1. Table of Contents


This project explores different ensemble learning approaches which combine the predictions from multiple models in an effort to achieve better predictive performance using various helpful packages in R. The ensemble frameworks applied in the analysis were grouped into three classes including boosting models which add ensemble members sequentially that correct the predictions made by prior models and outputs a weighted average of the predictions; bagging models which fit many decision trees on different samples of the same dataset and averaging the predictions; and stacking which consolidate many different models types on the same data and using another model to learn how to best combine the predictions. Boosting models included the Adaptive Boosting, Stochastic Gradient Boosting and Extreme Gradient Boosting algorithms. Bagging models applied were the Random Forest and Bagged Classification and Regression Trees algorithms. Individual base learners including the Linear Discriminant Analysis, Classification and Regression Trees, Support Vector Machine (Radial Basis Function Kernel), K-Nearest Neighbors and Naive Bayes algorithms were evaluated for correlation and stacked together as contributors to the Logistic Regression and Random Forest meta-models. The resulting predictions derived from all ensemble learning models were evaluated based on their discrimination power using the area under the receiver operating characteristic curve (AUROC) metric. All results were consolidated in a Summary presented at the end of the document.

Ensemble learning aims to improve predictive performance by reaching a consensus in predictions through the fusion of the salient properties of two or more models. The final ensemble learning framework is more robust than the individual members that constitute the ensemble because of the variance reduction in the prediction errors. The algorithms applied in this study (mostly contained in the caret and caretEnsemble packages) attempt to capture complementary information from similar or diverse learners, as applicable, to further advance prediction accuracy over that of any of the contributing models.

1.1 Sample Data


The Wisconsin Breast Cancer dataset shared from the Kaggle website as obtained from the UCI Machine Learning Repository was used for this illustrated example.

Preliminary dataset assessment:

[A] 1138 rows (observations)

[B] 32 columns (variables)
     [B.1] 1/32 metadata (unique identifiers) = id (numeric)
     [B.2] 1/32 response = diagnosis (factor)
     [B.3] 30/32 predictors = 30/30 numeric
            [B.3.1] radius_mean (numeric)
            [B.3.2] texture_mean (numeric)
            [B.3.3] perimeter_mean (numeric)
            [B.3.4] area_mean (numeric)
            [B.3.5] smoothness_mean (numeric)
            [B.3.6] compactness_mean (numeric)
            [B.3.7] concavity_mean (numeric)
            [B.3.8] concave.points_mean (numeric)
            [B.3.9] symmetry_mean (numeric)
            [B.3.10] fractal_dimension_mean (numeric)
            [B.3.11] radius_se (numeric)
            [B.3.12] texture_se (numeric)
            [B.3.13] perimeter_se (numeric)
            [B.3.14] area_se (numeric)
            [B.3.15] smoothness_se (numeric)
            [B.3.16] compactness_se (numeric)
            [B.3.17] concavity_se (numeric)
            [B.3.18] concave.points_se (numeric)
            [B.3.19] symmetry_se (numeric)
            [B.3.20] fractal_dimension_se (numeric)
            [B.3.21] radius_worst (numeric)
            [B.3.22] texture_worst (numeric)
            [B.3.23] perimeter_worst (numeric)
            [B.3.24] area_worst (numeric)
            [B.3.25] smoothness_worst (numeric)
            [B.3.26] compactness_worst (numeric)
            [B.3.27] concavity_worst (numeric)
            [B.3.28] concave.points_worst (numeric)
            [B.3.29] symmetry_worst (numeric)
            [B.3.30] fractal_dimension_worst (numeric)

Code Chunk | Output
##################################
# Loading R libraries
##################################
library(AppliedPredictiveModeling)
library(tidyr)
library(caret)
library(lattice)
library(dplyr)
library(moments)
library(skimr)
library(RANN)
library(pls)
library(corrplot)
library(lares)
library(DMwR2)
library(gridExtra)
library(rattle)
library(RColorBrewer)
library(stats)
library(caretEnsemble)
library(pROC)
library(adabag)
library(gbm)
library(xgboost)
library(randomForest)
library(kernlab)
library(klaR)
library(rpart)
library(rpart.plot)

##################################
# Defining file paths
##################################
DATASETS_ORIGINAL_PATH <- file.path("datasets","original")

##################################
# Loading source and
# formulating the analysis set
##################################
BreastCancer <- read.csv(file.path("..", DATASETS_ORIGINAL_PATH, "WisconsinBreastCancer.csv"),
                         na.strings=c("NA","NaN"," ",""),
                         stringsAsFactors = FALSE)
BreastCancer <- as.data.frame(BreastCancer)

