1. Table of Contents

1.1 Introduction


Life expectancy is a statistical measure that represents the average number of years a person is expected to live from birth, assuming current mortality rates remain constant along the entire life course. It provides an estimation of the overall health and well-being of a population and is often reflective of the local conditions encompassing numerous factors including demographic, socio-economic, healthcare access and healthcare quality.

Using an open dataset from Kaggle (with all credits attributed to Kiran Shahi) as primarily sourced from The World Bank, this study hypothesized that various world development and health indicators influence life expectancy across countries. A number of regression models was formulated to explore the relationship between life expectancy and these factors.

Subsequent analysis and modelling steps involving data understanding, data preparation, data exploration, model development, model validation and model presentation were individually detailed below, with all the results consolidated in a Summary provided at the end of the document.

1.1.1 Study Objectives


The main objective of the study is to develop an interpretable regression model which could provide robust and reliable estimates of life expectancy from an optimal set of observations and predictors, while delivering accurate predictions when applied to new unseen data.

Specific objectives are given as follows:

[A] Obtain an optimal subset of observations and predictors by conducting data quality assessment and feature selection, excluding cases or variables noted with irregularities and applying preprocessing operations most suitable for the downstream analysis

[B] Develop multiple regression models with optimized hyperparameters through internal resampling validation

[C] Select the final regression model among candidates based on robust performance estimates

[D] Evaluate the final model performance and generalization ability through external validation in an independent set

[E] Conduct a post-hoc exploration of the model results, even for black-box models, to provide general insights on the importance, contribution and effect of the various predictors to model prediction

1.1.2 Outcome


The analysis endpoint for the study is described below:

[A] LIFEXP (numeric): Life Expectancy; Number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.

1.1.3 Predictors


Detailed descriptions for each individual predictor used in the study are provided as follows:

[A] COUNTRY (character): Country; Political unit with sovereignty (legitimate and total political power) over a territory and inhabitants within its borders.

[B] YEAR (numeric): Year; Year when all relevant data were gathered, fixed at 2019 for this analysis.

[C] GENDER (factor): Gender, Biological categorization group upon which all relevant data are associated with.

[D] CONTIN (factor): Continent; Collective region where the specified country belongs to.

[E] UNEMPR (numeric, in %): Unemployment Rate; Proportion of unemployed individuals in a group among individuals currently in the labor force.

[F] INFMOR (numeric, in number of deaths): Infant Mortality; Number of infants dying before reaching one year of age in agroup per 1,000 live births in a given year

[G] GDP (numeric, in USD): Gross Domestic Product; Sum of gross value added by all resident producers in the economy plus any product taxes and minus any subsidies not included in the value of the products. It is calculated without making deductions for depreciation of fabricated assets or for depletion and degradation of natural resources..

[H] GNI (numeric, in USD): Gross National Income; Sum of value added by all resident producers plus any product taxes (less subsidies) not included in the valuation of output plus net receipts of primary income (compensation of employees and property income) from abroad.

[I] CLTECH (numeric, in %): Access to Clean Fuels and Technologies for Cooking; Proportion of the population in a group with access to clean fuels and technologies for cooking. Under WHO guidelines, kerosene is excluded from clean cooking fuels.

[J] PERCAP (numeric, in USD): Gross Domestic Product Per Capita; Annual gross domestic product divided by midyear population within a group.

[K] RTIMOR (numeric, in number of deaths): Mortality Caused by Road Traffic Injury; Road traffic fatal injury deaths in a group per 100,000 population.

[L] TUBINC (numeric, in number of cases): Incidence of Tuberculosis; Estimated number of new and relapse tuberculosis cases in a group arising in a given year per 100,000 population.

[M] DPTIMM (numeric, in %): DPT Immunization; Proportion of children ages 12-23 months within a group who received diphtheria, pertussis (or whooping cough) and tetanus (DPT) vaccinations before 12 months or at any time before the survey.

[N] HEPIMM (numeric, in %): Hepatitis B Immunization; Proportion of children ages 12-23 months within a group who received hepatitis B vaccinations before 12 months or at any time before the survey.

[O] MEAIMM (numeric, in %): Measles Immunization; Proportion of children ages 12-23 months within a group who received measles vaccinations before 12 months or at any time before the survey.

[P] HOSBED (numeric, in number of beds): Hospital Beds; Number of hospital beds per 1,000 people in a group which include inpatient beds available in public, private, general, and specialized hospitals and rehabilitation centers.

[Q] SANSER (numeric, in %): People Using At Least Basic Sanitation Services; Proportion of people in a group using at least basic sanitation services, that is, improved sanitation facilities that are not shared with other households including basic sanitation services as well as those using safely managed sanitation services.

[R] TUBTRT (numeric, in %): Tuberculosis Treatment Success Rate; Proportion of all new tuberculosis cases registered under a national tuberculosis control programme within a group in a given year that successfully completed treatment, with or without bacteriological evidence of success (“cured” and “treatment completed” respectively).

[S] URBPOP (numeric, in %): Urban Population; Proportion of people in a group living in urban areas as defined by national statistical offices.

[T] RURPOP (numeric, in %): Rural Population; Proportion of people in a group living in rural areas as defined by national statistical offices:

[U] NCOMOR (numeric, in %): Deaths due to Non-Communicable Diseases; Proportion of deaths for all ages by underlying causes in a group which was attributed to non-communicable diseases including cancer, diabetes mellitus, cardiovascular diseases, digestive diseases, skin diseases, musculoskeletal diseases, and congenital anomalies.

[V] SUIRAT (numeric, in number of deaths): Suicide Mortality Rate; Number of suicide deaths annually in a group per 100,000 population.

1.2 Methodology

1.2.1 Data Assessment


Preliminary data used in the study was evaluated and prepared for analysis and modelling using the following methods:

Data Quality Assessment involves profiling the data to understand its suitability for machine learning tasks. The quality of training data has a huge impact on the efficiency, accuracy and complexity of the predictive modelling methods applied. Data remains susceptible to errors or irregularities that may be introduced during collection, aggregation or annotation stage. Issues such as incorrect labels, synonymous categories in a categorical variable or heterogeneity in columns, among others, which might go undetected by standard pre-processing modules in these frameworks can lead to sub-optimal model performance, inaccurate analysis and unreliable decisions.

Data Preprocessing involves changing the raw feature vectors into a representation that is more suitable for the downstream modelling and estimation processes, including data cleaning, integration, reduction and transformation. Data cleaning aims to identify and correct errors in the dataset that may negatively impact a predictive model such as removing outliers, replacing missing values, smoothing noisy data, and correcting inconsistent data. Data integration addresses potential issues with redundant and inconsistent data obtained from multiple sources through approaches such as detection of tuple duplication and data conflict. The purpose of data reduction is to have a condensed representation of the data set that is smaller in volume, while maintaining the integrity of the original data set. Data transformation converts the data into the most appropriate form for data modeling.

Data Exploration involves analyzing and investigating data sets to summarize their main characteristics, often employing data visualization methods. It helps determine how best to manipulate data sources to discover patterns, spot anomalies, test a hypothesis, or check assumptions. This process is primarily used to see what data can reveal beyond the formal modeling or hypothesis testing task and provides a better understanding of data set variables and the relationships between them.

1.2.2 Feature Selection


Model-independent feature importance metrics were assessed for the numeric predictors in the study to determine the most optimal subset of variables for the subsequent modelling process which included the following:

Locally Weighted Scatterplot Smoothing Pseudo-R-Squared computes the R-squared statistic - a goodness-of-fit measure which represents explained variability, improvement from null to fitted model and square of the correlation on predicted values obtained from a locally weighted scatterplot smoothing process. LOWESS consists of computing a series of local linear regressions, with each local regression restricted to a window of x-values. Smoothness is achieved by using overlapping windows and by gradually down-weighting points in each regression according to their distance from the anchor point of the window (tri-cube weighting).

Pearson’s Correlation Coefficient is a parametric measure of the linear correlation for a pair of features by calculating the ratio between their covariance and the product of their standard deviations. The presence of high absolute correlation values indicate the univariate association between the numeric predictors and the numeric response.

Spearman’s Rank Correlation Coefficient is a non-parametric measure of the linear correlation for a pair of features by applying the Spearman’s rank equation to the sum of the squared differences between their ranks. The presence of high absolute correlation values indicate the univariate association between the numeric predictors and the numeric response.

Maximal Information Coefficient is an information theory-based measure of two-variable dependence through the computation of the mutual information normalized by the minimum joint entropy. It evaluates the strength of linear or non-linear association using binning as a means to apply mutual information between continuous random variables and selecting the maximum over many possible grids. The presence of high coefficient values indicate the univariate association between the numeric predictors and the numeric response.

Relief Values are heuristic measures which estimate the quality of variables according to how well their values compare to instances that are near to each other, but are efficient in detecting contextual information even with strong dependencies between attributes. Random instances and the corresponding K-nearest instances are selected, with the the weights for the different prediction values, different attributes and different prediction consolidated. The rank of the instance in a sequence of instances ordered by the distance is taken into account based on a a user-defined parameter controlling the influence of the distance. The contributions of each K-nearest instances are normalized by dividing the results with the sum of all K contributions. The presence of high relief values indicate the univariate association between the numeric predictors and the numeric response.

1.2.3 Model Formulation


Machine Learning Regression Models are algorithms that learn to predict a continuous numeric value (output or target) based on input features. Regression is a supervised learning task where the models are trained on a labeled dataset, and their goal is to establish a relationship between the input features and the continuous target variable. Once trained, these models can make predictions for new, unseen instances.

In addition to a standard glass-box model, this study implemented predominantly black-box regression modelling procedures with complex structures involving large numbers of model coefficients or mathematical transformations which lacked transparency in terms of the internal processes and weighted factors used in reaching a decision. Models applied in the analysis for predicting the numeric response were the following:

Linear Regression explores the linear relationship between a scalar response and one or more covariates by having the conditional mean of the dependent variable be an affine function of the independent variables. The relationship is modeled through a disturbance term which represents an unobserved random variable that adds noise. The algorithm is typically formulated from the data using the least squares method which seeks to estimate the coefficients by minimizing the squared residual function. The linear equation assigns one scale factor represented by a coefficient to each covariate and an additional coefficient called the intercept or the bias coefficient which gives the line an additional degree of freedom allowing to move up and down a two-dimensional plot.

Stochastic Gradient Boosting is an ensemble learning method which combines multiple weak learners in an additive manner to improve prediction. The process is initialized using a decision tree base learner with the aim of minimizing a specified loss function. The negative gradient of the loss function with respect to the predicted values from the current ensemble is calculated. Residuals are determined as the difference between the actual target values and the learner predictions. A new base learner is subsequently formulated but is trained to predict the residuals. The algorithm involves iteratively improving the ensemble by focusing on the residuals of the previous predictions. Each subsequent base learner is trained to reduce the errors made by the previous ensemble, gradually refining the model’s predictive capabilities.

Random Forest is an ensemble learning method made up of a large set of small decision trees called estimators, with each producing its own prediction. The random forest model aggregates the predictions of the estimators to produce a more accurate prediction. The algorithm involves bootstrap aggregating (where smaller subsets of the training data are repeatedly subsampled with replacement), random subspacing (where a subset of features are sampled and used to train each individual estimator), estimator training (where unpruned decision trees are formulated for each estimator) and inference (where a final prediction is formilated by aggregating the individual predictions of all estimators).

Neural Network comprises of node layers - containing an input layer, one or more hidden layers, and an output layer. Each node, or artificial neuron, connects to another and has an associated weight and threshold. If the output of any individual node is above the specified threshold value, that node is activated, sending data to the next layer of the network. The process involves the initialization of weights and biases for each neuron in the network. Forward propagation computates the output of the neural network, as determined by the weighted sum of the inputs and a bias term. An activation function is applied to introduce non-linearity to the hidden layer. Back propagation is used to update the weights and the biases in the network by calculating the gradients of the loss function using the chain rule with the magnitude determined by a learning rate. This step allows the network to learn from the errors and adjust the parameters to minimize the loss.

Partial Least Squares applies dimensionality reduction to address high multicollinearity among predictors in a linear regression. The algorithm calculates summary indices termed as partial least squares components which are linear combinations of the original predictors by considering the variation in both the response and the predictor variables. The method of least squares is then applied to fit a linear regression model using the first principal components as predictors, with the optimal number determined using cross-validation.

Cubist Regression is a rule-based model that is an extension of Quinlan’s M5 model tree. A tree is grown where the terminal leaves contain linear regression models. These models are based on the predictors used in previous splits. Also, there are intermediate linear models at each step of the tree. A prediction is made using the linear regression model at the terminal node of the tree, but is smoothed by taking into account the prediction from the linear model in the previous node of the tree (which also occurs recursively up the tree). The tree is reduced to a set of rules, which initially are paths from the top of the tree to the bottom. Rules are eliminated via pruning and/or combined for simplification. The Cubist model can also use a boosting-like scheme called committees where iterative model trees are created in sequence. Another innovation is about using nearest-neighbors to adjust the predictions from the rule-based model.

1.2.4 Model Hyperparameter Tuning


The optimal combination of hyperparameter values which maximized the performance of the various regression models in the study used the following hyperparameter tuning strategy:

K-Fold Cross-Validation involves dividing the training set after a random shuffle into a user-defined K number of smaller non-overlapping sets called folds. Each unique fold is assigned as the hold-out test data to assess the model trained from the data set collected from all the remaining K-1 folds. The evaluation score is retained but the model is discarded. The process is recursively performed resulting to a total of K fitted models and evaluated on the K hold-out test sets. All K-computed performance measures reported from the process are then averaged to represent the estimated performance of the model. This approach can be computationally expensive and may be highly dependent on how the data was randomly assigned to their respective folds, but does not waste too much data which is a major advantage in problems where the number of samples is very small.

1.2.5 Model Performance Evaluation


Evaluation metrics applied in the analysis to estimate the generalization performance of the regression models on internally sub-sampled or independent datasets were the following:

Root Mean Square Error computes the square root of the average squared difference between the predicted and target values which ranges from zero to infinity. A value of zero indicates perfect prediction of the target values. The metric is weighted according to the square of the error - putting greater influence on large errors than smaller errors which makes it sensitive to outliers but may also encourage conservative prediction.

R-Squared computes the normalized version of the root mean squared error and also referred to as the coefficient of determination. With a value ranging from zero to infinity, a value of one indicates perfect prediction of the target values. The metric can also be interpreted as the fraction of the total variance in the response variable which can be explained by the model.

1.2.6 Model Presentation


Due to the black-box nature of most regression models considered in the study, model presentation was conducted post-hoc and focused on model-agnostic techniques which did not consider any assumptions about the model structures. These methods were grouped into two categories.

Dataset Level Exploration Techniques used model level global explanations which included the following:

Variable Importance pertains to model-agnostic methods which allow the comparison of an explanatory variable’s importance between models with different structures. The process involves measuring how much a model’s performance change if the effect of a selected explanatory variable, or of a group of variables, is removed. To remove the effect, perturbations are applied including resampling from an empirical distribution or permutation of the values of the variable. If a variable is important, the model’s performance is expected to worsen after permuting the values of the variable. A larger change in performance indicates the greater importance of the variable.

Partial Dependence Plots show how the expected values of model prediction behave as a function of a selected explanatory variable using the average of a set of individual ceteris paribus profiles. While a ceteris paribus profile shows the dependence of an instance-level prediction on an explanatory variable, a partial dependence profile is estimated by the mean of the ceteris paribus profiles for all instances in a data set.

Instance Level Exploration Techniques used prediction level local explanations with descriptions given below:

Breakdown Plots present variable attributions by decomposing the model’s prediction into contributions that can be attributed to the different explanatory variables. Given a prediction which is an approximation of the expected value of the dependent variable driven by the values of explanatory variables, the process involves capturing the contribution of an explanatory variable to the model’s prediction by computing the shift in the expected value of the response, while fixing the values of other variables.

Shapley Additive Explanations are based on Shapley values developed in the cooperative game theory. The process involves explaining a prediction by assuming that each explanatory variable for an instance is a player in a game where the prediction is the payout. The game is the prediction task for a single instance of the data set. The gain is the actual prediction for this instance minus the average prediction for all instances. The players are the explanatory variable values of the instance that collaborate to receive the gain (predict a certain value). The determined value is the average marginal contribution of an explanatory variable across all possible coalitions.

Ceteris Paribus Profiles examine the influence of an explanatory variable by assuming that the values of all other variables do not change. The main objective is to understand how changes in the values of the variable affect the model’s predictions. The process involves evaluating the dependence of the conditional expectation of the response on the values of the particular explanatory variable.

Local Fidelity Plots evaluate the local predictive performance of the model around the observation of interest. The process involves summarizing two distributions of residuals including the residuals for the neighbors of the observation of interest and residuals for the entire training dataset except for neighbors. The results help evaluate whether the model-fit for the instance of interest is unbiased (based on small residuals with distributions symmetric around 0).

Local Stability Plots assess the local stability of predictions around the observation of interest. The process involves checking whether small changes in the explanatory variables, as represented by the changes within the set of neighbors, induce much influence on the predictions. The results help evaluate whether the model is locally additive (based on parallel ceteris paribus profiles) and locally stable (based on adjacent ceteris paribus profiles).

1.3 Results

1.3.1 Data Preparation


[A] The initial tabular dataset was comprised of 394 observations and 23 variables (including 2 metadata, 1 response and 20 predictors).
     [A.1] 394 rows (observations)
     [A.2] 23 columns (variables)
            [A.2.1] 1/23 instance labels = COUNTRY (character)
            [A.2.2] 1/23 supplementary information = YEAR (numeric)
            [A.2.3] 1/23 response = LIFEXP (numeric)
            [A.2.4] 20/23 predictors = 18/20 numeric + 2/20 factor
                     [A.2.4.1] GENDER (factor)
                     [A.2.4.2] CONTIN (factor)
                     [A.2.4.3] UNEMPR (numeric)
                     [A.2.4.4] INFMOR (numeric)
                     [A.2.4.5] GDP (numeric)
                     [A.2.4.6] GNI (numeric)
                     [A.2.4.7] CLTECH (numeric)
                     [A.2.4.8] PERCAP (numeric)
                     [A.2.4.9] RTIMOR (numeric)
                     [A.2.4.10] TUBINC (numeric)
                     [A.2.4.11] DPTIMM (numeric)
                     [A.2.4.12] HEPIMM (numeric)
                     [A.2.4.13] MEAIMM (numeric)
                     [A.2.4.14] HOSBED (numeric)
                     [A.2.4.15] SANSER (numeric)
                     [A.2.4.16] TUBTRT (numeric)
                     [A.2.4.17] URBPOP (numeric)
                     [A.2.4.18] RURPOP (numeric)
                     [A.2.4.19] NCOMOR (numeric)
                     [A.2.4.20] SUIRAT (numeric)

[B] Preliminary transformation was applied to the GDP, GNI and PERCAP predictors which were noted with high range of values.
     [B.1] GDP (numeric)
     [B.2] GNI (numeric)
     [B.3] PERCAP (numeric)

Code Chunk | Output
##################################
# Loading R libraries
##################################
library(DALEX)
library(caret)
library(randomForest)
library(e1071)
library(gbm)
library(skimr)
library(corrplot)
library(lares)
library(dplyr)
library(minerva)
library(CORElearn)
library(patchwork)
library(lime)
library(DALEXtra)

##################################
# Defining file paths
##################################
DATASETS_ORIGINAL_PATH <- file.path("datasets","original")

##################################
# Loading source and
# formulating the analysis set
##################################
LED <- read.csv(file.path("..", DATASETS_ORIGINAL_PATH, "Life_Expectancy_Data.csv"),
                na.strings=c("NA","NaN"," ",""),
                stringsAsFactors = FALSE)
LED <- as.data.frame(LED)

##################################
# Performing a general exploration of the data set
##################################
dim(LED)
## [1] 394  23
str(LED)
## 'data.frame':    394 obs. of  23 variables:
##  $ COUNTRY: chr  "Afghanistan" "Albania" "Algeria" "Angola" ...
##  $ YEAR   : int  2019 2019 2019 2019 2019 2019 2019 2019 2019 2019 ...
##  $ GENDER : chr  "Female" "Female" "Female" "Female" ...
##  $ CONTIN : chr  "Asia" "Europe" "Africa" "Africa" ...
##  $ LIFEXP : num  66.4 80.2 78.1 64 78.1 ...
##  $ UNEMPR : num  14.06 11.32 18.63 7.84 8.26 ...
##  $ INFMOR : num  42.9 7.7 18.6 44.5 5.1 ...
##  $ GDP    : num  1.88e+10 1.54e+10 1.72e+11 8.94e+10 1.69e+09 ...
##  $ GNI    : num  1.91e+10 1.52e+10 1.68e+11 8.19e+10 1.58e+09 ...
##  $ CLTECH : num  36 80.7 99.3 49.6 100 ...
##  $ PERCAP : num  494 5396 3990 2810 17377 ...
##  $ RTIMOR : num  15.9 11.7 20.9 26.1 0 ...
##  $ TUBINC : num  189 16 61 351 0 29 26 2.2 6.9 6 ...
##  $ DPTIMM : num  66 99 91 57 95 ...
##  $ HEPIMM : num  66 99 91 53 99 ...
##  $ MEAIMM : num  64 95 80 51 93 ...
##  $ HOSBED : num  0.432 3.052 1.8 0.8 2.581 ...
##  $ SANSER : num  49 99.2 86.1 51.4 85.5 ...
##  $ TUBTRT : num  91 88 86 69 72.3 ...
##  $ URBPOP : num  25.8 61.2 73.2 66.2 24.5 ...
##  $ RURPOP : num  74.2 38.8 26.8 33.8 75.5 ...
##  $ NCOMOR : num  36.2 6 12.8 19.4 17.6 ...
##  $ SUIRAT : num  3.6 2.7 1.8 2.3 0.8 ...
summary(LED)
##    COUNTRY               YEAR         GENDER             CONTIN         
##  Length:394         Min.   :2019   Length:394         Length:394        
##  Class :character   1st Qu.:2019   Class :character   Class :character  
##  Mode  :character   Median :2019   Mode  :character   Mode  :character  
##                     Mean   :2019                                        
##                     3rd Qu.:2019                                        
##                     Max.   :2019                                        
##      LIFEXP          UNEMPR           INFMOR           GDP           
##  Min.   :51.20   Min.   : 0.071   Min.   : 1.40   Min.   :1.880e+08  
##  1st Qu.:67.61   1st Qu.: 3.560   1st Qu.: 6.00   1st Qu.:1.130e+10  
##  Median :74.33   Median : 5.663   Median :15.20   Median :3.865e+10  
##  Mean   :73.07   Mean   : 7.769   Mean   :21.55   Mean   :4.614e+11  
##  3rd Qu.:79.30   3rd Qu.: 9.842   3rd Qu.:30.66   3rd Qu.:2.450e+11  
##  Max.   :88.10   Max.   :41.153   Max.   :88.80   Max.   :2.140e+13  
##       GNI                CLTECH           PERCAP             RTIMOR    
##  Min.   :3.754e+08   Min.   :  0.00   Min.   :   228.2   Min.   : 0.0  
##  1st Qu.:1.111e+10   1st Qu.: 33.50   1st Qu.:  2229.9   1st Qu.: 8.2  
##  Median :4.005e+10   Median : 79.50   Median :  6609.5   Median :16.0  
##  Mean   :4.814e+11   Mean   : 65.66   Mean   : 16682.2   Mean   :17.0  
##  3rd Qu.:2.450e+11   3rd Qu.:100.00   3rd Qu.: 19303.5   3rd Qu.:23.9  
##  Max.   :2.170e+13   Max.   :100.00   Max.   :175813.9   Max.   :64.6  
##      TUBINC          DPTIMM          HEPIMM          MEAIMM     
##  Min.   :  0.0   Min.   :35.00   Min.   :35.00   Min.   :37.00  
##  1st Qu.: 12.0   1st Qu.:85.69   1st Qu.:81.31   1st Qu.:84.85  
##  Median : 46.0   Median :92.00   Median :91.00   Median :92.00  
##  Mean   :103.5   Mean   :87.87   Mean   :86.64   Mean   :87.21  
##  3rd Qu.:140.0   3rd Qu.:97.00   3rd Qu.:96.00   3rd Qu.:96.00  
##  Max.   :654.0   Max.   :99.00   Max.   :99.00   Max.   :99.00  
##      HOSBED           SANSER            TUBTRT           URBPOP      
##  Min.   : 0.200   Min.   :  8.632   Min.   :  0.00   Min.   : 13.25  
##  1st Qu.: 1.300   1st Qu.: 63.898   1st Qu.: 73.00   1st Qu.: 41.61  
##  Median : 2.570   Median : 91.144   Median : 82.00   Median : 58.76  
##  Mean   : 2.987   Mean   : 77.495   Mean   : 77.68   Mean   : 59.09  
##  3rd Qu.: 3.746   3rd Qu.: 98.516   3rd Qu.: 88.00   3rd Qu.: 77.94  
##  Max.   :13.710   Max.   :100.000   Max.   :100.00   Max.   :100.00  
##      RURPOP          NCOMOR          SUIRAT       
##  Min.   : 0.00   Min.   : 4.40   Min.   :  0.000  
##  1st Qu.:22.06   1st Qu.:13.60   1st Qu.:  3.300  
##  Median :41.24   Median :19.95   Median :  6.850  
##  Mean   :40.91   Mean   :20.02   Mean   :  9.572  
##  3rd Qu.:58.39   3rd Qu.:24.07   3rd Qu.: 11.175  
##  Max.   :86.75   Max.   :58.40   Max.   :116.000
##################################
# Transforming to appropriate data types
##################################
LED$YEAR <- factor(LED$YEAR,
                      levels = c("2019"))
LED$GENDER <- factor(LED$GENDER,
                      levels = c("Male","Female"))
LED$CONTIN <- as.factor(LED$CONTIN)

##################################
# Reducing the range of values
# for certain numeric predictors
##################################
LED$GDP     <- LED$GDP/1000000000
LED$GNI     <- LED$GNI/1000000000
LED$PERCAP  <- LED$PERCAP/1000

##################################
# Formulating a data type assessment summary
##################################
PDA <- LED
(PDA.Summary <- data.frame(
  Column.Index=c(1:length(names(PDA))),
  Column.Name= names(PDA), 
  Column.Type=sapply(PDA, function(x) class(x)), 
  row.names=NULL)
)
##    Column.Index Column.Name Column.Type
## 1             1     COUNTRY   character
## 2             2        YEAR      factor
## 3             3      GENDER      factor
## 4             4      CONTIN      factor
## 5             5      LIFEXP     numeric
## 6             6      UNEMPR     numeric
## 7             7      INFMOR     numeric
## 8             8         GDP     numeric
## 9             9         GNI     numeric
## 10           10      CLTECH     numeric
## 11           11      PERCAP     numeric
## 12           12      RTIMOR     numeric
## 13           13      TUBINC     numeric
## 14           14      DPTIMM     numeric
## 15           15      HEPIMM     numeric
## 16           16      MEAIMM     numeric
## 17           17      HOSBED     numeric
## 18           18      SANSER     numeric
## 19           19      TUBTRT     numeric
## 20           20      URBPOP     numeric
## 21           21      RURPOP     numeric
## 22           22      NCOMOR     numeric
## 23           23      SUIRAT     numeric

1.3.2 Data Quality Assessment


[A] No missing observations noted for any variable.

[B] Low variance observed for 3 numeric predictors with First.Second.Mode.Ratio>5.
     [B.1] SANSER = 12.00
     [B.2] UNEMPR = 11.00
     [B.3] NCOMOR = 6.00

[C] No low variance observed for any predictor with Unique.Count.Ratio<0.01.

[D] High skewness observed for 3 numeric predictors with Skewness>3 or Skewness<(-3).
     [D.1] GDP = 8.62
     [D.2] GNI = 8.55
     [D.3] SUIRAT = 4.08

Code Chunk | Output
##################################
# Loading dataset
##################################
DQA <- LED

##################################
# Formulating an overall data quality assessment summary
##################################
(DQA.Summary <- data.frame(
  Column.Index=c(1:length(names(DQA))),
  Column.Name= names(DQA),
  Column.Type=sapply(DQA, function(x) class(x)),
  Row.Count=sapply(DQA, function(x) nrow(DQA)),
  NA.Count=sapply(DQA,function(x)sum(is.na(x))),
  Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
  row.names=NULL)
)
##    Column.Index Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 1             1     COUNTRY   character       394        0     1.000
## 2             2        YEAR      factor       394        0     1.000
## 3             3      GENDER      factor       394        0     1.000
## 4             4      CONTIN      factor       394        0     1.000
## 5             5      LIFEXP     numeric       394        0     1.000
## 6             6      UNEMPR     numeric       394        0     1.000
## 7             7      INFMOR     numeric       394        0     1.000
## 8             8         GDP     numeric       394        0     1.000
## 9             9         GNI     numeric       394        0     1.000
## 10           10      CLTECH     numeric       394        0     1.000
## 11           11      PERCAP     numeric       394        0     1.000
## 12           12      RTIMOR     numeric       394        0     1.000
## 13           13      TUBINC     numeric       394        0     1.000
## 14           14      DPTIMM     numeric       394        0     1.000
## 15           15      HEPIMM     numeric       394        0     1.000
## 16           16      MEAIMM     numeric       394        0     1.000
## 17           17      HOSBED     numeric       394        0     1.000
## 18           18      SANSER     numeric       394        0     1.000
## 19           19      TUBTRT     numeric       394        0     1.000
## 20           20      URBPOP     numeric       394        0     1.000
## 21           21      RURPOP     numeric       394        0     1.000
## 22           22      NCOMOR     numeric       394        0     1.000
## 23           23      SUIRAT     numeric       394        0     1.000
##################################
# Listing all Predictors
##################################
DQA.Predictors <- DQA[,!names(DQA) %in% c("COUNTRY","YEAR","LIFEXP")]

##################################
# Listing all numeric Predictors
##################################
DQA.Predictors.Numeric <- DQA.Predictors[,sapply(DQA.Predictors, is.numeric), drop = FALSE]

if (length(names(DQA.Predictors.Numeric))>0) {
    print(paste0("There is (are) ",
               (length(names(DQA.Predictors.Numeric))),
               " numeric descriptor variable(s)."))
} else {
  print("There are no numeric descriptor variables.")
}
## [1] "There is (are) 18 numeric descriptor variable(s)."
##################################
# Listing all factor Predictors
##################################
DQA.Predictors.Factor <- DQA.Predictors[,sapply(DQA.Predictors, is.factor), drop = FALSE]

if (length(names(DQA.Predictors.Factor))>0) {
    print(paste0("There is (are) ",
               (length(names(DQA.Predictors.Factor))),
               " factor descriptor variable(s)."))
} else {
  print("There are no factor descriptor variables.")
}
## [1] "There is (are) 2 factor descriptor variable(s)."
##################################
# Formulating a data quality assessment summary for factor Predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {

  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = x[!(x %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return("x"),
           return(usm[tabsm == max(tabsm)]))
  }

  (DQA.Predictors.Factor.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Factor),
  Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)),
  Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
  First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
  Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
  First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  row.names=NULL)
  )

}
##   Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1      GENDER      factor            2           Female                 x
## 2      CONTIN      factor            6           Africa              Asia
##   First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 1              197                 0              0.005                     Inf
## 2              106               100              0.015                   1.060
##################################
# Formulating a data quality assessment summary for numeric Predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {

  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = na.omit(x)[!(na.omit(x) %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return(0.00001),
           return(usm[tabsm == max(tabsm)]))
  }

  (DQA.Predictors.Numeric.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Numeric),
  Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)),
  Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
  Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
  First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
  Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
  First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
  Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
  Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
  Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
  Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
  Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
  Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
  Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
  row.names=NULL)
  )

}
##    Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 1       UNEMPR     numeric          370              0.939            8.256
## 2       INFMOR     numeric          245              0.622           30.235
## 3          GDP     numeric          254              0.645          303.000
## 4          GNI     numeric          253              0.642         2040.000
## 5       CLTECH     numeric          112              0.284          100.000
## 6       PERCAP     numeric          196              0.497           12.669
## 7       RTIMOR     numeric          141              0.358           18.229
## 8       TUBINC     numeric          146              0.371          136.043
## 9       DPTIMM     numeric           45              0.114           99.000
## 10      HEPIMM     numeric           45              0.114           81.308
## 11      MEAIMM     numeric           48              0.122           99.000
## 12      HOSBED     numeric          173              0.439            2.986
## 13      SANSER     numeric          186              0.472          100.000
## 14      TUBTRT     numeric           59              0.150           84.000
## 15      URBPOP     numeric          191              0.485          100.000
## 16      RURPOP     numeric          191              0.485            0.000
## 17      NCOMOR     numeric          214              0.543           22.100
## 18      SUIRAT     numeric          176              0.447           10.619
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 1              3.924               22                 2                  11.000
## 2              2.100               28                 7                   4.000
## 3            279.000                4                 3                   1.333
## 4            316.000                8                 4                   2.000
## 5             60.593              108                34                   3.176
## 6              0.494                4                 2                   2.000
## 7             26.800               28                 6                   4.667
## 8             35.000               12                10                   1.200
## 9             85.685               44                30                   1.467
## 10            99.000               40                38                   1.053
## 11            84.855               48                30                   1.600
## 12             0.400               34                 8                   4.250
## 13            49.006               24                 2                  12.000
## 14            83.000               22                20                   1.100
## 15            55.985               10                 4                   2.500
## 16            44.015               10                 4                   2.500
## 17             6.800               30                 5                   6.000
## 18             7.600               30                 8                   3.750
##    Minimum    Mean Median   Maximum Skewness Kurtosis Percentile25th
## 1    0.071   7.769  5.663    41.153    1.751    3.680          3.560
## 2    1.400  21.546 15.200    88.800    1.084    0.567          6.000
## 3    0.188 461.374 38.653 21400.000    8.619   82.715         11.304
## 4    0.375 481.441 40.048 21700.000    8.547   82.139         11.110
## 5    0.000  65.660 79.500   100.000   -0.623   -1.141         33.500
## 6    0.228  16.682  6.610   175.814    2.810   10.880          2.230
## 7    0.000  17.003 16.000    64.600    0.740    1.028          8.200
## 8    0.000 103.489 46.000   654.000    1.864    3.177         12.000
## 9   35.000  87.875 92.000    99.000   -1.856    3.434         85.685
## 10  35.000  86.640 91.000    99.000   -1.595    2.477         81.308
## 11  37.000  87.207 92.000    99.000   -1.688    2.574         84.855
## 12   0.200   2.987  2.570    13.710    1.697    3.859          1.300
## 13   8.632  77.495 91.144   100.000   -1.122   -0.155         63.898
## 14   0.000  77.675 82.000   100.000   -2.194    5.571         73.000
## 15  13.250  59.094 58.760   100.000   -0.132   -0.991         41.612
## 16   0.000  40.906 41.240    86.750    0.132   -0.991         22.058
## 17   4.400  20.021 19.950    58.400    0.864    1.551         13.600
## 18   0.000   9.572  6.850   116.000    4.082   29.352          3.300
##    Percentile75th
## 1           9.842
## 2          30.659
## 3         245.000
## 4         245.000
## 5         100.000
## 6          19.304
## 7          23.900
## 8         140.000
## 9          97.000
## 10         96.000
## 11         96.000
## 12          3.746
## 13         98.516
## 14         88.000
## 15         77.942
## 16         58.388
## 17         24.075
## 18         11.175
##################################
# Identifying potential data quality issues
##################################

##################################
# Checking for missing observations
##################################
if ((nrow(DQA.Summary[DQA.Summary$NA.Count>0,]))>0){
  print(paste0("Missing observations noted for ",
               (nrow(DQA.Summary[DQA.Summary$NA.Count>0,])),
               " variable(s) with NA.Count>0 and Fill.Rate<1.0."))
  DQA.Summary[DQA.Summary$NA.Count>0,]
} else {
  print("No missing observations noted.")
}
## [1] "No missing observations noted."
##################################
# Checking for zero or near-zero variance Predictors
##################################
if (length(names(DQA.Predictors.Factor))==0) {
  print("No factor Predictors noted.")
} else if (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])),
               " factor variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance factor Predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 1 factor variable(s) with First.Second.Mode.Ratio>5."
##   Column.Name Column.Type Unique.Count First.Mode.Value Second.Mode.Value
## 1      GENDER      factor            2           Female                 x
##   First.Mode.Count Second.Mode.Count Unique.Count.Ratio First.Second.Mode.Ratio
## 1              197                 0              0.005                     Inf
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric Predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])),
               " numeric variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance numeric Predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 3 numeric variable(s) with First.Second.Mode.Ratio>5."
##    Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 1       UNEMPR     numeric          370              0.939            8.256
## 13      SANSER     numeric          186              0.472          100.000
## 17      NCOMOR     numeric          214              0.543           22.100
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 1              3.924               22                 2                  11.000
## 13            49.006               24                 2                  12.000
## 17             6.800               30                 5                   6.000
##    Minimum   Mean Median Maximum Skewness Kurtosis Percentile25th
## 1    0.071  7.769  5.663  41.153    1.751    3.680          3.560
## 13   8.632 77.495 91.144 100.000   -1.122   -0.155         63.898
## 17   4.400 20.021 19.950  58.400    0.864    1.551         13.600
##    Percentile75th
## 1           9.842
## 13         98.516
## 17         24.075
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric Predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])),
               " numeric variable(s) with Unique.Count.Ratio<0.01."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,]
} else {
  print("No low variance numeric Predictors due to low unique count ratio noted.")
}
## [1] "No low variance numeric Predictors due to low unique count ratio noted."
##################################
# Checking for skewed Predictors
##################################
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric Predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])>0){
  print(paste0("High skewness observed for ",
  (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])),
  " numeric variable(s) with Skewness>3 or Skewness<(-3)."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                 as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),]
} else {
  print("No skewed numeric Predictors noted.")
}
## [1] "High skewness observed for 3 numeric variable(s) with Skewness>3 or Skewness<(-3)."
##    Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 3          GDP     numeric          254              0.645          303.000
## 4          GNI     numeric          253              0.642         2040.000
## 18      SUIRAT     numeric          176              0.447           10.619
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 3            279.000                4                 3                   1.333
## 4            316.000                8                 4                   2.000
## 18             7.600               30                 8                   3.750
##    Minimum    Mean Median   Maximum Skewness Kurtosis Percentile25th
## 3    0.188 461.374 38.653 21400.000    8.619   82.715         11.304
## 4    0.375 481.441 40.048 21700.000    8.547   82.139         11.110
## 18   0.000   9.572  6.850   116.000    4.082   29.352          3.300
##    Percentile75th
## 3         245.000
## 4         245.000
## 18         11.175

1.3.3 Data Preprocessing


1.3.3.1 Outlier Detection


[A] Outliers noted for 15 out of the 18 numeric predictors. Predictor values were visualized through a boxplot including observations classified as suspected outliers using the IQR criterion. The IQR criterion means that all observations above the (75th percentile + 1.5 x IQR) or below the (25th percentile - 1.5 x IQR) are suspected outliers, where IQR is the difference between the third quartile (75th percentile) and first quartile (25th percentile).
     [A.1] UNEMPR = 30
     [A.2] INFMOR = 10
     [A.3] GDP = 46
     [A.4] GNI = 48
     [A.5] PERCAP = 46
     [A.6] RTIMOR = 2
     [A.7] TUBINC = 32
     [A.8] DPTIMM = 34
     [A.9] HEPIMM = 26
     [A.10] MEAIMM = 40
     [A.11] HOSBED = 16
     [A.12] SANSER = 8
     [A.13] TUBTRT = 34
     [A.14] NCOMOR = 11
     [A.15] SUIRAT = 29

[B] Distributional anomalies observed for 9 predictors showing a high number of observations reporting the exact same set of values.
     [B.1] INFMOR=30.20
     [B.2] CLTECH=60.60
     [B.3] RTIMOR=18.20
     [B.4] DPTIMM=85.70
     [B.5] HEPIMM=81.30
     [B.6] MEAIMM=84.90
     [B.7] HOSBED=3.00
     [B.8] NCOMOR=22.10
     [B.9] SUIRAT=10.60

[C] A total of 30 observations representing 15 countries associated with these unreliable values were removed for the subsequent analysis.
     [C.1] COUNTRY=Aruba
     [C.2] COUNTRY=Bermuda
     [C.3] COUNTRY=Channel Islands
     [C.4] COUNTRY=Faroe Islands
     [C.5] COUNTRY=French Polynesia
     [C.6] COUNTRY=Guam
     [C.7] COUNTRY=Hong Kong SAR, China
     [C.8] COUNTRY=Kosovo
     [C.9] COUNTRY=Liechtenstein
     [C.10] COUNTRY=Macao SAR, China
     [C.11] COUNTRY=New Caledonia
     [C.12] COUNTRY=Puerto Rico
     [C.13] COUNTRY=St. Martin (French part)
     [C.14] COUNTRY=Virgin Islands (U.S.)
     [C.15] COUNTRY=West Bank and Gaza

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- LED

##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA))
Data summary
Name DPA
Number of rows 394
Number of columns 23
_______________________
Column type frequency:
character 1
factor 3
numeric 19
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
COUNTRY 0 1 4 30 0 197 0

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
YEAR 0 1 FALSE 1 201: 394
GENDER 0 1 FALSE 2 Mal: 197, Fem: 197
CONTIN 0 1 FALSE 6 Afr: 106, Asi: 100, Eur: 86, Nor: 52

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
LIFEXP 0 1 73.07 7.82 51.20 67.61 74.32 79.30 88.10 ▁▃▆▇▃
UNEMPR 0 1 7.77 6.35 0.07 3.56 5.66 9.84 41.15 ▇▂▁▁▁
INFMOR 0 1 21.55 18.67 1.40 6.00 15.20 30.66 88.80 ▇▃▂▁▁
GDP 0 1 461.37 1920.36 0.19 11.30 38.65 245.00 21400.00 ▇▁▁▁▁
GNI 0 1 481.44 1942.86 0.38 11.11 40.05 245.00 21700.00 ▇▁▁▁▁
CLTECH 0 1 65.66 36.33 0.00 33.50 79.50 100.00 100.00 ▃▁▁▂▇
PERCAP 0 1 16.68 24.32 0.23 2.23 6.61 19.30 175.81 ▇▁▁▁▁
RTIMOR 0 1 17.00 10.34 0.00 8.20 16.00 23.90 64.60 ▇▇▅▁▁
TUBINC 0 1 103.49 133.68 0.00 12.00 46.00 140.00 654.00 ▇▂▁▁▁
DPTIMM 0 1 87.87 12.41 35.00 85.69 92.00 97.00 99.00 ▁▁▁▃▇
HEPIMM 0 1 86.64 12.72 35.00 81.31 91.00 96.00 99.00 ▁▁▁▃▇
MEAIMM 0 1 87.21 13.17 37.00 84.85 92.00 96.00 99.00 ▁▁▁▃▇
HOSBED 0 1 2.99 2.35 0.20 1.30 2.57 3.75 13.71 ▇▅▂▁▁
SANSER 0 1 77.49 27.63 8.63 63.90 91.14 98.52 100.00 ▁▁▁▂▇
TUBTRT 0 1 77.68 16.97 0.00 73.00 82.00 88.00 100.00 ▁▁▁▅▇
URBPOP 0 1 59.09 23.24 13.25 41.61 58.76 77.94 100.00 ▅▆▇▇▆
RURPOP 0 1 40.91 23.24 0.00 22.06 41.24 58.39 86.75 ▆▇▇▆▅
NCOMOR 0 1 20.02 8.40 4.40 13.60 19.95 24.08 58.40 ▅▇▂▁▁
SUIRAT 0 1 9.57 10.49 0.00 3.30 6.85 11.17 116.00 ▇▁▁▁▁
##################################
# Outlier Treatment
##################################

##################################
# Listing all Predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("COUNTRY","YEAR","LIFEXP")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]

##################################
# Identifying outliers for the numeric predictors
##################################
OutlierCountList <- c()

for (i in 1:ncol(DPA.Predictors.Numeric)) {
  Outliers <- boxplot.stats(DPA.Predictors.Numeric[,i])$out
  OutlierCount <- length(Outliers)
  OutlierCountList <- append(OutlierCountList,OutlierCount)
  OutlierIndices <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
  print(
  ggplot(DPA.Predictors.Numeric, aes(x=DPA.Predictors.Numeric[,i])) +
  geom_boxplot() +
  theme_bw() +
  theme(axis.text.y=element_blank(), 
        axis.ticks.y=element_blank()) +
  xlab(names(DPA.Predictors.Numeric)[i]) +
  labs(title=names(DPA.Predictors.Numeric)[i],
       subtitle=paste0(OutlierCount, " Outlier(s) Detected")))
}

##################################
# Formulating the histogram
# for the numeric predictors
##################################

for (i in 1:ncol(DPA.Predictors.Numeric)) {
  Median <- format(round(median(DPA.Predictors.Numeric[,i],na.rm = TRUE),2), nsmall=2)
  Mean <- format(round(mean(DPA.Predictors.Numeric[,i],na.rm = TRUE),2), nsmall=2)
  Skewness <- format(round(skewness(DPA.Predictors.Numeric[,i],na.rm = TRUE),2), nsmall=2)
  print(
  ggplot(DPA.Predictors.Numeric, aes(x=DPA.Predictors.Numeric[,i])) +
  geom_histogram(binwidth=1,color="black", fill="white") +
  geom_vline(aes(xintercept=mean(DPA.Predictors.Numeric[,i])),
            color="blue", size=1) +
    geom_vline(aes(xintercept=median(DPA.Predictors.Numeric[,i])),
            color="red", size=1) +
  theme_bw() +
  ylab("Count") +
  xlab(names(DPA.Predictors.Numeric)[i]) +
  labs(title=names(DPA.Predictors.Numeric)[i],
       subtitle=paste0("Median = ", Median,
                       ", Mean = ", Mean,
                       ", Skewness = ", Skewness)))
}

##################################
# Investigating distributional anomalies
# observed for several predictors 
##################################
(INFMOR_Unique <- DPA %>%
  group_by(INFMOR) %>%
  summarize(Distinct_INFMOR = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_INFMOR)) %>%
  slice(1:5))
## # A tibble: 5 × 2
##   INFMOR Distinct_INFMOR
##    <dbl>           <int>
## 1   30.2              14
## 2    2.1               7
## 3    6.4               6
## 4    1.7               4
## 5    2.5               4
(INFMOR_Unique_Country <- DPA[round(DPA$INFMOR,digits=1)==30.2,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Liechtenstein"            "Macao SAR, China"        
## [11] "New Caledonia"            "Puerto Rico"             
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [15] "Aruba"                    "Bermuda"                 
## [17] "Channel Islands"          "Faroe Islands"           
## [19] "French Polynesia"         "Guam"                    
## [21] "Hong Kong SAR, China"     "Kosovo"                  
## [23] "Liechtenstein"            "Macao SAR, China"        
## [25] "New Caledonia"            "Puerto Rico"             
## [27] "St. Martin (French part)" "Virgin Islands (U.S.)"
DPA %>%
  group_by(CLTECH) %>%
  summarize(Distinct_CLTECH = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_CLTECH)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   CLTECH Distinct_CLTECH
##    <dbl>           <int>
## 1 100                 54
## 2  60.6               17
## 3   9.30               3
## 4  99.9                3
## 5   0.2                2
(CLTECH_Unique_Country <- DPA[round(DPA$CLTECH,digits=1)==60.6,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Lebanon"                  "Libya"                   
## [11] "Liechtenstein"            "Macao SAR, China"        
## [13] "New Caledonia"            "Puerto Rico"             
## [15] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [17] "West Bank and Gaza"       "Aruba"                   
## [19] "Bermuda"                  "Channel Islands"         
## [21] "Faroe Islands"            "French Polynesia"        
## [23] "Guam"                     "Hong Kong SAR, China"    
## [25] "Kosovo"                   "Lebanon"                 
## [27] "Libya"                    "Liechtenstein"           
## [29] "Macao SAR, China"         "New Caledonia"           
## [31] "Puerto Rico"              "St. Martin (French part)"
## [33] "Virgin Islands (U.S.)"    "West Bank and Gaza"
DPA %>%
  group_by(RTIMOR) %>%
  summarize(Distinct_RTIMOR = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_RTIMOR)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   RTIMOR Distinct_RTIMOR
##    <dbl>           <int>
## 1   18.2              14
## 2    3.9               3
## 3    5.1               3
## 4    5.3               3
## 5   12.7               3
(RTIMOR_Unique_Country <- DPA[round(DPA$RTIMOR,digits=1)==18.2,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Liechtenstein"            "Macao SAR, China"        
## [11] "New Caledonia"            "Puerto Rico"             
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [15] "Aruba"                    "Bermuda"                 
## [17] "Channel Islands"          "Faroe Islands"           
## [19] "French Polynesia"         "Guam"                    
## [21] "Hong Kong SAR, China"     "Kosovo"                  
## [23] "Liechtenstein"            "Macao SAR, China"        
## [25] "New Caledonia"            "Puerto Rico"             
## [27] "St. Martin (French part)" "Virgin Islands (U.S.)"
DPA %>%
  group_by(DPTIMM) %>%
  summarize(Distinct_DPTIMM = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_DPTIMM)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   DPTIMM Distinct_DPTIMM
##    <dbl>           <int>
## 1   99                22
## 2   85.7              15
## 3   97                14
## 4   98                14
## 5   95                13
(DPTIMM_Unique_Country <- DPA[round(DPA$DPTIMM,digits=1)==85.7,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Liechtenstein"            "Macao SAR, China"        
## [11] "New Caledonia"            "Puerto Rico"             
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [15] "West Bank and Gaza"       "Aruba"                   
## [17] "Bermuda"                  "Channel Islands"         
## [19] "Faroe Islands"            "French Polynesia"        
## [21] "Guam"                     "Hong Kong SAR, China"    
## [23] "Kosovo"                   "Liechtenstein"           
## [25] "Macao SAR, China"         "New Caledonia"           
## [27] "Puerto Rico"              "St. Martin (French part)"
## [29] "Virgin Islands (U.S.)"    "West Bank and Gaza"
DPA %>%
  group_by(HEPIMM) %>%
  summarize(Distinct_HEPIMM = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_HEPIMM)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   HEPIMM Distinct_HEPIMM
##    <dbl>           <int>
## 1   81.3              20
## 2   99                19
## 3   97                17
## 4   98                11
## 5   92                10
(HEPIMM_Unique_Country <- DPA[round(DPA$HEPIMM,digits=1)==81.3,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Denmark"                 
##  [5] "Faroe Islands"            "Finland"                 
##  [7] "French Polynesia"         "Guam"                    
##  [9] "Hong Kong SAR, China"     "Hungary"                 
## [11] "Iceland"                  "Kosovo"                  
## [13] "Liechtenstein"            "Macao SAR, China"        
## [15] "New Caledonia"            "Puerto Rico"             
## [17] "Slovenia"                 "St. Martin (French part)"
## [19] "Virgin Islands (U.S.)"    "West Bank and Gaza"      
## [21] "Aruba"                    "Bermuda"                 
## [23] "Channel Islands"          "Denmark"                 
## [25] "Faroe Islands"            "Finland"                 
## [27] "French Polynesia"         "Guam"                    
## [29] "Hong Kong SAR, China"     "Hungary"                 
## [31] "Iceland"                  "Kosovo"                  
## [33] "Liechtenstein"            "Macao SAR, China"        
## [35] "New Caledonia"            "Puerto Rico"             
## [37] "Slovenia"                 "St. Martin (French part)"
## [39] "Virgin Islands (U.S.)"    "West Bank and Gaza"
DPA %>%
  group_by(MEAIMM) %>%
  summarize(Distinct_MEAIMM = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_MEAIMM)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   MEAIMM Distinct_MEAIMM
##    <dbl>           <int>
## 1   99                24
## 2   84.9              15
## 3   95                14
## 4   96                14
## 5   98                13
(MEAIMM_Unique_Country <- DPA[round(DPA$MEAIMM,digits=1)==84.9,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Liechtenstein"            "Macao SAR, China"        
## [11] "New Caledonia"            "Puerto Rico"             
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [15] "West Bank and Gaza"       "Aruba"                   
## [17] "Bermuda"                  "Channel Islands"         
## [19] "Faroe Islands"            "French Polynesia"        
## [21] "Guam"                     "Hong Kong SAR, China"    
## [23] "Kosovo"                   "Liechtenstein"           
## [25] "Macao SAR, China"         "New Caledonia"           
## [27] "Puerto Rico"              "St. Martin (French part)"
## [29] "Virgin Islands (U.S.)"    "West Bank and Gaza"
DPA %>%
  group_by(HOSBED) %>%
  summarize(Distinct_HOSBED = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_HOSBED)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   HOSBED Distinct_HOSBED
##    <dbl>           <int>
## 1   2.99              17
## 2   0.4                4
## 3   0.8                2
## 4   0.85               2
## 5   0.9                2
(HOSBED_Unique_Country <- DPA[round(DPA$HOSBED,digits=1)==3.0,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Liechtenstein"            "Macao SAR, China"        
## [11] "Namibia"                  "New Caledonia"           
## [13] "Papua New Guinea"         "Puerto Rico"             
## [15] "South Sudan"              "St. Martin (French part)"
## [17] "Virgin Islands (U.S.)"    "West Bank and Gaza"      
## [19] "Aruba"                    "Bermuda"                 
## [21] "Channel Islands"          "Faroe Islands"           
## [23] "French Polynesia"         "Guam"                    
## [25] "Hong Kong SAR, China"     "Kosovo"                  
## [27] "Liechtenstein"            "Macao SAR, China"        
## [29] "Namibia"                  "New Caledonia"           
## [31] "Papua New Guinea"         "Puerto Rico"             
## [33] "South Sudan"              "St. Martin (French part)"
## [35] "Virgin Islands (U.S.)"    "West Bank and Gaza"
DPA %>%
  group_by(NCOMOR) %>%
  summarize(Distinct_NCOMOR = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_NCOMOR)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   NCOMOR Distinct_NCOMOR
##    <dbl>           <int>
## 1   22.1              15
## 2    6.8               5
## 3   13.6               5
## 4   15.2               5
## 5   17.5               5
(NCOMOR_Unique_Country <- DPA[round(DPA$NCOMOR,digits=1)==22.1,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Burkina Faso"             "Channel Islands"         
##  [5] "Faroe Islands"            "French Polynesia"        
##  [7] "Guam"                     "Hong Kong SAR, China"    
##  [9] "Kosovo"                   "Liechtenstein"           
## [11] "Macao SAR, China"         "New Caledonia"           
## [13] "Puerto Rico"              "St. Martin (French part)"
## [15] "Virgin Islands (U.S.)"    "West Bank and Gaza"      
## [17] "Aruba"                    "Bermuda"                 
## [19] "Channel Islands"          "Dominican Republic"      
## [21] "Equatorial Guinea"        "Estonia"                 
## [23] "Faroe Islands"            "French Polynesia"        
## [25] "Guam"                     "Hong Kong SAR, China"    
## [27] "Kosovo"                   "Liechtenstein"           
## [29] "Macao SAR, China"         "New Caledonia"           
## [31] "Puerto Rico"              "Sierra Leone"            
## [33] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [35] "West Bank and Gaza"
DPA %>%
  group_by(SUIRAT) %>%
  summarize(Distinct_SUIRAT = n_distinct(COUNTRY)) %>%
  arrange(desc(Distinct_SUIRAT)) %>%
  slice(1:5)
## # A tibble: 5 × 2
##   SUIRAT Distinct_SUIRAT
##    <dbl>           <int>
## 1   10.6              15
## 2    7.6               8
## 3    1.7               7
## 4    2                 7
## 5    2.8               7
(SUIRAT_Unique_Country <- DPA[round(DPA$SUIRAT,digits=1)==10.6,c("COUNTRY")])
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Liechtenstein"            "Macao SAR, China"        
## [11] "New Caledonia"            "Puerto Rico"             
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [15] "West Bank and Gaza"       "Aruba"                   
## [17] "Bermuda"                  "Channel Islands"         
## [19] "Congo, Dem. Rep."         "Faroe Islands"           
## [21] "French Polynesia"         "Guam"                    
## [23] "Hong Kong SAR, China"     "Kosovo"                  
## [25] "Liechtenstein"            "Macao SAR, China"        
## [27] "New Caledonia"            "Puerto Rico"             
## [29] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [31] "West Bank and Gaza"
(AnomalousVariables_Unique_Country <- MEAIMM_Unique_Country)
##  [1] "Aruba"                    "Bermuda"                 
##  [3] "Channel Islands"          "Faroe Islands"           
##  [5] "French Polynesia"         "Guam"                    
##  [7] "Hong Kong SAR, China"     "Kosovo"                  
##  [9] "Liechtenstein"            "Macao SAR, China"        
## [11] "New Caledonia"            "Puerto Rico"             
## [13] "St. Martin (French part)" "Virgin Islands (U.S.)"   
## [15] "West Bank and Gaza"       "Aruba"                   
## [17] "Bermuda"                  "Channel Islands"         
## [19] "Faroe Islands"            "French Polynesia"        
## [21] "Guam"                     "Hong Kong SAR, China"    
## [23] "Kosovo"                   "Liechtenstein"           
## [25] "Macao SAR, China"         "New Caledonia"           
## [27] "Puerto Rico"              "St. Martin (French part)"
## [29] "Virgin Islands (U.S.)"    "West Bank and Gaza"
##################################
# Removing rows with anomalous values
##################################
dim(DPA)
## [1] 394  23
DPA <- DPA[!(DPA$COUNTRY %in% AnomalousVariables_Unique_Country),]
dim(DPA)
## [1] 364  23
##################################
# Listing all Predictors
# for the updated data
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("COUNTRY","YEAR","LIFEXP")]

##################################
# Listing all numeric predictors
# for the updated data
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]

1.3.3.2 Zero and Near-Zero Variance


[A] No low variance observed for any predictor using a preprocessing summary from the caret package. The nearZeroVar method using both the freqCut and uniqueCut criteria set at 95/5 and 10, respectively, were applied on the dataset.

Code Chunk | Output
##################################
# Zero and Near-Zero Variance
##################################

##################################
# Identifying columns with low variance
###################################
DPA_LowVariance <- nearZeroVar(DPA,
                               freqCut = 80/20,
                               uniqueCut = 10,
                               saveMetrics= TRUE)
(DPA_LowVariance[DPA_LowVariance$nzv,])
##      freqRatio percentUnique zeroVar  nzv
## YEAR         0     0.2747253    TRUE TRUE
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
  
  print("No low variance predictors noted.")
  
} else {

  print(paste0("Low variance observed for ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
  
  DPA_LowVarianceForRemoval <- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
  
  print(paste0("Low variance can be resolved by removing ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LowVarianceForRemoval) {
  DPA_LowVarianceRemovedVariable <- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LowVarianceRemovedVariable))
  }
  
  DPA %>%
  skim() %>%
  dplyr::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))

}
## [1] "Low variance observed for 1 numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."
## [1] "Low variance can be resolved by removing 1 numeric variable(s)."
## [1] "Variable 1 for removal: YEAR"
Data summary
Name Piped data
Number of rows 364
Number of columns 23
_______________________
Column type frequency:
factor 1
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
YEAR 0 1 FALSE 1 201: 364

1.3.3.3 Collinearity


[A] High correlation values were noted for 7 pairs of numeric predictors with Pearson correlation coefficients >80% as confirmed using the preprocessing summaries from the caret package.
     [A.1] URBPOP and RURPOP = -100.00%
     [A.2] GDP and GNI = +99.99%
     [A.3] DPTIMM and HEPIMM = +95.03%
     [A.4] DPTIMM and MEAIMM = +88.17%
     [A.5] HEPIMM and MEAIMM = +86.42%
     [A.6] CLTECH and SANSER = +86.21%
     [A.7] INFMOR and SANSER = -82.41%

Code Chunk | Output
##################################
# Collinearity
##################################

##################################
# Visualizing pairwise correlation between predictors
##################################
(DPA_Correlation <- cor(DPA.Predictors.Numeric,
                        method = "pearson",
                        use="pairwise.complete.obs"))
##             UNEMPR      INFMOR         GDP         GNI      CLTECH      PERCAP
## UNEMPR  1.00000000  0.08921802 -0.09715921 -0.09686799  0.06069602 -0.18518395
## INFMOR  0.08921802  1.00000000 -0.16691246 -0.16605106 -0.77581569 -0.51823250
## GDP    -0.09715921 -0.16691246  1.00000000  0.99990577  0.13752124  0.26220470
## GNI    -0.09686799 -0.16605106  0.99990577  1.00000000  0.13685071  0.26229594
## CLTECH  0.06069602 -0.77581569  0.13752124  0.13685071  1.00000000  0.52998364
## PERCAP -0.18518395 -0.51823250  0.26220470  0.26229594  0.52998364  1.00000000
## RTIMOR  0.13453252  0.65132565 -0.11475473 -0.11451028 -0.59183716 -0.56088001
## TUBINC  0.16124757  0.58376872 -0.09323916 -0.09283727 -0.55243739 -0.38062151
## DPTIMM -0.12876443 -0.58547646  0.10789977  0.10739430  0.45449772  0.31093085
## HEPIMM -0.09314054 -0.51310504  0.08470102  0.08441932  0.38820759  0.19114586
## MEAIMM -0.15097736 -0.58103197  0.10108399  0.10027512  0.50455989  0.31282969
## HOSBED -0.09030568 -0.52521834  0.13340127  0.13526591  0.43901930  0.32835573
## SANSER  0.01743227 -0.82413990  0.15602727  0.15526943  0.86208147  0.48509427
## TUBTRT -0.05294186  0.30145355 -0.02991535 -0.02993892 -0.32585084 -0.38908786
## URBPOP  0.08774280 -0.53383928  0.16951798  0.16915063  0.64092796  0.57384548
## RURPOP -0.08774280  0.53383928 -0.16951798 -0.16915063 -0.64092796 -0.57384548
## NCOMOR  0.08876876  0.47793168 -0.15463824 -0.15418319 -0.47327879 -0.51434429
## SUIRAT  0.04227853  0.01383619  0.05563045  0.05591448  0.05255453  0.08998525
##             RTIMOR      TUBINC     DPTIMM      HEPIMM      MEAIMM      HOSBED
## UNEMPR  0.13453252  0.16124757 -0.1287644 -0.09314054 -0.15097736 -0.09030568
## INFMOR  0.65132565  0.58376872 -0.5854765 -0.51310504 -0.58103197 -0.52521834
## GDP    -0.11475473 -0.09323916  0.1078998  0.08470102  0.10108399  0.13340127
## GNI    -0.11451028 -0.09283727  0.1073943  0.08441932  0.10027512  0.13526591
## CLTECH -0.59183716 -0.55243739  0.4544977  0.38820759  0.50455989  0.43901930
## PERCAP -0.56088001 -0.38062151  0.3109309  0.19114586  0.31282969  0.32835573
## RTIMOR  1.00000000  0.41804642 -0.3375163 -0.26020225 -0.30876424 -0.49070005
## TUBINC  0.41804642  1.00000000 -0.3789808 -0.32542031 -0.38118795 -0.19831333
## DPTIMM -0.33751628 -0.37898079  1.0000000  0.95025399  0.88174261  0.32804245
## HEPIMM -0.26020225 -0.32542031  0.9502540  1.00000000  0.86420155  0.27828765
## MEAIMM -0.30876424 -0.38118795  0.8817426  0.86420155  1.00000000  0.33921761
## HOSBED -0.49070005 -0.19831333  0.3280425  0.27828765  0.33921761  1.00000000
## SANSER -0.65108358 -0.55657212  0.4749098  0.41097807  0.52634353  0.48298288
## TUBTRT  0.32106450  0.23187021 -0.1508346 -0.10718796 -0.15128872 -0.20100265
## URBPOP -0.39930232 -0.33604248  0.2477115  0.16791625  0.27392265  0.29499246
## RURPOP  0.39930232  0.33604248 -0.2477115 -0.16791625 -0.27392265 -0.29499246
## NCOMOR  0.27623132  0.44177318 -0.2463052 -0.18345234 -0.25685607 -0.14297975
## SUIRAT -0.08928389  0.13461778  0.1016538  0.07309085  0.07173647  0.23601976
##             SANSER      TUBTRT      URBPOP      RURPOP      NCOMOR      SUIRAT
## UNEMPR  0.01743227 -0.05294186  0.08774280 -0.08774280  0.08876876  0.04227853
## INFMOR -0.82413990  0.30145355 -0.53383928  0.53383928  0.47793168  0.01383619
## GDP     0.15602727 -0.02991535  0.16951798 -0.16951798 -0.15463824  0.05563045
## GNI     0.15526943 -0.02993892  0.16915063 -0.16915063 -0.15418319  0.05591448
## CLTECH  0.86208147 -0.32585084  0.64092796 -0.64092796 -0.47327879  0.05255453
## PERCAP  0.48509427 -0.38908786  0.57384548 -0.57384548 -0.51434429  0.08998525
## RTIMOR -0.65108358  0.32106450 -0.39930232  0.39930232  0.27623132 -0.08928389
## TUBINC -0.55657212  0.23187021 -0.33604248  0.33604248  0.44177318  0.13461778
## DPTIMM  0.47490980 -0.15083460  0.24771148 -0.24771148 -0.24630524  0.10165384
## HEPIMM  0.41097807 -0.10718796  0.16791625 -0.16791625 -0.18345234  0.07309085
## MEAIMM  0.52634353 -0.15128872  0.27392265 -0.27392265 -0.25685607  0.07173647
## HOSBED  0.48298288 -0.20100265  0.29499246 -0.29499246 -0.14297975  0.23601976
## SANSER  1.00000000 -0.29773553  0.57044364 -0.57044364 -0.38904255  0.06984751
## TUBTRT -0.29773553  1.00000000 -0.31075615  0.31075615  0.24910749 -0.03195240
## URBPOP  0.57044364 -0.31075615  1.00000000 -1.00000000 -0.49977042  0.00916115
## RURPOP -0.57044364  0.31075615 -1.00000000  1.00000000  0.49977042 -0.00916115
## NCOMOR -0.38904255  0.24910749 -0.49977042  0.49977042  1.00000000  0.43953077
## SUIRAT  0.06984751 -0.03195240  0.00916115 -0.00916115  0.43953077  1.00000000
DPA_CorrelationTest <- cor.mtest(DPA.Predictors.Numeric,
                       method = "pearson",
                       conf.level = 0.95)

corrplot(cor(DPA.Predictors.Numeric,
             method = "pearson",
             use="pairwise.complete.obs"), 
             method = "circle",
             type = "upper", 
             order = "original", 
             tl.col = "black", 
             tl.cex = 0.75,
             tl.srt = 90, 
             sig.level = 0.05, 
             p.mat = DPA_CorrelationTest$p,
             insig = "blank")

corrplot(cor(DPA.Predictors.Numeric,
             method = "pearson",
             use="pairwise.complete.obs"), 
             method = "number",
             type = "upper", 
             order = "original", 
             tl.col = "black", 
             tl.cex = 0.75,
             tl.srt = 90, 
             sig.level = 0.05, 
             p.mat = DPA_CorrelationTest$p,
             insig = "blank")

##################################
# Identifying the highly correlated variables
##################################
DPA_Correlation <-  cor(DPA.Predictors.Numeric, 
                        method = "pearson",
                        use="pairwise.complete.obs")

(DPA_HighlyCorrelatedCount <- sum(abs(DPA_Correlation[upper.tri(DPA_Correlation)])>0.80))
## [1] 7
if (DPA_HighlyCorrelatedCount > 0) {
  DPA_HighlyCorrelated <- findCorrelation(DPA_Correlation, cutoff = 0.80)
  
  (DPA_HighlyCorrelatedForRemoval <- length(DPA_HighlyCorrelated))
  
  print(paste0("High correlation can be resolved by removing ",
               (DPA_HighlyCorrelatedForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_HighlyCorrelatedForRemoval) {
  DPA_HighlyCorrelatedRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_HighlyCorrelated[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_HighlyCorrelatedRemovedVariable))
  }
  
}
## [1] "High correlation can be resolved by removing 6 numeric variable(s)."
## [1] "Variable 1 for removal: INFMOR"
## [1] "Variable 2 for removal: CLTECH"
## [1] "Variable 3 for removal: URBPOP"
## [1] "Variable 4 for removal: MEAIMM"
## [1] "Variable 5 for removal: DPTIMM"
## [1] "Variable 6 for removal: GNI"

1.3.3.4 Linear Dependencies


[A] No linear dependencies noted for any subset of numeric variables using the preprocessing summary from the caret package applying the findLinearCombos method which utilizes the QR decomposition of a matrix to enumerate sets of linear combinations (if they exist).

Code Chunk | Output
##################################
# Linear Dependencies
##################################

##################################
# Finding linear dependencies
##################################
DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)

##################################
# Identifying the linearly dependent variables
##################################
DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)

(DPA_LinearlyDependentCount <- length(DPA_LinearlyDependent$linearCombos))
## [1] 0
if (DPA_LinearlyDependentCount == 0) {
  print("No linearly dependent predictors noted.")
} else {
  print(paste0("Linear dependency observed for ",
               (DPA_LinearlyDependentCount),
               " subset(s) of numeric variable(s)."))
  
  for (i in 1:DPA_LinearlyDependentCount) {
    DPA_LinearlyDependentSubset <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$linearCombos[[i]]]
    print(paste0("Linear dependent variable(s) for subset ",
                 i,
                 " include: ",
                 DPA_LinearlyDependentSubset))
  }
  
}
## [1] "No linearly dependent predictors noted."
##################################
# Identifying the linearly dependent variables for removal
##################################

if (DPA_LinearlyDependentCount > 0) {
  DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)
  
  DPA_LinearlyDependentForRemoval <- length(DPA_LinearlyDependent$remove)
  
  print(paste0("Linear dependency can be resolved by removing ",
               (DPA_LinearlyDependentForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LinearlyDependentForRemoval) {
  DPA_LinearlyDependentRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$remove[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LinearlyDependentRemovedVariable))
  }

}

1.3.3.5 Shape Transformation


[A] Shape transformation was applied to improve against skewness and minimize outliers for data distribution stability using the BoxCox method from the caret package which transforms the distributional shape for predictors with strictly positive values.

[B] Skewness measurements were improved for most except for 1 numeric predictor with Skewness>3.
     [B.1] SUIRAT = 3.95

[C] Outliers were minimized for most except for 9 numeric predictors which continued to contain outlying points as noted using the IQR criterion.
     [C.1] UNEMPR = 5
     [C.2] RTIMOR = 2
     [C.3] TUBINC = 28
     [C.4] DPTIMM = 24
     [C.5] HEPIMM = 8
     [C.6] MEAIMM = 18
     [C.7] TUBTRT = 30
     [C.8] NCOMOR = 2
     [C.9] SUIRAT = 27

Code Chunk | Output
##################################
# Shape Transformation
##################################

##################################
# Applying a Box-Cox transformation
##################################
DPA_BoxCox <- preProcess(DPA.Predictors.Numeric, method = c("BoxCox"))
DPA_BoxCoxTransformed <- predict(DPA_BoxCox, DPA.Predictors.Numeric)

for (i in 1:ncol(DPA_BoxCoxTransformed)) {
  Median <- format(round(median(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
  Mean <- format(round(mean(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
  Skewness <- format(round(skewness(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
  print(
  ggplot(DPA_BoxCoxTransformed, aes(x=DPA_BoxCoxTransformed[,i])) +
  geom_histogram(binwidth=1,color="black", fill="white") +
  geom_vline(aes(xintercept=mean(DPA_BoxCoxTransformed[,i])),
            color="blue", size=1) +
    geom_vline(aes(xintercept=median(DPA_BoxCoxTransformed[,i])),
            color="red", size=1) +
  theme_bw() +
  ylab("Count") +
  xlab(names(DPA_BoxCoxTransformed)[i]) +
  labs(title=names(DPA_BoxCoxTransformed)[i],
       subtitle=paste0("Median = ", Median,
                       ", Mean = ", Mean,
                       ", Skewness = ", Skewness)))
}

##################################
# Identifying outliers for the numeric predictors
##################################
OutlierCountList <- c()

for (i in 1:ncol(DPA_BoxCoxTransformed)) {
  Outliers <- boxplot.stats(DPA_BoxCoxTransformed[,i])$out
  OutlierCount <- length(Outliers)
  OutlierCountList <- append(OutlierCountList,OutlierCount)
  OutlierIndices <- which(DPA_BoxCoxTransformed[,i] %in% c(Outliers))
  print(
  ggplot(DPA_BoxCoxTransformed, aes(x=DPA_BoxCoxTransformed[,i])) +
  geom_boxplot() +
  theme_bw() +
  theme(axis.text.y=element_blank(), 
        axis.ticks.y=element_blank()) +
  xlab(names(DPA_BoxCoxTransformed)[i]) +
  labs(title=names(DPA_BoxCoxTransformed)[i],
       subtitle=paste0(OutlierCount, " Outlier(s) Detected")))
}

DPA_BoxCoxTransformed <- cbind(DPA_BoxCoxTransformed,DPA[,c("COUNTRY",
                                                            "YEAR",
                                                            "GENDER",
                                                            "CONTIN",
                                                            "LIFEXP")])

1.3.3.6 Pre-Processed Dataset


[A] A total of 9 variables (8 predictors and 1 metadata) were removed prior to data exploration and modelling due to issues identified during data preprocessing.
     [A.1] YEAR = Metadata containing only a single value
     [A.2] GNI = High correlation with GDP
     [A.3] DPTIMM = High correlation with HEPIMM
     [A.4] MEAIMM = High correlation with HEPIMM
     [A.5] URBPOP = High correlation with RURPOP
     [A.6] SANSER = High correlation with INFMOR and CLTECH
     [A.7] TUBINC = High outlier count even after shape transformation
     [A.8] TUBTRT = High outlier count even after shape transformation
     [A.9] SUIRAT = High skewness even after shape transformation

[B] A total of 30 observations were removed prior to data exploration and modelling due to issues identified during data preprocessing.
     [B.1] 15 countries were identified to be associated with distributional anomalies showing high number of observations reporting the exact same set of values.

[C] The preprocessed tabular dataset was comprised of 364 observations and 14 variables (including 1 metadata, 1 response and 12 predictors).
     [C.1] 364 rows (observations)
     [C.2] 14 columns (variables)
            [C.2.1] 1/14 instance labels = COUNTRY (character)
            [C.2.2] 1/14 response = LIFEXP (numeric)
            [C.2.3] 12/14 predictors = 10/12 numeric + 2/12 factor
                     [C.2.3.1] GENDER (factor)
                     [C.2.3.2] CONTIN (factor)
                     [C.2.3.3] UNEMPR (numeric)
                     [C.2.3.4] INFMOR (numeric)
                     [C.2.3.5] GDP (numeric)
                     [C.2.3.6] CLTECH (numeric)
                     [C.2.3.7] PERCAP (numeric)
                     [C.2.3.8] RTIMOR (numeric)
                     [C.2.3.9] HEPIMM (numeric)
                     [C.2.3.10] HOSBED (numeric)
                     [C.2.3.11] RURPOP (numeric)
                     [C.2.3.12] NCOMOR (numeric)

Code Chunk | Output
##################################
# Creating the pre-modelling
# train set
##################################
PMA <- DPA_BoxCoxTransformed[,!names(DPA_BoxCoxTransformed) %in% c("YEAR",
                                                                   "GNI",
                                                                   "DPTIMM",
                                                                   "MEAIMM",
                                                                   "URBPOP",
                                                                   "SANSER",
                                                                   "TUBINC",
                                                                   "TUBTRT",
                                                                   "SUIRAT")]

##################################
# Gathering descriptive statistics
##################################
(PMA_Skimmed <- skim(PMA))
Data summary
Name PMA
Number of rows 364
Number of columns 14
_______________________
Column type frequency:
character 1
factor 2
numeric 11
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
COUNTRY 0 1 4 30 0 182 0

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
GENDER 0 1 FALSE 2 Mal: 182, Fem: 182
CONTIN 0 1 FALSE 6 Afr: 106, Asi: 94, Eur: 78, Nor: 42

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
UNEMPR 0 1 2.13 1.21 -2.05 1.42 2.00 2.90 5.26 ▁▂▇▅▂
INFMOR 0 1 2.56 1.06 0.34 1.70 2.63 3.49 4.49 ▅▆▇▇▆
GDP 0 1 3.85 2.21 -1.67 2.55 3.76 5.53 9.97 ▂▇▇▆▁
CLTECH 0 1 66.08 37.77 0.00 30.30 83.95 100.00 100.00 ▃▁▁▂▇
PERCAP 0 1 1.75 1.40 -1.48 0.65 1.80 2.82 4.73 ▂▆▇▆▃
RTIMOR 0 1 16.97 10.72 0.00 8.00 15.30 25.60 64.60 ▇▆▅▁▁
HEPIMM 0 1 3877.07 1006.71 612.00 3304.98 4231.50 4704.00 4900.00 ▁▁▁▃▇
HOSBED 0 1 0.76 0.86 -1.61 0.14 0.83 1.40 2.62 ▁▅▇▇▃
RURPOP 0 1 41.73 22.68 0.00 22.62 41.64 59.76 86.75 ▅▇▇▆▅
NCOMOR 0 1 4.67 1.08 1.87 3.93 4.72 5.38 7.96 ▂▅▇▃▁
LIFEXP 0 1 72.50 7.77 51.20 66.93 73.53 78.54 87.45 ▁▃▆▇▅

1.3.4 Data Exploration


[A] Numeric predictors which demonstrated a positive linear relationship with the response variable LIFEXP included:
     [A.1] PERCAP (numeric)
     [A.2] CLTECH (numeric)

[B] Numeric predictors which demonstrated a negative linear relationship with the response variable LIFEXP included:
     [B.1] INFMOR (numeric)
     [B.2] NCOMOR (numeric)

[C] Both factor predictors demonstrated a differential relationship with the response variable LIFEXP included:
     [C.1] GENDER (factor)
     [C.2] CONTIN (factor)

Code Chunk | Output
##################################
# Loading dataset
##################################
PME <- PMA
PME.Numeric <- PME[,sapply(PME, is.numeric), drop = FALSE]

##################################
# Listing all Predictors
##################################
PME.Predictors <- PME[,!names(PME) %in% c("COUNTRY","LIFEXP")]

##################################
# Listing all numeric Predictors
##################################
PME.Predictors.Numeric <- PME.Predictors[,sapply(PME.Predictors, is.numeric), drop = FALSE]
ncol(PME.Predictors.Numeric)
## [1] 10
##################################
# Listing all numeric Predictors
##################################
PME.Predictors.Factor <- PME.Predictors[,sapply(PME.Predictors, is.factor), drop = FALSE]
ncol(PME.Predictors.Factor)
## [1] 2
##################################
# Formulating the scatter plot
##################################
featurePlot(x = PME.Predictors.Numeric, 
            y = PME$LIFEXP,
            plot = "scatter",
            type = c("p", "smooth"),
            span = .5,
            layout = c(4, 3))

##################################
# Formulating the box plot
##################################
featurePlot(x = PME.Numeric, 
            y = PME$GENDER,
            plot = "box",
            scales = list(x = list(relation="free", rot = 90), 
                          y = list(relation="free")),
            adjust = 1.5,
            layout = c(4, 3))

##################################
# Formulating the box plot
##################################
featurePlot(x = PME.Numeric, 
            y = PME$CONTIN,
            plot = "box",
            scales = list(x = list(relation="free", rot = 90), 
                          y = list(relation="free")),
            adjust = 1.5,
            layout = c(4, 3))

1.3.5 Feature Selection


1.3.5.1 Locally Weighted Scatterplot Smoothing Pseudo-R-Squared


[A] The numeric predictors which demonstrated the best feature importance in terms of the locally weighted scatterplot smoothing pseudo-r-squared statistic as obtained using the caret package included:
     [A.1] INFMOR = 0.8254
     [A.2] PERCAP = 0.6217
     [A.3] NCOMOR = 0.5966
     [A.4] CLTECH = 0.5819

Code Chunk | Output
##################################
# Evaluating model-independent
# feature importance metrics
##################################

##################################
# Obtaining the LOWESSPR pseudo-R-Squared
##################################
FE_LOWESSPR <- filterVarImp(x = PME.Predictors.Numeric,
                            y = PME$LIFEXP,
                            nonpara = TRUE)

##################################
# Formulating the summary table
##################################
FE_LOWESSPR_Summary <- FE_LOWESSPR 

FE_LOWESSPR_Summary$Predictor <- rownames(FE_LOWESSPR)
names(FE_LOWESSPR_Summary)[1] <- "LOWESSPR"
FE_LOWESSPR_Summary$Metric <- rep("LOWESSPR",nrow(FE_LOWESSPR))

FE_LOWESSPR_Summary
##          LOWESSPR Predictor   Metric
## UNEMPR 0.03707208    UNEMPR LOWESSPR
## INFMOR 0.82546121    INFMOR LOWESSPR
## GDP    0.25427692       GDP LOWESSPR
## CLTECH 0.58186548    CLTECH LOWESSPR
## PERCAP 0.62170474    PERCAP LOWESSPR
## RTIMOR 0.51428354    RTIMOR LOWESSPR
## HEPIMM 0.18618812    HEPIMM LOWESSPR
## HOSBED 0.34642501    HOSBED LOWESSPR
## RURPOP 0.35023499    RURPOP LOWESSPR
## NCOMOR 0.59655877    NCOMOR LOWESSPR
##################################
# Exploring predictor performance
# using LOWESS
##################################
dotplot(Predictor ~ LOWESSPR | Metric, 
        FE_LOWESSPR_Summary,
        origin = 0,
        type = c("p", "h"),
        pch = 16,
        cex = 2,
        alpha = 0.45,
        prepanel = function(x, y) {
            list(ylim = levels(reorder(y, x)))
        },
        panel = function(x, y, ...) {
            panel.dotplot(x, reorder(y, x), ...)
        })


1.3.5.2 Pearson’s Correlation Coefficient


[A] The numeric predictors which demonstrated the best feature importance in terms of the higher Pearson’s correlation coefficients as obtained using the stats package included:
     [A.1] INFMOR = 0.8796
     [A.2] PERCAP = 0.7852
     [A.3] NCOMOR = 0.7524
     [A.4] CLTECH = 0.7332

Code Chunk | Output
##################################
# Obtaining the Pearson correlation coefficient
##################################
(FE_PCC <- abs(cor(PME.Numeric, method="pearson")[-11,11]))
##     UNEMPR     INFMOR        GDP     CLTECH     PERCAP     RTIMOR     HEPIMM 
## 0.01518356 0.87964210 0.45844159 0.75234946 0.78523930 0.65975953 0.43149521 
##     HOSBED     RURPOP     NCOMOR 
## 0.56281916 0.57322144 0.73325984
##################################
# Formulating the summary table
##################################
FE_PCC_Summary <- data.frame(Predictor = names(PME.Numeric)[1:(ncol(PME.Numeric)-1)],
                             PCC = FE_PCC,
                             Metric = rep("PCC", length(FE_PCC)),
                             row.names = NULL)

FE_PCC_Summary
##    Predictor        PCC Metric
## 1     UNEMPR 0.01518356    PCC
## 2     INFMOR 0.87964210    PCC
## 3        GDP 0.45844159    PCC
## 4     CLTECH 0.75234946    PCC
## 5     PERCAP 0.78523930    PCC
## 6     RTIMOR 0.65975953    PCC
## 7     HEPIMM 0.43149521    PCC
## 8     HOSBED 0.56281916    PCC
## 9     RURPOP 0.57322144    PCC
## 10    NCOMOR 0.73325984    PCC
##################################
# Exploring predictor performance
# using PCC
##################################
dotplot(Predictor ~ PCC | Metric,
        FE_PCC_Summary,
        origin = 0,
        type = c("p", "h"),
        pch = 16,
        cex = 2,
        alpha = 0.45,
        prepanel = function(x, y) {
            list(ylim = levels(reorder(y, x)))
        },
        panel = function(x, y, ...) {
            panel.dotplot(x, reorder(y, x), ...)
        })


1.3.5.3 Spearman’s Rank Correlation Coefficient


[A] The numeric predictors which demonstrated the best feature importance in terms of the higher Spearman’s rank correlation coefficients as obtained using the stats package included:
     [A.1] INFMOR = 0.8919
     [A.2] PERCAP = 0.7982
     [A.3] NCOMOR = 0.7891
     [A.4] CLTECH = 0.7837

Code Chunk | Output
##################################
# Obtaining the Spearman's rank correlation coefficient
##################################
(FE_SRCC <- abs(cor(PME.Numeric, method="spearman")[-11,11]))
##      UNEMPR      INFMOR         GDP      CLTECH      PERCAP      RTIMOR 
## 0.003729075 0.891871299 0.499048543 0.783732221 0.798156088 0.698820899 
##      HEPIMM      HOSBED      RURPOP      NCOMOR 
## 0.382149849 0.555871706 0.600468144 0.789128052
##################################
# Formulating the summary table
##################################
FE_SRCC_Summary <- data.frame(Predictor = names(PME.Numeric)[1:(ncol(PME.Numeric)-1)],
                             SRCC = FE_SRCC,
                             Metric = rep("SRCC", length(FE_SRCC)),
                             row.names = NULL)

FE_SRCC_Summary
##    Predictor        SRCC Metric
## 1     UNEMPR 0.003729075   SRCC
## 2     INFMOR 0.891871299   SRCC
## 3        GDP 0.499048543   SRCC
## 4     CLTECH 0.783732221   SRCC
## 5     PERCAP 0.798156088   SRCC
## 6     RTIMOR 0.698820899   SRCC
## 7     HEPIMM 0.382149849   SRCC
## 8     HOSBED 0.555871706   SRCC
## 9     RURPOP 0.600468144   SRCC
## 10    NCOMOR 0.789128052   SRCC
##################################
# Exploring predictor performance
# using SRCC
##################################
dotplot(Predictor ~ SRCC | Metric, 
        FE_SRCC_Summary,
        origin = 0,
        type = c("p", "h"),
        pch = 16,
        cex = 2,
        alpha = 0.45,
        prepanel = function(x, y) {
            list(ylim = levels(reorder(y, x)))
        },
        panel = function(x, y, ...) {
            panel.dotplot(x, reorder(y, x), ...)
        })


1.3.5.4 Maximal Information Coefficient


[A] The numeric predictors which demonstrated the best feature importance in terms of the higher maximal information coefficients as obtained using the minerva package included:
     [A.1] INFMOR = 0.7084
     [A.2] NCOMOR = 0.6439
     [A.3] PERCAP = 0.5502
     [A.4] CLTECH = 0.5099

Code Chunk | Output
##################################
# Obtaining the maximal information coefficient
##################################
FE_MIC <- mine(x = PME.Numeric[,!names(PME.Numeric) %in% c("LIFEXP")],
               y = PME$LIFEXP)$MIC

##################################
# Formulating the summary table
##################################
FE_MIC_Summary <- data.frame(Predictor = names(PME.Numeric)[1:(ncol(PME.Numeric)-1)],
                             MIC = FE_MIC[,1],
                             Metric = rep("MIC", length(FE_MIC)))

FE_MIC_Summary
##    Predictor       MIC Metric
## 1     UNEMPR 0.1911950    MIC
## 2     INFMOR 0.7083938    MIC
## 3        GDP 0.3234249    MIC
## 4     CLTECH 0.5099735    MIC
## 5     PERCAP 0.5502257    MIC
## 6     RTIMOR 0.4771528    MIC
## 7     HEPIMM 0.2652364    MIC
## 8     HOSBED 0.3711493    MIC
## 9     RURPOP 0.4097827    MIC
## 10    NCOMOR 0.6438989    MIC
##################################
# Exploring predictor performance
# using MIC
##################################
dotplot(Predictor ~ MIC | Metric, 
        FE_MIC_Summary,
        origin = 0,
        type = c("p", "h"),
        pch = 16,
        cex = 2,
        alpha = 0.45,
        prepanel = function(x, y) {
            list(ylim = levels(reorder(y, x)))
        },
        panel = function(x, y, ...) {
            panel.dotplot(x, reorder(y, x), ...)
        })


1.3.5.5 Relief Values


[A] The numeric predictors which demonstrated the best feature importance in terms of the higher relief values as obtained using the CORElearn package included:
     [A.1] NCOMOR = 0.2991
     [A.2] INFMOR = 00936

Code Chunk | Output
##################################
# Obtaining the relief values
##################################
FE_RV <- attrEval(LIFEXP ~ .,  
                  data = PME.Numeric,
                  estimator = "RReliefFequalK")

##################################
# Formulating the summary table
##################################
FE_RV_Summary <- data.frame(Predictor = names(FE_RV),
                            RV = FE_RV,
                            Metric = rep("RV", length(FE_RV)))

FE_RV_Summary
##        Predictor          RV Metric
## UNEMPR    UNEMPR -0.01810789     RV
## INFMOR    INFMOR  0.09365306     RV
## GDP          GDP -0.09938056     RV
## CLTECH    CLTECH  0.02105440     RV
## PERCAP    PERCAP -0.04869230     RV
## RTIMOR    RTIMOR  0.01046617     RV
## HEPIMM    HEPIMM -0.03530648     RV
## HOSBED    HOSBED -0.06597469     RV
## RURPOP    RURPOP -0.10732377     RV
## NCOMOR    NCOMOR  0.29910591     RV
##################################
# Exploring predictor performance
##################################
dotplot(Predictor ~ RV | Metric, 
        FE_RV_Summary,
        origin = 0,
        type = c("p", "h"),
        pch = 16,
        cex = 2,
        alpha = 0.45,
        prepanel = function(x, y) {
            list(ylim = levels(reorder(y, x)))
        },
        panel = function(x, y, ...) {
            panel.dotplot(x, reorder(y, x), ...)
        })


1.3.5.6 Pre-Modelling Dataset


[A] The final list of predictors to be applied during the modelling process involved 4 numeric predictors (which consistently demonstrated the best feature importance in terms of the aforementioned metrics) and 2 factor predictors enumerated as follows:
     [A.1] INFMOR (numeric)
     [A.2] PERCAP (numeric)
     [A.3] NCOMOR (numeric)
     [A.4] CLTECH (numeric)
     [A.5] GENDER (factor)
     [A.6] CONTIN (factor)

[B] The dataset was divided into two groups using a fixed random seed.
     [B.1] 80% were allocated for the model development set.
            [B.1.1] 10 folds were formulated for the model development set using a fixed random seed.
            [B.1.2] Fold assignments will be used for internal 10-fold cross-validation and hyperparameter tuning.
     [B.2] 20% were allocated for the model test set.
            [B.2.1] Model test will be used for external validation.

[C] The model development set was comprised of 292 observations and 8 variables (including 1 metadata, 1 response and 6 predictors).
     [C.1] 292 rows (observations)
     [C.2] 8 columns (variables)
            [C.2.1] 1/8 instance labels = COUNTRY variable (character)
            [C.2.2] 1/8 response = LIFEXP variable (numeric)
            [C.2.3] 6/8 predictors = 4/6 numeric + 2/6 factor
                     [C.2.3.1] INFMOR (numeric)
                     [C.2.3.2] PERCAP (numeric)
                     [C.2.3.3] NCOMOR (numeric)
                     [C.2.3.4] CLTECH (numeric)
                     [C.2.3.5] GENDER (factor)
                     [C.2.3.6] CONTIN (factor)

[D] The model test set was comprised of 72 observations and 8 variables (including 1 metadata, 1 response and 6 predictors).
     [D.1] 72 rows (observations)
     [D.2] 8 columns (variables)
            [D.2.1] 1/8 instance labels = COUNTRY variable (character)
            [D.2.2] 1/8 response = LIFEXP variable (numeric)
            [D.2.3] 6/8 predictors = 4/6 numeric + 2/6 factor
                     [D.2.3.1] INFMOR (numeric)
                     [D.2.3.2] PERCAP (numeric)
                     [D.2.3.3] NCOMOR (numeric)
                     [D.2.3.4] CLTECH (numeric)
                     [D.2.3.5] GENDER (factor)
                     [D.2.3.6] CONTIN (factor)

Code Chunk | Output
##################################
# Preparing the dataset for
# model development and test
##################################
set.seed(12345678)
trainIndex <- createDataPartition(PME$LIFEXP,
                                  p = 0.8, 
                                  list = FALSE, 
                                  times = 1)

##################################
# Formulating the model development data
##################################
MD <- PME[ trainIndex,]

##################################
# Formulating the model test data
##################################
MT <- PME[-trainIndex,]

##################################
# Preparing the dataset for
# model development
##################################
MD <- MD[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")]
dim(MD)
## [1] 292   7
MD.Model.Predictors <- MD[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR")]

##################################
# Preparing the dataset for
# model test
##################################
MT <- MT[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")]
dim(MT)
## [1] 72  7
MT.Model.Predictors <- MT[,c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR")]

##################################
# Creating consistent fold assignments
# for the 10-Fold Cross Validation process
##################################
set.seed(12345678)
KFold_Indices <- createFolds(MD$LIFEXP,
                             k = 10,
                             returnTrain=TRUE)
KFold_Control <- trainControl(method="cv",
                              index=KFold_Indices)

1.3.6 Model Development and Performance Estimation


1.3.6.1 Linear Regression


[A] The linear regression model from the stats package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] intercept = intercept held constant at a value of TRUE

[C] The 10-fold cross-validated model performance of the optimal model is summarized as follows:
     [C.1] Optimal model used intercept=TRUE
     [C.2] Root Mean Square Error = 2.4078
     [C.3] R-Squared = 0.9116

[D] The apparent model performance of the optimal model is summarized as follows:
     [D.1] Root Mean Square Error = 2.3622
     [D.2] R-Squared = 0.9098

[E] The top-performing predictors in the model ranked using the root mean square error loss after permutations are as follows:
     [E.1] INFMOR (numeric) = 7.15
     [E.2] NCOMOR (numeric) = 3.23
     [E.3] CONTIN (factor) = 3.18
     [E.5] CLTECH (numeric) = 3.10
     [E.4] GENDER (factor) = 3.06
     [E.6] PERCAP (numeric) = 2.43

Code Chunk | Output
##################################
# No hyperparameter tuning process conducted
# for the LR model
# hyperparameter=intercept fixed to TRUE
##################################

##################################
# Running the LR model
# by setting the caret method to 'lm'
##################################
set.seed(12345678)
LR_Tune <- train(x = MD.Model.Predictors,
                  y = MD$LIFEXP,
                  method = "lm",
                  trControl = KFold_Control)

##################################
# Reporting the apparent results
# for the LR model
##################################
LR_DALEX <- DALEX::explain(LR_Tune,
                            data = MD.Model.Predictors,
                            y = MD$LIFEXP,
                            verbose = FALSE,
                            label = "LR")

(LR_DALEX_Performance <- model_performance(LR_DALEX))
## Measures for:  regression
## mse        : 5.58016 
## rmse       : 2.362236 
## r2         : 0.9098275 
## mad        : 1.395866
## 
## Residuals:
##          0%         10%         20%         30%         40%         50% 
## -7.54609872 -2.70120396 -1.67144520 -1.06388223 -0.49677829  0.05953136 
##         60%         70%         80%         90%        100% 
##  0.56643413  1.03111778  1.80727895  2.72612936  7.57156135
(LR_DALEX_Diagnostics <- model_diagnostics(LR_DALEX))
##     GENDER              CONTIN       INFMOR           PERCAP       
##  Male  :139   Africa       :89   Min.   :0.3365   Min.   :-1.4775  
##  Female:153   Asia         :73   1st Qu.:1.7047   1st Qu.: 0.6183  
##               Europe       :62   Median :2.6100   Median : 1.7960  
##               North America:31   Mean   :2.5569   Mean   : 1.7571  
##               Oceania      :18   3rd Qu.:3.5025   3rd Qu.: 2.7938  
##               South America:19   Max.   :4.4864   Max.   : 4.7293  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.00   Min.   :1.866   Min.   :52.84   Min.   :58.11  
##  1st Qu.: 24.35   1st Qu.:3.944   1st Qu.:66.93   1st Qu.:66.54  
##  Median : 82.80   Median :4.717   Median :73.53   Median :73.13  
##  Mean   : 64.60   Mean   :4.652   Mean   :72.47   Mean   :72.47  
##  3rd Qu.:100.00   3rd Qu.:5.347   3rd Qu.:78.54   3rd Qu.:78.29  
##  Max.   :100.00   Max.   :7.959   Max.   :87.45   Max.   :87.96  
##    residuals        abs_residuals        label                ids        
##  Min.   :-7.54610   Min.   :0.01202   Length:292         Min.   :  1.00  
##  1st Qu.:-1.32434   1st Qu.:0.72522   Class :character   1st Qu.: 73.75  
##  Median : 0.05953   Median :1.39587   Mode  :character   Median :146.50  
##  Mean   : 0.00000   Mean   :1.80627                      Mean   :146.50  
##  3rd Qu.: 1.52469   3rd Qu.:2.52337                      3rd Qu.:219.25  
##  Max.   : 7.57156   Max.   :7.57156                      Max.   :292.00
plot(LR_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("LR: Observed and Predicted LIFEXP")

(LR_DALEX_VariableImportance    <- model_parts(LR_DALEX,
                                               loss_function = loss_root_mean_square,
                                               B = 200,
                                               N = NULL))
##       variable mean_dropout_loss label
## 1 _full_model_          2.362236    LR
## 2       PERCAP          2.427498    LR
## 3       GENDER          3.063092    LR
## 4       CLTECH          3.101405    LR
## 5       CONTIN          3.184817    LR
## 6       NCOMOR          3.231935    LR
## 7       INFMOR          7.153165    LR
## 8   _baseline_         10.873968    LR
plot(LR_DALEX_VariableImportance)

##################################
# Reporting the cross-validation results
# for the LR model
##################################
LR_Tune
## Linear Regression 
## 
## 292 samples
##   6 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ... 
## Resampling results:
## 
##   RMSE      Rsquared   MAE     
##   2.407871  0.9116813  1.866752
## 
## Tuning parameter 'intercept' was held constant at a value of TRUE
LR_Tune$finalModel
## 
## Call:
## lm(formula = .outcome ~ ., data = dat)
## 
## Coefficients:
##         (Intercept)         GENDERFemale           CONTINAsia  
##            85.69806              2.76133              2.83144  
##        CONTINEurope  CONTINNorth America        CONTINOceania  
##             0.83630              3.33009              4.69879  
## CONTINSouth America               INFMOR               PERCAP  
##             2.83668             -4.48540             -0.28654  
##              CLTECH               NCOMOR  
##             0.03709             -1.46345
(LR_Tune_RMSE <- LR_Tune$results$RMSE)
## [1] 2.407871
(LR_Tune_Rsquared <- LR_Tune$results$Rsquared)
## [1] 0.9116813
(LR_Tune_MAE <- LR_Tune$results$MAE)
## [1] 1.866752

1.3.6.2 Stochastic Gradient Boosting


[A] The stochastic gradient boosting regression model from the gbm package was implemented through the caret package.

[B] The model contains 4 hyperparameters:
     [B.1] n.trees = total number of trees to fit which is equivalent to the number of iterations and the number of basis functions in the additive expansion made to vary across a range of values equal to 100, 200 and 300
     [B.2] interaction.depth = maximum depth of each tree representing the highest level of variable interactions allowed made to vary across a range of values equal to 1, 2 and 3
     [B.3] shrinkage = shrinkage parameter applied to each tree in the expansion representing the learning rate or step-size reduction made to vary across a range of values equal to 0.001, 0.01 and 0.1
     [B.4] n.minobsinnode = minimum number of observations in the terminal nodes of the trees made to vary across a range of values equal to 5, 10 and 15

[C] The 10-fold cross-validated model performance of the optimal model is summarized as follows:
     [C.1] Optimal model used n.trees=300, interaction.depth=2, shrinkage=0.1 and n.minobsinnode=5 which demonstrated the lowest root mean square error
     [C.2] Root Mean Square Error = 2.0978
     [C.3] R-Squared = 0.9288

[D] The apparent model performance of the optimal model is summarized as follows:
     [D.1] Root Mean Square Error = 1.7044
     [D.2] R-Squared = 0.9530

[E] The top-performing predictors in the model ranked using the root mean square error loss after permutations are as follows:
     [E.1] INFMOR (numeric) = 7.07
     [E.2] NCOMOR (numeric) = 3.57
     [E.3] CONTIN (factor) = 1.93
     [E.4] GENDER (factor) = 1.92
     [E.5] CLTECH (numeric) = 1.84
     [E.6] PERCAP (numeric) = 1.52

Code Chunk | Output
##################################
# Defining the model hyperparameter values
# for the GBM model
##################################
GBM_Grid = expand.grid(n.trees = c(100, 200, 300),
                       interaction.depth = c(1, 2, 3),
                       shrinkage = c(0.001, 0.005, 0.01, 0.05, 0.10),
                       n.minobsinnode = c(5,10,15))

