value 582.881951
## iter 250 value 579.819612
## iter 260 value 576.049946
## iter 270 value 569.032620
## iter 280 value 563.089568
## iter 290 value 555.182792
## iter 300 value 548.945534
## iter 310 value 545.423941
## iter 320 value 543.765687
## iter 330 value 542.477162
## iter 340 value 539.903398
## iter 350 value 537.581857
## iter 360 value 536.837601
## iter 370 value 536.324920
## iter 380 value 535.714073
## iter 390 value 535.246106
## iter 400 value 535.019449
## iter 410 value 534.620908
## iter 420 value 534.316857
## iter 430 value 534.155253
## iter 440 value 534.051420
## iter 450 value 534.027087
## iter 460 value 534.011201
## iter 470 value 533.969033
## iter 480 value 533.799387
## iter 490 value 533.352669
## iter 500 value 533.176003
## final value 533.176003
## stopped after 500 iterations
## # weights: 181
## initial value 1370360.487961
## iter 10 value 1207.305296
## iter 20 value 813.112738
## iter 30 value 701.098764
## iter 40 value 618.689514
## iter 50 value 575.088618
## iter 60 value 538.392230
## iter 70 value 515.301460
## iter 80 value 484.665823
## iter 90 value 460.630656
## iter 100 value 441.092806
## iter 110 value 426.865985
## iter 120 value 417.329227
## iter 130 value 402.175316
## iter 140 value 385.749271
## iter 150 value 377.060326
## iter 160 value 370.488151
## iter 170 value 365.752346
## iter 180 value 361.387708
## iter 190 value 356.690255
## iter 200 value 353.294472
## iter 210 value 351.128371
## iter 220 value 348.568797
## iter 230 value 346.687563
## iter 240 value 344.589402
## iter 250 value 343.015562
## iter 260 value 341.695077
## iter 270 value 340.851908
## iter 280 value 339.626607
## iter 290 value 338.412989
## iter 300 value 337.536525
## iter 310 value 336.726431
## iter 320 value 335.706069
## iter 330 value 334.961523
## iter 340 value 334.192948
## iter 350 value 333.408501
## iter 360 value 332.657589
## iter 370 value 332.380085
## iter 380 value 332.196317
## iter 390 value 331.943979
## iter 400 value 331.755238
## iter 410 value 331.673326
## iter 420 value 331.596781
## iter 430 value 331.542378
## iter 440 value 331.426434
## iter 450 value 331.268911
## iter 460 value 330.913148
## iter 470 value 330.656668
## iter 480 value 330.577256
## iter 490 value 330.411375
## iter 500 value 330.333451
## final value 330.333451
## stopped after 500 iterations
## # weights: 241
## initial value 1394535.440087
## iter 10 value 1652.455110
## iter 20 value 822.514959
## iter 30 value 699.808751
## iter 40 value 594.469850
## iter 50 value 512.308128
## iter 60 value 477.972385
## iter 70 value 449.139529
## iter 80 value 426.779632
## iter 90 value 409.738038
## iter 100 value 397.130753
## iter 110 value 386.632406
## iter 120 value 376.410972
## iter 130 value 367.838761
## iter 140 value 363.044652
## iter 150 value 359.239509
## iter 160 value 355.721806
## iter 170 value 352.180777
## iter 180 value 348.358678
## iter 190 value 345.487741
## iter 200 value 342.792019
## iter 210 value 340.398998
## iter 220 value 337.636515
## iter 230 value 335.262832
## iter 240 value 333.268877
## iter 250 value 331.900313
## iter 260 value 330.070259
## iter 270 value 327.855558
## iter 280 value 326.038247
## iter 290 value 324.778328
## iter 300 value 323.563650
## iter 310 value 322.603796
## iter 320 value 321.894102
## iter 330 value 321.598302
## iter 340 value 321.433982
## iter 350 value 321.190051
## iter 360 value 321.044017
## iter 370 value 320.923197
## iter 380 value 320.812698
## iter 390 value 320.726522
## iter 400 value 320.667032
## iter 410 value 320.607259
## iter 420 value 320.427307
## iter 430 value 320.193036
## iter 440 value 319.988039
## iter 450 value 319.826497
## iter 460 value 319.626328
## iter 470 value 319.403449
## iter 480 value 319.328696
## iter 490 value 319.307674
## iter 500 value 319.293845
## final value 319.293845
## stopped after 500 iterations
## # weights: 25
## initial value 1393612.292566
## iter 10 value 6291.180642
## iter 20 value 6265.542738
## iter 20 value 6265.542688
## iter 20 value 6265.542688
## final value 6265.542688
## converged
## # weights: 61
## initial value 1440695.729584
## iter 10 value 62290.459830
## iter 20 value 4751.281675
## iter 30 value 3775.951060
## iter 40 value 3030.171394
## iter 50 value 1510.024531
## iter 60 value 1357.852890
## iter 70 value 1259.185632
## iter 80 value 1073.131229
## iter 90 value 988.031675
## iter 100 value 953.456285
## iter 110 value 934.835086
## iter 120 value 917.985774
## iter 130 value 894.530240
## iter 140 value 873.971712
## iter 150 value 839.706330
## iter 160 value 789.367274
## iter 170 value 765.278573
## iter 180 value 755.006050
## iter 190 value 750.621252
## iter 200 value 745.743410
## iter 210 value 736.405121
## iter 220 value 724.966776
## iter 230 value 716.342378
## iter 240 value 713.736118
## iter 250 value 711.474880
## iter 260 value 708.880750
## iter 270 value 704.791343
## iter 280 value 700.433575
## iter 290 value 697.728291
## iter 300 value 695.677807
## iter 310 value 695.228944
## iter 320 value 694.280494
## iter 330 value 693.561119
## iter 340 value 691.330622
## iter 350 value 688.668165
## iter 360 value 686.852851
## iter 370 value 683.552386
## iter 380 value 682.499758
## iter 390 value 678.883741
## iter 400 value 666.755233
## iter 410 value 642.387422
## iter 420 value 634.509208
## iter 430 value 634.455179
## iter 440 value 633.785330
## iter 450 value 632.290941
## iter 460 value 629.927131
## iter 470 value 627.166726
## iter 480 value 627.104873
## iter 490 value 626.487275
## iter 500 value 622.075383
## final value 622.075383
## stopped after 500 iterations
## # weights: 121
## initial value 1390036.315580
## iter 10 value 2272.500271
## iter 20 value 938.577558
## iter 30 value 764.399625
## iter 40 value 642.698333
## iter 50 value 581.513296
## iter 60 value 525.736839
## iter 70 value 492.709877
## iter 80 value 470.359903
## iter 90 value 449.420348
## iter 100 value 424.244315
## iter 110 value 401.822055
## iter 120 value 381.573619
## iter 130 value 359.346680
## iter 140 value 351.729574
## iter 150 value 339.274110
## iter 160 value 332.838280
## iter 170 value 324.992645
## iter 180 value 317.912289
## iter 190 value 314.029811
## iter 200 value 310.151792
## iter 210 value 307.097278
## iter 220 value 304.928401
## iter 230 value 302.199881
## iter 240 value 299.556713
## iter 250 value 297.855113
## iter 260 value 297.230559
## iter 270 value 296.378942
## iter 280 value 295.045725
## iter 290 value 293.436863
## iter 300 value 291.741293
## iter 310 value 290.553597
## iter 320 value 289.832470
## iter 330 value 289.363368
## iter 340 value 288.760788
## iter 350 value 286.622029
## iter 360 value 284.805223
## iter 370 value 283.438312
## iter 380 value 282.130052
## iter 390 value 281.683860
## iter 400 value 281.353352
## iter 410 value 281.322331
## iter 420 value 281.279402
## iter 430 value 281.172870
## iter 440 value 280.959851
## iter 450 value 280.740546
## iter 460 value 280.643382
## iter 470 value 280.553348
## iter 480 value 280.439934
## iter 490 value 280.339714
## iter 500 value 280.281032
## final value 280.281032
## stopped after 500 iterations
## # weights: 181
## initial value 1406500.058150
## iter 10 value 1205.902608
## iter 20 value 808.220355
## iter 30 value 650.812361
## iter 40 value 529.300351
## iter 50 value 441.835262
## iter 60 value 382.485628
## iter 70 value 316.382992
## iter 80 value 280.632855
## iter 90 value 260.914881
## iter 100 value 239.610672
## iter 110 value 223.945286
## iter 120 value 202.637381
## iter 130 value 186.416540
## iter 140 value 174.871875
## iter 150 value 165.592737
## iter 160 value 159.621926
## iter 170 value 151.937088
## iter 180 value 145.573525
## iter 190 value 140.444637
## iter 200 value 133.862973
## iter 210 value 128.340377
## iter 220 value 124.292003
## iter 230 value 121.244917
## iter 240 value 119.460431
## iter 250 value 117.775155
## iter 260 value 115.244986
## iter 270 value 113.213739
## iter 280 value 111.301315
## iter 290 value 109.924322
## iter 300 value 109.331104
## iter 310 value 108.782459
## iter 320 value 108.371454
## iter 330 value 107.589580
## iter 340 value 106.681442
## iter 350 value 106.021792
## iter 360 value 105.790937
## iter 370 value 105.658899
## iter 380 value 105.628294
## iter 390 value 105.586666
## iter 400 value 105.517853
## iter 410 value 105.416924
## iter 420 value 105.270379
## iter 430 value 105.033196
## iter 440 value 104.586130
## iter 450 value 103.719464
## iter 460 value 102.929766
## iter 470 value 102.136290
## iter 480 value 101.529458
## iter 490 value 100.703155
## iter 500 value 99.567269
## final value 99.567269
## stopped after 500 iterations
## # weights: 241
## initial value 1425732.097986
## iter 10 value 1375.640186
## iter 20 value 821.895031
## iter 30 value 674.939125
## iter 40 value 502.232512
## iter 50 value 429.798325
## iter 60 value 358.629293
## iter 70 value 307.894247
## iter 80 value 271.940674
## iter 90 value 246.675038
## iter 100 value 224.864809
## iter 110 value 209.590616
## iter 120 value 198.214014
## iter 130 value 190.841716
## iter 140 value 184.426557
## iter 150 value 176.574111
## iter 160 value 167.216698
## iter 170 value 159.219820
## iter 180 value 150.289408
## iter 190 value 142.661961
## iter 200 value 136.443674
## iter 210 value 126.965162
## iter 220 value 119.114537
## iter 230 value 113.614611
## iter 240 value 107.524755
## iter 250 value 101.507598
## iter 260 value 97.952182
## iter 270 value 94.091510
## iter 280 value 89.646154
## iter 290 value 85.841245
## iter 300 value 80.774047
## iter 310 value 74.506634
## iter 320 value 70.152405
## iter 330 value 65.298885
## iter 340 value 62.480585
## iter 350 value 59.811508
## iter 360 value 57.588691
## iter 370 value 55.438650
## iter 380 value 53.187944
## iter 390 value 50.253663
## iter 400 value 48.655191
## iter 410 value 46.851427
## iter 420 value 45.727083
## iter 430 value 44.974745
## iter 440 value 44.212167
## iter 450 value 43.374185
## iter 460 value 42.610683
## iter 470 value 42.158281
## iter 480 value 41.509030
## iter 490 value 41.182159
## iter 500 value 41.096494
## final value 41.096494
## stopped after 500 iterations
## # weights: 25
## initial value 1364156.217056
## iter 10 value 18269.221518
## iter 20 value 13475.061511
## iter 30 value 9629.319203
## iter 40 value 6671.501158
## iter 50 value 5299.293510
## iter 60 value 3166.346011
## iter 70 value 1733.319600
## iter 80 value 1360.425481
## iter 90 value 1353.776046
## iter 100 value 1345.354833
## iter 110 value 1344.569411
## iter 120 value 1339.296610
## iter 130 value 1335.950002
## iter 140 value 1334.570254
## iter 150 value 1333.703517
## iter 160 value 1333.682468
## iter 170 value 1333.074462
## iter 180 value 1332.484928
## iter 190 value 1332.053172
## iter 200 value 1331.840710
## final value 1331.840250
## converged
## # weights: 61
## initial value 1414574.639448
## iter 10 value 74404.608292
## iter 20 value 31781.216023
## iter 30 value 18390.347661
## iter 40 value 8885.452614
## iter 50 value 2235.951137
## iter 60 value 1591.800972
## iter 70 value 1390.031093
## iter 80 value 1166.507551
## iter 90 value 1091.906081
## iter 100 value 1018.502108
## iter 110 value 970.674522
## iter 120 value 923.969396
## iter 130 value 899.859971
## iter 140 value 896.646193
## iter 150 value 888.674380
## iter 160 value 850.562327
## iter 170 value 832.091069
## iter 180 value 817.265326
## iter 190 value 788.290220
## iter 200 value 770.034306
## iter 210 value 761.197537
## iter 220 value 755.784054
## iter 230 value 754.581941
## iter 240 value 746.820805
## iter 250 value 709.935781
## iter 260 value 690.454444
## iter 270 value 676.409301
## iter 280 value 663.448097
## iter 290 value 660.128353
## iter 300 value 658.747201
## iter 310 value 656.792685
## iter 320 value 655.258559
## iter 330 value 655.162165
## iter 340 value 654.492991
## iter 350 value 653.504942
## iter 360 value 653.005673
## iter 370 value 652.158174
## iter 380 value 651.834694
## iter 390 value 651.485209
## iter 400 value 650.908469
## iter 410 value 650.319357
## iter 420 value 650.080403
## iter 430 value 649.692217
## iter 440 value 649.470360
## iter 450 value 649.461963
## iter 460 value 649.423687
## iter 470 value 649.297667
## iter 480 value 648.892847
## iter 490 value 648.736538
## iter 500 value 648.387214
## final value 648.387214
## stopped after 500 iterations
## # weights: 121
## initial value 1398787.227659
## iter 10 value 1131.808015
## iter 20 value 813.078320
## iter 30 value 655.556487
## iter 40 value 566.758219
## iter 50 value 519.180216
## iter 60 value 467.921886
## iter 70 value 427.363979
## iter 80 value 396.369450
## iter 90 value 381.231810
## iter 100 value 362.702192
## iter 110 value 350.659447
## iter 120 value 327.931088
## iter 130 value 315.662409
## iter 140 value 304.816939
## iter 150 value 296.755563
## iter 160 value 287.122701
## iter 170 value 278.714772
## iter 180 value 271.728817
## iter 190 value 266.231985
## iter 200 value 259.166726
## iter 210 value 255.973010
## iter 220 value 252.925171
## iter 230 value 249.796461
## iter 240 value 247.876509
## iter 250 value 247.256902
## iter 260 value 247.068633
## iter 270 value 246.741834
## iter 280 value 245.719127
## iter 290 value 242.780214
## iter 300 value 239.048754
## iter 310 value 234.644306
## iter 320 value 229.813620
## iter 330 value 227.340738
## iter 340 value 224.757668
## iter 350 value 223.465990
## iter 360 value 222.354951
## iter 370 value 221.793251
## iter 380 value 221.386408
## iter 390 value 220.674249
## iter 400 value 220.271242
## iter 410 value 219.824257
## iter 420 value 219.635227
## iter 430 value 219.460927
## iter 440 value 219.378033
## iter 450 value 219.321036
## iter 460 value 219.277718
## iter 470 value 219.271821
## iter 480 value 219.264910
## iter 490 value 219.243279
## iter 500 value 219.133315
## final value 219.133315
## stopped after 500 iterations
## # weights: 181
## initial value 1346720.724982
## iter 10 value 1022.198683
## iter 20 value 779.803239
## iter 30 value 663.792973
## iter 40 value 543.544539
## iter 50 value 458.727050
## iter 60 value 405.704627
## iter 70 value 357.277567
## iter 80 value 315.458426
## iter 90 value 271.449028
## iter 100 value 245.086950
## iter 110 value 231.976331
## iter 120 value 216.392080
## iter 130 value 205.881725
## iter 140 value 194.742527
## iter 150 value 185.340356
## iter 160 value 176.346289
## iter 170 value 166.463050
## iter 180 value 153.508355
## iter 190 value 145.897651
## iter 200 value 142.710828
## iter 210 value 139.294199
## iter 220 value 135.233884
## iter 230 value 130.619818
## iter 240 value 127.055113
## iter 250 value 124.831449
## iter 260 value 122.887673
## iter 270 value 121.633487
## iter 280 value 120.581692
## iter 290 value 119.650976
## iter 300 value 119.171812
## iter 310 value 118.571495
## iter 320 value 118.087634
## iter 330 value 117.762066
## iter 340 value 117.516178
## iter 350 value 116.982213
## iter 360 value 115.175911
## iter 370 value 114.084910
## iter 380 value 113.791833
## iter 390 value 113.373672
## iter 400 value 113.009754
## iter 410 value 112.605510
## iter 420 value 112.140665
## iter 430 value 111.798971
## iter 440 value 111.516594
## iter 450 value 111.304409
## iter 460 value 110.981374
## iter 470 value 110.651755
## iter 480 value 110.069217
## iter 490 value 109.462269
## iter 500 value 108.348943
## final value 108.348943
## stopped after 500 iterations
## # weights: 241
## initial value 1375342.621822
## iter 10 value 1241.698748
## iter 20 value 823.326228
## iter 30 value 597.601678
## iter 40 value 494.272467
## iter 50 value 410.415240
## iter 60 value 356.093394
## iter 70 value 315.977675
## iter 80 value 283.437295
## iter 90 value 257.066348
## iter 100 value 237.993795
## iter 110 value 219.203280
## iter 120 value 199.822760
## iter 130 value 178.767423
## iter 140 value 161.751379
## iter 150 value 150.272940
## iter 160 value 137.701897
## iter 170 value 126.887380
## iter 180 value 115.209999
## iter 190 value 103.912457
## iter 200 value 96.021856
## iter 210 value 91.034586
## iter 220 value 85.861334
## iter 230 value 80.024086
## iter 240 value 74.881097
## iter 250 value 70.780686
## iter 260 value 67.533640
## iter 270 value 62.111864
## iter 280 value 57.586626
## iter 290 value 53.866762
## iter 300 value 51.249059
## iter 310 value 49.513083
## iter 320 value 47.854755
## iter 330 value 46.497514
## iter 340 value 45.404367
## iter 350 value 44.420428
## iter 360 value 43.791711
## iter 370 value 43.273921
## iter 380 value 42.655659
## iter 390 value 41.534482
## iter 400 value 40.583315
## iter 410 value 40.035747
## iter 420 value 39.627201
## iter 430 value 39.222367
## iter 440 value 38.827840
## iter 450 value 38.437411
## iter 460 value 37.984439
## iter 470 value 37.580332
## iter 480 value 37.204985
## iter 490 value 37.071207
## iter 500 value 37.027860
## final value 37.027860
## stopped after 500 iterations
## # weights: 25
## initial value 1394525.922485
## iter 10 value 96563.917233
## iter 20 value 16866.545419
## iter 30 value 15327.736070
## iter 40 value 15094.156086
## iter 50 value 15066.776092
## iter 60 value 13590.662701
## iter 70 value 10160.845966
## iter 80 value 7228.372587
## iter 90 value 4488.432552
## iter 100 value 3759.238182
## iter 110 value 3570.944810
## iter 120 value 3406.374325
## iter 130 value 2050.796356
## iter 140 value 1530.585269
## iter 150 value 1355.674639
## iter 160 value 1260.883588
## iter 170 value 1260.759252
## iter 180 value 1256.859995
## iter 190 value 1256.412601
## iter 200 value 1253.203674
## iter 210 value 1252.406323
## iter 220 value 1249.855451
## iter 230 value 1247.603204
## iter 240 value 1245.999381
## iter 250 value 1245.548232
## iter 260 value 1245.508608
## iter 270 value 1245.391679
## iter 280 value 1245.211120
## iter 290 value 1244.630233
## iter 300 value 1243.711651
## iter 310 value 1243.042698
## iter 320 value 1242.909794
## iter 330 value 1242.704091
## iter 340 value 1242.642847
## iter 340 value 1242.642841
## iter 350 value 1242.642339
## iter 350 value 1242.642339
## iter 360 value 1242.642132
## iter 360 value 1242.642132
## final value 1242.642110
## converged
## # weights: 61
## initial value 1382301.831569
## iter 10 value 197516.743279
## iter 20 value 9615.255518
## iter 30 value 4661.045760
## iter 40 value 3345.939011
## iter 50 value 1951.741228
## iter 60 value 1500.268711
## iter 70 value 1371.696350
## iter 80 value 1150.797944
## iter 90 value 986.139675
## iter 100 value 855.493323
## iter 110 value 821.007130
## iter 120 value 793.399815
## iter 130 value 778.960976
## iter 140 value 776.843728
## iter 150 value 771.852676
## iter 160 value 750.841811
## iter 170 value 712.700904
## iter 180 value 706.428963
## iter 190 value 704.437838
## iter 200 value 701.133008
## iter 210 value 699.829575
## iter 220 value 698.020215
## iter 230 value 696.706057
## iter 240 value 696.434125
## iter 250 value 695.884491
## iter 260 value 695.749930
## iter 270 value 695.623088
## iter 280 value 695.433360
## iter 290 value 694.476620
## iter 300 value 693.551631
## iter 310 value 692.952079
## iter 320 value 692.676044
## iter 330 value 692.399137
## iter 340 value 691.767141
## iter 350 value 690.034315
## iter 360 value 689.026419
## iter 370 value 682.911563
## iter 380 value 681.772056
## iter 390 value 670.960772
## iter 400 value 647.193142
## iter 410 value 638.152518
## iter 420 value 628.006591
## iter 430 value 619.427779
## iter 440 value 617.520796
## iter 450 value 616.033071
## iter 460 value 614.385915
## iter 470 value 611.570209
## iter 480 value 606.193003
## iter 490 value 603.801266
## iter 500 value 603.498493
## final value 603.498493
## stopped after 500 iterations
## # weights: 121
## initial value 1409867.356317
## iter 10 value 1684.962673
## iter 20 value 856.348870
## iter 30 value 660.267640
## iter 40 value 605.335315
## iter 50 value 524.784767
## iter 60 value 464.677985
## iter 70 value 434.910607
## iter 80 value 409.793507
## iter 90 value 396.447514
## iter 100 value 386.022818
## iter 110 value 377.117836
## iter 120 value 360.524338
## iter 130 value 349.848787
## iter 140 value 344.777831
## iter 150 value 340.953453
## iter 160 value 339.345269
## iter 170 value 335.561459
## iter 180 value 329.955015
## iter 190 value 324.691052
## iter 200 value 320.966622
## iter 210 value 319.277300
## iter 220 value 318.549999
## iter 230 value 317.552448
## iter 240 value 315.832826
## iter 250 value 314.940601
## iter 260 value 314.358567
## iter 270 value 313.303011
## iter 280 value 311.832098
## iter 290 value 309.700467
## iter 300 value 307.031853
## iter 310 value 303.838831
## iter 320 value 298.829269
## iter 330 value 291.491368
## iter 340 value 287.493885
## iter 350 value 285.055913
## iter 360 value 283.048904
## iter 370 value 281.794215
## iter 380 value 280.913617
## iter 390 value 280.308462
## iter 400 value 279.793370
## iter 410 value 279.423260
## iter 420 value 279.186522
## iter 430 value 279.048744
## iter 440 value 278.589183
## iter 450 value 277.077751
## iter 460 value 276.434203
## iter 470 value 276.260170
## iter 480 value 276.140545
## iter 490 value 276.034100
## iter 500 value 276.027543
## final value 276.027543
## stopped after 500 iterations
## # weights: 181
## initial value 1374732.297412
## iter 10 value 993.172104
## iter 20 value 797.767413
## iter 30 value 631.609446
## iter 40 value 514.986434
## iter 50 value 418.140325
## iter 60 value 359.316494
## iter 70 value 326.975507
## iter 80 value 294.749833
## iter 90 value 273.854794
## iter 100 value 254.429892
## iter 110 value 238.249194
## iter 120 value 224.953136
## iter 130 value 212.715661
## iter 140 value 206.971246
## iter 150 value 203.225308
## iter 160 value 199.735238
## iter 170 value 195.474313
## iter 180 value 186.743430
## iter 190 value 180.750992
## iter 200 value 176.513920
## iter 210 value 169.967265
## iter 220 value 165.922018
## iter 230 value 161.384470
## iter 240 value 157.791986
## iter 250 value 153.790203
## iter 260 value 150.275075
## iter 270 value 147.312234
## iter 280 value 145.192587
## iter 290 value 142.511477
## iter 300 value 140.783100
## iter 310 value 138.116658
## iter 320 value 135.569610
## iter 330 value 133.104330
## iter 340 value 129.884094
## iter 350 value 126.932648
## iter 360 value 124.469379
## iter 370 value 123.665548
## iter 380 value 123.422714
## iter 390 value 122.647072
## iter 400 value 121.752808
## iter 410 value 120.690748
## iter 420 value 119.289184
## iter 430 value 118.179616
## iter 440 value 117.525909
## iter 450 value 116.716391
## iter 460 value 115.462780
## iter 470 value 114.857949
## iter 480 value 113.995292
## iter 490 value 112.725918
## iter 500 value 110.346004
## final value 110.346004
## stopped after 500 iterations
## # weights: 241
## initial value 1420191.698180
## iter 10 value 2056.780777
## iter 20 value 