##################################
# Performing a general exploration of the data set
##################################
dim(BreastCancer)
## [1] 1138   32
str(BreastCancer)
## 'data.frame':    1138 obs. of  32 variables:
##  $ id                     : int  842302 842517 84300903 84348301 84358402 843786 844359 84458202 844981 84501001 ...
##  $ diagnosis              : chr  "M" "M" "M" "M" ...
##  $ radius_mean            : num  18 20.6 19.7 11.4 20.3 ...
##  $ texture_mean           : num  10.4 17.8 21.2 20.4 14.3 ...
##  $ perimeter_mean         : num  122.8 132.9 130 77.6 135.1 ...
##  $ area_mean              : num  1001 1326 1203 386 1297 ...
##  $ smoothness_mean        : num  0.1184 0.0847 0.1096 0.1425 0.1003 ...
##  $ compactness_mean       : num  0.2776 0.0786 0.1599 0.2839 0.1328 ...
##  $ concavity_mean         : num  0.3001 0.0869 0.1974 0.2414 0.198 ...
##  $ concave.points_mean    : num  0.1471 0.0702 0.1279 0.1052 0.1043 ...
##  $ symmetry_mean          : num  0.242 0.181 0.207 0.26 0.181 ...
##  $ fractal_dimension_mean : num  0.0787 0.0567 0.06 0.0974 0.0588 ...
##  $ radius_se              : num  1.095 0.543 0.746 0.496 0.757 ...
##  $ texture_se             : num  0.905 0.734 0.787 1.156 0.781 ...
##  $ perimeter_se           : num  8.59 3.4 4.58 3.44 5.44 ...
##  $ area_se                : num  153.4 74.1 94 27.2 94.4 ...
##  $ smoothness_se          : num  0.0064 0.00522 0.00615 0.00911 0.01149 ...
##  $ compactness_se         : num  0.049 0.0131 0.0401 0.0746 0.0246 ...
##  $ concavity_se           : num  0.0537 0.0186 0.0383 0.0566 0.0569 ...
##  $ concave.points_se      : num  0.0159 0.0134 0.0206 0.0187 0.0188 ...
##  $ symmetry_se            : num  0.03 0.0139 0.0225 0.0596 0.0176 ...
##  $ fractal_dimension_se   : num  0.00619 0.00353 0.00457 0.00921 0.00511 ...
##  $ radius_worst           : num  25.4 25 23.6 14.9 22.5 ...
##  $ texture_worst          : num  17.3 23.4 25.5 26.5 16.7 ...
##  $ perimeter_worst        : num  184.6 158.8 152.5 98.9 152.2 ...
##  $ area_worst             : num  2019 1956 1709 568 1575 ...
##  $ smoothness_worst       : num  0.162 0.124 0.144 0.21 0.137 ...
##  $ compactness_worst      : num  0.666 0.187 0.424 0.866 0.205 ...
##  $ concavity_worst        : num  0.712 0.242 0.45 0.687 0.4 ...
##  $ concave.points_worst   : num  0.265 0.186 0.243 0.258 0.163 ...
##  $ symmetry_worst         : num  0.46 0.275 0.361 0.664 0.236 ...
##  $ fractal_dimension_worst: num  0.1189 0.089 0.0876 0.173 0.0768 ...
summary(BreastCancer)
##        id             diagnosis          radius_mean      texture_mean  
##  Min.   :     8670   Length:1138        Min.   : 6.981   Min.   : 9.71  
##  1st Qu.:   869218   Class :character   1st Qu.:11.700   1st Qu.:16.17  
##  Median :   906024   Mode  :character   Median :13.370   Median :18.84  
##  Mean   : 30371831                      Mean   :14.127   Mean   :19.29  
##  3rd Qu.:  8813129                      3rd Qu.:15.780   3rd Qu.:21.80  
##  Max.   :911320502                      Max.   :28.110   Max.   :39.28  
##  perimeter_mean     area_mean      smoothness_mean   compactness_mean 
##  Min.   : 43.79   Min.   : 143.5   Min.   :0.05263   Min.   :0.01938  
##  1st Qu.: 75.17   1st Qu.: 420.3   1st Qu.:0.08637   1st Qu.:0.06492  
##  Median : 86.24   Median : 551.1   Median :0.09587   Median :0.09263  
##  Mean   : 91.97   Mean   : 654.9   Mean   :0.09636   Mean   :0.10434  
##  3rd Qu.:104.10   3rd Qu.: 782.7   3rd Qu.:0.10530   3rd Qu.:0.13040  
##  Max.   :188.50   Max.   :2501.0   Max.   :0.16340   Max.   :0.34540  
##  concavity_mean    concave.points_mean symmetry_mean    fractal_dimension_mean
##  Min.   :0.00000   Min.   :0.00000     Min.   :0.1060   Min.   :0.04996       
##  1st Qu.:0.02956   1st Qu.:0.02031     1st Qu.:0.1619   1st Qu.:0.05770       
##  Median :0.06154   Median :0.03350     Median :0.1792   Median :0.06154       
##  Mean   :0.08880   Mean   :0.04892     Mean   :0.1812   Mean   :0.06280       
##  3rd Qu.:0.13070   3rd Qu.:0.07400     3rd Qu.:0.1957   3rd Qu.:0.06612       
##  Max.   :0.42680   Max.   :0.20120     Max.   :0.3040   Max.   :0.09744       
##    radius_se        texture_se      perimeter_se       area_se       
##  Min.   :0.1115   Min.   :0.3602   Min.   : 0.757   Min.   :  6.802  
##  1st Qu.:0.2324   1st Qu.:0.8339   1st Qu.: 1.606   1st Qu.: 17.850  
##  Median :0.3242   Median :1.1080   Median : 2.287   Median : 24.530  
##  Mean   :0.4052   Mean   :1.2169   Mean   : 2.866   Mean   : 40.337  
##  3rd Qu.:0.4789   3rd Qu.:1.4740   3rd Qu.: 3.357   3rd Qu.: 45.190  
##  Max.   :2.8730   Max.   :4.8850   Max.   :21.980   Max.   :542.200  
##  smoothness_se      compactness_se      concavity_se     concave.points_se 
##  Min.   :0.001713   Min.   :0.002252   Min.   :0.00000   Min.   :0.000000  
##  1st Qu.:0.005169   1st Qu.:0.013080   1st Qu.:0.01509   1st Qu.:0.007638  
##  Median :0.006380   Median :0.020450   Median :0.02589   Median :0.010930  
##  Mean   :0.007041   Mean   :0.025478   Mean   :0.03189   Mean   :0.011796  
##  3rd Qu.:0.008146   3rd Qu.:0.032450   3rd Qu.:0.04205   3rd Qu.:0.014710  
##  Max.   :0.031130   Max.   :0.135400   Max.   :0.39600   Max.   :0.052790  
##   symmetry_se       fractal_dimension_se  radius_worst   texture_worst  
##  Min.   :0.007882   Min.   :0.0008948    Min.   : 7.93   Min.   :12.02  
##  1st Qu.:0.015160   1st Qu.:0.0022480    1st Qu.:13.01   1st Qu.:21.08  
##  Median :0.018730   Median :0.0031870    Median :14.97   Median :25.41  
##  Mean   :0.020542   Mean   :0.0037949    Mean   :16.27   Mean   :25.68  
##  3rd Qu.:0.023480   3rd Qu.:0.0045580    3rd Qu.:18.79   3rd Qu.:29.72  
##  Max.   :0.078950   Max.   :0.0298400    Max.   :36.04   Max.   :49.54  
##  perimeter_worst    area_worst     smoothness_worst  compactness_worst
##  Min.   : 50.41   Min.   : 185.2   Min.   :0.07117   Min.   :0.02729  
##  1st Qu.: 84.11   1st Qu.: 515.3   1st Qu.:0.11660   1st Qu.:0.14720  
##  Median : 97.66   Median : 686.5   Median :0.13130   Median :0.21190  
##  Mean   :107.26   Mean   : 880.6   Mean   :0.13237   Mean   :0.25427  
##  3rd Qu.:125.40   3rd Qu.:1084.0   3rd Qu.:0.14600   3rd Qu.:0.33910  
##  Max.   :251.20   Max.   :4254.0   Max.   :0.22260   Max.   :1.05800  
##  concavity_worst  concave.points_worst symmetry_worst   fractal_dimension_worst
##  Min.   :0.0000   Min.   :0.00000      Min.   :0.1565   Min.   :0.05504        
##  1st Qu.:0.1145   1st Qu.:0.06493      1st Qu.:0.2504   1st Qu.:0.07146        
##  Median :0.2267   Median :0.09993      Median :0.2822   Median :0.08004        
##  Mean   :0.2722   Mean   :0.11461      Mean   :0.2901   Mean   :0.08395        
##  3rd Qu.:0.3829   3rd Qu.:0.16140      3rd Qu.:0.3179   3rd Qu.:0.09208        
##  Max.   :1.2520   Max.   :0.29100      Max.   :0.6638   Max.   :0.20750
##################################
# Setting the data type
# for the response variable
##################################
BreastCancer$diagnosis <- factor(BreastCancer$diagnosis,
                                 levels = c("B","M"))

##################################
# Formulating a data type assessment summary
##################################
PDA <- BreastCancer
(PDA.Summary <- data.frame(
  Column.Index=c(1:length(names(PDA))),
  Column.Name= names(PDA), 
  Column.Type=sapply(PDA, function(x) class(x)), 
  row.names=NULL)
)
##    Column.Index             Column.Name Column.Type
## 1             1                      id     integer
## 2             2               diagnosis      factor
## 3             3             radius_mean     numeric
## 4             4            texture_mean     numeric
## 5             5          perimeter_mean     numeric
## 6             6               area_mean     numeric
## 7             7         smoothness_mean     numeric
## 8             8        compactness_mean     numeric
## 9             9          concavity_mean     numeric
## 10           10     concave.points_mean     numeric
## 11           11           symmetry_mean     numeric
## 12           12  fractal_dimension_mean     numeric
## 13           13               radius_se     numeric
## 14           14              texture_se     numeric
## 15           15            perimeter_se     numeric
## 16           16                 area_se     numeric
## 17           17           smoothness_se     numeric
## 18           18          compactness_se     numeric
## 19           19            concavity_se     numeric
## 20           20       concave.points_se     numeric
## 21           21             symmetry_se     numeric
## 22           22    fractal_dimension_se     numeric
## 23           23            radius_worst     numeric
## 24           24           texture_worst     numeric
## 25           25         perimeter_worst     numeric
## 26           26              area_worst     numeric
## 27           27        smoothness_worst     numeric
## 28           28       compactness_worst     numeric
## 29           29         concavity_worst     numeric
## 30           30    concave.points_worst     numeric
## 31           31          symmetry_worst     numeric
## 32           32 fractal_dimension_worst     numeric

1.2 Data Quality Assessment


[A] No missing observations noted for any predictor.