##################################
# Running the GBM model
# by setting the caret method to 'gbm'
##################################
set.seed(12345678)
GBM_Tune <- train(x = MD.Model.Predictors,
                  y = MD$LIFEXP,
                  method = "gbm",
                  tuneGrid = GBM_Grid,
                  trControl = KFold_Control)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7314             nan     0.0010    0.0780
##      2       61.6543             nan     0.0010    0.0792
##      3       61.5721             nan     0.0010    0.0781
##      4       61.4926             nan     0.0010    0.0804
##      5       61.4149             nan     0.0010    0.0754
##      6       61.3306             nan     0.0010    0.0770
##      7       61.2518             nan     0.0010    0.0757
##      8       61.1722             nan     0.0010    0.0833
##      9       61.0935             nan     0.0010    0.0752
##     10       61.0129             nan     0.0010    0.0748
##     20       60.2445             nan     0.0010    0.0733
##     40       58.7200             nan     0.0010    0.0773
##     60       57.2706             nan     0.0010    0.0717
##     80       55.8823             nan     0.0010    0.0701
##    100       54.5229             nan     0.0010    0.0638
##    120       53.2573             nan     0.0010    0.0556
##    140       52.0028             nan     0.0010    0.0602
##    160       50.8054             nan     0.0010    0.0610
##    180       49.6447             nan     0.0010    0.0520
##    200       48.5316             nan     0.0010    0.0564
##    220       47.4646             nan     0.0010    0.0511
##    240       46.4091             nan     0.0010    0.0539
##    260       45.3734             nan     0.0010    0.0478
##    280       44.3893             nan     0.0010    0.0430
##    300       43.4344             nan     0.0010    0.0462
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7313             nan     0.0010    0.0840
##      2       61.6556             nan     0.0010    0.0834
##      3       61.5752             nan     0.0010    0.0734
##      4       61.4928             nan     0.0010    0.0777
##      5       61.4123             nan     0.0010    0.0799
##      6       61.3340             nan     0.0010    0.0748
##      7       61.2575             nan     0.0010    0.0800
##      8       61.1802             nan     0.0010    0.0770
##      9       61.1002             nan     0.0010    0.0737
##     10       61.0217             nan     0.0010    0.0798
##     20       60.2516             nan     0.0010    0.0778
##     40       58.7593             nan     0.0010    0.0746
##     60       57.3038             nan     0.0010    0.0725
##     80       55.9301             nan     0.0010    0.0646
##    100       54.5806             nan     0.0010    0.0619
##    120       53.3059             nan     0.0010    0.0659
##    140       52.0803             nan     0.0010    0.0598
##    160       50.8867             nan     0.0010    0.0509
##    180       49.7405             nan     0.0010    0.0504
##    200       48.6028             nan     0.0010    0.0575
##    220       47.5184             nan     0.0010    0.0524
##    240       46.4776             nan     0.0010    0.0559
##    260       45.4597             nan     0.0010    0.0468
##    280       44.4720             nan     0.0010    0.0488
##    300       43.5004             nan     0.0010    0.0433
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7351             nan     0.0010    0.0762
##      2       61.6580             nan     0.0010    0.0777
##      3       61.5791             nan     0.0010    0.0778
##      4       61.5073             nan     0.0010    0.0720
##      5       61.4254             nan     0.0010    0.0800
##      6       61.3415             nan     0.0010    0.0759
##      7       61.2588             nan     0.0010    0.0780
##      8       61.1750             nan     0.0010    0.0739
##      9       61.0973             nan     0.0010    0.0784
##     10       61.0197             nan     0.0010    0.0851
##     20       60.2483             nan     0.0010    0.0755
##     40       58.7606             nan     0.0010    0.0726
##     60       57.3260             nan     0.0010    0.0689
##     80       55.9485             nan     0.0010    0.0690
##    100       54.6024             nan     0.0010    0.0656
##    120       53.3241             nan     0.0010    0.0628
##    140       52.0591             nan     0.0010    0.0627
##    160       50.8655             nan     0.0010    0.0594
##    180       49.7229             nan     0.0010    0.0521
##    200       48.5814             nan     0.0010    0.0538
##    220       47.5180             nan     0.0010    0.0399
##    240       46.4554             nan     0.0010    0.0522
##    260       45.4579             nan     0.0010    0.0486
##    280       44.4455             nan     0.0010    0.0501
##    300       43.4889             nan     0.0010    0.0431
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7201             nan     0.0010    0.0854
##      2       61.6258             nan     0.0010    0.0949
##      3       61.5260             nan     0.0010    0.0940
##      4       61.4306             nan     0.0010    0.0912
##      5       61.3391             nan     0.0010    0.0985
##      6       61.2418             nan     0.0010    0.0869
##      7       61.1516             nan     0.0010    0.0873
##      8       61.0537             nan     0.0010    0.0948
##      9       60.9615             nan     0.0010    0.0912
##     10       60.8696             nan     0.0010    0.0894
##     20       59.9468             nan     0.0010    0.0952
##     40       58.1300             nan     0.0010    0.0809
##     60       56.4221             nan     0.0010    0.0836
##     80       54.7529             nan     0.0010    0.0825
##    100       53.1414             nan     0.0010    0.0804
##    120       51.6032             nan     0.0010    0.0785
##    140       50.0992             nan     0.0010    0.0715
##    160       48.6598             nan     0.0010    0.0730
##    180       47.2284             nan     0.0010    0.0685
##    200       45.8811             nan     0.0010    0.0665
##    220       44.5544             nan     0.0010    0.0676
##    240       43.2702             nan     0.0010    0.0599
##    260       42.0382             nan     0.0010    0.0578
##    280       40.8483             nan     0.0010    0.0547
##    300       39.7296             nan     0.0010    0.0539
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7113             nan     0.0010    0.0859
##      2       61.6179             nan     0.0010    0.0928
##      3       61.5268             nan     0.0010    0.0878
##      4       61.4370             nan     0.0010    0.0871
##      5       61.3408             nan     0.0010    0.0993
##      6       61.2469             nan     0.0010    0.0888
##      7       61.1542             nan     0.0010    0.0952
##      8       61.0602             nan     0.0010    0.0886
##      9       60.9637             nan     0.0010    0.0884
##     10       60.8777             nan     0.0010    0.0938
##     20       59.9508             nan     0.0010    0.0968
##     40       58.0867             nan     0.0010    0.0819
##     60       56.3661             nan     0.0010    0.0880
##     80       54.6466             nan     0.0010    0.0820
##    100       53.0423             nan     0.0010    0.0805
##    120       51.4870             nan     0.0010    0.0775
##    140       49.9750             nan     0.0010    0.0707
##    160       48.5256             nan     0.0010    0.0824
##    180       47.1204             nan     0.0010    0.0691
##    200       45.7841             nan     0.0010    0.0735
##    220       44.4623             nan     0.0010    0.0579
##    240       43.1808             nan     0.0010    0.0562
##    260       41.9844             nan     0.0010    0.0618
##    280       40.7925             nan     0.0010    0.0603
##    300       39.6186             nan     0.0010    0.0576
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7136             nan     0.0010    0.0934
##      2       61.6240             nan     0.0010    0.0880
##      3       61.5316             nan     0.0010    0.0941
##      4       61.4317             nan     0.0010    0.0987
##      5       61.3373             nan     0.0010    0.0883
##      6       61.2421             nan     0.0010    0.0945
##      7       61.1504             nan     0.0010    0.0871
##      8       61.0478             nan     0.0010    0.0967
##      9       60.9566             nan     0.0010    0.0979
##     10       60.8696             nan     0.0010    0.0918
##     20       59.9503             nan     0.0010    0.0929
##     40       58.1775             nan     0.0010    0.0847
##     60       56.4318             nan     0.0010    0.0856
##     80       54.7720             nan     0.0010    0.0783
##    100       53.1415             nan     0.0010    0.0616
##    120       51.5664             nan     0.0010    0.0756
##    140       50.0444             nan     0.0010    0.0738
##    160       48.5833             nan     0.0010    0.0805
##    180       47.1628             nan     0.0010    0.0628
##    200       45.8081             nan     0.0010    0.0718
##    220       44.4877             nan     0.0010    0.0497
##    240       43.1951             nan     0.0010    0.0544
##    260       41.9651             nan     0.0010    0.0556
##    280       40.7801             nan     0.0010    0.0451
##    300       39.6168             nan     0.0010    0.0527
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7080             nan     0.0010    0.0974
##      2       61.6023             nan     0.0010    0.1004
##      3       61.4982             nan     0.0010    0.0864
##      4       61.3928             nan     0.0010    0.0918
##      5       61.2911             nan     0.0010    0.1057
##      6       61.1927             nan     0.0010    0.0902
##      7       61.0898             nan     0.0010    0.0928
##      8       60.9895             nan     0.0010    0.0866
##      9       60.8911             nan     0.0010    0.0936
##     10       60.7860             nan     0.0010    0.0994
##     20       59.7724             nan     0.0010    0.0963
##     40       57.8179             nan     0.0010    0.0914
##     60       55.9283             nan     0.0010    0.0919
##     80       54.1246             nan     0.0010    0.0844
##    100       52.3815             nan     0.0010    0.0792
##    120       50.7052             nan     0.0010    0.0836
##    140       49.0909             nan     0.0010    0.0757
##    160       47.5459             nan     0.0010    0.0724
##    180       46.0338             nan     0.0010    0.0730
##    200       44.5860             nan     0.0010    0.0685
##    220       43.1886             nan     0.0010    0.0610
##    240       41.8444             nan     0.0010    0.0596
##    260       40.5416             nan     0.0010    0.0635
##    280       39.2901             nan     0.0010    0.0542
##    300       38.1023             nan     0.0010    0.0541
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7091             nan     0.0010    0.0971
##      2       61.6084             nan     0.0010    0.1041
##      3       61.5049             nan     0.0010    0.1023
##      4       61.4018             nan     0.0010    0.1071
##      5       61.2987             nan     0.0010    0.1103
##      6       61.1953             nan     0.0010    0.1030
##      7       61.0931             nan     0.0010    0.0947
##      8       60.9913             nan     0.0010    0.1003
##      9       60.8912             nan     0.0010    0.1030
##     10       60.7859             nan     0.0010    0.0990
##     20       59.7562             nan     0.0010    0.1005
##     40       57.8095             nan     0.0010    0.0834
##     60       55.9319             nan     0.0010    0.0902
##     80       54.1349             nan     0.0010    0.0789
##    100       52.3922             nan     0.0010    0.0880
##    120       50.7286             nan     0.0010    0.0817
##    140       49.1227             nan     0.0010    0.0746
##    160       47.5622             nan     0.0010    0.0752
##    180       46.0526             nan     0.0010    0.0722
##    200       44.6092             nan     0.0010    0.0779
##    220       43.1962             nan     0.0010    0.0641
##    240       41.8514             nan     0.0010    0.0696
##    260       40.5439             nan     0.0010    0.0578
##    280       39.2912             nan     0.0010    0.0619
##    300       38.0903             nan     0.0010    0.0578
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7096             nan     0.0010    0.1065
##      2       61.6043             nan     0.0010    0.1063
##      3       61.5045             nan     0.0010    0.1064
##      4       61.3964             nan     0.0010    0.1141
##      5       61.2963             nan     0.0010    0.0956
##      6       61.1991             nan     0.0010    0.1074
##      7       61.0923             nan     0.0010    0.1113
##      8       60.9959             nan     0.0010    0.1005
##      9       60.8997             nan     0.0010    0.1054
##     10       60.8018             nan     0.0010    0.1021
##     20       59.7954             nan     0.0010    0.0870
##     40       57.8340             nan     0.0010    0.0998
##     60       55.9669             nan     0.0010    0.0868
##     80       54.1436             nan     0.0010    0.0891
##    100       52.3856             nan     0.0010    0.0810
##    120       50.7033             nan     0.0010    0.0818
##    140       49.0821             nan     0.0010    0.0823
##    160       47.5361             nan     0.0010    0.0671
##    180       46.0683             nan     0.0010    0.0741
##    200       44.6018             nan     0.0010    0.0692
##    220       43.2035             nan     0.0010    0.0644
##    240       41.8568             nan     0.0010    0.0733
##    260       40.5665             nan     0.0010    0.0582
##    280       39.3430             nan     0.0010    0.0615
##    300       38.1464             nan     0.0010    0.0603
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.4247             nan     0.0050    0.3927
##      2       61.0355             nan     0.0050    0.3811
##      3       60.6968             nan     0.0050    0.3881
##      4       60.3335             nan     0.0050    0.3873
##      5       59.9376             nan     0.0050    0.3754
##      6       59.5562             nan     0.0050    0.3775
##      7       59.1511             nan     0.0050    0.3662
##      8       58.7980             nan     0.0050    0.3743
##      9       58.4148             nan     0.0050    0.3935
##     10       58.0474             nan     0.0050    0.3725
##     20       54.5219             nan     0.0050    0.3011
##     40       48.5185             nan     0.0050    0.2530
##     60       43.4335             nan     0.0050    0.1997
##     80       39.0295             nan     0.0050    0.2008
##    100       35.2016             nan     0.0050    0.1716
##    120       31.9302             nan     0.0050    0.1456
##    140       29.1019             nan     0.0050    0.1324
##    160       26.5452             nan     0.0050    0.1149
##    180       24.3358             nan     0.0050    0.0931
##    200       22.4131             nan     0.0050    0.0727
##    220       20.7158             nan     0.0050    0.0724
##    240       19.2342             nan     0.0050    0.0613
##    260       17.8414             nan     0.0050    0.0607
##    280       16.6490             nan     0.0050    0.0501
##    300       15.5555             nan     0.0050    0.0431
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.4173             nan     0.0050    0.3816
##      2       61.0478             nan     0.0050    0.3884
##      3       60.6619             nan     0.0050    0.3965
##      4       60.2674             nan     0.0050    0.3843
##      5       59.8641             nan     0.0050    0.3812
##      6       59.4762             nan     0.0050    0.3855
##      7       59.0631             nan     0.0050    0.3901
##      8       58.6878             nan     0.0050    0.3801
##      9       58.3200             nan     0.0050    0.4004
##     10       57.9925             nan     0.0050    0.3532
##     20       54.5518             nan     0.0050    0.3219
##     40       48.4622             nan     0.0050    0.2648
##     60       43.4209             nan     0.0050    0.2067
##     80       39.1640             nan     0.0050    0.2042
##    100       35.3025             nan     0.0050    0.1841
##    120       31.9725             nan     0.0050    0.1462
##    140       29.1019             nan     0.0050    0.1257
##    160       26.5990             nan     0.0050    0.1030
##    180       24.3783             nan     0.0050    0.0851
##    200       22.4160             nan     0.0050    0.0989
##    220       20.7149             nan     0.0050    0.0742
##    240       19.2137             nan     0.0050    0.0665
##    260       17.8177             nan     0.0050    0.0631
##    280       16.6084             nan     0.0050    0.0551
##    300       15.4976             nan     0.0050    0.0374
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3816             nan     0.0050    0.4107
##      2       60.9847             nan     0.0050    0.3927
##      3       60.6109             nan     0.0050    0.3711
##      4       60.2468             nan     0.0050    0.3230
##      5       59.8645             nan     0.0050    0.3919
##      6       59.4517             nan     0.0050    0.3860
##      7       59.0930             nan     0.0050    0.3490
##      8       58.7249             nan     0.0050    0.3640
##      9       58.3603             nan     0.0050    0.4007
##     10       57.9911             nan     0.0050    0.3508
##     20       54.5850             nan     0.0050    0.3369
##     40       48.6356             nan     0.0050    0.2748
##     60       43.4471             nan     0.0050    0.2395
##     80       39.1858             nan     0.0050    0.1921
##    100       35.4071             nan     0.0050    0.1676
##    120       32.0656             nan     0.0050    0.1538
##    140       29.1513             nan     0.0050    0.1261
##    160       26.5742             nan     0.0050    0.1087
##    180       24.4029             nan     0.0050    0.0835
##    200       22.4413             nan     0.0050    0.0887
##    220       20.7474             nan     0.0050    0.0589
##    240       19.1727             nan     0.0050    0.0647
##    260       17.7907             nan     0.0050    0.0625
##    280       16.5546             nan     0.0050    0.0533
##    300       15.4377             nan     0.0050    0.0534
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3183             nan     0.0050    0.4876
##      2       60.8492             nan     0.0050    0.4594
##      3       60.3518             nan     0.0050    0.4423
##      4       59.9113             nan     0.0050    0.4776
##      5       59.4253             nan     0.0050    0.4608
##      6       58.9370             nan     0.0050    0.4401
##      7       58.4892             nan     0.0050    0.4357
##      8       58.0379             nan     0.0050    0.4529
##      9       57.5703             nan     0.0050    0.4634
##     10       57.1655             nan     0.0050    0.4319
##     20       52.9620             nan     0.0050    0.4146
##     40       45.7776             nan     0.0050    0.3745
##     60       39.6726             nan     0.0050    0.2757
##     80       34.3010             nan     0.0050    0.2296
##    100       30.0047             nan     0.0050    0.2047
##    120       26.3439             nan     0.0050    0.1414
##    140       23.2501             nan     0.0050    0.1473
##    160       20.6512             nan     0.0050    0.1015
##    180       18.4366             nan     0.0050    0.1074
##    200       16.5790             nan     0.0050    0.0781
##    220       14.9212             nan     0.0050    0.0643
##    240       13.5187             nan     0.0050    0.0443
##    260       12.2996             nan     0.0050    0.0524
##    280       11.2470             nan     0.0050    0.0463
##    300       10.3624             nan     0.0050    0.0431
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3281             nan     0.0050    0.4959
##      2       60.8400             nan     0.0050    0.4515
##      3       60.3679             nan     0.0050    0.4682
##      4       59.8972             nan     0.0050    0.4882
##      5       59.4713             nan     0.0050    0.4463
##      6       59.0338             nan     0.0050    0.4229
##      7       58.6122             nan     0.0050    0.4238
##      8       58.1729             nan     0.0050    0.4370
##      9       57.7493             nan     0.0050    0.4365
##     10       57.3423             nan     0.0050    0.4293
##     20       53.1743             nan     0.0050    0.3420
##     40       45.9690             nan     0.0050    0.3232
##     60       39.7048             nan     0.0050    0.2887
##     80       34.6085             nan     0.0050    0.2706
##    100       30.2483             nan     0.0050    0.1994
##    120       26.4919             nan     0.0050    0.1735
##    140       23.3849             nan     0.0050    0.1502
##    160       20.7488             nan     0.0050    0.1143
##    180       18.5069             nan     0.0050    0.1038
##    200       16.5961             nan     0.0050    0.0790
##    220       14.9226             nan     0.0050    0.0808
##    240       13.5931             nan     0.0050    0.0598
##    260       12.3717             nan     0.0050    0.0419
##    280       11.3383             nan     0.0050    0.0434
##    300       10.4187             nan     0.0050    0.0385
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3132             nan     0.0050    0.4832
##      2       60.8305             nan     0.0050    0.4159
##      3       60.3857             nan     0.0050    0.4552
##      4       59.9519             nan     0.0050    0.4422
##      5       59.4675             nan     0.0050    0.4922
##      6       59.0084             nan     0.0050    0.4453
##      7       58.5887             nan     0.0050    0.4213
##      8       58.1446             nan     0.0050    0.4156
##      9       57.7243             nan     0.0050    0.4845
##     10       57.3011             nan     0.0050    0.4325
##     20       53.2001             nan     0.0050    0.3714
##     40       45.8054             nan     0.0050    0.2775
##     60       39.7707             nan     0.0050    0.2795
##     80       34.5800             nan     0.0050    0.2288
##    100       30.1995             nan     0.0050    0.2101
##    120       26.4604             nan     0.0050    0.1636
##    140       23.4614             nan     0.0050    0.1386
##    160       20.8516             nan     0.0050    0.1203
##    180       18.6040             nan     0.0050    0.0806
##    200       16.6551             nan     0.0050    0.0962
##    220       15.0651             nan     0.0050    0.0573
##    240       13.6762             nan     0.0050    0.0389
##    260       12.5008             nan     0.0050    0.0460
##    280       11.4454             nan     0.0050    0.0418
##    300       10.5181             nan     0.0050    0.0413
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2965             nan     0.0050    0.4630
##      2       60.7673             nan     0.0050    0.5376
##      3       60.2610             nan     0.0050    0.5351
##      4       59.7501             nan     0.0050    0.4393
##      5       59.2423             nan     0.0050    0.5374
##      6       58.7616             nan     0.0050    0.5020
##      7       58.2913             nan     0.0050    0.4252
##      8       57.8056             nan     0.0050    0.4545
##      9       57.3446             nan     0.0050    0.4572
##     10       56.8928             nan     0.0050    0.4419
##     20       52.4219             nan     0.0050    0.4211
##     40       44.5994             nan     0.0050    0.3508
##     60       38.1464             nan     0.0050    0.2810
##     80       32.7632             nan     0.0050    0.2527
##    100       28.2622             nan     0.0050    0.1794
##    120       24.4678             nan     0.0050    0.1673
##    140       21.2787             nan     0.0050    0.1257
##    160       18.5928             nan     0.0050    0.1227
##    180       16.3531             nan     0.0050    0.0776
##    200       14.4769             nan     0.0050    0.0881
##    220       12.9282             nan     0.0050    0.0626
##    240       11.5860             nan     0.0050    0.0550
##    260       10.4411             nan     0.0050    0.0443
##    280        9.4774             nan     0.0050    0.0372
##    300        8.6676             nan     0.0050    0.0318
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3026             nan     0.0050    0.4722
##      2       60.7909             nan     0.0050    0.4977
##      3       60.2783             nan     0.0050    0.5161
##      4       59.7878             nan     0.0050    0.4935
##      5       59.2696             nan     0.0050    0.5251
##      6       58.7793             nan     0.0050    0.5116
##      7       58.2909             nan     0.0050    0.4509
##      8       57.7947             nan     0.0050    0.4880
##      9       57.3085             nan     0.0050    0.4177
##     10       56.8342             nan     0.0050    0.4469
##     20       52.3362             nan     0.0050    0.3965
##     40       44.5028             nan     0.0050    0.3664
##     60       38.0418             nan     0.0050    0.2665
##     80       32.6329             nan     0.0050    0.2474
##    100       28.1768             nan     0.0050    0.1930
##    120       24.4039             nan     0.0050    0.1632
##    140       21.3089             nan     0.0050    0.1419
##    160       18.6493             nan     0.0050    0.1447
##    180       16.4301             nan     0.0050    0.0964
##    200       14.5578             nan     0.0050    0.0824
##    220       12.9799             nan     0.0050    0.0620
##    240       11.6491             nan     0.0050    0.0520
##    260       10.5148             nan     0.0050    0.0357
##    280        9.5391             nan     0.0050    0.0397
##    300        8.7204             nan     0.0050    0.0371
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2691             nan     0.0050    0.4829
##      2       60.7439             nan     0.0050    0.4850
##      3       60.2346             nan     0.0050    0.4987
##      4       59.7348             nan     0.0050    0.5476
##      5       59.2410             nan     0.0050    0.4521
##      6       58.7536             nan     0.0050    0.4424
##      7       58.2607             nan     0.0050    0.4742
##      8       57.7913             nan     0.0050    0.4585
##      9       57.3150             nan     0.0050    0.4869
##     10       56.8442             nan     0.0050    0.4820
##     20       52.3889             nan     0.0050    0.4029
##     40       44.5993             nan     0.0050    0.3464
##     60       38.1328             nan     0.0050    0.3073
##     80       32.8046             nan     0.0050    0.2354
##    100       28.3479             nan     0.0050    0.2270
##    120       24.5326             nan     0.0050    0.1497
##    140       21.4164             nan     0.0050    0.1383
##    160       18.7505             nan     0.0050    0.1135
##    180       16.5811             nan     0.0050    0.0891
##    200       14.7176             nan     0.0050    0.0836
##    220       13.1545             nan     0.0050    0.0643
##    240       11.8073             nan     0.0050    0.0477
##    260       10.6733             nan     0.0050    0.0475
##    280        9.7384             nan     0.0050    0.0447
##    300        8.9193             nan     0.0050    0.0360
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.0259             nan     0.0100    0.7957
##      2       60.2660             nan     0.0100    0.8207
##      3       59.5667             nan     0.0100    0.6617
##      4       58.8095             nan     0.0100    0.7140
##      5       58.0253             nan     0.0100    0.7517
##      6       57.2912             nan     0.0100    0.7289
##      7       56.5374             nan     0.0100    0.6663
##      8       55.8036             nan     0.0100    0.7069
##      9       55.0182             nan     0.0100    0.7044
##     10       54.3776             nan     0.0100    0.6594
##     20       48.4372             nan     0.0100    0.5332
##     40       39.0501             nan     0.0100    0.3402
##     60       31.9590             nan     0.0100    0.2954
##     80       26.6543             nan     0.0100    0.2302
##    100       22.4259             nan     0.0100    0.2001
##    120       19.2032             nan     0.0100    0.1285
##    140       16.5708             nan     0.0100    0.1072
##    160       14.5227             nan     0.0100    0.0859
##    180       12.8266             nan     0.0100    0.0568
##    200       11.4716             nan     0.0100    0.0590
##    220       10.3608             nan     0.0100    0.0326
##    240        9.4100             nan     0.0100    0.0306
##    260        8.6169             nan     0.0100    0.0241
##    280        7.9377             nan     0.0100    0.0282
##    300        7.3442             nan     0.0100    0.0152
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.0814             nan     0.0100    0.7907
##      2       60.2514             nan     0.0100    0.7743
##      3       59.4094             nan     0.0100    0.7930
##      4       58.6600             nan     0.0100    0.7966
##      5       57.9474             nan     0.0100    0.7079
##      6       57.1818             nan     0.0100    0.7516
##      7       56.4825             nan     0.0100    0.6847
##      8       55.8397             nan     0.0100    0.6299
##      9       55.1527             nan     0.0100    0.6924
##     10       54.4888             nan     0.0100    0.6545
##     20       48.4554             nan     0.0100    0.5276
##     40       38.9476             nan     0.0100    0.3780
##     60       31.7902             nan     0.0100    0.2759
##     80       26.4888             nan     0.0100    0.2076
##    100       22.2980             nan     0.0100    0.1510
##    120       19.0910             nan     0.0100    0.1341
##    140       16.5701             nan     0.0100    0.1059
##    160       14.4824             nan     0.0100    0.1143
##    180       12.8322             nan     0.0100    0.0625
##    200       11.4923             nan     0.0100    0.0563
##    220       10.3602             nan     0.0100    0.0364
##    240        9.4092             nan     0.0100    0.0390
##    260        8.6119             nan     0.0100    0.0259
##    280        7.9145             nan     0.0100    0.0227
##    300        7.3296             nan     0.0100    0.0180
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.0671             nan     0.0100    0.7792
##      2       60.2315             nan     0.0100    0.7638
##      3       59.4733             nan     0.0100    0.7846
##      4       58.7222             nan     0.0100    0.7790
##      5       58.0447             nan     0.0100    0.7248
##      6       57.2937             nan     0.0100    0.7220
##      7       56.6312             nan     0.0100    0.6948
##      8       55.9248             nan     0.0100    0.6805
##      9       55.2476             nan     0.0100    0.6856
##     10       54.5930             nan     0.0100    0.6725
##     20       48.3398             nan     0.0100    0.5264
##     40       39.0411             nan     0.0100    0.3951
##     60       32.0237             nan     0.0100    0.3134
##     80       26.5445             nan     0.0100    0.2452
##    100       22.4129             nan     0.0100    0.1822
##    120       19.1531             nan     0.0100    0.1184
##    140       16.6034             nan     0.0100    0.1088
##    160       14.5498             nan     0.0100    0.0674
##    180       12.8573             nan     0.0100    0.0552
##    200       11.5291             nan     0.0100    0.0491
##    220       10.4064             nan     0.0100    0.0517
##    240        9.4760             nan     0.0100    0.0429
##    260        8.6838             nan     0.0100    0.0167
##    280        7.9801             nan     0.0100    0.0218
##    300        7.3726             nan     0.0100    0.0171
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8992             nan     0.0100    0.9126
##      2       59.9128             nan     0.0100    0.9075
##      3       59.0474             nan     0.0100    0.8692
##      4       58.1807             nan     0.0100    0.8340
##      5       57.2786             nan     0.0100    0.8972
##      6       56.4909             nan     0.0100    0.7975
##      7       55.5981             nan     0.0100    0.8828
##      8       54.7066             nan     0.0100    0.8425
##      9       53.8495             nan     0.0100    0.8164
##     10       53.1001             nan     0.0100    0.7709
##     20       45.8305             nan     0.0100    0.6532
##     40       34.4791             nan     0.0100    0.3490
##     60       26.3919             nan     0.0100    0.3377
##     80       20.5346             nan     0.0100    0.2135
##    100       16.5371             nan     0.0100    0.1639
##    120       13.4933             nan     0.0100    0.1027
##    140       11.3140             nan     0.0100    0.0565
##    160        9.5838             nan     0.0100    0.0655
##    180        8.2633             nan     0.0100    0.0314
##    200        7.2523             nan     0.0100    0.0439
##    220        6.4841             nan     0.0100    0.0301
##    240        5.8374             nan     0.0100    0.0244
##    260        5.3348             nan     0.0100    0.0146
##    280        4.9464             nan     0.0100    0.0070
##    300        4.6325             nan     0.0100    0.0127
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9490             nan     0.0100    0.8696
##      2       60.0335             nan     0.0100    0.8668
##      3       59.1876             nan     0.0100    0.7986
##      4       58.2273             nan     0.0100    0.9547
##      5       57.3208             nan     0.0100    0.9097
##      6       56.5093             nan     0.0100    0.8691
##      7       55.6579             nan     0.0100    0.8855
##      8       54.8031             nan     0.0100    0.8957
##      9       53.9360             nan     0.0100    0.7772
##     10       53.1756             nan     0.0100    0.7192
##     20       45.7907             nan     0.0100    0.7218
##     40       34.5109             nan     0.0100    0.4867
##     60       26.5776             nan     0.0100    0.2989
##     80       20.7947             nan     0.0100    0.1947
##    100       16.7472             nan     0.0100    0.1567
##    120       13.7496             nan     0.0100    0.1137
##    140       11.4284             nan     0.0100    0.0861
##    160        9.7080             nan     0.0100    0.0581
##    180        8.4437             nan     0.0100    0.0494
##    200        7.3566             nan     0.0100    0.0391
##    220        6.5726             nan     0.0100    0.0208
##    240        5.9168             nan     0.0100    0.0230
##    260        5.4290             nan     0.0100    0.0137
##    280        5.0539             nan     0.0100    0.0056
##    300        4.7373             nan     0.0100    0.0083
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9365             nan     0.0100    0.7847
##      2       60.0191             nan     0.0100    0.8861
##      3       59.1064             nan     0.0100    0.9121
##      4       58.1848             nan     0.0100    0.8694
##      5       57.2883             nan     0.0100    0.8085
##      6       56.4124             nan     0.0100    0.8571
##      7       55.5699             nan     0.0100    0.8311
##      8       54.7537             nan     0.0100    0.7562
##      9       53.9323             nan     0.0100    0.7686
##     10       53.0774             nan     0.0100    0.8794
##     20       45.6775             nan     0.0100    0.6815
##     40       34.3273             nan     0.0100    0.4085
##     60       26.1986             nan     0.0100    0.2648
##     80       20.6354             nan     0.0100    0.2196
##    100       16.5685             nan     0.0100    0.1601
##    120       13.6057             nan     0.0100    0.1250
##    140       11.4132             nan     0.0100    0.0773
##    160        9.7243             nan     0.0100    0.0796
##    180        8.4128             nan     0.0100    0.0563
##    200        7.4161             nan     0.0100    0.0389
##    220        6.6031             nan     0.0100    0.0283
##    240        6.0109             nan     0.0100    0.0124
##    260        5.5255             nan     0.0100    0.0184
##    280        5.1231             nan     0.0100    0.0058
##    300        4.8033             nan     0.0100    0.0142
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8320             nan     0.0100    0.9874
##      2       59.8158             nan     0.0100    0.9658
##      3       58.8192             nan     0.0100    0.9144
##      4       57.8154             nan     0.0100    0.9664
##      5       56.9260             nan     0.0100    1.0306
##      6       56.0139             nan     0.0100    0.9234
##      7       55.0791             nan     0.0100    0.8274
##      8       54.2060             nan     0.0100    0.8090
##      9       53.2759             nan     0.0100    0.9091
##     10       52.3863             nan     0.0100    0.9540
##     20       44.5841             nan     0.0100    0.7099
##     40       32.7282             nan     0.0100    0.4816
##     60       24.5785             nan     0.0100    0.3229
##     80       18.7484             nan     0.0100    0.2126
##    100       14.6501             nan     0.0100    0.1688
##    120       11.7573             nan     0.0100    0.1336
##    140        9.6034             nan     0.0100    0.0899
##    160        7.9960             nan     0.0100    0.0619
##    180        6.8335             nan     0.0100    0.0428
##    200        5.9452             nan     0.0100    0.0387
##    220        5.2929             nan     0.0100    0.0233
##    240        4.7893             nan     0.0100    0.0146
##    260        4.3890             nan     0.0100    0.0115
##    280        4.0727             nan     0.0100    0.0086
##    300        3.8032             nan     0.0100    0.0042
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.7904             nan     0.0100    0.9557
##      2       59.7730             nan     0.0100    1.0454
##      3       58.7917             nan     0.0100    1.0417
##      4       57.8315             nan     0.0100    0.9792
##      5       56.9066             nan     0.0100    0.8869
##      6       55.9281             nan     0.0100    0.9816
##      7       55.0769             nan     0.0100    0.8482
##      8       54.1720             nan     0.0100    0.8625
##      9       53.3030             nan     0.0100    0.8170
##     10       52.3861             nan     0.0100    0.9409
##     20       44.6284             nan     0.0100    0.7512
##     40       32.7364             nan     0.0100    0.5014
##     60       24.5003             nan     0.0100    0.2941
##     80       18.7508             nan     0.0100    0.2436
##    100       14.6621             nan     0.0100    0.1474
##    120       11.7826             nan     0.0100    0.1067
##    140        9.6512             nan     0.0100    0.0743
##    160        8.0976             nan     0.0100    0.0475
##    180        6.9165             nan     0.0100    0.0305
##    200        6.0396             nan     0.0100    0.0288
##    220        5.3353             nan     0.0100    0.0250
##    240        4.8169             nan     0.0100    0.0081
##    260        4.4316             nan     0.0100    0.0081
##    280        4.1213             nan     0.0100    0.0112
##    300        3.8813             nan     0.0100    0.0089
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8081             nan     0.0100    0.9900
##      2       59.7973             nan     0.0100    1.0073
##      3       58.7935             nan     0.0100    1.0323
##      4       57.8178             nan     0.0100    1.0066
##      5       56.7987             nan     0.0100    1.0428
##      6       55.8656             nan     0.0100    0.8628
##      7       54.9656             nan     0.0100    0.8988
##      8       54.0472             nan     0.0100    0.9129
##      9       53.1807             nan     0.0100    0.8804
##     10       52.2988             nan     0.0100    0.8608
##     20       44.5616             nan     0.0100    0.6756
##     40       32.7940             nan     0.0100    0.4907
##     60       24.5151             nan     0.0100    0.3260
##     80       18.7760             nan     0.0100    0.2158
##    100       14.7725             nan     0.0100    0.1636
##    120       11.8296             nan     0.0100    0.0990
##    140        9.7265             nan     0.0100    0.0777
##    160        8.2204             nan     0.0100    0.0601
##    180        7.0602             nan     0.0100    0.0458
##    200        6.1641             nan     0.0100    0.0306
##    220        5.4894             nan     0.0100    0.0202
##    240        4.9914             nan     0.0100    0.0153
##    260        4.6193             nan     0.0100    0.0117
##    280        4.3293             nan     0.0100    0.0086
##    300        4.1106             nan     0.0100   -0.0039
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.6367             nan     0.0500    3.7829
##      2       54.1927             nan     0.0500    2.9824
##      3       51.1455             nan     0.0500    2.9591
##      4       48.1393             nan     0.0500    2.8497
##      5       45.6493             nan     0.0500    2.5293
##      6       43.2058             nan     0.0500    2.2645
##      7       40.7404             nan     0.0500    2.3167
##      8       38.5356             nan     0.0500    2.2107
##      9       36.6174             nan     0.0500    2.0769
##     10       34.8477             nan     0.0500    1.5948
##     20       22.0342             nan     0.0500    0.8360
##     40       11.3991             nan     0.0500    0.3324
##     60        7.2507             nan     0.0500    0.0992
##     80        5.4196             nan     0.0500    0.0357
##    100        4.6045             nan     0.0500    0.0130
##    120        4.1839             nan     0.0500   -0.0155
##    140        3.9602             nan     0.0500   -0.0099
##    160        3.8138             nan     0.0500   -0.0058
##    180        3.7117             nan     0.0500   -0.0033
##    200        3.6061             nan     0.0500   -0.0165
##    220        3.5128             nan     0.0500   -0.0034
##    240        3.4413             nan     0.0500   -0.0108
##    260        3.3928             nan     0.0500   -0.0027
##    280        3.3415             nan     0.0500   -0.0067
##    300        3.2966             nan     0.0500   -0.0117
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.9054             nan     0.0500    3.8857
##      2       54.3030             nan     0.0500    3.4940
##      3       51.2208             nan     0.0500    3.0389
##      4       48.2572             nan     0.0500    3.1144
##      5       45.3278             nan     0.0500    2.4434
##      6       42.6968             nan     0.0500    2.4270
##      7       40.5577             nan     0.0500    2.1199
##      8       38.3126             nan     0.0500    2.1356
##      9       36.4973             nan     0.0500    1.7005
##     10       34.6338             nan     0.0500    1.7883
##     20       21.5674             nan     0.0500    0.7282
##     40       10.9142             nan     0.0500    0.2002
##     60        7.1152             nan     0.0500    0.0735
##     80        5.4089             nan     0.0500    0.0449
##    100        4.5409             nan     0.0500    0.0085
##    120        4.1214             nan     0.0500   -0.0001
##    140        3.9205             nan     0.0500   -0.0085
##    160        3.7963             nan     0.0500   -0.0164
##    180        3.7049             nan     0.0500   -0.0182
##    200        3.6339             nan     0.0500   -0.0035
##    220        3.5570             nan     0.0500   -0.0055
##    240        3.5027             nan     0.0500   -0.0032
##    260        3.4655             nan     0.0500   -0.0096
##    280        3.4122             nan     0.0500   -0.0129
##    300        3.3558             nan     0.0500   -0.0096
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.2305             nan     0.0500    3.9085
##      2       54.7853             nan     0.0500    3.3344
##      3       51.5226             nan     0.0500    3.3525
##      4       48.5667             nan     0.0500    2.8294
##      5       45.7910             nan     0.0500    2.4082
##      6       43.3759             nan     0.0500    2.1217
##      7       41.0817             nan     0.0500    2.2774
##      8       38.7663             nan     0.0500    2.1823
##      9       36.5169             nan     0.0500    1.8743
##     10       34.7807             nan     0.0500    1.7050
##     20       22.2531             nan     0.0500    0.7362
##     40       11.2829             nan     0.0500    0.2258
##     60        7.3259             nan     0.0500    0.1276
##     80        5.5680             nan     0.0500    0.0351
##    100        4.7147             nan     0.0500    0.0055
##    120        4.3297             nan     0.0500    0.0054
##    140        4.1335             nan     0.0500   -0.0074
##    160        4.0020             nan     0.0500   -0.0092
##    180        3.9211             nan     0.0500   -0.0069
##    200        3.8576             nan     0.0500    0.0008
##    220        3.7740             nan     0.0500   -0.0108
##    240        3.7133             nan     0.0500   -0.0080
##    260        3.6554             nan     0.0500    0.0009
##    280        3.6029             nan     0.0500   -0.0106
##    300        3.5605             nan     0.0500   -0.0041
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.4503             nan     0.0500    4.4528
##      2       52.9398             nan     0.0500    4.1806
##      3       49.0146             nan     0.0500    3.7527
##      4       45.3843             nan     0.0500    3.7903
##      5       42.4031             nan     0.0500    2.7306
##      6       39.8386             nan     0.0500    2.4538
##      7       37.0293             nan     0.0500    2.7359
##      8       34.4023             nan     0.0500    2.3397
##      9       31.8148             nan     0.0500    2.1953
##     10       29.7094             nan     0.0500    1.9236
##     20       16.2992             nan     0.0500    0.8451
##     40        7.1653             nan     0.0500    0.1844
##     60        4.6180             nan     0.0500    0.0473
##     80        3.7778             nan     0.0500    0.0064
##    100        3.3986             nan     0.0500   -0.0065
##    120        3.1764             nan     0.0500   -0.0015
##    140        3.0100             nan     0.0500   -0.0101
##    160        2.8751             nan     0.0500   -0.0070
##    180        2.7546             nan     0.0500   -0.0055
##    200        2.6581             nan     0.0500   -0.0140
##    220        2.5630             nan     0.0500   -0.0061
##    240        2.4538             nan     0.0500   -0.0067
##    260        2.3795             nan     0.0500   -0.0085
##    280        2.2839             nan     0.0500   -0.0142
##    300        2.2192             nan     0.0500   -0.0145
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.0723             nan     0.0500    4.3820
##      2       52.6643             nan     0.0500    3.8235
##      3       48.5900             nan     0.0500    4.1792
##      4       44.8559             nan     0.0500    3.5430
##      5       41.4246             nan     0.0500    3.4289
##      6       38.7557             nan     0.0500    2.6508
##      7       35.9352             nan     0.0500    2.6063
##      8       33.3089             nan     0.0500    2.1359
##      9       30.8391             nan     0.0500    2.3369
##     10       28.9206             nan     0.0500    2.1003
##     20       16.2028             nan     0.0500    0.8256
##     40        7.0065             nan     0.0500    0.1624
##     60        4.6302             nan     0.0500    0.0392
##     80        3.8074             nan     0.0500    0.0035
##    100        3.4752             nan     0.0500   -0.0192
##    120        3.2392             nan     0.0500   -0.0062
##    140        3.0759             nan     0.0500   -0.0094
##    160        2.9289             nan     0.0500   -0.0164
##    180        2.8173             nan     0.0500   -0.0188
##    200        2.7131             nan     0.0500   -0.0099
##    220        2.6112             nan     0.0500   -0.0175
##    240        2.5456             nan     0.0500   -0.0102
##    260        2.4779             nan     0.0500   -0.0024
##    280        2.4042             nan     0.0500   -0.0113
##    300        2.3505             nan     0.0500   -0.0099
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.7684             nan     0.0500    3.8894
##      2       53.1666             nan     0.0500    4.2435
##      3       49.3629             nan     0.0500    3.8022
##      4       45.5040             nan     0.0500    3.8475
##      5       42.3453             nan     0.0500    3.0308
##      6       39.1540             nan     0.0500    3.3306
##      7       36.6976             nan     0.0500    2.6829
##      8       34.3849             nan     0.0500    2.5129
##      9       32.0814             nan     0.0500    2.4229
##     10       29.8997             nan     0.0500    1.8279
##     20       16.1290             nan     0.0500    0.7897
##     40        7.3229             nan     0.0500    0.1302
##     60        4.8530             nan     0.0500    0.0345
##     80        4.0995             nan     0.0500    0.0129
##    100        3.7455             nan     0.0500   -0.0139
##    120        3.5456             nan     0.0500   -0.0292
##    140        3.3553             nan     0.0500   -0.0058
##    160        3.2244             nan     0.0500   -0.0032
##    180        3.1015             nan     0.0500   -0.0163
##    200        3.0004             nan     0.0500   -0.0115
##    220        2.9326             nan     0.0500   -0.0190
##    240        2.8497             nan     0.0500   -0.0091
##    260        2.7820             nan     0.0500   -0.0065
##    280        2.7062             nan     0.0500   -0.0066
##    300        2.6457             nan     0.0500   -0.0346
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.8320             nan     0.0500    4.7680
##      2       52.3853             nan     0.0500    4.8503
##      3       48.4297             nan     0.0500    3.4382
##      4       44.7212             nan     0.0500    3.6736
##      5       41.3924             nan     0.0500    3.4279
##      6       38.1576             nan     0.0500    3.0952
##      7       35.4374             nan     0.0500    2.6561
##      8       32.8001             nan     0.0500    2.5846
##      9       30.4555             nan     0.0500    2.4770
##     10       28.2191             nan     0.0500    2.3488
##     20       14.2285             nan     0.0500    0.8097
##     40        5.7770             nan     0.0500    0.1912
##     60        3.7045             nan     0.0500    0.0345
##     80        3.0621             nan     0.0500   -0.0097
##    100        2.7720             nan     0.0500   -0.0083
##    120        2.5784             nan     0.0500   -0.0237
##    140        2.3980             nan     0.0500   -0.0034
##    160        2.2078             nan     0.0500   -0.0156
##    180        2.0766             nan     0.0500   -0.0104
##    200        1.9768             nan     0.0500   -0.0023
##    220        1.8854             nan     0.0500   -0.0088
##    240        1.8070             nan     0.0500   -0.0093
##    260        1.7241             nan     0.0500   -0.0184
##    280        1.6545             nan     0.0500   -0.0052
##    300        1.5879             nan     0.0500   -0.0112
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.8497             nan     0.0500    4.8386
##      2       52.4863             nan     0.0500    4.4785
##      3       48.1555             nan     0.0500    3.9833
##      4       44.3572             nan     0.0500    3.2813
##      5       40.8570             nan     0.0500    3.4341
##      6       37.7221             nan     0.0500    2.7754
##      7       34.9781             nan     0.0500    2.7129
##      8       32.3076             nan     0.0500    2.6170
##      9       30.0510             nan     0.0500    2.4223
##     10       27.7476             nan     0.0500    1.8976
##     20       14.1932             nan     0.0500    0.7534
##     40        5.9201             nan     0.0500    0.1045
##     60        4.0067             nan     0.0500    0.0221
##     80        3.3741             nan     0.0500    0.0030
##    100        3.0452             nan     0.0500   -0.0267
##    120        2.8261             nan     0.0500   -0.0118
##    140        2.6483             nan     0.0500   -0.0130
##    160        2.4960             nan     0.0500   -0.0213
##    180        2.3863             nan     0.0500   -0.0080
##    200        2.2920             nan     0.0500   -0.0002
##    220        2.1874             nan     0.0500   -0.0018
##    240        2.1048             nan     0.0500   -0.0093
##    260        2.0098             nan     0.0500   -0.0165
##    280        1.9314             nan     0.0500   -0.0168
##    300        1.8766             nan     0.0500   -0.0147
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.9244             nan     0.0500    5.1171
##      2       52.4571             nan     0.0500    4.6444
##      3       48.1993             nan     0.0500    3.1985
##      4       44.3256             nan     0.0500    3.9093
##      5       40.9387             nan     0.0500    3.3371
##      6       37.8626             nan     0.0500    2.5901
##      7       34.9852             nan     0.0500    2.5577
##      8       32.3301             nan     0.0500    2.6774
##      9       29.9433             nan     0.0500    2.1083
##     10       27.7714             nan     0.0500    2.2560
##     20       14.3742             nan     0.0500    0.8475
##     40        6.0227             nan     0.0500    0.1771
##     60        4.0113             nan     0.0500    0.0170
##     80        3.4283             nan     0.0500   -0.0105
##    100        3.1594             nan     0.0500   -0.0122
##    120        2.9644             nan     0.0500   -0.0196
##    140        2.8001             nan     0.0500   -0.0173
##    160        2.6724             nan     0.0500   -0.0115
##    180        2.5816             nan     0.0500   -0.0161
##    200        2.4819             nan     0.0500   -0.0052
##    220        2.4003             nan     0.0500   -0.0140
##    240        2.3195             nan     0.0500   -0.0153
##    260        2.2276             nan     0.0500   -0.0047
##    280        2.1602             nan     0.0500   -0.0104
##    300        2.0971             nan     0.0500   -0.0051
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.3433             nan     0.1000    7.2148
##      2       48.2822             nan     0.1000    6.1631
##      3       42.9661             nan     0.1000    4.6968
##      4       38.6355             nan     0.1000    4.1501
##      5       34.5418             nan     0.1000    3.6537
##      6       31.2170             nan     0.1000    3.1128
##      7       28.0413             nan     0.1000    3.5156
##      8       25.3631             nan     0.1000    2.9212
##      9       23.3109             nan     0.1000    1.9813
##     10       21.3265             nan     0.1000    1.7683
##     20       11.1729             nan     0.1000    0.3999
##     40        5.5902             nan     0.1000    0.0192
##     60        4.2209             nan     0.1000    0.0152
##     80        3.8460             nan     0.1000    0.0043
##    100        3.6546             nan     0.1000   -0.0200
##    120        3.4935             nan     0.1000   -0.0112
##    140        3.3707             nan     0.1000   -0.0154
##    160        3.2773             nan     0.1000   -0.0278
##    180        3.1866             nan     0.1000   -0.0016
##    200        3.0995             nan     0.1000   -0.0203
##    220        3.0396             nan     0.1000   -0.0089
##    240        2.9781             nan     0.1000   -0.0002
##    260        2.9254             nan     0.1000   -0.0097
##    280        2.8698             nan     0.1000   -0.0137
##    300        2.8346             nan     0.1000   -0.0302
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.2265             nan     0.1000    7.1163
##      2       48.6576             nan     0.1000    6.7157
##      3       43.3939             nan     0.1000    5.4547
##      4       39.1375             nan     0.1000    3.8792
##      5       35.1892             nan     0.1000    3.6797
##      6       31.7823             nan     0.1000    3.2926
##      7       29.0199             nan     0.1000    2.6872
##      8       26.2560             nan     0.1000    2.5243
##      9       24.0254             nan     0.1000    2.1068
##     10       22.0876             nan     0.1000    1.8066
##     20       11.2781             nan     0.1000    0.4406
##     40        5.4104             nan     0.1000    0.1236
##     60        4.2618             nan     0.1000   -0.0026
##     80        3.9181             nan     0.1000   -0.0045
##    100        3.7332             nan     0.1000   -0.0036
##    120        3.5872             nan     0.1000   -0.0068
##    140        3.4643             nan     0.1000   -0.0017
##    160        3.3637             nan     0.1000   -0.0343
##    180        3.2859             nan     0.1000   -0.0340
##    200        3.2221             nan     0.1000   -0.0231
##    220        3.1691             nan     0.1000   -0.0073
##    240        3.0955             nan     0.1000   -0.0079
##    260        3.0492             nan     0.1000   -0.0262
##    280        2.9865             nan     0.1000   -0.0069
##    300        2.9380             nan     0.1000   -0.0176
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.5896             nan     0.1000    7.2854
##      2       47.2658             nan     0.1000    6.3954
##      3       42.6525             nan     0.1000    4.3513
##      4       37.5398             nan     0.1000    4.4499
##      5       33.4385             nan     0.1000    3.6988
##      6       30.4646             nan     0.1000    3.0329
##      7       27.3210             nan     0.1000    2.5673
##      8       25.1630             nan     0.1000    1.9908
##      9       22.9821             nan     0.1000    1.6630
##     10       21.1884             nan     0.1000    1.6891
##     20       11.6206             nan     0.1000    0.3988
##     40        5.4796             nan     0.1000    0.0868
##     60        4.3355             nan     0.1000   -0.0441
##     80        4.0089             nan     0.1000   -0.0224
##    100        3.8022             nan     0.1000   -0.0101
##    120        3.6473             nan     0.1000   -0.0070
##    140        3.5454             nan     0.1000   -0.0202
##    160        3.4319             nan     0.1000   -0.0074
##    180        3.3575             nan     0.1000   -0.0116
##    200        3.3045             nan     0.1000   -0.0150
##    220        3.2355             nan     0.1000   -0.0074
##    240        3.1843             nan     0.1000   -0.0134
##    260        3.1475             nan     0.1000   -0.0263
##    280        3.0981             nan     0.1000   -0.0145
##    300        3.0611             nan     0.1000   -0.0057
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.3253             nan     0.1000    9.0578
##      2       44.9801             nan     0.1000    7.4187
##      3       38.6441             nan     0.1000    6.7459
##      4       33.5339             nan     0.1000    5.3417
##      5       29.0168             nan     0.1000    4.2637
##      6       25.0130             nan     0.1000    3.5301
##      7       22.0532             nan     0.1000    2.2281
##      8       19.7221             nan     0.1000    2.3725
##      9       17.6946             nan     0.1000    2.1436
##     10       15.9447             nan     0.1000    1.8126
##     20        7.2957             nan     0.1000    0.4078
##     40        3.8740             nan     0.1000    0.0048
##     60        3.2939             nan     0.1000   -0.0107
##     80        2.9777             nan     0.1000   -0.0428
##    100        2.7342             nan     0.1000   -0.0276
##    120        2.5645             nan     0.1000   -0.0194
##    140        2.3557             nan     0.1000   -0.0009
##    160        2.2340             nan     0.1000   -0.0187
##    180        2.1065             nan     0.1000   -0.0149
##    200        1.9824             nan     0.1000   -0.0176
##    220        1.8480             nan     0.1000   -0.0096
##    240        1.7487             nan     0.1000   -0.0057
##    260        1.6816             nan     0.1000   -0.0298
##    280        1.6078             nan     0.1000   -0.0216
##    300        1.5328             nan     0.1000   -0.0178
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.1920             nan     0.1000    8.4287
##      2       45.6560             nan     0.1000    7.6100
##      3       39.0527             nan     0.1000    6.2033
##      4       33.8656             nan     0.1000    5.0410
##      5       29.2611             nan     0.1000    4.5767
##      6       25.9289             nan     0.1000    3.9663
##      7       22.6981             nan     0.1000    3.2224
##      8       19.9674             nan     0.1000    2.5695
##      9       18.0166             nan     0.1000    1.8034
##     10       16.1158             nan     0.1000    1.8290
##     20        7.3542             nan     0.1000    0.3304
##     40        4.0083             nan     0.1000    0.0100
##     60        3.4565             nan     0.1000   -0.0362
##     80        3.1531             nan     0.1000   -0.0207
##    100        2.9160             nan     0.1000   -0.0298
##    120        2.7438             nan     0.1000   -0.0135
##    140        2.5858             nan     0.1000   -0.0233
##    160        2.4474             nan     0.1000   -0.0231
##    180        2.3484             nan     0.1000   -0.0482
##    200        2.2436             nan     0.1000   -0.0224
##    220        2.1506             nan     0.1000   -0.0364
##    240        2.0510             nan     0.1000   -0.0081
##    260        1.9908             nan     0.1000   -0.0107
##    280        1.9431             nan     0.1000   -0.0290
##    300        1.8669             nan     0.1000   -0.0130
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.3275             nan     0.1000    9.4974
##      2       44.2549             nan     0.1000    7.6157
##      3       38.6369             nan     0.1000    5.9531
##      4       33.4839             nan     0.1000    5.0089
##      5       29.2254             nan     0.1000    4.3562
##      6       25.6599             nan     0.1000    3.8464
##      7       22.6107             nan     0.1000    3.0290
##      8       20.2821             nan     0.1000    2.5958
##      9       18.2525             nan     0.1000    1.4180
##     10       16.4281             nan     0.1000    1.7547
##     20        7.0672             nan     0.1000    0.3417
##     40        4.0312             nan     0.1000   -0.0068
##     60        3.4853             nan     0.1000   -0.0167
##     80        3.2674             nan     0.1000   -0.0048
##    100        3.0778             nan     0.1000   -0.0106
##    120        2.9331             nan     0.1000   -0.0378
##    140        2.7580             nan     0.1000   -0.0313
##    160        2.6134             nan     0.1000   -0.0342
##    180        2.4682             nan     0.1000   -0.0143
##    200        2.3750             nan     0.1000   -0.0194
##    220        2.2613             nan     0.1000   -0.0112
##    240        2.1905             nan     0.1000   -0.0090
##    260        2.1189             nan     0.1000   -0.0141
##    280        2.0420             nan     0.1000   -0.0335
##    300        1.9699             nan     0.1000   -0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.9265             nan     0.1000    8.7612
##      2       43.8835             nan     0.1000    8.1881
##      3       37.3005             nan     0.1000    6.0563
##      4       31.8111             nan     0.1000    5.3362
##      5       27.4137             nan     0.1000    4.6490
##      6       23.4880             nan     0.1000    3.4302
##      7       20.1364             nan     0.1000    2.5398
##      8       17.6012             nan     0.1000    2.3238
##      9       15.5160             nan     0.1000    2.0101
##     10       13.6728             nan     0.1000    1.6297
##     20        5.6776             nan     0.1000    0.2772
##     40        3.1189             nan     0.1000   -0.0087
##     60        2.6115             nan     0.1000   -0.0255
##     80        2.2601             nan     0.1000   -0.0272
##    100        2.0398             nan     0.1000   -0.0170
##    120        1.8655             nan     0.1000   -0.0194
##    140        1.7149             nan     0.1000   -0.0254
##    160        1.5710             nan     0.1000   -0.0068
##    180        1.4608             nan     0.1000   -0.0085
##    200        1.3697             nan     0.1000   -0.0194
##    220        1.2765             nan     0.1000   -0.0187
##    240        1.1875             nan     0.1000   -0.0129
##    260        1.1115             nan     0.1000   -0.0232
##    280        1.0552             nan     0.1000   -0.0025
##    300        1.0118             nan     0.1000   -0.0227
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.5487             nan     0.1000    9.2113
##      2       43.7437             nan     0.1000    6.9570
##      3       37.1399             nan     0.1000    6.4899
##      4       32.0482             nan     0.1000    5.3504
##      5       27.3076             nan     0.1000    4.1418
##      6       23.6405             nan     0.1000    3.6704
##      7       20.2073             nan     0.1000    3.1131
##      8       17.8362             nan     0.1000    2.4140
##      9       15.7391             nan     0.1000    2.0090
##     10       13.8770             nan     0.1000    1.9535
##     20        5.7722             nan     0.1000    0.3817
##     40        3.2480             nan     0.1000   -0.0183
##     60        2.7303             nan     0.1000    0.0037
##     80        2.4467             nan     0.1000   -0.0066
##    100        2.2034             nan     0.1000   -0.0174
##    120        2.0286             nan     0.1000   -0.0261
##    140        1.8625             nan     0.1000   -0.0134
##    160        1.7286             nan     0.1000   -0.0166
##    180        1.6334             nan     0.1000   -0.0250
##    200        1.5486             nan     0.1000   -0.0197
##    220        1.4927             nan     0.1000   -0.0132
##    240        1.4073             nan     0.1000   -0.0208
##    260        1.3326             nan     0.1000   -0.0211
##    280        1.2626             nan     0.1000   -0.0113
##    300        1.2000             nan     0.1000   -0.0158
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.9039             nan     0.1000    9.4957
##      2       44.0682             nan     0.1000    8.3789
##      3       37.2209             nan     0.1000    6.2207
##      4       31.8807             nan     0.1000    5.4912
##      5       27.7441             nan     0.1000    4.4991
##      6       23.7615             nan     0.1000    3.9009
##      7       20.3627             nan     0.1000    2.9989
##      8       17.8239             nan     0.1000    2.0788
##      9       15.5639             nan     0.1000    1.7318
##     10       13.7400             nan     0.1000    1.5380
##     20        5.8499             nan     0.1000    0.3245
##     40        3.5452             nan     0.1000   -0.0382
##     60        2.9582             nan     0.1000   -0.0419
##     80        2.6949             nan     0.1000   -0.0237
##    100        2.4741             nan     0.1000    0.0003
##    120        2.3281             nan     0.1000   -0.0204
##    140        2.1966             nan     0.1000   -0.0129
##    160        2.0623             nan     0.1000   -0.0341
##    180        1.9241             nan     0.1000   -0.0240
##    200        1.8304             nan     0.1000   -0.0366
##    220        1.7530             nan     0.1000   -0.0252
##    240        1.6707             nan     0.1000   -0.0285
##    260        1.6037             nan     0.1000   -0.0147
##    280        1.5368             nan     0.1000   -0.0180
##    300        1.4784             nan     0.1000   -0.0205
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9047             nan     0.0010    0.0788
##      2       61.8279             nan     0.0010    0.0761
##      3       61.7481             nan     0.0010    0.0787
##      4       61.6664             nan     0.0010    0.0775
##      5       61.5810             nan     0.0010    0.0783
##      6       61.5040             nan     0.0010    0.0759
##      7       61.4260             nan     0.0010    0.0763
##      8       61.3528             nan     0.0010    0.0783
##      9       61.2725             nan     0.0010    0.0740
##     10       61.1975             nan     0.0010    0.0697
##     20       60.4555             nan     0.0010    0.0777
##     40       58.9680             nan     0.0010    0.0722
##     60       57.5325             nan     0.0010    0.0731
##     80       56.1118             nan     0.0010    0.0667
##    100       54.7654             nan     0.0010    0.0635
##    120       53.4871             nan     0.0010    0.0629
##    140       52.2557             nan     0.0010    0.0615
##    160       51.0256             nan     0.0010    0.0595
##    180       49.8596             nan     0.0010    0.0572
##    200       48.7126             nan     0.0010    0.0503
##    220       47.6063             nan     0.0010    0.0528
##    240       46.5243             nan     0.0010    0.0528
##    260       45.4936             nan     0.0010    0.0494
##    280       44.4961             nan     0.0010    0.0415
##    300       43.5359             nan     0.0010    0.0495
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9063             nan     0.0010    0.0749
##      2       61.8334             nan     0.0010    0.0766
##      3       61.7574             nan     0.0010    0.0749
##      4       61.6811             nan     0.0010    0.0717
##      5       61.6026             nan     0.0010    0.0755
##      6       61.5221             nan     0.0010    0.0851
##      7       61.4374             nan     0.0010    0.0815
##      8       61.3619             nan     0.0010    0.0749
##      9       61.2967             nan     0.0010    0.0593
##     10       61.2210             nan     0.0010    0.0737
##     20       60.4294             nan     0.0010    0.0753
##     40       58.9290             nan     0.0010    0.0626
##     60       57.4533             nan     0.0010    0.0715
##     80       56.0471             nan     0.0010    0.0654
##    100       54.6910             nan     0.0010    0.0663
##    120       53.3973             nan     0.0010    0.0631
##    140       52.1601             nan     0.0010    0.0588
##    160       50.9380             nan     0.0010    0.0601
##    180       49.7538             nan     0.0010    0.0618
##    200       48.6307             nan     0.0010    0.0565
##    220       47.5321             nan     0.0010    0.0491
##    240       46.4709             nan     0.0010    0.0524
##    260       45.4613             nan     0.0010    0.0454
##    280       44.4670             nan     0.0010    0.0481
##    300       43.4806             nan     0.0010    0.0495
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9090             nan     0.0010    0.0793
##      2       61.8353             nan     0.0010    0.0767
##      3       61.7586             nan     0.0010    0.0774
##      4       61.6753             nan     0.0010    0.0801
##      5       61.5921             nan     0.0010    0.0790
##      6       61.5092             nan     0.0010    0.0786
##      7       61.4324             nan     0.0010    0.0758
##      8       61.3539             nan     0.0010    0.0771
##      9       61.2769             nan     0.0010    0.0804
##     10       61.1994             nan     0.0010    0.0724
##     20       60.4473             nan     0.0010    0.0789
##     40       58.9810             nan     0.0010    0.0737
##     60       57.5474             nan     0.0010    0.0735
##     80       56.1389             nan     0.0010    0.0679
##    100       54.7820             nan     0.0010    0.0673
##    120       53.5155             nan     0.0010    0.0614
##    140       52.2711             nan     0.0010    0.0592
##    160       51.0785             nan     0.0010    0.0583
##    180       49.8919             nan     0.0010    0.0547
##    200       48.7708             nan     0.0010    0.0539
##    220       47.6624             nan     0.0010    0.0454
##    240       46.6294             nan     0.0010    0.0518
##    260       45.6064             nan     0.0010    0.0503
##    280       44.5913             nan     0.0010    0.0457
##    300       43.6070             nan     0.0010    0.0462
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8925             nan     0.0010    0.0980
##      2       61.8005             nan     0.0010    0.0960
##      3       61.7061             nan     0.0010    0.0874
##      4       61.6107             nan     0.0010    0.1019
##      5       61.5165             nan     0.0010    0.0872
##      6       61.4140             nan     0.0010    0.0973
##      7       61.3136             nan     0.0010    0.0979
##      8       61.2262             nan     0.0010    0.0893
##      9       61.1303             nan     0.0010    0.0982
##     10       61.0349             nan     0.0010    0.0904
##     20       60.1110             nan     0.0010    0.0891
##     40       58.2950             nan     0.0010    0.0842
##     60       56.5682             nan     0.0010    0.0872
##     80       54.8649             nan     0.0010    0.0798
##    100       53.2125             nan     0.0010    0.0763
##    120       51.6491             nan     0.0010    0.0754
##    140       50.0973             nan     0.0010    0.0699
##    160       48.6284             nan     0.0010    0.0765
##    180       47.2307             nan     0.0010    0.0675
##    200       45.8426             nan     0.0010    0.0624
##    220       44.5136             nan     0.0010    0.0473
##    240       43.2237             nan     0.0010    0.0482
##    260       41.9802             nan     0.0010    0.0655
##    280       40.7712             nan     0.0010    0.0556
##    300       39.6414             nan     0.0010    0.0651
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8950             nan     0.0010    0.0944
##      2       61.8004             nan     0.0010    0.0890
##      3       61.7074             nan     0.0010    0.0884
##      4       61.6198             nan     0.0010    0.0957
##      5       61.5233             nan     0.0010    0.0870
##      6       61.4285             nan     0.0010    0.0964
##      7       61.3329             nan     0.0010    0.0996
##      8       61.2386             nan     0.0010    0.0978
##      9       61.1415             nan     0.0010    0.0932
##     10       61.0518             nan     0.0010    0.0949
##     20       60.0968             nan     0.0010    0.0945
##     40       58.2794             nan     0.0010    0.0834
##     60       56.5040             nan     0.0010    0.0831
##     80       54.8189             nan     0.0010    0.0797
##    100       53.1943             nan     0.0010    0.0817
##    120       51.6208             nan     0.0010    0.0748
##    140       50.0731             nan     0.0010    0.0694
##    160       48.5785             nan     0.0010    0.0766
##    180       47.1601             nan     0.0010    0.0732
##    200       45.7723             nan     0.0010    0.0721
##    220       44.4162             nan     0.0010    0.0602
##    240       43.1308             nan     0.0010    0.0647
##    260       41.8912             nan     0.0010    0.0574
##    280       40.6619             nan     0.0010    0.0544
##    300       39.4911             nan     0.0010    0.0606
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8939             nan     0.0010    0.0970
##      2       61.8033             nan     0.0010    0.0920
##      3       61.7176             nan     0.0010    0.0911
##      4       61.6219             nan     0.0010    0.0865
##      5       61.5231             nan     0.0010    0.0890
##      6       61.4310             nan     0.0010    0.0927
##      7       61.3342             nan     0.0010    0.0937
##      8       61.2413             nan     0.0010    0.0920
##      9       61.1501             nan     0.0010    0.0893
##     10       61.0603             nan     0.0010    0.0919
##     20       60.1365             nan     0.0010    0.0930
##     40       58.2989             nan     0.0010    0.0989
##     60       56.5295             nan     0.0010    0.0908
##     80       54.8734             nan     0.0010    0.0832
##    100       53.2157             nan     0.0010    0.0801
##    120       51.5992             nan     0.0010    0.0733
##    140       50.0701             nan     0.0010    0.0746
##    160       48.5910             nan     0.0010    0.0786
##    180       47.1369             nan     0.0010    0.0618
##    200       45.7277             nan     0.0010    0.0685
##    220       44.4081             nan     0.0010    0.0625
##    240       43.1267             nan     0.0010    0.0590
##    260       41.8871             nan     0.0010    0.0617
##    280       40.7131             nan     0.0010    0.0614
##    300       39.5575             nan     0.0010    0.0547
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8827             nan     0.0010    0.1070
##      2       61.7783             nan     0.0010    0.0971
##      3       61.6700             nan     0.0010    0.1018
##      4       61.5667             nan     0.0010    0.1041
##      5       61.4567             nan     0.0010    0.1142
##      6       61.3540             nan     0.0010    0.1023
##      7       61.2553             nan     0.0010    0.0904
##      8       61.1544             nan     0.0010    0.0978
##      9       61.0538             nan     0.0010    0.0993
##     10       60.9490             nan     0.0010    0.1009
##     20       59.9341             nan     0.0010    0.0969
##     40       57.9569             nan     0.0010    0.0958
##     60       56.0609             nan     0.0010    0.0888
##     80       54.2418             nan     0.0010    0.0850
##    100       52.5003             nan     0.0010    0.0853
##    120       50.7959             nan     0.0010    0.0798
##    140       49.1706             nan     0.0010    0.0758
##    160       47.5828             nan     0.0010    0.0799
##    180       46.0902             nan     0.0010    0.0656
##    200       44.6376             nan     0.0010    0.0741
##    220       43.2198             nan     0.0010    0.0688
##    240       41.8695             nan     0.0010    0.0663
##    260       40.5633             nan     0.0010    0.0659
##    280       39.3079             nan     0.0010    0.0602
##    300       38.0952             nan     0.0010    0.0572
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8778             nan     0.0010    0.1140
##      2       61.7649             nan     0.0010    0.1242
##      3       61.6661             nan     0.0010    0.1039
##      4       61.5644             nan     0.0010    0.1064
##      5       61.4634             nan     0.0010    0.1006
##      6       61.3601             nan     0.0010    0.1157
##      7       61.2519             nan     0.0010    0.1038
##      8       61.1437             nan     0.0010    0.0969
##      9       61.0480             nan     0.0010    0.1115
##     10       60.9519             nan     0.0010    0.0951
##     20       59.9242             nan     0.0010    0.0980
##     40       57.9651             nan     0.0010    0.1000
##     60       56.0711             nan     0.0010    0.0898
##     80       54.2514             nan     0.0010    0.0913
##    100       52.4817             nan     0.0010    0.0805
##    120       50.7792             nan     0.0010    0.0885
##    140       49.1295             nan     0.0010    0.0801
##    160       47.5467             nan     0.0010    0.0714
##    180       46.0508             nan     0.0010    0.0779
##    200       44.5978             nan     0.0010    0.0689
##    220       43.1913             nan     0.0010    0.0682
##    240       41.8383             nan     0.0010    0.0679
##    260       40.5343             nan     0.0010    0.0660
##    280       39.2916             nan     0.0010    0.0569
##    300       38.0885             nan     0.0010    0.0563
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8810             nan     0.0010    0.1037
##      2       61.7810             nan     0.0010    0.0998
##      3       61.6741             nan     0.0010    0.0967
##      4       61.5719             nan     0.0010    0.1012
##      5       61.4701             nan     0.0010    0.0908
##      6       61.3687             nan     0.0010    0.0921
##      7       61.2697             nan     0.0010    0.0879
##      8       61.1612             nan     0.0010    0.1011
##      9       61.0514             nan     0.0010    0.1052
##     10       60.9537             nan     0.0010    0.1013
##     20       59.9534             nan     0.0010    0.1117
##     40       58.0093             nan     0.0010    0.0987
##     60       56.0976             nan     0.0010    0.0930
##     80       54.2795             nan     0.0010    0.0890
##    100       52.5243             nan     0.0010    0.0807
##    120       50.8528             nan     0.0010    0.0703
##    140       49.2364             nan     0.0010    0.0767
##    160       47.6559             nan     0.0010    0.0796
##    180       46.1496             nan     0.0010    0.0626
##    200       44.7147             nan     0.0010    0.0747
##    220       43.3037             nan     0.0010    0.0667
##    240       41.9526             nan     0.0010    0.0681
##    260       40.6585             nan     0.0010    0.0563
##    280       39.4218             nan     0.0010    0.0629
##    300       38.2281             nan     0.0010    0.0551
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5838             nan     0.0050    0.3776
##      2       61.2126             nan     0.0050    0.3971
##      3       60.7948             nan     0.0050    0.3947
##      4       60.4021             nan     0.0050    0.3835
##      5       60.0199             nan     0.0050    0.3769
##      6       59.6285             nan     0.0050    0.3810
##      7       59.2699             nan     0.0050    0.3722
##      8       58.8817             nan     0.0050    0.3530
##      9       58.5091             nan     0.0050    0.3400
##     10       58.1730             nan     0.0050    0.3437
##     20       54.6311             nan     0.0050    0.3303
##     40       48.7001             nan     0.0050    0.2664
##     60       43.5251             nan     0.0050    0.2302
##     80       39.1526             nan     0.0050    0.1842
##    100       35.2249             nan     0.0050    0.1585
##    120       31.8066             nan     0.0050    0.1378
##    140       28.8709             nan     0.0050    0.1489
##    160       26.3299             nan     0.0050    0.0943
##    180       24.0053             nan     0.0050    0.1064
##    200       22.0425             nan     0.0050    0.0792
##    220       20.3029             nan     0.0050    0.0773
##    240       18.8179             nan     0.0050    0.0397
##    260       17.4593             nan     0.0050    0.0572
##    280       16.2437             nan     0.0050    0.0582
##    300       15.1450             nan     0.0050    0.0307
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.6057             nan     0.0050    0.4000
##      2       61.2221             nan     0.0050    0.3945
##      3       60.8513             nan     0.0050    0.4147
##      4       60.4704             nan     0.0050    0.3650
##      5       60.0813             nan     0.0050    0.3976
##      6       59.7098             nan     0.0050    0.3789
##      7       59.3254             nan     0.0050    0.3635
##      8       58.9752             nan     0.0050    0.3750
##      9       58.6043             nan     0.0050    0.3537
##     10       58.2653             nan     0.0050    0.3439
##     20       54.7686             nan     0.0050    0.3338
##     40       48.7975             nan     0.0050    0.2641
##     60       43.6001             nan     0.0050    0.2286
##     80       39.1019             nan     0.0050    0.1995
##    100       35.3410             nan     0.0050    0.1794
##    120       31.9597             nan     0.0050    0.1566
##    140       29.0816             nan     0.0050    0.1291
##    160       26.5036             nan     0.0050    0.1160
##    180       24.1868             nan     0.0050    0.0923
##    200       22.2687             nan     0.0050    0.0740
##    220       20.5152             nan     0.0050    0.0770
##    240       18.9836             nan     0.0050    0.0643
##    260       17.6441             nan     0.0050    0.0483
##    280       16.4509             nan     0.0050    0.0443
##    300       15.3557             nan     0.0050    0.0468
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5996             nan     0.0050    0.4038
##      2       61.1802             nan     0.0050    0.3783
##      3       60.7942             nan     0.0050    0.3802
##      4       60.4187             nan     0.0050    0.3387
##      5       60.0539             nan     0.0050    0.3741
##      6       59.6725             nan     0.0050    0.3583
##      7       59.2997             nan     0.0050    0.3809
##      8       58.8908             nan     0.0050    0.3565
##      9       58.5239             nan     0.0050    0.3680
##     10       58.1522             nan     0.0050    0.3538
##     20       54.6267             nan     0.0050    0.3277
##     40       48.5676             nan     0.0050    0.2769
##     60       43.3566             nan     0.0050    0.2563
##     80       38.9514             nan     0.0050    0.1957
##    100       35.0628             nan     0.0050    0.1634
##    120       31.7286             nan     0.0050    0.1464
##    140       28.7776             nan     0.0050    0.1333
##    160       26.2184             nan     0.0050    0.1074
##    180       23.9497             nan     0.0050    0.0982
##    200       21.9962             nan     0.0050    0.0516
##    220       20.3043             nan     0.0050    0.0741
##    240       18.8196             nan     0.0050    0.0613
##    260       17.5071             nan     0.0050    0.0525
##    280       16.3158             nan     0.0050    0.0490
##    300       15.2406             nan     0.0050    0.0442
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5136             nan     0.0050    0.4677
##      2       61.0485             nan     0.0050    0.4603
##      3       60.5376             nan     0.0050    0.4764
##      4       60.0854             nan     0.0050    0.4668
##      5       59.6132             nan     0.0050    0.4287
##      6       59.2168             nan     0.0050    0.4291
##      7       58.7750             nan     0.0050    0.4396
##      8       58.2769             nan     0.0050    0.4328
##      9       57.8464             nan     0.0050    0.4518
##     10       57.4241             nan     0.0050    0.4158
##     20       53.1846             nan     0.0050    0.3887
##     40       45.8286             nan     0.0050    0.2997
##     60       39.5568             nan     0.0050    0.2834
##     80       34.3061             nan     0.0050    0.2441
##    100       29.8980             nan     0.0050    0.1768
##    120       26.2652             nan     0.0050    0.1633
##    140       23.1813             nan     0.0050    0.1145
##    160       20.6021             nan     0.0050    0.1367
##    180       18.3214             nan     0.0050    0.0954
##    200       16.4004             nan     0.0050    0.0929
##    220       14.7688             nan     0.0050    0.0660
##    240       13.3590             nan     0.0050    0.0474
##    260       12.1764             nan     0.0050    0.0466
##    280       11.1142             nan     0.0050    0.0272
##    300       10.2269             nan     0.0050    0.0480
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5145             nan     0.0050    0.4536
##      2       61.0338             nan     0.0050    0.4747
##      3       60.5275             nan     0.0050    0.4441
##      4       60.0900             nan     0.0050    0.4584
##      5       59.6394             nan     0.0050    0.4347
##      6       59.2108             nan     0.0050    0.4500
##      7       58.7544             nan     0.0050    0.4283
##      8       58.2813             nan     0.0050    0.4536
##      9       57.8770             nan     0.0050    0.4299
##     10       57.4612             nan     0.0050    0.4173
##     20       53.2654             nan     0.0050    0.3888
##     40       45.8598             nan     0.0050    0.3170
##     60       39.6788             nan     0.0050    0.2668
##     80       34.6332             nan     0.0050    0.2639
##    100       30.1561             nan     0.0050    0.2160
##    120       26.4140             nan     0.0050    0.1470
##    140       23.2288             nan     0.0050    0.1565
##    160       20.6222             nan     0.0050    0.1240
##    180       18.4062             nan     0.0050    0.0939
##    200       16.4371             nan     0.0050    0.0887
##    220       14.8249             nan     0.0050    0.0506
##    240       13.4287             nan     0.0050    0.0517
##    260       12.1850             nan     0.0050    0.0501
##    280       11.0954             nan     0.0050    0.0438
##    300       10.1937             nan     0.0050    0.0381
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5067             nan     0.0050    0.4745
##      2       61.0438             nan     0.0050    0.4923
##      3       60.5558             nan     0.0050    0.4782
##      4       60.1171             nan     0.0050    0.4546
##      5       59.6729             nan     0.0050    0.4482
##      6       59.2445             nan     0.0050    0.4273
##      7       58.7910             nan     0.0050    0.4392
##      8       58.3442             nan     0.0050    0.4329
##      9       57.8976             nan     0.0050    0.4433
##     10       57.4031             nan     0.0050    0.4624
##     20       53.1874             nan     0.0050    0.4508
##     40       45.8524             nan     0.0050    0.3340
##     60       39.6618             nan     0.0050    0.2725
##     80       34.4494             nan     0.0050    0.2398
##    100       30.0344             nan     0.0050    0.2212
##    120       26.3723             nan     0.0050    0.1316
##    140       23.3253             nan     0.0050    0.1501
##    160       20.6844             nan     0.0050    0.1026
##    180       18.3982             nan     0.0050    0.0974
##    200       16.5662             nan     0.0050    0.0770
##    220       14.9218             nan     0.0050    0.0721
##    240       13.5218             nan     0.0050    0.0641
##    260       12.3441             nan     0.0050    0.0570
##    280       11.3213             nan     0.0050    0.0400
##    300       10.4189             nan     0.0050    0.0351
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.4904             nan     0.0050    0.5337
##      2       60.9983             nan     0.0050    0.4824
##      3       60.5082             nan     0.0050    0.5115
##      4       60.0012             nan     0.0050    0.4798
##      5       59.5169             nan     0.0050    0.4754
##      6       59.0343             nan     0.0050    0.5435
##      7       58.5425             nan     0.0050    0.4225
##      8       58.0438             nan     0.0050    0.4746
##      9       57.5690             nan     0.0050    0.4644
##     10       57.1062             nan     0.0050    0.4604
##     20       52.5808             nan     0.0050    0.4154
##     40       44.5657             nan     0.0050    0.3592
##     60       37.9675             nan     0.0050    0.3059
##     80       32.5680             nan     0.0050    0.2518
##    100       28.0471             nan     0.0050    0.1691
##    120       24.2891             nan     0.0050    0.1781
##    140       21.1475             nan     0.0050    0.1364
##    160       18.4843             nan     0.0050    0.1203
##    180       16.2742             nan     0.0050    0.0920
##    200       14.3969             nan     0.0050    0.0599
##    220       12.8219             nan     0.0050    0.0708
##    240       11.4906             nan     0.0050    0.0571
##    260       10.3502             nan     0.0050    0.0524
##    280        9.3488             nan     0.0050    0.0395
##    300        8.5199             nan     0.0050    0.0299
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.4712             nan     0.0050    0.5428
##      2       60.9357             nan     0.0050    0.5044
##      3       60.4083             nan     0.0050    0.4592
##      4       59.8728             nan     0.0050    0.5041
##      5       59.3532             nan     0.0050    0.4577
##      6       58.8717             nan     0.0050    0.4901
##      7       58.3679             nan     0.0050    0.5134
##      8       57.8809             nan     0.0050    0.4427
##      9       57.3886             nan     0.0050    0.4774
##     10       56.9089             nan     0.0050    0.4646
##     20       52.3585             nan     0.0050    0.4183
##     40       44.4832             nan     0.0050    0.3639
##     60       38.0073             nan     0.0050    0.2568
##     80       32.5360             nan     0.0050    0.2652
##    100       28.0732             nan     0.0050    0.2221
##    120       24.3781             nan     0.0050    0.1795
##    140       21.2191             nan     0.0050    0.1430
##    160       18.5691             nan     0.0050    0.1168
##    180       16.3796             nan     0.0050    0.1047
##    200       14.5112             nan     0.0050    0.0715
##    220       12.9230             nan     0.0050    0.0601
##    240       11.5432             nan     0.0050    0.0568
##    260       10.3986             nan     0.0050    0.0365
##    280        9.3960             nan     0.0050    0.0358
##    300        8.5501             nan     0.0050    0.0376
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.4575             nan     0.0050    0.4843
##      2       60.9044             nan     0.0050    0.4772
##      3       60.4030             nan     0.0050    0.5515
##      4       59.8773             nan     0.0050    0.5502
##      5       59.3586             nan     0.0050    0.5091
##      6       58.8752             nan     0.0050    0.5258
##      7       58.3885             nan     0.0050    0.4934
##      8       57.9025             nan     0.0050    0.5055
##      9       57.4366             nan     0.0050    0.4785
##     10       56.9395             nan     0.0050    0.4952
##     20       52.3806             nan     0.0050    0.4154
##     40       44.5719             nan     0.0050    0.3438
##     60       38.0191             nan     0.0050    0.2931
##     80       32.5481             nan     0.0050    0.2326
##    100       28.0696             nan     0.0050    0.1914
##    120       24.3590             nan     0.0050    0.1548
##    140       21.2711             nan     0.0050    0.1457
##    160       18.6787             nan     0.0050    0.1002
##    180       16.4865             nan     0.0050    0.0937
##    200       14.6553             nan     0.0050    0.0755
##    220       13.0453             nan     0.0050    0.0670
##    240       11.7304             nan     0.0050    0.0584
##    260       10.6182             nan     0.0050    0.0476
##    280        9.6328             nan     0.0050    0.0355
##    300        8.7926             nan     0.0050    0.0375
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1647             nan     0.0100    0.7958
##      2       60.4184             nan     0.0100    0.7308
##      3       59.6617             nan     0.0100    0.7604
##      4       58.8795             nan     0.0100    0.6617
##      5       58.1211             nan     0.0100    0.7319
##      6       57.4102             nan     0.0100    0.7038
##      7       56.7681             nan     0.0100    0.5891
##      8       56.0452             nan     0.0100    0.5955
##      9       55.3560             nan     0.0100    0.6838
##     10       54.6679             nan     0.0100    0.6653
##     20       48.7185             nan     0.0100    0.5932
##     40       38.9655             nan     0.0100    0.4302
##     60       31.6075             nan     0.0100    0.3131
##     80       26.0135             nan     0.0100    0.2300
##    100       21.8443             nan     0.0100    0.1669
##    120       18.6030             nan     0.0100    0.1301
##    140       16.1664             nan     0.0100    0.1086
##    160       14.1995             nan     0.0100    0.1024
##    180       12.5449             nan     0.0100    0.0652
##    200       11.1439             nan     0.0100    0.0501
##    220       10.0136             nan     0.0100    0.0258
##    240        9.0506             nan     0.0100    0.0385
##    260        8.2394             nan     0.0100    0.0340
##    280        7.5689             nan     0.0100    0.0242
##    300        6.9672             nan     0.0100    0.0149
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.0612             nan     0.0100    0.7739
##      2       60.2529             nan     0.0100    0.8061
##      3       59.5110             nan     0.0100    0.7994
##      4       58.7806             nan     0.0100    0.7220
##      5       58.0413             nan     0.0100    0.6966
##      6       57.2843             nan     0.0100    0.6762
##      7       56.5701             nan     0.0100    0.7149
##      8       55.8487             nan     0.0100    0.6590
##      9       55.1714             nan     0.0100    0.6461
##     10       54.5320             nan     0.0100    0.6298
##     20       48.5313             nan     0.0100    0.5561
##     40       38.7675             nan     0.0100    0.4444
##     60       31.7667             nan     0.0100    0.3425
##     80       26.3317             nan     0.0100    0.2341
##    100       22.1340             nan     0.0100    0.1822
##    120       18.8317             nan     0.0100    0.1527
##    140       16.2717             nan     0.0100    0.0753
##    160       14.1850             nan     0.0100    0.0697
##    180       12.5596             nan     0.0100    0.0586
##    200       11.2117             nan     0.0100    0.0538
##    220       10.0717             nan     0.0100    0.0361
##    240        9.1421             nan     0.0100    0.0333
##    260        8.3361             nan     0.0100    0.0250
##    280        7.6434             nan     0.0100    0.0279
##    300        7.0757             nan     0.0100    0.0176
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1350             nan     0.0100    0.8268
##      2       60.3614             nan     0.0100    0.7308
##      3       59.5993             nan     0.0100    0.7852
##      4       58.8697             nan     0.0100    0.7366
##      5       58.1389             nan     0.0100    0.7654
##      6       57.4051             nan     0.0100    0.7113
##      7       56.7211             nan     0.0100    0.6514
##      8       55.9486             nan     0.0100    0.6761
##      9       55.2822             nan     0.0100    0.6640
##     10       54.6432             nan     0.0100    0.6759
##     20       48.6373             nan     0.0100    0.5669
##     40       39.2733             nan     0.0100    0.3748
##     60       31.9783             nan     0.0100    0.2920
##     80       26.4304             nan     0.0100    0.1938
##    100       22.1040             nan     0.0100    0.1775
##    120       18.8225             nan     0.0100    0.1145
##    140       16.2903             nan     0.0100    0.1043
##    160       14.2438             nan     0.0100    0.0789
##    180       12.5710             nan     0.0100    0.0591
##    200       11.1820             nan     0.0100    0.0442
##    220       10.0968             nan     0.0100    0.0308
##    240        9.1536             nan     0.0100    0.0396
##    260        8.3563             nan     0.0100    0.0236
##    280        7.6635             nan     0.0100    0.0268
##    300        7.0737             nan     0.0100    0.0250
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.0813             nan     0.0100    0.9560
##      2       60.1693             nan     0.0100    0.8947
##      3       59.2099             nan     0.0100    0.8246
##      4       58.3814             nan     0.0100    0.9145
##      5       57.4507             nan     0.0100    0.9151
##      6       56.4787             nan     0.0100    0.8431
##      7       55.5940             nan     0.0100    0.7894
##      8       54.7846             nan     0.0100    0.7725
##      9       53.9017             nan     0.0100    0.8412
##     10       53.0266             nan     0.0100    0.7087
##     20       45.5582             nan     0.0100    0.6563
##     40       34.3385             nan     0.0100    0.4672
##     60       26.2703             nan     0.0100    0.3706
##     80       20.5450             nan     0.0100    0.2244
##    100       16.4244             nan     0.0100    0.1702
##    120       13.4518             nan     0.0100    0.0666
##    140       11.2132             nan     0.0100    0.0884
##    160        9.5317             nan     0.0100    0.0722
##    180        8.1808             nan     0.0100    0.0487
##    200        7.1755             nan     0.0100    0.0381
##    220        6.3119             nan     0.0100    0.0371
##    240        5.6668             nan     0.0100    0.0273
##    260        5.1639             nan     0.0100    0.0123
##    280        4.7436             nan     0.0100    0.0113
##    300        4.4007             nan     0.0100    0.0112
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8838             nan     0.0100    0.9030
##      2       59.9458             nan     0.0100    0.8540
##      3       59.0217             nan     0.0100    0.9065
##      4       58.1106             nan     0.0100    0.8486
##      5       57.1446             nan     0.0100    0.8531
##      6       56.2847             nan     0.0100    0.8226
##      7       55.4163             nan     0.0100    0.8505
##      8       54.5545             nan     0.0100    0.7708
##      9       53.7624             nan     0.0100    0.7723
##     10       52.9333             nan     0.0100    0.7893
##     20       45.6396             nan     0.0100    0.7183
##     40       34.0875             nan     0.0100    0.4915
##     60       26.1272             nan     0.0100    0.2707
##     80       20.4035             nan     0.0100    0.2211
##    100       16.3394             nan     0.0100    0.1919
##    120       13.3583             nan     0.0100    0.1230
##    140       11.0178             nan     0.0100    0.0958
##    160        9.4029             nan     0.0100    0.0685
##    180        8.1120             nan     0.0100    0.0499
##    200        7.1160             nan     0.0100    0.0349
##    220        6.2919             nan     0.0100    0.0329
##    240        5.6321             nan     0.0100    0.0194
##    260        5.1521             nan     0.0100    0.0251
##    280        4.7263             nan     0.0100    0.0044
##    300        4.4220             nan     0.0100    0.0114
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.0333             nan     0.0100    0.9402
##      2       60.1486             nan     0.0100    0.9863
##      3       59.2171             nan     0.0100    0.9476
##      4       58.2447             nan     0.0100    0.8741
##      5       57.3390             nan     0.0100    0.8947
##      6       56.4662             nan     0.0100    0.9065
##      7       55.5860             nan     0.0100    0.8406
##      8       54.7600             nan     0.0100    0.7740
##      9       53.8861             nan     0.0100    0.9077
##     10       52.9691             nan     0.0100    0.8299
##     20       45.5702             nan     0.0100    0.6426
##     40       34.1324             nan     0.0100    0.4517
##     60       26.1674             nan     0.0100    0.3195
##     80       20.5080             nan     0.0100    0.2498
##    100       16.3443             nan     0.0100    0.1683
##    120       13.4534             nan     0.0100    0.1259
##    140       11.2539             nan     0.0100    0.0766
##    160        9.6076             nan     0.0100    0.0590
##    180        8.2741             nan     0.0100    0.0335
##    200        7.2699             nan     0.0100    0.0342
##    220        6.4809             nan     0.0100    0.0303
##    240        5.8841             nan     0.0100    0.0273
##    260        5.3916             nan     0.0100    0.0112
##    280        4.9940             nan     0.0100    0.0104
##    300        4.6855             nan     0.0100    0.0047
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9872             nan     0.0100    1.0890
##      2       59.9774             nan     0.0100    1.0370
##      3       58.9653             nan     0.0100    1.0081
##      4       57.9526             nan     0.0100    0.9607
##      5       56.9279             nan     0.0100    0.9191
##      6       56.0253             nan     0.0100    0.9521
##      7       55.1040             nan     0.0100    0.9674
##      8       54.1964             nan     0.0100    0.9441
##      9       53.3243             nan     0.0100    0.8896
##     10       52.4392             nan     0.0100    0.8392
##     20       44.5560             nan     0.0100    0.7174
##     40       32.6754             nan     0.0100    0.5510
##     60       24.3277             nan     0.0100    0.2933
##     80       18.4884             nan     0.0100    0.2457
##    100       14.4181             nan     0.0100    0.1763
##    120       11.4948             nan     0.0100    0.1148
##    140        9.4056             nan     0.0100    0.0977
##    160        7.8124             nan     0.0100    0.0508
##    180        6.6020             nan     0.0100    0.0401
##    200        5.6959             nan     0.0100    0.0358
##    220        5.0296             nan     0.0100    0.0233
##    240        4.5105             nan     0.0100    0.0118
##    260        4.0991             nan     0.0100    0.0143
##    280        3.7803             nan     0.0100    0.0058
##    300        3.5483             nan     0.0100    0.0088
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9609             nan     0.0100    1.0500
##      2       59.9385             nan     0.0100    1.0232
##      3       58.9577             nan     0.0100    0.9980
##      4       57.9773             nan     0.0100    0.8821
##      5       57.0379             nan     0.0100    0.9165
##      6       56.1190             nan     0.0100    1.0049
##      7       55.1745             nan     0.0100    0.9355
##      8       54.2590             nan     0.0100    0.8135
##      9       53.3314             nan     0.0100    0.9974
##     10       52.3967             nan     0.0100    0.9167
##     20       44.6137             nan     0.0100    0.7029
##     40       32.5796             nan     0.0100    0.4813
##     60       24.2693             nan     0.0100    0.3399
##     80       18.5295             nan     0.0100    0.2506
##    100       14.3730             nan     0.0100    0.1522
##    120       11.4961             nan     0.0100    0.1000
##    140        9.3377             nan     0.0100    0.0570
##    160        7.7016             nan     0.0100    0.0504
##    180        6.5687             nan     0.0100    0.0352
##    200        5.6922             nan     0.0100    0.0329
##    220        5.0193             nan     0.0100    0.0225
##    240        4.5271             nan     0.0100    0.0041
##    260        4.1554             nan     0.0100    0.0153
##    280        3.8604             nan     0.0100    0.0068
##    300        3.6335             nan     0.0100    0.0071
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9859             nan     0.0100    1.0270
##      2       59.9441             nan     0.0100    0.9545
##      3       59.0000             nan     0.0100    0.9373
##      4       57.9834             nan     0.0100    0.9870
##      5       57.0868             nan     0.0100    0.9415
##      6       56.1159             nan     0.0100    1.0084
##      7       55.2131             nan     0.0100    0.9263
##      8       54.3198             nan     0.0100    0.8925
##      9       53.4255             nan     0.0100    0.8983
##     10       52.5792             nan     0.0100    0.9115
##     20       44.6467             nan     0.0100    0.6834
##     40       32.5454             nan     0.0100    0.4411
##     60       24.3081             nan     0.0100    0.3089
##     80       18.6229             nan     0.0100    0.2473
##    100       14.5670             nan     0.0100    0.1281
##    120       11.7029             nan     0.0100    0.0859
##    140        9.6454             nan     0.0100    0.0775
##    160        8.0488             nan     0.0100    0.0633
##    180        6.8790             nan     0.0100    0.0347
##    200        6.0007             nan     0.0100    0.0329
##    220        5.3424             nan     0.0100    0.0224
##    240        4.8462             nan     0.0100    0.0181
##    260        4.4433             nan     0.0100    0.0147
##    280        4.1454             nan     0.0100    0.0086
##    300        3.9159             nan     0.0100    0.0030
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.3406             nan     0.0500    3.6100
##      2       54.8376             nan     0.0500    3.5943
##      3       51.6376             nan     0.0500    2.9496
##      4       48.7875             nan     0.0500    3.0223
##      5       45.9671             nan     0.0500    2.5645
##      6       43.3504             nan     0.0500    2.2556
##      7       40.9930             nan     0.0500    2.2145
##      8       38.6440             nan     0.0500    1.9215
##      9       36.5424             nan     0.0500    1.9080
##     10       34.7890             nan     0.0500    1.7267
##     20       21.6082             nan     0.0500    0.8681
##     40       10.9810             nan     0.0500    0.3097
##     60        6.8696             nan     0.0500    0.1304
##     80        5.0664             nan     0.0500    0.0423
##    100        4.1643             nan     0.0500    0.0276
##    120        3.6756             nan     0.0500    0.0014
##    140        3.4485             nan     0.0500   -0.0090
##    160        3.3275             nan     0.0500   -0.0028
##    180        3.2376             nan     0.0500   -0.0134
##    200        3.1617             nan     0.0500   -0.0079
##    220        3.0980             nan     0.0500   -0.0167
##    240        3.0510             nan     0.0500   -0.0077
##    260        2.9982             nan     0.0500   -0.0135
##    280        2.9322             nan     0.0500   -0.0064
##    300        2.9115             nan     0.0500   -0.0082
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.1631             nan     0.0500    3.6160
##      2       54.4058             nan     0.0500    3.5224
##      3       51.2331             nan     0.0500    3.0876
##      4       48.2793             nan     0.0500    3.0026
##      5       45.7939             nan     0.0500    2.4321
##      6       43.0283             nan     0.0500    2.5027
##      7       40.6083             nan     0.0500    2.1154
##      8       38.6153             nan     0.0500    2.0846
##      9       36.4825             nan     0.0500    1.9096
##     10       34.3867             nan     0.0500    1.7707
##     20       21.9291             nan     0.0500    0.8479
##     40       11.2009             nan     0.0500    0.2573
##     60        7.0674             nan     0.0500    0.0848
##     80        5.1370             nan     0.0500    0.0587
##    100        4.2747             nan     0.0500    0.0264
##    120        3.8531             nan     0.0500   -0.0019
##    140        3.6265             nan     0.0500   -0.0006
##    160        3.4898             nan     0.0500   -0.0083
##    180        3.3791             nan     0.0500   -0.0159
##    200        3.3041             nan     0.0500   -0.0231
##    220        3.2286             nan     0.0500   -0.0042
##    240        3.1636             nan     0.0500   -0.0025
##    260        3.1096             nan     0.0500   -0.0083
##    280        3.0635             nan     0.0500   -0.0055
##    300        3.0338             nan     0.0500   -0.0021
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.0815             nan     0.0500    3.9049
##      2       54.4389             nan     0.0500    3.0603
##      3       51.4887             nan     0.0500    2.5421
##      4       48.3038             nan     0.0500    2.9980
##      5       45.6288             nan     0.0500    2.7591
##      6       42.9723             nan     0.0500    2.2922
##      7       40.6824             nan     0.0500    2.2699
##      8       38.5272             nan     0.0500    2.0421
##      9       36.6396             nan     0.0500    1.7796
##     10       34.9800             nan     0.0500    1.5705
##     20       21.7975             nan     0.0500    0.9844
##     40       11.0331             nan     0.0500    0.2067
##     60        7.1457             nan     0.0500    0.0926
##     80        5.3386             nan     0.0500    0.0384
##    100        4.5243             nan     0.0500    0.0173
##    120        4.1071             nan     0.0500    0.0127
##    140        3.9024             nan     0.0500   -0.0184
##    160        3.7637             nan     0.0500    0.0023
##    180        3.6729             nan     0.0500   -0.0044
##    200        3.6010             nan     0.0500   -0.0075
##    220        3.5278             nan     0.0500   -0.0016
##    240        3.4552             nan     0.0500   -0.0107
##    260        3.3825             nan     0.0500   -0.0249
##    280        3.3146             nan     0.0500   -0.0063
##    300        3.2644             nan     0.0500   -0.0033
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.0822             nan     0.0500    4.5350
##      2       53.1920             nan     0.0500    4.3482
##      3       49.0676             nan     0.0500    4.5919
##      4       45.4201             nan     0.0500    3.6448
##      5       42.4360             nan     0.0500    2.8953
##      6       39.2181             nan     0.0500    2.9422
##      7       36.5558             nan     0.0500    2.4219
##      8       33.8519             nan     0.0500    2.5676
##      9       31.7862             nan     0.0500    1.9308
##     10       29.6750             nan     0.0500    2.2506
##     20       16.2357             nan     0.0500    0.8649
##     40        7.0019             nan     0.0500    0.1715
##     60        4.4630             nan     0.0500    0.0369
##     80        3.5934             nan     0.0500   -0.0159
##    100        3.2175             nan     0.0500   -0.0032
##    120        2.9647             nan     0.0500   -0.0063
##    140        2.8101             nan     0.0500    0.0063
##    160        2.6601             nan     0.0500   -0.0154
##    180        2.5126             nan     0.0500   -0.0084
##    200        2.3973             nan     0.0500   -0.0108
##    220        2.2945             nan     0.0500   -0.0152
##    240        2.2071             nan     0.0500   -0.0114
##    260        2.1369             nan     0.0500   -0.0147
##    280        2.0419             nan     0.0500   -0.0131
##    300        1.9695             nan     0.0500   -0.0071
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.1889             nan     0.0500    4.2978
##      2       52.8319             nan     0.0500    4.2209
##      3       48.5002             nan     0.0500    4.6319
##      4       44.9872             nan     0.0500    3.5194
##      5       41.5698             nan     0.0500    3.3478
##      6       38.9664             nan     0.0500    2.6736
##      7       36.1042             nan     0.0500    2.7678
##      8       33.6160             nan     0.0500    2.4856
##      9       31.4214             nan     0.0500    2.1666
##     10       29.2768             nan     0.0500    1.9314
##     20       16.0683             nan     0.0500    0.8117
##     40        6.9752             nan     0.0500    0.1579
##     60        4.4902             nan     0.0500    0.0450
##     80        3.6336             nan     0.0500   -0.0101
##    100        3.3173             nan     0.0500   -0.0007
##    120        3.0948             nan     0.0500   -0.0185
##    140        2.9128             nan     0.0500   -0.0009
##    160        2.7752             nan     0.0500   -0.0090
##    180        2.6654             nan     0.0500   -0.0142
##    200        2.5714             nan     0.0500   -0.0227
##    220        2.4831             nan     0.0500   -0.0079
##    240        2.4103             nan     0.0500   -0.0073
##    260        2.3361             nan     0.0500   -0.0078
##    280        2.2774             nan     0.0500   -0.0042
##    300        2.2133             nan     0.0500   -0.0052
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.0342             nan     0.0500    4.4961
##      2       52.8230             nan     0.0500    4.0789
##      3       49.0417             nan     0.0500    3.9235
##      4       45.4260             nan     0.0500    3.3557
##      5       41.8591             nan     0.0500    3.8067
##      6       38.5487             nan     0.0500    3.1670
##      7       36.1062             nan     0.0500    2.4307
##      8       33.4894             nan     0.0500    2.5642
##      9       31.1210             nan     0.0500    2.4336
##     10       28.9905             nan     0.0500    2.0548
##     20       15.7379             nan     0.0500    0.8003
##     40        7.0411             nan     0.0500    0.1531
##     60        4.4777             nan     0.0500    0.0520
##     80        3.7185             nan     0.0500   -0.0131
##    100        3.4273             nan     0.0500   -0.0253
##    120        3.2396             nan     0.0500   -0.0117
##    140        3.0712             nan     0.0500   -0.0039
##    160        2.9422             nan     0.0500   -0.0109
##    180        2.8399             nan     0.0500   -0.0092
##    200        2.7412             nan     0.0500   -0.0053
##    220        2.6648             nan     0.0500   -0.0021
##    240        2.5749             nan     0.0500   -0.0023
##    260        2.5142             nan     0.0500   -0.0113
##    280        2.4506             nan     0.0500   -0.0101
##    300        2.3913             nan     0.0500   -0.0110
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.8439             nan     0.0500    5.1196
##      2       52.1836             nan     0.0500    4.0785
##      3       48.0675             nan     0.0500    4.1071
##      4       44.3136             nan     0.0500    3.9526
##      5       40.8429             nan     0.0500    3.1805
##      6       37.6835             nan     0.0500    3.0092
##      7       34.7897             nan     0.0500    2.9148
##      8       32.0832             nan     0.0500    2.1908
##      9       29.8040             nan     0.0500    2.0844
##     10       27.7402             nan     0.0500    2.1527
##     20       14.1468             nan     0.0500    0.8592
##     40        5.5997             nan     0.0500    0.1799
##     60        3.5173             nan     0.0500    0.0261
##     80        2.8544             nan     0.0500   -0.0133
##    100        2.5544             nan     0.0500   -0.0203
##    120        2.3411             nan     0.0500   -0.0013
##    140        2.1714             nan     0.0500   -0.0115
##    160        2.0142             nan     0.0500   -0.0087
##    180        1.9045             nan     0.0500   -0.0157
##    200        1.7973             nan     0.0500   -0.0045
##    220        1.7014             nan     0.0500   -0.0092
##    240        1.6043             nan     0.0500   -0.0030
##    260        1.5483             nan     0.0500   -0.0077
##    280        1.4847             nan     0.0500   -0.0044
##    300        1.4220             nan     0.0500   -0.0067
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.0483             nan     0.0500    5.2854
##      2       52.2865             nan     0.0500    4.6184
##      3       47.9988             nan     0.0500    3.5869
##      4       44.3251             nan     0.0500    3.8253
##      5       41.1108             nan     0.0500    3.5265
##      6       37.9991             nan     0.0500    3.0439
##      7       35.0440             nan     0.0500    2.4667
##      8       32.5812             nan     0.0500    2.4444
##      9       30.1370             nan     0.0500    2.2520
##     10       28.1206             nan     0.0500    1.7663
##     20       14.1672             nan     0.0500    0.7067
##     40        5.7655             nan     0.0500    0.1638
##     60        3.7812             nan     0.0500    0.0188
##     80        3.1687             nan     0.0500    0.0034
##    100        2.8823             nan     0.0500   -0.0020
##    120        2.6905             nan     0.0500   -0.0234
##    140        2.5091             nan     0.0500   -0.0127
##    160        2.3883             nan     0.0500   -0.0150
##    180        2.2657             nan     0.0500   -0.0235
##    200        2.1526             nan     0.0500   -0.0130
##    220        2.0644             nan     0.0500   -0.0060
##    240        1.9774             nan     0.0500   -0.0165
##    260        1.8967             nan     0.0500   -0.0077
##    280        1.8302             nan     0.0500   -0.0108
##    300        1.7662             nan     0.0500   -0.0081
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.8050             nan     0.0500    5.0140
##      2       52.0361             nan     0.0500    4.2447
##      3       47.8615             nan     0.0500    4.0182
##      4       44.3698             nan     0.0500    3.8011
##      5       40.9006             nan     0.0500    3.3083
##      6       37.7024             nan     0.0500    3.0409
##      7       34.8810             nan     0.0500    2.7991
##      8       32.2393             nan     0.0500    2.5359
##      9       29.8549             nan     0.0500    2.2440
##     10       27.6664             nan     0.0500    2.0211
##     20       14.4270             nan     0.0500    1.0210
##     40        5.9805             nan     0.0500    0.1906
##     60        3.9463             nan     0.0500    0.0352
##     80        3.3943             nan     0.0500   -0.0078
##    100        3.0919             nan     0.0500   -0.0174
##    120        2.8465             nan     0.0500   -0.0074
##    140        2.6928             nan     0.0500   -0.0014
##    160        2.5514             nan     0.0500   -0.0041
##    180        2.4254             nan     0.0500   -0.0043
##    200        2.3324             nan     0.0500   -0.0145
##    220        2.2486             nan     0.0500   -0.0094
##    240        2.1501             nan     0.0500   -0.0096
##    260        2.0865             nan     0.0500   -0.0047
##    280        2.0129             nan     0.0500   -0.0068
##    300        1.9556             nan     0.0500   -0.0178
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.9121             nan     0.1000    7.4315
##      2       48.5845             nan     0.1000    6.0045
##      3       43.8312             nan     0.1000    4.8603
##      4       38.4251             nan     0.1000    4.6192
##      5       34.4334             nan     0.1000    3.7980
##      6       31.1216             nan     0.1000    3.3404
##      7       28.3596             nan     0.1000    2.8261
##      8       25.8323             nan     0.1000    2.5244
##      9       23.2232             nan     0.1000    2.6930
##     10       21.2334             nan     0.1000    2.0096
##     20       11.0616             nan     0.1000    0.5831
##     40        4.9473             nan     0.1000    0.0667
##     60        3.7326             nan     0.1000    0.0219
##     80        3.4144             nan     0.1000   -0.0083
##    100        3.1935             nan     0.1000   -0.0007
##    120        3.0636             nan     0.1000   -0.0105
##    140        2.9600             nan     0.1000   -0.0217
##    160        2.8791             nan     0.1000   -0.0031
##    180        2.8091             nan     0.1000   -0.0102
##    200        2.7477             nan     0.1000   -0.0025
##    220        2.6876             nan     0.1000   -0.0061
##    240        2.6407             nan     0.1000   -0.0103
##    260        2.6001             nan     0.1000   -0.0152
##    280        2.5749             nan     0.1000   -0.0225
##    300        2.5307             nan     0.1000   -0.0254
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.2148             nan     0.1000    7.3864
##      2       48.2950             nan     0.1000    6.0476
##      3       43.0202             nan     0.1000    5.0165
##      4       38.2326             nan     0.1000    4.3455
##      5       34.2887             nan     0.1000    3.5050
##      6       30.7665             nan     0.1000    3.5456
##      7       27.7987             nan     0.1000    2.8402
##      8       25.4344             nan     0.1000    2.3078
##      9       22.9854             nan     0.1000    2.0686
##     10       21.3471             nan     0.1000    1.6071
##     20       10.8164             nan     0.1000    0.5374
##     40        5.0398             nan     0.1000    0.0803
##     60        3.8078             nan     0.1000    0.0003
##     80        3.4920             nan     0.1000    0.0042
##    100        3.3100             nan     0.1000   -0.0126
##    120        3.1760             nan     0.1000   -0.0217
##    140        3.0664             nan     0.1000   -0.0042
##    160        2.9876             nan     0.1000   -0.0100
##    180        2.9107             nan     0.1000   -0.0327
##    200        2.8476             nan     0.1000   -0.0227
##    220        2.7819             nan     0.1000   -0.0088
##    240        2.7289             nan     0.1000   -0.0138
##    260        2.6829             nan     0.1000   -0.0140
##    280        2.6178             nan     0.1000   -0.0132
##    300        2.5711             nan     0.1000   -0.0223
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.2812             nan     0.1000    8.5123
##      2       47.6133             nan     0.1000    5.6541
##      3       42.1697             nan     0.1000    5.4322
##      4       37.8215             nan     0.1000    3.8891
##      5       33.7367             nan     0.1000    4.2834
##      6       30.5024             nan     0.1000    3.3270
##      7       27.8132             nan     0.1000    2.7797
##      8       25.3126             nan     0.1000    2.6102
##      9       22.9212             nan     0.1000    2.0698
##     10       21.0742             nan     0.1000    1.8068
##     20       10.7568             nan     0.1000    0.4479
##     40        5.0763             nan     0.1000    0.0703
##     60        3.9888             nan     0.1000    0.0072
##     80        3.6971             nan     0.1000   -0.0257
##    100        3.5362             nan     0.1000    0.0073
##    120        3.3926             nan     0.1000   -0.0090
##    140        3.2708             nan     0.1000   -0.0005
##    160        3.1838             nan     0.1000   -0.0010
##    180        3.0927             nan     0.1000   -0.0454
##    200        3.0170             nan     0.1000   -0.0022
##    220        2.9626             nan     0.1000   -0.0251
##    240        2.8947             nan     0.1000   -0.0054
##    260        2.8306             nan     0.1000   -0.0141
##    280        2.7785             nan     0.1000   -0.0111
##    300        2.7469             nan     0.1000   -0.0146
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.6408             nan     0.1000    8.6365
##      2       45.7096             nan     0.1000    7.0176
##      3       38.9234             nan     0.1000    6.9578
##      4       33.4433             nan     0.1000    5.7451
##      5       28.6404             nan     0.1000    4.1381
##      6       24.9271             nan     0.1000    3.2045
##      7       21.9680             nan     0.1000    2.7443
##      8       19.3427             nan     0.1000    2.4943
##      9       16.9798             nan     0.1000    2.0831
##     10       15.2603             nan     0.1000    1.7460
##     20        6.5731             nan     0.1000    0.3682
##     40        3.4559             nan     0.1000   -0.0031
##     60        2.9010             nan     0.1000    0.0062
##     80        2.6370             nan     0.1000   -0.0339
##    100        2.4506             nan     0.1000   -0.0184
##    120        2.2681             nan     0.1000   -0.0315
##    140        2.1066             nan     0.1000   -0.0081
##    160        1.9878             nan     0.1000   -0.0193
##    180        1.8726             nan     0.1000   -0.0202
##    200        1.7560             nan     0.1000   -0.0134
##    220        1.6735             nan     0.1000   -0.0153
##    240        1.5781             nan     0.1000   -0.0173
##    260        1.4883             nan     0.1000   -0.0087
##    280        1.4370             nan     0.1000   -0.0085
##    300        1.3575             nan     0.1000   -0.0145
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.5001             nan     0.1000    9.0345
##      2       46.2983             nan     0.1000    7.1671
##      3       39.3178             nan     0.1000    6.6901
##      4       34.5022             nan     0.1000    5.3388
##      5       29.8965             nan     0.1000    4.2990
##      6       26.2545             nan     0.1000    3.5709
##      7       23.2597             nan     0.1000    2.8078
##      8       20.1441             nan     0.1000    2.9103
##      9       18.1489             nan     0.1000    1.9750
##     10       16.3128             nan     0.1000    1.9434
##     20        6.9948             nan     0.1000    0.3623
##     40        3.7730             nan     0.1000    0.0136
##     60        3.1966             nan     0.1000   -0.0060
##     80        2.8918             nan     0.1000   -0.0107
##    100        2.7135             nan     0.1000   -0.0428
##    120        2.5042             nan     0.1000   -0.0211
##    140        2.3312             nan     0.1000   -0.0049
##    160        2.1887             nan     0.1000   -0.0270
##    180        2.0816             nan     0.1000   -0.0171
##    200        2.0033             nan     0.1000   -0.0276
##    220        1.9192             nan     0.1000   -0.0279
##    240        1.8431             nan     0.1000   -0.0225
##    260        1.7768             nan     0.1000   -0.0081
##    280        1.6974             nan     0.1000   -0.0207
##    300        1.6430             nan     0.1000   -0.0101
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.4953             nan     0.1000   10.2753
##      2       45.1567             nan     0.1000    7.0394
##      3       38.6851             nan     0.1000    6.2842
##      4       33.4988             nan     0.1000    4.6885
##      5       29.3604             nan     0.1000    3.8766
##      6       25.6678             nan     0.1000    4.0648
##      7       22.3451             nan     0.1000    2.9846
##      8       19.6402             nan     0.1000    2.0801
##      9       17.4188             nan     0.1000    2.2269
##     10       15.4389             nan     0.1000    1.7248
##     20        6.9057             nan     0.1000    0.3909
##     40        3.8441             nan     0.1000    0.0087
##     60        3.3870             nan     0.1000   -0.0245
##     80        3.0457             nan     0.1000   -0.0291
##    100        2.8391             nan     0.1000   -0.0415
##    120        2.6431             nan     0.1000   -0.0278
##    140        2.5185             nan     0.1000   -0.0178
##    160        2.3983             nan     0.1000   -0.0391
##    180        2.2918             nan     0.1000   -0.0163
##    200        2.2119             nan     0.1000   -0.0238
##    220        2.1361             nan     0.1000   -0.0181
##    240        2.0684             nan     0.1000   -0.0131
##    260        1.9967             nan     0.1000   -0.0129
##    280        1.9491             nan     0.1000   -0.0152
##    300        1.8864             nan     0.1000   -0.0148
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.7282             nan     0.1000    9.6703
##      2       43.4594             nan     0.1000    8.7364
##      3       36.9107             nan     0.1000    5.4281
##      4       31.1231             nan     0.1000    4.2147
##      5       27.4326             nan     0.1000    3.6018
##      6       23.4869             nan     0.1000    3.3213
##      7       20.1302             nan     0.1000    2.7392
##      8       17.6290             nan     0.1000    2.4668
##      9       15.4407             nan     0.1000    2.2859
##     10       13.5710             nan     0.1000    1.9470
##     20        5.3500             nan     0.1000    0.2728
##     40        2.8285             nan     0.1000   -0.0139
##     60        2.3325             nan     0.1000   -0.0165
##     80        2.0824             nan     0.1000   -0.0278
##    100        1.8687             nan     0.1000   -0.0199
##    120        1.7068             nan     0.1000   -0.0363
##    140        1.5669             nan     0.1000   -0.0180
##    160        1.4492             nan     0.1000   -0.0253
##    180        1.3330             nan     0.1000   -0.0021
##    200        1.2323             nan     0.1000   -0.0066
##    220        1.1409             nan     0.1000   -0.0200
##    240        1.0611             nan     0.1000   -0.0184
##    260        0.9884             nan     0.1000   -0.0146
##    280        0.9277             nan     0.1000   -0.0089
##    300        0.8569             nan     0.1000   -0.0102
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.0862             nan     0.1000    9.6627
##      2       44.4768             nan     0.1000    8.2155
##      3       37.5703             nan     0.1000    7.5586
##      4       31.7847             nan     0.1000    5.0706
##      5       27.2804             nan     0.1000    4.2598
##      6       23.9999             nan     0.1000    2.1671
##      7       20.4015             nan     0.1000    3.0058
##      8       17.6562             nan     0.1000    2.7762
##      9       15.4641             nan     0.1000    1.8034
##     10       13.6100             nan     0.1000    1.5997
##     20        5.6733             nan     0.1000    0.3334
##     40        3.1525             nan     0.1000    0.0137
##     60        2.5912             nan     0.1000   -0.0161
##     80        2.3404             nan     0.1000   -0.0309
##    100        2.1362             nan     0.1000   -0.0283
##    120        1.9919             nan     0.1000   -0.0267
##    140        1.8682             nan     0.1000   -0.0347
##    160        1.7477             nan     0.1000   -0.0215
##    180        1.6412             nan     0.1000   -0.0215
##    200        1.5457             nan     0.1000   -0.0158
##    220        1.4500             nan     0.1000   -0.0325
##    240        1.3573             nan     0.1000   -0.0169
##    260        1.2916             nan     0.1000   -0.0164
##    280        1.2304             nan     0.1000   -0.0152
##    300        1.1758             nan     0.1000   -0.0033
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.0757             nan     0.1000    9.2442
##      2       44.5695             nan     0.1000    8.4028
##      3       37.7659             nan     0.1000    6.5388
##      4       32.0082             nan     0.1000    5.5434
##      5       27.6184             nan     0.1000    3.9919
##      6       23.9451             nan     0.1000    3.8542
##      7       20.6457             nan     0.1000    3.1952
##      8       18.1607             nan     0.1000    2.6427
##      9       15.9040             nan     0.1000    2.0111
##     10       13.7742             nan     0.1000    2.0305
##     20        5.8150             nan     0.1000    0.2879
##     40        3.3884             nan     0.1000   -0.0358
##     60        2.8704             nan     0.1000   -0.0093
##     80        2.5522             nan     0.1000   -0.0317
##    100        2.3093             nan     0.1000   -0.0156
##    120        2.1395             nan     0.1000   -0.0102
##    140        1.9988             nan     0.1000   -0.0113
##    160        1.8605             nan     0.1000   -0.0266
##    180        1.7333             nan     0.1000   -0.0210
##    200        1.6265             nan     0.1000   -0.0331
##    220        1.5523             nan     0.1000   -0.0174
##    240        1.4749             nan     0.1000   -0.0205
##    260        1.4142             nan     0.1000   -0.0179
##    280        1.3592             nan     0.1000   -0.0154
##    300        1.3119             nan     0.1000   -0.0182
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1795             nan     0.0010    0.0778
##      2       60.1037             nan     0.0010    0.0772
##      3       60.0279             nan     0.0010    0.0714
##      4       59.9488             nan     0.0010    0.0743
##      5       59.8722             nan     0.0010    0.0738
##      6       59.7964             nan     0.0010    0.0767
##      7       59.7162             nan     0.0010    0.0740
##      8       59.6449             nan     0.0010    0.0766
##      9       59.5654             nan     0.0010    0.0718
##     10       59.4929             nan     0.0010    0.0671
##     20       58.7401             nan     0.0010    0.0708
##     40       57.2916             nan     0.0010    0.0666
##     60       55.8836             nan     0.0010    0.0675
##     80       54.5519             nan     0.0010    0.0638
##    100       53.2471             nan     0.0010    0.0649
##    120       52.0218             nan     0.0010    0.0577
##    140       50.7918             nan     0.0010    0.0575
##    160       49.6785             nan     0.0010    0.0566
##    180       48.5702             nan     0.0010    0.0551
##    200       47.4983             nan     0.0010    0.0538
##    220       46.4525             nan     0.0010    0.0455
##    240       45.4227             nan     0.0010    0.0496
##    260       44.4429             nan     0.0010    0.0444
##    280       43.5156             nan     0.0010    0.0466
##    300       42.5703             nan     0.0010    0.0470
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1723             nan     0.0010    0.0737
##      2       60.0953             nan     0.0010    0.0725
##      3       60.0182             nan     0.0010    0.0675
##      4       59.9470             nan     0.0010    0.0707
##      5       59.8714             nan     0.0010    0.0767
##      6       59.7983             nan     0.0010    0.0740
##      7       59.7255             nan     0.0010    0.0779
##      8       59.6508             nan     0.0010    0.0759
##      9       59.5767             nan     0.0010    0.0766
##     10       59.5011             nan     0.0010    0.0708
##     20       58.7670             nan     0.0010    0.0707
##     40       57.3122             nan     0.0010    0.0688
##     60       55.9166             nan     0.0010    0.0688
##     80       54.5722             nan     0.0010    0.0569
##    100       53.2639             nan     0.0010    0.0633
##    120       52.0380             nan     0.0010    0.0593
##    140       50.8574             nan     0.0010    0.0512
##    160       49.7285             nan     0.0010    0.0513
##    180       48.5877             nan     0.0010    0.0582
##    200       47.4931             nan     0.0010    0.0450
##    220       46.4460             nan     0.0010    0.0524
##    240       45.4405             nan     0.0010    0.0460
##    260       44.4584             nan     0.0010    0.0459
##    280       43.5087             nan     0.0010    0.0426
##    300       42.5903             nan     0.0010    0.0454
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1695             nan     0.0010    0.0722
##      2       60.0882             nan     0.0010    0.0750
##      3       60.0148             nan     0.0010    0.0718
##      4       59.9362             nan     0.0010    0.0796
##      5       59.8627             nan     0.0010    0.0769
##      6       59.7831             nan     0.0010    0.0725
##      7       59.7096             nan     0.0010    0.0784
##      8       59.6339             nan     0.0010    0.0671
##      9       59.5649             nan     0.0010    0.0770
##     10       59.4918             nan     0.0010    0.0743
##     20       58.7445             nan     0.0010    0.0735
##     40       57.2885             nan     0.0010    0.0705
##     60       55.8851             nan     0.0010    0.0616
##     80       54.5386             nan     0.0010    0.0624
##    100       53.2502             nan     0.0010    0.0629
##    120       51.9912             nan     0.0010    0.0589
##    140       50.8001             nan     0.0010    0.0590
##    160       49.6279             nan     0.0010    0.0559
##    180       48.5151             nan     0.0010    0.0570
##    200       47.4149             nan     0.0010    0.0559
##    220       46.4053             nan     0.0010    0.0529
##    240       45.4026             nan     0.0010    0.0494
##    260       44.3934             nan     0.0010    0.0429
##    280       43.4496             nan     0.0010    0.0469
##    300       42.5239             nan     0.0010    0.0447
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1451             nan     0.0010    0.0930
##      2       60.0488             nan     0.0010    0.0917
##      3       59.9524             nan     0.0010    0.0959
##      4       59.8640             nan     0.0010    0.0830
##      5       59.7736             nan     0.0010    0.0888
##      6       59.6892             nan     0.0010    0.0815
##      7       59.6001             nan     0.0010    0.0920
##      8       59.5158             nan     0.0010    0.0876
##      9       59.4340             nan     0.0010    0.0788
##     10       59.3422             nan     0.0010    0.1011
##     20       58.4477             nan     0.0010    0.0835
##     40       56.7033             nan     0.0010    0.0795
##     60       55.0206             nan     0.0010    0.0855
##     80       53.3875             nan     0.0010    0.0827
##    100       51.8031             nan     0.0010    0.0777
##    120       50.2945             nan     0.0010    0.0746
##    140       48.8366             nan     0.0010    0.0686
##    160       47.4607             nan     0.0010    0.0632
##    180       46.0926             nan     0.0010    0.0727
##    200       44.7854             nan     0.0010    0.0595
##    220       43.5004             nan     0.0010    0.0613
##    240       42.2318             nan     0.0010    0.0698
##    260       41.0266             nan     0.0010    0.0631
##    280       39.8913             nan     0.0010    0.0577
##    300       38.7674             nan     0.0010    0.0560
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1505             nan     0.0010    0.1005
##      2       60.0561             nan     0.0010    0.0804
##      3       59.9636             nan     0.0010    0.0915
##      4       59.8664             nan     0.0010    0.0854
##      5       59.7736             nan     0.0010    0.0887
##      6       59.6742             nan     0.0010    0.0910
##      7       59.5767             nan     0.0010    0.0960
##      8       59.4883             nan     0.0010    0.0894
##      9       59.3957             nan     0.0010    0.0892
##     10       59.2982             nan     0.0010    0.0904
##     20       58.4019             nan     0.0010    0.0916
##     40       56.6455             nan     0.0010    0.0904
##     60       54.9682             nan     0.0010    0.0730
##     80       53.3338             nan     0.0010    0.0823
##    100       51.7800             nan     0.0010    0.0805
##    120       50.2965             nan     0.0010    0.0793
##    140       48.8445             nan     0.0010    0.0700
##    160       47.4108             nan     0.0010    0.0727
##    180       46.0477             nan     0.0010    0.0634
##    200       44.7298             nan     0.0010    0.0676
##    220       43.4575             nan     0.0010    0.0599
##    240       42.2051             nan     0.0010    0.0630
##    260       41.0173             nan     0.0010    0.0656
##    280       39.8527             nan     0.0010    0.0535
##    300       38.7667             nan     0.0010    0.0540
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1607             nan     0.0010    0.0843
##      2       60.0752             nan     0.0010    0.0860
##      3       59.9899             nan     0.0010    0.0875
##      4       59.9018             nan     0.0010    0.0912
##      5       59.8153             nan     0.0010    0.0912
##      6       59.7186             nan     0.0010    0.0935
##      7       59.6257             nan     0.0010    0.0921
##      8       59.5419             nan     0.0010    0.0811
##      9       59.4561             nan     0.0010    0.0823
##     10       59.3711             nan     0.0010    0.0930
##     20       58.4471             nan     0.0010    0.0801
##     40       56.6909             nan     0.0010    0.0915
##     60       54.9991             nan     0.0010    0.0863
##     80       53.3788             nan     0.0010    0.0747
##    100       51.7886             nan     0.0010    0.0745
##    120       50.2626             nan     0.0010    0.0846
##    140       48.8012             nan     0.0010    0.0726
##    160       47.3692             nan     0.0010    0.0629
##    180       46.0266             nan     0.0010    0.0574
##    200       44.7143             nan     0.0010    0.0618
##    220       43.4199             nan     0.0010    0.0681
##    240       42.1896             nan     0.0010    0.0553
##    260       40.9956             nan     0.0010    0.0525
##    280       39.8586             nan     0.0010    0.0513
##    300       38.7238             nan     0.0010    0.0584
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1474             nan     0.0010    0.0974
##      2       60.0504             nan     0.0010    0.0976
##      3       59.9533             nan     0.0010    0.1027
##      4       59.8540             nan     0.0010    0.1079
##      5       59.7616             nan     0.0010    0.0967
##      6       59.6590             nan     0.0010    0.0896
##      7       59.5630             nan     0.0010    0.1013
##      8       59.4690             nan     0.0010    0.0924
##      9       59.3745             nan     0.0010    0.0882
##     10       59.2729             nan     0.0010    0.0867
##     20       58.2802             nan     0.0010    0.0968
##     40       56.3925             nan     0.0010    0.0996
##     60       54.5630             nan     0.0010    0.0900
##     80       52.8236             nan     0.0010    0.0873
##    100       51.1328             nan     0.0010    0.0766
##    120       49.5026             nan     0.0010    0.0817
##    140       47.9354             nan     0.0010    0.0743
##    160       46.4279             nan     0.0010    0.0758
##    180       44.9773             nan     0.0010    0.0717
##    200       43.5537             nan     0.0010    0.0586
##    220       42.1957             nan     0.0010    0.0617
##    240       40.8848             nan     0.0010    0.0651
##    260       39.6294             nan     0.0010    0.0593
##    280       38.4234             nan     0.0010    0.0568
##    300       37.2529             nan     0.0010    0.0577
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1460             nan     0.0010    0.1009
##      2       60.0483             nan     0.0010    0.0889
##      3       59.9490             nan     0.0010    0.0974
##      4       59.8510             nan     0.0010    0.0991
##      5       59.7492             nan     0.0010    0.0926
##      6       59.6502             nan     0.0010    0.0919
##      7       59.5497             nan     0.0010    0.0964
##      8       59.4560             nan     0.0010    0.1039
##      9       59.3626             nan     0.0010    0.0944
##     10       59.2681             nan     0.0010    0.0964
##     20       58.2859             nan     0.0010    0.1004
##     40       56.3956             nan     0.0010    0.0894
##     60       54.5705             nan     0.0010    0.0860
##     80       52.8157             nan     0.0010    0.0861
##    100       51.1443             nan     0.0010    0.0882
##    120       49.5222             nan     0.0010    0.0791
##    140       47.9672             nan     0.0010    0.0813
##    160       46.4739             nan     0.0010    0.0722
##    180       45.0183             nan     0.0010    0.0721
##    200       43.6075             nan     0.0010    0.0685
##    220       42.2669             nan     0.0010    0.0565
##    240       40.9615             nan     0.0010    0.0524
##    260       39.6929             nan     0.0010    0.0514
##    280       38.4661             nan     0.0010    0.0588
##    300       37.3093             nan     0.0010    0.0536
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1459             nan     0.0010    0.1016
##      2       60.0466             nan     0.0010    0.0948
##      3       59.9522             nan     0.0010    0.1013
##      4       59.8542             nan     0.0010    0.0993
##      5       59.7540             nan     0.0010    0.1048
##      6       59.6592             nan     0.0010    0.0891
##      7       59.5603             nan     0.0010    0.1008
##      8       59.4589             nan     0.0010    0.1031
##      9       59.3585             nan     0.0010    0.0941
##     10       59.2555             nan     0.0010    0.0927
##     20       58.2854             nan     0.0010    0.0732
##     40       56.4116             nan     0.0010    0.0868
##     60       54.5824             nan     0.0010    0.0891
##     80       52.8282             nan     0.0010    0.0782
##    100       51.1547             nan     0.0010    0.0745
##    120       49.5337             nan     0.0010    0.0759
##    140       47.9688             nan     0.0010    0.0790
##    160       46.4801             nan     0.0010    0.0733
##    180       45.0313             nan     0.0010    0.0744
##    200       43.6488             nan     0.0010    0.0682
##    220       42.3293             nan     0.0010    0.0598
##    240       41.0258             nan     0.0010    0.0635
##    260       39.7824             nan     0.0010    0.0586
##    280       38.5672             nan     0.0010    0.0604
##    300       37.4175             nan     0.0010    0.0547
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.8603             nan     0.0050    0.4031
##      2       59.4903             nan     0.0050    0.3718
##      3       59.1198             nan     0.0050    0.3488
##      4       58.8240             nan     0.0050    0.2815
##      5       58.4584             nan     0.0050    0.3805
##      6       58.0735             nan     0.0050    0.3662
##      7       57.7309             nan     0.0050    0.3408
##      8       57.3426             nan     0.0050    0.4121
##      9       56.9939             nan     0.0050    0.3507
##     10       56.6416             nan     0.0050    0.3215
##     20       53.2745             nan     0.0050    0.3276
##     40       47.4974             nan     0.0050    0.2886
##     60       42.5039             nan     0.0050    0.2358
##     80       38.2588             nan     0.0050    0.1864
##    100       34.5607             nan     0.0050    0.1524
##    120       31.3641             nan     0.0050    0.1549
##    140       28.5353             nan     0.0050    0.1255
##    160       26.0335             nan     0.0050    0.1080
##    180       23.9345             nan     0.0050    0.1001
##    200       22.0489             nan     0.0050    0.0854
##    220       20.3931             nan     0.0050    0.0695
##    240       18.9093             nan     0.0050    0.0627
##    260       17.6078             nan     0.0050    0.0619
##    280       16.4413             nan     0.0050    0.0471
##    300       15.3687             nan     0.0050    0.0517
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.8479             nan     0.0050    0.3577
##      2       59.4820             nan     0.0050    0.3800
##      3       59.1054             nan     0.0050    0.3741
##      4       58.7191             nan     0.0050    0.3659
##      5       58.4005             nan     0.0050    0.3353
##      6       58.0550             nan     0.0050    0.3377
##      7       57.6767             nan     0.0050    0.3519
##      8       57.3352             nan     0.0050    0.3364
##      9       56.9935             nan     0.0050    0.3625
##     10       56.6638             nan     0.0050    0.3560
##     20       53.3599             nan     0.0050    0.3140
##     40       47.6534             nan     0.0050    0.2615
##     60       42.7898             nan     0.0050    0.2351
##     80       38.5239             nan     0.0050    0.1837
##    100       34.8724             nan     0.0050    0.1590
##    120       31.6929             nan     0.0050    0.1474
##    140       28.8287             nan     0.0050    0.1243
##    160       26.3477             nan     0.0050    0.1172
##    180       24.1505             nan     0.0050    0.0781
##    200       22.2551             nan     0.0050    0.0913
##    220       20.5226             nan     0.0050    0.0754
##    240       19.0759             nan     0.0050    0.0575
##    260       17.7774             nan     0.0050    0.0530
##    280       16.6066             nan     0.0050    0.0570
##    300       15.5389             nan     0.0050    0.0503
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.8666             nan     0.0050    0.3734
##      2       59.4857             nan     0.0050    0.3645
##      3       59.0859             nan     0.0050    0.3770
##      4       58.7216             nan     0.0050    0.3589
##      5       58.3594             nan     0.0050    0.3502
##      6       57.9903             nan     0.0050    0.3521
##      7       57.6224             nan     0.0050    0.3545
##      8       57.2522             nan     0.0050    0.3329
##      9       56.8613             nan     0.0050    0.3217
##     10       56.5014             nan     0.0050    0.3701
##     20       53.2087             nan     0.0050    0.3097
##     40       47.3626             nan     0.0050    0.2384
##     60       42.5151             nan     0.0050    0.2259
##     80       38.3375             nan     0.0050    0.1924
##    100       34.6662             nan     0.0050    0.1562
##    120       31.4444             nan     0.0050    0.1455
##    140       28.6494             nan     0.0050    0.1386
##    160       26.1786             nan     0.0050    0.1011
##    180       24.0134             nan     0.0050    0.0970
##    200       22.0808             nan     0.0050    0.0910
##    220       20.4084             nan     0.0050    0.0595
##    240       18.9476             nan     0.0050    0.0714
##    260       17.6737             nan     0.0050    0.0624
##    280       16.4856             nan     0.0050    0.0514
##    300       15.4404             nan     0.0050    0.0457
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.7844             nan     0.0050    0.4356
##      2       59.3497             nan     0.0050    0.4760
##      3       58.9256             nan     0.0050    0.4086
##      4       58.4704             nan     0.0050    0.3945
##      5       57.9849             nan     0.0050    0.4529
##      6       57.5637             nan     0.0050    0.3994
##      7       57.1482             nan     0.0050    0.4292
##      8       56.7035             nan     0.0050    0.4009
##      9       56.2806             nan     0.0050    0.4622
##     10       55.8344             nan     0.0050    0.3577
##     20       51.7912             nan     0.0050    0.3392
##     40       44.6975             nan     0.0050    0.2976
##     60       38.7142             nan     0.0050    0.2424
##     80       33.5923             nan     0.0050    0.2354
##    100       29.4211             nan     0.0050    0.1738
##    120       25.9355             nan     0.0050    0.1209
##    140       22.9055             nan     0.0050    0.1387
##    160       20.3279             nan     0.0050    0.1224
##    180       18.1981             nan     0.0050    0.0939
##    200       16.3293             nan     0.0050    0.0937
##    220       14.7595             nan     0.0050    0.0674
##    240       13.3745             nan     0.0050    0.0547
##    260       12.2148             nan     0.0050    0.0477
##    280       11.1740             nan     0.0050    0.0385
##    300       10.3050             nan     0.0050    0.0362
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.7996             nan     0.0050    0.4785
##      2       59.3508             nan     0.0050    0.4311
##      3       58.9062             nan     0.0050    0.4804
##      4       58.4770             nan     0.0050    0.4116
##      5       58.0830             nan     0.0050    0.4254
##      6       57.6517             nan     0.0050    0.4328
##      7       57.2424             nan     0.0050    0.4435
##      8       56.7670             nan     0.0050    0.4511
##      9       56.3638             nan     0.0050    0.4191
##     10       55.9542             nan     0.0050    0.4418
##     20       51.7745             nan     0.0050    0.4002
##     40       44.6058             nan     0.0050    0.3056
##     60       38.7128             nan     0.0050    0.2688
##     80       33.6956             nan     0.0050    0.2293
##    100       29.5647             nan     0.0050    0.1843
##    120       25.9797             nan     0.0050    0.1440
##    140       22.9497             nan     0.0050    0.1234
##    160       20.3802             nan     0.0050    0.1141
##    180       18.2485             nan     0.0050    0.0998
##    200       16.3900             nan     0.0050    0.0812
##    220       14.8734             nan     0.0050    0.0427
##    240       13.5097             nan     0.0050    0.0363
##    260       12.3139             nan     0.0050    0.0569
##    280       11.2663             nan     0.0050    0.0366
##    300       10.3684             nan     0.0050    0.0365
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.7475             nan     0.0050    0.4592
##      2       59.2860             nan     0.0050    0.4591
##      3       58.8085             nan     0.0050    0.4537
##      4       58.3419             nan     0.0050    0.4315
##      5       57.8839             nan     0.0050    0.4263
##      6       57.4582             nan     0.0050    0.4147
##      7       57.0238             nan     0.0050    0.4673
##      8       56.5912             nan     0.0050    0.4551
##      9       56.1580             nan     0.0050    0.4188
##     10       55.7567             nan     0.0050    0.4363
##     20       51.7612             nan     0.0050    0.3489
##     40       44.5973             nan     0.0050    0.3144
##     60       38.6315             nan     0.0050    0.2962
##     80       33.6052             nan     0.0050    0.2098
##    100       29.3460             nan     0.0050    0.1780
##    120       25.7600             nan     0.0050    0.1563
##    140       22.8141             nan     0.0050    0.1436
##    160       20.3560             nan     0.0050    0.1246
##    180       18.2660             nan     0.0050    0.1023
##    200       16.4538             nan     0.0050    0.0705
##    220       14.9202             nan     0.0050    0.0715
##    240       13.5895             nan     0.0050    0.0459
##    260       12.4486             nan     0.0050    0.0403
##    280       11.4480             nan     0.0050    0.0305
##    300       10.5485             nan     0.0050    0.0379
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.7437             nan     0.0050    0.5467
##      2       59.2648             nan     0.0050    0.5210
##      3       58.7697             nan     0.0050    0.4746
##      4       58.3020             nan     0.0050    0.4657
##      5       57.8372             nan     0.0050    0.4202
##      6       57.3710             nan     0.0050    0.4225
##      7       56.9051             nan     0.0050    0.4257
##      8       56.4279             nan     0.0050    0.4773
##      9       55.9832             nan     0.0050    0.4336
##     10       55.5204             nan     0.0050    0.3896
##     20       51.1079             nan     0.0050    0.4059
##     40       43.5650             nan     0.0050    0.3709
##     60       37.2961             nan     0.0050    0.2624
##     80       32.0736             nan     0.0050    0.2413
##    100       27.7240             nan     0.0050    0.1899
##    120       24.1386             nan     0.0050    0.1391
##    140       21.0723             nan     0.0050    0.1428
##    160       18.4861             nan     0.0050    0.1144
##    180       16.2344             nan     0.0050    0.1017
##    200       14.4245             nan     0.0050    0.0727
##    220       12.8418             nan     0.0050    0.0700
##    240       11.5015             nan     0.0050    0.0553
##    260       10.3445             nan     0.0050    0.0500
##    280        9.3997             nan     0.0050    0.0365
##    300        8.5620             nan     0.0050    0.0374
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.7618             nan     0.0050    0.4742
##      2       59.2765             nan     0.0050    0.4774
##      3       58.8054             nan     0.0050    0.4848
##      4       58.3361             nan     0.0050    0.4751
##      5       57.8637             nan     0.0050    0.4625
##      6       57.3638             nan     0.0050    0.4666
##      7       56.9144             nan     0.0050    0.4735
##      8       56.4340             nan     0.0050    0.4632
##      9       55.9335             nan     0.0050    0.5124
##     10       55.4452             nan     0.0050    0.4786
##     20       51.1518             nan     0.0050    0.3808
##     40       43.5937             nan     0.0050    0.3265
##     60       37.3159             nan     0.0050    0.2844
##     80       32.0826             nan     0.0050    0.2454
##    100       27.6830             nan     0.0050    0.1990
##    120       24.0165             nan     0.0050    0.1638
##    140       21.0011             nan     0.0050    0.1387
##    160       18.4479             nan     0.0050    0.1163
##    180       16.2814             nan     0.0050    0.1017
##    200       14.4243             nan     0.0050    0.0765
##    220       12.8808             nan     0.0050    0.0692
##    240       11.5543             nan     0.0050    0.0540
##    260       10.4186             nan     0.0050    0.0350
##    280        9.4382             nan     0.0050    0.0436
##    300        8.5822             nan     0.0050    0.0265
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.7261             nan     0.0050    0.5060
##      2       59.2185             nan     0.0050    0.4943
##      3       58.7666             nan     0.0050    0.4778
##      4       58.2780             nan     0.0050    0.5044
##      5       57.7743             nan     0.0050    0.4754
##      6       57.3205             nan     0.0050    0.4277
##      7       56.8310             nan     0.0050    0.4938
##      8       56.3748             nan     0.0050    0.4058
##      9       55.8795             nan     0.0050    0.5029
##     10       55.4226             nan     0.0050    0.4150
##     20       51.1310             nan     0.0050    0.4092
##     40       43.4552             nan     0.0050    0.3219
##     60       37.2154             nan     0.0050    0.2743
##     80       32.0370             nan     0.0050    0.2246
##    100       27.7077             nan     0.0050    0.1868
##    120       24.1239             nan     0.0050    0.1621
##    140       21.1307             nan     0.0050    0.1256
##    160       18.5764             nan     0.0050    0.1054
##    180       16.4427             nan     0.0050    0.0986
##    200       14.6420             nan     0.0050    0.0853
##    220       13.0988             nan     0.0050    0.0666
##    240       11.8210             nan     0.0050    0.0403
##    260       10.7052             nan     0.0050    0.0488
##    280        9.7551             nan     0.0050    0.0301
##    300        8.9399             nan     0.0050    0.0390
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5301             nan     0.0100    0.7121
##      2       58.7557             nan     0.0100    0.7238
##      3       58.0288             nan     0.0100    0.7509
##      4       57.3049             nan     0.0100    0.7483
##      5       56.6425             nan     0.0100    0.6792
##      6       55.9880             nan     0.0100    0.7523
##      7       55.3099             nan     0.0100    0.6834
##      8       54.5972             nan     0.0100    0.6280
##      9       53.9108             nan     0.0100    0.6188
##     10       53.2549             nan     0.0100    0.6996
##     20       47.3159             nan     0.0100    0.5227
##     40       38.0748             nan     0.0100    0.3057
##     60       31.2711             nan     0.0100    0.2870
##     80       26.1392             nan     0.0100    0.2147
##    100       22.1332             nan     0.0100    0.1594
##    120       18.9530             nan     0.0100    0.1246
##    140       16.4653             nan     0.0100    0.0946
##    160       14.4619             nan     0.0100    0.0833
##    180       12.8350             nan     0.0100    0.0573
##    200       11.4477             nan     0.0100    0.0377
##    220       10.3397             nan     0.0100    0.0512
##    240        9.4086             nan     0.0100    0.0321
##    260        8.6175             nan     0.0100    0.0331
##    280        7.9549             nan     0.0100    0.0289
##    300        7.3609             nan     0.0100    0.0233
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5025             nan     0.0100    0.7670
##      2       58.7792             nan     0.0100    0.7396
##      3       58.0228             nan     0.0100    0.6962
##      4       57.3227             nan     0.0100    0.6367
##      5       56.6319             nan     0.0100    0.5897
##      6       55.9651             nan     0.0100    0.6187
##      7       55.3250             nan     0.0100    0.6897
##      8       54.6190             nan     0.0100    0.6896
##      9       54.0017             nan     0.0100    0.5919
##     10       53.3662             nan     0.0100    0.6411
##     20       47.5606             nan     0.0100    0.5612
##     40       38.4455             nan     0.0100    0.3616
##     60       31.4149             nan     0.0100    0.2690
##     80       26.1982             nan     0.0100    0.2095
##    100       22.1650             nan     0.0100    0.1689
##    120       19.0083             nan     0.0100    0.1105
##    140       16.4846             nan     0.0100    0.0967
##    160       14.4699             nan     0.0100    0.0943
##    180       12.7560             nan     0.0100    0.0482
##    200       11.4073             nan     0.0100    0.0440
##    220       10.3047             nan     0.0100    0.0315
##    240        9.3806             nan     0.0100    0.0350
##    260        8.5782             nan     0.0100    0.0269
##    280        7.8870             nan     0.0100    0.0191
##    300        7.2898             nan     0.0100    0.0224
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.4379             nan     0.0100    0.7410
##      2       58.6478             nan     0.0100    0.7647
##      3       57.9257             nan     0.0100    0.7299
##      4       57.2356             nan     0.0100    0.7545
##      5       56.5742             nan     0.0100    0.6628
##      6       55.8594             nan     0.0100    0.6682
##      7       55.1789             nan     0.0100    0.6331
##      8       54.5105             nan     0.0100    0.6045
##      9       53.8799             nan     0.0100    0.5812
##     10       53.2213             nan     0.0100    0.6400
##     20       47.2757             nan     0.0100    0.5458
##     40       38.0557             nan     0.0100    0.3920
##     60       31.2341             nan     0.0100    0.3090
##     80       25.8533             nan     0.0100    0.2244
##    100       21.7828             nan     0.0100    0.1777
##    120       18.7267             nan     0.0100    0.1334
##    140       16.3387             nan     0.0100    0.0867
##    160       14.4160             nan     0.0100    0.0813
##    180       12.7616             nan     0.0100    0.0636
##    200       11.4273             nan     0.0100    0.0489
##    220       10.3186             nan     0.0100    0.0387
##    240        9.4409             nan     0.0100    0.0324
##    260        8.6969             nan     0.0100    0.0266
##    280        8.0304             nan     0.0100    0.0242
##    300        7.4719             nan     0.0100    0.0129
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.3279             nan     0.0100    0.9335
##      2       58.3807             nan     0.0100    0.9140
##      3       57.4267             nan     0.0100    0.8765
##      4       56.5539             nan     0.0100    0.8451
##      5       55.7523             nan     0.0100    0.6643
##      6       54.9846             nan     0.0100    0.7482
##      7       54.1062             nan     0.0100    0.8696
##      8       53.3126             nan     0.0100    0.7473
##      9       52.4951             nan     0.0100    0.8363
##     10       51.6730             nan     0.0100    0.7740
##     20       44.5239             nan     0.0100    0.6623
##     40       33.5092             nan     0.0100    0.4765
##     60       25.7755             nan     0.0100    0.3151
##     80       20.2420             nan     0.0100    0.2195
##    100       16.3169             nan     0.0100    0.1444
##    120       13.3336             nan     0.0100    0.1099
##    140       11.1305             nan     0.0100    0.0714
##    160        9.4807             nan     0.0100    0.0625
##    180        8.2087             nan     0.0100    0.0401
##    200        7.1880             nan     0.0100    0.0309
##    220        6.4012             nan     0.0100    0.0296
##    240        5.7566             nan     0.0100    0.0332
##    260        5.2300             nan     0.0100    0.0203
##    280        4.8163             nan     0.0100    0.0053
##    300        4.4735             nan     0.0100    0.0110
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2937             nan     0.0100    0.8528
##      2       58.3829             nan     0.0100    0.8335
##      3       57.4928             nan     0.0100    0.8818
##      4       56.5719             nan     0.0100    0.8709
##      5       55.7264             nan     0.0100    0.8367
##      6       54.8647             nan     0.0100    0.8706
##      7       54.0510             nan     0.0100    0.7981
##      8       53.2680             nan     0.0100    0.8063
##      9       52.4768             nan     0.0100    0.8153
##     10       51.7084             nan     0.0100    0.8145
##     20       44.5023             nan     0.0100    0.6304
##     40       33.6787             nan     0.0100    0.4127
##     60       25.8800             nan     0.0100    0.3685
##     80       20.3155             nan     0.0100    0.2628
##    100       16.3839             nan     0.0100    0.1613
##    120       13.3850             nan     0.0100    0.1262
##    140       11.2099             nan     0.0100    0.0691
##    160        9.5074             nan     0.0100    0.0633
##    180        8.2201             nan     0.0100    0.0529
##    200        7.2295             nan     0.0100    0.0418
##    220        6.4306             nan     0.0100    0.0365
##    240        5.8156             nan     0.0100    0.0200
##    260        5.3021             nan     0.0100    0.0220
##    280        4.8863             nan     0.0100    0.0094
##    300        4.5524             nan     0.0100    0.0020
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.3458             nan     0.0100    0.9447
##      2       58.4801             nan     0.0100    0.8597
##      3       57.5790             nan     0.0100    0.8684
##      4       56.7152             nan     0.0100    0.8660
##      5       55.8615             nan     0.0100    0.8794
##      6       54.9927             nan     0.0100    0.8379
##      7       54.1352             nan     0.0100    0.8406
##      8       53.2912             nan     0.0100    0.7745
##      9       52.4999             nan     0.0100    0.8266
##     10       51.7232             nan     0.0100    0.7589
##     20       44.4926             nan     0.0100    0.7387
##     40       33.5892             nan     0.0100    0.3962
##     60       25.8645             nan     0.0100    0.3257
##     80       20.2375             nan     0.0100    0.1955
##    100       16.3022             nan     0.0100    0.1587
##    120       13.5019             nan     0.0100    0.1066
##    140       11.3529             nan     0.0100    0.0646
##    160        9.6748             nan     0.0100    0.0596
##    180        8.4075             nan     0.0100    0.0520
##    200        7.4900             nan     0.0100    0.0356
##    220        6.7147             nan     0.0100    0.0307
##    240        6.0887             nan     0.0100    0.0297
##    260        5.5958             nan     0.0100    0.0153
##    280        5.2038             nan     0.0100    0.0120
##    300        4.8790             nan     0.0100    0.0096
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2867             nan     0.0100    0.8900
##      2       58.2498             nan     0.0100    1.0645
##      3       57.3169             nan     0.0100    0.9356
##      4       56.3990             nan     0.0100    0.9202
##      5       55.4437             nan     0.0100    0.9580
##      6       54.5730             nan     0.0100    0.9240
##      7       53.7357             nan     0.0100    0.9093
##      8       52.8665             nan     0.0100    0.9115
##      9       52.0433             nan     0.0100    0.8780
##     10       51.2267             nan     0.0100    0.7975
##     20       43.5791             nan     0.0100    0.6996
##     40       32.3413             nan     0.0100    0.5134
##     60       24.2072             nan     0.0100    0.3154
##     80       18.5195             nan     0.0100    0.2265
##    100       14.4210             nan     0.0100    0.1525
##    120       11.4767             nan     0.0100    0.1010
##    140        9.3660             nan     0.0100    0.0794
##    160        7.8236             nan     0.0100    0.0429
##    180        6.6703             nan     0.0100    0.0394
##    200        5.8099             nan     0.0100    0.0300
##    220        5.1330             nan     0.0100    0.0216
##    240        4.5887             nan     0.0100    0.0222
##    260        4.1674             nan     0.0100    0.0120
##    280        3.8615             nan     0.0100    0.0085
##    300        3.6184             nan     0.0100    0.0061
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.3172             nan     0.0100    0.9388
##      2       58.3219             nan     0.0100    0.8678
##      3       57.3643             nan     0.0100    0.9162
##      4       56.4423             nan     0.0100    0.9423
##      5       55.5326             nan     0.0100    0.8155
##      6       54.6090             nan     0.0100    0.9197
##      7       53.7418             nan     0.0100    0.8800
##      8       52.8922             nan     0.0100    0.9002
##      9       51.9833             nan     0.0100    0.8495
##     10       51.1142             nan     0.0100    0.8545
##     20       43.6640             nan     0.0100    0.7057
##     40       32.2619             nan     0.0100    0.4472
##     60       24.2101             nan     0.0100    0.3324
##     80       18.6397             nan     0.0100    0.2035
##    100       14.5378             nan     0.0100    0.1596
##    120       11.6281             nan     0.0100    0.0865
##    140        9.5128             nan     0.0100    0.0664
##    160        7.9413             nan     0.0100    0.0597
##    180        6.7344             nan     0.0100    0.0463
##    200        5.8501             nan     0.0100    0.0288
##    220        5.1961             nan     0.0100    0.0236
##    240        4.6940             nan     0.0100    0.0122
##    260        4.3067             nan     0.0100    0.0124
##    280        3.9938             nan     0.0100    0.0073
##    300        3.7397             nan     0.0100    0.0069
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2635             nan     0.0100    0.9178
##      2       58.2982             nan     0.0100    0.9042
##      3       57.3010             nan     0.0100    0.9459
##      4       56.3472             nan     0.0100    0.9760
##      5       55.4844             nan     0.0100    0.9373
##      6       54.5326             nan     0.0100    0.8566
##      7       53.6754             nan     0.0100    0.7365
##      8       52.7681             nan     0.0100    0.8704
##      9       51.9101             nan     0.0100    0.8760
##     10       51.0392             nan     0.0100    0.8254
##     20       43.4013             nan     0.0100    0.6912
##     40       32.1634             nan     0.0100    0.4103
##     60       24.2525             nan     0.0100    0.2974
##     80       18.6018             nan     0.0100    0.1645
##    100       14.6755             nan     0.0100    0.1842
##    120       11.8420             nan     0.0100    0.1077
##    140        9.7650             nan     0.0100    0.0767
##    160        8.2853             nan     0.0100    0.0443
##    180        7.1396             nan     0.0100    0.0443
##    200        6.2290             nan     0.0100    0.0338
##    220        5.5752             nan     0.0100    0.0253
##    240        5.0699             nan     0.0100    0.0118
##    260        4.6659             nan     0.0100    0.0110
##    280        4.3719             nan     0.0100    0.0029
##    300        4.1274             nan     0.0100    0.0087
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.5478             nan     0.0500    3.6882
##      2       52.9560             nan     0.0500    3.1827
##      3       49.8560             nan     0.0500    2.9290
##      4       46.7298             nan     0.0500    3.1035
##      5       44.1532             nan     0.0500    2.4554
##      6       41.7505             nan     0.0500    1.9597
##      7       39.5955             nan     0.0500    1.9121
##      8       37.4853             nan     0.0500    1.9040
##      9       35.6351             nan     0.0500    1.6778
##     10       33.7467             nan     0.0500    1.6390
##     20       21.7512             nan     0.0500    0.9606
##     40       11.1563             nan     0.0500    0.2683
##     60        7.1306             nan     0.0500    0.1043
##     80        5.2208             nan     0.0500    0.0213
##    100        4.3192             nan     0.0500    0.0206
##    120        3.8543             nan     0.0500    0.0024
##    140        3.5937             nan     0.0500   -0.0035
##    160        3.4771             nan     0.0500   -0.0003
##    180        3.3891             nan     0.0500   -0.0081
##    200        3.3179             nan     0.0500   -0.0026
##    220        3.2396             nan     0.0500   -0.0076
##    240        3.1552             nan     0.0500   -0.0117
##    260        3.1001             nan     0.0500   -0.0062
##    280        3.0501             nan     0.0500   -0.0195
##    300        3.0045             nan     0.0500   -0.0032
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.4586             nan     0.0500    3.8686
##      2       53.1814             nan     0.0500    3.3968
##      3       50.1428             nan     0.0500    2.9569
##      4       47.3283             nan     0.0500    2.7298
##      5       44.6403             nan     0.0500    2.3233
##      6       42.0990             nan     0.0500    2.1398
##      7       39.8159             nan     0.0500    2.3457
##      8       37.6828             nan     0.0500    2.0014
##      9       35.7014             nan     0.0500    1.9536
##     10       34.0483             nan     0.0500    1.6874
##     20       21.5385             nan     0.0500    0.8393
##     40       11.3067             nan     0.0500    0.2403
##     60        7.2000             nan     0.0500    0.1139
##     80        5.3380             nan     0.0500    0.0114
##    100        4.4461             nan     0.0500    0.0327
##    120        3.9339             nan     0.0500   -0.0098
##    140        3.6891             nan     0.0500   -0.0060
##    160        3.5228             nan     0.0500    0.0036
##    180        3.4127             nan     0.0500   -0.0126
##    200        3.3179             nan     0.0500   -0.0067
##    220        3.2445             nan     0.0500   -0.0061
##    240        3.1786             nan     0.0500   -0.0043
##    260        3.1267             nan     0.0500   -0.0062
##    280        3.0669             nan     0.0500   -0.0109
##    300        3.0258             nan     0.0500   -0.0037
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.5169             nan     0.0500    3.4327
##      2       53.1301             nan     0.0500    3.3331
##      3       50.1149             nan     0.0500    2.9409
##      4       47.3597             nan     0.0500    2.7068
##      5       45.1506             nan     0.0500    2.1826
##      6       42.6249             nan     0.0500    2.5142
##      7       40.2458             nan     0.0500    2.5013
##      8       37.9532             nan     0.0500    1.9599
##      9       35.9453             nan     0.0500    1.8534
##     10       34.3348             nan     0.0500    1.6849
##     20       21.8063             nan     0.0500    0.8525
##     40       11.4615             nan     0.0500    0.2026
##     60        7.4609             nan     0.0500    0.1156
##     80        5.6260             nan     0.0500    0.0564
##    100        4.7297             nan     0.0500    0.0161
##    120        4.2963             nan     0.0500    0.0033
##    140        4.0892             nan     0.0500   -0.0020
##    160        3.9575             nan     0.0500   -0.0036
##    180        3.8549             nan     0.0500   -0.0060
##    200        3.7678             nan     0.0500   -0.0176
##    220        3.6726             nan     0.0500   -0.0091
##    240        3.6145             nan     0.0500   -0.0026
##    260        3.5361             nan     0.0500   -0.0050
##    280        3.4791             nan     0.0500   -0.0221
##    300        3.4137             nan     0.0500   -0.0038
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.7740             nan     0.0500    4.0245
##      2       51.4753             nan     0.0500    3.5262
##      3       47.8405             nan     0.0500    3.4442
##      4       44.2474             nan     0.0500    3.6493
##      5       41.0586             nan     0.0500    2.9592
##      6       38.2337             nan     0.0500    2.6567
##      7       35.5399             nan     0.0500    2.4215
##      8       33.4934             nan     0.0500    1.8823
##      9       31.1984             nan     0.0500    2.3343
##     10       29.0450             nan     0.0500    1.9876
##     20       16.0399             nan     0.0500    0.7374
##     40        7.0124             nan     0.0500    0.1564
##     60        4.4400             nan     0.0500    0.0499
##     80        3.5027             nan     0.0500    0.0149
##    100        3.0900             nan     0.0500    0.0015
##    120        2.8543             nan     0.0500   -0.0005
##    140        2.6859             nan     0.0500    0.0038
##    160        2.5553             nan     0.0500   -0.0116
##    180        2.4359             nan     0.0500   -0.0060
##    200        2.3327             nan     0.0500   -0.0114
##    220        2.2432             nan     0.0500   -0.0179
##    240        2.1780             nan     0.0500   -0.0178
##    260        2.1092             nan     0.0500   -0.0047
##    280        2.0451             nan     0.0500   -0.0144
##    300        1.9866             nan     0.0500   -0.0122
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.2700             nan     0.0500    4.5715
##      2       50.9228             nan     0.0500    3.7653
##      3       47.2806             nan     0.0500    3.5590
##      4       43.9280             nan     0.0500    3.2875
##      5       41.0981             nan     0.0500    3.0518
##      6       38.2152             nan     0.0500    2.8586
##      7       35.5367             nan     0.0500    2.4637
##      8       32.9167             nan     0.0500    2.4383
##      9       30.5307             nan     0.0500    2.0516
##     10       28.6581             nan     0.0500    1.8414
##     20       15.8320             nan     0.0500    0.8739
##     40        6.9770             nan     0.0500    0.1664
##     60        4.5397             nan     0.0500    0.0276
##     80        3.6381             nan     0.0500   -0.0045
##    100        3.3304             nan     0.0500   -0.0103
##    120        3.1267             nan     0.0500   -0.0039
##    140        2.9503             nan     0.0500   -0.0092
##    160        2.8024             nan     0.0500   -0.0013
##    180        2.6996             nan     0.0500   -0.0027
##    200        2.6192             nan     0.0500   -0.0103
##    220        2.5369             nan     0.0500   -0.0118
##    240        2.4602             nan     0.0500   -0.0088
##    260        2.3960             nan     0.0500   -0.0150
##    280        2.3308             nan     0.0500   -0.0142
##    300        2.2648             nan     0.0500   -0.0103
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.7213             nan     0.0500    4.6688
##      2       51.7321             nan     0.0500    4.0763
##      3       47.8623             nan     0.0500    3.4833
##      4       44.4081             nan     0.0500    3.2962
##      5       41.3645             nan     0.0500    2.9971
##      6       38.6021             nan     0.0500    2.4006
##      7       35.7745             nan     0.0500    2.6068
##      8       33.1662             nan     0.0500    2.3257
##      9       30.9573             nan     0.0500    1.9084
##     10       29.0350             nan     0.0500    2.0797
##     20       16.5571             nan     0.0500    0.6464
##     40        7.5841             nan     0.0500    0.0948
##     60        4.9780             nan     0.0500    0.0361
##     80        4.1854             nan     0.0500    0.0116
##    100        3.7796             nan     0.0500   -0.0022
##    120        3.5582             nan     0.0500   -0.0124
##    140        3.3944             nan     0.0500   -0.0118
##    160        3.2428             nan     0.0500   -0.0019
##    180        3.1342             nan     0.0500   -0.0052
##    200        3.0410             nan     0.0500   -0.0112
##    220        2.9416             nan     0.0500   -0.0141
##    240        2.8588             nan     0.0500   -0.0120
##    260        2.7756             nan     0.0500   -0.0161
##    280        2.7219             nan     0.0500   -0.0109
##    300        2.6644             nan     0.0500   -0.0062
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.2701             nan     0.0500    5.1863
##      2       51.0344             nan     0.0500    4.7472
##      3       46.8458             nan     0.0500    4.6638
##      4       43.1859             nan     0.0500    3.1811
##      5       39.7185             nan     0.0500    3.4908
##      6       36.5141             nan     0.0500    3.2510
##      7       33.8681             nan     0.0500    2.7073
##      8       31.4515             nan     0.0500    2.6161
##      9       29.3647             nan     0.0500    2.2113
##     10       27.3934             nan     0.0500    2.0472
##     20       14.1183             nan     0.0500    0.8636
##     40        5.7964             nan     0.0500    0.1960
##     60        3.5883             nan     0.0500    0.0155
##     80        3.0078             nan     0.0500   -0.0027
##    100        2.6754             nan     0.0500   -0.0099
##    120        2.4486             nan     0.0500   -0.0057
##    140        2.3034             nan     0.0500   -0.0029
##    160        2.1708             nan     0.0500   -0.0175
##    180        2.0383             nan     0.0500   -0.0120
##    200        1.9251             nan     0.0500   -0.0089
##    220        1.8301             nan     0.0500   -0.0118
##    240        1.7517             nan     0.0500   -0.0087
##    260        1.6867             nan     0.0500   -0.0124
##    280        1.6084             nan     0.0500   -0.0064
##    300        1.5271             nan     0.0500   -0.0027
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.2600             nan     0.0500    4.4398
##      2       50.7526             nan     0.0500    4.4028
##      3       46.8272             nan     0.0500    3.7879
##      4       43.2540             nan     0.0500    3.4182
##      5       39.9372             nan     0.0500    3.4231
##      6       36.7336             nan     0.0500    2.8722
##      7       34.1287             nan     0.0500    2.5602
##      8       31.6628             nan     0.0500    2.0893
##      9       29.2717             nan     0.0500    2.0020
##     10       27.1558             nan     0.0500    1.8754
##     20       14.4907             nan     0.0500    0.8304
##     40        5.8307             nan     0.0500    0.1650
##     60        3.7309             nan     0.0500    0.0146
##     80        3.0997             nan     0.0500   -0.0203
##    100        2.8136             nan     0.0500   -0.0082
##    120        2.5819             nan     0.0500   -0.0113
##    140        2.4285             nan     0.0500   -0.0209
##    160        2.3090             nan     0.0500   -0.0085
##    180        2.1922             nan     0.0500   -0.0154
##    200        2.0896             nan     0.0500   -0.0154
##    220        2.0186             nan     0.0500   -0.0285
##    240        1.9496             nan     0.0500   -0.0127
##    260        1.8690             nan     0.0500   -0.0046
##    280        1.8010             nan     0.0500   -0.0143
##    300        1.7421             nan     0.0500   -0.0123
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.1588             nan     0.0500    5.0826
##      2       50.8569             nan     0.0500    4.5910
##      3       47.0256             nan     0.0500    3.8204
##      4       43.4280             nan     0.0500    3.7800
##      5       40.0490             nan     0.0500    3.1138
##      6       37.1788             nan     0.0500    2.8038
##      7       34.2593             nan     0.0500    2.4781
##      8       31.5909             nan     0.0500    2.5895
##      9       29.3312             nan     0.0500    2.1735
##     10       27.2546             nan     0.0500    2.0750
##     20       14.1653             nan     0.0500    0.7210
##     40        6.0663             nan     0.0500    0.1603
##     60        4.0416             nan     0.0500    0.0342
##     80        3.4186             nan     0.0500   -0.0028
##    100        3.1879             nan     0.0500   -0.0005
##    120        2.9848             nan     0.0500   -0.0221
##    140        2.8146             nan     0.0500   -0.0051
##    160        2.7192             nan     0.0500   -0.0056
##    180        2.6202             nan     0.0500   -0.0154
##    200        2.5166             nan     0.0500   -0.0154
##    220        2.4207             nan     0.0500   -0.0026
##    240        2.3362             nan     0.0500   -0.0114
##    260        2.2724             nan     0.0500   -0.0120
##    280        2.2100             nan     0.0500   -0.0103
##    300        2.1386             nan     0.0500   -0.0192
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.7506             nan     0.1000    7.1763
##      2       47.0920             nan     0.1000    6.0234
##      3       42.3567             nan     0.1000    4.5566
##      4       37.9987             nan     0.1000    4.2984
##      5       34.4241             nan     0.1000    3.8144
##      6       31.0418             nan     0.1000    3.2506
##      7       28.7072             nan     0.1000    1.9377
##      8       26.0735             nan     0.1000    2.5086
##      9       23.9450             nan     0.1000    2.2169
##     10       22.0010             nan     0.1000    1.8381
##     20       11.0767             nan     0.1000    0.4340
##     40        5.3297             nan     0.1000    0.0626
##     60        3.9995             nan     0.1000    0.0336
##     80        3.5982             nan     0.1000   -0.0121
##    100        3.3890             nan     0.1000    0.0000
##    120        3.2635             nan     0.1000   -0.0011
##    140        3.1550             nan     0.1000   -0.0033
##    160        3.0579             nan     0.1000   -0.0257
##    180        2.9935             nan     0.1000   -0.0121
##    200        2.9279             nan     0.1000   -0.0212
##    220        2.8696             nan     0.1000   -0.0138
##    240        2.7978             nan     0.1000   -0.0160
##    260        2.7562             nan     0.1000   -0.0135
##    280        2.7077             nan     0.1000   -0.0150
##    300        2.6812             nan     0.1000   -0.0139
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.4895             nan     0.1000    6.7067
##      2       47.6072             nan     0.1000    5.4591
##      3       42.7737             nan     0.1000    4.9773
##      4       38.1240             nan     0.1000    4.1375
##      5       34.3879             nan     0.1000    3.5969
##      6       31.1107             nan     0.1000    2.9325
##      7       28.1514             nan     0.1000    2.6520
##      8       25.6167             nan     0.1000    2.1981
##      9       23.6287             nan     0.1000    1.9418
##     10       21.6287             nan     0.1000    1.5102
##     20       11.2716             nan     0.1000    0.2185
##     40        5.3970             nan     0.1000    0.1180
##     60        4.0855             nan     0.1000    0.0166
##     80        3.6601             nan     0.1000   -0.0054
##    100        3.4478             nan     0.1000   -0.0093
##    120        3.3129             nan     0.1000    0.0041
##    140        3.1946             nan     0.1000   -0.0135
##    160        3.1082             nan     0.1000   -0.0176
##    180        3.0312             nan     0.1000    0.0025
##    200        2.9617             nan     0.1000   -0.0157
##    220        2.9237             nan     0.1000   -0.0228
##    240        2.8573             nan     0.1000   -0.0102
##    260        2.8250             nan     0.1000   -0.0216
##    280        2.7831             nan     0.1000   -0.0142
##    300        2.7375             nan     0.1000   -0.0037
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.4135             nan     0.1000    6.9011
##      2       47.1608             nan     0.1000    6.0421
##      3       42.0795             nan     0.1000    4.6584
##      4       37.4784             nan     0.1000    4.6792
##      5       33.7501             nan     0.1000    3.1221
##      6       30.3582             nan     0.1000    3.5393
##      7       27.5512             nan     0.1000    2.8099
##      8       25.0929             nan     0.1000    2.1795
##      9       23.3808             nan     0.1000    1.5307
##     10       21.1300             nan     0.1000    2.0990
##     20       11.0073             nan     0.1000    0.5348
##     40        5.8692             nan     0.1000    0.0955
##     60        4.6087             nan     0.1000   -0.0144
##     80        4.1453             nan     0.1000   -0.0028
##    100        3.8734             nan     0.1000   -0.0175
##    120        3.7216             nan     0.1000   -0.0134
##    140        3.5858             nan     0.1000   -0.0018
##    160        3.4894             nan     0.1000   -0.0102
##    180        3.3700             nan     0.1000   -0.0157
##    200        3.3196             nan     0.1000   -0.0167
##    220        3.2501             nan     0.1000   -0.0110
##    240        3.2076             nan     0.1000   -0.0283
##    260        3.1164             nan     0.1000   -0.0455
##    280        3.0558             nan     0.1000   -0.0298
##    300        3.0051             nan     0.1000   -0.0144
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.0281             nan     0.1000    8.7641
##      2       43.5306             nan     0.1000    7.6911
##      3       37.7776             nan     0.1000    5.4204
##      4       33.1069             nan     0.1000    4.8355
##      5       28.7307             nan     0.1000    4.0763
##      6       25.1086             nan     0.1000    3.7259
##      7       21.9585             nan     0.1000    3.0868
##      8       19.6549             nan     0.1000    2.3523
##      9       17.2967             nan     0.1000    2.1958
##     10       15.3565             nan     0.1000    1.9368
##     20        6.9850             nan     0.1000    0.3441
##     40        3.7130             nan     0.1000   -0.0266
##     60        3.0886             nan     0.1000   -0.0235
##     80        2.7270             nan     0.1000   -0.0253
##    100        2.4717             nan     0.1000   -0.0152
##    120        2.3085             nan     0.1000   -0.0102
##    140        2.1622             nan     0.1000   -0.0140
##    160        2.0465             nan     0.1000   -0.0107
##    180        1.9217             nan     0.1000   -0.0234
##    200        1.8410             nan     0.1000   -0.0215
##    220        1.7437             nan     0.1000   -0.0179
##    240        1.6534             nan     0.1000   -0.0188
##    260        1.5732             nan     0.1000   -0.0257
##    280        1.5114             nan     0.1000   -0.0117
##    300        1.4437             nan     0.1000   -0.0140
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.4574             nan     0.1000    8.5511
##      2       43.6292             nan     0.1000    7.4864
##      3       38.3152             nan     0.1000    4.7751
##      4       33.0019             nan     0.1000    4.5809
##      5       28.3030             nan     0.1000    3.8723
##      6       24.6753             nan     0.1000    3.5918
##      7       22.1672             nan     0.1000    2.6385
##      8       19.7101             nan     0.1000    2.5135
##      9       17.5791             nan     0.1000    2.2540
##     10       15.6014             nan     0.1000    1.7681
##     20        7.3561             nan     0.1000    0.3211
##     40        4.0734             nan     0.1000    0.0111
##     60        3.2907             nan     0.1000   -0.0115
##     80        3.0237             nan     0.1000   -0.0054
##    100        2.7609             nan     0.1000   -0.0041
##    120        2.6178             nan     0.1000   -0.0357
##    140        2.4793             nan     0.1000   -0.0356
##    160        2.3521             nan     0.1000   -0.0151
##    180        2.2526             nan     0.1000   -0.0126
##    200        2.1392             nan     0.1000   -0.0085
##    220        2.0344             nan     0.1000   -0.0252
##    240        1.9688             nan     0.1000   -0.0214
##    260        1.9119             nan     0.1000   -0.0079
##    280        1.8396             nan     0.1000   -0.0153
##    300        1.7940             nan     0.1000   -0.0219
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.9822             nan     0.1000    9.0965
##      2       44.4752             nan     0.1000    7.7664
##      3       37.7836             nan     0.1000    6.3289
##      4       32.8874             nan     0.1000    4.8919
##      5       28.9346             nan     0.1000    3.5495
##      6       25.2904             nan     0.1000    3.7228
##      7       22.1820             nan     0.1000    2.7445
##      8       19.5773             nan     0.1000    2.0650
##      9       17.3918             nan     0.1000    1.9651
##     10       15.4182             nan     0.1000    1.9007
##     20        7.4054             nan     0.1000    0.4873
##     40        3.9401             nan     0.1000    0.0317
##     60        3.4042             nan     0.1000    0.0036
##     80        3.1202             nan     0.1000   -0.0145
##    100        2.9249             nan     0.1000   -0.0159
##    120        2.8269             nan     0.1000   -0.0433
##    140        2.6982             nan     0.1000   -0.0334
##    160        2.5672             nan     0.1000   -0.0291
##    180        2.4792             nan     0.1000   -0.0078
##    200        2.3850             nan     0.1000   -0.0322
##    220        2.3127             nan     0.1000   -0.0097
##    240        2.2386             nan     0.1000   -0.0205
##    260        2.1881             nan     0.1000   -0.0046
##    280        2.1275             nan     0.1000   -0.0241
##    300        2.0611             nan     0.1000   -0.0345
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.0240             nan     0.1000    9.7028
##      2       42.9325             nan     0.1000    6.7644
##      3       36.2273             nan     0.1000    5.6676
##      4       31.2167             nan     0.1000    5.5483
##      5       26.7668             nan     0.1000    5.0129
##      6       23.3127             nan     0.1000    3.3081
##      7       20.2583             nan     0.1000    2.9563
##      8       17.8008             nan     0.1000    2.5952
##      9       15.5352             nan     0.1000    2.0502
##     10       14.1459             nan     0.1000    1.1390
##     20        5.8211             nan     0.1000    0.3927
##     40        3.0564             nan     0.1000    0.0117
##     60        2.5176             nan     0.1000   -0.0211
##     80        2.2175             nan     0.1000   -0.0280
##    100        1.9533             nan     0.1000   -0.0098
##    120        1.7455             nan     0.1000   -0.0031
##    140        1.5479             nan     0.1000   -0.0128
##    160        1.4244             nan     0.1000   -0.0490
##    180        1.2917             nan     0.1000   -0.0039
##    200        1.1962             nan     0.1000   -0.0120
##    220        1.1048             nan     0.1000   -0.0234
##    240        1.0309             nan     0.1000   -0.0089
##    260        0.9776             nan     0.1000   -0.0045
##    280        0.9093             nan     0.1000   -0.0064
##    300        0.8666             nan     0.1000   -0.0092
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       50.9763             nan     0.1000    8.6060
##      2       43.6799             nan     0.1000    7.1181
##      3       36.9160             nan     0.1000    6.2173
##      4       31.6626             nan     0.1000    5.6476
##      5       27.2356             nan     0.1000    4.4415
##      6       23.3880             nan     0.1000    3.6540
##      7       20.2227             nan     0.1000    2.8091
##      8       17.6812             nan     0.1000    2.4228
##      9       15.5394             nan     0.1000    2.1536
##     10       13.5147             nan     0.1000    1.9567
##     20        5.4812             nan     0.1000    0.2823
##     40        3.0979             nan     0.1000    0.0123
##     60        2.6104             nan     0.1000   -0.0203
##     80        2.3769             nan     0.1000   -0.0026
##    100        2.1959             nan     0.1000   -0.0202
##    120        1.9909             nan     0.1000   -0.0311
##    140        1.8432             nan     0.1000   -0.0349
##    160        1.7461             nan     0.1000   -0.0151
##    180        1.6309             nan     0.1000   -0.0199
##    200        1.5354             nan     0.1000   -0.0150
##    220        1.4513             nan     0.1000   -0.0194
##    240        1.3796             nan     0.1000   -0.0290
##    260        1.2975             nan     0.1000   -0.0096
##    280        1.2348             nan     0.1000   -0.0036
##    300        1.1840             nan     0.1000   -0.0167
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       50.7784             nan     0.1000    8.5421
##      2       42.8726             nan     0.1000    8.2604
##      3       36.1711             nan     0.1000    5.7266
##      4       31.2270             nan     0.1000    4.8707
##      5       26.7869             nan     0.1000    4.1884
##      6       23.3459             nan     0.1000    3.6392
##      7       20.4667             nan     0.1000    2.9572
##      8       18.0280             nan     0.1000    2.2395
##      9       15.9711             nan     0.1000    1.9120
##     10       14.1127             nan     0.1000    1.7284
##     20        5.8302             nan     0.1000    0.3171
##     40        3.4830             nan     0.1000   -0.0135
##     60        2.9413             nan     0.1000   -0.0300
##     80        2.6941             nan     0.1000    0.0056
##    100        2.5068             nan     0.1000   -0.0259
##    120        2.3335             nan     0.1000   -0.0226
##    140        2.2173             nan     0.1000   -0.0089
##    160        2.1126             nan     0.1000   -0.0125
##    180        2.0073             nan     0.1000   -0.0206
##    200        1.9139             nan     0.1000   -0.0151
##    220        1.8036             nan     0.1000   -0.0129
##    240        1.7371             nan     0.1000   -0.0438
##    260        1.6486             nan     0.1000   -0.0286
##    280        1.5572             nan     0.1000   -0.0155
##    300        1.4898             nan     0.1000   -0.0210
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8825             nan     0.0010    0.0755
##      2       62.7997             nan     0.0010    0.0820
##      3       62.7120             nan     0.0010    0.0796
##      4       62.6326             nan     0.0010    0.0841
##      5       62.5551             nan     0.0010    0.0738
##      6       62.4732             nan     0.0010    0.0726
##      7       62.3862             nan     0.0010    0.0820
##      8       62.3102             nan     0.0010    0.0814
##      9       62.2316             nan     0.0010    0.0783
##     10       62.1526             nan     0.0010    0.0818
##     20       61.3510             nan     0.0010    0.0770
##     40       59.8002             nan     0.0010    0.0694
##     60       58.3362             nan     0.0010    0.0768
##     80       56.9166             nan     0.0010    0.0689
##    100       55.5448             nan     0.0010    0.0647
##    120       54.2010             nan     0.0010    0.0642
##    140       52.9172             nan     0.0010    0.0648
##    160       51.6832             nan     0.0010    0.0575
##    180       50.4842             nan     0.0010    0.0533
##    200       49.3385             nan     0.0010    0.0500
##    220       48.2520             nan     0.0010    0.0476
##    240       47.1634             nan     0.0010    0.0495
##    260       46.1139             nan     0.0010    0.0488
##    280       45.1019             nan     0.0010    0.0446
##    300       44.1103             nan     0.0010    0.0452
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8828             nan     0.0010    0.0751
##      2       62.7995             nan     0.0010    0.0753
##      3       62.7190             nan     0.0010    0.0784
##      4       62.6363             nan     0.0010    0.0811
##      5       62.5592             nan     0.0010    0.0777
##      6       62.4789             nan     0.0010    0.0788
##      7       62.3993             nan     0.0010    0.0792
##      8       62.3167             nan     0.0010    0.0809
##      9       62.2358             nan     0.0010    0.0825
##     10       62.1565             nan     0.0010    0.0753
##     20       61.3640             nan     0.0010    0.0788
##     40       59.8455             nan     0.0010    0.0707
##     60       58.3551             nan     0.0010    0.0687
##     80       56.9296             nan     0.0010    0.0692
##    100       55.5428             nan     0.0010    0.0552
##    120       54.2217             nan     0.0010    0.0657
##    140       52.9408             nan     0.0010    0.0657
##    160       51.6988             nan     0.0010    0.0570
##    180       50.5058             nan     0.0010    0.0579
##    200       49.3670             nan     0.0010    0.0550
##    220       48.2158             nan     0.0010    0.0528
##    240       47.1228             nan     0.0010    0.0517
##    260       46.0582             nan     0.0010    0.0500
##    280       45.0281             nan     0.0010    0.0468
##    300       44.0362             nan     0.0010    0.0452
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8894             nan     0.0010    0.0834
##      2       62.8133             nan     0.0010    0.0824
##      3       62.7347             nan     0.0010    0.0792
##      4       62.6511             nan     0.0010    0.0779
##      5       62.5693             nan     0.0010    0.0762
##      6       62.4917             nan     0.0010    0.0856
##      7       62.4120             nan     0.0010    0.0830
##      8       62.3332             nan     0.0010    0.0747
##      9       62.2501             nan     0.0010    0.0834
##     10       62.1663             nan     0.0010    0.0815
##     20       61.3436             nan     0.0010    0.0844
##     40       59.8015             nan     0.0010    0.0829
##     60       58.3296             nan     0.0010    0.0727
##     80       56.8960             nan     0.0010    0.0727
##    100       55.4990             nan     0.0010    0.0656
##    120       54.1787             nan     0.0010    0.0626
##    140       52.8811             nan     0.0010    0.0620
##    160       51.6447             nan     0.0010    0.0635
##    180       50.4761             nan     0.0010    0.0585
##    200       49.3177             nan     0.0010    0.0582
##    220       48.1919             nan     0.0010    0.0590
##    240       47.0805             nan     0.0010    0.0536
##    260       46.0283             nan     0.0010    0.0453
##    280       44.9761             nan     0.0010    0.0454
##    300       44.0107             nan     0.0010    0.0455
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8705             nan     0.0010    0.0940
##      2       62.7711             nan     0.0010    0.0987
##      3       62.6753             nan     0.0010    0.1006
##      4       62.5810             nan     0.0010    0.0927
##      5       62.4932             nan     0.0010    0.0833
##      6       62.3977             nan     0.0010    0.0958
##      7       62.3018             nan     0.0010    0.0961
##      8       62.2118             nan     0.0010    0.0940
##      9       62.1195             nan     0.0010    0.0897
##     10       62.0211             nan     0.0010    0.0884
##     20       61.0489             nan     0.0010    0.0916
##     40       59.1646             nan     0.0010    0.0865
##     60       57.3869             nan     0.0010    0.0937
##     80       55.6710             nan     0.0010    0.0769
##    100       54.0054             nan     0.0010    0.0779
##    120       52.3845             nan     0.0010    0.0796
##    140       50.8262             nan     0.0010    0.0748
##    160       49.3052             nan     0.0010    0.0755
##    180       47.8376             nan     0.0010    0.0756
##    200       46.4600             nan     0.0010    0.0652
##    220       45.1119             nan     0.0010    0.0592
##    240       43.7933             nan     0.0010    0.0608
##    260       42.5485             nan     0.0010    0.0559
##    280       41.3122             nan     0.0010    0.0547
##    300       40.1469             nan     0.0010    0.0580
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8680             nan     0.0010    0.0844
##      2       62.7739             nan     0.0010    0.0947
##      3       62.6754             nan     0.0010    0.0945
##      4       62.5748             nan     0.0010    0.0949
##      5       62.4805             nan     0.0010    0.0982
##      6       62.3797             nan     0.0010    0.0966
##      7       62.2897             nan     0.0010    0.0969
##      8       62.1902             nan     0.0010    0.0962
##      9       62.0904             nan     0.0010    0.0881
##     10       61.9928             nan     0.0010    0.0969
##     20       61.0198             nan     0.0010    0.0923
##     40       59.1671             nan     0.0010    0.0861
##     60       57.4029             nan     0.0010    0.0832
##     80       55.7065             nan     0.0010    0.0812
##    100       54.0255             nan     0.0010    0.0818
##    120       52.4131             nan     0.0010    0.0740
##    140       50.8422             nan     0.0010    0.0732
##    160       49.3551             nan     0.0010    0.0751
##    180       47.8968             nan     0.0010    0.0816
##    200       46.5059             nan     0.0010    0.0666
##    220       45.1002             nan     0.0010    0.0657
##    240       43.8084             nan     0.0010    0.0679
##    260       42.5300             nan     0.0010    0.0564
##    280       41.3304             nan     0.0010    0.0595
##    300       40.1824             nan     0.0010    0.0553
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8673             nan     0.0010    0.1020
##      2       62.7661             nan     0.0010    0.0997
##      3       62.6578             nan     0.0010    0.1055
##      4       62.5510             nan     0.0010    0.0944
##      5       62.4572             nan     0.0010    0.0942
##      6       62.3576             nan     0.0010    0.1012
##      7       62.2729             nan     0.0010    0.0880
##      8       62.1791             nan     0.0010    0.0852
##      9       62.0808             nan     0.0010    0.0947
##     10       61.9835             nan     0.0010    0.0890
##     20       61.0357             nan     0.0010    0.0837
##     40       59.2085             nan     0.0010    0.0855
##     60       57.4224             nan     0.0010    0.0791
##     80       55.6938             nan     0.0010    0.0783
##    100       54.0295             nan     0.0010    0.0810
##    120       52.4082             nan     0.0010    0.0681
##    140       50.8936             nan     0.0010    0.0789
##    160       49.3878             nan     0.0010    0.0733
##    180       47.9130             nan     0.0010    0.0684
##    200       46.5216             nan     0.0010    0.0582
##    220       45.1630             nan     0.0010    0.0646
##    240       43.8802             nan     0.0010    0.0653
##    260       42.5901             nan     0.0010    0.0728
##    280       41.3988             nan     0.0010    0.0537
##    300       40.2071             nan     0.0010    0.0602
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8576             nan     0.0010    0.1126
##      2       62.7556             nan     0.0010    0.0988
##      3       62.6522             nan     0.0010    0.1084
##      4       62.5466             nan     0.0010    0.1049
##      5       62.4423             nan     0.0010    0.1117
##      6       62.3333             nan     0.0010    0.1007
##      7       62.2282             nan     0.0010    0.1070
##      8       62.1231             nan     0.0010    0.0948
##      9       62.0199             nan     0.0010    0.0970
##     10       61.9177             nan     0.0010    0.0973
##     20       60.8747             nan     0.0010    0.1074
##     40       58.8721             nan     0.0010    0.1054
##     60       56.9608             nan     0.0010    0.0946
##     80       55.1109             nan     0.0010    0.0970
##    100       53.3344             nan     0.0010    0.0834
##    120       51.6122             nan     0.0010    0.0824
##    140       49.9604             nan     0.0010    0.0768
##    160       48.3568             nan     0.0010    0.0776
##    180       46.8296             nan     0.0010    0.0732
##    200       45.3755             nan     0.0010    0.0658
##    220       43.9424             nan     0.0010    0.0630
##    240       42.5839             nan     0.0010    0.0692
##    260       41.2639             nan     0.0010    0.0581
##    280       39.9943             nan     0.0010    0.0656
##    300       38.7702             nan     0.0010    0.0564
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8565             nan     0.0010    0.1032
##      2       62.7514             nan     0.0010    0.1020
##      3       62.6455             nan     0.0010    0.1107
##      4       62.5387             nan     0.0010    0.1094
##      5       62.4388             nan     0.0010    0.1019
##      6       62.3373             nan     0.0010    0.0906
##      7       62.2367             nan     0.0010    0.1054
##      8       62.1247             nan     0.0010    0.1081
##      9       62.0194             nan     0.0010    0.0936
##     10       61.9096             nan     0.0010    0.1033
##     20       60.8853             nan     0.0010    0.1056
##     40       58.8871             nan     0.0010    0.1048
##     60       56.9849             nan     0.0010    0.0974
##     80       55.1396             nan     0.0010    0.0847
##    100       53.3622             nan     0.0010    0.0845
##    120       51.6691             nan     0.0010    0.0826
##    140       50.0052             nan     0.0010    0.0831
##    160       48.4000             nan     0.0010    0.0728
##    180       46.8521             nan     0.0010    0.0773
##    200       45.3608             nan     0.0010    0.0681
##    220       43.9282             nan     0.0010    0.0719
##    240       42.5511             nan     0.0010    0.0588
##    260       41.2406             nan     0.0010    0.0664
##    280       39.9618             nan     0.0010    0.0665
##    300       38.7291             nan     0.0010    0.0590
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8594             nan     0.0010    0.1052
##      2       62.7608             nan     0.0010    0.0983
##      3       62.6549             nan     0.0010    0.1057
##      4       62.5509             nan     0.0010    0.0922
##      5       62.4491             nan     0.0010    0.0958
##      6       62.3442             nan     0.0010    0.0981
##      7       62.2430             nan     0.0010    0.0977
##      8       62.1394             nan     0.0010    0.0973
##      9       62.0406             nan     0.0010    0.1024
##     10       61.9395             nan     0.0010    0.0962
##     20       60.9170             nan     0.0010    0.1024
##     40       58.9414             nan     0.0010    0.0995
##     60       57.0164             nan     0.0010    0.0958
##     80       55.1626             nan     0.0010    0.1011
##    100       53.3940             nan     0.0010    0.0801
##    120       51.6518             nan     0.0010    0.0868
##    140       50.0027             nan     0.0010    0.0793
##    160       48.4367             nan     0.0010    0.0702
##    180       46.9079             nan     0.0010    0.0752
##    200       45.4325             nan     0.0010    0.0680
##    220       44.0047             nan     0.0010    0.0658
##    240       42.6343             nan     0.0010    0.0657
##    260       41.3117             nan     0.0010    0.0626
##    280       40.0529             nan     0.0010    0.0600
##    300       38.8229             nan     0.0010    0.0545
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5443             nan     0.0050    0.4123
##      2       62.1294             nan     0.0050    0.4006
##      3       61.7335             nan     0.0050    0.3669
##      4       61.3477             nan     0.0050    0.3546
##      5       60.9614             nan     0.0050    0.3642
##      6       60.5639             nan     0.0050    0.3925
##      7       60.1730             nan     0.0050    0.3654
##      8       59.7960             nan     0.0050    0.3739
##      9       59.4221             nan     0.0050    0.3514
##     10       59.0802             nan     0.0050    0.3865
##     20       55.5907             nan     0.0050    0.3005
##     40       49.3976             nan     0.0050    0.2884
##     60       44.0938             nan     0.0050    0.2247
##     80       39.5131             nan     0.0050    0.1870
##    100       35.6475             nan     0.0050    0.1748
##    120       32.3292             nan     0.0050    0.1458
##    140       29.4415             nan     0.0050    0.1443
##    160       26.8428             nan     0.0050    0.1161
##    180       24.5699             nan     0.0050    0.0963
##    200       22.6197             nan     0.0050    0.0849
##    220       20.8872             nan     0.0050    0.0673
##    240       19.3118             nan     0.0050    0.0530
##    260       17.9601             nan     0.0050    0.0403
##    280       16.7009             nan     0.0050    0.0531
##    300       15.5695             nan     0.0050    0.0449
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5641             nan     0.0050    0.3788
##      2       62.1480             nan     0.0050    0.3904
##      3       61.7432             nan     0.0050    0.3944
##      4       61.3425             nan     0.0050    0.3867
##      5       60.9461             nan     0.0050    0.4089
##      6       60.5935             nan     0.0050    0.3892
##      7       60.2017             nan     0.0050    0.3748
##      8       59.8305             nan     0.0050    0.3686
##      9       59.4536             nan     0.0050    0.3759
##     10       59.0793             nan     0.0050    0.3706
##     20       55.5030             nan     0.0050    0.3150
##     40       49.2377             nan     0.0050    0.2771
##     60       44.0767             nan     0.0050    0.2376
##     80       39.5487             nan     0.0050    0.1882
##    100       35.6495             nan     0.0050    0.1720
##    120       32.2667             nan     0.0050    0.1438
##    140       29.3976             nan     0.0050    0.1269
##    160       26.8571             nan     0.0050    0.1208
##    180       24.6034             nan     0.0050    0.0973
##    200       22.6600             nan     0.0050    0.0844
##    220       20.9145             nan     0.0050    0.0678
##    240       19.3771             nan     0.0050    0.0689
##    260       17.9575             nan     0.0050    0.0581
##    280       16.7070             nan     0.0050    0.0562
##    300       15.6028             nan     0.0050    0.0488
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5366             nan     0.0050    0.4190
##      2       62.1282             nan     0.0050    0.4008
##      3       61.7460             nan     0.0050    0.4005
##      4       61.3495             nan     0.0050    0.4097
##      5       60.9497             nan     0.0050    0.3877
##      6       60.5882             nan     0.0050    0.3742
##      7       60.2097             nan     0.0050    0.3915
##      8       59.8656             nan     0.0050    0.3565
##      9       59.4731             nan     0.0050    0.3559
##     10       59.1312             nan     0.0050    0.3704
##     20       55.4832             nan     0.0050    0.3082
##     40       49.3011             nan     0.0050    0.2728
##     60       44.0469             nan     0.0050    0.1943
##     80       39.5898             nan     0.0050    0.1732
##    100       35.7208             nan     0.0050    0.1650
##    120       32.4376             nan     0.0050    0.1636
##    140       29.4313             nan     0.0050    0.1364
##    160       26.9361             nan     0.0050    0.1189
##    180       24.6651             nan     0.0050    0.0973
##    200       22.6274             nan     0.0050    0.0939
##    220       20.8496             nan     0.0050    0.0667
##    240       19.3040             nan     0.0050    0.0612
##    260       17.9533             nan     0.0050    0.0686
##    280       16.7214             nan     0.0050    0.0399
##    300       15.5876             nan     0.0050    0.0463
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.4947             nan     0.0050    0.4614
##      2       61.9637             nan     0.0050    0.5007
##      3       61.4507             nan     0.0050    0.5398
##      4       60.9477             nan     0.0050    0.4846
##      5       60.4779             nan     0.0050    0.4546
##      6       60.0206             nan     0.0050    0.4877
##      7       59.5934             nan     0.0050    0.3916
##      8       59.1511             nan     0.0050    0.4381
##      9       58.6977             nan     0.0050    0.4291
##     10       58.2525             nan     0.0050    0.4170
##     20       53.8940             nan     0.0050    0.3731
##     40       46.3653             nan     0.0050    0.3225
##     60       40.0471             nan     0.0050    0.2577
##     80       34.7208             nan     0.0050    0.2374
##    100       30.3358             nan     0.0050    0.2124
##    120       26.5822             nan     0.0050    0.1632
##    140       23.3909             nan     0.0050    0.1274
##    160       20.7285             nan     0.0050    0.1225
##    180       18.5170             nan     0.0050    0.0729
##    200       16.6332             nan     0.0050    0.0893
##    220       14.9693             nan     0.0050    0.0789
##    240       13.5296             nan     0.0050    0.0460
##    260       12.2969             nan     0.0050    0.0581
##    280       11.2336             nan     0.0050    0.0470
##    300       10.3231             nan     0.0050    0.0403
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5093             nan     0.0050    0.4526
##      2       62.0194             nan     0.0050    0.4762
##      3       61.5546             nan     0.0050    0.4784
##      4       61.0610             nan     0.0050    0.4403
##      5       60.5772             nan     0.0050    0.4973
##      6       60.1530             nan     0.0050    0.4457
##      7       59.6603             nan     0.0050    0.4744
##      8       59.1793             nan     0.0050    0.4457
##      9       58.7270             nan     0.0050    0.4476
##     10       58.2987             nan     0.0050    0.4349
##     20       53.9819             nan     0.0050    0.3783
##     40       46.6053             nan     0.0050    0.3651
##     60       40.4000             nan     0.0050    0.2748
##     80       35.0193             nan     0.0050    0.2172
##    100       30.5072             nan     0.0050    0.1893
##    120       26.7728             nan     0.0050    0.1865
##    140       23.5792             nan     0.0050    0.1606
##    160       20.9317             nan     0.0050    0.1017
##    180       18.6735             nan     0.0050    0.0994
##    200       16.7612             nan     0.0050    0.0628
##    220       15.0966             nan     0.0050    0.0751
##    240       13.6953             nan     0.0050    0.0478
##    260       12.4609             nan     0.0050    0.0433
##    280       11.4007             nan     0.0050    0.0411
##    300       10.4659             nan     0.0050    0.0494
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.4850             nan     0.0050    0.5007
##      2       61.9966             nan     0.0050    0.5226
##      3       61.5164             nan     0.0050    0.4424
##      4       61.0297             nan     0.0050    0.4936
##      5       60.5098             nan     0.0050    0.4665
##      6       60.0319             nan     0.0050    0.4727
##      7       59.5881             nan     0.0050    0.4474
##      8       59.0855             nan     0.0050    0.4730
##      9       58.6597             nan     0.0050    0.4520
##     10       58.2233             nan     0.0050    0.4178
##     20       53.9253             nan     0.0050    0.3854
##     40       46.3772             nan     0.0050    0.3394
##     60       40.0139             nan     0.0050    0.2881
##     80       34.7016             nan     0.0050    0.2193
##    100       30.4297             nan     0.0050    0.2051
##    120       26.6371             nan     0.0050    0.1938
##    140       23.5429             nan     0.0050    0.1365
##    160       20.8405             nan     0.0050    0.1210
##    180       18.5786             nan     0.0050    0.1054
##    200       16.6523             nan     0.0050    0.0855
##    220       15.0039             nan     0.0050    0.0672
##    240       13.6114             nan     0.0050    0.0577
##    260       12.4537             nan     0.0050    0.0512
##    280       11.4039             nan     0.0050    0.0396
##    300       10.4946             nan     0.0050    0.0418
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.4128             nan     0.0050    0.4943
##      2       61.8977             nan     0.0050    0.5442
##      3       61.3554             nan     0.0050    0.5066
##      4       60.8273             nan     0.0050    0.5228
##      5       60.3267             nan     0.0050    0.5455
##      6       59.8153             nan     0.0050    0.4762
##      7       59.3352             nan     0.0050    0.3969
##      8       58.8379             nan     0.0050    0.5082
##      9       58.3447             nan     0.0050    0.4775
##     10       57.8298             nan     0.0050    0.4571
##     20       53.3008             nan     0.0050    0.4280
##     40       45.3115             nan     0.0050    0.3569
##     60       38.6625             nan     0.0050    0.2861
##     80       33.2519             nan     0.0050    0.2217
##    100       28.6592             nan     0.0050    0.1889
##    120       24.8250             nan     0.0050    0.1562
##    140       21.5765             nan     0.0050    0.1501
##    160       18.8668             nan     0.0050    0.0999
##    180       16.6056             nan     0.0050    0.0961
##    200       14.7381             nan     0.0050    0.0872
##    220       13.1185             nan     0.0050    0.0589
##    240       11.7304             nan     0.0050    0.0537
##    260       10.5744             nan     0.0050    0.0512
##    280        9.5780             nan     0.0050    0.0439
##    300        8.7036             nan     0.0050    0.0381
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.4183             nan     0.0050    0.5485
##      2       61.8812             nan     0.0050    0.5069
##      3       61.3987             nan     0.0050    0.4995
##      4       60.9045             nan     0.0050    0.5417
##      5       60.3836             nan     0.0050    0.5030
##      6       59.8698             nan     0.0050    0.5244
##      7       59.3998             nan     0.0050    0.4873
##      8       58.9069             nan     0.0050    0.5269
##      9       58.4164             nan     0.0050    0.4375
##     10       57.9417             nan     0.0050    0.5022
##     20       53.3145             nan     0.0050    0.4109
##     40       45.2842             nan     0.0050    0.3383
##     60       38.6862             nan     0.0050    0.3079
##     80       33.1948             nan     0.0050    0.2087
##    100       28.6031             nan     0.0050    0.2194
##    120       24.7347             nan     0.0050    0.1646
##    140       21.5871             nan     0.0050    0.1410
##    160       18.8401             nan     0.0050    0.1174
##    180       16.5791             nan     0.0050    0.1034
##    200       14.6648             nan     0.0050    0.0802
##    220       13.0324             nan     0.0050    0.0749
##    240       11.6701             nan     0.0050    0.0583
##    260       10.5020             nan     0.0050    0.0516
##    280        9.4895             nan     0.0050    0.0391
##    300        8.6464             nan     0.0050    0.0373
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.4536             nan     0.0050    0.4462
##      2       61.9527             nan     0.0050    0.5013
##      3       61.4442             nan     0.0050    0.4758
##      4       60.9338             nan     0.0050    0.5248
##      5       60.4440             nan     0.0050    0.4786
##      6       59.9355             nan     0.0050    0.4982
##      7       59.4205             nan     0.0050    0.4997
##      8       58.9278             nan     0.0050    0.5293
##      9       58.4334             nan     0.0050    0.4685
##     10       57.9502             nan     0.0050    0.5018
##     20       53.2793             nan     0.0050    0.4341
##     40       45.3563             nan     0.0050    0.3742
##     60       38.8085             nan     0.0050    0.3011
##     80       33.3215             nan     0.0050    0.2101
##    100       28.7079             nan     0.0050    0.2057
##    120       24.9046             nan     0.0050    0.1734
##    140       21.7300             nan     0.0050    0.1271
##    160       19.0929             nan     0.0050    0.1252
##    180       16.8283             nan     0.0050    0.1007
##    200       14.9044             nan     0.0050    0.0923
##    220       13.2995             nan     0.0050    0.0673
##    240       11.9476             nan     0.0050    0.0540
##    260       10.8039             nan     0.0050    0.0525
##    280        9.8041             nan     0.0050    0.0326
##    300        8.9619             nan     0.0050    0.0352
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.2832             nan     0.0100    0.7593
##      2       61.5187             nan     0.0100    0.8200
##      3       60.7769             nan     0.0100    0.8081
##      4       60.0223             nan     0.0100    0.7141
##      5       59.2521             nan     0.0100    0.7612
##      6       58.5466             nan     0.0100    0.7627
##      7       57.8354             nan     0.0100    0.7742
##      8       57.1303             nan     0.0100    0.7151
##      9       56.4053             nan     0.0100    0.7120
##     10       55.7060             nan     0.0100    0.6593
##     20       49.4151             nan     0.0100    0.5558
##     40       39.8415             nan     0.0100    0.3337
##     60       32.4128             nan     0.0100    0.2766
##     80       26.9617             nan     0.0100    0.2131
##    100       22.7569             nan     0.0100    0.1708
##    120       19.3905             nan     0.0100    0.1535
##    140       16.7968             nan     0.0100    0.1120
##    160       14.6390             nan     0.0100    0.1150
##    180       12.9285             nan     0.0100    0.0594
##    200       11.4895             nan     0.0100    0.0564
##    220       10.3511             nan     0.0100    0.0387
##    240        9.3876             nan     0.0100    0.0369
##    260        8.6016             nan     0.0100    0.0342
##    280        7.8811             nan     0.0100    0.0249
##    300        7.2874             nan     0.0100    0.0171
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.1303             nan     0.0100    0.7596
##      2       61.3487             nan     0.0100    0.8112
##      3       60.5803             nan     0.0100    0.7970
##      4       59.7105             nan     0.0100    0.7761
##      5       58.9840             nan     0.0100    0.7453
##      6       58.2432             nan     0.0100    0.6903
##      7       57.5329             nan     0.0100    0.7628
##      8       56.8050             nan     0.0100    0.6369
##      9       56.0654             nan     0.0100    0.6482
##     10       55.4168             nan     0.0100    0.6654
##     20       49.2600             nan     0.0100    0.5343
##     40       39.5204             nan     0.0100    0.3867
##     60       32.2767             nan     0.0100    0.2953
##     80       26.7313             nan     0.0100    0.2242
##    100       22.5613             nan     0.0100    0.1556
##    120       19.3024             nan     0.0100    0.1316
##    140       16.7283             nan     0.0100    0.0938
##    160       14.6220             nan     0.0100    0.0701
##    180       12.9381             nan     0.0100    0.0733
##    200       11.5245             nan     0.0100    0.0696
##    220       10.3718             nan     0.0100    0.0484
##    240        9.4058             nan     0.0100    0.0410
##    260        8.6053             nan     0.0100    0.0328
##    280        7.9061             nan     0.0100    0.0247
##    300        7.3118             nan     0.0100    0.0209
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.1296             nan     0.0100    0.7923
##      2       61.2609             nan     0.0100    0.7581
##      3       60.4651             nan     0.0100    0.7682
##      4       59.7437             nan     0.0100    0.6775
##      5       58.9556             nan     0.0100    0.6944
##      6       58.1828             nan     0.0100    0.6887
##      7       57.5069             nan     0.0100    0.6583
##      8       56.8514             nan     0.0100    0.7161
##      9       56.1973             nan     0.0100    0.6659
##     10       55.4878             nan     0.0100    0.6687
##     20       49.3368             nan     0.0100    0.5697
##     40       39.5327             nan     0.0100    0.3834
##     60       32.2825             nan     0.0100    0.2970
##     80       26.7848             nan     0.0100    0.2432
##    100       22.5853             nan     0.0100    0.1668
##    120       19.2204             nan     0.0100    0.1296
##    140       16.5807             nan     0.0100    0.1156
##    160       14.4859             nan     0.0100    0.0765
##    180       12.8220             nan     0.0100    0.0615
##    200       11.4859             nan     0.0100    0.0503
##    220       10.3590             nan     0.0100    0.0489
##    240        9.4267             nan     0.0100    0.0373
##    260        8.6299             nan     0.0100    0.0322
##    280        7.9595             nan     0.0100    0.0202
##    300        7.3913             nan     0.0100    0.0259
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0265             nan     0.0100    0.9466
##      2       61.0405             nan     0.0100    0.9829
##      3       60.1110             nan     0.0100    0.9778
##      4       59.2260             nan     0.0100    0.7881
##      5       58.2664             nan     0.0100    0.8659
##      6       57.3761             nan     0.0100    0.9128
##      7       56.4714             nan     0.0100    0.8299
##      8       55.6599             nan     0.0100    0.7751
##      9       54.8167             nan     0.0100    0.8207
##     10       53.9728             nan     0.0100    0.8368
##     20       46.4957             nan     0.0100    0.6579
##     40       34.6954             nan     0.0100    0.4551
##     60       26.6026             nan     0.0100    0.3450
##     80       20.7573             nan     0.0100    0.2486
##    100       16.6759             nan     0.0100    0.1193
##    120       13.5909             nan     0.0100    0.1388
##    140       11.3341             nan     0.0100    0.0988
##    160        9.6004             nan     0.0100    0.0635
##    180        8.2673             nan     0.0100    0.0438
##    200        7.2993             nan     0.0100    0.0291
##    220        6.4684             nan     0.0100    0.0206
##    240        5.8224             nan     0.0100    0.0177
##    260        5.3056             nan     0.0100    0.0191
##    280        4.9022             nan     0.0100    0.0121
##    300        4.5771             nan     0.0100    0.0118
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9812             nan     0.0100    0.8935
##      2       61.0941             nan     0.0100    0.9517
##      3       60.2356             nan     0.0100    0.9473
##      4       59.3107             nan     0.0100    0.8518
##      5       58.4150             nan     0.0100    0.9311
##      6       57.4737             nan     0.0100    0.9340
##      7       56.6270             nan     0.0100    0.8186
##      8       55.7824             nan     0.0100    0.8570
##      9       54.9617             nan     0.0100    0.8788
##     10       54.1662             nan     0.0100    0.7202
##     20       46.5075             nan     0.0100    0.7249
##     40       35.0839             nan     0.0100    0.4038
##     60       26.7777             nan     0.0100    0.3235
##     80       20.9176             nan     0.0100    0.2466
##    100       16.6498             nan     0.0100    0.1577
##    120       13.5756             nan     0.0100    0.1300
##    140       11.2711             nan     0.0100    0.0954
##    160        9.5958             nan     0.0100    0.0701
##    180        8.2889             nan     0.0100    0.0504
##    200        7.2850             nan     0.0100    0.0353
##    220        6.4869             nan     0.0100    0.0303
##    240        5.8473             nan     0.0100    0.0171
##    260        5.3383             nan     0.0100    0.0208
##    280        4.9322             nan     0.0100    0.0087
##    300        4.6080             nan     0.0100    0.0119
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9835             nan     0.0100    0.9180
##      2       61.0386             nan     0.0100    0.9597
##      3       60.0669             nan     0.0100    0.8599
##      4       59.1528             nan     0.0100    0.9600
##      5       58.2846             nan     0.0100    0.8888
##      6       57.4729             nan     0.0100    0.8625
##      7       56.6703             nan     0.0100    0.7663
##      8       55.8268             nan     0.0100    0.7843
##      9       54.9574             nan     0.0100    0.8056
##     10       54.1580             nan     0.0100    0.7095
##     20       46.7363             nan     0.0100    0.6395
##     40       34.9272             nan     0.0100    0.4673
##     60       26.6414             nan     0.0100    0.3474
##     80       20.7724             nan     0.0100    0.2316
##    100       16.5789             nan     0.0100    0.1811
##    120       13.5580             nan     0.0100    0.1075
##    140       11.3287             nan     0.0100    0.0922
##    160        9.6847             nan     0.0100    0.0528
##    180        8.4003             nan     0.0100    0.0532
##    200        7.4142             nan     0.0100    0.0289
##    220        6.6162             nan     0.0100    0.0337
##    240        5.9880             nan     0.0100    0.0250
##    260        5.4691             nan     0.0100    0.0134
##    280        5.0700             nan     0.0100    0.0121
##    300        4.7567             nan     0.0100    0.0107
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9718             nan     0.0100    1.0062
##      2       60.9290             nan     0.0100    1.0526
##      3       59.9158             nan     0.0100    0.9299
##      4       58.9358             nan     0.0100    1.0271
##      5       57.9589             nan     0.0100    0.9050
##      6       57.0092             nan     0.0100    0.9522
##      7       56.0500             nan     0.0100    0.9347
##      8       55.1699             nan     0.0100    0.9476
##      9       54.2829             nan     0.0100    0.9042
##     10       53.4473             nan     0.0100    0.7897
##     20       45.2667             nan     0.0100    0.7336
##     40       33.0906             nan     0.0100    0.4758
##     60       24.6686             nan     0.0100    0.3522
##     80       18.7450             nan     0.0100    0.2074
##    100       14.6281             nan     0.0100    0.1703
##    120       11.6418             nan     0.0100    0.1292
##    140        9.4984             nan     0.0100    0.0793
##    160        7.8969             nan     0.0100    0.0625
##    180        6.7307             nan     0.0100    0.0417
##    200        5.8369             nan     0.0100    0.0221
##    220        5.1777             nan     0.0100    0.0165
##    240        4.6481             nan     0.0100    0.0190
##    260        4.2370             nan     0.0100    0.0091
##    280        3.9336             nan     0.0100    0.0123
##    300        3.7106             nan     0.0100    0.0009
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9523             nan     0.0100    1.0302
##      2       60.9029             nan     0.0100    1.0564
##      3       59.9044             nan     0.0100    0.9834
##      4       58.9090             nan     0.0100    0.9552
##      5       57.8715             nan     0.0100    1.0070
##      6       56.9527             nan     0.0100    0.9590
##      7       55.9839             nan     0.0100    1.0339
##      8       55.0795             nan     0.0100    0.8628
##      9       54.1876             nan     0.0100    0.8848
##     10       53.3092             nan     0.0100    0.8672
##     20       45.3455             nan     0.0100    0.7517
##     40       33.0585             nan     0.0100    0.4707
##     60       24.7653             nan     0.0100    0.3255
##     80       18.8183             nan     0.0100    0.2304
##    100       14.5638             nan     0.0100    0.1705
##    120       11.6369             nan     0.0100    0.1051
##    140        9.5104             nan     0.0100    0.0742
##    160        7.9323             nan     0.0100    0.0526
##    180        6.7641             nan     0.0100    0.0386
##    200        5.8887             nan     0.0100    0.0262
##    220        5.2114             nan     0.0100    0.0234
##    240        4.7267             nan     0.0100    0.0123
##    260        4.3584             nan     0.0100    0.0080
##    280        4.0592             nan     0.0100    0.0083
##    300        3.8280             nan     0.0100    0.0023
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8541             nan     0.0100    1.0920
##      2       60.8349             nan     0.0100    1.0603
##      3       59.8210             nan     0.0100    1.0862
##      4       58.8215             nan     0.0100    0.9297
##      5       57.8793             nan     0.0100    0.9705
##      6       56.9583             nan     0.0100    0.9763
##      7       56.0094             nan     0.0100    0.8294
##      8       55.0675             nan     0.0100    0.8296
##      9       54.1923             nan     0.0100    0.9959
##     10       53.2587             nan     0.0100    0.9622
##     20       45.3744             nan     0.0100    0.6940
##     40       33.1086             nan     0.0100    0.5425
##     60       24.7941             nan     0.0100    0.3704
##     80       18.9226             nan     0.0100    0.2100
##    100       14.7729             nan     0.0100    0.1807
##    120       11.8164             nan     0.0100    0.1178
##    140        9.6831             nan     0.0100    0.0905
##    160        8.1212             nan     0.0100    0.0601
##    180        6.9524             nan     0.0100    0.0441
##    200        6.0679             nan     0.0100    0.0260
##    220        5.4396             nan     0.0100    0.0194
##    240        4.9613             nan     0.0100    0.0150
##    260        4.5627             nan     0.0100    0.0107
##    280        4.2839             nan     0.0100    0.0088
##    300        4.0595             nan     0.0100    0.0049
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.9560             nan     0.0500    3.9126
##      2       55.4464             nan     0.0500    3.6260
##      3       52.3374             nan     0.0500    3.0506
##      4       49.1235             nan     0.0500    2.8797
##      5       46.4583             nan     0.0500    2.7381
##      6       43.8846             nan     0.0500    2.4026
##      7       41.7459             nan     0.0500    2.0138
##      8       39.3495             nan     0.0500    1.6954
##      9       37.1760             nan     0.0500    2.0041
##     10       35.3079             nan     0.0500    1.8952
##     20       22.1902             nan     0.0500    0.7900
##     40       11.1745             nan     0.0500    0.1686
##     60        7.1261             nan     0.0500    0.1005
##     80        5.4424             nan     0.0500    0.0385
##    100        4.5119             nan     0.0500    0.0078
##    120        4.0047             nan     0.0500    0.0059
##    140        3.7283             nan     0.0500   -0.0052
##    160        3.5990             nan     0.0500   -0.0099
##    180        3.4927             nan     0.0500    0.0002
##    200        3.3995             nan     0.0500   -0.0073
##    220        3.3365             nan     0.0500   -0.0179
##    240        3.2969             nan     0.0500   -0.0105
##    260        3.2312             nan     0.0500   -0.0082
##    280        3.1758             nan     0.0500   -0.0047
##    300        3.1406             nan     0.0500    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2009             nan     0.0500    3.8766
##      2       55.4665             nan     0.0500    3.8148
##      3       52.1513             nan     0.0500    3.2395
##      4       48.8655             nan     0.0500    3.0102
##      5       46.2337             nan     0.0500    2.8353
##      6       43.5528             nan     0.0500    2.2328
##      7       40.9806             nan     0.0500    2.1283
##      8       38.9168             nan     0.0500    1.7609
##      9       36.8546             nan     0.0500    1.9170
##     10       34.8653             nan     0.0500    1.7486
##     20       22.0435             nan     0.0500    1.0976
##     40       11.0833             nan     0.0500    0.2799
##     60        7.1348             nan     0.0500    0.0754
##     80        5.3257             nan     0.0500    0.0205
##    100        4.4745             nan     0.0500    0.0176
##    120        3.9883             nan     0.0500   -0.0004
##    140        3.7704             nan     0.0500   -0.0411
##    160        3.6182             nan     0.0500    0.0006
##    180        3.5220             nan     0.0500   -0.0112
##    200        3.4582             nan     0.0500   -0.0087
##    220        3.3865             nan     0.0500   -0.0046
##    240        3.3348             nan     0.0500   -0.0080
##    260        3.2857             nan     0.0500   -0.0062
##    280        3.2513             nan     0.0500   -0.0066
##    300        3.2108             nan     0.0500   -0.0106
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.8908             nan     0.0500    3.7807
##      2       55.3866             nan     0.0500    3.5097
##      3       52.2867             nan     0.0500    3.0657
##      4       49.0731             nan     0.0500    2.8417
##      5       46.3454             nan     0.0500    2.8423
##      6       43.7798             nan     0.0500    2.5147
##      7       41.5543             nan     0.0500    2.2554
##      8       39.4487             nan     0.0500    1.9483
##      9       37.3667             nan     0.0500    1.9094
##     10       35.7581             nan     0.0500    1.5139
##     20       22.4795             nan     0.0500    0.9439
##     40       11.5463             nan     0.0500    0.2498
##     60        7.3063             nan     0.0500    0.0996
##     80        5.5200             nan     0.0500    0.0676
##    100        4.6024             nan     0.0500    0.0100
##    120        4.1813             nan     0.0500   -0.0063
##    140        3.9967             nan     0.0500   -0.0198
##    160        3.8590             nan     0.0500    0.0011
##    180        3.7715             nan     0.0500   -0.0087
##    200        3.6948             nan     0.0500   -0.0062
##    220        3.6163             nan     0.0500   -0.0040
##    240        3.5500             nan     0.0500   -0.0053
##    260        3.4945             nan     0.0500   -0.0131
##    280        3.4488             nan     0.0500   -0.0020
##    300        3.4098             nan     0.0500   -0.0069
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.4253             nan     0.0500    4.6966
##      2       53.9634             nan     0.0500    4.2847
##      3       49.6699             nan     0.0500    4.2125
##      4       45.8868             nan     0.0500    3.4409
##      5       42.5473             nan     0.0500    2.8862
##      6       39.4897             nan     0.0500    3.1276
##      7       36.8568             nan     0.0500    2.6366
##      8       34.3117             nan     0.0500    2.5762
##      9       31.9347             nan     0.0500    2.2020
##     10       29.8940             nan     0.0500    2.0525
##     20       16.2273             nan     0.0500    0.8444
##     40        7.1071             nan     0.0500    0.1970
##     60        4.5823             nan     0.0500    0.0107
##     80        3.7161             nan     0.0500   -0.0327
##    100        3.3541             nan     0.0500   -0.0088
##    120        3.1400             nan     0.0500   -0.0062
##    140        2.9777             nan     0.0500   -0.0189
##    160        2.8196             nan     0.0500   -0.0056
##    180        2.7033             nan     0.0500   -0.0013
##    200        2.5965             nan     0.0500    0.0001
##    220        2.4976             nan     0.0500   -0.0091
##    240        2.3981             nan     0.0500   -0.0184
##    260        2.3302             nan     0.0500   -0.0103
##    280        2.2701             nan     0.0500   -0.0029
##    300        2.1938             nan     0.0500   -0.0107
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.3477             nan     0.0500    4.9084
##      2       54.2934             nan     0.0500    4.1647
##      3       50.5579             nan     0.0500    3.7938
##      4       46.6384             nan     0.0500    3.8896
##      5       43.2614             nan     0.0500    3.7164
##      6       40.4865             nan     0.0500    2.7945
##      7       37.6723             nan     0.0500    2.6833
##      8       35.0591             nan     0.0500    2.7825
##      9       32.6547             nan     0.0500    2.2913
##     10       30.5994             nan     0.0500    1.8844
##     20       16.5453             nan     0.0500    0.8423
##     40        7.0239             nan     0.0500    0.1771
##     60        4.5198             nan     0.0500    0.0671
##     80        3.7063             nan     0.0500   -0.0013
##    100        3.4010             nan     0.0500   -0.0085
##    120        3.2212             nan     0.0500   -0.0199
##    140        3.0743             nan     0.0500   -0.0077
##    160        2.9758             nan     0.0500   -0.0244
##    180        2.8691             nan     0.0500   -0.0093
##    200        2.7814             nan     0.0500   -0.0059
##    220        2.6954             nan     0.0500   -0.0181
##    240        2.6443             nan     0.0500   -0.0172
##    260        2.5788             nan     0.0500   -0.0189
##    280        2.5264             nan     0.0500   -0.0149
##    300        2.4591             nan     0.0500   -0.0142
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.3862             nan     0.0500    4.5864
##      2       53.9667             nan     0.0500    4.4729
##      3       50.0131             nan     0.0500    3.6939
##      4       46.5729             nan     0.0500    3.4156
##      5       43.0388             nan     0.0500    3.3756
##      6       39.7824             nan     0.0500    3.1427
##      7       36.7714             nan     0.0500    2.7450
##      8       34.3757             nan     0.0500    2.5446
##      9       32.0169             nan     0.0500    2.0726
##     10       29.7659             nan     0.0500    2.0759
##     20       16.3807             nan     0.0500    0.7579
##     40        7.0608             nan     0.0500    0.1909
##     60        4.6775             nan     0.0500    0.0091
##     80        3.9415             nan     0.0500    0.0070
##    100        3.6294             nan     0.0500   -0.0017
##    120        3.4239             nan     0.0500   -0.0064
##    140        3.2621             nan     0.0500   -0.0209
##    160        3.1462             nan     0.0500    0.0000
##    180        3.0543             nan     0.0500   -0.0089
##    200        2.9797             nan     0.0500   -0.0066
##    220        2.9046             nan     0.0500   -0.0213
##    240        2.8206             nan     0.0500   -0.0272
##    260        2.7621             nan     0.0500   -0.0151
##    280        2.6814             nan     0.0500   -0.0102
##    300        2.6183             nan     0.0500   -0.0059
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.9247             nan     0.0500    5.4546
##      2       53.0553             nan     0.0500    4.3184
##      3       48.9382             nan     0.0500    4.3181
##      4       45.1291             nan     0.0500    3.4513
##      5       41.4989             nan     0.0500    3.2036
##      6       38.1482             nan     0.0500    3.1123
##      7       35.0341             nan     0.0500    2.4355
##      8       32.3123             nan     0.0500    2.7390
##      9       30.0885             nan     0.0500    2.4174
##     10       27.9827             nan     0.0500    2.1111
##     20       14.4365             nan     0.0500    0.8682
##     40        5.9348             nan     0.0500    0.1653
##     60        3.7934             nan     0.0500    0.0469
##     80        3.1225             nan     0.0500   -0.0145
##    100        2.8022             nan     0.0500   -0.0271
##    120        2.5658             nan     0.0500   -0.0200
##    140        2.4117             nan     0.0500   -0.0190
##    160        2.2681             nan     0.0500   -0.0055
##    180        2.1425             nan     0.0500   -0.0135
##    200        2.0489             nan     0.0500   -0.0078
##    220        1.9526             nan     0.0500   -0.0094
##    240        1.8625             nan     0.0500   -0.0199
##    260        1.7897             nan     0.0500   -0.0090
##    280        1.6920             nan     0.0500   -0.0026
##    300        1.6074             nan     0.0500   -0.0130
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.9036             nan     0.0500    4.9821
##      2       53.2876             nan     0.0500    4.6603
##      3       48.9071             nan     0.0500    3.3489
##      4       44.9750             nan     0.0500    4.0076
##      5       41.3711             nan     0.0500    3.4419
##      6       38.1743             nan     0.0500    3.3251
##      7       35.2947             nan     0.0500    2.9852
##      8       32.7600             nan     0.0500    2.5656
##      9       30.4111             nan     0.0500    2.3776
##     10       28.1840             nan     0.0500    2.2222
##     20       14.1924             nan     0.0500    0.7508
##     40        5.7796             nan     0.0500    0.1948
##     60        3.8388             nan     0.0500    0.0197
##     80        3.2693             nan     0.0500   -0.0056
##    100        3.0105             nan     0.0500   -0.0142
##    120        2.8090             nan     0.0500   -0.0040
##    140        2.6581             nan     0.0500   -0.0110
##    160        2.5307             nan     0.0500   -0.0066
##    180        2.4038             nan     0.0500   -0.0138
##    200        2.2980             nan     0.0500   -0.0203
##    220        2.2061             nan     0.0500   -0.0058
##    240        2.1266             nan     0.0500   -0.0030
##    260        2.0378             nan     0.0500   -0.0117
##    280        1.9636             nan     0.0500   -0.0215
##    300        1.8878             nan     0.0500   -0.0054
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.5635             nan     0.0500    5.5358
##      2       52.7612             nan     0.0500    4.1533
##      3       48.4721             nan     0.0500    4.3334
##      4       44.6635             nan     0.0500    3.9356
##      5       41.1353             nan     0.0500    3.4570
##      6       38.0138             nan     0.0500    3.2370
##      7       35.1633             nan     0.0500    2.4116
##      8       32.4939             nan     0.0500    2.3436
##      9       30.0283             nan     0.0500    2.1785
##     10       28.0504             nan     0.0500    1.8232
##     20       14.6118             nan     0.0500    0.6705
##     40        6.0048             nan     0.0500    0.1580
##     60        4.0608             nan     0.0500    0.0167
##     80        3.4826             nan     0.0500   -0.0108
##    100        3.2351             nan     0.0500   -0.0187
##    120        3.0370             nan     0.0500   -0.0069
##    140        2.9091             nan     0.0500   -0.0109
##    160        2.8012             nan     0.0500   -0.0030
##    180        2.6941             nan     0.0500   -0.0102
##    200        2.5856             nan     0.0500   -0.0099
##    220        2.4865             nan     0.0500   -0.0144
##    240        2.3915             nan     0.0500   -0.0164
##    260        2.2967             nan     0.0500   -0.0084
##    280        2.2343             nan     0.0500   -0.0148
##    300        2.1527             nan     0.0500   -0.0176
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.1894             nan     0.1000    8.1645
##      2       48.7712             nan     0.1000    6.0979
##      3       43.1874             nan     0.1000    5.6211
##      4       39.2351             nan     0.1000    3.3671
##      5       35.3567             nan     0.1000    3.8516
##      6       31.4599             nan     0.1000    3.4232
##      7       28.3864             nan     0.1000    2.7887
##      8       25.7380             nan     0.1000    2.4851
##      9       23.4115             nan     0.1000    1.9785
##     10       21.5754             nan     0.1000    1.8081
##     20       11.1188             nan     0.1000    0.5856
##     40        5.3030             nan     0.1000    0.0966
##     60        4.0478             nan     0.1000    0.0050
##     80        3.6946             nan     0.1000   -0.0089
##    100        3.4906             nan     0.1000    0.0024
##    120        3.3449             nan     0.1000   -0.0092
##    140        3.2623             nan     0.1000   -0.0240
##    160        3.1720             nan     0.1000   -0.0145
##    180        3.1180             nan     0.1000   -0.0177
##    200        3.0466             nan     0.1000   -0.0119
##    220        2.9882             nan     0.1000   -0.0202
##    240        2.9425             nan     0.1000   -0.0180
##    260        2.8880             nan     0.1000   -0.0119
##    280        2.8390             nan     0.1000   -0.0040
##    300        2.8089             nan     0.1000   -0.0156
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.2207             nan     0.1000    7.4919
##      2       49.3055             nan     0.1000    7.0614
##      3       44.1252             nan     0.1000    5.2466
##      4       39.0990             nan     0.1000    4.3420
##      5       35.3445             nan     0.1000    3.5938
##      6       32.2056             nan     0.1000    3.3937
##      7       29.2746             nan     0.1000    2.5903
##      8       26.6296             nan     0.1000    2.4777
##      9       24.0747             nan     0.1000    2.5288
##     10       22.0669             nan     0.1000    1.8022
##     20       11.4280             nan     0.1000    0.5227
##     40        5.5032             nan     0.1000    0.0536
##     60        4.2231             nan     0.1000    0.0032
##     80        3.8656             nan     0.1000   -0.0162
##    100        3.6289             nan     0.1000   -0.0257
##    120        3.5064             nan     0.1000   -0.0480
##    140        3.3960             nan     0.1000   -0.0164
##    160        3.3056             nan     0.1000   -0.0402
##    180        3.2261             nan     0.1000   -0.0099
##    200        3.1557             nan     0.1000   -0.0148
##    220        3.0827             nan     0.1000   -0.0052
##    240        3.0329             nan     0.1000   -0.0001
##    260        2.9908             nan     0.1000   -0.0213
##    280        2.9422             nan     0.1000   -0.0101
##    300        2.8850             nan     0.1000   -0.0082
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.7292             nan     0.1000    7.4132
##      2       48.9532             nan     0.1000    5.9585
##      3       43.1526             nan     0.1000    5.4617
##      4       39.0325             nan     0.1000    3.9653
##      5       34.7299             nan     0.1000    4.3476
##      6       31.3903             nan     0.1000    3.4092
##      7       28.3504             nan     0.1000    2.8893
##      8       25.9729             nan     0.1000    2.2227
##      9       23.8565             nan     0.1000    1.6207
##     10       21.9310             nan     0.1000    2.0034
##     20       11.2952             nan     0.1000    0.5602
##     40        5.6801             nan     0.1000    0.0951
##     60        4.3684             nan     0.1000   -0.0058
##     80        4.0509             nan     0.1000   -0.0023
##    100        3.8592             nan     0.1000   -0.0393
##    120        3.7005             nan     0.1000   -0.0297
##    140        3.6225             nan     0.1000   -0.0094
##    160        3.5269             nan     0.1000    0.0061
##    180        3.4300             nan     0.1000   -0.0104
##    200        3.3479             nan     0.1000   -0.0067
##    220        3.3077             nan     0.1000   -0.0331
##    240        3.2482             nan     0.1000   -0.0085
##    260        3.1953             nan     0.1000   -0.0066
##    280        3.1469             nan     0.1000   -0.0215
##    300        3.1032             nan     0.1000   -0.0313
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.3270             nan     0.1000    9.0819
##      2       47.1392             nan     0.1000    6.6043
##      3       39.9644             nan     0.1000    7.2879
##      4       34.3592             nan     0.1000    4.8366
##      5       29.5060             nan     0.1000    4.8310
##      6       25.7510             nan     0.1000    3.7869
##      7       23.0138             nan     0.1000    2.6363
##      8       20.4468             nan     0.1000    2.9760
##      9       18.0784             nan     0.1000    1.8520
##     10       16.0114             nan     0.1000    1.9658
##     20        7.2342             nan     0.1000    0.4119
##     40        3.7900             nan     0.1000    0.0074
##     60        3.1928             nan     0.1000    0.0253
##     80        2.9038             nan     0.1000   -0.0263
##    100        2.6707             nan     0.1000   -0.0268
##    120        2.4715             nan     0.1000   -0.0114
##    140        2.2991             nan     0.1000   -0.0244
##    160        2.1687             nan     0.1000   -0.0322
##    180        2.0346             nan     0.1000   -0.0112
##    200        1.9457             nan     0.1000   -0.0023
##    220        1.8656             nan     0.1000   -0.0071
##    240        1.7740             nan     0.1000   -0.0150
##    260        1.6980             nan     0.1000   -0.0094
##    280        1.6220             nan     0.1000   -0.0210
##    300        1.5671             nan     0.1000   -0.0149
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.6831             nan     0.1000    9.0721
##      2       46.4280             nan     0.1000    7.0710
##      3       39.8552             nan     0.1000    7.3381
##      4       34.5378             nan     0.1000    5.3747
##      5       29.9505             nan     0.1000    4.4544
##      6       25.9402             nan     0.1000    3.5993
##      7       23.1706             nan     0.1000    2.9278
##      8       20.3547             nan     0.1000    2.7626
##      9       18.0146             nan     0.1000    2.4197
##     10       16.1002             nan     0.1000    1.7348
##     20        6.9855             nan     0.1000    0.2788
##     40        3.7808             nan     0.1000   -0.0154
##     60        3.2258             nan     0.1000   -0.0082
##     80        2.9397             nan     0.1000   -0.0210
##    100        2.7509             nan     0.1000   -0.0394
##    120        2.5953             nan     0.1000   -0.0192
##    140        2.4550             nan     0.1000   -0.0146
##    160        2.3373             nan     0.1000   -0.0175
##    180        2.2584             nan     0.1000   -0.0140
##    200        2.1437             nan     0.1000   -0.0220
##    220        2.0670             nan     0.1000   -0.0281
##    240        1.9765             nan     0.1000   -0.0002
##    260        1.9128             nan     0.1000   -0.0126
##    280        1.8364             nan     0.1000   -0.0091
##    300        1.7651             nan     0.1000   -0.0140
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.1603             nan     0.1000    9.7853
##      2       45.8323             nan     0.1000    7.3745
##      3       39.3094             nan     0.1000    6.3458
##      4       33.3852             nan     0.1000    5.8287
##      5       29.0606             nan     0.1000    4.2428
##      6       25.3724             nan     0.1000    3.6521
##      7       22.3883             nan     0.1000    2.8241
##      8       19.6891             nan     0.1000    2.7569
##      9       17.5758             nan     0.1000    2.0377
##     10       15.7740             nan     0.1000    1.8435
##     20        7.4286             nan     0.1000    0.2978
##     40        4.1604             nan     0.1000   -0.0267
##     60        3.5721             nan     0.1000   -0.0399
##     80        3.2842             nan     0.1000   -0.0379
##    100        3.1012             nan     0.1000   -0.0738
##    120        2.9069             nan     0.1000   -0.0128
##    140        2.7739             nan     0.1000   -0.0108
##    160        2.6722             nan     0.1000   -0.0226
##    180        2.5828             nan     0.1000   -0.0277
##    200        2.4907             nan     0.1000   -0.0163
##    220        2.3875             nan     0.1000   -0.0284
##    240        2.2929             nan     0.1000   -0.0152
##    260        2.2223             nan     0.1000   -0.0203
##    280        2.1446             nan     0.1000   -0.0220
##    300        2.0825             nan     0.1000   -0.0114
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.8156             nan     0.1000   10.5213
##      2       44.8592             nan     0.1000    7.9080
##      3       38.2722             nan     0.1000    6.6073
##      4       32.7236             nan     0.1000    5.9504
##      5       27.8298             nan     0.1000    4.7160
##      6       23.9039             nan     0.1000    3.5995
##      7       20.7601             nan     0.1000    3.0650
##      8       18.2769             nan     0.1000    2.4035
##      9       16.2765             nan     0.1000    1.7914
##     10       14.3314             nan     0.1000    2.0182
##     20        5.7663             nan     0.1000    0.3200
##     40        3.1898             nan     0.1000   -0.0166
##     60        2.7281             nan     0.1000   -0.0246
##     80        2.3428             nan     0.1000   -0.0151
##    100        2.0928             nan     0.1000   -0.0294
##    120        1.8788             nan     0.1000   -0.0201
##    140        1.6880             nan     0.1000   -0.0123
##    160        1.5617             nan     0.1000   -0.0189
##    180        1.4270             nan     0.1000   -0.0184
##    200        1.2965             nan     0.1000   -0.0212
##    220        1.1970             nan     0.1000   -0.0220
##    240        1.1205             nan     0.1000   -0.0156
##    260        1.0302             nan     0.1000   -0.0126
##    280        0.9657             nan     0.1000   -0.0097
##    300        0.8995             nan     0.1000   -0.0099
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.5023             nan     0.1000    9.7758
##      2       45.2671             nan     0.1000    8.8786
##      3       38.1544             nan     0.1000    7.1530
##      4       32.2568             nan     0.1000    5.1619
##      5       27.6907             nan     0.1000    4.6288
##      6       24.0925             nan     0.1000    3.4815
##      7       20.9987             nan     0.1000    2.9457
##      8       18.3045             nan     0.1000    2.6403
##      9       16.0962             nan     0.1000    2.3654
##     10       14.2805             nan     0.1000    1.6842
##     20        5.9841             nan     0.1000    0.3651
##     40        3.4505             nan     0.1000    0.0137
##     60        2.9644             nan     0.1000   -0.0216
##     80        2.6487             nan     0.1000   -0.0272
##    100        2.3888             nan     0.1000   -0.0368
##    120        2.2058             nan     0.1000   -0.0095
##    140        2.0607             nan     0.1000   -0.0310
##    160        1.9291             nan     0.1000   -0.0345
##    180        1.7701             nan     0.1000   -0.0175
##    200        1.6591             nan     0.1000   -0.0224
##    220        1.5634             nan     0.1000   -0.0205
##    240        1.4723             nan     0.1000   -0.0247
##    260        1.4070             nan     0.1000   -0.0203
##    280        1.3344             nan     0.1000   -0.0234
##    300        1.2593             nan     0.1000   -0.0111
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.1113             nan     0.1000    9.7405
##      2       44.6201             nan     0.1000    8.4768
##      3       37.5756             nan     0.1000    6.2506
##      4       32.4154             nan     0.1000    5.5917
##      5       27.7011             nan     0.1000    4.4278
##      6       23.7170             nan     0.1000    3.6125
##      7       20.6222             nan     0.1000    2.8187
##      8       17.9091             nan     0.1000    2.7193
##      9       15.9112             nan     0.1000    2.0140
##     10       14.0945             nan     0.1000    1.7599
##     20        5.8625             nan     0.1000    0.2498
##     40        3.5433             nan     0.1000    0.0199
##     60        3.0875             nan     0.1000   -0.0250
##     80        2.8222             nan     0.1000   -0.0201
##    100        2.5823             nan     0.1000   -0.0427
##    120        2.4317             nan     0.1000   -0.0483
##    140        2.2946             nan     0.1000   -0.0405
##    160        2.1290             nan     0.1000   -0.0229
##    180        1.9872             nan     0.1000   -0.0137
##    200        1.8534             nan     0.1000   -0.0134
##    220        1.7533             nan     0.1000   -0.0130
##    240        1.6620             nan     0.1000   -0.0158
##    260        1.5805             nan     0.1000   -0.0099
##    280        1.5122             nan     0.1000   -0.0156
##    300        1.4484             nan     0.1000   -0.0080
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5714             nan     0.0010    0.0765
##      2       59.4889             nan     0.0010    0.0660
##      3       59.4069             nan     0.0010    0.0735
##      4       59.3334             nan     0.0010    0.0758
##      5       59.2577             nan     0.0010    0.0763
##      6       59.1820             nan     0.0010    0.0750
##      7       59.1121             nan     0.0010    0.0748
##      8       59.0301             nan     0.0010    0.0738
##      9       58.9530             nan     0.0010    0.0733
##     10       58.8731             nan     0.0010    0.0811
##     20       58.1518             nan     0.0010    0.0742
##     40       56.7037             nan     0.0010    0.0694
##     60       55.3138             nan     0.0010    0.0685
##     80       53.9618             nan     0.0010    0.0663
##    100       52.6756             nan     0.0010    0.0613
##    120       51.4299             nan     0.0010    0.0566
##    140       50.2703             nan     0.0010    0.0590
##    160       49.1187             nan     0.0010    0.0557
##    180       48.0066             nan     0.0010    0.0555
##    200       46.9486             nan     0.0010    0.0526
##    220       45.9101             nan     0.0010    0.0541
##    240       44.8878             nan     0.0010    0.0460
##    260       43.9263             nan     0.0010    0.0445
##    280       42.9937             nan     0.0010    0.0447
##    300       42.0759             nan     0.0010    0.0411
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5788             nan     0.0010    0.0742
##      2       59.5058             nan     0.0010    0.0752
##      3       59.4326             nan     0.0010    0.0727
##      4       59.3584             nan     0.0010    0.0743
##      5       59.2874             nan     0.0010    0.0719
##      6       59.2162             nan     0.0010    0.0739
##      7       59.1371             nan     0.0010    0.0732
##      8       59.0673             nan     0.0010    0.0740
##      9       58.9950             nan     0.0010    0.0732
##     10       58.9181             nan     0.0010    0.0726
##     20       58.1898             nan     0.0010    0.0711
##     40       56.7483             nan     0.0010    0.0682
##     60       55.3633             nan     0.0010    0.0667
##     80       54.0276             nan     0.0010    0.0631
##    100       52.7573             nan     0.0010    0.0640
##    120       51.5615             nan     0.0010    0.0558
##    140       50.3498             nan     0.0010    0.0551
##    160       49.1852             nan     0.0010    0.0570
##    180       48.0943             nan     0.0010    0.0528
##    200       47.0333             nan     0.0010    0.0511
##    220       46.0055             nan     0.0010    0.0534
##    240       44.9920             nan     0.0010    0.0493
##    260       44.0198             nan     0.0010    0.0402
##    280       43.0598             nan     0.0010    0.0467
##    300       42.1469             nan     0.0010    0.0407
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5681             nan     0.0010    0.0702
##      2       59.4927             nan     0.0010    0.0755
##      3       59.4211             nan     0.0010    0.0815
##      4       59.3580             nan     0.0010    0.0708
##      5       59.2801             nan     0.0010    0.0716
##      6       59.1989             nan     0.0010    0.0798
##      7       59.1289             nan     0.0010    0.0762
##      8       59.0489             nan     0.0010    0.0758
##      9       58.9711             nan     0.0010    0.0759
##     10       58.8950             nan     0.0010    0.0743
##     20       58.1650             nan     0.0010    0.0718
##     40       56.7193             nan     0.0010    0.0712
##     60       55.3498             nan     0.0010    0.0671
##     80       54.0319             nan     0.0010    0.0509
##    100       52.7360             nan     0.0010    0.0628
##    120       51.4889             nan     0.0010    0.0611
##    140       50.2933             nan     0.0010    0.0596
##    160       49.1561             nan     0.0010    0.0546
##    180       48.0278             nan     0.0010    0.0585
##    200       46.9688             nan     0.0010    0.0486
##    220       45.9148             nan     0.0010    0.0515
##    240       44.9133             nan     0.0010    0.0477
##    260       43.9302             nan     0.0010    0.0517
##    280       42.9541             nan     0.0010    0.0430
##    300       42.0399             nan     0.0010    0.0462
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5599             nan     0.0010    0.0872
##      2       59.4716             nan     0.0010    0.0909
##      3       59.3815             nan     0.0010    0.0891
##      4       59.2960             nan     0.0010    0.0813
##      5       59.2043             nan     0.0010    0.0849
##      6       59.1155             nan     0.0010    0.0949
##      7       59.0204             nan     0.0010    0.0832
##      8       58.9256             nan     0.0010    0.0904
##      9       58.8387             nan     0.0010    0.0942
##     10       58.7488             nan     0.0010    0.0889
##     20       57.8567             nan     0.0010    0.0956
##     40       56.1372             nan     0.0010    0.0795
##     60       54.4342             nan     0.0010    0.0849
##     80       52.8150             nan     0.0010    0.0763
##    100       51.2411             nan     0.0010    0.0787
##    120       49.7433             nan     0.0010    0.0694
##    140       48.2853             nan     0.0010    0.0736
##    160       46.8812             nan     0.0010    0.0692
##    180       45.5423             nan     0.0010    0.0652
##    200       44.2322             nan     0.0010    0.0573
##    220       42.9570             nan     0.0010    0.0567
##    240       41.7240             nan     0.0010    0.0602
##    260       40.5274             nan     0.0010    0.0556
##    280       39.4111             nan     0.0010    0.0510
##    300       38.3169             nan     0.0010    0.0490
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5576             nan     0.0010    0.0905
##      2       59.4684             nan     0.0010    0.0917
##      3       59.3722             nan     0.0010    0.0843
##      4       59.2781             nan     0.0010    0.0943
##      5       59.1898             nan     0.0010    0.0856
##      6       59.0984             nan     0.0010    0.0923
##      7       59.0122             nan     0.0010    0.0855
##      8       58.9184             nan     0.0010    0.0857
##      9       58.8309             nan     0.0010    0.0865
##     10       58.7354             nan     0.0010    0.0896
##     20       57.8437             nan     0.0010    0.0920
##     40       56.1234             nan     0.0010    0.0809
##     60       54.4110             nan     0.0010    0.0841
##     80       52.8125             nan     0.0010    0.0814
##    100       51.2467             nan     0.0010    0.0769
##    120       49.7340             nan     0.0010    0.0745
##    140       48.2677             nan     0.0010    0.0689
##    160       46.8628             nan     0.0010    0.0589
##    180       45.5023             nan     0.0010    0.0674
##    200       44.1864             nan     0.0010    0.0607
##    220       42.9139             nan     0.0010    0.0663
##    240       41.7054             nan     0.0010    0.0564
##    260       40.5361             nan     0.0010    0.0542
##    280       39.4026             nan     0.0010    0.0514
##    300       38.2904             nan     0.0010    0.0453
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5658             nan     0.0010    0.0939
##      2       59.4750             nan     0.0010    0.0909
##      3       59.3837             nan     0.0010    0.0901
##      4       59.2968             nan     0.0010    0.0903
##      5       59.2065             nan     0.0010    0.0888
##      6       59.1106             nan     0.0010    0.0878
##      7       59.0182             nan     0.0010    0.0865
##      8       58.9233             nan     0.0010    0.0889
##      9       58.8322             nan     0.0010    0.0900
##     10       58.7415             nan     0.0010    0.0859
##     20       57.8645             nan     0.0010    0.0868
##     40       56.1446             nan     0.0010    0.0831
##     60       54.4643             nan     0.0010    0.0814
##     80       52.8235             nan     0.0010    0.0874
##    100       51.2648             nan     0.0010    0.0729
##    120       49.7670             nan     0.0010    0.0707
##    140       48.3156             nan     0.0010    0.0787
##    160       46.9064             nan     0.0010    0.0608
##    180       45.5443             nan     0.0010    0.0643
##    200       44.1945             nan     0.0010    0.0723
##    220       42.9267             nan     0.0010    0.0612
##    240       41.6925             nan     0.0010    0.0601
##    260       40.4895             nan     0.0010    0.0622
##    280       39.3869             nan     0.0010    0.0544
##    300       38.2731             nan     0.0010    0.0482
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5470             nan     0.0010    0.0908
##      2       59.4500             nan     0.0010    0.0943
##      3       59.3515             nan     0.0010    0.0938
##      4       59.2493             nan     0.0010    0.0980
##      5       59.1532             nan     0.0010    0.0997
##      6       59.0565             nan     0.0010    0.0984
##      7       58.9631             nan     0.0010    0.1016
##      8       58.8662             nan     0.0010    0.0915
##      9       58.7732             nan     0.0010    0.0971
##     10       58.6779             nan     0.0010    0.0916
##     20       57.6883             nan     0.0010    0.0942
##     40       55.8015             nan     0.0010    0.0895
##     60       53.9821             nan     0.0010    0.0867
##     80       52.2475             nan     0.0010    0.0923
##    100       50.5712             nan     0.0010    0.0821
##    120       48.9408             nan     0.0010    0.0799
##    140       47.3870             nan     0.0010    0.0731
##    160       45.9013             nan     0.0010    0.0741
##    180       44.4489             nan     0.0010    0.0648
##    200       43.0537             nan     0.0010    0.0671
##    220       41.7030             nan     0.0010    0.0665
##    240       40.4211             nan     0.0010    0.0601
##    260       39.1788             nan     0.0010    0.0541
##    280       37.9772             nan     0.0010    0.0555
##    300       36.8256             nan     0.0010    0.0490
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5537             nan     0.0010    0.0984
##      2       59.4551             nan     0.0010    0.1000
##      3       59.3569             nan     0.0010    0.0948
##      4       59.2540             nan     0.0010    0.0975
##      5       59.1558             nan     0.0010    0.0835
##      6       59.0500             nan     0.0010    0.0972
##      7       58.9510             nan     0.0010    0.0774
##      8       58.8500             nan     0.0010    0.1028
##      9       58.7551             nan     0.0010    0.0985
##     10       58.6604             nan     0.0010    0.0952
##     20       57.6967             nan     0.0010    0.0957
##     40       55.8017             nan     0.0010    0.0934
##     60       53.9986             nan     0.0010    0.0875
##     80       52.2343             nan     0.0010    0.0853
##    100       50.5515             nan     0.0010    0.0812
##    120       48.9445             nan     0.0010    0.0749
##    140       47.4054             nan     0.0010    0.0741
##    160       45.9036             nan     0.0010    0.0642
##    180       44.4511             nan     0.0010    0.0653
##    200       43.0599             nan     0.0010    0.0646
##    220       41.7246             nan     0.0010    0.0602
##    240       40.4479             nan     0.0010    0.0566
##    260       39.1941             nan     0.0010    0.0588
##    280       37.9824             nan     0.0010    0.0575
##    300       36.8102             nan     0.0010    0.0553
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.5513             nan     0.0010    0.1110
##      2       59.4528             nan     0.0010    0.0953
##      3       59.3534             nan     0.0010    0.1017
##      4       59.2539             nan     0.0010    0.0896
##      5       59.1615             nan     0.0010    0.1021
##      6       59.0610             nan     0.0010    0.0911
##      7       58.9609             nan     0.0010    0.0965
##      8       58.8657             nan     0.0010    0.0959
##      9       58.7643             nan     0.0010    0.1123
##     10       58.6665             nan     0.0010    0.0974
##     20       57.6975             nan     0.0010    0.0887
##     40       55.8190             nan     0.0010    0.0820
##     60       54.0095             nan     0.0010    0.0778
##     80       52.2602             nan     0.0010    0.0821
##    100       50.5943             nan     0.0010    0.0886
##    120       48.9517             nan     0.0010    0.0781
##    140       47.4033             nan     0.0010    0.0773
##    160       45.8951             nan     0.0010    0.0716
##    180       44.4570             nan     0.0010    0.0641
##    200       43.0668             nan     0.0010    0.0715
##    220       41.7307             nan     0.0010    0.0644
##    240       40.4381             nan     0.0010    0.0641
##    260       39.1723             nan     0.0010    0.0570
##    280       37.9853             nan     0.0010    0.0547
##    300       36.8361             nan     0.0010    0.0468
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.3025             nan     0.0050    0.3688
##      2       58.9251             nan     0.0050    0.3679
##      3       58.5507             nan     0.0050    0.3682
##      4       58.2212             nan     0.0050    0.3342
##      5       57.8288             nan     0.0050    0.3552
##      6       57.4801             nan     0.0050    0.3360
##      7       57.1349             nan     0.0050    0.3554
##      8       56.7641             nan     0.0050    0.3849
##      9       56.4216             nan     0.0050    0.3384
##     10       56.0597             nan     0.0050    0.3622
##     20       52.7858             nan     0.0050    0.2850
##     40       47.0334             nan     0.0050    0.2741
##     60       42.0588             nan     0.0050    0.2194
##     80       37.7482             nan     0.0050    0.1921
##    100       34.1221             nan     0.0050    0.1632
##    120       30.9786             nan     0.0050    0.1395
##    140       28.2168             nan     0.0050    0.1049
##    160       25.7150             nan     0.0050    0.1088
##    180       23.5705             nan     0.0050    0.0894
##    200       21.6794             nan     0.0050    0.0881
##    220       19.9951             nan     0.0050    0.0629
##    240       18.4876             nan     0.0050    0.0678
##    260       17.1988             nan     0.0050    0.0418
##    280       16.0177             nan     0.0050    0.0344
##    300       14.9621             nan     0.0050    0.0418
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2661             nan     0.0050    0.3922
##      2       58.8722             nan     0.0050    0.3908
##      3       58.5167             nan     0.0050    0.3482
##      4       58.1672             nan     0.0050    0.3687
##      5       57.8057             nan     0.0050    0.3585
##      6       57.4283             nan     0.0050    0.3532
##      7       57.0564             nan     0.0050    0.3476
##      8       56.6888             nan     0.0050    0.3539
##      9       56.3058             nan     0.0050    0.3691
##     10       55.9424             nan     0.0050    0.3380
##     20       52.7648             nan     0.0050    0.2956
##     40       46.9851             nan     0.0050    0.2107
##     60       42.0694             nan     0.0050    0.2172
##     80       37.8881             nan     0.0050    0.1847
##    100       34.2119             nan     0.0050    0.1617
##    120       31.0120             nan     0.0050    0.1344
##    140       28.2579             nan     0.0050    0.1423
##    160       25.7418             nan     0.0050    0.1165
##    180       23.5724             nan     0.0050    0.0959
##    200       21.6476             nan     0.0050    0.0817
##    220       20.0237             nan     0.0050    0.0698
##    240       18.5949             nan     0.0050    0.0701
##    260       17.2569             nan     0.0050    0.0544
##    280       16.1022             nan     0.0050    0.0457
##    300       15.0679             nan     0.0050    0.0415
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2640             nan     0.0050    0.3846
##      2       58.8530             nan     0.0050    0.3418
##      3       58.4793             nan     0.0050    0.3577
##      4       58.1036             nan     0.0050    0.3494
##      5       57.7146             nan     0.0050    0.3464
##      6       57.3369             nan     0.0050    0.3321
##      7       56.9902             nan     0.0050    0.3547
##      8       56.6196             nan     0.0050    0.3256
##      9       56.2672             nan     0.0050    0.3467
##     10       55.9348             nan     0.0050    0.3048
##     20       52.6626             nan     0.0050    0.3100
##     40       47.0400             nan     0.0050    0.2569
##     60       42.1217             nan     0.0050    0.2205
##     80       37.7672             nan     0.0050    0.1743
##    100       34.0151             nan     0.0050    0.1612
##    120       30.8615             nan     0.0050    0.1413
##    140       28.0355             nan     0.0050    0.1155
##    160       25.6077             nan     0.0050    0.1008
##    180       23.4440             nan     0.0050    0.0959
##    200       21.5513             nan     0.0050    0.0853
##    220       19.9099             nan     0.0050    0.0839
##    240       18.4587             nan     0.0050    0.0646
##    260       17.1783             nan     0.0050    0.0397
##    280       16.0085             nan     0.0050    0.0552
##    300       14.9978             nan     0.0050    0.0437
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.1847             nan     0.0050    0.4977
##      2       58.7493             nan     0.0050    0.4471
##      3       58.2545             nan     0.0050    0.4573
##      4       57.7937             nan     0.0050    0.4816
##      5       57.3816             nan     0.0050    0.4137
##      6       56.9294             nan     0.0050    0.4112
##      7       56.5026             nan     0.0050    0.4443
##      8       56.0682             nan     0.0050    0.4658
##      9       55.6752             nan     0.0050    0.3953
##     10       55.2676             nan     0.0050    0.3879
##     20       51.2750             nan     0.0050    0.4036
##     40       44.2523             nan     0.0050    0.3323
##     60       38.0585             nan     0.0050    0.2290
##     80       33.0879             nan     0.0050    0.2307
##    100       28.9130             nan     0.0050    0.1777
##    120       25.4148             nan     0.0050    0.1561
##    140       22.4377             nan     0.0050    0.1146
##    160       19.9323             nan     0.0050    0.1220
##    180       17.8349             nan     0.0050    0.0938
##    200       15.9814             nan     0.0050    0.0654
##    220       14.4190             nan     0.0050    0.0575
##    240       13.1022             nan     0.0050    0.0572
##    260       11.9316             nan     0.0050    0.0475
##    280       10.8958             nan     0.0050    0.0385
##    300       10.0672             nan     0.0050    0.0398
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.1783             nan     0.0050    0.4364
##      2       58.7436             nan     0.0050    0.4727
##      3       58.3183             nan     0.0050    0.4391
##      4       57.8887             nan     0.0050    0.4463
##      5       57.4855             nan     0.0050    0.4376
##      6       57.0171             nan     0.0050    0.4466
##      7       56.5529             nan     0.0050    0.4272
##      8       56.1267             nan     0.0050    0.4175
##      9       55.7087             nan     0.0050    0.4127
##     10       55.2601             nan     0.0050    0.4129
##     20       51.3557             nan     0.0050    0.4220
##     40       44.3741             nan     0.0050    0.3229
##     60       38.3149             nan     0.0050    0.2764
##     80       33.3392             nan     0.0050    0.2357
##    100       29.1321             nan     0.0050    0.2009
##    120       25.5921             nan     0.0050    0.1625
##    140       22.5795             nan     0.0050    0.1467
##    160       20.0043             nan     0.0050    0.1118
##    180       17.8847             nan     0.0050    0.0968
##    200       16.0481             nan     0.0050    0.0887
##    220       14.5000             nan     0.0050    0.0560
##    240       13.1651             nan     0.0050    0.0572
##    260       11.9826             nan     0.0050    0.0480
##    280       10.9972             nan     0.0050    0.0374
##    300       10.1184             nan     0.0050    0.0397
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2243             nan     0.0050    0.4371
##      2       58.7588             nan     0.0050    0.4726
##      3       58.3236             nan     0.0050    0.4515
##      4       57.8659             nan     0.0050    0.4217
##      5       57.4322             nan     0.0050    0.4157
##      6       56.9515             nan     0.0050    0.4135
##      7       56.5301             nan     0.0050    0.4294
##      8       56.0553             nan     0.0050    0.4654
##      9       55.6204             nan     0.0050    0.4202
##     10       55.2171             nan     0.0050    0.4269
##     20       51.1196             nan     0.0050    0.3300
##     40       44.1430             nan     0.0050    0.3060
##     60       38.2550             nan     0.0050    0.2377
##     80       33.1503             nan     0.0050    0.2381
##    100       28.9784             nan     0.0050    0.1847
##    120       25.4704             nan     0.0050    0.1630
##    140       22.4020             nan     0.0050    0.1398
##    160       19.9101             nan     0.0050    0.1054
##    180       17.7899             nan     0.0050    0.0917
##    200       16.0575             nan     0.0050    0.0804
##    220       14.4908             nan     0.0050    0.0636
##    240       13.1619             nan     0.0050    0.0275
##    260       12.0674             nan     0.0050    0.0323
##    280       11.0814             nan     0.0050    0.0401
##    300       10.2452             nan     0.0050    0.0286
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.1471             nan     0.0050    0.4522
##      2       58.6471             nan     0.0050    0.4757
##      3       58.1456             nan     0.0050    0.5858
##      4       57.6530             nan     0.0050    0.4858
##      5       57.1960             nan     0.0050    0.4826
##      6       56.7366             nan     0.0050    0.4646
##      7       56.2460             nan     0.0050    0.4802
##      8       55.7910             nan     0.0050    0.4622
##      9       55.3190             nan     0.0050    0.4668
##     10       54.8835             nan     0.0050    0.4390
##     20       50.5877             nan     0.0050    0.3924
##     40       42.9824             nan     0.0050    0.3511
##     60       36.7384             nan     0.0050    0.2752
##     80       31.5540             nan     0.0050    0.2248
##    100       27.1604             nan     0.0050    0.2106
##    120       23.5555             nan     0.0050    0.1578
##    140       20.4984             nan     0.0050    0.1309
##    160       17.9931             nan     0.0050    0.1209
##    180       15.9056             nan     0.0050    0.0947
##    200       14.0983             nan     0.0050    0.0823
##    220       12.6539             nan     0.0050    0.0704
##    240       11.3624             nan     0.0050    0.0516
##    260       10.2534             nan     0.0050    0.0353
##    280        9.3008             nan     0.0050    0.0402
##    300        8.5048             nan     0.0050    0.0352
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.1459             nan     0.0050    0.4408
##      2       58.6347             nan     0.0050    0.4520
##      3       58.1688             nan     0.0050    0.5088
##      4       57.6825             nan     0.0050    0.4473
##      5       57.2184             nan     0.0050    0.4402
##      6       56.7491             nan     0.0050    0.4149
##      7       56.2824             nan     0.0050    0.4406
##      8       55.8451             nan     0.0050    0.3514
##      9       55.3840             nan     0.0050    0.5000
##     10       54.9115             nan     0.0050    0.4698
##     20       50.6563             nan     0.0050    0.4048
##     40       43.1024             nan     0.0050    0.3110
##     60       36.8658             nan     0.0050    0.2971
##     80       31.6553             nan     0.0050    0.2304
##    100       27.3907             nan     0.0050    0.1966
##    120       23.7882             nan     0.0050    0.1535
##    140       20.7277             nan     0.0050    0.1308
##    160       18.1462             nan     0.0050    0.1011
##    180       16.0358             nan     0.0050    0.0966
##    200       14.2505             nan     0.0050    0.0790
##    220       12.6978             nan     0.0050    0.0710
##    240       11.3667             nan     0.0050    0.0514
##    260       10.2758             nan     0.0050    0.0394
##    280        9.3680             nan     0.0050    0.0387
##    300        8.5550             nan     0.0050    0.0299
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.1654             nan     0.0050    0.4830
##      2       58.6623             nan     0.0050    0.5097
##      3       58.1429             nan     0.0050    0.4828
##      4       57.6626             nan     0.0050    0.4930
##      5       57.1917             nan     0.0050    0.4984
##      6       56.7124             nan     0.0050    0.4424
##      7       56.2205             nan     0.0050    0.4562
##      8       55.7700             nan     0.0050    0.5015
##      9       55.3152             nan     0.0050    0.4580
##     10       54.8627             nan     0.0050    0.4376
##     20       50.5369             nan     0.0050    0.3925
##     40       42.9148             nan     0.0050    0.3402
##     60       36.6752             nan     0.0050    0.2621
##     80       31.5037             nan     0.0050    0.2459
##    100       27.2090             nan     0.0050    0.1866
##    120       23.5999             nan     0.0050    0.1286
##    140       20.6605             nan     0.0050    0.1304
##    160       18.1518             nan     0.0050    0.1041
##    180       16.0882             nan     0.0050    0.0903
##    200       14.3170             nan     0.0050    0.0657
##    220       12.8518             nan     0.0050    0.0641
##    240       11.5965             nan     0.0050    0.0573
##    260       10.4822             nan     0.0050    0.0455
##    280        9.5434             nan     0.0050    0.0405
##    300        8.7541             nan     0.0050    0.0305
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.8503             nan     0.0100    0.7371
##      2       58.0740             nan     0.0100    0.7366
##      3       57.3338             nan     0.0100    0.7233
##      4       56.5857             nan     0.0100    0.7353
##      5       55.9324             nan     0.0100    0.6040
##      6       55.3326             nan     0.0100    0.6830
##      7       54.6463             nan     0.0100    0.6545
##      8       54.0078             nan     0.0100    0.5557
##      9       53.3597             nan     0.0100    0.6219
##     10       52.6800             nan     0.0100    0.6058
##     20       46.9001             nan     0.0100    0.5413
##     40       37.8270             nan     0.0100    0.3849
##     60       31.0544             nan     0.0100    0.2891
##     80       25.7197             nan     0.0100    0.2079
##    100       21.6668             nan     0.0100    0.1691
##    120       18.4801             nan     0.0100    0.1290
##    140       15.9918             nan     0.0100    0.1023
##    160       14.0545             nan     0.0100    0.0844
##    180       12.4217             nan     0.0100    0.0565
##    200       11.1141             nan     0.0100    0.0439
##    220        9.9883             nan     0.0100    0.0341
##    240        9.0599             nan     0.0100    0.0299
##    260        8.2702             nan     0.0100    0.0213
##    280        7.5801             nan     0.0100    0.0296
##    300        7.0160             nan     0.0100    0.0278
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.9315             nan     0.0100    0.7804
##      2       58.2199             nan     0.0100    0.7073
##      3       57.5114             nan     0.0100    0.6930
##      4       56.7300             nan     0.0100    0.6982
##      5       56.0081             nan     0.0100    0.6962
##      6       55.3403             nan     0.0100    0.7324
##      7       54.6589             nan     0.0100    0.6405
##      8       54.0003             nan     0.0100    0.6239
##      9       53.2917             nan     0.0100    0.6882
##     10       52.6570             nan     0.0100    0.6040
##     20       47.0268             nan     0.0100    0.4968
##     40       37.8962             nan     0.0100    0.3963
##     60       30.9899             nan     0.0100    0.2882
##     80       25.6423             nan     0.0100    0.2063
##    100       21.6630             nan     0.0100    0.1854
##    120       18.5145             nan     0.0100    0.1293
##    140       16.1097             nan     0.0100    0.1090
##    160       14.1073             nan     0.0100    0.0743
##    180       12.5162             nan     0.0100    0.0740
##    200       11.1868             nan     0.0100    0.0397
##    220       10.0831             nan     0.0100    0.0273
##    240        9.1373             nan     0.0100    0.0350
##    260        8.3624             nan     0.0100    0.0205
##    280        7.6866             nan     0.0100    0.0269
##    300        7.1149             nan     0.0100    0.0221
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.8695             nan     0.0100    0.7053
##      2       58.0667             nan     0.0100    0.7255
##      3       57.3164             nan     0.0100    0.7433
##      4       56.6419             nan     0.0100    0.7028
##      5       55.9184             nan     0.0100    0.7063
##      6       55.2344             nan     0.0100    0.6972
##      7       54.5527             nan     0.0100    0.6270
##      8       53.8480             nan     0.0100    0.6739
##      9       53.2315             nan     0.0100    0.6457
##     10       52.5685             nan     0.0100    0.6208
##     20       46.7250             nan     0.0100    0.4497
##     40       37.7681             nan     0.0100    0.3590
##     60       30.8683             nan     0.0100    0.2931
##     80       25.6518             nan     0.0100    0.2159
##    100       21.6874             nan     0.0100    0.1706
##    120       18.5682             nan     0.0100    0.1231
##    140       16.1192             nan     0.0100    0.0941
##    160       14.1430             nan     0.0100    0.0822
##    180       12.5917             nan     0.0100    0.0648
##    200       11.2646             nan     0.0100    0.0527
##    220       10.1965             nan     0.0100    0.0297
##    240        9.2557             nan     0.0100    0.0265
##    260        8.5124             nan     0.0100    0.0273
##    280        7.8586             nan     0.0100    0.0273
##    300        7.3111             nan     0.0100    0.0146
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.7597             nan     0.0100    0.8734
##      2       57.8571             nan     0.0100    0.9190
##      3       56.9814             nan     0.0100    0.9099
##      4       56.1311             nan     0.0100    0.8209
##      5       55.2369             nan     0.0100    0.8673
##      6       54.3813             nan     0.0100    0.8863
##      7       53.5819             nan     0.0100    0.7924
##      8       52.7972             nan     0.0100    0.7377
##      9       52.1052             nan     0.0100    0.7436
##     10       51.2606             nan     0.0100    0.7919
##     20       44.3463             nan     0.0100    0.6847
##     40       33.1541             nan     0.0100    0.4288
##     60       25.4597             nan     0.0100    0.3044
##     80       19.9277             nan     0.0100    0.2386
##    100       16.0249             nan     0.0100    0.1413
##    120       13.0885             nan     0.0100    0.1123
##    140       10.9339             nan     0.0100    0.0914
##    160        9.2844             nan     0.0100    0.0574
##    180        8.0133             nan     0.0100    0.0464
##    200        7.0737             nan     0.0100    0.0327
##    220        6.3161             nan     0.0100    0.0177
##    240        5.7300             nan     0.0100    0.0284
##    260        5.2539             nan     0.0100    0.0121
##    280        4.8622             nan     0.0100    0.0086
##    300        4.5410             nan     0.0100    0.0056
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.6951             nan     0.0100    1.0009
##      2       57.7980             nan     0.0100    0.8697
##      3       56.9383             nan     0.0100    0.8209
##      4       55.9911             nan     0.0100    0.9060
##      5       55.1492             nan     0.0100    0.8354
##      6       54.3039             nan     0.0100    0.8639
##      7       53.4652             nan     0.0100    0.8916
##      8       52.6529             nan     0.0100    0.8217
##      9       51.8923             nan     0.0100    0.7885
##     10       51.1326             nan     0.0100    0.8093
##     20       43.9984             nan     0.0100    0.6958
##     40       33.0146             nan     0.0100    0.5040
##     60       25.4888             nan     0.0100    0.3125
##     80       19.9494             nan     0.0100    0.2075
##    100       15.9994             nan     0.0100    0.1252
##    120       13.0921             nan     0.0100    0.1103
##    140       10.9070             nan     0.0100    0.0633
##    160        9.2684             nan     0.0100    0.0659
##    180        8.0167             nan     0.0100    0.0416
##    200        7.0817             nan     0.0100    0.0370
##    220        6.3398             nan     0.0100    0.0300
##    240        5.7398             nan     0.0100    0.0210
##    260        5.2441             nan     0.0100    0.0146
##    280        4.8570             nan     0.0100    0.0123
##    300        4.5487             nan     0.0100    0.0089
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.7840             nan     0.0100    0.9425
##      2       57.8916             nan     0.0100    0.8897
##      3       56.9442             nan     0.0100    0.8754
##      4       56.1027             nan     0.0100    0.8879
##      5       55.2485             nan     0.0100    0.8307
##      6       54.4309             nan     0.0100    0.7749
##      7       53.5478             nan     0.0100    0.8318
##      8       52.7002             nan     0.0100    0.8819
##      9       51.8681             nan     0.0100    0.8176
##     10       51.0783             nan     0.0100    0.7235
##     20       43.9810             nan     0.0100    0.6892
##     40       33.2028             nan     0.0100    0.4678
##     60       25.2375             nan     0.0100    0.3364
##     80       19.8892             nan     0.0100    0.2044
##    100       16.0245             nan     0.0100    0.1868
##    120       13.2024             nan     0.0100    0.0988
##    140       11.1362             nan     0.0100    0.0841
##    160        9.5157             nan     0.0100    0.0631
##    180        8.2435             nan     0.0100    0.0520
##    200        7.2815             nan     0.0100    0.0332
##    220        6.5598             nan     0.0100    0.0229
##    240        5.9582             nan     0.0100    0.0173
##    260        5.4808             nan     0.0100    0.0180
##    280        5.1085             nan     0.0100    0.0160
##    300        4.8138             nan     0.0100    0.0093
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.6934             nan     0.0100    0.9663
##      2       57.6878             nan     0.0100    0.9790
##      3       56.7059             nan     0.0100    1.0982
##      4       55.7813             nan     0.0100    0.9209
##      5       54.8446             nan     0.0100    0.8619
##      6       53.9289             nan     0.0100    0.8014
##      7       53.0513             nan     0.0100    0.9268
##      8       52.1992             nan     0.0100    0.9063
##      9       51.3464             nan     0.0100    0.8025
##     10       50.5034             nan     0.0100    0.7730
##     20       42.9669             nan     0.0100    0.6467
##     40       31.5783             nan     0.0100    0.4589
##     60       23.5904             nan     0.0100    0.3473
##     80       17.9990             nan     0.0100    0.2071
##    100       14.1539             nan     0.0100    0.1701
##    120       11.3130             nan     0.0100    0.1110
##    140        9.2651             nan     0.0100    0.0761
##    160        7.7626             nan     0.0100    0.0638
##    180        6.6730             nan     0.0100    0.0279
##    200        5.8247             nan     0.0100    0.0386
##    220        5.1549             nan     0.0100    0.0182
##    240        4.6707             nan     0.0100    0.0155
##    260        4.2734             nan     0.0100    0.0128
##    280        3.9623             nan     0.0100    0.0143
##    300        3.7172             nan     0.0100    0.0059
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.6774             nan     0.0100    0.9844
##      2       57.6782             nan     0.0100    0.9327
##      3       56.7397             nan     0.0100    0.9015
##      4       55.7948             nan     0.0100    1.0461
##      5       54.8234             nan     0.0100    0.8805
##      6       53.9229             nan     0.0100    0.9492
##      7       53.0343             nan     0.0100    0.7720
##      8       52.1536             nan     0.0100    0.8320
##      9       51.2699             nan     0.0100    0.8025
##     10       50.4389             nan     0.0100    0.8372
##     20       42.9050             nan     0.0100    0.6959
##     40       31.4256             nan     0.0100    0.4952
##     60       23.4013             nan     0.0100    0.2298
##     80       17.9653             nan     0.0100    0.1820
##    100       14.1099             nan     0.0100    0.1340
##    120       11.3123             nan     0.0100    0.0961
##    140        9.2883             nan     0.0100    0.0758
##    160        7.8166             nan     0.0100    0.0545
##    180        6.6861             nan     0.0100    0.0416
##    200        5.8556             nan     0.0100    0.0383
##    220        5.1912             nan     0.0100    0.0246
##    240        4.6930             nan     0.0100    0.0161
##    260        4.3214             nan     0.0100    0.0053
##    280        4.0395             nan     0.0100    0.0064
##    300        3.8086             nan     0.0100    0.0066
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.6064             nan     0.0100    0.8560
##      2       57.6024             nan     0.0100    0.9689
##      3       56.6807             nan     0.0100    0.9434
##      4       55.7853             nan     0.0100    0.9291
##      5       54.9180             nan     0.0100    0.8725
##      6       54.0584             nan     0.0100    0.8657
##      7       53.1538             nan     0.0100    0.9383
##      8       52.2965             nan     0.0100    0.8360
##      9       51.4440             nan     0.0100    0.8220
##     10       50.6101             nan     0.0100    0.7213
##     20       43.0651             nan     0.0100    0.6688
##     40       31.6880             nan     0.0100    0.4242
##     60       23.6973             nan     0.0100    0.2871
##     80       18.1670             nan     0.0100    0.1946
##    100       14.2736             nan     0.0100    0.1532
##    120       11.5861             nan     0.0100    0.0978
##    140        9.5584             nan     0.0100    0.0771
##    160        8.0359             nan     0.0100    0.0622
##    180        6.9369             nan     0.0100    0.0403
##    200        6.0977             nan     0.0100    0.0309
##    220        5.4603             nan     0.0100    0.0183
##    240        4.9941             nan     0.0100    0.0111
##    260        4.6054             nan     0.0100    0.0096
##    280        4.3446             nan     0.0100    0.0016
##    300        4.1289             nan     0.0100    0.0043
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.7986             nan     0.0500    3.8679
##      2       53.3147             nan     0.0500    2.1023
##      3       50.1649             nan     0.0500    3.2145
##      4       47.3472             nan     0.0500    2.7631
##      5       44.4748             nan     0.0500    2.6487
##      6       41.9895             nan     0.0500    2.3947
##      7       39.5767             nan     0.0500    2.3417
##      8       37.6887             nan     0.0500    1.8809
##      9       35.7839             nan     0.0500    1.9975
##     10       33.9672             nan     0.0500    1.7112
##     20       21.3141             nan     0.0500    0.7023
##     40       11.0635             nan     0.0500    0.2854
##     60        7.1167             nan     0.0500    0.0927
##     80        5.3513             nan     0.0500    0.0404
##    100        4.4498             nan     0.0500    0.0125
##    120        4.0179             nan     0.0500    0.0021
##    140        3.8013             nan     0.0500   -0.0036
##    160        3.6832             nan     0.0500   -0.0020
##    180        3.5935             nan     0.0500   -0.0066
##    200        3.5123             nan     0.0500   -0.0062
##    220        3.4427             nan     0.0500   -0.0022
##    240        3.3829             nan     0.0500   -0.0060
##    260        3.3260             nan     0.0500   -0.0037
##    280        3.2716             nan     0.0500   -0.0092
##    300        3.2232             nan     0.0500   -0.0054
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.1052             nan     0.0500    3.7811
##      2       52.7838             nan     0.0500    3.4427
##      3       49.9888             nan     0.0500    3.1056
##      4       47.1342             nan     0.0500    2.8877
##      5       44.7924             nan     0.0500    2.1100
##      6       42.4371             nan     0.0500    2.1411
##      7       40.1394             nan     0.0500    2.1918
##      8       37.9276             nan     0.0500    2.0878
##      9       36.0751             nan     0.0500    1.7324
##     10       34.3491             nan     0.0500    1.6561
##     20       21.5960             nan     0.0500    0.9516
##     40       11.0862             nan     0.0500    0.2998
##     60        7.1061             nan     0.0500    0.0958
##     80        5.2770             nan     0.0500    0.0629
##    100        4.4383             nan     0.0500    0.0037
##    120        3.9883             nan     0.0500    0.0076
##    140        3.7822             nan     0.0500    0.0044
##    160        3.6610             nan     0.0500   -0.0072
##    180        3.5677             nan     0.0500   -0.0096
##    200        3.4887             nan     0.0500   -0.0117
##    220        3.4273             nan     0.0500   -0.0050
##    240        3.3611             nan     0.0500   -0.0089
##    260        3.3133             nan     0.0500   -0.0127
##    280        3.2729             nan     0.0500   -0.0128
##    300        3.2229             nan     0.0500   -0.0113
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.5064             nan     0.0500    2.4904
##      2       53.2053             nan     0.0500    3.6197
##      3       49.9153             nan     0.0500    3.2209
##      4       46.8455             nan     0.0500    2.7264
##      5       44.4453             nan     0.0500    2.6662
##      6       42.1787             nan     0.0500    2.3988
##      7       39.8152             nan     0.0500    2.2722
##      8       37.6397             nan     0.0500    2.0297
##      9       35.6649             nan     0.0500    1.7540
##     10       33.8947             nan     0.0500    1.4580
##     20       21.2277             nan     0.0500    0.7368
##     40       10.9772             nan     0.0500    0.2418
##     60        7.1149             nan     0.0500    0.0837
##     80        5.3890             nan     0.0500    0.0414
##    100        4.5994             nan     0.0500    0.0190
##    120        4.1752             nan     0.0500   -0.0017
##    140        3.9478             nan     0.0500    0.0003
##    160        3.8239             nan     0.0500    0.0015
##    180        3.7375             nan     0.0500   -0.0019
##    200        3.6503             nan     0.0500    0.0024
##    220        3.5874             nan     0.0500   -0.0067
##    240        3.5257             nan     0.0500   -0.0045
##    260        3.4669             nan     0.0500   -0.0132
##    280        3.4213             nan     0.0500   -0.0068
##    300        3.3709             nan     0.0500   -0.0069
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.1620             nan     0.0500    5.0655
##      2       51.0959             nan     0.0500    3.9277
##      3       47.1748             nan     0.0500    3.6034
##      4       43.7815             nan     0.0500    3.0503
##      5       40.7692             nan     0.0500    3.1918
##      6       37.8439             nan     0.0500    2.8220
##      7       35.5383             nan     0.0500    2.4943
##      8       33.1914             nan     0.0500    2.2203
##      9       31.1688             nan     0.0500    1.7723
##     10       29.0892             nan     0.0500    2.0486
##     20       16.0024             nan     0.0500    0.8313
##     40        7.1533             nan     0.0500    0.1995
##     60        4.5544             nan     0.0500    0.0412
##     80        3.6875             nan     0.0500    0.0125
##    100        3.2757             nan     0.0500   -0.0281
##    120        3.0219             nan     0.0500    0.0019
##    140        2.8492             nan     0.0500   -0.0059
##    160        2.7393             nan     0.0500   -0.0034
##    180        2.6045             nan     0.0500   -0.0104
##    200        2.5132             nan     0.0500   -0.0121
##    220        2.4188             nan     0.0500   -0.0007
##    240        2.3272             nan     0.0500   -0.0054
##    260        2.2449             nan     0.0500   -0.0071
##    280        2.1794             nan     0.0500   -0.0070
##    300        2.1131             nan     0.0500   -0.0078
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.5142             nan     0.0500    4.2308
##      2       51.5200             nan     0.0500    4.3398
##      3       47.4252             nan     0.0500    4.4951
##      4       44.2181             nan     0.0500    3.5408
##      5       41.0811             nan     0.0500    3.1503
##      6       38.3071             nan     0.0500    2.7498
##      7       35.7095             nan     0.0500    2.5640
##      8       33.4049             nan     0.0500    2.4072
##      9       31.1691             nan     0.0500    1.8059
##     10       29.0447             nan     0.0500    1.8717
##     20       15.8205             nan     0.0500    0.7104
##     40        7.0577             nan     0.0500    0.1395
##     60        4.5449             nan     0.0500    0.0638
##     80        3.7821             nan     0.0500    0.0132
##    100        3.4644             nan     0.0500   -0.0007
##    120        3.2606             nan     0.0500   -0.0060
##    140        3.1329             nan     0.0500    0.0015
##    160        3.0010             nan     0.0500   -0.0138
##    180        2.9037             nan     0.0500   -0.0067
##    200        2.8164             nan     0.0500   -0.0071
##    220        2.7461             nan     0.0500   -0.0269
##    240        2.6728             nan     0.0500   -0.0121
##    260        2.6071             nan     0.0500   -0.0205
##    280        2.5368             nan     0.0500   -0.0034
##    300        2.4740             nan     0.0500   -0.0098
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.2258             nan     0.0500    4.5104
##      2       51.3597             nan     0.0500    4.1836
##      3       47.8141             nan     0.0500    3.6867
##      4       44.3092             nan     0.0500    3.8225
##      5       41.2351             nan     0.0500    3.1737
##      6       38.4684             nan     0.0500    2.8401
##      7       35.7428             nan     0.0500    2.5644
##      8       33.3835             nan     0.0500    2.4454
##      9       31.0325             nan     0.0500    2.0494
##     10       28.9473             nan     0.0500    2.0106
##     20       15.8430             nan     0.0500    0.8303
##     40        7.1832             nan     0.0500    0.1871
##     60        4.6657             nan     0.0500    0.0335
##     80        3.9353             nan     0.0500    0.0094
##    100        3.6434             nan     0.0500   -0.0053
##    120        3.4392             nan     0.0500   -0.0135
##    140        3.2833             nan     0.0500   -0.0112
##    160        3.1500             nan     0.0500   -0.0091
##    180        3.0611             nan     0.0500   -0.0139
##    200        2.9628             nan     0.0500   -0.0099
##    220        2.9036             nan     0.0500   -0.0066
##    240        2.8233             nan     0.0500   -0.0097
##    260        2.7619             nan     0.0500   -0.0150
##    280        2.7054             nan     0.0500   -0.0131
##    300        2.6551             nan     0.0500   -0.0094
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.0528             nan     0.0500    4.7554
##      2       50.7458             nan     0.0500    4.0408
##      3       46.6107             nan     0.0500    3.7203
##      4       42.9040             nan     0.0500    3.7333
##      5       39.5581             nan     0.0500    3.3377
##      6       36.6423             nan     0.0500    2.6218
##      7       33.8319             nan     0.0500    2.9567
##      8       31.1860             nan     0.0500    2.4240
##      9       28.7470             nan     0.0500    2.6280
##     10       26.7831             nan     0.0500    2.2524
##     20       13.9519             nan     0.0500    0.7861
##     40        5.6283             nan     0.0500    0.1213
##     60        3.6480             nan     0.0500    0.0297
##     80        3.0997             nan     0.0500   -0.0214
##    100        2.8050             nan     0.0500   -0.0044
##    120        2.6232             nan     0.0500   -0.0221
##    140        2.4542             nan     0.0500   -0.0077
##    160        2.3110             nan     0.0500   -0.0167
##    180        2.1943             nan     0.0500   -0.0032
##    200        2.0976             nan     0.0500   -0.0125
##    220        1.9886             nan     0.0500   -0.0125
##    240        1.8730             nan     0.0500   -0.0061
##    260        1.7637             nan     0.0500   -0.0138
##    280        1.6968             nan     0.0500   -0.0041
##    300        1.6241             nan     0.0500   -0.0135
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.7289             nan     0.0500    4.6093
##      2       50.2329             nan     0.0500    4.3619
##      3       46.3616             nan     0.0500    3.8176
##      4       42.6564             nan     0.0500    3.5858
##      5       39.1024             nan     0.0500    3.7746
##      6       36.2297             nan     0.0500    3.1421
##      7       33.4449             nan     0.0500    2.5422
##      8       30.7653             nan     0.0500    2.2533
##      9       28.4560             nan     0.0500    2.1769
##     10       26.5012             nan     0.0500    2.0048
##     20       13.6393             nan     0.0500    0.8258
##     40        5.7009             nan     0.0500    0.1683
##     60        3.7860             nan     0.0500    0.0192
##     80        3.2758             nan     0.0500    0.0005
##    100        3.0206             nan     0.0500   -0.0099
##    120        2.8367             nan     0.0500   -0.0159
##    140        2.6654             nan     0.0500   -0.0193
##    160        2.5615             nan     0.0500   -0.0119
##    180        2.4506             nan     0.0500   -0.0161
##    200        2.3620             nan     0.0500   -0.0071
##    220        2.2536             nan     0.0500   -0.0154
##    240        2.1633             nan     0.0500   -0.0130
##    260        2.0827             nan     0.0500   -0.0146
##    280        2.0156             nan     0.0500   -0.0122
##    300        1.9445             nan     0.0500   -0.0174
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.7315             nan     0.0500    4.6801
##      2       50.0436             nan     0.0500    4.5964
##      3       46.0848             nan     0.0500    3.4795
##      4       42.7370             nan     0.0500    3.4789
##      5       39.5424             nan     0.0500    3.2035
##      6       36.7130             nan     0.0500    2.5667
##      7       33.9377             nan     0.0500    2.8607
##      8       31.5607             nan     0.0500    2.6515
##      9       29.2278             nan     0.0500    2.3905
##     10       27.2331             nan     0.0500    1.9801
##     20       14.2619             nan     0.0500    0.8776
##     40        6.1707             nan     0.0500    0.1589
##     60        4.1949             nan     0.0500    0.0444
##     80        3.5735             nan     0.0500   -0.0006
##    100        3.2728             nan     0.0500    0.0010
##    120        3.0675             nan     0.0500   -0.0235
##    140        2.9141             nan     0.0500   -0.0081
##    160        2.7929             nan     0.0500   -0.0132
##    180        2.7006             nan     0.0500   -0.0133
##    200        2.5867             nan     0.0500   -0.0216
##    220        2.4892             nan     0.0500   -0.0070
##    240        2.3948             nan     0.0500   -0.0103
##    260        2.3370             nan     0.0500   -0.0155
##    280        2.2661             nan     0.0500   -0.0064
##    300        2.1946             nan     0.0500   -0.0132
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.6492             nan     0.1000    6.6088
##      2       46.7282             nan     0.1000    6.3337
##      3       41.9816             nan     0.1000    5.0165
##      4       38.0328             nan     0.1000    3.4439
##      5       33.2840             nan     0.1000    4.2033
##      6       30.3330             nan     0.1000    2.9563
##      7       27.4567             nan     0.1000    2.4438
##      8       25.0494             nan     0.1000    3.0866
##      9       22.7678             nan     0.1000    2.3257
##     10       21.2039             nan     0.1000    1.1158
##     20       10.9991             nan     0.1000    0.6453
##     40        5.4567             nan     0.1000    0.0209
##     60        4.1300             nan     0.1000    0.0071
##     80        3.7590             nan     0.1000   -0.0226
##    100        3.5752             nan     0.1000   -0.0096
##    120        3.4589             nan     0.1000   -0.0221
##    140        3.3778             nan     0.1000   -0.0104
##    160        3.2847             nan     0.1000   -0.0186
##    180        3.2048             nan     0.1000   -0.0134
##    200        3.1568             nan     0.1000   -0.0336
##    220        3.1043             nan     0.1000   -0.0215
##    240        3.0367             nan     0.1000   -0.0037
##    260        2.9780             nan     0.1000   -0.0049
##    280        2.9482             nan     0.1000   -0.0226
##    300        2.9005             nan     0.1000   -0.0133
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.1566             nan     0.1000    7.5262
##      2       46.0565             nan     0.1000    5.3690
##      3       41.2095             nan     0.1000    5.0009
##      4       37.0191             nan     0.1000    3.6095
##      5       33.2801             nan     0.1000    3.5941
##      6       30.5109             nan     0.1000    2.5915
##      7       27.1862             nan     0.1000    2.9254
##      8       24.8311             nan     0.1000    2.0353
##      9       22.9399             nan     0.1000    1.8004
##     10       20.8144             nan     0.1000    1.8479
##     20       10.7750             nan     0.1000    0.6284
##     40        5.3679             nan     0.1000    0.1061
##     60        4.2066             nan     0.1000    0.0161
##     80        3.8680             nan     0.1000    0.0016
##    100        3.6720             nan     0.1000   -0.0140
##    120        3.5252             nan     0.1000   -0.0160
##    140        3.4117             nan     0.1000   -0.0083
##    160        3.3112             nan     0.1000   -0.0184
##    180        3.2424             nan     0.1000   -0.0247
##    200        3.1727             nan     0.1000   -0.0141
##    220        3.1197             nan     0.1000   -0.0127
##    240        3.0537             nan     0.1000   -0.0066
##    260        2.9819             nan     0.1000   -0.0102
##    280        2.9507             nan     0.1000   -0.0147
##    300        2.9140             nan     0.1000   -0.0505
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.4166             nan     0.1000    6.7994
##      2       46.1015             nan     0.1000    5.6284
##      3       41.8985             nan     0.1000    4.4637
##      4       37.0611             nan     0.1000    4.6415
##      5       33.5874             nan     0.1000    3.7693
##      6       30.4580             nan     0.1000    3.0871
##      7       27.8549             nan     0.1000    2.6185
##      8       25.4735             nan     0.1000    2.3308
##      9       23.1769             nan     0.1000    2.2162
##     10       21.2951             nan     0.1000    1.6230
##     20       11.0563             nan     0.1000    0.3328
##     40        5.6066             nan     0.1000    0.0601
##     60        4.4037             nan     0.1000    0.0134
##     80        4.1298             nan     0.1000   -0.0320
##    100        3.9002             nan     0.1000   -0.0327
##    120        3.7311             nan     0.1000   -0.0031
##    140        3.5930             nan     0.1000    0.0006
##    160        3.4885             nan     0.1000   -0.0479
##    180        3.3940             nan     0.1000   -0.0182
##    200        3.3089             nan     0.1000   -0.0210
##    220        3.2389             nan     0.1000   -0.0025
##    240        3.1835             nan     0.1000   -0.0267
##    260        3.1374             nan     0.1000   -0.0381
##    280        3.0917             nan     0.1000   -0.0051
##    300        3.0165             nan     0.1000   -0.0164
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.9629             nan     0.1000    8.3524
##      2       45.1382             nan     0.1000    6.9513
##      3       39.4094             nan     0.1000    5.3773
##      4       34.0295             nan     0.1000    5.6664
##      5       29.6293             nan     0.1000    3.9833
##      6       26.0513             nan     0.1000    3.8766
##      7       22.5509             nan     0.1000    3.2369
##      8       20.4022             nan     0.1000    2.3937
##      9       18.6089             nan     0.1000    1.5739
##     10       16.9086             nan     0.1000    1.4503
##     20        7.2399             nan     0.1000    0.4464
##     40        3.8305             nan     0.1000   -0.0003
##     60        3.2032             nan     0.1000   -0.0018
##     80        2.8607             nan     0.1000    0.0023
##    100        2.6814             nan     0.1000   -0.0050
##    120        2.4544             nan     0.1000   -0.0102
##    140        2.3354             nan     0.1000   -0.0138
##    160        2.2178             nan     0.1000   -0.0169
##    180        2.1155             nan     0.1000   -0.0513
##    200        2.0189             nan     0.1000   -0.0409
##    220        1.9069             nan     0.1000   -0.0018
##    240        1.8171             nan     0.1000   -0.0157
##    260        1.7087             nan     0.1000   -0.0149
##    280        1.6325             nan     0.1000   -0.0142
##    300        1.5869             nan     0.1000   -0.0189
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       50.8131             nan     0.1000    8.4391
##      2       44.2397             nan     0.1000    7.2852
##      3       38.0332             nan     0.1000    6.6342
##      4       33.1136             nan     0.1000    4.5136
##      5       28.9646             nan     0.1000    4.3288
##      6       25.7153             nan     0.1000    3.1572
##      7       22.5713             nan     0.1000    2.7024
##      8       20.0624             nan     0.1000    2.1572
##      9       17.8230             nan     0.1000    1.9878
##     10       15.8480             nan     0.1000    2.1032
##     20        6.8749             nan     0.1000    0.3159
##     40        3.8476             nan     0.1000    0.0298
##     60        3.3034             nan     0.1000   -0.0185
##     80        3.0018             nan     0.1000   -0.0388
##    100        2.8162             nan     0.1000   -0.0311
##    120        2.6487             nan     0.1000   -0.0223
##    140        2.4891             nan     0.1000   -0.0240
##    160        2.3496             nan     0.1000   -0.0296
##    180        2.2497             nan     0.1000   -0.0091
##    200        2.1517             nan     0.1000   -0.0385
##    220        2.0746             nan     0.1000   -0.0192
##    240        2.0025             nan     0.1000   -0.0239
##    260        1.9303             nan     0.1000   -0.0100
##    280        1.8532             nan     0.1000   -0.0099
##    300        1.8108             nan     0.1000   -0.0180
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.0718             nan     0.1000    9.0098
##      2       44.3032             nan     0.1000    7.2810
##      3       37.9179             nan     0.1000    6.1666
##      4       33.0849             nan     0.1000    4.7564
##      5       28.6652             nan     0.1000    4.4392
##      6       24.9974             nan     0.1000    3.0720
##      7       22.1668             nan     0.1000    2.5081
##      8       19.8961             nan     0.1000    2.2252
##      9       17.6588             nan     0.1000    2.0929
##     10       15.8546             nan     0.1000    1.8732
##     20        7.6767             nan     0.1000    0.4151
##     40        4.1126             nan     0.1000   -0.0018
##     60        3.4913             nan     0.1000   -0.0534
##     80        3.1750             nan     0.1000   -0.0110
##    100        2.9718             nan     0.1000   -0.0087
##    120        2.7725             nan     0.1000   -0.0231
##    140        2.6348             nan     0.1000   -0.0116
##    160        2.4904             nan     0.1000   -0.0537
##    180        2.4163             nan     0.1000   -0.0117
##    200        2.3268             nan     0.1000   -0.0200
##    220        2.2621             nan     0.1000   -0.0176
##    240        2.1954             nan     0.1000   -0.0288
##    260        2.1083             nan     0.1000   -0.0063
##    280        2.0528             nan     0.1000   -0.0296
##    300        1.9942             nan     0.1000   -0.0138
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       50.5587             nan     0.1000    9.7414
##      2       42.2869             nan     0.1000    8.0399
##      3       36.0708             nan     0.1000    6.4832
##      4       30.9783             nan     0.1000    4.8195
##      5       26.6741             nan     0.1000    4.3823
##      6       23.0961             nan     0.1000    3.3437
##      7       20.5164             nan     0.1000    2.6984
##      8       17.8371             nan     0.1000    2.5631
##      9       15.6695             nan     0.1000    2.1614
##     10       14.0200             nan     0.1000    1.6510
##     20        5.5289             nan     0.1000    0.2164
##     40        3.2157             nan     0.1000   -0.0152
##     60        2.6939             nan     0.1000   -0.0356
##     80        2.3908             nan     0.1000   -0.0173
##    100        2.1639             nan     0.1000   -0.0088
##    120        1.9734             nan     0.1000   -0.0279
##    140        1.7908             nan     0.1000   -0.0098
##    160        1.6276             nan     0.1000   -0.0135
##    180        1.4960             nan     0.1000   -0.0162
##    200        1.3789             nan     0.1000   -0.0127
##    220        1.2674             nan     0.1000   -0.0095
##    240        1.1742             nan     0.1000   -0.0094
##    260        1.1089             nan     0.1000   -0.0212
##    280        1.0310             nan     0.1000   -0.0131
##    300        0.9691             nan     0.1000   -0.0099
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       50.1099             nan     0.1000    8.5182
##      2       42.5973             nan     0.1000    7.6629
##      3       36.2938             nan     0.1000    6.2767
##      4       30.9391             nan     0.1000    4.8675
##      5       26.4392             nan     0.1000    4.0551
##      6       22.6503             nan     0.1000    3.3578
##      7       19.7384             nan     0.1000    3.0101
##      8       17.1336             nan     0.1000    2.2121
##      9       15.1410             nan     0.1000    1.9040
##     10       13.3741             nan     0.1000    1.6802
##     20        5.7223             nan     0.1000    0.2792
##     40        3.3763             nan     0.1000    0.0166
##     60        2.8494             nan     0.1000   -0.0130
##     80        2.5471             nan     0.1000   -0.0143
##    100        2.3253             nan     0.1000   -0.0436
##    120        2.1423             nan     0.1000   -0.0241
##    140        1.9896             nan     0.1000   -0.0132
##    160        1.8563             nan     0.1000   -0.0234
##    180        1.7481             nan     0.1000   -0.0268
##    200        1.6556             nan     0.1000   -0.0218
##    220        1.5671             nan     0.1000   -0.0342
##    240        1.4925             nan     0.1000   -0.0217
##    260        1.4168             nan     0.1000   -0.0235
##    280        1.3428             nan     0.1000   -0.0147
##    300        1.2818             nan     0.1000   -0.0103
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       50.4312             nan     0.1000    8.6752
##      2       42.6376             nan     0.1000    7.3731
##      3       36.2058             nan     0.1000    6.3062
##      4       30.8987             nan     0.1000    4.4518
##      5       26.4779             nan     0.1000    4.5392
##      6       22.8577             nan     0.1000    3.1431
##      7       20.1302             nan     0.1000    3.1664
##      8       17.7638             nan     0.1000    2.3428
##      9       15.8844             nan     0.1000    1.7483
##     10       14.1652             nan     0.1000    1.7142
##     20        6.1019             nan     0.1000    0.3326
##     40        3.6255             nan     0.1000   -0.0207
##     60        3.1304             nan     0.1000   -0.0262
##     80        2.8411             nan     0.1000   -0.0353
##    100        2.6300             nan     0.1000   -0.0191
##    120        2.4585             nan     0.1000   -0.0192
##    140        2.3077             nan     0.1000   -0.0257
##    160        2.1753             nan     0.1000   -0.0160
##    180        2.0396             nan     0.1000   -0.0253
##    200        1.9303             nan     0.1000   -0.0218
##    220        1.8385             nan     0.1000   -0.0074
##    240        1.7624             nan     0.1000   -0.0314
##    260        1.6740             nan     0.1000   -0.0169
##    280        1.6111             nan     0.1000   -0.0146
##    300        1.5313             nan     0.1000   -0.0131
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5819             nan     0.0010    0.0840