893.629456
## iter 30 value 684.309794
## iter 40 value 535.585418
## iter 50 value 373.828552
## iter 60 value 278.565472
## iter 70 value 238.107349
## iter 80 value 204.643094
## iter 90 value 168.208130
## iter 100 value 148.365329
## iter 110 value 137.182286
## iter 120 value 124.090448
## iter 130 value 113.931683
## iter 140 value 106.156163
## iter 150 value 99.535492
## iter 160 value 89.324627
## iter 170 value 83.487758
## iter 180 value 79.347386
## iter 190 value 76.336436
## iter 200 value 72.917547
## iter 210 value 69.200606
## iter 220 value 66.823470
## iter 230 value 64.795175
## iter 240 value 63.369407
## iter 250 value 61.893607
## iter 260 value 60.297842
## iter 270 value 59.209198
## iter 280 value 57.640740
## iter 290 value 56.493227
## iter 300 value 55.527297
## iter 310 value 54.010027
## iter 320 value 52.284771
## iter 330 value 51.338887
## iter 340 value 50.554751
## iter 350 value 49.729827
## iter 360 value 48.729318
## iter 370 value 47.848253
## iter 380 value 46.921142
## iter 390 value 46.095927
## iter 400 value 45.448608
## iter 410 value 44.961928
## iter 420 value 44.391269
## iter 430 value 43.780214
## iter 440 value 43.331521
## iter 450 value 42.868684
## iter 460 value 42.175431
## iter 470 value 40.782103
## iter 480 value 39.952879
## iter 490 value 39.563792
## iter 500 value 39.429882
## final value 39.429882
## stopped after 500 iterations
## # weights: 25
## initial value 1398875.046314
## iter 10 value 8867.948014
## iter 20 value 5993.622683
## iter 30 value 5646.722816
## iter 40 value 5435.909169
## iter 50 value 5362.765514
## iter 60 value 4536.142053
## iter 70 value 4495.222704
## iter 80 value 4485.764331
## iter 90 value 4453.593642
## iter 100 value 4342.511875
## iter 110 value 3687.301459
## iter 120 value 3045.585932
## iter 130 value 1918.852159
## iter 140 value 1390.904526
## iter 150 value 1317.883261
## iter 160 value 1309.243243
## iter 170 value 1289.933442
## iter 180 value 1257.096041
## iter 190 value 1226.675726
## iter 200 value 1219.077462
## iter 210 value 1173.592771
## iter 220 value 1160.681757
## iter 230 value 1154.568797
## iter 240 value 1149.022461
## iter 250 value 1148.283754
## iter 260 value 1146.675484
## iter 270 value 1138.472914
## iter 280 value 1123.099814
## iter 290 value 1031.942961
## iter 300 value 1012.564630
## iter 310 value 953.010378
## iter 320 value 942.779352
## iter 330 value 940.516515
## iter 340 value 938.517010
## iter 350 value 938.298298
## final value 938.277994
## converged
## # weights: 61
## initial value 1383047.427778
## iter 10 value 16097.711861
## iter 20 value 13996.074933
## iter 30 value 11464.903557
## iter 40 value 6056.782398
## iter 50 value 2665.760001
## iter 60 value 2086.981202
## iter 70 value 1512.812962
## iter 80 value 1188.484216
## iter 90 value 1056.784378
## iter 100 value 999.337705
## iter 110 value 961.583479
## iter 120 value 926.298884
## iter 130 value 906.313212
## iter 140 value 887.000545
## iter 150 value 853.462135
## iter 160 value 814.084344
## iter 170 value 800.142836
## iter 180 value 796.685038
## iter 190 value 785.673658
## iter 200 value 744.547448
## iter 210 value 719.527059
## iter 220 value 715.829710
## iter 230 value 712.215329
## iter 240 value 706.829763
## iter 250 value 699.825457
## iter 260 value 695.920420
## iter 270 value 692.635028
## iter 280 value 691.513080
## iter 290 value 690.769966
## iter 300 value 690.743778
## iter 310 value 690.695572
## iter 320 value 690.403141
## iter 330 value 689.625702
## iter 340 value 689.134675
## iter 350 value 688.897080
## iter 360 value 688.788519
## iter 370 value 688.495166
## iter 380 value 687.541361
## iter 390 value 686.519352
## iter 400 value 685.457728
## iter 410 value 665.693834
## iter 420 value 658.208763
## iter 430 value 657.293307
## iter 440 value 654.923702
## iter 450 value 653.686242
## iter 460 value 652.987449
## iter 470 value 652.391045
## iter 480 value 652.051909
## iter 490 value 648.666593
## iter 500 value 641.324877
## final value 641.324877
## stopped after 500 iterations
## # weights: 121
## initial value 1370582.855442
## iter 10 value 3634.042647
## iter 20 value 1789.725686
## iter 30 value 1004.140210
## iter 40 value 747.558390
## iter 50 value 626.230697
## iter 60 value 578.153462
## iter 70 value 541.447040
## iter 80 value 512.601448
## iter 90 value 492.060724
## iter 100 value 475.787008
## iter 110 value 452.065622
## iter 120 value 433.269551
## iter 130 value 413.524123
## iter 140 value 377.496235
## iter 150 value 356.806908
## iter 160 value 346.207773
## iter 170 value 337.465667
## iter 180 value 332.908414
## iter 190 value 331.400341
## iter 200 value 330.624149
## iter 210 value 330.055305
## iter 220 value 328.600686
## iter 230 value 327.315347
## iter 240 value 324.452876
## iter 250 value 323.066543
## iter 260 value 322.756085
## iter 270 value 322.642127
## iter 280 value 322.602356
## iter 290 value 322.591816
## iter 300 value 322.562904
## iter 310 value 322.531566
## iter 320 value 322.528408
## final value 322.528242
## converged
## # weights: 181
## initial value 1434633.488974
## iter 10 value 1211.861663
## iter 20 value 741.622761
## iter 30 value 617.798101
## iter 40 value 504.417532
## iter 50 value 412.338094
## iter 60 value 371.324556
## iter 70 value 340.397102
## iter 80 value 302.248976
## iter 90 value 272.152936
## iter 100 value 249.972009
## iter 110 value 237.318337
## iter 120 value 222.822050
## iter 130 value 211.467481
## iter 140 value 203.816955
## iter 150 value 192.621959
## iter 160 value 180.075018
## iter 170 value 174.569867
## iter 180 value 160.326451
## iter 190 value 144.485194
## iter 200 value 131.606989
## iter 210 value 125.689084
## iter 220 value 122.755276
## iter 230 value 120.284676
## iter 240 value 117.859599
## iter 250 value 116.095321
## iter 260 value 114.349994
## iter 270 value 112.386997
## iter 280 value 110.593585
## iter 290 value 109.772050
## iter 300 value 109.073959
## iter 310 value 108.544328
## iter 320 value 108.030098
## iter 330 value 107.254260
## iter 340 value 106.195342
## iter 350 value 104.697772
## iter 360 value 103.193881
## iter 370 value 102.654090
## iter 380 value 102.439906
## iter 390 value 101.963333
## iter 400 value 101.388648
## iter 410 value 100.874143
## iter 420 value 100.310271
## iter 430 value 99.585308
## iter 440 value 98.913255
## iter 450 value 98.205766
## iter 460 value 97.648008
## iter 470 value 97.205228
## iter 480 value 96.630771
## iter 490 value 95.981050
## iter 500 value 95.148898
## final value 95.148898
## stopped after 500 iterations
## # weights: 241
## initial value 1380919.758380
## iter 10 value 1185.503739
## iter 20 value 790.683169
## iter 30 value 627.034190
## iter 40 value 514.864460
## iter 50 value 406.597354
## iter 60 value 358.938303
## iter 70 value 302.339199
## iter 80 value 271.161883
## iter 90 value 246.617239
## iter 100 value 221.158591
## iter 110 value 207.410236
## iter 120 value 195.923775
## iter 130 value 184.926692
## iter 140 value 173.256604
## iter 150 value 157.560859
## iter 160 value 145.242002
## iter 170 value 136.069791
## iter 180 value 129.000279
## iter 190 value 121.603525
## iter 200 value 112.590746
## iter 210 value 106.404280
## iter 220 value 101.734151
## iter 230 value 98.221466
## iter 240 value 95.298610
## iter 250 value 93.506571
## iter 260 value 91.857714
## iter 270 value 90.204602
## iter 280 value 87.749170
## iter 290 value 85.845178
## iter 300 value 84.335200
## iter 310 value 83.127670
## iter 320 value 82.373073
## iter 330 value 81.601811
## iter 340 value 80.734315
## iter 350 value 80.145589
## iter 360 value 79.483337
## iter 370 value 78.846941
## iter 380 value 78.131066
## iter 390 value 77.590630
## iter 400 value 76.953585
## iter 410 value 76.047199
## iter 420 value 74.902899
## iter 430 value 74.321353
## iter 440 value 73.743920
## iter 450 value 73.211313
## iter 460 value 72.724950
## iter 470 value 72.243749
## iter 480 value 71.753237
## iter 490 value 71.584926
## iter 500 value 71.527097
## final value 71.527097
## stopped after 500 iterations
## # weights: 25
## initial value 1381292.049123
## iter 10 value 20287.215687
## iter 20 value 12854.246572
## iter 30 value 9331.123678
## iter 40 value 7324.673398
## iter 50 value 6394.784077
## iter 60 value 6078.828353
## iter 70 value 5451.364611
## iter 80 value 4879.160754
## iter 90 value 4152.663564
## iter 100 value 2245.441698
## iter 110 value 1652.384291
## iter 120 value 1406.330990
## iter 130 value 1383.511603
## iter 140 value 1360.773843
## iter 150 value 1344.616990
## iter 160 value 1342.205575
## iter 170 value 1342.031844
## final value 1342.031267
## converged
## # weights: 61
## initial value 1419396.305294
## iter 10 value 184959.023348
## iter 20 value 11318.475570
## iter 30 value 10334.129018
## iter 40 value 9301.190262
## iter 50 value 8234.280747
## iter 60 value 7016.784769
## iter 70 value 6059.059114
## iter 80 value 4430.428399
## iter 90 value 3102.328648
## iter 100 value 2116.677718
## iter 110 value 1856.153645
## iter 120 value 1654.354334
## iter 130 value 1618.838642
## iter 140 value 1598.662422
## iter 150 value 1502.227035
## iter 160 value 1341.668973
## iter 170 value 1261.544451
## iter 180 value 1179.624678
## iter 190 value 1118.587334
## iter 200 value 1079.348832
## iter 210 value 1041.432806
## iter 220 value 1001.745157
## iter 230 value 961.081803
## iter 240 value 941.215148
## iter 250 value 933.249508
## iter 260 value 930.191127
## iter 270 value 927.092230
## iter 280 value 921.600491
## iter 290 value 918.671299
## iter 300 value 917.111812
## iter 310 value 915.623310
## iter 320 value 915.547885
## final value 915.547866
## converged
## # weights: 121
## initial value 1429579.870413
## iter 10 value 2676.843973
## iter 20 value 1328.866594
## iter 30 value 1136.312087
## iter 40 value 1080.732667
## iter 50 value 1051.095478
## iter 60 value 1036.318257
## iter 70 value 1013.954950
## iter 80 value 987.822197
## iter 90 value 942.212725
## iter 100 value 905.205979
## iter 110 value 853.472609
## iter 120 value 804.975814
## iter 130 value 772.319125
## iter 140 value 727.066991
## iter 150 value 694.309307
## iter 160 value 678.135473
## iter 170 value 670.144468
## iter 180 value 662.467012
## iter 190 value 653.599897
## iter 200 value 644.891181
## iter 210 value 640.383760
## iter 220 value 634.002636
## iter 230 value 629.109090
## iter 240 value 622.475200
## iter 250 value 617.628729
## iter 260 value 614.018865
## iter 270 value 605.798801
## iter 280 value 594.718992
## iter 290 value 570.303635
## iter 300 value 541.318117
## iter 310 value 525.691143
## iter 320 value 522.553924
## iter 330 value 518.840760
## iter 340 value 515.276227
## iter 350 value 512.314690
## iter 360 value 508.776298
## iter 370 value 505.151256
## iter 380 value 502.042305
## iter 390 value 498.143774
## iter 400 value 495.528422
## iter 410 value 492.741194
## iter 420 value 479.613655
## iter 430 value 471.097821
## iter 440 value 467.872219
## iter 450 value 466.112631
## iter 460 value 464.786943
## iter 470 value 463.906956
## iter 480 value 463.788169
## iter 490 value 463.727789
## iter 500 value 463.718523
## final value 463.718523
## stopped after 500 iterations
## # weights: 181
## initial value 1350758.806442
## iter 10 value 1305.656452
## iter 20 value 857.144756
## iter 30 value 725.492586
## iter 40 value 600.979729
## iter 50 value 547.813998
## iter 60 value 521.245762
## iter 70 value 483.491460
## iter 80 value 459.643289
## iter 90 value 444.644242
## iter 100 value 431.418359
## iter 110 value 416.471585
## iter 120 value 406.356370
## iter 130 value 401.003529
## iter 140 value 397.503648
## iter 150 value 393.405531
## iter 160 value 390.506549
## iter 170 value 386.888534
## iter 180 value 379.886769
## iter 190 value 375.561956
## iter 200 value 373.263663
## iter 210 value 371.718795
## iter 220 value 368.687517
## iter 230 value 363.769758
## iter 240 value 361.193453
## iter 250 value 358.212537
## iter 260 value 356.559336
## iter 270 value 355.405214
## iter 280 value 354.005756
## iter 290 value 353.073280
## iter 300 value 352.014675
## iter 310 value 351.156512
## iter 320 value 350.491249
## iter 330 value 349.873665
## iter 340 value 349.357534
## iter 350 value 348.889836
## iter 360 value 347.894064
## iter 370 value 347.102972
## iter 380 value 346.842744
## iter 390 value 346.349524
## iter 400 value 345.963008
## iter 410 value 345.827065
## iter 420 value 345.743161
## iter 430 value 345.705685
## iter 440 value 345.682398
## iter 450 value 345.661600
## iter 460 value 345.632443
## iter 470 value 345.578164
## iter 480 value 345.516618
## iter 490 value 345.351348
## iter 500 value 345.272303
## final value 345.272303
## stopped after 500 iterations
## # weights: 241
## initial value 1362499.251470
## iter 10 value 1272.672194
## iter 20 value 883.943841
## iter 30 value 743.769012
## iter 40 value 629.600859
## iter 50 value 547.787256
## iter 60 value 498.847486
## iter 70 value 475.077643
## iter 80 value 454.458265
## iter 90 value 441.592704
## iter 100 value 430.776356
## iter 110 value 424.534253
## iter 120 value 419.569638
## iter 130 value 413.936907
## iter 140 value 407.280641
## iter 150 value 400.826140
## iter 160 value 396.181335
## iter 170 value 392.125717
## iter 180 value 385.320780
## iter 190 value 380.372983
## iter 200 value 376.124581
## iter 210 value 372.841356
## iter 220 value 370.166136
## iter 230 value 366.412347
## iter 240 value 363.349710
## iter 250 value 361.329537
## iter 260 value 359.127974
## iter 270 value 357.227443
## iter 280 value 355.681249
## iter 290 value 354.020479
## iter 300 value 351.854725
## iter 310 value 349.690689
## iter 320 value 347.262095
## iter 330 value 344.203866
## iter 340 value 341.311006
## iter 350 value 339.219991
## iter 360 value 338.020488
## iter 370 value 336.930317
## iter 380 value 336.076126
## iter 390 value 335.278900
## iter 400 value 334.573043
## iter 410 value 333.811137
## iter 420 value 333.005316
## iter 430 value 332.181636
## iter 440 value 331.468455
## iter 450 value 330.429249
## iter 460 value 329.360251
## iter 470 value 328.382914
## iter 480 value 327.561672
## iter 490 value 327.198614
## iter 500 value 326.698237
## final value 326.698237
## stopped after 500 iterations
## # weights: 25
## initial value 1352804.101603
## iter 10 value 7275.747305
## iter 20 value 5671.697933
## iter 30 value 4972.380138
## iter 40 value 3179.032765
## iter 50 value 1704.377016
## iter 60 value 1450.697286
## iter 70 value 1432.154930
## iter 80 value 1354.504384
## iter 90 value 1336.069149
## iter 100 value 1329.949531
## iter 110 value 1327.451469
## iter 120 value 1327.351137
## iter 130 value 1325.226789
## iter 140 value 1323.396121
## iter 150 value 1322.155002
## iter 160 value 1321.358865
## iter 170 value 1321.326107
## final value 1321.326029
## converged
## # weights: 61
## initial value 1381519.965639
## iter 10 value 156745.089010
## iter 20 value 19165.135566
## iter 30 value 4707.429300
## iter 40 value 2910.576358
## iter 50 value 2507.757296
## iter 60 value 2442.203789
## iter 70 value 2400.313853
## iter 80 value 2392.664782
## iter 90 value 2380.635613
## iter 100 value 2325.955800
## iter 110 value 2199.569931
## iter 120 value 1817.425136
## iter 130 value 1391.646552
## iter 140 value 1254.540213
## iter 150 value 1219.271583
## iter 160 value 1198.840266
## iter 170 value 1174.080006
## iter 180 value 1172.475059
## iter 190 value 1171.034220
## iter 200 value 1170.555707
## iter 210 value 1170.345513
## iter 220 value 1170.212457
## final value 1170.212293
## converged
## # weights: 121
## initial value 1413421.109585
## iter 10 value 1164.292169
## iter 20 value 917.817139
## iter 30 value 794.873953
## iter 40 value 704.864810
## iter 50 value 645.498750
## iter 60 value 599.702107
## iter 70 value 534.997492
## iter 80 value 502.120381
## iter 90 value 474.354445
## iter 100 value 456.554333
## iter 110 value 429.374554
## iter 120 value 393.297491
## iter 130 value 370.217467
## iter 140 value 351.341173
## iter 150 value 339.785544
## iter 160 value 331.455091
## iter 170 value 321.697691
## iter 180 value 310.101631
## iter 190 value 297.704618
## iter 200 value 288.833757
## iter 210 value 279.004290
## iter 220 value 271.420859
## iter 230 value 266.658103
## iter 240 value 261.757831
## iter 250 value 258.717112
## iter 260 value 257.455015
## iter 270 value 256.695570
## iter 280 value 254.898675
## iter 290 value 253.070971
## iter 300 value 251.184672
## iter 310 value 249.060118
## iter 320 value 246.855712
## iter 330 value 244.456969
## iter 340 value 241.698852
## iter 350 value 239.301865
## iter 360 value 236.819552
## iter 370 value 235.800689
## iter 380 value 235.176343
## iter 390 value 234.545566
## iter 400 value 234.206551
## iter 410 value 233.947747
## iter 420 value 233.490559
## iter 430 value 232.665740
## iter 440 value 231.071099
## iter 450 value 229.779929
## iter 460 value 226.675373
## iter 470 value 225.458197
## iter 480 value 224.716210
## iter 490 value 224.045071
## iter 500 value 223.982740
## final value 223.982740
## stopped after 500 iterations
## # weights: 181
## initial value 1401015.855766
## iter 10 value 1199.275633
## iter 20 value 835.197898
## iter 30 value 667.544267
## iter 40 value 529.879974
## iter 50 value 442.998801
## iter 60 value 394.055870
## iter 70 value 339.969879
## iter 80 value 309.182838
## iter 90 value 282.462925
## iter 100 value 261.871797
## iter 110 value 246.757338
## iter 120 value 233.521851
## iter 130 value 225.709182
## iter 140 value 216.937743
## iter 150 value 207.225850
## iter 160 value 196.613876
## iter 170 value 189.384304
## iter 180 value 182.776166
## iter 190 value 174.835674
## iter 200 value 169.414834
## iter 210 value 165.400080
## iter 220 value 162.083955
## iter 230 value 159.058170
## iter 240 value 155.684739
## iter 250 value 150.590213
## iter 260 value 147.163452
## iter 270 value 144.798286
## iter 280 value 141.196879
## iter 290 value 139.373404
## iter 300 value 137.832535
## iter 310 value 136.166298
## iter 320 value 134.235930
## iter 330 value 131.245240
## iter 340 value 124.752549
## iter 350 value 120.818687
## iter 360 value 117.970698
## iter 370 value 116.948100
## iter 380 value 116.534072
## iter 390 value 115.951792
## iter 400 value 115.089880
## iter 410 value 114.442252
## iter 420 value 114.124754
## iter 430 value 113.681684
## iter 440 value 113.234187
## iter 450 value 112.707178
## iter 460 value 112.293287
## iter 470 value 111.870424
## iter 480 value 110.661587
## iter 490 value 107.888475
## iter 500 value 105.202963
## final value 105.202963
## stopped after 500 iterations
## # weights: 241
## initial value 1347790.223486
## iter 10 value 1274.694409
## iter 20 value 808.576311
## iter 30 value 648.638270
## iter 40 value 536.287785
## iter 50 value 385.116096
## iter 60 value 318.603221
## iter 70 value 260.793058
## iter 80 value 221.822935
## iter 90 value 192.716942
## iter 100 value 173.013705
## iter 110 value 155.943760
## iter 120 value 141.480877
## iter 130 value 132.621339
## iter 140 value 125.795299
## iter 150 value 118.299518
## iter 160 value 108.361337
## iter 170 value 99.629122
## iter 180 value 94.671734
## iter 190 value 90.431288
## iter 200 value 87.952221
## iter 210 value 85.894707
## iter 220 value 83.802836
## iter 230 value 81.958632
## iter 240 value 79.765769
## iter 250 value 77.144538
## iter 260 value 74.585932
## iter 270 value 73.050789
## iter 280 value 71.046833
## iter 290 value 69.264372
## iter 300 value 66.930977
## iter 310 value 64.682696
## iter 320 value 62.481003
## iter 330 value 59.675131
## iter 340 value 57.580304
## iter 350 value 55.487808
## iter 360 value 53.851191
## iter 370 value 52.370625
## iter 380 value 50.969494
## iter 390 value 49.219205
## iter 400 value 48.093818
## iter 410 value 47.048995
## iter 420 value 45.992675
## iter 430 value 44.750350
## iter 440 value 43.802829
## iter 450 value 42.887897
## iter 460 value 41.846880
## iter 470 value 41.190365
## iter 480 value 40.540935
## iter 490 value 40.315329
## iter 500 value 40.266483
## final value 40.266483
## stopped after 500 iterations
## # weights: 25
## initial value 1401025.334235
## iter 10 value 7284.059451
## iter 20 value 5587.156652
## iter 30 value 5319.201372
## iter 40 value 5255.107886
## iter 50 value 5188.325682
## iter 60 value 5143.539109
## iter 70 value 5070.790555
## iter 80 value 5029.732484
## iter 90 value 3813.249512
## iter 100 value 2371.969911
## iter 110 value 1525.654284
## iter 120 value 1413.086943
## iter 130 value 1364.722618
## iter 140 value 1353.035854
## iter 150 value 1341.908589
## iter 160 value 1332.772461
## iter 170 value 1326.844043
## iter 180 value 1324.670520
## iter 190 value 1323.787315
## iter 200 value 1323.778446
## iter 210 value 1323.599126
## iter 220 value 1322.422833
## iter 230 value 1321.750752
## iter 240 value 1321.213118
## iter 250 value 1320.859134
## final value 1320.858722
## converged
## # weights: 61
## initial value 1404180.067285
## iter 10 value 22671.133453
## iter 20 value 5360.307533
## iter 30 value 4207.555920
## iter 40 value 3919.162721
## iter 50 value 3813.449596
## iter 60 value 3780.048255
## iter 70 value 3711.695550
## iter 80 value 3625.125671
## iter 90 value 3613.359982
## iter 100 value 3596.773197
## iter 110 value 3594.835459
## iter 120 value 3593.030214
## iter 130 value 3592.574417
## iter 140 value 3592.193419
## iter 150 value 3591.754231
## iter 160 value 3584.427380
## iter 170 value 3583.559293
## iter 180 value 3583.116588
## iter 190 value 3582.987442
## iter 200 value 3582.777231
## iter 210 value 3576.875601
## iter 220 value 3518.912091
## iter 230 value 3404.034133
## iter 240 value 3212.200627
## iter 250 value 2841.745081
## iter 260 value 2764.397597
## iter 270 value 2696.080490
## iter 280 value 2647.740139
## iter 290 value 2638.625154
## iter 300 value 2620.145531
## iter 310 value 2590.235872
## iter 320 value 2585.700893
## iter 330 value 2585.623124
## iter 340 value 2570.545051
## iter 350 value 2559.205549
## iter 360 value 2554.474714
## iter 370 value 2553.363530
## iter 380 value 2525.157009
## iter 390 value 2462.921823
## iter 400 value 2384.033327
## iter 410 value 2336.589377
## iter 420 value 2333.068754
## iter 430 value 2305.535569
## iter 440 value 2287.008613
## iter 450 value 2286.559691
## iter 460 value 2285.640299
## iter 470 value 2285.238267
## iter 480 value 2284.033843
## iter 490 value 2283.416994
## iter 500 value 2283.045388
## final value 2283.045388
## stopped after 500 iterations
## # weights: 121
## initial value 1370780.538871
## iter 10 value 1735.960221
## iter 20 value 1076.013267
## iter 30 value 801.138301
## iter 40 value 661.683896
## iter 50 value 588.912375
## iter 60 value 547.488980
## iter 70 value 516.016607
## iter 80 value 492.769867
## iter 90 value 477.034863
## iter 100 value 454.225233
## iter 110 value 