[B] Low variance observed for 1 predictor with First.Second.Mode.Ratio>5.
     [B.1] concavity_se = 6.50

[C] No low variance observed for any predictor with Unique.Count.Ratio<0.01.

[D] High skewness observed for 5 predictors with Skewness>3 or Skewness<(-3).
     [D.1] radius_se = +3.08
     [D.2] perimeter_se = +3.43
     [D.3] area_se = +5.43
     [D.4] concavity_se = +5.10
     [D.5] fractal_dimension_se = +3.91

Code Chunk | Output
##################################
# Loading dataset
##################################
DQA <- BreastCancer

##################################
# Formulating an overall data quality assessment summary
##################################
(DQA.Summary <- data.frame(
  Column.Name= names(DQA),
  Column.Type=sapply(DQA, function(x) class(x)),
  Row.Count=sapply(DQA, function(x) nrow(DQA)),
  NA.Count=sapply(DQA,function(x)sum(is.na(x))),
  Fill.Rate=sapply(DQA,function(x)format(round((sum(!is.na(x))/nrow(DQA)),3),nsmall=3)),
  row.names=NULL)
)
##                Column.Name Column.Type Row.Count NA.Count Fill.Rate
## 1                       id     integer      1138        0     1.000
## 2                diagnosis      factor      1138        0     1.000
## 3              radius_mean     numeric      1138        0     1.000
## 4             texture_mean     numeric      1138        0     1.000
## 5           perimeter_mean     numeric      1138        0     1.000
## 6                area_mean     numeric      1138        0     1.000
## 7          smoothness_mean     numeric      1138        0     1.000
## 8         compactness_mean     numeric      1138        0     1.000
## 9           concavity_mean     numeric      1138        0     1.000
## 10     concave.points_mean     numeric      1138        0     1.000
## 11           symmetry_mean     numeric      1138        0     1.000
## 12  fractal_dimension_mean     numeric      1138        0     1.000
## 13               radius_se     numeric      1138        0     1.000
## 14              texture_se     numeric      1138        0     1.000
## 15            perimeter_se     numeric      1138        0     1.000
## 16                 area_se     numeric      1138        0     1.000
## 17           smoothness_se     numeric      1138        0     1.000
## 18          compactness_se     numeric      1138        0     1.000
## 19            concavity_se     numeric      1138        0     1.000
## 20       concave.points_se     numeric      1138        0     1.000
## 21             symmetry_se     numeric      1138        0     1.000
## 22    fractal_dimension_se     numeric      1138        0     1.000
## 23            radius_worst     numeric      1138        0     1.000
## 24           texture_worst     numeric      1138        0     1.000
## 25         perimeter_worst     numeric      1138        0     1.000
## 26              area_worst     numeric      1138        0     1.000
## 27        smoothness_worst     numeric      1138        0     1.000
## 28       compactness_worst     numeric      1138        0     1.000
## 29         concavity_worst     numeric      1138        0     1.000
## 30    concave.points_worst     numeric      1138        0     1.000
## 31          symmetry_worst     numeric      1138        0     1.000
## 32 fractal_dimension_worst     numeric      1138        0     1.000
##################################
# Listing all Predictors
##################################
DQA.Predictors <- DQA[,!names(DQA) %in% c("id","diagnosis")]

##################################
# Listing all numeric Predictors
##################################
DQA.Predictors.Numeric <- DQA.Predictors[,sapply(DQA.Predictors, is.numeric)]

if (length(names(DQA.Predictors.Numeric))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Numeric))),
               " numeric predictor variable(s)."))
} else {
  print("There are no numeric predictor variables.")
}
## [1] "There are 30 numeric predictor variable(s)."
##################################
# Listing all factor Predictors
##################################
DQA.Predictors.Factor <- DQA.Predictors[,sapply(DQA.Predictors, is.factor)]

if (length(names(DQA.Predictors.Factor))>0) {
    print(paste0("There are ",
               (length(names(DQA.Predictors.Factor))),
               " factor predictor variable(s)."))
} else {
  print("There are no factor predictor variables.")
}
## [1] "There are no factor predictor variables."
##################################
# Formulating a data quality assessment summary for factor Predictors
##################################
if (length(names(DQA.Predictors.Factor))>0) {

  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = x[!(x %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return("x"),
           return(usm[tabsm == max(tabsm)]))
  }

  (DQA.Predictors.Factor.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Factor),
  Column.Type=sapply(DQA.Predictors.Factor, function(x) class(x)),
  Unique.Count=sapply(DQA.Predictors.Factor, function(x) length(unique(x))),
  First.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(FirstModes(x)[1])),
  Second.Mode.Value=sapply(DQA.Predictors.Factor, function(x) as.character(SecondModes(x)[1])),
  First.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Factor, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  Unique.Count.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Factor)),3), nsmall=3)),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Factor, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  row.names=NULL)
  )

}

##################################
# Formulating a data quality assessment summary for numeric Predictors
##################################
if (length(names(DQA.Predictors.Numeric))>0) {

  ##################################
  # Formulating a function to determine the first mode
  ##################################
  FirstModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    ux[tab == max(tab)]
  }

  ##################################
  # Formulating a function to determine the second mode
  ##################################
  SecondModes <- function(x) {
    ux <- unique(na.omit(x))
    tab <- tabulate(match(x, ux))
    fm = ux[tab == max(tab)]
    sm = na.omit(x)[!(na.omit(x) %in% fm)]
    usm <- unique(sm)
    tabsm <- tabulate(match(sm, usm))
    ifelse(is.na(usm[tabsm == max(tabsm)])==TRUE,
           return(0.00001),
           return(usm[tabsm == max(tabsm)]))
  }

  (DQA.Predictors.Numeric.Summary <- data.frame(
  Column.Name= names(DQA.Predictors.Numeric),
  Column.Type=sapply(DQA.Predictors.Numeric, function(x) class(x)),
  Unique.Count=sapply(DQA.Predictors.Numeric, function(x) length(unique(x))),
  Unique.Count.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((length(unique(x))/nrow(DQA.Predictors.Numeric)),3), nsmall=3)),
  First.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((FirstModes(x)[1]),3),nsmall=3)),
  Second.Mode.Value=sapply(DQA.Predictors.Numeric, function(x) format(round((SecondModes(x)[1]),3),nsmall=3)),
  First.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == FirstModes(x)[1])),
  Second.Mode.Count=sapply(DQA.Predictors.Numeric, function(x) sum(na.omit(x) == SecondModes(x)[1])),
  First.Second.Mode.Ratio=sapply(DQA.Predictors.Numeric, function(x) format(round((sum(na.omit(x) == FirstModes(x)[1])/sum(na.omit(x) == SecondModes(x)[1])),3), nsmall=3)),
  Minimum=sapply(DQA.Predictors.Numeric, function(x) format(round(min(x,na.rm = TRUE),3), nsmall=3)),
  Mean=sapply(DQA.Predictors.Numeric, function(x) format(round(mean(x,na.rm = TRUE),3), nsmall=3)),
  Median=sapply(DQA.Predictors.Numeric, function(x) format(round(median(x,na.rm = TRUE),3), nsmall=3)),
  Maximum=sapply(DQA.Predictors.Numeric, function(x) format(round(max(x,na.rm = TRUE),3), nsmall=3)),
  Skewness=sapply(DQA.Predictors.Numeric, function(x) format(round(skewness(x,na.rm = TRUE),3), nsmall=3)),
  Kurtosis=sapply(DQA.Predictors.Numeric, function(x) format(round(kurtosis(x,na.rm = TRUE),3), nsmall=3)),
  Percentile25th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.25,na.rm = TRUE),3), nsmall=3)),
  Percentile75th=sapply(DQA.Predictors.Numeric, function(x) format(round(quantile(x,probs=0.75,na.rm = TRUE),3), nsmall=3)),
  row.names=NULL)
  )