##      2       61.5096             nan     0.0010    0.0818
##      3       61.4262             nan     0.0010    0.0785
##      4       61.3437             nan     0.0010    0.0753
##      5       61.2652             nan     0.0010    0.0815
##      6       61.1952             nan     0.0010    0.0774
##      7       61.1137             nan     0.0010    0.0800
##      8       61.0388             nan     0.0010    0.0753
##      9       60.9599             nan     0.0010    0.0731
##     10       60.8774             nan     0.0010    0.0833
##     20       60.0916             nan     0.0010    0.0734
##     40       58.5839             nan     0.0010    0.0722
##     60       57.1462             nan     0.0010    0.0763
##     80       55.7732             nan     0.0010    0.0680
##    100       54.4454             nan     0.0010    0.0634
##    120       53.2010             nan     0.0010    0.0662
##    140       51.9269             nan     0.0010    0.0610
##    160       50.7140             nan     0.0010    0.0577
##    180       49.5809             nan     0.0010    0.0584
##    200       48.4524             nan     0.0010    0.0520
##    220       47.3703             nan     0.0010    0.0463
##    240       46.3446             nan     0.0010    0.0431
##    260       45.3411             nan     0.0010    0.0498
##    280       44.3628             nan     0.0010    0.0461
##    300       43.4240             nan     0.0010    0.0474
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5914             nan     0.0010    0.0776
##      2       61.5144             nan     0.0010    0.0780
##      3       61.4362             nan     0.0010    0.0786
##      4       61.3581             nan     0.0010    0.0766
##      5       61.2780             nan     0.0010    0.0780
##      6       61.2038             nan     0.0010    0.0780
##      7       61.1233             nan     0.0010    0.0724
##      8       61.0420             nan     0.0010    0.0794
##      9       60.9632             nan     0.0010    0.0785
##     10       60.8806             nan     0.0010    0.0829
##     20       60.0914             nan     0.0010    0.0754
##     40       58.5928             nan     0.0010    0.0748
##     60       57.1269             nan     0.0010    0.0589
##     80       55.7036             nan     0.0010    0.0652
##    100       54.3270             nan     0.0010    0.0652
##    120       53.0211             nan     0.0010    0.0632
##    140       51.8029             nan     0.0010    0.0534
##    160       50.6064             nan     0.0010    0.0603
##    180       49.4728             nan     0.0010    0.0456
##    200       48.3569             nan     0.0010    0.0524
##    220       47.2812             nan     0.0010    0.0496
##    240       46.2351             nan     0.0010    0.0533
##    260       45.2367             nan     0.0010    0.0413
##    280       44.2623             nan     0.0010    0.0472
##    300       43.3357             nan     0.0010    0.0480
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5883             nan     0.0010    0.0911
##      2       61.5121             nan     0.0010    0.0796
##      3       61.4337             nan     0.0010    0.0785
##      4       61.3490             nan     0.0010    0.0806
##      5       61.2668             nan     0.0010    0.0762
##      6       61.1830             nan     0.0010    0.0801
##      7       61.1001             nan     0.0010    0.0717
##      8       61.0271             nan     0.0010    0.0758
##      9       60.9493             nan     0.0010    0.0798
##     10       60.8758             nan     0.0010    0.0757
##     20       60.1106             nan     0.0010    0.0705
##     40       58.6189             nan     0.0010    0.0772
##     60       57.1710             nan     0.0010    0.0648
##     80       55.7648             nan     0.0010    0.0686
##    100       54.4065             nan     0.0010    0.0650
##    120       53.0962             nan     0.0010    0.0614
##    140       51.8630             nan     0.0010    0.0593
##    160       50.6629             nan     0.0010    0.0579
##    180       49.5008             nan     0.0010    0.0565
##    200       48.4018             nan     0.0010    0.0526
##    220       47.3248             nan     0.0010    0.0504
##    240       46.2634             nan     0.0010    0.0388
##    260       45.2455             nan     0.0010    0.0481
##    280       44.2495             nan     0.0010    0.0468
##    300       43.2921             nan     0.0010    0.0407
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5786             nan     0.0010    0.0976
##      2       61.4821             nan     0.0010    0.1000
##      3       61.3838             nan     0.0010    0.0965
##      4       61.2883             nan     0.0010    0.0929
##      5       61.2015             nan     0.0010    0.0862
##      6       61.1042             nan     0.0010    0.0891
##      7       61.0115             nan     0.0010    0.0974
##      8       60.9217             nan     0.0010    0.0909
##      9       60.8259             nan     0.0010    0.1040
##     10       60.7307             nan     0.0010    0.1039
##     20       59.8146             nan     0.0010    0.0821
##     40       58.0000             nan     0.0010    0.0867
##     60       56.2415             nan     0.0010    0.0838
##     80       54.5801             nan     0.0010    0.0917
##    100       52.9708             nan     0.0010    0.0784
##    120       51.3769             nan     0.0010    0.0767
##    140       49.8337             nan     0.0010    0.0748
##    160       48.3733             nan     0.0010    0.0712
##    180       46.9186             nan     0.0010    0.0718
##    200       45.5223             nan     0.0010    0.0743
##    220       44.2012             nan     0.0010    0.0604
##    240       42.9215             nan     0.0010    0.0638
##    260       41.7022             nan     0.0010    0.0616
##    280       40.4996             nan     0.0010    0.0559
##    300       39.3649             nan     0.0010    0.0521
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5809             nan     0.0010    0.0903
##      2       61.4846             nan     0.0010    0.0962
##      3       61.3886             nan     0.0010    0.0904
##      4       61.2959             nan     0.0010    0.0896
##      5       61.1949             nan     0.0010    0.0979
##      6       61.1037             nan     0.0010    0.0873
##      7       61.0145             nan     0.0010    0.0957
##      8       60.9245             nan     0.0010    0.0918
##      9       60.8305             nan     0.0010    0.0861
##     10       60.7369             nan     0.0010    0.0913
##     20       59.8287             nan     0.0010    0.0873
##     40       58.0342             nan     0.0010    0.0893
##     60       56.2879             nan     0.0010    0.0826
##     80       54.5968             nan     0.0010    0.0755
##    100       52.9811             nan     0.0010    0.0731
##    120       51.4063             nan     0.0010    0.0871
##    140       49.8936             nan     0.0010    0.0659
##    160       48.4470             nan     0.0010    0.0731
##    180       47.0378             nan     0.0010    0.0601
##    200       45.6551             nan     0.0010    0.0675
##    220       44.3409             nan     0.0010    0.0690
##    240       43.0432             nan     0.0010    0.0579
##    260       41.8072             nan     0.0010    0.0552
##    280       40.6348             nan     0.0010    0.0592
##    300       39.4990             nan     0.0010    0.0482
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5766             nan     0.0010    0.0947
##      2       61.4815             nan     0.0010    0.0895
##      3       61.3844             nan     0.0010    0.0923
##      4       61.2856             nan     0.0010    0.0882
##      5       61.1931             nan     0.0010    0.0922
##      6       61.0959             nan     0.0010    0.0990
##      7       60.9973             nan     0.0010    0.0879
##      8       60.9063             nan     0.0010    0.0913
##      9       60.8076             nan     0.0010    0.0952
##     10       60.7081             nan     0.0010    0.0899
##     20       59.7729             nan     0.0010    0.0961
##     40       57.9701             nan     0.0010    0.0889
##     60       56.2240             nan     0.0010    0.0940
##     80       54.5298             nan     0.0010    0.0813
##    100       52.9020             nan     0.0010    0.0764
##    120       51.3119             nan     0.0010    0.0739
##    140       49.7923             nan     0.0010    0.0785
##    160       48.3276             nan     0.0010    0.0689
##    180       46.9266             nan     0.0010    0.0685
##    200       45.5479             nan     0.0010    0.0667
##    220       44.2092             nan     0.0010    0.0667
##    240       42.9476             nan     0.0010    0.0608
##    260       41.7201             nan     0.0010    0.0569
##    280       40.5467             nan     0.0010    0.0582
##    300       39.3919             nan     0.0010    0.0612
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5697             nan     0.0010    0.1048
##      2       61.4666             nan     0.0010    0.0914
##      3       61.3595             nan     0.0010    0.0965
##      4       61.2535             nan     0.0010    0.1005
##      5       61.1488             nan     0.0010    0.1000
##      6       61.0501             nan     0.0010    0.0998
##      7       60.9498             nan     0.0010    0.0972
##      8       60.8487             nan     0.0010    0.1043
##      9       60.7442             nan     0.0010    0.0919
##     10       60.6474             nan     0.0010    0.1033
##     20       59.6469             nan     0.0010    0.0846
##     40       57.6772             nan     0.0010    0.0915
##     60       55.7847             nan     0.0010    0.1049
##     80       53.9686             nan     0.0010    0.0891
##    100       52.2309             nan     0.0010    0.0842
##    120       50.5462             nan     0.0010    0.0836
##    140       48.9301             nan     0.0010    0.0732
##    160       47.3817             nan     0.0010    0.0793
##    180       45.8852             nan     0.0010    0.0632
##    200       44.4214             nan     0.0010    0.0655
##    220       43.0310             nan     0.0010    0.0672
##    240       41.7068             nan     0.0010    0.0649
##    260       40.4156             nan     0.0010    0.0614
##    280       39.1734             nan     0.0010    0.0572
##    300       37.9752             nan     0.0010    0.0640
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5685             nan     0.0010    0.1070
##      2       61.4631             nan     0.0010    0.0970
##      3       61.3581             nan     0.0010    0.0959
##      4       61.2470             nan     0.0010    0.1093
##      5       61.1449             nan     0.0010    0.1022
##      6       61.0376             nan     0.0010    0.1138
##      7       60.9349             nan     0.0010    0.1024
##      8       60.8316             nan     0.0010    0.0924
##      9       60.7333             nan     0.0010    0.1037
##     10       60.6308             nan     0.0010    0.0987
##     20       59.6389             nan     0.0010    0.1004
##     40       57.6674             nan     0.0010    0.1041
##     60       55.7743             nan     0.0010    0.0946
##     80       53.9575             nan     0.0010    0.0818
##    100       52.2163             nan     0.0010    0.0739
##    120       50.5329             nan     0.0010    0.0779
##    140       48.9195             nan     0.0010    0.0728
##    160       47.3688             nan     0.0010    0.0729
##    180       45.8644             nan     0.0010    0.0681
##    200       44.4097             nan     0.0010    0.0729
##    220       43.0319             nan     0.0010    0.0680
##    240       41.7031             nan     0.0010    0.0584
##    260       40.4167             nan     0.0010    0.0624
##    280       39.1712             nan     0.0010    0.0557
##    300       37.9616             nan     0.0010    0.0620
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5752             nan     0.0010    0.0918
##      2       61.4665             nan     0.0010    0.1041
##      3       61.3694             nan     0.0010    0.1002
##      4       61.2602             nan     0.0010    0.1075
##      5       61.1575             nan     0.0010    0.1022
##      6       61.0566             nan     0.0010    0.0918
##      7       60.9513             nan     0.0010    0.0931
##      8       60.8466             nan     0.0010    0.1055
##      9       60.7483             nan     0.0010    0.0942
##     10       60.6509             nan     0.0010    0.1004
##     20       59.6563             nan     0.0010    0.0924
##     40       57.7118             nan     0.0010    0.1032
##     60       55.8277             nan     0.0010    0.0923
##     80       54.0062             nan     0.0010    0.0846
##    100       52.2773             nan     0.0010    0.0860
##    120       50.6081             nan     0.0010    0.0723
##    140       49.0017             nan     0.0010    0.0755
##    160       47.4488             nan     0.0010    0.0786
##    180       45.9643             nan     0.0010    0.0679
##    200       44.5389             nan     0.0010    0.0662
##    220       43.1518             nan     0.0010    0.0711
##    240       41.8186             nan     0.0010    0.0630
##    260       40.5275             nan     0.0010    0.0573
##    280       39.2799             nan     0.0010    0.0581
##    300       38.0747             nan     0.0010    0.0640
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2783             nan     0.0050    0.3971
##      2       60.9015             nan     0.0050    0.3813
##      3       60.5092             nan     0.0050    0.3856
##      4       60.1043             nan     0.0050    0.3929
##      5       59.7192             nan     0.0050    0.3542
##      6       59.3430             nan     0.0050    0.3422
##      7       58.9605             nan     0.0050    0.3800
##      8       58.6070             nan     0.0050    0.3623
##      9       58.2257             nan     0.0050    0.3569
##     10       57.8269             nan     0.0050    0.4067
##     20       54.4708             nan     0.0050    0.3298
##     40       48.4795             nan     0.0050    0.2272
##     60       43.3999             nan     0.0050    0.2242
##     80       39.0252             nan     0.0050    0.1907
##    100       35.2994             nan     0.0050    0.1672
##    120       31.9936             nan     0.0050    0.1323
##    140       29.1616             nan     0.0050    0.1132
##    160       26.6106             nan     0.0050    0.1247
##    180       24.4169             nan     0.0050    0.0942
##    200       22.4278             nan     0.0050    0.1037
##    220       20.7022             nan     0.0050    0.0673
##    240       19.2136             nan     0.0050    0.0589
##    260       17.8531             nan     0.0050    0.0514
##    280       16.6172             nan     0.0050    0.0627
##    300       15.5361             nan     0.0050    0.0559
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2776             nan     0.0050    0.4051
##      2       60.8472             nan     0.0050    0.4086
##      3       60.4971             nan     0.0050    0.3753
##      4       60.1151             nan     0.0050    0.3856
##      5       59.7731             nan     0.0050    0.3583
##      6       59.4182             nan     0.0050    0.3817
##      7       59.0349             nan     0.0050    0.3691
##      8       58.6929             nan     0.0050    0.3481
##      9       58.3439             nan     0.0050    0.3704
##     10       57.9935             nan     0.0050    0.3816
##     20       54.5136             nan     0.0050    0.3409
##     40       48.3992             nan     0.0050    0.2631
##     60       43.2174             nan     0.0050    0.2064
##     80       38.8553             nan     0.0050    0.1993
##    100       35.0900             nan     0.0050    0.1819
##    120       31.7898             nan     0.0050    0.1474
##    140       28.8808             nan     0.0050    0.1301
##    160       26.3854             nan     0.0050    0.1055
##    180       24.1791             nan     0.0050    0.0917
##    200       22.2288             nan     0.0050    0.0814
##    220       20.4739             nan     0.0050    0.0792
##    240       18.9397             nan     0.0050    0.0614
##    260       17.6010             nan     0.0050    0.0605
##    280       16.4316             nan     0.0050    0.0509
##    300       15.3380             nan     0.0050    0.0443
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2697             nan     0.0050    0.4000
##      2       60.8698             nan     0.0050    0.3973
##      3       60.4941             nan     0.0050    0.3869
##      4       60.0983             nan     0.0050    0.3722
##      5       59.6942             nan     0.0050    0.3950
##      6       59.3163             nan     0.0050    0.3786
##      7       58.9599             nan     0.0050    0.3796
##      8       58.6013             nan     0.0050    0.3646
##      9       58.2537             nan     0.0050    0.3642
##     10       57.9199             nan     0.0050    0.3671
##     20       54.5207             nan     0.0050    0.2980
##     40       48.6491             nan     0.0050    0.2845
##     60       43.5175             nan     0.0050    0.2450
##     80       39.1604             nan     0.0050    0.2098
##    100       35.2864             nan     0.0050    0.1683
##    120       32.0071             nan     0.0050    0.1350
##    140       29.1216             nan     0.0050    0.1129
##    160       26.5547             nan     0.0050    0.1107
##    180       24.3734             nan     0.0050    0.0964
##    200       22.3564             nan     0.0050    0.0853
##    220       20.6550             nan     0.0050    0.0795
##    240       19.1932             nan     0.0050    0.0617
##    260       17.8295             nan     0.0050    0.0608
##    280       16.6175             nan     0.0050    0.0524
##    300       15.5674             nan     0.0050    0.0524
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1830             nan     0.0050    0.4654
##      2       60.7067             nan     0.0050    0.4476
##      3       60.2429             nan     0.0050    0.4359
##      4       59.7364             nan     0.0050    0.5290
##      5       59.2780             nan     0.0050    0.4256
##      6       58.8459             nan     0.0050    0.4108
##      7       58.3823             nan     0.0050    0.4594
##      8       57.9352             nan     0.0050    0.4539
##      9       57.4938             nan     0.0050    0.4368
##     10       57.0639             nan     0.0050    0.4294
##     20       52.8591             nan     0.0050    0.3744
##     40       45.5390             nan     0.0050    0.3305
##     60       39.4490             nan     0.0050    0.2687
##     80       34.2821             nan     0.0050    0.2125
##    100       29.8812             nan     0.0050    0.1934
##    120       26.2000             nan     0.0050    0.1677
##    140       23.1070             nan     0.0050    0.1303
##    160       20.4523             nan     0.0050    0.1073
##    180       18.2760             nan     0.0050    0.0761
##    200       16.4371             nan     0.0050    0.0852
##    220       14.8167             nan     0.0050    0.0700
##    240       13.4373             nan     0.0050    0.0597
##    260       12.2621             nan     0.0050    0.0524
##    280       11.1978             nan     0.0050    0.0454
##    300       10.3088             nan     0.0050    0.0420
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2151             nan     0.0050    0.4906
##      2       60.7572             nan     0.0050    0.4373
##      3       60.3042             nan     0.0050    0.4558
##      4       59.8199             nan     0.0050    0.4555
##      5       59.3291             nan     0.0050    0.4720
##      6       58.8662             nan     0.0050    0.4283
##      7       58.4213             nan     0.0050    0.4443
##      8       57.9658             nan     0.0050    0.4381
##      9       57.5262             nan     0.0050    0.4438
##     10       57.0856             nan     0.0050    0.4167
##     20       52.8812             nan     0.0050    0.4257
##     40       45.5575             nan     0.0050    0.3653
##     60       39.3184             nan     0.0050    0.2947
##     80       34.2376             nan     0.0050    0.2148
##    100       29.9311             nan     0.0050    0.1894
##    120       26.1990             nan     0.0050    0.2031
##    140       23.0655             nan     0.0050    0.1695
##    160       20.4377             nan     0.0050    0.1192
##    180       18.1880             nan     0.0050    0.0998
##    200       16.3384             nan     0.0050    0.0808
##    220       14.7296             nan     0.0050    0.0636
##    240       13.3731             nan     0.0050    0.0435
##    260       12.1940             nan     0.0050    0.0368
##    280       11.1771             nan     0.0050    0.0441
##    300       10.2979             nan     0.0050    0.0383
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1808             nan     0.0050    0.4316
##      2       60.7659             nan     0.0050    0.4467
##      3       60.2800             nan     0.0050    0.4696
##      4       59.8213             nan     0.0050    0.4357
##      5       59.3509             nan     0.0050    0.5039
##      6       58.9090             nan     0.0050    0.4500
##      7       58.4616             nan     0.0050    0.4423
##      8       58.0778             nan     0.0050    0.3849
##      9       57.6241             nan     0.0050    0.4718
##     10       57.2040             nan     0.0050    0.4311
##     20       52.9591             nan     0.0050    0.4080
##     40       45.6287             nan     0.0050    0.3136
##     60       39.4698             nan     0.0050    0.2880
##     80       34.3286             nan     0.0050    0.2232
##    100       30.0043             nan     0.0050    0.1744
##    120       26.3162             nan     0.0050    0.1648
##    140       23.2419             nan     0.0050    0.1391
##    160       20.5391             nan     0.0050    0.1085
##    180       18.2934             nan     0.0050    0.0940
##    200       16.4200             nan     0.0050    0.0679
##    220       14.8335             nan     0.0050    0.0722
##    240       13.4723             nan     0.0050    0.0529
##    260       12.3257             nan     0.0050    0.0559
##    280       11.2918             nan     0.0050    0.0400
##    300       10.4362             nan     0.0050    0.0363
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1330             nan     0.0050    0.5091
##      2       60.6447             nan     0.0050    0.4587
##      3       60.1690             nan     0.0050    0.5010
##      4       59.6856             nan     0.0050    0.4901
##      5       59.2059             nan     0.0050    0.5075
##      6       58.7084             nan     0.0050    0.4618
##      7       58.2163             nan     0.0050    0.4813
##      8       57.7228             nan     0.0050    0.4496
##      9       57.2316             nan     0.0050    0.4614
##     10       56.7380             nan     0.0050    0.5005
##     20       52.2279             nan     0.0050    0.4698
##     40       44.4269             nan     0.0050    0.3353
##     60       37.9684             nan     0.0050    0.3374
##     80       32.5646             nan     0.0050    0.2188
##    100       28.1377             nan     0.0050    0.2214
##    120       24.3674             nan     0.0050    0.1764
##    140       21.2805             nan     0.0050    0.1468
##    160       18.6353             nan     0.0050    0.1180
##    180       16.4544             nan     0.0050    0.1111
##    200       14.5591             nan     0.0050    0.0849
##    220       12.9890             nan     0.0050    0.0747
##    240       11.6074             nan     0.0050    0.0515
##    260       10.4024             nan     0.0050    0.0508
##    280        9.4173             nan     0.0050    0.0434
##    300        8.5815             nan     0.0050    0.0339
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1602             nan     0.0050    0.5203
##      2       60.6272             nan     0.0050    0.4734
##      3       60.1305             nan     0.0050    0.4727
##      4       59.6543             nan     0.0050    0.4816
##      5       59.1605             nan     0.0050    0.4878
##      6       58.6749             nan     0.0050    0.4950
##      7       58.1919             nan     0.0050    0.4677
##      8       57.7188             nan     0.0050    0.4518
##      9       57.2534             nan     0.0050    0.4748
##     10       56.7775             nan     0.0050    0.4909
##     20       52.2916             nan     0.0050    0.3899
##     40       44.4493             nan     0.0050    0.3818
##     60       38.0357             nan     0.0050    0.2793
##     80       32.6369             nan     0.0050    0.2218
##    100       28.1632             nan     0.0050    0.1984
##    120       24.4238             nan     0.0050    0.1775
##    140       21.3026             nan     0.0050    0.1445
##    160       18.6428             nan     0.0050    0.1136
##    180       16.4251             nan     0.0050    0.0945
##    200       14.5807             nan     0.0050    0.0757
##    220       13.0117             nan     0.0050    0.0722
##    240       11.6507             nan     0.0050    0.0517
##    260       10.4713             nan     0.0050    0.0503
##    280        9.4801             nan     0.0050    0.0318
##    300        8.6375             nan     0.0050    0.0344
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1812             nan     0.0050    0.5249
##      2       60.6427             nan     0.0050    0.5566
##      3       60.1340             nan     0.0050    0.4682
##      4       59.6046             nan     0.0050    0.4825
##      5       59.1073             nan     0.0050    0.4719
##      6       58.6292             nan     0.0050    0.4658
##      7       58.1536             nan     0.0050    0.4856
##      8       57.6924             nan     0.0050    0.4635
##      9       57.2128             nan     0.0050    0.4135
##     10       56.7449             nan     0.0050    0.4880
##     20       52.2989             nan     0.0050    0.3770
##     40       44.5443             nan     0.0050    0.3144
##     60       38.0760             nan     0.0050    0.2804
##     80       32.7469             nan     0.0050    0.2337
##    100       28.2767             nan     0.0050    0.1800
##    120       24.5490             nan     0.0050    0.1628
##    140       21.4318             nan     0.0050    0.1291
##    160       18.8402             nan     0.0050    0.1113
##    180       16.6371             nan     0.0050    0.1004
##    200       14.7545             nan     0.0050    0.0864
##    220       13.1628             nan     0.0050    0.0588
##    240       11.8352             nan     0.0050    0.0558
##    260       10.7015             nan     0.0050    0.0469
##    280        9.7504             nan     0.0050    0.0394
##    300        8.8867             nan     0.0050    0.0399
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9075             nan     0.0100    0.7719
##      2       60.1673             nan     0.0100    0.7468
##      3       59.5463             nan     0.0100    0.5723
##      4       58.7560             nan     0.0100    0.7225
##      5       57.9708             nan     0.0100    0.7583
##      6       57.2757             nan     0.0100    0.6932
##      7       56.5644             nan     0.0100    0.7256
##      8       55.8482             nan     0.0100    0.6384
##      9       55.1271             nan     0.0100    0.6793
##     10       54.3911             nan     0.0100    0.6805
##     20       48.3563             nan     0.0100    0.5674
##     40       38.8726             nan     0.0100    0.3889
##     60       31.8602             nan     0.0100    0.2683
##     80       26.5258             nan     0.0100    0.2438
##    100       22.3383             nan     0.0100    0.1609
##    120       19.1096             nan     0.0100    0.1399
##    140       16.5319             nan     0.0100    0.1029
##    160       14.4076             nan     0.0100    0.0796
##    180       12.7199             nan     0.0100    0.0627
##    200       11.3448             nan     0.0100    0.0524
##    220       10.2360             nan     0.0100    0.0487
##    240        9.2499             nan     0.0100    0.0291
##    260        8.4665             nan     0.0100    0.0201
##    280        7.7449             nan     0.0100    0.0233
##    300        7.1551             nan     0.0100    0.0153
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8810             nan     0.0100    0.7627
##      2       60.1482             nan     0.0100    0.7512
##      3       59.3725             nan     0.0100    0.7462
##      4       58.6402             nan     0.0100    0.7107
##      5       57.8960             nan     0.0100    0.7169
##      6       57.0935             nan     0.0100    0.7421
##      7       56.3902             nan     0.0100    0.6938
##      8       55.6675             nan     0.0100    0.7050
##      9       54.9745             nan     0.0100    0.6438
##     10       54.2310             nan     0.0100    0.6057
##     20       48.0588             nan     0.0100    0.5211
##     40       38.8998             nan     0.0100    0.4072
##     60       31.7863             nan     0.0100    0.2860
##     80       26.3803             nan     0.0100    0.2056
##    100       22.3363             nan     0.0100    0.1652
##    120       19.0405             nan     0.0100    0.1184
##    140       16.5070             nan     0.0100    0.1081
##    160       14.4062             nan     0.0100    0.0854
##    180       12.7706             nan     0.0100    0.0607
##    200       11.3793             nan     0.0100    0.0418
##    220       10.2799             nan     0.0100    0.0479
##    240        9.2884             nan     0.0100    0.0276
##    260        8.4693             nan     0.0100    0.0315
##    280        7.7748             nan     0.0100    0.0262
##    300        7.1924             nan     0.0100    0.0215
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8597             nan     0.0100    0.8147
##      2       60.0959             nan     0.0100    0.7461
##      3       59.3919             nan     0.0100    0.7224
##      4       58.6858             nan     0.0100    0.7244
##      5       57.9643             nan     0.0100    0.6853
##      6       57.2426             nan     0.0100    0.7211
##      7       56.5006             nan     0.0100    0.7536
##      8       55.8149             nan     0.0100    0.7068
##      9       55.1183             nan     0.0100    0.6647
##     10       54.4176             nan     0.0100    0.6585
##     20       48.4027             nan     0.0100    0.5115
##     40       39.0868             nan     0.0100    0.3812
##     60       32.1574             nan     0.0100    0.3059
##     80       26.7617             nan     0.0100    0.2117
##    100       22.5894             nan     0.0100    0.1831
##    120       19.3037             nan     0.0100    0.1291
##    140       16.6352             nan     0.0100    0.1092
##    160       14.5590             nan     0.0100    0.0874
##    180       12.8659             nan     0.0100    0.0782
##    200       11.4568             nan     0.0100    0.0454
##    220       10.3422             nan     0.0100    0.0312
##    240        9.4072             nan     0.0100    0.0359
##    260        8.5922             nan     0.0100    0.0211
##    280        7.9025             nan     0.0100    0.0310
##    300        7.3207             nan     0.0100    0.0211
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.6783             nan     0.0100    0.9775
##      2       59.6991             nan     0.0100    1.0078
##      3       58.8186             nan     0.0100    0.9251
##      4       57.8871             nan     0.0100    0.8702
##      5       57.0640             nan     0.0100    0.8302
##      6       56.1475             nan     0.0100    0.9264
##      7       55.3042             nan     0.0100    0.8706
##      8       54.5235             nan     0.0100    0.7700
##      9       53.7293             nan     0.0100    0.7438
##     10       52.8892             nan     0.0100    0.7783
##     20       45.4102             nan     0.0100    0.6396
##     40       34.1831             nan     0.0100    0.4932
##     60       26.2401             nan     0.0100    0.3355
##     80       20.4376             nan     0.0100    0.2002
##    100       16.3589             nan     0.0100    0.1633
##    120       13.4698             nan     0.0100    0.1374
##    140       11.2289             nan     0.0100    0.0678
##    160        9.5090             nan     0.0100    0.0729
##    180        8.1624             nan     0.0100    0.0557
##    200        7.1380             nan     0.0100    0.0414
##    220        6.3042             nan     0.0100    0.0342
##    240        5.6461             nan     0.0100    0.0218
##    260        5.1547             nan     0.0100    0.0196
##    280        4.7323             nan     0.0100    0.0133
##    300        4.4152             nan     0.0100    0.0122
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.6727             nan     0.0100    0.9012
##      2       59.7470             nan     0.0100    0.9457
##      3       58.7797             nan     0.0100    0.8480
##      4       57.9443             nan     0.0100    0.9127
##      5       57.0877             nan     0.0100    0.8463
##      6       56.2177             nan     0.0100    0.8476
##      7       55.3670             nan     0.0100    0.8475
##      8       54.5885             nan     0.0100    0.7700
##      9       53.7459             nan     0.0100    0.8317
##     10       52.9154             nan     0.0100    0.7974
##     20       45.6334             nan     0.0100    0.6307
##     40       34.1926             nan     0.0100    0.5088
##     60       26.1890             nan     0.0100    0.3524
##     80       20.3465             nan     0.0100    0.2354
##    100       16.2138             nan     0.0100    0.1529
##    120       13.2621             nan     0.0100    0.0917
##    140       11.1115             nan     0.0100    0.0949
##    160        9.4296             nan     0.0100    0.0879
##    180        8.1197             nan     0.0100    0.0446
##    200        7.1164             nan     0.0100    0.0309
##    220        6.3283             nan     0.0100    0.0296
##    240        5.7065             nan     0.0100    0.0167
##    260        5.2171             nan     0.0100    0.0093
##    280        4.8251             nan     0.0100    0.0112
##    300        4.5045             nan     0.0100    0.0105
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.7133             nan     0.0100    1.0327
##      2       59.7679             nan     0.0100    0.9286
##      3       58.8603             nan     0.0100    0.9304
##      4       57.9225             nan     0.0100    0.8650
##      5       57.0058             nan     0.0100    0.8081
##      6       56.1865             nan     0.0100    0.8451
##      7       55.3374             nan     0.0100    0.7808
##      8       54.5196             nan     0.0100    0.8598
##      9       53.6796             nan     0.0100    0.8297
##     10       52.8977             nan     0.0100    0.7434
##     20       45.4212             nan     0.0100    0.6695
##     40       33.8910             nan     0.0100    0.3997
##     60       25.9667             nan     0.0100    0.2979
##     80       20.3147             nan     0.0100    0.2107
##    100       16.2948             nan     0.0100    0.1688
##    120       13.4299             nan     0.0100    0.1209
##    140       11.2619             nan     0.0100    0.0814
##    160        9.6418             nan     0.0100    0.0523
##    180        8.4043             nan     0.0100    0.0527
##    200        7.4223             nan     0.0100    0.0326
##    220        6.6061             nan     0.0100    0.0261
##    240        6.0130             nan     0.0100    0.0181
##    260        5.5250             nan     0.0100    0.0218
##    280        5.1170             nan     0.0100    0.0132
##    300        4.8022             nan     0.0100    0.0114
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.6367             nan     0.0100    1.0849
##      2       59.6517             nan     0.0100    0.9519
##      3       58.6415             nan     0.0100    0.8643
##      4       57.6936             nan     0.0100    0.8567
##      5       56.7017             nan     0.0100    0.9336
##      6       55.8332             nan     0.0100    0.9269
##      7       54.9221             nan     0.0100    0.8480
##      8       53.9662             nan     0.0100    0.9649
##      9       53.1204             nan     0.0100    0.8142
##     10       52.2155             nan     0.0100    0.9533
##     20       44.4108             nan     0.0100    0.6595
##     40       32.3732             nan     0.0100    0.5001
##     60       24.1623             nan     0.0100    0.2891
##     80       18.4263             nan     0.0100    0.2347
##    100       14.2943             nan     0.0100    0.1618
##    120       11.3320             nan     0.0100    0.1275
##    140        9.2280             nan     0.0100    0.0800
##    160        7.6760             nan     0.0100    0.0634
##    180        6.5379             nan     0.0100    0.0414
##    200        5.6392             nan     0.0100    0.0255
##    220        4.9844             nan     0.0100    0.0273
##    240        4.5098             nan     0.0100    0.0121
##    260        4.1147             nan     0.0100    0.0124
##    280        3.8155             nan     0.0100    0.0062
##    300        3.5595             nan     0.0100    0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.5890             nan     0.0100    0.9595
##      2       59.5816             nan     0.0100    0.8968
##      3       58.5775             nan     0.0100    0.9467
##      4       57.6077             nan     0.0100    0.9741
##      5       56.6631             nan     0.0100    0.9679
##      6       55.6878             nan     0.0100    0.9826
##      7       54.7981             nan     0.0100    0.8726
##      8       53.9340             nan     0.0100    0.7607
##      9       53.0132             nan     0.0100    0.8446
##     10       52.1460             nan     0.0100    0.8106
##     20       44.3836             nan     0.0100    0.7440
##     40       32.4936             nan     0.0100    0.4909
##     60       24.2776             nan     0.0100    0.3345
##     80       18.5524             nan     0.0100    0.2482
##    100       14.5040             nan     0.0100    0.1620
##    120       11.5814             nan     0.0100    0.1209
##    140        9.4508             nan     0.0100    0.0575
##    160        7.8671             nan     0.0100    0.0605
##    180        6.6977             nan     0.0100    0.0416
##    200        5.8383             nan     0.0100    0.0286
##    220        5.1542             nan     0.0100    0.0248
##    240        4.6535             nan     0.0100    0.0131
##    260        4.2437             nan     0.0100    0.0136
##    280        3.9533             nan     0.0100    0.0087
##    300        3.7142             nan     0.0100    0.0066
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.6183             nan     0.0100    0.9044
##      2       59.5731             nan     0.0100    1.0981
##      3       58.6662             nan     0.0100    0.9714
##      4       57.7146             nan     0.0100    0.9618
##      5       56.8149             nan     0.0100    0.9901
##      6       55.8779             nan     0.0100    0.8153
##      7       54.9436             nan     0.0100    0.9303
##      8       53.9921             nan     0.0100    1.0013
##      9       53.0976             nan     0.0100    0.8245
##     10       52.2514             nan     0.0100    0.8046
##     20       44.4107             nan     0.0100    0.7137
##     40       32.6014             nan     0.0100    0.4834
##     60       24.5004             nan     0.0100    0.3067
##     80       18.6944             nan     0.0100    0.2504
##    100       14.6717             nan     0.0100    0.1576
##    120       11.7949             nan     0.0100    0.0935
##    140        9.7117             nan     0.0100    0.0870
##    160        8.1107             nan     0.0100    0.0480
##    180        6.9391             nan     0.0100    0.0374
##    200        6.0577             nan     0.0100    0.0225
##    220        5.3802             nan     0.0100    0.0260
##    240        4.8672             nan     0.0100    0.0173
##    260        4.4711             nan     0.0100    0.0111
##    280        4.1721             nan     0.0100    0.0085
##    300        3.9453             nan     0.0100    0.0076
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.9290             nan     0.0500    3.9218
##      2       54.6661             nan     0.0500    3.3910
##      3       51.6968             nan     0.0500    3.2650
##      4       48.8555             nan     0.0500    2.9078
##      5       46.2909             nan     0.0500    2.7390
##      6       43.6238             nan     0.0500    2.5137
##      7       41.3781             nan     0.0500    2.2461
##      8       39.2703             nan     0.0500    1.8191
##      9       37.2724             nan     0.0500    1.8410
##     10       35.4808             nan     0.0500    1.8330
##     20       22.6059             nan     0.0500    0.8573
##     40       11.3374             nan     0.0500    0.3004
##     60        7.2637             nan     0.0500    0.0901
##     80        5.2316             nan     0.0500    0.0444
##    100        4.2985             nan     0.0500    0.0031
##    120        3.8198             nan     0.0500    0.0030
##    140        3.6001             nan     0.0500   -0.0075
##    160        3.4479             nan     0.0500   -0.0197
##    180        3.3379             nan     0.0500   -0.0158
##    200        3.2366             nan     0.0500   -0.0166
##    220        3.1642             nan     0.0500   -0.0029
##    240        3.0982             nan     0.0500   -0.0024
##    260        3.0434             nan     0.0500   -0.0054
##    280        2.9935             nan     0.0500   -0.0118
##    300        2.9538             nan     0.0500   -0.0059
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.0208             nan     0.0500    4.1267
##      2       54.2695             nan     0.0500    3.3565
##      3       51.3393             nan     0.0500    3.0732
##      4       48.5633             nan     0.0500    2.8138
##      5       45.7020             nan     0.0500    2.7222
##      6       43.3309             nan     0.0500    2.5179
##      7       41.1164             nan     0.0500    1.9959
##      8       39.0289             nan     0.0500    1.6523
##      9       36.8639             nan     0.0500    1.9991
##     10       35.0592             nan     0.0500    1.8613
##     20       22.1900             nan     0.0500    0.9783
##     40       11.1411             nan     0.0500    0.2189
##     60        6.9161             nan     0.0500    0.1071
##     80        5.1912             nan     0.0500    0.0536
##    100        4.2815             nan     0.0500    0.0261
##    120        3.8364             nan     0.0500   -0.0010
##    140        3.5945             nan     0.0500   -0.0188
##    160        3.4477             nan     0.0500    0.0016
##    180        3.3750             nan     0.0500   -0.0020
##    200        3.2920             nan     0.0500   -0.0033
##    220        3.2279             nan     0.0500   -0.0056
##    240        3.1713             nan     0.0500   -0.0051
##    260        3.1272             nan     0.0500   -0.0011
##    280        3.0844             nan     0.0500   -0.0135
##    300        3.0449             nan     0.0500   -0.0071
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.6185             nan     0.0500    3.6999
##      2       54.2918             nan     0.0500    3.4201
##      3       51.3733             nan     0.0500    3.2330
##      4       48.4261             nan     0.0500    2.8030
##      5       45.8065             nan     0.0500    2.0887
##      6       43.2685             nan     0.0500    2.4809
##      7       40.9358             nan     0.0500    2.0922
##      8       38.8393             nan     0.0500    2.0829
##      9       37.1247             nan     0.0500    1.8230
##     10       35.2782             nan     0.0500    1.7651
##     20       21.8898             nan     0.0500    0.7843
##     40       11.3344             nan     0.0500    0.2862
##     60        7.3124             nan     0.0500    0.1312
##     80        5.4660             nan     0.0500    0.0372
##    100        4.5970             nan     0.0500    0.0145
##    120        4.1428             nan     0.0500    0.0085
##    140        3.9176             nan     0.0500   -0.0018
##    160        3.7573             nan     0.0500   -0.0030
##    180        3.6503             nan     0.0500   -0.0156
##    200        3.5509             nan     0.0500   -0.0104
##    220        3.4659             nan     0.0500   -0.0043
##    240        3.3905             nan     0.0500   -0.0031
##    260        3.3234             nan     0.0500   -0.0131
##    280        3.2740             nan     0.0500   -0.0068
##    300        3.2419             nan     0.0500   -0.0050
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.9041             nan     0.0500    4.5379
##      2       52.6425             nan     0.0500    4.2821
##      3       48.5497             nan     0.0500    3.9687
##      4       44.8775             nan     0.0500    3.8780
##      5       41.7358             nan     0.0500    3.1236
##      6       39.0221             nan     0.0500    2.8241
##      7       36.2595             nan     0.0500    2.9064
##      8       33.6910             nan     0.0500    2.4489
##      9       31.5008             nan     0.0500    1.9663
##     10       29.2807             nan     0.0500    2.1807
##     20       16.1838             nan     0.0500    0.9192
##     40        7.2604             nan     0.0500    0.2079
##     60        4.5476             nan     0.0500    0.0138
##     80        3.6329             nan     0.0500   -0.0078
##    100        3.2440             nan     0.0500   -0.0160
##    120        2.9911             nan     0.0500   -0.0105
##    140        2.8058             nan     0.0500   -0.0278
##    160        2.6569             nan     0.0500   -0.0076
##    180        2.5331             nan     0.0500   -0.0084
##    200        2.4369             nan     0.0500   -0.0060
##    220        2.3383             nan     0.0500   -0.0096
##    240        2.2542             nan     0.0500   -0.0115
##    260        2.1719             nan     0.0500   -0.0117
##    280        2.1032             nan     0.0500   -0.0015
##    300        2.0252             nan     0.0500   -0.0008
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.8312             nan     0.0500    4.9747
##      2       52.8577             nan     0.0500    4.1456
##      3       48.7576             nan     0.0500    3.6971
##      4       45.2963             nan     0.0500    3.4640
##      5       41.6868             nan     0.0500    3.5017
##      6       38.7881             nan     0.0500    2.8659
##      7       36.0464             nan     0.0500    2.2475
##      8       33.5846             nan     0.0500    2.2149
##      9       31.3158             nan     0.0500    2.5227
##     10       29.2207             nan     0.0500    2.0970
##     20       15.8127             nan     0.0500    0.6990
##     40        7.0275             nan     0.0500    0.1679
##     60        4.5008             nan     0.0500    0.0398
##     80        3.7005             nan     0.0500    0.0031
##    100        3.3385             nan     0.0500   -0.0072
##    120        3.1661             nan     0.0500    0.0002
##    140        3.0046             nan     0.0500   -0.0054
##    160        2.8677             nan     0.0500   -0.0062
##    180        2.7345             nan     0.0500   -0.0038
##    200        2.6368             nan     0.0500   -0.0115
##    220        2.5515             nan     0.0500   -0.0105
##    240        2.4681             nan     0.0500   -0.0138
##    260        2.3986             nan     0.0500   -0.0082
##    280        2.3388             nan     0.0500   -0.0152
##    300        2.2692             nan     0.0500   -0.0162
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.8431             nan     0.0500    4.8625
##      2       52.3324             nan     0.0500    4.1389
##      3       48.9190             nan     0.0500    3.5556
##      4       45.2067             nan     0.0500    4.1151
##      5       42.0855             nan     0.0500    3.3221
##      6       39.2637             nan     0.0500    2.6631
##      7       36.3941             nan     0.0500    2.5900
##      8       34.2319             nan     0.0500    2.2766
##      9       31.8765             nan     0.0500    2.3301
##     10       29.6670             nan     0.0500    2.1790
##     20       16.3291             nan     0.0500    0.7847
##     40        7.2622             nan     0.0500    0.2108
##     60        4.6258             nan     0.0500    0.0344
##     80        3.8425             nan     0.0500    0.0105
##    100        3.5106             nan     0.0500   -0.0065
##    120        3.3045             nan     0.0500   -0.0083
##    140        3.1337             nan     0.0500   -0.0107
##    160        3.0281             nan     0.0500   -0.0134
##    180        2.9150             nan     0.0500   -0.0153
##    200        2.8093             nan     0.0500   -0.0090
##    220        2.7182             nan     0.0500   -0.0034
##    240        2.6258             nan     0.0500   -0.0055
##    260        2.5556             nan     0.0500   -0.0110
##    280        2.4834             nan     0.0500   -0.0086
##    300        2.4192             nan     0.0500   -0.0057
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.6223             nan     0.0500    4.6068
##      2       52.0454             nan     0.0500    3.9362
##      3       47.7987             nan     0.0500    4.6124
##      4       44.0973             nan     0.0500    3.4244
##      5       40.7177             nan     0.0500    2.6974
##      6       37.7195             nan     0.0500    2.9861
##      7       34.9662             nan     0.0500    2.8790
##      8       32.4238             nan     0.0500    2.5195
##      9       30.2543             nan     0.0500    1.9335
##     10       28.0770             nan     0.0500    1.9197
##     20       14.2186             nan     0.0500    0.8444
##     40        5.7110             nan     0.0500    0.1690
##     60        3.5959             nan     0.0500    0.0323
##     80        2.9164             nan     0.0500    0.0051
##    100        2.5708             nan     0.0500   -0.0241
##    120        2.3789             nan     0.0500   -0.0129
##    140        2.1883             nan     0.0500   -0.0177
##    160        2.0574             nan     0.0500   -0.0091
##    180        1.9402             nan     0.0500   -0.0130
##    200        1.8390             nan     0.0500   -0.0056
##    220        1.7449             nan     0.0500   -0.0071
##    240        1.6560             nan     0.0500   -0.0126
##    260        1.5858             nan     0.0500   -0.0075
##    280        1.5177             nan     0.0500   -0.0201
##    300        1.4318             nan     0.0500   -0.0135
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.4385             nan     0.0500    4.9379
##      2       51.7482             nan     0.0500    4.4645
##      3       47.6996             nan     0.0500    3.3198
##      4       43.8418             nan     0.0500    3.8115
##      5       40.2513             nan     0.0500    3.6624
##      6       37.1164             nan     0.0500    3.0519
##      7       34.4391             nan     0.0500    2.8207
##      8       31.7655             nan     0.0500    2.4583
##      9       29.4455             nan     0.0500    2.1095
##     10       27.2464             nan     0.0500    2.1886
##     20       14.0516             nan     0.0500    0.8260
##     40        5.7598             nan     0.0500    0.1895
##     60        3.6920             nan     0.0500    0.0364
##     80        3.0467             nan     0.0500   -0.0043
##    100        2.7392             nan     0.0500   -0.0107
##    120        2.5398             nan     0.0500   -0.0094
##    140        2.3832             nan     0.0500   -0.0130
##    160        2.2694             nan     0.0500   -0.0144
##    180        2.1617             nan     0.0500   -0.0203
##    200        2.0633             nan     0.0500   -0.0156
##    220        1.9811             nan     0.0500   -0.0212
##    240        1.9088             nan     0.0500   -0.0078
##    260        1.8377             nan     0.0500   -0.0128
##    280        1.7720             nan     0.0500   -0.0127
##    300        1.7060             nan     0.0500   -0.0126
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.7177             nan     0.0500    5.4157
##      2       52.1714             nan     0.0500    4.2955
##      3       47.9535             nan     0.0500    4.2112
##      4       44.3927             nan     0.0500    3.4936
##      5       40.8297             nan     0.0500    3.2385
##      6       37.8011             nan     0.0500    3.0375
##      7       35.1115             nan     0.0500    2.7470
##      8       32.5726             nan     0.0500    2.5793
##      9       30.2418             nan     0.0500    2.2640
##     10       27.9758             nan     0.0500    2.2615
##     20       14.4773             nan     0.0500    0.7936
##     40        6.0493             nan     0.0500    0.1634
##     60        4.0228             nan     0.0500    0.0262
##     80        3.4006             nan     0.0500   -0.0057
##    100        3.1356             nan     0.0500   -0.0093
##    120        2.9304             nan     0.0500   -0.0084
##    140        2.7850             nan     0.0500   -0.0087
##    160        2.6224             nan     0.0500   -0.0067
##    180        2.5142             nan     0.0500   -0.0078
##    200        2.4106             nan     0.0500   -0.0208
##    220        2.3186             nan     0.0500   -0.0127
##    240        2.2317             nan     0.0500   -0.0085
##    260        2.1436             nan     0.0500   -0.0178
##    280        2.0814             nan     0.0500   -0.0205
##    300        2.0171             nan     0.0500   -0.0104
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.0598             nan     0.1000    7.2866
##      2       47.9948             nan     0.1000    6.3642
##      3       42.4859             nan     0.1000    4.8873
##      4       38.3385             nan     0.1000    4.2293
##      5       34.5869             nan     0.1000    3.8770
##      6       31.3167             nan     0.1000    3.1863
##      7       28.1506             nan     0.1000    2.7186
##      8       25.3070             nan     0.1000    2.3453
##      9       23.3236             nan     0.1000    2.1318
##     10       21.4285             nan     0.1000    1.8041
##     20       11.1266             nan     0.1000    0.4477
##     40        5.2272             nan     0.1000    0.0964
##     60        3.9630             nan     0.1000    0.0187
##     80        3.6233             nan     0.1000   -0.0003
##    100        3.4320             nan     0.1000   -0.0404
##    120        3.2812             nan     0.1000   -0.0169
##    140        3.1827             nan     0.1000   -0.0189
##    160        3.1222             nan     0.1000   -0.0055
##    180        3.0392             nan     0.1000   -0.0470
##    200        2.9652             nan     0.1000   -0.0340
##    220        2.8975             nan     0.1000   -0.0179
##    240        2.8218             nan     0.1000   -0.0223
##    260        2.7744             nan     0.1000   -0.0098
##    280        2.7264             nan     0.1000   -0.0152
##    300        2.6785             nan     0.1000   -0.0092
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.2518             nan     0.1000    7.4043
##      2       47.7944             nan     0.1000    5.0742
##      3       42.7655             nan     0.1000    5.2990
##      4       38.2346             nan     0.1000    3.9695
##      5       34.3370             nan     0.1000    3.9339
##      6       31.1457             nan     0.1000    3.2594
##      7       28.5165             nan     0.1000    2.3665
##      8       25.8359             nan     0.1000    2.5402
##      9       23.6250             nan     0.1000    1.8117
##     10       21.8261             nan     0.1000    1.4364
##     20       11.0295             nan     0.1000    0.5868
##     40        5.2531             nan     0.1000    0.1007
##     60        3.9786             nan     0.1000    0.0030
##     80        3.5962             nan     0.1000   -0.0140
##    100        3.3644             nan     0.1000   -0.0046
##    120        3.2620             nan     0.1000   -0.0173
##    140        3.1390             nan     0.1000   -0.0248
##    160        3.0458             nan     0.1000   -0.0151
##    180        2.9810             nan     0.1000   -0.0224
##    200        2.9291             nan     0.1000   -0.0114
##    220        2.8816             nan     0.1000   -0.0096
##    240        2.8265             nan     0.1000   -0.0166
##    260        2.7695             nan     0.1000   -0.0260
##    280        2.7177             nan     0.1000   -0.0045
##    300        2.6865             nan     0.1000   -0.0080
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.1124             nan     0.1000    6.9832
##      2       47.9142             nan     0.1000    6.2010
##      3       42.3839             nan     0.1000    4.8740
##      4       38.2091             nan     0.1000    4.0357
##      5       34.3341             nan     0.1000    3.6121
##      6       30.5874             nan     0.1000    3.2451
##      7       27.8728             nan     0.1000    2.7444
##      8       25.5231             nan     0.1000    2.0417
##      9       23.2312             nan     0.1000    2.1470
##     10       21.2622             nan     0.1000    1.7860
##     20       10.9756             nan     0.1000    0.4736
##     40        5.4669             nan     0.1000    0.0957
##     60        4.4244             nan     0.1000   -0.0473
##     80        3.9725             nan     0.1000   -0.0260
##    100        3.7472             nan     0.1000   -0.0220
##    120        3.6015             nan     0.1000   -0.0139
##    140        3.4816             nan     0.1000   -0.0150
##    160        3.3760             nan     0.1000   -0.0254
##    180        3.2681             nan     0.1000   -0.0122
##    200        3.1714             nan     0.1000   -0.0068
##    220        3.0939             nan     0.1000   -0.0122
##    240        3.0515             nan     0.1000   -0.0227
##    260        2.9867             nan     0.1000   -0.0164
##    280        2.9525             nan     0.1000   -0.0126
##    300        2.8962             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.9418             nan     0.1000    9.3326
##      2       45.1815             nan     0.1000    7.3196
##      3       39.5278             nan     0.1000    5.5540
##      4       33.5997             nan     0.1000    5.9612
##      5       29.4046             nan     0.1000    3.6667
##      6       26.2024             nan     0.1000    3.3637
##      7       22.7600             nan     0.1000    3.2535
##      8       20.0869             nan     0.1000    2.3040
##      9       18.1397             nan     0.1000    1.9147
##     10       16.2126             nan     0.1000    1.9464
##     20        7.3232             nan     0.1000    0.2543
##     40        3.7898             nan     0.1000    0.0363
##     60        3.0802             nan     0.1000   -0.0146
##     80        2.7411             nan     0.1000   -0.0123
##    100        2.4984             nan     0.1000   -0.0114
##    120        2.3317             nan     0.1000   -0.0115
##    140        2.1381             nan     0.1000   -0.0160
##    160        2.0341             nan     0.1000   -0.0169
##    180        1.9099             nan     0.1000   -0.0164
##    200        1.8182             nan     0.1000   -0.0130
##    220        1.7156             nan     0.1000   -0.0074
##    240        1.6612             nan     0.1000   -0.0254
##    260        1.5879             nan     0.1000   -0.0093
##    280        1.4984             nan     0.1000   -0.0059
##    300        1.4249             nan     0.1000   -0.0101
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.6823             nan     0.1000    9.1523
##      2       45.3434             nan     0.1000    7.6009
##      3       38.8219             nan     0.1000    5.6742
##      4       33.6203             nan     0.1000    4.9950
##      5       29.0713             nan     0.1000    4.0821
##      6       25.7435             nan     0.1000    3.3386
##      7       22.8253             nan     0.1000    2.7281
##      8       19.9594             nan     0.1000    2.8263
##      9       17.9356             nan     0.1000    1.5026
##     10       16.1776             nan     0.1000    1.6883
##     20        7.1688             nan     0.1000    0.3313
##     40        3.8383             nan     0.1000    0.0322
##     60        3.3134             nan     0.1000   -0.0158
##     80        2.9797             nan     0.1000   -0.0518
##    100        2.7037             nan     0.1000   -0.0004
##    120        2.5440             nan     0.1000   -0.0292
##    140        2.3539             nan     0.1000   -0.0184
##    160        2.2383             nan     0.1000   -0.0215
##    180        2.1575             nan     0.1000   -0.0179
##    200        2.0480             nan     0.1000   -0.0375
##    220        1.9663             nan     0.1000   -0.0459
##    240        1.8793             nan     0.1000   -0.0123
##    260        1.8121             nan     0.1000   -0.0164
##    280        1.7382             nan     0.1000   -0.0305
##    300        1.6582             nan     0.1000   -0.0281
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.4690             nan     0.1000    9.4976
##      2       44.8057             nan     0.1000    7.7418
##      3       38.5701             nan     0.1000    6.6249
##      4       33.2365             nan     0.1000    5.4920
##      5       29.3714             nan     0.1000    3.8651
##      6       25.3243             nan     0.1000    3.5589
##      7       22.5731             nan     0.1000    2.5740
##      8       19.8800             nan     0.1000    2.4364
##      9       17.6773             nan     0.1000    2.0926
##     10       15.8730             nan     0.1000    1.7744
##     20        7.2862             nan     0.1000    0.3651
##     40        4.0259             nan     0.1000   -0.0104
##     60        3.4738             nan     0.1000   -0.0254
##     80        3.2282             nan     0.1000   -0.0190
##    100        3.0004             nan     0.1000   -0.0467
##    120        2.8340             nan     0.1000   -0.0312
##    140        2.6902             nan     0.1000   -0.0123
##    160        2.5789             nan     0.1000   -0.0051
##    180        2.4674             nan     0.1000   -0.0137
##    200        2.3727             nan     0.1000   -0.0085
##    220        2.3198             nan     0.1000   -0.0169
##    240        2.2201             nan     0.1000   -0.0171
##    260        2.1508             nan     0.1000   -0.0164
##    280        2.0899             nan     0.1000   -0.0079
##    300        2.0041             nan     0.1000   -0.0114
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.9906             nan     0.1000    9.6537
##      2       43.9974             nan     0.1000    8.6625
##      3       37.6306             nan     0.1000    6.4437
##      4       32.0207             nan     0.1000    5.1644
##      5       27.7357             nan     0.1000    4.3199
##      6       23.8435             nan     0.1000    3.4573
##      7       20.4407             nan     0.1000    3.2926
##      8       17.8327             nan     0.1000    2.4255
##      9       15.8026             nan     0.1000    1.9861
##     10       13.9106             nan     0.1000    1.6433
##     20        5.5909             nan     0.1000    0.2542
##     40        2.8854             nan     0.1000   -0.0114
##     60        2.3899             nan     0.1000   -0.0386
##     80        2.0836             nan     0.1000   -0.0149
##    100        1.8118             nan     0.1000   -0.0134
##    120        1.6492             nan     0.1000   -0.0235
##    140        1.4961             nan     0.1000   -0.0134
##    160        1.3638             nan     0.1000   -0.0304
##    180        1.2470             nan     0.1000   -0.0137
##    200        1.1363             nan     0.1000   -0.0134
##    220        1.0520             nan     0.1000   -0.0106
##    240        0.9864             nan     0.1000   -0.0090
##    260        0.9071             nan     0.1000   -0.0028
##    280        0.8331             nan     0.1000   -0.0110
##    300        0.7727             nan     0.1000   -0.0038
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.3198             nan     0.1000    9.7593
##      2       43.2054             nan     0.1000    6.8824
##      3       36.6717             nan     0.1000    6.1212
##      4       31.0776             nan     0.1000    5.3124
##      5       26.7404             nan     0.1000    4.3729
##      6       23.2743             nan     0.1000    3.4932
##      7       19.9500             nan     0.1000    2.3761
##      8       17.5450             nan     0.1000    2.3272
##      9       15.3022             nan     0.1000    1.9909
##     10       13.5702             nan     0.1000    1.6874
##     20        5.5380             nan     0.1000    0.3129
##     40        2.9542             nan     0.1000   -0.0043
##     60        2.4476             nan     0.1000   -0.0081
##     80        2.2055             nan     0.1000   -0.0237
##    100        2.0474             nan     0.1000   -0.0287
##    120        1.8576             nan     0.1000   -0.0326
##    140        1.7082             nan     0.1000   -0.0088
##    160        1.5925             nan     0.1000   -0.0295
##    180        1.4972             nan     0.1000   -0.0180
##    200        1.4077             nan     0.1000   -0.0221
##    220        1.3142             nan     0.1000   -0.0208
##    240        1.2418             nan     0.1000   -0.0113
##    260        1.1849             nan     0.1000   -0.0089
##    280        1.1275             nan     0.1000   -0.0148
##    300        1.0760             nan     0.1000   -0.0138
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.9398             nan     0.1000    8.2044
##      2       43.7461             nan     0.1000    8.0085
##      3       37.2025             nan     0.1000    5.7411
##      4       31.5718             nan     0.1000    4.9478
##      5       27.2026             nan     0.1000    4.7527
##      6       23.4781             nan     0.1000    3.8720
##      7       20.3650             nan     0.1000    3.3211
##      8       17.9138             nan     0.1000    2.7380
##      9       15.8855             nan     0.1000    1.9018
##     10       14.0019             nan     0.1000    1.7848
##     20        5.8361             nan     0.1000    0.3750
##     40        3.3499             nan     0.1000   -0.0010
##     60        2.9246             nan     0.1000   -0.0259
##     80        2.6657             nan     0.1000   -0.0322
##    100        2.4401             nan     0.1000   -0.0239
##    120        2.2681             nan     0.1000   -0.0340
##    140        2.1163             nan     0.1000   -0.0199
##    160        1.9838             nan     0.1000   -0.0313
##    180        1.8764             nan     0.1000   -0.0170
##    200        1.7663             nan     0.1000   -0.0281
##    220        1.6758             nan     0.1000   -0.0235
##    240        1.6178             nan     0.1000   -0.0220
##    260        1.5440             nan     0.1000   -0.0076
##    280        1.4613             nan     0.1000   -0.0117
##    300        1.3975             nan     0.1000   -0.0121
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9772             nan     0.0010    0.0788
##      2       62.9002             nan     0.0010    0.0802
##      3       62.8198             nan     0.0010    0.0820
##      4       62.7419             nan     0.0010    0.0781
##      5       62.6598             nan     0.0010    0.0788
##      6       62.5759             nan     0.0010    0.0774
##      7       62.5000             nan     0.0010    0.0773
##      8       62.4176             nan     0.0010    0.0805
##      9       62.3419             nan     0.0010    0.0785
##     10       62.2650             nan     0.0010    0.0757
##     20       61.4854             nan     0.0010    0.0759
##     40       59.9726             nan     0.0010    0.0710
##     60       58.5356             nan     0.0010    0.0623
##     80       57.1168             nan     0.0010    0.0671
##    100       55.7660             nan     0.0010    0.0642
##    120       54.4601             nan     0.0010    0.0635
##    140       53.1853             nan     0.0010    0.0687
##    160       51.9460             nan     0.0010    0.0633
##    180       50.7689             nan     0.0010    0.0608
##    200       49.6280             nan     0.0010    0.0571
##    220       48.5059             nan     0.0010    0.0546
##    240       47.4263             nan     0.0010    0.0477
##    260       46.4013             nan     0.0010    0.0438
##    280       45.3917             nan     0.0010    0.0477
##    300       44.4110             nan     0.0010    0.0479
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9861             nan     0.0010    0.0732
##      2       62.9009             nan     0.0010    0.0810
##      3       62.8185             nan     0.0010    0.0684
##      4       62.7456             nan     0.0010    0.0759
##      5       62.6587             nan     0.0010    0.0830
##      6       62.5838             nan     0.0010    0.0756
##      7       62.4984             nan     0.0010    0.0774
##      8       62.4166             nan     0.0010    0.0807
##      9       62.3383             nan     0.0010    0.0792
##     10       62.2638             nan     0.0010    0.0759
##     20       61.4875             nan     0.0010    0.0732
##     40       59.9634             nan     0.0010    0.0766
##     60       58.4709             nan     0.0010    0.0682
##     80       57.0113             nan     0.0010    0.0678
##    100       55.6518             nan     0.0010    0.0587
##    120       54.3365             nan     0.0010    0.0643
##    140       53.0664             nan     0.0010    0.0630
##    160       51.8359             nan     0.0010    0.0575
##    180       50.6564             nan     0.0010    0.0552
##    200       49.5457             nan     0.0010    0.0516
##    220       48.4427             nan     0.0010    0.0538
##    240       47.3903             nan     0.0010    0.0511
##    260       46.3697             nan     0.0010    0.0487
##    280       45.3524             nan     0.0010    0.0501
##    300       44.3813             nan     0.0010    0.0492
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9849             nan     0.0010    0.0843
##      2       62.9094             nan     0.0010    0.0822
##      3       62.8239             nan     0.0010    0.0832
##      4       62.7443             nan     0.0010    0.0779
##      5       62.6644             nan     0.0010    0.0803
##      6       62.5837             nan     0.0010    0.0761
##      7       62.5104             nan     0.0010    0.0743
##      8       62.4327             nan     0.0010    0.0808
##      9       62.3587             nan     0.0010    0.0730
##     10       62.2810             nan     0.0010    0.0723
##     20       61.4997             nan     0.0010    0.0779
##     40       59.9699             nan     0.0010    0.0761
##     60       58.5298             nan     0.0010    0.0693
##     80       57.1313             nan     0.0010    0.0694
##    100       55.7691             nan     0.0010    0.0658
##    120       54.4583             nan     0.0010    0.0657
##    140       53.1745             nan     0.0010    0.0625
##    160       51.9558             nan     0.0010    0.0619
##    180       50.7679             nan     0.0010    0.0634
##    200       49.6110             nan     0.0010    0.0496
##    220       48.5084             nan     0.0010    0.0546
##    240       47.4265             nan     0.0010    0.0515
##    260       46.3792             nan     0.0010    0.0474
##    280       45.3606             nan     0.0010    0.0449
##    300       44.3680             nan     0.0010    0.0457
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9721             nan     0.0010    0.0910
##      2       62.8807             nan     0.0010    0.0904
##      3       62.7846             nan     0.0010    0.0969
##      4       62.6904             nan     0.0010    0.0942
##      5       62.5974             nan     0.0010    0.0952
##      6       62.5051             nan     0.0010    0.0943
##      7       62.4022             nan     0.0010    0.0908
##      8       62.3088             nan     0.0010    0.0899
##      9       62.2183             nan     0.0010    0.0966
##     10       62.1230             nan     0.0010    0.0971
##     20       61.1687             nan     0.0010    0.0897
##     40       59.3064             nan     0.0010    0.0960
##     60       57.5451             nan     0.0010    0.0877
##     80       55.8329             nan     0.0010    0.0780
##    100       54.1936             nan     0.0010    0.0777
##    120       52.6022             nan     0.0010    0.0718
##    140       51.0388             nan     0.0010    0.0799
##    160       49.5648             nan     0.0010    0.0778
##    180       48.1340             nan     0.0010    0.0636
##    200       46.7582             nan     0.0010    0.0620
##    220       45.4282             nan     0.0010    0.0642
##    240       44.1261             nan     0.0010    0.0620
##    260       42.8847             nan     0.0010    0.0646
##    280       41.6424             nan     0.0010    0.0538
##    300       40.4398             nan     0.0010    0.0516
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9723             nan     0.0010    0.0898
##      2       62.8771             nan     0.0010    0.0926
##      3       62.7810             nan     0.0010    0.0941
##      4       62.6786             nan     0.0010    0.0972
##      5       62.5839             nan     0.0010    0.1042
##      6       62.4873             nan     0.0010    0.0904
##      7       62.3931             nan     0.0010    0.0894
##      8       62.3030             nan     0.0010    0.0738
##      9       62.2080             nan     0.0010    0.0806
##     10       62.1061             nan     0.0010    0.0997
##     20       61.1844             nan     0.0010    0.0879
##     40       59.3491             nan     0.0010    0.0898
##     60       57.5373             nan     0.0010    0.0804
##     80       55.8352             nan     0.0010    0.0816
##    100       54.1587             nan     0.0010    0.0802
##    120       52.5803             nan     0.0010    0.0789
##    140       51.0381             nan     0.0010    0.0798
##    160       49.5370             nan     0.0010    0.0718
##    180       48.1229             nan     0.0010    0.0708
##    200       46.7165             nan     0.0010    0.0727
##    220       45.3789             nan     0.0010    0.0732
##    240       44.0690             nan     0.0010    0.0636
##    260       42.8034             nan     0.0010    0.0572
##    280       41.6009             nan     0.0010    0.0593
##    300       40.4380             nan     0.0010    0.0596
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9676             nan     0.0010    0.0927
##      2       62.8681             nan     0.0010    0.0916
##      3       62.7696             nan     0.0010    0.0969
##      4       62.6743             nan     0.0010    0.0984
##      5       62.5833             nan     0.0010    0.0906
##      6       62.4870             nan     0.0010    0.0992
##      7       62.3885             nan     0.0010    0.0950
##      8       62.2982             nan     0.0010    0.0957
##      9       62.2068             nan     0.0010    0.0883
##     10       62.1015             nan     0.0010    0.1068
##     20       61.1469             nan     0.0010    0.0943
##     40       59.3127             nan     0.0010    0.0956
##     60       57.5521             nan     0.0010    0.0855
##     80       55.8728             nan     0.0010    0.0961
##    100       54.2359             nan     0.0010    0.0872
##    120       52.6036             nan     0.0010    0.0768
##    140       51.0372             nan     0.0010    0.0673
##    160       49.5369             nan     0.0010    0.0845
##    180       48.0778             nan     0.0010    0.0742
##    200       46.6714             nan     0.0010    0.0641
##    220       45.3382             nan     0.0010    0.0644
##    240       44.0314             nan     0.0010    0.0630
##    260       42.7675             nan     0.0010    0.0584
##    280       41.5496             nan     0.0010    0.0583
##    300       40.3609             nan     0.0010    0.0679
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9567             nan     0.0010    0.1014
##      2       62.8510             nan     0.0010    0.1117
##      3       62.7437             nan     0.0010    0.1128
##      4       62.6371             nan     0.0010    0.1021
##      5       62.5391             nan     0.0010    0.0970
##      6       62.4388             nan     0.0010    0.1005
##      7       62.3349             nan     0.0010    0.1009
##      8       62.2322             nan     0.0010    0.0995
##      9       62.1331             nan     0.0010    0.1031
##     10       62.0302             nan     0.0010    0.1077
##     20       61.0054             nan     0.0010    0.0969
##     40       59.0211             nan     0.0010    0.0895
##     60       57.1032             nan     0.0010    0.0990
##     80       55.2613             nan     0.0010    0.1030
##    100       53.4862             nan     0.0010    0.0925
##    120       51.7350             nan     0.0010    0.0963
##    140       50.0874             nan     0.0010    0.0827
##    160       48.4954             nan     0.0010    0.0785
##    180       46.9455             nan     0.0010    0.0794
##    200       45.4588             nan     0.0010    0.0739
##    220       44.0186             nan     0.0010    0.0683
##    240       42.6526             nan     0.0010    0.0636
##    260       41.3250             nan     0.0010    0.0591
##    280       40.0448             nan     0.0010    0.0567
##    300       38.8026             nan     0.0010    0.0576
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9555             nan     0.0010    0.1066
##      2       62.8493             nan     0.0010    0.1062
##      3       62.7468             nan     0.0010    0.1032
##      4       62.6493             nan     0.0010    0.0930
##      5       62.5473             nan     0.0010    0.1145
##      6       62.4391             nan     0.0010    0.0982
##      7       62.3311             nan     0.0010    0.1020
##      8       62.2293             nan     0.0010    0.0957
##      9       62.1293             nan     0.0010    0.0878
##     10       62.0309             nan     0.0010    0.1063
##     20       61.0124             nan     0.0010    0.0922
##     40       59.0211             nan     0.0010    0.0935
##     60       57.0808             nan     0.0010    0.0815
##     80       55.2080             nan     0.0010    0.0907
##    100       53.3943             nan     0.0010    0.0831
##    120       51.6753             nan     0.0010    0.0821
##    140       50.0199             nan     0.0010    0.0776
##    160       48.4254             nan     0.0010    0.0733
##    180       46.8692             nan     0.0010    0.0734
##    200       45.3882             nan     0.0010    0.0707
##    220       43.9512             nan     0.0010    0.0706
##    240       42.5842             nan     0.0010    0.0696
##    260       41.2757             nan     0.0010    0.0702
##    280       40.0141             nan     0.0010    0.0563
##    300       38.7864             nan     0.0010    0.0558
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9598             nan     0.0010    0.1120
##      2       62.8557             nan     0.0010    0.0905
##      3       62.7501             nan     0.0010    0.1067
##      4       62.6509             nan     0.0010    0.0914
##      5       62.5456             nan     0.0010    0.0968
##      6       62.4444             nan     0.0010    0.1057
##      7       62.3410             nan     0.0010    0.1003
##      8       62.2405             nan     0.0010    0.1035
##      9       62.1376             nan     0.0010    0.1106
##     10       62.0343             nan     0.0010    0.0976
##     20       61.0000             nan     0.0010    0.0947
##     40       58.9954             nan     0.0010    0.0909
##     60       57.0737             nan     0.0010    0.0857
##     80       55.2124             nan     0.0010    0.0784
##    100       53.4334             nan     0.0010    0.0898
##    120       51.7168             nan     0.0010    0.0837
##    140       50.0613             nan     0.0010    0.0841
##    160       48.4708             nan     0.0010    0.0798
##    180       46.9386             nan     0.0010    0.0679
##    200       45.4867             nan     0.0010    0.0673
##    220       44.0676             nan     0.0010    0.0684
##    240       42.6874             nan     0.0010    0.0544
##    260       41.3671             nan     0.0010    0.0679
##    280       40.0949             nan     0.0010    0.0576
##    300       38.8562             nan     0.0010    0.0580
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.6851             nan     0.0050    0.4062
##      2       62.3034             nan     0.0050    0.4051
##      3       61.9049             nan     0.0050    0.3839
##      4       61.5127             nan     0.0050    0.3657
##      5       61.1111             nan     0.0050    0.3840
##      6       60.7507             nan     0.0050    0.3768
##      7       60.3924             nan     0.0050    0.3776
##      8       59.9964             nan     0.0050    0.3612
##      9       59.6236             nan     0.0050    0.3781
##     10       59.2605             nan     0.0050    0.3671
##     20       55.7154             nan     0.0050    0.3249
##     40       49.5171             nan     0.0050    0.2847
##     60       44.3561             nan     0.0050    0.2445
##     80       39.9500             nan     0.0050    0.1936
##    100       36.0328             nan     0.0050    0.1836
##    120       32.6145             nan     0.0050    0.1557
##    140       29.6945             nan     0.0050    0.1324
##    160       27.1685             nan     0.0050    0.1085
##    180       24.9341             nan     0.0050    0.1077
##    200       22.9206             nan     0.0050    0.0876
##    220       21.1691             nan     0.0050    0.0775
##    240       19.5731             nan     0.0050    0.0658
##    260       18.1946             nan     0.0050    0.0554
##    280       16.9206             nan     0.0050    0.0583
##    300       15.8444             nan     0.0050    0.0454
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.6349             nan     0.0050    0.3949
##      2       62.2243             nan     0.0050    0.3918
##      3       61.8495             nan     0.0050    0.3992
##      4       61.4750             nan     0.0050    0.3628
##      5       61.1172             nan     0.0050    0.3992
##      6       60.7562             nan     0.0050    0.3791
##      7       60.3986             nan     0.0050    0.3826
##      8       60.0431             nan     0.0050    0.3701
##      9       59.6519             nan     0.0050    0.3923
##     10       59.2908             nan     0.0050    0.3742
##     20       55.7391             nan     0.0050    0.3324
##     40       49.5081             nan     0.0050    0.2648
##     60       44.4301             nan     0.0050    0.2109
##     80       39.9034             nan     0.0050    0.2064
##    100       36.0382             nan     0.0050    0.1714
##    120       32.7463             nan     0.0050    0.1231
##    140       29.8129             nan     0.0050    0.1377
##    160       27.2332             nan     0.0050    0.1144
##    180       24.9951             nan     0.0050    0.0952
##    200       22.9899             nan     0.0050    0.0870
##    220       21.2041             nan     0.0050    0.0729
##    240       19.6306             nan     0.0050    0.0729
##    260       18.2385             nan     0.0050    0.0654
##    280       17.0032             nan     0.0050    0.0495
##    300       15.8439             nan     0.0050    0.0386
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.6575             nan     0.0050    0.3998
##      2       62.2451             nan     0.0050    0.3941
##      3       61.8397             nan     0.0050    0.3971
##      4       61.4595             nan     0.0050    0.3831
##      5       61.0975             nan     0.0050    0.3905
##      6       60.7015             nan     0.0050    0.3864
##      7       60.3225             nan     0.0050    0.3650
##      8       59.9630             nan     0.0050    0.3799
##      9       59.5926             nan     0.0050    0.3859
##     10       59.2163             nan     0.0050    0.3500
##     20       55.7430             nan     0.0050    0.3357
##     40       49.6278             nan     0.0050    0.2368
##     60       44.3970             nan     0.0050    0.2549
##     80       39.9309             nan     0.0050    0.1958
##    100       36.0821             nan     0.0050    0.1837
##    120       32.6403             nan     0.0050    0.1507
##    140       29.7181             nan     0.0050    0.1428
##    160       27.1231             nan     0.0050    0.1176
##    180       24.8533             nan     0.0050    0.1017
##    200       22.8613             nan     0.0050    0.0876
##    220       21.1231             nan     0.0050    0.0779
##    240       19.5137             nan     0.0050    0.0718
##    260       18.1180             nan     0.0050    0.0692
##    280       16.8518             nan     0.0050    0.0438
##    300       15.7440             nan     0.0050    0.0437
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5605             nan     0.0050    0.4817
##      2       62.0636             nan     0.0050    0.5017
##      3       61.5633             nan     0.0050    0.4614
##      4       61.1254             nan     0.0050    0.4362
##      5       60.6900             nan     0.0050    0.4641
##      6       60.2751             nan     0.0050    0.4775
##      7       59.8056             nan     0.0050    0.4368
##      8       59.3725             nan     0.0050    0.4452
##      9       58.9001             nan     0.0050    0.4309
##     10       58.4605             nan     0.0050    0.4478
##     20       54.1163             nan     0.0050    0.4073
##     40       46.8531             nan     0.0050    0.3534
##     60       40.5963             nan     0.0050    0.3171
##     80       35.3357             nan     0.0050    0.2594
##    100       30.8028             nan     0.0050    0.1912
##    120       27.0026             nan     0.0050    0.1727
##    140       23.8681             nan     0.0050    0.1219
##    160       21.1862             nan     0.0050    0.0837
##    180       18.8327             nan     0.0050    0.1082
##    200       16.8592             nan     0.0050    0.0974
##    220       15.1513             nan     0.0050    0.0743
##    240       13.7102             nan     0.0050    0.0586
##    260       12.4618             nan     0.0050    0.0543
##    280       11.3905             nan     0.0050    0.0409
##    300       10.4957             nan     0.0050    0.0267
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.6020             nan     0.0050    0.4339
##      2       62.1598             nan     0.0050    0.4388
##      3       61.6941             nan     0.0050    0.5006
##      4       61.2321             nan     0.0050    0.4635
##      5       60.7693             nan     0.0050    0.4297
##      6       60.3293             nan     0.0050    0.4416
##      7       59.8496             nan     0.0050    0.4255
##      8       59.3662             nan     0.0050    0.4715
##      9       58.8964             nan     0.0050    0.4312
##     10       58.4514             nan     0.0050    0.4377
##     20       54.2805             nan     0.0050    0.3924
##     40       46.7217             nan     0.0050    0.3328
##     60       40.4133             nan     0.0050    0.2898
##     80       35.0189             nan     0.0050    0.2858
##    100       30.5835             nan     0.0050    0.2236
##    120       26.8397             nan     0.0050    0.1686
##    140       23.6455             nan     0.0050    0.1182
##    160       21.0097             nan     0.0050    0.1024
##    180       18.7503             nan     0.0050    0.1021
##    200       16.8019             nan     0.0050    0.0915
##    220       15.1397             nan     0.0050    0.0794
##    240       13.6748             nan     0.0050    0.0659
##    260       12.4348             nan     0.0050    0.0493
##    280       11.3883             nan     0.0050    0.0493
##    300       10.4533             nan     0.0050    0.0411
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5584             nan     0.0050    0.5293
##      2       62.0778             nan     0.0050    0.4856
##      3       61.6208             nan     0.0050    0.4814
##      4       61.2057             nan     0.0050    0.4879
##      5       60.7424             nan     0.0050    0.4739
##      6       60.2810             nan     0.0050    0.4620
##      7       59.8473             nan     0.0050    0.4456
##      8       59.4032             nan     0.0050    0.4188
##      9       59.0061             nan     0.0050    0.4557
##     10       58.5305             nan     0.0050    0.4491
##     20       54.3381             nan     0.0050    0.4363
##     40       46.8736             nan     0.0050    0.4113
##     60       40.6137             nan     0.0050    0.2905
##     80       35.1936             nan     0.0050    0.2276
##    100       30.7409             nan     0.0050    0.2067
##    120       27.0557             nan     0.0050    0.1706
##    140       23.9370             nan     0.0050    0.1464
##    160       21.2735             nan     0.0050    0.1333
##    180       19.0477             nan     0.0050    0.0892
##    200       17.0644             nan     0.0050    0.0877
##    220       15.4244             nan     0.0050    0.0708
##    240       13.9385             nan     0.0050    0.0611
##    260       12.7256             nan     0.0050    0.0511
##    280       11.7057             nan     0.0050    0.0513
##    300       10.7435             nan     0.0050    0.0450
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5399             nan     0.0050    0.5474
##      2       62.0205             nan     0.0050    0.5043
##      3       61.5083             nan     0.0050    0.5518
##      4       61.0230             nan     0.0050    0.4798
##      5       60.5325             nan     0.0050    0.4728
##      6       60.0218             nan     0.0050    0.5582
##      7       59.5142             nan     0.0050    0.4724
##      8       59.0403             nan     0.0050    0.4394
##      9       58.5800             nan     0.0050    0.4977
##     10       58.1053             nan     0.0050    0.4624
##     20       53.4971             nan     0.0050    0.4031
##     40       45.5169             nan     0.0050    0.3548
##     60       38.8347             nan     0.0050    0.2574
##     80       33.2636             nan     0.0050    0.2276
##    100       28.6068             nan     0.0050    0.1883
##    120       24.8016             nan     0.0050    0.1737
##    140       21.5715             nan     0.0050    0.1272
##    160       18.8972             nan     0.0050    0.1182
##    180       16.6434             nan     0.0050    0.1007
##    200       14.6962             nan     0.0050    0.0718
##    220       13.0864             nan     0.0050    0.0716
##    240       11.7553             nan     0.0050    0.0505
##    260       10.5736             nan     0.0050    0.0498
##    280        9.5455             nan     0.0050    0.0414
##    300        8.6899             nan     0.0050    0.0383
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5547             nan     0.0050    0.5189
##      2       62.0007             nan     0.0050    0.5162
##      3       61.4961             nan     0.0050    0.4987
##      4       60.9734             nan     0.0050    0.5048
##      5       60.4648             nan     0.0050    0.4941
##      6       59.9566             nan     0.0050    0.4945
##      7       59.4484             nan     0.0050    0.4925
##      8       58.9605             nan     0.0050    0.5035
##      9       58.4682             nan     0.0050    0.5282
##     10       57.9789             nan     0.0050    0.4974
##     20       53.3108             nan     0.0050    0.4759
##     40       45.3842             nan     0.0050    0.3383
##     60       38.7152             nan     0.0050    0.3173
##     80       33.1353             nan     0.0050    0.2368
##    100       28.5152             nan     0.0050    0.2252
##    120       24.7551             nan     0.0050    0.1617
##    140       21.6098             nan     0.0050    0.1291
##    160       18.8810             nan     0.0050    0.1219
##    180       16.6481             nan     0.0050    0.0923
##    200       14.7583             nan     0.0050    0.0697
##    220       13.1385             nan     0.0050    0.0717
##    240       11.7667             nan     0.0050    0.0519
##    260       10.6081             nan     0.0050    0.0474
##    280        9.6064             nan     0.0050    0.0392
##    300        8.7389             nan     0.0050    0.0438
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.5239             nan     0.0050    0.5205
##      2       62.0050             nan     0.0050    0.5360
##      3       61.4834             nan     0.0050    0.5312
##      4       60.9881             nan     0.0050    0.4918
##      5       60.4578             nan     0.0050    0.4916
##      6       59.9636             nan     0.0050    0.4475
##      7       59.4953             nan     0.0050    0.4820
##      8       59.0092             nan     0.0050    0.4931
##      9       58.5045             nan     0.0050    0.4342
##     10       58.0207             nan     0.0050    0.4775
##     20       53.4302             nan     0.0050    0.4699
##     40       45.4335             nan     0.0050    0.3413
##     60       38.8380             nan     0.0050    0.3203
##     80       33.3460             nan     0.0050    0.2453
##    100       28.8069             nan     0.0050    0.2086
##    120       25.0200             nan     0.0050    0.1971
##    140       21.8516             nan     0.0050    0.1431
##    160       19.1717             nan     0.0050    0.1140
##    180       16.9014             nan     0.0050    0.0895
##    200       15.0111             nan     0.0050    0.0775
##    220       13.4223             nan     0.0050    0.0684
##    240       12.0754             nan     0.0050    0.0535
##    260       10.9226             nan     0.0050    0.0450
##    280        9.9334             nan     0.0050    0.0421
##    300        9.0626             nan     0.0050    0.0290
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.2435             nan     0.0100    0.7869
##      2       61.5045             nan     0.0100    0.7899
##      3       60.7562             nan     0.0100    0.7604
##      4       60.0425             nan     0.0100    0.7498
##      5       59.2995             nan     0.0100    0.7819
##      6       58.5706             nan     0.0100    0.7384
##      7       57.8551             nan     0.0100    0.7269
##      8       57.1299             nan     0.0100    0.6729
##      9       56.4070             nan     0.0100    0.6745
##     10       55.7131             nan     0.0100    0.6431
##     20       49.4460             nan     0.0100    0.5883
##     40       39.8086             nan     0.0100    0.3986
##     60       32.4983             nan     0.0100    0.3092
##     80       27.0483             nan     0.0100    0.2481
##    100       22.8155             nan     0.0100    0.1560
##    120       19.4017             nan     0.0100    0.1262
##    140       16.7921             nan     0.0100    0.1264
##    160       14.6423             nan     0.0100    0.0777
##    180       12.9035             nan     0.0100    0.0816
##    200       11.5609             nan     0.0100    0.0470
##    220       10.3994             nan     0.0100    0.0434
##    240        9.4303             nan     0.0100    0.0336
##    260        8.6259             nan     0.0100    0.0313
##    280        7.9288             nan     0.0100    0.0141
##    300        7.3370             nan     0.0100    0.0244
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.2585             nan     0.0100    0.8301
##      2       61.5166             nan     0.0100    0.7757
##      3       60.7757             nan     0.0100    0.8009
##      4       59.9791             nan     0.0100    0.7176
##      5       59.2216             nan     0.0100    0.8296
##      6       58.4757             nan     0.0100    0.7389
##      7       57.7660             nan     0.0100    0.6983
##      8       57.0677             nan     0.0100    0.7025
##      9       56.3934             nan     0.0100    0.6861
##     10       55.7122             nan     0.0100    0.6880
##     20       49.5649             nan     0.0100    0.6358
##     40       39.7465             nan     0.0100    0.3827
##     60       32.4565             nan     0.0100    0.2990
##     80       26.9488             nan     0.0100    0.2376
##    100       22.7048             nan     0.0100    0.1776
##    120       19.4083             nan     0.0100    0.1306
##    140       16.8247             nan     0.0100    0.1008
##    160       14.7543             nan     0.0100    0.0920
##    180       13.0077             nan     0.0100    0.0644
##    200       11.6085             nan     0.0100    0.0537
##    220       10.4563             nan     0.0100    0.0375
##    240        9.5164             nan     0.0100    0.0333
##    260        8.7321             nan     0.0100    0.0287
##    280        8.0053             nan     0.0100    0.0268
##    300        7.4077             nan     0.0100    0.0227
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.2734             nan     0.0100    0.7702
##      2       61.5126             nan     0.0100    0.7853
##      3       60.7088             nan     0.0100    0.7805
##      4       59.9259             nan     0.0100    0.7542
##      5       59.2098             nan     0.0100    0.6704
##      6       58.4287             nan     0.0100    0.7033
##      7       57.7222             nan     0.0100    0.7287
##      8       57.0173             nan     0.0100    0.6972
##      9       56.3540             nan     0.0100    0.5614
##     10       55.6823             nan     0.0100    0.5926
##     20       49.5165             nan     0.0100    0.5657
##     40       39.9318             nan     0.0100    0.4009
##     60       32.6486             nan     0.0100    0.2912
##     80       27.2098             nan     0.0100    0.2224
##    100       22.9202             nan     0.0100    0.1563
##    120       19.5458             nan     0.0100    0.1445
##    140       16.8402             nan     0.0100    0.1117
##    160       14.7088             nan     0.0100    0.0750
##    180       13.0289             nan     0.0100    0.0655
##    200       11.6638             nan     0.0100    0.0466
##    220       10.5441             nan     0.0100    0.0412
##    240        9.5877             nan     0.0100    0.0331
##    260        8.7480             nan     0.0100    0.0221
##    280        8.0547             nan     0.0100    0.0269
##    300        7.4710             nan     0.0100    0.0132
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0979             nan     0.0100    0.7865
##      2       61.1691             nan     0.0100    0.9918
##      3       60.2471             nan     0.0100    0.9804
##      4       59.4047             nan     0.0100    0.9063
##      5       58.4328             nan     0.0100    0.9295
##      6       57.5765             nan     0.0100    0.8250
##      7       56.6263             nan     0.0100    0.8396
##      8       55.7156             nan     0.0100    0.8250
##      9       54.9202             nan     0.0100    0.7518
##     10       54.1154             nan     0.0100    0.7442
##     20       46.6654             nan     0.0100    0.6889
##     40       35.0654             nan     0.0100    0.5300
##     60       26.9369             nan     0.0100    0.3522
##     80       20.9926             nan     0.0100    0.2148
##    100       16.7565             nan     0.0100    0.1765
##    120       13.6765             nan     0.0100    0.0902
##    140       11.3890             nan     0.0100    0.0786
##    160        9.7048             nan     0.0100    0.0592
##    180        8.3261             nan     0.0100    0.0438
##    200        7.2690             nan     0.0100    0.0341
##    220        6.4377             nan     0.0100    0.0341
##    240        5.8123             nan     0.0100    0.0224
##    260        5.2915             nan     0.0100    0.0198
##    280        4.9034             nan     0.0100    0.0100
##    300        4.5680             nan     0.0100    0.0128
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.1369             nan     0.0100    0.8606
##      2       61.1297             nan     0.0100    0.9188
##      3       60.2536             nan     0.0100    0.8952
##      4       59.3615             nan     0.0100    0.9120
##      5       58.5190             nan     0.0100    0.8267
##      6       57.6849             nan     0.0100    0.8418
##      7       56.8270             nan     0.0100    0.8363
##      8       55.9556             nan     0.0100    0.9189
##      9       55.1427             nan     0.0100    0.8770
##     10       54.3849             nan     0.0100    0.8272
##     20       46.7035             nan     0.0100    0.6358
##     40       35.0676             nan     0.0100    0.4596
##     60       26.9316             nan     0.0100    0.3784
##     80       21.0438             nan     0.0100    0.2164
##    100       16.8994             nan     0.0100    0.1766
##    120       13.7973             nan     0.0100    0.1299
##    140       11.5320             nan     0.0100    0.0798
##    160        9.7427             nan     0.0100    0.0677
##    180        8.4333             nan     0.0100    0.0526
##    200        7.4068             nan     0.0100    0.0326
##    220        6.5431             nan     0.0100    0.0281
##    240        5.8935             nan     0.0100    0.0220
##    260        5.4008             nan     0.0100    0.0214
##    280        4.9743             nan     0.0100    0.0115
##    300        4.6491             nan     0.0100    0.0077
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.1470             nan     0.0100    0.9614
##      2       61.1982             nan     0.0100    0.9385
##      3       60.1999             nan     0.0100    0.9230
##      4       59.3238             nan     0.0100    0.9274
##      5       58.4464             nan     0.0100    0.9488
##      6       57.5387             nan     0.0100    0.9324
##      7       56.6734             nan     0.0100    0.8208
##      8       55.7840             nan     0.0100    0.9035
##      9       54.9485             nan     0.0100    0.7938
##     10       54.0379             nan     0.0100    0.8238
##     20       46.6236             nan     0.0100    0.6969
##     40       35.1494             nan     0.0100    0.4373
##     60       26.9329             nan     0.0100    0.3304
##     80       21.2500             nan     0.0100    0.2290
##    100       17.0013             nan     0.0100    0.1789
##    120       13.9248             nan     0.0100    0.1110
##    140       11.5740             nan     0.0100    0.0903
##    160        9.9356             nan     0.0100    0.0620
##    180        8.5978             nan     0.0100    0.0504
##    200        7.5387             nan     0.0100    0.0422
##    220        6.7036             nan     0.0100    0.0311
##    240        6.0637             nan     0.0100    0.0212
##    260        5.5575             nan     0.0100    0.0209
##    280        5.1502             nan     0.0100    0.0138
##    300        4.8486             nan     0.0100    0.0084
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0677             nan     0.0100    0.9927
##      2       61.1070             nan     0.0100    0.8863
##      3       60.1048             nan     0.0100    0.9546
##      4       59.0937             nan     0.0100    0.9177
##      5       58.1484             nan     0.0100    0.9650
##      6       57.2218             nan     0.0100    0.9912
##      7       56.2307             nan     0.0100    0.9871
##      8       55.3457             nan     0.0100    0.9614
##      9       54.4416             nan     0.0100    0.8438
##     10       53.5176             nan     0.0100    0.7842
##     20       45.4773             nan     0.0100    0.7451
##     40       33.0908             nan     0.0100    0.5087
##     60       24.7155             nan     0.0100    0.3274
##     80       18.8603             nan     0.0100    0.2393
##    100       14.7124             nan     0.0100    0.1705
##    120       11.7491             nan     0.0100    0.0978
##    140        9.6454             nan     0.0100    0.0873
##    160        8.0157             nan     0.0100    0.0568
##    180        6.7865             nan     0.0100    0.0396
##    200        5.8444             nan     0.0100    0.0208
##    220        5.1798             nan     0.0100    0.0168
##    240        4.6531             nan     0.0100    0.0175
##    260        4.2468             nan     0.0100    0.0098
##    280        3.9264             nan     0.0100    0.0106
##    300        3.6698             nan     0.0100    0.0038
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0095             nan     0.0100    1.0144
##      2       60.9580             nan     0.0100    1.1364
##      3       59.9735             nan     0.0100    1.0367
##      4       58.9592             nan     0.0100    1.0433
##      5       57.9279             nan     0.0100    1.0403
##      6       56.9431             nan     0.0100    0.8858
##      7       55.9624             nan     0.0100    0.9379
##      8       55.0711             nan     0.0100    0.8256
##      9       54.1465             nan     0.0100    0.9141
##     10       53.1898             nan     0.0100    0.8359
##     20       45.2231             nan     0.0100    0.7400
##     40       33.0158             nan     0.0100    0.5100
##     60       24.6964             nan     0.0100    0.3428
##     80       18.8415             nan     0.0100    0.2504
##    100       14.6692             nan     0.0100    0.1595
##    120       11.6614             nan     0.0100    0.1331
##    140        9.4933             nan     0.0100    0.0877
##    160        7.9276             nan     0.0100    0.0530
##    180        6.7770             nan     0.0100    0.0377
##    200        5.8786             nan     0.0100    0.0356
##    220        5.1993             nan     0.0100    0.0201
##    240        4.6763             nan     0.0100    0.0200
##    260        4.2702             nan     0.0100    0.0050
##    280        3.9634             nan     0.0100    0.0066
##    300        3.7362             nan     0.0100    0.0068
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.9922             nan     0.0100    1.0260
##      2       60.9800             nan     0.0100    1.0586
##      3       59.9634             nan     0.0100    0.9294
##      4       59.0231             nan     0.0100    0.9318
##      5       58.0392             nan     0.0100    0.8607
##      6       57.1028             nan     0.0100    1.0221
##      7       56.1625             nan     0.0100    0.9658
##      8       55.2909             nan     0.0100    0.9054
##      9       54.3489             nan     0.0100    0.9446
##     10       53.4096             nan     0.0100    0.8695
##     20       45.3492             nan     0.0100    0.7784
##     40       33.4414             nan     0.0100    0.4817
##     60       24.9574             nan     0.0100    0.3455
##     80       19.0813             nan     0.0100    0.2437
##    100       14.9656             nan     0.0100    0.1229
##    120       12.0815             nan     0.0100    0.1042
##    140        9.9368             nan     0.0100    0.0803
##    160        8.3176             nan     0.0100    0.0536
##    180        7.1041             nan     0.0100    0.0455
##    200        6.1681             nan     0.0100    0.0390
##    220        5.5173             nan     0.0100    0.0259
##    240        5.0231             nan     0.0100    0.0171
##    260        4.6274             nan     0.0100    0.0106
##    280        4.3130             nan     0.0100    0.0087
##    300        4.0777             nan     0.0100    0.0013
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.9225             nan     0.0500    3.8951
##      2       55.3841             nan     0.0500    3.2621
##      3       52.5621             nan     0.0500    3.2808
##      4       49.6807             nan     0.0500    2.4797
##      5       46.8703             nan     0.0500    2.7765
##      6       44.0847             nan     0.0500    2.7743
##      7       41.4837             nan     0.0500    2.0418
##      8       39.2219             nan     0.0500    2.1373
##      9       37.1297             nan     0.0500    1.8864
##     10       35.3605             nan     0.0500    1.6945
##     20       22.3779             nan     0.0500    0.8073
##     40       11.3675             nan     0.0500    0.2447
##     60        7.3038             nan     0.0500    0.0493
##     80        5.4879             nan     0.0500    0.0659
##    100        4.5652             nan     0.0500    0.0143
##    120        4.0699             nan     0.0500    0.0010
##    140        3.8286             nan     0.0500    0.0096
##    160        3.6560             nan     0.0500   -0.0049
##    180        3.5241             nan     0.0500   -0.0018
##    200        3.4224             nan     0.0500   -0.0073
##    220        3.3305             nan     0.0500   -0.0091
##    240        3.2509             nan     0.0500   -0.0113
##    260        3.1560             nan     0.0500   -0.0031
##    280        3.1021             nan     0.0500   -0.0138
##    300        3.0442             nan     0.0500   -0.0101
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.8677             nan     0.0500    3.7310
##      2       55.2605             nan     0.0500    3.3792
##      3       51.9458             nan     0.0500    3.2189
##      4       49.0196             nan     0.0500    2.9033
##      5       46.4713             nan     0.0500    2.5210
##      6       43.8873             nan     0.0500    2.4765
##      7       41.7062             nan     0.0500    2.1375
##      8       39.6457             nan     0.0500    1.8179
##      9       37.6867             nan     0.0500    1.9095
##     10       35.7315             nan     0.0500    1.8632
##     20       22.6660             nan     0.0500    0.7583
##     40       11.6429             nan     0.0500    0.2264
##     60        7.4843             nan     0.0500    0.1373
##     80        5.6275             nan     0.0500    0.0356
##    100        4.6918             nan     0.0500    0.0153
##    120        4.2179             nan     0.0500    0.0077
##    140        3.9430             nan     0.0500    0.0008
##    160        3.7848             nan     0.0500   -0.0068
##    180        3.6600             nan     0.0500    0.0016
##    200        3.5711             nan     0.0500   -0.0055
##    220        3.4721             nan     0.0500   -0.0018
##    240        3.3917             nan     0.0500    0.0000
##    260        3.3183             nan     0.0500   -0.0082
##    280        3.2438             nan     0.0500   -0.0046
##    300        3.1789             nan     0.0500   -0.0096
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2350             nan     0.0500    4.0732
##      2       55.4429             nan     0.0500    3.4303
##      3       52.2621             nan     0.0500    3.2178
##      4       49.5781             nan     0.0500    2.8125
##      5       46.7568             nan     0.0500    2.6740
##      6       44.2605             nan     0.0500    2.3875
##      7       42.0634             nan     0.0500    2.3446
##      8       39.8059             nan     0.0500    2.1980
##      9       38.0049             nan     0.0500    1.5175
##     10       36.1817             nan     0.0500    1.7165
##     20       22.9018             nan     0.0500    0.9219
##     40       11.6413             nan     0.0500    0.3010
##     60        7.5302             nan     0.0500    0.0677
##     80        5.6587             nan     0.0500    0.0417
##    100        4.6917             nan     0.0500    0.0102
##    120        4.2663             nan     0.0500    0.0045
##    140        4.0229             nan     0.0500    0.0021
##    160        3.8753             nan     0.0500   -0.0173
##    180        3.7430             nan     0.0500   -0.0028
##    200        3.6272             nan     0.0500   -0.0055
##    220        3.5430             nan     0.0500   -0.0037
##    240        3.4774             nan     0.0500   -0.0119
##    260        3.4037             nan     0.0500   -0.0061
##    280        3.3349             nan     0.0500   -0.0063
##    300        3.2738             nan     0.0500   -0.0085
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.1141             nan     0.0500    4.5889
##      2       54.0823             nan     0.0500    4.0722
##      3       50.1933             nan     0.0500    4.1815
##      4       46.3683             nan     0.0500    3.4141
##      5       42.8779             nan     0.0500    3.1653
##      6       39.7175             nan     0.0500    2.8937
##      7       37.1556             nan     0.0500    2.7559
##      8       34.6357             nan     0.0500    2.5024
##      9       32.4365             nan     0.0500    2.0707
##     10       30.1385             nan     0.0500    2.0227
##     20       16.5111             nan     0.0500    0.8021
##     40        7.0895             nan     0.0500    0.2033
##     60        4.5946             nan     0.0500    0.0508
##     80        3.7091             nan     0.0500    0.0183
##    100        3.2541             nan     0.0500    0.0004
##    120        2.9878             nan     0.0500   -0.0162
##    140        2.7970             nan     0.0500   -0.0141
##    160        2.6399             nan     0.0500    0.0009
##    180        2.4864             nan     0.0500   -0.0048
##    200        2.3904             nan     0.0500   -0.0205
##    220        2.2982             nan     0.0500   -0.0065
##    240        2.2166             nan     0.0500   -0.0075
##    260        2.1286             nan     0.0500   -0.0052
##    280        2.0593             nan     0.0500   -0.0034
##    300        2.0058             nan     0.0500   -0.0062
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.7744             nan     0.0500    4.2356
##      2       54.4584             nan     0.0500    3.9659
##      3       50.5120             nan     0.0500    3.7956
##      4       46.7373             nan     0.0500    4.2426
##      5       43.4983             nan     0.0500    3.2240
##      6       40.4439             nan     0.0500    3.1049
##      7       37.8241             nan     0.0500    2.9411
##      8       35.1225             nan     0.0500    2.7024
##      9       32.7481             nan     0.0500    2.2673
##     10       30.4388             nan     0.0500    2.2020
##     20       16.5893             nan     0.0500    0.8829
##     40        7.1451             nan     0.0500    0.2801
##     60        4.5542             nan     0.0500    0.0006
##     80        3.6820             nan     0.0500    0.0126
##    100        3.2764             nan     0.0500   -0.0040
##    120        3.0542             nan     0.0500   -0.0142
##    140        2.8773             nan     0.0500   -0.0116
##    160        2.7413             nan     0.0500   -0.0192
##    180        2.6358             nan     0.0500   -0.0095
##    200        2.5447             nan     0.0500   -0.0131
##    220        2.4457             nan     0.0500   -0.0098
##    240        2.3410             nan     0.0500   -0.0069
##    260        2.2765             nan     0.0500   -0.0006
##    280        2.2186             nan     0.0500   -0.0092
##    300        2.1682             nan     0.0500   -0.0162
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.7821             nan     0.0500    4.8911
##      2       53.5577             nan     0.0500    4.3252
##      3       49.6252             nan     0.0500    3.7515
##      4       46.0784             nan     0.0500    3.7207
##      5       42.8917             nan     0.0500    3.1984
##      6       39.6332             nan     0.0500    3.0048
##      7       36.7458             nan     0.0500    2.9910
##      8       34.2008             nan     0.0500    2.2970
##      9       31.7751             nan     0.0500    2.3925
##     10       29.6931             nan     0.0500    1.8856
##     20       16.7333             nan     0.0500    0.8608
##     40        7.4618             nan     0.0500    0.2224
##     60        4.9018             nan     0.0500    0.0535
##     80        4.0473             nan     0.0500    0.0029
##    100        3.6745             nan     0.0500    0.0007
##    120        3.4140             nan     0.0500   -0.0044
##    140        3.2345             nan     0.0500   -0.0104
##    160        3.0627             nan     0.0500   -0.0073
##    180        2.9288             nan     0.0500   -0.0096
##    200        2.7985             nan     0.0500   -0.0099
##    220        2.6994             nan     0.0500   -0.0017
##    240        2.6215             nan     0.0500   -0.0039
##    260        2.5466             nan     0.0500   -0.0065
##    280        2.4737             nan     0.0500   -0.0096
##    300        2.4017             nan     0.0500   -0.0118
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.7437             nan     0.0500    5.1823
##      2       52.8912             nan     0.0500    4.6337
##      3       48.6834             nan     0.0500    4.6497
##      4       44.7312             nan     0.0500    3.7475
##      5       41.2665             nan     0.0500    3.7965
##      6       38.1005             nan     0.0500    3.5332
##      7       35.2320             nan     0.0500    3.1552
##      8       32.4554             nan     0.0500    2.6942
##      9       30.2999             nan     0.0500    2.5313
##     10       28.2957             nan     0.0500    2.1916
##     20       14.6008             nan     0.0500    0.8531
##     40        5.8068             nan     0.0500    0.1461
##     60        3.6100             nan     0.0500    0.0218
##     80        2.9798             nan     0.0500   -0.0017
##    100        2.6317             nan     0.0500    0.0006
##    120        2.3776             nan     0.0500   -0.0022
##    140        2.1719             nan     0.0500   -0.0086
##    160        2.0389             nan     0.0500   -0.0155
##    180        1.9160             nan     0.0500   -0.0210
##    200        1.8089             nan     0.0500   -0.0046
##    220        1.7051             nan     0.0500   -0.0071
##    240        1.6278             nan     0.0500   -0.0079
##    260        1.5512             nan     0.0500   -0.0039
##    280        1.4769             nan     0.0500   -0.0074
##    300        1.4067             nan     0.0500   -0.0042
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.8892             nan     0.0500    5.0801
##      2       53.1891             nan     0.0500    4.4378
##      3       48.7995             nan     0.0500    4.2671
##      4       44.9932             nan     0.0500    4.1260
##      5       41.5483             nan     0.0500    3.4567
##      6       38.3856             nan     0.0500    3.3647
##      7       35.5622             nan     0.0500    3.0173
##      8       32.9487             nan     0.0500    2.4053
##      9       30.5648             nan     0.0500    2.4723
##     10       28.3859             nan     0.0500    2.1107
##     20       14.8122             nan     0.0500    0.8391
##     40        5.9221             nan     0.0500    0.1835
##     60        3.7335             nan     0.0500    0.0412
##     80        3.1116             nan     0.0500   -0.0210
##    100        2.7618             nan     0.0500   -0.0143
##    120        2.5017             nan     0.0500   -0.0203
##    140        2.3354             nan     0.0500   -0.0137
##    160        2.1900             nan     0.0500   -0.0106
##    180        2.0583             nan     0.0500   -0.0101
##    200        1.9828             nan     0.0500   -0.0111
##    220        1.8784             nan     0.0500   -0.0088
##    240        1.8063             nan     0.0500   -0.0100
##    260        1.7315             nan     0.0500   -0.0114
##    280        1.6609             nan     0.0500   -0.0103
##    300        1.6037             nan     0.0500   -0.0088
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.8813             nan     0.0500    5.2839
##      2       53.3371             nan     0.0500    4.6904
##      3       49.0496             nan     0.0500    4.6023
##      4       45.0824             nan     0.0500    4.1415
##      5       41.5500             nan     0.0500    3.7558
##      6       38.4122             nan     0.0500    3.0629
##      7       35.7095             nan     0.0500    3.0510
##      8       33.2005             nan     0.0500    2.6959
##      9       30.7604             nan     0.0500    2.4886
##     10       28.7016             nan     0.0500    2.0400
##     20       14.9256             nan     0.0500    0.9068
##     40        6.2590             nan     0.0500    0.1522
##     60        4.1223             nan     0.0500   -0.0010
##     80        3.5152             nan     0.0500   -0.0088
##    100        3.1293             nan     0.0500   -0.0054
##    120        2.8869             nan     0.0500   -0.0223
##    140        2.7052             nan     0.0500   -0.0199
##    160        2.5557             nan     0.0500   -0.0215
##    180        2.4077             nan     0.0500   -0.0209
##    200        2.3099             nan     0.0500   -0.0105
##    220        2.2315             nan     0.0500   -0.0115
##    240        2.1320             nan     0.0500   -0.0169
##    260        2.0582             nan     0.0500   -0.0147
##    280        1.9771             nan     0.0500   -0.0098
##    300        1.9179             nan     0.0500   -0.0180
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.5592             nan     0.1000    7.2056
##      2       49.4507             nan     0.1000    6.2454
##      3       44.9878             nan     0.1000    4.6773
##      4       40.4450             nan     0.1000    4.7366
##      5       36.4740             nan     0.1000    3.5317
##      6       32.9616             nan     0.1000    3.4821
##      7       29.6976             nan     0.1000    3.1852
##      8       26.9124             nan     0.1000    2.4894
##      9       24.6731             nan     0.1000    2.2316
##     10       22.6749             nan     0.1000    1.8785
##     20       11.6485             nan     0.1000    0.8172
##     40        5.5192             nan     0.1000    0.0667
##     60        4.2399             nan     0.1000    0.0254
##     80        3.7789             nan     0.1000   -0.0096
##    100        3.5407             nan     0.1000   -0.0080
##    120        3.3788             nan     0.1000   -0.0213
##    140        3.2450             nan     0.1000   -0.0236
##    160        3.1223             nan     0.1000   -0.0254
##    180        3.0478             nan     0.1000   -0.0349
##    200        2.9765             nan     0.1000   -0.0312
##    220        2.9148             nan     0.1000   -0.0145
##    240        2.8509             nan     0.1000   -0.0105
##    260        2.7903             nan     0.1000   -0.0203
##    280        2.7413             nan     0.1000   -0.0170
##    300        2.6876             nan     0.1000   -0.0074
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.5172             nan     0.1000    7.9091
##      2       49.2460             nan     0.1000    6.0050
##      3       44.0925             nan     0.1000    5.1603
##      4       39.5639             nan     0.1000    4.1429
##      5       35.6149             nan     0.1000    3.6449
##      6       32.1879             nan     0.1000    3.3452
##      7       29.1690             nan     0.1000    2.8689
##      8       26.9872             nan     0.1000    1.4260
##      9       24.5380             nan     0.1000    2.4033
##     10       22.4896             nan     0.1000    1.8869
##     20       11.5772             nan     0.1000    0.5964
##     40        5.3327             nan     0.1000    0.0539
##     60        4.0717             nan     0.1000    0.0136
##     80        3.6564             nan     0.1000    0.0040
##    100        3.4494             nan     0.1000   -0.0085
##    120        3.2753             nan     0.1000    0.0015
##    140        3.1525             nan     0.1000   -0.0157
##    160        3.0611             nan     0.1000   -0.0221
##    180        2.9802             nan     0.1000   -0.0181
##    200        2.9100             nan     0.1000   -0.0217
##    220        2.8476             nan     0.1000   -0.0071
##    240        2.7877             nan     0.1000   -0.0139
##    260        2.7251             nan     0.1000   -0.0072
##    280        2.6739             nan     0.1000   -0.0142
##    300        2.6195             nan     0.1000   -0.0090
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.6790             nan     0.1000    7.1350
##      2       48.1823             nan     0.1000    5.7483
##      3       43.5998             nan     0.1000    4.9276
##      4       39.2330             nan     0.1000    4.0294
##      5       35.1486             nan     0.1000    4.0109
##      6       32.2055             nan     0.1000    3.0630
##      7       28.9351             nan     0.1000    2.3628
##      8       26.5850             nan     0.1000    2.6222
##      9       24.4507             nan     0.1000    2.0523
##     10       22.2555             nan     0.1000    2.0099
##     20       11.6335             nan     0.1000    0.6642
##     40        5.7993             nan     0.1000    0.0768
##     60        4.5320             nan     0.1000   -0.0203
##     80        4.2259             nan     0.1000   -0.0173
##    100        3.9692             nan     0.1000    0.0030
##    120        3.7457             nan     0.1000   -0.0160
##    140        3.5968             nan     0.1000   -0.0223
##    160        3.4562             nan     0.1000    0.0024
##    180        3.3520             nan     0.1000   -0.0135
##    200        3.3067             nan     0.1000   -0.0219
##    220        3.2335             nan     0.1000   -0.0105
##    240        3.1409             nan     0.1000   -0.0065
##    260        3.0931             nan     0.1000   -0.0098
##    280        3.0230             nan     0.1000   -0.0114
##    300        2.9618             nan     0.1000   -0.0192
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.3843             nan     0.1000    9.1318
##      2       45.8034             nan     0.1000    7.1961
##      3       39.3968             nan     0.1000    6.1120
##      4       33.8782             nan     0.1000    5.8476
##      5       29.3514             nan     0.1000    4.5068
##      6       25.9107             nan     0.1000    3.3347
##      7       22.9405             nan     0.1000    2.9449
##      8       20.0139             nan     0.1000    2.3924
##      9       17.6338             nan     0.1000    2.2205
##     10       15.7271             nan     0.1000    1.7723
##     20        6.9148             nan     0.1000    0.4317
##     40        3.6421             nan     0.1000    0.0048
##     60        3.0587             nan     0.1000    0.0015
##     80        2.7025             nan     0.1000   -0.0219
##    100        2.4415             nan     0.1000   -0.0081
##    120        2.2232             nan     0.1000   -0.0167
##    140        2.0697             nan     0.1000    0.0026
##    160        1.9610             nan     0.1000   -0.0059
##    180        1.8429             nan     0.1000   -0.0101
##    200        1.7591             nan     0.1000   -0.0212
##    220        1.6675             nan     0.1000   -0.0132
##    240        1.6116             nan     0.1000   -0.0190
##    260        1.5358             nan     0.1000   -0.0155
##    280        1.4640             nan     0.1000   -0.0078
##    300        1.4041             nan     0.1000   -0.0103
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.7819             nan     0.1000    9.1721
##      2       45.5996             nan     0.1000    7.9902
##      3       38.9345             nan     0.1000    6.4271
##      4       33.4925             nan     0.1000    4.4002
##      5       28.7884             nan     0.1000    4.1930
##      6       25.2573             nan     0.1000    3.4799
##      7       22.1783             nan     0.1000    2.8627
##      8       19.8720             nan     0.1000    2.2615
##      9       17.7070             nan     0.1000    1.9271
##     10       15.9230             nan     0.1000    1.8037
##     20        7.0199             nan     0.1000    0.3900
##     40        3.6359             nan     0.1000   -0.0012
##     60        3.0996             nan     0.1000    0.0018
##     80        2.7806             nan     0.1000   -0.0283
##    100        2.5150             nan     0.1000   -0.0111
##    120        2.3614             nan     0.1000   -0.0084
##    140        2.2095             nan     0.1000   -0.0159
##    160        2.0907             nan     0.1000   -0.0095
##    180        1.9944             nan     0.1000   -0.0154
##    200        1.8741             nan     0.1000   -0.0096
##    220        1.7875             nan     0.1000   -0.0215
##    240        1.7171             nan     0.1000   -0.0187
##    260        1.6560             nan     0.1000   -0.0247
##    280        1.5934             nan     0.1000   -0.0162
##    300        1.5309             nan     0.1000   -0.0068
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.1563             nan     0.1000    9.1890
##      2       47.1863             nan     0.1000    7.4860
##      3       40.5223             nan     0.1000    6.5973
##      4       35.0471             nan     0.1000    5.6348
##      5       30.5790             nan     0.1000    4.4031
##      6       26.9536             nan     0.1000    3.9411
##      7       23.7367             nan     0.1000    2.9762
##      8       21.0344             nan     0.1000    2.8311
##      9       18.6237             nan     0.1000    2.3509
##     10       16.9030             nan     0.1000    1.7766
##     20        7.5894             nan     0.1000    0.4691
##     40        4.2389             nan     0.1000    0.0239
##     60        3.5309             nan     0.1000    0.0059
##     80        3.0933             nan     0.1000    0.0011
##    100        2.8676             nan     0.1000   -0.0095
##    120        2.6494             nan     0.1000   -0.0116
##    140        2.4690             nan     0.1000   -0.0215
##    160        2.3283             nan     0.1000   -0.0267
##    180        2.2070             nan     0.1000    0.0005
##    200        2.1131             nan     0.1000   -0.0069
##    220        2.0109             nan     0.1000   -0.0085
##    240        1.9468             nan     0.1000   -0.0138
##    260        1.8766             nan     0.1000   -0.0273
##    280        1.8151             nan     0.1000   -0.0319
##    300        1.7568             nan     0.1000   -0.0061
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.9707             nan     0.1000    9.7861
##      2       44.6811             nan     0.1000    8.5758
##      3       38.0107             nan     0.1000    7.3145
##      4       32.6135             nan     0.1000    5.6445
##      5       27.9218             nan     0.1000    4.5815
##      6       24.1235             nan     0.1000    3.0533
##      7       20.9760             nan     0.1000    2.9903
##      8       18.0233             nan     0.1000    2.6554
##      9       15.8965             nan     0.1000    2.1371
##     10       13.8534             nan     0.1000    2.0530
##     20        5.5321             nan     0.1000    0.3555
##     40        2.9857             nan     0.1000   -0.0135
##     60        2.4533             nan     0.1000   -0.0049
##     80        2.0999             nan     0.1000   -0.0183
##    100        1.8238             nan     0.1000   -0.0019
##    120        1.6132             nan     0.1000   -0.0171
##    140        1.4482             nan     0.1000   -0.0144
##    160        1.3141             nan     0.1000   -0.0105
##    180        1.2308             nan     0.1000   -0.0128
##    200        1.1207             nan     0.1000   -0.0176
##    220        1.0379             nan     0.1000   -0.0112
##    240        0.9759             nan     0.1000   -0.0154
##    260        0.8945             nan     0.1000   -0.0102
##    280        0.8453             nan     0.1000   -0.0163
##    300        0.7891             nan     0.1000   -0.0083
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.2139             nan     0.1000    9.2980
##      2       44.6503             nan     0.1000    7.8656
##      3       38.0646             nan     0.1000    5.9041
##      4       32.6175             nan     0.1000    4.9176
##      5       27.9081             nan     0.1000    4.9373
##      6       24.3612             nan     0.1000    3.4839
##      7       21.0771             nan     0.1000    3.3119
##      8       18.2194             nan     0.1000    2.4167
##      9       16.0306             nan     0.1000    2.1591
##     10       14.1805             nan     0.1000    1.5558
##     20        5.7325             nan     0.1000    0.2454
##     40        3.2500             nan     0.1000    0.0113
##     60        2.6177             nan     0.1000   -0.0285
##     80        2.2816             nan     0.1000   -0.0196
##    100        2.0208             nan     0.1000   -0.0141
##    120        1.8317             nan     0.1000   -0.0233
##    140        1.6910             nan     0.1000   -0.0131
##    160        1.5778             nan     0.1000   -0.0106
##    180        1.4780             nan     0.1000   -0.0296
##    200        1.3784             nan     0.1000   -0.0274
##    220        1.2999             nan     0.1000   -0.0141
##    240        1.2365             nan     0.1000   -0.0123
##    260        1.1727             nan     0.1000   -0.0117
##    280        1.1066             nan     0.1000   -0.0061
##    300        1.0491             nan     0.1000   -0.0177
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.9383             nan     0.1000    8.6129
##      2       44.4343             nan     0.1000    8.8080
##      3       37.9714             nan     0.1000    6.4109
##      4       32.3280             nan     0.1000    6.3096
##      5       27.6423             nan     0.1000    4.1043
##      6       23.8484             nan     0.1000    3.1454
##      7       20.8135             nan     0.1000    3.1513
##      8       18.0614             nan     0.1000    2.4603
##      9       16.0158             nan     0.1000    1.8716
##     10       13.9073             nan     0.1000    2.1067
##     20        5.6968             nan     0.1000    0.2579
##     40        3.3720             nan     0.1000   -0.0007
##     60        2.8287             nan     0.1000   -0.0240
##     80        2.5373             nan     0.1000   -0.0132
##    100        2.2631             nan     0.1000   -0.0126
##    120        2.1034             nan     0.1000   -0.0166
##    140        1.9515             nan     0.1000   -0.0266
##    160        1.8362             nan     0.1000   -0.0282
##    180        1.7153             nan     0.1000   -0.0199
##    200        1.6567             nan     0.1000   -0.0148
##    220        1.5679             nan     0.1000   -0.0141
##    240        1.4944             nan     0.1000   -0.0118
##    260        1.4229             nan     0.1000   -0.0148
##    280        1.3772             nan     0.1000   -0.0179
##    300        1.3275             nan     0.1000   -0.0147
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0754             nan     0.0010    0.0752
##      2       61.9944             nan     0.0010    0.0749
##      3       61.9148             nan     0.0010    0.0745
##      4       61.8449             nan     0.0010    0.0772
##      5       61.7667             nan     0.0010    0.0757
##      6       61.6902             nan     0.0010    0.0715
##      7       61.6166             nan     0.0010    0.0794
##      8       61.5397             nan     0.0010    0.0824
##      9       61.4628             nan     0.0010    0.0789
##     10       61.3853             nan     0.0010    0.0717
##     20       60.6293             nan     0.0010    0.0757
##     40       59.1500             nan     0.0010    0.0752
##     60       57.7111             nan     0.0010    0.0667
##     80       56.3488             nan     0.0010    0.0683
##    100       55.0360             nan     0.0010    0.0636
##    120       53.7516             nan     0.0010    0.0647
##    140       52.5220             nan     0.0010    0.0580
##    160       51.3006             nan     0.0010    0.0645
##    180       50.1342             nan     0.0010    0.0540
##    200       49.0267             nan     0.0010    0.0529
##    220       47.9267             nan     0.0010    0.0511
##    240       46.8907             nan     0.0010    0.0504
##    260       45.8579             nan     0.0010    0.0477
##    280       44.8637             nan     0.0010    0.0408
##    300       43.9017             nan     0.0010    0.0472
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0732             nan     0.0010    0.0847
##      2       61.9964             nan     0.0010    0.0809
##      3       61.9168             nan     0.0010    0.0783
##      4       61.8338             nan     0.0010    0.0767
##      5       61.7634             nan     0.0010    0.0719
##      6       61.6853             nan     0.0010    0.0748
##      7       61.6082             nan     0.0010    0.0767
##      8       61.5272             nan     0.0010    0.0793
##      9       61.4484             nan     0.0010    0.0762
##     10       61.3695             nan     0.0010    0.0737
##     20       60.5923             nan     0.0010    0.0756
##     40       59.1248             nan     0.0010    0.0728
##     60       57.7153             nan     0.0010    0.0668
##     80       56.3447             nan     0.0010    0.0657
##    100       55.0031             nan     0.0010    0.0646
##    120       53.7289             nan     0.0010    0.0598
##    140       52.4527             nan     0.0010    0.0600
##    160       51.2282             nan     0.0010    0.0564
##    180       50.0588             nan     0.0010    0.0531
##    200       48.9181             nan     0.0010    0.0562
##    220       47.8340             nan     0.0010    0.0513
##    240       46.7881             nan     0.0010    0.0466
##    260       45.7916             nan     0.0010    0.0475
##    280       44.8138             nan     0.0010    0.0450
##    300       43.8557             nan     0.0010    0.0447
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0735             nan     0.0010    0.0789
##      2       61.9908             nan     0.0010    0.0718
##      3       61.9064             nan     0.0010    0.0772
##      4       61.8243             nan     0.0010    0.0781
##      5       61.7413             nan     0.0010    0.0768
##      6       61.6634             nan     0.0010    0.0827
##      7       61.5913             nan     0.0010    0.0773
##      8       61.5169             nan     0.0010    0.0743
##      9       61.4387             nan     0.0010    0.0768
##     10       61.3648             nan     0.0010    0.0730
##     20       60.5969             nan     0.0010    0.0777
##     40       59.1104             nan     0.0010    0.0785
##     60       57.6582             nan     0.0010    0.0720
##     80       56.2899             nan     0.0010    0.0702
##    100       54.9670             nan     0.0010    0.0645
##    120       53.6760             nan     0.0010    0.0677
##    140       52.4357             nan     0.0010    0.0632
##    160       51.2431             nan     0.0010    0.0562
##    180       50.0923             nan     0.0010    0.0513
##    200       48.9661             nan     0.0010    0.0513
##    220       47.8768             nan     0.0010    0.0478
##    240       46.8224             nan     0.0010    0.0528
##    260       45.7887             nan     0.0010    0.0512
##    280       44.8007             nan     0.0010    0.0487
##    300       43.8565             nan     0.0010    0.0461
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0569             nan     0.0010    0.0932
##      2       61.9628             nan     0.0010    0.0914
##      3       61.8697             nan     0.0010    0.0942
##      4       61.7765             nan     0.0010    0.0890
##      5       61.6767             nan     0.0010    0.0957
##      6       61.5796             nan     0.0010    0.0888
##      7       61.4921             nan     0.0010    0.0835
##      8       61.4007             nan     0.0010    0.0924
##      9       61.3097             nan     0.0010    0.0998
##     10       61.2124             nan     0.0010    0.0911
##     20       60.2761             nan     0.0010    0.0920
##     40       58.4661             nan     0.0010    0.0877
##     60       56.7267             nan     0.0010    0.0886
##     80       55.0407             nan     0.0010    0.0769
##    100       53.4041             nan     0.0010    0.0794
##    120       51.8241             nan     0.0010    0.0733
##    140       50.3060             nan     0.0010    0.0657
##    160       48.8152             nan     0.0010    0.0754
##    180       47.4212             nan     0.0010    0.0800
##    200       46.0678             nan     0.0010    0.0632
##    220       44.7154             nan     0.0010    0.0605
##    240       43.4422             nan     0.0010    0.0578
##    260       42.1901             nan     0.0010    0.0558
##    280       40.9969             nan     0.0010    0.0550
##    300       39.8451             nan     0.0010    0.0538
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0615             nan     0.0010    0.0869
##      2       61.9636             nan     0.0010    0.0919
##      3       61.8716             nan     0.0010    0.0934
##      4       61.7685             nan     0.0010    0.0908
##      5       61.6683             nan     0.0010    0.0832
##      6       61.5808             nan     0.0010    0.0941
##      7       61.4821             nan     0.0010    0.0957
##      8       61.3881             nan     0.0010    0.0988
##      9       61.2893             nan     0.0010    0.0948
##     10       61.1931             nan     0.0010    0.0948
##     20       60.2597             nan     0.0010    0.0944
##     40       58.4710             nan     0.0010    0.0846
##     60       56.7432             nan     0.0010    0.0823
##     80       55.0708             nan     0.0010    0.0974
##    100       53.4444             nan     0.0010    0.0774
##    120       51.8646             nan     0.0010    0.0800
##    140       50.3739             nan     0.0010    0.0724
##    160       48.9230             nan     0.0010    0.0712
##    180       47.4990             nan     0.0010    0.0703
##    200       46.1278             nan     0.0010    0.0723
##    220       44.8230             nan     0.0010    0.0651
##    240       43.5413             nan     0.0010    0.0635
##    260       42.3069             nan     0.0010    0.0621
##    280       41.1161             nan     0.0010    0.0542
##    300       39.9609             nan     0.0010    0.0484
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0533             nan     0.0010    0.0953
##      2       61.9562             nan     0.0010    0.0936
##      3       61.8628             nan     0.0010    0.0897
##      4       61.7658             nan     0.0010    0.1000
##      5       61.6749             nan     0.0010    0.0965
##      6       61.5776             nan     0.0010    0.0882
##      7       61.4912             nan     0.0010    0.0863
##      8       61.3948             nan     0.0010    0.0960
##      9       61.3015             nan     0.0010    0.0895
##     10       61.2091             nan     0.0010    0.0971
##     20       60.2833             nan     0.0010    0.0852
##     40       58.4648             nan     0.0010    0.0949
##     60       56.7434             nan     0.0010    0.0840
##     80       55.0648             nan     0.0010    0.0748
##    100       53.4397             nan     0.0010    0.0759
##    120       51.9124             nan     0.0010    0.0674
##    140       50.4004             nan     0.0010    0.0620
##    160       48.9113             nan     0.0010    0.0655
##    180       47.4650             nan     0.0010    0.0709
##    200       46.1079             nan     0.0010    0.0691
##    220       44.7768             nan     0.0010    0.0658
##    240       43.5088             nan     0.0010    0.0661
##    260       42.2929             nan     0.0010    0.0612
##    280       41.1244             nan     0.0010    0.0642
##    300       39.9607             nan     0.0010    0.0547
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0535             nan     0.0010    0.0949
##      2       61.9470             nan     0.0010    0.0964
##      3       61.8497             nan     0.0010    0.1027
##      4       61.7501             nan     0.0010    0.1037
##      5       61.6474             nan     0.0010    0.1051
##      6       61.5460             nan     0.0010    0.0935
##      7       61.4427             nan     0.0010    0.1046
##      8       61.3427             nan     0.0010    0.0963
##      9       61.2398             nan     0.0010    0.1018
##     10       61.1381             nan     0.0010    0.0887
##     20       60.1035             nan     0.0010    0.1012
##     40       58.1467             nan     0.0010    0.0974
##     60       56.2556             nan     0.0010    0.0902
##     80       54.4396             nan     0.0010    0.0928
##    100       52.7017             nan     0.0010    0.0865
##    120       51.0138             nan     0.0010    0.0816
##    140       49.3754             nan     0.0010    0.0830
##    160       47.8065             nan     0.0010    0.0801
##    180       46.2919             nan     0.0010    0.0686
##    200       44.8338             nan     0.0010    0.0677
##    220       43.4370             nan     0.0010    0.0680
##    240       42.1054             nan     0.0010    0.0577
##    260       40.8063             nan     0.0010    0.0572
##    280       39.5524             nan     0.0010    0.0640
##    300       38.3426             nan     0.0010    0.0642
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0484             nan     0.0010    0.0982
##      2       61.9410             nan     0.0010    0.0972
##      3       61.8399             nan     0.0010    0.0963
##      4       61.7362             nan     0.0010    0.1019
##      5       61.6293             nan     0.0010    0.1058
##      6       61.5222             nan     0.0010    0.0980
##      7       61.4175             nan     0.0010    0.1011
##      8       61.3186             nan     0.0010    0.0989
##      9       61.2162             nan     0.0010    0.0911
##     10       61.1142             nan     0.0010    0.1026
##     20       60.1100             nan     0.0010    0.0991
##     40       58.1639             nan     0.0010    0.0997
##     60       56.2672             nan     0.0010    0.0912
##     80       54.4613             nan     0.0010    0.0894
##    100       52.7050             nan     0.0010    0.0746
##    120       50.9962             nan     0.0010    0.0813
##    140       49.3956             nan     0.0010    0.0796
##    160       47.8326             nan     0.0010    0.0732
##    180       46.3232             nan     0.0010    0.0718
##    200       44.8864             nan     0.0010    0.0732
##    220       43.4862             nan     0.0010    0.0672
##    240       42.1325             nan     0.0010    0.0636
##    260       40.8369             nan     0.0010    0.0569
##    280       39.5922             nan     0.0010    0.0644
##    300       38.3999             nan     0.0010    0.0622
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.0482             nan     0.0010    0.0885
##      2       61.9460             nan     0.0010    0.0887
##      3       61.8374             nan     0.0010    0.0976
##      4       61.7402             nan     0.0010    0.0968
##      5       61.6362             nan     0.0010    0.1005
##      6       61.5349             nan     0.0010    0.0952
##      7       61.4314             nan     0.0010    0.0934
##      8       61.3271             nan     0.0010    0.0995
##      9       61.2319             nan     0.0010    0.0889
##     10       61.1332             nan     0.0010    0.1136
##     20       60.1121             nan     0.0010    0.1031
##     40       58.1720             nan     0.0010    0.0901
##     60       56.2782             nan     0.0010    0.0914
##     80       54.4693             nan     0.0010    0.0897
##    100       52.7310             nan     0.0010    0.0738
##    120       51.0239             nan     0.0010    0.0821
##    140       49.4025             nan     0.0010    0.0896
##    160       47.8426             nan     0.0010    0.0719
##    180       46.3611             nan     0.0010    0.0741
##    200       44.9207             nan     0.0010    0.0633
##    220       43.5344             nan     0.0010    0.0641
##    240       42.1867             nan     0.0010    0.0667
##    260       40.8935             nan     0.0010    0.0680
##    280       39.6392             nan     0.0010    0.0646
##    300       38.4372             nan     0.0010    0.0556
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.8013             nan     0.0050    0.3940
##      2       61.4273             nan     0.0050    0.3905
##      3       61.0467             nan     0.0050    0.3918
##      4       60.6320             nan     0.0050    0.3714
##      5       60.2337             nan     0.0050    0.3179
##      6       59.8424             nan     0.0050    0.3419
##      7       59.4652             nan     0.0050    0.3339
##      8       59.1070             nan     0.0050    0.3760
##      9       58.7424             nan     0.0050    0.3551
##     10       58.3652             nan     0.0050    0.3639
##     20       55.0203             nan     0.0050    0.3101
##     40       49.0159             nan     0.0050    0.2469
##     60       43.8181             nan     0.0050    0.2182
##     80       39.4206             nan     0.0050    0.1882
##    100       35.6427             nan     0.0050    0.1617
##    120       32.3715             nan     0.0050    0.1455
##    140       29.5224             nan     0.0050    0.1120
##    160       26.9839             nan     0.0050    0.1260
##    180       24.7179             nan     0.0050    0.0860
##    200       22.7791             nan     0.0050    0.0821
##    220       20.9972             nan     0.0050    0.0782
##    240       19.4274             nan     0.0050    0.0594
##    260       18.0247             nan     0.0050    0.0466
##    280       16.7899             nan     0.0050    0.0554
##    300       15.7104             nan     0.0050    0.0394
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7913             nan     0.0050    0.3838
##      2       61.3752             nan     0.0050    0.3916
##      3       61.0056             nan     0.0050    0.4250
##      4       60.6271             nan     0.0050    0.3433
##      5       60.2587             nan     0.0050    0.3902
##      6       59.9070             nan     0.0050    0.3567
##      7       59.5344             nan     0.0050    0.3827
##      8       59.1644             nan     0.0050    0.3657
##      9       58.8051             nan     0.0050    0.3604
##     10       58.4409             nan     0.0050    0.3521
##     20       54.9780             nan     0.0050    0.3185
##     40       48.8883             nan     0.0050    0.3307
##     60       43.7430             nan     0.0050    0.2296
##     80       39.2672             nan     0.0050    0.1936
##    100       35.4982             nan     0.0050    0.1458
##    120       32.2430             nan     0.0050    0.1452
##    140       29.4027             nan     0.0050    0.1282
##    160       26.8808             nan     0.0050    0.1120
##    180       24.7364             nan     0.0050    0.0744
##    200       22.7793             nan     0.0050    0.0846
##    220       21.0258             nan     0.0050    0.0763
##    240       19.5173             nan     0.0050    0.0676
##    260       18.1663             nan     0.0050    0.0578
##    280       16.9240             nan     0.0050    0.0535
##    300       15.8113             nan     0.0050    0.0475
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7560             nan     0.0050    0.3837
##      2       61.3484             nan     0.0050    0.3826
##      3       60.9640             nan     0.0050    0.3581
##      4       60.5900             nan     0.0050    0.3724
##      5       60.1948             nan     0.0050    0.3657
##      6       59.7810             nan     0.0050    0.3692
##      7       59.3983             nan     0.0050    0.3535
##      8       59.0475             nan     0.0050    0.3617
##      9       58.6901             nan     0.0050    0.3500
##     10       58.3794             nan     0.0050    0.3273
##     20       54.9717             nan     0.0050    0.3237
##     40       48.8789             nan     0.0050    0.2684
##     60       43.7436             nan     0.0050    0.2438
##     80       39.4726             nan     0.0050    0.1802
##    100       35.7320             nan     0.0050    0.1541
##    120       32.4690             nan     0.0050    0.1327
##    140       29.4687             nan     0.0050    0.1267
##    160       27.0201             nan     0.0050    0.1009
##    180       24.8866             nan     0.0050    0.0940
##    200       22.9038             nan     0.0050    0.0760
##    220       21.1575             nan     0.0050    0.0749
##    240       19.6249             nan     0.0050    0.0643
##    260       18.2312             nan     0.0050    0.0554
##    280       17.0024             nan     0.0050    0.0573
##    300       15.9227             nan     0.0050    0.0424
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.6587             nan     0.0050    0.4437
##      2       61.2363             nan     0.0050    0.4538
##      3       60.7644             nan     0.0050    0.4669
##      4       60.2862             nan     0.0050    0.4880
##      5       59.8129             nan     0.0050    0.4637
##      6       59.3794             nan     0.0050    0.4647
##      7       58.9161             nan     0.0050    0.4315
##      8       58.4572             nan     0.0050    0.4613
##      9       58.0083             nan     0.0050    0.4438
##     10       57.5568             nan     0.0050    0.4408
##     20       53.3935             nan     0.0050    0.4252
##     40       46.0538             nan     0.0050    0.3058
##     60       40.0296             nan     0.0050    0.2736
##     80       34.8097             nan     0.0050    0.2314
##    100       30.4461             nan     0.0050    0.1895
##    120       26.7644             nan     0.0050    0.1835
##    140       23.5844             nan     0.0050    0.1271
##    160       20.9156             nan     0.0050    0.1111
##    180       18.6935             nan     0.0050    0.1102
##    200       16.7587             nan     0.0050    0.0854
##    220       15.0980             nan     0.0050    0.0672
##    240       13.6913             nan     0.0050    0.0702
##    260       12.4581             nan     0.0050    0.0520
##    280       11.4309             nan     0.0050    0.0420
##    300       10.5095             nan     0.0050    0.0213
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.6371             nan     0.0050    0.5024
##      2       61.1131             nan     0.0050    0.4550
##      3       60.6149             nan     0.0050    0.5436
##      4       60.1676             nan     0.0050    0.4702
##      5       59.6905             nan     0.0050    0.4529
##      6       59.2430             nan     0.0050    0.4597
##      7       58.8313             nan     0.0050    0.4781
##      8       58.4044             nan     0.0050    0.4121
##      9       57.9581             nan     0.0050    0.4352
##     10       57.5030             nan     0.0050    0.4686
##     20       53.3394             nan     0.0050    0.3906
##     40       45.9382             nan     0.0050    0.3348
##     60       39.9076             nan     0.0050    0.2553
##     80       34.7763             nan     0.0050    0.2135
##    100       30.4254             nan     0.0050    0.1878
##    120       26.7179             nan     0.0050    0.1648
##    140       23.6075             nan     0.0050    0.1191
##    160       20.9111             nan     0.0050    0.1107
##    180       18.6767             nan     0.0050    0.0942
##    200       16.7609             nan     0.0050    0.0864
##    220       15.1449             nan     0.0050    0.0657
##    240       13.7362             nan     0.0050    0.0499
##    260       12.5057             nan     0.0050    0.0515
##    280       11.4558             nan     0.0050    0.0457
##    300       10.5327             nan     0.0050    0.0425
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.7045             nan     0.0050    0.4555
##      2       61.2307             nan     0.0050    0.4956
##      3       60.7374             nan     0.0050    0.4572
##      4       60.2460             nan     0.0050    0.4735
##      5       59.7690             nan     0.0050    0.4614
##      6       59.3268             nan     0.0050    0.4613
##      7       58.8671             nan     0.0050    0.4747
##      8       58.4424             nan     0.0050    0.4954
##      9       57.9534             nan     0.0050    0.4837
##     10       57.5284             nan     0.0050    0.4115
##     20       53.3126             nan     0.0050    0.3864
##     40       46.0677             nan     0.0050    0.3219
##     60       39.8460             nan     0.0050    0.2811
##     80       34.6812             nan     0.0050    0.2289
##    100       30.3641             nan     0.0050    0.1810
##    120       26.7799             nan     0.0050    0.1989
##    140       23.6737             nan     0.0050    0.1408
##    160       20.9643             nan     0.0050    0.1129
##    180       18.7490             nan     0.0050    0.0968
##    200       16.8292             nan     0.0050    0.0800
##    220       15.2089             nan     0.0050    0.0690
##    240       13.7859             nan     0.0050    0.0659
##    260       12.5957             nan     0.0050    0.0528
##    280       11.5883             nan     0.0050    0.0334
##    300       10.6699             nan     0.0050    0.0384
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.6353             nan     0.0050    0.5519
##      2       61.1346             nan     0.0050    0.4299
##      3       60.6312             nan     0.0050    0.5632
##      4       60.1312             nan     0.0050    0.5109
##      5       59.6430             nan     0.0050    0.4553
##      6       59.1545             nan     0.0050    0.5314
##      7       58.6790             nan     0.0050    0.4636
##      8       58.2003             nan     0.0050    0.4864
##      9       57.7212             nan     0.0050    0.4980
##     10       57.2296             nan     0.0050    0.4971
##     20       52.7991             nan     0.0050    0.4115
##     40       44.9785             nan     0.0050    0.3521
##     60       38.4985             nan     0.0050    0.2877
##     80       33.0659             nan     0.0050    0.2245
##    100       28.6096             nan     0.0050    0.2130
##    120       24.7756             nan     0.0050    0.1801
##    140       21.5699             nan     0.0050    0.1478
##    160       18.8711             nan     0.0050    0.1035
##    180       16.6246             nan     0.0050    0.0911
##    200       14.7360             nan     0.0050    0.0734
##    220       13.0971             nan     0.0050    0.0705
##    240       11.7674             nan     0.0050    0.0582
##    260       10.5959             nan     0.0050    0.0433
##    280        9.5910             nan     0.0050    0.0491
##    300        8.7180             nan     0.0050    0.0361
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.5865             nan     0.0050    0.5113
##      2       61.0476             nan     0.0050    0.5011
##      3       60.5360             nan     0.0050    0.4920
##      4       60.0268             nan     0.0050    0.4581
##      5       59.5429             nan     0.0050    0.5235
##      6       59.0419             nan     0.0050    0.5127
##      7       58.5302             nan     0.0050    0.4670
##      8       58.0035             nan     0.0050    0.4708
##      9       57.5166             nan     0.0050    0.4024
##     10       57.0574             nan     0.0050    0.4480
##     20       52.4945             nan     0.0050    0.4518
##     40       44.6545             nan     0.0050    0.3537
##     60       38.1660             nan     0.0050    0.2886
##     80       32.7930             nan     0.0050    0.1976
##    100       28.3346             nan     0.0050    0.2098
##    120       24.5394             nan     0.0050    0.1753
##    140       21.3893             nan     0.0050    0.1292
##    160       18.6919             nan     0.0050    0.1317
##    180       16.5379             nan     0.0050    0.0956
##    200       14.6294             nan     0.0050    0.0867
##    220       13.0218             nan     0.0050    0.0646
##    240       11.6787             nan     0.0050    0.0602
##    260       10.5161             nan     0.0050    0.0485
##    280        9.5395             nan     0.0050    0.0365
##    300        8.6836             nan     0.0050    0.0328
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.6303             nan     0.0050    0.5324
##      2       61.1122             nan     0.0050    0.4753
##      3       60.6015             nan     0.0050    0.5356
##      4       60.1255             nan     0.0050    0.5246
##      5       59.6110             nan     0.0050    0.5368
##      6       59.1192             nan     0.0050    0.4898
##      7       58.6151             nan     0.0050    0.3927
##      8       58.1453             nan     0.0050    0.4577
##      9       57.6599             nan     0.0050    0.4935
##     10       57.1819             nan     0.0050    0.4550
##     20       52.6634             nan     0.0050    0.4508
##     40       44.7811             nan     0.0050    0.3208
##     60       38.2726             nan     0.0050    0.2798
##     80       32.7781             nan     0.0050    0.2245
##    100       28.3698             nan     0.0050    0.1496
##    120       24.6218             nan     0.0050    0.1621
##    140       21.5323             nan     0.0050    0.1353
##    160       18.9178             nan     0.0050    0.1127
##    180       16.6798             nan     0.0050    0.0957
##    200       14.8004             nan     0.0050    0.0766
##    220       13.2281             nan     0.0050    0.0552
##    240       11.9034             nan     0.0050    0.0542
##    260       10.7549             nan     0.0050    0.0521
##    280        9.8052             nan     0.0050    0.0374
##    300        8.9338             nan     0.0050    0.0324
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.4231             nan     0.0100    0.8007
##      2       60.7208             nan     0.0100    0.7756
##      3       59.9001             nan     0.0100    0.7900
##      4       59.1177             nan     0.0100    0.7659
##      5       58.3836             nan     0.0100    0.7124
##      6       57.6161             nan     0.0100    0.7293
##      7       56.8811             nan     0.0100    0.6741
##      8       56.1679             nan     0.0100    0.6680
##      9       55.5531             nan     0.0100    0.6362
##     10       54.8288             nan     0.0100    0.6887
##     20       48.6874             nan     0.0100    0.5202
##     40       39.1993             nan     0.0100    0.4011
##     60       32.2603             nan     0.0100    0.2767
##     80       26.8401             nan     0.0100    0.2053
##    100       22.6455             nan     0.0100    0.1506
##    120       19.3788             nan     0.0100    0.1090
##    140       16.8443             nan     0.0100    0.0934
##    160       14.8269             nan     0.0100    0.0572
##    180       13.0820             nan     0.0100    0.0579
##    200       11.6962             nan     0.0100    0.0491
##    220       10.5427             nan     0.0100    0.0422
##    240        9.5580             nan     0.0100    0.0314
##    260        8.7387             nan     0.0100    0.0221
##    280        8.0300             nan     0.0100    0.0282
##    300        7.4375             nan     0.0100    0.0257
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3600             nan     0.0100    0.7558
##      2       60.5459             nan     0.0100    0.7606
##      3       59.8105             nan     0.0100    0.6519
##      4       59.0659             nan     0.0100    0.7656
##      5       58.4513             nan     0.0100    0.5058
##      6       57.7034             nan     0.0100    0.7403
##      7       56.8966             nan     0.0100    0.6698
##      8       56.1876             nan     0.0100    0.6694
##      9       55.4623             nan     0.0100    0.6713
##     10       54.9447             nan     0.0100    0.4854
##     20       48.9004             nan     0.0100    0.5285
##     40       39.4029             nan     0.0100    0.3740
##     60       32.2775             nan     0.0100    0.3039
##     80       26.9283             nan     0.0100    0.2215
##    100       22.7089             nan     0.0100    0.1393
##    120       19.3981             nan     0.0100    0.1489
##    140       16.8380             nan     0.0100    0.0653
##    160       14.7673             nan     0.0100    0.0835
##    180       13.0935             nan     0.0100    0.0619
##    200       11.7356             nan     0.0100    0.0524
##    220       10.5807             nan     0.0100    0.0485
##    240        9.6269             nan     0.0100    0.0359
##    260        8.8225             nan     0.0100    0.0325
##    280        8.1045             nan     0.0100    0.0348
##    300        7.5061             nan     0.0100    0.0099
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3586             nan     0.0100    0.8241
##      2       60.5408             nan     0.0100    0.7626
##      3       59.8011             nan     0.0100    0.7361
##      4       59.0550             nan     0.0100    0.6870
##      5       58.3047             nan     0.0100    0.7764
##      6       57.5439             nan     0.0100    0.6770
##      7       56.8631             nan     0.0100    0.7005
##      8       56.1105             nan     0.0100    0.6625
##      9       55.4377             nan     0.0100    0.5817
##     10       54.7771             nan     0.0100    0.6422
##     20       48.7684             nan     0.0100    0.4473
##     40       39.4221             nan     0.0100    0.3602
##     60       32.3534             nan     0.0100    0.2953
##     80       26.9362             nan     0.0100    0.2254
##    100       22.8215             nan     0.0100    0.1521
##    120       19.5177             nan     0.0100    0.1340
##    140       16.8965             nan     0.0100    0.1114
##    160       14.8573             nan     0.0100    0.0807
##    180       13.1023             nan     0.0100    0.0639
##    200       11.7385             nan     0.0100    0.0601
##    220       10.5853             nan     0.0100    0.0426
##    240        9.6286             nan     0.0100    0.0461
##    260        8.8038             nan     0.0100    0.0226
##    280        8.1240             nan     0.0100    0.0223
##    300        7.5596             nan     0.0100    0.0196
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1748             nan     0.0100    0.9225
##      2       60.2262             nan     0.0100    0.9542
##      3       59.3208             nan     0.0100    0.8691
##      4       58.4785             nan     0.0100    0.8508
##      5       57.6143             nan     0.0100    0.8536
##      6       56.7702             nan     0.0100    0.8668
##      7       55.9189             nan     0.0100    0.8224
##      8       55.1185             nan     0.0100    0.7958
##      9       54.2883             nan     0.0100    0.8005
##     10       53.5089             nan     0.0100    0.7170
##     20       46.0659             nan     0.0100    0.6700
##     40       34.5527             nan     0.0100    0.4690
##     60       26.4129             nan     0.0100    0.3331
##     80       20.8487             nan     0.0100    0.2085
##    100       16.7351             nan     0.0100    0.1743
##    120       13.6380             nan     0.0100    0.1527
##    140       11.3874             nan     0.0100    0.1108
##    160        9.5951             nan     0.0100    0.0553
##    180        8.2782             nan     0.0100    0.0510
##    200        7.2325             nan     0.0100    0.0406
##    220        6.4308             nan     0.0100    0.0139
##    240        5.8039             nan     0.0100    0.0250
##    260        5.3053             nan     0.0100    0.0156
##    280        4.8806             nan     0.0100    0.0100
##    300        4.5602             nan     0.0100    0.0126
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1454             nan     0.0100    0.9078
##      2       60.2830             nan     0.0100    0.7886
##      3       59.3483             nan     0.0100    0.9177
##      4       58.4292             nan     0.0100    0.8745
##      5       57.6168             nan     0.0100    0.7712
##      6       56.8135             nan     0.0100    0.8537
##      7       55.9700             nan     0.0100    0.9300
##      8       55.1174             nan     0.0100    0.8293
##      9       54.2800             nan     0.0100    0.8292
##     10       53.4601             nan     0.0100    0.7988
##     20       46.3006             nan     0.0100    0.6585
##     40       34.7816             nan     0.0100    0.4409
##     60       26.5888             nan     0.0100    0.3491
##     80       20.9903             nan     0.0100    0.2292
##    100       16.7414             nan     0.0100    0.2018
##    120       13.6748             nan     0.0100    0.1464
##    140       11.4045             nan     0.0100    0.0893
##    160        9.7239             nan     0.0100    0.0755
##    180        8.4059             nan     0.0100    0.0479
##    200        7.3742             nan     0.0100    0.0383
##    220        6.5432             nan     0.0100    0.0306
##    240        5.9193             nan     0.0100    0.0289
##    260        5.4264             nan     0.0100    0.0126
##    280        5.0076             nan     0.0100    0.0148
##    300        4.6764             nan     0.0100    0.0070
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2702             nan     0.0100    0.9618
##      2       60.3370             nan     0.0100    0.9253
##      3       59.4564             nan     0.0100    0.7831
##      4       58.5665             nan     0.0100    0.8549
##      5       57.6848             nan     0.0100    0.8334
##      6       56.7458             nan     0.0100    0.8260
##      7       55.9088             nan     0.0100    0.8905
##      8       55.0837             nan     0.0100    0.7875
##      9       54.1972             nan     0.0100    0.7993
##     10       53.4028             nan     0.0100    0.7641
##     20       45.9579             nan     0.0100    0.6195
##     40       34.7245             nan     0.0100    0.5085
##     60       26.6143             nan     0.0100    0.3099
##     80       20.7812             nan     0.0100    0.2808
##    100       16.5976             nan     0.0100    0.1782
##    120       13.5938             nan     0.0100    0.1216
##    140       11.3720             nan     0.0100    0.0809
##    160        9.7018             nan     0.0100    0.0634
##    180        8.4303             nan     0.0100    0.0399
##    200        7.4665             nan     0.0100    0.0333
##    220        6.6889             nan     0.0100    0.0318
##    240        6.0548             nan     0.0100    0.0232
##    260        5.5558             nan     0.0100    0.0139
##    280        5.1671             nan     0.0100    0.0080
##    300        4.8670             nan     0.0100    0.0109
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1397             nan     0.0100    0.9481
##      2       60.1652             nan     0.0100    0.9431
##      3       59.1255             nan     0.0100    1.0902
##      4       58.1310             nan     0.0100    0.9447
##      5       57.1268             nan     0.0100    1.0498
##      6       56.1676             nan     0.0100    0.9156
##      7       55.1973             nan     0.0100    0.8430
##      8       54.3437             nan     0.0100    0.9172
##      9       53.4160             nan     0.0100    0.8079
##     10       52.5049             nan     0.0100    0.8152
##     20       44.5611             nan     0.0100    0.6963
##     40       32.6146             nan     0.0100    0.4615
##     60       24.3069             nan     0.0100    0.3361
##     80       18.5712             nan     0.0100    0.2420
##    100       14.5428             nan     0.0100    0.1673
##    120       11.5675             nan     0.0100    0.1213
##    140        9.4294             nan     0.0100    0.0781
##    160        7.8655             nan     0.0100    0.0512
##    180        6.7116             nan     0.0100    0.0410
##    200        5.8183             nan     0.0100    0.0333
##    220        5.1399             nan     0.0100    0.0197
##    240        4.6297             nan     0.0100    0.0157
##    260        4.2213             nan     0.0100    0.0136
##    280        3.9168             nan     0.0100    0.0047
##    300        3.6971             nan     0.0100    0.0035
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.1740             nan     0.0100    1.0519
##      2       60.1188             nan     0.0100    1.0716
##      3       59.1260             nan     0.0100    0.9244
##      4       58.1686             nan     0.0100    1.0022
##      5       57.2757             nan     0.0100    0.9846
##      6       56.3190             nan     0.0100    0.9525
##      7       55.4157             nan     0.0100    0.8928
##      8       54.5039             nan     0.0100    0.8966
##      9       53.5836             nan     0.0100    0.8538
##     10       52.7147             nan     0.0100    0.8452
##     20       44.8009             nan     0.0100    0.7050
##     40       32.8674             nan     0.0100    0.4990
##     60       24.5232             nan     0.0100    0.3374
##     80       18.7407             nan     0.0100    0.2479
##    100       14.6645             nan     0.0100    0.1871
##    120       11.6529             nan     0.0100    0.1183
##    140        9.4896             nan     0.0100    0.0790
##    160        7.8928             nan     0.0100    0.0618
##    180        6.7143             nan     0.0100    0.0515
##    200        5.8534             nan     0.0100    0.0226
##    220        5.1790             nan     0.0100    0.0203
##    240        4.6851             nan     0.0100    0.0218
##    260        4.3072             nan     0.0100    0.0118
##    280        4.0149             nan     0.0100    0.0108
##    300        3.7968             nan     0.0100    0.0037
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.0917             nan     0.0100    0.9678
##      2       60.0817             nan     0.0100    0.9216
##      3       59.0580             nan     0.0100    0.9021
##      4       58.0686             nan     0.0100    0.9090
##      5       57.1175             nan     0.0100    0.9171
##      6       56.1692             nan     0.0100    0.8902
##      7       55.2549             nan     0.0100    0.7393
##      8       54.3358             nan     0.0100    0.9887
##      9       53.4711             nan     0.0100    0.7550
##     10       52.5489             nan     0.0100    0.9925
##     20       44.7001             nan     0.0100    0.7138
##     40       32.8364             nan     0.0100    0.5034
##     60       24.6005             nan     0.0100    0.3416
##     80       18.7804             nan     0.0100    0.1957
##    100       14.7232             nan     0.0100    0.1479
##    120       11.8868             nan     0.0100    0.1117
##    140        9.7532             nan     0.0100    0.0749
##    160        8.1380             nan     0.0100    0.0572
##    180        6.9660             nan     0.0100    0.0390
##    200        6.0923             nan     0.0100    0.0238
##    220        5.4283             nan     0.0100    0.0267
##    240        4.9539             nan     0.0100    0.0133
##    260        4.5813             nan     0.0100    0.0067
##    280        4.2816             nan     0.0100    0.0120
##    300        4.0674             nan     0.0100    0.0072
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.2534             nan     0.0500    3.6030
##      2       54.8797             nan     0.0500    3.4165
##      3       51.6796             nan     0.0500    3.5804
##      4       48.5075             nan     0.0500    2.5901
##      5       45.6180             nan     0.0500    2.6803
##      6       43.3479             nan     0.0500    2.3455
##      7       41.3246             nan     0.0500    1.8857
##      8       39.2339             nan     0.0500    2.1609
##      9       37.3741             nan     0.0500    1.8928
##     10       35.6579             nan     0.0500    1.7235
##     20       22.8101             nan     0.0500    0.7521
##     40       11.6224             nan     0.0500    0.2937
##     60        7.2572             nan     0.0500    0.1362
##     80        5.4200             nan     0.0500    0.0318
##    100        4.5073             nan     0.0500    0.0226
##    120        4.0736             nan     0.0500    0.0134
##    140        3.8111             nan     0.0500    0.0018
##    160        3.6503             nan     0.0500   -0.0048
##    180        3.5491             nan     0.0500   -0.0096
##    200        3.4563             nan     0.0500   -0.0176
##    220        3.3759             nan     0.0500   -0.0038
##    240        3.3072             nan     0.0500   -0.0066
##    260        3.2591             nan     0.0500   -0.0192
##    280        3.2157             nan     0.0500   -0.0172
##    300        3.1639             nan     0.0500   -0.0119
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.2560             nan     0.0500    3.5064
##      2       54.5276             nan     0.0500    3.5875
##      3       51.3591             nan     0.0500    3.1184
##      4       48.7859             nan     0.0500    2.7443
##      5       46.1874             nan     0.0500    2.9085
##      6       43.7173             nan     0.0500    2.1134
##      7       41.4212             nan     0.0500    2.0850
##      8       39.1853             nan     0.0500    1.8946
##      9       37.0825             nan     0.0500    2.0729
##     10       35.1468             nan     0.0500    1.7580
##     20       22.5776             nan     0.0500    0.8031
##     40       11.6206             nan     0.0500    0.2715
##     60        7.4707             nan     0.0500    0.0856
##     80        5.5864             nan     0.0500    0.0548
##    100        4.7037             nan     0.0500    0.0244
##    120        4.3023             nan     0.0500   -0.0080
##    140        4.0861             nan     0.0500   -0.0147
##    160        3.9502             nan     0.0500   -0.0048
##    180        3.8571             nan     0.0500   -0.0060
##    200        3.7622             nan     0.0500   -0.0150
##    220        3.6900             nan     0.0500   -0.0074
##    240        3.6125             nan     0.0500   -0.0118
##    260        3.5447             nan     0.0500   -0.0112
##    280        3.4844             nan     0.0500   -0.0074
##    300        3.4308             nan     0.0500   -0.0057
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.2425             nan     0.0500    3.6402
##      2       54.8341             nan     0.0500    3.5455
##      3       51.7669             nan     0.0500    3.2467
##      4       48.6089             nan     0.0500    2.8844
##      5       45.8432             nan     0.0500    2.4904
##      6       43.2550             nan     0.0500    2.4954
##      7       41.0027             nan     0.0500    2.1900
##      8       38.8791             nan     0.0500    2.1152
##      9       36.9871             nan     0.0500    1.9220
##     10       35.0691             nan     0.0500    1.7293
##     20       22.2124             nan     0.0500    0.8149
##     40       11.5265             nan     0.0500    0.1819
##     60        7.3282             nan     0.0500    0.1251
##     80        5.6070             nan     0.0500    0.0244
##    100        4.7250             nan     0.0500    0.0150
##    120        4.3044             nan     0.0500    0.0200
##    140        4.0935             nan     0.0500    0.0040
##    160        3.9500             nan     0.0500   -0.0147
##    180        3.8562             nan     0.0500   -0.0123
##    200        3.7650             nan     0.0500   -0.0117
##    220        3.6867             nan     0.0500   -0.0127
##    240        3.6261             nan     0.0500   -0.0037
##    260        3.5463             nan     0.0500   -0.0204
##    280        3.4972             nan     0.0500   -0.0127
##    300        3.4403             nan     0.0500   -0.0092
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.4434             nan     0.0500    4.5156
##      2       53.2742             nan     0.0500    4.4939
##      3       49.1448             nan     0.0500    3.3021
##      4       45.5540             nan     0.0500    3.1519
##      5       42.1434             nan     0.0500    2.9959
##      6       39.4618             nan     0.0500    2.8469
##      7       36.7950             nan     0.0500    2.8181
##      8       34.1095             nan     0.0500    2.3468
##      9       31.7386             nan     0.0500    2.3273
##     10       29.7039             nan     0.0500    1.9393
##     20       16.1708             nan     0.0500    0.8734
##     40        7.1538             nan     0.0500    0.1835
##     60        4.6287             nan     0.0500    0.0427
##     80        3.8657             nan     0.0500    0.0184
##    100        3.5266             nan     0.0500   -0.0049
##    120        3.2687             nan     0.0500   -0.0006
##    140        3.0761             nan     0.0500   -0.0121
##    160        2.9144             nan     0.0500   -0.0268
##    180        2.7923             nan     0.0500   -0.0160
##    200        2.6766             nan     0.0500   -0.0114
##    220        2.5744             nan     0.0500   -0.0122
##    240        2.4883             nan     0.0500   -0.0117
##    260        2.4030             nan     0.0500   -0.0101
##    280        2.3266             nan     0.0500   -0.0097
##    300        2.2621             nan     0.0500   -0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.4215             nan     0.0500    4.7022
##      2       53.3549             nan     0.0500    4.0126
##      3       49.7375             nan     0.0500    3.6852
##      4       46.0470             nan     0.0500    3.7257
##      5       42.6467             nan     0.0500    3.1709
##      6       39.6984             nan     0.0500    3.0781
##      7       36.8379             nan     0.0500    2.5795
##      8       34.2619             nan     0.0500    2.4993
##      9       31.9214             nan     0.0500    2.3402
##     10       29.9630             nan     0.0500    1.9617
##     20       16.6153             nan     0.0500    0.8801
##     40        7.2706             nan     0.0500    0.1712
##     60        4.6658             nan     0.0500    0.0499
##     80        3.8380             nan     0.0500    0.0122
##    100        3.5136             nan     0.0500   -0.0095
##    120        3.2897             nan     0.0500   -0.0095
##    140        3.1280             nan     0.0500   -0.0066
##    160        2.9705             nan     0.0500   -0.0041
##    180        2.8401             nan     0.0500   -0.0093
##    200        2.7415             nan     0.0500   -0.0201
##    220        2.6642             nan     0.0500   -0.0099
##    240        2.5819             nan     0.0500   -0.0080
##    260        2.4961             nan     0.0500   -0.0059
##    280        2.4364             nan     0.0500   -0.0130
##    300        2.3777             nan     0.0500   -0.0156
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.4194             nan     0.0500    4.5859
##      2       53.3151             nan     0.0500    4.0257
##      3       49.2358             nan     0.0500    3.7990
##      4       45.7718             nan     0.0500    3.4503
##      5       42.4331             nan     0.0500    3.3947
##      6       39.5492             nan     0.0500    2.7945
##      7       36.6082             nan     0.0500    2.8091
##      8       34.0460             nan     0.0500    2.5424
##      9       31.6251             nan     0.0500    2.1926
##     10       29.4588             nan     0.0500    1.8479
##     20       16.3896             nan     0.0500    0.7353
##     40        7.3636             nan     0.0500    0.1819
##     60        5.0105             nan     0.0500    0.0612
##     80        4.1535             nan     0.0500   -0.0134
##    100        3.8049             nan     0.0500   -0.0029
##    120        3.5872             nan     0.0500   -0.0050
##    140        3.4155             nan     0.0500   -0.0062
##    160        3.2761             nan     0.0500   -0.0034
##    180        3.1730             nan     0.0500   -0.0067
##    200        3.0738             nan     0.0500   -0.0294
##    220        3.0040             nan     0.0500   -0.0159
##    240        2.9184             nan     0.0500   -0.0045
##    260        2.8470             nan     0.0500   -0.0215
##    280        2.7782             nan     0.0500   -0.0089
##    300        2.7206             nan     0.0500   -0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.1493             nan     0.0500    5.2840
##      2       52.7253             nan     0.0500    4.6258
##      3       48.3251             nan     0.0500    4.0881
##      4       44.4757             nan     0.0500    4.0895
##      5       40.7156             nan     0.0500    3.3888
##      6       37.4532             nan     0.0500    3.2934
##      7       34.6238             nan     0.0500    2.7885
##      8       32.0164             nan     0.0500    2.3052
##      9       29.6723             nan     0.0500    2.0828
##     10       27.5223             nan     0.0500    1.5096
##     20       14.3407             nan     0.0500    0.8260
##     40        5.7545             nan     0.0500    0.1174
##     60        3.7773             nan     0.0500   -0.0004
##     80        3.1813             nan     0.0500    0.0023
##    100        2.8447             nan     0.0500   -0.0035
##    120        2.6232             nan     0.0500   -0.0167
##    140        2.4141             nan     0.0500   -0.0141
##    160        2.2726             nan     0.0500   -0.0046
##    180        2.1268             nan     0.0500   -0.0158
##    200        2.0063             nan     0.0500   -0.0075
##    220        1.9087             nan     0.0500   -0.0072
##    240        1.8250             nan     0.0500   -0.0148
##    260        1.7466             nan     0.0500   -0.0121
##    280        1.6703             nan     0.0500   -0.0028
##    300        1.5950             nan     0.0500   -0.0132
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.9273             nan     0.0500    4.9560
##      2       52.4925             nan     0.0500    4.0922
##      3       48.4572             nan     0.0500    3.7872
##      4       44.6431             nan     0.0500    3.8221
##      5       41.0599             nan     0.0500    3.4251
##      6       38.0074             nan     0.0500    3.3214
##      7       35.3221             nan     0.0500    2.8608
##      8       32.4084             nan     0.0500    2.5341
##      9       29.9304             nan     0.0500    2.2079
##     10       27.7384             nan     0.0500    1.7318
##     20       13.9907             nan     0.0500    0.7589
##     40        5.8195             nan     0.0500    0.1374
##     60        3.7736             nan     0.0500    0.0294
##     80        3.2198             nan     0.0500   -0.0111
##    100        2.9317             nan     0.0500   -0.0085
##    120        2.7332             nan     0.0500   -0.0119
##    140        2.5712             nan     0.0500   -0.0231
##    160        2.4465             nan     0.0500   -0.0048
##    180        2.3270             nan     0.0500   -0.0084
##    200        2.2186             nan     0.0500   -0.0097
##    220        2.1390             nan     0.0500   -0.0075
##    240        2.0454             nan     0.0500   -0.0121
##    260        1.9721             nan     0.0500   -0.0173
##    280        1.9142             nan     0.0500   -0.0077
##    300        1.8510             nan     0.0500   -0.0082
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.2062             nan     0.0500    5.2387
##      2       52.4758             nan     0.0500    4.6808
##      3       48.3354             nan     0.0500    3.6956
##      4       44.6485             nan     0.0500    3.7159
##      5       41.2736             nan     0.0500    3.2717
##      6       38.1773             nan     0.0500    2.9922
##      7       35.1989             nan     0.0500    2.9896
##      8       32.7926             nan     0.0500    2.4158
##      9       30.4482             nan     0.0500    2.1849
##     10       28.3454             nan     0.0500    2.0143
##     20       14.8611             nan     0.0500    0.7733
##     40        6.1952             nan     0.0500    0.1526
##     60        4.1152             nan     0.0500    0.0192
##     80        3.5772             nan     0.0500   -0.0132
##    100        3.2644             nan     0.0500    0.0089
##    120        3.0493             nan     0.0500   -0.0218
##    140        2.8741             nan     0.0500   -0.0316
##    160        2.7429             nan     0.0500   -0.0241
##    180        2.6357             nan     0.0500   -0.0275
##    200        2.5340             nan     0.0500   -0.0157
##    220        2.4447             nan     0.0500   -0.0112
##    240        2.3516             nan     0.0500   -0.0086
##    260        2.2655             nan     0.0500   -0.0161
##    280        2.2006             nan     0.0500   -0.0092
##    300        2.1331             nan     0.0500   -0.0183
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.2519             nan     0.1000    7.2808
##      2       48.8385             nan     0.1000    5.3792
##      3       43.1370             nan     0.1000    4.8991
##      4       38.7180             nan     0.1000    3.9991
##      5       34.6270             nan     0.1000    3.8094
##      6       31.1423             nan     0.1000    3.3074
##      7       28.3977             nan     0.1000    2.3973
##      8       25.8556             nan     0.1000    2.7475
##      9       23.7521             nan     0.1000    1.6160
##     10       21.6798             nan     0.1000    2.0473
##     20       11.3759             nan     0.1000    0.5226
##     40        5.5797             nan     0.1000    0.0719
##     60        4.1778             nan     0.1000    0.0239
##     80        3.8465             nan     0.1000   -0.0045
##    100        3.6747             nan     0.1000   -0.0146
##    120        3.5126             nan     0.1000   -0.0338
##    140        3.4040             nan     0.1000   -0.0182
##    160        3.2990             nan     0.1000   -0.0456
##    180        3.2227             nan     0.1000   -0.0378
##    200        3.1460             nan     0.1000   -0.0185
##    220        3.0808             nan     0.1000   -0.0153
##    240        3.0104             nan     0.1000   -0.0078
##    260        2.9527             nan     0.1000   -0.0396
##    280        2.8942             nan     0.1000   -0.0176
##    300        2.8480             nan     0.1000   -0.0083
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.4694             nan     0.1000    8.0310
##      2       47.9874             nan     0.1000    5.7711
##      3       42.9927             nan     0.1000    5.1930
##      4       38.6800             nan     0.1000    4.3663
##      5       34.7808             nan     0.1000    3.8020
##      6       31.4920             nan     0.1000    3.1924
##      7       28.7341             nan     0.1000    2.5443
##      8       26.3758             nan     0.1000    2.0459
##      9       24.1956             nan     0.1000    2.0098
##     10       22.1605             nan     0.1000    1.9664
##     20       11.3139             nan     0.1000    0.6063
##     40        5.5003             nan     0.1000    0.0833
##     60        4.2280             nan     0.1000   -0.0127
##     80        3.8615             nan     0.1000   -0.0060
##    100        3.7079             nan     0.1000   -0.0082
##    120        3.5857             nan     0.1000   -0.0140
##    140        3.4467             nan     0.1000   -0.0024
##    160        3.3587             nan     0.1000   -0.0279
##    180        3.2646             nan     0.1000   -0.0062
##    200        3.1941             nan     0.1000    0.0036
##    220        3.1277             nan     0.1000   -0.0144
##    240        3.0489             nan     0.1000   -0.0119
##    260        2.9967             nan     0.1000   -0.0102
##    280        2.9404             nan     0.1000   -0.0122
##    300        2.8758             nan     0.1000   -0.0137
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.4587             nan     0.1000    7.6187
##      2       47.9437             nan     0.1000    6.2158
##      3       43.1259             nan     0.1000    4.6328
##      4       38.5314             nan     0.1000    4.4688
##      5       34.6663             nan     0.1000    3.7476
##      6       31.3711             nan     0.1000    3.5992
##      7       28.5502             nan     0.1000    2.7294
##      8       26.0573             nan     0.1000    2.4504
##      9       23.6538             nan     0.1000    2.3747
##     10       21.9882             nan     0.1000    1.6029
##     20       11.3682             nan     0.1000    0.5170
##     40        5.7459             nan     0.1000    0.1119
##     60        4.5166             nan     0.1000    0.0139
##     80        4.2393             nan     0.1000    0.0082
##    100        4.0394             nan     0.1000   -0.0150
##    120        3.8616             nan     0.1000   -0.0010
##    140        3.7425             nan     0.1000   -0.0924
##    160        3.6142             nan     0.1000   -0.0031
##    180        3.5234             nan     0.1000   -0.0044
##    200        3.4781             nan     0.1000   -0.0529
##    220        3.3943             nan     0.1000   -0.0102
##    240        3.3243             nan     0.1000   -0.0173
##    260        3.2759             nan     0.1000   -0.0120
##    280        3.2320             nan     0.1000   -0.0114
##    300        3.1724             nan     0.1000   -0.0102
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.3096             nan     0.1000    8.5314
##      2       45.4998             nan     0.1000    6.7912
##      3       38.7594             nan     0.1000    6.5171
##      4       33.8719             nan     0.1000    5.0580
##      5       29.0378             nan     0.1000    4.1145
##      6       25.4573             nan     0.1000    3.3477
##      7       22.6303             nan     0.1000    2.8379
##      8       19.9825             nan     0.1000    2.3083
##      9       17.9873             nan     0.1000    1.9695
##     10       16.1727             nan     0.1000    1.5339
##     20        7.2310             nan     0.1000    0.4441
##     40        3.8311             nan     0.1000   -0.0245
##     60        3.2329             nan     0.1000   -0.0186
##     80        2.9147             nan     0.1000   -0.0448
##    100        2.6836             nan     0.1000   -0.0201
##    120        2.4390             nan     0.1000   -0.0113
##    140        2.3024             nan     0.1000   -0.0216
##    160        2.1839             nan     0.1000   -0.0127
##    180        2.0588             nan     0.1000   -0.0063
##    200        1.9567             nan     0.1000   -0.0079
##    220        1.8538             nan     0.1000   -0.0232
##    240        1.7650             nan     0.1000   -0.0150
##    260        1.6779             nan     0.1000   -0.0216
##    280        1.6037             nan     0.1000   -0.0072
##    300        1.5452             nan     0.1000   -0.0209
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.8403             nan     0.1000    8.6354
##      2       46.1187             nan     0.1000    7.9219
##      3       39.5187             nan     0.1000    5.8935
##      4       34.1482             nan     0.1000    4.8524
##      5       29.9186             nan     0.1000    4.3602
##      6       26.0963             nan     0.1000    3.5270
##      7       22.7955             nan     0.1000    2.7100
##      8       20.1212             nan     0.1000    2.7340
##      9       18.1685             nan     0.1000    2.0491
##     10       16.0809             nan     0.1000    1.9504
##     20        7.3458             nan     0.1000    0.4680
##     40        3.9806             nan     0.1000   -0.0433
##     60        3.4534             nan     0.1000   -0.0373
##     80        3.1162             nan     0.1000   -0.0349
##    100        2.8808             nan     0.1000   -0.0286
##    120        2.6949             nan     0.1000   -0.0313
##    140        2.5612             nan     0.1000   -0.0274
##    160        2.4452             nan     0.1000   -0.0118
##    180        2.3093             nan     0.1000   -0.0110
##    200        2.1774             nan     0.1000   -0.0211
##    220        2.0661             nan     0.1000   -0.0149
##    240        1.9620             nan     0.1000   -0.0153
##    260        1.8949             nan     0.1000   -0.0340
##    280        1.8361             nan     0.1000   -0.0092
##    300        1.7833             nan     0.1000   -0.0426
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.2139             nan     0.1000    9.4245
##      2       45.6649             nan     0.1000    7.5648
##      3       39.0282             nan     0.1000    6.1342
##      4       33.5679             nan     0.1000    4.7540
##      5       29.3337             nan     0.1000    4.4004
##      6       25.6204             nan     0.1000    3.2573
##      7       22.4464             nan     0.1000    3.1265
##      8       19.8619             nan     0.1000    2.7744
##      9       17.8559             nan     0.1000    1.6435
##     10       16.0163             nan     0.1000    1.5528
##     20        6.9525             nan     0.1000    0.3251
##     40        3.9836             nan     0.1000    0.0039
##     60        3.4919             nan     0.1000   -0.0002
##     80        3.2220             nan     0.1000   -0.0073
##    100        3.0092             nan     0.1000   -0.0309
##    120        2.8362             nan     0.1000   -0.0085
##    140        2.6935             nan     0.1000   -0.0212
##    160        2.5758             nan     0.1000   -0.0162
##    180        2.4543             nan     0.1000   -0.0250
##    200        2.3784             nan     0.1000   -0.0245
##    220        2.2779             nan     0.1000   -0.0212
##    240        2.2115             nan     0.1000   -0.0294
##    260        2.1506             nan     0.1000   -0.0178
##    280        2.0607             nan     0.1000   -0.0197
##    300        2.0014             nan     0.1000   -0.0006
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.6153             nan     0.1000    8.4321
##      2       44.2954             nan     0.1000    8.3473
##      3       37.4082             nan     0.1000    6.3862
##      4       31.9636             nan     0.1000    5.3846
##      5       27.2449             nan     0.1000    4.5080
##      6       23.2462             nan     0.1000    3.6538
##      7       20.1999             nan     0.1000    2.8267
##      8       17.6731             nan     0.1000    2.2228
##      9       15.5209             nan     0.1000    1.9011
##     10       13.8604             nan     0.1000    1.6398
##     20        5.6648             nan     0.1000    0.2788
##     40        3.1494             nan     0.1000   -0.0405
##     60        2.6485             nan     0.1000   -0.0182
##     80        2.3594             nan     0.1000   -0.0319
##    100        2.1243             nan     0.1000   -0.0320
##    120        1.9257             nan     0.1000   -0.0339
##    140        1.7458             nan     0.1000   -0.0097
##    160        1.5714             nan     0.1000   -0.0087
##    180        1.4227             nan     0.1000   -0.0151
##    200        1.3388             nan     0.1000   -0.0307
##    220        1.2382             nan     0.1000   -0.0045
##    240        1.1606             nan     0.1000   -0.0154
##    260        1.0775             nan     0.1000   -0.0059
##    280        1.0092             nan     0.1000   -0.0176
##    300        0.9604             nan     0.1000   -0.0101
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.5860             nan     0.1000   10.9157
##      2       44.1911             nan     0.1000    7.4573
##      3       37.4138             nan     0.1000    6.0457
##      4       31.8673             nan     0.1000    4.4237
##      5       27.1001             nan     0.1000    4.8438
##      6       23.2851             nan     0.1000    3.6523
##      7       20.1336             nan     0.1000    2.9804
##      8       17.7856             nan     0.1000    2.3090
##      9       15.5223             nan     0.1000    2.0453
##     10       13.8175             nan     0.1000    1.6056
##     20        5.6989             nan     0.1000    0.2499
##     40        3.4330             nan     0.1000    0.0047
##     60        2.8632             nan     0.1000   -0.0266
##     80        2.5942             nan     0.1000   -0.0343
##    100        2.3447             nan     0.1000   -0.0230
##    120        2.1551             nan     0.1000   -0.0233
##    140        2.0124             nan     0.1000   -0.0231
##    160        1.8754             nan     0.1000   -0.0199
##    180        1.7682             nan     0.1000   -0.0349
##    200        1.6536             nan     0.1000   -0.0211
##    220        1.5559             nan     0.1000   -0.0212
##    240        1.4795             nan     0.1000   -0.0255
##    260        1.3988             nan     0.1000   -0.0312
##    280        1.3280             nan     0.1000   -0.0245
##    300        1.2605             nan     0.1000   -0.0094
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.2222             nan     0.1000    9.7520
##      2       44.2249             nan     0.1000    6.6681
##      3       37.8111             nan     0.1000    6.5418
##      4       32.1561             nan     0.1000    5.9792
##      5       27.6798             nan     0.1000    4.0953
##      6       24.2646             nan     0.1000    3.5137
##      7       21.0487             nan     0.1000    3.6537
##      8       18.4753             nan     0.1000    2.5513
##      9       16.0060             nan     0.1000    2.3638
##     10       14.2300             nan     0.1000    1.7477
##     20        5.9290             nan     0.1000    0.3327
##     40        3.5796             nan     0.1000   -0.0425
##     60        3.1047             nan     0.1000   -0.0211
##     80        2.7799             nan     0.1000   -0.0433
##    100        2.5470             nan     0.1000   -0.0328
##    120        2.3886             nan     0.1000   -0.0143
##    140        2.2461             nan     0.1000   -0.0225
##    160        2.1077             nan     0.1000   -0.0159
##    180        1.9705             nan     0.1000   -0.0369
##    200        1.8882             nan     0.1000   -0.0129
##    220        1.7932             nan     0.1000   -0.0199
##    240        1.7224             nan     0.1000   -0.0095
##    260        1.6360             nan     0.1000   -0.0303
##    280        1.5634             nan     0.1000   -0.0255
##    300        1.4883             nan     0.1000   -0.0183
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7976             nan     0.0010    0.0825
##      2       63.7191             nan     0.0010    0.0814
##      3       63.6293             nan     0.0010    0.0772
##      4       63.5522             nan     0.0010    0.0815
##      5       63.4738             nan     0.0010    0.0782
##      6       63.3841             nan     0.0010    0.0804
##      7       63.2936             nan     0.0010    0.0810
##      8       63.2160             nan     0.0010    0.0807
##      9       63.1447             nan     0.0010    0.0793
##     10       63.0633             nan     0.0010    0.0824
##     20       62.2502             nan     0.0010    0.0743
##     40       60.6882             nan     0.0010    0.0743
##     60       59.2090             nan     0.0010    0.0693
##     80       57.7725             nan     0.0010    0.0691
##    100       56.3916             nan     0.0010    0.0754
##    120       55.0718             nan     0.0010    0.0671
##    140       53.8158             nan     0.0010    0.0624
##    160       52.5636             nan     0.0010    0.0595
##    180       51.3826             nan     0.0010    0.0491
##    200       50.2389             nan     0.0010    0.0534
##    220       49.1362             nan     0.0010    0.0523
##    240       48.0150             nan     0.0010    0.0566
##    260       46.9600             nan     0.0010    0.0551
##    280       45.9263             nan     0.0010    0.0441
##    300       44.9133             nan     0.0010    0.0446
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7868             nan     0.0010    0.0803
##      2       63.7015             nan     0.0010    0.0790
##      3       63.6202             nan     0.0010    0.0788
##      4       63.5370             nan     0.0010    0.0812
##      5       63.4541             nan     0.0010    0.0780
##      6       63.3738             nan     0.0010    0.0793
##      7       63.2869             nan     0.0010    0.0822
##      8       63.2098             nan     0.0010    0.0809
##      9       63.1302             nan     0.0010    0.0831
##     10       63.0485             nan     0.0010    0.0782
##     20       62.2479             nan     0.0010    0.0761
##     40       60.7239             nan     0.0010    0.0739
##     60       59.2214             nan     0.0010    0.0852
##     80       57.7879             nan     0.0010    0.0728
##    100       56.4212             nan     0.0010    0.0699
##    120       55.0999             nan     0.0010    0.0641
##    140       53.7960             nan     0.0010    0.0633
##    160       52.5424             nan     0.0010    0.0597
##    180       51.3378             nan     0.0010    0.0569
##    200       50.1731             nan     0.0010    0.0558
##    220       49.0710             nan     0.0010    0.0443
##    240       48.0023             nan     0.0010    0.0470
##    260       46.9697             nan     0.0010    0.0494
##    280       45.9347             nan     0.0010    0.0528
##    300       44.9777             nan     0.0010    0.0512
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7893             nan     0.0010    0.0821
##      2       63.7105             nan     0.0010    0.0778
##      3       63.6335             nan     0.0010    0.0816
##      4       63.5519             nan     0.0010    0.0791
##      5       63.4669             nan     0.0010    0.0798
##      6       63.3842             nan     0.0010    0.0803
##      7       63.3005             nan     0.0010    0.0811
##      8       63.2244             nan     0.0010    0.0791
##      9       63.1499             nan     0.0010    0.0738
##     10       63.0668             nan     0.0010    0.0774
##     20       62.2674             nan     0.0010    0.0773
##     40       60.7583             nan     0.0010    0.0782
##     60       59.2267             nan     0.0010    0.0734
##     80       57.7977             nan     0.0010    0.0672
##    100       56.4198             nan     0.0010    0.0704
##    120       55.0706             nan     0.0010    0.0685
##    140       53.7477             nan     0.0010    0.0643
##    160       52.5420             nan     0.0010    0.0580
##    180       51.3302             nan     0.0010    0.0581
##    200       50.1600             nan     0.0010    0.0557
##    220       49.0133             nan     0.0010    0.0535
##    240       47.9221             nan     0.0010    0.0505
##    260       46.8751             nan     0.0010    0.0446
##    280       45.8415             nan     0.0010    0.0490
##    300       44.8573             nan     0.0010    0.0478
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7761             nan     0.0010    0.0962
##      2       63.6782             nan     0.0010    0.0884
##      3       63.5730             nan     0.0010    0.0929
##      4       63.4830             nan     0.0010    0.0893
##      5       63.3878             nan     0.0010    0.0941
##      6       63.2908             nan     0.0010    0.0934
##      7       63.1954             nan     0.0010    0.0872
##      8       63.1044             nan     0.0010    0.0940
##      9       63.0111             nan     0.0010    0.0951
##     10       62.9121             nan     0.0010    0.0874
##     20       61.9500             nan     0.0010    0.0995
##     40       60.1057             nan     0.0010    0.0911
##     60       58.3349             nan     0.0010    0.0708
##     80       56.6241             nan     0.0010    0.0716
##    100       54.9640             nan     0.0010    0.0826
##    120       53.3469             nan     0.0010    0.0727
##    140       51.7707             nan     0.0010    0.0792
##    160       50.2779             nan     0.0010    0.0719
##    180       48.8283             nan     0.0010    0.0702
##    200       47.4466             nan     0.0010    0.0651
##    220       46.0683             nan     0.0010    0.0638
##    240       44.7518             nan     0.0010    0.0623
##    260       43.4903             nan     0.0010    0.0607
##    280       42.2750             nan     0.0010    0.0648
##    300       41.1076             nan     0.0010    0.0551
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7803             nan     0.0010    0.1021
##      2       63.6833             nan     0.0010    0.0916
##      3       63.5894             nan     0.0010    0.0983
##      4       63.4947             nan     0.0010    0.0934
##      5       63.3992             nan     0.0010    0.1003
##      6       63.3129             nan     0.0010    0.0958
##      7       63.2180             nan     0.0010    0.0953
##      8       63.1211             nan     0.0010    0.0962
##      9       63.0287             nan     0.0010    0.0992
##     10       62.9235             nan     0.0010    0.1007
##     20       61.9919             nan     0.0010    0.0940
##     40       60.1210             nan     0.0010    0.0844
##     60       58.3906             nan     0.0010    0.0927
##     80       56.6686             nan     0.0010    0.0806
##    100       55.0006             nan     0.0010    0.0787
##    120       53.3700             nan     0.0010    0.0761
##    140       51.8487             nan     0.0010    0.0732
##    160       50.3262             nan     0.0010    0.0801
##    180       48.8563             nan     0.0010    0.0730
##    200       47.4548             nan     0.0010    0.0701
##    220       46.0734             nan     0.0010    0.0631
##    240       44.7460             nan     0.0010    0.0566
##    260       43.4945             nan     0.0010    0.0673
##    280       42.2294             nan     0.0010    0.0606
##    300       41.0425             nan     0.0010    0.0532
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7747             nan     0.0010    0.0963
##      2       63.6808             nan     0.0010    0.0853
##      3       63.5824             nan     0.0010    0.1033
##      4       63.4807             nan     0.0010    0.0980
##      5       63.3816             nan     0.0010    0.1024
##      6       63.2818             nan     0.0010    0.1021
##      7       63.1951             nan     0.0010    0.0963
##      8       63.1015             nan     0.0010    0.0931
##      9       63.0037             nan     0.0010    0.1019
##     10       62.9097             nan     0.0010    0.0878
##     20       61.9506             nan     0.0010    0.0865
##     40       60.0968             nan     0.0010    0.1002
##     60       58.3258             nan     0.0010    0.0810
##     80       56.5582             nan     0.0010    0.0933
##    100       54.8983             nan     0.0010    0.0795
##    120       53.2809             nan     0.0010    0.0820
##    140       51.7103             nan     0.0010    0.0667
##    160       50.2203             nan     0.0010    0.0713
##    180       48.7652             nan     0.0010    0.0671
##    200       47.3852             nan     0.0010    0.0706
##    220       46.0058             nan     0.0010    0.0661
##    240       44.6825             nan     0.0010    0.0625
##    260       43.3756             nan     0.0010    0.0660
##    280       42.1308             nan     0.0010    0.0617
##    300       40.9609             nan     0.0010    0.0601
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7664             nan     0.0010    0.1154
##      2       63.6601             nan     0.0010    0.1074
##      3       63.5505             nan     0.0010    0.1121
##      4       63.4409             nan     0.0010    0.1114
##      5       63.3351             nan     0.0010    0.1075
##      6       63.2307             nan     0.0010    0.1052
##      7       63.1336             nan     0.0010    0.1009
##      8       63.0305             nan     0.0010    0.1068
##      9       62.9262             nan     0.0010    0.1004
##     10       62.8166             nan     0.0010    0.0877
##     20       61.7764             nan     0.0010    0.1098
##     40       59.7509             nan     0.0010    0.1003
##     60       57.8079             nan     0.0010    0.1053
##     80       55.9330             nan     0.0010    0.0979
##    100       54.1147             nan     0.0010    0.0789
##    120       52.3772             nan     0.0010    0.0837
##    140       50.7008             nan     0.0010    0.0742
##    160       49.0947             nan     0.0010    0.0741
##    180       47.5479             nan     0.0010    0.0768
##    200       46.0509             nan     0.0010    0.0725
##    220       44.6105             nan     0.0010    0.0686
##    240       43.2277             nan     0.0010    0.0610
##    260       41.8730             nan     0.0010    0.0636
##    280       40.5878             nan     0.0010    0.0622
##    300       39.3675             nan     0.0010    0.0627
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7696             nan     0.0010    0.0984
##      2       63.6612             nan     0.0010    0.1021
##      3       63.5487             nan     0.0010    0.1016
##      4       63.4423             nan     0.0010    0.1058
##      5       63.3373             nan     0.0010    0.1036
##      6       63.2385             nan     0.0010    0.0959
##      7       63.1402             nan     0.0010    0.0996
##      8       63.0363             nan     0.0010    0.1072
##      9       62.9320             nan     0.0010    0.1012
##     10       62.8284             nan     0.0010    0.1010
##     20       61.7994             nan     0.0010    0.0943
##     40       59.7983             nan     0.0010    0.1018
##     60       57.8627             nan     0.0010    0.0907
##     80       55.9810             nan     0.0010    0.0876
##    100       54.1896             nan     0.0010    0.0788
##    120       52.4772             nan     0.0010    0.0818
##    140       50.8092             nan     0.0010    0.0848
##    160       49.2015             nan     0.0010    0.0742
##    180       47.6802             nan     0.0010    0.0788
##    200       46.1951             nan     0.0010    0.0712
##    220       44.7634             nan     0.0010    0.0788
##    240       43.3808             nan     0.0010    0.0590
##    260       42.0442             nan     0.0010    0.0685
##    280       40.7677             nan     0.0010    0.0586
##    300       39.5152             nan     0.0010    0.0574
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.7746             nan     0.0010    0.1062
##      2       63.6663             nan     0.0010    0.0910
##      3       63.5527             nan     0.0010    0.1027
##      4       63.4461             nan     0.0010    0.0992
##      5       63.3401             nan     0.0010    0.1125
##      6       63.2336             nan     0.0010    0.1059
##      7       63.1283             nan     0.0010    0.1070
##      8       63.0259             nan     0.0010    0.1086
##      9       62.9242             nan     0.0010    0.0914
##     10       62.8105             nan     0.0010    0.1010
##     20       61.7623             nan     0.0010    0.1061
##     40       59.7313             nan     0.0010    0.0967
##     60       57.7695             nan     0.0010    0.0875
##     80       55.9153             nan     0.0010    0.0931
##    100       54.1133             nan     0.0010    0.0849
##    120       52.3695             nan     0.0010    0.0795
##    140       50.6930             nan     0.0010    0.0752
##    160       49.0910             nan     0.0010    0.0796
##    180       47.5136             nan     0.0010    0.0746
##    200       46.0264             nan     0.0010    0.0693
##    220       44.5939             nan     0.0010    0.0681
##    240       43.1947             nan     0.0010    0.0650
##    260       41.8713             nan     0.0010    0.0704
##    280       40.5937             nan     0.0010    0.0472
##    300       39.3529             nan     0.0010    0.0626
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.4674             nan     0.0050    0.3942
##      2       63.0404             nan     0.0050    0.3799
##      3       62.6887             nan     0.0050    0.3692
##      4       62.2734             nan     0.0050    0.3956
##      5       61.8859             nan     0.0050    0.4082
##      6       61.5086             nan     0.0050    0.3512
##      7       61.1209             nan     0.0050    0.3848
##      8       60.7714             nan     0.0050    0.3452
##      9       60.4047             nan     0.0050    0.3670
##     10       60.0606             nan     0.0050    0.3515
##     20       56.5705             nan     0.0050    0.3240
##     40       50.2310             nan     0.0050    0.2640
##     60       44.9187             nan     0.0050    0.1900
##     80       40.3511             nan     0.0050    0.1941
##    100       36.4239             nan     0.0050    0.1758
##    120       33.0351             nan     0.0050    0.1602
##    140       30.0522             nan     0.0050    0.1319
##    160       27.4180             nan     0.0050    0.1043
##    180       25.1644             nan     0.0050    0.1023
##    200       23.1370             nan     0.0050    0.0873
##    220       21.3319             nan     0.0050    0.0730
##    240       19.7347             nan     0.0050    0.0837
##    260       18.3810             nan     0.0050    0.0572
##    280       17.1238             nan     0.0050    0.0549
##    300       16.0522             nan     0.0050    0.0348
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.5019             nan     0.0050    0.3648
##      2       63.1174             nan     0.0050    0.4059
##      3       62.7012             nan     0.0050    0.4015
##      4       62.3150             nan     0.0050    0.3714
##      5       61.9318             nan     0.0050    0.4048
##      6       61.5673             nan     0.0050    0.3764
##      7       61.1731             nan     0.0050    0.3916
##      8       60.8034             nan     0.0050    0.3576
##      9       60.4358             nan     0.0050    0.3312
##     10       60.0459             nan     0.0050    0.3838
##     20       56.5657             nan     0.0050    0.3557
##     40       50.3314             nan     0.0050    0.2928
##     60       44.9119             nan     0.0050    0.2382
##     80       40.4034             nan     0.0050    0.1981
##    100       36.4403             nan     0.0050    0.1845
##    120       32.9311             nan     0.0050    0.1328
##    140       29.9776             nan     0.0050    0.1362
##    160       27.3738             nan     0.0050    0.1318
##    180       25.1451             nan     0.0050    0.1154
##    200       23.0938             nan     0.0050    0.0813
##    220       21.3222             nan     0.0050    0.0806
##    240       19.7733             nan     0.0050    0.0602
##    260       18.3795             nan     0.0050    0.0604
##    280       17.1463             nan     0.0050    0.0529
##    300       16.0359             nan     0.0050    0.0548
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.4644             nan     0.0050    0.3810
##      2       63.0547             nan     0.0050    0.3635
##      3       62.6711             nan     0.0050    0.3577
##      4       62.2519             nan     0.0050    0.3982
##      5       61.8314             nan     0.0050    0.4140
##      6       61.4540             nan     0.0050    0.3919
##      7       61.0668             nan     0.0050    0.3798
##      8       60.6760             nan     0.0050    0.3555
##      9       60.2737             nan     0.0050    0.3743
##     10       59.8952             nan     0.0050    0.3619
##     20       56.3401             nan     0.0050    0.3026
##     40       50.1040             nan     0.0050    0.2380
##     60       44.8081             nan     0.0050    0.2419
##     80       40.2672             nan     0.0050    0.1859
##    100       36.3501             nan     0.0050    0.1694
##    120       32.9973             nan     0.0050    0.1670
##    140       30.0120             nan     0.0050    0.1215
##    160       27.4002             nan     0.0050    0.1185
##    180       25.0618             nan     0.0050    0.1073
##    200       23.1066             nan     0.0050    0.0858
##    220       21.2885             nan     0.0050    0.0852
##    240       19.7367             nan     0.0050    0.0673
##    260       18.3070             nan     0.0050    0.0704
##    280       17.0554             nan     0.0050    0.0500
##    300       15.9582             nan     0.0050    0.0416
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.4203             nan     0.0050    0.4590
##      2       62.9699             nan     0.0050    0.4433
##      3       62.5010             nan     0.0050    0.4675
##      4       62.0154             nan     0.0050    0.4805
##      5       61.5497             nan     0.0050    0.4652
##      6       61.0957             nan     0.0050    0.4501
##      7       60.6408             nan     0.0050    0.4339
##      8       60.1705             nan     0.0050    0.4474
##      9       59.7030             nan     0.0050    0.4528
##     10       59.2418             nan     0.0050    0.4748
##     20       54.9169             nan     0.0050    0.4404
##     40       47.3257             nan     0.0050    0.3872
##     60       40.9852             nan     0.0050    0.2847
##     80       35.5579             nan     0.0050    0.2823
##    100       31.1244             nan     0.0050    0.1859
##    120       27.3711             nan     0.0050    0.1676
##    140       24.1833             nan     0.0050    0.1545
##    160       21.4516             nan     0.0050    0.1324
##    180       19.1332             nan     0.0050    0.1029
##    200       17.1821             nan     0.0050    0.0888
##    220       15.5305             nan     0.0050    0.0678
##    240       14.0430             nan     0.0050    0.0701
##    260       12.8028             nan     0.0050    0.0468
##    280       11.7073             nan     0.0050    0.0466
##    300       10.7546             nan     0.0050    0.0333
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.3896             nan     0.0050    0.5014
##      2       62.9053             nan     0.0050    0.3826
##      3       62.4609             nan     0.0050    0.4897
##      4       61.9466             nan     0.0050    0.5186
##      5       61.4992             nan     0.0050    0.4682
##      6       61.0674             nan     0.0050    0.4477
##      7       60.6351             nan     0.0050    0.4113
##      8       60.1825             nan     0.0050    0.4271
##      9       59.7037             nan     0.0050    0.4576
##     10       59.2240             nan     0.0050    0.4696
##     20       54.9342             nan     0.0050    0.4478
##     40       47.3982             nan     0.0050    0.3320
##     60       41.0255             nan     0.0050    0.2735
##     80       35.6536             nan     0.0050    0.2746
##    100       31.2776             nan     0.0050    0.1940
##    120       27.4126             nan     0.0050    0.1784
##    140       24.1430             nan     0.0050    0.1436
##    160       21.3627             nan     0.0050    0.1187
##    180       18.9854             nan     0.0050    0.1093
##    200       17.0234             nan     0.0050    0.0800
##    220       15.3482             nan     0.0050    0.0725
##    240       13.9431             nan     0.0050    0.0615
##    260       12.6894             nan     0.0050    0.0558
##    280       11.6279             nan     0.0050    0.0482
##    300       10.6818             nan     0.0050    0.0412
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.3946             nan     0.0050    0.4739
##      2       62.9228             nan     0.0050    0.3986
##      3       62.4229             nan     0.0050    0.4925
##      4       61.9190             nan     0.0050    0.5063
##      5       61.4816             nan     0.0050    0.4545
##      6       61.0171             nan     0.0050    0.4614
##      7       60.5965             nan     0.0050    0.4200
##      8       60.1261             nan     0.0050    0.4555
##      9       59.6872             nan     0.0050    0.4346
##     10       59.2506             nan     0.0050    0.4181
##     20       55.0161             nan     0.0050    0.4072
##     40       47.5413             nan     0.0050    0.3075
##     60       41.1528             nan     0.0050    0.2720
##     80       35.8599             nan     0.0050    0.2550
##    100       31.3621             nan     0.0050    0.1993
##    120       27.5580             nan     0.0050    0.1757
##    140       24.4298             nan     0.0050    0.1414
##    160       21.6233             nan     0.0050    0.1230
##    180       19.2239             nan     0.0050    0.1090
##    200       17.2827             nan     0.0050    0.0799
##    220       15.5887             nan     0.0050    0.0690
##    240       14.1321             nan     0.0050    0.0444
##    260       12.8699             nan     0.0050    0.0550
##    280       11.8005             nan     0.0050    0.0465
##    300       10.8819             nan     0.0050    0.0333
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.3539             nan     0.0050    0.5291
##      2       62.8472             nan     0.0050    0.5148
##      3       62.3256             nan     0.0050    0.5615
##      4       61.8231             nan     0.0050    0.5085
##      5       61.2986             nan     0.0050    0.4573
##      6       60.8042             nan     0.0050    0.4617
##      7       60.3078             nan     0.0050    0.4826
##      8       59.8048             nan     0.0050    0.5541
##      9       59.2967             nan     0.0050    0.5091
##     10       58.7943             nan     0.0050    0.4522
##     20       54.2201             nan     0.0050    0.4669
##     40       46.2110             nan     0.0050    0.3711
##     60       39.5405             nan     0.0050    0.3122
##     80       33.9269             nan     0.0050    0.2346
##    100       29.2088             nan     0.0050    0.2196
##    120       25.3202             nan     0.0050    0.1589
##    140       22.0389             nan     0.0050    0.1338
##    160       19.2469             nan     0.0050    0.1114
##    180       16.9169             nan     0.0050    0.1064
##    200       14.9491             nan     0.0050    0.0958
##    220       13.2891             nan     0.0050    0.0840
##    240       11.9033             nan     0.0050    0.0645
##    260       10.6988             nan     0.0050    0.0400
##    280        9.6920             nan     0.0050    0.0354
##    300        8.8232             nan     0.0050    0.0390
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.3550             nan     0.0050    0.4955
##      2       62.8441             nan     0.0050    0.4425
##      3       62.3170             nan     0.0050    0.5559
##      4       61.8043             nan     0.0050    0.5415
##      5       61.3099             nan     0.0050    0.5088
##      6       60.8169             nan     0.0050    0.5234
##      7       60.3114             nan     0.0050    0.5195
##      8       59.8323             nan     0.0050    0.5021
##      9       59.3140             nan     0.0050    0.5236
##     10       58.8000             nan     0.0050    0.4585
##     20       54.1642             nan     0.0050    0.4318
##     40       46.1248             nan     0.0050    0.3574
##     60       39.4864             nan     0.0050    0.3011
##     80       33.9530             nan     0.0050    0.2503
##    100       29.3146             nan     0.0050    0.2098
##    120       25.3959             nan     0.0050    0.1804
##    140       22.1409             nan     0.0050    0.1401
##    160       19.3851             nan     0.0050    0.1160
##    180       17.0665             nan     0.0050    0.0898
##    200       15.0991             nan     0.0050    0.0925
##    220       13.4374             nan     0.0050    0.0650
##    240       12.0816             nan     0.0050    0.0591
##    260       10.8589             nan     0.0050    0.0529
##    280        9.8579             nan     0.0050    0.0396
##    300        8.9954             nan     0.0050    0.0337
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.3233             nan     0.0050    0.5511
##      2       62.7912             nan     0.0050    0.5421
##      3       62.2845             nan     0.0050    0.5355
##      4       61.7936             nan     0.0050    0.4570
##      5       61.3079             nan     0.0050    0.5103
##      6       60.7982             nan     0.0050    0.4911
##      7       60.3074             nan     0.0050    0.4782
##      8       59.8178             nan     0.0050    0.4445
##      9       59.2946             nan     0.0050    0.5320
##     10       58.8115             nan     0.0050    0.4910
##     20       54.1326             nan     0.0050    0.4659
##     40       46.0654             nan     0.0050    0.3498
##     60       39.4205             nan     0.0050    0.3172
##     80       33.8791             nan     0.0050    0.2172
##    100       29.2109             nan     0.0050    0.1956
##    120       25.3015             nan     0.0050    0.1794
##    140       22.1023             nan     0.0050    0.1435
##    160       19.4280             nan     0.0050    0.1149
##    180       17.1721             nan     0.0050    0.0994
##    200       15.2451             nan     0.0050    0.0777
##    220       13.5884             nan     0.0050    0.0636
##    240       12.1977             nan     0.0050    0.0569
##    260       10.9707             nan     0.0050    0.0535
##    280        9.9619             nan     0.0050    0.0388
##    300        9.0910             nan     0.0050    0.0332
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.1187             nan     0.0100    0.7301
##      2       62.2898             nan     0.0100    0.8245
##      3       61.4983             nan     0.0100    0.7790
##      4       60.7161             nan     0.0100    0.7725
##      5       59.9853             nan     0.0100    0.7290
##      6       59.2002             nan     0.0100    0.7101
##      7       58.4913             nan     0.0100    0.7128
##      8       57.7196             nan     0.0100    0.7222
##      9       56.9701             nan     0.0100    0.6871
##     10       56.2561             nan     0.0100    0.6631
##     20       50.2336             nan     0.0100    0.5501
##     40       40.4117             nan     0.0100    0.4194
##     60       33.1186             nan     0.0100    0.3145
##     80       27.5209             nan     0.0100    0.2553
##    100       23.1767             nan     0.0100    0.1926
##    120       19.8104             nan     0.0100    0.1574
##    140       17.1786             nan     0.0100    0.1159
##    160       15.0377             nan     0.0100    0.0959
##    180       13.2857             nan     0.0100    0.0611
##    200       11.8797             nan     0.0100    0.0547
##    220       10.6674             nan     0.0100    0.0480
##    240        9.6904             nan     0.0100    0.0395
##    260        8.8408             nan     0.0100    0.0333
##    280        8.1298             nan     0.0100    0.0225
##    300        7.5182             nan     0.0100    0.0179
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.0534             nan     0.0100    0.7959
##      2       62.2782             nan     0.0100    0.6823
##      3       61.5161             nan     0.0100    0.7751
##      4       60.7051             nan     0.0100    0.7443
##      5       59.9362             nan     0.0100    0.7616
##      6       59.2488             nan     0.0100    0.7596
##      7       58.5195             nan     0.0100    0.7143
##      8       57.8121             nan     0.0100    0.7362
##      9       57.1589             nan     0.0100    0.7098
##     10       56.4465             nan     0.0100    0.6425
##     20       50.2163             nan     0.0100    0.5976
##     40       40.4308             nan     0.0100    0.3120
##     60       32.9868             nan     0.0100    0.2833
##     80       27.3578             nan     0.0100    0.2339
##    100       23.0574             nan     0.0100    0.1505
##    120       19.7009             nan     0.0100    0.1491
##    140       17.0911             nan     0.0100    0.1184
##    160       14.9543             nan     0.0100    0.0744
##    180       13.2090             nan     0.0100    0.0613
##    200       11.7883             nan     0.0100    0.0569
##    220       10.6489             nan     0.0100    0.0561
##    240        9.6363             nan     0.0100    0.0455
##    260        8.7935             nan     0.0100    0.0286
##    280        8.0879             nan     0.0100    0.0207
##    300        7.4775             nan     0.0100    0.0106
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       63.0395             nan     0.0100    0.7873
##      2       62.2575             nan     0.0100    0.7611
##      3       61.4700             nan     0.0100    0.7086
##      4       60.8097             nan     0.0100    0.7749
##      5       60.0545             nan     0.0100    0.6756
##      6       59.2917             nan     0.0100    0.7249
##      7       58.5824             nan     0.0100    0.7228
##      8       57.8311             nan     0.0100    0.6818
##      9       57.1021             nan     0.0100    0.6993
##     10       56.4598             nan     0.0100    0.6588
##     20       50.0881             nan     0.0100    0.5736
##     40       40.2976             nan     0.0100    0.4073
##     60       32.8515             nan     0.0100    0.2946
##     80       27.3661             nan     0.0100    0.2204
##    100       23.1187             nan     0.0100    0.1399
##    120       19.7358             nan     0.0100    0.1462
##    140       17.0784             nan     0.0100    0.1272
##    160       15.0129             nan     0.0100    0.0848
##    180       13.3216             nan     0.0100    0.0666
##    200       11.9383             nan     0.0100    0.0436
##    220       10.7497             nan     0.0100    0.0360
##    240        9.7622             nan     0.0100    0.0354
##    260        8.9095             nan     0.0100    0.0313
##    280        8.1754             nan     0.0100    0.0335
##    300        7.5702             nan     0.0100    0.0196
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8684             nan     0.0100    1.0937
##      2       61.8236             nan     0.0100    1.0068
##      3       60.9776             nan     0.0100    0.7579
##      4       60.0451             nan     0.0100    0.9114
##      5       59.2121             nan     0.0100    0.8572
##      6       58.3310             nan     0.0100    0.7819
##      7       57.4558             nan     0.0100    0.7237
##      8       56.5984             nan     0.0100    0.8191
##      9       55.7826             nan     0.0100    0.8060
##     10       54.9996             nan     0.0100    0.8372
##     20       47.3398             nan     0.0100    0.7404
##     40       35.5824             nan     0.0100    0.4760
##     60       27.2966             nan     0.0100    0.3232
##     80       21.3859             nan     0.0100    0.2249
##    100       17.0897             nan     0.0100    0.1579
##    120       13.9455             nan     0.0100    0.1185
##    140       11.5940             nan     0.0100    0.1109
##    160        9.8650             nan     0.0100    0.0711
##    180        8.5463             nan     0.0100    0.0471
##    200        7.4863             nan     0.0100    0.0493
##    220        6.6695             nan     0.0100    0.0295
##    240        6.0197             nan     0.0100    0.0273
##    260        5.5223             nan     0.0100    0.0202
##    280        5.1134             nan     0.0100    0.0089
##    300        4.7640             nan     0.0100    0.0098
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9040             nan     0.0100    1.0194
##      2       61.9881             nan     0.0100    0.9725
##      3       61.0589             nan     0.0100    0.9402
##      4       60.0695             nan     0.0100    0.9331
##      5       59.1250             nan     0.0100    0.9717
##      6       58.2694             nan     0.0100    0.9120
##      7       57.4192             nan     0.0100    0.7778
##      8       56.5699             nan     0.0100    0.8716
##      9       55.7622             nan     0.0100    0.7789
##     10       54.9841             nan     0.0100    0.8133
##     20       47.2715             nan     0.0100    0.5918
##     40       35.5678             nan     0.0100    0.4558
##     60       27.1774             nan     0.0100    0.3432
##     80       21.4160             nan     0.0100    0.2214
##    100       17.1433             nan     0.0100    0.1913
##    120       13.9807             nan     0.0100    0.1016
##    140       11.6055             nan     0.0100    0.0729
##    160        9.9555             nan     0.0100    0.0534
##    180        8.5879             nan     0.0100    0.0541
##    200        7.5576             nan     0.0100    0.0355
##    220        6.6955             nan     0.0100    0.0321
##    240        6.0455             nan     0.0100    0.0209
##    260        5.5154             nan     0.0100    0.0180
##    280        5.0800             nan     0.0100    0.0153
##    300        4.7549             nan     0.0100    0.0093
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.9697             nan     0.0100    0.9658
##      2       61.9916             nan     0.0100    0.8860
##      3       61.0790             nan     0.0100    0.8960
##      4       60.1895             nan     0.0100    0.9014
##      5       59.2605             nan     0.0100    0.9590
##      6       58.4464             nan     0.0100    0.8741
##      7       57.5006             nan     0.0100    0.8192
##      8       56.6507             nan     0.0100    0.8712
##      9       55.8626             nan     0.0100    0.7036
##     10       55.0868             nan     0.0100    0.8383
##     20       47.5600             nan     0.0100    0.6302
##     40       35.6210             nan     0.0100    0.4697
##     60       27.4234             nan     0.0100    0.3309
##     80       21.3492             nan     0.0100    0.2327
##    100       17.0267             nan     0.0100    0.1512
##    120       13.9216             nan     0.0100    0.1208
##    140       11.5711             nan     0.0100    0.0898
##    160        9.8578             nan     0.0100    0.0724
##    180        8.5418             nan     0.0100    0.0509
##    200        7.5090             nan     0.0100    0.0345
##    220        6.6761             nan     0.0100    0.0257
##    240        6.0298             nan     0.0100    0.0237
##    260        5.5247             nan     0.0100    0.0176
##    280        5.1512             nan     0.0100    0.0091
##    300        4.8475             nan     0.0100    0.0085
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.7797             nan     0.0100    1.0344
##      2       61.7457             nan     0.0100    0.9608
##      3       60.7251             nan     0.0100    1.0004
##      4       59.8299             nan     0.0100    0.9580
##      5       58.8490             nan     0.0100    0.9777
##      6       57.9327             nan     0.0100    1.0278
##      7       56.9927             nan     0.0100    0.9260
##      8       56.0847             nan     0.0100    0.9441
##      9       55.1767             nan     0.0100    0.9194
##     10       54.2412             nan     0.0100    0.9972
##     20       46.1715             nan     0.0100    0.6311
##     40       33.8257             nan     0.0100    0.4720
##     60       25.2068             nan     0.0100    0.3131
##     80       19.1087             nan     0.0100    0.2366
##    100       14.8729             nan     0.0100    0.1732
##    120       11.8418             nan     0.0100    0.1162
##    140        9.6806             nan     0.0100    0.0766
##    160        8.1006             nan     0.0100    0.0552
##    180        6.9074             nan     0.0100    0.0475
##    200        5.9815             nan     0.0100    0.0351
##    220        5.2542             nan     0.0100    0.0231
##    240        4.7328             nan     0.0100    0.0154
##    260        4.3297             nan     0.0100    0.0156
##    280        4.0200             nan     0.0100    0.0061
##    300        3.7901             nan     0.0100    0.0036
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.8220             nan     0.0100    1.0386
##      2       61.7777             nan     0.0100    1.0572
##      3       60.7368             nan     0.0100    1.0330
##      4       59.7392             nan     0.0100    0.9455
##      5       58.7486             nan     0.0100    0.9190
##      6       57.7722             nan     0.0100    0.9013
##      7       56.8135             nan     0.0100    0.8688
##      8       55.8820             nan     0.0100    1.0466
##      9       54.9864             nan     0.0100    0.8636
##     10       54.1164             nan     0.0100    0.9750
##     20       46.0173             nan     0.0100    0.7293
##     40       33.8254             nan     0.0100    0.5208
##     60       25.2884             nan     0.0100    0.3212
##     80       19.3457             nan     0.0100    0.2365
##    100       15.0832             nan     0.0100    0.1521
##    120       12.0464             nan     0.0100    0.1337
##    140        9.7907             nan     0.0100    0.0941
##    160        8.1618             nan     0.0100    0.0681
##    180        6.9723             nan     0.0100    0.0452
##    200        6.0862             nan     0.0100    0.0298
##    220        5.3935             nan     0.0100    0.0246
##    240        4.8362             nan     0.0100    0.0203
##    260        4.4571             nan     0.0100    0.0073
##    280        4.1633             nan     0.0100    0.0088
##    300        3.9345             nan     0.0100    0.0052
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       62.7771             nan     0.0100    1.0694
##      2       61.7205             nan     0.0100    1.0368
##      3       60.6971             nan     0.0100    0.9702
##      4       59.7020             nan     0.0100    0.9066
##      5       58.7453             nan     0.0100    0.8955
##      6       57.7855             nan     0.0100    0.9076
##      7       56.8222             nan     0.0100    0.9006
##      8       55.8464             nan     0.0100    0.9693
##      9       54.9444             nan     0.0100    0.9771
##     10       54.0380             nan     0.0100    0.9134
##     20       46.1611             nan     0.0100    0.7059
##     40       33.9471             nan     0.0100    0.5206
##     60       25.2988             nan     0.0100    0.3359
##     80       19.2295             nan     0.0100    0.2558
##    100       15.0580             nan     0.0100    0.1623
##    120       12.1206             nan     0.0100    0.1088
##    140        9.9437             nan     0.0100    0.0848
##    160        8.3790             nan     0.0100    0.0594
##    180        7.1751             nan     0.0100    0.0547
##    200        6.2726             nan     0.0100    0.0327
##    220        5.5944             nan     0.0100    0.0168
##    240        5.0873             nan     0.0100    0.0161
##    260        4.6986             nan     0.0100    0.0160
##    280        4.4069             nan     0.0100    0.0125
##    300        4.1750             nan     0.0100    0.0074
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.1873             nan     0.0500    4.1264
##      2       56.3682             nan     0.0500    3.5490
##      3       53.0606             nan     0.0500    3.1280
##      4       49.8666             nan     0.0500    2.9589
##      5       47.1936             nan     0.0500    2.3663
##      6       44.6219             nan     0.0500    2.6201
##      7       42.0441             nan     0.0500    2.7006
##      8       39.9026             nan     0.0500    2.1551
##      9       37.9972             nan     0.0500    1.9812
##     10       36.1740             nan     0.0500    1.8826
##     20       22.7090             nan     0.0500    0.8494
##     40       11.5902             nan     0.0500    0.2499
##     60        7.3828             nan     0.0500    0.1074
##     80        5.4229             nan     0.0500    0.0325
##    100        4.5896             nan     0.0500    0.0088
##    120        4.0883             nan     0.0500    0.0042
##    140        3.8639             nan     0.0500   -0.0029
##    160        3.7204             nan     0.0500   -0.0101
##    180        3.6142             nan     0.0500   -0.0081
##    200        3.5337             nan     0.0500   -0.0023
##    220        3.4545             nan     0.0500   -0.0065
##    240        3.3958             nan     0.0500   -0.0160
##    260        3.3418             nan     0.0500   -0.0062
##    280        3.2945             nan     0.0500   -0.0084
##    300        3.2469             nan     0.0500   -0.0015
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.6722             nan     0.0500    3.9408
##      2       56.0382             nan     0.0500    3.5966
##      3       52.6950             nan     0.0500    3.2117
##      4       49.8672             nan     0.0500    2.6333
##      5       46.9628             nan     0.0500    2.5370
##      6       44.5233             nan     0.0500    2.3469
##      7       42.2052             nan     0.0500    2.3142
##      8       40.2895             nan     0.0500    1.8495
##      9       38.3073             nan     0.0500    1.9342
##     10       36.3038             nan     0.0500    1.9545
##     20       22.9704             nan     0.0500    0.9358
##     40       11.7293             nan     0.0500    0.2743
##     60        7.3802             nan     0.0500    0.0924
##     80        5.5698             nan     0.0500    0.0598
##    100        4.6871             nan     0.0500    0.0165
##    120        4.2413             nan     0.0500    0.0110
##    140        4.0242             nan     0.0500    0.0047
##    160        3.8707             nan     0.0500   -0.0039
##    180        3.7637             nan     0.0500   -0.0049
##    200        3.6714             nan     0.0500   -0.0030
##    220        3.5920             nan     0.0500   -0.0078
##    240        3.5326             nan     0.0500   -0.0124
##    260        3.4740             nan     0.0500   -0.0109
##    280        3.4205             nan     0.0500   -0.0002
##    300        3.3756             nan     0.0500   -0.0081
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.8951             nan     0.0500    3.9937
##      2       56.2020             nan     0.0500    3.4622
##      3       52.9403             nan     0.0500    3.0880
##      4       49.9655             nan     0.0500    3.0908
##      5       47.2631             nan     0.0500    2.8906
##      6       44.6638             nan     0.0500    2.7407
##      7       42.4214             nan     0.0500    2.2730
##      8       40.3551             nan     0.0500    2.1814
##      9       38.2207             nan     0.0500    1.9950
##     10       36.2813             nan     0.0500    1.8771
##     20       22.7886             nan     0.0500    0.9181
##     40       11.8105             nan     0.0500    0.2482
##     60        7.6381             nan     0.0500    0.1255
##     80        5.7600             nan     0.0500    0.0090
##    100        4.8983             nan     0.0500    0.0202
##    120        4.5222             nan     0.0500    0.0002
##    140        4.3043             nan     0.0500   -0.0028
##    160        4.1627             nan     0.0500   -0.0133
##    180        4.0494             nan     0.0500   -0.0005
##    200        3.9521             nan     0.0500   -0.0044
##    220        3.8681             nan     0.0500   -0.0059
##    240        3.8060             nan     0.0500   -0.0120
##    260        3.7394             nan     0.0500   -0.0025
##    280        3.6865             nan     0.0500   -0.0088
##    300        3.6372             nan     0.0500   -0.0070
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.2457             nan     0.0500    4.5520
##      2       54.9560             nan     0.0500    3.6346
##      3       50.8252             nan     0.0500    4.2503
##      4       47.2164             nan     0.0500    3.3636
##      5       43.7899             nan     0.0500    3.2541
##      6       40.7973             nan     0.0500    3.0524
##      7       38.2580             nan     0.0500    2.6974
##      8       35.7681             nan     0.0500    2.4008
##      9       33.3210             nan     0.0500    2.5542
##     10       31.0363             nan     0.0500    2.2947
##     20       16.7185             nan     0.0500    0.7959
##     40        7.2782             nan     0.0500    0.1742
##     60        4.6169             nan     0.0500    0.0563
##     80        3.6608             nan     0.0500    0.0104
##    100        3.3270             nan     0.0500   -0.0022
##    120        3.0830             nan     0.0500   -0.0285
##    140        2.9157             nan     0.0500   -0.0183
##    160        2.7773             nan     0.0500   -0.0104
##    180        2.6744             nan     0.0500   -0.0080
##    200        2.5679             nan     0.0500   -0.0103
##    220        2.4606             nan     0.0500   -0.0144
##    240        2.3717             nan     0.0500   -0.0088
##    260        2.3153             nan     0.0500   -0.0061
##    280        2.2474             nan     0.0500   -0.0103
##    300        2.1844             nan     0.0500   -0.0078
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.3365             nan     0.0500    4.6431
##      2       55.0075             nan     0.0500    4.0446
##      3       51.2266             nan     0.0500    3.9180
##      4       47.2848             nan     0.0500    3.3316
##      5       44.1710             nan     0.0500    3.3286
##      6       40.9356             nan     0.0500    2.9639
##      7       38.1772             nan     0.0500    2.6446
##      8       35.5012             nan     0.0500    2.4875
##      9       33.2951             nan     0.0500    1.8721
##     10       30.8166             nan     0.0500    2.3438
##     20       16.6566             nan     0.0500    0.7818
##     40        7.3475             nan     0.0500    0.1306
##     60        4.8227             nan     0.0500    0.0647
##     80        3.9124             nan     0.0500   -0.0204
##    100        3.5693             nan     0.0500   -0.0072
##    120        3.3367             nan     0.0500   -0.0004
##    140        3.1752             nan     0.0500   -0.0012
##    160        3.0551             nan     0.0500   -0.0075
##    180        2.8942             nan     0.0500   -0.0113
##    200        2.7901             nan     0.0500   -0.0047
##    220        2.7068             nan     0.0500   -0.0124
##    240        2.6359             nan     0.0500   -0.0093
##    260        2.5788             nan     0.0500   -0.0033
##    280        2.5069             nan     0.0500   -0.0129
##    300        2.4526             nan     0.0500   -0.0053
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       59.1854             nan     0.0500    4.8339
##      2       54.7981             nan     0.0500    4.3418
##      3       50.8347             nan     0.0500    4.1350
##      4       47.0637             nan     0.0500    3.6262
##      5       43.9761             nan     0.0500    3.0775
##      6       41.0451             nan     0.0500    2.8421
##      7       38.3019             nan     0.0500    2.4921
##      8       35.4977             nan     0.0500    2.7606
##      9       33.1351             nan     0.0500    2.2459
##     10       30.9980             nan     0.0500    1.9753
##     20       16.5976             nan     0.0500    0.7380
##     40        7.3894             nan     0.0500    0.1322
##     60        4.7284             nan     0.0500    0.0308
##     80        3.9501             nan     0.0500    0.0207
##    100        3.5972             nan     0.0500   -0.0083
##    120        3.3892             nan     0.0500   -0.0162
##    140        3.2307             nan     0.0500   -0.0091
##    160        3.1292             nan     0.0500   -0.0138
##    180        3.0200             nan     0.0500   -0.0313
##    200        2.9121             nan     0.0500   -0.0112
##    220        2.8335             nan     0.0500   -0.0060
##    240        2.7669             nan     0.0500   -0.0136
##    260        2.6929             nan     0.0500   -0.0052
##    280        2.6126             nan     0.0500   -0.0048
##    300        2.5632             nan     0.0500   -0.0074
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.7382             nan     0.0500    5.1757
##      2       54.1948             nan     0.0500    4.4922
##      3       50.0890             nan     0.0500    3.9259
##      4       46.3220             nan     0.0500    3.6182
##      5       42.6545             nan     0.0500    3.5540
##      6       39.5324             nan     0.0500    3.2442
##      7       36.6310             nan     0.0500    3.0783
##      8       33.8894             nan     0.0500    2.6078
##      9       31.2713             nan     0.0500    1.9894
##     10       29.0404             nan     0.0500    2.1621
##     20       14.6515             nan     0.0500    0.7654
##     40        5.9713             nan     0.0500    0.1517
##     60        3.8588             nan     0.0500    0.0211
##     80        3.2128             nan     0.0500   -0.0136
##    100        2.8959             nan     0.0500   -0.0141
##    120        2.6305             nan     0.0500   -0.0065
##    140        2.4551             nan     0.0500   -0.0032
##    160        2.2807             nan     0.0500   -0.0056
##    180        2.1382             nan     0.0500   -0.0111
##    200        2.0324             nan     0.0500   -0.0075
##    220        1.9414             nan     0.0500   -0.0064
##    240        1.8509             nan     0.0500   -0.0149
##    260        1.7563             nan     0.0500   -0.0127
##    280        1.6663             nan     0.0500   -0.0056
##    300        1.5943             nan     0.0500   -0.0085
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.4620             nan     0.0500    5.2450
##      2       53.5525             nan     0.0500    4.5384
##      3       49.3747             nan     0.0500    3.9132
##      4       45.4858             nan     0.0500    4.0586
##      5       41.8914             nan     0.0500    3.5271
##      6       39.0139             nan     0.0500    3.3394
##      7       35.9564             nan     0.0500    2.8440
##      8       33.1692             nan     0.0500    2.4592
##      9       30.7593             nan     0.0500    2.1300
##     10       28.4374             nan     0.0500    2.2211
##     20       14.4924             nan     0.0500    0.8855
##     40        6.0720             nan     0.0500    0.2179
##     60        3.9571             nan     0.0500    0.0390
##     80        3.3912             nan     0.0500    0.0038
##    100        3.1032             nan     0.0500   -0.0099
##    120        2.8811             nan     0.0500   -0.0208
##    140        2.6726             nan     0.0500   -0.0179
##    160        2.5368             nan     0.0500   -0.0190
##    180        2.4068             nan     0.0500   -0.0211
##    200        2.3112             nan     0.0500   -0.0105
##    220        2.2195             nan     0.0500   -0.0131
##    240        2.1232             nan     0.0500   -0.0060
##    260        2.0437             nan     0.0500   -0.0209
##    280        1.9714             nan     0.0500   -0.0121
##    300        1.8877             nan     0.0500   -0.0154
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       58.5419             nan     0.0500    5.0344
##      2       54.0088             nan     0.0500    4.5100
##      3       49.5820             nan     0.0500    4.3312
##      4       45.6695             nan     0.0500    3.7617
##      5       42.1316             nan     0.0500    3.6102
##      6       39.0149             nan     0.0500    3.2880
##      7       36.0435             nan     0.0500    2.8719
##      8       33.2602             nan     0.0500    2.7663
##      9       30.9096             nan     0.0500    2.4396
##     10       28.7352             nan     0.0500    1.9050
##     20       14.8826             nan     0.0500    0.8164
##     40        6.0535             nan     0.0500    0.1701
##     60        4.0629             nan     0.0500    0.0223
##     80        3.5069             nan     0.0500    0.0015
##    100        3.2431             nan     0.0500   -0.0158
##    120        3.0746             nan     0.0500   -0.0287
##    140        2.9361             nan     0.0500   -0.0123
##    160        2.7747             nan     0.0500   -0.0202
##    180        2.6410             nan     0.0500   -0.0211
##    200        2.5159             nan     0.0500   -0.0037
##    220        2.4197             nan     0.0500   -0.0064
##    240        2.3467             nan     0.0500   -0.0122
##    260        2.2579             nan     0.0500   -0.0137
##    280        2.1957             nan     0.0500   -0.0084
##    300        2.1330             nan     0.0500   -0.0097
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.1202             nan     0.1000    8.0301
##      2       50.4675             nan     0.1000    5.2155
##      3       44.7587             nan     0.1000    5.5338
##      4       39.8436             nan     0.1000    4.9209
##      5       35.6929             nan     0.1000    4.0811
##      6       32.1379             nan     0.1000    3.2839
##      7       29.1961             nan     0.1000    2.7432
##      8       26.6098             nan     0.1000    2.2173
##      9       24.2577             nan     0.1000    2.0747
##     10       22.0856             nan     0.1000    2.0069
##     20       11.6940             nan     0.1000    0.5429
##     40        5.7729             nan     0.1000    0.1433
##     60        4.4393             nan     0.1000    0.0220
##     80        4.0652             nan     0.1000   -0.0448
##    100        3.7847             nan     0.1000    0.0047
##    120        3.5983             nan     0.1000    0.0003
##    140        3.4868             nan     0.1000   -0.0182
##    160        3.3847             nan     0.1000   -0.0030
##    180        3.2876             nan     0.1000   -0.0192
##    200        3.2041             nan     0.1000   -0.0221
##    220        3.1324             nan     0.1000   -0.0135
##    240        3.0725             nan     0.1000   -0.0108
##    260        3.0088             nan     0.1000   -0.0113
##    280        2.9479             nan     0.1000   -0.0148
##    300        2.9143             nan     0.1000   -0.0344
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       55.9969             nan     0.1000    7.5328
##      2       49.5695             nan     0.1000    5.4782
##      3       44.6735             nan     0.1000    5.2042
##      4       40.1271             nan     0.1000    4.5760
##      5       36.0738             nan     0.1000    4.0403
##      6       32.3825             nan     0.1000    3.5299
##      7       29.6804             nan     0.1000    2.3444
##      8       26.7630             nan     0.1000    2.6804
##      9       24.6898             nan     0.1000    2.0587
##     10       22.7428             nan     0.1000    1.7268
##     20       11.8709             nan     0.1000    0.6001
##     40        5.7245             nan     0.1000    0.0920
##     60        4.3709             nan     0.1000    0.0019
##     80        4.0358             nan     0.1000   -0.0113
##    100        3.8609             nan     0.1000   -0.0073
##    120        3.7288             nan     0.1000   -0.0171
##    140        3.5954             nan     0.1000   -0.0239
##    160        3.4990             nan     0.1000   -0.0045
##    180        3.4148             nan     0.1000   -0.0114
##    200        3.3412             nan     0.1000   -0.0120
##    220        3.2774             nan     0.1000   -0.0114
##    240        3.2172             nan     0.1000   -0.0095
##    260        3.1427             nan     0.1000   -0.0189
##    280        3.0964             nan     0.1000   -0.0069
##    300        3.0392             nan     0.1000   -0.0190
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.1640             nan     0.1000    7.5770
##      2       49.2641             nan     0.1000    6.4141
##      3       44.0752             nan     0.1000    4.7745
##      4       39.6976             nan     0.1000    4.2276
##      5       35.5207             nan     0.1000    3.8692
##      6       32.3879             nan     0.1000    2.8614
##      7       29.0951             nan     0.1000    2.9609
##      8       26.5306             nan     0.1000    2.7709
##      9       24.3528             nan     0.1000    1.8141
##     10       22.3293             nan     0.1000    1.9860
##     20       11.7621             nan     0.1000    0.6568
##     40        5.7106             nan     0.1000    0.0869
##     60        4.4755             nan     0.1000    0.0016
##     80        4.1515             nan     0.1000   -0.0148
##    100        3.9749             nan     0.1000   -0.0163
##    120        3.7960             nan     0.1000   -0.0477
##    140        3.6784             nan     0.1000   -0.0011
##    160        3.5580             nan     0.1000   -0.0014
##    180        3.4762             nan     0.1000   -0.0149
##    200        3.4115             nan     0.1000   -0.0137
##    220        3.3653             nan     0.1000   -0.0163
##    240        3.3025             nan     0.1000   -0.0167
##    260        3.2565             nan     0.1000   -0.0069
##    280        3.2238             nan     0.1000   -0.0072
##    300        3.1812             nan     0.1000    0.0012
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.9901             nan     0.1000   10.1981
##      2       47.8890             nan     0.1000    7.4647
##      3       40.9534             nan     0.1000    7.1913
##      4       35.7510             nan     0.1000    4.4552
##      5       30.7941             nan     0.1000    4.7447
##      6       26.9355             nan     0.1000    3.7898
##      7       23.6228             nan     0.1000    3.4735
##      8       21.1905             nan     0.1000    2.4656
##      9       18.5172             nan     0.1000    2.5268
##     10       16.4628             nan     0.1000    1.6927
##     20        7.0552             nan     0.1000    0.3199
##     40        3.8720             nan     0.1000    0.0092
##     60        3.1492             nan     0.1000   -0.0323
##     80        2.8081             nan     0.1000   -0.0147
##    100        2.5705             nan     0.1000   -0.0214
##    120        2.3937             nan     0.1000   -0.0087
##    140        2.2210             nan     0.1000   -0.0308
##    160        2.0942             nan     0.1000   -0.0350
##    180        1.9889             nan     0.1000   -0.0416
##    200        1.8985             nan     0.1000   -0.0128
##    220        1.8203             nan     0.1000   -0.0169
##    240        1.7347             nan     0.1000   -0.0353
##    260        1.6521             nan     0.1000   -0.0164
##    280        1.5828             nan     0.1000   -0.0182
##    300        1.5188             nan     0.1000   -0.0101
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.1717             nan     0.1000    8.7761
##      2       46.3164             nan     0.1000    8.0179
##      3       40.3913             nan     0.1000    5.6585
##      4       35.5041             nan     0.1000    5.3546
##      5       30.6585             nan     0.1000    4.3823
##      6       26.9349             nan     0.1000    3.4264
##      7       23.7000             nan     0.1000    3.5626
##      8       21.0122             nan     0.1000    2.7902
##      9       18.4413             nan     0.1000    2.4077
##     10       16.4957             nan     0.1000    1.8312
##     20        7.1085             nan     0.1000    0.3845
##     40        3.9351             nan     0.1000    0.0344
##     60        3.3948             nan     0.1000   -0.0265
##     80        3.0477             nan     0.1000   -0.0058
##    100        2.8156             nan     0.1000   -0.0119
##    120        2.6299             nan     0.1000   -0.0055
##    140        2.5145             nan     0.1000   -0.0341
##    160        2.4142             nan     0.1000   -0.0187
##    180        2.2878             nan     0.1000   -0.0089
##    200        2.1921             nan     0.1000   -0.0241
##    220        2.1146             nan     0.1000   -0.0369
##    240        2.0301             nan     0.1000   -0.0162
##    260        1.9273             nan     0.1000   -0.0195
##    280        1.8637             nan     0.1000   -0.0254
##    300        1.8072             nan     0.1000   -0.0168
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.2193             nan     0.1000    8.5623
##      2       46.1174             nan     0.1000    6.9997
##      3       39.9801             nan     0.1000    5.1663
##      4       34.3154             nan     0.1000    5.3349
##      5       30.1830             nan     0.1000    4.0992
##      6       26.1250             nan     0.1000    4.0987
##      7       23.1763             nan     0.1000    3.1158
##      8       20.2859             nan     0.1000    2.3976
##      9       18.0310             nan     0.1000    2.1460
##     10       16.1756             nan     0.1000    1.5967
##     20        7.2317             nan     0.1000    0.3488
##     40        4.0914             nan     0.1000    0.0253
##     60        3.5108             nan     0.1000   -0.0206
##     80        3.2002             nan     0.1000   -0.0167
##    100        2.9695             nan     0.1000    0.0055
##    120        2.8404             nan     0.1000   -0.0232
##    140        2.7114             nan     0.1000   -0.0247
##    160        2.5754             nan     0.1000   -0.0135
##    180        2.4901             nan     0.1000   -0.0260
##    200        2.3899             nan     0.1000   -0.0047
##    220        2.3037             nan     0.1000   -0.0270
##    240        2.2291             nan     0.1000   -0.0154
##    260        2.1607             nan     0.1000   -0.0105
##    280        2.0755             nan     0.1000   -0.0054
##    300        2.0261             nan     0.1000   -0.0092
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.3483             nan     0.1000    9.7868
##      2       45.5288             nan     0.1000    8.8127
##      3       38.8180             nan     0.1000    7.1202
##      4       33.1333             nan     0.1000    5.2940
##      5       28.4913             nan     0.1000    3.9627
##      6       24.4988             nan     0.1000    3.6822
##      7       21.2260             nan     0.1000    3.1019
##      8       18.3302             nan     0.1000    2.7653
##      9       15.9967             nan     0.1000    2.0661
##     10       14.1034             nan     0.1000    1.8126
##     20        5.5898             nan     0.1000    0.2816
##     40        3.1196             nan     0.1000   -0.0180
##     60        2.5170             nan     0.1000   -0.0408
##     80        2.1583             nan     0.1000   -0.0358
##    100        1.9170             nan     0.1000   -0.0045
##    120        1.7576             nan     0.1000   -0.0087
##    140        1.6117             nan     0.1000   -0.0155
##    160        1.4706             nan     0.1000   -0.0118
##    180        1.3591             nan     0.1000   -0.0189
##    200        1.2533             nan     0.1000   -0.0115
##    220        1.1723             nan     0.1000   -0.0114
##    240        1.0939             nan     0.1000   -0.0169
##    260        1.0204             nan     0.1000   -0.0146
##    280        0.9520             nan     0.1000   -0.0125
##    300        0.8952             nan     0.1000   -0.0121
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.2911             nan     0.1000    9.8543
##      2       44.6798             nan     0.1000    7.8135
##      3       38.1791             nan     0.1000    6.1061
##      4       32.5972             nan     0.1000    5.1100
##      5       28.1571             nan     0.1000    4.2547
##      6       24.3310             nan     0.1000    3.6034
##      7       20.9073             nan     0.1000    3.2402
##      8       18.2344             nan     0.1000    2.4535
##      9       15.9229             nan     0.1000    2.2876
##     10       14.2336             nan     0.1000    1.5907
##     20        5.8674             nan     0.1000    0.3149
##     40        3.4749             nan     0.1000   -0.0290
##     60        2.9610             nan     0.1000   -0.0251
##     80        2.6886             nan     0.1000   -0.0215
##    100        2.4512             nan     0.1000   -0.0241
##    120        2.2463             nan     0.1000   -0.0022
##    140        2.0790             nan     0.1000   -0.0186
##    160        1.9524             nan     0.1000   -0.0347
##    180        1.8162             nan     0.1000   -0.0226
##    200        1.7069             nan     0.1000   -0.0269
##    220        1.6161             nan     0.1000   -0.0153
##    240        1.5303             nan     0.1000   -0.0187
##    260        1.4326             nan     0.1000   -0.0209
##    280        1.3782             nan     0.1000   -0.0201
##    300        1.3169             nan     0.1000   -0.0099
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.3016             nan     0.1000    8.8383
##      2       45.7606             nan     0.1000    7.9709
##      3       38.5692             nan     0.1000    6.4787
##      4       33.0389             nan     0.1000    5.2313
##      5       28.4766             nan     0.1000    3.9661
##      6       24.2143             nan     0.1000    3.9407
##      7       20.8897             nan     0.1000    2.5696
##      8       18.2209             nan     0.1000    2.5567
##      9       16.0597             nan     0.1000    2.1353
##     10       14.2399             nan     0.1000    1.5543
##     20        6.0245             nan     0.1000    0.3129
##     40        3.4904             nan     0.1000   -0.0470
##     60        3.0247             nan     0.1000   -0.0006
##     80        2.7839             nan     0.1000   -0.0434
##    100        2.6055             nan     0.1000   -0.0339
##    120        2.3969             nan     0.1000   -0.0354
##    140        2.2629             nan     0.1000   -0.0136
##    160        2.0980             nan     0.1000   -0.0231
##    180        1.9848             nan     0.1000   -0.0135
##    200        1.8598             nan     0.1000   -0.0233
##    220        1.7641             nan     0.1000   -0.0180
##    240        1.6690             nan     0.1000   -0.0172
##    260        1.5996             nan     0.1000   -0.0100
##    280        1.5215             nan     0.1000   -0.0048
##    300        1.4536             nan     0.1000   -0.0143
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.3050             nan     0.0010    0.0778
##      2       61.2296             nan     0.0010    0.0740
##      3       61.1509             nan     0.0010    0.0806
##      4       61.0768             nan     0.0010    0.0740
##      5       61.0005             nan     0.0010    0.0750
##      6       60.9189             nan     0.0010    0.0710
##      7       60.8404             nan     0.0010    0.0782
##      8       60.7653             nan     0.0010    0.0670
##      9       60.6903             nan     0.0010    0.0790
##     10       60.6161             nan     0.0010    0.0731
##     20       59.8420             nan     0.0010    0.0772
##     40       58.3605             nan     0.0010    0.0682
##     60       56.9177             nan     0.0010    0.0694
##     80       55.5344             nan     0.0010    0.0673
##    100       54.1889             nan     0.0010    0.0634
##    120       52.9019             nan     0.0010    0.0600
##    140       51.6700             nan     0.0010    0.0639
##    160       50.4857             nan     0.0010    0.0565
##    180       49.3303             nan     0.0010    0.0566
##    200       48.2094             nan     0.0010    0.0522
##    220       47.1338             nan     0.0010    0.0512
##    240       46.0838             nan     0.0010    0.0478
##    260       45.0865             nan     0.0010    0.0478
##    280       44.1253             nan     0.0010    0.0504
##    300       43.2060             nan     0.0010    0.0460
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2980             nan     0.0010    0.0834
##      2       61.2210             nan     0.0010    0.0791
##      3       61.1407             nan     0.0010    0.0714
##      4       61.0653             nan     0.0010    0.0781
##      5       60.9884             nan     0.0010    0.0761
##      6       60.9114             nan     0.0010    0.0747
##      7       60.8313             nan     0.0010    0.0782
##      8       60.7514             nan     0.0010    0.0777
##      9       60.6809             nan     0.0010    0.0760
##     10       60.6132             nan     0.0010    0.0741
##     20       59.8617             nan     0.0010    0.0682
##     40       58.3935             nan     0.0010    0.0751
##     60       56.9617             nan     0.0010    0.0675
##     80       55.6059             nan     0.0010    0.0627
##    100       54.2835             nan     0.0010    0.0630
##    120       52.9883             nan     0.0010    0.0629
##    140       51.7736             nan     0.0010    0.0606
##    160       50.5749             nan     0.0010    0.0559
##    180       49.4081             nan     0.0010    0.0538
##    200       48.3129             nan     0.0010    0.0507
##    220       47.2333             nan     0.0010    0.0531
##    240       46.1895             nan     0.0010    0.0444
##    260       45.1857             nan     0.0010    0.0492
##    280       44.2116             nan     0.0010    0.0443
##    300       43.2490             nan     0.0010    0.0415
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2998             nan     0.0010    0.0816
##      2       61.2184             nan     0.0010    0.0792
##      3       61.1440             nan     0.0010    0.0802
##      4       61.0650             nan     0.0010    0.0697
##      5       60.9873             nan     0.0010    0.0739
##      6       60.9088             nan     0.0010    0.0741
##      7       60.8348             nan     0.0010    0.0790
##      8       60.7560             nan     0.0010    0.0700
##      9       60.6792             nan     0.0010    0.0775
##     10       60.5994             nan     0.0010    0.0817
##     20       59.8237             nan     0.0010    0.0714
##     40       58.3549             nan     0.0010    0.0734
##     60       56.9221             nan     0.0010    0.0639
##     80       55.5557             nan     0.0010    0.0634
##    100       54.2309             nan     0.0010    0.0680
##    120       52.9574             nan     0.0010    0.0605
##    140       51.7152             nan     0.0010    0.0573
##    160       50.4959             nan     0.0010    0.0525
##    180       49.3455             nan     0.0010    0.0533
##    200       48.2470             nan     0.0010    0.0548
##    220       47.1678             nan     0.0010    0.0509
##    240       46.1238             nan     0.0010    0.0471
##    260       45.1104             nan     0.0010    0.0489
##    280       44.1320             nan     0.0010    0.0408
##    300       43.2098             nan     0.0010    0.0443
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2829             nan     0.0010    0.0917
##      2       61.1820             nan     0.0010    0.0890
##      3       61.0973             nan     0.0010    0.0883
##      4       61.0034             nan     0.0010    0.0962
##      5       60.9151             nan     0.0010    0.0921
##      6       60.8172             nan     0.0010    0.0972
##      7       60.7248             nan     0.0010    0.0908
##      8       60.6322             nan     0.0010    0.0867
##      9       60.5417             nan     0.0010    0.0778
##     10       60.4524             nan     0.0010    0.0816
##     20       59.5537             nan     0.0010    0.0877
##     40       57.7859             nan     0.0010    0.0896
##     60       56.0704             nan     0.0010    0.0845
##     80       54.4164             nan     0.0010    0.0705
##    100       52.7857             nan     0.0010    0.0758
##    120       51.2454             nan     0.0010    0.0724
##    140       49.7628             nan     0.0010    0.0779
##    160       48.2994             nan     0.0010    0.0727
##    180       46.9065             nan     0.0010    0.0654
##    200       45.5620             nan     0.0010    0.0577
##    220       44.2629             nan     0.0010    0.0591
##    240       43.0104             nan     0.0010    0.0620
##    260       41.7648             nan     0.0010    0.0542
##    280       40.5854             nan     0.0010    0.0510
##    300       39.4477             nan     0.0010    0.0570
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2811             nan     0.0010    0.0955
##      2       61.1862             nan     0.0010    0.0948
##      3       61.0964             nan     0.0010    0.0893
##      4       61.0040             nan     0.0010    0.0835
##      5       60.9079             nan     0.0010    0.0941
##      6       60.8102             nan     0.0010    0.1022
##      7       60.7157             nan     0.0010    0.0883
##      8       60.6254             nan     0.0010    0.0922
##      9       60.5333             nan     0.0010    0.0912
##     10       60.4331             nan     0.0010    0.0872
##     20       59.4970             nan     0.0010    0.0811
##     40       57.7082             nan     0.0010    0.0876
##     60       56.0004             nan     0.0010    0.0830
##     80       54.3509             nan     0.0010    0.0762
##    100       52.7391             nan     0.0010    0.0803
##    120       51.1755             nan     0.0010    0.0818
##    140       49.6804             nan     0.0010    0.0630
##    160       48.2248             nan     0.0010    0.0781
##    180       46.8062             nan     0.0010    0.0704
##    200       45.4408             nan     0.0010    0.0610
##    220       44.1263             nan     0.0010    0.0580
##    240       42.8840             nan     0.0010    0.0562
##    260       41.6287             nan     0.0010    0.0636
##    280       40.4512             nan     0.0010    0.0528
##    300       39.3205             nan     0.0010    0.0535
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2876             nan     0.0010    0.1010
##      2       61.1912             nan     0.0010    0.0938
##      3       61.0965             nan     0.0010    0.0999
##      4       61.0030             nan     0.0010    0.0911
##      5       60.9114             nan     0.0010    0.0934
##      6       60.8187             nan     0.0010    0.0947
##      7       60.7266             nan     0.0010    0.0889
##      8       60.6323             nan     0.0010    0.0968
##      9       60.5362             nan     0.0010    0.1096
##     10       60.4437             nan     0.0010    0.0956
##     20       59.5319             nan     0.0010    0.0859
##     40       57.7624             nan     0.0010    0.0842
##     60       56.0241             nan     0.0010    0.0865
##     80       54.3543             nan     0.0010    0.0841
##    100       52.7535             nan     0.0010    0.0746
##    120       51.2186             nan     0.0010    0.0732
##    140       49.7484             nan     0.0010    0.0694
##    160       48.2550             nan     0.0010    0.0721
##    180       46.8744             nan     0.0010    0.0665
##    200       45.5248             nan     0.0010    0.0708
##    220       44.2176             nan     0.0010    0.0648
##    240       42.9163             nan     0.0010    0.0636
##    260       41.6940             nan     0.0010    0.0610
##    280       40.5209             nan     0.0010    0.0575
##    300       39.3925             nan     0.0010    0.0554
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2738             nan     0.0010    0.1078
##      2       61.1689             nan     0.0010    0.0953
##      3       61.0652             nan     0.0010    0.0876
##      4       60.9650             nan     0.0010    0.1067
##      5       60.8693             nan     0.0010    0.1031
##      6       60.7688             nan     0.0010    0.0943
##      7       60.6686             nan     0.0010    0.1011
##      8       60.5672             nan     0.0010    0.1050
##      9       60.4695             nan     0.0010    0.1073
##     10       60.3710             nan     0.0010    0.1014
##     20       59.3773             nan     0.0010    0.0924
##     40       57.4741             nan     0.0010    0.0872
##     60       55.6074             nan     0.0010    0.0845
##     80       53.8231             nan     0.0010    0.0820
##    100       52.1141             nan     0.0010    0.0889
##    120       50.4489             nan     0.0010    0.0798
##    140       48.8407             nan     0.0010    0.0740
##    160       47.2862             nan     0.0010    0.0759
##    180       45.7918             nan     0.0010    0.0668
##    200       44.3511             nan     0.0010    0.0712
##    220       42.9692             nan     0.0010    0.0592
##    240       41.6461             nan     0.0010    0.0563
##    260       40.3613             nan     0.0010    0.0658
##    280       39.1243             nan     0.0010    0.0689
##    300       37.9270             nan     0.0010    0.0519
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2763             nan     0.0010    0.1135
##      2       61.1751             nan     0.0010    0.1077
##      3       61.0786             nan     0.0010    0.1021
##      4       60.9765             nan     0.0010    0.0995
##      5       60.8743             nan     0.0010    0.0974
##      6       60.7735             nan     0.0010    0.1028
##      7       60.6742             nan     0.0010    0.0895
##      8       60.5671             nan     0.0010    0.1080
##      9       60.4690             nan     0.0010    0.0977
##     10       60.3661             nan     0.0010    0.0984
##     20       59.3781             nan     0.0010    0.0919
##     40       57.4356             nan     0.0010    0.1019
##     60       55.5655             nan     0.0010    0.0834
##     80       53.7784             nan     0.0010    0.0871
##    100       52.0701             nan     0.0010    0.0818
##    120       50.4246             nan     0.0010    0.0795
##    140       48.8167             nan     0.0010    0.0816
##    160       47.2672             nan     0.0010    0.0691
##    180       45.8046             nan     0.0010    0.0682
##    200       44.3870             nan     0.0010    0.0594
##    220       42.9841             nan     0.0010    0.0691
##    240       41.6727             nan     0.0010    0.0656
##    260       40.3962             nan     0.0010    0.0632
##    280       39.1536             nan     0.0010    0.0557
##    300       37.9587             nan     0.0010    0.0562
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       61.2832             nan     0.0010    0.1058
##      2       61.1835             nan     0.0010    0.1027
##      3       61.0788             nan     0.0010    0.1062
##      4       60.9828             nan     0.0010    0.0968
##      5       60.8795             nan     0.0010    0.1003
##      6       60.7720             nan     0.0010    0.0957
##      7       60.6763             nan     0.0010    0.0941
##      8       60.5640             nan     0.0010    0.1129
##      9       60.4657             nan     0.0010    0.0961
##     10       60.3672             nan     0.0010    0.1001
##     20       59.3763             nan     0.0010    0.0992
##     40       57.4659             nan     0.0010    0.0934
##     60       55.5953             nan     0.0010    0.0867
##     80       53.8031             nan     0.0010    0.0819
##    100       52.0904             nan     0.0010    0.0790
##    120       50.4284             nan     0.0010    0.0835
##    140       48.8247             nan     0.0010    0.0787
##    160       47.2855             nan     0.0010    0.0742
##    180       45.8110             nan     0.0010    0.0737
##    200       44.3832             nan     0.0010    0.0570
##    220       42.9910             nan     0.0010    0.0693
##    240       41.6482             nan     0.0010    0.0582
##    260       40.3751             nan     0.0010    0.0644
##    280       39.1772             nan     0.0010    0.0605
##    300       38.0023             nan     0.0010    0.0559
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9915             nan     0.0050    0.3792
##      2       60.5795             nan     0.0050    0.4111
##      3       60.1972             nan     0.0050    0.3884
##      4       59.8127             nan     0.0050    0.4141
##      5       59.4312             nan     0.0050    0.3711
##      6       59.0679             nan     0.0050    0.3462
##      7       58.6962             nan     0.0050    0.3360
##      8       58.3144             nan     0.0050    0.3495
##      9       57.9228             nan     0.0050    0.3329
##     10       57.5712             nan     0.0050    0.3251
##     20       54.1479             nan     0.0050    0.3013
##     40       48.1420             nan     0.0050    0.2784
##     60       43.1125             nan     0.0050    0.2073
##     80       38.8450             nan     0.0050    0.1771
##    100       35.1038             nan     0.0050    0.1509
##    120       31.8389             nan     0.0050    0.1375
##    140       28.9750             nan     0.0050    0.1259
##    160       26.5377             nan     0.0050    0.1085
##    180       24.3557             nan     0.0050    0.1005
##    200       22.4261             nan     0.0050    0.0827
##    220       20.7116             nan     0.0050    0.0583
##    240       19.2394             nan     0.0050    0.0611
##    260       17.9091             nan     0.0050    0.0521
##    280       16.7094             nan     0.0050    0.0482
##    300       15.6210             nan     0.0050    0.0304
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9800             nan     0.0050    0.3594
##      2       60.5867             nan     0.0050    0.3928
##      3       60.2024             nan     0.0050    0.3788
##      4       59.8375             nan     0.0050    0.3750
##      5       59.4911             nan     0.0050    0.3496
##      6       59.0921             nan     0.0050    0.3720
##      7       58.7135             nan     0.0050    0.3483
##      8       58.3367             nan     0.0050    0.3438
##      9       58.0176             nan     0.0050    0.3482
##     10       57.6604             nan     0.0050    0.3419
##     20       54.1990             nan     0.0050    0.3346
##     40       48.2499             nan     0.0050    0.2712
##     60       43.3316             nan     0.0050    0.2327
##     80       38.9384             nan     0.0050    0.1942
##    100       35.2056             nan     0.0050    0.1678
##    120       31.9451             nan     0.0050    0.1569
##    140       29.0245             nan     0.0050    0.1321
##    160       26.5684             nan     0.0050    0.1088
##    180       24.3656             nan     0.0050    0.0986
##    200       22.4909             nan     0.0050    0.0895
##    220       20.8020             nan     0.0050    0.0522
##    240       19.2714             nan     0.0050    0.0731
##    260       17.9153             nan     0.0050    0.0562
##    280       16.7123             nan     0.0050    0.0545
##    300       15.6677             nan     0.0050    0.0424
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.9911             nan     0.0050    0.3906
##      2       60.6381             nan     0.0050    0.3866
##      3       60.2510             nan     0.0050    0.3714
##      4       59.8685             nan     0.0050    0.4022
##      5       59.4908             nan     0.0050    0.3813
##      6       59.1554             nan     0.0050    0.3244
##      7       58.7571             nan     0.0050    0.3671
##      8       58.4250             nan     0.0050    0.3652
##      9       58.0628             nan     0.0050    0.3512
##     10       57.7055             nan     0.0050    0.3425
##     20       54.2628             nan     0.0050    0.3277
##     40       48.2028             nan     0.0050    0.2614
##     60       43.1401             nan     0.0050    0.2153
##     80       38.9957             nan     0.0050    0.1738
##    100       35.2817             nan     0.0050    0.1660
##    120       31.9945             nan     0.0050    0.1404
##    140       29.1494             nan     0.0050    0.1231
##    160       26.6311             nan     0.0050    0.1119
##    180       24.4322             nan     0.0050    0.0805
##    200       22.4830             nan     0.0050    0.0829
##    220       20.7883             nan     0.0050    0.0788
##    240       19.2767             nan     0.0050    0.0384
##    260       17.9334             nan     0.0050    0.0530
##    280       16.7446             nan     0.0050    0.0287
##    300       15.6826             nan     0.0050    0.0407
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8980             nan     0.0050    0.4720
##      2       60.4101             nan     0.0050    0.4099
##      3       59.9456             nan     0.0050    0.4498
##      4       59.4628             nan     0.0050    0.4461
##      5       58.9768             nan     0.0050    0.4481
##      6       58.5212             nan     0.0050    0.4737
##      7       58.1010             nan     0.0050    0.4029
##      8       57.6449             nan     0.0050    0.4311
##      9       57.2147             nan     0.0050    0.4436
##     10       56.7885             nan     0.0050    0.4154
##     20       52.6712             nan     0.0050    0.3813
##     40       45.4392             nan     0.0050    0.3604
##     60       39.3128             nan     0.0050    0.2320
##     80       34.1754             nan     0.0050    0.2237
##    100       29.9032             nan     0.0050    0.2108
##    120       26.3305             nan     0.0050    0.1751
##    140       23.3418             nan     0.0050    0.0955
##    160       20.6747             nan     0.0050    0.1169
##    180       18.4239             nan     0.0050    0.1060
##    200       16.5778             nan     0.0050    0.0805
##    220       15.0194             nan     0.0050    0.0535
##    240       13.6624             nan     0.0050    0.0431
##    260       12.5085             nan     0.0050    0.0539
##    280       11.4737             nan     0.0050    0.0428
##    300       10.5440             nan     0.0050    0.0326
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8814             nan     0.0050    0.4389
##      2       60.4169             nan     0.0050    0.4691
##      3       59.9516             nan     0.0050    0.4893
##      4       59.5156             nan     0.0050    0.4397
##      5       59.0377             nan     0.0050    0.4367
##      6       58.5580             nan     0.0050    0.4632
##      7       58.1026             nan     0.0050    0.4654
##      8       57.6756             nan     0.0050    0.4494
##      9       57.2880             nan     0.0050    0.3627
##     10       56.8471             nan     0.0050    0.4352
##     20       52.7689             nan     0.0050    0.4499
##     40       45.5530             nan     0.0050    0.3384
##     60       39.4441             nan     0.0050    0.2900
##     80       34.2711             nan     0.0050    0.2337
##    100       29.8654             nan     0.0050    0.1899
##    120       26.2758             nan     0.0050    0.1674
##    140       23.2530             nan     0.0050    0.1367
##    160       20.6178             nan     0.0050    0.1196
##    180       18.4180             nan     0.0050    0.0981
##    200       16.5708             nan     0.0050    0.0769
##    220       14.9746             nan     0.0050    0.0769
##    240       13.6065             nan     0.0050    0.0719
##    260       12.4230             nan     0.0050    0.0564
##    280       11.3889             nan     0.0050    0.0367
##    300       10.5012             nan     0.0050    0.0369
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8846             nan     0.0050    0.4423
##      2       60.3917             nan     0.0050    0.5044
##      3       59.9230             nan     0.0050    0.4774
##      4       59.4540             nan     0.0050    0.4627
##      5       59.0013             nan     0.0050    0.4477
##      6       58.5356             nan     0.0050    0.4444
##      7       58.0857             nan     0.0050    0.4249
##      8       57.6528             nan     0.0050    0.4278
##      9       57.2160             nan     0.0050    0.4158
##     10       56.7927             nan     0.0050    0.4267
##     20       52.7017             nan     0.0050    0.3559
##     40       45.4237             nan     0.0050    0.3033
##     60       39.3463             nan     0.0050    0.2895
##     80       34.2820             nan     0.0050    0.2023
##    100       29.8355             nan     0.0050    0.1881
##    120       26.2725             nan     0.0050    0.1590
##    140       23.2574             nan     0.0050    0.1370
##    160       20.7286             nan     0.0050    0.1246
##    180       18.5704             nan     0.0050    0.0993
##    200       16.7542             nan     0.0050    0.0747
##    220       15.1521             nan     0.0050    0.0629
##    240       13.7240             nan     0.0050    0.0481
##    260       12.5545             nan     0.0050    0.0494
##    280       11.5484             nan     0.0050    0.0430
##    300       10.6518             nan     0.0050    0.0388
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8741             nan     0.0050    0.5048
##      2       60.3483             nan     0.0050    0.5068
##      3       59.8592             nan     0.0050    0.5249
##      4       59.3537             nan     0.0050    0.4952
##      5       58.8787             nan     0.0050    0.4298
##      6       58.3937             nan     0.0050    0.4720
##      7       57.9319             nan     0.0050    0.4422
##      8       57.4647             nan     0.0050    0.4970
##      9       56.9896             nan     0.0050    0.4631
##     10       56.5036             nan     0.0050    0.4575
##     20       52.0445             nan     0.0050    0.4337
##     40       44.3915             nan     0.0050    0.3141
##     60       37.9449             nan     0.0050    0.2728
##     80       32.5522             nan     0.0050    0.2410
##    100       28.0892             nan     0.0050    0.1816
##    120       24.3749             nan     0.0050    0.1651
##    140       21.2973             nan     0.0050    0.1263
##    160       18.6406             nan     0.0050    0.1204
##    180       16.4269             nan     0.0050    0.1006
##    200       14.6186             nan     0.0050    0.0926
##    220       13.0646             nan     0.0050    0.0564
##    240       11.7030             nan     0.0050    0.0603
##    260       10.5691             nan     0.0050    0.0573
##    280        9.6007             nan     0.0050    0.0359
##    300        8.7647             nan     0.0050    0.0346
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8440             nan     0.0050    0.5194
##      2       60.3472             nan     0.0050    0.4589
##      3       59.8497             nan     0.0050    0.4421
##      4       59.3548             nan     0.0050    0.5125
##      5       58.8527             nan     0.0050    0.4795
##      6       58.3859             nan     0.0050    0.4746
##      7       57.9140             nan     0.0050    0.4215
##      8       57.4473             nan     0.0050    0.4543
##      9       57.0079             nan     0.0050    0.4951
##     10       56.5685             nan     0.0050    0.4170
##     20       52.1506             nan     0.0050    0.3542
##     40       44.4238             nan     0.0050    0.3894
##     60       38.0353             nan     0.0050    0.2775
##     80       32.7611             nan     0.0050    0.2204
##    100       28.3105             nan     0.0050    0.1951
##    120       24.5087             nan     0.0050    0.1819
##    140       21.4324             nan     0.0050    0.1391
##    160       18.8351             nan     0.0050    0.1243
##    180       16.5972             nan     0.0050    0.1103
##    200       14.7621             nan     0.0050    0.0786
##    220       13.1985             nan     0.0050    0.0653
##    240       11.8523             nan     0.0050    0.0533
##    260       10.7044             nan     0.0050    0.0491
##    280        9.7101             nan     0.0050    0.0422
##    300        8.8415             nan     0.0050    0.0356
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.8695             nan     0.0050    0.4972
##      2       60.3537             nan     0.0050    0.4919
##      3       59.8600             nan     0.0050    0.4463
##      4       59.3775             nan     0.0050    0.5035
##      5       58.8852             nan     0.0050    0.5830
##      6       58.4030             nan     0.0050    0.4768
##      7       57.9153             nan     0.0050    0.5377
##      8       57.4505             nan     0.0050    0.4879
##      9       57.0138             nan     0.0050    0.4205
##     10       56.5570             nan     0.0050    0.4480
##     20       52.1363             nan     0.0050    0.4306
##     40       44.4333             nan     0.0050    0.4044
##     60       38.0620             nan     0.0050    0.2801
##     80       32.6732             nan     0.0050    0.2534
##    100       28.3360             nan     0.0050    0.2119
##    120       24.6022             nan     0.0050    0.1411
##    140       21.4487             nan     0.0050    0.1487
##    160       18.8256             nan     0.0050    0.1145
##    180       16.6508             nan     0.0050    0.0915
##    200       14.8243             nan     0.0050    0.0747
##    220       13.2690             nan     0.0050    0.0668
##    240       11.9385             nan     0.0050    0.0644
##    260       10.8122             nan     0.0050    0.0460
##    280        9.8490             nan     0.0050    0.0388
##    300        9.0394             nan     0.0050    0.0267
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.6087             nan     0.0100    0.7814
##      2       59.9348             nan     0.0100    0.7172
##      3       59.2057             nan     0.0100    0.6888
##      4       58.4760             nan     0.0100    0.7339
##      5       57.7460             nan     0.0100    0.7225
##      6       57.0797             nan     0.0100    0.7238
##      7       56.3629             nan     0.0100    0.7190
##      8       55.6847             nan     0.0100    0.6703
##      9       55.0477             nan     0.0100    0.6715
##     10       54.4214             nan     0.0100    0.6766
##     20       48.4091             nan     0.0100    0.5627
##     40       38.9320             nan     0.0100    0.4027
##     60       32.1655             nan     0.0100    0.3030
##     80       26.7627             nan     0.0100    0.2374
##    100       22.6824             nan     0.0100    0.1531
##    120       19.4550             nan     0.0100    0.1336
##    140       16.9917             nan     0.0100    0.0691
##    160       14.9851             nan     0.0100    0.0705
##    180       13.2540             nan     0.0100    0.0577
##    200       11.8272             nan     0.0100    0.0350
##    220       10.6504             nan     0.0100    0.0527
##    240        9.6395             nan     0.0100    0.0397
##    260        8.8304             nan     0.0100    0.0305
##    280        8.1246             nan     0.0100    0.0255
##    300        7.5247             nan     0.0100    0.0209
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.5846             nan     0.0100    0.7242
##      2       59.7189             nan     0.0100    0.7393
##      3       59.0176             nan     0.0100    0.7543
##      4       58.3235             nan     0.0100    0.7454
##      5       57.5604             nan     0.0100    0.7132
##      6       56.7919             nan     0.0100    0.7508
##      7       56.1039             nan     0.0100    0.6678
##      8       55.4683             nan     0.0100    0.6032
##      9       54.7708             nan     0.0100    0.6721
##     10       54.0753             nan     0.0100    0.6242
##     20       47.9552             nan     0.0100    0.4831
##     40       38.6719             nan     0.0100    0.3784
##     60       31.9243             nan     0.0100    0.2498
##     80       26.5724             nan     0.0100    0.2274
##    100       22.4586             nan     0.0100    0.1794
##    120       19.3018             nan     0.0100    0.1301
##    140       16.7553             nan     0.0100    0.1061
##    160       14.7202             nan     0.0100    0.0787
##    180       13.0101             nan     0.0100    0.0610
##    200       11.6386             nan     0.0100    0.0573
##    220       10.5231             nan     0.0100    0.0436
##    240        9.5749             nan     0.0100    0.0335
##    260        8.7575             nan     0.0100    0.0214
##    280        8.0925             nan     0.0100    0.0247
##    300        7.5071             nan     0.0100    0.0271
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.6512             nan     0.0100    0.7558
##      2       59.8782             nan     0.0100    0.7704
##      3       59.1220             nan     0.0100    0.7379
##      4       58.3188             nan     0.0100    0.7142
##      5       57.6126             nan     0.0100    0.7419
##      6       56.8656             nan     0.0100    0.7135
##      7       56.1957             nan     0.0100    0.6645
##      8       55.5677             nan     0.0100    0.6713
##      9       54.8911             nan     0.0100    0.6590
##     10       54.2479             nan     0.0100    0.6107
##     20       48.3741             nan     0.0100    0.5458
##     40       38.8227             nan     0.0100    0.3727
##     60       31.8189             nan     0.0100    0.2026
##     80       26.6205             nan     0.0100    0.1783
##    100       22.4773             nan     0.0100    0.1320
##    120       19.3225             nan     0.0100    0.1337
##    140       16.8582             nan     0.0100    0.1096
##    160       14.8255             nan     0.0100    0.0738
##    180       13.1824             nan     0.0100    0.0578
##    200       11.7807             nan     0.0100    0.0458
##    220       10.6462             nan     0.0100    0.0474
##    240        9.6826             nan     0.0100    0.0268
##    260        8.8830             nan     0.0100    0.0319
##    280        8.2203             nan     0.0100    0.0226
##    300        7.6250             nan     0.0100    0.0237
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.3731             nan     0.0100    0.8727
##      2       59.4232             nan     0.0100    0.9901
##      3       58.5814             nan     0.0100    0.8225
##      4       57.6375             nan     0.0100    0.8170
##      5       56.8245             nan     0.0100    0.8464
##      6       55.9499             nan     0.0100    0.8119
##      7       55.1086             nan     0.0100    0.8434
##      8       54.3080             nan     0.0100    0.7694
##      9       53.5831             nan     0.0100    0.7170
##     10       52.8120             nan     0.0100    0.7951
##     20       45.4330             nan     0.0100    0.6382
##     40       34.1513             nan     0.0100    0.4739
##     60       26.1179             nan     0.0100    0.3541
##     80       20.5181             nan     0.0100    0.2119
##    100       16.4831             nan     0.0100    0.1636
##    120       13.5907             nan     0.0100    0.1170
##    140       11.3483             nan     0.0100    0.0788
##    160        9.6996             nan     0.0100    0.0774
##    180        8.4230             nan     0.0100    0.0506
##    200        7.4145             nan     0.0100    0.0354
##    220        6.6393             nan     0.0100    0.0255
##    240        6.0196             nan     0.0100    0.0168
##    260        5.4898             nan     0.0100    0.0164
##    280        5.1034             nan     0.0100    0.0167
##    300        4.7671             nan     0.0100    0.0090
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.4031             nan     0.0100    0.8763
##      2       59.5255             nan     0.0100    0.9611
##      3       58.6023             nan     0.0100    0.8128
##      4       57.6573             nan     0.0100    0.8575
##      5       56.7815             nan     0.0100    0.9129
##      6       55.9637             nan     0.0100    0.7676
##      7       55.1146             nan     0.0100    0.8829
##      8       54.3317             nan     0.0100    0.7571
##      9       53.5131             nan     0.0100    0.7943
##     10       52.6691             nan     0.0100    0.8224
##     20       45.7139             nan     0.0100    0.5879
##     40       34.4832             nan     0.0100    0.4407
##     60       26.4799             nan     0.0100    0.3230
##     80       20.7467             nan     0.0100    0.2424
##    100       16.6708             nan     0.0100    0.1602
##    120       13.6659             nan     0.0100    0.1141
##    140       11.3802             nan     0.0100    0.0959
##    160        9.7364             nan     0.0100    0.0581
##    180        8.4653             nan     0.0100    0.0337
##    200        7.4330             nan     0.0100    0.0352
##    220        6.6554             nan     0.0100    0.0285
##    240        6.0159             nan     0.0100    0.0216
##    260        5.5248             nan     0.0100    0.0127
##    280        5.1283             nan     0.0100    0.0149
##    300        4.8262             nan     0.0100    0.0098
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.4083             nan     0.0100    0.8183
##      2       59.5480             nan     0.0100    0.9328
##      3       58.6494             nan     0.0100    0.8520
##      4       57.8535             nan     0.0100    0.8869
##      5       56.9004             nan     0.0100    0.9171
##      6       56.0789             nan     0.0100    0.7483
##      7       55.2061             nan     0.0100    0.8247
##      8       54.4097             nan     0.0100    0.7241
##      9       53.5671             nan     0.0100    0.7891
##     10       52.7188             nan     0.0100    0.9011
##     20       45.4237             nan     0.0100    0.6637
##     40       34.0460             nan     0.0100    0.4780
##     60       26.1934             nan     0.0100    0.3477
##     80       20.6276             nan     0.0100    0.2209
##    100       16.6789             nan     0.0100    0.1532
##    120       13.8552             nan     0.0100    0.1197
##    140       11.7327             nan     0.0100    0.0697
##    160       10.0283             nan     0.0100    0.0567
##    180        8.7399             nan     0.0100    0.0428
##    200        7.7108             nan     0.0100    0.0348
##    220        6.9022             nan     0.0100    0.0283
##    240        6.2768             nan     0.0100    0.0202
##    260        5.7934             nan     0.0100    0.0134
##    280        5.3973             nan     0.0100    0.0110
##    300        5.0810             nan     0.0100    0.0116
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.2910             nan     0.0100    0.9729
##      2       59.2984             nan     0.0100    0.9945
##      3       58.2858             nan     0.0100    1.0976
##      4       57.3115             nan     0.0100    0.8716
##      5       56.3680             nan     0.0100    1.0176
##      6       55.4747             nan     0.0100    0.9490
##      7       54.6408             nan     0.0100    0.8683
##      8       53.7158             nan     0.0100    0.8603
##      9       52.7953             nan     0.0100    0.8392
##     10       51.9204             nan     0.0100    0.7746
##     20       44.1672             nan     0.0100    0.6810
##     40       32.4008             nan     0.0100    0.4626
##     60       24.2603             nan     0.0100    0.3069
##     80       18.5819             nan     0.0100    0.2240
##    100       14.5456             nan     0.0100    0.1405
##    120       11.7106             nan     0.0100    0.1213
##    140        9.6018             nan     0.0100    0.0862
##    160        8.0393             nan     0.0100    0.0472
##    180        6.8978             nan     0.0100    0.0353
##    200        6.0285             nan     0.0100    0.0364
##    220        5.3115             nan     0.0100    0.0212
##    240        4.7986             nan     0.0100    0.0146
##    260        4.3851             nan     0.0100    0.0083
##    280        4.0904             nan     0.0100    0.0050
##    300        3.8419             nan     0.0100    0.0029
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.3339             nan     0.0100    1.0052
##      2       59.3097             nan     0.0100    0.9652
##      3       58.3582             nan     0.0100    0.8627
##      4       57.3773             nan     0.0100    0.9509
##      5       56.4616             nan     0.0100    0.9115
##      6       55.5899             nan     0.0100    0.8482
##      7       54.7107             nan     0.0100    0.8661
##      8       53.8037             nan     0.0100    0.8558
##      9       52.8990             nan     0.0100    0.8947
##     10       52.0355             nan     0.0100    0.8474
##     20       44.3375             nan     0.0100    0.7369
##     40       32.6241             nan     0.0100    0.5083
##     60       24.3435             nan     0.0100    0.3356
##     80       18.6181             nan     0.0100    0.2336
##    100       14.6389             nan     0.0100    0.1528
##    120       11.7542             nan     0.0100    0.1102
##    140        9.6929             nan     0.0100    0.0712
##    160        8.1231             nan     0.0100    0.0618
##    180        6.9334             nan     0.0100    0.0474
##    200        6.0594             nan     0.0100    0.0257
##    220        5.3947             nan     0.0100    0.0205
##    240        4.8969             nan     0.0100    0.0182
##    260        4.5118             nan     0.0100    0.0120
##    280        4.2243             nan     0.0100    0.0084
##    300        3.9934             nan     0.0100    0.0078
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       60.3801             nan     0.0100    1.0206
##      2       59.4205             nan     0.0100    0.8794
##      3       58.4217             nan     0.0100    0.9464
##      4       57.4588             nan     0.0100    1.0547
##      5       56.4757             nan     0.0100    0.9703
##      6       55.5432             nan     0.0100    0.7711
##      7       54.6354             nan     0.0100    0.9901
##      8       53.6872             nan     0.0100    1.0242
##      9       52.8363             nan     0.0100    0.7776
##     10       51.9890             nan     0.0100    0.8386
##     20       44.4202             nan     0.0100    0.7184
##     40       32.6710             nan     0.0100    0.4728
##     60       24.4048             nan     0.0100    0.3197
##     80       18.6802             nan     0.0100    0.2441
##    100       14.7475             nan     0.0100    0.1466
##    120       11.9100             nan     0.0100    0.1106
##    140        9.8708             nan     0.0100    0.0700
##    160        8.3541             nan     0.0100    0.0510
##    180        7.2178             nan     0.0100    0.0500
##    200        6.3647             nan     0.0100    0.0297
##    220        5.6888             nan     0.0100    0.0228
##    240        5.1741             nan     0.0100    0.0161
##    260        4.7836             nan     0.0100    0.0120
##    280        4.4735             nan     0.0100    0.0087
##    300        4.2426             nan     0.0100    0.0025
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.6882             nan     0.0500    3.7264
##      2       54.1214             nan     0.0500    3.6922
##      3       51.0108             nan     0.0500    3.0275
##      4       48.0237             nan     0.0500    2.9646
##      5       45.4477             nan     0.0500    1.9907
##      6       43.0769             nan     0.0500    2.0015
##      7       40.6490             nan     0.0500    2.2378
##      8       38.4082             nan     0.0500    2.2304
##      9       36.2285             nan     0.0500    2.2400
##     10       34.4423             nan     0.0500    1.7992
##     20       22.1371             nan     0.0500    0.8527
##     40       11.4004             nan     0.0500    0.2431
##     60        7.4596             nan     0.0500    0.1114
##     80        5.6228             nan     0.0500    0.0667
##    100        4.7329             nan     0.0500   -0.0051
##    120        4.3002             nan     0.0500    0.0049
##    140        4.0450             nan     0.0500   -0.0077
##    160        3.9214             nan     0.0500   -0.0149
##    180        3.8183             nan     0.0500   -0.0022
##    200        3.7300             nan     0.0500   -0.0166
##    220        3.6477             nan     0.0500    0.0002
##    240        3.6053             nan     0.0500   -0.0041
##    260        3.5557             nan     0.0500   -0.0198
##    280        3.4957             nan     0.0500   -0.0153
##    300        3.4574             nan     0.0500   -0.0052
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.9618             nan     0.0500    3.7907
##      2       54.5807             nan     0.0500    3.3574
##      3       51.2795             nan     0.0500    3.0127
##      4       48.2549             nan     0.0500    2.8350
##      5       45.5926             nan     0.0500    2.6133
##      6       43.2301             nan     0.0500    2.3709
##      7       40.9553             nan     0.0500    2.1129
##      8       38.8228             nan     0.0500    2.0239
##      9       36.6671             nan     0.0500    1.9774
##     10       34.8223             nan     0.0500    1.6304
##     20       22.5753             nan     0.0500    0.5825
##     40       11.7541             nan     0.0500    0.2609
##     60        7.5536             nan     0.0500    0.0978
##     80        5.5796             nan     0.0500    0.0501
##    100        4.6596             nan     0.0500   -0.0077
##    120        4.2357             nan     0.0500    0.0023
##    140        4.0180             nan     0.0500   -0.0197
##    160        3.9100             nan     0.0500   -0.0004
##    180        3.8130             nan     0.0500   -0.0096
##    200        3.7452             nan     0.0500   -0.0074
##    220        3.6842             nan     0.0500   -0.0064
##    240        3.6391             nan     0.0500   -0.0120
##    260        3.5887             nan     0.0500   -0.0086
##    280        3.5282             nan     0.0500   -0.0025
##    300        3.4887             nan     0.0500   -0.0088
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.7157             nan     0.0500    3.7902
##      2       54.4730             nan     0.0500    3.5571
##      3       51.2612             nan     0.0500    3.0139
##      4       48.4374             nan     0.0500    2.9287
##      5       45.8258             nan     0.0500    2.7731
##      6       43.4560             nan     0.0500    2.4347
##      7       41.2749             nan     0.0500    2.1689
##      8       39.2471             nan     0.0500    2.0858
##      9       37.3553             nan     0.0500    1.9186
##     10       35.5429             nan     0.0500    1.4827
##     20       22.6926             nan     0.0500    0.8077
##     40       11.5969             nan     0.0500    0.2417
##     60        7.5349             nan     0.0500    0.1207
##     80        5.7729             nan     0.0500    0.0333
##    100        4.9486             nan     0.0500    0.0103
##    120        4.6154             nan     0.0500    0.0080
##    140        4.4340             nan     0.0500   -0.0057
##    160        4.3125             nan     0.0500   -0.0034
##    180        4.2215             nan     0.0500   -0.0031
##    200        4.1518             nan     0.0500   -0.0019
##    220        4.0751             nan     0.0500   -0.0070
##    240        4.0050             nan     0.0500   -0.0188
##    260        3.9343             nan     0.0500   -0.0116
##    280        3.8924             nan     0.0500   -0.0041
##    300        3.8494             nan     0.0500   -0.0056
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.1146             nan     0.0500    4.2013
##      2       52.7674             nan     0.0500    4.4111
##      3       48.5013             nan     0.0500    3.7474
##      4       44.8904             nan     0.0500    3.3747
##      5       41.5746             nan     0.0500    3.1724
##      6       38.7357             nan     0.0500    2.7897
##      7       35.9903             nan     0.0500    2.4036
##      8       33.6283             nan     0.0500    2.3189
##      9       31.2150             nan     0.0500    2.1451
##     10       29.1025             nan     0.0500    1.9996
##     20       16.0208             nan     0.0500    0.7012
##     40        7.2263             nan     0.0500    0.1697
##     60        4.7670             nan     0.0500    0.0496
##     80        3.9325             nan     0.0500   -0.0230
##    100        3.5795             nan     0.0500   -0.0041
##    120        3.3324             nan     0.0500    0.0015
##    140        3.1494             nan     0.0500   -0.0117
##    160        2.9964             nan     0.0500   -0.0207
##    180        2.8915             nan     0.0500   -0.0122
##    200        2.7611             nan     0.0500   -0.0052
##    220        2.6514             nan     0.0500   -0.0218
##    240        2.5364             nan     0.0500   -0.0137
##    260        2.4665             nan     0.0500   -0.0068
##    280        2.3663             nan     0.0500   -0.0045
##    300        2.3023             nan     0.0500   -0.0065
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       57.1705             nan     0.0500    4.8351
##      2       52.4498             nan     0.0500    4.6638
##      3       48.7307             nan     0.0500    4.0931
##      4       45.4616             nan     0.0500    3.6567
##      5       42.2666             nan     0.0500    3.2523
##      6       39.1474             nan     0.0500    2.6656
##      7       36.5001             nan     0.0500    2.5567
##      8       33.8819             nan     0.0500    2.3102
##      9       31.6082             nan     0.0500    2.3739
##     10       29.6210             nan     0.0500    2.0300
##     20       16.3954             nan     0.0500    0.8491
##     40        7.3771             nan     0.0500    0.1640
##     60        4.8171             nan     0.0500    0.0354
##     80        4.0234             nan     0.0500    0.0068
##    100        3.7025             nan     0.0500   -0.0124
##    120        3.4790             nan     0.0500   -0.0070
##    140        3.2970             nan     0.0500   -0.0096
##    160        3.1685             nan     0.0500   -0.0107
##    180        3.0306             nan     0.0500   -0.0064
##    200        2.9091             nan     0.0500   -0.0156
##    220        2.8304             nan     0.0500   -0.0061
##    240        2.7377             nan     0.0500   -0.0023
##    260        2.6643             nan     0.0500   -0.0169
##    280        2.5905             nan     0.0500   -0.0136
##    300        2.5232             nan     0.0500   -0.0093
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.6348             nan     0.0500    4.6225
##      2       52.4694             nan     0.0500    3.7606
##      3       48.5963             nan     0.0500    4.0450
##      4       45.0871             nan     0.0500    3.5413
##      5       41.6694             nan     0.0500    3.3137
##      6       38.6958             nan     0.0500    2.8070
##      7       35.9355             nan     0.0500    2.4924
##      8       33.7207             nan     0.0500    2.5786
##      9       31.3958             nan     0.0500    2.3025
##     10       29.2146             nan     0.0500    2.1472
##     20       16.3355             nan     0.0500    0.8080
##     40        7.6533             nan     0.0500    0.1513
##     60        5.1388             nan     0.0500    0.0260
##     80        4.4322             nan     0.0500   -0.0105
##    100        4.1080             nan     0.0500    0.0124
##    120        3.8669             nan     0.0500   -0.0207
##    140        3.6824             nan     0.0500    0.0031
##    160        3.5314             nan     0.0500   -0.0178
##    180        3.4259             nan     0.0500   -0.0021
##    200        3.3248             nan     0.0500   -0.0061
##    220        3.2123             nan     0.0500   -0.0127
##    240        3.1107             nan     0.0500   -0.0154
##    260        3.0467             nan     0.0500   -0.0117
##    280        2.9485             nan     0.0500   -0.0003
##    300        2.8980             nan     0.0500   -0.0043
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.3250             nan     0.0500    5.0922
##      2       51.7477             nan     0.0500    4.5414
##      3       47.6791             nan     0.0500    3.1199
##      4       43.8283             nan     0.0500    3.4493
##      5       40.2507             nan     0.0500    3.9363
##      6       37.0763             nan     0.0500    3.0207
##      7       34.2556             nan     0.0500    2.6370
##      8       31.7667             nan     0.0500    2.6951
##      9       29.3437             nan     0.0500    2.5884
##     10       27.1487             nan     0.0500    2.0298
##     20       14.0526             nan     0.0500    0.7788
##     40        5.9096             nan     0.0500    0.1619
##     60        3.9038             nan     0.0500    0.0490
##     80        3.3237             nan     0.0500   -0.0057
##    100        2.9846             nan     0.0500   -0.0265
##    120        2.7467             nan     0.0500   -0.0146
##    140        2.5292             nan     0.0500   -0.0003
##    160        2.3695             nan     0.0500   -0.0060
##    180        2.2468             nan     0.0500   -0.0011
##    200        2.1216             nan     0.0500   -0.0102
##    220        2.0160             nan     0.0500   -0.0105
##    240        1.8943             nan     0.0500   -0.0095
##    260        1.8067             nan     0.0500   -0.0089
##    280        1.7407             nan     0.0500   -0.0203
##    300        1.6589             nan     0.0500   -0.0120
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.6059             nan     0.0500    4.7659
##      2       51.8746             nan     0.0500    4.4082
##      3       47.7055             nan     0.0500    4.3091
##      4       44.0528             nan     0.0500    3.5901
##      5       40.6229             nan     0.0500    3.6865
##      6       37.5765             nan     0.0500    3.2741
##      7       34.7931             nan     0.0500    2.8820
##      8       32.1875             nan     0.0500    2.5819
##      9       30.0306             nan     0.0500    2.2995
##     10       27.8643             nan     0.0500    1.8225
##     20       14.4092             nan     0.0500    0.7605
##     40        6.2091             nan     0.0500    0.1379
##     60        4.1547             nan     0.0500    0.0194
##     80        3.4843             nan     0.0500   -0.0162
##    100        3.1868             nan     0.0500   -0.0199
##    120        2.9505             nan     0.0500   -0.0080
##    140        2.7974             nan     0.0500   -0.0116
##    160        2.6195             nan     0.0500   -0.0100
##    180        2.5195             nan     0.0500   -0.0145
##    200        2.3792             nan     0.0500   -0.0245
##    220        2.2649             nan     0.0500   -0.0216
##    240        2.1802             nan     0.0500   -0.0177
##    260        2.0822             nan     0.0500   -0.0124
##    280        2.0024             nan     0.0500   -0.0097
##    300        1.9366             nan     0.0500   -0.0062
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       56.1381             nan     0.0500    4.9662
##      2       51.5903             nan     0.0500    4.5598
##      3       47.6521             nan     0.0500    4.1743
##      4       44.0038             nan     0.0500    3.6158
##      5       40.6796             nan     0.0500    3.4670
##      6       37.7221             nan     0.0500    3.1771
##      7       34.8723             nan     0.0500    2.9813
##      8       32.4565             nan     0.0500    2.4640
##      9       29.9121             nan     0.0500    2.4437
##     10       27.7147             nan     0.0500    1.9066
##     20       14.5889             nan     0.0500    0.8273
##     40        6.2761             nan     0.0500    0.1564
##     60        4.4009             nan     0.0500    0.0213
##     80        3.7915             nan     0.0500   -0.0145
##    100        3.5119             nan     0.0500   -0.0183
##    120        3.2782             nan     0.0500   -0.0108
##    140        3.0963             nan     0.0500   -0.0215
##    160        2.9562             nan     0.0500   -0.0204
##    180        2.8366             nan     0.0500   -0.0147
##    200        2.7168             nan     0.0500   -0.0334
##    220        2.5897             nan     0.0500   -0.0331
##    240        2.5027             nan     0.0500   -0.0122
##    260        2.4055             nan     0.0500   -0.0125
##    280        2.3071             nan     0.0500   -0.0130
##    300        2.2348             nan     0.0500   -0.0047
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.0511             nan     0.1000    7.4470
##      2       48.0730             nan     0.1000    6.2893
##      3       42.9137             nan     0.1000    5.7309
##      4       38.9768             nan     0.1000    3.8048
##      5       35.0757             nan     0.1000    3.8720
##      6       31.6451             nan     0.1000    3.4137
##      7       28.9549             nan     0.1000    2.5916
##      8       26.4066             nan     0.1000    2.4956
##      9       24.1186             nan     0.1000    2.1687
##     10       22.2171             nan     0.1000    1.8771
##     20       11.4115             nan     0.1000    0.5844
##     40        5.5103             nan     0.1000    0.0831
##     60        4.2041             nan     0.1000    0.0297
##     80        3.8950             nan     0.1000   -0.0077
##    100        3.7144             nan     0.1000   -0.0202
##    120        3.6071             nan     0.1000   -0.0215
##    140        3.5005             nan     0.1000   -0.0134
##    160        3.4110             nan     0.1000   -0.0142
##    180        3.3550             nan     0.1000   -0.0120
##    200        3.3006             nan     0.1000   -0.0265
##    220        3.2540             nan     0.1000   -0.0124
##    240        3.1952             nan     0.1000   -0.0219
##    260        3.1353             nan     0.1000   -0.0255
##    280        3.0900             nan     0.1000   -0.0077
##    300        3.0473             nan     0.1000   -0.0190
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       54.1760             nan     0.1000    7.5596
##      2       48.0382             nan     0.1000    5.9079
##      3       43.2254             nan     0.1000    4.6278
##      4       38.2898             nan     0.1000    4.6497
##      5       34.3780             nan     0.1000    3.6527
##      6       31.1397             nan     0.1000    3.0744
##      7       28.2313             nan     0.1000    2.4522
##      8       25.7199             nan     0.1000    2.2999
##      9       23.5771             nan     0.1000    2.2082
##     10       21.6845             nan     0.1000    1.6815
##     20       11.3320             nan     0.1000    0.6270
##     40        5.5327             nan     0.1000    0.1256
##     60        4.3182             nan     0.1000    0.0135
##     80        4.0410             nan     0.1000   -0.0218
##    100        3.8594             nan     0.1000   -0.0263
##    120        3.7146             nan     0.1000   -0.0087
##    140        3.6140             nan     0.1000   -0.0322
##    160        3.5345             nan     0.1000   -0.0181
##    180        3.4658             nan     0.1000   -0.0179
##    200        3.3861             nan     0.1000   -0.0021
##    220        3.3146             nan     0.1000   -0.0056
##    240        3.2587             nan     0.1000   -0.0311
##    260        3.2158             nan     0.1000   -0.0130
##    280        3.1566             nan     0.1000   -0.0089
##    300        3.1112             nan     0.1000   -0.0072
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.6222             nan     0.1000    6.9997
##      2       47.7152             nan     0.1000    6.1036
##      3       42.8654             nan     0.1000    5.2936
##      4       38.2126             nan     0.1000    3.7290
##      5       34.3675             nan     0.1000    3.5378
##      6       31.2233             nan     0.1000    3.0342
##      7       28.1663             nan     0.1000    2.9720
##      8       25.9866             nan     0.1000    1.8346
##      9       23.7570             nan     0.1000    1.8758
##     10       21.8411             nan     0.1000    1.8274
##     20       11.3201             nan     0.1000    0.5119
##     40        5.7803             nan     0.1000    0.0014
##     60        4.6669             nan     0.1000   -0.1086
##     80        4.3375             nan     0.1000   -0.0083
##    100        4.1794             nan     0.1000    0.0009
##    120        4.0511             nan     0.1000   -0.0100
##    140        3.9279             nan     0.1000   -0.0232
##    160        3.8468             nan     0.1000   -0.0134
##    180        3.7459             nan     0.1000   -0.0098
##    200        3.6681             nan     0.1000   -0.0173
##    220        3.6003             nan     0.1000   -0.0337
##    240        3.5134             nan     0.1000   -0.0279
##    260        3.4500             nan     0.1000   -0.0095
##    280        3.4156             nan     0.1000   -0.0276
##    300        3.3623             nan     0.1000   -0.0051
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.4543             nan     0.1000    8.8288
##      2       45.1435             nan     0.1000    7.1661
##      3       39.9473             nan     0.1000    5.9227
##      4       34.2414             nan     0.1000    5.7911
##      5       29.4939             nan     0.1000    4.4633
##      6       26.1296             nan     0.1000    3.4533
##      7       23.0367             nan     0.1000    3.0520
##      8       20.3436             nan     0.1000    2.5860
##      9       18.1701             nan     0.1000    2.2819
##     10       16.2282             nan     0.1000    1.7298
##     20        7.3187             nan     0.1000    0.3315
##     40        3.9578             nan     0.1000    0.0183
##     60        3.3513             nan     0.1000   -0.0139
##     80        3.0463             nan     0.1000   -0.0255
##    100        2.7655             nan     0.1000   -0.0223
##    120        2.6062             nan     0.1000   -0.0433
##    140        2.4302             nan     0.1000   -0.0306
##    160        2.2944             nan     0.1000   -0.0376
##    180        2.2064             nan     0.1000   -0.0321
##    200        2.0947             nan     0.1000   -0.0341
##    220        1.9897             nan     0.1000   -0.0190
##    240        1.8858             nan     0.1000   -0.0157
##    260        1.7795             nan     0.1000   -0.0131
##    280        1.7256             nan     0.1000   -0.0226
##    300        1.6404             nan     0.1000   -0.0286
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.7198             nan     0.1000    8.9661
##      2       45.0838             nan     0.1000    8.4291
##      3       38.7068             nan     0.1000    5.6103
##      4       33.5098             nan     0.1000    5.4622
##      5       29.0018             nan     0.1000    3.9602
##      6       25.5633             nan     0.1000    3.2245
##      7       22.1440             nan     0.1000    3.5392
##      8       19.5018             nan     0.1000    2.2691
##      9       17.3466             nan     0.1000    1.5646
##     10       15.6200             nan     0.1000    1.2512
##     20        7.3559             nan     0.1000    0.2580
##     40        4.3307             nan     0.1000   -0.0034
##     60        3.6644             nan     0.1000   -0.0089
##     80        3.3807             nan     0.1000   -0.0228
##    100        3.2044             nan     0.1000   -0.0532
##    120        3.0454             nan     0.1000   -0.0091
##    140        2.8497             nan     0.1000   -0.0219
##    160        2.6854             nan     0.1000   -0.0275
##    180        2.5570             nan     0.1000   -0.0206
##    200        2.4336             nan     0.1000   -0.0250
##    220        2.3321             nan     0.1000   -0.0102
##    240        2.2112             nan     0.1000   -0.0137
##    260        2.1257             nan     0.1000   -0.0147
##    280        2.0437             nan     0.1000   -0.0108
##    300        1.9677             nan     0.1000   -0.0154
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       52.5449             nan     0.1000    8.9548
##      2       45.0377             nan     0.1000    7.2808
##      3       38.3929             nan     0.1000    6.3621
##      4       33.2648             nan     0.1000    5.0845
##      5       28.9591             nan     0.1000    3.6344
##      6       25.2955             nan     0.1000    3.4867
##      7       22.4019             nan     0.1000    2.7471
##      8       19.6107             nan     0.1000    2.6846
##      9       17.5319             nan     0.1000    1.8879
##     10       15.9018             nan     0.1000    1.5416
##     20        7.5429             nan     0.1000    0.2950
##     40        4.3503             nan     0.1000    0.0123
##     60        3.8390             nan     0.1000   -0.0211
##     80        3.4364             nan     0.1000   -0.0454
##    100        3.1916             nan     0.1000   -0.0299
##    120        2.9673             nan     0.1000   -0.0369
##    140        2.8281             nan     0.1000   -0.0199
##    160        2.6847             nan     0.1000   -0.0292
##    180        2.5461             nan     0.1000   -0.0218
##    200        2.4456             nan     0.1000   -0.0381
##    220        2.3418             nan     0.1000   -0.0180
##    240        2.2678             nan     0.1000   -0.0186
##    260        2.2220             nan     0.1000   -0.0119
##    280        2.1485             nan     0.1000   -0.0367
##    300        2.0460             nan     0.1000   -0.0241
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.9125             nan     0.1000    9.5619
##      2       44.4070             nan     0.1000    7.6436
##      3       37.3621             nan     0.1000    6.4708
##      4       32.3396             nan     0.1000    5.5120
##      5       27.9934             nan     0.1000    4.7985
##      6       24.2663             nan     0.1000    3.9704
##      7       21.0644             nan     0.1000    2.8949
##      8       18.4280             nan     0.1000    2.4830
##      9       16.0999             nan     0.1000    2.2418
##     10       14.3210             nan     0.1000    1.4878
##     20        5.8213             nan     0.1000    0.2121
##     40        3.3022             nan     0.1000   -0.0023
##     60        2.8089             nan     0.1000   -0.0104
##     80        2.4721             nan     0.1000   -0.0073
##    100        2.2128             nan     0.1000   -0.0165
##    120        2.0029             nan     0.1000   -0.0187
##    140        1.8132             nan     0.1000   -0.0427
##    160        1.6690             nan     0.1000   -0.0233
##    180        1.5517             nan     0.1000   -0.0195
##    200        1.4094             nan     0.1000   -0.0098
##    220        1.3046             nan     0.1000   -0.0128
##    240        1.2221             nan     0.1000   -0.0125
##    260        1.1281             nan     0.1000   -0.0130
##    280        1.0505             nan     0.1000   -0.0146
##    300        0.9869             nan     0.1000   -0.0139
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.4003             nan     0.1000    9.7223
##      2       43.0963             nan     0.1000    7.1128
##      3       36.4246             nan     0.1000    5.8032
##      4       31.2149             nan     0.1000    5.5649
##      5       26.9804             nan     0.1000    4.2742
##      6       23.2808             nan     0.1000    3.2729
##      7       20.1759             nan     0.1000    3.0445
##      8       17.7103             nan     0.1000    2.4145
##      9       15.4871             nan     0.1000    1.9867
##     10       13.6888             nan     0.1000    1.7878
##     20        5.7012             nan     0.1000    0.3060
##     40        3.3413             nan     0.1000   -0.0052
##     60        2.8868             nan     0.1000   -0.0241
##     80        2.6458             nan     0.1000   -0.0190
##    100        2.4248             nan     0.1000   -0.0272
##    120        2.2227             nan     0.1000   -0.0312
##    140        2.0796             nan     0.1000   -0.0194
##    160        1.9289             nan     0.1000   -0.0245
##    180        1.7985             nan     0.1000   -0.0384
##    200        1.6894             nan     0.1000   -0.0224
##    220        1.6028             nan     0.1000   -0.0219
##    240        1.5138             nan     0.1000   -0.0211
##    260        1.4177             nan     0.1000   -0.0170
##    280        1.3434             nan     0.1000   -0.0088
##    300        1.2859             nan     0.1000   -0.0161
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       51.8236             nan     0.1000    9.4686
##      2       44.1260             nan     0.1000    7.6190
##      3       37.3698             nan     0.1000    6.5661
##      4       31.9490             nan     0.1000    4.9936
##      5       27.2653             nan     0.1000    3.7567
##      6       23.7565             nan     0.1000    3.4070
##      7       20.9600             nan     0.1000    2.9619
##      8       18.5509             nan     0.1000    2.3997
##      9       16.2715             nan     0.1000    2.1540
##     10       14.4458             nan     0.1000    1.5925
##     20        5.9190             nan     0.1000    0.3579
##     40        3.6127             nan     0.1000    0.0113
##     60        3.2691             nan     0.1000   -0.0259
##     80        2.9166             nan     0.1000   -0.0551
##    100        2.6298             nan     0.1000   -0.0219
##    120        2.4335             nan     0.1000   -0.0101
##    140        2.2570             nan     0.1000   -0.0072
##    160        2.0904             nan     0.1000   -0.0461
##    180        1.9581             nan     0.1000   -0.0254
##    200        1.8692             nan     0.1000   -0.0292
##    220        1.7666             nan     0.1000   -0.0146
##    240        1.6599             nan     0.1000   -0.0155
##    260        1.5904             nan     0.1000   -0.0177
##    280        1.5153             nan     0.1000   -0.0151
##    300        1.4591             nan     0.1000   -0.0245
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1       53.1719             nan     0.1000    9.4665
##      2       45.9121             nan     0.1000    6.9589
##      3       39.7406             nan     0.1000    5.4936
##      4       34.3692             nan     0.1000    4.6713
##      5       29.9825             nan     0.1000    4.5305
##      6       25.9262             nan     0.1000    4.2774
##      7       22.9292             nan     0.1000    2.8950
##      8       20.0190             nan     0.1000    2.3834
##      9       17.8571             nan     0.1000    2.2697
##     10       15.9527             nan     0.1000    1.8092
##     20        7.4563             nan     0.1000    0.2106
##     40        3.8987             nan     0.1000    0.0195
##     60        3.2508             nan     0.1000   -0.0078
##     80        2.9713             nan     0.1000   -0.0225
##    100        2.7113             nan     0.1000   -0.0084
##    120        2.5043             nan     0.1000   -0.0216
##    140        2.3299             nan     0.1000   -0.0166
##    160        2.2254             nan     0.1000   -0.0163
##    180        2.1006             nan     0.1000   -0.0129
##    200        1.9965             nan     0.1000   -0.0234
##    220        1.9027             nan     0.1000   -0.0049
##    240        1.8455             nan     0.1000   -0.0139
##    260        1.7373             nan     0.1000   -0.0210
##    280        1.6627             nan     0.1000   -0.0301
##    300        1.5958             nan     0.1000   -0.0100
##################################
# Reporting the apparent results
# for the GBM model
##################################
GBM_DALEX <- DALEX::explain(GBM_Tune,
                            data = MD.Model.Predictors,
                            y = MD$LIFEXP,
                            verbose = FALSE,
                            label = "GBM")