430.739833
## iter 120 value 408.415240
## iter 130 value 385.521385
## iter 140 value 370.325777
## iter 150 value 363.577648
## iter 160 value 357.327124
## iter 170 value 351.908763
## iter 180 value 342.439786
## iter 190 value 332.030176
## iter 200 value 327.709196
## iter 210 value 324.751174
## iter 220 value 319.408574
## iter 230 value 315.372046
## iter 240 value 311.279525
## iter 250 value 310.105779
## iter 260 value 309.663263
## iter 270 value 308.939303
## iter 280 value 308.165743
## iter 290 value 307.234542
## iter 300 value 306.471767
## iter 310 value 303.523433
## iter 320 value 301.526438
## iter 330 value 300.925481
## iter 340 value 299.174160
## iter 350 value 297.496483
## iter 360 value 296.117915
## iter 370 value 295.686652
## iter 380 value 295.122172
## iter 390 value 294.896259
## iter 400 value 294.673973
## iter 410 value 294.155303
## iter 420 value 293.814682
## iter 430 value 293.523008
## iter 440 value 293.328705
## iter 450 value 293.177029
## iter 460 value 292.664311
## iter 470 value 291.931915
## iter 480 value 291.504126
## iter 490 value 291.336734
## iter 500 value 291.332069
## final value 291.332069
## stopped after 500 iterations
## # weights: 181
## initial value 1396667.071372
## iter 10 value 1366.611597
## iter 20 value 859.571418
## iter 30 value 668.131074
## iter 40 value 549.455972
## iter 50 value 478.297412
## iter 60 value 434.499136
## iter 70 value 374.530645
## iter 80 value 320.307281
## iter 90 value 282.719803
## iter 100 value 256.786556
## iter 110 value 235.016765
## iter 120 value 214.666246
## iter 130 value 192.460545
## iter 140 value 176.038959
## iter 150 value 157.862732
## iter 160 value 137.730718
## iter 170 value 128.795955
## iter 180 value 122.700060
## iter 190 value 115.466196
## iter 200 value 109.681338
## iter 210 value 105.457075
## iter 220 value 102.749829
## iter 230 value 101.430944
## iter 240 value 99.798719
## iter 250 value 97.745144
## iter 260 value 96.199137
## iter 270 value 94.822800
## iter 280 value 94.088607
## iter 290 value 92.960461
## iter 300 value 91.684003
## iter 310 value 90.789164
## iter 320 value 89.907719
## iter 330 value 89.018270
## iter 340 value 88.039470
## iter 350 value 86.774421
## iter 360 value 85.717270
## iter 370 value 85.363087
## iter 380 value 85.175668
## iter 390 value 85.002447
## iter 400 value 84.819101
## iter 410 value 84.510125
## iter 420 value 84.245665
## iter 430 value 83.835894
## iter 440 value 83.437400
## iter 450 value 82.997922
## iter 460 value 82.707169
## iter 470 value 82.218878
## iter 480 value 81.278060
## iter 490 value 79.015409
## iter 500 value 77.319640
## final value 77.319640
## stopped after 500 iterations
## # weights: 241
## initial value 1352819.001937
## iter 10 value 1261.009641
## iter 20 value 837.738397
## iter 30 value 653.867019
## iter 40 value 511.778327
## iter 50 value 391.650299
## iter 60 value 326.723595
## iter 70 value 302.777406
## iter 80 value 256.025471
## iter 90 value 212.113029
## iter 100 value 183.820656
## iter 110 value 164.190851
## iter 120 value 145.852115
## iter 130 value 126.345890
## iter 140 value 113.753259
## iter 150 value 103.067666
## iter 160 value 90.072533
## iter 170 value 81.161396
## iter 180 value 73.617740
## iter 190 value 68.447576
## iter 200 value 63.272250
## iter 210 value 58.954729
## iter 220 value 56.121493
## iter 230 value 53.920060
## iter 240 value 52.073351
## iter 250 value 49.685968
## iter 260 value 46.697579
## iter 270 value 44.254907
## iter 280 value 42.207398
## iter 290 value 40.603739
## iter 300 value 38.018178
## iter 310 value 36.625137
## iter 320 value 35.861910
## iter 330 value 35.146216
## iter 340 value 33.965530
## iter 350 value 32.477062
## iter 360 value 31.087124
## iter 370 value 30.239801
## iter 380 value 29.744742
## iter 390 value 29.468820
## iter 400 value 29.200044
## iter 410 value 28.778337
## iter 420 value 28.499064
## iter 430 value 28.355875
## iter 440 value 28.188326
## iter 450 value 27.609800
## iter 460 value 26.265635
## iter 470 value 25.882024
## iter 480 value 25.759427
## iter 490 value 25.720686
## iter 500 value 25.698199
## final value 25.698199
## stopped after 500 iterations
## # weights: 25
## initial value 1371501.389672
## iter 10 value 15815.073506
## iter 20 value 14614.011160
## iter 30 value 10194.045091
## iter 40 value 6571.548063
## iter 50 value 5241.104461
## iter 60 value 1911.651971
## iter 70 value 1553.706446
## iter 80 value 1390.593124
## iter 90 value 1361.868945
## iter 100 value 1356.842422
## iter 110 value 1336.677195
## iter 120 value 1330.784663
## iter 130 value 1328.491950
## iter 140 value 1326.210357
## iter 150 value 1326.158931
## iter 160 value 1325.436196
## iter 170 value 1324.582233
## iter 180 value 1313.507536
## iter 190 value 1298.386388
## iter 200 value 1292.526271
## iter 210 value 1264.965888
## iter 220 value 1204.078173
## iter 230 value 1184.048488
## iter 240 value 1148.655452
## iter 250 value 1147.589780
## iter 260 value 1141.319227
## iter 270 value 1136.746382
## iter 280 value 1134.763864
## iter 290 value 1134.671998
## iter 300 value 1134.584800
## iter 310 value 1134.480873
## iter 320 value 1134.313015
## iter 330 value 1134.072244
## iter 340 value 1134.027020
## final value 1134.026804
## converged
## # weights: 61
## initial value 1367512.773204
## iter 10 value 5604.994907
## iter 20 value 3359.931736
## iter 30 value 3081.183087
## iter 40 value 2863.801073
## iter 50 value 2758.543282
## iter 60 value 2497.887377
## iter 70 value 2065.485635
## iter 80 value 1421.367137
## iter 90 value 1038.484875
## iter 100 value 958.716354
## iter 110 value 952.143653
## iter 120 value 944.798628
## iter 130 value 933.403260
## iter 140 value 921.810942
## iter 150 value 894.625385
## iter 160 value 884.450087
## iter 170 value 875.437601
## iter 180 value 874.017676
## iter 190 value 873.069538
## iter 200 value 871.011545
## iter 210 value 868.181329
## iter 220 value 867.734755
## iter 230 value 866.437055
## iter 240 value 866.073146
## iter 250 value 865.692923
## iter 260 value 864.772413
## iter 270 value 864.486307
## iter 280 value 864.333982
## iter 290 value 860.877652
## iter 300 value 854.254309
## iter 310 value 823.710856
## iter 320 value 812.120582
## iter 330 value 811.403515
## iter 340 value 809.168905
## iter 350 value 809.010864
## iter 360 value 808.952847
## iter 370 value 808.866586
## iter 380 value 808.638352
## iter 390 value 808.629291
## iter 400 value 807.641652
## iter 410 value 771.189230
## iter 420 value 714.636228
## iter 430 value 700.373567
## iter 440 value 696.801482
## iter 450 value 695.835918
## iter 460 value 695.694068
## iter 470 value 695.610381
## iter 480 value 695.505235
## iter 490 value 695.485199
## iter 500 value 695.469437
## final value 695.469437
## stopped after 500 iterations
## # weights: 121
## initial value 1400728.413880
## iter 10 value 1363.585280
## iter 20 value 873.601261
## iter 30 value 767.053150
## iter 40 value 627.101185
## iter 50 value 540.107163
## iter 60 value 471.949974
## iter 70 value 439.885503
## iter 80 value 417.899453
## iter 90 value 402.783649
## iter 100 value 389.996237
## iter 110 value 377.806679
## iter 120 value 367.786890
## iter 130 value 357.818937
## iter 140 value 344.196884
## iter 150 value 328.572736
## iter 160 value 317.878277
## iter 170 value 305.858034
## iter 180 value 300.878604
## iter 190 value 297.820064
## iter 200 value 293.579884
## iter 210 value 290.702624
## iter 220 value 289.055955
## iter 230 value 285.856664
## iter 240 value 282.098029
## iter 250 value 280.797279
## iter 260 value 280.153352
## iter 270 value 279.437869
## iter 280 value 278.289290
## iter 290 value 276.145569
## iter 300 value 271.557460
## iter 310 value 266.867384
## iter 320 value 263.522622
## iter 330 value 261.175500
## iter 340 value 259.315281
## iter 350 value 253.925522
## iter 360 value 249.450493
## iter 370 value 247.536185
## iter 380 value 246.452899
## iter 390 value 245.418617
## iter 400 value 244.457939
## iter 410 value 243.747675
## iter 420 value 243.597071
## iter 430 value 243.474429
## iter 440 value 243.365266
## iter 450 value 243.298071
## iter 460 value 243.237898
## iter 470 value 243.186002
## iter 480 value 243.116300
## iter 490 value 243.090502
## iter 500 value 243.090008
## final value 243.090008
## stopped after 500 iterations
## # weights: 181
## initial value 1355913.141531
## iter 10 value 1213.449689
## iter 20 value 881.802980
## iter 30 value 689.143307
## iter 40 value 537.528342
## iter 50 value 398.892445
## iter 60 value 362.634637
## iter 70 value 303.551921
## iter 80 value 269.765047
## iter 90 value 242.699828
## iter 100 value 225.115190
## iter 110 value 216.593478
## iter 120 value 205.392067
## iter 130 value 192.980451
## iter 140 value 182.426216
## iter 150 value 170.047450
## iter 160 value 160.068666
## iter 170 value 152.447415
## iter 180 value 148.302840
## iter 190 value 145.325194
## iter 200 value 142.119570
## iter 210 value 139.834791
## iter 220 value 137.603088
## iter 230 value 134.135690
## iter 240 value 131.403401
## iter 250 value 129.544676
## iter 260 value 128.267740
## iter 270 value 127.194232
## iter 280 value 126.568804
## iter 290 value 125.441379
## iter 300 value 124.744604
## iter 310 value 124.031489
## iter 320 value 122.609491
## iter 330 value 122.024698
## iter 340 value 121.718851
## iter 350 value 121.529965
## iter 360 value 121.360051
## iter 370 value 121.284423
## iter 380 value 121.264644
## iter 390 value 121.223714
## iter 400 value 121.180452
## iter 410 value 121.105104
## iter 420 value 120.992501
## iter 430 value 120.760728
## iter 440 value 120.482895
## iter 450 value 120.057076
## iter 460 value 119.631656
## iter 470 value 119.173482
## iter 480 value 118.585147
## iter 490 value 117.904547
## iter 500 value 117.324056
## final value 117.324056
## stopped after 500 iterations
## # weights: 241
## initial value 1437169.761367
## iter 10 value 1016.738092
## iter 20 value 777.575334
## iter 30 value 655.091731
## iter 40 value 531.925574
## iter 50 value 406.624093
## iter 60 value 331.028081
## iter 70 value 273.735397
## iter 80 value 237.175688
## iter 90 value 213.011085
## iter 100 value 194.870318
## iter 110 value 182.300884
## iter 120 value 166.518027
## iter 130 value 151.100913
## iter 140 value 141.958977
## iter 150 value 134.737956
## iter 160 value 128.700533
## iter 170 value 124.377930
## iter 180 value 118.694785
## iter 190 value 110.151650
## iter 200 value 102.621544
## iter 210 value 95.453264
## iter 220 value 88.075954
## iter 230 value 80.601564
## iter 240 value 75.418833
## iter 250 value 72.017731
## iter 260 value 69.893594
## iter 270 value 67.735721
## iter 280 value 65.527623
## iter 290 value 63.328681
## iter 300 value 61.433226
## iter 310 value 59.520209
## iter 320 value 57.862201
## iter 330 value 55.571115
## iter 340 value 53.857480
## iter 350 value 52.706519
## iter 360 value 51.077815
## iter 370 value 49.494233
## iter 380 value 48.583871
## iter 390 value 47.797846
## iter 400 value 47.035803
## iter 410 value 46.206622
## iter 420 value 45.170743
## iter 430 value 44.109184
## iter 440 value 42.567203
## iter 450 value 41.210057
## iter 460 value 40.384792
## iter 470 value 39.831887
## iter 480 value 39.287501
## iter 490 value 38.954009
## iter 500 value 38.858889
## final value 38.858889
## stopped after 500 iterations
## # weights: 25
## initial value 1377807.128967
## iter 10 value 6582.290470
## iter 20 value 5508.642516
## iter 30 value 5080.982529
## iter 40 value 4740.683518
## iter 50 value 4227.903126
## iter 60 value 2087.065988
## iter 70 value 1428.445220
## iter 80 value 1310.069237
## iter 90 value 1295.675950
## iter 100 value 1273.716215
## iter 110 value 1224.686210
## iter 120 value 1203.038553
## iter 130 value 1198.956890
## iter 140 value 1198.849509
## iter 150 value 1198.152293
## iter 160 value 1195.113686
## iter 170 value 1192.961112
## iter 180 value 1192.776110
## iter 190 value 1191.383366
## iter 200 value 1177.103352
## iter 210 value 1176.432713
## iter 220 value 1158.589045
## iter 230 value 982.354673
## iter 240 value 944.698121
## iter 250 value 939.000986
## iter 260 value 938.938787
## iter 270 value 938.239078
## iter 280 value 935.731395
## iter 290 value 934.662017
## iter 300 value 934.483520
## iter 310 value 934.477706
## iter 320 value 934.472090
## iter 330 value 934.386992
## iter 340 value 934.005259
## iter 350 value 929.597745
## iter 360 value 929.120999
## iter 370 value 928.666392
## iter 380 value 927.962362
## iter 390 value 927.580306
## iter 400 value 927.409867
## iter 410 value 927.392970
## iter 420 value 927.391246
## iter 430 value 927.380780
## iter 440 value 927.377445
## final value 927.376360
## converged
## # weights: 61
## initial value 1394416.286883
## iter 10 value 17220.208746
## iter 20 value 7747.878990
## iter 30 value 5051.578783
## iter 40 value 3121.547604
## iter 50 value 1768.449111
## iter 60 value 1192.214031
## iter 70 value 1080.187373
## iter 80 value 1025.264518
## iter 90 value 1010.585021
## iter 100 value 989.691703
## iter 110 value 954.378623
## iter 120 value 896.064139
## iter 130 value 854.689155
## iter 140 value 798.152878
## iter 150 value 773.398477
## iter 160 value 756.428576
## iter 170 value 740.809695
## iter 180 value 732.101064
## iter 190 value 716.393906
## iter 200 value 701.659813
## iter 210 value 689.749053
## iter 220 value 684.868642
## iter 230 value 679.235501
## iter 240 value 664.838744
## iter 250 value 652.804734
## iter 260 value 649.168417
## iter 270 value 643.088603
## iter 280 value 636.531358
## iter 290 value 632.961249
## iter 300 value 631.572475
## iter 310 value 631.111005
## iter 320 value 630.906092
## iter 330 value 630.757792
## iter 340 value 630.754553
## iter 350 value 630.748148
## iter 360 value 630.732007
## iter 370 value 630.700259
## iter 380 value 628.687600
## iter 390 value 628.315681
## iter 400 value 628.162033
## iter 410 value 628.121174
## iter 420 value 628.104709
## final value 628.098970
## converged
## # weights: 121
## initial value 1390362.510508
## iter 10 value 2649.200572
## iter 20 value 1207.976790
## iter 30 value 920.473514
## iter 40 value 804.393514
## iter 50 value 700.980690
## iter 60 value 630.617975
## iter 70 value 589.459419
## iter 80 value 557.543020
## iter 90 value 533.539162
## iter 100 value 489.609764
## iter 110 value 454.142782
## iter 120 value 408.632791
## iter 130 value 377.962137
## iter 140 value 350.570100
## iter 150 value 335.162560
## iter 160 value 326.483062
## iter 170 value 317.930706
## iter 180 value 314.825175
## iter 190 value 312.351039
## iter 200 value 310.279597
## iter 210 value 308.181375
## iter 220 value 306.186959
## iter 230 value 303.979851
## iter 240 value 301.598040
## iter 250 value 300.482051
## iter 260 value 299.971541
## iter 270 value 299.110014
## iter 280 value 298.392082
## iter 290 value 297.204832
## iter 300 value 296.038760
## iter 310 value 293.784063
## iter 320 value 292.397213
## iter 330 value 290.829776
## iter 340 value 290.206335
## iter 350 value 289.532676
## iter 360 value 288.629698
## iter 370 value 287.441981
## iter 380 value 287.266482
## iter 390 value 287.212570
## iter 400 value 287.195338
## iter 410 value 287.189516
## iter 420 value 287.187231
## iter 430 value 287.186553
## iter 440 value 287.186145
## iter 450 value 287.186009
## final value 287.186004
## converged
## # weights: 181
## initial value 1383869.672376
## iter 10 value 1092.333771
## iter 20 value 807.214112
## iter 30 value 685.324766
## iter 40 value 551.811317
## iter 50 value 463.026045
## iter 60 value 410.785969
## iter 70 value 375.091130
## iter 80 value 336.584303
## iter 90 value 306.276299
## iter 100 value 289.240208
## iter 110 value 272.296663
## iter 120 value 255.567922
## iter 130 value 241.656171
## iter 140 value 229.909904
## iter 150 value 217.290821
## iter 160 value 203.287707
## iter 170 value 195.347011
## iter 180 value 184.334690
## iter 190 value 179.597415
## iter 200 value 176.856171
## iter 210 value 173.100870
## iter 220 value 169.624765
## iter 230 value 167.029093
## iter 240 value 164.379752
## iter 250 value 162.024558
## iter 260 value 160.343251
## iter 270 value 158.950562
## iter 280 value 155.580142
## iter 290 value 152.841511
## iter 300 value 149.943401
## iter 310 value 148.495006
## iter 320 value 146.686591
## iter 330 value 145.696641
## iter 340 value 145.109605
## iter 350 value 144.381624
## iter 360 value 143.251849
## iter 370 value 142.611658
## iter 380 value 142.343252
## iter 390 value 142.024499
## iter 400 value 141.412376
## iter 410 value 140.834330
## iter 420 value 139.526064
## iter 430 value 137.521205
## iter 440 value 135.522022
## iter 450 value 134.376111
## iter 460 value 133.663173
## iter 470 value 132.914036
## iter 480 value 132.350281
## iter 490 value 131.994557
## iter 500 value 131.842429
## final value 131.842429
## stopped after 500 iterations
## # weights: 241
## initial value 1291557.154878
## iter 10 value 1822.996062
## iter 20 value 863.117476
## iter 30 value 664.052866
## iter 40 value 538.442347
## iter 50 value 429.187327
## iter 60 value 324.827280
## iter 70 value 279.942713
## iter 80 value 254.797148
## iter 90 value 229.327432
## iter 100 value 204.395092
## iter 110 value 182.691786
## iter 120 value 163.120875
## iter 130 value 146.356131
## iter 140 value 131.913924
## iter 150 value 123.748953
## iter 160 value 117.828552
## iter 170 value 112.404097
## iter 180 value 105.989116
## iter 190 value 100.002400
## iter 200 value 95.423052
## iter 210 value 90.230996
## iter 220 value 84.567531
## iter 230 value 79.877048
## iter 240 value 75.321164
## iter 250 value 72.081778
## iter 260 value 69.361703
## iter 270 value 67.200481
## iter 280 value 65.736415
## iter 290 value 64.083852
## iter 300 value 62.934060
## iter 310 value 61.815333
## iter 320 value 60.604699
## iter 330 value 59.763782
## iter 340 value 59.166337
## iter 350 value 58.712735
## iter 360 value 58.271996
## iter 370 value 57.882915
## iter 380 value 57.504080
## iter 390 value 56.914200
## iter 400 value 56.365150
## iter 410 value 55.719298
## iter 420 value 54.949924
## iter 430 value 54.169159
## iter 440 value 53.568176
## iter 450 value 53.014802
## iter 460 value 52.590100
## iter 470 value 52.216198
## iter 480 value 51.856371
## iter 490 value 51.747844
## iter 500 value 51.714740
## final value 51.714740
## stopped after 500 iterations
## # weights: 25
## initial value 1372580.110498
## iter 10 value 7796.715498
## iter 20 value 6125.311582
## iter 30 value 4736.369899
## iter 40 value 2616.454685
## iter 50 value 1828.938500
## iter 60 value 1582.638888
## iter 70 value 1334.507169
## iter 80 value 1257.647568
## iter 90 value 1226.586263
## iter 100 value 1220.954055
## iter 110 value 1191.297730
## iter 120 value 1174.844944
## iter 130 value 1174.304547
## final value 1174.304322
## converged
## # weights: 61
## initial value 1409266.100448
## iter 10 value 11254.188241
## iter 20 value 8712.066875
## iter 30 value 7085.147988
## iter 40 value 5420.681639
## iter 50 value 3944.948525
## iter 60 value 3170.526045
## iter 70 value 2817.016709
## iter 80 value 2523.301074
## iter 90 value 2367.408547
## iter 100 value 2208.834604
## iter 110 value 1949.233258
## iter 120 value 1720.447614
## iter 130 value 1626.985772
## iter 140 value 1602.582657
## iter 150 value 1495.630571
## iter 160 value 1332.985045
## iter 170 value 1242.735519
## iter 180 value 1197.682314
## iter 190 value 1141.925591
## iter 200 value 1121.117100
## iter 210 value 1099.906399
## iter 220 value 1079.352164
## iter 230 value 1060.145911
## iter 240 value 1041.534335
## iter 250 value 1023.403488
## iter 260 value 1008.616498
## iter 270 value 984.418456
## iter 280 value 965.852370
## iter 290 value 954.086057
## iter 300 value 947.008987
## iter 310 value 932.660972
## iter 320 value 912.851924
## iter 330 value 902.507394
## iter 340 value 895.708933
## iter 350 value 893.920694
## iter 360 value 893.447271
## iter 370 value 893.362106
## iter 380 value 893.351854
## iter 390 value 893.323349
## iter 400 value 893.279525
## iter 410 value 893.264447
## iter 420 value 893.261154
## final value 893.261045
## converged
## # weights: 121
## initial value 1348772.984296
## iter 10 value 2285.383073
## iter 20 value 1072.096445
## iter 30 value 894.562944
## iter 40 value 845.481911
## iter 50 value 781.020663
## iter 60 value 744.103312
## iter 70 value 713.874642
## iter 80 value 686.751157
## iter 90 value 660.156664
## iter 100 value 638.490625
## iter 110 value 622.900259
## iter 120 value 605.976933
## iter 130 value 588.820740
## iter 140 value 578.795191
## iter 150 value 569.857569
## iter 160 value 564.268886
## iter 170 value 561.307149
## iter 180 value 559.436292
## iter 190 value 554.821548
## iter 200 value 551.366416
## iter 210 value 549.017685
## iter 220 value 547.231149
## iter 230 value 545.479393
## iter 240 value 544.491721
## iter 250 value 544.016511
## iter 260 value 543.686231
## iter 270 value 542.913798
## iter 280 value 542.424311
## iter 290 value 541.700294
## iter 300 value 540.343089
## iter 310 value 539.877669
## iter 320 value 539.823601
## iter 330 value 539.814267
## iter 340 value 539.813678
## iter 340 value 539.813673
## iter 340 value 539.813673
## final value 539.813673
## converged
## # weights: 181
## initial value 1430872.257193
## iter 10 value 1304.712967
## iter 20 value 953.468449
## iter 30 value 802.304534
## iter 40 value 687.093412
## iter 50 value 589.366754
## iter 60 value 539.206056
## iter 70 value 509.363586
## iter 80 value 486.141922
## iter 90 value 470.655134
## iter 100 value 457.679315
## iter 110 value 448.857180
## iter 120 value 441.409939
## iter 130 value 434.581021
## iter 140 value 426.457880
## iter 150 value 417.272802
## iter 160 value 408.983417
## iter 170 value 403.403516
## iter 180 value 399.642424
## iter 190 value 396.840433
## iter 200 value 395.331645
## iter 210 value 393.834610
## iter 220 value 390.804489
## iter 230 value 386.808378
## iter 240 value 383.337005
## iter 250 value 381.123074
## iter 260 value 378.858517
## iter 270 value 376.111459
## iter 280 value 373.821366
## iter 290 value 372.271325
## iter 300 value 370.657367
## iter 310 value 369.563837
## iter 320 value 369.049950
## iter 330 value 368.896952
## iter 340 value 368.783105
## iter 350 value 368.670589
## iter 360 value 368.594260
## iter 370 value 368.569858
## iter 380 value 368.539278
## iter 390 value 368.491377
## iter 400 value 368.462061
## iter 410 value 368.451379
## iter 420 value 368.443969
## iter 430 value 368.440427
## iter 440 value 368.438721
## iter 450 value 368.438123
## iter 460 value 368.437919
## final value 368.437889
## converged
## # weights: 241
## initial value 1447581.346562
## iter 10 value 2959.288466
## iter 20 value 1438.771771
## iter 30 value 1026.502343
## iter 40 value 832.320200
## iter 50 value 755.250862
## iter 