}
##                Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 1              radius_mean     numeric          456              0.401
## 2             texture_mean     numeric          479              0.421
## 3           perimeter_mean     numeric          522              0.459
## 4                area_mean     numeric          539              0.474
## 5          smoothness_mean     numeric          474              0.417
## 6         compactness_mean     numeric          537              0.472
## 7           concavity_mean     numeric          537              0.472
## 8      concave.points_mean     numeric          542              0.476
## 9            symmetry_mean     numeric          432              0.380
## 10  fractal_dimension_mean     numeric          499              0.438
## 11               radius_se     numeric          540              0.475
## 12              texture_se     numeric          519              0.456
## 13            perimeter_se     numeric          533              0.468
## 14                 area_se     numeric          528              0.464
## 15           smoothness_se     numeric          547              0.481
## 16          compactness_se     numeric          541              0.475
## 17            concavity_se     numeric          533              0.468
## 18       concave.points_se     numeric          507              0.446
## 19             symmetry_se     numeric          498              0.438
## 20    fractal_dimension_se     numeric          545              0.479
## 21            radius_worst     numeric          457              0.402
## 22           texture_worst     numeric          511              0.449
## 23         perimeter_worst     numeric          514              0.452
## 24              area_worst     numeric          544              0.478
## 25        smoothness_worst     numeric          411              0.361
## 26       compactness_worst     numeric          529              0.465
## 27         concavity_worst     numeric          539              0.474
## 28    concave.points_worst     numeric          492              0.432
## 29          symmetry_worst     numeric          500              0.439
## 30 fractal_dimension_worst     numeric          535              0.470
##    First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 1            12.340            13.000                8                 6
## 2            15.700            21.250                6                 4
## 3            82.610           132.900                6                 4
## 4           512.200           658.800                6                 4
## 5             0.101             0.108               10                 8
## 6             0.121             0.160                6                 4
## 7             0.000             0.120               26                 6
## 8             0.000             0.029               26                 6
## 9             0.177             0.181                8                 6
## 10            0.057             0.059                6                 4
## 11            0.286             0.298                6                 4
## 12            1.150             0.734                6                 4
## 13            1.778             2.406                8                 4
## 14           16.970            74.080                6                 4
## 15            0.006             0.005                4                 2
## 16            0.023             0.014                6                 4
## 17            0.000             0.017               26                 4
## 18            0.000             0.012               26                 6
## 19            0.013             0.015                8                 6
## 20            0.003             0.006                4                 2
## 21           12.360            13.340               10                 8
## 22           27.260            27.660                6                 4
## 23          117.700           184.600                6                 4
## 24         1269.000          2019.000                4                 2
## 25            0.131             0.149                8                 6
## 26            0.342             0.177                6                 4
## 27            0.000             0.450               26                 6
## 28            0.000             0.026               26                 6
## 29            0.320             0.361                6                 4
## 30            0.074             0.084                6                 4
##    First.Second.Mode.Ratio Minimum    Mean  Median  Maximum Skewness Kurtosis
## 1                    1.333   6.981  14.127  13.370   28.110    0.940    3.828
## 2                    1.500   9.710  19.290  18.840   39.280    0.649    3.741
## 3                    1.500  43.790  91.969  86.240  188.500    0.988    3.953
## 4                    1.500 143.500 654.889 551.100 2501.000    1.641    6.610
## 5                    1.250   0.053   0.096   0.096    0.163    0.455    3.838
## 6                    1.500   0.019   0.104   0.093    0.345    1.187    4.625
## 7                    4.333   0.000   0.089   0.062    0.427    1.397    4.971
## 8                    4.333   0.000   0.049   0.034    0.201    1.168    4.047
## 9                    1.333   0.106   0.181   0.179    0.304    0.724    4.266
## 10                   1.500   0.050   0.063   0.062    0.097    1.301    5.969
## 11                   1.500   0.112   0.405   0.324    2.873    3.080   20.521
## 12                   1.500   0.360   1.217   1.108    4.885    1.642    8.292
## 13                   2.000   0.757   2.866   2.287   21.980    3.435   24.204
## 14                   1.500   6.802  40.337  24.530  542.200    5.433   51.767
## 15                   2.000   0.002   0.007   0.006    0.031    2.308   13.368
## 16                   1.500   0.002   0.025   0.020    0.135    1.897    8.051
## 17                   6.500   0.000   0.032   0.026    0.396    5.097   51.423
## 18                   4.333   0.000   0.012   0.011    0.053    1.441    8.071
## 19                   1.333   0.008   0.021   0.019    0.079    2.189   10.816
## 20                   2.000   0.001   0.004   0.003    0.030    3.914   29.040
## 21                   1.250   7.930  16.269  14.970   36.040    1.100    3.925
## 22                   1.500  12.020  25.677  25.410   49.540    0.497    3.212
## 23                   1.500  50.410 107.261  97.660  251.200    1.125    4.050
## 24                   2.000 185.200 880.583 686.500 4254.000    1.854    7.347
## 25                   1.333   0.071   0.132   0.131    0.223    0.414    3.503
## 26                   1.500   0.027   0.254   0.212    1.058    1.470    6.002
## 27                   4.333   0.000   0.272   0.227    1.252    1.147    4.591
## 28                   4.333   0.000   0.115   0.100    0.291    0.491    2.459
## 29                   1.500   0.156   0.290   0.282    0.664    1.430    7.395
## 30                   1.500   0.055   0.084   0.080    0.208    1.658    8.188
##    Percentile25th Percentile75th
## 1          11.700         15.780
## 2          16.170         21.800
## 3          75.170        104.100
## 4         420.300        782.700
## 5           0.086          0.105
## 6           0.065          0.130
## 7           0.030          0.131
## 8           0.020          0.074
## 9           0.162          0.196
## 10          0.058          0.066
## 11          0.232          0.479
## 12          0.834          1.474
## 13          1.606          3.357
## 14         17.850         45.190
## 15          0.005          0.008
## 16          0.013          0.032
## 17          0.015          0.042
## 18          0.008          0.015
## 19          0.015          0.023
## 20          0.002          0.005
## 21         13.010         18.790
## 22         21.080         29.720
## 23         84.110        125.400
## 24        515.300       1084.000
## 25          0.117          0.146
## 26          0.147          0.339
## 27          0.114          0.383
## 28          0.065          0.161
## 29          0.250          0.318
## 30          0.071          0.092
##################################
# Identifying potential data quality issues
##################################