(GBM_DALEX_Performance <- model_performance(GBM_DALEX))
## Measures for:  regression
## mse        : 1.59583 
## rmse       : 1.263262 
## r2         : 0.9742122 
## mad        : 0.6901519
## 
## Residuals:
##          0%         10%         20%         30%         40%         50% 
## -5.14895174 -1.37469335 -0.86109715 -0.58821296 -0.29421757 -0.02188095 
##         60%         70%         80%         90%        100% 
##  0.19929179  0.54567671  0.89833729  1.60070669  4.04954295
(GBM_DALEX_Diagnostics <- model_diagnostics(GBM_DALEX))
##     GENDER              CONTIN       INFMOR           PERCAP       
##  Male  :139   Africa       :89   Min.   :0.3365   Min.   :-1.4775  
##  Female:153   Asia         :73   1st Qu.:1.7047   1st Qu.: 0.6183  
##               Europe       :62   Median :2.6100   Median : 1.7960  
##               North America:31   Mean   :2.5569   Mean   : 1.7571  
##               Oceania      :18   3rd Qu.:3.5025   3rd Qu.: 2.7938  
##               South America:19   Max.   :4.4864   Max.   : 4.7293  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.00   Min.   :1.866   Min.   :52.84   Min.   :53.13  
##  1st Qu.: 24.35   1st Qu.:3.944   1st Qu.:66.93   1st Qu.:66.84  
##  Median : 82.80   Median :4.717   Median :73.53   Median :73.46  
##  Mean   : 64.60   Mean   :4.652   Mean   :72.47   Mean   :72.47  
##  3rd Qu.:100.00   3rd Qu.:5.347   3rd Qu.:78.54   3rd Qu.:78.63  
##  Max.   :100.00   Max.   :7.959   Max.   :87.45   Max.   :85.25  
##    residuals         abs_residuals        label                ids        
##  Min.   :-5.148952   Min.   :0.00237   Length:292         Min.   :  1.00  
##  1st Qu.:-0.693640   1st Qu.:0.29973   Class :character   1st Qu.: 73.75  
##  Median :-0.021881   Median :0.69015   Mode  :character   Median :146.50  
##  Mean   : 0.005138   Mean   :0.93475                      Mean   :146.50  
##  3rd Qu.: 0.687602   3rd Qu.:1.29094                      3rd Qu.:219.25  
##  Max.   : 4.049543   Max.   :5.14895                      Max.   :292.00
plot(GBM_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("GBM: Observed and Predicted LIFEXP")