60 value 685.812617
## iter 70 value 632.508042
## iter 80 value 605.363994
## iter 90 value 587.883698
## iter 100 value 577.026763
## iter 110 value 564.540374
## iter 120 value 551.902322
## iter 130 value 541.885847
## iter 140 value 532.632171
## iter 150 value 518.714511
## iter 160 value 508.524854
## iter 170 value 493.328361
## iter 180 value 481.304159
## iter 190 value 469.840988
## iter 200 value 461.771436
## iter 210 value 454.818338
## iter 220 value 447.658954
## iter 230 value 437.782682
## iter 240 value 430.906869
## iter 250 value 426.078625
## iter 260 value 421.511465
## iter 270 value 416.482177
## iter 280 value 411.402443
## iter 290 value 407.458398
## iter 300 value 403.702439
## iter 310 value 400.778424
## iter 320 value 397.865260
## iter 330 value 394.358452
## iter 340 value 391.684744
## iter 350 value 388.754587
## iter 360 value 387.526570
## iter 370 value 385.549989
## iter 380 value 383.890309
## iter 390 value 383.237766
## iter 400 value 382.697901
## iter 410 value 381.866439
## iter 420 value 380.997695
## iter 430 value 380.156723
## iter 440 value 379.293233
## iter 450 value 378.555413
## iter 460 value 377.942716
## iter 470 value 376.967300
## iter 480 value 376.130196
## iter 490 value 375.575712
## iter 500 value 375.133576
## final value 375.133576
## stopped after 500 iterations
## # weights: 25
## initial value 1399249.548941
## iter 10 value 7003.306263
## iter 20 value 5131.185983
## iter 30 value 2857.338188
## iter 40 value 1762.670837
## iter 50 value 1286.671748
## iter 60 value 1246.243551
## iter 70 value 1225.658074
## iter 80 value 1158.227390
## iter 90 value 1143.215915
## iter 100 value 1135.833051
## iter 110 value 1134.240530
## iter 120 value 1133.685525
## iter 130 value 1132.255449
## iter 140 value 1130.797270
## iter 150 value 1129.767567
## iter 160 value 1129.447015
## iter 170 value 1129.435259
## iter 180 value 1129.239655
## iter 190 value 1128.799157
## iter 200 value 1128.619499
## final value 1128.583892
## converged
## # weights: 61
## initial value 1370760.779359
## iter 10 value 19907.146053
## iter 20 value 3239.762629
## iter 30 value 3102.842849
## iter 40 value 3013.132086
## iter 50 value 2948.650387
## iter 60 value 2893.249232
## iter 70 value 2819.007379
## iter 80 value 2782.237329
## iter 90 value 2762.406226
## iter 100 value 2758.731294
## iter 110 value 2755.521585
## iter 120 value 2751.978833
## iter 130 value 2735.855152
## iter 140 value 2733.920928
## iter 150 value 2733.262579
## iter 160 value 2732.679618
## iter 170 value 2731.842361
## iter 180 value 2731.573955
## iter 190 value 2729.314204
## iter 200 value 2713.701059
## iter 210 value 2706.317183
## iter 220 value 2691.657400
## iter 230 value 2689.880493
## iter 240 value 2678.279249
## iter 250 value 2667.300336
## iter 260 value 2666.123031
## iter 270 value 2640.826370
## iter 280 value 2638.156135
## iter 290 value 2628.133612
## iter 300 value 2403.963658
## iter 310 value 2044.160707
## iter 320 value 1475.744751
## iter 330 value 1272.201363
## iter 340 value 1206.136339
## iter 350 value 1194.682270
## iter 360 value 1190.650892
## iter 370 value 1189.620567
## iter 380 value 1189.118859
## iter 390 value 1187.988302
## iter 400 value 1186.085736
## iter 410 value 1186.062944
## final value 1186.062177
## converged
## # weights: 121
## initial value 1351488.804482
## iter 10 value 1274.506092
## iter 20 value 900.715802
## iter 30 value 757.656657
## iter 40 value 644.489324
## iter 50 value 564.932621
## iter 60 value 520.276777
## iter 70 value 471.698120
## iter 80 value 442.779524
## iter 90 value 422.462933
## iter 100 value 408.357824
## iter 110 value 395.506349
## iter 120 value 384.665575
## iter 130 value 376.388211
## iter 140 value 368.343874
## iter 150 value 361.125107
## iter 160 value 354.937938
## iter 170 value 350.923256
## iter 180 value 344.337857
## iter 190 value 337.660117
## iter 200 value 333.167933
## iter 210 value 330.114755
## iter 220 value 327.808591
## iter 230 value 324.523861
## iter 240 value 322.006802
## iter 250 value 320.853066
## iter 260 value 320.224749
## iter 270 value 317.176238
## iter 280 value 313.440666
## iter 290 value 310.918030
## iter 300 value 309.519708
## iter 310 value 307.794084
## iter 320 value 303.841030
## iter 330 value 300.399886
## iter 340 value 299.564688
## iter 350 value 298.166221
## iter 360 value 297.639823
## iter 370 value 297.337774
## iter 380 value 295.457185
## iter 390 value 293.231000
## iter 400 value 292.067611
## iter 410 value 290.788416
## iter 420 value 287.644827
## iter 430 value 285.054687
## iter 440 value 283.389651
## iter 450 value 281.085013
## iter 460 value 278.140069
## iter 470 value 276.125443
## iter 480 value 274.818999
## iter 490 value 273.786823
## iter 500 value 273.615208
## final value 273.615208
## stopped after 500 iterations
## # weights: 181
## initial value 1415817.314266
## iter 10 value 1153.746106
## iter 20 value 832.706463
## iter 30 value 736.038801
## iter 40 value 615.890780
## iter 50 value 494.425847
## iter 60 value 430.101505
## iter 70 value 376.750882
## iter 80 value 328.624886
## iter 90 value 303.685305
## iter 100 value 278.555990
## iter 110 value 251.284476
## iter 120 value 237.195157
## iter 130 value 224.938165
## iter 140 value 215.014507
## iter 150 value 208.263521
## iter 160 value 202.777010
## iter 170 value 198.386358
## iter 180 value 193.232424
## iter 190 value 189.899769
## iter 200 value 186.888340
## iter 210 value 182.727949
## iter 220 value 180.164476
## iter 230 value 176.324788
## iter 240 value 174.429170
## iter 250 value 173.034823
## iter 260 value 172.218962
## iter 270 value 171.557560
## iter 280 value 171.038350
## iter 290 value 170.584040
## iter 300 value 170.214840
## iter 310 value 169.397091
## iter 320 value 168.188245
## iter 330 value 166.969432
## iter 340 value 165.835678
## iter 350 value 164.841096
## iter 360 value 163.915017
## iter 370 value 163.153419
## iter 380 value 162.791262
## iter 390 value 162.174939
## iter 400 value 161.237640
## iter 410 value 160.027661
## iter 420 value 158.675966
## iter 430 value 157.343618
## iter 440 value 155.833902
## iter 450 value 154.797980
## iter 460 value 153.169628
## iter 470 value 150.788225
## iter 480 value 148.332568
## iter 490 value 145.043753
## iter 500 value 142.875852
## final value 142.875852
## stopped after 500 iterations
## # weights: 241
## initial value 1369819.313009
## iter 10 value 1539.309919
## iter 20 value 838.402909
## iter 30 value 728.270365
## iter 40 value 562.696980
## iter 50 value 438.775254
## iter 60 value 372.495928
## iter 70 value 320.728187
## iter 80 value 289.415911
## iter 90 value 248.421982
## iter 100 value 220.815497
## iter 110 value 204.095880
## iter 120 value 186.211479
## iter 130 value 171.728556
## iter 140 value 160.688435
## iter 150 value 153.035179
## iter 160 value 146.617843
## iter 170 value 138.845792
## iter 180 value 133.165401
## iter 190 value 129.035622
## iter 200 value 124.474376
## iter 210 value 119.018202
## iter 220 value 112.296760
## iter 230 value 107.162626
## iter 240 value 103.136083
## iter 250 value 97.478991
## iter 260 value 92.199305
## iter 270 value 88.770772
## iter 280 value 87.430672
## iter 290 value 86.579492
## iter 300 value 86.023614
## iter 310 value 84.610445
## iter 320 value 83.296348
## iter 330 value 82.022265
## iter 340 value 80.599078
## iter 350 value 79.400415
## iter 360 value 78.445209
## iter 370 value 77.183573
## iter 380 value 75.491217
## iter 390 value 72.918922
## iter 400 value 70.337756
## iter 410 value 68.710865
## iter 420 value 66.708595
## iter 430 value 64.351618
## iter 440 value 60.124377
## iter 450 value 55.873978
## iter 460 value 53.803475
## iter 470 value 52.027364
## iter 480 value 50.823363
## iter 490 value 50.311411
## iter 500 value 50.163579
## final value 50.163579
## stopped after 500 iterations
## # weights: 25
## initial value 1400993.701429
## iter 10 value 7286.924569
## iter 20 value 6169.348781
## iter 30 value 3574.186681
## iter 40 value 2555.829148
## iter 50 value 1789.560102
## iter 60 value 1355.869399
## iter 70 value 1169.551700
## iter 80 value 1134.231447
## iter 90 value 1132.491137
## iter 100 value 1114.476538
## iter 110 value 1075.692237
## iter 120 value 1062.059411
## iter 130 value 1047.381628
## iter 140 value 1044.352079
## iter 150 value 1031.830323
## iter 160 value 1001.355214
## iter 170 value 997.196055
## iter 180 value 996.462403
## iter 190 value 996.421291
## iter 200 value 996.269299
## iter 210 value 995.353467
## iter 220 value 994.511071
## iter 230 value 993.976228
## iter 240 value 993.958154
## iter 250 value 993.954769
## iter 250 value 993.954768
## final value 993.954725
## converged
## # weights: 61
## initial value 1421367.163171
## iter 10 value 3801.275557
## iter 20 value 1833.895676
## iter 30 value 1551.830802
## iter 40 value 1298.713281
## iter 50 value 1195.702349
## iter 60 value 1026.301921
## iter 70 value 880.421993
## iter 80 value 809.693984
## iter 90 value 774.331597
## iter 100 value 739.962961
## iter 110 value 723.903418
## iter 120 value 713.176692
## iter 130 value 703.837327
## iter 140 value 694.597519
## iter 150 value 693.679250
## iter 160 value 692.263834
## iter 170 value 689.627343
## iter 180 value 685.489837
## iter 190 value 678.060038
## iter 200 value 676.052089
## iter 210 value 674.837394
## iter 220 value 672.776495
## iter 230 value 668.218115
## iter 240 value 666.645731
## iter 250 value 664.352842
## iter 260 value 659.053745
## iter 270 value 657.898756
## iter 280 value 657.781801
## iter 290 value 657.545448
## iter 300 value 657.240692
## iter 310 value 656.479659
## iter 320 value 655.917766
## iter 330 value 655.499990
## iter 340 value 654.925337
## iter 350 value 654.405208
## iter 360 value 654.165909
## iter 370 value 653.894195
## iter 380 value 653.614006
## iter 390 value 653.497274
## iter 400 value 653.494752
## iter 410 value 653.486358
## iter 420 value 653.474719
## iter 430 value 653.388216
## iter 440 value 653.232419
## iter 450 value 653.127303
## iter 460 value 653.034567
## iter 470 value 652.971672
## iter 480 value 652.885445
## iter 490 value 652.815117
## iter 500 value 652.755476
## final value 652.755476
## stopped after 500 iterations
## # weights: 121
## initial value 1415602.608750
## iter 10 value 1131.724780
## iter 20 value 854.076189
## iter 30 value 683.484522
## iter 40 value 602.559641
## iter 50 value 529.918591
## iter 60 value 481.979000
## iter 70 value 443.203096
## iter 80 value 416.858570
## iter 90 value 390.489370
## iter 100 value 367.867105
## iter 110 value 342.731487
## iter 120 value 328.864006
## iter 130 value 319.099743
## iter 140 value 309.522168
## iter 150 value 302.895755
## iter 160 value 297.557113
## iter 170 value 293.862931
## iter 180 value 292.114980
## iter 190 value 290.639564
## iter 200 value 288.482929
## iter 210 value 287.366481
## iter 220 value 286.335792
## iter 230 value 285.218083
## iter 240 value 284.067250
## iter 250 value 283.658063
## iter 260 value 283.449817
## iter 270 value 283.158512
## iter 280 value 282.432274
## iter 290 value 281.315564
## iter 300 value 279.712388
## iter 310 value 278.141529
## iter 320 value 277.328944
## iter 330 value 276.888538
## iter 340 value 276.763233
## iter 350 value 276.501600
## iter 360 value 275.423381
## iter 370 value 273.058743
## iter 380 value 272.531471
## iter 390 value 272.160524
## iter 400 value 272.091444
## iter 410 value 272.064283
## iter 420 value 272.051825
## iter 430 value 272.049844
## iter 440 value 272.036350
## iter 450 value 272.026493
## iter 460 value 272.008482
## iter 470 value 272.000882
## iter 480 value 268.993504
## iter 490 value 268.639132
## iter 500 value 268.624311
## final value 268.624311
## stopped after 500 iterations
## # weights: 181
## initial value 1355871.586909
## iter 10 value 1184.136649
## iter 20 value 802.268861
## iter 30 value 678.437420
## iter 40 value 552.443959
## iter 50 value 441.127757
## iter 60 value 383.976764
## iter 70 value 346.153647
## iter 80 value 308.843206
## iter 90 value 289.959258
## iter 100 value 270.953095
## iter 110 value 243.014335
## iter 120 value 220.509667
## iter 130 value 202.647417
## iter 140 value 191.622385
## iter 150 value 184.115241
## iter 160 value 175.728647
## iter 170 value 165.887444
## iter 180 value 156.588117
## iter 190 value 151.471111
## iter 200 value 146.200880
## iter 210 value 142.010271
## iter 220 value 137.879208
## iter 230 value 134.621731
## iter 240 value 132.038651
## iter 250 value 128.993549
## iter 260 value 124.260771
## iter 270 value 119.745292
## iter 280 value 116.775291
## iter 290 value 114.378241
## iter 300 value 111.513364
## iter 310 value 108.936192
## iter 320 value 106.044773
## iter 330 value 103.181736
## iter 340 value 99.863907
## iter 350 value 98.698850
## iter 360 value 98.220772
## iter 370 value 98.034159
## iter 380 value 97.933845
## iter 390 value 97.821874
## iter 400 value 97.626473
## iter 410 value 97.337563
## iter 420 value 97.014430
## iter 430 value 96.560019
## iter 440 value 96.043657
## iter 450 value 94.360175
## iter 460 value 92.536858
## iter 470 value 92.194955
## iter 480 value 91.892035
## iter 490 value 91.394640
## iter 500 value 90.276380
## final value 90.276380
## stopped after 500 iterations
## # weights: 241
## initial value 1372258.678841
## iter 10 value 1149.771341
## iter 20 value 785.212625
## iter 30 value 646.586130
## iter 40 value 503.263755
## iter 50 value 401.802374
## iter 60 value 353.768992
## iter 70 value 298.502214
## iter 80 value 247.066554
## iter 90 value 206.890318
## iter 100 value 178.046761
## iter 110 value 162.193620
## iter 120 value 150.730782
## iter 130 value 141.380209
## iter 140 value 134.133471
## iter 150 value 126.608314
## iter 160 value 118.867486
## iter 170 value 110.990553
## iter 180 value 103.031639
## iter 190 value 97.285074
## iter 200 value 90.562218
## iter 210 value 82.410562
## iter 220 value 75.531322
## iter 230 value 68.922569
## iter 240 value 63.826676
## iter 250 value 60.268014
## iter 260 value 57.228857
## iter 270 value 54.574929
## iter 280 value 51.014055
## iter 290 value 46.871660
## iter 300 value 44.390258
## iter 310 value 41.580841
## iter 320 value 39.563706
## iter 330 value 38.035230
## iter 340 value 36.321815
## iter 350 value 34.140028
## iter 360 value 31.817678
## iter 370 value 30.168141
## iter 380 value 28.995741
## iter 390 value 27.598648
## iter 400 value 25.796509
## iter 410 value 24.812816
## iter 420 value 24.331756
## iter 430 value 24.062449
## iter 440 value 23.914152
## iter 450 value 23.757570
## iter 460 value 23.583903
## iter 470 value 23.434727
## iter 480 value 23.296581
## iter 490 value 23.234394
## iter 500 value 23.220561
## final value 23.220561
## stopped after 500 iterations
## # weights: 25
## initial value 1369324.544997
## iter 10 value 7025.615488
## iter 20 value 4680.973133
## iter 30 value 3838.834364
## iter 40 value 2469.322735
## iter 50 value 1905.230958
## iter 60 value 1505.307199
## iter 70 value 1451.852756
## iter 80 value 1423.629224
## iter 90 value 1413.427977
## iter 100 value 1411.047402
## iter 110 value 1404.883621
## iter 120 value 1402.105592
## iter 130 value 1400.522710
## iter 140 value 1399.809101
## iter 150 value 1399.776171
## iter 160 value 1399.237090
## iter 170 value 1399.085336
## final value 1399.053295
## converged
## # weights: 61
## initial value 1403025.232844
## iter 10 value 4726.215708
## iter 20 value 2672.392370
## iter 30 value 1982.050461
## iter 40 value 1600.025290
## iter 50 value 1129.167559
## iter 60 value 919.669549
## iter 70 value 837.774313
## iter 80 value 785.820942
## iter 90 value 757.241050
## iter 100 value 719.713077
## iter 110 value 703.570315
## iter 120 value 677.144068
## iter 130 value 666.688248
## iter 140 value 662.690890
## iter 150 value 652.156870
## iter 160 value 634.655134
## iter 170 value 627.621389
## iter 180 value 624.148677
## iter 190 value 621.751145
## iter 200 value 620.738282
## iter 210 value 618.235213
## iter 220 value 616.729326
## iter 230 value 614.806961
## iter 240 value 614.472017
## iter 250 value 614.178564
## iter 260 value 614.139730
## iter 270 value 614.063647
## iter 280 value 613.930858
## iter 290 value 613.464210
## iter 300 value 611.484569
## iter 310 value 602.252579
## iter 320 value 597.575196
## iter 330 value 595.518970
## iter 340 value 594.601391
## iter 350 value 593.450001
## iter 360 value 591.431474
## iter 370 value 589.496303
## iter 380 value 588.979306
## iter 390 value 588.661160
## iter 400 value 588.256034
## iter 410 value 587.763936
## iter 420 value 586.182533
## iter 430 value 584.998591
## iter 440 value 584.243766
## iter 450 value 583.688755
## iter 460 value 583.397990
## iter 470 value 583.134759
## iter 480 value 582.811397
## iter 490 value 582.720463
## iter 500 value 582.707143
## final value 582.707143
## stopped after 500 iterations
## # weights: 121
## initial value 1320129.737371
## iter 10 value 1624.506124
## iter 20 value 917.282825
## iter 30 value 789.229924
## iter 40 value 680.479243
## iter 50 value 625.714741
## iter 60 value 567.582770
## iter 70 value 514.932904
## iter 80 value 475.799989
## iter 90 value 438.469790
## iter 100 value 401.005849
## iter 110 value 383.298004
## iter 120 value 369.106142
## iter 130 value 352.422686
## iter 140 value 343.912851
## iter 150 value 339.072919
## iter 160 value 335.353749
## iter 170 value 329.201814
## iter 180 value 323.623755
## iter 190 value 317.961651
## iter 200 value 314.470861
## iter 210 value 310.949391
## iter 220 value 306.612141
## iter 230 value 302.186189
## iter 240 value 295.683458
## iter 250 value 293.294542
## iter 260 value 292.588857
## iter 270 value 291.056026
## iter 280 value 288.809370
## iter 290 value 285.596520
## iter 300 value 279.831440
## iter 310 value 271.825978
## iter 320 value 268.451578
## iter 330 value 258.030314
## iter 340 value 253.648295
## iter 350 value 252.141720
## iter 360 value 250.432647
## iter 370 value 249.424462
## iter 380 value 248.219102
## iter 390 value 247.287846
## iter 400 value 246.961768
## iter 410 value 246.408577
## iter 420 value 245.940859
## iter 430 value 245.733250
## iter 440 value 245.035034
## iter 450 value 244.683850
## iter 460 value 244.582022
## iter 470 value 244.492872
## iter 480 value 244.469083
## iter 490 value 244.439086
## iter 500 value 244.282685
## final value 244.282685
## stopped after 500 iterations
## # weights: 181
## initial value 1397857.760328
## iter 10 value 1389.843572
## iter 20 value 825.989549
## iter 30 value 666.513984
## iter 40 value 539.944056
## iter 50 value 439.599134
## iter 60 value 389.193285
## iter 70 value 337.508235
## iter 80 value 292.328951
## iter 90 value 269.362025
## iter 100 value 251.139835
## iter 110 value 236.932439
## iter 120 value 226.082349
## iter 130 value 219.406831
## iter 140 value 214.744377
## iter 150 value 207.076593
## iter 160 value 198.302969
## iter 170 value 192.635003
## iter 180 value 183.746950
## iter 190 value 176.636927
## iter 200 value 170.818314
## iter 210 value 164.371525
## iter 220 value 159.229100
## iter 230 value 156.160748
## iter 240 value 152.216955
## iter 250 value 147.231327
## iter 260 value 143.714547
## iter 270 value 141.912056
## iter 280 value 139.741189
## iter 290 value 138.375093
## iter 300 value 136.932008
## iter 310 value 135.889219
## iter 320 value 135.310405
## iter 330 value 134.076005
## iter 340 value 132.722187
## iter 350 value 130.636823
## iter 360 value 129.288574
## iter 370 value 128.989235
## iter 380 value 128.897016
## iter 390 value 128.787223
## iter 400 value 128.515748
## iter 410 value 128.311302
## iter 420 value 127.975676
## iter 430 value 127.378715
## iter 440 value 126.566296
## iter 450 value 125.987179
## iter 460 value 125.496474
## iter 470 value 124.932161
## iter 480 value 123.964446
## iter 490 value 122.935869
## iter 500 value 122.191363
## final value 122.191363
## stopped after 500 iterations
## # weights: 241
## initial value 1359008.769885
## iter 10 value 1462.510466
## iter 20 value 723.271013
## iter 30 value 566.481990
## iter 40 value 442.789109
## iter 50 value 358.333365
## iter 60 value 304.736522
## iter 70 value 252.980201
## iter 80 value 204.397746
## iter 90 value 170.681692
## iter 100 value 135.710306
## iter 110 value 119.458902
## iter 120 value 107.707169
## iter 130 value 93.986501
## iter 140 value 82.919729
## iter 150 value 75.618370
## iter 160 value 69.517501
## iter 170 value 64.021491
## iter 180 value 59.041762
## iter 190 value 55.117287
## iter 200 value 50.931625
## iter 210 value 48.846046
## iter 220 value 47.282795
## iter 230 value 45.358878
## iter 240 value 42.826073
## iter 250 value 40.941645
## iter 260 value 39.438183
## iter 270 value 38.195968
## iter 280 value 37.209152
## iter 290 value 36.463823
## iter 300 value 35.554055
## iter 310 value 34.992267
## iter 320 value 34.225788
## iter 330 value 33.550049
## iter 340 value 33.007241
## iter 350 value 32.296169
## iter 360 value 31.666588
## iter 370 value 31.090456
## iter 380 value 30.388627
## iter 390 value 29.780454
## iter 400 value 29.227964
## iter 410 value 28.610060
## iter 420 value 28.009516
## iter 430 value 27.500394
## iter 440 value 27.068312
## iter 450 value 26.677994
## iter 460 value 26.266565
## iter 470 value 25.918661
## iter 480 value 25.656754
## iter 490 value 25.521249
## iter 500 value 25.482336
## final value 25.482336
## stopped after 500 iterations
## # weights: 25
## initial value 1417650.253061
## iter 10 value 4084.053345
## iter 20 value 2715.588637
## iter 30 value 2138.728630
## iter 40 value 1189.330704
## iter 50 value 1009.620663
## iter 60 value 962.373447
## iter 70 value 954.767990
## iter 80 value 950.896096
## iter 90 value 936.624246
## iter 100 value 925.907521
## iter 110 value 920.523740
## iter 120 value 920.081526
## iter 130 value 919.962997
## iter 140 value 918.562620
## iter 150 value 918.020102
## iter 160 value 917.764499
## iter 170 value 917.746802
## iter 180 value 917.734281
## iter 190 value 917.697416
## iter 200 value 917.694667
## final value 917.693065
## converged
## # weights: 61
## initial value 1401539.000039
## iter 10 value 3098.745033
## iter 20 value 1322.295492
## iter 30 value 1086.346817
## iter 40 value 929.204248
## iter 50 value 838.768014
## iter 60 value 755.052310
## iter 70 value 695.218883
## iter 80 value 670.491005
## iter 90 value 654.245207
## iter 100 value 646.392225
## iter 110 value 640.878637
## iter 120 value 637.579079
## iter 130 value 635.349704
## iter 140 value 633.898970
## iter 150 value 631.327864
## iter 160 value 626.956828
## iter 170 value 619.654651
## iter 180 value 613.850636
## iter 190 value 608.093214
## iter 200 value 603.988686
## iter 210 value 599.942005
## iter 220 value 598.686590
## iter 230 value 598.386494
## iter 240 value 598.086972
## iter 250 value 597.763038
## iter 260 value 597.659772