##################################
# Checking for missing observations
##################################
if ((nrow(DQA.Summary[DQA.Summary$NA.Count>0,]))>0){
  print(paste0("Missing observations noted for ",
               (nrow(DQA.Summary[DQA.Summary$NA.Count>0,])),
               " variable(s) with NA.Count>0 and Fill.Rate<1.0."))
  DQA.Summary[DQA.Summary$NA.Count>0,]
} else {
  print("No missing observations noted.")
}
## [1] "No missing observations noted."
##################################
# Checking for zero or near-zero variance Predictors
##################################
if (length(names(DQA.Predictors.Factor))==0) {
  print("No factor predictors noted.")
} else if (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,])),
               " factor variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Factor.Summary[as.numeric(as.character(DQA.Predictors.Factor.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance factor predictors due to high first-second mode ratio noted.")
}
## [1] "No factor predictors noted."
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,])),
               " numeric variable(s) with First.Second.Mode.Ratio>5."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$First.Second.Mode.Ratio))>5,]
} else {
  print("No low variance numeric predictors due to high first-second mode ratio noted.")
}
## [1] "Low variance observed for 1 numeric variable(s) with First.Second.Mode.Ratio>5."
##     Column.Name Column.Type Unique.Count Unique.Count.Ratio First.Mode.Value
## 17 concavity_se     numeric          533              0.468            0.000
##    Second.Mode.Value First.Mode.Count Second.Mode.Count First.Second.Mode.Ratio
## 17             0.017               26                 4                   6.500
##    Minimum  Mean Median Maximum Skewness Kurtosis Percentile25th Percentile75th
## 17   0.000 0.032  0.026   0.396    5.097   51.423          0.015          0.042
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])>0){
  print(paste0("Low variance observed for ",
               (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,])),
               " numeric variable(s) with Unique.Count.Ratio<0.01."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Unique.Count.Ratio))<0.01,]
} else {
  print("No low variance numeric predictors due to low unique count ratio noted.")
}
## [1] "No low variance numeric predictors due to low unique count ratio noted."
##################################
# Checking for skewed Predictors
##################################
if (length(names(DQA.Predictors.Numeric))==0) {
  print("No numeric predictors noted.")
} else if (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])>0){
  print(paste0("High skewness observed for ",
  (nrow(DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                               as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),])),
  " numeric variable(s) with Skewness>3 or Skewness<(-3)."))
  DQA.Predictors.Numeric.Summary[as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))>3 |
                                 as.numeric(as.character(DQA.Predictors.Numeric.Summary$Skewness))<(-3),]
} else {
  print("No skewed numeric predictors noted.")
}
## [1] "High skewness observed for 5 numeric variable(s) with Skewness>3 or Skewness<(-3)."
##             Column.Name Column.Type Unique.Count Unique.Count.Ratio
## 11            radius_se     numeric          540              0.475
## 13         perimeter_se     numeric          533              0.468
## 14              area_se     numeric          528              0.464
## 17         concavity_se     numeric          533              0.468
## 20 fractal_dimension_se     numeric          545              0.479
##    First.Mode.Value Second.Mode.Value First.Mode.Count Second.Mode.Count
## 11            0.286             0.298                6                 4
## 13            1.778             2.406                8                 4
## 14           16.970            74.080                6                 4
## 17            0.000             0.017               26                 4
## 20            0.003             0.006                4                 2
##    First.Second.Mode.Ratio Minimum   Mean Median Maximum Skewness Kurtosis
## 11                   1.500   0.112  0.405  0.324   2.873    3.080   20.521
## 13                   2.000   0.757  2.866  2.287  21.980    3.435   24.204
## 14                   1.500   6.802 40.337 24.530 542.200    5.433   51.767
## 17                   6.500   0.000  0.032  0.026   0.396    5.097   51.423
## 20                   2.000   0.001  0.004  0.003   0.030    3.914   29.040
##    Percentile25th Percentile75th
## 11          0.232          0.479
## 13          1.606          3.357
## 14         17.850         45.190
## 17          0.015          0.042
## 20          0.002          0.005

1.3 Data Preprocessing

1.3.1 Outlier Detection


[A] Outliers noted for 29 out of the 30 predictors. Predictor values were visualized through a boxplot including observations classified as suspected outliers using the IQR criterion. The IQR criterion means that all observations above the (75th percentile + 1.5 x IQR) or below the (25th percentile - 1.5 x IQR) are suspected outliers, where IQR is the difference between the third quartile (75th percentile) and first quartile (25th percentile).
     [A.1] radius_mean = 28
     [A.2] texture_mean = 14
     [A.3] perimeter_mean = 26
     [A.4] area_mean = 50
     [A.5] smoothness_mean = 12
     [A.6] compactness_mean = 32
     [A.7] concavity_mean = 36
     [A.8] concave.points_mean = 20
     [A.9] symmetry_mean = 30
     [A.10] fractal_dimension_mean = 30
     [A.11] radius_se = 76
     [A.12] texture_se = 40
     [A.13] perimeter_se = 76
     [A.14] area_se = 130
     [A.15] smoothness_se = 60
     [A.16] compactness_se = 56
     [A.17] concavity_se = 44
     [A.18] concave.points_se = 38
     [A.19] symmetry_se = 54
     [A.20] fractal_dimension_se = 56
     [A.21] radius_worst = 34
     [A.22] texture_worst = 10
     [A.23] perimeter_worst = 30
     [A.24] area_worst = 70
     [A.25] smoothness_worst = 14
     [A.26] compactness_worst = 32
     [A.27] concavity_worst = 24
     [A.28] symmetry_worst = 46
     [A.29] fractal_dimension_worst = 48

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- DQA[,!names(DQA) %in% c("id")]

##################################
# Gathering descriptive statistics
##################################
(DPA_Skimmed <- skim(DPA)) 
Data summary
Name DPA
Number of rows 1138
Number of columns 31
_______________________
Column type frequency:
factor 1
numeric 30
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
diagnosis 0 1 FALSE 2 B: 714, M: 424

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
radius_mean 0 1 14.13 3.52 6.98 11.70 13.37 15.78 28.11 ▂▇▃▁▁
texture_mean 0 1 19.29 4.30 9.71 16.17 18.84 21.80 39.28 ▃▇▃▁▁
perimeter_mean 0 1 91.97 24.29 43.79 75.17 86.24 104.10 188.50 ▃▇▃▁▁
area_mean 0 1 654.89 351.76 143.50 420.30 551.10 782.70 2501.00 ▇▃▂▁▁
smoothness_mean 0 1 0.10 0.01 0.05 0.09 0.10 0.11 0.16 ▁▇▇▁▁
compactness_mean 0 1 0.10 0.05 0.02 0.06 0.09 0.13 0.35 ▇▇▂▁▁
concavity_mean 0 1 0.09 0.08 0.00 0.03 0.06 0.13 0.43 ▇▃▂▁▁
concave.points_mean 0 1 0.05 0.04 0.00 0.02 0.03 0.07 0.20 ▇▃▂▁▁
symmetry_mean 0 1 0.18 0.03 0.11 0.16 0.18 0.20 0.30 ▁▇▅▁▁
fractal_dimension_mean 0 1 0.06 0.01 0.05 0.06 0.06 0.07 0.10 ▆▇▂▁▁
radius_se 0 1 0.41 0.28 0.11 0.23 0.32 0.48 2.87 ▇▁▁▁▁
texture_se 0 1 1.22 0.55 0.36 0.83 1.11 1.47 4.88 ▇▅▁▁▁
perimeter_se 0 1 2.87 2.02 0.76 1.61 2.29 3.36 21.98 ▇▁▁▁▁
area_se 0 1 40.34 45.47 6.80 17.85 24.53 45.19 542.20 ▇▁▁▁▁
smoothness_se 0 1 0.01 0.00 0.00 0.01 0.01 0.01 0.03 ▇▃▁▁▁
compactness_se 0 1 0.03 0.02 0.00 0.01 0.02 0.03 0.14 ▇▃▁▁▁
concavity_se 0 1 0.03 0.03 0.00 0.02 0.03 0.04 0.40 ▇▁▁▁▁
concave.points_se 0 1 0.01 0.01 0.00 0.01 0.01 0.01 0.05 ▇▇▁▁▁
symmetry_se 0 1 0.02 0.01 0.01 0.02 0.02 0.02 0.08 ▇▃▁▁▁
fractal_dimension_se 0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.03 ▇▁▁▁▁
radius_worst 0 1 16.27 4.83 7.93 13.01 14.97 18.79 36.04 ▆▇▃▁▁
texture_worst 0 1 25.68 6.14 12.02 21.08 25.41 29.72 49.54 ▃▇▆▁▁
perimeter_worst 0 1 107.26 33.59 50.41 84.11 97.66 125.40 251.20 ▇▇▃▁▁
area_worst 0 1 880.58 569.11 185.20 515.30 686.50 1084.00 4254.00 ▇▂▁▁▁
smoothness_worst 0 1 0.13 0.02 0.07 0.12 0.13 0.15 0.22 ▂▇▇▂▁
compactness_worst 0 1 0.25 0.16 0.03 0.15 0.21 0.34 1.06 ▇▅▁▁▁
concavity_worst 0 1 0.27 0.21 0.00 0.11 0.23 0.38 1.25 ▇▅▂▁▁
concave.points_worst 0 1 0.11 0.07 0.00 0.06 0.10 0.16 0.29 ▅▇▅▃▁
symmetry_worst 0 1 0.29 0.06 0.16 0.25 0.28 0.32 0.66 ▅▇▁▁▁
fractal_dimension_worst 0 1 0.08 0.02 0.06 0.07 0.08 0.09 0.21 ▇▃▁▁▁
##################################
# Outlier Detection
##################################