(GBM_DALEX_VariableImportance    <- model_parts(GBM_DALEX,
                                               loss_function = loss_root_mean_square,
                                               B = 200,
                                               N = NULL))
##       variable mean_dropout_loss label
## 1 _full_model_          1.263262   GBM
## 2       PERCAP          1.524005   GBM
## 3       CLTECH          1.839900   GBM
## 4       GENDER          1.916960   GBM
## 5       CONTIN          1.928607   GBM
## 6       NCOMOR          3.569763   GBM
## 7       INFMOR          7.071063   GBM
## 8   _baseline_         11.021426   GBM
plot(GBM_DALEX_VariableImportance)

##################################
# Reporting the cross-validation results
# for the GBM model
##################################
GBM_Tune
## Stochastic Gradient Boosting 
## 
## 292 samples
##   6 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  n.trees  RMSE      Rsquared 
##   0.001      1                   5              100      7.377266  0.6960237
##   0.001      1                   5              200      6.966222  0.7209826
##   0.001      1                   5              300      6.597909  0.7441613
##   0.001      1                  10              100      7.377949  0.6935879
##   0.001      1                  10              200      6.966416  0.7208317
##   0.001      1                  10              300      6.598121  0.7461646
##   0.001      1                  15              100      7.377966  0.6917668
##   0.001      1                  15              200      6.965878  0.7195112
##   0.001      1                  15              300      6.596459  0.7448704
##   0.001      2                   5              100      7.275870  0.8226732
##   0.001      2                   5              200      6.762629  0.8370384
##   0.001      2                   5              300      6.295943  0.8464683
##   0.001      2                  10              100      7.275447  0.8240470
##   0.001      2                  10              200      6.762739  0.8357535
##   0.001      2                  10              300      6.299257  0.8457916
##   0.001      2                  15              100      7.277399  0.8212853
##   0.001      2                  15              200      6.760586  0.8360518
##   0.001      2                  15              300      6.295997  0.8452784
##   0.001      3                   5              100      7.231044  0.8682652
##   0.001      3                   5              200      6.676028  0.8727234
##   0.001      3                   5              300      6.182773  0.8763560
##   0.001      3                  10              100      7.231374  0.8681444
##   0.001      3                  10              200      6.680187  0.8716595
##   0.001      3                  10              300      6.186029  0.8754754
##   0.001      3                  15              100      7.233646  0.8658641
##   0.001      3                  15              200      6.684882  0.8700754
##   0.001      3                  15              300      6.193834  0.8724538
##   0.005      1                   5              100      5.956976  0.7830051
##   0.005      1                   5              200      4.792539  0.8329608
##   0.005      1                   5              300      4.037847  0.8559526
##   0.005      1                  10              100      5.963486  0.7866110
##   0.005      1                  10              200      4.797846  0.8324357
##   0.005      1                  10              300      4.050994  0.8556736
##   0.005      1                  15              100      5.958365  0.7883867
##   0.005      1                  15              200      4.797231  0.8331380
##   0.005      1                  15              300      4.048700  0.8558011
##   0.005      2                   5              100      5.500503  0.8577534
##   0.005      2                   5              200      4.143717  0.8764977
##   0.005      2                   5              300      3.357272  0.8909948
##   0.005      2                  10              100      5.509140  0.8584730
##   0.005      2                  10              200      4.143287  0.8761927
##   0.005      2                  10              300      3.364624  0.8904997
##   0.005      2                  15              100      5.504265  0.8577953
##   0.005      2                  15              200      4.155921  0.8736943
##   0.005      2                  15              300      3.388745  0.8881356
##   0.005      3                   5              100      5.343316  0.8815099
##   0.005      3                   5              200      3.909402  0.8962557
##   0.005      3                   5              300      3.099679  0.9077613
##   0.005      3                  10              100      5.342606  0.8825193
##   0.005      3                  10              200      3.913986  0.8952557
##   0.005      3                  10              300      3.104638  0.9066329
##   0.005      3                  15              100      5.349350  0.8789039
##   0.005      3                  15              200      3.942905  0.8909316
##   0.005      3                  15              300      3.158405  0.9026099
##   0.010      1                   5              100      4.785905  0.8365957
##   0.010      1                   5              200      3.513753  0.8738534
##   0.010      1                   5              300      2.880870  0.8972201
##   0.010      1                  10              100      4.785535  0.8344965
##   0.010      1                  10              200      3.519973  0.8734344
##   0.010      1                  10              300      2.882445  0.8972143
##   0.010      1                  15              100      4.794296  0.8332018
##   0.010      1                  15              200      3.536103  0.8703625
##   0.010      1                  15              300      2.926290  0.8926247
##   0.010      2                   5              100      4.134028  0.8765837
##   0.010      2                   5              200      2.885180  0.9023326
##   0.010      2                   5              300      2.410639  0.9167652
##   0.010      2                  10              100      4.146583  0.8765373
##   0.010      2                  10              200      2.885874  0.9035827
##   0.010      2                  10              300      2.401671  0.9178631
##   0.010      2                  15              100      4.130967  0.8750381
##   0.010      2                  15              200      2.918106  0.9006076
##   0.010      2                  15              300      2.455977  0.9142649
##   0.010      3                   5              100      3.909713  0.8952399
##   0.010      3                   5              200      2.663648  0.9143332
##   0.010      3                   5              300      2.274084  0.9230714
##   0.010      3                  10              100      3.915620  0.8947741
##   0.010      3                  10              200      2.660830  0.9144843
##   0.010      3                  10              300      2.279239  0.9226394
##   0.010      3                  15              100      3.919520  0.8927569
##   0.010      3                  15              200      2.698192  0.9117988
##   0.010      3                  15              300      2.323679  0.9202826
##   0.050      1                   5              100      2.368670  0.9155076
##   0.050      1                   5              200      2.194300  0.9242561
##   0.050      1                   5              300      2.175057  0.9255193
##   0.050      1                  10              100      2.356209  0.9166591
##   0.050      1                  10              200      2.162508  0.9268045
##   0.050      1                  10              300      2.145778  0.9276575
##   0.050      1                  15              100      2.409980  0.9135821
##   0.050      1                  15              200      2.255478  0.9217689
##   0.050      1                  15              300      2.215643  0.9236305
##   0.050      2                   5              100      2.223779  0.9224629
##   0.050      2                   5              200      2.176185  0.9256471
##   0.050      2                   5              300      2.156758  0.9263352
##   0.050      2                  10              100      2.200024  0.9246320
##   0.050      2                  10              200      2.174896  0.9256411
##   0.050      2                  10              300      2.149895  0.9266258
##   0.050      2                  15              100      2.229941  0.9222895
##   0.050      2                  15              200      2.148962  0.9268146
##   0.050      2                  15              300      2.140697  0.9269695
##   0.050      3                   5              100      2.169569  0.9259392
##   0.050      3                   5              200      2.172464  0.9251291
##   0.050      3                   5              300      2.169582  0.9250868
##   0.050      3                  10              100      2.185536  0.9249803
##   0.050      3                  10              200      2.152994  0.9263177
##   0.050      3                  10              300      2.148798  0.9262594
##   0.050      3                  15              100      2.198534  0.9241099
##   0.050      3                  15              200      2.169993  0.9255660
##   0.050      3                  15              300      2.163552  0.9253829
##   0.100      1                   5              100      2.208789  0.9219656
##   0.100      1                   5              200      2.176595  0.9240653
##   0.100      1                   5              300      2.176525  0.9235917
##   0.100      1                  10              100      2.221531  0.9213379
##   0.100      1                  10              200      2.165187  0.9250069
##   0.100      1                  10              300      2.160528  0.9252803
##   0.100      1                  15              100      2.222324  0.9220769
##   0.100      1                  15              200      2.180369  0.9245016
##   0.100      1                  15              300      2.150839  0.9263505
##   0.100      2                   5              100      2.108652  0.9285686
##   0.100      2                   5              200      2.110590  0.9279673
##   0.100      2                   5              300      2.097843  0.9288204
##   0.100      2                  10              100      2.184963  0.9240327
##   0.100      2                  10              200      2.196965  0.9228255
##   0.100      2                  10              300      2.201076  0.9221509
##   0.100      2                  15              100      2.216480  0.9225563
##   0.100      2                  15              200      2.192126  0.9231873
##   0.100      2                  15              300      2.200571  0.9220875
##   0.100      3                   5              100      2.205014  0.9239297
##   0.100      3                   5              200      2.163422  0.9257538
##   0.100      3                   5              300      2.210707  0.9218679
##   0.100      3                  10              100      2.173034  0.9248470
##   0.100      3                  10              200      2.165420  0.9244402
##   0.100      3                  10              300      2.168710  0.9240569
##   0.100      3                  15              100      2.206916  0.9238262
##   0.100      3                  15              200      2.204289  0.9231056
##   0.100      3                  15              300      2.192318  0.9234358
##   MAE     
##   6.147721
##   5.779464
##   5.455970
##   6.148010
##   5.780973
##   5.454359
##   6.149646
##   5.783358
##   5.454089
##   6.071049
##   5.621430
##   5.217508
##   6.070565
##   5.621452
##   5.220069
##   6.072811
##   5.619098
##   5.216703
##   6.059105
##   5.588782
##   5.169935
##   6.059887
##   5.593238
##   5.173991
##   6.060150
##   5.594574
##   5.174572
##   4.888478
##   3.873259
##   3.256497
##   4.894389
##   3.881221
##   3.270713
##   4.887381
##   3.879311
##   3.260956
##   4.542649
##   3.394213
##   2.730622
##   4.547507
##   3.382926
##   2.732000
##   4.538989
##   3.391199
##   2.737812
##   4.469254
##   3.246403
##   2.520197
##   4.459693
##   3.241521
##   2.517426
##   4.461381
##   3.257064
##   2.549622
##   3.873518
##   2.832869
##   2.284277
##   3.873192
##   2.835963
##   2.279827
##   3.873785
##   2.845547
##   2.312822
##   3.386359
##   2.300962
##   1.866370
##   3.389520
##   2.302218
##   1.851959
##   3.363637
##   2.304560
##   1.871229
##   3.245379
##   2.111343
##   1.731292
##   3.242745
##   2.101940
##   1.722644
##   3.238655
##   2.108107
##   1.737609
##   1.793937
##   1.615079
##   1.598225
##   1.782247
##   1.599494
##   1.568559
##   1.830035
##   1.682260
##   1.642767
##   1.654957
##   1.602377
##   1.589340
##   1.642846
##   1.597405
##   1.581444
##   1.638179
##   1.580946
##   1.580974
##   1.616842
##   1.607067
##   1.615612
##   1.591912
##   1.568460
##   1.567069
##   1.600684
##   1.587525
##   1.584272
##   1.635785
##   1.601813
##   1.608526
##   1.636636
##   1.588658
##   1.593587
##   1.637832
##   1.586292
##   1.569520
##   1.579722
##   1.578614
##   1.577171
##   1.602153
##   1.613135
##   1.620481
##   1.636962
##   1.612915
##   1.615130
##   1.602353
##   1.586244
##   1.644167
##   1.592651
##   1.595324
##   1.611267
##   1.613429
##   1.632831
##   1.617914
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were n.trees = 300, interaction.depth =
##  2, shrinkage = 0.1 and n.minobsinnode = 5.
GBM_Tune$finalModel
## A gradient boosted model with gaussian loss function.
## 300 iterations were performed.
## There were 6 predictors of which 6 had non-zero influence.
(GBM_Tune_RMSE <- GBM_Tune$results[GBM_Tune$results$shrinkage==GBM_Tune$bestTune$shrinkage &
                              GBM_Tune$results$interaction.depth==GBM_Tune$bestTune$interaction.depth &
                              GBM_Tune$results$n.minobsinnode==GBM_Tune$bestTune$n.minobsinnode &
                              GBM_Tune$results$n.trees==GBM_Tune$bestTune$n.trees,
                 c("RMSE")])
## [1] 2.097843
(GBM_Tune_Rsquared <- GBM_Tune$results[GBM_Tune$results$shrinkage==GBM_Tune$bestTune$shrinkage &
                              GBM_Tune$results$interaction.depth==GBM_Tune$bestTune$interaction.depth &
                              GBM_Tune$results$n.minobsinnode==GBM_Tune$bestTune$n.minobsinnode &
                              GBM_Tune$results$n.trees==GBM_Tune$bestTune$n.trees,
                 c("Rsquared")])
## [1] 0.9288204
(GBM_Tune_MAE <- GBM_Tune$results[GBM_Tune$results$shrinkage==GBM_Tune$bestTune$shrinkage &
                              GBM_Tune$results$interaction.depth==GBM_Tune$bestTune$interaction.depth &
                              GBM_Tune$results$n.minobsinnode==GBM_Tune$bestTune$n.minobsinnode &
                              GBM_Tune$results$n.trees==GBM_Tune$bestTune$n.trees,
                 c("MAE")])
## [1] 1.577171

1.3.6.3 Random Forest


[A] The random forest model from the randomForest package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mtry = number of randomly selected predictors made to vary across a range of values equal to 100 to 1000 with intervals of 100

[C] The 10-fold cross-validated model performance of the optimal model is summarized as follows:
     [C.1] Optimal model used mtry=400 which demonstrated the lowest root mean square error
     [C.2] Root Mean Square Error = 2.2390
     [C.3] R-Squared = 0.9201

[D] The apparent model performance of the optimal model is summarized as follows:
     [D.1] Root Mean Square Error = 0.9698
     [D.2] R-Squared = 0.9848

[E] The top-performing predictors in the model ranked using the root mean square error loss after permutations are as follows:
     [E.1] INFMOR (numeric) = 8.39
     [E.2] NCOMOR (numeric) = 4.23
     [E.3] CONTIN (factor) = 1.45
     [E.4] GENDER (factor) = 1.36
     [E.5] CLTECH (numeric) = 1.28
     [E.6] PERCAP (numeric) = 1.25

Code Chunk | Output
##################################
# Defining the model hyperparameter values
# for the RF model
##################################
RF_Grid = data.frame(mtry = c(100, 200, 300, 400, 500,
                              600, 700, 800, 900, 1000))

##################################
# Running the RF model
# by setting the caret method to 'RF'
##################################
set.seed(12345678)
RF_Tune <- train(x = MD.Model.Predictors,
                 y = MD$LIFEXP,
                 method = "rf",
                 tuneGrid = RF_Grid,
                 trControl = KFold_Control)

##################################
# Reporting the apparent results
# for the RF model
##################################
RF_DALEX <- DALEX::explain(RF_Tune,
                           data = MD.Model.Predictors,
                           y = MD$LIFEXP,
                           verbose = FALSE,
                           label = "RF")

(RF_DALEX_Performance <- model_performance(RF_DALEX))
## Measures for:  regression
## mse        : 0.9404626 
## rmse       : 0.9697745 
## r2         : 0.9848026 
## mad        : 0.493929
## 
## Residuals:
##          0%         10%         20%         30%         40%         50% 
## -3.89311943 -1.04739946 -0.63797813 -0.37774333 -0.17489179 -0.02355452 
##         60%         70%         80%         90%        100% 
##  0.11686047  0.37368288  0.59428965  1.20572149  3.83678360
(RF_DALEX_Diagnostics <- model_diagnostics(RF_DALEX))
##     GENDER              CONTIN       INFMOR           PERCAP       
##  Male  :139   Africa       :89   Min.   :0.3365   Min.   :-1.4775  
##  Female:153   Asia         :73   1st Qu.:1.7047   1st Qu.: 0.6183  
##               Europe       :62   Median :2.6100   Median : 1.7960  
##               North America:31   Mean   :2.5569   Mean   : 1.7571  
##               Oceania      :18   3rd Qu.:3.5025   3rd Qu.: 2.7938  
##               South America:19   Max.   :4.4864   Max.   : 4.7293  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.00   Min.   :1.866   Min.   :52.84   Min.   :54.37  
##  1st Qu.: 24.35   1st Qu.:3.944   1st Qu.:66.93   1st Qu.:67.15  
##  Median : 82.80   Median :4.717   Median :73.53   Median :73.58  
##  Mean   : 64.60   Mean   :4.652   Mean   :72.47   Mean   :72.49  
##  3rd Qu.:100.00   3rd Qu.:5.347   3rd Qu.:78.54   3rd Qu.:78.49  
##  Max.   :100.00   Max.   :7.959   Max.   :87.45   Max.   :86.25  
##    residuals        abs_residuals         label                ids        
##  Min.   :-3.89312   Min.   :0.004567   Length:292         Min.   :  1.00  
##  1st Qu.:-0.49373   1st Qu.:0.228644   Class :character   1st Qu.: 73.75  
##  Median :-0.02355   Median :0.493929   Mode  :character   Median :146.50  
##  Mean   :-0.01104   Mean   :0.695743                      Mean   :146.50  
##  3rd Qu.: 0.49410   3rd Qu.:0.996858                      3rd Qu.:219.25  
##  Max.   : 3.83678   Max.   :3.893119                      Max.   :292.00
plot(RF_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("RF: Observed and Predicted LIFEXP")

(RF_DALEX_VariableImportance    <- model_parts(RF_DALEX,
                                              loss_function = loss_root_mean_square,
                                              B = 200,
                                              N = NULL))
##       variable mean_dropout_loss label
## 1 _full_model_         0.9697745    RF
## 2       PERCAP         1.2486580    RF
## 3       CLTECH         1.2756382    RF
## 4       GENDER         1.3578694    RF
## 5       CONTIN         1.4558017    RF
## 6       NCOMOR         4.2303790    RF
## 7       INFMOR         8.3874253    RF
## 8   _baseline_        10.9599787    RF
plot(RF_DALEX_VariableImportance)

##################################
# Reporting the cross-validation results
# for the RF model
##################################
RF_Tune
## Random Forest 
## 
## 292 samples
##   6 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ... 
## Resampling results across tuning parameters:
## 
##   mtry  RMSE      Rsquared   MAE     
##    100  2.244547  0.9196737  1.619943
##    200  2.249565  0.9196008  1.620459
##    300  2.251214  0.9194065  1.628754
##    400  2.239011  0.9201778  1.618476
##    500  2.244594  0.9199741  1.623557
##    600  2.250218  0.9195438  1.627748
##    700  2.250948  0.9195926  1.627966
##    800  2.252804  0.9194439  1.626298
##    900  2.256902  0.9191818  1.630857
##   1000  2.245525  0.9198362  1.618343
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was mtry = 400.
RF_Tune$finalModel
## 
## Call:
##  randomForest(x = x, y = y, mtry = param$mtry) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 6
## 
##           Mean of squared residuals: 5.126832
##                     % Var explained: 91.72
(RF_Tune_RMSE <- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
                 c("RMSE")])
## [1] 2.239011
(RF_Tune_Rsquared <- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
                 c("Rsquared")])
## [1] 0.9201778
(RF_Tune_MAE <- RF_Tune$results[RF_Tune$results$mtry==RF_Tune$bestTune$mtry,
                 c("MAE")])
## [1] 1.618476

1.3.6.4 Neural Network


[A] The neural network regression model from the nnet package was implemented through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] size = number of units in the hidden layer made to vary across a range of values equal to 2, 5, 10, 15 and 20
     [B.2] decay = parameter for weight decay made to vary across a range of values equal to 0, 0.00001, 0.0001, 0.001 and 0.1

[C] The 10-fold cross-validated model performance of the optimal model is summarized as follows:
     [C.1] Optimal model used size=2 and decay=0.1 which demonstrated the lowest root mean square error
     [C.2] Root Mean Square Error = 2.0701
     [C.3] R-Squared = 0.9321

[D] The apparent model performance of the optimal model is summarized as follows:
     [D.1] Root Mean Square Error = 1.9473
     [D.2] R-Squared = 0.9387

[E] The top-performing predictors in the model ranked using the root mean square error loss after permutations are as follows:
     [E.1] INFMOR (numeric) = 7.70
     [E.2] NCOMOR (numeric) = 3.67
     [E.3] CLTECH (numeric) = 3.10
     [E.4] CONTIN (factor) = 3.07
     [E.5] GENDER (factor) = 2.51
     [E.6] PERCAP (numeric) = 2.33

Code Chunk | Output
##################################
# Defining the model hyperparameter values
# for the NN model
##################################
NN_Grid = expand.grid(size = c(2, 5, 10, 15, 20),
                      decay = c(0, 0.00001, 0.0001, 0.001, 0.1))