## iter 270 value 596.713514
## iter 280 value 593.822092
## iter 290 value 590.576494
## iter 300 value 589.744958
## iter 310 value 589.326799
## iter 320 value 588.765574
## iter 330 value 588.619048
## iter 340 value 588.586951
## iter 350 value 588.585413
## final value 588.585377
## converged
## # weights: 121
## initial value 1387618.133988
## iter 10 value 2755.396783
## iter 20 value 1898.382193
## iter 30 value 1152.063702
## iter 40 value 898.125173
## iter 50 value 771.834498
## iter 60 value 691.650032
## iter 70 value 633.233149
## iter 80 value 580.548834
## iter 90 value 547.099971
## iter 100 value 519.919839
## iter 110 value 507.866666
## iter 120 value 494.710788
## iter 130 value 472.207826
## iter 140 value 454.671771
## iter 150 value 430.670394
## iter 160 value 398.197496
## iter 170 value 380.150740
## iter 180 value 371.362686
## iter 190 value 364.037217
## iter 200 value 359.261556
## iter 210 value 354.503980
## iter 220 value 350.648150
## iter 230 value 344.865215
## iter 240 value 331.771181
## iter 250 value 325.367721
## iter 260 value 323.240389
## iter 270 value 318.058411
## iter 280 value 313.153201
## iter 290 value 307.073215
## iter 300 value 302.646817
## iter 310 value 300.486933
## iter 320 value 299.572486
## iter 330 value 298.624885
## iter 340 value 297.010336
## iter 350 value 296.514963
## iter 360 value 296.143007
## iter 370 value 295.967168
## iter 380 value 295.900194
## iter 390 value 295.885235
## iter 400 value 295.881128
## iter 410 value 295.879786
## iter 420 value 295.879329
## final value 295.879285
## converged
## # weights: 181
## initial value 1353109.857907
## iter 10 value 1165.416312
## iter 20 value 843.752321
## iter 30 value 655.253237
## iter 40 value 536.410116
## iter 50 value 457.419045
## iter 60 value 404.874448
## iter 70 value 352.908524
## iter 80 value 309.105905
## iter 90 value 285.359892
## iter 100 value 269.052267
## iter 110 value 250.935847
## iter 120 value 234.362230
## iter 130 value 222.713092
## iter 140 value 212.620639
## iter 150 value 206.229230
## iter 160 value 198.722980
## iter 170 value 192.233115
## iter 180 value 188.060990
## iter 190 value 184.665361
## iter 200 value 181.934337
## iter 210 value 178.841313
## iter 220 value 177.155107
## iter 230 value 175.699525
## iter 240 value 173.471433
## iter 250 value 171.385441
## iter 260 value 169.651503
## iter 270 value 166.874975
## iter 280 value 164.673550
## iter 290 value 162.791373
## iter 300 value 161.190808
## iter 310 value 159.902460
## iter 320 value 158.452868
## iter 330 value 157.531684
## iter 340 value 156.717297
## iter 350 value 155.515158
## iter 360 value 153.948118
## iter 370 value 153.479566
## iter 380 value 153.347850
## iter 390 value 153.064633
## iter 400 value 152.508160
## iter 410 value 151.896849
## iter 420 value 150.940807
## iter 430 value 149.456858
## iter 440 value 147.772629
## iter 450 value 146.017017
## iter 460 value 143.766589
## iter 470 value 141.991566
## iter 480 value 140.570218
## iter 490 value 139.752987
## iter 500 value 139.168733
## final value 139.168733
## stopped after 500 iterations
## # weights: 241
## initial value 1405068.224245
## iter 10 value 1596.038062
## iter 20 value 795.607971
## iter 30 value 623.269353
## iter 40 value 509.679559
## iter 50 value 436.220921
## iter 60 value 383.891636
## iter 70 value 338.833303
## iter 80 value 305.866338
## iter 90 value 279.324549
## iter 100 value 246.850977
## iter 110 value 222.836651
## iter 120 value 197.523648
## iter 130 value 176.006235
## iter 140 value 161.946539
## iter 150 value 149.497127
## iter 160 value 137.447945
## iter 170 value 130.171465
## iter 180 value 123.922143
## iter 190 value 118.306383
## iter 200 value 113.787738
## iter 210 value 110.244247
## iter 220 value 107.646561
## iter 230 value 104.692502
## iter 240 value 102.580985
## iter 250 value 101.111849
## iter 260 value 99.834491
## iter 270 value 98.607042
## iter 280 value 97.113060
## iter 290 value 95.751318
## iter 300 value 94.497124
## iter 310 value 92.636988
## iter 320 value 90.879702
## iter 330 value 89.326452
## iter 340 value 87.691596
## iter 350 value 85.540872
## iter 360 value 84.316849
## iter 370 value 83.180181
## iter 380 value 82.223929
## iter 390 value 81.484933
## iter 400 value 80.743547
## iter 410 value 79.916969
## iter 420 value 79.257957
## iter 430 value 78.699635
## iter 440 value 78.222871
## iter 450 value 77.832244
## iter 460 value 77.519520
## iter 470 value 77.269783
## iter 480 value 76.985714
## iter 490 value 76.910455
## iter 500 value 76.875690
## final value 76.875690
## stopped after 500 iterations
## # weights: 25
## initial value 1400164.074754
## iter 10 value 6642.901198
## iter 20 value 6387.370291
## iter 30 value 6044.695178
## iter 40 value 5062.146424
## iter 50 value 4059.457495
## iter 60 value 2001.222288
## iter 70 value 1555.128719
## iter 80 value 1465.293944
## iter 90 value 1398.517813
## iter 100 value 1310.299327
## iter 110 value 1241.127429
## iter 120 value 1215.797922
## iter 130 value 1204.421555
## iter 140 value 1201.592970
## iter 150 value 1191.265908
## iter 160 value 1190.345961
## final value 1190.338876
## converged
## # weights: 61
## initial value 1385280.374491
## iter 10 value 2582.024502
## iter 20 value 1971.944531
## iter 30 value 1450.112898
## iter 40 value 1146.645064
## iter 50 value 1056.306893
## iter 60 value 988.428688
## iter 70 value 947.330373
## iter 80 value 923.817251
## iter 90 value 902.099049
## iter 100 value 857.755764
## iter 110 value 843.351629
## iter 120 value 833.606703
## iter 130 value 826.727717
## iter 140 value 816.722511
## iter 150 value 806.684808
## iter 160 value 796.042540
## iter 170 value 789.793169
## iter 180 value 788.082572
## iter 190 value 787.325292
## iter 200 value 787.182430
## final value 787.180783
## converged
## # weights: 121
## initial value 1417214.318840
## iter 10 value 5868.205115
## iter 20 value 2619.929992
## iter 30 value 2083.122921
## iter 40 value 1877.312490
## iter 50 value 1646.096891
## iter 60 value 1500.504506
## iter 70 value 1352.908004
## iter 80 value 1245.187137
## iter 90 value 1148.551396
## iter 100 value 1074.059166
## iter 110 value 995.988131
## iter 120 value 941.215089
## iter 130 value 896.848901
## iter 140 value 852.545749
## iter 150 value 798.526730
## iter 160 value 772.647326
## iter 170 value 731.094855
## iter 180 value 692.493018
## iter 190 value 660.076309
## iter 200 value 641.638607
## iter 210 value 631.134769
## iter 220 value 624.724158
## iter 230 value 599.604951
## iter 240 value 585.361793
## iter 250 value 580.361903
## iter 260 value 577.447794
## iter 270 value 565.443942
## iter 280 value 554.309796
## iter 290 value 540.323672
## iter 300 value 529.512559
## iter 310 value 522.124497
## iter 320 value 518.501014
## iter 330 value 515.559415
## iter 340 value 514.249077
## iter 350 value 513.233101
## iter 360 value 512.873349
## iter 370 value 512.407446
## iter 380 value 511.940658
## iter 390 value 511.812916
## iter 400 value 511.799308
## iter 410 value 511.794300
## iter 420 value 511.793443
## final value 511.793426
## converged
## # weights: 181
## initial value 1389331.108552
## iter 10 value 1341.599548
## iter 20 value 943.350027
## iter 30 value 789.295542
## iter 40 value 681.720649
## iter 50 value 627.641656
## iter 60 value 598.407514
## iter 70 value 566.438870
## iter 80 value 540.268529
## iter 90 value 513.754058
## iter 100 value 491.992306
## iter 110 value 480.722220
## iter 120 value 472.846814
## iter 130 value 467.173552
## iter 140 value 461.613403
## iter 150 value 455.879042
## iter 160 value 451.865006
## iter 170 value 447.365709
## iter 180 value 443.875230
## iter 190 value 441.820392
## iter 200 value 439.510564
## iter 210 value 436.956524
## iter 220 value 435.512898
## iter 230 value 434.130545
## iter 240 value 432.786256
## iter 250 value 431.379109
## iter 260 value 428.978688
## iter 270 value 427.376248
## iter 280 value 426.362326
## iter 290 value 425.587317
## iter 300 value 425.208193
## iter 310 value 424.779498
## iter 320 value 424.430272
## iter 330 value 424.179110
## iter 340 value 423.908331
## iter 350 value 421.839731
## iter 360 value 419.343731
## iter 370 value 418.842831
## iter 380 value 418.526914
## iter 390 value 418.021076
## iter 400 value 417.566077
## iter 410 value 417.115466
## iter 420 value 415.970516
## iter 430 value 415.221372
## iter 440 value 414.807455
## iter 450 value 414.640562
## iter 460 value 414.557247
## iter 470 value 414.519031
## iter 480 value 414.490407
## iter 490 value 414.477749
## iter 500 value 414.450538
## final value 414.450538
## stopped after 500 iterations
## # weights: 241
## initial value 1404155.475257
## iter 10 value 1313.398000
## iter 20 value 863.435281
## iter 30 value 719.114376
## iter 40 value 625.043082
## iter 50 value 565.166599
## iter 60 value 506.210547
## iter 70 value 475.998538
## iter 80 value 455.297863
## iter 90 value 439.189093
## iter 100 value 428.083829
## iter 110 value 420.308268
## iter 120 value 413.383190
## iter 130 value 407.542205
## iter 140 value 403.819131
## iter 150 value 400.788510
## iter 160 value 397.410619
## iter 170 value 393.600037
## iter 180 value 388.757840
## iter 190 value 385.053695
## iter 200 value 381.660399
## iter 210 value 379.328134
## iter 220 value 378.092508
## iter 230 value 376.705707
## iter 240 value 374.414701
## iter 250 value 371.757390
## iter 260 value 369.178311
## iter 270 value 367.663244
## iter 280 value 365.786771
## iter 290 value 363.741240
## iter 300 value 361.548677
## iter 310 value 359.573270
## iter 320 value 358.365601
## iter 330 value 357.233943
## iter 340 value 356.006934
## iter 350 value 354.930555
## iter 360 value 353.432631
## iter 370 value 351.723026
## iter 380 value 350.273249
## iter 390 value 348.867074
## iter 400 value 347.817545
## iter 410 value 345.120932
## iter 420 value 342.102345
## iter 430 value 339.704351
## iter 440 value 338.141523
## iter 450 value 336.761145
## iter 460 value 335.549676
## iter 470 value 334.602891
## iter 480 value 334.134254
## iter 490 value 333.984825
## iter 500 value 333.778736
## final value 333.778736
## stopped after 500 iterations
## # weights: 25
## initial value 1416989.041823
## iter 10 value 2960.777171
## iter 20 value 1719.661239
## iter 30 value 1410.996786
## iter 40 value 1249.601392
## iter 50 value 1185.450602
## iter 60 value 1174.047284
## iter 70 value 1160.482656
## iter 80 value 1133.990520
## iter 90 value 1042.532070
## iter 100 value 963.746576
## iter 110 value 946.125407
## iter 120 value 939.834232
## iter 130 value 916.539892
## iter 140 value 916.169692
## iter 150 value 915.643496
## iter 160 value 915.563343
## iter 170 value 915.561790
## iter 180 value 915.548558
## iter 190 value 915.479505
## iter 200 value 915.465998
## final value 915.465940
## converged
## # weights: 61
## initial value 1376621.149496
## iter 10 value 16065.394452
## iter 20 value 13781.148611
## iter 30 value 7675.871127
## iter 40 value 4916.573484
## iter 50 value 4012.861697
## iter 60 value 3534.644192
## iter 70 value 3392.922666
## iter 80 value 3372.988033
## iter 90 value 3281.374845
## iter 100 value 2928.796444
## iter 110 value 2719.223246
## iter 120 value 2589.669803
## iter 130 value 2443.890697
## iter 140 value 2111.945079
## iter 150 value 1636.519692
## iter 160 value 1445.032852
## iter 170 value 1338.128519
## iter 180 value 1320.020574
## iter 190 value 1291.274325
## iter 200 value 1232.413561
## iter 210 value 1029.095621
## iter 220 value 971.659463
## iter 230 value 950.468630
## iter 240 value 933.611948
## iter 250 value 914.779687
## iter 260 value 900.079159
## iter 270 value 892.927943
## iter 280 value 888.280447
## iter 290 value 885.154634
## iter 300 value 884.374327
## iter 310 value 883.577239
## iter 320 value 883.563140
## iter 330 value 883.461320
## iter 340 value 882.870279
## iter 350 value 882.840623
## iter 360 value 882.699917
## iter 370 value 881.846974
## iter 380 value 881.669647
## iter 390 value 878.787846
## iter 400 value 877.665008
## iter 410 value 876.869440
## iter 420 value 876.093261
## iter 430 value 875.652578
## iter 440 value 875.408594
## iter 450 value 875.267781
## iter 460 value 874.215600
## iter 470 value 874.067983
## iter 480 value 873.997632
## iter 490 value 873.828343
## iter 500 value 873.827342
## final value 873.827342
## stopped after 500 iterations
## # weights: 121
## initial value 1447298.929750
## iter 10 value 5181.929340
## iter 20 value 1834.352568
## iter 30 value 1225.653568
## iter 40 value 1004.525538
## iter 50 value 780.880576
## iter 60 value 671.151369
## iter 70 value 618.964004
## iter 80 value 585.118213
## iter 90 value 567.470666
## iter 100 value 546.258135
## iter 110 value 521.214113
## iter 120 value 498.475328
## iter 130 value 488.175707
## iter 140 value 484.194106
## iter 150 value 477.805818
## iter 160 value 472.216789
## iter 170 value 466.072367
## iter 180 value 460.034552
## iter 190 value 457.442810
## iter 200 value 454.922184
## iter 210 value 453.047270
## iter 220 value 451.910727
## iter 230 value 451.326885
## iter 240 value 451.028485
## iter 250 value 450.966261
## iter 260 value 450.913724
## iter 270 value 450.797581
## iter 280 value 450.592101
## iter 290 value 450.024132
## iter 300 value 449.604921
## iter 310 value 449.253676
## iter 320 value 447.676271
## iter 330 value 445.942952
## iter 340 value 444.375442
## iter 350 value 443.058276
## iter 360 value 442.127030
## iter 370 value 441.366972
## iter 380 value 440.866502
## iter 390 value 440.656359
## iter 400 value 440.230960
## iter 410 value 439.640559
## iter 420 value 437.857674
## iter 430 value 435.193435
## iter 440 value 431.927080
## iter 450 value 427.592689
## iter 460 value 423.121874
## iter 470 value 418.625128
## iter 480 value 415.019988
## iter 490 value 413.482492
## iter 500 value 413.303608
## final value 413.303608
## stopped after 500 iterations
## # weights: 181
## initial value 1401242.562861
## iter 10 value 1038.030963
## iter 20 value 806.540386
## iter 30 value 653.029115
## iter 40 value 528.121089
## iter 50 value 430.921571
## iter 60 value 378.874183
## iter 70 value 345.569717
## iter 80 value 297.186706
## iter 90 value 246.651319
## iter 100 value 223.122651
## iter 110 value 202.088889
## iter 120 value 190.704742
## iter 130 value 177.292105
## iter 140 value 166.059858
## iter 150 value 153.857644
## iter 160 value 144.155739
## iter 170 value 136.236600
## iter 180 value 130.594237
## iter 190 value 126.433891
## iter 200 value 121.004456
## iter 210 value 118.081121
## iter 220 value 114.939139
## iter 230 value 112.865808
## iter 240 value 110.623610
## iter 250 value 107.852941
## iter 260 value 105.519629
## iter 270 value 102.793834
## iter 280 value 98.091342
## iter 290 value 94.892848
## iter 300 value 93.706192
## iter 310 value 92.467865
## iter 320 value 91.528801
## iter 330 value 90.743983
## iter 340 value 89.936034
## iter 350 value 89.118237
## iter 360 value 88.710885
## iter 370 value 88.563861
## iter 380 value 88.503849
## iter 390 value 88.417194
## iter 400 value 88.335198
## iter 410 value 88.151429
## iter 420 value 87.745279
## iter 430 value 86.792391
## iter 440 value 85.714815
## iter 450 value 84.714625
## iter 460 value 83.814283
## iter 470 value 83.222364
## iter 480 value 82.792683
## iter 490 value 82.264200
## iter 500 value 81.437220
## final value 81.437220
## stopped after 500 iterations
## # weights: 241
## initial value 1383509.087273
## iter 10 value 1553.884628
## iter 20 value 808.961596
## iter 30 value 616.847233
## iter 40 value 519.128414
## iter 50 value 429.490467
## iter 60 value 361.784154
## iter 70 value 311.438305
## iter 80 value 275.671889
## iter 90 value 241.221776
## iter 100 value 206.198722
## iter 110 value 180.662010
## iter 120 value 158.228139
## iter 130 value 141.208696
## iter 140 value 130.266598
## iter 150 value 121.066071
## iter 160 value 115.024752
## iter 170 value 109.791446
## iter 180 value 104.259469
## iter 190 value 98.988901
## iter 200 value 94.028299
## iter 210 value 87.650714
## iter 220 value 83.727167
## iter 230 value 79.972966
## iter 240 value 76.312975
## iter 250 value 73.292122
## iter 260 value 70.790747
## iter 270 value 68.651743
## iter 280 value 66.599493
## iter 290 value 64.516045
## iter 300 value 61.447797
## iter 310 value 58.357381
## iter 320 value 56.272259
## iter 330 value 54.063302
## iter 340 value 51.591521
## iter 350 value 49.956701
## iter 360 value 47.533085
## iter 370 value 44.453532
## iter 380 value 42.270522
## iter 390 value 40.604199
## iter 400 value 39.091190
## iter 410 value 37.786348
## iter 420 value 36.738922
## iter 430 value 35.781893
## iter 440 value 34.683175
## iter 450 value 33.327122
## iter 460 value 32.091603
## iter 470 value 30.910393
## iter 480 value 29.783656
## iter 490 value 29.194707
## iter 500 value 28.986760
## final value 28.986760
## stopped after 500 iterations
## # weights: 25
## initial value 1402566.076914
## iter 10 value 7261.654855
## iter 20 value 5207.359198
## iter 30 value 4439.362328
## iter 40 value 3183.006812
## iter 50 value 1828.477348
## iter 60 value 1565.969596
## iter 70 value 1529.718432
## iter 80 value 1391.768882
## iter 90 value 1355.511895
## iter 100 value 1325.174853
## iter 110 value 1316.033133
## iter 120 value 1308.370581
## iter 130 value 1287.127903
## iter 140 value 1279.975529
## iter 150 value 1274.088619
## iter 160 value 1270.606752
## iter 170 value 1270.183302
## iter 180 value 1270.045707
## iter 190 value 1268.218658
## iter 200 value 1267.183154
## iter 210 value 1265.725742
## iter 220 value 1265.299202
## iter 230 value 1264.621944
## iter 240 value 1264.544322
## iter 250 value 1262.750958
## iter 260 value 1251.375461
## iter 270 value 1249.608336
## iter 280 value 1249.121694
## iter 290 value 1248.588230
## iter 300 value 1248.293616
## final value 1248.293523
## converged
## # weights: 61
## initial value 1394754.676853
## iter 10 value 6287.953677
## iter 20 value 5877.508740
## iter 30 value 5662.835856
## iter 40 value 5368.665359
## iter 50 value 4330.848559
## iter 60 value 3492.747608
## iter 70 value 3074.246026
## iter 80 value 2477.500931
## iter 90 value 1623.101047
## iter 100 value 1354.410301
## iter 110 value 1321.738092
## iter 120 value 1305.837893
## iter 130 value 1280.881685
## iter 140 value 1277.207059
## iter 150 value 1276.477036
## iter 160 value 1274.996181
## iter 170 value 1272.820509
## iter 180 value 1256.784800
## iter 190 value 1210.438254
## iter 200 value 1174.028229
## iter 210 value 1106.393216
## iter 220 value 1070.990261
## iter 230 value 1056.558360
## iter 240 value 1049.251113
## iter 250 value 1045.089319
## iter 260 value 1040.075482
## iter 270 value 1037.394133
## iter 280 value 1037.035009
## iter 290 value 1036.740568
## iter 300 value 1036.723106
## iter 310 value 1036.643967
## iter 320 value 1036.190309
## iter 330 value 1034.869975
## iter 340 value 1033.822092
## iter 350 value 1033.182624
## iter 360 value 1032.677233
## iter 370 value 1032.149979
## iter 380 value 1031.827061
## iter 390 value 1031.268442
## iter 400 value 1030.967446
## iter 410 value 1030.625013
## iter 420 value 1030.493395
## iter 430 value 1030.429557
## iter 440 value 1030.246715
## iter 450 value 1029.987053
## iter 460 value 1029.960773
## iter 470 value 1027.744675
## iter 480 value 1025.562395
## iter 490 value 1025.323638
## iter 500 value 1025.279347
## final value 1025.279347
## stopped after 500 iterations
## # weights: 121
## initial value 1367475.617787
## iter 10 value 1654.361031
## iter 20 value 1102.767328
## iter 30 value 820.586113
## iter 40 value 677.090345
## iter 50 value 596.180584
## iter 60 value 501.819477
## iter 70 value 460.725583
## iter 80 value 437.355918
## iter 90 value 420.837578
## iter 100 value 401.034558
## iter 110 value 379.528283
## iter 120 value 360.163557
## iter 130 value 352.047370
## iter 140 value 344.337947
## iter 150 value 340.358602
## iter 160 value 336.016830
## iter 170 value 328.646656
## iter 180 value 321.865945
## iter 190 value 318.124680
## iter 200 value 313.192234
## iter 210 value 308.025348
## iter 220 value 303.945497
## iter 230 value 300.907072
## iter 240 value 299.488092
## iter 250 value 298.975212
## iter 260 value 298.828736
## iter 270 value 298.521972
## iter 280 value 297.863884
## iter 290 value 296.498840
## iter 300 value 295.381860
## iter 310 value 294.296329
## iter 320 value 293.296838
## iter 330 value 292.013238
## iter 340 value 288.789914
## iter 350 value 285.932165
## iter 360 value 282.953548
## iter 370 value 280.717549
## iter 380 value 279.909475
## iter 390 value 279.374134
## iter 400 value 278.391039
## iter 410 value 277.806395
## iter 420 value 277.616171
## iter 430 value 277.491606
## iter 440 value 277.391500
## iter 450 value 277.321934
## iter 460 value 277.210550
## iter 470 value 276.956517
## iter 480 value 276.531282
## iter 490 value 276.069274
## iter 500 value 276.042737
## final value 276.042737
## stopped after 500 iterations
## # weights: 181
## initial value 1417204.418384
## iter 10 value 1140.637693
## iter 20 value 818.843893
## iter 30 value 701.413525
## iter 40 value 603.209337
## iter 50 value 474.589439
## iter 60 value 402.321212
## iter 70 value 362.221246
## iter 80 value 315.518473
## iter 90 value 282.826919
## iter 100 value 251.967307
## iter 110 value 225.526585
## iter 120 value 204.494828
## iter 130 value 193.390470
## iter 140 value 186.414055
## iter 150 value 176.357887
## iter 160 value 167.720644
## iter 170 value 159.373216
## iter 180 value 151.137781
## iter 190 value 143.880836
## iter 200 value 138.045214
## iter 210 value 131.686473
## iter 220 value 128.310673
## iter 230 value 125.995570
## iter 240 value 123.430604
## iter 250 value 120.993089
## iter 260 value 118.265775
## iter 270 value 116.111299
## iter 280 value 113.730975
## iter 290 value 111.800202
## iter 300 value 110.413985
## iter 310 value 108.850120
## iter 320 value 106.840125
## iter 330 value 104.724570
## iter 340 value 102.264676
## iter 350 value 99.973668
## iter 360 value 97.372460
## iter 370 value 96.405152
## iter 380 value 95.881965
## iter 390 value 94.948181
## iter 400 value 94.142674
## iter 410 value 93.242050
## iter 420 value 92.458114
## iter 430 value 91.869819
## iter 440 value 91.214383
## iter 450 value 90.258668
## iter 460 value 88.826239
## iter 470 value 87.643214
## iter 480 value 86.933899
## iter 490 value 86.352338
## iter 500 value 85.858064
## final value 85.858064
## stopped after 500 iterations
## # weights: 241
## initial value 1393322.400042
## iter 10 value 1205.207627
## iter 20 value 851.168503
## iter 30 value 674.000796
## iter 40 value 518.316814
## iter 50 value 415.685489
## iter 60 value 330.687844
## iter 70 value 290.780672
## iter 80 value 267.215926
## iter 90 value 241.289060
## iter 100 value 213.003486
## iter 110 value 187.637102
## iter 120 value 