##################################
# Listing all Predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("diagnosis")]

##################################
# Listing all numeric Predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]

##################################
# Identifying outliers for the numeric Predictors
##################################
OutlierCountList <- c()

for (i in 1:ncol(DPA.Predictors.Numeric)) {
  Outliers <- boxplot.stats(DPA.Predictors.Numeric[,i])$out
  OutlierCount <- length(Outliers)
  OutlierCountList <- append(OutlierCountList,OutlierCount)
  OutlierIndices <- which(DPA.Predictors.Numeric[,i] %in% c(Outliers))
  print(
  ggplot(DPA.Predictors.Numeric, aes(x=DPA.Predictors.Numeric[,i])) +
  geom_boxplot() +
  theme_bw() +
  theme(axis.text.y=element_blank(), 
        axis.ticks.y=element_blank()) +
  xlab(names(DPA.Predictors.Numeric)[i]) +
  labs(title=names(DPA.Predictors.Numeric)[i],
       subtitle=paste0(OutlierCount, " Outlier(s) Detected")))
}

1.3.2 Zero and Near-Zero Variance


[A] No low variance observed for any predictor using a preprocessing summary from the caret package. The nearZeroVar method using both the freqCut and uniqueCut criteria set at 95/5 and 10, respectively, were applied on the dataset.

Code Chunk | Output
##################################
# Zero and Near-Zero Variance
##################################

##################################
# Identifying columns with low variance
###################################
DPA_LowVariance <- nearZeroVar(DPA,
                               freqCut = 80/20,
                               uniqueCut = 10,
                               saveMetrics= TRUE)
(DPA_LowVariance[DPA_LowVariance$nzv,])
## [1] freqRatio     percentUnique zeroVar       nzv          
## <0 rows> (or 0-length row.names)
if ((nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))==0){
  
  print("No low variance descriptors noted.")
  
} else {

  print(paste0("Low variance observed for ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s) with First.Second.Mode.Ratio>4 and Unique.Count.Ratio<0.10."))
  
  DPA_LowVarianceForRemoval <- (nrow(DPA_LowVariance[DPA_LowVariance$nzv,]))
  
  print(paste0("Low variance can be resolved by removing ",
               (nrow(DPA_LowVariance[DPA_LowVariance$nzv,])),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LowVarianceForRemoval) {
  DPA_LowVarianceRemovedVariable <- rownames(DPA_LowVariance[DPA_LowVariance$nzv,])[j]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LowVarianceRemovedVariable))
  }
  
  DPA %>%
  skim() %>%
  dplyr::filter(skim_variable %in% rownames(DPA_LowVariance[DPA_LowVariance$nzv,]))

}
## [1] "No low variance descriptors noted."

1.3.3 Collinearity


[A] High correlation values were noted for 15 pairs of numeric predictors with Pearson correlation coefficients >80% as confirmed using the preprocessing summaries from the caret package.
     [A.1] radius_mean and perimeter_mean = +100%
     [A.2] radius_worst and perimeter_worst = +99%
     [A.3] radius_mean and area_mean = +99%
     [A.4] perimeter_mean and area_mean = +99%
     [A.5] radius_worst and area_worst = +98%
     [A.6] perimeter_worst and area_worst = +98%
     [A.7] radius_se and perimeter_se = +97%
     [A.8] perimeter_mean and perimeter_worst = +97%
     [A.9] radius_mean and radius_worst = +97%
     [A.10] perimeter_mean and radius_worst = +97%%
     [A.11] radius_mean and perimeter_worst = +96%
     [A.12] area_mean and radius_worst = +96%
     [A.13] area_mean and area_worst = +96%
     [A.14] area_mean and perimeter_worst = +96%
     [A.15] radius_se and area_se = +95%

[B] 7 predictors driving high pairwise correlation were recommended for removal using the findCorrelation preprocessing method from the caret package. The function looks at the mean absolute correlation of each predictor and removes that with the largest mean absolute correlation.
     [B.1] perimeter_worst
     [B.2] radius_worst
     [B.3] perimeter_mean
     [B.4] area_worst
     [B.5] radius_mean
     [B.6] perimeter_se
     [B.7] area_se