##################################
# Running the NN model
# by setting the caret method to 'NN'
##################################
set.seed(12345678)
NN_Tune <- train(x = MD.Model.Predictors,
                 y = MD$LIFEXP,
                 method = "nnet",
                 linout = TRUE,
                 preProcess = c('center', 'scale'),
                 maxit = 500,
                 tuneGrid = NN_Grid,
                 trControl = KFold_Control)
## # weights:  25
## initial  value 1400339.778929 
## iter  10 value 68496.910319
## iter  20 value 5956.174709
## iter  30 value 5844.262957
## iter  40 value 5352.739998
## iter  50 value 5259.580299
## iter  60 value 5258.019066
## iter  70 value 5205.090145
## iter  80 value 5196.195489
## iter  90 value 4833.831031
## iter 100 value 4569.510587
## iter 110 value 4553.721628
## iter 120 value 4553.045122
## iter 130 value 4553.015144
## iter 140 value 4552.876106
## iter 150 value 4550.489828
## iter 160 value 4550.208091
## iter 170 value 4550.152984
## iter 180 value 4550.031282
## iter 190 value 4549.764089
## iter 200 value 4549.444274
## iter 210 value 4548.348059
## iter 220 value 4548.157434
## iter 220 value 4548.157430
## iter 220 value 4548.157430
## final  value 4548.157430 
## converged
## # weights:  61
## initial  value 1419402.900363 
## iter  10 value 5466.160778
## iter  20 value 4136.215442
## iter  30 value 3233.377310
## iter  40 value 2184.748970
## iter  50 value 1482.694097
## iter  60 value 1341.742361
## iter  70 value 1297.232211
## iter  80 value 1213.738131
## iter  90 value 1146.376381
## iter 100 value 1070.241735
## iter 110 value 1030.232654
## iter 120 value 1015.217766
## iter 130 value 1005.639574
## iter 140 value 998.773821
## iter 150 value 992.324116
## iter 160 value 980.531489
## iter 170 value 978.495782
## iter 180 value 978.409744
## iter 190 value 978.361243
## iter 200 value 978.318025
## iter 210 value 978.296926
## iter 220 value 968.807011
## iter 230 value 939.853517
## iter 240 value 925.037978
## iter 250 value 919.646061
## iter 260 value 919.163802
## iter 270 value 917.547708
## iter 280 value 914.888136
## iter 290 value 911.397634
## iter 300 value 909.574590
## iter 310 value 908.742002
## iter 320 value 908.217371
## iter 330 value 907.307508
## iter 340 value 906.728904
## iter 350 value 906.413133
## iter 360 value 906.376723
## iter 370 value 906.329715
## iter 380 value 906.279582
## iter 390 value 906.271020
## iter 400 value 906.268970
## final  value 906.268949 
## converged
## # weights:  121
## initial  value 1369973.913442 
## iter  10 value 1456.280282
## iter  20 value 981.019262
## iter  30 value 820.891644
## iter  40 value 691.064010
## iter  50 value 615.847093
## iter  60 value 552.618476
## iter  70 value 501.933326
## iter  80 value 465.287566
## iter  90 value 435.639678
## iter 100 value 411.632837
## iter 110 value 377.319124
## iter 120 value 355.295277
## iter 130 value 332.770009
## iter 140 value 319.998174
## iter 150 value 311.670112
## iter 160 value 296.995967
## iter 170 value 289.673758
## iter 180 value 286.817395
## iter 190 value 285.327350
## iter 200 value 283.822117
## iter 210 value 281.823769
## iter 220 value 280.604183
## iter 230 value 279.960985
## iter 240 value 279.298747
## iter 250 value 278.767676
## iter 260 value 278.387227
## iter 270 value 277.570900
## iter 280 value 276.221841
## iter 290 value 273.862125
## iter 300 value 271.110331
## iter 310 value 269.686949
## iter 320 value 268.329167
## iter 330 value 266.353429
## iter 340 value 263.244321
## iter 350 value 262.025670
## iter 360 value 260.468974
## iter 370 value 259.082188
## iter 380 value 258.024935
## iter 390 value 257.709959
## iter 400 value 257.192116
## iter 410 value 256.946798
## iter 420 value 256.805007
## iter 430 value 256.770626
## iter 440 value 256.766595
## iter 450 value 256.763944
## iter 460 value 256.762805
## iter 470 value 256.759951
## iter 480 value 256.742706
## final  value 256.731685 
## converged
## # weights:  181
## initial  value 1369859.779729 
## iter  10 value 1218.791825
## iter  20 value 844.152299
## iter  30 value 679.366662
## iter  40 value 572.273305
## iter  50 value 466.657882
## iter  60 value 383.138573
## iter  70 value 339.951431
## iter  80 value 283.173217
## iter  90 value 257.527205
## iter 100 value 237.333601
## iter 110 value 223.739667
## iter 120 value 215.169024
## iter 130 value 208.082918
## iter 140 value 199.329810
## iter 150 value 191.342838
## iter 160 value 184.771082
## iter 170 value 174.014610
## iter 180 value 167.789067
## iter 190 value 161.398029
## iter 200 value 156.888476
## iter 210 value 153.435980
## iter 220 value 149.579761
## iter 230 value 146.046728
## iter 240 value 142.808104
## iter 250 value 140.214188
## iter 260 value 137.517961
## iter 270 value 135.175708
## iter 280 value 132.482019
## iter 290 value 129.935560
## iter 300 value 127.301305
## iter 310 value 124.632966
## iter 320 value 122.671009
## iter 330 value 119.063976
## iter 340 value 115.950398
## iter 350 value 113.321558
## iter 360 value 110.553146
## iter 370 value 109.537855
## iter 380 value 108.980326
## iter 390 value 108.142979
## iter 400 value 107.033356
## iter 410 value 106.482910
## iter 420 value 105.642504
## iter 430 value 104.684540
## iter 440 value 103.914639
## iter 450 value 102.861627
## iter 460 value 101.598500
## iter 470 value 99.744133
## iter 480 value 97.351172
## iter 490 value 95.563516
## iter 500 value 93.616614
## final  value 93.616614 
## stopped after 500 iterations
## # weights:  241
## initial  value 1362136.072048 
## iter  10 value 1398.158403
## iter  20 value 813.986040
## iter  30 value 623.314450
## iter  40 value 451.572085
## iter  50 value 343.423349
## iter  60 value 299.481028
## iter  70 value 258.539324
## iter  80 value 218.722855
## iter  90 value 189.014309
## iter 100 value 172.421623
## iter 110 value 152.085135
## iter 120 value 140.177393
## iter 130 value 130.443034
## iter 140 value 121.601687
## iter 150 value 114.523579
## iter 160 value 107.718749
## iter 170 value 97.564388
## iter 180 value 92.637160
## iter 190 value 87.632255
## iter 200 value 83.334630
## iter 210 value 78.936737
## iter 220 value 74.404872
## iter 230 value 71.245308
## iter 240 value 69.350806
## iter 250 value 66.556843
## iter 260 value 63.476653
## iter 270 value 61.090865
## iter 280 value 59.602674
## iter 290 value 58.022193
## iter 300 value 55.931747
## iter 310 value 54.279973
## iter 320 value 52.788004
## iter 330 value 52.144060
## iter 340 value 51.520501
## iter 350 value 50.937822
## iter 360 value 50.600355
## iter 370 value 50.390622
## iter 380 value 50.202609
## iter 390 value 49.915583
## iter 400 value 49.675294
## iter 410 value 49.500596
## iter 420 value 49.385656
## iter 430 value 49.276835
## iter 440 value 49.181953
## iter 450 value 49.072194
## iter 460 value 48.923516
## iter 470 value 48.704723
## iter 480 value 48.485576
## iter 490 value 48.352389
## iter 500 value 48.312069
## final  value 48.312069 
## stopped after 500 iterations
## # weights:  25
## initial  value 1384018.334099 
## iter  10 value 14826.537515
## iter  20 value 5813.028843
## iter  30 value 4170.983208
## iter  40 value 2733.681626
## iter  50 value 1945.456766
## iter  60 value 1798.543289
## iter  70 value 1746.423017
## iter  80 value 1721.963093
## iter  90 value 1682.718888
## iter 100 value 1642.738696
## iter 110 value 1567.875475
## iter 120 value 1176.466252
## iter 130 value 940.171012
## iter 140 value 903.533021
## iter 150 value 899.315161
## iter 160 value 898.513967
## iter 170 value 888.514572
## iter 180 value 877.111204
## iter 190 value 875.630959
## iter 200 value 875.372479
## iter 210 value 875.220123
## iter 220 value 874.350179
## iter 230 value 873.796905
## iter 240 value 873.553053
## iter 250 value 873.524197
## iter 260 value 873.523434
## iter 270 value 873.508109
## iter 280 value 873.466496
## iter 290 value 873.412895
## iter 300 value 873.386788
## final  value 873.386557 
## converged
## # weights:  61
## initial  value 1394097.657047 
## iter  10 value 23565.379437
## iter  20 value 8413.870422
## iter  30 value 5669.603306
## iter  40 value 4961.340411
## iter  50 value 4636.688563
## iter  60 value 3698.652166
## iter  70 value 2908.454914
## iter  80 value 2733.688942
## iter  90 value 2432.062689
## iter 100 value 1825.325196
## iter 110 value 1387.504599
## iter 120 value 1257.609294
## iter 130 value 1216.167382
## iter 140 value 1114.359333
## iter 150 value 1087.913181
## iter 160 value 1071.689478
## iter 170 value 1065.937468
## iter 180 value 1043.151373
## iter 190 value 1033.117999
## iter 200 value 1026.374711
## iter 210 value 1026.256408
## iter 220 value 1024.932352
## iter 230 value 1016.981513
## iter 240 value 1011.378658
## iter 250 value 1008.021987
## iter 260 value 1007.075277
## iter 270 value 1005.158200
## iter 280 value 1002.378160
## iter 290 value 1000.597307
## iter 300 value 1000.366193
## iter 310 value 1000.243465
## iter 320 value 999.781314
## iter 330 value 999.689851
## iter 340 value 999.641768
## iter 350 value 998.495273
## iter 360 value 998.449789
## iter 370 value 996.522899
## iter 380 value 990.443838
## iter 390 value 990.276533
## iter 400 value 982.049946
## iter 410 value 978.892299
## iter 420 value 978.788357
## iter 430 value 978.419060
## iter 440 value 977.609602
## iter 450 value 977.277746
## iter 460 value 976.232075
## iter 470 value 975.840442
## iter 480 value 975.215593
## iter 490 value 974.549835
## iter 500 value 974.431056
## final  value 974.431056 
## stopped after 500 iterations
## # weights:  121
## initial  value 1387426.161256 
## iter  10 value 1363.935777
## iter  20 value 850.046899
## iter  30 value 721.609125
## iter  40 value 621.253964
## iter  50 value 563.129927
## iter  60 value 522.376227
## iter  70 value 494.041852
## iter  80 value 470.156676
## iter  90 value 451.146528
## iter 100 value 437.843172
## iter 110 value 424.776453
## iter 120 value 412.809607
## iter 130 value 398.943760
## iter 140 value 383.669666
## iter 150 value 367.430345
## iter 160 value 352.351479
## iter 170 value 345.287850
## iter 180 value 334.098915
## iter 190 value 319.785746
## iter 200 value 310.996565
## iter 210 value 305.272890
## iter 220 value 300.642349
## iter 230 value 295.645225
## iter 240 value 292.478342
## iter 250 value 290.610043
## iter 260 value 289.716597
## iter 270 value 287.762983
## iter 280 value 282.801935
## iter 290 value 275.772296
## iter 300 value 270.836127
## iter 310 value 268.800980
## iter 320 value 265.811862
## iter 330 value 264.203125
## iter 340 value 262.256124
## iter 350 value 256.609959
## iter 360 value 252.285118
## iter 370 value 248.845421
## iter 380 value 247.669521
## iter 390 value 247.134768
## iter 400 value 246.209804
## iter 410 value 246.011067
## iter 420 value 245.721485
## iter 430 value 245.444598
## iter 440 value 245.118051
## iter 450 value 244.785869
## iter 460 value 244.481425
## iter 470 value 243.750911
## iter 480 value 243.460047
## iter 490 value 243.335108
## iter 500 value 243.299919
## final  value 243.299919 
## stopped after 500 iterations
## # weights:  181
## initial  value 1353088.590211 
## iter  10 value 1200.855364
## iter  20 value 862.423893
## iter  30 value 638.924966
## iter  40 value 515.881183
## iter  50 value 423.974738
## iter  60 value 363.855071
## iter  70 value 318.412839
## iter  80 value 279.564421
## iter  90 value 256.645780
## iter 100 value 234.226068
## iter 110 value 217.935518
## iter 120 value 208.240589
## iter 130 value 197.982033
## iter 140 value 190.884779
## iter 150 value 184.849018
## iter 160 value 175.019583
## iter 170 value 163.831747
## iter 180 value 155.353446
## iter 190 value 145.165648
## iter 200 value 132.190096
## iter 210 value 119.618724
## iter 220 value 110.133950
## iter 230 value 105.104571
## iter 240 value 101.738922
## iter 250 value 98.651487
## iter 260 value 96.744166
## iter 270 value 95.528520
## iter 280 value 93.861923
## iter 290 value 92.862412
## iter 300 value 92.294037
## iter 310 value 91.936898
## iter 320 value 91.626466
## iter 330 value 91.228236
## iter 340 value 90.750629
## iter 350 value 90.504841
## iter 360 value 90.148519
## iter 370 value 89.868360
## iter 380 value 89.789402
## iter 390 value 89.667183
## iter 400 value 89.542679
## iter 410 value 89.412659
## iter 420 value 89.199209
## iter 430 value 88.823828
## iter 440 value 88.419007
## iter 450 value 88.151321
## iter 460 value 87.869862
## iter 470 value 87.407789
## iter 480 value 87.159277
## iter 490 value 86.818416
## iter 500 value 85.405875
## final  value 85.405875 
## stopped after 500 iterations
## # weights:  241
## initial  value 1379423.815877 
## iter  10 value 1212.490627
## iter  20 value 826.304721
## iter  30 value 688.182359
## iter  40 value 562.121823
## iter  50 value 472.835657
## iter  60 value 350.842187
## iter  70 value 296.861777
## iter  80 value 256.663023
## iter  90 value 217.838346
## iter 100 value 186.250487
## iter 110 value 163.986479
## iter 120 value 144.961596
## iter 130 value 130.613571
## iter 140 value 118.863368
## iter 150 value 111.640801
## iter 160 value 107.487869
## iter 170 value 102.357184
## iter 180 value 97.265481
## iter 190 value 92.402226
## iter 200 value 87.397011
## iter 210 value 83.550229
## iter 220 value 79.749999
## iter 230 value 76.829520
## iter 240 value 74.607394
## iter 250 value 71.586380
## iter 260 value 69.319480
## iter 270 value 67.156921
## iter 280 value 65.487652
## iter 290 value 63.806603
## iter 300 value 62.045510
## iter 310 value 59.025337
## iter 320 value 56.536648
## iter 330 value 54.530216
## iter 340 value 52.949551
## iter 350 value 50.290994
## iter 360 value 48.564132
## iter 370 value 46.782066
## iter 380 value 45.044281
## iter 390 value 43.646564
## iter 400 value 42.074783
## iter 410 value 40.995858
## iter 420 value 39.924201
## iter 430 value 38.357228
## iter 440 value 36.913940
## iter 450 value 35.861560
## iter 460 value 35.161194
## iter 470 value 34.664702
## iter 480 value 34.192998
## iter 490 value 33.989409
## iter 500 value 33.915094
## final  value 33.915094 
## stopped after 500 iterations
## # weights:  25
## initial  value 1423891.578229 
## iter  10 value 12529.170147
## iter  20 value 8281.402632
## iter  30 value 5518.987759
## iter  40 value 1535.127285
## iter  50 value 1423.569703
## iter  60 value 1398.147001
## iter  70 value 1390.201194
## iter  80 value 1284.484692
## iter  90 value 1122.089275
## iter 100 value 1096.450793
## iter 110 value 1094.341697
## iter 120 value 1094.234374
## iter 130 value 1092.987405
## iter 140 value 1089.733515
## iter 150 value 1087.422242
## iter 160 value 1083.523149
## iter 170 value 1081.839197
## iter 180 value 1080.256824
## iter 190 value 1063.195888
## iter 200 value 1056.974917
## iter 210 value 1056.822488
## final  value 1056.820260 
## converged
## # weights:  61
## initial  value 1412917.860609 
## iter  10 value 47303.008875
## iter  20 value 11755.994091
## iter  30 value 9630.615274
## iter  40 value 7061.767878
## iter  50 value 3671.746883
## iter  60 value 2269.630245
## iter  70 value 1566.915852
## iter  80 value 1154.112397
## iter  90 value 994.364982
## iter 100 value 920.055939
## iter 110 value 870.035266
## iter 120 value 851.376139
## iter 130 value 841.852135
## iter 140 value 835.441454
## iter 150 value 820.760988
## iter 160 value 806.356269
## iter 170 value 796.200061
## iter 180 value 785.582221
## iter 190 value 774.211518
## iter 200 value 767.656056
## iter 210 value 765.963927
## iter 220 value 763.602010
## iter 230 value 756.650247
## iter 240 value 746.249244
## iter 250 value 738.857296
## iter 260 value 733.862419
## iter 270 value 728.965572
## iter 280 value 725.766578
## iter 290 value 724.561077
## iter 300 value 723.246828
## iter 310 value 722.738505
## iter 320 value 722.028971
## iter 330 value 722.001350
## iter 340 value 721.866481
## iter 350 value 721.556103
## iter 360 value 721.041872
## iter 370 value 719.225066
## iter 380 value 710.243949
## iter 390 value 704.092263
## iter 400 value 703.679017
## iter 410 value 703.262148
## iter 420 value 702.610407
## iter 430 value 701.030334
## iter 440 value 696.191268
## iter 450 value 695.386565
## iter 460 value 694.796474
## iter 470 value 691.777508
## iter 480 value 679.412645
## iter 490 value 675.719101
## iter 500 value 674.866048
## final  value 674.866048 
## stopped after 500 iterations
## # weights:  121
## initial  value 1433584.736785 
## iter  10 value 2355.633008
## iter  20 value 1145.165498
## iter  30 value 888.745905
## iter  40 value 740.750670
## iter  50 value 652.352440
## iter  60 value 579.453174
## iter  70 value 533.512412
## iter  80 value 501.887607
## iter  90 value 480.145595
## iter 100 value 452.926209
## iter 110 value 418.571258
## iter 120 value 398.418778
## iter 130 value 367.963748
## iter 140 value 355.856524
## iter 150 value 344.709922
## iter 160 value 316.521292
## iter 170 value 296.958742
## iter 180 value 288.218375
## iter 190 value 283.501525
## iter 200 value 278.529992
## iter 210 value 274.454205
## iter 220 value 271.984171
## iter 230 value 268.788966
## iter 240 value 266.940387
## iter 250 value 265.976592
## iter 260 value 265.269076
## iter 270 value 264.025511
## iter 280 value 262.008363
## iter 290 value 258.589585
## iter 300 value 254.944058
## iter 310 value 252.642300
## iter 320 value 250.436015
## iter 330 value 248.987485
## iter 340 value 247.967461
## iter 350 value 247.175458
## iter 360 value 245.863814
## iter 370 value 245.426204
## iter 380 value 244.876518
## iter 390 value 244.433892
## iter 400 value 244.271522
## iter 410 value 244.101593
## iter 420 value 243.978259
## iter 430 value 243.897746
## iter 440 value 243.602521
## iter 450 value 242.994047
## iter 460 value 242.719987
## iter 470 value 242.589912
## iter 480 value 242.524848
## iter 490 value 242.488644
## iter 500 value 242.486574
## final  value 242.486574 
## stopped after 500 iterations
## # weights:  181
## initial  value 1394930.770230 
## iter  10 value 1278.433344
## iter  20 value 867.435994
## iter  30 value 719.637140
## iter  40 value 560.797710
## iter  50 value 463.830026
## iter  60 value 413.533914
## iter  70 value 375.492235
## iter  80 value 325.290445
## iter  90 value 290.500881
## iter 100 value 264.171293
## iter 110 value 241.862985
## iter 120 value 220.347735
## iter 130 value 208.322945
## iter 140 value 201.847675
## iter 150 value 194.425185
## iter 160 value 186.123240
## iter 170 value 178.587558
## iter 180 value 169.763034
## iter 190 value 161.150333
## iter 200 value 154.748984
## iter 210 value 151.180712
## iter 220 value 148.303556
## iter 230 value 145.716415
## iter 240 value 144.031496
## iter 250 value 142.300933
## iter 260 value 139.819694
## iter 270 value 138.086617
## iter 280 value 135.912843
## iter 290 value 133.315703
## iter 300 value 128.545775
## iter 310 value 126.335958
## iter 320 value 124.833328
## iter 330 value 123.167218
## iter 340 value 121.853375
## iter 350 value 119.601071
## iter 360 value 118.326189
## iter 370 value 117.760933
## iter 380 value 117.580183
## iter 390 value 117.234835
## iter 400 value 116.967163
## iter 410 value 116.619706
## iter 420 value 116.112447
## iter 430 value 115.606349
## iter 440 value 114.773383
## iter 450 value 114.107146
## iter 460 value 113.784346
## iter 470 value 113.342229
## iter 480 value 112.653800
## iter 490 value 111.503313
## iter 500 value 109.248090
## final  value 109.248090 
## stopped after 500 iterations
## # weights:  241
## initial  value 1415446.964867 
## iter  10 value 1559.904251
## iter  20 value 899.437584
## iter  30 value 645.422803
## iter  40 value 490.676667
## iter  50 value 402.901605
## iter  60 value 347.541350
## iter  70 value 305.427727
## iter  80 value 260.382951
## iter  90 value 226.823135
## iter 100 value 195.587129
## iter 110 value 172.105460
## iter 120 value 157.255997
## iter 130 value 141.977027
## iter 140 value 129.923376
## iter 150 value 119.082894
## iter 160 value 113.660080
## iter 170 value 105.773010
## iter 180 value 96.837696
## iter 190 value 90.623692
## iter 200 value 84.304154
## iter 210 value 79.525586
## iter 220 value 76.154848
## iter 230 value 72.182218
## iter 240 value 69.672286
## iter 250 value 67.164232
## iter 260 value 64.373258
## iter 270 value 61.866617
## iter 280 value 58.117691
## iter 290 value 56.229528
## iter 300 value 53.144085
## iter 310 value 50.844936
## iter 320 value 48.063442
## iter 330 value 46.222540
## iter 340 value 44.664173
## iter 350 value 43.717416
## iter 360 value 42.949110
## iter 370 value 42.474388
## iter 380 value 42.099466
## iter 390 value 41.512779
## iter 400 value 41.068240
## iter 410 value 40.688048
## iter 420 value 40.265663
## iter 430 value 39.806252
## iter 440 value 39.542293
## iter 450 value 39.401378
## iter 460 value 39.201674
## iter 470 value 38.968486
## iter 480 value 38.710956
## iter 490 value 38.610006
## iter 500 value 38.584482
## final  value 38.584482 
## stopped after 500 iterations
## # weights:  25
## initial  value 1386870.685250 
## iter  10 value 16096.471266
## iter  20 value 7895.328241
## iter  30 value 6087.506933
## iter  40 value 5104.670168
## iter  50 value 3630.386403
## iter  60 value 2773.128290
## iter  70 value 2393.977512
## iter  80 value 1607.519203
## iter  90 value 1475.617424
## iter 100 value 1387.224873
## iter 110 value 1345.284467
## iter 120 value 1331.915665
## iter 130 value 1303.517843
## iter 140 value 1301.718018
## iter 150 value 1301.679570
## iter 160 value 1297.529432
## iter 170 value 1287.716432
## iter 180 value 1286.356977
## iter 190 value 1285.930443
## iter 200 value 1285.776334
## iter 210 value 1283.497109
## iter 220 value 1273.992883
## iter 230 value 1271.547993
## iter 240 value 1271.544315
## iter 250 value 1270.779669
## iter 260 value 1269.735827
## iter 270 value 1265.694381
## iter 280 value 1207.879898
## iter 290 value 1205.349504
## iter 300 value 1204.744104
## iter 310 value 1204.514356
## iter 320 value 1204.508441
## iter 330 value 1204.473451
## final  value 1204.461200 
## converged
## # weights:  61
## initial  value 1369944.319004 
## iter  10 value 4815.533687
## iter  20 value 2684.248773
## iter  30 value 1954.654699
## iter  40 value 1542.342820
## iter  50 value 1289.962786
## iter  60 value 1045.067110
## iter  70 value 919.847384
## iter  80 value 896.148679
## iter  90 value 884.573744
## iter 100 value 873.210237
## iter 110 value 862.848267
## iter 120 value 855.586184
## iter 130 value 843.390593
## iter 140 value 830.357310
## iter 150 value 825.114538
## iter 160 value 808.230715
## iter 170 value 804.029122
## iter 180 value 796.540522
## iter 190 value 784.852192
## iter 200 value 731.280183
## iter 210 value 705.757076
## iter 220 value 700.473408
## iter 230 value 699.952963
## iter 240 value 690.589191
## iter 250 value 671.335386
## iter 260 value 668.833203
## iter 270 value 662.458878
## iter 280 value 645.331457
## iter 290 value 640.232688
## iter 300 value 639.088208
## iter 310 value 638.383079
## iter 320 value 638.068420
## iter 330 value 637.827135
## iter 340 value 637.665301
## iter 350 value 637.664812
## iter 360 value 637.658093
## iter 370 value 637.635611
## iter 380 value 637.571904
## iter 390 value 637.503709
## iter 400 value 637.496327
## iter 410 value 637.493522
## iter 420 value 637.493030
## iter 430 value 637.492572
## final  value 637.492519 
## converged
## # weights:  121
## initial  value 1448634.135786 
## iter  10 value 13365.381127
## iter  20 value 4048.021931
## iter  30 value 2851.895676
## iter  40 value 2734.337610
## iter  50 value 2371.632887
## iter  60 value 2094.972978
## iter  70 value 2009.984258
## iter  80 value 1963.551893
## iter  90 value 1885.140175
## iter 100 value 1599.503527
## iter 110 value 1436.861610
## iter 120 value 1156.369592
## iter 130 value 1021.150333
## iter 140 value 946.898959
## iter 150 value 924.618764
## iter 160 value 883.056511
## iter 170 value 821.074645
## iter 180 value 799.166493
## iter 190 value 793.100919
## iter 200 value 787.226783
## iter 210 value 773.556025
## iter 220 value 753.958909
## iter 230 value 726.659188
## iter 240 value 673.795286
## iter 250 value 629.018011
## iter 260 value 598.290840
## iter 270 value 580.995586
## iter 280 value 572.452078
## iter 290 value 562.352859
## iter 300 value 556.040845
## iter 310 value 540.950431
## iter 320 value 531.160877
## iter 330 value 523.745793
## iter 340 value 518.478188
## iter 350 value 515.889307
## iter 360 value 513.289931
## iter 370 value 512.436723
## iter 380 value 510.708493
## iter 390 value 509.897700
## iter 400 value 509.127533
## iter 410 value 507.906190
## iter 420 value 506.970431
## iter 430 value 502.539285
## iter 440 value 498.732152
## iter 450 value 497.380738
## iter 460 value 496.074611
## iter 470 value 495.443510
## iter 480 value 494.677278
## iter 490 value 494.097700
## iter 500 value 493.701644
## final  value 493.701644 
## stopped after 500 iterations
## # weights:  181
## initial  value 1413917.792341 
## iter  10 value 1209.209651
## iter  20 value 781.180139
## iter  30 value 660.681676
## iter  40 value 535.339485
## iter  50 value 439.783484
## iter  60 value 384.779747
## iter  70 value 350.780786
## iter  80 value 310.437744
## iter  90 value 284.751520
## iter 100 value 269.092355
## iter 110 value 255.889663
## iter 120 value 246.819273
## iter 130 value 239.313843
## iter 140 value 227.371294
## iter 150 value 218.447996
## iter 160 value 210.150042
## iter 170 value 202.216542
## iter 180 value 190.991035
## iter 190 value 181.720333
## iter 200 value 174.487776
## iter 210 value 168.872305
## iter 220 value 164.342339
## iter 230 value 161.785695
## iter 240 value 159.525292
## iter 250 value 157.139495
## iter 260 value 155.497255
## iter 270 value 154.290638
## iter 280 value 153.086053
## iter 290 value 151.881036
## iter 300 value 150.688515
## iter 310 value 149.622267
## iter 320 value 148.610854
## iter 330 value 147.673193
## iter 340 value 146.337755
## iter 350 value 145.311585
## iter 360 value 144.606343
## iter 370 value 144.419216
## iter 380 value 144.316154
## iter 390 value 144.089826
## iter 400 value 143.775295
## iter 410 value 143.426275
## iter 420 value 142.999176
## iter 430 value 142.646198
## iter 440 value 142.294229
## iter 450 value 141.820627
## iter 460 value 140.931534
## iter 470 value 140.331481
## iter 480 value 139.870960
## iter 490 value 139.585490
## iter 500 value 139.499069
## final  value 139.499069 
## stopped after 500 iterations
## # weights:  241
## initial  value 1408462.479376 
## iter  10 value 1697.627145
## iter  20 value 835.887614
## iter  30 value 645.274833
## iter  40 value 501.988260
## iter  50 value 397.050465
## iter  60 value 349.365470
## iter  70 value 298.601990
## iter  80 value 262.996628
## iter  90 value 235.612282
## iter 100 value 218.350036
## iter 110 value 203.339997
## iter 120 value 186.829090
## iter 130 value 171.993714
## iter 140 value 158.699635
## iter 150 value 150.852576
## iter 160 value 144.441632
## iter 170 value 136.303637
## iter 180 value 127.347627
## iter 190 value 120.376089
## iter 200 value 114.277419
## iter 210 value 108.263683
## iter 220 value 102.802914
## iter 230 value 96.707401
## iter 240 value 93.019455
## iter 250 value 89.935334
## iter 260 value 87.083839
## iter 270 value 85.219510
## iter 280 value 84.032196
## iter 290 value 82.206957
## iter 300 value 79.992722
## iter 310 value 77.602812
## iter 320 value 75.675769
## iter 330 value 73.800070
## iter 340 value 72.297664
## iter 350 value 70.973439
## iter 360 value 69.184427
## iter 370 value 67.649322
## iter 380 value 66.548076
## iter 390 value 65.234160
## iter 400 value 64.389556
## iter 410 value 63.675854
## iter 420 value 62.902501
## iter 430 value 61.969867
## iter 440 value 61.270260
## iter 450 value 60.348626
## iter 460 value 59.618829
## iter 470 value 59.076608
## iter 480 value 58.516615
## iter 490 value 58.353411
## iter 500 value 58.316900
## final  value 58.316900 
## stopped after 500 iterations
## # weights:  25
## initial  value 1372477.240115 
## iter  10 value 68000.716832
## iter  20 value 45384.622598
## iter  30 value 18763.404622
## iter  40 value 7417.209929
## iter  50 value 6881.877909
## iter  60 value 5819.556644
## iter  70 value 4081.634645
## iter  80 value 3165.419431
## iter  90 value 2575.796798
## iter 100 value 1911.298732
## iter 110 value 1606.869769
## iter 120 value 1511.470006
## iter 130 value 1473.188656
## iter 140 value 1433.762599
## iter 150 value 1401.289902
## iter 160 value 1386.813004
## iter 170 value 1380.408583
## iter 180 value 1379.317008
## iter 190 value 1373.748811
## iter 200 value 1372.146333
## final  value 1372.145916 
## converged
## # weights:  61
## initial  value 1407939.343260 
## iter  10 value 3092.687067
## iter  20 value 1931.688936
## iter  30 value 1432.669659
## iter  40 value 1205.261041
## iter  50 value 1077.690698
## iter  60 value 1013.913512
## iter  70 value 976.294824
## iter  80 value 963.875827
## iter  90 value 945.000181
## iter 100 value 935.902340
## iter 110 value 915.538520
## iter 120 value 888.588209
## iter 130 value 878.106035
## iter 140 value 869.710834
## iter 150 value 857.096332
## iter 160 value 839.747821
## iter 170 value 824.377096
## iter 180 value 799.610261
## iter 190 value 787.952188
## iter 200 value 779.409241
## iter 210 value 779.329603
## iter 220 value 779.316042
## iter 220 value 779.316035
## iter 220 value 779.316035
## final  value 779.316035 
## converged
## # weights:  121
## initial  value 1400960.980227 
## iter  10 value 4073.998877
## iter  20 value 2031.977876
## iter  30 value 1677.958612
## iter  40 value 1447.062631
## iter  50 value 1360.666864
## iter  60 value 1314.471303
## iter  70 value 1249.882354
## iter  80 value 1173.154791
## iter  90 value 1085.830693
## iter 100 value 976.662591
## iter 110 value 907.427418
## iter 120 value 860.814474
## iter 130 value 818.373187
## iter 140 value 792.797002
## iter 150 value 748.859847
## iter 160 value 720.918962
## iter 170 value 696.636924
## iter 180 value 682.767414
## iter 190 value 671.126480
## iter 200 value 665.804198
## iter 210 value 657.184339
## iter 220 value 633.140966
## iter 230 value 624.170437
## iter 240 value 617.709966
## iter 250 value 614.288745
## iter 260 value 610.853614
## iter 270 value 603.887383
## iter 280 value 596.819356
## iter 290 value 587.660064
## iter 300 value 582.085943
## iter 310 value 578.839603
## iter 320 value 577.192081
## iter 330 value 576.041276
## iter 340 value 574.957140
## iter 350 value 574.764805
## iter 360 value 574.627474
## iter 370 value 574.463076
## iter 380 value 574.375052
## iter 390 value 574.371756
## iter 400 value 574.371076
## final  value 574.370901 
## converged
## # weights:  181
## initial  value 1436383.758015 
## iter  10 value 1536.550524
## iter  20 value 919.896062
## iter  30 value 790.892651
## iter  40 value 674.554759
## iter  50 value 614.419624
## iter  60 value 583.936787
## iter  70 value 550.146021
## iter  80 value 530.297297
## iter  90 value 518.322629
## iter 100 value 510.657793
## iter 110 value 504.887218
## iter 120 value 499.473850
## iter 130 value 493.350208
## iter 140 value 486.415350
## iter 150 value 480.327480
## iter 160 value 475.618453
## iter 170 value 472.483206
## iter 180 value 469.491265
## iter 190 value 465.900970
## iter 200 value 462.907095
## iter 210 value 459.966260
## iter 220 value 456.353593
## iter 230 value 452.828305
## iter 240 value 450.624938
## iter 250 value 448.622059
## iter 260 value 445.648443
## iter 270 value 443.132678
## iter 280 value 439.970704
## iter 290 value 437.676754
## iter 300 value 436.330583
## iter 310 value 435.436812
## iter 320 value 433.281107
## iter 330 value 431.059264
## iter 340 value 428.688555
## iter 350 value 422.583928
## iter 360 value 418.544006
## iter 370 value 417.347830
## iter 380 value 416.674099
## iter 390 value 415.287281
## iter 400 value 414.275928
## iter 410 value 413.704906
## iter 420 value 412.242230
## iter 430 value 410.228318
## iter 440 value 408.551319
## iter 450 value 407.113968
## iter 460 value 405.964912
## iter 470 value 405.196618
## iter 480 value 404.779265
## iter 490 value 404.378579
## iter 500 value 402.785654
## final  value 402.785654 
## stopped after 500 iterations
## # weights:  241
## initial  value 1361340.947693 
## iter  10 value 1333.030230
## iter  20 value 961.495114
## iter  30 value 774.958407
## iter  40 value 684.194412
## iter  50 value 633.213059
## iter  60 value 569.100717
## iter  70 value 529.119334
## iter  80 value 505.940657
## iter  90 value 495.207525
## iter 100 value 487.456296
## iter 110 value 478.726657
## iter 120 value 472.177350
## iter 130 value 465.961060
## iter 140 value 460.878310
## iter 150 value 454.710167
## iter 160 value 449.366294
## iter 170 value 444.724931
## iter 180 value 440.020484
## iter 190 value 434.048099
## iter 200 value 428.369074
## iter 210 value 422.549961
## iter 220 value 415.317116
## iter 230 value 409.829144
## iter 240 value 403.903396
## iter 250 value 397.399969
## iter 260 value 393.366711
## iter 270 value 389.615690
## iter 280 value 386.529896
## iter 290 value 384.005067
## iter 300 value 381.520446
## iter 310 value 379.813014
## iter 320 value 378.344202
## iter 330 value 376.984890
## iter 340 value 375.143021
## iter 350 value 373.548547
## iter 360 value 371.882479
## iter 370 value 370.084481
## iter 380 value 368.409556
## iter 390 value 366.629486
## iter 400 value 363.880307
## iter 410 value 360.051411
## iter 420 value 357.655096
## iter 430 value 355.559870
## iter 440 value 353.156278
## iter 450 value 350.548607
## iter 460 value 348.115628
## iter 470 value 346.204603
## iter 480 value 345.117220
## iter 490 value 344.408435
## iter 500 value 343.333897
## final  value 343.333897 
## stopped after 500 iterations
## # weights:  25
## initial  value 1387099.627384 
## iter  10 value 6884.863381
## iter  20 value 5742.708364
## iter  30 value 5648.924554
## iter  40 value 5489.348356
## iter  50 value 5294.227643
## iter  60 value 4191.619062
## iter  70 value 3439.820488
## iter  80 value 1865.159081
## iter  90 value 1354.174023
## iter 100 value 1230.275976
## iter 110 value 1213.606377
## iter 120 value 1203.457053
## iter 130 value 1172.423722
## iter 140 value 1157.156416
## iter 150 value 1149.554267
## iter 160 value 1148.385147
## iter 170 value 1145.328761
## iter 180 value 1133.782683
## iter 190 value 1115.050236
## iter 200 value 1098.741020
## iter 210 value 1071.941371
## iter 220 value 1069.565696
## iter 230 value 1068.972566
## iter 240 value 1065.824168
## iter 250 value 1063.384913
## iter 260 value 1061.492019
## iter 270 value 1061.043238
## iter 280 value 1061.026919
## iter 290 value 1060.383288
## iter 300 value 1059.598781
## iter 310 value 1058.796290
## iter 320 value 1058.548991
## iter 330 value 1058.546728
## iter 340 value 1058.471061
## iter 350 value 1057.953294
## iter 360 value 1057.525014
## iter 370 value 1057.265463
## iter 380 value 1057.261163
## iter 380 value 1057.261161
## iter 380 value 1057.261157
## final  value 1057.261157 
## converged
## # weights:  61
## initial  value 1409061.029459 
## iter  10 value 1454.501398
## iter  20 value 1173.662421
## iter  30 value 948.423994
## iter  40 value 818.321733
## iter  50 value 723.675688
## iter  60 value 669.952133
## iter  70 value 632.214352
## iter  80 value 621.930101
## iter  90 value 612.884284
## iter 100 value 610.410488
## iter 110 value 608.256095
## iter 120 value 607.334157
## iter 130 value 606.911674
## iter 140 value 606.777125
## iter 150 value 606.119864
## iter 160 value 604.317289
## iter 170 value 600.597374
## iter 180 value 593.442563
## iter 190 value 589.851119
## iter 200 value 587.664736
## iter 210 value 585.790198
## iter 220 value 584.125603
## iter 230 value 582.950025
## iter 240 value 582.386864
## iter 250 value 582.116854
## iter 260 value 582.086040
## iter 270 value 581.971393
## iter 280 value 581.690192
## iter 290 value 581.460932
## iter 300 value 581.353291
## iter 310 value 581.149949
## iter 320 value 580.848503
## iter 330 value 580.611379
## iter 340 value 580.393534
## iter 350 value 580.266394
## iter 360 value 580.141481
## iter 370 value 579.957066
## iter 380 value 579.953258
## iter 390 value 579.941049
## iter 400 value 579.880828
## iter 410 value 579.788238
## iter 420 value 579.685639
## iter 430 value 579.303637
## iter 440 value 579.152107
## iter 450 value 578.975600
## iter 460 value 578.868404
## iter 470 value 578.775307
## iter 480 value 578.687300
## iter 490 value 578.665848
## final  value 578.663563 
## converged
## # weights:  121
## initial  value 1416636.374166 
## iter  10 value 1671.478236
## iter  20 value 1000.629062
## iter  30 value 821.121997
## iter  40 value 713.814097
## iter  50 value 641.158097
## iter  60 value 608.680645
## iter  70 value 586.740869
## iter  80 value 567.069916
## iter  90 value 553.661699
## iter 100 value 545.983177
## iter 110 value 542.387548
## iter 120 value 538.795445
## iter 130 value 532.736078
## iter 140 value 527.976666
## iter 150 value 518.717146
## iter 160 value 509.550051
## iter 170 value 494.733760
## iter 180 value 487.147887
## iter 190 value 468.792136
## iter 200 value 454.176554
## iter 210 value 446.169427
## iter 220 value 438.455061
## iter 230 value 430.930929
## iter 240 value 415.480240
## iter 250 value 394.001123
## iter 260 value 387.039195
## iter 270 value 384.757568
## iter 280 value 382.687809
## iter 290 value 379.690969
## iter 300 value 378.106648
## iter 310 value 377.187713
## iter 320 value 375.975369
## iter 330 value 374.850924
## iter 340 value 374.210535
## iter 350 value 373.882347
## iter 360 value 373.618886
## iter 370 value 373.397226
## iter 380 value 373.393873
## iter 390 value 373.385757
## iter 400 value 373.367752
## iter 410 value 373.349413
## iter 420 value 373.338195
## iter 430 value 373.331903
## iter 440 value 373.321640
## iter 450 value 373.295236
## iter 460 value 373.258294
## iter 470 value 372.411457
## iter 480 value 371.348802
## iter 490 value 370.902117
## iter 500 value 370.609300
## final  value 370.609300 
## stopped after 500 iterations
## # weights:  181
## initial  value 1381719.005892 
## iter  10 value 1467.172498
## iter  20 value 786.635499
## iter  30 value 620.697677
## iter  40 value 515.593629
## iter  50 value 431.749592
## iter  60 value 362.889480
## iter  70 value 319.911837
## iter  80 value 275.422756
## iter  90 value 248.714420
## iter 100 value 230.661755
## iter 110 value 212.389696
## iter 120 value 200.509538
## iter 130 value 188.212657
## iter 140 value 178.478457
## iter 150 value 166.196181
## iter 160 value 155.862943
## iter 170 value 144.901767
## iter 180 value 134.984710
## iter 190 value 128.138283
## iter 200 value 123.781473
## iter 210 value 120.680937
## iter 220 value 116.928077
## iter 230 value 114.145371
## iter 240 value 112.195092
## iter 250 value 110.962329
## iter 260 value 108.867038
## iter 270 value 107.311021
## iter 280 value 106.083067
## iter 290 value 105.115520
## iter 300 value 104.299323
## iter 310 value 103.735284
## iter 320 value 103.177508
## iter 330 value 102.788422
## iter 340 value 102.494317
## iter 350 value 102.231510
## iter 360 value 102.058439
## iter 370 value 101.984354
## iter 380 value 101.943327
## iter 390 value 101.862886
## iter 400 value 101.732656
## iter 410 value 101.610271
## iter 420 value 101.527765
## iter 430 value 101.409239
## iter 440 value 101.299359
## iter 450 value 101.010618
## iter 460 value 100.526020
## iter 470 value 100.185451
## iter 480 value 99.605011
## iter 490 value 99.192383
## iter 500 value 98.901575
## final  value 98.901575 
## stopped after 500 iterations
## # weights:  241
## initial  value 1406575.679480 
## iter  10 value 1475.842726
## iter  20 value 810.414268
## iter  30 value 656.808281
## iter  40 value 565.655535
## iter  50 value 446.121098
## iter  60 value 353.930487
## iter  70 value 297.073127
## iter  80 value 264.388584
## iter  90 value 236.573331
## iter 100 value 202.989764
## iter 110 value 183.267716
## iter 120 value 169.714214
## iter 130 value 160.201311
## iter 140 value 151.958332
## iter 150 value 144.941023
## iter 160 value 139.131706
## iter 170 value 133.951261
## iter 180 value 129.112631
## iter 190 value 121.705868
## iter 200 value 114.814578
## iter 210 value 109.074391
## iter 220 value 104.472022
## iter 230 value 101.252522
## iter 240 value 97.580645
## iter 250 value 94.504699
## iter 260 value 92.713906
## iter 270 value 91.167732
## iter 280 value 88.978635
## iter 290 value 87.362266
## iter 300 value 86.082114
## iter 310 value 84.627525
## iter 320 value 83.374603
## iter 330 value 81.261878
## iter 340 value 79.186915
## iter 350 value 78.093975
## iter 360 value 76.713596
## iter 370 value 74.926649
## iter 380 value 72.850564
## iter 390 value 71.190179
## iter 400 value 69.651247
## iter 410 value 68.466478
## iter 420 value 67.145333
## iter 430 value 65.799797
## iter 440 value 64.284767
## iter 450 value 63.308524
## iter 460 value 62.314202
## iter 470 value 61.325149
## iter 480 value 60.164964
## iter 490 value 59.507512
## iter 500 value 59.326190
## final  value 59.326190 
## stopped after 500 iterations
## # weights:  25
## initial  value 1383669.158062 
## iter  10 value 12914.764786
## iter  20 value 10739.940816
## iter  30 value 10664.882768
## iter  40 value 10589.066325
## iter  50 value 10582.126502
## iter  60 value 10531.342944
## iter  70 value 10392.163059
## iter  80 value 10297.587548
## iter  90 value 10289.698008
## iter 100 value 10289.460185
## iter 110 value 10289.034671
## iter 120 value 10288.251586
## iter 130 value 6060.146755
## iter 140 value 6010.284788
## iter 150 value 5741.776331
## iter 160 value 5409.137393
## iter 170 value 5113.823906
## iter 180 value 5050.082562
## iter 190 value 5012.614178
## iter 200 value 4996.693418
## iter 210 value 4982.943420
## iter 220 value 4981.624847
## iter 230 value 4948.471680
## iter 240 value 4933.575068
## iter 250 value 4871.345741
## iter 260 value 4738.526092
## iter 270 value 4563.749275
## iter 280 value 3954.337876
## iter 290 value 2142.029339
## iter 300 value 1410.599572
## iter 310 value 1274.274054
## iter 320 value 1243.388607
## iter 330 value 1239.065502
## iter 340 value 1210.815776
## iter 350 value 1201.565346
## iter 360 value 1197.881404
## iter 370 value 1196.585397
## iter 380 value 1196.290971
## iter 390 value 1196.205017
## iter 400 value 1195.321295
## iter 410 value 1194.507769
## iter 420 value 1193.877934
## iter 430 value 1193.583957
## iter 440 value 1193.577372
## final  value 1193.577021 
## converged
## # weights:  61
## initial  value 1386500.939009 
## iter  10 value 7716.560988
## iter  20 value 4133.235806
## iter  30 value 3131.441764
## iter  40 value 2435.051421
## iter  50 value 2360.403970
## iter  60 value 2311.603489
## iter  70 value 2132.716946
## iter  80 value 2091.443471
## iter  90 value 1954.374295
## iter 100 value 1949.554188
## iter 110 value 1939.576503
## iter 120 value 1935.078174
## iter 130 value 1907.436000
## iter 140 value 1885.300534
## iter 150 value 1841.639207
## iter 160 value 1747.840731
## iter 170 value 1555.891742
## iter 180 value 1345.507381
## iter 190 value 1209.348706
## iter 200 value 1140.414671
## iter 210 value 1119.165944
## iter 220 value 1095.259044
## iter 230 value 1086.568009
## iter 240 value 1081.662160
## iter 250 value 1079.701230
## iter 260 value 1078.750457
## iter 270 value 1077.419206
## iter 280 value 1075.270745
## iter 290 value 1074.090393
## iter 300 value 1070.418840
## iter 310 value 1069.979448
## iter 320 value 1069.860002
## iter 330 value 1069.499510
## iter 340 value 1069.233642
## iter 350 value 1069.091124
## iter 360 value 1068.999060
## iter 370 value 1068.952981
## iter 380 value 1068.929235
## iter 390 value 1068.866437
## iter 390 value 1068.866433
## final  value 1068.866347 
## converged
## # weights:  121
## initial  value 1413501.596255 
## iter  10 value 3108.897693
## iter  20 value 1569.354039
## iter  30 value 1011.071874
## iter  40 value 734.254163
## iter  50 value 657.806415
## iter  60 value 599.191033
## iter  70 value 545.185862
## iter  80 value 499.605607
## iter  90 value 454.964681
## iter 100 value 438.276542
## iter 110 value 433.809153
## iter 120 value 429.942272
## iter 130 value 427.971234
## iter 140 value 424.416137
## iter 150 value 420.982493
## iter 160 value 411.806448
## iter 170 value 400.822048
## iter 180 value 390.764241
## iter 190 value 385.246443
## iter 200 value 375.438897
## iter 210 value 361.103408
## iter 220 value 348.599128
## iter 230 value 343.941908
## iter 240 value 342.419757
## iter 250 value 341.766065
## iter 260 value 340.991168
## iter 270 value 340.194500
## iter 280 value 339.441532
## iter 290 value 338.696976
## iter 300 value 337.991445
## iter 310 value 337.313739
## iter 320 value 336.953002
## iter 330 value 336.576572
## iter 340 value 336.450712
## iter 350 value 336.399707
## iter 360 value 336.378936
## iter 370 value 336.377771
## iter 380 value 336.375665
## iter 390 value 336.372203
## iter 400 value 336.362318
## iter 410 value 336.347331
## iter 420 value 336.303123
## iter 430 value 336.232174
## iter 440 value 336.077844
## iter 450 value 335.849954
## iter 460 value 335.726770
## iter 470 value 335.616470
## iter 480 value 335.526235
## iter 490 value 335.481676
## iter 500 value 335.461019
## final  value 335.461019 
## stopped after 500 iterations
## # weights:  181
## initial  value 1341342.110612 
## iter  10 value 1094.906120
## iter  20 value 779.320779
## iter  30 value 628.016802
## iter  40 value 494.235553
## iter  50 value 414.181204
## iter  60 value 343.785850
## iter  70 value 306.192745
## iter  80 value 275.896913
## iter  90 value 260.616736
## iter 100 value 249.761017
## iter 110 value 239.900241
## iter 120 value 229.187410
## iter 130 value 217.482503
## iter 140 value 209.750916
## iter 150 value 200.708648
## iter 160 value 190.775432
## iter 170 value 186.224202
## iter 180 value 182.475082
## iter 190 value 178.936579
## iter 200 value 175.656530
## iter 210 value 172.375262
## iter 220 value 167.273615
## iter 230 value 164.096168
## iter 240 value 161.203456
## iter 250 value 159.229025
## iter 260 value 157.504239
## iter 270 value 156.587575
## iter 280 value 155.531746
## iter 290 value 154.559980
## iter 300 value 153.656472
## iter 310 value 152.946523
## iter 320 value 152.485074
## iter 330 value 151.835283
## iter 340 value 151.434099
## iter 350 value 150.980317
## iter 360 value 150.521845
## iter 370 value 150.389598
## iter 380 value 150.329004
## iter 390 value 150.260145
## iter 400 value 150.121005
## iter 410 value 149.872528
## iter 420 value 149.606853
## iter 430 value 149.517933
## iter 440 value 149.389873
## iter 450 value 149.013867
## iter 460 value 148.653535
## iter 470 value 148.380377
## iter 480 value 148.058668
## iter 490 value 147.527118
## iter 500 value 146.731923
## final  value 146.731923 
## stopped after 500 iterations
## # weights:  241
## initial  value 1423332.312985 
## iter  10 value 1711.667087
## iter  20 value 868.528121
## iter  30 value 688.813149
## iter  40 value 587.147446
## iter  50 value 482.381212
## iter  60 value 411.170262
## iter  70 value 376.495682
## iter  80 value 334.255103
## iter  90 value 293.125713
## iter 100 value 251.968242
## iter 110 value 211.566565
## iter 120 value 183.699796
## iter 130 value 166.672231
## iter 140 value 157.579414
## iter 150 value 150.516988
## iter 160 value 144.747334
## iter 170 value 138.492563
## iter 180 value 133.034369
## iter 190 value 126.406924
## iter 200 value 118.835651
## iter 210 value 111.344415
## iter 220 value 105.616896
## iter 230 value 102.232064
## iter 240 value 99.314047
## iter 250 value 95.878706
## iter 260 value 91.871182
## iter 270 value 89.226402
## iter 280 value 86.800995
## iter 290 value 82.717203
## iter 300 value 80.240551
## iter 310 value 78.847920
## iter 320 value 76.261684
## iter 330 value 74.247712
## iter 340 value 72.619933
## iter 350 value 71.275721
## iter 360 value 69.793623
## iter 370 value 67.668785
## iter 380 value 65.957361
## iter 390 value 64.350427
## iter 400 value 62.802094
## iter 410 value 60.879695
## iter 420 value 58.978189
## iter 430 value 57.246998
## iter 440 value 55.370175
## iter 450 value 53.998019
## iter 460 value 52.439343
## iter 470 value 51.101911
## iter 480 value 50.347936
## iter 490 value 50.053463
## iter 500 value 49.895207
## final  value 49.895207 
## stopped after 500 iterations
## # weights:  25
## initial  value 1375188.416442 
## iter  10 value 16102.055508
## iter  20 value 15853.925861
## iter  30 value 15328.540602
## iter  40 value 14085.586455
## iter  50 value 12085.447237
## iter  60 value 11918.166806
## iter  70 value 11805.179982
## iter  80 value 11660.798775
## iter  90 value 11361.537171
## iter 100 value 10984.839138
## iter 110 value 9566.969003
## iter 120 value 6432.531781
## iter 130 value 5313.224592
## iter 140 value 4829.569025
## iter 150 value 4787.592748
## iter 160 value 4787.216112
## iter 170 value 4782.023428
## iter 180 value 4775.394195
## iter 190 value 4775.062232
## iter 200 value 4775.042270
## iter 210 value 4775.038984
## iter 210 value 4775.038958
## iter 210 value 4775.038929
## final  value 4775.038929 
## converged
## # weights:  61
## initial  value 1399511.969281 
## iter  10 value 3293.173425
## iter  20 value 1038.467858
## iter  30 value 862.750973
## iter  40 value 791.531697
## iter  50 value 730.586649
## iter  60 value 694.421961
## iter  70 value 659.394090
## iter  80 value 631.015748
## iter  90 value 618.964032
## iter 100 value 604.168017
## iter 110 value 586.138578
## iter 120 value 575.347708
## iter 130 value 573.700660
## iter 140 value 572.929843
## iter 150 value 571.471589
## iter 160 value 566.918886
## iter 170 value 553.565112
## iter 180 value 533.985698
## iter 190 value 525.757770
## iter 200 value 517.304148
## iter 210 value 512.639343
## iter 220 value 506.827291
## iter 230 value 501.505795
## iter 240 value 494.073676
## iter 250 value 491.070789
## iter 260 value 490.781011
## iter 270 value 489.768830
## iter 280 value 487.691058
## iter 290 value 485.771755
## iter 300 value 484.509492
## iter 310 value 483.772653
## iter 320 value 482.555982
## iter 330 value 481.813600
## iter 340 value 481.267303
## iter 350 value 480.700841
## iter 360 value 480.208391
## iter 370 value 480.113350
## iter 380 value 480.110838
## iter 390 value 480.106432
## iter 400 value 480.099015
## iter 410 value 480.095670
## iter 420 value 480.093227
## iter 430 value 480.090775
## iter 440 value 480.075095
## iter 450 value 480.021294
## iter 460 value 479.989083
## iter 470 value 479.949530
## iter 480 value 479.689558
## iter 490 value 478.469520
## iter 500 value 478.262142
## final  value 478.262142 
## stopped after 500 iterations
## # weights:  121
## initial  value 1318817.031447 
## iter  10 value 1452.690276
## iter  20 value 920.789955
## iter  30 value 705.021923
## iter  40 value 593.892554
## iter  50 value 547.201897
## iter  60 value 512.945591
## iter  70 value 469.972578
## iter  80 value 443.416354
## iter  90 value 421.526308
## iter 100 value 399.509812
## iter 110 value 378.941153
## iter 120 value 367.745631
## iter 130 value 358.122082
## iter 140 value 347.815019
## iter 150 value 339.654914
## iter 160 value 332.856470
## iter 170 value 329.203483
## iter 180 value 328.408538
## iter 190 value 327.836173
## iter 200 value 327.012733
## iter 210 value 325.731887
## iter 220 value 323.769168
## iter 230 value 322.509952
## iter 240 value 321.791758
## iter 250 value 321.645405
## iter 260 value 321.494315
## iter 270 value 321.292225
## iter 280 value 320.932134
## iter 290 value 320.131915
## iter 300 value 318.050179
## iter 310 value 315.271354
## iter 320 value 308.540896
## iter 330 value 303.641128
## iter 340 value 299.036088
## iter 350 value 297.768825
## iter 360 value 296.612252
## iter 370 value 295.314253
## iter 380 value 293.666531
## iter 390 value 291.298371
## iter 400 value 289.680911
## iter 410 value 287.424119
## iter 420 value 286.003609
## iter 430 value 284.617791
## iter 440 value 282.837933
## iter 450 value 281.002749
## iter 460 value 280.312862
## iter 470 value 280.151889
## iter 480 value 280.033600
## iter 490 value 279.956148
## iter 500 value 279.935351
## final  value 279.935351 
## stopped after 500 iterations
## # weights:  181
## initial  value 1419080.385443 
## iter  10 value 1099.176085
## iter  20 value 763.320358
## iter  30 value 627.198542
## iter  40 value 498.793937
## iter  50 value 428.821184
## iter  60 value 377.207061
## iter  70 value 326.546398
## iter  80 value 283.956340
## iter  90 value 249.944164
## iter 100 value 230.013294
## iter 110 value 212.683989
## iter 120 value 201.491946
## iter 130 value 194.927140
## iter 140 value 186.967490
## iter 150 value 178.334234
## iter 160 value 172.606286
## iter 170 value 168.853309
## iter 180 value 165.760347
## iter 190 value 162.684110
## iter 200 value 160.301357
## iter 210 value 156.677693
## iter 220 value 153.794567
## iter 230 value 150.806763
## iter 240 value 147.263456
## iter 250 value 144.142852
## iter 260 value 142.104375
## iter 270 value 140.816288
## iter 280 value 138.667484
## iter 290 value 135.043878
## iter 300 value 133.332483
## iter 310 value 131.647369
## iter 320 value 130.467763
## iter 330 value 129.513158
## iter 340 value 128.464299
## iter 350 value 127.378719
## iter 360 value 126.620460
## iter 370 value 126.426343
## iter 380 value 126.299678
## iter 390 value 125.993729
## iter 400 value 125.539814
## iter 410 value 124.996695
## iter 420 value 124.368893
## iter 430 value 123.774151
## iter 440 value 123.202444
## iter 450 value 122.573415
## iter 460 value 121.814210
## iter 470 value 119.929884
## iter 480 value 116.092060
## iter 490 value 114.143457
## iter 500 value 113.301216
## final  value 113.301216 
## stopped after 500 iterations
## # weights:  241
## initial  value 1397038.253488 
## iter  10 value 1210.230408
## iter  20 value 772.781019
## iter  30 value 588.911979
## iter  40 value 445.445295
## iter  50 value 354.771998
## iter  60 value 317.702059
## iter  70 value 279.779209
## iter  80 value 248.415090
## iter  90 value 223.218063
## iter 100 value 200.310837
## iter 110 value 184.394847
## iter 120 value 174.854907
## iter 130 value 165.330989
## iter 140 value 155.447832
## iter 150 value 151.102038
## iter 160 value 145.614241
## iter 170 value 140.925140
## iter 180 value 137.193774
## iter 190 value 132.915430
## iter 200 value 129.208818
## iter 210 value 126.324587
## iter 220 value 121.485535
## iter 230 value 117.497486
## iter 240 value 112.973179
## iter 250 value 109.497220
## iter 260 value 106.493104
## iter 270 value 103.366171
## iter 280 value 97.718667
## iter 290 value 92.993132
## iter 300 value 88.150764
## iter 310 value 84.340032
## iter 320 value 80.740909
## iter 330 value 78.310154
## iter 340 value 76.507338
## iter 350 value 74.233285
## iter 360 value 71.475236
## iter 370 value 70.308184
## iter 380 value 69.167438
## iter 390 value 67.874402
## iter 400 value 66.918406
## iter 410 value 66.045371
## iter 420 value 65.219368
## iter 430 value 63.366190
## iter 440 value 61.455906
## iter 450 value 59.484782
## iter 460 value 58.133184
## iter 470 value 56.931597
## iter 480 value 56.303462
## iter 490 value 56.017572
## iter 500 value 55.907166
## final  value 55.907166 
## stopped after 500 iterations
## # weights:  25
## initial  value 1403525.149577 
## iter  10 value 21697.277037
## iter  20 value 18083.651237
## iter  30 value 13265.431241
## iter  40 value 6016.758970
## iter  50 value 4798.537113
## iter  60 value 3094.872443
## iter  70 value 1812.653947
## iter  80 value 1388.665597
## iter  90 value 1285.069171
## iter 100 value 1252.334838
## iter 110 value 1125.059730
## iter 120 value 1027.811915
## iter 130 value 984.305717
## iter 140 value 967.528777
## iter 150 value 961.547041
## iter 160 value 948.668359
## iter 170 value 944.960938
## iter 180 value 943.767075
## iter 190 value 941.297172
## iter 200 value 940.509674
## iter 210 value 935.160095
## iter 220 value 927.458181
## iter 230 value 911.523977
## iter 240 value 883.110578
## iter 250 value 881.326236
## iter 260 value 873.092846
## iter 270 value 863.467400
## iter 280 value 860.166048
## iter 290 value 853.938736
## iter 300 value 853.683547
## iter 310 value 852.069672
## iter 320 value 848.330435
## iter 330 value 846.235303
## iter 340 value 846.101308
## iter 350 value 846.100112
## iter 360 value 845.986112
## iter 370 value 845.844756
## iter 380 value 845.813079
## final  value 845.810777 
## converged
## # weights:  61
## initial  value 1366580.539952 
## iter  10 value 4029.233090
## iter  20 value 3297.549745
## iter  30 value 2846.511707
## iter  40 value 1739.584966
## iter  50 value 1412.511289
## iter  60 value 1240.922593
## iter  70 value 1190.954967
## iter  80 value 1115.833784
## iter  90 value 1033.781017
## iter 100 value 979.058558
## iter 110 value 939.559569
## iter 120 value 903.399078
## iter 130 value 892.295059
## iter 140 value 887.091645
## iter 150 value 873.580442
## iter 160 value 835.563134
## iter 170 value 799.726986
## iter 180 value 795.371841
## iter 190 value 787.976033
## iter 200 value 778.654653
## iter 210 value 776.827259
## iter 220 value 771.742956
## iter 230 value 766.903550
## iter 240 value 756.423729
## iter 250 value 752.548226
## iter 260 value 749.999683
## iter 270 value 742.633434
## iter 280 value 733.156446
## iter 290 value 726.455629
## iter 300 value 710.369141
## iter 310 value 707.283238
## iter 320 value 698.066635
## iter 330 value 676.707596
## iter 340 value 668.695456
## iter 350 value 663.630547
## iter 360 value 662.375458
## iter 370 value 660.647564
## iter 380 value 660.499859
## iter 390 value 660.494775
## iter 400 value 660.399953
## iter 410 value 659.444728
## iter 420 value 656.576271
## iter 430 value 640.663787
## iter 440 value 631.993177
## iter 450 value 629.609871
## iter 460 value 629.198758
## iter 470 value 629.029796
## iter 480 value 628.984517
## iter 490 value 628.975119
## iter 500 value 628.848685
## final  value 628.848685 
## stopped after 500 iterations
## # weights:  121
## initial  value 1428452.441692 
## iter  10 value 6384.768307
## iter  20 value 1988.095661
## iter  30 value 1049.000430
## iter  40 value 802.580215
## iter  50 value 707.224527
## iter  60 value 608.402405
## iter  70 value 544.484021
## iter  80 value 510.788642
## iter  90 value 480.915831
## iter 100 value 442.152837
## iter 110 value 429.589723
## iter 120 value 419.771159
## iter 130 value 407.868940
## iter 140 value 401.898617
## iter 150 value 394.783838
## iter 160 value 387.245566
## iter 170 value 378.854766
## iter 180 value 374.491843
## iter 190 value 367.947580
## iter 200 value 358.880884
## iter 210 value 349.035210
## iter 220 value 340.740584
## iter 230 value 329.937497
## iter 240 value 325.733237
## iter 250 value 324.551150
## iter 260 value 321.971947
## iter 270 value 320.434203
## iter 280 value 319.729849
## iter 290 value 319.469373
## iter 300 value 319.431822
## iter 310 value 319.396934
## iter 320 value 319.387271
## iter 330 value 319.383439
## iter 340 value 319.382102
## iter 350 value 319.381910
## iter 360 value 319.381769
## iter 370 value 319.381622
## iter 380 value 319.381546
## final  value 319.381539 
## converged
## # weights:  181
## initial  value 1404235.441782 
## iter  10 value 1034.280273
## iter  20 value 732.884134
## iter  30 value 592.594287
## iter  40 value 450.857814
## iter  50 value 379.943521
## iter  60 value 339.925313
## iter  70 value 299.428528
## iter  80 value 264.566854
## iter  90 value 245.507529
## iter 100 value 226.728438
## iter 110 value 205.813100
## iter 120 value 185.088295
## iter 130 value 175.121314
## iter 140 value 167.679262
## iter 150 value 161.304719
## iter 160 value 156.056370
## iter 170 value 152.121413
## iter 180 value 148.396516
## iter 190 value 144.239963
## iter 200 value 139.574057
## iter 210 value 136.150019
## iter 220 value 132.371316
## iter 230 value 128.954634
## iter 240 value 126.587177
## iter 250 value 123.673748
## iter 260 value 120.347411
## iter 270 value 117.702960
## iter 280 value 115.982896
## iter 290 value 113.982161
## iter 300 value 112.848898
## iter 310 value 111.855295
## iter 320 value 110.924533
## iter 330 value 109.984496
## iter 340 value 109.312298
## iter 350 value 108.752643
## iter 360 value 108.396991
## iter 370 value 108.199091
## iter 380 value 108.129401
## iter 390 value 108.011112
## iter 400 value 107.811455
## iter 410 value 107.545364
## iter 420 value 106.687093
## iter 430 value 105.543324
## iter 440 value 104.858482
## iter 450 value 104.396878
## iter 460 value 103.728063
## iter 470 value 102.963561
## iter 480 value 102.582412
## iter 490 value 102.385875
## iter 500 value 102.220620
## final  value 102.220620 
## stopped after 500 iterations
## # weights:  241
## initial  value 1297007.428320 
## iter  10 value 1364.629397
## iter  20 value 846.744067
## iter  30 value 621.105766
## iter  40 value 508.430751
## iter  50 value 384.974974
## iter  60 value 307.208297
## iter  70 value 259.296425
## iter  80 value 228.767269
## iter  90 value 203.948715
## iter 100 value 187.451558
## iter 110 value 174.177514
## iter 120 value 166.003290
## iter 130 value 160.684567
## iter 140 value 153.146459
## iter 150 value 145.604708
## iter 160 value 137.190086
## iter 170 value 129.776538
## iter 180 value 124.785137
## iter 190 value 120.812841
## iter 200 value 114.762096
## iter 210 value 107.401399
## iter 220 value 100.549706
## iter 230 value 95.320181
## iter 240 value 91.206744
## iter 250 value 87.373292
## iter 260 value 84.474361
## iter 270 value 79.818937
## iter 280 value 75.926767
## iter 290 value 73.069538
## iter 300 value 71.151305
## iter 310 value 69.059229
## iter 320 value 67.217814
## iter 330 value 65.041050
## iter 340 value 63.765513
## iter 350 value 61.899823
## iter 360 value 60.433662
## iter 370 value 58.543606
## iter 380 value 57.194785
## iter 390 value 55.736398
## iter 400 value 54.427956
## iter 410 value 53.580331
## iter 420 value 52.714788
## iter 430 value 51.033733
## iter 440 value 48.907358
## iter 450 value 47.405408
## iter 460 value 46.246342
## iter 470 value 45.492758
## iter 480 value 44.957521
## iter 490 value 44.733160
## iter 500 value 44.644663
## final  value 44.644663 
## stopped after 500 iterations
## # weights:  25
## initial  value 1401353.258151 
## iter  10 value 53063.045787
## iter  20 value 17955.323222
## iter  30 value 11996.595551
## iter  40 value 6092.357487
## iter  50 value 3078.535761
## iter  60 value 2715.678783
## iter  70 value 2362.002626
## iter  80 value 1771.989386
## iter  90 value 1302.469755
## iter 100 value 1174.013261
## iter 110 value 1161.729185
## iter 120 value 1154.528299
## iter 130 value 1118.315849
## iter 140 value 1103.237555
## iter 150 value 1098.728427
## iter 160 value 1097.823329
## iter 170 value 1097.704053
## iter 180 value 1097.274693
## final  value 1097.274586 
## converged
## # weights:  61
## initial  value 1390333.053511 
## iter  10 value 55214.502560
## iter  20 value 12495.215956
## iter  30 value 8730.314220
## iter  40 value 6775.553821
## iter  50 value 4466.270691
## iter  60 value 2640.081380
## iter  70 value 2004.347231
## iter  80 value 1664.952214
## iter  90 value 1423.511818
## iter 100 value 1327.091562
## iter 110 value 1262.007427
## iter 120 value 1212.537456
## iter 130 value 1142.876234
## iter 140 value 1120.186174
## iter 150 value 1085.433733
## iter 160 value 1048.021857
## iter 170 value 1022.884528
## iter 180 value 992.164664
## iter 190 value 983.581385
## iter 200 value 966.950661
## iter 210 value 940.513744
## iter 220 value 911.125720
## iter 230 value 880.584376
## iter 240 value 860.620180
## iter 250 value 848.544184
## iter 260 value 830.379415
## iter 270 value 815.790142
## iter 280 value 807.709292
## iter 290 value 802.525052
## iter 300 value 798.023993
## iter 310 value 797.385334
## iter 320 value 797.088218
## iter 330 value 796.774697
## iter 340 value 796.556291
## iter 350 value 796.519108
## final  value 796.517893 
## converged
## # weights:  121
## initial  value 1372743.445145 
## iter  10 value 1505.299243
## iter  20 value 982.333079
## iter  30 value 853.635196
## iter  40 value 789.995905
## iter  50 value 737.244506
## iter  60 value 692.005357
## iter  70 value 669.265706
## iter  80 value 652.478759
## iter  90 value 631.808700
## iter 100 value 597.074935
## iter 110 value 585.942659
## iter 120 value 573.542749
## iter 130 value 564.486505
## iter 140 value 559.994245
## iter 150 value 553.160677
## iter 160 value 546.373547
## iter 170 value 542.095502
## iter 180 value 535.621822
## iter 190 value 528.001022
## iter 200 value 522.081695
## iter 210 value 518.381062
## iter 220 value 516.220621
## iter 230 value 513.946237
## iter 240 value 511.816142
## iter 250 value 509.637226
## iter 260 value 507.933784
## iter 270 value 504.512788
## iter 280 value 502.121514
## iter 290 value 499.634333
## iter 300 value 496.926506
## iter 310 value 495.407402
## iter 320 value 494.653847
## iter 330 value 493.408566
## iter 340 value 491.961507
## iter 350 value 490.941754
## iter 360 value 490.469934
## iter 370 value 490.026014
## iter 380 value 489.701960
## iter 390 value 489.535360
## iter 400 value 489.484940
## iter 410 value 489.475937
## final  value 489.475601 
## converged
## # weights:  181
## initial  value 1378447.756449 
## iter  10 value 2081.694421
## iter  20 value 901.641352
## iter  30 value 713.522440
## iter  40 value 599.756131
## iter  50 value 530.663255
## iter  60 value 501.452674
## iter  70 value 475.153144
## iter  80 value 461.554184
## iter  90 value 453.125121
## iter 100 value 444.849367
## iter 110 value 436.332107
## iter 120 value 429.072659
## iter 130 value 422.599480
## iter 140 value 417.436343
## iter 150 value 408.762541
## iter 160 value 399.278466
## iter 170 value 393.829839
## iter 180 value 390.116159
## iter 190 value 388.448405
## iter 200 value 387.175758
## iter 210 value 386.115151
## iter 220 value 384.820198
## iter 230 value 383.844095
## iter 240 value 382.783976
## iter 250 value 381.574879
## iter 260 value 380.247991
## iter 270 value 377.801323
## iter 280 value 376.605938
## iter 290 value 375.198512
## iter 300 value 374.047719
## iter 310 value 372.216405
## iter 320 value 369.718948
## iter 330 value 367.896975
## iter 340 value 365.678460
## iter 350 value 363.040314
## iter 360 value 361.475565
## iter 370 value 360.635766
## iter 380 value 360.092402
## iter 390 value 359.436765
## iter 400 value 359.172401
## iter 410 value 359.027522
## iter 420 value 358.945907
## iter 430 value 358.887058
## iter 440 value 358.862257
## iter 450 value 358.853670
## iter 460 value 358.845485
## iter 470 value 358.743233
## iter 480 value 358.462279
## iter 490 value 358.242103
## iter 500 value 358.099635
## final  value 358.099635 
## stopped after 500 iterations
## # weights:  241
## initial  value 1365946.721509 
## iter  10 value 1311.348535
## iter  20 value 868.368024
## iter  30 value 749.670659
## iter  40 value 650.977204
## iter  50 value 568.875882
## iter  60 value 516.537894
## iter  70 value 479.628075
## iter  80 value 455.872591
## iter  90 value 424.128935
## iter 100 value 402.299205
## iter 110 value 388.556264
## iter 120 value 381.076329
## iter 130 value 376.846879
## iter 140 value 373.218833
## iter 150 value 369.193003
## iter 160 value 366.254966
## iter 170 value 363.296215
## iter 180 value 360.223131
## iter 190 value 357.635851
## iter 200 value 354.192492
## iter 210 value 351.164814
## iter 220 value 348.757273
## iter 230 value 346.129622
## iter 240 value 343.440193
## iter 250 value 341.976460
## iter 260 value 340.046225
## iter 270 value 338.227225
## iter 280 value 336.389291
## iter 290 value 332.001434
## iter 300 value 325.998337
## iter 310 value 321.495704
## iter 320 value 318.018718
## iter 330 value 315.334151
## iter 340 value 312.652233
## iter 350 value 310.204898
## iter 360 value 307.965005
## iter 370 value 306.620540
## iter 380 value 305.425614
## iter 390 value 304.514942
## iter 400 value 303.868719
## iter 410 value 303.474343
## iter 420 value 303.136935
## iter 430 value 302.738887
## iter 440 value 302.258472
## iter 450 value 301.819825
## iter 460 value 301.281834
## iter 470 value 300.648678
## iter 480 value 300.156362
## iter 490 value 299.928554
## iter 500 value 299.631879
## final  value 299.631879 
## stopped after 500 iterations
## # weights:  25
## initial  value 1369311.602739 
## iter  10 value 6820.461951
## iter  20 value 5446.843389
## iter  30 value 5295.517703
## iter  40 value 4906.365573
## iter  50 value 4273.899997
## iter  60 value 3727.361713
## iter  70 value 1766.238133
## iter  80 value 1402.899845
## iter  90 value 1346.814811
## iter 100 value 1328.122741
## iter 110 value 1301.694360
## iter 120 value 1287.661388
## iter 130 value 1282.648408
## iter 140 value 1280.563819
## iter 150 value 1278.920853
## iter 160 value 1278.912377
## final  value 1278.911363 
## converged
## # weights:  61
## initial  value 1377040.387857 
## iter  10 value 8571.316210
## iter  20 value 6387.743023
## iter  30 value 5753.483085
## iter  40 value 5440.730456
## iter  50 value 4714.881211
## iter  60 value 3345.592322
## iter  70 value 2573.088092
## iter  80 value 2317.392581
## iter  90 value 2283.694066
## iter 100 value 2258.226956
## iter 110 value 2225.707491
## iter 120 value 2201.629906
## iter 130 value 2176.421395
## iter 140 value 2137.332954
## iter 150 value 2121.353478
## iter 160 value 2100.527564
## iter 170 value 2000.596293
## iter 180 value 1818.544666
## iter 190 value 1789.426629
## iter 200 value 1787.530658
## iter 210 value 1773.212944
## iter 220 value 1760.690107
## iter 230 value 1749.447440
## iter 240 value 1746.319286
## iter 250 value 1745.545835
## iter 260 value 1744.931662
## iter 270 value 1744.452723
## iter 280 value 1743.533941
## iter 290 value 1717.677648
## iter 300 value 1698.646441
## iter 310 value 1652.563573
## iter 320 value 1644.484688
## iter 330 value 1642.039126
## iter 340 value 1622.964985
## iter 350 value 1603.421679
## iter 360 value 1583.012274
## iter 370 value 1563.759331
## iter 380 value 1512.874144
## iter 390 value 1348.064613
## iter 400 value 1019.306111
## iter 410 value 952.625567
## iter 420 value 912.827907
## iter 430 value 898.958324
## iter 440 value 892.346428
## iter 450 value 868.011342
## iter 460 value 865.222298
## iter 470 value 854.609702
## iter 480 value 848.468739
## iter 490 value 848.260851
## iter 500 value 844.915794
## final  value 844.915794 
## stopped after 500 iterations
## # weights:  121
## initial  value 1426097.473036 
## iter  10 value 3019.134982
## iter  20 value 1534.369030
## iter  30 value 1048.182910
## iter  40 value 762.735738
## iter  50 value 650.644900
## iter  60 value 591.275378
## iter  70 value 558.046179
## iter  80 value 531.574389
## iter  90 value 516.034614
## iter 100 value 491.111659
## iter 110 value 471.965378
## iter 120 value 463.287524
## iter 130 value 454.202281
## iter 140 value 448.749844
## iter 150 value 440.021249
## iter 160 value 421.566852
## iter 170 value 387.683424
## iter 180 value 363.415541
## iter 190 value 352.033622
## iter 200 value 339.449921
## iter 210 value 330.497241
## iter 220 value 320.776998
## iter 230 value 311.420873
## iter 240 value 307.067459
## iter 250 value 304.823497
## iter 260 value 303.881504
## iter 270 value 302.709914
## iter 280 value 301.279212
## iter 290 value 300.125644
## iter 300 value 298.034447
## iter 310 value 295.206864
## iter 320 value 291.522073
## iter 330 value 285.937588
## iter 340 value 280.633593
## iter 350 value 274.581599
## iter 360 value 269.913173
## iter 370 value 268.154113
## iter 380 value 267.271312
## iter 390 value 266.459392
## iter 400 value 265.622675
## iter 410 value 265.390142
## iter 420 value 264.988448
## iter 430 value 264.924035
## iter 440 value 264.911706
## iter 450 value 264.892737
## iter 460 value 264.807567
## iter 470 value 264.470707
## iter 480 value 264.101405
## iter 490 value 263.905791
## iter 500 value 263.901083
## final  value 263.901083 
## stopped after 500 iterations
## # weights:  181
## initial  value 1386961.737673 
## iter  10 value 1078.049854
## iter  20 value 742.927129
## iter  30 value 636.335191
## iter  40 value 520.049415
## iter  50 value 415.406605
## iter  60 value 363.600726
## iter  70 value 322.840754
## iter  80 value 288.649996
## iter  90 value 259.843976
## iter 100 value 241.239006
## iter 110 value 226.494650
## iter 120 value 216.959256
## iter 130 value 204.070140
## iter 140 value 194.045034
## iter 150 value 186.977582
## iter 160 value 180.402468
## iter 170 value 174.068486
## iter 180 value 167.872786
## iter 190 value 163.612426
## iter 200 value 160.190966
## iter 210 value 155.173493
## iter 220 value 149.317242
## iter 230 value 143.899695
## iter 240 value 139.524960
## iter 250 value 136.284133
## iter 260 value 133.210503
## iter 270 value 131.087484
## iter 280 value 129.408533
## iter 290 value 127.455007
## iter 300 value 125.898964
## iter 310 value 124.852046
## iter 320 value 123.913197
## iter 330 value 122.251699
## iter 340 value 121.052997
## iter 350 value 120.318208
## iter 360 value 119.802849
## iter 370 value 119.478780
## iter 380 value 119.317299
## iter 390 value 119.151819
## iter 400 value 118.567606
## iter 410 value 117.932442
## iter 420 value 117.282406
## iter 430 value 116.378003
## iter 440 value 115.116117
## iter 450 value 113.857906
## iter 460 value 112.988796
## iter 470 value 112.437231
## iter 480 value 111.998950
## iter 490 value 111.572933
## iter 500 value 110.859297
## final  value 110.859297 
## stopped after 500 iterations
## # weights:  241
## initial  value 1330168.016794 
## iter  10 value 1354.057588
## iter  20 value 735.288960
## iter  30 value 597.233265
## iter  40 value 461.802342
## iter  50 value 359.972501
## iter  60 value 289.409395
## iter  70 value 242.612727
## iter  80 value 209.506249
## iter  90 value 186.474628
## iter 100 value 169.072803
## iter 110 value 153.979989
## iter 120 value 141.134093
## iter 130 value 127.000045
## iter 140 value 116.141903
## iter 150 value 109.717238
## iter 160 value 104.958974
## iter 170 value 97.674274
## iter 180 value 91.368282
## iter 190 value 85.742121
## iter 200 value 81.929063
## iter 210 value 78.274056
## iter 220 value 74.237042
## iter 230 value 67.501049
## iter 240 value 62.110533
## iter 250 value 58.471807
## iter 260 value 54.540970
## iter 270 value 50.742982
## iter 280 value 47.718846
## iter 290 value 45.321280
## iter 300 value 43.246547
## iter 310 value 41.025847
## iter 320 value 38.058901
## iter 330 value 35.478419
## iter 340 value 33.212874
## iter 350 value 30.464264
## iter 360 value 28.765378
## iter 370 value 27.351663
## iter 380 value 25.782100
## iter 390 value 24.665799
## iter 400 value 23.769805
## iter 410 value 23.257431
## iter 420 value 22.891011
## iter 430 value 22.369908
## iter 440 value 21.935227
## iter 450 value 21.638614
## iter 460 value 21.338875
## iter 470 value 20.627857
## iter 480 value 20.050029
## iter 490 value 19.814863
## iter 500 value 19.753910
## final  value 19.753910 
## stopped after 500 iterations
## # weights:  25
## initial  value 1356805.109099 
## iter  10 value 59222.119487
## iter  20 value 9417.890232
## iter  30 value 9246.746354
## iter  40 value 6902.246588
## iter  50 value 6726.021739
## iter  60 value 6684.140998
## iter  70 value 6643.029436
## iter  80 value 6319.357460
## iter  90 value 6235.343275
## iter 100 value 6235.244068
## iter 110 value 6172.187747
## iter 120 value 6142.233453
## iter 130 value 6142.101684
## iter 140 value 6141.228948
## iter 150 value 6133.958899
## iter 160 value 5621.871668
## iter 170 value 5530.558889
## iter 180 value 5330.100058
## iter 190 value 5290.709249
## iter 200 value 5164.637480
## iter 210 value 5126.026976
## iter 220 value 5095.071735
## iter 230 value 5072.876329
## iter 240 value 5066.573246
## iter 250 value 5065.550255
## iter 260 value 5064.784612
## iter 270 value 5049.894687
## iter 280 value 5048.100747
## iter 290 value 5047.538351
## iter 300 value 4679.655423
## iter 310 value 4382.686243
## iter 320 value 4248.856572
## iter 330 value 4169.446145
## iter 340 value 4157.848439
## iter 350 value 4154.638534
## iter 360 value 3982.154433
## iter 370 value 3752.922755
## iter 380 value 3397.184381
## iter 390 value 3197.633765
## iter 400 value 2816.612607
## iter 410 value 2289.036268
## iter 420 value 2092.562306
## iter 430 value 2037.751338
## iter 440 value 2028.852138
## iter 450 value 2028.382772
## iter 460 value 2027.240235
## final  value 2027.211106 
## converged
## # weights:  61
## initial  value 1366094.035726 
## iter  10 value 14594.371374
## iter  20 value 3703.204313
## iter  30 value 2886.847629
## iter  40 value 2562.392877
## iter  50 value 2493.333089
## iter  60 value 2379.144228
## iter  70 value 2298.212668
## iter  80 value 2289.076637
## iter  90 value 2171.722245
## iter 100 value 2097.324863
## iter 110 value 1891.723820
## iter 120 value 1561.579193
## iter 130 value 1481.331588
## iter 140 value 1463.427491
## iter 150 value 1461.339548
## iter 160 value 1460.824174
## iter 170 value 1460.724207
## iter 180 value 1456.202838
## iter 190 value 1450.734090
## iter 200 value 1449.824705
## iter 210 value 1449.418029
## iter 220 value 1447.830406
## iter 230 value 1447.429410
## iter 240 value 1447.134912
## iter 250 value 1447.108561
## iter 260 value 1447.105605
## iter 270 value 1447.087742
## iter 280 value 1447.085697
## final  value 1447.077655 
## converged
## # weights:  121
## initial  value 1409073.718393 
## iter  10 value 1737.906640
## iter  20 value 951.608409
## iter  30 value 739.761715
## iter  40 value 644.752321
## iter  50 value 579.252648
## iter  60 value 548.734764
## iter  70 value 533.790576
## iter  80 value 523.944789
## iter  90 value 511.135769
## iter 100 value 493.955447
## iter 110 value 469.549577
## iter 120 value 453.538929
## iter 130 value 442.651043
## iter 140 value 434.989608
## iter 150 value 429.445562
## iter 160 value 418.673603
## iter 170 value 407.802071
## iter 180 value 396.497072
## iter 190 value 388.232433
## iter 200 value 383.878534
## iter 210 value 375.744446
## iter 220 value 366.697908
## iter 230 value 361.283529
## iter 240 value 359.598320
## iter 250 value 359.050364
## iter 260 value 358.788190
## iter 270 value 358.114289
## iter 280 value 357.462971
## iter 290 value 356.733742
## iter 300 value 356.038466
## iter 310 value 354.559289
## iter 320 value 352.557699
## iter 330 value 350.808445
## iter 340 value 346.500381
## iter 350 value 338.025057
## iter 360 value 328.605527
## iter 370 value 326.839992
## iter 380 value 326.195609
## iter 390 value 325.361250
## iter 400 value 325.094774
## iter 410 value 324.850723
## iter 420 value 324.705346
## iter 430 value 324.511860
## iter 440 value 324.134060
## iter 450 value 323.430420
## iter 460 value 320.903335
## iter 470 value 320.718395
## iter 480 value 320.527931
## iter 490 value 320.188330
## iter 500 value 320.025528
## final  value 320.025528 
## stopped after 500 iterations
## # weights:  181
## initial  value 1420843.867292 
## iter  10 value 1553.878919
## iter  20 value 783.985886
## iter  30 value 549.826976
## iter  40 value 440.165903
## iter  50 value 357.013814
## iter  60 value 311.903325
## iter  70 value 273.129877
## iter  80 value 250.112370
## iter  90 value 232.659705
## iter 100 value 220.296688
## iter 110 value 205.859366
## iter 120 value 191.913094
## iter 130 value 179.971842
## iter 140 value 171.584758
## iter 150 value 164.055834
## iter 160 value 157.771779
## iter 170 value 154.593005
## iter 180 value 152.389330
## iter 190 value 150.316412
## iter 200 value 147.779605
## iter 210 value 145.050627
## iter 220 value 142.083187
## iter 230 value 139.375397
## iter 240 value 137.427783
## iter 250 value 136.112916
## iter 260 value 134.252522
## iter 270 value 132.364169
## iter 280 value 131.302994
## iter 290 value 130.404729
## iter 300 value 128.421451
## iter 310 value 125.839618
## iter 320 value 124.094197
## iter 330 value 122.371954
## iter 340 value 120.926141
## iter 350 value 119.566828
## iter 360 value 118.600702
## iter 370 value 118.375184
## iter 380 value 118.325507
## iter 390 value 118.240402
## iter 400 value 118.128036
## iter 410 value 117.997047
## iter 420 value 117.803511
## iter 430 value 117.546840
## iter 440 value 117.266092
## iter 450 value 116.862985
## iter 460 value 116.293996
## iter 470 value 116.057361
## iter 480 value 115.938455
## iter 490 value 115.674717
## iter 500 value 115.343990
## final  value 115.343990 
## stopped after 500 iterations
## # weights:  241
## initial  value 1440668.147904 
## iter  10 value 1502.928511
## iter  20 value 835.596188
## iter  30 value 696.855528
## iter  40 value 498.244616
## iter  50 value 383.102391
## iter  60 value 318.736438
## iter  70 value 279.277861
## iter  80 value 238.541646
## iter  90 value 205.585552
## iter 100 value 175.467187
## iter 110 value 153.186976
## iter 120 value 135.226145
## iter 130 value 122.768024
## iter 140 value 113.093941
## iter 150 value 103.993975
## iter 160 value 94.817869
## iter 170 value 85.041852
## iter 180 value 74.534872
## iter 190 value 67.869491
## iter 200 value 62.272400
## iter 210 value 59.505032
## iter 220 value 56.959957
## iter 230 value 55.007171
## iter 240 value 53.477949
## iter 250 value 52.251961
## iter 260 value 50.989739
## iter 270 value 49.853158
## iter 280 value 48.386716
## iter 290 value 46.766237
## iter 300 value 45.142317
## iter 310 value 43.781358
## iter 320 value 42.418068
## iter 330 value 40.671757
## iter 340 value 38.593174
## iter 350 value 36.870450
## iter 360 value 36.042975
## iter 370 value 35.244790
## iter 380 value 34.699879
## iter 390 value 34.135125
## iter 400 value 33.376765
## iter 410 value 32.855154
## iter 420 value 32.373534
## iter 430 value 31.954689
## iter 440 value 31.314648
## iter 450 value 30.678883
## iter 460 value 29.672448
## iter 470 value 29.015203
## iter 480 value 28.446649
## iter 490 value 28.015522
## iter 500 value 27.865818
## final  value 27.865818 
## stopped after 500 iterations
## # weights:  25
## initial  value 1402172.745191 
## iter  10 value 63295.391174
## iter  20 value 15374.565679
## iter  30 value 8149.580330
## iter  40 value 7944.096117
## iter  50 value 7466.367668
## iter  60 value 7176.665746
## iter  70 value 7122.777303
## iter  80 value 6483.588255
## iter  90 value 4857.515929
## iter 100 value 4198.845859
## iter 110 value 4082.456045
## iter 120 value 4045.246330
## iter 130 value 3862.711111
## iter 140 value 3708.210015
## iter 150 value 3246.142211
## iter 160 value 3084.976258
## iter 170 value 3015.979565
## iter 180 value 3006.828731
## iter 190 value 2971.701250
## iter 200 value 2960.393376
## iter 210 value 2937.801232
## iter 220 value 2908.290003
## iter 230 value 2901.760090
## iter 240 value 2900.015925
## iter 250 value 2899.367701
## iter 260 value 2897.093539
## iter 270 value 2637.842843
## iter 280 value 2362.602928
## iter 290 value 1964.999855
## iter 300 value 1724.391243
## iter 310 value 1350.318145
## iter 320 value 1196.249954
## iter 330 value 1137.614444
## iter 340 value 1136.492860
## iter 350 value 1136.027795
## iter 360 value 1133.170187
## iter 370 value 1131.707272
## iter 380 value 1131.149459
## iter 390 value 1130.969477
## iter 400 value 1130.967831
## final  value 1130.967783 
## converged
## # weights:  61
## initial  value 1400054.190012 
## iter  10 value 4847.551767
## iter  20 value 1550.798989
## iter  30 value 1223.374323
## iter  40 value 947.169354
## iter  50 value 838.567825
## iter  60 value 790.987311
## iter  70 value 746.761026
## iter  80 value 718.900976
## iter  90 value 689.319768
## iter 100 value 650.472045
## iter 110 value 623.530055
## iter 120 value 610.924475
## iter 130 value 605.671804
## iter 140 value 604.391065
## iter 150 value 599.055364
## iter 160 value 590.904882
## iter 170 value 585.484653
## iter 180 value 582.880373
## iter 190 value 581.727608
## iter 200 value 579.933918
## iter 210 value 578.469396
## iter 220 value 578.065713
## iter 230 value 577.828920
## iter 240 value 577.628304
## iter 250 value 577.591399
## iter 260 value 577.589082
## iter 270 value 577.586269
## iter 280 value 577.579977
## iter 290 value 577.565120
## iter 300 value 577.550947
## iter 310 value 577.385000
## iter 320 value 577.275677
## iter 330 value 577.270027
## iter 340 value 576.970083
## iter 350 value 572.034129
## iter 360 value 570.931307
## iter 370 value 570.776523
## iter 380 value 570.677631
## iter 390 value 570.624846
## iter 400 value 570.596008
## iter 410 value 570.583740
## iter 420 value 570.582022
## final  value 570.580708 
## converged
## # weights:  121
## initial  value 1358554.316834 
## iter  10 value 1337.243323
## iter  20 value 850.364392
## iter  30 value 696.314543
## iter  40 value 616.218629
## iter  50 value 579.380382
## iter  60 value 536.830502
## iter  70 value 501.950865
## iter  80 value 473.882623
## iter  90 value 449.413838
## iter 100 value 406.869833
## iter 110 value 369.309203
## iter 120 value 347.648195
## iter 130 value 335.300049
## iter 140 value 323.425022
## iter 150 value 315.228826
## iter 160 value 305.182860
## iter 170 value 295.144182
## iter 180 value 290.205309
## iter 190 value 285.394013
## iter 200 value 280.228982
## iter 210 value 276.542393
## iter 220 value 272.233011
## iter 230 value 268.197440
## iter 240 value 266.264726
## iter 250 value 265.375063
## iter 260 value 264.867079
## iter 270 value 264.312464
## iter 280 value 263.597141
## iter 290 value 262.296595
## iter 300 value 260.210630
## iter 310 value 258.413407
## iter 320 value 256.326209
## iter 330 value 254.403211
## iter 340 value 249.939388
## iter 350 value 246.000583
## iter 360 value 242.325533
## iter 370 value 241.778214
## iter 380 value 241.409336
## iter 390 value 241.023325
## iter 400 value 240.730920
## iter 410 value 240.607571
## iter 420 value 240.511108
## iter 430 value 240.341820
## iter 440 value 240.219244
## iter 450 value 240.099095
## iter 460 value 240.046430
## iter 470 value 239.897886
## iter 480 value 239.854673
## iter 490 value 239.845293
## iter 500 value 239.844892
## final  value 239.844892 
## stopped after 500 iterations
## # weights:  181
## initial  value 1389840.670094 
## iter  10 value 1193.112946
## iter  20 value 772.948197
## iter  30 value 563.392355
## iter  40 value 463.042753
## iter  50 value 387.066107
## iter  60 value 334.413835
## iter  70 value 305.819553
## iter  80 value 261.772386
## iter  90 value 232.820311
## iter 100 value 215.460830
## iter 110 value 208.243489
## iter 120 value 198.912361
## iter 130 value 190.603035
## iter 140 value 181.922901
## iter 150 value 166.217408
## iter 160 value 157.503755
## iter 170 value 150.037209
## iter 180 value 144.289776
## iter 190 value 141.074906
## iter 200 value 138.498399
## iter 210 value 134.747672
## iter 220 value 132.047677
## iter 230 value 128.514963
## iter 240 value 123.386204
## iter 250 value 117.419340
## iter 260 value 114.207343
## iter 270 value 111.189121
## iter 280 value 108.889660
## iter 290 value 105.100057
## iter 300 value 101.704964
## iter 310 value 99.259772
## iter 320 value 97.655341
## iter 330 value 96.401790
## iter 340 value 95.338264
## iter 350 value 94.652644
## iter 360 value 94.290776
## iter 370 value 94.103856
## iter 380 value 94.032265
## iter 390 value 93.876083
## iter 400 value 93.709753
## iter 410 value 93.263465
## iter 420 value 92.831659
## iter 430 value 92.428810
## iter 440 value 92.085753
## iter 450 value 91.775611
## iter 460 value 91.354353
## iter 470 value 90.924158
## iter 480 value 90.499642
## iter 490 value 89.994242
## iter 500 value 89.724758
## final  value 89.724758 
## stopped after 500 iterations
## # weights:  241
## initial  value 1372968.271570 
## iter  10 value 1169.447193
## iter  20 value 734.379773
## iter  30 value 630.625105
## iter  40 value 540.218707
## iter  50 value 416.238418
## iter  60 value 341.865356
## iter  70 value 292.271601
## iter  80 value 258.782885
## iter  90 value 231.371683
## iter 100 value 210.301325
## iter 110 value 195.034096
## iter 120 value 179.928877
## iter 130 value 166.640731
## iter 140 value 155.425600
## iter 150 value 145.473971
## iter 160 value 135.095350
## iter 170 value 126.886617
## iter 180 value 121.279100
## iter 190 value 115.572185
## iter 200 value 109.950461
## iter 210 value 106.398344
## iter 220 value 102.904828
## iter 230 value 99.566074
## iter 240 value 94.888514
## iter 250 value 89.523929
## iter 260 value 84.624778
## iter 270 value 81.497959
## iter 280 value 78.965338
## iter 290 value 75.984896
## iter 300 value 73.173065
## iter 310 value 70.775972
## iter 320 value 68.617223
## iter 330 value 66.245945
## iter 340 value 64.914521
## iter 350 value 63.388993
## iter 360 value 62.185103
## iter 370 value 60.325627
## iter 380 value 58.460396
## iter 390 value 56.293493
## iter 400 value 54.345842
## iter 410 value 53.352981
## iter 420 value 52.169025
## iter 430 value 51.399806
## iter 440 value 50.752780
## iter 450 value 50.231516
## iter 460 value 49.471509
## iter 470 value 48.753595
## iter 480 value 48.020965
## iter 490 value 47.598918
## iter 500 value 47.475638
## final  value 47.475638 
## stopped after 500 iterations
## # weights:  25
## initial  value 1430460.441402 
## iter  10 value 6206.095093
## iter  20 value 5170.355729
## iter  30 value 5108.006007
## iter  40 value 5079.732627
## iter  50 value 5061.111948
## iter  60 value 5042.033389
## iter  70 value 4949.563582
## iter  80 value 4669.476968
## iter  90 value 4173.069659
## iter 100 value 3137.667881
## iter 110 value 1628.904006
## iter 120 value 1403.689002
## iter 130 value 1355.649351
## iter 140 value 1338.357360
## iter 150 value 1304.816752
## iter 160 value 1293.729286
## iter 170 value 1288.007615
## iter 180 value 1230.642831
## iter 190 value 1229.807419
## iter 200 value 1191.204463
## iter 210 value 1131.813695
## iter 220 value 1067.320486
## iter 230 value 1049.763818
## iter 240 value 1049.089184
## iter 250 value 1045.635535
## iter 260 value 1041.206350
## iter 270 value 1041.182860
## iter 280 value 1039.589491
## iter 290 value 1036.335076
## iter 300 value 1027.348826
## iter 310 value 1019.563504
## iter 320 value 1013.542916
## iter 330 value 1013.154546
## iter 340 value 1013.112380
## iter 350 value 1012.465654
## iter 360 value 1012.113972
## iter 370 value 1012.092908
## iter 380 value 1012.090442
## iter 390 value 1012.090009
## final  value 1012.089810 
## converged
## # weights:  61
## initial  value 1396403.619978 
## iter  10 value 156807.623316
## iter  20 value 9277.858256
## iter  30 value 5841.608563
## iter  40 value 4158.880567
## iter  50 value 2694.421949
## iter  60 value 2311.134320
## iter  70 value 1879.328450
## iter  80 value 1722.876553
## iter  90 value 1506.950809
## iter 100 value 1267.473436
## iter 110 value 965.050359
## iter 120 value 858.584727
## iter 130 value 825.948972
## iter 140 value 807.065973
## iter 150 value 794.735339
## iter 160 value 781.821053
## iter 170 value 773.306241
## iter 180 value 765.169721
## iter 190 value 761.949115
## iter 200 value 759.635461
## iter 210 value 755.273682
## iter 220 value 746.580924
## iter 230 value 739.310766
## iter 240 value 734.232944
## iter 250 value 727.777104
## iter 260 value 721.177983
## iter 270 value 719.829543
## iter 280 value 717.217856
## iter 290 value 712.350097
## iter 300 value 707.065399
## iter 310 value 703.444815
## iter 320 value 701.629494
## iter 330 value 697.949614
## iter 340 value 692.080993
## iter 350 value 684.884469
## iter 360 value 681.653392
## iter 370 value 681.193241
## iter 380 value 680.827170
## iter 390 value 680.718647
## iter 400 value 680.704108
## iter 410 value 680.693648
## iter 420 value 680.692984
## iter 420 value 680.692980
## iter 420 value 680.692980
## final  value 680.692980 
## converged
## # weights:  121
## initial  value 1388293.378420 
## iter  10 value 1384.067018
## iter  20 value 886.202745
## iter  30 value 696.684586
## iter  40 value 593.566926
## iter  50 value 531.447636
## iter  60 value 481.552453
## iter  70 value 464.088052
## iter  80 value 451.420028
## iter  90 value 427.962696
## iter 100 value 412.762701
## iter 110 value 397.424848
## iter 120 value 388.062244
## iter 130 value 384.805558
## iter 140 value 381.432716
## iter 150 value 378.825993
## iter 160 value 370.598125
## iter 170 value 363.364242
## iter 180 value 353.103424
## iter 190 value 345.763187
## iter 200 value 339.653630
## iter 210 value 333.745967
## iter 220 value 328.467242
## iter 230 value 324.709951
## iter 240 value 319.860229
## iter 250 value 318.091221
## iter 260 value 316.764580
## iter 270 value 312.674001
## iter 280 value 308.156721
## iter 290 value 303.624590
## iter 300 value 299.714807
## iter 310 value 296.654030
## iter 320 value 293.340140
## iter 330 value 290.897347
## iter 340 value 288.778735
## iter 350 value 286.586079
## iter 360 value 284.743212
## iter 370 value 282.717461
## iter 380 value 280.720739
## iter 390 value 277.785514
## iter 400 value 272.768451
## iter 410 value 271.172047
## iter 420 value 269.870611
## iter 430 value 269.429404
## iter 440 value 269.309635
## iter 450 value 269.253951
## iter 460 value 269.219156
## iter 470 value 269.194542
## iter 480 value 269.153507
## iter 490 value 269.129900
## iter 500 value 269.129010
## final  value 269.129010 
## stopped after 500 iterations
## # weights:  181
## initial  value 1359360.688678 
## iter  10 value 1402.715958
## iter  20 value 876.057823
## iter  30 value 632.749836
## iter  40 value 518.746265
## iter  50 value 451.017909
## iter  60 value 392.669477
## iter  70 value 321.529549
## iter  80 value 285.980037
## iter  90 value 262.077291
## iter 100 value 236.912880
## iter 110 value 215.360026
## iter 120 value 202.064635
## iter 130 value 190.264386
## iter 140 value 179.088567
## iter 150 value 170.644241
## iter 160 value 162.666186
## iter 170 value 155.642596
## iter 180 value 151.367639
## iter 190 value 148.081351
## iter 200 value 144.464575
## iter 210 value 142.025098
## iter 220 value 138.710272
## iter 230 value 134.909411
## iter 240 value 132.614013
## iter 250 value 131.552435
## iter 260 value 130.885668
## iter 270 value 129.959879
## iter 280 value 129.060966
## iter 290 value 127.652744
## iter 300 value 125.945256
## iter 310 value 123.776784
## iter 320 value 122.299535
## iter 330 value 121.160575
## iter 340 value 120.365795
## iter 350 value 119.820059
## iter 360 value 119.390031
## iter 370 value 119.208085
## iter 380 value 119.136206
## iter 390 value 118.864128
## iter 400 value 118.593850
## iter 410 value 118.100189
## iter 420 value 117.633176
## iter 430 value 117.237786
## iter 440 value 116.973163
## iter 450 value 116.749047
## iter 460 value 116.539267
## iter 470 value 116.196349
## iter 480 value 115.850095
## iter 490 value 115.562332
## iter 500 value 115.401642
## final  value 115.401642 
## stopped after 500 iterations
## # weights:  241
## initial  value 1339079.616359 
## iter  10 value 2297.776587
## iter  20 value 944.942186
## iter  30 value 716.169257
## iter  40 value 569.136564
## iter  50 value 494.647146
## iter  60 value 426.861710
## iter  70 value 359.347475
## iter  80 value 323.851713
## iter  90 value 288.880175
## iter 100 value 265.437948
## iter 110 value 244.167808
## iter 120 value 231.157760
## iter 130 value 222.780869
## iter 140 value 212.869069
## iter 150 value 198.393105
## iter 160 value 185.579339
## iter 170 value 175.596738
## iter 180 value 166.264200
## iter 190 value 159.348511
## iter 200 value 153.635095
## iter 210 value 146.849711
## iter 220 value 141.412719
## iter 230 value 137.385671
## iter 240 value 133.888510
## iter 250 value 130.668026
## iter 260 value 126.500650
## iter 270 value 122.101962
## iter 280 value 118.204913
## iter 290 value 113.039082
## iter 300 value 109.943139
## iter 310 value 106.898056
## iter 320 value 104.740651
## iter 330 value 103.370125
## iter 340 value 102.140599
## iter 350 value 101.031816
## iter 360 value 99.749392
## iter 370 value 98.567229
## iter 380 value 97.202470
## iter 390 value 96.027127
## iter 400 value 95.006720
## iter 410 value 94.014557
## iter 420 value 93.220764
## iter 430 value 92.470245
## iter 440 value 91.492829
## iter 450 value 90.283563
## iter 460 value 89.039802
## iter 470 value 88.032305
## iter 480 value 87.201536
## iter 490 value 86.801475
## iter 500 value 86.682918
## final  value 86.682918 
## stopped after 500 iterations
## # weights:  25
## initial  value 1371307.473023 
## iter  10 value 15198.454565
## iter  20 value 13424.974703
## iter  30 value 7708.284801
## iter  40 value 7019.938824
## iter  50 value 6607.383671
## iter  60 value 4766.709751
## iter  70 value 3912.487889
## iter  80 value 2912.286175
## iter  90 value 2067.287807
## iter 100 value 1513.932988
## iter 110 value 1378.612337
## iter 120 value 1299.062479
## iter 130 value 1220.955045
## iter 140 value 1174.507340
## iter 150 value 1149.508775
## iter 160 value 1143.481910
## iter 170 value 1140.135914
## iter 180 value 1134.747246
## iter 190 value 1134.393424
## final  value 1134.390374 
## converged
## # weights:  61
## initial  value 1356620.562293 
## iter  10 value 2490.611049
## iter  20 value 1865.698456
## iter  30 value 1675.396022
## iter  40 value 1434.572826
## iter  50 value 1210.173809
## iter  60 value 1111.015977
## iter  70 value 1043.066295
## iter  80 value 1020.711397
## iter  90 value 977.000704
## iter 100 value 912.409472
## iter 110 value 892.135557
## iter 120 value 864.765033
## iter 130 value 835.987469
## iter 140 value 827.535275
## iter 150 value 817.588272
## iter 160 value 803.160297
## iter 170 value 795.643846
## iter 180 value 790.225914
## iter 190 value 780.234656
## iter 200 value 777.383537
## iter 210 value 762.666911
## iter 220 value 756.679514
## iter 230 value 755.367366
## iter 240 value 754.771889
## iter 250 value 754.692662
## iter 260 value 754.680180
## iter 270 value 754.669297
## iter 280 value 754.657558
## iter 290 value 754.645262
## iter 300 value 754.545669
## iter 310 value 751.733486
## iter 320 value 747.851729
## iter 330 value 747.124173
## iter 340 value 747.023182
## iter 350 value 746.971489
## iter 360 value 746.946542
## iter 370 value 746.945016
## iter 370 value 746.945015
## final  value 746.945015 
## converged
## # weights:  121
## initial  value 1414506.620687 
## iter  10 value 1373.171126
## iter  20 value 961.260999
## iter  30 value 843.875867
## iter  40 value 723.157828
## iter  50 value 648.466088
## iter  60 value 618.791851
## iter  70 value 602.481407
## iter  80 value 590.388422
## iter  90 value 573.283002
## iter 100 value 551.931943
## iter 110 value 536.687349
## iter 120 value 519.791853
## iter 130 value 506.877803
## iter 140 value 496.528787
## iter 150 value 489.187647
## iter 160 value 483.805888
## iter 170 value 479.614300
## iter 180 value 474.420378
## iter 190 value 470.713794
## iter 200 value 460.259525
## iter 210 value 452.796128
## iter 220 value 449.202228
## iter 230 value 446.281934
## iter 240 value 443.920325
## iter 250 value 442.077375
## iter 260 value 440.360018
## iter 270 value 438.347816
## iter 280 value 437.025350
## iter 290 value 436.381221
## iter 300 value 435.874778
## iter 310 value 435.339594
## iter 320 value 434.665166
## iter 330 value 433.591479
## iter 340 value 430.732099
## iter 350 value 427.611230
## iter 360 value 426.097113
## iter 370 value 425.671512
## iter 380 value 425.077531
## iter 390 value 424.409720
## iter 400 value 424.324645
## iter 410 value 424.316766
## iter 420 value 424.316240
## final  value 424.316229 
## converged
## # weights:  181
## initial  value 1386843.327339 
## iter  10 value 1192.188935
## iter  20 value 861.519545
## iter  30 value 715.760897
## iter  40 value 582.660882
## iter  50 value 534.227353
## iter  60 value 512.751215
## iter  70 value 481.538898
## iter  80 value 448.615759
## iter  90 value 425.691874
## iter 100 value 412.779702
## iter 110 value 399.709068
## iter 120 value 388.541904
## iter 130 value 383.513679
## iter 140 value 380.045142
## iter 150 value 377.548172
## iter 160 value 375.988572
## iter 170 value 374.114694
## iter 180 value 371.619410
## iter 190 value 368.502684
## iter 200 value 365.450238
## iter 210 value 363.257109
## iter 220 value 361.335223
## iter 230 value 358.309546
## iter 240 value 355.176908
## iter 250 value 351.531824
## iter 260 value 346.175896
## iter 270 value 341.818587
## iter 280 value 338.631150
## iter 290 value 336.500291
## iter 300 value 333.669243
## iter 310 value 329.850394
## iter 320 value 327.501830
## iter 330 value 326.122515
## iter 340 value 324.981953
## iter 350 value 324.022441
## iter 360 value 323.079683
## iter 370 value 322.658694
## iter 380 value 322.316042
## iter 390 value 321.925787
## iter 400 value 321.582726
## iter 410 value 321.380535
## iter 420 value 321.138927
## iter 430 value 320.806764
## iter 440 value 320.332402
## iter 450 value 319.750061
## iter 460 value 318.997866
## iter 470 value 318.308580
## iter 480 value 317.926626
## iter 490 value 317.494332
## iter 500 value 317.146502
## final  value 317.146502 
## stopped after 500 iterations
## # weights:  241
## initial  value 1399983.448408 
## iter  10 value 3386.743941
## iter  20 value 1123.405333
## iter  30 value 877.659532
## iter  40 value 691.585588
## iter  50 value 638.305708
## iter  60 value 587.475056
## iter  70 value 553.179688
## iter  80 value 531.812287
## iter  90 value 518.447979
## iter 100 value 505.691247
## iter 110 value 487.957638
## iter 120 value 477.140808
## iter 130 value 468.820133
## iter 140 value 461.697226
## iter 150 value 452.153126
## iter 160 value 441.513830
## iter 170 value 432.105296
## iter 180 value 421.540010
## iter 190 value 414.022875
## iter 200 value 407.354768
## iter 210 value 400.634649
## iter 220 value 393.918373
## iter 230 value 386.743917
## iter 240 value 381.672362
## iter 250 value 376.498965
## iter 260 value 372.833179
## iter 270 value 369.309377
## iter 280 value 367.095217
## iter 290 value 365.027830
## iter 300 value 362.006914
## iter 310 value 358.539945
## iter 320 value 356.021626
## iter 330 value 354.035638
## iter 340 value 351.639933
## iter 350 value 349.677160
## iter 360 value 347.789196
## iter 370 value 346.460745
## iter 380 value 344.922865
## iter 390 value 344.042027
## iter 400 value 343.328032
## iter 410 value 342.739669
## iter 420 value 342.088866
## iter 430 value 341.432676
## iter 440 value 340.839160
## iter 450 value 340.221096
## iter 460 value 339.357998
## iter 470 value 338.622392
## iter 480 value 337.361249
## iter 490 value 336.741196
## iter 500 value 336.175094
## final  value 336.175094 
## stopped after 500 iterations
## # weights:  25
## initial  value 1396719.500964 
## iter  10 value 14442.509209
## iter  20 value 8318.877569
## iter  30 value 2449.613836
## iter  40 value 1442.390049
## iter  50 value 1264.974398
## iter  60 value 1229.307221
## iter  70 value 1192.892924
## iter  80 value 1180.448678
## iter  90 value 1176.394756
## iter 100 value 1172.649592
## iter 110 value 1151.043775
## iter 120 value 1139.618268
## iter 130 value 1137.936695
## iter 140 value 1135.762766
## iter 150 value 1135.621121
## iter 160 value 1135.604907
## iter 170 value 1135.571068
## iter 180 value 1135.545407
## final  value 1135.531521 
## converged
## # weights:  61
## initial  value 1395559.158788 
## iter  10 value 2965.362259
## iter  20 value 1648.111629
## iter  30 value 1078.679235
## iter  40 value 858.968683
## iter  50 value 763.990663
## iter  60 value 728.855353
## iter  70 value 688.317954
## iter  80 value 659.053913
## iter  90 value 640.301413
## iter 100 value 622.044528
## iter 110 value 610.951452
## iter 120 value 600.766610
## iter 130 value 595.506993
## iter 140 value 593.075413
## iter 150 value 588.107703
## iter 160 value 579.301858
## iter 170 value 571.500934
## iter 180 value 565.002137
## iter 190 value 563.150493
## iter 200 value 561.290695
## iter 210 value 560.476340
## iter 220 value 560.281806
## iter 230 value 560.173274
## iter 240 value 560.024207
## iter 250 value 559.949920
## iter 260 value 559.567576
## iter 270 value 558.756010
## iter 280 value 558.186569
## iter 290 value 556.313216
## iter 300 value 555.890766
## iter 310 value 555.799140
## iter 320 value 555.623466
## iter 330 value 555.556972
## iter 340 value 555.511387
## iter 350 value 555.476564
## iter 360 value 555.468100
## iter 360 value 555.468096
## iter 360 value 555.468093
## final  value 555.468093 
## converged
## # weights:  121
## initial  value 1367573.323344 
## iter  10 value 1387.922761
## iter  20 value 902.438461
## iter  30 value 741.281949
## iter  40 value 620.089931
## iter  50 value 553.786006
## iter  60 value 507.241444
## iter  70 value 462.427228
## iter  80 value 433.559924
## iter  90 value 413.686746
## iter 100 value 395.764417
## iter 110 value 381.836097
## iter 120 value 374.803124
## iter 130 value 366.707894
## iter 140 value 362.038174
## iter 150 value 355.314352
## iter 160 value 349.264977
## iter 170 value 343.676292
## iter 180 value 337.771236
## iter 190 value 333.605960
## iter 200 value 329.821507
## iter 210 value 324.452005
## iter 220 value 320.154650
## iter 230 value 317.146476
## iter 240 value 315.115750
## iter 250 value 314.159772
## iter 260 value 313.338361
## iter 270 value 312.229241
## iter 280 value 309.663396
## iter 290 value 306.046459
## iter 300 value 302.279587
## iter 310 value 298.687355
## iter 320 value 294.957058
## iter 330 value 291.051472
## iter 340 value 289.002688
## iter 350 value 285.647698
## iter 360 value 282.719438
## iter 370 value 280.046920
## iter 380 value 277.528513
## iter 390 value 274.400966
## iter 400 value 271.914406
## iter 410 value 269.263666
## iter 420 value 266.516046
## iter 430 value 265.142300
## iter 440 value 263.885987
## iter 450 value 262.816387
## iter 460 value 261.020055
## iter 470 value 258.699086
## iter 480 value 255.618241
## iter 490 value 253.725632
## iter 500 value 253.034260
## final  value 253.034260 
## stopped after 500 iterations
## # weights:  181
## initial  value 1376459.602667 
## iter  10 value 1127.345852
## iter  20 value 832.945479
## iter  30 value 674.005026
## iter  40 value 583.374431
## iter  50 value 505.273381
## iter  60 value 469.719277
## iter  70 value 435.532127
## iter  80 value 389.899075
## iter  90 value 352.911699
## iter 100 value 323.992758
## iter 110 value 298.214756
## iter 120 value 274.799992
## iter 130 value 260.649590
## iter 140 value 248.773487
## iter 150 value 230.974150
## iter 160 value 213.545800
## iter 170 value 204.372007
## iter 180 value 198.059819
## iter 190 value 192.314134
## iter 200 value 185.412410
## iter 210 value 177.952262
## iter 220 value 170.755753
## iter 230 value 166.903620
## iter 240 value 163.051089
## iter 250 value 160.017337
## iter 260 value 157.171586
## iter 270 value 154.385850
## iter 280 value 152.290162
## iter 290 value 149.698070
## iter 300 value 147.543353
## iter 310 value 143.980594
## iter 320 value 141.781824
## iter 330 value 139.406858
## iter 340 value 136.832988
## iter 350 value 135.208600
## iter 360 value 134.298948
## iter 370 value 133.566552
## iter 380 value 133.280880
## iter 390 value 132.588687
## iter 400 value 131.662410
## iter 410 value 130.859474
## iter 420 value 129.970304
## iter 430 value 128.990268
## iter 440 value 127.352780
## iter 450 value 126.228489
## iter 460 value 123.407267
## iter 470 value 120.238405
## iter 480 value 118.793030
## iter 490 value 117.143551
## iter 500 value 113.849053
## final  value 113.849053 
## stopped after 500 iterations
## # weights:  241
## initial  value 1389790.278838 
## iter  10 value 1263.565629
## iter  20 value 793.948900
## iter  30 value 632.273659
## iter  40 value 520.049714
## iter  50 value 407.226424
## iter  60 value 347.868354
## iter  70 value 310.508556
## iter  80 value 279.572911
## iter  90 value 246.255188
## iter 100 value 212.968424
## iter 110 value 187.778570
## iter 120 value 169.578705
## iter 130 value 159.193569
## iter 140 value 151.159279
## iter 150 value 142.326458
## iter 160 value 134.003837
## iter 170 value 123.380027
## iter 180 value 116.739004
## iter 190 value 109.334043
## iter 200 value 104.365390
## iter 210 value 100.136316
## iter 220 value 97.064740
## iter 230 value 93.927804
## iter 240 value 88.875125
## iter 250 value 86.337503
## iter 260 value 83.020601
## iter 270 value 80.476937
## iter 280 value 78.064533
## iter 290 value 76.258054
## iter 300 value 74.680371
## iter 310 value 73.122328
## iter 320 value 71.469310
## iter 330 value 69.455467
## iter 340 value 67.549627
## iter 350 value 65.934425
## iter 360 value 64.218492
## iter 370 value 62.305616
## iter 380 value 60.605498
## iter 390 value 59.204247
## iter 400 value 57.526085
## iter 410 value 55.349930
## iter 420 value 53.616819
## iter 430 value 52.351348
## iter 440 value 51.393803
## iter 450 value 50.241243
## iter 460 value 48.883759
## iter 470 value 47.611422
## iter 480 value 46.592423
## iter 490 value 46.342161
## iter 500 value 46.248030
## final  value 46.248030 
## stopped after 500 iterations
## # weights:  25
## initial  value 1386822.146307 
## iter  10 value 14758.691254
## iter  20 value 13613.304801
## iter  30 value 8755.508514
## iter  40 value 4991.430592
## iter  50 value 3005.528418
## iter  60 value 2621.036090
## iter  70 value 2147.142279
## iter  80 value 1257.147981
## iter  90 value 1161.661720
## iter 100 value 1109.774475
## iter 110 value 1092.326060
## iter 120 value 1082.133413
## iter 130 value 1067.663090
## iter 140 value 1060.198884
## iter 150 value 1055.210596
## iter 160 value 1053.988824
## iter 170 value 1053.731418
## iter 180 value 1052.494035
## iter 190 value 1050.944192
## iter 200 value 1050.132522
## iter 210 value 1049.156963
## iter 220 value 1049.144095
## iter 230 value 1048.981006
## iter 240 value 1048.606674
## iter 250 value 1048.380446
## iter 260 value 1047.970885
## final  value 1047.970373 
## converged
## # weights:  61
## initial  value 1364692.269724 
## iter  10 value 14569.135330
## iter  20 value 1891.128270
## iter  30 value 1454.398815
## iter  40 value 1049.877971
## iter  50 value 859.491542
## iter  60 value 779.312336
## iter  70 value 755.070073
## iter  80 value 724.757249
## iter  90 value 714.987765
## iter 100 value 701.640617
## iter 110 value 685.953080
## iter 120 value 649.384215
## iter 130 value 635.876683
## iter 140 value 631.082722
## iter 150 value 624.505241
## iter 160 value 622.794205
## iter 170 value 621.416019
## iter 180 value 620.298981
## iter 190 value 619.023519
## iter 200 value 618.746234
## iter 210 value 618.672495
## iter 220 value 618.426620
## iter 230 value 618.277612
## iter 240 value 616.757977
## iter 250 value 610.268468
## iter 260 value 605.363652
## iter 270 value 602.949895
## iter 280 value 601.682288
## iter 290 value 600.983493
## iter 300 value 600.940224
## iter 310 value 600.870214
## iter 320 value 600.743880
## iter 330 value 600.732386
## iter 340 value 600.696382
## iter 350 value 600.211524
## iter 360 value 595.784453
## iter 370 value 594.303371
## iter 380 value 594.256917
## iter 390 value 594.252164
## iter 400 value 594.246596
## iter 410 value 594.144556
## iter 420 value 594.056982
## iter 430 value 594.029995
## iter 440 value 593.987343
## iter 450 value 593.747009
## iter 460 value 593.548432
## iter 470 value 593.465973
## iter 480 value 593.433626
## iter 490 value 593.366650
## iter 500 value 593.331932
## final  value 593.331932 
## stopped after 500 iterations
## # weights:  121
## initial  value 1380306.925375 
## iter  10 value 1796.975280
## iter  20 value 956.682140
## iter  30 value 730.590416
## iter  40 value 648.999940
## iter  50 value 574.828066
## iter  60 value 526.571574
## iter  70 value 488.096177
## iter  80 value 466.317588
## iter  90 value 450.726358
## iter 100 value 420.909893
## iter 110 value 390.946389
## iter 120 value 381.265758
## iter 130 value 369.243039
## iter 140 value 362.628998
## iter 150 value 355.243032
## iter 160 value 346.734662
## iter 170 value 340.188420
## iter 180 value 333.848740
## iter 190 value 329.395647
## iter 200 value 327.441805
## iter 210 value 325.773196
## iter 220 value 322.687089
## iter 230 value 317.942934
## iter 240 value 315.072677
## iter 250 value 314.434756
## iter 260 value 314.282927
## iter 270 value 313.841842
## iter 280 value 312.618385
## iter 290 value 311.798407
## iter 300 value 311.148985
## iter 310 value 310.174415
## iter 320 value 309.101831
## iter 330 value 307.728284
## iter 340 value 305.756319
## iter 350 value 305.330433
## iter 360 value 305.173889
## iter 370 value 304.911819
## iter 380 value 304.316681
## iter 390 value 303.547096
## iter 400 value 303.297998
## iter 410 value 303.247007
## iter 420 value 303.117714
## iter 430 value 302.848002
## iter 440 value 302.651211
## iter 450 value 302.576747
## iter 460 value 302.498832
## iter 470 value 302.344937
## iter 480 value 302.210673
## iter 490 value 302.008628
## iter 500 value 302.002043
## final  value 302.002043 
## stopped after 500 iterations
## # weights:  181
## initial  value 1374834.001642 
## iter  10 value 1041.763264
## iter  20 value 753.462948
## iter  30 value 630.508967
## iter  40 value 536.934338
## iter  50 value 461.531264
## iter  60 value 430.049964
## iter  70 value 399.533571
## iter  80 value 371.573880
## iter  90 value 346.650688
## iter 100 value 320.754454
## iter 110 value 305.563875
## iter 120 value 295.607409
## iter 130 value 279.495763
## iter 140 value 264.526390
## iter 150 value 245.489088
## iter 160 value 233.442654
## iter 170 value 220.266882
## iter 180 value 208.751093
## iter 190 value 195.641029
## iter 200 value 186.163638
## iter 210 value 176.447340
## iter 220 value 167.362909
## iter 230 value 160.729707
## iter 240 value 155.176391
## iter 250 value 150.545048
## iter 260 value 146.949657
## iter 270 value 143.719608
## iter 280 value 139.244742
## iter 290 value 136.821424
## iter 300 value 135.057174
## iter 310 value 133.290552
## iter 320 value 132.388302
## iter 330 value 131.223890
## iter 340 value 130.216436
## iter 350 value 129.212844
## iter 360 value 128.425485
## iter 370 value 128.191847
## iter 380 value 128.162997
## iter 390 value 128.083893
## iter 400 value 127.942262
## iter 410 value 127.649829
## iter 420 value 127.139189
## iter 430 value 126.668606
## iter 440 value 126.159912
## iter 450 value 125.450507
## iter 460 value 124.625467
## iter 470 value 123.465608
## iter 480 value 121.995942
## iter 490 value 119.570577
## iter 500 value 118.379093
## final  value 118.379093 
## stopped after 500 iterations
## # weights:  241
## initial  value 1433425.845934 
## iter  10 value 1418.347192
## iter  20 value 848.451721
## iter  30 value 651.940273
## iter  40 value 514.993324
## iter  50 value 428.626059
## iter  60 value 361.363296
## iter  70 value 307.808712
## iter  80 value 279.274923
## iter  90 value 245.555383
## iter 100 value 220.156774
## iter 110 value 200.180852
## iter 120 value 182.727169
## iter 130 value 167.284332
## iter 140 value 153.572687
## iter 150 value 144.546942
## iter 160 value 133.758743
## iter 170 value 126.032042
## iter 180 value 119.364127
## iter 190 value 111.435947
## iter 200 value 105.706657
## iter 210 value 100.898103
## iter 220 value 96.323629
## iter 230 value 93.341106
## iter 240 value 89.343520
## iter 250 value 84.195830
## iter 260 value 78.843328
## iter 270 value 73.789160
## iter 280 value 70.342980
## iter 290 value 67.843959
## iter 300 value 66.253075
## iter 310 value 64.765701
## iter 320 value 63.268244
## iter 330 value 61.849995
## iter 340 value 60.674126
## iter 350 value 59.329761
## iter 360 value 58.490432
## iter 370 value 58.023112
## iter 380 value 57.575610
## iter 390 value 56.854088
## iter 400 value 56.186604
## iter 410 value 55.612506
## iter 420 value 54.813184
## iter 430 value 53.935890
## iter 440 value 53.499389
## iter 450 value 52.896335
## iter 460 value 52.027712
## iter 470 value 51.287010
## iter 480 value 50.592392
## iter 490 value 50.206121
## iter 500 value 50.072026
## final  value 50.072026 
## stopped after 500 iterations
## # weights:  25
## initial  value 1386845.219292 
## iter  10 value 6234.479225
## iter  20 value 5406.964881
## iter  30 value 5356.124906
## iter  40 value 5350.207260
## iter  50 value 5340.630402
## iter  60 value 5297.997641
## iter  70 value 5276.670635
## iter  80 value 5214.360104
## iter  90 value 4663.959358
## iter 100 value 2984.359093
## iter 110 value 1594.270374
## iter 120 value 1362.043905
## iter 130 value 1331.732543
## iter 140 value 1302.732600
## iter 150 value 1286.217848
## iter 160 value 1281.932086
## iter 170 value 1279.866320
## iter 180 value 1278.789596
## iter 190 value 1278.392124
## iter 200 value 1277.449697
## iter 210 value 1277.087888
## iter 220 value 1277.008591
## iter 220 value 1277.008589
## final  value 1277.008543 
## converged
## # weights:  61
## initial  value 1398990.272598 
## iter  10 value 300254.329701
## iter  20 value 17563.231329
## iter  30 value 10215.571366
## iter  40 value 6200.663432
## iter  50 value 3771.642449
## iter  60 value 1990.800145
## iter  70 value 1240.192049
## iter  80 value 976.883910
## iter  90 value 918.298142
## iter 100 value 867.222602
## iter 110 value 836.188787
## iter 120 value 784.152801
## iter 130 value 759.369803
## iter 140 value 754.520122
## iter 150 value 741.451391
## iter 160 value 727.393741
## iter 170 value 711.333201
## iter 180 value 696.666318
## iter 190 value 685.020378
## iter 200 value 674.604879
## iter 210 value 667.370293
## iter 220 value 665.023372
## iter 230 value 660.756506
## iter 240 value 652.992470
## iter 250 value 649.435856
## iter 260 value 649.284499
## iter 270 value 648.703618
## iter 280 value 647.597440
## iter 290 value 646.265642
## iter 300 value 645.384172
## iter 310 value 644.820615
## iter 320 value 644.039012
## iter 330 value 643.728189
## iter 340 value 640.170921
## iter 350 value 637.539117
## iter 360 value 636.065879
## iter 370 value 633.465009
## iter 380 value 633.042814
## iter 390 value 632.782505
## iter 400 value 632.750505
## iter 410 value 632.660685
## iter 420 value 632.341191
## iter 430 value 631.787403
## iter 440 value 631.584815
## iter 450 value 630.813054
## iter 460 value 628.532258
## iter 470 value 624.910962
## iter 480 value 616.279701
## iter 490 value 609.244685
## iter 500 value 605.962555
## final  value 605.962555 
## stopped after 500 iterations
## # weights:  121
## initial  value 1294845.386479 
## iter  10 value 3143.101005
## iter  20 value 1378.632729
## iter  30 value 883.265741
## iter  40 value 657.668806
## iter  50 value 539.714600
## iter  60 value 481.895520
## iter  70 value 448.040850
## iter  80 value 428.097304
## iter  90 value 411.906951
## iter 100 value 394.012376
## iter 110 value 375.478782
## iter 120 value 366.802302
## iter 130 value 356.457617
## iter 140 value 336.086046
## iter 150 value 324.733302
## iter 160 value 319.451380
## iter 170 value 313.457866
## iter 180 value 308.023178
## iter 190 value 304.468976
## iter 200 value 299.497429
## iter 210 value 296.604846
## iter 220 value 293.486605
## iter 230 value 291.807898
## iter 240 value 290.595371
## iter 250 value 289.005105
## iter 260 value 287.824966
## iter 270 value 286.178377
## iter 280 value 282.250462
## iter 290 value 279.485224
## iter 300 value 274.483384
## iter 310 value 271.181324
## iter 320 value 266.693185
## iter 330 value 263.318588
## iter 340 value 260.122163
## iter 350 value 257.678373
## iter 360 value 257.345367
## iter 370 value 257.029698
## iter 380 value 256.519825
## iter 390 value 255.993569
## iter 400 value 255.602315
## iter 410 value 255.373675
## iter 420 value 254.972708
## iter 430 value 254.790765
## iter 440 value 254.715969
## iter 450 value 254.668313
## iter 460 value 254.612589
## iter 470 value 254.553764
## iter 480 value 254.507317
## iter 490 value 254.491763
## iter 500 value 254.491273
## final  value 254.491273 
## stopped after 500 iterations
## # weights:  181
## initial  value 1398210.103005 
## iter  10 value 1211.759364
## iter  20 value 789.957312
## iter  30 value 598.807709
## iter  40 value 460.262528
## iter  50 value 374.926380
## iter  60 value 326.548254
## iter  70 value 293.543312
## iter  80 value 248.195114
## iter  90 value 229.732562
## iter 100 value 211.842193
## iter 110 value 200.975140
## iter 120 value 192.633301
## iter 130 value 186.991528
## iter 140 value 181.741896
## iter 150 value 176.564284
## iter 160 value 170.555251
## iter 170 value 164.676218
## iter 180 value 159.344026
## iter 190 value 155.962911
## iter 200 value 153.682668
## iter 210 value 149.764170
## iter 220 value 145.288855
## iter 230 value 140.781665
## iter 240 value 137.807980
## iter 250 value 134.672404
## iter 260 value 131.663121
## iter 270 value 128.546234
## iter 280 value 125.395541
## iter 290 value 122.945153
## iter 300 value 121.198671
## iter 310 value 117.891340
## iter 320 value 115.296904
## iter 330 value 112.638274
## iter 340 value 110.519754
## iter 350 value 108.989938
## iter 360 value 107.715602
## iter 370 value 107.145638
## iter 380 value 106.879029
## iter 390 value 106.289640
## iter 400 value 105.711425
## iter 410 value 104.831169
## iter 420 value 104.452535
## iter 430 value 104.155444
## iter 440 value 103.651788
## iter 450 value 102.966424
## iter 460 value 102.442953
## iter 470 value 101.882753
## iter 480 value 101.559917
## iter 490 value 101.295982
## iter 500 value 101.069302
## final  value 101.069302 
## stopped after 500 iterations
## # weights:  241
## initial  value 1459404.043101 
## iter  10 value 1486.503902
## iter  20 value 856.155235
## iter  30 value 643.226072
## iter  40 value 465.143008
## iter  50 value 355.763037
## iter  60 value 298.920475
## iter  70 value 254.775556
## iter  80 value 218.204974
## iter  90 value 184.268593
## iter 100 value 166.339803
## iter 110 value 151.753736
## iter 120 value 138.054342
## iter 130 value 126.414446
## iter 140 value 116.779863
## iter 150 value 110.109757
## iter 160 value 105.083876
## iter 170 value 100.293631
## iter 180 value 95.433625
## iter 190 value 92.439980
## iter 200 value 89.161658
## iter 210 value 85.004467
## iter 220 value 79.555503
## iter 230 value 75.010279
## iter 240 value 72.023815
## iter 250 value 69.895407
## iter 260 value 68.197122
## iter 270 value 65.957895
## iter 280 value 64.203616
## iter 290 value 62.551615
## iter 300 value 60.535929
## iter 310 value 59.233305
## iter 320 value 58.170379
## iter 330 value 57.059287
## iter 340 value 55.942992
## iter 350 value 55.151995
## iter 360 value 54.619430
## iter 370 value 54.107868
## iter 380 value 53.779659
## iter 390 value 53.451496
## iter 400 value 53.128894
## iter 410 value 52.851728
## iter 420 value 52.613213
## iter 430 value 52.204536
## iter 440 value 51.832136
## iter 450 value 51.355028
## iter 460 value 50.910264
## iter 470 value 50.599515
## iter 480 value 50.340153
## iter 490 value 50.196699
## iter 500 value 50.151775
## final  value 50.151775 
## stopped after 500 iterations
## # weights:  25
## initial  value 1348348.568952 
## iter  10 value 16521.196490
## iter  20 value 16513.519187
## iter  30 value 16511.529537
## iter  40 value 16510.226362
## iter  50 value 16386.286072
## iter  60 value 11092.568026
## iter  70 value 4972.688104
## iter  80 value 4380.726480
## iter  90 value 2642.819615
## iter 100 value 1536.097036
## iter 110 value 1364.388184
## iter 120 value 1351.265650
## iter 130 value 1323.585662
## iter 140 value 1304.025848
## iter 150 value 1298.032747
## iter 160 value 1296.225809
## iter 170 value 1294.495974
## iter 180 value 1291.470218
## iter 190 value 1290.894359
## final  value 1290.791926 
## converged
## # weights:  61
## initial  value 1396640.521541 
## iter  10 value 4735.734594
## iter  20 value 3431.801461
## iter  30 value 2729.839993
## iter  40 value 1810.630954
## iter  50 value 1263.671301
## iter  60 value 1088.124646
## iter  70 value 1026.108606
## iter  80 value 955.404618
## iter  90 value 874.225475
## iter 100 value 848.252381
## iter 110 value 834.146056
## iter 120 value 812.637153
## iter 130 value 788.429505
## iter 140 value 761.760663
## iter 150 value 732.542376
## iter 160 value 712.281087
## iter 170 value 683.564423
## iter 180 value 649.834224
## iter 190 value 635.224130
## iter 200 value 617.509948
## iter 210 value 610.111253
## iter 220 value 607.551811
## iter 230 value 606.602745
## iter 240 value 603.385901
## iter 250 value 598.628657
## iter 260 value 592.881351
## iter 270 value 583.193944
## iter 280 value 574.091850
## iter 290 value 567.869939
## iter 300 value 563.742917
## iter 310 value 562.954203
## iter 320 value 561.805471
## iter 330 value 560.643147
## iter 340 value 560.401149
## iter 350 value 560.396960
## iter 360 value 560.383085
## iter 370 value 560.355335
## iter 380 value 560.275899
## iter 390 value 560.233462
## iter 400 value 560.228906
## iter 410 value 560.227107
## final  value 560.226619 
## converged
## # weights:  121
## initial  value 1348256.371483 
## iter  10 value 1482.302039
## iter  20 value 891.019299
## iter  30 value 729.297626
## iter  40 value 635.054310
## iter  50 value 576.609604
## iter  60 value 502.418666
## iter  70 value 470.147482
## iter  80 value 449.127288
## iter  90 value 419.145150
## iter 100 value 391.010236
## iter 110 value 377.403800
## iter 120 value 368.340699
## iter 130 value 360.325957
## iter 140 value 355.895272
## iter 150 value 348.027086
## iter 160 value 341.082669
## iter 170 value 337.704146
## iter 180 value 334.427184
## iter 190 value 331.657082
## iter 200 value 329.952044
## iter 210 value 327.942152
## iter 220 value 325.872857
## iter 230 value 323.828099
## iter 240 value 322.660892
## iter 250 value 322.151421
## iter 260 value 322.028181
## iter 270 value 321.750831
## iter 280 value 321.410148
## iter 290 value 320.444048
## iter 300 value 318.534927
## iter 310 value 316.373709
## iter 320 value 314.307332
## iter 330 value 309.381160
## iter 340 value 307.301700
## iter 350 value 306.296468
## iter 360 value 305.998798
## iter 370 value 305.846880
## iter 380 value 305.755962
## iter 390 value 305.735937
## iter 400 value 305.670328
## iter 410 value 305.031412
## iter 420 value 304.667012
## iter 430 value 304.610438
## iter 440 value 304.566569
## iter 450 value 304.497683
## iter 460 value 304.421004
## iter 470 value 304.087328
## iter 480 value 303.883454
## iter 490 value 303.816294
## iter 500 value 303.785664
## final  value 303.785664 
## stopped after 500 iterations
## # weights:  181
## initial  value 1445155.065072 
## iter  10 value 1612.195514
## iter  20 value 863.589961
## iter  30 value 611.124240
## iter  40 value 521.158031
## iter  50 value 420.536551
## iter  60 value 338.363160
## iter  70 value 308.064454
## iter  80 value 286.373679
## iter  90 value 272.674227
## iter 100 value 261.049460
## iter 110 value 253.363119
## iter 120 value 245.548995
## iter 130 value 239.247472
## iter 140 value 232.041641
## iter 150 value 225.784434
## iter 160 value 221.199671
## iter 170 value 217.937491
## iter 180 value 215.066282
## iter 190 value 211.069815
## iter 200 value 208.297822
## iter 210 value 206.954880
## iter 220 value 204.173804
## iter 230 value 200.044367
## iter 240 value 197.843177
## iter 250 value 196.753830
## iter 260 value 195.994183
## iter 270 value 195.094603
## iter 280 value 192.421969
## iter 290 value 190.297561
## iter 300 value 188.987167
## iter 310 value 188.065129
## iter 320 value 187.293543
## iter 330 value 186.867012
## iter 340 value 186.340055
## iter 350 value 185.687692
## iter 360 value 184.328675
## iter 370 value 182.653736
## iter 380 value 181.963533
## iter 390 value 180.267459
## iter 400 value 178.371729
## iter 410 value 174.800284
## iter 420 value 169.932697
## iter 430 value 165.504277
## iter 440 value 162.163749
## iter 450 value 160.198875
## iter 460 value 158.661723
## iter 470 value 157.245569
## iter 480 value 155.577815
## iter 490 value 154.271843
## iter 500 value 153.429292
## final  value 153.429292 
## stopped after 500 iterations
## # weights:  241
## initial  value 1409936.961826 
## iter  10 value 1074.598124
## iter  20 value 799.530464
## iter  30 value 673.827798
## iter  40 value 530.852029
## iter  50 value 436.929998
## iter  60 value 365.147352
## iter  70 value 327.504515
## iter  80 value 289.654408
## iter  90 value 251.539523
## iter 100 value 225.657049
## iter 110 value 205.715962
## iter 120 value 183.333877
## iter 130 value 170.383326
## iter 140 value 161.498266
## iter 150 value 152.583423
## iter 160 value 145.671386
## iter 170 value 139.467493
## iter 180 value 131.873794
## iter 190 value 120.861561
## iter 200 value 116.355138
## iter 210 value 110.624756
## iter 220 value 104.948002
## iter 230 value 99.151733
## iter 240 value 94.737263
## iter 250 value 89.409982
## iter 260 value 85.117986
## iter 270 value 81.435695
## iter 280 value 77.388827
## iter 290 value 74.122955
## iter 300 value 71.216731
## iter 310 value 67.632336
## iter 320 value 65.786146
## iter 330 value 64.191643
## iter 340 value 62.577057
## iter 350 value 61.492389
## iter 360 value 60.354464
## iter 370 value 58.582051
## iter 380 value 57.522936
## iter 390 value 56.611027
## iter 400 value 55.708567
## iter 410 value 54.498988
## iter 420 value 53.826479
## iter 430 value 53.271556
## iter 440 value 52.953259
## iter 450 value 52.727548
## iter 460 value 52.520889
## iter 470 value 52.370173
## iter 480 value 52.191273
## iter 490 value 52.086549
## iter 500 value 52.061239
## final  value 52.061239 
## stopped after 500 iterations
## # weights:  25
## initial  value 1373823.877108 
## iter  10 value 8346.833099
## iter  20 value 7317.507624
## iter  30 value 5736.358830
## iter  40 value 4837.763140
## iter  50 value 3976.395594
## iter  60 value 2609.910168
## iter  70 value 2061.369149
## iter  80 value 1589.035749
## iter  90 value 1377.114427
## iter 100 value 1265.699358
## iter 110 value 1215.465328
## iter 120 value 1203.826230
## iter 130 value 1158.823290
## iter 140 value 1132.622241
## iter 150 value 1131.544574
## iter 160 value 1131.440096
## iter 170 value 1131.436787
## iter 170 value 1131.436781
## final  value 1131.436061 
## converged
## # weights:  61
## initial  value 1364399.719744 
## iter  10 value 12411.792567
## iter  20 value 4385.524585
## iter  30 value 3306.080165
## iter  40 value 2381.877519
## iter  50 value 1800.919025
## iter  60 value 1450.703771
## iter  70 value 1281.875946
## iter  80 value 1169.404774
## iter  90 value 1093.636862
## iter 100 value 1050.375105
## iter 110 value 1016.363968
## iter 120 value 984.641656
## iter 130 value 943.291833
## iter 140 value 935.838769
## iter 150 value 926.006264
## iter 160 value 915.340078
## iter 170 value 905.719883
## iter 180 value 899.501033
## iter 190 value 889.741915
## iter 200 value 885.612599
## iter 210 value 880.076582
## iter 220 value 870.160674
## iter 230 value 854.023507
## iter 240 value 849.554827
## iter 250 value 847.219122
## iter 260 value 846.411616
## iter 270 value 845.334312
## iter 280 value 840.934147
## iter 290 value 836.448128
## iter 300 value 832.198823
## iter 310 value 829.872270
## iter 320 value 828.380135
## iter 330 value 828.191698
## final  value 828.188391 
## converged
## # weights:  121
## initial  value 1356509.974064 
## iter  10 value 1352.283819
## iter  20 value 1021.570701
## iter  30 value 852.018777
## iter  40 value 763.744886
## iter  50 value 705.815262
## iter  60 value 654.014585
## iter  70 value 629.357613
## iter  80 value 609.806058
## iter  90 value 592.569539
## iter 100 value 576.163000
## iter 110 value 568.861813
## iter 120 value 564.598316
## iter 130 value 559.927610
## iter 140 value 554.686089
## iter 150 value 544.723541
## iter 160 value 537.692386
## iter 170 value 531.633504
## iter 180 value 527.056981
## iter 190 value 525.129761
## iter 200 value 523.605036
## iter 210 value 522.857258
## iter 220 value 522.355931
## iter 230 value 521.993979
## iter 240 value 521.869306
## iter 250 value 521.825514
## iter 260 value 521.794785
## iter 270 value 521.754447
## iter 280 value 521.691793
## iter 290 value 521.275867
## iter 300 value 519.686553
## iter 310 value 518.397664
## iter 320 value 517.893704
## iter 330 value 517.409070
## iter 340 value 517.014686
## iter 350 value 516.600890
## iter 360 value 515.868488
## iter 370 value 515.790898
## iter 380 value 515.785372
## final  value 515.785339 
## converged
## # weights:  181
## initial  value 1336743.119793 
## iter  10 value 1271.872298
## iter  20 value 887.296210
## iter  30 value 734.820821
## iter  40 value 637.274875
## iter  50 value 595.848226
## iter  60 value 553.364815
## iter  70 value 523.914196
## iter  80 value 506.813947
## iter  90 value 494.619346
## iter 100 value 483.631667
## iter 110 value 476.547829
## iter 120 value 470.114906
## iter 130 value 461.301889
## iter 140 value 456.371675
## iter 150 value 451.288071
## iter 160 value 444.605983
## iter 170 value 439.253968
## iter 180 value 436.218404
## iter 190 value 434.361932
## iter 200 value 432.991508
## iter 210 value 431.420930
## iter 220 value 429.305871
## iter 230 value 426.505852
## iter 240 value 424.578481
## iter 250 value 422.395024
## iter 260 value 418.544733
## iter 270 value 414.049453
## iter 280 value 410.657265
## iter 290 value 407.781410
## iter 300 value 405.979941
## iter 310 value 403.688532
## iter 320 value 401.693440
## iter 330 value 400.455367
## iter 340 value 400.020235
## iter 350 value 399.738381
## iter 360 value 399.521537
## iter 370 value 399.439507
## iter 380 value 399.346929
## iter 390 value 399.202045
## iter 400 value 399.058412
## iter 410 value 398.970161
## iter 420 value 398.888930
## iter 430 value 398.827606
## iter 440 value 398.584730
## iter 450 value 397.597378
## iter 460 value 396.357425
## iter 470 value 395.271910
## iter 480 value 393.549059
## iter 490 value 391.942472
## iter 500 value 390.676871
## final  value 390.676871 
## stopped after 500 iterations
## # weights:  241
## initial  value 1399192.634958 
## iter  10 value 1650.521607
## iter  20 value 975.523645
## iter  30 value 768.177963
## iter  40 value 665.977503
## iter  50 value 570.613723
## iter  60 value 517.907833
## iter  70 value 482.681104
## iter  80 value 463.018172
## iter  90 value 441.662705
## iter 100 value 427.635038
## iter 110 value 415.483999
## iter 120 value 404.646058
## iter 130 value 398.789124
## iter 140 value 394.964420
## iter 150 value 392.053515
## iter 160 value 388.803196
## iter 170 value 386.388577
## iter 180 value 383.956446
## iter 190 value 381.459073
## iter 200 value 379.465445
## iter 210 value 376.858117
## iter 220 value 373.692316
## iter 230 value 370.064071
## iter 240 value 367.178500
## iter 250 value 364.099852
## iter 260 value 361.017839
## iter 270 value 358.132685
## iter 280 value 356.364485
## iter 290 value 354.692926
## iter 300 value 353.855252
## iter 310 value 353.189226
## iter 320 value 352.674380
## iter 330 value 352.349086
## iter 340 value 351.833982
## iter 350 value 350.802342
## iter 360 value 349.838105
## iter 370 value 348.887282
## iter 380 value 347.971209
## iter 390 value 347.376435
## iter 400 value 346.983460
## iter 410 value 346.783310
## iter 420 value 346.637376
## iter 430 value 346.462829
## iter 440 value 346.341123
## iter 450 value 346.242188
## iter 460 value 346.179828
## iter 470 value 346.134334
## iter 480 value 346.098322
## iter 490 value 346.079459
## iter 500 value 346.043604
## final  value 346.043604 
## stopped after 500 iterations
## # weights:  25
## initial  value 1403786.083865 
## iter  10 value 109090.575854
## iter  20 value 12235.275131
## iter  30 value 10458.293873
## iter  40 value 7729.915632
## iter  50 value 7098.728154
## iter  60 value 6936.036218
## iter  70 value 6845.601719
## iter  80 value 6831.785691
## iter  90 value 5306.701518
## iter 100 value 5273.013103
## iter 110 value 5161.193596
## iter 120 value 5115.887293
## iter 130 value 5036.311116
## iter 140 value 4924.146262
## iter 150 value 4875.879097
## iter 160 value 4874.923199
## iter 170 value 4874.905242
## iter 180 value 4874.893180
## iter 190 value 4874.847029
## iter 200 value 4874.809686
## iter 210 value 4874.799255
## iter 220 value 4851.453366
## iter 230 value 4849.099113
## iter 240 value 4846.060725
## iter 250 value 4843.024676
## iter 260 value 4842.887685
## final  value 4842.871187 
## converged
## # weights:  61
## initial  value 1393088.021461 
## iter  10 value 3260.795846
## iter  20 value 1384.820038
## iter  30 value 1155.267180
## iter  40 value 994.360390
## iter  50 value 869.922356
## iter  60 value 785.870009
## iter  70 value 731.120828
## iter  80 value 678.912984
## iter  90 value 659.770267
## iter 100 value 649.324934
## iter 110 value 643.098544
## iter 120 value 639.799592
## iter 130 value 639.135584
## iter 140 value 638.384518
## iter 150 value 636.736730
## iter 160 value 633.972176
## iter 170 value 628.206410
## iter 180 value 616.282653
## iter 190 value 595.848528
## iter 200 value 569.711816
## iter 210 value 553.979811
## iter 220 value 545.787447
## iter 230 value 534.945899
## iter 240 value 527.557535
## iter 250 value 525.554159
## iter 260 value 525.277297
## iter 270 value 523.367951
## iter 280 value 521.871232
## iter 290 value 520.658230
## iter 300 value 520.458818
## iter 310 value 518.787633
## iter 320 value 512.649611
## iter 330 value 512.040457
## iter 340 value 511.492133
## iter 350 value 509.990577
## iter 360 value 508.364601
## iter 370 value 508.250028
## iter 380 value 508.247649
## iter 390 value 508.231024
## iter 400 value 508.211727
## iter 410 value 508.064736
## iter 420 value 507.918188
## iter 430 value 507.804248
## iter 440 value 507.720711
## iter 450 value 507.574598
## iter 460 value 507.561893
## iter 470 value 507.561175
## iter 480 value 507.558771
## iter 490 value 507.550793
## final  value 507.550416 
## converged
## # weights:  121
## initial  value 1412465.598450 
## iter  10 value 3644.689711
## iter  20 value 1284.277922
## iter  30 value 927.686067
## iter  40 value 858.829070
## iter  50 value 826.437010
## iter  60 value 792.697973
## iter  70 value 734.664321
## iter  80 value 705.302068
## iter  90 value 669.431413
## iter 100 value 615.021180
## iter 110 value 585.162706
## iter 120 value 561.139588
## iter 130 value 531.179863
## iter 140 value 514.026613
## iter 150 value 504.161953
## iter 160 value 490.860952
## iter 170 value 482.631429
## iter 180 value 481.610414
## iter 190 value 479.876922
## iter 200 value 477.322793
## iter 210 value 476.408946
## iter 220 value 476.174850
## iter 230 value 475.395736
## iter 240 value 474.708554
## iter 250 value 473.786295
## iter 260 value 473.523383
## iter 270 value 473.304851
## iter 280 value 472.774154
## iter 290 value 472.398132
## iter 300 value 471.855370
## iter 310 value 470.562349
## iter 320 value 469.715299
## iter 330 value 469.553279
## iter 340 value 469.370841
## iter 350 value 468.942093
## iter 360 value 468.300864
## iter 370 value 468.043216
## iter 380 value 467.725542
## iter 390 value 467.626573
## iter 400 value 467.561666
## iter 410 value 467.513369
## iter 420 value 467.451402
## iter 430 value 467.431944
## iter 440 value 467.405126
## iter 450 value 467.400114
## iter 460 value 467.398315
## final  value 467.397823 
## converged
## # weights:  181
## initial  value 1378212.034278 
## iter  10 value 1703.541153
## iter  20 value 1101.212112
## iter  30 value 731.917070
## iter  40 value 568.798338
## iter  50 value 462.899902
## iter  60 value 398.317097
## iter  70 value 360.462422
## iter  80 value 327.909791
## iter  90 value 304.697749
## iter 100 value 282.805433
## iter 110 value 262.578836
## iter 120 value 245.889765
## iter 130 value 229.466097
## iter 140 value 215.270058
## iter 150 value 207.713023
## iter 160 value 200.510845
## iter 170 value 195.583108
## iter 180 value 192.284509
## iter 190 value 188.651419
## iter 200 value 185.605565
## iter 210 value 183.961976
## iter 220 value 182.321087
## iter 230 value 181.391753
## iter 240 value 180.220902
## iter 250 value 178.327857
## iter 260 value 176.647529
## iter 270 value 173.243753
## iter 280 value 170.589587
## iter 290 value 168.088739
## iter 300 value 165.664329
## iter 310 value 164.400616
## iter 320 value 163.630390
## iter 330 value 162.671111
## iter 340 value 161.375750
## iter 350 value 159.708574
## iter 360 value 158.172092
## iter 370 value 157.059211
## iter 380 value 156.773046
## iter 390 value 156.177545
## iter 400 value 154.012173
## iter 410 value 150.051945
## iter 420 value 143.356092
## iter 430 value 139.358932
## iter 440 value 137.001456
## iter 450 value 135.145501
## iter 460 value 133.658801
## iter 470 value 132.715739
## iter 480 value 131.910983
## iter 490 value 131.344263
## iter 500 value 130.791752
## final  value 130.791752 
## stopped after 500 iterations
## # weights:  241
## initial  value 1414928.952290 
## iter  10 value 1112.083537
## iter  20 value 820.314474
## iter  30 value 627.938497
## iter  40 value 471.243433
## iter  50 value 352.983889
## iter  60 value 304.959582
## iter  70 value 263.290683
## iter  80 value 200.116239
## iter  90 value 156.462294
## iter 100 value 126.919666
## iter 110 value 108.706463
## iter 120 value 99.617129
## iter 130 value 92.514948
## iter 140 value 86.640786
## iter 150 value 80.254759
## iter 160 value 74.218510
## iter 170 value 68.952178
## iter 180 value 65.317075
## iter 190 value 62.231048
## iter 200 value 59.476403
## iter 210 value 56.405730
## iter 220 value 52.293064
## iter 230 value 47.774677
## iter 240 value 45.708373
## iter 250 value 43.545619
## iter 260 value 41.375606
## iter 270 value 38.989487
## iter 280 value 36.060379
## iter 290 value 34.187959
## iter 300 value 32.880289
## iter 310 value 31.892459
## iter 320 value 31.052977
## iter 330 value 30.432835
## iter 340 value 29.467565
## iter 350 value 28.509170
## iter 360 value 27.523931
## iter 370 value 26.181882
## iter 380 value 25.403279
## iter 390 value 24.759019
## iter 400 value 24.351240
## iter 410 value 24.029185
## iter 420 value 23.818087
## iter 430 value 23.649284
## iter 440 value 23.488856
## iter 450 value 23.266357
## iter 460 value 22.540332
## iter 470 value 22.050322
## iter 480 value 21.749350
## iter 490 value 21.343178
## iter 500 value 21.085269
## final  value 21.085269 
## stopped after 500 iterations
## # weights:  25
## initial  value 1403838.724969 
## iter  10 value 467805.038397
## iter  20 value 11392.209253
## iter  30 value 8422.305423
## iter  40 value 7850.990075
## iter  50 value 6677.790107
## iter  60 value 6274.880099
## iter  70 value 6249.848331
## final  value 6249.769698 
## converged
## # weights:  61
## initial  value 1355728.880421 
## iter  10 value 10407.679513
## iter  20 value 5099.180005
## iter  30 value 3987.600455
## iter  40 value 3546.285167
## iter  50 value 2324.452152
## iter  60 value 1358.978036
## iter  70 value 1094.979872
## iter  80 value 1013.692245
## iter  90 value 982.523732
## iter 100 value 969.702595
## iter 110 value 957.274600
## iter 120 value 940.949276
## iter 130 value 916.360015
## iter 140 value 902.921530
## iter 150 value 871.075490
## iter 160 value 867.281607
## iter 170 value 860.376931
## iter 180 value 852.532379
## iter 190 value 844.571415
## iter 200 value 833.322692
## iter 210 value 831.413157
## iter 220 value 818.966745
## iter 230 value 803.113286
## iter 240 value 790.685463
## iter 250 value 781.799586
## iter 260 value 776.535270
## iter 270 value 773.907870
## iter 280 value 772.368616
## iter 290 value 770.129233
## iter 300 value 768.860095
## iter 310 value 767.879103
## iter 320 value 767.274230
## iter 330 value 767.147535
## iter 340 value 767.092600
## iter 350 value 766.972061
## iter 360 value 766.780158
## iter 370 value 765.178563
## iter 380 value 764.158257
## iter 390 value 759.055855
## iter 400 value 753.503197
## iter 410 value 751.863998
## iter 420 value 750.986147
## iter 430 value 750.935055
## iter 440 value 750.610583
## iter 450 value 750.197399
## iter 460 value 750.062897
## iter 470 value 749.888634
## iter 480 value 749.857000
## iter 490 value 749.829474
## final  value 749.824813 
## converged
## # weights:  121
## initial  value 1403071.617497 
## iter  10 value 1931.552172
## iter  20 value 1236.977604
## iter  30 value 933.765223
## iter  40 value 799.882182
## iter  50 value 696.721855
## iter  60 value 628.922876
## iter  70 value 578.377230
## iter  80 value 523.157891
## iter  90 value 467.835952
## iter 100 value 446.056316
## iter 110 value 438.865551
## iter 120 value 424.501050
## iter 130 value 393.026991
## iter 140 value 385.466125
## iter 150 value 380.896582
## iter 160 value 360.744278
## iter 170 value 354.704515
## iter 180 value 351.415033
## iter 190 value 348.229318
## iter 200 value 343.065371
## iter 210 value 339.240022
## iter 220 value 334.209677
## iter 230 value 329.941862
## iter 240 value 327.221762
## iter 250 value 326.427815
## iter 260 value 326.237711
## iter 270 value 325.745894
## iter 280 value 324.949633
## iter 290 value 323.136105
## iter 300 value 321.068616
## iter 310 value 317.176306
## iter 320 value 314.964486
## iter 330 value 314.187318
## iter 340 value 311.949995
## iter 350 value 310.957591
## iter 360 value 310.468637
## iter 370 value 309.789518
## iter 380 value 309.631159
## iter 390 value 309.578582
## iter 400 value 309.465207
## iter 410 value 309.406272
## iter 420 value 309.340425
## iter 430 value 309.306432
## iter 440 value 309.217946
## iter 450 value 309.205797
## iter 460 value 309.189461
## iter 470 value 309.143120
## iter 480 value 308.893846
## iter 490 value 308.740661
## iter 500 value 308.712782
## final  value 308.712782 
## stopped after 500 iterations
## # weights:  181
## initial  value 1392522.887724 
## iter  10 value 1234.036373
## iter  20 value 835.317109
## iter  30 value 629.904187
## iter  40 value 484.802041
## iter  50 value 397.423150
## iter  60 value 342.743211
## iter  70 value 294.914209
## iter  80 value 255.889993
## iter  90 value 229.810480
## iter 100 value 205.657024
## iter 110 value 189.604267
## iter 120 value 178.885032
## iter 130 value 170.538044
## iter 140 value 153.334458
## iter 150 value 140.965724
## iter 160 value 131.934706
## iter 170 value 124.964455
## iter 180 value 115.785500
## iter 190 value 111.080273
## iter 200 value 106.442400
## iter 210 value 102.847104
## iter 220 value 100.760044
## iter 230 value 98.912403
## iter 240 value 96.494754
## iter 250 value 93.042436
## iter 260 value 89.893218
## iter 270 value 88.623298
## iter 280 value 87.338593
## iter 290 value 86.028526
## iter 300 value 84.721301
## iter 310 value 83.772887
## iter 320 value 83.125523
## iter 330 value 82.695398
## iter 340 value 82.284161
## iter 350 value 82.000315
## iter 360 value 81.609023
## iter 370 value 81.434014
## iter 380 value 81.391211
## iter 390 value 81.308633
## iter 400 value 81.200809
## iter 410 value 81.117219
## iter 420 value 80.983710
## iter 430 value 80.834665
## iter 440 value 80.741919
## iter 450 value 80.648608
## iter 460 value 80.529615
## iter 470 value 80.436395
## iter 480 value 80.342289
## iter 490 value 80.155999
## iter 500 value 80.089463
## final  value 80.089463 
## stopped after 500 iterations
## # weights:  241
## initial  value 1389315.386128 
## iter  10 value 1233.160722
## iter  20 value 874.956845
## iter  30 value 681.976203
## iter  40 value 569.841441
## iter  50 value 458.040884
## iter  60 value 353.806906
## iter  70 value 300.486355
## iter  80 value 257.183185
## iter  90 value 218.254253
## iter 100 value 186.352017
## iter 110 value 159.571506
## iter 120 value 135.365425
## iter 130 value 119.477747
## iter 140 value 105.290692
## iter 150 value 93.070601
## iter 160 value 85.261614
## iter 170 value 81.178695
## iter 180 value 77.271974
## iter 190 value 72.789957
## iter 200 value 67.658961
## iter 210 value 63.573676
## iter 220 value 59.835160
## iter 230 value 55.788748
## iter 240 value 52.685638
## iter 250 value 50.079542
## iter 260 value 47.692557
## iter 270 value 45.667134
## iter 280 value 43.770170
## iter 290 value 42.297308
## iter 300 value 41.212650
## iter 310 value 40.027586
## iter 320 value 38.636684
## iter 330 value 36.758823
## iter 340 value 35.591527
## iter 350 value 34.971704
## iter 360 value 34.408698
## iter 370 value 33.734417
## iter 380 value 33.035674
## iter 390 value 31.887369
## iter 400 value 29.761628
## iter 410 value 28.346488
## iter 420 value 27.088922
## iter 430 value 26.001425
## iter 440 value 25.057206
## iter 450 value 24.308093
## iter 460 value 23.785298
## iter 470 value 23.192337
## iter 480 value 22.843276
## iter 490 value 22.683109
## iter 500 value 22.629903
## final  value 22.629903 
## stopped after 500 iterations
## # weights:  25
## initial  value 1416069.580900 
## iter  10 value 2233.288751
## iter  20 value 1733.766696
## iter  30 value 1278.531529
## iter  40 value 1124.724144
## iter  50 value 1072.460482
## iter  60 value 1058.060960
## iter  70 value 1041.528385
## iter  80 value 980.961994
## iter  90 value 961.364185
## iter 100 value 955.299157
## iter 110 value 953.152901
## iter 120 value 952.810428
## iter 130 value 946.424913
## iter 140 value 945.647620
## iter 150 value 945.221449
## iter 160 value 945.204951
## iter 160 value 945.204947
## final  value 945.204852 
## converged
## # weights:  61
## initial  value 1365216.092234 
## iter  10 value 6416.649421
## iter  20 value 2298.410356
## iter  30 value 1768.637657
## iter  40 value 1499.822271
## iter  50 value 1417.286127
## iter  60 value 1382.169762
## iter  70 value 1324.322800
## iter  80 value 1259.012024
## iter  90 value 1230.302167
## iter 100 value 1098.248477
## iter 110 value 892.895261
## iter 120 value 798.256199
## iter 130 value 784.031712
## iter 140 value 778.144316
## iter 150 value 772.597074
## iter 160 value 769.678746
## iter 170 value 760.945185
## iter 180 value 758.714528
## iter 190 value 758.664483
## iter 200 value 758.554190
## iter 210 value 757.883488
## iter 220 value 757.400110
## iter 230 value 757.102811
## iter 240 value 755.714949
## iter 250 value 754.530482
## iter 260 value 754.434587
## iter 270 value 754.428572
## iter 280 value 754.414156
## iter 290 value 753.831086
## iter 300 value 753.466332
## iter 310 value 753.005204
## iter 320 value 752.432792
## iter 330 value 752.277620
## iter 340 value 751.775657
## iter 350 value 751.530673
## iter 360 value 751.405878
## iter 370 value 751.339085
## iter 380 value 750.619538
## iter 390 value 749.455091
## iter 400 value 748.955694
## iter 410 value 748.907529
## iter 420 value 748.865658
## iter 430 value 748.850836
## iter 440 value 748.834891
## iter 450 value 748.794357
## iter 460 value 748.790097
## iter 470 value 748.773317
## iter 480 value 748.581506
## iter 490 value 748.465941
## iter 500 value 748.218082
## final  value 748.218082 
## stopped after 500 iterations
## # weights:  121
## initial  value 1403325.747769 
## iter  10 value 1121.625909
## iter  20 value 869.338122
## iter  30 value 725.860472
## iter  40 value 617.203567
## iter  50 value 574.767551
## iter  60 value 519.314607
## iter  70 value 477.314192
## iter  80 value 433.332822
## iter  90 value 412.396499
## iter 100 value 395.124042
## iter 110 value 379.798945
## iter 120 value 363.523277
## iter 130 value 351.861846
## iter 140 value 346.702130
## iter 150 value 339.096821
## iter 160 value 333.813317
## iter 170 value 327.940737
## iter 180 value 313.110562
## iter 190 value 304.635062
## iter 200 value 300.102053
## iter 210 value 293.662057
## iter 220 value 288.076665
## iter 230 value 282.438116
## iter 240 value 277.091824
## iter 250 value 274.074841
## iter 260 value 273.381229
## iter 270 value 272.478494
## iter 280 value 270.452217
## iter 290 value 268.112408
## iter 300 value 263.005908
## iter 310 value 259.991395
## iter 320 value 258.399237
## iter 330 value 256.420556
## iter 340 value 254.113383
## iter 350 value 250.984189
## iter 360 value 249.631940
## iter 370 value 248.573483
## iter 380 value 247.377351
## iter 390 value 245.788539
## iter 400 value 244.975518
## iter 410 value 244.115202
## iter 420 value 242.648870
## iter 430 value 241.532369
## iter 440 value 240.676464
## iter 450 value 239.682503
## iter 460 value 238.821715
## iter 470 value 238.354329
## iter 480 value 237.773365
## iter 490 value 237.364001
## iter 500 value 237.248085
## final  value 237.248085 
## stopped after 500 iterations
## # weights:  181
## initial  value 1361206.644015 
## iter  10 value 1295.081431
## iter  20 value 827.221187
## iter  30 value 639.083692
## iter  40 value 508.015842
## iter  50 value 426.223322
## iter  60 value 364.745698
## iter  70 value 315.248164
## iter  80 value 282.910192
## iter  90 value 262.415659
## iter 100 value 248.434733
## iter 110 value 231.487214
## iter 120 value 218.535737
## iter 130 value 209.914851
## iter 140 value 199.932877
## iter 150 value 189.765576
## iter 160 value 180.087381
## iter 170 value 172.108117
## iter 180 value 158.754977
## iter 190 value 148.500678
## iter 200 value 142.990147
## iter 210 value 137.999583
## iter 220 value 135.049784
## iter 230 value 130.465210
## iter 240 value 125.552931
## iter 250 value 123.077583
## iter 260 value 120.507028
## iter 270 value 118.254286
## iter 280 value 115.327057
## iter 290 value 112.565449
## iter 300 value 110.964645
## iter 310 value 110.339379
## iter 320 value 109.851580
## iter 330 value 109.547759
## iter 340 value 109.073022
## iter 350 value 108.679720
## iter 360 value 108.051798
## iter 370 value 107.829152
## iter 380 value 107.735420
## iter 390 value 107.623775
## iter 400 value 107.523135
## iter 410 value 107.278322
## iter 420 value 106.737017
## iter 430 value 106.184689
## iter 440 value 105.355085
## iter 450 value 104.499800
## iter 460 value 103.863369
## iter 470 value 103.205372
## iter 480 value 102.985298
## iter 490 value 102.776386
## iter 500 value 102.130350
## final  value 102.130350 
## stopped after 500 iterations
## # weights:  241
## initial  value 1354588.702198 
## iter  10 value 1082.053888
## iter  20 value 748.451437
## iter  30 value 610.417281
## iter  40 value 468.071077
## iter  50 value 358.605975
## iter  60 value 293.332382
## iter  70 value 248.282412
## iter  80 value 212.892238
## iter  90 value 182.904838
## iter 100 value 155.987415
## iter 110 value 132.865633
## iter 120 value 119.084999
## iter 130 value 109.374074
## iter 140 value 104.222856
## iter 150 value 101.997664
## iter 160 value 96.692292
## iter 170 value 92.318064
## iter 180 value 87.695033
## iter 190 value 82.931393
## iter 200 value 77.766094
## iter 210 value 74.283059
## iter 220 value 70.264362
## iter 230 value 65.418074
## iter 240 value 61.793995
## iter 250 value 58.344102
## iter 260 value 55.958299
## iter 270 value 53.631386
## iter 280 value 52.155395
## iter 290 value 50.820845
## iter 300 value 49.168196
## iter 310 value 47.049008
## iter 320 value 45.327784
## iter 330 value 43.980108
## iter 340 value 42.360933
## iter 350 value 40.517543
## iter 360 value 38.053190
## iter 370 value 36.578345
## iter 380 value 35.504093
## iter 390 value 34.388482
## iter 400 value 33.354074
## iter 410 value 32.423610
## iter 420 value 31.728371
## iter 430 value 31.104129
## iter 440 value 30.299798
## iter 450 value 29.053194
## iter 460 value 28.035386
## iter 470 value 27.522929
## iter 480 value 27.061861
## iter 490 value 26.898156
## iter 500 value 26.867678
## final  value 26.867678 
## stopped after 500 iterations
## # weights:  25
## initial  value 1433122.294702 
## iter  10 value 9360.827216
## iter  20 value 3548.104939
## iter  30 value 1828.757462
## iter  40 value 1538.019291
## iter  50 value 1434.983849
## iter  60 value 1401.227032
## iter  70 value 1296.548675
## iter  80 value 1232.864416
## iter  90 value 1230.064981
## iter 100 value 1230.029680
## iter 110 value 1227.170144
## iter 120 value 1222.964461
## iter 130 value 1206.582303
## iter 140 value 1203.023485
## iter 150 value 1163.534253
## iter 160 value 1151.910138
## iter 170 value 1149.139101
## iter 180 value 1147.662378
## iter 190 value 1147.608209
## iter 200 value 1147.481206
## iter 210 value 1147.251078
## iter 220 value 1144.997073
## iter 230 value 1144.986783
## iter 230 value 1144.986780
## final  value 1144.986780 
## converged
## # weights:  61
## initial  value 1409890.584048 
## iter  10 value 57202.181972
## iter  20 value 19856.984649
## iter  30 value 15185.460073
## iter  40 value 9031.224390
## iter  50 value 5765.498439
## iter  60 value 2569.549833
## iter  70 value 1416.345116
## iter  80 value 1182.619775
## iter  90 value 1035.880291
## iter 100 value 931.581225
## iter 110 value 918.483307
## iter 120 value 900.880758
## iter 130 value 892.034805
## iter 140 value 889.695598
## iter 150 value 887.347891
## iter 160 value 881.670694
## iter 170 value 861.712258
## iter 180 value 834.226458
## iter 190 value 813.551990
## iter 200 value 800.340154
## iter 210 value 786.045908
## iter 220 value 772.423239
## iter 230 value 764.745118
## iter 240 value 760.966738
## iter 250 value 754.974839
## iter 260 value 754.033978
## iter 270 value 752.664371
## iter 280 value 744.468779
## iter 290 value 733.804352
## iter 300 value 709.444997
## iter 310 value 676.724838
## iter 320 value 668.621720
## iter 330 value 654.375534
## iter 340 value 647.569663
## iter 350 value 642.553857
## iter 360 value 634.363850
## iter 370 value 628.350132
## iter 380 value 628.068889
## iter 390 value 627.642486
## iter 400 value 626.554954
## iter 410 value 624.504100
## iter 420 value 619.862308
## iter 430 value 612.605044
## iter 440 value 608.493222
## iter 450 value 606.476827
## iter 460 value 605.837539
## iter 470 value 603.843750
## iter 480 value 602.307989
## iter 490 value 602.163033
## iter 500 value 601.838512
## final  value 601.838512 
## stopped after 500 iterations
## # weights:  121
## initial  value 1435570.118935 
## iter  10 value 161053.626564
## iter  20 value 9356.626293
## iter  30 value 5964.638567
## iter  40 value 4918.458631
## iter  50 value 4060.683958
## iter  60 value 3637.247145
## iter  70 value 3120.965219
## iter  80 value 2595.030683
## iter  90 value 1960.011851
## iter 100 value 1479.037191
## iter 110 value 1128.203085
## iter 120 value 939.834594
## iter 130 value 900.295765
## iter 140 value 847.085840
## iter 150 value 828.311682
## iter 160 value 822.574233
## iter 170 value 806.075804
## iter 180 value 786.756193
## iter 190 value 774.643403
## iter 200 value 733.783020
## iter 210 value 715.188564
## iter 220 value 688.933997
## iter 230 value 654.311719
## iter 240 value 612.451996
## iter 250 value 580.869317
## iter 260 value 565.724973
## iter 270 value 556.472675
## iter 280 value 545.162574
## iter 290 value 538.051991
## iter 300 value 531.259746
## iter 310 value 527.112035
## iter 320 value 524.575159
## iter 330 value 521.273437
## iter 340 value 510.562388
## iter 350 value 494.490763
## iter 360 value 478.210956
## iter 370 value 460.965528
## iter 380 value 455.876400
## iter 390 value 454.142033
## iter 400 value 454.010827
## iter 410 value 453.178418
## iter 420 value 452.434551
## iter 430 value 450.979370
## iter 440 value 449.736590
## iter 450 value 448.647606
## iter 460 value 446.549175
## iter 470 value 443.935430
## iter 480 value 442.468451
## iter 490 value 441.512449
## iter 500 value 440.262670
## final  value 440.262670 
## stopped after 500 iterations
## # weights:  181
## initial  value 1393214.632643 
## iter  10 value 1045.133634
## iter  20 value 833.851758
## iter  30 value 694.559719
## iter  40 value 538.508881
## iter  50 value 430.378516
## iter  60 value 364.212597
## iter  70 value 316.351943
## iter  80 value 277.774322
## iter  90 value 249.256913
## iter 100 value 224.999845
## iter 110 value 207.658312
## iter 120 value 196.044953
## iter 130 value 183.778856
## iter 140 value 177.130141
## iter 150 value 168.884648
## iter 160 value 161.353432
## iter 170 value 148.116151
## iter 180 value 143.310243
## iter 190 value 141.101703
## iter 200 value 139.264757
## iter 210 value 138.254670
## iter 220 value 137.104903
## iter 230 value 136.106182
## iter 240 value 135.025169
## iter 250 value 133.052214
## iter 260 value 130.949318
## iter 270 value 129.937411
## iter 280 value 129.149093
## iter 290 value 128.435611
## iter 300 value 127.970171
## iter 310 value 127.557354
## iter 320 value 126.625503
## iter 330 value 125.878897
## iter 340 value 125.147887
## iter 350 value 123.884684
## iter 360 value 122.947513
## iter 370 value 122.407778
## iter 380 value 122.167152
## iter 390 value 121.534666
## iter 400 value 121.004856
## iter 410 value 119.932231
## iter 420 value 118.725358
## iter 430 value 117.210332
## iter 440 value 116.023056
## iter 450 value 115.007399
## iter 460 value 114.042509
## iter 470 value 112.266588
## iter 480 value 111.513998
## iter 490 value 111.062775
## iter 500 value 110.770678
## final  value 110.770678 
## stopped after 500 iterations
## # weights:  241
## initial  value 1375678.733273 
## iter  10 value 1634.519642
## iter  20 value 854.592346
## iter  30 value 678.919219
## iter  40 value 556.385617
## iter  50 value 449.007278
## iter  60 value 381.418700
## iter  70 value 337.241582
## iter  80 value 309.725322
## iter  90 value 274.301871
## iter 100 value 254.062754
## iter 110 value 218.847808
## iter 120 value 194.616061
## iter 130 value 179.827021
## iter 140 value 169.418698
## iter 150 value 158.849237
## iter 160 value 149.890362
## iter 170 value 140.095389
## iter 180 value 132.933575
## iter 190 value 126.345840
## iter 200 value 121.023117
## iter 210 value 115.248283
## iter 220 value 108.457774
## iter 230 value 101.772667
## iter 240 value 98.550832
## iter 250 value 95.013244
## iter 260 value 91.556698
## iter 270 value 88.583953
## iter 280 value 86.245129
## iter 290 value 83.730638
## iter 300 value 81.020359
## iter 310 value 78.550774
## iter 320 value 76.723813
## iter 330 value 75.461131
## iter 340 value 73.590049
## iter 350 value 72.166695
## iter 360 value 70.925007
## iter 370 value 69.748412
## iter 380 value 68.596247
## iter 390 value 67.381465
## iter 400 value 66.433061
## iter 410 value 65.476551
## iter 420 value 64.537093
## iter 430 value 63.921520
## iter 440 value 63.288798
## iter 450 value 62.671571
## iter 460 value 62.132217
## iter 470 value 61.664097
## iter 480 value 61.146123
## iter 490 value 60.886427
## iter 500 value 60.755120
## final  value 60.755120 
## stopped after 500 iterations
## # weights:  25
## initial  value 1393796.348214 
## iter  10 value 19571.050607
## iter  20 value 9476.654328
## iter  30 value 5852.498933
## iter  40 value 5066.136792
## iter  50 value 3882.342399
## iter  60 value 2961.085838
## iter  70 value 1619.537789
## iter  80 value 1412.207797
## iter  90 value 1311.748099
## iter 100 value 1292.813827
## iter 110 value 1266.534189
## iter 120 value 1205.144314
## iter 130 value 1178.052809
## iter 140 value 1169.472609
## iter 150 value 1168.399745
## iter 160 value 1168.274983
## iter 170 value 1167.679891
## final  value 1167.679280 
## converged
## # weights:  61
## initial  value 1415136.075140 
## iter  10 value 70404.839772
## iter  20 value 24626.167051
## iter  30 value 16151.825018
## iter  40 value 9895.325113
## iter  50 value 7509.701126
## iter  60 value 5177.551323
## iter  70 value 4094.814305
## iter  80 value 3527.310647
## iter  90 value 3030.592918
## iter 100 value 2478.211603
## iter 110 value 1994.297486
## iter 120 value 1656.658641
## iter 130 value 1583.818421
## iter 140 value 1553.083453
## iter 150 value 1469.364920
## iter 160 value 1351.327976
## iter 170 value 1217.678827
## iter 180 value 1145.679797
## iter 190 value 1095.086160
## iter 200 value 1072.679163
## iter 210 value 1056.394533
## iter 220 value 1046.373876
## iter 230 value 1035.050997
## iter 240 value 1017.575045
## iter 250 value 1002.974967
## iter 260 value 997.641113
## iter 270 value 988.071609
## iter 280 value 978.952721
## iter 290 value 971.717646
## iter 300 value 964.053719
## iter 310 value 954.530484
## iter 320 value 946.602119
## iter 330 value 941.060731
## iter 340 value 937.317776
## iter 350 value 934.052520
## iter 360 value 931.021992
## iter 370 value 927.137414
## iter 380 value 925.913220
## iter 390 value 924.930438
## iter 400 value 923.917843
## iter 410 value 923.163259
## iter 420 value 921.408289
## iter 430 value 917.050750
## iter 440 value 911.172805
## iter 450 value 904.153786
## iter 460 value 884.694632
## iter 470 value 869.549345
## iter 480 value 865.349557
## iter 490 value 860.127791
## iter 500 value 858.773960
## final  value 858.773960 
## stopped after 500 iterations
## # weights:  121
## initial  value 1400988.897317 
## iter  10 value 2283.435955
## iter  20 value 1106.143541
## iter  30 value 968.917216
## iter  40 value 849.839066
## iter  50 value 775.685396
## iter  60 value 740.585542
## iter  70 value 717.303632
## iter  80 value 702.607206
## iter  90 value 695.947479
## iter 100 value 687.220125
## iter 110 value 680.283469
## iter 120 value 672.647119
## iter 130 value 664.858215
## iter 140 value 654.880438
## iter 150 value 647.431448
## iter 160 value 642.692633
## iter 170 value 629.454122
## iter 180 value 612.023490
## iter 190 value 604.072145
## iter 200 value 593.938572
## iter 210 value 578.917754
## iter 220 value 558.608445
## iter 230 value 548.051104
## iter 240 value 540.738814
## iter 250 value 537.857540
## iter 260 value 535.241481
## iter 270 value 531.884257
## iter 280 value 528.233239
## iter 290 value 522.434968
## iter 300 value 517.462780
## iter 310 value 515.458596
## iter 320 value 514.158911
## iter 330 value 511.656022
## iter 340 value 510.415382
## iter 350 value 503.576147
## iter 360 value 497.666672
## iter 370 value 494.781383
## iter 380 value 492.654376
## iter 390 value 491.997814
## iter 400 value 491.769525
## iter 410 value 491.633076
## iter 420 value 491.602675
## iter 430 value 491.595537
## final  value 491.594925 
## converged
## # weights:  181
## initial  value 1389591.719339 
## iter  10 value 1298.996607
## iter  20 value 903.170374
## iter  30 value 789.832417
## iter  40 value 665.928866
## iter  50 value 584.547994
## iter  60 value 535.706191
## iter  70 value 498.626787
## iter  80 value 465.717750
## iter  90 value 446.731586
## iter 100 value 430.921874
## iter 110 value 418.816181
## iter 120 value 407.152824
## iter 130 value 398.738609
## iter 140 value 391.778183
## iter 150 value 383.573883
## iter 160 value 377.977210
## iter 170 value 372.476959
## iter 180 value 368.714206
## iter 190 value 365.709175
## iter 200 value 362.432001
## iter 210 value 359.696889
## iter 220 value 357.746057
## iter 230 value 355.589074
## iter 240 value 354.215089
## iter 250 value 353.250236
## iter 260 value 352.215233
## iter 270 value 349.923612
## iter 280 value 346.874297
## iter 290 value 344.724721
## iter 300 value 342.755655
## iter 310 value 339.479435
## iter 320 value 337.475403
## iter 330 value 336.420979
## iter 340 value 335.563394
## iter 350 value 334.943699
## iter 360 value 334.646674
## iter 370 value 334.476884
## iter 380 value 334.084946
## iter 390 value 333.592646
## iter 400 value 333.126607
## iter 410 value 332.872565
## iter 420 value 332.609265
## iter 430 value 332.351947
## iter 440 value 332.246377
## iter 450 value 332.175295
## iter 460 value 332.126913
## iter 470 value 332.109201
## iter 480 value 332.105966
## iter 490 value 332.105232
## final  value 332.105162 
## converged
## # weights:  241
## initial  value 1482969.531612 
## iter  10 value 1286.452760
## iter  20 value 922.676067
## iter  30 value 799.564248
## iter  40 value 707.891174
## iter  50 value 587.338630
## iter  60 value 501.319504
## iter  70 value 458.269465
## iter  80 value 443.504672
## iter  90 value 425.893038
## iter 100 value 413.211067
## iter 110 value 400.196849
## iter 120 value 390.564602
## iter 130 value 383.224563
## iter 140 value 375.946459
## iter 150 value 369.842945
## iter 160 value 364.483673
## iter 170 value 358.131351
## iter 180 value 351.790671
## iter 190 value 346.219261
## iter 200 value 340.350476
## iter 210 value 335.726234
## iter 220 value 331.099034
## iter 230 value 326.221870
## iter 240 value 322.859162
## iter 250 value 320.379006
## iter 260 value 317.695285
## iter 270 value 315.293078
## iter 280 value 312.698703
## iter 290 value 310.604322
## iter 300 value 308.541830
## iter 310 value 306.100915
## iter 320 value 304.557246
## iter 330 value 303.126682
## iter 340 value 301.699122
## iter 350 value 300.768361
## iter 360 value 300.107587
## iter 370 value 299.559455
## iter 380 value 299.223095
## iter 390 value 298.974363
## iter 400 value 298.730892
## iter 410 value 298.537765
## iter 420 value 298.400348
## iter 430 value 298.337541
## iter 440 value 298.300917
## iter 450 value 298.265225
## iter 460 value 298.168940
## iter 470 value 297.963515
## iter 480 value 297.774846
## iter 490 value 297.715234
## iter 500 value 297.657659
## final  value 297.657659 
## stopped after 500 iterations
## # weights:  25
## initial  value 1385756.953187 
## iter  10 value 48172.563992
## iter  20 value 5626.046095
## iter  30 value 4827.184454
## iter  40 value 4684.994733
## iter  50 value 4676.847180
## iter  60 value 4411.624885
## iter  70 value 4337.236652
## iter  80 value 4305.803371
## iter  90 value 4189.023750
## iter 100 value 4111.053620
## iter 110 value 4097.388796
## iter 120 value 4077.868661
## iter 130 value 4058.186724
## iter 140 value 4024.363131
## iter 150 value 4001.599711
## iter 160 value 3992.031933
## iter 170 value 3985.928854
## iter 180 value 3844.621387
## iter 190 value 3731.034289
## iter 200 value 3079.219451
## iter 210 value 2651.403268
## iter 220 value 1869.076982
## iter 230 value 1447.981206
## iter 240 value 1348.279574
## iter 250 value 1315.701274
## iter 260 value 1311.012222
## iter 270 value 1296.442451
## iter 280 value 1286.097193
## iter 290 value 1282.492933
## iter 300 value 1280.901038
## iter 310 value 1280.461069
## iter 320 value 1280.174577
## iter 330 value 1278.815732
## iter 340 value 1277.895013
## iter 350 value 1277.342544
## iter 360 value 1277.152740
## final  value 1277.152420 
## converged
## # weights:  61
## initial  value 1399122.577923 
## iter  10 value 8492.495248
## iter  20 value 3737.440331
## iter  30 value 3164.521992
## iter  40 value 2751.922036
## iter  50 value 2329.764530
## iter  60 value 1958.142304
## iter  70 value 1797.442093
## iter  80 value 1754.922723
## iter  90 value 1736.232238
## iter 100 value 1695.533168
## iter 110 value 1665.867370
## iter 120 value 1661.013312
## iter 130 value 1658.112296
## iter 140 value 1625.844994
## iter 150 value 1467.383800
## iter 160 value 1287.902896
## iter 170 value 1170.546110
## iter 180 value 1132.947532
## iter 190 value 1105.897044
## iter 200 value 1067.354388
## iter 210 value 1050.529468
## iter 220 value 1040.752608
## iter 230 value 1033.392759
## iter 240 value 1025.014724
## iter 250 value 1020.459613
## iter 260 value 1019.574775
## iter 270 value 1013.798544
## iter 280 value 1011.793458
## iter 290 value 1011.217186
## iter 300 value 1009.965131
## iter 310 value 1008.592208
## iter 320 value 1007.325138
## iter 330 value 1005.693383
## iter 340 value 1005.025584
## iter 350 value 1004.531955
## iter 360 value 1004.318232
## iter 370 value 1003.417727
## iter 380 value 1002.715534
## iter 390 value 1002.463412
## iter 400 value 1002.380161
## final  value 1002.380055 
## converged
## # weights:  121
## initial  value 1413298.565646 
## iter  10 value 1430.562028
## iter  20 value 831.031857
## iter  30 value 658.690126
## iter  40 value 549.857548
## iter  50 value 492.301158
## iter  60 value 457.480271
## iter  70 value 433.811995
## iter  80 value 416.642943
## iter  90 value 398.975130
## iter 100 value 381.526442
## iter 110 value 361.337671
## iter 120 value 340.486234
## iter 130 value 330.183381
## iter 140 value 317.941881
## iter 150 value 309.763997
## iter 160 value 301.814000
## iter 170 value 296.264440
## iter 180 value 292.844882
## iter 190 value 288.592533
## iter 200 value 284.673743
## iter 210 value 278.572477
## iter 220 value 273.092553
## iter 230 value 265.569153
## iter 240 value 259.581992
## iter 250 value 257.438313
## iter 260 value 256.415332
## iter 270 value 253.732371
## iter 280 value 250.500840
## iter 290 value 247.289329
## iter 300 value 244.434309
## iter 310 value 241.818178
## iter 320 value 239.240053
## iter 330 value 236.289890
## iter 340 value 230.583178
## iter 350 value 224.751983
## iter 360 value 222.301082
## iter 370 value 220.534332
## iter 380 value 219.531307
## iter 390 value 219.156432
## iter 400 value 218.913938
## iter 410 value 218.709599
## iter 420 value 218.642769
## iter 430 value 218.467114
## iter 440 value 218.375785
## iter 450 value 218.158281
## iter 460 value 218.078756
## iter 470 value 217.957158
## iter 480 value 217.891003
## iter 490 value 217.872053
## iter 500 value 217.871202
## final  value 217.871202 
## stopped after 500 iterations
## # weights:  181
## initial  value 1411394.011152 
## iter  10 value 1138.201808
## iter  20 value 771.813077
## iter  30 value 609.921321
## iter  40 value 473.322909
## iter  50 value 382.024387
## iter  60 value 338.760105
## iter  70 value 295.291145
## iter  80 value 251.255562
## iter  90 value 214.970369
## iter 100 value 199.301783
## iter 110 value 188.836892
## iter 120 value 177.175882
## iter 130 value 167.993402
## iter 140 value 157.269320
## iter 150 value 143.186740
## iter 160 value 129.694431
## iter 170 value 121.078541
## iter 180 value 111.482796
## iter 190 value 102.003307
## iter 200 value 96.673977
## iter 210 value 91.251334
## iter 220 value 85.943837
## iter 230 value 82.719689
## iter 240 value 79.065838
## iter 250 value 76.309919
## iter 260 value 74.108705
## iter 270 value 73.123644
## iter 280 value 72.172961
## iter 290 value 71.759515
## iter 300 value 71.367803
## iter 310 value 70.968709
## iter 320 value 70.501713
## iter 330 value 70.255363
## iter 340 value 70.122502
## iter 350 value 69.962639
## iter 360 value 69.874514
## iter 370 value 69.825143
## iter 380 value 69.794042
## iter 390 value 69.718004
## iter 400 value 69.618456
## iter 410 value 69.513349
## iter 420 value 69.303430
## iter 430 value 69.182564
## iter 440 value 69.093405
## iter 450 value 68.982104
## iter 460 value 68.868635
## iter 470 value 68.715874
## iter 480 value 68.271789
## iter 490 value 66.847164
## iter 500 value 65.995674
## final  value 65.995674 
## stopped after 500 iterations
## # weights:  241
## initial  value 1442424.607015 
## iter  10 value 1308.114413
## iter  20 value 739.043313
## iter  30 value 607.718410
## iter  40 value 519.468246
## iter  50 value 433.357689
## iter  60 value 362.754740
## iter  70 value 324.148434
## iter  80 value 295.712863
## iter  90 value 263.848253
## iter 100 value 240.841996
## iter 110 value 212.429790
## iter 120 value 185.662652
## iter 130 value 164.931948
## iter 140 value 141.721610
## iter 150 value 126.710512
## iter 160 value 117.472936
## iter 170 value 108.069620
## iter 180 value 101.634520
## iter 190 value 90.423121
## iter 200 value 81.015868
## iter 210 value 73.964015
## iter 220 value 67.833524
## iter 230 value 64.017169
## iter 240 value 60.042701
## iter 250 value 56.459999
## iter 260 value 54.295065
## iter 270 value 52.049504
## iter 280 value 49.624346
## iter 290 value 48.404838
## iter 300 value 46.712110
## iter 310 value 44.551690
## iter 320 value 43.024047
## iter 330 value 41.128716
## iter 340 value 39.114657
## iter 350 value 36.356922
## iter 360 value 34.593786
## iter 370 value 33.541986
## iter 380 value 32.857202
## iter 390 value 32.321888
## iter 400 value 31.713845
## iter 410 value 31.328039
## iter 420 value 30.922180
## iter 430 value 30.410621
## iter 440 value 29.946491
## iter 450 value 29.559267
## iter 460 value 29.084275
## iter 470 value 28.642889
## iter 480 value 28.374166
## iter 490 value 28.220594
## iter 500 value 28.154890
## final  value 28.154890 
## stopped after 500 iterations
## # weights:  25
## initial  value 1410405.364464 
## iter  10 value 16664.137787
## iter  20 value 15096.748951
## iter  30 value 12549.236408
## iter  40 value 11488.462747
## iter  50 value 7730.009277
## iter  60 value 3793.641618
## iter  70 value 2986.832676
## iter  80 value 2114.680223
## iter  90 value 1279.480849
## iter 100 value 1028.456384
## iter 110 value 941.902481
## iter 120 value 926.447840
## iter 130 value 889.953454
## iter 140 value 867.020889
## iter 150 value 857.125815
## iter 160 value 854.331166
## iter 170 value 854.176895
## iter 180 value 852.988232
## iter 190 value 850.543506
## iter 200 value 848.972516
## iter 210 value 848.346179
## iter 220 value 848.333211
## iter 230 value 848.055292
## iter 240 value 847.497789
## iter 250 value 847.118298
## iter 260 value 846.716988
## iter 270 value 846.709071
## final  value 846.708572 
## converged
## # weights:  61
## initial  value 1390494.402350 
## iter  10 value 3920.683475
## iter  20 value 2679.867948
## iter  30 value 2268.604656
## iter  40 value 1804.375165
## iter  50 value 1464.608669
## iter  60 value 1305.769231
## iter  70 value 1210.473193
## iter  80 value 1160.840842
## iter  90 value 1027.435471
## iter 100 value 988.448282
## iter 110 value 960.952427
## iter 120 value 845.086061
## iter 130 value 794.561948
## iter 140 value 782.381227
## iter 150 value 765.159884
## iter 160 value 751.340148
## iter 170 value 739.901372
## iter 180 value 735.366379
## iter 190 value 731.712903
## iter 200 value 730.147909
## iter 210 value 728.299518
## iter 220 value 725.789405
## iter 230 value 724.661036
## iter 240 value 722.525929
## iter 250 value 721.248565
## iter 260 value 721.233440
## iter 270 value 721.205966
## iter 280 value 721.114458
## iter 290 value 720.876453
## iter 300 value 720.197837
## iter 310 value 718.291994
## iter 320 value 717.380814
## iter 330 value 717.104662
## iter 340 value 716.700801
## iter 350 value 716.162642
## iter 360 value 715.939400
## iter 370 value 715.851920
## iter 380 value 715.848299
## iter 390 value 715.845399
## iter 400 value 715.839034
## iter 410 value 715.830027
## iter 420 value 715.804616
## iter 430 value 715.765376
## iter 440 value 715.612316
## iter 450 value 715.555917
## iter 460 value 715.545258
## iter 470 value 715.539839
## iter 480 value 715.539297
## iter 490 value 715.530198
## final  value 715.529994 
## converged
## # weights:  121
## initial  value 1428210.442718 
## iter  10 value 3390.762202
## iter  20 value 1801.886234
## iter  30 value 1179.026094
## iter  40 value 813.285969
## iter  50 value 690.819183
## iter  60 value 625.521516
## iter  70 value 602.402370
## iter  80 value 548.350256
## iter  90 value 518.641264
## iter 100 value 503.641161
## iter 110 value 493.832452
## iter 120 value 478.040246
## iter 130 value 461.136961
## iter 140 value 440.975706
## iter 150 value 430.139750
## iter 160 value 421.354500
## iter 170 value 415.665601
## iter 180 value 406.506078
## iter 190 value 402.150036
## iter 200 value 398.078584
## iter 210 value 394.139184
## iter 220 value 392.732523
## iter 230 value 390.354931
## iter 240 value 384.309650
## iter 250 value 380.998841
## iter 260 value 379.519453
## iter 270 value 377.106422
## iter 280 value 375.036614
## iter 290 value 374.284669
## iter 300 value 373.637429
## iter 310 value 371.908679
## iter 320 value 367.877168
## iter 330 value 366.700537
## iter 340 value 366.463469
## iter 350 value 364.134473
## iter 360 value 363.452765
## iter 370 value 362.243557
## iter 380 value 360.870761
## iter 390 value 360.123664
## iter 400 value 359.881283
## iter 410 value 359.724910
## iter 420 value 359.644382
## iter 430 value 359.589874
## iter 440 value 359.518467
## iter 450 value 359.440554
## iter 460 value 359.377742
## iter 470 value 359.346419
## iter 480 value 359.327435
## iter 490 value 359.313169
## iter 500 value 359.312913
## final  value 359.312913 
## stopped after 500 iterations
## # weights:  181
## initial  value 1345792.096119 
## iter  10 value 1174.282494
## iter  20 value 768.282517
## iter  30 value 596.651961
## iter  40 value 507.606054
## iter  50 value 410.633526
## iter  60 value 360.014228
## iter  70 value 317.639030
## iter  80 value 271.423348
## iter  90 value 247.916813
## iter 100 value 234.825048
## iter 110 value 228.005411
## iter 120 value 219.566846
## iter 130 value 212.110614
## iter 140 value 200.605065
## iter 150 value 186.383900
## iter 160 value 177.815437
## iter 170 value 170.649608
## iter 180 value 163.958014
## iter 190 value 158.196504
## iter 200 value 153.983588
## iter 210 value 150.478467
## iter 220 value 147.349998
## iter 230 value 143.880609
## iter 240 value 140.625682
## iter 250 value 137.668604
## iter 260 value 135.583163
## iter 270 value 133.416740
## iter 280 value 130.527921
## iter 290 value 127.926023
## iter 300 value 124.752405
## iter 310 value 121.563491
## iter 320 value 117.780278
## iter 330 value 113.916933
## iter 340 value 111.516500
## iter 350 value 109.267477
## iter 360 value 106.957609
## iter 370 value 105.779048
## iter 380 value 105.306271
## iter 390 value 104.403557
## iter 400 value 103.748148
## iter 410 value 103.170995
## iter 420 value 102.460405
## iter 430 value 101.600687
## iter 440 value 100.956194
## iter 450 value 100.481635
## iter 460 value 99.830135
## iter 470 value 98.790680
## iter 480 value 97.709273
## iter 490 value 96.487754
## iter 500 value 95.160196
## final  value 95.160196 
## stopped after 500 iterations
## # weights:  241
## initial  value 1442889.707335 
## iter  10 value 1723.728390
## iter  20 value 801.483978
## iter  30 value 526.210784
## iter  40 value 404.632305
## iter  50 value 318.327677
## iter  60 value 267.449580
## iter  70 value 222.362614
## iter  80 value 187.403288
## iter  90 value 164.927384
## iter 100 value 143.823540
## iter 110 value 127.183956
## iter 120 value 112.526731
## iter 130 value 103.862060
## iter 140 value 99.006115
## iter 150 value 96.316981
## iter 160 value 93.536886
## iter 170 value 90.201088
## iter 180 value 86.080168
## iter 190 value 80.470265
## iter 200 value 75.733526
## iter 210 value 72.020386
## iter 220 value 68.936432
## iter 230 value 66.844755
## iter 240 value 65.211033
## iter 250 value 63.229894
## iter 260 value 61.913655
## iter 270 value 60.308873
## iter 280 value 59.018638
## iter 290 value 58.153902
## iter 300 value 57.429537
## iter 310 value 56.909952
## iter 320 value 56.047197
## iter 330 value 55.212237
## iter 340 value 54.564767
## iter 350 value 53.740030
## iter 360 value 52.964369
## iter 370 value 52.073067
## iter 380 value 51.326150
## iter 390 value 50.626134
## iter 400 value 49.878547
## iter 410 value 49.403758
## iter 420 value 49.079103
## iter 430 value 48.801552
## iter 440 value 48.528490
## iter 450 value 48.321530
## iter 460 value 48.155074
## iter 470 value 47.947754
## iter 480 value 47.707952
## iter 490 value 47.527944
## iter 500 value 47.488937
## final  value 47.488937 
## stopped after 500 iterations
## # weights:  25
## initial  value 1376505.550904 
## iter  10 value 13853.247941
## iter  20 value 8513.701664
## iter  30 value 6375.718420
## iter  40 value 5001.200360
## iter  50 value 4739.486851
## iter  60 value 2078.972254
## iter  70 value 1497.582259
## iter  80 value 1347.645026
## iter  90 value 1317.106995
## iter 100 value 1304.382577
## iter 110 value 1300.326450
## iter 120 value 1292.750085
## iter 130 value 1286.669082
## iter 140 value 1284.572262
## iter 150 value 1282.474793
## iter 160 value 1282.104395
## iter 170 value 1282.094926
## iter 180 value 1282.093685
## iter 180 value 1282.093679
## iter 190 value 1282.093443
## iter 190 value 1282.093443
## final  value 1282.093417 
## converged
## # weights:  61
## initial  value 1408902.175492 
## iter  10 value 12072.597288
## iter  20 value 5299.304668
## iter  30 value 3756.796458
## iter  40 value 2230.129503
## iter  50 value 1405.522609
## iter  60 value 1286.749558
## iter  70 value 1246.362382
## iter  80 value 1176.939889
## iter  90 value 1108.524103
## iter 100 value 1101.579532
## iter 110 value 1085.843427
## iter 120 value 1069.897277
## iter 130 value 1064.382055
## iter 140 value 1050.946462
## iter 150 value 1048.329715
## iter 160 value 1031.836250
## iter 170 value 993.830921
## iter 180 value 983.369739
## iter 190 value 982.161259
## iter 200 value 979.799929
## iter 210 value 979.017682
## iter 220 value 977.373647
## iter 230 value 976.804989
## iter 240 value 967.947720
## iter 250 value 959.977623
## iter 260 value 955.454946
## iter 270 value 949.031736
## iter 280 value 872.512769
## iter 290 value 782.945693
## iter 300 value 721.463288
## iter 310 value 706.631699
## iter 320 value 696.501937
## iter 330 value 694.569701
## iter 340 value 692.815238
## iter 350 value 688.003245
## iter 360 value 686.455761
## iter 370 value 686.348245
## iter 380 value 686.025445
## iter 390 value 684.892606
## iter 400 value 680.410171
## iter 410 value 660.073055
## iter 420 value 641.227943
## iter 430 value 639.112830
## iter 440 value 638.844849
## iter 450 value 635.054568
## iter 460 value 627.046984
## iter 470 value 621.586960
## iter 480 value 615.410465
## iter 490 value 612.881790
## iter 500 value 611.632346
## final  value 611.632346 
## stopped after 500 iterations
## # weights:  121
## initial  value 1411255.943615 
## iter  10 value 1489.192374
## iter  20 value 904.662110
## iter  30 value 682.182114
## iter  40 value 595.949818
## iter  50 value 530.822908
## iter  60 value 434.284974
## iter  70 value 402.604829
## iter  80 value 380.086795
## iter  90 value 362.611397
## iter 100 value 350.866009
## iter 110 value 333.697895
## iter 120 value 313.809907
## iter 130 value 302.175383
## iter 140 value 293.679026
## iter 150 value 287.247597
## iter 160 value 282.130826
## iter 170 value 277.043860
## iter 180 value 273.442509
## iter 190 value 269.121053
## iter 200 value 265.354960
## iter 210 value 259.979844
## iter 220 value 254.864155
## iter 230 value 249.163637
## iter 240 value 243.838952
## iter 250 value 240.947723
## iter 260 value 240.096199
## iter 270 value 238.193440
## iter 280 value 236.023634
## iter 290 value 234.551347
## iter 300 value 232.120841
## iter 310 value 226.717081
## iter 320 value 218.164881
## iter 330 value 214.066433
## iter 340 value 212.773693
## iter 350 value 212.036970
## iter 360 value 211.323280
## iter 370 value 210.173596
## iter 380 value 209.234614
## iter 390 value 208.405040
## iter 400 value 207.482467
## iter 410 value 206.610139
## iter 420 value 205.917796
## iter 430 value 205.262412
## iter 440 value 204.325445
## iter 450 value 203.393154
## iter 460 value 202.741896
## iter 470 value 202.104181
## iter 480 value 201.885197
## iter 490 value 201.567738
## iter 500 value 201.500105
## final  value 201.500105 
## stopped after 500 iterations
## # weights:  181
## initial  value 1434844.637540 
## iter  10 value 1184.427642
## iter  20 value 728.082910
## iter  30 value 584.601597
## iter  40 value 491.174552
## iter  50 value 379.578607
## iter  60 value 316.269424
## iter  70 value 290.097992
## iter  80 value 261.800176
## iter  90 value 236.470335
## iter 100 value 217.895509
## iter 110 value 202.447591
## iter 120 value 190.090521
## iter 130 value 180.668630
## iter 140 value 171.543709
## iter 150 value 163.590712
## iter 160 value 155.321165
## iter 170 value 147.927595
## iter 180 value 143.257079
## iter 190 value 136.846862
## iter 200 value 128.905755
## iter 210 value 122.553276
## iter 220 value 117.719034
## iter 230 value 114.749678
## iter 240 value 112.599718
## iter 250 value 110.594173
## iter 260 value 108.804690
## iter 270 value 106.961556
## iter 280 value 105.031687
## iter 290 value 103.089569
## iter 300 value 101.232549
## iter 310 value 100.160108
## iter 320 value 98.861558
## iter 330 value 97.954943
## iter 340 value 97.395861
## iter 350 value 96.343697
## iter 360 value 94.533335
## iter 370 value 94.095014
## iter 380 value 93.795050
## iter 390 value 93.438168
## iter 400 value 93.025029
## iter 410 value 92.777496
## iter 420 value 92.491373
## iter 430 value 92.207522
## iter 440 value 91.758916
## iter 450 value 91.199482
## iter 460 value 90.486687
## iter 470 value 89.854643
## iter 480 value 89.213082
## iter 490 value 88.360184
## iter 500 value 87.870045
## final  value 87.870045 
## stopped after 500 iterations
## # weights:  241
## initial  value 1382697.243098 
## iter  10 value 1493.267698
## iter  20 value 710.446704
## iter  30 value 522.101126
## iter  40 value 412.268971
## iter  50 value 307.041334
## iter  60 value 245.734747
## iter  70 value 195.892458
## iter  80 value 171.936008
## iter  90 value 150.794560
## iter 100 value 129.363700
## iter 110 value 114.482431
## iter 120 value 105.113263
## iter 130 value 97.599127
## iter 140 value 89.554702
## iter 150 value 82.529855
## iter 160 value 76.982194
## iter 170 value 72.438439
## iter 180 value 67.404799
## iter 190 value 62.159889
## iter 200 value 57.526342
## iter 210 value 52.566246
## iter 220 value 48.292203
## iter 230 value 45.053868
## iter 240 value 43.139785
## iter 250 value 41.246862
## iter 260 value 39.656709
## iter 270 value 38.424544
## iter 280 value 37.678135
## iter 290 value 37.163558
## iter 300 value 36.699897
## iter 310 value 35.984027
## iter 320 value 35.219021
## iter 330 value 34.563968
## iter 340 value 33.658823
## iter 350 value 33.229745
## iter 360 value 32.886542
## iter 370 value 32.588148
## iter 380 value 32.322135
## iter 390 value 32.139654
## iter 400 value 32.017677
## iter 410 value 31.884429
## iter 420 value 31.735473
## iter 430 value 31.592573
## iter 440 value 31.398102
## iter 450 value 31.171639
## iter 460 value 31.000879
## iter 470 value 30.802598
## iter 480 value 30.682696
## iter 490 value 30.630241
## iter 500 value 30.622676
## final  value 30.622676 
## stopped after 500 iterations
## # weights:  25
## initial  value 1409918.068392 
## iter  10 value 16905.025602
## iter  20 value 15330.283983
## iter  30 value 12017.812397
## iter  40 value 9351.245414
## iter  50 value 9160.275017
## iter  60 value 8264.798017
## iter  70 value 5493.784567
## iter  80 value 4263.450085
## iter  90 value 3455.930936
## iter 100 value 3110.788606
## iter 110 value 2439.891365
## iter 120 value 1543.696445
## iter 130 value 1334.505194
## iter 140 value 1306.235537
## iter 150 value 1189.961690
## iter 160 value 1097.234368
## iter 170 value 1069.640702
## iter 180 value 1048.418999
## iter 190 value 1045.881461
## iter 200 value 1044.436021
## iter 210 value 1042.579737
## iter 220 value 1039.292606
## iter 230 value 1039.045307
## iter 240 value 1039.038680
## iter 250 value 1039.034621
## iter 260 value 1039.007116
## iter 270 value 1038.892412
## iter 280 value 1032.219834
## iter 290 value 1028.889223
## iter 300 value 981.947968
## iter 310 value 950.125371
## iter 320 value 942.638197
## iter 330 value 922.043655
## iter 340 value 856.699774
## iter 350 value 838.178891
## iter 360 value 835.730654
## iter 370 value 835.399445
## iter 380 value 835.377402
## iter 390 value 833.583750
## iter 400 value 830.919136
## iter 410 value 830.567582
## iter 420 value 830.546002
## iter 430 value 830.521693
## iter 440 value 830.507614
## final  value 830.506138 
## converged
## # weights:  61
## initial  value 1408705.017691 
## iter  10 value 42025.741640
## iter  20 value 18670.554170
## iter  30 value 8602.447370
## iter  40 value 5177.466722
## iter  50 value 3277.005152
## iter  60 value 1748.064409
## iter  70 value 1229.721630
## iter  80 value 1180.004060
## iter  90 value 1124.657431
## iter 100 value 1050.231514
## iter 110 value 1011.624649
## iter 120 value 991.110461
## iter 130 value 971.244701
## iter 140 value 969.923877
## iter 150 value 967.619506
## iter 160 value 960.798756
## iter 170 value 903.852460
## iter 180 value 829.554698
## iter 190 value 773.912048
## iter 200 value 745.529011
## iter 210 value 740.994945
## iter 220 value 734.454413
## iter 230 value 715.310730
## iter 240 value 700.505797
## iter 250 value 700.361044
## iter 260 value 697.756764
## iter 270 value 694.266614
## iter 280 value 643.096759
## iter 290 value 626.870769
## iter 300 value 621.766025
## iter 310 value 618.279765
## iter 320 value 615.252026
## iter 330 value 614.298803
## iter 340 value 611.049181
## iter 350 value 608.613538
## iter 360 value 606.915875
## iter 370 value 606.211874
## iter 380 value 604.504552
## iter 390 value 602.339734
## iter 400 value 601.401862
## iter 410 value 601.305742
## iter 420 value 601.274790
## iter 430 value 601.263726
## iter 440 value 601.258588
## iter 450 value 601.258197
## iter 460 value 601.256424
## iter 470 value 601.255349
## iter 480 value 601.252471
## final  value 601.251998 
## converged
## # weights:  121
## initial  value 1472655.832292 
## iter  10 value 1956.723679
## iter  20 value 967.530446
## iter  30 value 722.712671
## iter  40 value 606.824269
## iter  50 value 538.172570
## iter  60 value 492.956037
## iter  70 value 463.905162
## iter  80 value 445.866921
## iter  90 value 424.805603
## iter 100 value 404.385967
## iter 110 value 393.156150
## iter 120 value 383.676734
## iter 130 value 375.305907
## iter 140 value 348.045402
## iter 150 value 334.103718
## iter 160 value 321.654543
## iter 170 value 314.269519
## iter 180 value 309.615040
## iter 190 value 306.760189
## iter 200 value 304.609987
## iter 210 value 298.944764
## iter 220 value 291.634758
## iter 230 value 286.634740
## iter 240 value 283.484222
## iter 250 value 282.695660
## iter 260 value 282.382013
## iter 270 value 281.284241
## iter 280 value 279.302152
## iter 290 value 275.753761
## iter 300 value 272.669915
## iter 310 value 267.508058
## iter 320 value 262.474602
## iter 330 value 259.271182
## iter 340 value 257.264964
## iter 350 value 255.115456
## iter 360 value 253.426470
## iter 370 value 252.821986
## iter 380 value 251.673142
## iter 390 value 251.007288
## iter 400 value 250.590097
## iter 410 value 250.518220
## iter 420 value 250.501716
## iter 430 value 250.491816
## iter 440 value 250.482799
## iter 450 value 250.477572
## iter 460 value 250.474448
## iter 470 value 250.473641
## iter 480 value 250.473350
## final  value 250.473239 
## converged
## # weights:  181
## initial  value 1383724.947353 
## iter  10 value 1141.441234
## iter  20 value 687.837505
## iter  30 value 560.186222
## iter  40 value 468.965350
## iter  50 value 390.780950
## iter  60 value 344.855503
## iter  70 value 317.745115
## iter  80 value 296.916820
## iter  90 value 267.648670
## iter 100 value 243.713436
## iter 110 value 229.074624
## iter 120 value 218.386094
## iter 130 value 204.742126
## iter 140 value 191.763859
## iter 150 value 180.676860
## iter 160 value 170.006734
## iter 170 value 160.574999
## iter 180 value 151.451518
## iter 190 value 144.772767
## iter 200 value 138.301370
## iter 210 value 135.517179
## iter 220 value 131.485237
## iter 230 value 127.375693
## iter 240 value 123.559587
## iter 250 value 120.663533
## iter 260 value 118.902348
## iter 270 value 116.919639
## iter 280 value 115.526535
## iter 290 value 114.504503
## iter 300 value 112.747905
## iter 310 value 111.441066
## iter 320 value 110.312505
## iter 330 value 109.682260
## iter 340 value 109.266066
## iter 350 value 108.891778
## iter 360 value 108.589258
## iter 370 value 108.429458
## iter 380 value 108.350093
## iter 390 value 108.262623
## iter 400 value 108.032119
## iter 410 value 107.837030
## iter 420 value 107.478651
## iter 430 value 107.177203
## iter 440 value 106.949142
## iter 450 value 106.592870
## iter 460 value 106.036549
## iter 470 value 105.528440
## iter 480 value 105.190372
## iter 490 value 105.032831
## iter 500 value 104.872168
## final  value 104.872168 
## stopped after 500 iterations
## # weights:  241
## initial  value 1394784.461153 
## iter  10 value 1254.868237
## iter  20 value 743.546752
## iter  30 value 579.260979
## iter  40 value 491.045670
## iter  50 value 399.669947
## iter  60 value 339.592065
## iter  70 value 304.862690
## iter  80 value 278.848958
## iter  90 value 244.516066
## iter 100 value 224.609553
## iter 110 value 203.230965
## iter 120 value 186.101552
## iter 130 value 170.314600
## iter 140 value 159.154036
## iter 150 value 151.384445
## iter 160 value 144.478857
## iter 170 value 137.649443
## iter 180 value 130.706335
## iter 190 value 123.681111
## iter 200 value 115.600829
## iter 210 value 107.295331
## iter 220 value 99.042349
## iter 230 value 90.505848
## iter 240 value 83.123374
## iter 250 value 76.939334
## iter 260 value 73.020836
## iter 270 value 69.414517
## iter 280 value 67.016704
## iter 290 value 65.744524
## iter 300 value 64.576142
## iter 310 value 63.254679
## iter 320 value 62.058139
## iter 330 value 60.765607
## iter 340 value 59.616480
## iter 350 value 58.558523
## iter 360 value 57.898782
## iter 370 value 57.199478
## iter 380 value 56.354760
## iter 390 value 55.762647
## iter 400 value 55.118274
## iter 410 value 54.397593
## iter 420 value 53.909854
## iter 430 value 53.472602
## iter 440 value 53.066389
## iter 450 value 52.730105
## iter 460 value 52.472489
## iter 470 value 52.235832
## iter 480 value 52.024723
## iter 490 value 51.930110
## iter 500 value 51.897325
## final  value 51.897325 
## stopped after 500 iterations
## # weights:  25
## initial  value 1407645.059689 
## iter  10 value 17200.353710
## iter  20 value 13395.357940
## iter  30 value 10851.070805
## iter  40 value 8308.190995
## iter  50 value 4183.084482
## iter  60 value 2845.354584
## iter  70 value 2009.425469
## iter  80 value 1598.702813
## iter  90 value 1355.288664
## iter 100 value 1290.089562
## iter 110 value 1285.166909
## iter 120 value 1283.278964
## iter 130 value 1280.074542
## final  value 1280.057176 
## converged
## # weights:  61
## initial  value 1397989.962445 
## iter  10 value 3819.153986
## iter  20 value 2167.693736
## iter  30 value 1797.264819
## iter  40 value 1472.521922
## iter  50 value 1287.770839
## iter  60 value 1082.473093
## iter  70 value 1023.151361
## iter  80 value 970.952859
## iter  90 value 952.539949
## iter 100 value 915.474004
## iter 110 value 863.842786
## iter 120 value 833.536273
## iter 130 value 823.406921
## iter 140 value 815.611268
## iter 150 value 799.934818
## iter 160 value 785.962972
## iter 170 value 780.731542
## iter 180 value 778.888381
## iter 190 value 778.670342
## iter 200 value 778.668461
## final  value 778.668447 
## converged
## # weights:  121
## initial  value 1358737.149062 
## iter  10 value 2855.760148
## iter  20 value 1752.350888
## iter  30 value 1452.438511
## iter  40 value 1243.620664
## iter  50 value 1150.618492
## iter  60 value 1055.306998
## iter  70 value 999.681056
## iter  80 value 965.319083
## iter  90 value 918.640567
## iter 100 value 865.603177
## iter 110 value 805.575375
## iter 120 value 771.238712
## iter 130 value 732.616237
## iter 140 value 689.037386
## iter 150 value 655.625879
## iter 160 value 645.330984
## iter 170 value 635.692341
## iter 180 value 621.863449
## iter 190 value 610.855319
## iter 200 value 605.861610
## iter 210 value 599.872485
## iter 220 value 593.218425
## iter 230 value 587.587458
## iter 240 value 582.881951
## iter 250 value 579.819612
## iter 260 value 576.049946
## iter 270 value 569.032620
## iter 280 value 563.089568
## iter 290 value 555.182792
## iter 300 value 548.945534
## iter 310 value 545.423941
## iter 320 value 543.765687
## iter 330 value 542.477162
## iter 340 value 539.903398
## iter 350 value 537.581857
## iter 360 value 536.837601
## iter 370 value 536.324920
## iter 380 value 535.714073
## iter 390 value 535.246106
## iter 400 value 535.019449
## iter 410 value 534.620908
## iter 420 value 534.316857
## iter 430 value 534.155253
## iter 440 value 534.051420
## iter 450 value 534.027087
## iter 460 value 534.011201
## iter 470 value 533.969033
## iter 480 value 533.799387
## iter 490 value 533.352669
## iter 500 value 533.176003
## final  value 533.176003 
## stopped after 500 iterations
## # weights:  181
## initial  value 1370360.487961 
## iter  10 value 1207.305296
## iter  20 value 813.112738
## iter  30 value 701.098764
## iter  40 value 618.689514
## iter  50 value 575.088618
## iter  60 value 538.392230
## iter  70 value 515.301460
## iter  80 value 484.665823
## iter  90 value 460.630656
## iter 100 value 441.092806
## iter 110 value 426.865985
## iter 120 value 417.329227
## iter 130 value 402.175316
## iter 140 value 385.749271
## iter 150 value 377.060326
## iter 160 value 370.488151
## iter 170 value 365.752346
## iter 180 value 361.387708
## iter 190 value 356.690255
## iter 200 value 353.294472
## iter 210 value 351.128371
## iter 220 value 348.568797
## iter 230 value 346.687563
## iter 240 value 344.589402
## iter 250 value 343.015562
## iter 260 value 341.695077
## iter 270 value 340.851908
## iter 280 value 339.626607
## iter 290 value 338.412989
## iter 300 value 337.536525
## iter 310 value 336.726431
## iter 320 value 335.706069
## iter 330 value 334.961523
## iter 340 value 334.192948
## iter 350 value 333.408501
## iter 360 value 332.657589
## iter 370 value 332.380085
## iter 380 value 332.196317
## iter 390 value 331.943979
## iter 400 value 331.755238
## iter 410 value 331.673326
## iter 420 value 331.596781
## iter 430 value 331.542378
## iter 440 value 331.426434
## iter 450 value 331.268911
## iter 460 value 330.913148
## iter 470 value 330.656668
## iter 480 value 330.577256
## iter 490 value 330.411375
## iter 500 value 330.333451
## final  value 330.333451 
## stopped after 500 iterations
## # weights:  241
## initial  value 1394535.440087 
## iter  10 value 1652.455110
## iter  20 value 822.514959
## iter  30 value 699.808751
## iter  40 value 594.469850
## iter  50 value 512.308128
## iter  60 value 477.972385
## iter  70 value 449.139529
## iter  80 value 426.779632
## iter  90 value 409.738038
## iter 100 value 397.130753
## iter 110 value 386.632406
## iter 120 value 376.410972
## iter 130 value 367.838761
## iter 140 value 363.044652
## iter 150 value 359.239509
## iter 160 value 355.721806
## iter 170 value 352.180777
## iter 180 value 348.358678
## iter 190 value 345.487741
## iter 200 value 342.792019
## iter 210 value 340.398998
## iter 220 value 337.636515
## iter 230 value 335.262832
## iter 240 value 333.268877
## iter 250 value 331.900313
## iter 260 value 330.070259
## iter 270 value 327.855558
## iter 280 value 326.038247
## iter 290 value 324.778328
## iter 300 value 323.563650
## iter 310 value 322.603796
## iter 320 value 321.894102
## iter 330 value 321.598302
## iter 340 value 321.433982
## iter 350 value 321.190051
## iter 360 value 321.044017
## iter 370 value 320.923197
## iter 380 value 320.812698
## iter 390 value 320.726522
## iter 400 value 320.667032
## iter 410 value 320.607259
## iter 420 value 320.427307
## iter 430 value 320.193036
## iter 440 value 319.988039
## iter 450 value 319.826497
## iter 460 value 319.626328
## iter 470 value 319.403449
## iter 480 value 319.328696
## iter 490 value 319.307674
## iter 500 value 319.293845
## final  value 319.293845 
## stopped after 500 iterations
## # weights:  25
## initial  value 1393612.292566 
## iter  10 value 6291.180642
## iter  20 value 6265.542738
## iter  20 value 6265.542688
## iter  20 value 6265.542688
## final  value 6265.542688 
## converged
## # weights:  61
## initial  value 1440695.729584 
## iter  10 value 62290.459830
## iter  20 value 4751.281675
## iter  30 value 3775.951060
## iter  40 value 3030.171394
## iter  50 value 1510.024531
## iter  60 value 1357.852890
## iter  70 value 1259.185632
## iter  80 value 1073.131229
## iter  90 value 988.031675
## iter 100 value 953.456285
## iter 110 value 934.835086
## iter 120 value 917.985774
## iter 130 value 894.530240
## iter 140 value 873.971712
## iter 150 value 839.706330
## iter 160 value 789.367274
## iter 170 value 765.278573
## iter 180 value 755.006050
## iter 190 value 750.621252
## iter 200 value 745.743410
## iter 210 value 736.405121
## iter 220 value 724.966776
## iter 230 value 716.342378
## iter 240 value 713.736118
## iter 250 value 711.474880
## iter 260 value 708.880750
## iter 270 value 704.791343
## iter 280 value 700.433575
## iter 290 value 697.728291
## iter 300 value 695.677807
## iter 310 value 695.228944
## iter 320 value 694.280494
## iter 330 value 693.561119
## iter 340 value 691.330622
## iter 350 value 688.668165
## iter 360 value 686.852851
## iter 370 value 683.552386
## iter 380 value 682.499758
## iter 390 value 678.883741
## iter 400 value 666.755233
## iter 410 value 642.387422
## iter 420 value 634.509208
## iter 430 value 634.455179
## iter 440 value 633.785330
## iter 450 value 632.290941
## iter 460 value 629.927131
## iter 470 value 627.166726
## iter 480 value 627.104873
## iter 490 value 626.487275
## iter 500 value 622.075383
## final  value 622.075383 
## stopped after 500 iterations
## # weights:  121
## initial  value 1390036.315580 
## iter  10 value 2272.500271
## iter  20 value 938.577558
## iter  30 value 764.399625
## iter  40 value 642.698333
## iter  50 value 581.513296
## iter  60 value 525.736839
## iter  70 value 492.709877
## iter  80 value 470.359903
## iter  90 value 449.420348
## iter 100 value 424.244315
## iter 110 value 401.822055
## iter 120 value 381.573619
## iter 130 value 359.346680
## iter 140 value 351.729574
## iter 150 value 339.274110
## iter 160 value 332.838280
## iter 170 value 324.992645
## iter 180 value 317.912289
## iter 190 value 314.029811
## iter 200 value 310.151792
## iter 210 value 307.097278
## iter 220 value 304.928401
## iter 230 value 302.199881
## iter 240 value 299.556713
## iter 250 value 297.855113
## iter 260 value 297.230559
## iter 270 value 296.378942
## iter 280 value 295.045725
## iter 290 value 293.436863
## iter 300 value 291.741293
## iter 310 value 290.553597
## iter 320 value 289.832470
## iter 330 value 289.363368
## iter 340 value 288.760788
## iter 350 value 286.622029
## iter 360 value 284.805223
## iter 370 value 283.438312
## iter 380 value 282.130052
## iter 390 value 281.683860
## iter 400 value 281.353352
## iter 410 value 281.322331
## iter 420 value 281.279402
## iter 430 value 281.172870
## iter 440 value 280.959851
## iter 450 value 280.740546
## iter 460 value 280.643382
## iter 470 value 280.553348
## iter 480 value 280.439934
## iter 490 value 280.339714
## iter 500 value 280.281032
## final  value 280.281032 
## stopped after 500 iterations
## # weights:  181
## initial  value 1406500.058150 
## iter  10 value 1205.902608
## iter  20 value 808.220355
## iter  30 value 650.812361
## iter  40 value 529.300351
## iter  50 value 441.835262
## iter  60 value 382.485628
## iter  70 value 316.382992
## iter  80 value 280.632855
## iter  90 value 260.914881
## iter 100 value 239.610672
## iter 110 value 223.945286
## iter 120 value 202.637381
## iter 130 value 186.416540
## iter 140 value 174.871875
## iter 150 value 165.592737
## iter 160 value 159.621926
## iter 170 value 151.937088
## iter 180 value 145.573525
## iter 190 value 140.444637
## iter 200 value 133.862973
## iter 210 value 128.340377
## iter 220 value 124.292003
## iter 230 value 121.244917
## iter 240 value 119.460431
## iter 250 value 117.775155
## iter 260 value 115.244986
## iter 270 value 113.213739
## iter 280 value 111.301315
## iter 290 value 109.924322
## iter 300 value 109.331104
## iter 310 value 108.782459
## iter 320 value 108.371454
## iter 330 value 107.589580
## iter 340 value 106.681442
## iter 350 value 106.021792
## iter 360 value 105.790937
## iter 370 value 105.658899
## iter 380 value 105.628294
## iter 390 value 105.586666
## iter 400 value 105.517853
## iter 410 value 105.416924
## iter 420 value 105.270379
## iter 430 value 105.033196
## iter 440 value 104.586130
## iter 450 value 103.719464
## iter 460 value 102.929766
## iter 470 value 102.136290
## iter 480 value 101.529458
## iter 490 value 100.703155
## iter 500 value 99.567269
## final  value 99.567269 
## stopped after 500 iterations
## # weights:  241
## initial  value 1425732.097986 
## iter  10 value 1375.640186
## iter  20 value 821.895031
## iter  30 value 674.939125
## iter  40 value 502.232512
## iter  50 value 429.798325
## iter  60 value 358.629293
## iter  70 value 307.894247
## iter  80 value 271.940674
## iter  90 value 246.675038
## iter 100 value 224.864809
## iter 110 value 209.590616
## iter 120 value 198.214014
## iter 130 value 190.841716
## iter 140 value 184.426557
## iter 150 value 176.574111
## iter 160 value 167.216698
## iter 170 value 159.219820
## iter 180 value 150.289408
## iter 190 value 142.661961
## iter 200 value 136.443674
## iter 210 value 126.965162
## iter 220 value 119.114537
## iter 230 value 113.614611
## iter 240 value 107.524755
## iter 250 value 101.507598
## iter 260 value 97.952182
## iter 270 value 94.091510
## iter 280 value 89.646154
## iter 290 value 85.841245
## iter 300 value 80.774047
## iter 310 value 74.506634
## iter 320 value 70.152405
## iter 330 value 65.298885
## iter 340 value 62.480585
## iter 350 value 59.811508
## iter 360 value 57.588691
## iter 370 value 55.438650
## iter 380 value 53.187944
## iter 390 value 50.253663
## iter 400 value 48.655191
## iter 410 value 46.851427
## iter 420 value 45.727083
## iter 430 value 44.974745
## iter 440 value 44.212167
## iter 450 value 43.374185
## iter 460 value 42.610683
## iter 470 value 42.158281
## iter 480 value 41.509030
## iter 490 value 41.182159
## iter 500 value 41.096494
## final  value 41.096494 
## stopped after 500 iterations
## # weights:  25
## initial  value 1364156.217056 
## iter  10 value 18269.221518
## iter  20 value 13475.061511
## iter  30 value 9629.319203
## iter  40 value 6671.501158
## iter  50 value 5299.293510
## iter  60 value 3166.346011
## iter  70 value 1733.319600
## iter  80 value 1360.425481
## iter  90 value 1353.776046
## iter 100 value 1345.354833
## iter 110 value 1344.569411
## iter 120 value 1339.296610
## iter 130 value 1335.950002
## iter 140 value 1334.570254
## iter 150 value 1333.703517
## iter 160 value 1333.682468
## iter 170 value 1333.074462
## iter 180 value 1332.484928
## iter 190 value 1332.053172
## iter 200 value 1331.840710
## final  value 1331.840250 
## converged
## # weights:  61
## initial  value 1414574.639448 
## iter  10 value 74404.608292
## iter  20 value 31781.216023
## iter  30 value 18390.347661
## iter  40 value 8885.452614
## iter  50 value 2235.951137
## iter  60 value 1591.800972
## iter  70 value 1390.031093
## iter  80 value 1166.507551
## iter  90 value 1091.906081
## iter 100 value 1018.502108
## iter 110 value 970.674522
## iter 120 value 923.969396
## iter 130 value 899.859971
## iter 140 value 896.646193
## iter 150 value 888.674380
## iter 160 value 850.562327
## iter 170 value 832.091069
## iter 180 value 817.265326
## iter 190 value 788.290220
## iter 200 value 770.034306
## iter 210 value 761.197537
## iter 220 value 755.784054
## iter 230 value 754.581941
## iter 240 value 746.820805
## iter 250 value 709.935781
## iter 260 value 690.454444
## iter 270 value 676.409301
## iter 280 value 663.448097
## iter 290 value 660.128353
## iter 300 value 658.747201
## iter 310 value 656.792685
## iter 320 value 655.258559
## iter 330 value 655.162165
## iter 340 value 654.492991
## iter 350 value 653.504942
## iter 360 value 653.005673
## iter 370 value 652.158174
## iter 380 value 651.834694
## iter 390 value 651.485209
## iter 400 value 650.908469
## iter 410 value 650.319357
## iter 420 value 650.080403
## iter 430 value 649.692217
## iter 440 value 649.470360
## iter 450 value 649.461963
## iter 460 value 649.423687
## iter 470 value 649.297667
## iter 480 value 648.892847
## iter 490 value 648.736538
## iter 500 value 648.387214
## final  value 648.387214 
## stopped after 500 iterations
## # weights:  121
## initial  value 1398787.227659 
## iter  10 value 1131.808015
## iter  20 value 813.078320
## iter  30 value 655.556487
## iter  40 value 566.758219
## iter  50 value 519.180216
## iter  60 value 467.921886
## iter  70 value 427.363979
## iter  80 value 396.369450
## iter  90 value 381.231810
## iter 100 value 362.702192
## iter 110 value 350.659447
## iter 120 value 327.931088
## iter 130 value 315.662409
## iter 140 value 304.816939
## iter 150 value 296.755563
## iter 160 value 287.122701
## iter 170 value 278.714772
## iter 180 value 271.728817
## iter 190 value 266.231985
## iter 200 value 259.166726
## iter 210 value 255.973010
## iter 220 value 252.925171
## iter 230 value 249.796461
## iter 240 value 247.876509
## iter 250 value 247.256902
## iter 260 value 247.068633
## iter 270 value 246.741834
## iter 280 value 245.719127
## iter 290 value 242.780214
## iter 300 value 239.048754
## iter 310 value 234.644306
## iter 320 value 229.813620
## iter 330 value 227.340738
## iter 340 value 224.757668
## iter 350 value 223.465990
## iter 360 value 222.354951
## iter 370 value 221.793251
## iter 380 value 221.386408
## iter 390 value 220.674249
## iter 400 value 220.271242
## iter 410 value 219.824257
## iter 420 value 219.635227
## iter 430 value 219.460927
## iter 440 value 219.378033
## iter 450 value 219.321036
## iter 460 value 219.277718
## iter 470 value 219.271821
## iter 480 value 219.264910
## iter 490 value 219.243279
## iter 500 value 219.133315
## final  value 219.133315 
## stopped after 500 iterations
## # weights:  181
## initial  value 1346720.724982 
## iter  10 value 1022.198683
## iter  20 value 779.803239
## iter  30 value 663.792973
## iter  40 value 543.544539
## iter  50 value 458.727050
## iter  60 value 405.704627
## iter  70 value 357.277567
## iter  80 value 315.458426
## iter  90 value 271.449028
## iter 100 value 245.086950
## iter 110 value 231.976331
## iter 120 value 216.392080
## iter 130 value 205.881725
## iter 140 value 194.742527
## iter 150 value 185.340356
## iter 160 value 176.346289
## iter 170 value 166.463050
## iter 180 value 153.508355
## iter 190 value 145.897651
## iter 200 value 142.710828
## iter 210 value 139.294199
## iter 220 value 135.233884
## iter 230 value 130.619818
## iter 240 value 127.055113
## iter 250 value 124.831449
## iter 260 value 122.887673
## iter 270 value 121.633487
## iter 280 value 120.581692
## iter 290 value 119.650976
## iter 300 value 119.171812
## iter 310 value 118.571495
## iter 320 value 118.087634
## iter 330 value 117.762066
## iter 340 value 117.516178
## iter 350 value 116.982213
## iter 360 value 115.175911
## iter 370 value 114.084910
## iter 380 value 113.791833
## iter 390 value 113.373672
## iter 400 value 113.009754
## iter 410 value 112.605510
## iter 420 value 112.140665
## iter 430 value 111.798971
## iter 440 value 111.516594
## iter 450 value 111.304409
## iter 460 value 110.981374
## iter 470 value 110.651755
## iter 480 value 110.069217
## iter 490 value 109.462269
## iter 500 value 108.348943
## final  value 108.348943 
## stopped after 500 iterations
## # weights:  241
## initial  value 1375342.621822 
## iter  10 value 1241.698748
## iter  20 value 823.326228
## iter  30 value 597.601678
## iter  40 value 494.272467
## iter  50 value 410.415240
## iter  60 value 356.093394
## iter  70 value 315.977675
## iter  80 value 283.437295
## iter  90 value 257.066348
## iter 100 value 237.993795
## iter 110 value 219.203280
## iter 120 value 199.822760
## iter 130 value 178.767423
## iter 140 value 161.751379
## iter 150 value 150.272940
## iter 160 value 137.701897
## iter 170 value 126.887380
## iter 180 value 115.209999
## iter 190 value 103.912457
## iter 200 value 96.021856
## iter 210 value 91.034586
## iter 220 value 85.861334
## iter 230 value 80.024086
## iter 240 value 74.881097
## iter 250 value 70.780686
## iter 260 value 67.533640
## iter 270 value 62.111864
## iter 280 value 57.586626
## iter 290 value 53.866762
## iter 300 value 51.249059
## iter 310 value 49.513083
## iter 320 value 47.854755
## iter 330 value 46.497514
## iter 340 value 45.404367
## iter 350 value 44.420428
## iter 360 value 43.791711
## iter 370 value 43.273921
## iter 380 value 42.655659
## iter 390 value 41.534482
## iter 400 value 40.583315
## iter 410 value 40.035747
## iter 420 value 39.627201
## iter 430 value 39.222367
## iter 440 value 38.827840
## iter 450 value 38.437411
## iter 460 value 37.984439
## iter 470 value 37.580332
## iter 480 value 37.204985
## iter 490 value 37.071207
## iter 500 value 37.027860
## final  value 37.027860 
## stopped after 500 iterations
## # weights:  25
## initial  value 1394525.922485 
## iter  10 value 96563.917233
## iter  20 value 16866.545419
## iter  30 value 15327.736070
## iter  40 value 15094.156086
## iter  50 value 15066.776092
## iter  60 value 13590.662701
## iter  70 value 10160.845966
## iter  80 value 7228.372587
## iter  90 value 4488.432552
## iter 100 value 3759.238182
## iter 110 value 3570.944810
## iter 120 value 3406.374325
## iter 130 value 2050.796356
## iter 140 value 1530.585269
## iter 150 value 1355.674639
## iter 160 value 1260.883588
## iter 170 value 1260.759252
## iter 180 value 1256.859995
## iter 190 value 1256.412601
## iter 200 value 1253.203674
## iter 210 value 1252.406323
## iter 220 value 1249.855451
## iter 230 value 1247.603204
## iter 240 value 1245.999381
## iter 250 value 1245.548232
## iter 260 value 1245.508608
## iter 270 value 1245.391679
## iter 280 value 1245.211120
## iter 290 value 1244.630233
## iter 300 value 1243.711651
## iter 310 value 1243.042698
## iter 320 value 1242.909794
## iter 330 value 1242.704091
## iter 340 value 1242.642847
## iter 340 value 1242.642841
## iter 350 value 1242.642339
## iter 350 value 1242.642339
## iter 360 value 1242.642132
## iter 360 value 1242.642132
## final  value 1242.642110 
## converged
## # weights:  61
## initial  value 1382301.831569 
## iter  10 value 197516.743279
## iter  20 value 9615.255518
## iter  30 value 4661.045760
## iter  40 value 3345.939011
## iter  50 value 1951.741228
## iter  60 value 1500.268711
## iter  70 value 1371.696350
## iter  80 value 1150.797944
## iter  90 value 986.139675
## iter 100 value 855.493323
## iter 110 value 821.007130
## iter 120 value 793.399815
## iter 130 value 778.960976
## iter 140 value 776.843728
## iter 150 value 771.852676
## iter 160 value 750.841811
## iter 170 value 712.700904
## iter 180 value 706.428963
## iter 190 value 704.437838
## iter 200 value 701.133008
## iter 210 value 699.829575
## iter 220 value 698.020215
## iter 230 value 696.706057
## iter 240 value 696.434125
## iter 250 value 695.884491
## iter 260 value 695.749930
## iter 270 value 695.623088
## iter 280 value 695.433360
## iter 290 value 694.476620
## iter 300 value 693.551631
## iter 310 value 692.952079
## iter 320 value 692.676044
## iter 330 value 692.399137
## iter 340 value 691.767141
## iter 350 value 690.034315
## iter 360 value 689.026419
## iter 370 value 682.911563
## iter 380 value 681.772056
## iter 390 value 670.960772
## iter 400 value 647.193142
## iter 410 value 638.152518
## iter 420 value 628.006591
## iter 430 value 619.427779
## iter 440 value 617.520796
## iter 450 value 616.033071
## iter 460 value 614.385915
## iter 470 value 611.570209
## iter 480 value 606.193003
## iter 490 value 603.801266
## iter 500 value 603.498493
## final  value 603.498493 
## stopped after 500 iterations
## # weights:  121
## initial  value 1409867.356317 
## iter  10 value 1684.962673
## iter  20 value 856.348870
## iter  30 value 660.267640
## iter  40 value 605.335315
## iter  50 value 524.784767
## iter  60 value 464.677985
## iter  70 value 434.910607
## iter  80 value 409.793507
## iter  90 value 396.447514
## iter 100 value 386.022818
## iter 110 value 377.117836
## iter 120 value 360.524338
## iter 130 value 349.848787
## iter 140 value 344.777831
## iter 150 value 340.953453
## iter 160 value 339.345269
## iter 170 value 335.561459
## iter 180 value 329.955015
## iter 190 value 324.691052
## iter 200 value 320.966622
## iter 210 value 319.277300
## iter 220 value 318.549999
## iter 230 value 317.552448
## iter 240 value 315.832826
## iter 250 value 314.940601
## iter 260 value 314.358567
## iter 270 value 313.303011
## iter 280 value 311.832098
## iter 290 value 309.700467
## iter 300 value 307.031853
## iter 310 value 303.838831
## iter 320 value 298.829269
## iter 330 value 291.491368
## iter 340 value 287.493885
## iter 350 value 285.055913
## iter 360 value 283.048904
## iter 370 value 281.794215
## iter 380 value 280.913617
## iter 390 value 280.308462
## iter 400 value 279.793370
## iter 410 value 279.423260
## iter 420 value 279.186522
## iter 430 value 279.048744
## iter 440 value 278.589183
## iter 450 value 277.077751
## iter 460 value 276.434203
## iter 470 value 276.260170
## iter 480 value 276.140545
## iter 490 value 276.034100
## iter 500 value 276.027543
## final  value 276.027543 
## stopped after 500 iterations
## # weights:  181
## initial  value 1374732.297412 
## iter  10 value 993.172104
## iter  20 value 797.767413
## iter  30 value 631.609446
## iter  40 value 514.986434
## iter  50 value 418.140325
## iter  60 value 359.316494
## iter  70 value 326.975507
## iter  80 value 294.749833
## iter  90 value 273.854794
## iter 100 value 254.429892
## iter 110 value 238.249194
## iter 120 value 224.953136
## iter 130 value 212.715661
## iter 140 value 206.971246
## iter 150 value 203.225308
## iter 160 value 199.735238
## iter 170 value 195.474313
## iter 180 value 186.743430
## iter 190 value 180.750992
## iter 200 value 176.513920
## iter 210 value 169.967265
## iter 220 value 165.922018
## iter 230 value 161.384470
## iter 240 value 157.791986
## iter 250 value 153.790203
## iter 260 value 150.275075
## iter 270 value 147.312234
## iter 280 value 145.192587
## iter 290 value 142.511477
## iter 300 value 140.783100
## iter 310 value 138.116658
## iter 320 value 135.569610
## iter 330 value 133.104330
## iter 340 value 129.884094
## iter 350 value 126.932648
## iter 360 value 124.469379
## iter 370 value 123.665548
## iter 380 value 123.422714
## iter 390 value 122.647072
## iter 400 value 121.752808
## iter 410 value 120.690748
## iter 420 value 119.289184
## iter 430 value 118.179616
## iter 440 value 117.525909
## iter 450 value 116.716391
## iter 460 value 115.462780
## iter 470 value 114.857949
## iter 480 value 113.995292
## iter 490 value 112.725918
## iter 500 value 110.346004
## final  value 110.346004 
## stopped after 500 iterations
## # weights:  241
## initial  value 1420191.698180 
## iter  10 value 2056.780777
## iter  20 value 893.629456
## iter  30 value 684.309794
## iter  40 value 535.585418
## iter  50 value 373.828552
## iter  60 value 278.565472
## iter  70 value 238.107349
## iter  80 value 204.643094
## iter  90 value 168.208130
## iter 100 value 148.365329
## iter 110 value 137.182286
## iter 120 value 124.090448
## iter 130 value 113.931683
## iter 140 value 106.156163
## iter 150 value 99.535492
## iter 160 value 89.324627
## iter 170 value 83.487758
## iter 180 value 79.347386
## iter 190 value 76.336436
## iter 200 value 72.917547
## iter 210 value 69.200606
## iter 220 value 66.823470
## iter 230 value 64.795175
## iter 240 value 63.369407
## iter 250 value 61.893607
## iter 260 value 60.297842
## iter 270 value 59.209198
## iter 280 value 57.640740
## iter 290 value 56.493227
## iter 300 value 55.527297
## iter 310 value 54.010027
## iter 320 value 52.284771
## iter 330 value 51.338887
## iter 340 value 50.554751
## iter 350 value 49.729827
## iter 360 value 48.729318
## iter 370 value 47.848253
## iter 380 value 46.921142
## iter 390 value 46.095927
## iter 400 value 45.448608
## iter 410 value 44.961928
## iter 420 value 44.391269
## iter 430 value 43.780214
## iter 440 value 43.331521
## iter 450 value 42.868684
## iter 460 value 42.175431
## iter 470 value 40.782103
## iter 480 value 39.952879
## iter 490 value 39.563792
## iter 500 value 39.429882
## final  value 39.429882 
## stopped after 500 iterations
## # weights:  25
## initial  value 1398875.046314 
## iter  10 value 8867.948014
## iter  20 value 5993.622683
## iter  30 value 5646.722816
## iter  40 value 5435.909169
## iter  50 value 5362.765514
## iter  60 value 4536.142053
## iter  70 value 4495.222704
## iter  80 value 4485.764331
## iter  90 value 4453.593642
## iter 100 value 4342.511875
## iter 110 value 3687.301459
## iter 120 value 3045.585932
## iter 130 value 1918.852159
## iter 140 value 1390.904526
## iter 150 value 1317.883261
## iter 160 value 1309.243243
## iter 170 value 1289.933442
## iter 180 value 1257.096041
## iter 190 value 1226.675726
## iter 200 value 1219.077462
## iter 210 value 1173.592771
## iter 220 value 1160.681757
## iter 230 value 1154.568797
## iter 240 value 1149.022461
## iter 250 value 1148.283754
## iter 260 value 1146.675484
## iter 270 value 1138.472914
## iter 280 value 1123.099814
## iter 290 value 1031.942961
## iter 300 value 1012.564630
## iter 310 value 953.010378
## iter 320 value 942.779352
## iter 330 value 940.516515
## iter 340 value 938.517010
## iter 350 value 938.298298
## final  value 938.277994 
## converged
## # weights:  61
## initial  value 1383047.427778 
## iter  10 value 16097.711861
## iter  20 value 13996.074933
## iter  30 value 11464.903557
## iter  40 value 6056.782398
## iter  50 value 2665.760001
## iter  60 value 2086.981202
## iter  70 value 1512.812962
## iter  80 value 1188.484216
## iter  90 value 1056.784378
## iter 100 value 999.337705
## iter 110 value 961.583479
## iter 120 value 926.298884
## iter 130 value 906.313212
## iter 140 value 887.000545
## iter 150 value 853.462135
## iter 160 value 814.084344
## iter 170 value 800.142836
## iter 180 value 796.685038
## iter 190 value 785.673658
## iter 200 value 744.547448
## iter 210 value 719.527059
## iter 220 value 715.829710
## iter 230 value 712.215329
## iter 240 value 706.829763
## iter 250 value 699.825457
## iter 260 value 695.920420
## iter 270 value 692.635028
## iter 280 value 691.513080
## iter 290 value 690.769966
## iter 300 value 690.743778
## iter 310 value 690.695572
## iter 320 value 690.403141
## iter 330 value 689.625702
## iter 340 value 689.134675
## iter 350 value 688.897080
## iter 360 value 688.788519
## iter 370 value 688.495166
## iter 380 value 687.541361
## iter 390 value 686.519352
## iter 400 value 685.457728
## iter 410 value 665.693834
## iter 420 value 658.208763
## iter 430 value 657.293307
## iter 440 value 654.923702
## iter 450 value 653.686242
## iter 460 value 652.987449
## iter 470 value 652.391045
## iter 480 value 652.051909
## iter 490 value 648.666593
## iter 500 value 641.324877
## final  value 641.324877 
## stopped after 500 iterations
## # weights:  121
## initial  value 1370582.855442 
## iter  10 value 3634.042647
## iter  20 value 1789.725686
## iter  30 value 1004.140210
## iter  40 value 747.558390
## iter  50 value 626.230697
## iter  60 value 578.153462
## iter  70 value 541.447040
## iter  80 value 512.601448
## iter  90 value 492.060724
## iter 100 value 475.787008
## iter 110 value 452.065622
## iter 120 value 433.269551
## iter 130 value 413.524123
## iter 140 value 377.496235
## iter 150 value 356.806908
## iter 160 value 346.207773
## iter 170 value 337.465667
## iter 180 value 332.908414
## iter 190 value 331.400341
## iter 200 value 330.624149
## iter 210 value 330.055305
## iter 220 value 328.600686
## iter 230 value 327.315347
## iter 240 value 324.452876
## iter 250 value 323.066543
## iter 260 value 322.756085
## iter 270 value 322.642127
## iter 280 value 322.602356
## iter 290 value 322.591816
## iter 300 value 322.562904
## iter 310 value 322.531566
## iter 320 value 322.528408
## final  value 322.528242 
## converged
## # weights:  181
## initial  value 1434633.488974 
## iter  10 value 1211.861663
## iter  20 value 741.622761
## iter  30 value 617.798101
## iter  40 value 504.417532
## iter  50 value 412.338094
## iter  60 value 371.324556
## iter  70 value 340.397102
## iter  80 value 302.248976
## iter  90 value 272.152936
## iter 100 value 249.972009
## iter 110 value 237.318337
## iter 120 value 222.822050
## iter 130 value 211.467481
## iter 140 value 203.816955
## iter 150 value 192.621959
## iter 160 value 180.075018
## iter 170 value 174.569867
## iter 180 value 160.326451
## iter 190 value 144.485194
## iter 200 value 131.606989
## iter 210 value 125.689084
## iter 220 value 122.755276
## iter 230 value 120.284676
## iter 240 value 117.859599
## iter 250 value 116.095321
## iter 260 value 114.349994
## iter 270 value 112.386997
## iter 280 value 110.593585
## iter 290 value 109.772050
## iter 300 value 109.073959
## iter 310 value 108.544328
## iter 320 value 108.030098
## iter 330 value 107.254260
## iter 340 value 106.195342
## iter 350 value 104.697772
## iter 360 value 103.193881
## iter 370 value 102.654090
## iter 380 value 102.439906
## iter 390 value 101.963333
## iter 400 value 101.388648
## iter 410 value 100.874143
## iter 420 value 100.310271
## iter 430 value 99.585308
## iter 440 value 98.913255
## iter 450 value 98.205766
## iter 460 value 97.648008
## iter 470 value 97.205228
## iter 480 value 96.630771
## iter 490 value 95.981050
## iter 500 value 95.148898
## final  value 95.148898 
## stopped after 500 iterations
## # weights:  241
## initial  value 1380919.758380 
## iter  10 value 1185.503739
## iter  20 value 790.683169
## iter  30 value 627.034190
## iter  40 value 514.864460
## iter  50 value 406.597354
## iter  60 value 358.938303
## iter  70 value 302.339199
## iter  80 value 271.161883
## iter  90 value 246.617239
## iter 100 value 221.158591
## iter 110 value 207.410236
## iter 120 value 195.923775
## iter 130 value 184.926692
## iter 140 value 173.256604
## iter 150 value 157.560859
## iter 160 value 145.242002
## iter 170 value 136.069791
## iter 180 value 129.000279
## iter 190 value 121.603525
## iter 200 value 112.590746
## iter 210 value 106.404280
## iter 220 value 101.734151
## iter 230 value 98.221466
## iter 240 value 95.298610
## iter 250 value 93.506571
## iter 260 value 91.857714
## iter 270 value 90.204602
## iter 280 value 87.749170
## iter 290 value 85.845178
## iter 300 value 84.335200
## iter 310 value 83.127670
## iter 320 value 82.373073
## iter 330 value 81.601811
## iter 340 value 80.734315
## iter 350 value 80.145589
## iter 360 value 79.483337
## iter 370 value 78.846941
## iter 380 value 78.131066
## iter 390 value 77.590630
## iter 400 value 76.953585
## iter 410 value 76.047199
## iter 420 value 74.902899
## iter 430 value 74.321353
## iter 440 value 73.743920
## iter 450 value 73.211313
## iter 460 value 72.724950
## iter 470 value 72.243749
## iter 480 value 71.753237
## iter 490 value 71.584926
## iter 500 value 71.527097
## final  value 71.527097 
## stopped after 500 iterations
## # weights:  25
## initial  value 1381292.049123 
## iter  10 value 20287.215687
## iter  20 value 12854.246572
## iter  30 value 9331.123678
## iter  40 value 7324.673398
## iter  50 value 6394.784077
## iter  60 value 6078.828353
## iter  70 value 5451.364611
## iter  80 value 4879.160754
## iter  90 value 4152.663564
## iter 100 value 2245.441698
## iter 110 value 1652.384291
## iter 120 value 1406.330990
## iter 130 value 1383.511603
## iter 140 value 1360.773843
## iter 150 value 1344.616990
## iter 160 value 1342.205575
## iter 170 value 1342.031844
## final  value 1342.031267 
## converged
## # weights:  61
## initial  value 1419396.305294 
## iter  10 value 184959.023348
## iter  20 value 11318.475570
## iter  30 value 10334.129018
## iter  40 value 9301.190262
## iter  50 value 8234.280747
## iter  60 value 7016.784769
## iter  70 value 6059.059114
## iter  80 value 4430.428399
## iter  90 value 3102.328648
## iter 100 value 2116.677718
## iter 110 value 1856.153645
## iter 120 value 1654.354334
## iter 130 value 1618.838642
## iter 140 value 1598.662422
## iter 150 value 1502.227035
## iter 160 value 1341.668973
## iter 170 value 1261.544451
## iter 180 value 1179.624678
## iter 190 value 1118.587334
## iter 200 value 1079.348832
## iter 210 value 1041.432806
## iter 220 value 1001.745157
## iter 230 value 961.081803
## iter 240 value 941.215148
## iter 250 value 933.249508
## iter 260 value 930.191127
## iter 270 value 927.092230
## iter 280 value 921.600491
## iter 290 value 918.671299
## iter 300 value 917.111812
## iter 310 value 915.623310
## iter 320 value 915.547885
## final  value 915.547866 
## converged
## # weights:  121
## initial  value 1429579.870413 
## iter  10 value 2676.843973
## iter  20 value 1328.866594
## iter  30 value 1136.312087
## iter  40 value 1080.732667
## iter  50 value 1051.095478
## iter  60 value 1036.318257
## iter  70 value 1013.954950
## iter  80 value 987.822197
## iter  90 value 942.212725
## iter 100 value 905.205979
## iter 110 value 853.472609
## iter 120 value 804.975814
## iter 130 value 772.319125
## iter 140 value 727.066991
## iter 150 value 694.309307
## iter 160 value 678.135473
## iter 170 value 670.144468
## iter 180 value 662.467012
## iter 190 value 653.599897
## iter 200 value 644.891181
## iter 210 value 640.383760
## iter 220 value 634.002636
## iter 230 value 629.109090
## iter 240 value 622.475200
## iter 250 value 617.628729
## iter 260 value 614.018865
## iter 270 value 605.798801
## iter 280 value 594.718992
## iter 290 value 570.303635
## iter 300 value 541.318117
## iter 310 value 525.691143
## iter 320 value 522.553924
## iter 330 value 518.840760
## iter 340 value 515.276227
## iter 350 value 512.314690
## iter 360 value 508.776298
## iter 370 value 505.151256
## iter 380 value 502.042305
## iter 390 value 498.143774
## iter 400 value 495.528422
## iter 410 value 492.741194
## iter 420 value 479.613655
## iter 430 value 471.097821
## iter 440 value 467.872219
## iter 450 value 466.112631
## iter 460 value 464.786943
## iter 470 value 463.906956
## iter 480 value 463.788169
## iter 490 value 463.727789
## iter 500 value 463.718523
## final  value 463.718523 
## stopped after 500 iterations
## # weights:  181
## initial  value 1350758.806442 
## iter  10 value 1305.656452
## iter  20 value 857.144756
## iter  30 value 725.492586
## iter  40 value 600.979729
## iter  50 value 547.813998
## iter  60 value 521.245762
## iter  70 value 483.491460
## iter  80 value 459.643289
## iter  90 value 444.644242
## iter 100 value 431.418359
## iter 110 value 416.471585
## iter 120 value 406.356370
## iter 130 value 401.003529
## iter 140 value 397.503648
## iter 150 value 393.405531
## iter 160 value 390.506549
## iter 170 value 386.888534
## iter 180 value 379.886769
## iter 190 value 375.561956
## iter 200 value 373.263663
## iter 210 value 371.718795
## iter 220 value 368.687517
## iter 230 value 363.769758
## iter 240 value 361.193453
## iter 250 value 358.212537
## iter 260 value 356.559336
## iter 270 value 355.405214
## iter 280 value 354.005756
## iter 290 value 353.073280
## iter 300 value 352.014675
## iter 310 value 351.156512
## iter 320 value 350.491249
## iter 330 value 349.873665
## iter 340 value 349.357534
## iter 350 value 348.889836
## iter 360 value 347.894064
## iter 370 value 347.102972
## iter 380 value 346.842744
## iter 390 value 346.349524
## iter 400 value 345.963008
## iter 410 value 345.827065
## iter 420 value 345.743161
## iter 430 value 345.705685
## iter 440 value 345.682398
## iter 450 value 345.661600
## iter 460 value 345.632443
## iter 470 value 345.578164
## iter 480 value 345.516618
## iter 490 value 345.351348
## iter 500 value 345.272303
## final  value 345.272303 
## stopped after 500 iterations
## # weights:  241
## initial  value 1362499.251470 
## iter  10 value 1272.672194
## iter  20 value 883.943841
## iter  30 value 743.769012
## iter  40 value 629.600859
## iter  50 value 547.787256
## iter  60 value 498.847486
## iter  70 value 475.077643
## iter  80 value 454.458265
## iter  90 value 441.592704
## iter 100 value 430.776356
## iter 110 value 424.534253
## iter 120 value 419.569638
## iter 130 value 413.936907
## iter 140 value 407.280641
## iter 150 value 400.826140
## iter 160 value 396.181335
## iter 170 value 392.125717
## iter 180 value 385.320780
## iter 190 value 380.372983
## iter 200 value 376.124581
## iter 210 value 372.841356
## iter 220 value 370.166136
## iter 230 value 366.412347
## iter 240 value 363.349710
## iter 250 value 361.329537
## iter 260 value 359.127974
## iter 270 value 357.227443
## iter 280 value 355.681249
## iter 290 value 354.020479
## iter 300 value 351.854725
## iter 310 value 349.690689
## iter 320 value 347.262095
## iter 330 value 344.203866
## iter 340 value 341.311006
## iter 350 value 339.219991
## iter 360 value 338.020488
## iter 370 value 336.930317
## iter 380 value 336.076126
## iter 390 value 335.278900
## iter 400 value 334.573043
## iter 410 value 333.811137
## iter 420 value 333.005316
## iter 430 value 332.181636
## iter 440 value 331.468455
## iter 450 value 330.429249
## iter 460 value 329.360251
## iter 470 value 328.382914
## iter 480 value 327.561672
## iter 490 value 327.198614
## iter 500 value 326.698237
## final  value 326.698237 
## stopped after 500 iterations
## # weights:  25
## initial  value 1352804.101603 
## iter  10 value 7275.747305
## iter  20 value 5671.697933
## iter  30 value 4972.380138
## iter  40 value 3179.032765
## iter  50 value 1704.377016
## iter  60 value 1450.697286
## iter  70 value 1432.154930
## iter  80 value 1354.504384
## iter  90 value 1336.069149
## iter 100 value 1329.949531
## iter 110 value 1327.451469
## iter 120 value 1327.351137
## iter 130 value 1325.226789
## iter 140 value 1323.396121
## iter 150 value 1322.155002
## iter 160 value 1321.358865
## iter 170 value 1321.326107
## final  value 1321.326029 
## converged
## # weights:  61
## initial  value 1381519.965639 
## iter  10 value 156745.089010
## iter  20 value 19165.135566
## iter  30 value 4707.429300
## iter  40 value 2910.576358
## iter  50 value 2507.757296
## iter  60 value 2442.203789
## iter  70 value 2400.313853
## iter  80 value 2392.664782
## iter  90 value 2380.635613
## iter 100 value 2325.955800
## iter 110 value 2199.569931
## iter 120 value 1817.425136
## iter 130 value 1391.646552
## iter 140 value 1254.540213
## iter 150 value 1219.271583
## iter 160 value 1198.840266
## iter 170 value 1174.080006
## iter 180 value 1172.475059
## iter 190 value 1171.034220
## iter 200 value 1170.555707
## iter 210 value 1170.345513
## iter 220 value 1170.212457
## final  value 1170.212293 
## converged
## # weights:  121
## initial  value 1413421.109585 
## iter  10 value 1164.292169
## iter  20 value 917.817139
## iter  30 value 794.873953
## iter  40 value 704.864810
## iter  50 value 645.498750
## iter  60 value 599.702107
## iter  70 value 534.997492
## iter  80 value 502.120381
## iter  90 value 474.354445
## iter 100 value 456.554333
## iter 110 value 429.374554
## iter 120 value 393.297491
## iter 130 value 370.217467
## iter 140 value 351.341173
## iter 150 value 339.785544
## iter 160 value 331.455091
## iter 170 value 321.697691
## iter 180 value 310.101631
## iter 190 value 297.704618
## iter 200 value 288.833757
## iter 210 value 279.004290
## iter 220 value 271.420859
## iter 230 value 266.658103
## iter 240 value 261.757831
## iter 250 value 258.717112
## iter 260 value 257.455015
## iter 270 value 256.695570
## iter 280 value 254.898675
## iter 290 value 253.070971
## iter 300 value 251.184672
## iter 310 value 249.060118
## iter 320 value 246.855712
## iter 330 value 244.456969
## iter 340 value 241.698852
## iter 350 value 239.301865
## iter 360 value 236.819552
## iter 370 value 235.800689
## iter 380 value 235.176343
## iter 390 value 234.545566
## iter 400 value 234.206551
## iter 410 value 233.947747
## iter 420 value 233.490559
## iter 430 value 232.665740
## iter 440 value 231.071099
## iter 450 value 229.779929
## iter 460 value 226.675373
## iter 470 value 225.458197
## iter 480 value 224.716210
## iter 490 value 224.045071
## iter 500 value 223.982740
## final  value 223.982740 
## stopped after 500 iterations
## # weights:  181
## initial  value 1401015.855766 
## iter  10 value 1199.275633
## iter  20 value 835.197898
## iter  30 value 667.544267
## iter  40 value 529.879974
## iter  50 value 442.998801
## iter  60 value 394.055870
## iter  70 value 339.969879
## iter  80 value 309.182838
## iter  90 value 282.462925
## iter 100 value 261.871797
## iter 110 value 246.757338
## iter 120 value 233.521851
## iter 130 value 225.709182
## iter 140 value 216.937743
## iter 150 value 207.225850
## iter 160 value 196.613876
## iter 170 value 189.384304
## iter 180 value 182.776166
## iter 190 value 174.835674
## iter 200 value 169.414834
## iter 210 value 165.400080
## iter 220 value 162.083955
## iter 230 value 159.058170
## iter 240 value 155.684739
## iter 250 value 150.590213
## iter 260 value 147.163452
## iter 270 value 144.798286
## iter 280 value 141.196879
## iter 290 value 139.373404
## iter 300 value 137.832535
## iter 310 value 136.166298
## iter 320 value 134.235930
## iter 330 value 131.245240
## iter 340 value 124.752549
## iter 350 value 120.818687
## iter 360 value 117.970698
## iter 370 value 116.948100
## iter 380 value 116.534072
## iter 390 value 115.951792
## iter 400 value 115.089880
## iter 410 value 114.442252
## iter 420 value 114.124754
## iter 430 value 113.681684
## iter 440 value 113.234187
## iter 450 value 112.707178
## iter 460 value 112.293287
## iter 470 value 111.870424
## iter 480 value 110.661587
## iter 490 value 107.888475
## iter 500 value 105.202963
## final  value 105.202963 
## stopped after 500 iterations
## # weights:  241
## initial  value 1347790.223486 
## iter  10 value 1274.694409
## iter  20 value 808.576311
## iter  30 value 648.638270
## iter  40 value 536.287785
## iter  50 value 385.116096
## iter  60 value 318.603221
## iter  70 value 260.793058
## iter  80 value 221.822935
## iter  90 value 192.716942
## iter 100 value 173.013705
## iter 110 value 155.943760
## iter 120 value 141.480877
## iter 130 value 132.621339
## iter 140 value 125.795299
## iter 150 value 118.299518
## iter 160 value 108.361337
## iter 170 value 99.629122
## iter 180 value 94.671734
## iter 190 value 90.431288
## iter 200 value 87.952221
## iter 210 value 85.894707
## iter 220 value 83.802836
## iter 230 value 81.958632
## iter 240 value 79.765769
## iter 250 value 77.144538
## iter 260 value 74.585932
## iter 270 value 73.050789
## iter 280 value 71.046833
## iter 290 value 69.264372
## iter 300 value 66.930977
## iter 310 value 64.682696
## iter 320 value 62.481003
## iter 330 value 59.675131
## iter 340 value 57.580304
## iter 350 value 55.487808
## iter 360 value 53.851191
## iter 370 value 52.370625
## iter 380 value 50.969494
## iter 390 value 49.219205
## iter 400 value 48.093818
## iter 410 value 47.048995
## iter 420 value 45.992675
## iter 430 value 44.750350
## iter 440 value 43.802829
## iter 450 value 42.887897
## iter 460 value 41.846880
## iter 470 value 41.190365
## iter 480 value 40.540935
## iter 490 value 40.315329
## iter 500 value 40.266483
## final  value 40.266483 
## stopped after 500 iterations
## # weights:  25
## initial  value 1401025.334235 
## iter  10 value 7284.059451
## iter  20 value 5587.156652
## iter  30 value 5319.201372
## iter  40 value 5255.107886
## iter  50 value 5188.325682
## iter  60 value 5143.539109
## iter  70 value 5070.790555
## iter  80 value 5029.732484
## iter  90 value 3813.249512
## iter 100 value 2371.969911
## iter 110 value 1525.654284
## iter 120 value 1413.086943
## iter 130 value 1364.722618
## iter 140 value 1353.035854
## iter 150 value 1341.908589
## iter 160 value 1332.772461
## iter 170 value 1326.844043
## iter 180 value 1324.670520
## iter 190 value 1323.787315
## iter 200 value 1323.778446
## iter 210 value 1323.599126
## iter 220 value 1322.422833
## iter 230 value 1321.750752
## iter 240 value 1321.213118
## iter 250 value 1320.859134
## final  value 1320.858722 
## converged
## # weights:  61
## initial  value 1404180.067285 
## iter  10 value 22671.133453
## iter  20 value 5360.307533
## iter  30 value 4207.555920
## iter  40 value 3919.162721
## iter  50 value 3813.449596
## iter  60 value 3780.048255
## iter  70 value 3711.695550
## iter  80 value 3625.125671
## iter  90 value 3613.359982
## iter 100 value 3596.773197
## iter 110 value 3594.835459
## iter 120 value 3593.030214
## iter 130 value 3592.574417
## iter 140 value 3592.193419
## iter 150 value 3591.754231
## iter 160 value 3584.427380
## iter 170 value 3583.559293
## iter 180 value 3583.116588
## iter 190 value 3582.987442
## iter 200 value 3582.777231
## iter 210 value 3576.875601
## iter 220 value 3518.912091
## iter 230 value 3404.034133
## iter 240 value 3212.200627
## iter 250 value 2841.745081
## iter 260 value 2764.397597
## iter 270 value 2696.080490
## iter 280 value 2647.740139
## iter 290 value 2638.625154
## iter 300 value 2620.145531
## iter 310 value 2590.235872
## iter 320 value 2585.700893
## iter 330 value 2585.623124
## iter 340 value 2570.545051
## iter 350 value 2559.205549
## iter 360 value 2554.474714
## iter 370 value 2553.363530
## iter 380 value 2525.157009
## iter 390 value 2462.921823
## iter 400 value 2384.033327
## iter 410 value 2336.589377
## iter 420 value 2333.068754
## iter 430 value 2305.535569
## iter 440 value 2287.008613
## iter 450 value 2286.559691
## iter 460 value 2285.640299
## iter 470 value 2285.238267
## iter 480 value 2284.033843
## iter 490 value 2283.416994
## iter 500 value 2283.045388
## final  value 2283.045388 
## stopped after 500 iterations
## # weights:  121
## initial  value 1370780.538871 
## iter  10 value 1735.960221
## iter  20 value 1076.013267
## iter  30 value 801.138301
## iter  40 value 661.683896
## iter  50 value 588.912375
## iter  60 value 547.488980
## iter  70 value 516.016607
## iter  80 value 492.769867
## iter  90 value 477.034863
## iter 100 value 454.225233
## iter 110 value 430.739833
## iter 120 value 408.415240
## iter 130 value 385.521385
## iter 140 value 370.325777
## iter 150 value 363.577648
## iter 160 value 357.327124
## iter 170 value 351.908763
## iter 180 value 342.439786
## iter 190 value 332.030176
## iter 200 value 327.709196
## iter 210 value 324.751174
## iter 220 value 319.408574
## iter 230 value 315.372046
## iter 240 value 311.279525
## iter 250 value 310.105779
## iter 260 value 309.663263
## iter 270 value 308.939303
## iter 280 value 308.165743
## iter 290 value 307.234542
## iter 300 value 306.471767
## iter 310 value 303.523433
## iter 320 value 301.526438
## iter 330 value 300.925481
## iter 340 value 299.174160
## iter 350 value 297.496483
## iter 360 value 296.117915
## iter 370 value 295.686652
## iter 380 value 295.122172
## iter 390 value 294.896259
## iter 400 value 294.673973
## iter 410 value 294.155303
## iter 420 value 293.814682
## iter 430 value 293.523008
## iter 440 value 293.328705
## iter 450 value 293.177029
## iter 460 value 292.664311
## iter 470 value 291.931915
## iter 480 value 291.504126
## iter 490 value 291.336734
## iter 500 value 291.332069
## final  value 291.332069 
## stopped after 500 iterations
## # weights:  181
## initial  value 1396667.071372 
## iter  10 value 1366.611597
## iter  20 value 859.571418
## iter  30 value 668.131074
## iter  40 value 549.455972
## iter  50 value 478.297412
## iter  60 value 434.499136
## iter  70 value 374.530645
## iter  80 value 320.307281
## iter  90 value 282.719803
## iter 100 value 256.786556
## iter 110 value 235.016765
## iter 120 value 214.666246
## iter 130 value 192.460545
## iter 140 value 176.038959
## iter 150 value 157.862732
## iter 160 value 137.730718
## iter 170 value 128.795955
## iter 180 value 122.700060
## iter 190 value 115.466196
## iter 200 value 109.681338
## iter 210 value 105.457075
## iter 220 value 102.749829
## iter 230 value 101.430944
## iter 240 value 99.798719
## iter 250 value 97.745144
## iter 260 value 96.199137
## iter 270 value 94.822800
## iter 280 value 94.088607
## iter 290 value 92.960461
## iter 300 value 91.684003
## iter 310 value 90.789164
## iter 320 value 89.907719
## iter 330 value 89.018270
## iter 340 value 88.039470
## iter 350 value 86.774421
## iter 360 value 85.717270
## iter 370 value 85.363087
## iter 380 value 85.175668
## iter 390 value 85.002447
## iter 400 value 84.819101
## iter 410 value 84.510125
## iter 420 value 84.245665
## iter 430 value 83.835894
## iter 440 value 83.437400
## iter 450 value 82.997922
## iter 460 value 82.707169
## iter 470 value 82.218878
## iter 480 value 81.278060
## iter 490 value 79.015409
## iter 500 value 77.319640
## final  value 77.319640 
## stopped after 500 iterations
## # weights:  241
## initial  value 1352819.001937 
## iter  10 value 1261.009641
## iter  20 value 837.738397
## iter  30 value 653.867019
## iter  40 value 511.778327
## iter  50 value 391.650299
## iter  60 value 326.723595
## iter  70 value 302.777406
## iter  80 value 256.025471
## iter  90 value 212.113029
## iter 100 value 183.820656
## iter 110 value 164.190851
## iter 120 value 145.852115
## iter 130 value 126.345890
## iter 140 value 113.753259
## iter 150 value 103.067666
## iter 160 value 90.072533
## iter 170 value 81.161396
## iter 180 value 73.617740
## iter 190 value 68.447576
## iter 200 value 63.272250
## iter 210 value 58.954729
## iter 220 value 56.121493
## iter 230 value 53.920060
## iter 240 value 52.073351
## iter 250 value 49.685968
## iter 260 value 46.697579
## iter 270 value 44.254907
## iter 280 value 42.207398
## iter 290 value 40.603739
## iter 300 value 38.018178
## iter 310 value 36.625137
## iter 320 value 35.861910
## iter 330 value 35.146216
## iter 340 value 33.965530
## iter 350 value 32.477062
## iter 360 value 31.087124
## iter 370 value 30.239801
## iter 380 value 29.744742
## iter 390 value 29.468820
## iter 400 value 29.200044
## iter 410 value 28.778337
## iter 420 value 28.499064
## iter 430 value 28.355875
## iter 440 value 28.188326
## iter 450 value 27.609800
## iter 460 value 26.265635
## iter 470 value 25.882024
## iter 480 value 25.759427
## iter 490 value 25.720686
## iter 500 value 25.698199
## final  value 25.698199 
## stopped after 500 iterations
## # weights:  25
## initial  value 1371501.389672 
## iter  10 value 15815.073506
## iter  20 value 14614.011160
## iter  30 value 10194.045091
## iter  40 value 6571.548063
## iter  50 value 5241.104461
## iter  60 value 1911.651971
## iter  70 value 1553.706446
## iter  80 value 1390.593124
## iter  90 value 1361.868945
## iter 100 value 1356.842422
## iter 110 value 1336.677195
## iter 120 value 1330.784663
## iter 130 value 1328.491950
## iter 140 value 1326.210357
## iter 150 value 1326.158931
## iter 160 value 1325.436196
## iter 170 value 1324.582233
## iter 180 value 1313.507536
## iter 190 value 1298.386388
## iter 200 value 1292.526271
## iter 210 value 1264.965888
## iter 220 value 1204.078173
## iter 230 value 1184.048488
## iter 240 value 1148.655452
## iter 250 value 1147.589780
## iter 260 value 1141.319227
## iter 270 value 1136.746382
## iter 280 value 1134.763864
## iter 290 value 1134.671998
## iter 300 value 1134.584800
## iter 310 value 1134.480873
## iter 320 value 1134.313015
## iter 330 value 1134.072244
## iter 340 value 1134.027020
## final  value 1134.026804 
## converged
## # weights:  61
## initial  value 1367512.773204 
## iter  10 value 5604.994907
## iter  20 value 3359.931736
## iter  30 value 3081.183087
## iter  40 value 2863.801073
## iter  50 value 2758.543282
## iter  60 value 2497.887377
## iter  70 value 2065.485635
## iter  80 value 1421.367137
## iter  90 value 1038.484875
## iter 100 value 958.716354
## iter 110 value 952.143653
## iter 120 value 944.798628
## iter 130 value 933.403260
## iter 140 value 921.810942
## iter 150 value 894.625385
## iter 160 value 884.450087
## iter 170 value 875.437601
## iter 180 value 874.017676
## iter 190 value 873.069538
## iter 200 value 871.011545
## iter 210 value 868.181329
## iter 220 value 867.734755
## iter 230 value 866.437055
## iter 240 value 866.073146
## iter 250 value 865.692923
## iter 260 value 864.772413
## iter 270 value 864.486307
## iter 280 value 864.333982
## iter 290 value 860.877652
## iter 300 value 854.254309
## iter 310 value 823.710856
## iter 320 value 812.120582
## iter 330 value 811.403515
## iter 340 value 809.168905
## iter 350 value 809.010864
## iter 360 value 808.952847
## iter 370 value 808.866586
## iter 380 value 808.638352
## iter 390 value 808.629291
## iter 400 value 807.641652
## iter 410 value 771.189230
## iter 420 value 714.636228
## iter 430 value 700.373567
## iter 440 value 696.801482
## iter 450 value 695.835918
## iter 460 value 695.694068
## iter 470 value 695.610381
## iter 480 value 695.505235
## iter 490 value 695.485199
## iter 500 value 695.469437
## final  value 695.469437 
## stopped after 500 iterations
## # weights:  121
## initial  value 1400728.413880 
## iter  10 value 1363.585280
## iter  20 value 873.601261
## iter  30 value 767.053150
## iter  40 value 627.101185
## iter  50 value 540.107163
## iter  60 value 471.949974
## iter  70 value 439.885503
## iter  80 value 417.899453
## iter  90 value 402.783649
## iter 100 value 389.996237
## iter 110 value 377.806679
## iter 120 value 367.786890
## iter 130 value 357.818937
## iter 140 value 344.196884
## iter 150 value 328.572736
## iter 160 value 317.878277
## iter 170 value 305.858034
## iter 180 value 300.878604
## iter 190 value 297.820064
## iter 200 value 293.579884
## iter 210 value 290.702624
## iter 220 value 289.055955
## iter 230 value 285.856664
## iter 240 value 282.098029
## iter 250 value 280.797279
## iter 260 value 280.153352
## iter 270 value 279.437869
## iter 280 value 278.289290
## iter 290 value 276.145569
## iter 300 value 271.557460
## iter 310 value 266.867384
## iter 320 value 263.522622
## iter 330 value 261.175500
## iter 340 value 259.315281
## iter 350 value 253.925522
## iter 360 value 249.450493
## iter 370 value 247.536185
## iter 380 value 246.452899
## iter 390 value 245.418617
## iter 400 value 244.457939
## iter 410 value 243.747675
## iter 420 value 243.597071
## iter 430 value 243.474429
## iter 440 value 243.365266
## iter 450 value 243.298071
## iter 460 value 243.237898
## iter 470 value 243.186002
## iter 480 value 243.116300
## iter 490 value 243.090502
## iter 500 value 243.090008
## final  value 243.090008 
## stopped after 500 iterations
## # weights:  181
## initial  value 1355913.141531 
## iter  10 value 1213.449689
## iter  20 value 881.802980
## iter  30 value 689.143307
## iter  40 value 537.528342
## iter  50 value 398.892445
## iter  60 value 362.634637
## iter  70 value 303.551921
## iter  80 value 269.765047
## iter  90 value 242.699828
## iter 100 value 225.115190
## iter 110 value 216.593478
## iter 120 value 205.392067
## iter 130 value 192.980451
## iter 140 value 182.426216
## iter 150 value 170.047450
## iter 160 value 160.068666
## iter 170 value 152.447415
## iter 180 value 148.302840
## iter 190 value 145.325194
## iter 200 value 142.119570
## iter 210 value 139.834791
## iter 220 value 137.603088
## iter 230 value 134.135690
## iter 240 value 131.403401
## iter 250 value 129.544676
## iter 260 value 128.267740
## iter 270 value 127.194232
## iter 280 value 126.568804
## iter 290 value 125.441379
## iter 300 value 124.744604
## iter 310 value 124.031489
## iter 320 value 122.609491
## iter 330 value 122.024698
## iter 340 value 121.718851
## iter 350 value 121.529965
## iter 360 value 121.360051
## iter 370 value 121.284423
## iter 380 value 121.264644
## iter 390 value 121.223714
## iter 400 value 121.180452
## iter 410 value 121.105104
## iter 420 value 120.992501
## iter 430 value 120.760728
## iter 440 value 120.482895
## iter 450 value 120.057076
## iter 460 value 119.631656
## iter 470 value 119.173482
## iter 480 value 118.585147
## iter 490 value 117.904547
## iter 500 value 117.324056
## final  value 117.324056 
## stopped after 500 iterations
## # weights:  241
## initial  value 1437169.761367 
## iter  10 value 1016.738092
## iter  20 value 777.575334
## iter  30 value 655.091731
## iter  40 value 531.925574
## iter  50 value 406.624093
## iter  60 value 331.028081
## iter  70 value 273.735397
## iter  80 value 237.175688
## iter  90 value 213.011085
## iter 100 value 194.870318
## iter 110 value 182.300884
## iter 120 value 166.518027
## iter 130 value 151.100913
## iter 140 value 141.958977
## iter 150 value 134.737956
## iter 160 value 128.700533
## iter 170 value 124.377930
## iter 180 value 118.694785
## iter 190 value 110.151650
## iter 200 value 102.621544
## iter 210 value 95.453264
## iter 220 value 88.075954
## iter 230 value 80.601564
## iter 240 value 75.418833
## iter 250 value 72.017731
## iter 260 value 69.893594
## iter 270 value 67.735721
## iter 280 value 65.527623
## iter 290 value 63.328681
## iter 300 value 61.433226
## iter 310 value 59.520209
## iter 320 value 57.862201
## iter 330 value 55.571115
## iter 340 value 53.857480
## iter 350 value 52.706519
## iter 360 value 51.077815
## iter 370 value 49.494233
## iter 380 value 48.583871
## iter 390 value 47.797846
## iter 400 value 47.035803
## iter 410 value 46.206622
## iter 420 value 45.170743
## iter 430 value 44.109184
## iter 440 value 42.567203
## iter 450 value 41.210057
## iter 460 value 40.384792
## iter 470 value 39.831887
## iter 480 value 39.287501
## iter 490 value 38.954009
## iter 500 value 38.858889
## final  value 38.858889 
## stopped after 500 iterations
## # weights:  25
## initial  value 1377807.128967 
## iter  10 value 6582.290470
## iter  20 value 5508.642516
## iter  30 value 5080.982529
## iter  40 value 4740.683518
## iter  50 value 4227.903126
## iter  60 value 2087.065988
## iter  70 value 1428.445220
## iter  80 value 1310.069237
## iter  90 value 1295.675950
## iter 100 value 1273.716215
## iter 110 value 1224.686210
## iter 120 value 1203.038553
## iter 130 value 1198.956890
## iter 140 value 1198.849509
## iter 150 value 1198.152293
## iter 160 value 1195.113686
## iter 170 value 1192.961112
## iter 180 value 1192.776110
## iter 190 value 1191.383366
## iter 200 value 1177.103352
## iter 210 value 1176.432713
## iter 220 value 1158.589045
## iter 230 value 982.354673
## iter 240 value 944.698121
## iter 250 value 939.000986
## iter 260 value 938.938787
## iter 270 value 938.239078
## iter 280 value 935.731395
## iter 290 value 934.662017
## iter 300 value 934.483520
## iter 310 value 934.477706
## iter 320 value 934.472090
## iter 330 value 934.386992
## iter 340 value 934.005259
## iter 350 value 929.597745
## iter 360 value 929.120999
## iter 370 value 928.666392
## iter 380 value 927.962362
## iter 390 value 927.580306
## iter 400 value 927.409867
## iter 410 value 927.392970
## iter 420 value 927.391246
## iter 430 value 927.380780
## iter 440 value 927.377445
## final  value 927.376360 
## converged
## # weights:  61
## initial  value 1394416.286883 
## iter  10 value 17220.208746
## iter  20 value 7747.878990
## iter  30 value 5051.578783
## iter  40 value 3121.547604
## iter  50 value 1768.449111
## iter  60 value 1192.214031
## iter  70 value 1080.187373
## iter  80 value 1025.264518
## iter  90 value 1010.585021
## iter 100 value 989.691703
## iter 110 value 954.378623
## iter 120 value 896.064139
## iter 130 value 854.689155
## iter 140 value 798.152878
## iter 150 value 773.398477
## iter 160 value 756.428576
## iter 170 value 740.809695
## iter 180 value 732.101064
## iter 190 value 716.393906
## iter 200 value 701.659813
## iter 210 value 689.749053
## iter 220 value 684.868642
## iter 230 value 679.235501
## iter 240 value 664.838744
## iter 250 value 652.804734
## iter 260 value 649.168417
## iter 270 value 643.088603
## iter 280 value 636.531358
## iter 290 value 632.961249
## iter 300 value 631.572475
## iter 310 value 631.111005
## iter 320 value 630.906092
## iter 330 value 630.757792
## iter 340 value 630.754553
## iter 350 value 630.748148
## iter 360 value 630.732007
## iter 370 value 630.700259
## iter 380 value 628.687600
## iter 390 value 628.315681
## iter 400 value 628.162033
## iter 410 value 628.121174
## iter 420 value 628.104709
## final  value 628.098970 
## converged
## # weights:  121
## initial  value 1390362.510508 
## iter  10 value 2649.200572
## iter  20 value 1207.976790
## iter  30 value 920.473514
## iter  40 value 804.393514
## iter  50 value 700.980690
## iter  60 value 630.617975
## iter  70 value 589.459419
## iter  80 value 557.543020
## iter  90 value 533.539162
## iter 100 value 489.609764
## iter 110 value 454.142782
## iter 120 value 408.632791
## iter 130 value 377.962137
## iter 140 value 350.570100
## iter 150 value 335.162560
## iter 160 value 326.483062
## iter 170 value 317.930706
## iter 180 value 314.825175
## iter 190 value 312.351039
## iter 200 value 310.279597
## iter 210 value 308.181375
## iter 220 value 306.186959
## iter 230 value 303.979851
## iter 240 value 301.598040
## iter 250 value 300.482051
## iter 260 value 299.971541
## iter 270 value 299.110014
## iter 280 value 298.392082
## iter 290 value 297.204832
## iter 300 value 296.038760
## iter 310 value 293.784063
## iter 320 value 292.397213
## iter 330 value 290.829776
## iter 340 value 290.206335
## iter 350 value 289.532676
## iter 360 value 288.629698
## iter 370 value 287.441981
## iter 380 value 287.266482
## iter 390 value 287.212570
## iter 400 value 287.195338
## iter 410 value 287.189516
## iter 420 value 287.187231
## iter 430 value 287.186553
## iter 440 value 287.186145
## iter 450 value 287.186009
## final  value 287.186004 
## converged
## # weights:  181
## initial  value 1383869.672376 
## iter  10 value 1092.333771
## iter  20 value 807.214112
## iter  30 value 685.324766
## iter  40 value 551.811317
## iter  50 value 463.026045
## iter  60 value 410.785969
## iter  70 value 375.091130
## iter  80 value 336.584303
## iter  90 value 306.276299
## iter 100 value 289.240208
## iter 110 value 272.296663
## iter 120 value 255.567922
## iter 130 value 241.656171
## iter 140 value 229.909904
## iter 150 value 217.290821
## iter 160 value 203.287707
## iter 170 value 195.347011
## iter 180 value 184.334690
## iter 190 value 179.597415
## iter 200 value 176.856171
## iter 210 value 173.100870
## iter 220 value 169.624765
## iter 230 value 167.029093
## iter 240 value 164.379752
## iter 250 value 162.024558
## iter 260 value 160.343251
## iter 270 value 158.950562
## iter 280 value 155.580142
## iter 290 value 152.841511
## iter 300 value 149.943401
## iter 310 value 148.495006
## iter 320 value 146.686591
## iter 330 value 145.696641
## iter 340 value 145.109605
## iter 350 value 144.381624
## iter 360 value 143.251849
## iter 370 value 142.611658
## iter 380 value 142.343252
## iter 390 value 142.024499
## iter 400 value 141.412376
## iter 410 value 140.834330
## iter 420 value 139.526064
## iter 430 value 137.521205
## iter 440 value 135.522022
## iter 450 value 134.376111
## iter 460 value 133.663173
## iter 470 value 132.914036
## iter 480 value 132.350281
## iter 490 value 131.994557
## iter 500 value 131.842429
## final  value 131.842429 
## stopped after 500 iterations
## # weights:  241
## initial  value 1291557.154878 
## iter  10 value 1822.996062
## iter  20 value 863.117476
## iter  30 value 664.052866
## iter  40 value 538.442347
## iter  50 value 429.187327
## iter  60 value 324.827280
## iter  70 value 279.942713
## iter  80 value 254.797148
## iter  90 value 229.327432
## iter 100 value 204.395092
## iter 110 value 182.691786
## iter 120 value 163.120875
## iter 130 value 146.356131
## iter 140 value 131.913924
## iter 150 value 123.748953
## iter 160 value 117.828552
## iter 170 value 112.404097
## iter 180 value 105.989116
## iter 190 value 100.002400
## iter 200 value 95.423052
## iter 210 value 90.230996
## iter 220 value 84.567531
## iter 230 value 79.877048
## iter 240 value 75.321164
## iter 250 value 72.081778
## iter 260 value 69.361703
## iter 270 value 67.200481
## iter 280 value 65.736415
## iter 290 value 64.083852
## iter 300 value 62.934060
## iter 310 value 61.815333
## iter 320 value 60.604699
## iter 330 value 59.763782
## iter 340 value 59.166337
## iter 350 value 58.712735
## iter 360 value 58.271996
## iter 370 value 57.882915
## iter 380 value 57.504080
## iter 390 value 56.914200
## iter 400 value 56.365150
## iter 410 value 55.719298
## iter 420 value 54.949924
## iter 430 value 54.169159
## iter 440 value 53.568176
## iter 450 value 53.014802
## iter 460 value 52.590100
## iter 470 value 52.216198
## iter 480 value 51.856371
## iter 490 value 51.747844
## iter 500 value 51.714740
## final  value 51.714740 
## stopped after 500 iterations
## # weights:  25
## initial  value 1372580.110498 
## iter  10 value 7796.715498
## iter  20 value 6125.311582
## iter  30 value 4736.369899
## iter  40 value 2616.454685
## iter  50 value 1828.938500
## iter  60 value 1582.638888
## iter  70 value 1334.507169
## iter  80 value 1257.647568
## iter  90 value 1226.586263
## iter 100 value 1220.954055
## iter 110 value 1191.297730
## iter 120 value 1174.844944
## iter 130 value 1174.304547
## final  value 1174.304322 
## converged
## # weights:  61
## initial  value 1409266.100448 
## iter  10 value 11254.188241
## iter  20 value 8712.066875
## iter  30 value 7085.147988
## iter  40 value 5420.681639
## iter  50 value 3944.948525
## iter  60 value 3170.526045
## iter  70 value 2817.016709
## iter  80 value 2523.301074
## iter  90 value 2367.408547
## iter 100 value 2208.834604
## iter 110 value 1949.233258
## iter 120 value 1720.447614
## iter 130 value 1626.985772
## iter 140 value 1602.582657
## iter 150 value 1495.630571
## iter 160 value 1332.985045
## iter 170 value 1242.735519
## iter 180 value 1197.682314
## iter 190 value 1141.925591
## iter 200 value 1121.117100
## iter 210 value 1099.906399
## iter 220 value 1079.352164
## iter 230 value 1060.145911
## iter 240 value 1041.534335
## iter 250 value 1023.403488
## iter 260 value 1008.616498
## iter 270 value 984.418456
## iter 280 value 965.852370
## iter 290 value 954.086057
## iter 300 value 947.008987
## iter 310 value 932.660972
## iter 320 value 912.851924
## iter 330 value 902.507394
## iter 340 value 895.708933
## iter 350 value 893.920694
## iter 360 value 893.447271
## iter 370 value 893.362106
## iter 380 value 893.351854
## iter 390 value 893.323349
## iter 400 value 893.279525
## iter 410 value 893.264447
## iter 420 value 893.261154
## final  value 893.261045 
## converged
## # weights:  121
## initial  value 1348772.984296 
## iter  10 value 2285.383073
## iter  20 value 1072.096445
## iter  30 value 894.562944
## iter  40 value 845.481911
## iter  50 value 781.020663
## iter  60 value 744.103312
## iter  70 value 713.874642
## iter  80 value 686.751157
## iter  90 value 660.156664
## iter 100 value 638.490625
## iter 110 value 622.900259
## iter 120 value 605.976933
## iter 130 value 588.820740
## iter 140 value 578.795191
## iter 150 value 569.857569
## iter 160 value 564.268886
## iter 170 value 561.307149
## iter 180 value 559.436292
## iter 190 value 554.821548
## iter 200 value 551.366416
## iter 210 value 549.017685
## iter 220 value 547.231149
## iter 230 value 545.479393
## iter 240 value 544.491721
## iter 250 value 544.016511
## iter 260 value 543.686231
## iter 270 value 542.913798
## iter 280 value 542.424311
## iter 290 value 541.700294
## iter 300 value 540.343089
## iter 310 value 539.877669
## iter 320 value 539.823601
## iter 330 value 539.814267
## iter 340 value 539.813678
## iter 340 value 539.813673
## iter 340 value 539.813673
## final  value 539.813673 
## converged
## # weights:  181
## initial  value 1430872.257193 
## iter  10 value 1304.712967
## iter  20 value 953.468449
## iter  30 value 802.304534
## iter  40 value 687.093412
## iter  50 value 589.366754
## iter  60 value 539.206056
## iter  70 value 509.363586
## iter  80 value 486.141922
## iter  90 value 470.655134
## iter 100 value 457.679315
## iter 110 value 448.857180
## iter 120 value 441.409939
## iter 130 value 434.581021
## iter 140 value 426.457880
## iter 150 value 417.272802
## iter 160 value 408.983417
## iter 170 value 403.403516
## iter 180 value 399.642424
## iter 190 value 396.840433
## iter 200 value 395.331645
## iter 210 value 393.834610
## iter 220 value 390.804489
## iter 230 value 386.808378
## iter 240 value 383.337005
## iter 250 value 381.123074
## iter 260 value 378.858517
## iter 270 value 376.111459
## iter 280 value 373.821366
## iter 290 value 372.271325
## iter 300 value 370.657367
## iter 310 value 369.563837
## iter 320 value 369.049950
## iter 330 value 368.896952
## iter 340 value 368.783105
## iter 350 value 368.670589
## iter 360 value 368.594260
## iter 370 value 368.569858
## iter 380 value 368.539278
## iter 390 value 368.491377
## iter 400 value 368.462061
## iter 410 value 368.451379
## iter 420 value 368.443969
## iter 430 value 368.440427
## iter 440 value 368.438721
## iter 450 value 368.438123
## iter 460 value 368.437919
## final  value 368.437889 
## converged
## # weights:  241
## initial  value 1447581.346562 
## iter  10 value 2959.288466
## iter  20 value 1438.771771
## iter  30 value 1026.502343
## iter  40 value 832.320200
## iter  50 value 755.250862
## iter  60 value 685.812617
## iter  70 value 632.508042
## iter  80 value 605.363994
## iter  90 value 587.883698
## iter 100 value 577.026763
## iter 110 value 564.540374
## iter 120 value 551.902322
## iter 130 value 541.885847
## iter 140 value 532.632171
## iter 150 value 518.714511
## iter 160 value 508.524854
## iter 170 value 493.328361
## iter 180 value 481.304159
## iter 190 value 469.840988
## iter 200 value 461.771436
## iter 210 value 454.818338
## iter 220 value 447.658954
## iter 230 value 437.782682
## iter 240 value 430.906869
## iter 250 value 426.078625
## iter 260 value 421.511465
## iter 270 value 416.482177
## iter 280 value 411.402443
## iter 290 value 407.458398
## iter 300 value 403.702439
## iter 310 value 400.778424
## iter 320 value 397.865260
## iter 330 value 394.358452
## iter 340 value 391.684744
## iter 350 value 388.754587
## iter 360 value 387.526570
## iter 370 value 385.549989
## iter 380 value 383.890309
## iter 390 value 383.237766
## iter 400 value 382.697901
## iter 410 value 381.866439
## iter 420 value 380.997695
## iter 430 value 380.156723
## iter 440 value 379.293233
## iter 450 value 378.555413
## iter 460 value 377.942716
## iter 470 value 376.967300
## iter 480 value 376.130196
## iter 490 value 375.575712
## iter 500 value 375.133576
## final  value 375.133576 
## stopped after 500 iterations
## # weights:  25
## initial  value 1399249.548941 
## iter  10 value 7003.306263
## iter  20 value 5131.185983
## iter  30 value 2857.338188
## iter  40 value 1762.670837
## iter  50 value 1286.671748
## iter  60 value 1246.243551
## iter  70 value 1225.658074
## iter  80 value 1158.227390
## iter  90 value 1143.215915
## iter 100 value 1135.833051
## iter 110 value 1134.240530
## iter 120 value 1133.685525
## iter 130 value 1132.255449
## iter 140 value 1130.797270
## iter 150 value 1129.767567
## iter 160 value 1129.447015
## iter 170 value 1129.435259
## iter 180 value 1129.239655
## iter 190 value 1128.799157
## iter 200 value 1128.619499
## final  value 1128.583892 
## converged
## # weights:  61
## initial  value 1370760.779359 
## iter  10 value 19907.146053
## iter  20 value 3239.762629
## iter  30 value 3102.842849
## iter  40 value 3013.132086
## iter  50 value 2948.650387
## iter  60 value 2893.249232
## iter  70 value 2819.007379
## iter  80 value 2782.237329
## iter  90 value 2762.406226
## iter 100 value 2758.731294
## iter 110 value 2755.521585
## iter 120 value 2751.978833
## iter 130 value 2735.855152
## iter 140 value 2733.920928
## iter 150 value 2733.262579
## iter 160 value 2732.679618
## iter 170 value 2731.842361
## iter 180 value 2731.573955
## iter 190 value 2729.314204
## iter 200 value 2713.701059
## iter 210 value 2706.317183
## iter 220 value 2691.657400
## iter 230 value 2689.880493
## iter 240 value 2678.279249
## iter 250 value 2667.300336
## iter 260 value 2666.123031
## iter 270 value 2640.826370
## iter 280 value 2638.156135
## iter 290 value 2628.133612
## iter 300 value 2403.963658
## iter 310 value 2044.160707
## iter 320 value 1475.744751
## iter 330 value 1272.201363
## iter 340 value 1206.136339
## iter 350 value 1194.682270
## iter 360 value 1190.650892
## iter 370 value 1189.620567
## iter 380 value 1189.118859
## iter 390 value 1187.988302
## iter 400 value 1186.085736
## iter 410 value 1186.062944
## final  value 1186.062177 
## converged
## # weights:  121
## initial  value 1351488.804482 
## iter  10 value 1274.506092
## iter  20 value 900.715802
## iter  30 value 757.656657
## iter  40 value 644.489324
## iter  50 value 564.932621
## iter  60 value 520.276777
## iter  70 value 471.698120
## iter  80 value 442.779524
## iter  90 value 422.462933
## iter 100 value 408.357824
## iter 110 value 395.506349
## iter 120 value 384.665575
## iter 130 value 376.388211
## iter 140 value 368.343874
## iter 150 value 361.125107
## iter 160 value 354.937938
## iter 170 value 350.923256
## iter 180 value 344.337857
## iter 190 value 337.660117
## iter 200 value 333.167933
## iter 210 value 330.114755
## iter 220 value 327.808591
## iter 230 value 324.523861
## iter 240 value 322.006802
## iter 250 value 320.853066
## iter 260 value 320.224749
## iter 270 value 317.176238
## iter 280 value 313.440666
## iter 290 value 310.918030
## iter 300 value 309.519708
## iter 310 value 307.794084
## iter 320 value 303.841030
## iter 330 value 300.399886
## iter 340 value 299.564688
## iter 350 value 298.166221
## iter 360 value 297.639823
## iter 370 value 297.337774
## iter 380 value 295.457185
## iter 390 value 293.231000
## iter 400 value 292.067611
## iter 410 value 290.788416
## iter 420 value 287.644827
## iter 430 value 285.054687
## iter 440 value 283.389651
## iter 450 value 281.085013
## iter 460 value 278.140069
## iter 470 value 276.125443
## iter 480 value 274.818999
## iter 490 value 273.786823
## iter 500 value 273.615208
## final  value 273.615208 
## stopped after 500 iterations
## # weights:  181
## initial  value 1415817.314266 
## iter  10 value 1153.746106
## iter  20 value 832.706463
## iter  30 value 736.038801
## iter  40 value 615.890780
## iter  50 value 494.425847
## iter  60 value 430.101505
## iter  70 value 376.750882
## iter  80 value 328.624886
## iter  90 value 303.685305
## iter 100 value 278.555990
## iter 110 value 251.284476
## iter 120 value 237.195157
## iter 130 value 224.938165
## iter 140 value 215.014507
## iter 150 value 208.263521
## iter 160 value 202.777010
## iter 170 value 198.386358
## iter 180 value 193.232424
## iter 190 value 189.899769
## iter 200 value 186.888340
## iter 210 value 182.727949
## iter 220 value 180.164476
## iter 230 value 176.324788
## iter 240 value 174.429170
## iter 250 value 173.034823
## iter 260 value 172.218962
## iter 270 value 171.557560
## iter 280 value 171.038350
## iter 290 value 170.584040
## iter 300 value 170.214840
## iter 310 value 169.397091
## iter 320 value 168.188245
## iter 330 value 166.969432
## iter 340 value 165.835678
## iter 350 value 164.841096
## iter 360 value 163.915017
## iter 370 value 163.153419
## iter 380 value 162.791262
## iter 390 value 162.174939
## iter 400 value 161.237640
## iter 410 value 160.027661
## iter 420 value 158.675966
## iter 430 value 157.343618
## iter 440 value 155.833902
## iter 450 value 154.797980
## iter 460 value 153.169628
## iter 470 value 150.788225
## iter 480 value 148.332568
## iter 490 value 145.043753
## iter 500 value 142.875852
## final  value 142.875852 
## stopped after 500 iterations
## # weights:  241
## initial  value 1369819.313009 
## iter  10 value 1539.309919
## iter  20 value 838.402909
## iter  30 value 728.270365
## iter  40 value 562.696980
## iter  50 value 438.775254
## iter  60 value 372.495928
## iter  70 value 320.728187
## iter  80 value 289.415911
## iter  90 value 248.421982
## iter 100 value 220.815497
## iter 110 value 204.095880
## iter 120 value 186.211479
## iter 130 value 171.728556
## iter 140 value 160.688435
## iter 150 value 153.035179
## iter 160 value 146.617843
## iter 170 value 138.845792
## iter 180 value 133.165401
## iter 190 value 129.035622
## iter 200 value 124.474376
## iter 210 value 119.018202
## iter 220 value 112.296760
## iter 230 value 107.162626
## iter 240 value 103.136083
## iter 250 value 97.478991
## iter 260 value 92.199305
## iter 270 value 88.770772
## iter 280 value 87.430672
## iter 290 value 86.579492
## iter 300 value 86.023614
## iter 310 value 84.610445
## iter 320 value 83.296348
## iter 330 value 82.022265
## iter 340 value 80.599078
## iter 350 value 79.400415
## iter 360 value 78.445209
## iter 370 value 77.183573
## iter 380 value 75.491217
## iter 390 value 72.918922
## iter 400 value 70.337756
## iter 410 value 68.710865
## iter 420 value 66.708595
## iter 430 value 64.351618
## iter 440 value 60.124377
## iter 450 value 55.873978
## iter 460 value 53.803475
## iter 470 value 52.027364
## iter 480 value 50.823363
## iter 490 value 50.311411
## iter 500 value 50.163579
## final  value 50.163579 
## stopped after 500 iterations
## # weights:  25
## initial  value 1400993.701429 
## iter  10 value 7286.924569
## iter  20 value 6169.348781
## iter  30 value 3574.186681
## iter  40 value 2555.829148
## iter  50 value 1789.560102
## iter  60 value 1355.869399
## iter  70 value 1169.551700
## iter  80 value 1134.231447
## iter  90 value 1132.491137
## iter 100 value 1114.476538
## iter 110 value 1075.692237
## iter 120 value 1062.059411
## iter 130 value 1047.381628
## iter 140 value 1044.352079
## iter 150 value 1031.830323
## iter 160 value 1001.355214
## iter 170 value 997.196055
## iter 180 value 996.462403
## iter 190 value 996.421291
## iter 200 value 996.269299
## iter 210 value 995.353467
## iter 220 value 994.511071
## iter 230 value 993.976228
## iter 240 value 993.958154
## iter 250 value 993.954769
## iter 250 value 993.954768
## final  value 993.954725 
## converged
## # weights:  61
## initial  value 1421367.163171 
## iter  10 value 3801.275557
## iter  20 value 1833.895676
## iter  30 value 1551.830802
## iter  40 value 1298.713281
## iter  50 value 1195.702349
## iter  60 value 1026.301921
## iter  70 value 880.421993
## iter  80 value 809.693984
## iter  90 value 774.331597
## iter 100 value 739.962961
## iter 110 value 723.903418
## iter 120 value 713.176692
## iter 130 value 703.837327
## iter 140 value 694.597519
## iter 150 value 693.679250
## iter 160 value 692.263834
## iter 170 value 689.627343
## iter 180 value 685.489837
## iter 190 value 678.060038
## iter 200 value 676.052089
## iter 210 value 674.837394
## iter 220 value 672.776495
## iter 230 value 668.218115
## iter 240 value 666.645731
## iter 250 value 664.352842
## iter 260 value 659.053745
## iter 270 value 657.898756
## iter 280 value 657.781801
## iter 290 value 657.545448
## iter 300 value 657.240692
## iter 310 value 656.479659
## iter 320 value 655.917766
## iter 330 value 655.499990
## iter 340 value 654.925337
## iter 350 value 654.405208
## iter 360 value 654.165909
## iter 370 value 653.894195
## iter 380 value 653.614006
## iter 390 value 653.497274
## iter 400 value 653.494752
## iter 410 value 653.486358
## iter 420 value 653.474719
## iter 430 value 653.388216
## iter 440 value 653.232419
## iter 450 value 653.127303
## iter 460 value 653.034567
## iter 470 value 652.971672
## iter 480 value 652.885445
## iter 490 value 652.815117
## iter 500 value 652.755476
## final  value 652.755476 
## stopped after 500 iterations
## # weights:  121
## initial  value 1415602.608750 
## iter  10 value 1131.724780
## iter  20 value 854.076189
## iter  30 value 683.484522
## iter  40 value 602.559641
## iter  50 value 529.918591
## iter  60 value 481.979000
## iter  70 value 443.203096
## iter  80 value 416.858570
## iter  90 value 390.489370
## iter 100 value 367.867105
## iter 110 value 342.731487
## iter 120 value 328.864006
## iter 130 value 319.099743
## iter 140 value 309.522168
## iter 150 value 302.895755
## iter 160 value 297.557113
## iter 170 value 293.862931
## iter 180 value 292.114980
## iter 190 value 290.639564
## iter 200 value 288.482929
## iter 210 value 287.366481
## iter 220 value 286.335792
## iter 230 value 285.218083
## iter 240 value 284.067250
## iter 250 value 283.658063
## iter 260 value 283.449817
## iter 270 value 283.158512
## iter 280 value 282.432274
## iter 290 value 281.315564
## iter 300 value 279.712388
## iter 310 value 278.141529
## iter 320 value 277.328944
## iter 330 value 276.888538
## iter 340 value 276.763233
## iter 350 value 276.501600
## iter 360 value 275.423381
## iter 370 value 273.058743
## iter 380 value 272.531471
## iter 390 value 272.160524
## iter 400 value 272.091444
## iter 410 value 272.064283
## iter 420 value 272.051825
## iter 430 value 272.049844
## iter 440 value 272.036350
## iter 450 value 272.026493
## iter 460 value 272.008482
## iter 470 value 272.000882
## iter 480 value 268.993504
## iter 490 value 268.639132
## iter 500 value 268.624311
## final  value 268.624311 
## stopped after 500 iterations
## # weights:  181
## initial  value 1355871.586909 
## iter  10 value 1184.136649
## iter  20 value 802.268861
## iter  30 value 678.437420
## iter  40 value 552.443959
## iter  50 value 441.127757
## iter  60 value 383.976764
## iter  70 value 346.153647
## iter  80 value 308.843206
## iter  90 value 289.959258
## iter 100 value 270.953095
## iter 110 value 243.014335
## iter 120 value 220.509667
## iter 130 value 202.647417
## iter 140 value 191.622385
## iter 150 value 184.115241
## iter 160 value 175.728647
## iter 170 value 165.887444
## iter 180 value 156.588117
## iter 190 value 151.471111
## iter 200 value 146.200880
## iter 210 value 142.010271
## iter 220 value 137.879208
## iter 230 value 134.621731
## iter 240 value 132.038651
## iter 250 value 128.993549
## iter 260 value 124.260771
## iter 270 value 119.745292
## iter 280 value 116.775291
## iter 290 value 114.378241
## iter 300 value 111.513364
## iter 310 value 108.936192
## iter 320 value 106.044773
## iter 330 value 103.181736
## iter 340 value 99.863907
## iter 350 value 98.698850
## iter 360 value 98.220772
## iter 370 value 98.034159
## iter 380 value 97.933845
## iter 390 value 97.821874
## iter 400 value 97.626473
## iter 410 value 97.337563
## iter 420 value 97.014430
## iter 430 value 96.560019
## iter 440 value 96.043657
## iter 450 value 94.360175
## iter 460 value 92.536858
## iter 470 value 92.194955
## iter 480 value 91.892035
## iter 490 value 91.394640
## iter 500 value 90.276380
## final  value 90.276380 
## stopped after 500 iterations
## # weights:  241
## initial  value 1372258.678841 
## iter  10 value 1149.771341
## iter  20 value 785.212625
## iter  30 value 646.586130
## iter  40 value 503.263755
## iter  50 value 401.802374
## iter  60 value 353.768992
## iter  70 value 298.502214
## iter  80 value 247.066554
## iter  90 value 206.890318
## iter 100 value 178.046761
## iter 110 value 162.193620
## iter 120 value 150.730782
## iter 130 value 141.380209
## iter 140 value 134.133471
## iter 150 value 126.608314
## iter 160 value 118.867486
## iter 170 value 110.990553
## iter 180 value 103.031639
## iter 190 value 97.285074
## iter 200 value 90.562218
## iter 210 value 82.410562
## iter 220 value 75.531322
## iter 230 value 68.922569
## iter 240 value 63.826676
## iter 250 value 60.268014
## iter 260 value 57.228857
## iter 270 value 54.574929
## iter 280 value 51.014055
## iter 290 value 46.871660
## iter 300 value 44.390258
## iter 310 value 41.580841
## iter 320 value 39.563706
## iter 330 value 38.035230
## iter 340 value 36.321815
## iter 350 value 34.140028
## iter 360 value 31.817678
## iter 370 value 30.168141
## iter 380 value 28.995741
## iter 390 value 27.598648
## iter 400 value 25.796509
## iter 410 value 24.812816
## iter 420 value 24.331756
## iter 430 value 24.062449
## iter 440 value 23.914152
## iter 450 value 23.757570
## iter 460 value 23.583903
## iter 470 value 23.434727
## iter 480 value 23.296581
## iter 490 value 23.234394
## iter 500 value 23.220561
## final  value 23.220561 
## stopped after 500 iterations
## # weights:  25
## initial  value 1369324.544997 
## iter  10 value 7025.615488
## iter  20 value 4680.973133
## iter  30 value 3838.834364
## iter  40 value 2469.322735
## iter  50 value 1905.230958
## iter  60 value 1505.307199
## iter  70 value 1451.852756
## iter  80 value 1423.629224
## iter  90 value 1413.427977
## iter 100 value 1411.047402
## iter 110 value 1404.883621
## iter 120 value 1402.105592
## iter 130 value 1400.522710
## iter 140 value 1399.809101
## iter 150 value 1399.776171
## iter 160 value 1399.237090
## iter 170 value 1399.085336
## final  value 1399.053295 
## converged
## # weights:  61
## initial  value 1403025.232844 
## iter  10 value 4726.215708
## iter  20 value 2672.392370
## iter  30 value 1982.050461
## iter  40 value 1600.025290
## iter  50 value 1129.167559
## iter  60 value 919.669549
## iter  70 value 837.774313
## iter  80 value 785.820942
## iter  90 value 757.241050
## iter 100 value 719.713077
## iter 110 value 703.570315
## iter 120 value 677.144068
## iter 130 value 666.688248
## iter 140 value 662.690890
## iter 150 value 652.156870
## iter 160 value 634.655134
## iter 170 value 627.621389
## iter 180 value 624.148677
## iter 190 value 621.751145
## iter 200 value 620.738282
## iter 210 value 618.235213
## iter 220 value 616.729326
## iter 230 value 614.806961
## iter 240 value 614.472017
## iter 250 value 614.178564
## iter 260 value 614.139730
## iter 270 value 614.063647
## iter 280 value 613.930858
## iter 290 value 613.464210
## iter 300 value 611.484569
## iter 310 value 602.252579
## iter 320 value 597.575196
## iter 330 value 595.518970
## iter 340 value 594.601391
## iter 350 value 593.450001
## iter 360 value 591.431474
## iter 370 value 589.496303
## iter 380 value 588.979306
## iter 390 value 588.661160
## iter 400 value 588.256034
## iter 410 value 587.763936
## iter 420 value 586.182533
## iter 430 value 584.998591
## iter 440 value 584.243766
## iter 450 value 583.688755
## iter 460 value 583.397990
## iter 470 value 583.134759
## iter 480 value 582.811397
## iter 490 value 582.720463
## iter 500 value 582.707143
## final  value 582.707143 
## stopped after 500 iterations
## # weights:  121
## initial  value 1320129.737371 
## iter  10 value 1624.506124
## iter  20 value 917.282825
## iter  30 value 789.229924
## iter  40 value 680.479243
## iter  50 value 625.714741
## iter  60 value 567.582770
## iter  70 value 514.932904
## iter  80 value 475.799989
## iter  90 value 438.469790
## iter 100 value 401.005849
## iter 110 value 383.298004
## iter 120 value 369.106142
## iter 130 value 352.422686
## iter 140 value 343.912851
## iter 150 value 339.072919
## iter 160 value 335.353749
## iter 170 value 329.201814
## iter 180 value 323.623755
## iter 190 value 317.961651
## iter 200 value 314.470861
## iter 210 value 310.949391
## iter 220 value 306.612141
## iter 230 value 302.186189
## iter 240 value 295.683458
## iter 250 value 293.294542
## iter 260 value 292.588857
## iter 270 value 291.056026
## iter 280 value 288.809370
## iter 290 value 285.596520
## iter 300 value 279.831440
## iter 310 value 271.825978
## iter 320 value 268.451578
## iter 330 value 258.030314
## iter 340 value 253.648295
## iter 350 value 252.141720
## iter 360 value 250.432647
## iter 370 value 249.424462
## iter 380 value 248.219102
## iter 390 value 247.287846
## iter 400 value 246.961768
## iter 410 value 246.408577
## iter 420 value 245.940859
## iter 430 value 245.733250
## iter 440 value 245.035034
## iter 450 value 244.683850
## iter 460 value 244.582022
## iter 470 value 244.492872
## iter 480 value 244.469083
## iter 490 value 244.439086
## iter 500 value 244.282685
## final  value 244.282685 
## stopped after 500 iterations
## # weights:  181
## initial  value 1397857.760328 
## iter  10 value 1389.843572
## iter  20 value 825.989549
## iter  30 value 666.513984
## iter  40 value 539.944056
## iter  50 value 439.599134
## iter  60 value 389.193285
## iter  70 value 337.508235
## iter  80 value 292.328951
## iter  90 value 269.362025
## iter 100 value 251.139835
## iter 110 value 236.932439
## iter 120 value 226.082349
## iter 130 value 219.406831
## iter 140 value 214.744377
## iter 150 value 207.076593
## iter 160 value 198.302969
## iter 170 value 192.635003
## iter 180 value 183.746950
## iter 190 value 176.636927
## iter 200 value 170.818314
## iter 210 value 164.371525
## iter 220 value 159.229100
## iter 230 value 156.160748
## iter 240 value 152.216955
## iter 250 value 147.231327
## iter 260 value 143.714547
## iter 270 value 141.912056
## iter 280 value 139.741189
## iter 290 value 138.375093
## iter 300 value 136.932008
## iter 310 value 135.889219
## iter 320 value 135.310405
## iter 330 value 134.076005
## iter 340 value 132.722187
## iter 350 value 130.636823
## iter 360 value 129.288574
## iter 370 value 128.989235
## iter 380 value 128.897016
## iter 390 value 128.787223
## iter 400 value 128.515748
## iter 410 value 128.311302
## iter 420 value 127.975676
## iter 430 value 127.378715
## iter 440 value 126.566296
## iter 450 value 125.987179
## iter 460 value 125.496474
## iter 470 value 124.932161
## iter 480 value 123.964446
## iter 490 value 122.935869
## iter 500 value 122.191363
## final  value 122.191363 
## stopped after 500 iterations
## # weights:  241
## initial  value 1359008.769885 
## iter  10 value 1462.510466
## iter  20 value 723.271013
## iter  30 value 566.481990
## iter  40 value 442.789109
## iter  50 value 358.333365
## iter  60 value 304.736522
## iter  70 value 252.980201
## iter  80 value 204.397746
## iter  90 value 170.681692
## iter 100 value 135.710306
## iter 110 value 119.458902
## iter 120 value 107.707169
## iter 130 value 93.986501
## iter 140 value 82.919729
## iter 150 value 75.618370
## iter 160 value 69.517501
## iter 170 value 64.021491
## iter 180 value 59.041762
## iter 190 value 55.117287
## iter 200 value 50.931625
## iter 210 value 48.846046
## iter 220 value 47.282795
## iter 230 value 45.358878
## iter 240 value 42.826073
## iter 250 value 40.941645
## iter 260 value 39.438183
## iter 270 value 38.195968
## iter 280 value 37.209152
## iter 290 value 36.463823
## iter 300 value 35.554055
## iter 310 value 34.992267
## iter 320 value 34.225788
## iter 330 value 33.550049
## iter 340 value 33.007241
## iter 350 value 32.296169
## iter 360 value 31.666588
## iter 370 value 31.090456
## iter 380 value 30.388627
## iter 390 value 29.780454
## iter 400 value 29.227964
## iter 410 value 28.610060
## iter 420 value 28.009516
## iter 430 value 27.500394
## iter 440 value 27.068312
## iter 450 value 26.677994
## iter 460 value 26.266565
## iter 470 value 25.918661
## iter 480 value 25.656754
## iter 490 value 25.521249
## iter 500 value 25.482336
## final  value 25.482336 
## stopped after 500 iterations
## # weights:  25
## initial  value 1417650.253061 
## iter  10 value 4084.053345
## iter  20 value 2715.588637
## iter  30 value 2138.728630
## iter  40 value 1189.330704
## iter  50 value 1009.620663
## iter  60 value 962.373447
## iter  70 value 954.767990
## iter  80 value 950.896096
## iter  90 value 936.624246
## iter 100 value 925.907521
## iter 110 value 920.523740
## iter 120 value 920.081526
## iter 130 value 919.962997
## iter 140 value 918.562620
## iter 150 value 918.020102
## iter 160 value 917.764499
## iter 170 value 917.746802
## iter 180 value 917.734281
## iter 190 value 917.697416
## iter 200 value 917.694667
## final  value 917.693065 
## converged
## # weights:  61
## initial  value 1401539.000039 
## iter  10 value 3098.745033
## iter  20 value 1322.295492
## iter  30 value 1086.346817
## iter  40 value 929.204248
## iter  50 value 838.768014
## iter  60 value 755.052310
## iter  70 value 695.218883
## iter  80 value 670.491005
## iter  90 value 654.245207
## iter 100 value 646.392225
## iter 110 value 640.878637
## iter 120 value 637.579079
## iter 130 value 635.349704
## iter 140 value 633.898970
## iter 150 value 631.327864
## iter 160 value 626.956828
## iter 170 value 619.654651
## iter 180 value 613.850636
## iter 190 value 608.093214
## iter 200 value 603.988686
## iter 210 value 599.942005
## iter 220 value 598.686590
## iter 230 value 598.386494
## iter 240 value 598.086972
## iter 250 value 597.763038
## iter 260 value 597.659772
## iter 270 value 596.713514
## iter 280 value 593.822092
## iter 290 value 590.576494
## iter 300 value 589.744958
## iter 310 value 589.326799
## iter 320 value 588.765574
## iter 330 value 588.619048
## iter 340 value 588.586951
## iter 350 value 588.585413
## final  value 588.585377 
## converged
## # weights:  121
## initial  value 1387618.133988 
## iter  10 value 2755.396783
## iter  20 value 1898.382193
## iter  30 value 1152.063702
## iter  40 value 898.125173
## iter  50 value 771.834498
## iter  60 value 691.650032
## iter  70 value 633.233149
## iter  80 value 580.548834
## iter  90 value 547.099971
## iter 100 value 519.919839
## iter 110 value 507.866666
## iter 120 value 494.710788
## iter 130 value 472.207826
## iter 140 value 454.671771
## iter 150 value 430.670394
## iter 160 value 398.197496
## iter 170 value 380.150740
## iter 180 value 371.362686
## iter 190 value 364.037217
## iter 200 value 359.261556
## iter 210 value 354.503980
## iter 220 value 350.648150
## iter 230 value 344.865215
## iter 240 value 331.771181
## iter 250 value 325.367721
## iter 260 value 323.240389
## iter 270 value 318.058411
## iter 280 value 313.153201
## iter 290 value 307.073215
## iter 300 value 302.646817
## iter 310 value 300.486933
## iter 320 value 299.572486
## iter 330 value 298.624885
## iter 340 value 297.010336
## iter 350 value 296.514963
## iter 360 value 296.143007
## iter 370 value 295.967168
## iter 380 value 295.900194
## iter 390 value 295.885235
## iter 400 value 295.881128
## iter 410 value 295.879786
## iter 420 value 295.879329
## final  value 295.879285 
## converged
## # weights:  181
## initial  value 1353109.857907 
## iter  10 value 1165.416312
## iter  20 value 843.752321
## iter  30 value 655.253237
## iter  40 value 536.410116
## iter  50 value 457.419045
## iter  60 value 404.874448
## iter  70 value 352.908524
## iter  80 value 309.105905
## iter  90 value 285.359892
## iter 100 value 269.052267
## iter 110 value 250.935847
## iter 120 value 234.362230
## iter 130 value 222.713092
## iter 140 value 212.620639
## iter 150 value 206.229230
## iter 160 value 198.722980
## iter 170 value 192.233115
## iter 180 value 188.060990
## iter 190 value 184.665361
## iter 200 value 181.934337
## iter 210 value 178.841313
## iter 220 value 177.155107
## iter 230 value 175.699525
## iter 240 value 173.471433
## iter 250 value 171.385441
## iter 260 value 169.651503
## iter 270 value 166.874975
## iter 280 value 164.673550
## iter 290 value 162.791373
## iter 300 value 161.190808
## iter 310 value 159.902460
## iter 320 value 158.452868
## iter 330 value 157.531684
## iter 340 value 156.717297
## iter 350 value 155.515158
## iter 360 value 153.948118
## iter 370 value 153.479566
## iter 380 value 153.347850
## iter 390 value 153.064633
## iter 400 value 152.508160
## iter 410 value 151.896849
## iter 420 value 150.940807
## iter 430 value 149.456858
## iter 440 value 147.772629
## iter 450 value 146.017017
## iter 460 value 143.766589
## iter 470 value 141.991566
## iter 480 value 140.570218
## iter 490 value 139.752987
## iter 500 value 139.168733
## final  value 139.168733 
## stopped after 500 iterations
## # weights:  241
## initial  value 1405068.224245 
## iter  10 value 1596.038062
## iter  20 value 795.607971
## iter  30 value 623.269353
## iter  40 value 509.679559
## iter  50 value 436.220921
## iter  60 value 383.891636
## iter  70 value 338.833303
## iter  80 value 305.866338
## iter  90 value 279.324549
## iter 100 value 246.850977
## iter 110 value 222.836651
## iter 120 value 197.523648
## iter 130 value 176.006235
## iter 140 value 161.946539
## iter 150 value 149.497127
## iter 160 value 137.447945
## iter 170 value 130.171465
## iter 180 value 123.922143
## iter 190 value 118.306383
## iter 200 value 113.787738
## iter 210 value 110.244247
## iter 220 value 107.646561
## iter 230 value 104.692502
## iter 240 value 102.580985
## iter 250 value 101.111849
## iter 260 value 99.834491
## iter 270 value 98.607042
## iter 280 value 97.113060
## iter 290 value 95.751318
## iter 300 value 94.497124
## iter 310 value 92.636988
## iter 320 value 90.879702
## iter 330 value 89.326452
## iter 340 value 87.691596
## iter 350 value 85.540872
## iter 360 value 84.316849
## iter 370 value 83.180181
## iter 380 value 82.223929
## iter 390 value 81.484933
## iter 400 value 80.743547
## iter 410 value 79.916969
## iter 420 value 79.257957
## iter 430 value 78.699635
## iter 440 value 78.222871
## iter 450 value 77.832244
## iter 460 value 77.519520
## iter 470 value 77.269783
## iter 480 value 76.985714
## iter 490 value 76.910455
## iter 500 value 76.875690
## final  value 76.875690 
## stopped after 500 iterations
## # weights:  25
## initial  value 1400164.074754 
## iter  10 value 6642.901198
## iter  20 value 6387.370291
## iter  30 value 6044.695178
## iter  40 value 5062.146424
## iter  50 value 4059.457495
## iter  60 value 2001.222288
## iter  70 value 1555.128719
## iter  80 value 1465.293944
## iter  90 value 1398.517813
## iter 100 value 1310.299327
## iter 110 value 1241.127429
## iter 120 value 1215.797922
## iter 130 value 1204.421555
## iter 140 value 1201.592970
## iter 150 value 1191.265908
## iter 160 value 1190.345961
## final  value 1190.338876 
## converged
## # weights:  61
## initial  value 1385280.374491 
## iter  10 value 2582.024502
## iter  20 value 1971.944531
## iter  30 value 1450.112898
## iter  40 value 1146.645064
## iter  50 value 1056.306893
## iter  60 value 988.428688
## iter  70 value 947.330373
## iter  80 value 923.817251
## iter  90 value 902.099049
## iter 100 value 857.755764
## iter 110 value 843.351629
## iter 120 value 833.606703
## iter 130 value 826.727717
## iter 140 value 816.722511
## iter 150 value 806.684808
## iter 160 value 796.042540
## iter 170 value 789.793169
## iter 180 value 788.082572
## iter 190 value 787.325292
## iter 200 value 787.182430
## final  value 787.180783 
## converged
## # weights:  121
## initial  value 1417214.318840 
## iter  10 value 5868.205115
## iter  20 value 2619.929992
## iter  30 value 2083.122921
## iter  40 value 1877.312490
## iter  50 value 1646.096891
## iter  60 value 1500.504506
## iter  70 value 1352.908004
## iter  80 value 1245.187137
## iter  90 value 1148.551396
## iter 100 value 1074.059166
## iter 110 value 995.988131
## iter 120 value 941.215089
## iter 130 value 896.848901
## iter 140 value 852.545749
## iter 150 value 798.526730
## iter 160 value 772.647326
## iter 170 value 731.094855
## iter 180 value 692.493018
## iter 190 value 660.076309
## iter 200 value 641.638607
## iter 210 value 631.134769
## iter 220 value 624.724158
## iter 230 value 599.604951
## iter 240 value 585.361793
## iter 250 value 580.361903
## iter 260 value 577.447794
## iter 270 value 565.443942
## iter 280 value 554.309796
## iter 290 value 540.323672
## iter 300 value 529.512559
## iter 310 value 522.124497
## iter 320 value 518.501014
## iter 330 value 515.559415
## iter 340 value 514.249077
## iter 350 value 513.233101
## iter 360 value 512.873349
## iter 370 value 512.407446
## iter 380 value 511.940658
## iter 390 value 511.812916
## iter 400 value 511.799308
## iter 410 value 511.794300
## iter 420 value 511.793443
## final  value 511.793426 
## converged
## # weights:  181
## initial  value 1389331.108552 
## iter  10 value 1341.599548
## iter  20 value 943.350027
## iter  30 value 789.295542
## iter  40 value 681.720649
## iter  50 value 627.641656
## iter  60 value 598.407514
## iter  70 value 566.438870
## iter  80 value 540.268529
## iter  90 value 513.754058
## iter 100 value 491.992306
## iter 110 value 480.722220
## iter 120 value 472.846814
## iter 130 value 467.173552
## iter 140 value 461.613403
## iter 150 value 455.879042
## iter 160 value 451.865006
## iter 170 value 447.365709
## iter 180 value 443.875230
## iter 190 value 441.820392
## iter 200 value 439.510564
## iter 210 value 436.956524
## iter 220 value 435.512898
## iter 230 value 434.130545
## iter 240 value 432.786256
## iter 250 value 431.379109
## iter 260 value 428.978688
## iter 270 value 427.376248
## iter 280 value 426.362326
## iter 290 value 425.587317
## iter 300 value 425.208193
## iter 310 value 424.779498
## iter 320 value 424.430272
## iter 330 value 424.179110
## iter 340 value 423.908331
## iter 350 value 421.839731
## iter 360 value 419.343731
## iter 370 value 418.842831
## iter 380 value 418.526914
## iter 390 value 418.021076
## iter 400 value 417.566077
## iter 410 value 417.115466
## iter 420 value 415.970516
## iter 430 value 415.221372
## iter 440 value 414.807455
## iter 450 value 414.640562
## iter 460 value 414.557247
## iter 470 value 414.519031
## iter 480 value 414.490407
## iter 490 value 414.477749
## iter 500 value 414.450538
## final  value 414.450538 
## stopped after 500 iterations
## # weights:  241
## initial  value 1404155.475257 
## iter  10 value 1313.398000
## iter  20 value 863.435281
## iter  30 value 719.114376
## iter  40 value 625.043082
## iter  50 value 565.166599
## iter  60 value 506.210547
## iter  70 value 475.998538
## iter  80 value 455.297863
## iter  90 value 439.189093
## iter 100 value 428.083829
## iter 110 value 420.308268
## iter 120 value 413.383190
## iter 130 value 407.542205
## iter 140 value 403.819131
## iter 150 value 400.788510
## iter 160 value 397.410619
## iter 170 value 393.600037
## iter 180 value 388.757840
## iter 190 value 385.053695
## iter 200 value 381.660399
## iter 210 value 379.328134
## iter 220 value 378.092508
## iter 230 value 376.705707
## iter 240 value 374.414701
## iter 250 value 371.757390
## iter 260 value 369.178311
## iter 270 value 367.663244
## iter 280 value 365.786771
## iter 290 value 363.741240
## iter 300 value 361.548677
## iter 310 value 359.573270
## iter 320 value 358.365601
## iter 330 value 357.233943
## iter 340 value 356.006934
## iter 350 value 354.930555
## iter 360 value 353.432631
## iter 370 value 351.723026
## iter 380 value 350.273249
## iter 390 value 348.867074
## iter 400 value 347.817545
## iter 410 value 345.120932
## iter 420 value 342.102345
## iter 430 value 339.704351
## iter 440 value 338.141523
## iter 450 value 336.761145
## iter 460 value 335.549676
## iter 470 value 334.602891
## iter 480 value 334.134254
## iter 490 value 333.984825
## iter 500 value 333.778736
## final  value 333.778736 
## stopped after 500 iterations
## # weights:  25
## initial  value 1416989.041823 
## iter  10 value 2960.777171
## iter  20 value 1719.661239
## iter  30 value 1410.996786
## iter  40 value 1249.601392
## iter  50 value 1185.450602
## iter  60 value 1174.047284
## iter  70 value 1160.482656
## iter  80 value 1133.990520
## iter  90 value 1042.532070
## iter 100 value 963.746576
## iter 110 value 946.125407
## iter 120 value 939.834232
## iter 130 value 916.539892
## iter 140 value 916.169692
## iter 150 value 915.643496
## iter 160 value 915.563343
## iter 170 value 915.561790
## iter 180 value 915.548558
## iter 190 value 915.479505
## iter 200 value 915.465998
## final  value 915.465940 
## converged
## # weights:  61
## initial  value 1376621.149496 
## iter  10 value 16065.394452
## iter  20 value 13781.148611
## iter  30 value 7675.871127
## iter  40 value 4916.573484
## iter  50 value 4012.861697
## iter  60 value 3534.644192
## iter  70 value 3392.922666
## iter  80 value 3372.988033
## iter  90 value 3281.374845
## iter 100 value 2928.796444
## iter 110 value 2719.223246
## iter 120 value 2589.669803
## iter 130 value 2443.890697
## iter 140 value 2111.945079
## iter 150 value 1636.519692
## iter 160 value 1445.032852
## iter 170 value 1338.128519
## iter 180 value 1320.020574
## iter 190 value 1291.274325
## iter 200 value 1232.413561
## iter 210 value 1029.095621
## iter 220 value 971.659463
## iter 230 value 950.468630
## iter 240 value 933.611948
## iter 250 value 914.779687
## iter 260 value 900.079159
## iter 270 value 892.927943
## iter 280 value 888.280447
## iter 290 value 885.154634
## iter 300 value 884.374327
## iter 310 value 883.577239
## iter 320 value 883.563140
## iter 330 value 883.461320
## iter 340 value 882.870279
## iter 350 value 882.840623
## iter 360 value 882.699917
## iter 370 value 881.846974
## iter 380 value 881.669647
## iter 390 value 878.787846
## iter 400 value 877.665008
## iter 410 value 876.869440
## iter 420 value 876.093261
## iter 430 value 875.652578
## iter 440 value 875.408594
## iter 450 value 875.267781
## iter 460 value 874.215600
## iter 470 value 874.067983
## iter 480 value 873.997632
## iter 490 value 873.828343
## iter 500 value 873.827342
## final  value 873.827342 
## stopped after 500 iterations
## # weights:  121
## initial  value 1447298.929750 
## iter  10 value 5181.929340
## iter  20 value 1834.352568
## iter  30 value 1225.653568
## iter  40 value 1004.525538
## iter  50 value 780.880576
## iter  60 value 671.151369
## iter  70 value 618.964004
## iter  80 value 585.118213
## iter  90 value 567.470666
## iter 100 value 546.258135
## iter 110 value 521.214113
## iter 120 value 498.475328
## iter 130 value 488.175707
## iter 140 value 484.194106
## iter 150 value 477.805818
## iter 160 value 472.216789
## iter 170 value 466.072367
## iter 180 value 460.034552
## iter 190 value 457.442810
## iter 200 value 454.922184
## iter 210 value 453.047270
## iter 220 value 451.910727
## iter 230 value 451.326885
## iter 240 value 451.028485
## iter 250 value 450.966261
## iter 260 value 450.913724
## iter 270 value 450.797581
## iter 280 value 450.592101
## iter 290 value 450.024132
## iter 300 value 449.604921
## iter 310 value 449.253676
## iter 320 value 447.676271
## iter 330 value 445.942952
## iter 340 value 444.375442
## iter 350 value 443.058276
## iter 360 value 442.127030
## iter 370 value 441.366972
## iter 380 value 440.866502
## iter 390 value 440.656359
## iter 400 value 440.230960
## iter 410 value 439.640559
## iter 420 value 437.857674
## iter 430 value 435.193435
## iter 440 value 431.927080
## iter 450 value 427.592689
## iter 460 value 423.121874
## iter 470 value 418.625128
## iter 480 value 415.019988
## iter 490 value 413.482492
## iter 500 value 413.303608
## final  value 413.303608 
## stopped after 500 iterations
## # weights:  181
## initial  value 1401242.562861 
## iter  10 value 1038.030963
## iter  20 value 806.540386
## iter  30 value 653.029115
## iter  40 value 528.121089
## iter  50 value 430.921571
## iter  60 value 378.874183
## iter  70 value 345.569717
## iter  80 value 297.186706
## iter  90 value 246.651319
## iter 100 value 223.122651
## iter 110 value 202.088889
## iter 120 value 190.704742
## iter 130 value 177.292105
## iter 140 value 166.059858
## iter 150 value 153.857644
## iter 160 value 144.155739
## iter 170 value 136.236600
## iter 180 value 130.594237
## iter 190 value 126.433891
## iter 200 value 121.004456
## iter 210 value 118.081121
## iter 220 value 114.939139
## iter 230 value 112.865808
## iter 240 value 110.623610
## iter 250 value 107.852941
## iter 260 value 105.519629
## iter 270 value 102.793834
## iter 280 value 98.091342
## iter 290 value 94.892848
## iter 300 value 93.706192
## iter 310 value 92.467865
## iter 320 value 91.528801
## iter 330 value 90.743983
## iter 340 value 89.936034
## iter 350 value 89.118237
## iter 360 value 88.710885
## iter 370 value 88.563861
## iter 380 value 88.503849
## iter 390 value 88.417194
## iter 400 value 88.335198
## iter 410 value 88.151429
## iter 420 value 87.745279
## iter 430 value 86.792391
## iter 440 value 85.714815
## iter 450 value 84.714625
## iter 460 value 83.814283
## iter 470 value 83.222364
## iter 480 value 82.792683
## iter 490 value 82.264200
## iter 500 value 81.437220
## final  value 81.437220 
## stopped after 500 iterations
## # weights:  241
## initial  value 1383509.087273 
## iter  10 value 1553.884628
## iter  20 value 808.961596
## iter  30 value 616.847233
## iter  40 value 519.128414
## iter  50 value 429.490467
## iter  60 value 361.784154
## iter  70 value 311.438305
## iter  80 value 275.671889
## iter  90 value 241.221776
## iter 100 value 206.198722
## iter 110 value 180.662010
## iter 120 value 158.228139
## iter 130 value 141.208696
## iter 140 value 130.266598
## iter 150 value 121.066071
## iter 160 value 115.024752
## iter 170 value 109.791446
## iter 180 value 104.259469
## iter 190 value 98.988901
## iter 200 value 94.028299
## iter 210 value 87.650714
## iter 220 value 83.727167
## iter 230 value 79.972966
## iter 240 value 76.312975
## iter 250 value 73.292122
## iter 260 value 70.790747
## iter 270 value 68.651743
## iter 280 value 66.599493
## iter 290 value 64.516045
## iter 300 value 61.447797
## iter 310 value 58.357381
## iter 320 value 56.272259
## iter 330 value 54.063302
## iter 340 value 51.591521
## iter 350 value 49.956701
## iter 360 value 47.533085
## iter 370 value 44.453532
## iter 380 value 42.270522
## iter 390 value 40.604199
## iter 400 value 39.091190
## iter 410 value 37.786348
## iter 420 value 36.738922
## iter 430 value 35.781893
## iter 440 value 34.683175
## iter 450 value 33.327122
## iter 460 value 32.091603
## iter 470 value 30.910393
## iter 480 value 29.783656
## iter 490 value 29.194707
## iter 500 value 28.986760
## final  value 28.986760 
## stopped after 500 iterations
## # weights:  25
## initial  value 1402566.076914 
## iter  10 value 7261.654855
## iter  20 value 5207.359198
## iter  30 value 4439.362328
## iter  40 value 3183.006812
## iter  50 value 1828.477348
## iter  60 value 1565.969596
## iter  70 value 1529.718432
## iter  80 value 1391.768882
## iter  90 value 1355.511895
## iter 100 value 1325.174853
## iter 110 value 1316.033133
## iter 120 value 1308.370581
## iter 130 value 1287.127903
## iter 140 value 1279.975529
## iter 150 value 1274.088619
## iter 160 value 1270.606752
## iter 170 value 1270.183302
## iter 180 value 1270.045707
## iter 190 value 1268.218658
## iter 200 value 1267.183154
## iter 210 value 1265.725742
## iter 220 value 1265.299202
## iter 230 value 1264.621944
## iter 240 value 1264.544322
## iter 250 value 1262.750958
## iter 260 value 1251.375461
## iter 270 value 1249.608336
## iter 280 value 1249.121694
## iter 290 value 1248.588230
## iter 300 value 1248.293616
## final  value 1248.293523 
## converged
## # weights:  61
## initial  value 1394754.676853 
## iter  10 value 6287.953677
## iter  20 value 5877.508740
## iter  30 value 5662.835856
## iter  40 value 5368.665359
## iter  50 value 4330.848559
## iter  60 value 3492.747608
## iter  70 value 3074.246026
## iter  80 value 2477.500931
## iter  90 value 1623.101047
## iter 100 value 1354.410301
## iter 110 value 1321.738092
## iter 120 value 1305.837893
## iter 130 value 1280.881685
## iter 140 value 1277.207059
## iter 150 value 1276.477036
## iter 160 value 1274.996181
## iter 170 value 1272.820509
## iter 180 value 1256.784800
## iter 190 value 1210.438254
## iter 200 value 1174.028229
## iter 210 value 1106.393216
## iter 220 value 1070.990261
## iter 230 value 1056.558360
## iter 240 value 1049.251113
## iter 250 value 1045.089319
## iter 260 value 1040.075482
## iter 270 value 1037.394133
## iter 280 value 1037.035009
## iter 290 value 1036.740568
## iter 300 value 1036.723106
## iter 310 value 1036.643967
## iter 320 value 1036.190309
## iter 330 value 1034.869975
## iter 340 value 1033.822092
## iter 350 value 1033.182624
## iter 360 value 1032.677233
## iter 370 value 1032.149979
## iter 380 value 1031.827061
## iter 390 value 1031.268442
## iter 400 value 1030.967446
## iter 410 value 1030.625013
## iter 420 value 1030.493395
## iter 430 value 1030.429557
## iter 440 value 1030.246715
## iter 450 value 1029.987053
## iter 460 value 1029.960773
## iter 470 value 1027.744675
## iter 480 value 1025.562395
## iter 490 value 1025.323638
## iter 500 value 1025.279347
## final  value 1025.279347 
## stopped after 500 iterations
## # weights:  121
## initial  value 1367475.617787 
## iter  10 value 1654.361031
## iter  20 value 1102.767328
## iter  30 value 820.586113
## iter  40 value 677.090345
## iter  50 value 596.180584
## iter  60 value 501.819477
## iter  70 value 460.725583
## iter  80 value 437.355918
## iter  90 value 420.837578
## iter 100 value 401.034558
## iter 110 value 379.528283
## iter 120 value 360.163557
## iter 130 value 352.047370
## iter 140 value 344.337947
## iter 150 value 340.358602
## iter 160 value 336.016830
## iter 170 value 328.646656
## iter 180 value 321.865945
## iter 190 value 318.124680
## iter 200 value 313.192234
## iter 210 value 308.025348
## iter 220 value 303.945497
## iter 230 value 300.907072
## iter 240 value 299.488092
## iter 250 value 298.975212
## iter 260 value 298.828736
## iter 270 value 298.521972
## iter 280 value 297.863884
## iter 290 value 296.498840
## iter 300 value 295.381860
## iter 310 value 294.296329
## iter 320 value 293.296838
## iter 330 value 292.013238
## iter 340 value 288.789914
## iter 350 value 285.932165
## iter 360 value 282.953548
## iter 370 value 280.717549
## iter 380 value 279.909475
## iter 390 value 279.374134
## iter 400 value 278.391039
## iter 410 value 277.806395
## iter 420 value 277.616171
## iter 430 value 277.491606
## iter 440 value 277.391500
## iter 450 value 277.321934
## iter 460 value 277.210550
## iter 470 value 276.956517
## iter 480 value 276.531282
## iter 490 value 276.069274
## iter 500 value 276.042737
## final  value 276.042737 
## stopped after 500 iterations
## # weights:  181
## initial  value 1417204.418384 
## iter  10 value 1140.637693
## iter  20 value 818.843893
## iter  30 value 701.413525
## iter  40 value 603.209337
## iter  50 value 474.589439
## iter  60 value 402.321212
## iter  70 value 362.221246
## iter  80 value 315.518473
## iter  90 value 282.826919
## iter 100 value 251.967307
## iter 110 value 225.526585
## iter 120 value 204.494828
## iter 130 value 193.390470
## iter 140 value 186.414055
## iter 150 value 176.357887
## iter 160 value 167.720644
## iter 170 value 159.373216
## iter 180 value 151.137781
## iter 190 value 143.880836
## iter 200 value 138.045214
## iter 210 value 131.686473
## iter 220 value 128.310673
## iter 230 value 125.995570
## iter 240 value 123.430604
## iter 250 value 120.993089
## iter 260 value 118.265775
## iter 270 value 116.111299
## iter 280 value 113.730975
## iter 290 value 111.800202
## iter 300 value 110.413985
## iter 310 value 108.850120
## iter 320 value 106.840125
## iter 330 value 104.724570
## iter 340 value 102.264676
## iter 350 value 99.973668
## iter 360 value 97.372460
## iter 370 value 96.405152
## iter 380 value 95.881965
## iter 390 value 94.948181
## iter 400 value 94.142674
## iter 410 value 93.242050
## iter 420 value 92.458114
## iter 430 value 91.869819
## iter 440 value 91.214383
## iter 450 value 90.258668
## iter 460 value 88.826239
## iter 470 value 87.643214
## iter 480 value 86.933899
## iter 490 value 86.352338
## iter 500 value 85.858064
## final  value 85.858064 
## stopped after 500 iterations
## # weights:  241
## initial  value 1393322.400042 
## iter  10 value 1205.207627
## iter  20 value 851.168503
## iter  30 value 674.000796
## iter  40 value 518.316814
## iter  50 value 415.685489
## iter  60 value 330.687844
## iter  70 value 290.780672
## iter  80 value 267.215926
## iter  90 value 241.289060
## iter 100 value 213.003486
## iter 110 value 187.637102
## iter 120 value 166.934565
## iter 130 value 151.737196
## iter 140 value 139.820828
## iter 150 value 131.715861
## iter 160 value 124.152211
## iter 170 value 117.440345
## iter 180 value 104.724561
## iter 190 value 90.544983
## iter 200 value 82.316828
## iter 210 value 75.848373
## iter 220 value 70.607035
## iter 230 value 66.068675
## iter 240 value 60.361626
## iter 250 value 55.199602
## iter 260 value 49.790632
## iter 270 value 45.790184
## iter 280 value 41.829094
## iter 290 value 38.368561
## iter 300 value 35.178274
## iter 310 value 31.843356
## iter 320 value 29.534217
## iter 330 value 27.363368
## iter 340 value 25.526853
## iter 350 value 24.547712
## iter 360 value 23.238533
## iter 370 value 21.765717
## iter 380 value 20.546664
## iter 390 value 19.404089
## iter 400 value 18.315429
## iter 410 value 17.173874
## iter 420 value 15.999375
## iter 430 value 15.371915
## iter 440 value 14.949431
## iter 450 value 14.599844
## iter 460 value 14.278342
## iter 470 value 14.032198
## iter 480 value 13.815631
## iter 490 value 13.666010
## iter 500 value 13.599348
## final  value 13.599348 
## stopped after 500 iterations
## # weights:  25
## initial  value 1431258.850509 
## iter  10 value 6440.114401
## iter  20 value 5125.540306
## iter  30 value 2206.780975
## iter  40 value 1387.680679
## iter  50 value 1138.726850
## iter  60 value 1135.377904
## iter  70 value 1122.514121
## iter  80 value 1084.884544
## iter  90 value 1070.345124
## iter 100 value 1065.086750
## iter 110 value 1062.597123
## iter 120 value 1061.057067
## iter 130 value 1055.452438
## iter 140 value 1051.227633
## iter 150 value 1043.432472
## iter 160 value 1039.850547
## iter 170 value 1039.369968
## iter 180 value 1034.081873
## iter 190 value 950.556535
## iter 200 value 929.607193
## iter 210 value 924.650914
## iter 220 value 923.624803
## iter 230 value 921.494632
## iter 240 value 918.998389
## iter 250 value 917.927299
## iter 260 value 917.547007
## iter 270 value 917.231732
## iter 280 value 916.473825
## iter 290 value 916.194117
## iter 300 value 916.128720
## iter 310 value 916.125493
## iter 320 value 916.124717
## iter 330 value 916.124147
## iter 340 value 916.123874
## iter 350 value 916.121167
## iter 360 value 916.114286
## final  value 916.109024 
## converged
## # weights:  61
## initial  value 1362357.532824 
## iter  10 value 14376.744770
## iter  20 value 3935.477363
## iter  30 value 2435.497625
## iter  40 value 2169.313473
## iter  50 value 2141.868996
## iter  60 value 2134.010441
## iter  70 value 2117.329260
## iter  80 value 2094.723944
## iter  90 value 2087.620364
## iter 100 value 2084.261977
## iter 110 value 2079.322986
## iter 120 value 2076.208694
## iter 130 value 2074.519933
## iter 140 value 2069.205571
## iter 150 value 1992.568829
## iter 160 value 1876.578197
## iter 170 value 1557.882784
## iter 180 value 1386.444880
## iter 190 value 1238.424048
## iter 200 value 1199.249570
## iter 210 value 1174.207627
## iter 220 value 1165.800405
## iter 230 value 1133.161782
## iter 240 value 1102.519203
## iter 250 value 1083.551168
## iter 260 value 1079.112846
## iter 270 value 1078.277719
## iter 280 value 1076.609711
## iter 290 value 1072.435987
## iter 300 value 1068.482678
## iter 310 value 1067.044306
## iter 320 value 1065.825907
## iter 330 value 1065.279357
## iter 340 value 1065.152371
## iter 350 value 1064.975296
## iter 360 value 1064.878213
## iter 370 value 1064.833656
## iter 380 value 1064.828297
## iter 390 value 1064.663800
## iter 400 value 1064.237691
## iter 410 value 1063.713436
## iter 420 value 1052.219491
## iter 430 value 1008.067288
## iter 440 value 998.416930
## iter 450 value 995.142617
## iter 460 value 992.602135
## iter 470 value 991.414141
## iter 480 value 986.600661
## iter 490 value 981.079596
## iter 500 value 976.518808
## final  value 976.518808 
## stopped after 500 iterations
## # weights:  121
## initial  value 1400052.949230 
## iter  10 value 1357.363423
## iter  20 value 955.856413
## iter  30 value 785.715592
## iter  40 value 668.588330
## iter  50 value 623.568769
## iter  60 value 561.960622
## iter  70 value 520.059325
## iter  80 value 484.945296
## iter  90 value 454.749531
## iter 100 value 436.161761
## iter 110 value 424.895547
## iter 120 value 413.175014
## iter 130 value 392.771432
## iter 140 value 356.382230
## iter 150 value 329.474240
## iter 160 value 318.040086
## iter 170 value 311.772499
## iter 180 value 306.730874
## iter 190 value 301.844798
## iter 200 value 298.153808
## iter 210 value 293.665543
## iter 220 value 290.259610
## iter 230 value 288.293765
## iter 240 value 286.348749
## iter 250 value 285.703086
## iter 260 value 285.362894
## iter 270 value 285.113023
## iter 280 value 284.535608
## iter 290 value 284.105169
## iter 300 value 283.764449
## iter 310 value 283.474208
## iter 320 value 283.070114
## iter 330 value 282.360073
## iter 340 value 280.336275
## iter 350 value 277.665658
## iter 360 value 274.617324
## iter 370 value 271.824590
## iter 380 value 269.855646
## iter 390 value 268.584779
## iter 400 value 268.039697
## iter 410 value 267.851148
## iter 420 value 267.783564
## iter 430 value 267.644408
## iter 440 value 267.560452
## iter 450 value 267.413380
## iter 460 value 267.374208
## iter 470 value 267.351888
## iter 480 value 267.307100
## iter 490 value 267.300631
## iter 490 value 267.300629
## iter 500 value 267.300466
## final  value 267.300466 
## stopped after 500 iterations
## # weights:  181
## initial  value 1397145.145736 
## iter  10 value 1106.518677
## iter  20 value 801.286081
## iter  30 value 622.146232
## iter  40 value 501.421257
## iter  50 value 382.790778
## iter  60 value 317.552276
## iter  70 value 283.276984
## iter  80 value 259.356579
## iter  90 value 235.093325
## iter 100 value 218.771039
## iter 110 value 207.968776
## iter 120 value 199.005976
## iter 130 value 192.008962
## iter 140 value 184.288373
## iter 150 value 178.656897
## iter 160 value 171.492906
## iter 170 value 160.897909
## iter 180 value 153.844417
## iter 190 value 147.613401
## iter 200 value 141.412875
## iter 210 value 137.191971
## iter 220 value 133.982959
## iter 230 value 131.232828
## iter 240 value 124.923163
## iter 250 value 120.649886
## iter 260 value 117.681323
## iter 270 value 115.559300
## iter 280 value 114.374198
## iter 290 value 112.733335
## iter 300 value 110.626954
## iter 310 value 108.482130
## iter 320 value 106.563093
## iter 330 value 104.808079
## iter 340 value 103.070754
## iter 350 value 101.755176
## iter 360 value 99.535877
## iter 370 value 98.691483
## iter 380 value 98.424593
## iter 390 value 98.110874
## iter 400 value 97.622415
## iter 410 value 97.106707
## iter 420 value 96.718949
## iter 430 value 95.835389
## iter 440 value 95.205782
## iter 450 value 94.477756
## iter 460 value 93.944730
## iter 470 value 93.575642
## iter 480 value 93.081901
## iter 490 value 92.589015
## iter 500 value 92.185773
## final  value 92.185773 
## stopped after 500 iterations
## # weights:  241
## initial  value 1458997.651564 
## iter  10 value 1727.923925
## iter  20 value 885.671062
## iter  30 value 638.751078
## iter  40 value 459.473165
## iter  50 value 366.408861
## iter  60 value 315.452950
## iter  70 value 268.751903
## iter  80 value 220.458614
## iter  90 value 193.637491
## iter 100 value 171.898195
## iter 110 value 146.951051
## iter 120 value 121.939895
## iter 130 value 104.156560
## iter 140 value 96.918556
## iter 150 value 90.991373
## iter 160 value 85.777655
## iter 170 value 80.961729
## iter 180 value 74.709232
## iter 190 value 68.881175
## iter 200 value 63.180418
## iter 210 value 58.952547
## iter 220 value 54.182209
## iter 230 value 50.550535
## iter 240 value 47.186513
## iter 250 value 44.902050
## iter 260 value 43.049701
## iter 270 value 41.484372
## iter 280 value 40.504717
## iter 290 value 39.405958
## iter 300 value 38.596205
## iter 310 value 37.998230
## iter 320 value 37.171571
## iter 330 value 36.201169
## iter 340 value 35.341783
## iter 350 value 34.719914
## iter 360 value 34.033353
## iter 370 value 33.405781
## iter 380 value 32.796076
## iter 390 value 32.294109
## iter 400 value 31.923664
## iter 410 value 31.486506
## iter 420 value 31.153569
## iter 430 value 30.836815
## iter 440 value 30.511071
## iter 450 value 30.063056
## iter 460 value 29.753299
## iter 470 value 29.504078
## iter 480 value 29.340961
## iter 490 value 29.294698
## iter 500 value 29.284943
## final  value 29.284943 
## stopped after 500 iterations
## # weights:  25
## initial  value 1383411.365924 
## iter  10 value 13176.155167
## iter  20 value 6648.324684
## iter  30 value 4106.272620
## iter  40 value 3195.037278
## iter  50 value 2056.173808
## iter  60 value 1739.309139
## iter  70 value 1471.075933
## iter  80 value 1335.619102
## iter  90 value 1282.273418
## iter 100 value 1263.080329
## iter 110 value 1258.251806
## iter 120 value 1252.782064
## iter 130 value 1241.376627
## iter 140 value 1236.706357
## iter 150 value 1235.432813
## final  value 1235.417412 
## converged
## # weights:  61
## initial  value 1409907.368082 
## iter  10 value 5775.572850
## iter  20 value 2847.962920
## iter  30 value 1740.396940
## iter  40 value 1440.710364
## iter  50 value 1131.801176
## iter  60 value 963.259419
## iter  70 value 885.083859
## iter  80 value 856.386152
## iter  90 value 831.698069
## iter 100 value 817.241191
## iter 110 value 808.815931
## iter 120 value 805.332031
## iter 130 value 800.735182
## iter 140 value 800.519710
## iter 150 value 799.413169
## iter 160 value 795.631023
## iter 170 value 784.554314
## iter 180 value 779.479845
## iter 190 value 776.965150
## iter 200 value 766.477345
## iter 210 value 764.825680
## iter 220 value 764.354804
## iter 230 value 764.105223
## iter 240 value 763.920431
## iter 250 value 763.871016
## iter 260 value 763.859246
## iter 270 value 763.858018
## iter 280 value 763.853334
## iter 290 value 763.848144
## iter 300 value 763.831635
## iter 310 value 763.820810
## iter 320 value 763.819505
## final  value 763.819201 
## converged
## # weights:  121
## initial  value 1405209.978527 
## iter  10 value 1510.705932
## iter  20 value 950.789957
## iter  30 value 809.656908
## iter  40 value 687.839578
## iter  50 value 624.310844
## iter  60 value 577.615530
## iter  70 value 535.978895
## iter  80 value 503.644801
## iter  90 value 469.809418
## iter 100 value 440.728971
## iter 110 value 418.103138
## iter 120 value 391.870067
## iter 130 value 369.939068
## iter 140 value 359.231562
## iter 150 value 344.750887
## iter 160 value 335.470052
## iter 170 value 326.447928
## iter 180 value 318.025775
## iter 190 value 312.195093
## iter 200 value 308.205248
## iter 210 value 304.070574
## iter 220 value 298.899548
## iter 230 value 294.497851
## iter 240 value 291.544936
## iter 250 value 290.763028
## iter 260 value 290.187337
## iter 270 value 289.413231
## iter 280 value 288.532550
## iter 290 value 287.711441
## iter 300 value 286.813426
## iter 310 value 285.474588
## iter 320 value 283.981647
## iter 330 value 282.670745
## iter 340 value 282.195010
## iter 350 value 281.803236
## iter 360 value 281.605857
## iter 370 value 281.423067
## iter 380 value 281.297488
## iter 390 value 281.004092
## iter 400 value 280.788142
## iter 410 value 280.750687
## iter 420 value 280.743392
## iter 430 value 280.741697
## iter 440 value 280.740229
## iter 450 value 280.737966
## iter 460 value 280.736116
## iter 470 value 280.734445
## iter 480 value 280.733747
## final  value 280.733595 
## converged
## # weights:  181
## initial  value 1375284.467041 
## iter  10 value 1211.724656
## iter  20 value 837.785872
## iter  30 value 699.019977
## iter  40 value 564.835891
## iter  50 value 454.688859
## iter  60 value 399.106571
## iter  70 value 369.897105
## iter  80 value 332.726600
## iter  90 value 300.070670
## iter 100 value 267.322555
## iter 110 value 243.022765
## iter 120 value 226.841315
## iter 130 value 214.336317
## iter 140 value 201.542994
## iter 150 value 191.912391
## iter 160 value 184.018398
## iter 170 value 176.487274
## iter 180 value 170.297201
## iter 190 value 165.933405
## iter 200 value 160.748919
## iter 210 value 155.553175
## iter 220 value 152.445399
## iter 230 value 149.347842
## iter 240 value 145.941835
## iter 250 value 142.786840
## iter 260 value 140.561148
## iter 270 value 138.901891
## iter 280 value 137.292901
## iter 290 value 135.934226
## iter 300 value 134.224634
## iter 310 value 132.962902
## iter 320 value 131.875649
## iter 330 value 131.254310
## iter 340 value 130.641487
## iter 350 value 130.253037
## iter 360 value 129.744733
## iter 370 value 129.297012
## iter 380 value 129.158130
## iter 390 value 128.852754
## iter 400 value 128.328289
## iter 410 value 127.902182
## iter 420 value 127.340792
## iter 430 value 126.761160
## iter 440 value 125.826997
## iter 450 value 125.088074
## iter 460 value 124.348386
## iter 470 value 123.658471
## iter 480 value 121.787651
## iter 490 value 119.330958
## iter 500 value 117.605425
## final  value 117.605425 
## stopped after 500 iterations
## # weights:  241
## initial  value 1406530.193196 
## iter  10 value 1440.773881
## iter  20 value 792.375361
## iter  30 value 599.318976
## iter  40 value 499.608983
## iter  50 value 426.993878
## iter  60 value 348.228251
## iter  70 value 293.963158
## iter  80 value 269.363816
## iter  90 value 237.820269
## iter 100 value 209.807339
## iter 110 value 189.553434
## iter 120 value 172.149890
## iter 130 value 159.323311
## iter 140 value 149.476133
## iter 150 value 140.329542
## iter 160 value 130.830225
## iter 170 value 124.712040
## iter 180 value 118.783393
## iter 190 value 111.927140
## iter 200 value 106.697250
## iter 210 value 102.150594
## iter 220 value 96.709206
## iter 230 value 92.200563
## iter 240 value 87.460630
## iter 250 value 83.660051
## iter 260 value 79.432562
## iter 270 value 75.442339
## iter 280 value 72.116507
## iter 290 value 68.191886
## iter 300 value 65.755646
## iter 310 value 62.815939
## iter 320 value 60.222220
## iter 330 value 58.682930
## iter 340 value 57.511061
## iter 350 value 55.887636
## iter 360 value 54.131364
## iter 370 value 52.757081
## iter 380 value 51.639895
## iter 390 value 50.352379
## iter 400 value 49.315649
## iter 410 value 48.517888
## iter 420 value 47.913504
## iter 430 value 47.202204
## iter 440 value 46.515308
## iter 450 value 45.970744
## iter 460 value 45.549546
## iter 470 value 45.053806
## iter 480 value 44.620932
## iter 490 value 44.428495
## iter 500 value 44.335401
## final  value 44.335401 
## stopped after 500 iterations
## # weights:  25
## initial  value 1424522.631132 
## iter  10 value 4905.190511
## iter  20 value 3076.583215
## iter  30 value 2550.154399
## iter  40 value 1725.175454
## iter  50 value 1491.399008
## iter  60 value 1429.319279
## iter  70 value 1384.057690
## iter  80 value 1382.773636
## iter  90 value 1378.309047
## iter 100 value 1329.438196
## iter 110 value 1260.308757
## iter 120 value 1217.582772
## iter 130 value 1212.811501
## iter 140 value 1207.028625
## iter 150 value 1199.648691
## iter 160 value 1199.434787
## final  value 1199.434422 
## converged
## # weights:  61
## initial  value 1388301.354076 
## iter  10 value 5320.452093
## iter  20 value 2448.211578
## iter  30 value 2000.974553
## iter  40 value 1565.611060
## iter  50 value 1361.343576
## iter  60 value 1231.082778
## iter  70 value 1156.006346
## iter  80 value 1089.622504
## iter  90 value 1049.173921
## iter 100 value 1005.401455
## iter 110 value 983.573063
## iter 120 value 969.183075
## iter 130 value 959.659044
## iter 140 value 954.007739
## iter 150 value 942.996096
## iter 160 value 926.800049
## iter 170 value 914.607880
## iter 180 value 895.078842
## iter 190 value 878.949672
## iter 200 value 866.782065
## iter 210 value 862.762837
## iter 220 value 861.429588
## iter 230 value 860.400088
## iter 240 value 859.445822
## iter 250 value 859.177207
## iter 260 value 859.105534
## iter 270 value 859.002501
## iter 280 value 858.964111
## iter 290 value 858.952301
## final  value 858.951682 
## converged
## # weights:  121
## initial  value 1387701.653621 
## iter  10 value 5845.724574
## iter  20 value 3272.720371
## iter  30 value 2536.862835
## iter  40 value 2114.561955
## iter  50 value 1968.945949
## iter  60 value 1793.822625
## iter  70 value 1510.731479
## iter  80 value 1334.544657
## iter  90 value 1229.716476
## iter 100 value 1159.435829
## iter 110 value 1071.543440
## iter 120 value 1014.834917
## iter 130 value 958.333550
## iter 140 value 915.167466
## iter 150 value 882.043632
## iter 160 value 848.262076
## iter 170 value 814.289591
## iter 180 value 790.376299
## iter 190 value 763.222557
## iter 200 value 750.930020
## iter 210 value 741.509222
## iter 220 value 731.887432
## iter 230 value 721.485616
## iter 240 value 709.111824
## iter 250 value 702.382650
## iter 260 value 694.987050
## iter 270 value 688.569509
## iter 280 value 673.999878
## iter 290 value 658.561824
## iter 300 value 635.372869
## iter 310 value 608.247091
## iter 320 value 577.398462
## iter 330 value 564.962186
## iter 340 value 553.603395
## iter 350 value 543.557845
## iter 360 value 536.285542
## iter 370 value 530.921784
## iter 380 value 527.883488
## iter 390 value 526.205167
## iter 400 value 525.026743
## iter 410 value 524.738317
## iter 420 value 524.627068
## iter 430 value 524.597295
## iter 440 value 524.590146
## iter 450 value 524.588822
## iter 460 value 524.588076
## iter 470 value 524.587938
## final  value 524.587916 
## converged
## # weights:  181
## initial  value 1304402.492249 
## iter  10 value 1215.159830
## iter  20 value 911.743994
## iter  30 value 761.925857
## iter  40 value 651.636236
## iter  50 value 576.107710
## iter  60 value 525.692038
## iter  70 value 489.034086
## iter  80 value 461.158956
## iter  90 value 444.210661
## iter 100 value 432.651721
## iter 110 value 424.118038
## iter 120 value 417.578814
## iter 130 value 412.100245
## iter 140 value 406.026653
## iter 150 value 400.602751
## iter 160 value 396.806763
## iter 170 value 394.042741
## iter 180 value 392.416705
## iter 190 value 390.700454
## iter 200 value 382.585334
## iter 210 value 373.869584
## iter 220 value 370.041569
## iter 230 value 367.255461
## iter 240 value 362.657555
## iter 250 value 359.811037
## iter 260 value 357.921117
## iter 270 value 356.201324
## iter 280 value 354.583303
## iter 290 value 353.377330
## iter 300 value 352.316496
## iter 310 value 351.632112
## iter 320 value 351.333038
## iter 330 value 351.080588
## iter 340 value 350.847396
## iter 350 value 350.715172
## iter 360 value 350.598823
## iter 370 value 350.492111
## iter 380 value 350.446133
## iter 390 value 350.332394
## iter 400 value 350.221725
## iter 410 value 350.099649
## iter 420 value 349.902817
## iter 430 value 349.662171
## iter 440 value 349.591455
## iter 450 value 349.566049
## iter 460 value 349.555760
## iter 470 value 349.553553
## final  value 349.553344 
## converged
## # weights:  241
## initial  value 1494796.848723 
## iter  10 value 1793.794661
## iter  20 value 1026.296705
## iter  30 value 782.092947
## iter  40 value 635.817780
## iter  50 value 556.461285
## iter  60 value 523.980519
## iter  70 value 496.592607
## iter  80 value 474.720981
## iter  90 value 456.772187
## iter 100 value 444.305659
## iter 110 value 433.447878
## iter 120 value 425.797671
## iter 130 value 420.977147
## iter 140 value 418.684898
## iter 150 value 416.639335
## iter 160 value 414.744911
## iter 170 value 412.111436
## iter 180 value 408.342219
## iter 190 value 403.247575
## iter 200 value 397.876191
## iter 210 value 392.967486
## iter 220 value 388.253617
## iter 230 value 384.046870
## iter 240 value 380.049275
## iter 250 value 377.053067
## iter 260 value 374.006070
## iter 270 value 371.744175
## iter 280 value 369.936403
## iter 290 value 368.227877
## iter 300 value 366.004897
## iter 310 value 364.053444
## iter 320 value 362.403936
## iter 330 value 360.425414
## iter 340 value 356.852204
## iter 350 value 353.565506
## iter 360 value 351.214620
## iter 370 value 349.403509
## iter 380 value 346.459825
## iter 390 value 342.495363
## iter 400 value 340.669583
## iter 410 value 339.280219
## iter 420 value 337.884201
## iter 430 value 337.120139
## iter 440 value 336.619893
## iter 450 value 336.265756
## iter 460 value 336.010782
## iter 470 value 335.864655
## iter 480 value 335.732985
## iter 490 value 335.667572
## iter 500 value 335.559510
## final  value 335.559510 
## stopped after 500 iterations
## # weights:  25
## initial  value 1536496.891690 
## iter  10 value 21717.180299
## iter  20 value 16517.954314
## iter  30 value 14853.986863
## iter  40 value 9493.319339
## iter  50 value 3352.471783
## iter  60 value 2546.656437
## iter  70 value 2362.381514
## iter  80 value 2144.918770
## iter  90 value 1772.315155
## iter 100 value 1727.300659
## iter 110 value 1603.895751
## iter 120 value 1529.043363
## iter 130 value 1517.249470
## iter 140 value 1517.047736
## iter 140 value 1517.047735
## final  value 1517.047735 
## converged
##################################
# Reporting the apparent results
# for the NN model
##################################
NN_DALEX <- DALEX::explain(NN_Tune,
                           data = MD.Model.Predictors,
                           y = MD$LIFEXP,
                           verbose = FALSE,
                           label = "NN")