166.934565
## iter 130 value 151.737196
## iter 140 value 139.820828
## iter 150 value 131.715861
## iter 160 value 124.152211
## iter 170 value 117.440345
## iter 180 value 104.724561
## iter 190 value 90.544983
## iter 200 value 82.316828
## iter 210 value 75.848373
## iter 220 value 70.607035
## iter 230 value 66.068675
## iter 240 value 60.361626
## iter 250 value 55.199602
## iter 260 value 49.790632
## iter 270 value 45.790184
## iter 280 value 41.829094
## iter 290 value 38.368561
## iter 300 value 35.178274
## iter 310 value 31.843356
## iter 320 value 29.534217
## iter 330 value 27.363368
## iter 340 value 25.526853
## iter 350 value 24.547712
## iter 360 value 23.238533
## iter 370 value 21.765717
## iter 380 value 20.546664
## iter 390 value 19.404089
## iter 400 value 18.315429
## iter 410 value 17.173874
## iter 420 value 15.999375
## iter 430 value 15.371915
## iter 440 value 14.949431
## iter 450 value 14.599844
## iter 460 value 14.278342
## iter 470 value 14.032198
## iter 480 value 13.815631
## iter 490 value 13.666010
## iter 500 value 13.599348
## final value 13.599348
## stopped after 500 iterations
## # weights: 25
## initial value 1431258.850509
## iter 10 value 6440.114401
## iter 20 value 5125.540306
## iter 30 value 2206.780975
## iter 40 value 1387.680679
## iter 50 value 1138.726850
## iter 60 value 1135.377904
## iter 70 value 1122.514121
## iter 80 value 1084.884544
## iter 90 value 1070.345124
## iter 100 value 1065.086750
## iter 110 value 1062.597123
## iter 120 value 1061.057067
## iter 130 value 1055.452438
## iter 140 value 1051.227633
## iter 150 value 1043.432472
## iter 160 value 1039.850547
## iter 170 value 1039.369968
## iter 180 value 1034.081873
## iter 190 value 950.556535
## iter 200 value 929.607193
## iter 210 value 924.650914
## iter 220 value 923.624803
## iter 230 value 921.494632
## iter 240 value 918.998389
## iter 250 value 917.927299
## iter 260 value 917.547007
## iter 270 value 917.231732
## iter 280 value 916.473825
## iter 290 value 916.194117
## iter 300 value 916.128720
## iter 310 value 916.125493
## iter 320 value 916.124717
## iter 330 value 916.124147
## iter 340 value 916.123874
## iter 350 value 916.121167
## iter 360 value 916.114286
## final value 916.109024
## converged
## # weights: 61
## initial value 1362357.532824
## iter 10 value 14376.744770
## iter 20 value 3935.477363
## iter 30 value 2435.497625
## iter 40 value 2169.313473
## iter 50 value 2141.868996
## iter 60 value 2134.010441
## iter 70 value 2117.329260
## iter 80 value 2094.723944
## iter 90 value 2087.620364
## iter 100 value 2084.261977
## iter 110 value 2079.322986
## iter 120 value 2076.208694
## iter 130 value 2074.519933
## iter 140 value 2069.205571
## iter 150 value 1992.568829
## iter 160 value 1876.578197
## iter 170 value 1557.882784
## iter 180 value 1386.444880
## iter 190 value 1238.424048
## iter 200 value 1199.249570
## iter 210 value 1174.207627
## iter 220 value 1165.800405
## iter 230 value 1133.161782
## iter 240 value 1102.519203
## iter 250 value 1083.551168
## iter 260 value 1079.112846
## iter 270 value 1078.277719
## iter 280 value 1076.609711
## iter 290 value 1072.435987
## iter 300 value 1068.482678
## iter 310 value 1067.044306
## iter 320 value 1065.825907
## iter 330 value 1065.279357
## iter 340 value 1065.152371
## iter 350 value 1064.975296
## iter 360 value 1064.878213
## iter 370 value 1064.833656
## iter 380 value 1064.828297
## iter 390 value 1064.663800
## iter 400 value 1064.237691
## iter 410 value 1063.713436
## iter 420 value 1052.219491
## iter 430 value 1008.067288
## iter 440 value 998.416930
## iter 450 value 995.142617
## iter 460 value 992.602135
## iter 470 value 991.414141
## iter 480 value 986.600661
## iter 490 value 981.079596
## iter 500 value 976.518808
## final value 976.518808
## stopped after 500 iterations
## # weights: 121
## initial value 1400052.949230
## iter 10 value 1357.363423
## iter 20 value 955.856413
## iter 30 value 785.715592
## iter 40 value 668.588330
## iter 50 value 623.568769
## iter 60 value 561.960622
## iter 70 value 520.059325
## iter 80 value 484.945296
## iter 90 value 454.749531
## iter 100 value 436.161761
## iter 110 value 424.895547
## iter 120 value 413.175014
## iter 130 value 392.771432
## iter 140 value 356.382230
## iter 150 value 329.474240
## iter 160 value 318.040086
## iter 170 value 311.772499
## iter 180 value 306.730874
## iter 190 value 301.844798
## iter 200 value 298.153808
## iter 210 value 293.665543
## iter 220 value 290.259610
## iter 230 value 288.293765
## iter 240 value 286.348749
## iter 250 value 285.703086
## iter 260 value 285.362894
## iter 270 value 285.113023
## iter 280 value 284.535608
## iter 290 value 284.105169
## iter 300 value 283.764449
## iter 310 value 283.474208
## iter 320 value 283.070114
## iter 330 value 282.360073
## iter 340 value 280.336275
## iter 350 value 277.665658
## iter 360 value 274.617324
## iter 370 value 271.824590
## iter 380 value 269.855646
## iter 390 value 268.584779
## iter 400 value 268.039697
## iter 410 value 267.851148
## iter 420 value 267.783564
## iter 430 value 267.644408
## iter 440 value 267.560452
## iter 450 value 267.413380
## iter 460 value 267.374208
## iter 470 value 267.351888
## iter 480 value 267.307100
## iter 490 value 267.300631
## iter 490 value 267.300629
## iter 500 value 267.300466
## final value 267.300466
## stopped after 500 iterations
## # weights: 181
## initial value 1397145.145736
## iter 10 value 1106.518677
## iter 20 value 801.286081
## iter 30 value 622.146232
## iter 40 value 501.421257
## iter 50 value 382.790778
## iter 60 value 317.552276
## iter 70 value 283.276984
## iter 80 value 259.356579
## iter 90 value 235.093325
## iter 100 value 218.771039
## iter 110 value 207.968776
## iter 120 value 199.005976
## iter 130 value 192.008962
## iter 140 value 184.288373
## iter 150 value 178.656897
## iter 160 value 171.492906
## iter 170 value 160.897909
## iter 180 value 153.844417
## iter 190 value 147.613401
## iter 200 value 141.412875
## iter 210 value 137.191971
## iter 220 value 133.982959
## iter 230 value 131.232828
## iter 240 value 124.923163
## iter 250 value 120.649886
## iter 260 value 117.681323
## iter 270 value 115.559300
## iter 280 value 114.374198
## iter 290 value 112.733335
## iter 300 value 110.626954
## iter 310 value 108.482130
## iter 320 value 106.563093
## iter 330 value 104.808079
## iter 340 value 103.070754
## iter 350 value 101.755176
## iter 360 value 99.535877
## iter 370 value 98.691483
## iter 380 value 98.424593
## iter 390 value 98.110874
## iter 400 value 97.622415
## iter 410 value 97.106707
## iter 420 value 96.718949
## iter 430 value 95.835389
## iter 440 value 95.205782
## iter 450 value 94.477756
## iter 460 value 93.944730
## iter 470 value 93.575642
## iter 480 value 93.081901
## iter 490 value 92.589015
## iter 500 value 92.185773
## final value 92.185773
## stopped after 500 iterations
## # weights: 241
## initial value 1458997.651564
## iter 10 value 1727.923925
## iter 20 value 885.671062
## iter 30 value 638.751078
## iter 40 value 459.473165
## iter 50 value 366.408861
## iter 60 value 315.452950
## iter 70 value 268.751903
## iter 80 value 220.458614
## iter 90 value 193.637491
## iter 100 value 171.898195
## iter 110 value 146.951051
## iter 120 value 121.939895
## iter 130 value 104.156560
## iter 140 value 96.918556
## iter 150 value 90.991373
## iter 160 value 85.777655
## iter 170 value 80.961729
## iter 180 value 74.709232
## iter 190 value 68.881175
## iter 200 value 63.180418
## iter 210 value 58.952547
## iter 220 value 54.182209
## iter 230 value 50.550535
## iter 240 value 47.186513
## iter 250 value 44.902050
## iter 260 value 43.049701
## iter 270 value 41.484372
## iter 280 value 40.504717
## iter 290 value 39.405958
## iter 300 value 38.596205
## iter 310 value 37.998230
## iter 320 value 37.171571
## iter 330 value 36.201169
## iter 340 value 35.341783
## iter 350 value 34.719914
## iter 360 value 34.033353
## iter 370 value 33.405781
## iter 380 value 32.796076
## iter 390 value 32.294109
## iter 400 value 31.923664
## iter 410 value 31.486506
## iter 420 value 31.153569
## iter 430 value 30.836815
## iter 440 value 30.511071
## iter 450 value 30.063056
## iter 460 value 29.753299
## iter 470 value 29.504078
## iter 480 value 29.340961
## iter 490 value 29.294698
## iter 500 value 29.284943
## final value 29.284943
## stopped after 500 iterations
## # weights: 25
## initial value 1383411.365924
## iter 10 value 13176.155167
## iter 20 value 6648.324684
## iter 30 value 4106.272620
## iter 40 value 3195.037278
## iter 50 value 2056.173808
## iter 60 value 1739.309139
## iter 70 value 1471.075933
## iter 80 value 1335.619102
## iter 90 value 1282.273418
## iter 100 value 1263.080329
## iter 110 value 1258.251806
## iter 120 value 1252.782064
## iter 130 value 1241.376627
## iter 140 value 1236.706357
## iter 150 value 1235.432813
## final value 1235.417412
## converged
## # weights: 61
## initial value 1409907.368082
## iter 10 value 5775.572850
## iter 20 value 2847.962920
## iter 30 value 1740.396940
## iter 40 value 1440.710364
## iter 50 value 1131.801176
## iter 60 value 963.259419
## iter 70 value 885.083859
## iter 80 value 856.386152
## iter 90 value 831.698069
## iter 100 value 817.241191
## iter 110 value 808.815931
## iter 120 value 805.332031
## iter 130 value 800.735182
## iter 140 value 800.519710
## iter 150 value 799.413169
## iter 160 value 795.631023
## iter 170 value 784.554314
## iter 180 value 779.479845
## iter 190 value 776.965150
## iter 200 value 766.477345
## iter 210 value 764.825680
## iter 220 value 764.354804
## iter 230 value 764.105223
## iter 240 value 763.920431
## iter 250 value 763.871016
## iter 260 value 763.859246
## iter 270 value 763.858018
## iter 280 value 763.853334
## iter 290 value 763.848144
## iter 300 value 763.831635
## iter 310 value 763.820810
## iter 320 value 763.819505
## final value 763.819201
## converged
## # weights: 121
## initial value 1405209.978527
## iter 10 value 1510.705932
## iter 20 value 950.789957
## iter 30 value 809.656908
## iter 40 value 687.839578
## iter 50 value 624.310844
## iter 60 value 577.615530
## iter 70 value 535.978895
## iter 80 value 503.644801
## iter 90 value 469.809418
## iter 100 value 440.728971
## iter 110 value 418.103138
## iter 120 value 391.870067
## iter 130 value 369.939068
## iter 140 value 359.231562
## iter 150 value 344.750887
## iter 160 value 335.470052
## iter 170 value 326.447928
## iter 180 value 318.025775
## iter 190 value 312.195093
## iter 200 value 308.205248
## iter 210 value 304.070574
## iter 220 value 298.899548
## iter 230 value 294.497851
## iter 240 value 291.544936
## iter 250 value 290.763028
## iter 260 value 290.187337
## iter 270 value 289.413231
## iter 280 value 288.532550
## iter 290 value 287.711441
## iter 300 value 286.813426
## iter 310 value 285.474588
## iter 320 value 283.981647
## iter 330 value 282.670745
## iter 340 value 282.195010
## iter 350 value 281.803236
## iter 360 value 281.605857
## iter 370 value 281.423067
## iter 380 value 281.297488
## iter 390 value 281.004092
## iter 400 value 280.788142
## iter 410 value 280.750687
## iter 420 value 280.743392
## iter 430 value 280.741697
## iter 440 value 280.740229
## iter 450 value 280.737966
## iter 460 value 280.736116
## iter 470 value 280.734445
## iter 480 value 280.733747
## final value 280.733595
## converged
## # weights: 181
## initial value 1375284.467041
## iter 10 value 1211.724656
## iter 20 value 837.785872
## iter 30 value 699.019977
## iter 40 value 564.835891
## iter 50 value 454.688859
## iter 60 value 399.106571
## iter 70 value 369.897105
## iter 80 value 332.726600
## iter 90 value 300.070670
## iter 100 value 267.322555
## iter 110 value 243.022765
## iter 120 value 226.841315
## iter 130 value 214.336317
## iter 140 value 201.542994
## iter 150 value 191.912391
## iter 160 value 184.018398
## iter 170 value 176.487274
## iter 180 value 170.297201
## iter 190 value 165.933405
## iter 200 value 160.748919
## iter 210 value 155.553175
## iter 220 value 152.445399
## iter 230 value 149.347842
## iter 240 value 145.941835
## iter 250 value 142.786840
## iter 260 value 140.561148
## iter 270 value 138.901891
## iter 280 value 137.292901
## iter 290 value 135.934226
## iter 300 value 134.224634
## iter 310 value 132.962902
## iter 320 value 131.875649
## iter 330 value 131.254310
## iter 340 value 130.641487
## iter 350 value 130.253037
## iter 360 value 129.744733
## iter 370 value 129.297012
## iter 380 value 129.158130
## iter 390 value 128.852754
## iter 400 value 128.328289
## iter 410 value 127.902182
## iter 420 value 127.340792
## iter 430 value 126.761160
## iter 440 value 125.826997
## iter 450 value 125.088074
## iter 460 value 124.348386
## iter 470 value 123.658471
## iter 480 value 121.787651
## iter 490 value 119.330958
## iter 500 value 117.605425
## final value 117.605425
## stopped after 500 iterations
## # weights: 241
## initial value 1406530.193196
## iter 10 value 1440.773881
## iter 20 value 792.375361
## iter 30 value 599.318976
## iter 40 value 499.608983
## iter 50 value 426.993878
## iter 60 value 348.228251
## iter 70 value 293.963158
## iter 80 value 269.363816
## iter 90 value 237.820269
## iter 100 value 209.807339
## iter 110 value 189.553434
## iter 120 value 172.149890
## iter 130 value 159.323311
## iter 140 value 149.476133
## iter 150 value 140.329542
## iter 160 value 130.830225
## iter 170 value 124.712040
## iter 180 value 118.783393
## iter 190 value 111.927140
## iter 200 value 106.697250
## iter 210 value 102.150594
## iter 220 value 96.709206
## iter 230 value 92.200563
## iter 240 value 87.460630
## iter 250 value 83.660051
## iter 260 value 79.432562
## iter 270 value 75.442339
## iter 280 value 72.116507
## iter 290 value 68.191886
## iter 300 value 65.755646
## iter 310 value 62.815939
## iter 320 value 60.222220
## iter 330 value 58.682930
## iter 340 value 57.511061
## iter 350 value 55.887636
## iter 360 value 54.131364
## iter 370 value 52.757081
## iter 380 value 51.639895
## iter 390 value 50.352379
## iter 400 value 49.315649
## iter 410 value 48.517888
## iter 420 value 47.913504
## iter 430 value 47.202204
## iter 440 value 46.515308
## iter 450 value 45.970744
## iter 460 value 45.549546
## iter 470 value 45.053806
## iter 480 value 44.620932
## iter 490 value 44.428495
## iter 500 value 44.335401
## final value 44.335401
## stopped after 500 iterations
## # weights: 25
## initial value 1424522.631132
## iter 10 value 4905.190511
## iter 20 value 3076.583215
## iter 30 value 2550.154399
## iter 40 value 1725.175454
## iter 50 value 1491.399008
## iter 60 value 1429.319279
## iter 70 value 1384.057690
## iter 80 value 1382.773636
## iter 90 value 1378.309047
## iter 100 value 1329.438196
## iter 110 value 1260.308757
## iter 120 value 1217.582772
## iter 130 value 1212.811501
## iter 140 value 1207.028625
## iter 150 value 1199.648691
## iter 160 value 1199.434787
## final value 1199.434422
## converged
## # weights: 61
## initial value 1388301.354076
## iter 10 value 5320.452093
## iter 20 value 2448.211578
## iter 30 value 2000.974553
## iter 40 value 1565.611060
## iter 50 value 1361.343576
## iter 60 value 1231.082778
## iter 70 value 1156.006346
## iter 80 value 1089.622504
## iter 90 value 1049.173921
## iter 100 value 1005.401455
## iter 110 value 983.573063
## iter 120 value 969.183075
## iter 130 value 959.659044
## iter 140 value 954.007739
## iter 150 value 942.996096
## iter 160 value 926.800049
## iter 170 value 914.607880
## iter 180 value 895.078842
## iter 190 value 878.949672
## iter 200 value 866.782065
## iter 210 value 862.762837
## iter 220 value 861.429588
## iter 230 value 860.400088
## iter 240 value 859.445822
## iter 250 value 859.177207
## iter 260 value 859.105534
## iter 270 value 859.002501
## iter 280 value 858.964111
## iter 290 value 858.952301
## final value 858.951682
## converged
## # weights: 121
## initial value 1387701.653621
## iter 10 value 5845.724574
## iter 20 value 3272.720371
## iter 30 value 2536.862835
## iter 40 value 2114.561955
## iter 50 value 1968.945949
## iter 60 value 1793.822625
## iter 70 value 1510.731479
## iter 80 value 1334.544657
## iter 90 value 1229.716476
## iter 100 value 1159.435829
## iter 110 value 1071.543440
## iter 120 value 1014.834917
## iter 130 value 958.333550
## iter 140 value 915.167466
## iter 150 value 882.043632
## iter 160 value 848.262076
## iter 170 value 814.289591
## iter 180 value 790.376299
## iter 190 value 763.222557
## iter 200 value 750.930020
## iter 210 value 741.509222
## iter 220 value 731.887432
## iter 230 value 721.485616
## iter 240 value 709.111824
## iter 250 value 702.382650
## iter 260 value 694.987050
## iter 270 value 688.569509
## iter 280 value 673.999878
## iter 290 value 658.561824
## iter 300 value 635.372869
## iter 310 value 608.247091
## iter 320 value 577.398462
## iter 330 value 564.962186
## iter 340 value 553.603395
## iter 350 value 543.557845
## iter 360 value 536.285542
## iter 370 value 530.921784
## iter 380 value 527.883488
## iter 390 value 526.205167
## iter 400 value 525.026743
## iter 410 value 524.738317
## iter 420 value 524.627068
## iter 430 value 524.597295
## iter 440 value 524.590146
## iter 450 value 524.588822
## iter 460 value 524.588076
## iter 470 value 524.587938
## final value 524.587916
## converged
## # weights: 181
## initial value 1304402.492249
## iter 10 value 1215.159830
## iter 20 value 911.743994
## iter 30 value 761.925857
## iter 40 value 651.636236
## iter 50 value 576.107710
## iter 60 value 525.692038
## iter 70 value 489.034086
## iter 80 value 461.158956
## iter 90 value 444.210661
## iter 100 value 432.651721
## iter 110 value 424.118038
## iter 120 value 417.578814
## iter 130 value 412.100245
## iter 140 value 406.026653
## iter 150 value 400.602751
## iter 160 value 396.806763
## iter 170 value 394.042741
## iter 180 value 392.416705
## iter 190 value 390.700454
## iter 200 value 382.585334
## iter 210 value 373.869584
## iter 220 value 370.041569
## iter 230 value 367.255461
## iter 240 value 362.657555
## iter 250 value 359.811037
## iter 260 value 357.921117
## iter 270 value 356.201324
## iter 280 value 354.583303
## iter 290 value 353.377330
## iter 300 value 352.316496
## iter 310 value 351.632112
## iter 320 value 351.333038
## iter 330 value 351.080588
## iter 340 value 350.847396
## iter 350 value 350.715172
## iter 360 value 350.598823
## iter 370 value 350.492111
## iter 380 value 350.446133
## iter 390 value 350.332394
## iter 400 value 350.221725
## iter 410 value 350.099649
## iter 420 value 349.902817
## iter 430 value 349.662171
## iter 440 value 349.591455
## iter 450 value 349.566049
## iter 460 value 349.555760
## iter 470 value 349.553553
## final value 349.553344
## converged
## # weights: 241
## initial value 1494796.848723
## iter 10 value 1793.794661
## iter 20 value 1026.296705
## iter 30 value 782.092947
## iter 40 value 635.817780
## iter 50 value 556.461285
## iter 60 value 523.980519
## iter 70 value 496.592607
## iter 80 value 474.720981
## iter 90 value 456.772187
## iter 100 value 444.305659
## iter 110 value 433.447878
## iter 120 value 425.797671
## iter 130 value 420.977147
## iter 140 value 418.684898
## iter 150 value 416.639335
## iter 160 value 414.744911
## iter 170 value 412.111436
## iter 180 value 408.342219
## iter 190 value 403.247575
## iter 200 value 397.876191
## iter 210 value 392.967486
## iter 220 value 388.253617
## iter 230 value 384.046870
## iter 240 value 380.049275
## iter 250 value 377.053067
## iter 260 value 374.006070
## iter 270 value 371.744175
## iter 280 value 369.936403
## iter 290 value 368.227877
## iter 300 value 366.004897
## iter 310 value 364.053444
## iter 320 value 362.403936
## iter 330 value 360.425414
## iter 340 value 356.852204
## iter 350 value 353.565506
## iter 360 value 351.214620
## iter 370 value 349.403509
## iter 380 value 346.459825
## iter 390 value 342.495363
## iter 400 value 340.669583
## iter 410 value 339.280219
## iter 420 value 337.884201
## iter 430 value 337.120139
## iter 440 value 336.619893
## iter 450 value 336.265756
## iter 460 value 336.010782
## iter 470 value 335.864655
## iter 480 value 335.732985
## iter 490 value 335.667572
## iter 500 value 335.559510
## final value 335.559510
## stopped after 500 iterations
## # weights: 25
## initial value 1536496.891690
## iter 10 value 21717.180299
## iter 20 value 16517.954314
## iter 30 value 14853.986863
## iter 40 value 9493.319339
## iter 50 value 3352.471783
## iter 60 value 2546.656437
## iter 70 value 2362.381514
## iter 80 value 2144.918770
## iter 90 value 1772.315155
## iter 100 value 1727.300659
## iter 110 value 1603.895751
## iter 120 value 1529.043363
## iter 130 value 1517.249470
## iter 140 value 1517.047736
## iter 140 value 1517.047735
## final value 1517.047735
## converged
##################################
# Reporting the apparent results
# for the NN model
##################################
<- DALEX::explain(NN_Tune,
NN_DALEX data = MD.Model.Predictors,
y = MD$LIFEXP,
verbose = FALSE,
label = "NN")
<- model_performance(NN_DALEX)) (NN_DALEX_Performance
## Measures for: regression
## mse : 3.792286
## rmse : 1.947379
## r2 : 0.9387186
## mad : 1.118942
##
## Residuals:
## 0% 10% 20% 30% 40% 50% 60%
## -6.7019930 -2.2284111 -1.3596353 -0.7496302 -0.2984808 0.0323945 0.3834313
## 70% 80% 90% 100%
## 0.8343248 1.5340057 2.1809442 6.4827220
<- model_diagnostics(NN_DALEX)) (NN_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :139 Africa :89 Min. :0.3365 Min. :-1.4775
## Female:153 Asia :73 1st Qu.:1.7047 1st Qu.: 0.6183
## Europe :62 Median :2.6100 Median : 1.7960
## North America:31 Mean :2.5569 Mean : 1.7571
## Oceania :18 3rd Qu.:3.5025 3rd Qu.: 2.7938
## South America:19 Max. :4.4864 Max. : 4.7293
## CLTECH NCOMOR y y_hat
## Min. : 0.00 Min. :1.866 Min. :52.84 Min. :56.39
## 1st Qu.: 24.35 1st Qu.:3.944 1st Qu.:66.93 1st Qu.:66.84
## Median : 82.80 Median :4.717 Median :73.53 Median :73.71
## Mean : 64.60 Mean :4.652 Mean :72.47 Mean :72.46
## 3rd Qu.:100.00 3rd Qu.:5.347 3rd Qu.:78.54 3rd Qu.:78.31
## Max. :100.00 Max. :7.959 Max. :87.45 Max. :85.01
## residuals abs_residuals label ids
## Min. :-6.7020 Min. :0.006932 Length:292 Min. : 1.00
## 1st Qu.:-0.9466 1st Qu.:0.423443 Class :character 1st Qu.: 73.75
## Median : 0.0324 Median :1.118942 Mode :character Median :146.50
## Mean : 0.0151 Mean :1.437687 Mean :146.50
## 3rd Qu.: 1.2088 3rd Qu.:2.042302 3rd Qu.:219.25
## Max. : 6.4827 Max. :6.701993 Max. :292.00
plot(NN_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("RF: Observed and Predicted LIFEXP")
<- model_parts(NN_DALEX,
(NN_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL))
## variable mean_dropout_loss label
## 1 _full_model_ 1.947379 NN
## 2 PERCAP 2.332572 NN
## 3 GENDER 2.512774 NN
## 4 CONTIN 3.072153 NN
## 5 CLTECH 3.103069 NN
## 6 NCOMOR 3.675613 NN
## 7 INFMOR 7.701794 NN
## 8 _baseline_ 10.925591 NN
plot(NN_DALEX_VariableImportance)