Code Chunk | Output
##################################
# Visualizing pairwise correlation between Predictor
##################################
(DPA_Correlation <- cor(DPA.Predictors.Numeric,
                        method = "pearson",
                        use="pairwise.complete.obs"))
##                          radius_mean texture_mean perimeter_mean    area_mean
## radius_mean              1.000000000  0.323781891    0.997855281  0.987357170
## texture_mean             0.323781891  1.000000000    0.329533059  0.321085696
## perimeter_mean           0.997855281  0.329533059    1.000000000  0.986506804
## area_mean                0.987357170  0.321085696    0.986506804  1.000000000
## smoothness_mean          0.170581187 -0.023388516    0.207278164  0.177028377
## compactness_mean         0.506123578  0.236702222    0.556936211  0.498501682
## concavity_mean           0.676763550  0.302417828    0.716135650  0.685982829
## concave.points_mean      0.822528522  0.293464051    0.850977041  0.823268869
## symmetry_mean            0.147741242  0.071400980    0.183027212  0.151293079
## fractal_dimension_mean  -0.311630826 -0.076437183   -0.261476908 -0.283109812
## radius_se                0.679090388  0.275868676    0.691765014  0.732562227
## texture_se              -0.097317443  0.386357623   -0.086761078 -0.066280214
## perimeter_se             0.674171616  0.281673115    0.693134890  0.726628328
## area_se                  0.735863663  0.259844987    0.744982694  0.800085921
## smoothness_se           -0.222600125  0.006613777   -0.202694026 -0.166776667
## compactness_se           0.205999980  0.191974611    0.250743681  0.212582551
## concavity_se             0.194203623  0.143293077    0.228082345  0.207660060
## concave.points_se        0.376168956  0.163851025    0.407216916  0.372320282
## symmetry_se             -0.104320881  0.009127168   -0.081629327 -0.072496588
## fractal_dimension_se    -0.042641269  0.054457520   -0.005523391 -0.019886963
## radius_worst             0.969538973  0.352572947    0.969476363  0.962746086
## texture_worst            0.297007644  0.912044589    0.303038372  0.287488627
## perimeter_worst          0.965136514  0.358039575    0.970386887  0.959119574
## area_worst               0.941082460  0.343545947    0.941549808  0.959213326
## smoothness_worst         0.119616140  0.077503359    0.150549404  0.123522939
## compactness_worst        0.413462823  0.277829592    0.455774228  0.390410309
## concavity_worst          0.526911462  0.301025224    0.563879263  0.512605920
## concave.points_worst     0.744214198  0.295315843    0.771240789  0.722016626
## symmetry_worst           0.163953335  0.105007910    0.189115040  0.143569914
## fractal_dimension_worst  0.007065886  0.119205351    0.051018530  0.003737597
##                         smoothness_mean compactness_mean concavity_mean
## radius_mean                  0.17058119       0.50612358     0.67676355
## texture_mean                -0.02338852       0.23670222     0.30241783
## perimeter_mean               0.20727816       0.55693621     0.71613565
## area_mean                    0.17702838       0.49850168     0.68598283
## smoothness_mean              1.00000000       0.65912322     0.52198377
## compactness_mean             0.65912322       1.00000000     0.88312067
## concavity_mean               0.52198377       0.88312067     1.00000000
## concave.points_mean          0.55369517       0.83113504     0.92139103
## symmetry_mean                0.55777479       0.60264105     0.50066662
## fractal_dimension_mean       0.58479200       0.56536866     0.33678336
## radius_se                    0.30146710       0.49747345     0.63192482
## texture_se                   0.06840645       0.04620483     0.07621835
## perimeter_se                 0.29609193       0.54890526     0.66039079
## area_se                      0.24655243       0.45565285     0.61742681
## smoothness_se                0.33237544       0.13529927     0.09856375
## compactness_se               0.31894330       0.73872179     0.67027882
## concavity_se                 0.24839568       0.57051687     0.69127021
## concave.points_se            0.38067569       0.64226185     0.68325992
## symmetry_se                  0.20077438       0.22997659     0.17800921
## fractal_dimension_se         0.28360670       0.50731813     0.44930075
## radius_worst                 0.21312014       0.53531540     0.68823641
## texture_worst                0.03607180       0.24813283     0.29987889
## perimeter_worst              0.23885263       0.59021043     0.72956492
## area_worst                   0.20671836       0.50960381     0.67598723
## smoothness_worst             0.80532420       0.56554117     0.44882204
## compactness_worst            0.47246844       0.86580904     0.75496802
## concavity_worst              0.43492571       0.81627525     0.88410264
## concave.points_worst         0.50305335       0.81557322     0.86132303
## symmetry_worst               0.39430948       0.51022343     0.40946413
## fractal_dimension_worst      0.49931637       0.68738232     0.51492989
##                         concave.points_mean symmetry_mean
## radius_mean                      0.82252852    0.14774124
## texture_mean                     0.29346405    0.07140098
## perimeter_mean                   0.85097704    0.18302721
## area_mean                        0.82326887    0.15129308
## smoothness_mean                  0.55369517    0.55777479
## compactness_mean                 0.83113504    0.60264105
## concavity_mean                   0.92139103    0.50066662
## concave.points_mean              1.00000000    0.46249739
## symmetry_mean                    0.46249739    1.00000000
## fractal_dimension_mean           0.16691738    0.47992133
## radius_se                        0.69804983    0.30337926
## texture_se                       0.02147958    0.12805293
## perimeter_se                     0.71064987    0.31389276
## area_se                          0.69029854    0.22397022
## smoothness_se                    0.02765331    0.18732117
## compactness_se                   0.49042425    0.42165915
## concavity_se                     0.43916707    0.34262702
## concave.points_se                0.61563413    0.39329787
## symmetry_se                      0.09535079    0.44913654
## fractal_dimension_se             0.25758375    0.33178615
## radius_worst                     0.83031763    0.18572775
## texture_worst                    0.29275171    0.09065069
## perimeter_worst                  0.85592313    0.21916856
## area_worst                       0.80962962    0.17719338
## smoothness_worst                 0.45275305    0.42667503
## compactness_worst                0.66745368    0.47320001
## concavity_worst                  0.75239950    0.43372101
## concave.points_worst             0.91015531    0.43029661
## symmetry_worst                   0.37574415    0.69982580
## fractal_dimension_worst          0.36866113    0.43841350
##                         fractal_dimension_mean    radius_se  texture_se
## radius_mean                      -0.3116308263 0.6790903880 -0.09731744
## texture_mean                     -0.0764371834 0.2758686762  0.38635762
## perimeter_mean                   -0.2614769081 0.6917650135 -0.08676108
## area_mean                        -0.2831098117 0.7325622270 -0.06628021
## smoothness_mean                   0.5847920019 0.3014670983  0.06840645
## compactness_mean                  0.5653686634 0.4974734461  0.04620483
## concavity_mean                    0.3367833594 0.6319248221  0.07621835
## concave.points_mean               0.1669173832 0.6980498336  0.02147958
## symmetry_mean                     0.4799213301 0.3033792632  0.12805293
## fractal_dimension_mean            1.0000000000 0.0001109951  0.16417397
## radius_se                         0.0001109951 1.0000000000  0.21324734
## texture_se                        0.1641739659 0.2132473373  1.00000000
## perimeter_se                      0.0398299316 0.9727936770  0.22317073
## area_se                          -0.0901702475 0.9518301121  0.11156725
## smoothness_se                     0.4019644254 0.1645142198  0.39724285
## compactness_se                    0.5598366906 0.3560645755  0.23169970
## concavity_se                      0.4466303217 0.3323575376  0.19499846
## concave.points_se                 0.3411980444 0.5133464414  0.23028340
## symmetry_se                       0.3450073971 0.2405673625  0.41162068
## fractal_dimension_se              0.6881315775 0.2277535327  0.27972275
## radius_worst                     -0.2536914949 0.7150651951 -0.11169031
## texture_worst                    -0.0512692020 0.1947985568  0.40900277
## perimeter_worst                  -0.2051512113 0.7196838037 -0.10224192
## area_worst                       -0.2318544512 0.7515484761 -0.08319499
## smoothness_worst                  0.5049420754 0.1419185529 -0.07365766
## compactness_worst                 0.4587981567 