(NN_DALEX_Performance <- model_performance(NN_DALEX))
## Measures for:  regression
## mse        : 3.792286 
## rmse       : 1.947379 
## r2         : 0.9387186 
## mad        : 1.118942
## 
## Residuals:
##         0%        10%        20%        30%        40%        50%        60% 
## -6.7019930 -2.2284111 -1.3596353 -0.7496302 -0.2984808  0.0323945  0.3834313 
##        70%        80%        90%       100% 
##  0.8343248  1.5340057  2.1809442  6.4827220
(NN_DALEX_Diagnostics <- model_diagnostics(NN_DALEX))
##     GENDER              CONTIN       INFMOR           PERCAP       
##  Male  :139   Africa       :89   Min.   :0.3365   Min.   :-1.4775  
##  Female:153   Asia         :73   1st Qu.:1.7047   1st Qu.: 0.6183  
##               Europe       :62   Median :2.6100   Median : 1.7960  
##               North America:31   Mean   :2.5569   Mean   : 1.7571  
##               Oceania      :18   3rd Qu.:3.5025   3rd Qu.: 2.7938  
##               South America:19   Max.   :4.4864   Max.   : 4.7293  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.00   Min.   :1.866   Min.   :52.84   Min.   :56.39  
##  1st Qu.: 24.35   1st Qu.:3.944   1st Qu.:66.93   1st Qu.:66.84  
##  Median : 82.80   Median :4.717   Median :73.53   Median :73.71  
##  Mean   : 64.60   Mean   :4.652   Mean   :72.47   Mean   :72.46  
##  3rd Qu.:100.00   3rd Qu.:5.347   3rd Qu.:78.54   3rd Qu.:78.31  
##  Max.   :100.00   Max.   :7.959   Max.   :87.45   Max.   :85.01  
##    residuals       abs_residuals         label                ids        
##  Min.   :-6.7020   Min.   :0.006932   Length:292         Min.   :  1.00  
##  1st Qu.:-0.9466   1st Qu.:0.423443   Class :character   1st Qu.: 73.75  
##  Median : 0.0324   Median :1.118942   Mode  :character   Median :146.50  
##  Mean   : 0.0151   Mean   :1.437687                      Mean   :146.50  
##  3rd Qu.: 1.2088   3rd Qu.:2.042302                      3rd Qu.:219.25  
##  Max.   : 6.4827   Max.   :6.701993                      Max.   :292.00
plot(NN_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("RF: Observed and Predicted LIFEXP")