##################################
# Reporting the cross-validation results
# for the NN model
##################################
NN_Tune
## Neural Network
##
## 292 samples
## 6 predictor
##
## Pre-processing: centered (4), scaled (4), ignore (2)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ...
## Resampling results across tuning parameters:
##
## size decay RMSE Rsquared MAE
## 2 0e+00 2.913158 0.8500380 2.299048
## 2 1e-05 2.542092 0.8983528 2.007270
## 2 1e-04 2.246056 0.9195811 1.696021
## 2 1e-03 2.210859 0.9230509 1.673741
## 2 1e-01 2.060613 0.9326348 1.519616
## 5 0e+00 5.259886 0.8372621 2.275294
## 5 1e-05 5.270385 0.8300151 2.667797
## 5 1e-04 2.577673 0.8929534 1.711195
## 5 1e-03 2.171704 0.9258110 1.639417
## 5 1e-01 2.140877 0.9270724 1.619764
## 10 0e+00 4.090892 0.8342633 2.272149
## 10 1e-05 3.994206 0.7975050 2.411226
## 10 1e-04 2.947823 0.8735867 2.190190
## 10 1e-03 3.059333 0.8585939 2.084144
## 10 1e-01 2.708700 0.8913386 1.963156
## 15 0e+00 4.182909 0.7642496 2.918018
## 15 1e-05 5.843658 0.7293836 3.156435
## 15 1e-04 3.793863 0.7964659 2.651672
## 15 1e-03 3.559971 0.8145775 2.701506
## 15 1e-01 2.760529 0.8802960 2.066406
## 20 0e+00 4.804438 0.7226852 3.660531
## 20 1e-05 4.162649 0.7793587 3.109769
## 20 1e-04 4.963562 0.6832818 3.595233
## 20 1e-03 5.225087 0.6796311 3.719564
## 20 1e-01 2.961232 0.8731716 2.220592
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 2 and decay = 0.1.
$finalModel NN_Tune
## a 10-2-1 network with 25 weights
## inputs: GENDERFemale CONTINAsia CONTINEurope CONTINNorth America CONTINOceania CONTINSouth America INFMOR PERCAP CLTECH NCOMOR
## output(s): .outcome
## options were - linear output units decay=0.1
<- NN_Tune$results[NN_Tune$results$size==NN_Tune$bestTune$size &
(NN_Tune_RMSE $results$decay==NN_Tune$bestTune$decay,
NN_Tunec("RMSE")])
## [1] 2.060613
<- NN_Tune$results[NN_Tune$results$size==NN_Tune$bestTune$size &
(NN_Tune_Rsquared $results$decay==NN_Tune$bestTune$decay,
NN_Tunec("Rsquared")])
## [1] 0.9326348
<- NN_Tune$results[NN_Tune$results$size==NN_Tune$bestTune$size &
(NN_Tune_MAE $results$decay==NN_Tune$bestTune$decay,
NN_Tunec("MAE")])
## [1] 1.519616
##################################
# Defining the model hyperparameter values
# for the PLS model
##################################
= expand.grid(ncomp = 1:5)
PLS_Grid
##################################
# Running the PLS model
# by setting the caret method to 'pls'
##################################
set.seed(12345678)
<- train(x = MD.Model.Predictors,
PLS_Tune y = MD$LIFEXP,
method = "pls",
tuneGrid = PLS_Grid,
trControl = KFold_Control)
##################################
# Reporting the apparent results
# for the PLS model
##################################
<- DALEX::explain(PLS_Tune,
PLS_DALEX data = MD.Model.Predictors,
y = MD$LIFEXP,
verbose = FALSE,
label = "PLS")
<- model_performance(PLS_DALEX)) (PLS_DALEX_Performance
## Measures for: regression
## mse : 5.876756
## rmse : 2.424202
## r2 : 0.9050347
## mad : 1.524704
##
## Residuals:
## 0% 10% 20% 30% 40% 50% 60%
## -7.8171653 -3.1634756 -1.8497887 -1.1383462 -0.5658555 0.2131137 0.6858102
## 70% 80% 90% 100%
## 1.2703500 1.8554207 2.8334884 6.6842346
<- model_diagnostics(PLS_DALEX)) (PLS_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :139 Africa :89 Min. :0.3365 Min. :-1.4775
## Female:153 Asia :73 1st Qu.:1.7047 1st Qu.: 0.6183
## Europe :62 Median :2.6100 Median : 1.7960
## North America:31 Mean :2.5569 Mean : 1.7571
## Oceania :18 3rd Qu.:3.5025 3rd Qu.: 2.7938
## South America:19 Max. :4.4864 Max. : 4.7293
## CLTECH NCOMOR y y_hat
## Min. : 0.00 Min. :1.866 Min. :52.84 Min. :57.87
## 1st Qu.: 24.35 1st Qu.:3.944 1st Qu.:66.93 1st Qu.:66.38
## Median : 82.80 Median :4.717 Median :73.53 Median :73.39
## Mean : 64.60 Mean :4.652 Mean :72.47 Mean :72.47
## 3rd Qu.:100.00 3rd Qu.:5.347 3rd Qu.:78.54 3rd Qu.:78.18
## Max. :100.00 Max. :7.959 Max. :87.45 Max. :88.65
## residuals abs_residuals label ids
## Min. :-7.8172 Min. :0.01345 Length:292 Min. : 1.00
## 1st Qu.:-1.3989 1st Qu.:0.74951 Class :character 1st Qu.: 73.75
## Median : 0.2131 Median :1.52470 Mode :character Median :146.50
## Mean : 0.0000 Mean :1.89719 Mean :146.50
## 3rd Qu.: 1.5808 3rd Qu.:2.60138 3rd Qu.:219.25
## Max. : 6.6842 Max. :7.81717 Max. :292.00
plot(PLS_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("RF: Observed and Predicted LIFEXP")
<- model_parts(PLS_DALEX,
(PLS_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL))
## variable mean_dropout_loss label
## 1 _full_model_ 2.424202 PLS
## 2 PERCAP 2.426869 PLS
## 3 NCOMOR 2.967139 PLS
## 4 CONTIN 3.066523 PLS
## 5 CLTECH 3.165265 PLS
## 6 GENDER 3.250488 PLS
## 7 INFMOR 7.849344 PLS
## 8 _baseline_ 10.860376 PLS
plot(PLS_DALEX_VariableImportance)
##################################
# Reporting the cross-validation results
# for the PLS model
##################################
PLS_Tune
## Partial Least Squares
##
## 292 samples
## 6 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ...
## Resampling results across tuning parameters:
##
## ncomp RMSE Rsquared MAE
## 1 4.997627 0.6039633 4.073632
## 2 3.251276 0.8416354 2.478243
## 3 2.705139 0.8916091 2.067882
## 4 2.572417 0.9014321 2.006329
## 5 2.463222 0.9087387 1.954148
##
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 5.
$finalModel PLS_Tune
## Partial least squares regression, fitted with the orthogonal scores algorithm.
## Call:
## plsr(formula = .outcome ~ ., ncomp = ncomp, data = dat, method = "oscorespls")
<- PLS_Tune$results[PLS_Tune$results$ncomp==PLS_Tune$bestTune$ncomp,
(PLS_Tune_RMSE c("RMSE")])
## [1] 2.463222
<- PLS_Tune$results[PLS_Tune$results$ncomp==PLS_Tune$bestTune$ncomp,
(PLS_Tune_Rsquared c("Rsquared")])
## [1] 0.9087387
<- PLS_Tune$results[PLS_Tune$results$ncomp==PLS_Tune$bestTune$ncomp,
(PLS_Tune_MAE c("MAE")])
## [1] 1.954148
##################################
# Defining the model hyperparameter values
# for the CUBIST model
##################################
= expand.grid(committees = c(10, 20, 30, 40, 50),
CUBIST_Grid neighbors = c(0, 3, 6, 9))
##################################
# Running the CUBIST model
# by setting the caret method to 'cubist'
##################################
set.seed(12345678)
<- train(x = MD.Model.Predictors,
CUBIST_Tune y = MD$LIFEXP,
method = "cubist",
tuneGrid = CUBIST_Grid,
trControl = KFold_Control)
##################################
# Reporting the apparent results
# for the CUBIST model
##################################
<- DALEX::explain(CUBIST_Tune,
CUBIST_DALEX data = MD.Model.Predictors,
y = MD$LIFEXP,
verbose = FALSE,
label = "CUBIST")
<- model_performance(CUBIST_DALEX)) (CUBIST_DALEX_Performance
## Measures for: regression
## mse : 3.658042
## rmse : 1.912601
## r2 : 0.9408879
## mad : 1.05533
##
## Residuals:
## 0% 10% 20% 30% 40% 50%
## -6.90777771 -2.15534625 -1.41800017 -0.72510388 -0.33359399 0.01040643
## 60% 70% 80% 90% 100%
## 0.32413965 0.72477280 1.37141615 2.49934372 6.82557834
<- model_diagnostics(CUBIST_DALEX)) (CUBIST_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :139 Africa :89 Min. :0.3365 Min. :-1.4775
## Female:153 Asia :73 1st Qu.:1.7047 1st Qu.: 0.6183
## Europe :62 Median :2.6100 Median : 1.7960
## North America:31 Mean :2.5569 Mean : 1.7571
## Oceania :18 3rd Qu.:3.5025 3rd Qu.: 2.7938
## South America:19 Max. :4.4864 Max. : 4.7293
## CLTECH NCOMOR y y_hat
## Min. : 0.00 Min. :1.866 Min. :52.84 Min. :55.50
## 1st Qu.: 24.35 1st Qu.:3.944 1st Qu.:66.93 1st Qu.:66.51
## Median : 82.80 Median :4.717 Median :73.53 Median :73.61
## Mean : 64.60 Mean :4.652 Mean :72.47 Mean :72.40
## 3rd Qu.:100.00 3rd Qu.:5.347 3rd Qu.:78.54 3rd Qu.:78.06
## Max. :100.00 Max. :7.959 Max. :87.45 Max. :86.25
## residuals abs_residuals label ids
## Min. :-6.90778 Min. :0.003691 Length:292 Min. : 1.00
## 1st Qu.:-1.06822 1st Qu.:0.447052 Class :character 1st Qu.: 73.75
## Median : 0.01041 Median :1.055330 Mode :character Median :146.50
## Mean : 0.07148 Mean :1.409394 Mean :146.50
## 3rd Qu.: 1.00547 3rd Qu.:2.063695 3rd Qu.:219.25
## Max. : 6.82558 Max. :6.907778 Max. :292.00
plot(CUBIST_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("RF: Observed and Predicted LIFEXP")
<- model_parts(CUBIST_DALEX,
(CUBIST_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL))
## variable mean_dropout_loss label
## 1 _full_model_ 1.912601 CUBIST
## 2 CLTECH 1.921536 CUBIST
## 3 PERCAP 2.093838 CUBIST
## 4 GENDER 2.299057 CUBIST
## 5 CONTIN 2.365873 CUBIST
## 6 NCOMOR 3.758193 CUBIST
## 7 INFMOR 7.730290 CUBIST
## 8 _baseline_ 10.979674 CUBIST
plot(CUBIST_DALEX_VariableImportance)
##################################
# Reporting the cross-validation results
# for the CUBIST model
##################################
CUBIST_Tune
## Cubist
##
## 292 samples
## 6 predictor
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ...
## Resampling results across tuning parameters:
##
## committees neighbors RMSE Rsquared MAE
## 10 0 2.143307 0.9284329 1.597946
## 10 3 2.161575 0.9264713 1.628394
## 10 6 2.135997 0.9293777 1.600862
## 10 9 2.120955 0.9307087 1.593085
## 20 0 2.118571 0.9293801 1.589678
## 20 3 2.171113 0.9255303 1.629055
## 20 6 2.138896 0.9287024 1.597065
## 20 9 2.118487 0.9303570 1.588802
## 30 0 2.104752 0.9307090 1.577201
## 30 3 2.171787 0.9257896 1.634946
## 30 6 2.135237 0.9293559 1.598399
## 30 9 2.113010 0.9311860 1.587534
## 40 0 2.099914 0.9312085 1.569779
## 40 3 2.164063 0.9263082 1.632470
## 40 6 2.126530 0.9299765 1.592498
## 40 9 2.104461 0.9318479 1.580217
## 50 0 2.096744 0.9316609 1.568414
## 50 3 2.158509 0.9267267 1.629668
## 50 6 2.120160 0.9304991 1.588673
## 50 9 2.097972 0.9324203 1.575005
##
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were committees = 50 and neighbors = 0.
$finalModel CUBIST_Tune
##
## Call:
## cubist.default(x = x, y = y, committees = param$committees)
##
## Number of samples: 292
## Number of predictors: 6
##
## Number of committees: 50
## Number of rules per committee: 6, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2 ...
<- CUBIST_Tune$results[CUBIST_Tune$results$committees==CUBIST_Tune$bestTune$committees &
(CUBIST_Tune_RMSE $results$neighbors==CUBIST_Tune$bestTune$neighbors,
CUBIST_Tunec("RMSE")])
## [1] 2.096744
<- CUBIST_Tune$results[CUBIST_Tune$results$committees==CUBIST_Tune$bestTune$committees &
(CUBIST_Tune_Rsquared $results$neighbors==CUBIST_Tune$bestTune$neighbors,
CUBIST_Tunec("Rsquared")])
## [1] 0.9316609
<- CUBIST_Tune$results[CUBIST_Tune$results$committees==CUBIST_Tune$bestTune$committees &
(CUBIST_Tune_MAE $results$neighbors==CUBIST_Tune$bestTune$neighbors,
CUBIST_Tunec("MAE")])
## [1] 1.568414
##################################
# Evaluating the models
# on the model test data
##################################
##################################
# Formulating the DALEX object
# for the Best LR model
# as applied to the model test data
##################################
<- DALEX::explain(LR_Tune,
LR_DALEX data = MT.Model.Predictors,
y = MT$LIFEXP,
verbose = FALSE,
label = "LR")
<- model_performance(LR_DALEX)) (LR_DALEX_Performance
## Measures for: regression
## mse : 6.416206
## rmse : 2.533023
## r2 : 0.8795864
## mad : 1.666297
##
## Residuals:
## 0% 10% 20% 30% 40% 50%
## -6.68650492 -2.17549229 -1.55804047 -1.21751513 -0.94885907 0.07197521
## 60% 70% 80% 90% 100%
## 0.69695404 1.75887103 2.14536061 3.43457974 6.50245312
<- model_diagnostics(LR_DALEX)) (LR_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :43 Africa :17 Min. :0.6419 Min. :-1.4775
## Female:29 Asia :21 1st Qu.:1.7090 1st Qu.: 0.7926
## Europe :16 Median :2.6602 Median : 1.7266
## North America:11 Mean :2.5559 Mean : 1.7439
## Oceania : 2 3rd Qu.:3.4135 3rd Qu.: 2.8314
## South America: 5 Max. :4.3858 Max. : 4.4466
## CLTECH NCOMOR y y_hat
## Min. : 0.20 Min. :2.511 Min. :51.20 Min. :56.74
## 1st Qu.: 49.02 1st Qu.:3.887 1st Qu.:67.42 1st Qu.:66.94
## Median : 90.20 Median :4.742 Median :73.51 Median :73.34
## Mean : 72.08 Mean :4.752 Mean :72.61 Mean :72.41
## 3rd Qu.:100.00 3rd Qu.:5.631 3rd Qu.:78.47 3rd Qu.:77.82
## Max. :100.00 Max. :7.406 Max. :86.20 Max. :84.86
## residuals abs_residuals label ids
## Min. :-6.68651 Min. :0.04811 Length:72 Min. : 1.00
## 1st Qu.:-1.39437 1st Qu.:1.00127 Class :character 1st Qu.:18.75
## Median : 0.07197 Median :1.66630 Mode :character Median :36.50
## Mean : 0.19567 Mean :2.02378 Mean :36.50
## 3rd Qu.: 1.95312 3rd Qu.:2.78440 3rd Qu.:54.25
## Max. : 6.50245 Max. :6.68651 Max. :72.00
plot(LR_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("LR: Observed and Predicted LIFEXP")
##################################
# Formulating the DALEX object
# for the Best GBM model
# as applied to the model test data
##################################
<- DALEX::explain(GBM_Tune,
GBM_DALEX data = MT.Model.Predictors,
y = MT$LIFEXP,
verbose = FALSE,
label = "GBM")
<- model_performance(GBM_DALEX)) (GBM_DALEX_Performance
## Measures for: regression
## mse : 4.413299
## rmse : 2.100785
## r2 : 0.9171752
## mad : 1.322106
##
## Residuals:
## 0% 10% 20% 30% 40% 50% 60%
## -4.3962340 -2.2405259 -1.4211432 -1.0660296 -0.8370857 -0.1835420 0.3528943
## 70% 80% 90% 100%
## 1.1053654 1.6763495 3.0065703 5.6991483
<- model_diagnostics(GBM_DALEX)) (GBM_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :43 Africa :17 Min. :0.6419 Min. :-1.4775
## Female:29 Asia :21 1st Qu.:1.7090 1st Qu.: 0.7926
## Europe :16 Median :2.6602 Median : 1.7266
## North America:11 Mean :2.5559 Mean : 1.7439
## Oceania : 2 3rd Qu.:3.4135 3rd Qu.: 2.8314
## South America: 5 Max. :4.3858 Max. : 4.4466
## CLTECH NCOMOR y y_hat
## Min. : 0.20 Min. :2.511 Min. :51.20 Min. :53.19
## 1st Qu.: 49.02 1st Qu.:3.887 1st Qu.:67.42 1st Qu.:68.35
## Median : 90.20 Median :4.742 Median :73.51 Median :73.10
## Mean : 72.08 Mean :4.752 Mean :72.61 Mean :72.47
## 3rd Qu.:100.00 3rd Qu.:5.631 3rd Qu.:78.47 3rd Qu.:78.40
## Max. :100.00 Max. :7.406 Max. :86.20 Max. :84.89
## residuals abs_residuals label ids
## Min. :-4.3962 Min. :0.04636 Length:72 Min. : 1.00
## 1st Qu.:-1.1836 1st Qu.:0.78949 Class :character 1st Qu.:18.75
## Median :-0.1835 Median :1.32211 Mode :character Median :36.50
## Mean : 0.1348 Mean :1.65758 Mean :36.50
## 3rd Qu.: 1.3846 3rd Qu.:2.30067 3rd Qu.:54.25
## Max. : 5.6991 Max. :5.69915 Max. :72.00
plot(GBM_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("GBM: Observed and Predicted LIFEXP")
##################################
# Formulating the DALEX object
# for the Best RF model
# as applied to the model test data
##################################
<- DALEX::explain(RF_Tune,
RF_DALEX data = MT.Model.Predictors,
y = MT$LIFEXP,
verbose = FALSE,
label = "RF")
<- model_performance(RF_DALEX)) (RF_DALEX_Performance
## Measures for: regression
## mse : 6.25631
## rmse : 2.501262
## r2 : 0.8825872
## mad : 1.594092
##
## Residuals:
## 0% 10% 20% 30% 40% 50% 60%
## -7.2080243 -3.0176466 -2.1047296 -1.2247647 -0.2712163 0.1992440 0.7128073
## 70% 80% 90% 100%
## 1.1067986 1.7677385 3.1744799 7.4973476
<- model_diagnostics(RF_DALEX)) (RF_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :43 Africa :17 Min. :0.6419 Min. :-1.4775
## Female:29 Asia :21 1st Qu.:1.7090 1st Qu.: 0.7926
## Europe :16 Median :2.6602 Median : 1.7266
## North America:11 Mean :2.5559 Mean : 1.7439
## Oceania : 2 3rd Qu.:3.4135 3rd Qu.: 2.8314
## South America: 5 Max. :4.3858 Max. : 4.4466
## CLTECH NCOMOR y y_hat
## Min. : 0.20 Min. :2.511 Min. :51.20 Min. :54.85
## 1st Qu.: 49.02 1st Qu.:3.887 1st Qu.:67.42 1st Qu.:68.50
## Median : 90.20 Median :4.742 Median :73.51 Median :73.19
## Mean : 72.08 Mean :4.752 Mean :72.61 Mean :72.58
## 3rd Qu.:100.00 3rd Qu.:5.631 3rd Qu.:78.47 3rd Qu.:78.61
## Max. :100.00 Max. :7.406 Max. :86.20 Max. :84.60
## residuals abs_residuals label ids
## Min. :-7.20802 Min. :0.01395 Length:72 Min. : 1.00
## 1st Qu.:-1.69056 1st Qu.:0.73760 Class :character 1st Qu.:18.75
## Median : 0.19924 Median :1.59409 Mode :character Median :36.50
## Mean : 0.02669 Mean :1.91950 Mean :36.50
## 3rd Qu.: 1.50013 3rd Qu.:2.74804 3rd Qu.:54.25
## Max. : 7.49735 Max. :7.49735 Max. :72.00
plot(RF_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("RF: Observed and Predicted LIFEXP")
##################################
# Formulating the DALEX object
# for the Best NN model
# as applied to the model test data
##################################
<- DALEX::explain(NN_Tune,
NN_DALEX data = MT.Model.Predictors,
y = MT$LIFEXP,
verbose = FALSE,
label = "NN")
<- model_performance(NN_DALEX)) (NN_DALEX_Performance
## Measures for: regression
## mse : 5.300062
## rmse : 2.302186
## r2 : 0.9005332
## mad : 1.293056
##
## Residuals:
## 0% 10% 20% 30% 40% 50% 60%
## -6.0612264 -2.8063521 -1.3495125 -1.0121289 -0.3547678 0.2159281 0.6061218
## 70% 80% 90% 100%
## 1.1206919 1.8356939 2.8346540 7.8217567
<- model_diagnostics(NN_DALEX)) (NN_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :43 Africa :17 Min. :0.6419 Min. :-1.4775
## Female:29 Asia :21 1st Qu.:1.7090 1st Qu.: 0.7926
## Europe :16 Median :2.6602 Median : 1.7266
## North America:11 Mean :2.5559 Mean : 1.7439
## Oceania : 2 3rd Qu.:3.4135 3rd Qu.: 2.8314
## South America: 5 Max. :4.3858 Max. : 4.4466
## CLTECH NCOMOR y y_hat
## Min. : 0.20 Min. :2.511 Min. :51.20 Min. :52.40
## 1st Qu.: 49.02 1st Qu.:3.887 1st Qu.:67.42 1st Qu.:66.97
## Median : 90.20 Median :4.742 Median :73.51 Median :73.22
## Mean : 72.08 Mean :4.752 Mean :72.61 Mean :72.48
## 3rd Qu.:100.00 3rd Qu.:5.631 3rd Qu.:78.47 3rd Qu.:78.83
## Max. :100.00 Max. :7.406 Max. :86.20 Max. :84.49
## residuals abs_residuals label ids
## Min. :-6.0612 Min. :0.06061 Length:72 Min. : 1.00
## 1st Qu.:-1.2126 1st Qu.:0.72930 Class :character 1st Qu.:18.75
## Median : 0.2159 Median :1.29306 Mode :character Median :36.50
## Mean : 0.1293 Mean :1.77153 Mean :36.50
## 3rd Qu.: 1.5601 3rd Qu.:2.67075 3rd Qu.:54.25
## Max. : 7.8218 Max. :7.82176 Max. :72.00
plot(NN_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("NN: Observed and Predicted LIFEXP")