(NN_DALEX_VariableImportance    <- model_parts(NN_DALEX,
                                              loss_function = loss_root_mean_square,
                                              B = 200,
                                              N = NULL))
##       variable mean_dropout_loss label
## 1 _full_model_          1.947379    NN
## 2       PERCAP          2.332572    NN
## 3       GENDER          2.512774    NN
## 4       CONTIN          3.072153    NN
## 5       CLTECH          3.103069    NN
## 6       NCOMOR          3.675613    NN
## 7       INFMOR          7.701794    NN
## 8   _baseline_         10.925591    NN
plot(NN_DALEX_VariableImportance)

##################################
# Reporting the cross-validation results
# for the NN model
##################################
NN_Tune
## Neural Network 
## 
## 292 samples
##   6 predictor
## 
## Pre-processing: centered (4), scaled (4), ignore (2) 
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ... 
## Resampling results across tuning parameters:
## 
##   size  decay  RMSE      Rsquared   MAE     
##    2    0e+00  2.913158  0.8500380  2.299048
##    2    1e-05  2.542092  0.8983528  2.007270
##    2    1e-04  2.246056  0.9195811  1.696021
##    2    1e-03  2.210859  0.9230509  1.673741
##    2    1e-01  2.060613  0.9326348  1.519616
##    5    0e+00  5.259886  0.8372621  2.275294
##    5    1e-05  5.270385  0.8300151  2.667797
##    5    1e-04  2.577673  0.8929534  1.711195
##    5    1e-03  2.171704  0.9258110  1.639417
##    5    1e-01  2.140877  0.9270724  1.619764
##   10    0e+00  4.090892  0.8342633  2.272149
##   10    1e-05  3.994206  0.7975050  2.411226
##   10    1e-04  2.947823  0.8735867  2.190190
##   10    1e-03  3.059333  0.8585939  2.084144
##   10    1e-01  2.708700  0.8913386  1.963156
##   15    0e+00  4.182909  0.7642496  2.918018
##   15    1e-05  5.843658  0.7293836  3.156435
##   15    1e-04  3.793863  0.7964659  2.651672
##   15    1e-03  3.559971  0.8145775  2.701506
##   15    1e-01  2.760529  0.8802960  2.066406
##   20    0e+00  4.804438  0.7226852  3.660531
##   20    1e-05  4.162649  0.7793587  3.109769
##   20    1e-04  4.963562  0.6832818  3.595233
##   20    1e-03  5.225087  0.6796311  3.719564
##   20    1e-01  2.961232  0.8731716  2.220592
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were size = 2 and decay = 0.1.
NN_Tune$finalModel
## a 10-2-1 network with 25 weights
## inputs: GENDERFemale CONTINAsia CONTINEurope CONTINNorth America CONTINOceania CONTINSouth America INFMOR PERCAP CLTECH NCOMOR 
## output(s): .outcome 
## options were - linear output units  decay=0.1
(NN_Tune_RMSE <- NN_Tune$results[NN_Tune$results$size==NN_Tune$bestTune$size &
                              NN_Tune$results$decay==NN_Tune$bestTune$decay,
                 c("RMSE")])
## [1] 2.060613
(NN_Tune_Rsquared <- NN_Tune$results[NN_Tune$results$size==NN_Tune$bestTune$size &
                              NN_Tune$results$decay==NN_Tune$bestTune$decay,
                 c("Rsquared")])
## [1] 0.9326348
(NN_Tune_MAE <- NN_Tune$results[NN_Tune$results$size==NN_Tune$bestTune$size &
                              NN_Tune$results$decay==NN_Tune$bestTune$decay,
                 c("MAE")])
## [1] 1.519616

1.3.6.5 Partial Least Squares Regression


[A] The partial least squares regression model from the pls package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] ncomp = number of components made to vary across a range of values equal to 1 to 5 with intervals of 1

[C] The 10-fold cross-validated model performance of the optimal model is summarized as follows:
     [C.1] Optimal model used ncomp=5 which demonstrated the lowest root mean square error
     [C.2] Root Mean Square Error = 2.4632
     [C.3] R-Squared = 0.9087

[D] The apparent model performance of the optimal model is summarized as follows:
     [D.1] Root Mean Square Error = 2.4242
     [D.2] R-Squared = 0.9050

[E] The top-performing predictors in the model ranked using the root mean square error loss after permutations are as follows:
     [E.1] INFMOR (numeric) = 7.84
     [E.2] GENDER (factor) = 3.25
     [E.3] CLTECH (numeric) = 3.16
     [E.4] CONTIN (factor) = 3.07
     [E.5] NCOMOR (numeric) = 2.97
     [E.6] PERCAP (numeric) = 2.43

Code Chunk | Output
##################################
# Defining the model hyperparameter values
# for the PLS model
##################################
PLS_Grid = expand.grid(ncomp = 1:5)

##################################
# Running the PLS model
# by setting the caret method to 'pls'
##################################
set.seed(12345678)
PLS_Tune <- train(x = MD.Model.Predictors,
                  y = MD$LIFEXP,
                  method = "pls",
                  tuneGrid = PLS_Grid,
                  trControl = KFold_Control)

##################################
# Reporting the apparent results
# for the PLS model
##################################
PLS_DALEX <- DALEX::explain(PLS_Tune,
                           data = MD.Model.Predictors,
                           y = MD$LIFEXP,
                           verbose = FALSE,
                           label = "PLS")

(PLS_DALEX_Performance <- model_performance(PLS_DALEX))
## Measures for:  regression
## mse        : 5.876756 
## rmse       : 2.424202 
## r2         : 0.9050347 
## mad        : 1.524704
## 
## Residuals:
##         0%        10%        20%        30%        40%        50%        60% 
## -7.8171653 -3.1634756 -1.8497887 -1.1383462 -0.5658555  0.2131137  0.6858102 
##        70%        80%        90%       100% 
##  1.2703500  1.8554207  2.8334884  6.6842346
(PLS_DALEX_Diagnostics <- model_diagnostics(PLS_DALEX))
##     GENDER              CONTIN       INFMOR           PERCAP       
##  Male  :139   Africa       :89   Min.   :0.3365   Min.   :-1.4775  
##  Female:153   Asia         :73   1st Qu.:1.7047   1st Qu.: 0.6183  
##               Europe       :62   Median :2.6100   Median : 1.7960  
##               North America:31   Mean   :2.5569   Mean   : 1.7571  
##               Oceania      :18   3rd Qu.:3.5025   3rd Qu.: 2.7938  
##               South America:19   Max.   :4.4864   Max.   : 4.7293  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.00   Min.   :1.866   Min.   :52.84   Min.   :57.87  
##  1st Qu.: 24.35   1st Qu.:3.944   1st Qu.:66.93   1st Qu.:66.38  
##  Median : 82.80   Median :4.717   Median :73.53   Median :73.39  
##  Mean   : 64.60   Mean   :4.652   Mean   :72.47   Mean   :72.47  
##  3rd Qu.:100.00   3rd Qu.:5.347   3rd Qu.:78.54   3rd Qu.:78.18  
##  Max.   :100.00   Max.   :7.959   Max.   :87.45   Max.   :88.65  
##    residuals       abs_residuals        label                ids        
##  Min.   :-7.8172   Min.   :0.01345   Length:292         Min.   :  1.00  
##  1st Qu.:-1.3989   1st Qu.:0.74951   Class :character   1st Qu.: 73.75  
##  Median : 0.2131   Median :1.52470   Mode  :character   Median :146.50  
##  Mean   : 0.0000   Mean   :1.89719                      Mean   :146.50  
##  3rd Qu.: 1.5808   3rd Qu.:2.60138                      3rd Qu.:219.25  
##  Max.   : 6.6842   Max.   :7.81717                      Max.   :292.00
plot(PLS_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("RF: Observed and Predicted LIFEXP")

(PLS_DALEX_VariableImportance    <- model_parts(PLS_DALEX,
                                              loss_function = loss_root_mean_square,
                                              B = 200,
                                              N = NULL))
##       variable mean_dropout_loss label
## 1 _full_model_          2.424202   PLS
## 2       PERCAP          2.426869   PLS
## 3       NCOMOR          2.967139   PLS
## 4       CONTIN          3.066523   PLS
## 5       CLTECH          3.165265   PLS
## 6       GENDER          3.250488   PLS
## 7       INFMOR          7.849344   PLS
## 8   _baseline_         10.860376   PLS
plot(PLS_DALEX_VariableImportance)

##################################
# Reporting the cross-validation results
# for the PLS model
##################################
PLS_Tune
## Partial Least Squares 
## 
## 292 samples
##   6 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ... 
## Resampling results across tuning parameters:
## 
##   ncomp  RMSE      Rsquared   MAE     
##   1      4.997627  0.6039633  4.073632
##   2      3.251276  0.8416354  2.478243
##   3      2.705139  0.8916091  2.067882
##   4      2.572417  0.9014321  2.006329
##   5      2.463222  0.9087387  1.954148
## 
## RMSE was used to select the optimal model using the smallest value.
## The final value used for the model was ncomp = 5.
PLS_Tune$finalModel
## Partial least squares regression, fitted with the orthogonal scores algorithm.
## Call:
## plsr(formula = .outcome ~ ., ncomp = ncomp, data = dat, method = "oscorespls")
(PLS_Tune_RMSE <- PLS_Tune$results[PLS_Tune$results$ncomp==PLS_Tune$bestTune$ncomp,
                 c("RMSE")])
## [1] 2.463222
(PLS_Tune_Rsquared <- PLS_Tune$results[PLS_Tune$results$ncomp==PLS_Tune$bestTune$ncomp,
                 c("Rsquared")])
## [1] 0.9087387
(PLS_Tune_MAE <- PLS_Tune$results[PLS_Tune$results$ncomp==PLS_Tune$bestTune$ncomp,
                 c("MAE")])
## [1] 1.954148

1.3.6.6 Cubist Regression


[A] The cubist regression model from the Cubist package was implemented through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] committees = number of committees made to vary across a range of values equal to 10 to 50 with intervals of 10
     [B.2] neighbors = number of neighbors made to vary across a range of values equal to 0 to 9 with intervals of 3

[C] The 10-fold cross-validated model performance of the optimal model is summarized as follows:
     [C.1] Optimal model used committees=50 and neighbors=0 which demonstrated the lowest root mean square error
     [C.2] Root Mean Square Error = 2.0967
     [C.3] R-Squared = 0.9316

[D] The apparent model performance of the optimal model is summarized as follows:
     [D.1] Root Mean Square Error = 1.9126
     [D.2] R-Squared = 0.9408

[E] The top-performing predictors in the model ranked using the root mean square error loss after permutations are as follows:
     [E.1] INFMOR (numeric) = 7.73
     [E.2] NCOMOR (numeric) = 3.75
     [E.3] CONTIN (factor) = 2.36
     [E.4] GENDER (factor) = 2.29
     [E.5] PERCAP (numeric) = 2.09
     [E.6] CLTECH (numeric) = 1.92

Code Chunk | Output
##################################
# Defining the model hyperparameter values
# for the CUBIST model
##################################
CUBIST_Grid = expand.grid(committees = c(10, 20, 30, 40, 50),
                          neighbors = c(0, 3, 6, 9))


##################################
# Running the CUBIST model
# by setting the caret method to 'cubist'
##################################
set.seed(12345678)
CUBIST_Tune <- train(x = MD.Model.Predictors,
                   y = MD$LIFEXP,
                   method = "cubist",
                   tuneGrid = CUBIST_Grid,
                   trControl = KFold_Control)

##################################
# Reporting the apparent results
# for the CUBIST model
##################################
CUBIST_DALEX <- DALEX::explain(CUBIST_Tune,
                           data = MD.Model.Predictors,
                           y = MD$LIFEXP,
                           verbose = FALSE,
                           label = "CUBIST")

(CUBIST_DALEX_Performance <- model_performance(CUBIST_DALEX))
## Measures for:  regression
## mse        : 3.658042 
## rmse       : 1.912601 
## r2         : 0.9408879 
## mad        : 1.05533
## 
## Residuals:
##          0%         10%         20%         30%         40%         50% 
## -6.90777771 -2.15534625 -1.41800017 -0.72510388 -0.33359399  0.01040643 
##         60%         70%         80%         90%        100% 
##  0.32413965  0.72477280  1.37141615  2.49934372  6.82557834
(CUBIST_DALEX_Diagnostics <- model_diagnostics(CUBIST_DALEX))
##     GENDER              CONTIN       INFMOR           PERCAP       
##  Male  :139   Africa       :89   Min.   :0.3365   Min.   :-1.4775  
##  Female:153   Asia         :73   1st Qu.:1.7047   1st Qu.: 0.6183  
##               Europe       :62   Median :2.6100   Median : 1.7960  
##               North America:31   Mean   :2.5569   Mean   : 1.7571  
##               Oceania      :18   3rd Qu.:3.5025   3rd Qu.: 2.7938  
##               South America:19   Max.   :4.4864   Max.   : 4.7293  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.00   Min.   :1.866   Min.   :52.84   Min.   :55.50  
##  1st Qu.: 24.35   1st Qu.:3.944   1st Qu.:66.93   1st Qu.:66.51  
##  Median : 82.80   Median :4.717   Median :73.53   Median :73.61  
##  Mean   : 64.60   Mean   :4.652   Mean   :72.47   Mean   :72.40  
##  3rd Qu.:100.00   3rd Qu.:5.347   3rd Qu.:78.54   3rd Qu.:78.06  
##  Max.   :100.00   Max.   :7.959   Max.   :87.45   Max.   :86.25  
##    residuals        abs_residuals         label                ids        
##  Min.   :-6.90778   Min.   :0.003691   Length:292         Min.   :  1.00  
##  1st Qu.:-1.06822   1st Qu.:0.447052   Class :character   1st Qu.: 73.75  
##  Median : 0.01041   Median :1.055330   Mode  :character   Median :146.50  
##  Mean   : 0.07148   Mean   :1.409394                      Mean   :146.50  
##  3rd Qu.: 1.00547   3rd Qu.:2.063695                      3rd Qu.:219.25  
##  Max.   : 6.82558   Max.   :6.907778                      Max.   :292.00
plot(CUBIST_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("RF: Observed and Predicted LIFEXP")

(CUBIST_DALEX_VariableImportance    <- model_parts(CUBIST_DALEX,
                                              loss_function = loss_root_mean_square,
                                              B = 200,
                                              N = NULL))
##       variable mean_dropout_loss  label
## 1 _full_model_          1.912601 CUBIST
## 2       CLTECH          1.921536 CUBIST
## 3       PERCAP          2.093838 CUBIST
## 4       GENDER          2.299057 CUBIST
## 5       CONTIN          2.365873 CUBIST
## 6       NCOMOR          3.758193 CUBIST
## 7       INFMOR          7.730290 CUBIST
## 8   _baseline_         10.979674 CUBIST
plot(CUBIST_DALEX_VariableImportance)

##################################
# Reporting the cross-validation results
# for the CUBIST model
##################################
CUBIST_Tune
## Cubist 
## 
## 292 samples
##   6 predictor
## 
## No pre-processing
## Resampling: Cross-Validated (10 fold) 
## Summary of sample sizes: 264, 263, 263, 262, 263, 264, ... 
## Resampling results across tuning parameters:
## 
##   committees  neighbors  RMSE      Rsquared   MAE     
##   10          0          2.143307  0.9284329  1.597946
##   10          3          2.161575  0.9264713  1.628394
##   10          6          2.135997  0.9293777  1.600862
##   10          9          2.120955  0.9307087  1.593085
##   20          0          2.118571  0.9293801  1.589678
##   20          3          2.171113  0.9255303  1.629055
##   20          6          2.138896  0.9287024  1.597065
##   20          9          2.118487  0.9303570  1.588802
##   30          0          2.104752  0.9307090  1.577201
##   30          3          2.171787  0.9257896  1.634946
##   30          6          2.135237  0.9293559  1.598399
##   30          9          2.113010  0.9311860  1.587534
##   40          0          2.099914  0.9312085  1.569779
##   40          3          2.164063  0.9263082  1.632470
##   40          6          2.126530  0.9299765  1.592498
##   40          9          2.104461  0.9318479  1.580217
##   50          0          2.096744  0.9316609  1.568414
##   50          3          2.158509  0.9267267  1.629668
##   50          6          2.120160  0.9304991  1.588673
##   50          9          2.097972  0.9324203  1.575005
## 
## RMSE was used to select the optimal model using the smallest value.
## The final values used for the model were committees = 50 and neighbors = 0.
CUBIST_Tune$finalModel
## 
## Call:
## cubist.default(x = x, y = y, committees = param$committees)
## 
## Number of samples: 292 
## Number of predictors: 6 
## 
## Number of committees: 50 
## Number of rules per committee: 6, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 2 ...
(CUBIST_Tune_RMSE <- CUBIST_Tune$results[CUBIST_Tune$results$committees==CUBIST_Tune$bestTune$committees &
                              CUBIST_Tune$results$neighbors==CUBIST_Tune$bestTune$neighbors,
                 c("RMSE")])
## [1] 2.096744
(CUBIST_Tune_Rsquared <- CUBIST_Tune$results[CUBIST_Tune$results$committees==CUBIST_Tune$bestTune$committees &
                              CUBIST_Tune$results$neighbors==CUBIST_Tune$bestTune$neighbors,
                 c("Rsquared")])
## [1] 0.9316609
(CUBIST_Tune_MAE <- CUBIST_Tune$results[CUBIST_Tune$results$committees==CUBIST_Tune$bestTune$committees &
                              CUBIST_Tune$results$neighbors==CUBIST_Tune$bestTune$neighbors,
                 c("MAE")])
## [1] 1.568414

1.3.7 Model Performance Validation


[A] Apparent performance ranked from best to worst among the candidate optimal models are provided as follows:
     [A.1] RF: Random Forest (randomForest package)
            [A.1.1] Root Mean Square Error = 0.9698
            [A.1.2] R-Squared = 0.9848
     [A.2] GBM: Stochastic Gradient Boosting (gbm package)
            [A.2.1] Root Mean Square Error = 1.7044
            [A.2.2] R-Squared = 0.9530
     [A.3] CUB: Cubist (Cubist package)
            [A.3.1] Root Mean Square Error = 1.9126
            [A.3.2] R-Squared = 0.9408
     [A.4] NN: Neural Network (nnet package)
            [A.4.1] Root Mean Square Error = 1.9473
            [A.4.2] R-Squared = 0.9387
     [A.5] LR: Linear Regression (stats package)
            [A.5.1] Root Mean Square Error = 2.3622
            [A.5.2] R-Squared = 0.9098
     [A.6] PLS: Partial Least Squares (pls package)
            [A.6.1] Root Mean Square Error = 2.4242
            [A.6.2] R-Squared = 0.9050

[B] 10-fold cross-validated performance ranked from best to worst among the candidate optimal models are provided as follows:
     [B.1] NN: Neural Network (nnet package)
            [B.1.1] Root Mean Square Error = 2.0701
            [B.1.2] R-Squared = 0.9321
     [B.2] CUB: Cubist (Cubist package)
            [B.2.1] Root Mean Square Error = 2.0967
            [B.2.2] R-Squared = 0.9316
     [B.3] GBM: Stochastic Gradient Boosting (gbm package)
            [B.3.1] Root Mean Square Error = 2.0978
            [B.3.2] R-Squared = 0.9288
     [B.4] RF: Random Forest (randomForest package)
            [B.4.1] Root Mean Square Error = 2.2390
            [B.4.2] R-Squared = 0.9201
     [B.5] LR: Linear Regression (stats package)
            [B.5.1] Root Mean Square Error = 2.4078
            [B.5.2] R-Squared = 0.9116
     [B.6] PLS: Partial Least Squares (pls package)
            [B.6.1] Root Mean Square Error = 2.4632
            [B.6.2] R-Squared = 0.9087

[C] Externally-validated performance ranked from best to worst among the candidate optimal models are provided as follows:
     [C.1] GBM: Stochastic Gradient Boosting (gbm package)
            [C.1.1] Root Mean Square Error = 2.1007
            [C.1.2] R-Squared = 0.9171
     [C.2] CUB: Cubist (Cubist package)
            [C.2.1] Root Mean Square Error = 2.2261
            [C.2.2] R-Squared = 0.9069
     [C.3] NN: Neural Network (nnet package)
            [C.3.1] Root Mean Square Error = 2.3021
            [C.3.2] R-Squared = 0.9005
     [C.4] RF: Random Forest (randomForest package)
            [C.4.1] Root Mean Square Error = 2.5012
            [C.4.2] R-Squared = 0.8825
     [C.5] LR: Linear Regression (stats package)
            [C.5.1] Root Mean Square Error = 2.5330
            [C.5.2] R-Squared = 0.8795
     [C.6] PLS: Partial Least Squares (pls package)
            [C.6.1] Root Mean Square Error = 2.6870
            [C.6.2] R-Squared = 0.8644

[D] The formulated models below demonstrated consistently good performance from both internal and external validation.
     [D.1] GBM: Stochastic Gradient Boosting (gbm package)
     [D.2] CUB: Cubist (Cubist package)
     [D.3] NN: Neural Network (nnet package)

[E] The formulated model below showed signs of overfitting due to the huge difference in performance as observed between internal and external validation.
     [E.1] RF: Random Forest (randomForest package)

[F] The formulated models below showed consistently worse performance from both internal and external validation.
     [F.1] LR: Linear Regression (stats package)
     [F.2] PLS: Partial Least Squares (pls package)

Code Chunk | Output
##################################
# Evaluating the models
# on the model test data
##################################

##################################
# Formulating the DALEX object
# for the Best LR model
# as applied to the model test data
##################################
LR_DALEX <- DALEX::explain(LR_Tune,
                            data = MT.Model.Predictors,
                            y = MT$LIFEXP,
                            verbose = FALSE,
                            label = "LR")

(LR_DALEX_Performance <- model_performance(LR_DALEX))
## Measures for:  regression
## mse        : 6.416206 
## rmse       : 2.533023 
## r2         : 0.8795864 
## mad        : 1.666297
## 
## Residuals:
##          0%         10%         20%         30%         40%         50% 
## -6.68650492 -2.17549229 -1.55804047 -1.21751513 -0.94885907  0.07197521 
##         60%         70%         80%         90%        100% 
##  0.69695404  1.75887103  2.14536061  3.43457974  6.50245312
(LR_DALEX_Diagnostics <- model_diagnostics(LR_DALEX))
##     GENDER             CONTIN       INFMOR           PERCAP       
##  Male  :43   Africa       :17   Min.   :0.6419   Min.   :-1.4775  
##  Female:29   Asia         :21   1st Qu.:1.7090   1st Qu.: 0.7926  
##              Europe       :16   Median :2.6602   Median : 1.7266  
##              North America:11   Mean   :2.5559   Mean   : 1.7439  
##              Oceania      : 2   3rd Qu.:3.4135   3rd Qu.: 2.8314  
##              South America: 5   Max.   :4.3858   Max.   : 4.4466  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.20   Min.   :2.511   Min.   :51.20   Min.   :56.74  
##  1st Qu.: 49.02   1st Qu.:3.887   1st Qu.:67.42   1st Qu.:66.94  
##  Median : 90.20   Median :4.742   Median :73.51   Median :73.34  
##  Mean   : 72.08   Mean   :4.752   Mean   :72.61   Mean   :72.41  
##  3rd Qu.:100.00   3rd Qu.:5.631   3rd Qu.:78.47   3rd Qu.:77.82  
##  Max.   :100.00   Max.   :7.406   Max.   :86.20   Max.   :84.86  
##    residuals        abs_residuals        label                ids       
##  Min.   :-6.68651   Min.   :0.04811   Length:72          Min.   : 1.00  
##  1st Qu.:-1.39437   1st Qu.:1.00127   Class :character   1st Qu.:18.75  
##  Median : 0.07197   Median :1.66630   Mode  :character   Median :36.50  
##  Mean   : 0.19567   Mean   :2.02378                      Mean   :36.50  
##  3rd Qu.: 1.95312   3rd Qu.:2.78440                      3rd Qu.:54.25  
##  Max.   : 6.50245   Max.   :6.68651                      Max.   :72.00
plot(LR_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("LR: Observed and Predicted LIFEXP")

##################################
# Formulating the DALEX object
# for the Best GBM model
# as applied to the model test data
##################################
GBM_DALEX <- DALEX::explain(GBM_Tune,
                            data = MT.Model.Predictors,
                            y = MT$LIFEXP,
                            verbose = FALSE,
                            label = "GBM")

(GBM_DALEX_Performance <- model_performance(GBM_DALEX))
## Measures for:  regression
## mse        : 4.413299 
## rmse       : 2.100785 
## r2         : 0.9171752 
## mad        : 1.322106
## 
## Residuals:
##         0%        10%        20%        30%        40%        50%        60% 
## -4.3962340 -2.2405259 -1.4211432 -1.0660296 -0.8370857 -0.1835420  0.3528943 
##        70%        80%        90%       100% 
##  1.1053654  1.6763495  3.0065703  5.6991483
(GBM_DALEX_Diagnostics <- model_diagnostics(GBM_DALEX))
##     GENDER             CONTIN       INFMOR           PERCAP       
##  Male  :43   Africa       :17   Min.   :0.6419   Min.   :-1.4775  
##  Female:29   Asia         :21   1st Qu.:1.7090   1st Qu.: 0.7926  
##              Europe       :16   Median :2.6602   Median : 1.7266  
##              North America:11   Mean   :2.5559   Mean   : 1.7439  
##              Oceania      : 2   3rd Qu.:3.4135   3rd Qu.: 2.8314  
##              South America: 5   Max.   :4.3858   Max.   : 4.4466  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.20   Min.   :2.511   Min.   :51.20   Min.   :53.19  
##  1st Qu.: 49.02   1st Qu.:3.887   1st Qu.:67.42   1st Qu.:68.35  
##  Median : 90.20   Median :4.742   Median :73.51   Median :73.10  
##  Mean   : 72.08   Mean   :4.752   Mean   :72.61   Mean   :72.47  
##  3rd Qu.:100.00   3rd Qu.:5.631   3rd Qu.:78.47   3rd Qu.:78.40  
##  Max.   :100.00   Max.   :7.406   Max.   :86.20   Max.   :84.89  
##    residuals       abs_residuals        label                ids       
##  Min.   :-4.3962   Min.   :0.04636   Length:72          Min.   : 1.00  
##  1st Qu.:-1.1836   1st Qu.:0.78949   Class :character   1st Qu.:18.75  
##  Median :-0.1835   Median :1.32211   Mode  :character   Median :36.50  
##  Mean   : 0.1348   Mean   :1.65758                      Mean   :36.50  
##  3rd Qu.: 1.3846   3rd Qu.:2.30067                      3rd Qu.:54.25  
##  Max.   : 5.6991   Max.   :5.69915                      Max.   :72.00
plot(GBM_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("GBM: Observed and Predicted LIFEXP")

##################################
# Formulating the DALEX object
# for the Best RF model
# as applied to the model test data
##################################
RF_DALEX <- DALEX::explain(RF_Tune,
                           data = MT.Model.Predictors,
                           y = MT$LIFEXP,
                           verbose = FALSE,
                           label = "RF")

(RF_DALEX_Performance <- model_performance(RF_DALEX))
## Measures for:  regression
## mse        : 6.25631 
## rmse       : 2.501262 
## r2         : 0.8825872 
## mad        : 1.594092
## 
## Residuals:
##         0%        10%        20%        30%        40%        50%        60% 
## -7.2080243 -3.0176466 -2.1047296 -1.2247647 -0.2712163  0.1992440  0.7128073 
##        70%        80%        90%       100% 
##  1.1067986  1.7677385  3.1744799  7.4973476
(RF_DALEX_Diagnostics <- model_diagnostics(RF_DALEX))
##     GENDER             CONTIN       INFMOR           PERCAP       
##  Male  :43   Africa       :17   Min.   :0.6419   Min.   :-1.4775  
##  Female:29   Asia         :21   1st Qu.:1.7090   1st Qu.: 0.7926  
##              Europe       :16   Median :2.6602   Median : 1.7266  
##              North America:11   Mean   :2.5559   Mean   : 1.7439  
##              Oceania      : 2   3rd Qu.:3.4135   3rd Qu.: 2.8314  
##              South America: 5   Max.   :4.3858   Max.   : 4.4466  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.20   Min.   :2.511   Min.   :51.20   Min.   :54.85  
##  1st Qu.: 49.02   1st Qu.:3.887   1st Qu.:67.42   1st Qu.:68.50  
##  Median : 90.20   Median :4.742   Median :73.51   Median :73.19  
##  Mean   : 72.08   Mean   :4.752   Mean   :72.61   Mean   :72.58  
##  3rd Qu.:100.00   3rd Qu.:5.631   3rd Qu.:78.47   3rd Qu.:78.61  
##  Max.   :100.00   Max.   :7.406   Max.   :86.20   Max.   :84.60  
##    residuals        abs_residuals        label                ids       
##  Min.   :-7.20802   Min.   :0.01395   Length:72          Min.   : 1.00  
##  1st Qu.:-1.69056   1st Qu.:0.73760   Class :character   1st Qu.:18.75  
##  Median : 0.19924   Median :1.59409   Mode  :character   Median :36.50  
##  Mean   : 0.02669   Mean   :1.91950                      Mean   :36.50  
##  3rd Qu.: 1.50013   3rd Qu.:2.74804                      3rd Qu.:54.25  
##  Max.   : 7.49735   Max.   :7.49735                      Max.   :72.00
plot(RF_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("RF: Observed and Predicted LIFEXP")

##################################
# Formulating the DALEX object
# for the Best NN model
# as applied to the model test data
##################################
NN_DALEX <- DALEX::explain(NN_Tune,
                           data = MT.Model.Predictors,
                           y = MT$LIFEXP,
                           verbose = FALSE,
                           label = "NN")

(NN_DALEX_Performance <- model_performance(NN_DALEX))
## Measures for:  regression
## mse        : 5.300062 
## rmse       : 2.302186 
## r2         : 0.9005332 
## mad        : 1.293056
## 
## Residuals:
##         0%        10%        20%        30%        40%        50%        60% 
## -6.0612264 -2.8063521 -1.3495125 -1.0121289 -0.3547678  0.2159281  0.6061218 
##        70%        80%        90%       100% 
##  1.1206919  1.8356939  2.8346540  7.8217567
(NN_DALEX_Diagnostics <- model_diagnostics(NN_DALEX))
##     GENDER             CONTIN       INFMOR           PERCAP       
##  Male  :43   Africa       :17   Min.   :0.6419   Min.   :-1.4775  
##  Female:29   Asia         :21   1st Qu.:1.7090   1st Qu.: 0.7926  
##              Europe       :16   Median :2.6602   Median : 1.7266  
##              North America:11   Mean   :2.5559   Mean   : 1.7439  
##              Oceania      : 2   3rd Qu.:3.4135   3rd Qu.: 2.8314  
##              South America: 5   Max.   :4.3858   Max.   : 4.4466  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.20   Min.   :2.511   Min.   :51.20   Min.   :52.40  
##  1st Qu.: 49.02   1st Qu.:3.887   1st Qu.:67.42   1st Qu.:66.97  
##  Median : 90.20   Median :4.742   Median :73.51   Median :73.22  
##  Mean   : 72.08   Mean   :4.752   Mean   :72.61   Mean   :72.48  
##  3rd Qu.:100.00   3rd Qu.:5.631   3rd Qu.:78.47   3rd Qu.:78.83  
##  Max.   :100.00   Max.   :7.406   Max.   :86.20   Max.   :84.49  
##    residuals       abs_residuals        label                ids       
##  Min.   :-6.0612   Min.   :0.06061   Length:72          Min.   : 1.00  
##  1st Qu.:-1.2126   1st Qu.:0.72930   Class :character   1st Qu.:18.75  
##  Median : 0.2159   Median :1.29306   Mode  :character   Median :36.50  
##  Mean   : 0.1293   Mean   :1.77153                      Mean   :36.50  
##  3rd Qu.: 1.5601   3rd Qu.:2.67075                      3rd Qu.:54.25  
##  Max.   : 7.8218   Max.   :7.82176                      Max.   :72.00
plot(NN_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("NN: Observed and Predicted LIFEXP")

##################################
# Formulating the DALEX object
# for the Best PLS model
# as applied to the model test data
##################################
PLS_DALEX <- DALEX::explain(PLS_Tune,
                            data = MT.Model.Predictors,
                            y = MT$LIFEXP,
                            verbose = FALSE,
                            label = "PLS")

(PLS_DALEX_Performance <- model_performance(PLS_DALEX))
## Measures for:  regression
## mse        : 7.220162 
## rmse       : 2.687036 
## r2         : 0.8644985 
## mad        : 1.875765
## 
## Residuals:
##         0%        10%        20%        30%        40%        50%        60% 
## -6.7868694 -2.5089071 -1.8150301 -1.1801931 -0.4920039  0.1375484  0.7844976 
##        70%        80%        90%       100% 
##  2.0494752  2.6262401  3.8453344  6.0828174
(PLS_DALEX_Diagnostics <- model_diagnostics(PLS_DALEX))
##     GENDER             CONTIN       INFMOR           PERCAP       
##  Male  :43   Africa       :17   Min.   :0.6419   Min.   :-1.4775  
##  Female:29   Asia         :21   1st Qu.:1.7090   1st Qu.: 0.7926  
##              Europe       :16   Median :2.6602   Median : 1.7266  
##              North America:11   Mean   :2.5559   Mean   : 1.7439  
##              Oceania      : 2   3rd Qu.:3.4135   3rd Qu.: 2.8314  
##              South America: 5   Max.   :4.3858   Max.   : 4.4466  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.20   Min.   :2.511   Min.   :51.20   Min.   :57.14  
##  1st Qu.: 49.02   1st Qu.:3.887   1st Qu.:67.42   1st Qu.:67.18  
##  Median : 90.20   Median :4.742   Median :73.51   Median :72.99  
##  Mean   : 72.08   Mean   :4.752   Mean   :72.61   Mean   :72.33  
##  3rd Qu.:100.00   3rd Qu.:5.631   3rd Qu.:78.47   3rd Qu.:77.39  
##  Max.   :100.00   Max.   :7.406   Max.   :86.20   Max.   :84.75  
##    residuals       abs_residuals        label                ids       
##  Min.   :-6.7869   Min.   :0.04887   Length:72          Min.   : 1.00  
##  1st Qu.:-1.4065   1st Qu.:0.82974   Class :character   1st Qu.:18.75  
##  Median : 0.1375   Median :1.87576   Mode  :character   Median :36.50  
##  Mean   : 0.2816   Mean   :2.15539                      Mean   :36.50  
##  3rd Qu.: 2.4014   3rd Qu.:3.14434                      3rd Qu.:54.25  
##  Max.   : 6.0828   Max.   :6.78687                      Max.   :72.00
plot(PLS_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("PLS: Observed and Predicted LIFEXP")

##################################
# Formulating the DALEX object
# for the Best CUBIST model
# as applied to the model test data
##################################
CUBIST_DALEX <- DALEX::explain(CUBIST_Tune,
                            data = MT.Model.Predictors,
                            y = MT$LIFEXP,
                            verbose = FALSE,
                            label = "CUBIST")

(CUBIST_DALEX_Performance <- model_performance(CUBIST_DALEX))
## Measures for:  regression
## mse        : 4.955851 
## rmse       : 2.226174 
## r2         : 0.9069931 
## mad        : 1.555514
## 
## Residuals:
##          0%         10%         20%         30%         40%         50% 
## -6.27483923 -2.34803998 -1.75093724 -1.08073022 -0.25740164  0.08468332 
##         60%         70%         80%         90%        100% 
##  0.74473043  1.16073038  1.70618640  2.84412369  5.15525385
(CUBIST_DALEX_Diagnostics <- model_diagnostics(CUBIST_DALEX))
##     GENDER             CONTIN       INFMOR           PERCAP       
##  Male  :43   Africa       :17   Min.   :0.6419   Min.   :-1.4775  
##  Female:29   Asia         :21   1st Qu.:1.7090   1st Qu.: 0.7926  
##              Europe       :16   Median :2.6602   Median : 1.7266  
##              North America:11   Mean   :2.5559   Mean   : 1.7439  
##              Oceania      : 2   3rd Qu.:3.4135   3rd Qu.: 2.8314  
##              South America: 5   Max.   :4.3858   Max.   : 4.4466  
##      CLTECH           NCOMOR            y             y_hat      
##  Min.   :  0.20   Min.   :2.511   Min.   :51.20   Min.   :55.56  
##  1st Qu.: 49.02   1st Qu.:3.887   1st Qu.:67.42   1st Qu.:67.93  
##  Median : 90.20   Median :4.742   Median :73.51   Median :72.67  
##  Mean   : 72.08   Mean   :4.752   Mean   :72.61   Mean   :72.49  
##  3rd Qu.:100.00   3rd Qu.:5.631   3rd Qu.:78.47   3rd Qu.:77.88  
##  Max.   :100.00   Max.   :7.406   Max.   :86.20   Max.   :84.71  
##    residuals        abs_residuals        label                ids       
##  Min.   :-6.27484   Min.   :0.01256   Length:72          Min.   : 1.00  
##  1st Qu.:-1.54890   1st Qu.:0.71120   Class :character   1st Qu.:18.75  
##  Median : 0.08468   Median :1.55551   Mode  :character   Median :36.50  
##  Mean   : 0.11581   Mean   :1.73586                      Mean   :36.50  
##  3rd Qu.: 1.40404   3rd Qu.:2.38064                      3rd Qu.:54.25  
##  Max.   : 5.15525   Max.   :6.27484                      Max.   :72.00
plot(CUBIST_DALEX_Diagnostics,
     variable = "y",
     yvariable = "y_hat") +
  geom_point(size=3) +
  scale_x_continuous("Observed LIFEXP") +
  scale_y_continuous("Predicted LIFEXP") +
  geom_abline(slope = 1) +
  ggtitle("CUBIST: Observed and Predicted LIFEXP")

1.3.8 Model Selection


[A] The formulated model using GBM: Stochastic Gradient Boosting was selected as the final model among others for the following reasons:
     [A.1] It demonstrated the best RMSE and R-Squared performance based on external validation.
     [A.2] No excessive overfitting observed when comparing the internal and external validation performance.
     [A.3] It generated the most stable residual distribution with the lowest variance.

Code Chunk | Output
##################################
# Consolidating the performance
# on the model test data
##################################
plot(LR_DALEX_Performance,
     GBM_DALEX_Performance,
     RF_DALEX_Performance,
     NN_DALEX_Performance,
     PLS_DALEX_Performance,
     CUBIST_DALEX_Performance)

plot(LR_DALEX_Performance,
     GBM_DALEX_Performance,
     RF_DALEX_Performance,
     NN_DALEX_Performance,
     PLS_DALEX_Performance,
     CUBIST_DALEX_Performance,
     geom = "boxplot")

plot(LR_DALEX_Performance,
     GBM_DALEX_Performance,
     RF_DALEX_Performance,
     NN_DALEX_Performance,
     PLS_DALEX_Performance,
     CUBIST_DALEX_Performance,
     geom = "histogram")

plot(LR_DALEX_Performance,
     geom = "histogram") +
  scale_x_continuous(limits=c(-8, 8)) +
  scale_y_continuous(limits=c(0, 8))

plot(GBM_DALEX_Performance,
     geom = "histogram") +
  scale_x_continuous(limits=c(-8, 8)) +
  scale_y_continuous(limits=c(0, 8))

plot(RF_DALEX_Performance,
     geom = "histogram") +
  scale_x_continuous(limits=c(-8, 8)) +
  scale_y_continuous(limits=c(0, 8))

plot(NN_DALEX_Performance,
     geom = "histogram") +
  scale_x_continuous(limits=c(-8, 8)) +
  scale_y_continuous(limits=c(0, 8))

plot(PLS_DALEX_Performance,
     geom = "histogram") +
  scale_x_continuous(limits=c(-8, 8)) +
  scale_y_continuous(limits=c(0, 8))

plot(CUBIST_DALEX_Performance,
     geom = "histogram") +
  scale_x_continuous(limits=c(-8, 8)) +
  scale_y_continuous(limits=c(0, 8))

##################################
# Consolidating the variable importance
# on the model test data
##################################
LR_DALEX_VariableImportance    <- model_parts(LR_DALEX,
                                              loss_function = loss_root_mean_square,
                                              B = 200,
                                              N = NULL)
GBM_DALEX_VariableImportance    <- model_parts(GBM_DALEX,
                                               loss_function = loss_root_mean_square,
                                               B = 200,
                                               N = NULL)
RF_DALEX_VariableImportance     <- model_parts(RF_DALEX,
                                               loss_function = loss_root_mean_square,
                                               B = 200,
                                               N = NULL)
NN_DALEX_VariableImportance     <- model_parts(NN_DALEX,
                                               loss_function = loss_root_mean_square,
                                               B = 200,
                                               N = NULL)
PLS_DALEX_VariableImportance    <- model_parts(PLS_DALEX,
                                               loss_function = loss_root_mean_square,
                                               B = 200,
                                               N = NULL)
CUBIST_DALEX_VariableImportance <- model_parts(CUBIST_DALEX,
                                               loss_function = loss_root_mean_square,
                                               B = 200,
                                               N = NULL)

plot(LR_DALEX_VariableImportance,
     GBM_DALEX_VariableImportance,
     RF_DALEX_VariableImportance,
     NN_DALEX_VariableImportance,
     PLS_DALEX_VariableImportance,
     CUBIST_DALEX_VariableImportance)

1.3.9 Model Presentation


1.3.9.1 Dataset Level Exploration : Variable Importance


[A] The predictors for the GBM: Stochastic Gradient Boosting model ranked based on importance were given as follows:
     [A.1] INFMOR (numeric)
     [A.2] NCOMOR (numeric)
     [A.3] CONTIN (factor)
     [A.4] GENDER (factor)
     [A.5] CLTECH (numeric)
     [A.6] PERCAP (numeric)

[A] The most dominant predictors for the model were the following:
     [A.1] INFMOR (numeric)
     [A.2] NCOMOR (numeric)

[B] Comparable contributions were observed for the following predictors:
     [B.1] CONTIN (factor)
     [B.2] GENDER (factor)
     [B.3] CLTECH (numeric)

[C] The predictor which showed the least contribution in the model was:
     [C.1] PERCAP (numeric)

Code Chunk | Output
##################################
# Summarizing the variable importance
# for the final model - GBM
##################################
GBM_DALEX_VariableImportance
##       variable mean_dropout_loss label
## 1 _full_model_          2.100785   GBM
## 2       PERCAP          2.183325   GBM
## 3       CLTECH          2.521746   GBM
## 4       GENDER          2.540034   GBM
## 5       CONTIN          2.605090   GBM
## 6       NCOMOR          4.033273   GBM
## 7       INFMOR          6.362181   GBM
## 8   _baseline_         10.113806   GBM
plot(GBM_DALEX_VariableImportance)


1.3.9.2 Dataset Level Exploration : Partial Dependence Plots


[A] The average effects of the individual GBM: Stochastic Gradient Boosting model predictors on the response variable LIFEXP, as conditioned by the other predictors in the model, are described as follows:
     [A.1] Lower values of INFMOR (numeric) lead to higher LIFEXP (numeric)
     [A.2] Lower values of NCOMOR (numeric) lead to higher LIFEXP (numeric)
     [A.3] CONTIN=Africa (numeric) lead to lower LIFEXP (numeric)
     [A.4] GENDER=Female (factor) lead to higher LIFEXP (numeric)
     [A.5] Higher values of CLTECH (numeric) lead to higher LIFEXP (numeric)
     [A.6] Minimal effect for PERCAP (numeric) on LIFEXP (numeric)

Code Chunk | Output
##################################
# Formulating the partial dependence plots
# for the final model - GBM
# using the numeric variables
##################################
GBM_DALEX_PartialDependencePlot_INFMOR <- model_profile(GBM_DALEX,
                                                        variables = "INFMOR")
GBM_DALEX_PartialDependencePlot_NCOMOR <- model_profile(GBM_DALEX,
                                                        variables = "NCOMOR")
GBM_DALEX_PartialDependencePlot_CLTECH <- model_profile(GBM_DALEX,
                                                        variables = "CLTECH")
GBM_DALEX_PartialDependencePlot_PERCAP <- model_profile(GBM_DALEX,
                                                        variables = "PERCAP")

(GBM_DALEX_PDP_INFMOR <- plot(GBM_DALEX_PartialDependencePlot_INFMOR,
                              geom = "profiles"))

(GBM_DALEX_PDP_NCOMOR <- plot(GBM_DALEX_PartialDependencePlot_NCOMOR,
                              geom = "profiles"))

(GBM_DALEX_PDP_CLTECH <- plot(GBM_DALEX_PartialDependencePlot_CLTECH,
                              geom = "profiles"))

(GBM_DALEX_PDP_PERCAP <- plot(GBM_DALEX_PartialDependencePlot_PERCAP,
                              geom = "profiles"))

##################################
# Formulating the grouped partial dependence plots
# for the final model - GBM
# using the numeric variables
# stratified by GENDER
##################################
GBM_DALEX_GroupedPartialDependencePlot_INFMOR <- model_profile(GBM_DALEX,
                                                               variables = "INFMOR",
                                                               groups = "GENDER")
GBM_DALEX_GroupedPartialDependencePlot_NCOMOR <- model_profile(GBM_DALEX,
                                                               variables = "NCOMOR",
                                                               groups = "GENDER")
GBM_DALEX_GroupedPartialDependencePlot_CLTECH <- model_profile(GBM_DALEX,
                                                               variables = "CLTECH",
                                                               groups = "GENDER")
GBM_DALEX_GroupedPartialDependencePlot_PERCAP <- model_profile(GBM_DALEX,
                                                               variables = "PERCAP",
                                                               groups = "GENDER")

(GBM_DALEX_GPDP_INFMOR <- plot(GBM_DALEX_GroupedPartialDependencePlot_INFMOR,
                              geom = "profiles"))

(GBM_DALEX_GPDP_NCOMOR <- plot(GBM_DALEX_GroupedPartialDependencePlot_NCOMOR,
                              geom = "profiles"))

(GBM_DALEX_GPDP_CLTECH <- plot(GBM_DALEX_GroupedPartialDependencePlot_CLTECH,
                              geom = "profiles"))

(GBM_DALEX_GPDP_PERCAP <- plot(GBM_DALEX_GroupedPartialDependencePlot_PERCAP,
                              geom = "profiles"))

##################################
# Formulating the grouped partial dependence plots
# for the final model - GBM
# using the numeric variables
# stratified by CONTIN
##################################
GBM_DALEX_GroupedPartialDependencePlot_INFMOR <- model_profile(GBM_DALEX,
                                                               variables = "INFMOR",
                                                               groups = "CONTIN")
GBM_DALEX_GroupedPartialDependencePlot_NCOMOR <- model_profile(GBM_DALEX,
                                                               variables = "NCOMOR",
                                                               groups = "CONTIN")
GBM_DALEX_GroupedPartialDependencePlot_CLTECH <- model_profile(GBM_DALEX,
                                                               variables = "CLTECH",
                                                               groups = "CONTIN")
GBM_DALEX_GroupedPartialDependencePlot_PERCAP <- model_profile(GBM_DALEX,
                                                               variables = "PERCAP",
                                                               groups = "CONTIN")

(GBM_DALEX_GPDP_INFMOR <- plot(GBM_DALEX_GroupedPartialDependencePlot_INFMOR,
                              geom = "profiles"))

(GBM_DALEX_GPDP_NCOMOR <- plot(GBM_DALEX_GroupedPartialDependencePlot_NCOMOR,
                              geom = "profiles"))

(GBM_DALEX_GPDP_CLTECH <- plot(GBM_DALEX_GroupedPartialDependencePlot_CLTECH,
                              geom = "profiles"))

(GBM_DALEX_GPDP_PERCAP <- plot(GBM_DALEX_GroupedPartialDependencePlot_PERCAP,
                              geom = "profiles"))

##################################
# Formulating the partial dependence plots
# for the final model - GBM
# using the factor variables
##################################
GBM_DALEX_PartialDependencePlot_GENDER <- model_profile(GBM_DALEX,
                                                        variable_type = 'categorical',
                                                        variables = "GENDER")
GBM_DALEX_PartialDependencePlot_CONTIN <- model_profile(GBM_DALEX,
                                                        variable_type = 'categorical',
                                                        variables = "CONTIN")

(GBM_DALEX_PDP_GENDER <- plot(GBM_DALEX_PartialDependencePlot_GENDER,
                               geom = "profiles"))

(GBM_DALEX_PDP_CONTIN <- plot(GBM_DALEX_PartialDependencePlot_CONTIN,
                               geom = "profiles"))


1.3.9.3 Instance Level Exploration : Breakdown Plots


[A] The decomposition of the GBM: Stochastic Gradient Boosting model’s prediction for the response variable LIFEXP, into contributions that can be attributed to different explanatory variables were demonstrated using two illustrated instances:
     [A.1] Instance 1
            [A.1.1] COUNTRY=Philippines (character)
            [A.1.2] INFMOR=2.944 (numeric)
            [A.1.3] NCOMOR=4.704 (numeric)
            [A.1.4] CONTIN=Asia (factor)
            [A.1.5] GENDER=Female (factor)
            [A.1.6] CLTECH=47.4 (numeric)
            [A.1.7] PERCAP=1.249 (numeric)
     [A.2] Instance 2
            [A.2.1] COUNTRY=Philippines (character)
            [A.2.2] INFMOR=3.174 (numeric)
            [A.2.3] NCOMOR=5.951 (numeric)
            [A.2.4] CONTIN=Asia (factor)
            [A.2.5] GENDER=Male (factor)
            [A.2.6] CLTECH=47.4 (numeric)
            [A.2.7] PERCAP=1.249 (numeric)

[B] Variable attributions for Instance 1 were described as follows:
     [B.1] Target response: LIFEXP=75.505 (numeric)
     [B.2] Predicted response: 75.616
     [B.3] Variable attributions conditioned on the previous predictor(s) are given below:
            [B.3.1] Average response: 72.475
            [B.3.2] GENDER=Female (factor): +1.286
            [B.3.3] INFMOR=2.944 (numeric): +0.996
            [B.3.4] CONTIN=Asia (factor): +0.629
            [B.3.5] PERCAP=1.249 (numeric): +0.866
            [B.3.6] NCOMOR=4.704 (numeric): -0.065
            [B.3.7] CLTECH=47.4 (numeric): -0.571
            [B.3.8] Predicted response: 75.616

[C] Variable attributions for Instance 2 were described as follows:
     [C.1] Target response: LIFEXP=67.263 (numeric)
     [C.2] Predicted response: 68.103
     [C.3] Variable attributions conditioned on the previous predictor(s) are given below:
            [C.3.1] Average response: 72.475
            [C.3.2] NCOMOR=5.951 (numeric): -3.294
            [C.3.3] INFMOR=3.174 (numeric): -1.208
            [C.3.4] GENDER=Male (factor): -0.972
            [C.3.5] CONTIN=Asia (factor): +0.675
            [C.3.6] PERCAP=1.249 (numeric): +1.088
            [C.3.7] CLTECH=47.4 (numeric): -0.662
            [C.3.8] Predicted response: 68.103

Code Chunk | Output
##################################
# Formulating the sampled instances
# for illustration
##################################
(Instance_1_Philippines_Female  <- PME[PME$COUNTRY=="Philippines" & PME$GENDER=="Female",
                                   c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")])
##     GENDER CONTIN   INFMOR   PERCAP CLTECH   NCOMOR LIFEXP
## 141 Female   Asia 2.944439 1.248566   47.4 4.704261 75.505
(Instance_2_Philippines_Male    <- PME[PME$COUNTRY=="Philippines" & PME$GENDER=="Male",
                                   c("GENDER","CONTIN","INFMOR","PERCAP","CLTECH","NCOMOR","LIFEXP")])
##     GENDER CONTIN   INFMOR   PERCAP CLTECH   NCOMOR LIFEXP
## 338   Male   Asia 3.173878 1.248566   47.4 5.950788 67.263
##################################
# Obtaining the breakdown plots
# for the individual instances
##################################
(Instance_1_GBM_BDP <- DALEX::predict_parts(explainer = GBM_DALEX,
                                           new_observation = Instance_1_Philippines_Female[,c(1:6)],
                                           type = "break_down"))
##                      contribution
## GBM: intercept             72.475
## GBM: GENDER = Female        1.286
## GBM: INFMOR = 2.944         0.996
## GBM: CONTIN = Asia          0.629
## GBM: PERCAP = 1.249         0.866
## GBM: NCOMOR = 4.704        -0.065
## GBM: CLTECH = 47.4         -0.571
## GBM: prediction            75.616
plot(Instance_1_GBM_BDP)

(Instance_2_GBM_BDP <- DALEX::predict_parts(explainer = GBM_DALEX,
                                           new_observation = Instance_2_Philippines_Male[,c(1:6)],
                                           type = "break_down"))
##                     contribution
## GBM: intercept            72.475
## GBM: NCOMOR = 5.951       -3.294
## GBM: INFMOR = 3.174       -1.208
## GBM: GENDER = Male        -0.972
## GBM: CONTIN = Asia         0.675
## GBM: PERCAP = 1.249        1.088
## GBM: CLTECH = 47.4        -0.662
## GBM: prediction           68.103
plot(Instance_2_GBM_BDP)


1.3.9.4 Instance Level Exploration : Shapley Additive Explanations


[A] Using 25 random orderings of predictors, the average variable attributions for Instance 1, ranked from highest to lowest, were enumerated as follows:
     [A.1] GENDER=Female (factor): +1.216
     [A.2] INFMOR=2.944 (numeric): +1.017
     [A.3] PERCAP=1.249 (numeric): +0.787
     [A.4] CONTIN=Asia (factor): +0.734
     [A.5] CLTECH=47.4 (numeric): -0.419
     [A.6] NCOMOR=4.704 (numeric): -0.195

[B] Using 25 random orderings of predictors, the average variable attributions for Instance 2,ranked from highest to lowest, were described as follows:
     [B.1] NCOMOR=5.951 (numeric): -2.957
     [B.2] INFMOR=3.174 (numeric): -1.654
     [B.3] GENDER=Male (factor): -0.889
     [B.4] PERCAP=1.249 (numeric): +0.870
     [B.5] CONTIN=Asia (factor): +0.768
     [B.6] CLTECH=47.4 (numeric): -0.508

Code Chunk | Output
#################################
# Obtaining the shapley additive explanations
# for the individual instances
#################################
(Instance_1_GBM_SHAP <- DALEX::predict_parts(explainer = GBM_DALEX,
                                           new_observation = Instance_1_Philippines_Female[,c(1:6)],
                                           type = "shap",
                                           B = 25))
##                             min         q1     median       mean          q3
## GBM: CLTECH = 47.4   -0.6461512 -0.5575544 -0.4095151 -0.4195469 -0.29357833
## GBM: CONTIN = Asia    0.5969206  0.6584082  0.7493046  0.7345593  0.81007457
## GBM: GENDER = Female  1.1254368  1.1763314  1.1903410  1.2163946  1.26665268
## GBM: INFMOR = 2.944   0.8087826  0.9515436  0.9875200  1.0176594  1.03214262
## GBM: NCOMOR = 4.704  -0.4485391 -0.3066485 -0.2115814 -0.1957897 -0.06458359
## GBM: PERCAP = 1.249   0.6416678  0.7081684  0.7807724  0.7874857  0.83103750
##                             max
## GBM: CLTECH = 47.4   -0.2418281
## GBM: CONTIN = Asia    0.8575527
## GBM: GENDER = Female  1.3370485
## GBM: INFMOR = 2.944   1.3780094
## GBM: NCOMOR = 4.704   0.0781626
## GBM: PERCAP = 1.249   0.9611060
plot(Instance_1_GBM_SHAP)

(Instance_2_GBM_SHAP <- DALEX::predict_parts(explainer = GBM_DALEX,
                                           new_observation = Instance_2_Philippines_Male[,c(1:6)],
                                           type = "shap",
                                           B = 25))
##                            min         q1     median       mean         q3
## GBM: CLTECH = 47.4  -0.6861096 -0.6619461 -0.5416852 -0.5087936 -0.3487904
## GBM: CONTIN = Asia   0.6115964  0.7027173  0.7892966  0.7685187  0.8219538
## GBM: GENDER = Male  -1.0513274 -0.9924010 -0.8337821 -0.8894513 -0.8045019
## GBM: INFMOR = 3.174 -2.1214680 -1.6973253 -1.6586635 -1.6549659 -1.3896740
## GBM: NCOMOR = 5.951 -3.4994711 -3.1562885 -2.9604593 -2.9579765 -2.7187872
## GBM: PERCAP = 1.249  0.6669090  0.7717363  0.8397737  0.8704869  0.9583036
##                            max
## GBM: CLTECH = 47.4  -0.2694148
## GBM: CONTIN = Asia   0.9233503
## GBM: GENDER = Male  -0.7663641
## GBM: INFMOR = 3.174 -1.2080360
## GBM: NCOMOR = 5.951 -2.4613331
## GBM: PERCAP = 1.249  1.1004550
plot(Instance_2_GBM_SHAP)


1.3.9.5 Instance Level Exploration : Ceteris Paribus Profiles


[A] Assuming all other predictors remain unchanged, the effects of the individual predictors to the model predictions for Instance 1 were described as follows:
     [A.1] Decreasing INFMOR (numeric) by 2 percent increases LIFEXP (numeric) by 5 years
     [A.2] Decreasing PERCAP (numeric) by USD1K did not have a considerable effect on LIFEXP (numeric)
     [A.3] Increasing CLTECH (numeric) by 50% increases LIFEXP (numeric) by 2 years
     [A.4] Decreasing NCOMOR (numeric) by 2 percent increases LIFEXP (numeric) by 5 years
     [A.5] Shifting factor level from GENDER=Female to GENDER=Male decreases LIFEXP (numeric) by 2 years
     [A.6] Shifting factor level from CONTIN=Asia to CONTIN=Africa decreases LIFEXP (numeric) by 2 years

[B] Assuming all other predictors remain unchanged, the effects of the individual predictors to the model predictions for Instance 2 were described as follows:
     [B.1] Decreasing INFMOR (numeric) by 2 percent increases LIFEXP (numeric) by 5 years
     [B.2] Decreasing PERCAP (numeric) by USD1K did not have a considerable effect on LIFEXP (numeric)
     [B.3] Increasing CLTECH (numeric) by 50% increases LIFEXP (numeric) by 2 years
     [B.4] Decreasing NCOMOR (numeric) by 2 percent increases LIFEXP (numeric) by 5 years
     [B.5] Shifting factor level from GENDER=Male to GENDER=Female increases LIFEXP (numeric) by 2 years
     [B.6] Shifting factor level from CONTIN=Asia to CONTIN=Africa decreases LIFEXP (numeric) by 2 years

Code Chunk | Output
##################################
# Obtaining the ceteris paribus profiles
# for the individual instances
##################################
(Instance_1_GBM_CPP <- DALEX::predict_profile(explainer = GBM_DALEX,
                                           new_observation = Instance_1_Philippines_Female[,c(1:6)]))
## Top profiles    : 
##         GENDER        CONTIN   INFMOR   PERCAP CLTECH   NCOMOR   _yhat_ _vname_
## 141       Male          Asia 2.944439 1.248566   47.4 4.704261 73.64589  GENDER
## 141.1   Female          Asia 2.944439 1.248566   47.4 4.704261 75.61556  GENDER
## 1411    Female        Africa 2.944439 1.248566   47.4 4.704261 73.69957  CONTIN
## 141.110 Female          Asia 2.944439 1.248566   47.4 4.704261 75.61556  CONTIN
## 141.2   Female        Europe 2.944439 1.248566   47.4 4.704261 75.13845  CONTIN
## 141.3   Female North America 2.944439 1.248566   47.4 4.704261 75.35803  CONTIN
##         _ids_ _label_
## 141       141     GBM
## 141.1     141     GBM
## 1411      141     GBM
## 141.110   141     GBM
## 141.2     141     GBM
## 141.3     141     GBM
## 
## 
## Top observations:
##     GENDER CONTIN   INFMOR   PERCAP CLTECH   NCOMOR   _yhat_ _label_ _ids_
## 141 Female   Asia 2.944439 1.248566   47.4 4.704261 75.61556     GBM     1
plot(Instance_1_GBM_CPP,
     variables = c("INFMOR","PERCAP","CLTECH","NCOMOR")) +
  ggtitle("Ceteris-paribus profile", "") +
  ylim(55, 80)

plot(Instance_1_GBM_CPP,
     variables = c("GENDER","CONTIN"),
     variable_type = "categorical",
     categorical_type = "bars") +
  ggtitle("Ceteris-paribus profile", "")

(Instance_2_GBM_CPP <- DALEX::predict_profile(explainer = GBM_DALEX,
                                           new_observation = Instance_2_Philippines_Male[,c(1:6)]))
## Top profiles    : 
##         GENDER        CONTIN   INFMOR   PERCAP CLTECH   NCOMOR   _yhat_ _vname_
## 338       Male          Asia 3.173878 1.248566   47.4 5.950788 68.10262  GENDER
## 338.1   Female          Asia 3.173878 1.248566   47.4 5.950788 70.56651  GENDER
## 3381      Male        Africa 3.173878 1.248566   47.4 5.950788 66.03975  CONTIN
## 338.110   Male          Asia 3.173878 1.248566   47.4 5.950788 68.10262  CONTIN
## 338.2     Male        Europe 3.173878 1.248566   47.4 5.950788 67.12975  CONTIN
## 338.3     Male North America 3.173878 1.248566   47.4 5.950788 68.09560  CONTIN
##         _ids_ _label_
## 338       338     GBM
## 338.1     338     GBM
## 3381      338     GBM
## 338.110   338     GBM
## 338.2     338     GBM
## 338.3     338     GBM
## 
## 
## Top observations:
##     GENDER CONTIN   INFMOR   PERCAP CLTECH   NCOMOR   _yhat_ _label_ _ids_
## 338   Male   Asia 3.173878 1.248566   47.4 5.950788 68.10262     GBM     1
plot(Instance_2_GBM_CPP,
     variables = c("INFMOR","PERCAP","CLTECH","NCOMOR")) +
  ggtitle("Ceteris-paribus profile", "") +
  ylim(55, 80)

plot(Instance_2_GBM_CPP,
     variables = c("GENDER","CONTIN"),
     variable_type = "categorical",
     categorical_type = "bars") +
  ggtitle("Ceteris-paribus profile", "")


1.3.9.6 Instance Level Exploration : Local Fidelity Plots


[A] The histograms of residuals for the entire dataset and for a selected set of 50 neighbors for Instance 1 were almost parallel and very close to each other suggesting that the model predictions were stable around this particular instance of interest.

[B] The histograms of residuals for the entire dataset and for a selected set of 50 neighbors for Instance 2 were almost parallel and very close to each other suggesting that the model predictions were stable around this particular instance of interest.

Code Chunk | Output
Instance_1_GBM_LFP <- predict_diagnostics(explainer = GBM_DALEX,
                                         new_observation = Instance_1_Philippines_Female[,c(1:6)],
                                         neighbours = 50)
plot(Instance_1_GBM_LFP)

Instance_2_GBM_LFP <- predict_diagnostics(explainer = GBM_DALEX,
                                         new_observation = Instance_2_Philippines_Male[,c(1:6)],
                                         neighbours = 50)
plot(Instance_2_GBM_LFP)


1.3.9.7 Instance Level Exploration : Local Stability Plots


[A] The profiles obtained for the 5 nearest neighbors for Instance 1 were relatively close to each other, suggesting the stability of predictions. However, there were relatively more negative than positive residuals, which may have indicated a (local) positive bias of the predictions.

[B] The profiles obtained for the 5 nearest neighbors for Instance 2 were relatively close to each other, suggesting the stability of predictions. However, there were relatively more negative than positive residuals, which may have indicated a (local) positive bias of the predictions.

Code Chunk | Output
Instance_1_GBM_LFP <- predict_diagnostics(explainer = GBM_DALEX,
                                          new_observation = Instance_1_Philippines_Female[,c(1:6)],
                                          neighbours = 5,
                                          variables = c("INFMOR","NCOMOR","CLTECH","PERCAP"))
plot(Instance_1_GBM_LFP)

Instance_1_GBM_LFP <- predict_diagnostics(explainer = GBM_DALEX,
                                          new_observation = Instance_1_Philippines_Female[,c(1:6)],
                                          neighbours = 5,
                                          variables = c("GENDER","CONTIN"))
plot(Instance_1_GBM_LFP)

Instance_2_GBM_LFP <- predict_diagnostics(explainer = GBM_DALEX,
                                          new_observation = Instance_2_Philippines_Male[,c(1:6)],
                                          neighbours = 5,
                                          variables = c("INFMOR","NCOMOR","CLTECH","PERCAP"))
plot(Instance_2_GBM_LFP)

Instance_2_GBM_LFP <- predict_diagnostics(explainer = GBM_DALEX,
                                          new_observation = Instance_2_Philippines_Male[,c(1:6)],
                                          neighbours = 5,
                                          variables = c("GENDER","CONTIN"))
plot(Instance_2_GBM_LFP)


2. Summary


A stochastic gradient boosted model provided a set of robust and reliable estimates of life expectancy, primarily characterized by healthcare access (infant mortality, non-communicable disease-related mortality), demographic (gender, continent) and socio-economic (access to clean cooking, GDP per capita) factors. As a black-box model, various model-agnostic methods were used to interpret the model predictions. The key drivers identified for high life expectancy levels ranked by feature importance with their conditioned effects indicated were given as follows:

[1] Infant mortality (-)

[2] Non-communicable disease-related mortality (-)

[3] Belonging to the Non-African continent (+)

[4] Belonging to the female gender (+)

[5] Access to clean fuels and technologies for cooking (+)

[6] Gross domestic product per capita (+)

Overall, progressive economies tend to have higher life expectancy potentially influenced by a complex interplay of various factors. Developed countries typically invest heavily in healthcare infrastructure, ensuring that their populations have access to quality medical services. Adequate healthcare contributes to early diagnosis, effective treatment, and improved overall health outcomes. Similarly, stable economies lead to higher standards of living. Economic stability is linked to improved living conditions, better nutrition, and reduced exposure to environmental hazards, all of which contribute to increased life expectancy. Interestingly, gender differences in life expectancy were generally observed across countries favoring women. However, it is essential to recognize that causation is multifaceted and each country’s unique circumstances might contribute differently to its life expectancy outcomes.

[A] From an initial dataset comprised of 394 observations and 22 predictors, an optimal subset of 364 observations and 6 predictors representing healthcare access, demographic and socio-economic factors were determined after conducting data quality assessment and feature selection, excluding cases or variables noted with irregularities and applying preprocessing operations most suitable for the downstream analysis.

[B] Multiple regression modelling algorithms with various hyperparameter combinations were formulated using Stochastic Gradient Boosting, Cubist Regression, Neural Network, Random Forest, Linear Regression and Partial Least Squares Regression. The best model with optimized hyperparameters from each algorithm were determined through internal resampling validation using 10-Fold Cross Validation of performance metrics Root Mean Square Error (RMSE) and R-Squared. All candidate models were compared based on internal and external validation performance, including their residual distributions.

[C] The final model selected among candidates used Stochastic Gradient Boosting with optimal hyperparameters: total number of trees (n.trees=300), maximum depth of each tree (interaction.depth=2), learning rate (shrinkage=0.1) and minimum number of observations in the terminal node (n.minobsinnode=5). This model demonstrated the best externally validated RMSE and R-Squared (RMSE=2.1007, R-Squared=0.9171); no excessive overfitting comparing the external and internal validation metrics (RMSE=2.0978, R-Squared=0.9288); and stable residual distribution with lowest variation.

[D] Owing to the black-box nature of the selected model, post-hoc exploration of the model results involved model agnostic methods including Dataset-Level Exploration using model-level global explanations (Permutated Mean Dropout Loss-Based Variable Importance, Partial Dependence Plots) and Instance-Level Exploration using prediction-level local explanations (Breakdown Plots, Shapley Additive Explanations, Ceteris Paribus Plots, Local Fidelity Plots, Local Stability Plots). These results helped provide dataset-level and instance-level insights on the importance, contribution and effect of the various predictors to model prediction.

The current results have limitations which can be further addressed by extending the study to include the following actions:

[1] Considering the detection and treatment of multivariate outliers to develop robust and reliable predictive models that accurately capture the underlying patterns in the data rather than noise or anomalies

[2] Conducting sensitivity analysis to assess the impact of outliers on model predictions and performance metrics - whether removing outliers improves model accuracy without sacrificing generalizability

[3] Accounting for potential non-linearity and interactions among independent variables to gain insights into their influence on model prediction

[4] Applying training and test data splitting prior to data transformation or scaling to avoid data snooping or inadvertently using information from the testing set in the model training process

[5] Exploring stacking model structures by leveraging the strengths of diverse learning algorithms and mitigating the weaknesses of individual models to produce more robust predictions














3. References


[Book] Explanatory Model Analysis: Explore, Explain, and Examine Predictive Models With examples in R and Python by Przemyslaw Biecek and Tomasz Burzykowski
[Book] Explainable Machine Learning: A Guide for Making Black Box Models Explainable by Christoph Molnar
[Book] Explainable AI: Interpreting, Explaining and Visualizing Deep Learning by Wojciech Samek, Gregoire Montavon, Andrea Vedaldi, Lars Kai Hansen and Klaus-Robert Muller
[Book] Applied Predictive Modeling by Max Kuhn and Kjell Johnson
[Book] The Elements of Statistical Learning by Trevor Hastie , Robert Tibshirani and Jerome Friedman
[Book] Pattern Recognition and Neural Networks by Brian Ripley
[Book] Regression Modeling Strategies by Frank Harrel
[R Package] DALEX by Przemyslaw Biecek, Szymon Maksymiuk and Hubert Baniecki
[R Package] iml by Christoph Molnar
[R Package] ALEPlot by Dan Apley
[R Package] randomForest by Leo Breiman, Adele Cutler, Andy Liaw and Matthew Wiener
[R Package] auditor by Alicja Gosiewska, Przemyslaw Biecek, Hubert Baniecki and Tomasz Mikołajczyk
[R Package] fastshap by Brandon Greenwell
[R Package] rms by Frank Harrell
[R Package] EIX by Szymon Maksymiuk, Ewelina Karbowiak and Przemyslaw Biecek
[R Package] parsnip by Max Kuhn and Davis Vaughan
[R Package] h2o by Tomas Fryda, Erin LeDell, Navdeep Gill, Spencer Aiello, Anqi Fu, Arno Candel, Cliff Click, Tom Kraljevic, Tomas Nykodym, Patrick Aboyoun, Michal Kurka, Michal Malohlava, Sebastien Poirier and Wendy Wong
[R Package] tidymodels by Max Kuhn and Hadley Wickham
[R Package] e1071 by David Meyer, Evgenia Dimitriadou, Kurt Hornik, Andreas Weingessel and Friedrich Leisch
[R Package] lime by Emil Hvitfeldt, Thomas Lin Pedersen and Michael Benesty
[R Package] ExplainPrediction by Marko Robnik-Sikonja
[R Package] localModel by Przemyslaw Biecek and Mateusz Staniak
[R Package] skimr by Elin Waring
[R Package] corrplot by Taiyun Wei
[R Package] lares by Bernardo Lares
[R Package] minerva by Michele Filosi
[R Package] CORElearn by Marko Robnik-Sikonja and Petr Savicky
[R Package] caret by Max Kuhn
[R Package] gbm by Brandon Greenwell, Bradley Boehmke, Jay Cunningham and GBM Developers
[R Package] randomForest by Andy Liaw
[R Package] nnet by Brian Ripley
[R Package] pls by Kristian Hovde Liland
[R Package] Cubist by Max Kuhn
[R Package] patchwork by Thomas Lin Pedersen
[Article] Life Expectancy by Max Roser, Esteban Ortiz-Ospina and Hannah Ritchie
[Article] Interpretation Methods for Black-Box Machine Learning Models in Insurance Rating-Type Applications by Gabe Taylor, Sunish Menon, Huimin Ru, Ray Wright, Xin Hunt and Ralph Abbey
[Article] 4 Model-Agnostic Interpretability Techniques for Complex Models by Funda Gunes
[Article] How Can We Provide Post-Hoc Explanations for Black-Box AI Models? by Joy Lin
[Article] Explaining black-box models using attribute importance, PDPs, and LIME by Nikolay Manchev
[Article] An Introduction to Explainable AI with Shapley Values by SHAP Team
[Article] A Gentle Introduction to SHAP Values in R by Pablo Casas
[Article] SHAP Values with Examples Applied to a Multi-Classification Problem byHarpo Maxx
[Article] SHAP Values - Interpret Predictions Of ML Models using Game-Theoretic Approach by Sunny Solanki
[Article] How to Interpret Machine Learning (ML) Models with SHAP Values by Xiaoyou Wang
[Article] Partial Dependence and Individual Conditional Expectation plots by Sci-Kit Learn Team
[Article] Interpret Model Predictions with Partial Dependence and Individual Conditional Expectation plots by Ilknur Kaynar Kabul
[Article] Correlation in R: Pearson and Spearman Correlation Matrix by Daniel Johnson
[Article] Correlation (Pearson, Kendall, Spearman) by Statistics Solutions Team
[Article] A Comparison of the Pearson and Spearman Correlation Methods by Minitab Support Team
[Article] How to Perform Lowess Smoothing in R (Step-by-Step) by Statology Team
[Article] Maximal Information Coefficient by R Bloggers Team
[Article] Methods for Forecasts of Continuous Variables by WWRP/WGNE Joint Working Group on Forecast Verification Research Team
[Article] Generalized Boosting Model by BCCVL Team
[Article] An Introduction to Partial Least Squares by Statology Team
[Article] Random Forest by BCCVL Team
[Article] Artificial Neural Network by BCCVL Team
[Article] Cubist Regression Models by Max Kuhn
[Publication] Determinants of Life Expectancy at Birth: A Longitudinal Study on OECD Countries by Paolo Roffia, Alessandro Bucciol and Sara Hashlamoun
[Publication] Robust Locally Weighted Regression and Smoothing Scatterplots by William Cleveland (Journal of the American Statistical Association)
[Publication] Mathematical Contributions to the Theory of Evolution: Regression, Heredity and Panmixia by Karl Pearson (Royal Society)
[Publication] The Proof and Measurement of Association between Two Things by Charles Spearman (The American Journal of Psychology)
[Publication] Detecting Novel Associations in Large Data Sets by David Reshef, Yakir Reshef, Hilary Finucane, Sharon Grossman, Gilean Mcvean, Peter Turnbaugh, Eric Lander, Michael Mitzenmacher and Pardis Sabeti (Science)
[Publication] Stochastic Gradient Boosting by Jerome Friedman (Computational Statistics and Data Analysis)
[Publication] Random Forest by Leo Breiman (Machine Learning)
[Publication] The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses by Svante Wold, Axel Ruhe, Herman Wold, and William Dunn (Society for Industrial and Applied Mathematics)
[Publication] Learning With Continuous Classes by Ross Quinlan (Proceedings of the 5th Australian Joint Conference On Artificial Intelligence)
[Publication] A Survey of Methods for Explaining Black Box Models by Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti and Dino Pedreschi (ACM Computing Surveys)
[Publication] iml: An R package for Interpretable Machine Learning by Christoph Molnar (Journal of Open Source Software)
[Publication] All Models Are Wrong, but Many Are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously by Aaron Fisher, Cynthia Rudin and Francesca Dominici (Journal of Machine Learning Research)
[Publication] Greedy Function Approximation: A Gradient Boosting Machine by Jerome Friedman (Annals of Statistics)
[Publication] Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation by Alex Goldstein, Adam Kapelner, Justin Bleich and Emil Pitkin (Journal of Computational and Graphical Statistics)
[Publication] An Efficient Explanation of Individual Classifications Using Game Theory by Erik Strumbelj and Igor Kononenko (Journal of Machine Learning Research)
[Publication] Explaining Classifications For Individual Instances by Marco Robnik-Sikonja and Igor Kononenko (IEEE Transactions on Knowledge and Data Engineering)