##################################
# Formulating the DALEX object
# for the Best PLS model
# as applied to the model test data
##################################
<- DALEX::explain(PLS_Tune,
PLS_DALEX data = MT.Model.Predictors,
y = MT$LIFEXP,
verbose = FALSE,
label = "PLS")
<- model_performance(PLS_DALEX)) (PLS_DALEX_Performance
## Measures for: regression
## mse : 7.220162
## rmse : 2.687036
## r2 : 0.8644985
## mad : 1.875765
##
## Residuals:
## 0% 10% 20% 30% 40% 50% 60%
## -6.7868694 -2.5089071 -1.8150301 -1.1801931 -0.4920039 0.1375484 0.7844976
## 70% 80% 90% 100%
## 2.0494752 2.6262401 3.8453344 6.0828174
<- model_diagnostics(PLS_DALEX)) (PLS_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :43 Africa :17 Min. :0.6419 Min. :-1.4775
## Female:29 Asia :21 1st Qu.:1.7090 1st Qu.: 0.7926
## Europe :16 Median :2.6602 Median : 1.7266
## North America:11 Mean :2.5559 Mean : 1.7439
## Oceania : 2 3rd Qu.:3.4135 3rd Qu.: 2.8314
## South America: 5 Max. :4.3858 Max. : 4.4466
## CLTECH NCOMOR y y_hat
## Min. : 0.20 Min. :2.511 Min. :51.20 Min. :57.14
## 1st Qu.: 49.02 1st Qu.:3.887 1st Qu.:67.42 1st Qu.:67.18
## Median : 90.20 Median :4.742 Median :73.51 Median :72.99
## Mean : 72.08 Mean :4.752 Mean :72.61 Mean :72.33
## 3rd Qu.:100.00 3rd Qu.:5.631 3rd Qu.:78.47 3rd Qu.:77.39
## Max. :100.00 Max. :7.406 Max. :86.20 Max. :84.75
## residuals abs_residuals label ids
## Min. :-6.7869 Min. :0.04887 Length:72 Min. : 1.00
## 1st Qu.:-1.4065 1st Qu.:0.82974 Class :character 1st Qu.:18.75
## Median : 0.1375 Median :1.87576 Mode :character Median :36.50
## Mean : 0.2816 Mean :2.15539 Mean :36.50
## 3rd Qu.: 2.4014 3rd Qu.:3.14434 3rd Qu.:54.25
## Max. : 6.0828 Max. :6.78687 Max. :72.00
plot(PLS_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("PLS: Observed and Predicted LIFEXP")
##################################
# Formulating the DALEX object
# for the Best CUBIST model
# as applied to the model test data
##################################
<- DALEX::explain(CUBIST_Tune,
CUBIST_DALEX data = MT.Model.Predictors,
y = MT$LIFEXP,
verbose = FALSE,
label = "CUBIST")
<- model_performance(CUBIST_DALEX)) (CUBIST_DALEX_Performance
## Measures for: regression
## mse : 4.955851
## rmse : 2.226174
## r2 : 0.9069931
## mad : 1.555514
##
## Residuals:
## 0% 10% 20% 30% 40% 50%
## -6.27483923 -2.34803998 -1.75093724 -1.08073022 -0.25740164 0.08468332
## 60% 70% 80% 90% 100%
## 0.74473043 1.16073038 1.70618640 2.84412369 5.15525385
<- model_diagnostics(CUBIST_DALEX)) (CUBIST_DALEX_Diagnostics
## GENDER CONTIN INFMOR PERCAP
## Male :43 Africa :17 Min. :0.6419 Min. :-1.4775
## Female:29 Asia :21 1st Qu.:1.7090 1st Qu.: 0.7926
## Europe :16 Median :2.6602 Median : 1.7266
## North America:11 Mean :2.5559 Mean : 1.7439
## Oceania : 2 3rd Qu.:3.4135 3rd Qu.: 2.8314
## South America: 5 Max. :4.3858 Max. : 4.4466
## CLTECH NCOMOR y y_hat
## Min. : 0.20 Min. :2.511 Min. :51.20 Min. :55.56
## 1st Qu.: 49.02 1st Qu.:3.887 1st Qu.:67.42 1st Qu.:67.93
## Median : 90.20 Median :4.742 Median :73.51 Median :72.67
## Mean : 72.08 Mean :4.752 Mean :72.61 Mean :72.49
## 3rd Qu.:100.00 3rd Qu.:5.631 3rd Qu.:78.47 3rd Qu.:77.88
## Max. :100.00 Max. :7.406 Max. :86.20 Max. :84.71
## residuals abs_residuals label ids
## Min. :-6.27484 Min. :0.01256 Length:72 Min. : 1.00
## 1st Qu.:-1.54890 1st Qu.:0.71120 Class :character 1st Qu.:18.75
## Median : 0.08468 Median :1.55551 Mode :character Median :36.50
## Mean : 0.11581 Mean :1.73586 Mean :36.50
## 3rd Qu.: 1.40404 3rd Qu.:2.38064 3rd Qu.:54.25
## Max. : 5.15525 Max. :6.27484 Max. :72.00
plot(CUBIST_DALEX_Diagnostics,
variable = "y",
yvariable = "y_hat") +
geom_point(size=3) +
scale_x_continuous("Observed LIFEXP") +
scale_y_continuous("Predicted LIFEXP") +
geom_abline(slope = 1) +
ggtitle("CUBIST: Observed and Predicted LIFEXP")
##################################
# Consolidating the performance
# on the model test data
##################################
plot(LR_DALEX_Performance,
GBM_DALEX_Performance,
RF_DALEX_Performance,
NN_DALEX_Performance,
PLS_DALEX_Performance, CUBIST_DALEX_Performance)
plot(LR_DALEX_Performance,
GBM_DALEX_Performance,
RF_DALEX_Performance,
NN_DALEX_Performance,
PLS_DALEX_Performance,
CUBIST_DALEX_Performance,geom = "boxplot")
plot(LR_DALEX_Performance,
GBM_DALEX_Performance,
RF_DALEX_Performance,
NN_DALEX_Performance,
PLS_DALEX_Performance,
CUBIST_DALEX_Performance,geom = "histogram")
plot(LR_DALEX_Performance,
geom = "histogram") +
scale_x_continuous(limits=c(-8, 8)) +
scale_y_continuous(limits=c(0, 8))
plot(GBM_DALEX_Performance,
geom = "histogram") +
scale_x_continuous(limits=c(-8, 8)) +
scale_y_continuous(limits=c(0, 8))
plot(RF_DALEX_Performance,
geom = "histogram") +
scale_x_continuous(limits=c(-8, 8)) +
scale_y_continuous(limits=c(0, 8))
plot(NN_DALEX_Performance,
geom = "histogram") +
scale_x_continuous(limits=c(-8, 8)) +
scale_y_continuous(limits=c(0, 8))
plot(PLS_DALEX_Performance,
geom = "histogram") +
scale_x_continuous(limits=c(-8, 8)) +
scale_y_continuous(limits=c(0, 8))
plot(CUBIST_DALEX_Performance,
geom = "histogram") +
scale_x_continuous(limits=c(-8, 8)) +
scale_y_continuous(limits=c(0, 8))
##################################
# Consolidating the variable importance
# on the model test data
##################################
<- model_parts(LR_DALEX,
LR_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL)
<- model_parts(GBM_DALEX,
GBM_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL)
<- model_parts(RF_DALEX,
RF_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL)
<- model_parts(NN_DALEX,
NN_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL)
<- model_parts(PLS_DALEX,
PLS_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL)
<- model_parts(CUBIST_DALEX,
CUBIST_DALEX_VariableImportance loss_function = loss_root_mean_square,
B = 200,
N = NULL)
plot(LR_DALEX_VariableImportance,
GBM_DALEX_VariableImportance,
RF_DALEX_VariableImportance,
NN_DALEX_VariableImportance,
PLS_DALEX_VariableImportance, CUBIST_DALEX_VariableImportance)
##################################
# Summarizing the variable importance
# for the final model - GBM
##################################
GBM_DALEX_VariableImportance
## variable mean_dropout_loss label
## 1 _full_model_ 2.100785 GBM
## 2 PERCAP 2.183325 GBM
## 3 CLTECH 2.521746 GBM
## 4 GENDER 2.540034 GBM
## 5 CONTIN 2.605090 GBM
## 6 NCOMOR 4.033273 GBM
## 7 INFMOR 6.362181 GBM
## 8 _baseline_ 10.113806 GBM
plot(GBM_DALEX_VariableImportance)
##################################
# Formulating the partial dependence plots
# for the final model - GBM
# using the numeric variables
##################################
<- model_profile(GBM_DALEX,
GBM_DALEX_PartialDependencePlot_INFMOR variables = "INFMOR")
<- model_profile(GBM_DALEX,
GBM_DALEX_PartialDependencePlot_NCOMOR variables = "NCOMOR")
<- model_profile(GBM_DALEX,
GBM_DALEX_PartialDependencePlot_CLTECH variables = "CLTECH")
<- model_profile(GBM_DALEX,
GBM_DALEX_PartialDependencePlot_PERCAP variables = "PERCAP")
<- plot(GBM_DALEX_PartialDependencePlot_INFMOR,
(GBM_DALEX_PDP_INFMOR geom = "profiles"))
<- plot(GBM_DALEX_PartialDependencePlot_NCOMOR,
(GBM_DALEX_PDP_NCOMOR geom = "profiles"))
<- plot(GBM_DALEX_PartialDependencePlot_CLTECH,
(GBM_DALEX_PDP_CLTECH geom = "profiles"))
<- plot(GBM_DALEX_PartialDependencePlot_PERCAP,
(GBM_DALEX_PDP_PERCAP geom = "profiles"))
##################################
# Formulating the grouped partial dependence plots
# for the final model - GBM
# using the numeric variables
# stratified by GENDER
##################################
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_INFMOR variables = "INFMOR",
groups = "GENDER")
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_NCOMOR variables = "NCOMOR",
groups = "GENDER")
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_CLTECH variables = "CLTECH",
groups = "GENDER")
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_PERCAP variables = "PERCAP",
groups = "GENDER")
<- plot(GBM_DALEX_GroupedPartialDependencePlot_INFMOR,
(GBM_DALEX_GPDP_INFMOR geom = "profiles"))
<- plot(GBM_DALEX_GroupedPartialDependencePlot_NCOMOR,
(GBM_DALEX_GPDP_NCOMOR geom = "profiles"))
<- plot(GBM_DALEX_GroupedPartialDependencePlot_CLTECH,
(GBM_DALEX_GPDP_CLTECH geom = "profiles"))
<- plot(GBM_DALEX_GroupedPartialDependencePlot_PERCAP,
(GBM_DALEX_GPDP_PERCAP geom = "profiles"))
##################################
# Formulating the grouped partial dependence plots
# for the final model - GBM
# using the numeric variables
# stratified by CONTIN
##################################
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_INFMOR variables = "INFMOR",
groups = "CONTIN")
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_NCOMOR variables = "NCOMOR",
groups = "CONTIN")
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_CLTECH variables = "CLTECH",
groups = "CONTIN")
<- model_profile(GBM_DALEX,
GBM_DALEX_GroupedPartialDependencePlot_PERCAP variables = "PERCAP",
groups = "CONTIN")
<- plot(GBM_DALEX_GroupedPartialDependencePlot_INFMOR,
(GBM_DALEX_GPDP_INFMOR geom = "profiles"))
<- plot(GBM_DALEX_GroupedPartialDependencePlot_NCOMOR,
(GBM_DALEX_GPDP_NCOMOR geom = "profiles"))
<- plot(GBM_DALEX_GroupedPartialDependencePlot_CLTECH,
(GBM_DALEX_GPDP_CLTECH geom = "profiles"))
<- plot(GBM_DALEX_GroupedPartialDependencePlot_PERCAP,
(GBM_DALEX_GPDP_PERCAP geom = "profiles"))
##################################
# Formulating the partial dependence plots
# for the final model - GBM
# using the factor variables
##################################
<- model_profile(GBM_DALEX,
GBM_DALEX_PartialDependencePlot_GENDER variable_type = 'categorical',
variables = "GENDER")
<- model_profile(GBM_DALEX,
GBM_DALEX_PartialDependencePlot_CONTIN variable_type = 'categorical',
variables = "CONTIN")
<- plot(GBM_DALEX_PartialDependencePlot_GENDER,
(GBM_DALEX_PDP_GENDER geom = "profiles"))
<- plot(GBM_DALEX_PartialDependencePlot_CONTIN,
(GBM_DALEX_PDP_CONTIN geom = "profiles"))
##################################
# Formulating the sampled instances
# for illustration
##################################
<- PME[PME$COUNTRY=="Philippines" & PME$GENDER=="Female",
(Instance_1_Philippines_Female c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")])
## GENDER CONTIN INFMOR PERCAP CLTECH NCOMOR LIFEXP
## 141 Female Asia 2.944439 1.248566 47.4 4.704261 75.505
<- PME[PME$COUNTRY=="Philippines" & PME$GENDER=="Male",
(Instance_2_Philippines_Male c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")])
## GENDER CONTIN INFMOR PERCAP CLTECH NCOMOR LIFEXP
## 338 Male Asia 3.173878 1.248566 47.4 5.950788 67.263
##################################
# Obtaining the breakdown plots
# for the individual instances
##################################
<- DALEX::predict_parts(explainer = GBM_DALEX,
(Instance_1_GBM_BDP new_observation = Instance_1_Philippines_Female[,c(1:6)],
type = "break_down"))
## contribution
## GBM: intercept 72.475
## GBM: GENDER = Female 1.286
## GBM: INFMOR = 2.944 0.996
## GBM: CONTIN = Asia 0.629
## GBM: PERCAP = 1.249 0.866
## GBM: NCOMOR = 4.704 -0.065
## GBM: CLTECH = 47.4 -0.571
## GBM: prediction 75.616
plot(Instance_1_GBM_BDP)
<- DALEX::predict_parts(explainer = GBM_DALEX,
(Instance_2_GBM_BDP new_observation = Instance_2_Philippines_Male[,c(1:6)],
type = "break_down"))
## contribution
## GBM: intercept 72.475
## GBM: NCOMOR = 5.951 -3.294
## GBM: INFMOR = 3.174 -1.208
## GBM: GENDER = Male -0.972
## GBM: CONTIN = Asia 0.675
## GBM: PERCAP = 1.249 1.088
## GBM: CLTECH = 47.4 -0.662
## GBM: prediction 68.103
plot(Instance_2_GBM_BDP)
#################################
# Obtaining the shapley additive explanations
# for the individual instances
#################################
<- DALEX::predict_parts(explainer = GBM_DALEX,
(Instance_1_GBM_SHAP new_observation = Instance_1_Philippines_Female[,c(1:6)],
type = "shap",
B = 25))
## min q1 median mean q3
## GBM: CLTECH = 47.4 -0.6461512 -0.5575544 -0.4095151 -0.4195469 -0.29357833
## GBM: CONTIN = Asia 0.5969206 0.6584082 0.7493046 0.7345593 0.81007457
## GBM: GENDER = Female 1.1254368 1.1763314 1.1903410 1.2163946 1.26665268
## GBM: INFMOR = 2.944 0.8087826 0.9515436 0.9875200 1.0176594 1.03214262
## GBM: NCOMOR = 4.704 -0.4485391 -0.3066485 -0.2115814 -0.1957897 -0.06458359
## GBM: PERCAP = 1.249 0.6416678 0.7081684 0.7807724 0.7874857 0.83103750
## max
## GBM: CLTECH = 47.4 -0.2418281
## GBM: CONTIN = Asia 0.8575527
## GBM: GENDER = Female 1.3370485
## GBM: INFMOR = 2.944 1.3780094
## GBM: NCOMOR = 4.704 0.0781626
## GBM: PERCAP = 1.249 0.9611060
plot(Instance_1_GBM_SHAP)
<- DALEX::predict_parts(explainer = GBM_DALEX,
(Instance_2_GBM_SHAP new_observation = Instance_2_Philippines_Male[,c(1:6)],
type = "shap",
B = 25))
## min q1 median mean q3
## GBM: CLTECH = 47.4 -0.6861096 -0.6619461 -0.5416852 -0.5087936 -0.3487904
## GBM: CONTIN = Asia 0.6115964 0.7027173 0.7892966 0.7685187 0.8219538
## GBM: GENDER = Male -1.0513274 -0.9924010 -0.8337821 -0.8894513 -0.8045019
## GBM: INFMOR = 3.174 -2.1214680 -1.6973253 -1.6586635 -1.6549659 -1.3896740
## GBM: NCOMOR = 5.951 -3.4994711 -3.1562885 -2.9604593 -2.9579765 -2.7187872
## GBM: PERCAP = 1.249 0.6669090 0.7717363 0.8397737 0.8704869 0.9583036
## max
## GBM: CLTECH = 47.4 -0.2694148
## GBM: CONTIN = Asia 0.9233503
## GBM: GENDER = Male -0.7663641
## GBM: INFMOR = 3.174 -1.2080360
## GBM: NCOMOR = 5.951 -2.4613331
## GBM: PERCAP = 1.249 1.1004550
plot(Instance_2_GBM_SHAP)
##################################
# Obtaining the ceteris paribus profiles
# for the individual instances
##################################
<- DALEX::predict_profile(explainer = GBM_DALEX,
(Instance_1_GBM_CPP new_observation = Instance_1_Philippines_Female[,c(1:6)]))
## Top profiles :
## GENDER CONTIN INFMOR PERCAP CLTECH NCOMOR _yhat_ _vname_
## 141 Male Asia 2.944439 1.248566 47.4 4.704261 73.64589 GENDER
## 141.1 Female Asia 2.944439 1.248566 47.4 4.704261 75.61556 GENDER
## 1411 Female Africa 2.944439 1.248566 47.4 4.704261 73.69957 CONTIN
## 141.110 Female Asia 2.944439 1.248566 47.4 4.704261 75.61556 CONTIN
## 141.2 Female Europe 2.944439 1.248566 47.4 4.704261 75.13845 CONTIN
## 141.3 Female North America 2.944439 1.248566 47.4 4.704261 75.35803 CONTIN
## _ids_ _label_
## 141 141 GBM
## 141.1 141 GBM
## 1411 141 GBM
## 141.110 141 GBM
## 141.2 141 GBM
## 141.3 141 GBM
##
##
## Top observations:
## GENDER CONTIN INFMOR PERCAP CLTECH NCOMOR _yhat_ _label_ _ids_
## 141 Female Asia 2.944439 1.248566 47.4 4.704261 75.61556 GBM 1
plot(Instance_1_GBM_CPP,
variables = c("INFMOR","PERCAP","CLTECH","NCOMOR")) +
ggtitle("Ceteris-paribus profile", "") +
ylim(55, 80)
plot(Instance_1_GBM_CPP,
variables = c("GENDER","CONTIN"),
variable_type = "categorical",
categorical_type = "bars") +
ggtitle("Ceteris-paribus profile", "")
<- DALEX::predict_profile(explainer = GBM_DALEX,
(Instance_2_GBM_CPP new_observation = Instance_2_Philippines_Male[,c(1:6)]))
## Top profiles :
## GENDER CONTIN INFMOR PERCAP CLTECH NCOMOR _yhat_ _vname_
## 338 Male Asia 3.173878 1.248566 47.4 5.950788 68.10262 GENDER
## 338.1 Female Asia 3.173878 1.248566 47.4 5.950788 70.56651 GENDER
## 3381 Male Africa 3.173878 1.248566 47.4 5.950788 66.03975 CONTIN
## 338.110 Male Asia 3.173878 1.248566 47.4 5.950788 68.10262 CONTIN
## 338.2 Male Europe 3.173878 1.248566 47.4 5.950788 67.12975 CONTIN
## 338.3 Male North America 3.173878 1.248566 47.4 5.950788 68.09560 CONTIN
## _ids_ _label_
## 338 338 GBM
## 338.1 338 GBM
## 3381 338 GBM
## 338.110 338 GBM
## 338.2 338 GBM
## 338.3 338 GBM
##
##
## Top observations:
## GENDER CONTIN INFMOR PERCAP CLTECH NCOMOR _yhat_ _label_ _ids_
## 338 Male Asia 3.173878 1.248566 47.4 5.950788 68.10262 GBM 1
plot(Instance_2_GBM_CPP,
variables = c("INFMOR","PERCAP","CLTECH","NCOMOR")) +
ggtitle("Ceteris-paribus profile", "") +
ylim(55, 80)
plot(Instance_2_GBM_CPP,
variables = c("GENDER","CONTIN"),
variable_type = "categorical",
categorical_type = "bars") +
ggtitle("Ceteris-paribus profile", "")
<- predict_diagnostics(explainer = GBM_DALEX,
Instance_1_GBM_LFP new_observation = Instance_1_Philippines_Female[,c(1:6)],
neighbours = 50)
plot(Instance_1_GBM_LFP)
<- predict_diagnostics(explainer = GBM_DALEX,
Instance_2_GBM_LFP new_observation = Instance_2_Philippines_Male[,c(1:6)],
neighbours = 50)
plot(Instance_2_GBM_LFP)
<- predict_diagnostics(explainer = GBM_DALEX,
Instance_1_GBM_LFP new_observation = Instance_1_Philippines_Female[,c(1:6)],
neighbours = 5,
variables = c("INFMOR","NCOMOR","CLTECH","PERCAP"))
plot(Instance_1_GBM_LFP)
<- predict_diagnostics(explainer = GBM_DALEX,
Instance_1_GBM_LFP new_observation = Instance_1_Philippines_Female[,c(1:6)],
neighbours = 5,
variables = c("GENDER","CONTIN"))
plot(Instance_1_GBM_LFP)
<- predict_diagnostics(explainer = GBM_DALEX,
Instance_2_GBM_LFP new_observation = Instance_2_Philippines_Male[,c(1:6)],
neighbours = 5,
variables = c("INFMOR","NCOMOR","CLTECH","PERCAP"))
plot(Instance_2_GBM_LFP)
<- predict_diagnostics(explainer = GBM_DALEX,
Instance_2_GBM_LFP new_observation = Instance_2_Philippines_Male[,c(1:6)],
neighbours = 5,
variables = c("GENDER","CONTIN"))
plot(Instance_2_GBM_LFP)