0.2871031656 -0.09243935
## concavity_worst                   0.3462338763 0.3805846346 -0.06895622
## concave.points_worst              0.1753254492 0.5310623278 -0.11963752
## symmetry_worst                    0.3340186839 0.0945428304 -0.12821476
## fractal_dimension_worst           0.7672967792 0.0495594325 -0.04565457
##                         perimeter_se     area_se smoothness_se compactness_se
## radius_mean               0.67417162  0.73586366  -0.222600125      0.2060000
## texture_mean              0.28167311  0.25984499   0.006613777      0.1919746
## perimeter_mean            0.69313489  0.74498269  -0.202694026      0.2507437
## area_mean                 0.72662833  0.80008592  -0.166776667      0.2125826
## smoothness_mean           0.29609193  0.24655243   0.332375443      0.3189433
## compactness_mean          0.54890526  0.45565285   0.135299268      0.7387218
## concavity_mean            0.66039079  0.61742681   0.098563746      0.6702788
## concave.points_mean       0.71064987  0.69029854   0.027653308      0.4904242
## symmetry_mean             0.31389276  0.22397022   0.187321165      0.4216591
## fractal_dimension_mean    0.03982993 -0.09017025   0.401964425      0.5598367
## radius_se                 0.97279368  0.95183011   0.164514220      0.3560646
## texture_se                0.22317073  0.11156725   0.397242853      0.2316997
## perimeter_se              1.00000000  0.93765541   0.151075331      0.4163224
## area_se                   0.93765541  1.00000000   0.075150338      0.2848401
## smoothness_se             0.15107533  0.07515034   1.000000000      0.3366961
## compactness_se            0.41632237  0.28484006   0.336696081      1.0000000
## concavity_se              0.36248158  0.27089473   0.268684760      0.8012683
## concave.points_se         0.55626408  0.41572957   0.328429499      0.7440827
## symmetry_se               0.26648709  0.13410898   0.413506125      0.3947128
## fractal_dimension_se      0.24414277  0.12707090   0.427374207      0.8032688
## radius_worst              0.69720059  0.75737319  -0.230690710      0.2046072
## texture_worst             0.20037085  0.19649665  -0.074742965      0.1430026
## perimeter_worst           0.72103131  0.76121264  -0.217303755      0.2605158
## area_worst                0.73071297  0.81140796  -0.182195478      0.1993713
## smoothness_worst          0.13005439  0.12538943   0.314457456      0.2273942
## compactness_worst         0.34191945  0.28325654  -0.055558139      0.6787804
## concavity_worst           0.41889882  0.38510014  -0.058298387      0.6391467
## concave.points_worst      0.55489723  0.53816631  -0.102006796      0.4832083
## symmetry_worst            0.10993043  0.07412629  -0.107342098      0.2778784
## fractal_dimension_worst   0.08543257  0.01753930   0.101480315      0.5909728
##                         concavity_se concave.points_se  symmetry_se
## radius_mean                0.1942036        0.37616896 -0.104320881
## texture_mean               0.1432931        0.16385103  0.009127168
## perimeter_mean             0.2280823        0.40721692 -0.081629327
## area_mean                  0.2076601        0.37232028 -0.072496588
## smoothness_mean            0.2483957        0.38067569  0.200774376
## compactness_mean           0.5705169        0.64226185  0.229976591
## concavity_mean             0.6912702        0.68325992  0.178009208
## concave.points_mean        0.4391671        0.61563413  0.095350787
## symmetry_mean              0.3426270        0.39329787  0.449136542
## fractal_dimension_mean     0.4466303        0.34119804  0.345007397
## radius_se                  0.3323575        0.51334644  0.240567362
## texture_se                 0.1949985        0.23028340  0.411620680
## perimeter_se               0.3624816        0.55626408  0.266487092
## area_se                    0.2708947        0.41572957  0.134108980
## smoothness_se              0.2686848        0.32842950  0.413506125
## compactness_se             0.8012683        0.74408267  0.394712835
## concavity_se               1.0000000        0.77180399  0.309428578
## concave.points_se          0.7718040        1.00000000  0.312780223
## symmetry_se                0.3094286        0.31278022  1.000000000
## fractal_dimension_se       0.7273722        0.61104414  0.369078083
## radius_worst               0.1869035        0.35812667 -0.128120769
## texture_worst              0.1002410        0.08674121 -0.077473420
## perimeter_worst            0.2266804        0.39499925 -0.103753044
## area_worst                 0.1883527        0.34227116 -0.110342743
## smoothness_worst           0.1684813        0.21535060 -0.012661800
## compactness_worst          0.4848578        0.45288838  0.060254879
## concavity_worst            0.6625641        0.54959238  0.037119049
## concave.points_worst       0.4404723        0.60244961 -0.030413396
## symmetry_worst             0.1977878        0.14311567  0.389402485
## fractal_dimension_worst    0.4393293        0.31065455  0.078079476
##                         fractal_dimension_se radius_worst texture_worst
## radius_mean                     -0.042641269   0.96953897   0.297007644
## texture_mean                     0.054457520   0.35257295   0.912044589
## perimeter_mean                  -0.005523391   0.96947636   0.303038372
## area_mean                       -0.019886963   0.96274609   0.287488627
## smoothness_mean                  0.283606699   0.21312014   0.036071799
## compactness_mean                 0.507318127   0.53531540   0.248132833
## concavity_mean                   0.449300749   0.68823641   0.299878889
## concave.points_mean              0.257583746   0.83031763   0.292751713
## symmetry_mean                    0.331786146   0.18572775   0.090650688
## fractal_dimension_mean           0.688131577  -0.25369149  -0.051269202
## radius_se                        0.227753533   0.71506520   0.194798557
## texture_se                       0.279722748  -0.11169031   0.409002766
## perimeter_se                     0.244142773   0.69720059   0.200370854
## area_se                          0.127070903   0.75737319   0.196496649
## smoothness_se                    0.427374207  -0.23069071  -0.074742965
## compactness_se                   0.803268818   0.20460717   0.143002583
## concavity_se                     0.727372184   0.18690352   0.100240984
## concave.points_se                0.611044139   0.35812667   0.086741210
## symmetry_se                      0.369078083  -0.12812077  -0.077473420
## fractal_dimension_se             1.000000000  -0.03748762  -0.003195029
## radius_worst                    -0.037487618   1.00000000   0.359920754
## texture_worst                   -0.003195029   0.35992075   1.000000000
## perimeter_worst                 -0.001000398   0.99370792   0.365098245
## area_worst                      -0.022736147   0.98401456   0.345842283
## smoothness_worst                 0.170568316   0.21657443   0.225429415
## compactness_worst                0.390158842   0.47582004   0.360832339
## concavity_worst                  0.379974661   0.57397471   0.368365607
## concave.points_worst             0.215204013   0.78742385   0.359754610
## symmetry_worst                   0.111093956   0.24352920   0.233027461
## fractal_dimension_worst          0.591328066   0.09349198   0.219122425
##                         perimeter_worst  area_worst smoothness_worst
## radius_mean                 0.965136514  0.94108246       0.11961614
## texture_mean                0.358039575  0.34354595       0.07750336
## perimeter_mean              0.970386887  0.94154981       0.15054940
## area_mean                   0.959119574  0.95921333       0.12352294
## smoothness_mean             0.238852626  0.20671836       0.80532420
## compactness_mean            0.590210428  0.50960381       0.56554117
## concavity_mean              0.729564917  0.67598723       0.44882204
## concave.points_mean         0.855923128  0.80962962       0.45275305
## symmetry_mean               0.219168559  0.17719338       0.42667503
## fractal_dimension_mean     -0.205151211 -0.23185445       0.50494208
## radius_se                   0.719683804  0.75154848       0.14191855
## texture_se                 -0.102241922 -0.08319499      -0.07365766
## perimeter_se                0.721031310  0.73071297       0.13005439
## area_se                     0.761212636  0.81140796       0.12538943
## smoothness_se              -0.217303755 -0.18219548       0.31445746
## compactness_se              0.260515840  0.19937133       0.22739423
## concavity_se                0.226680426  0.18835265       0.16848132
## concave.points_se           0.394999252  0.34227116       0.21535060
## symmetry_se                -0.103753044 -0.11034274      -0.01266180
## fractal_dimension_se       -0.001000398 -0.02273615       0.17056832
## radius_worst                0.993707916  0.98401456       0.21657443
## texture_worst               0.365098245  0.34584228       0.22542941
## perimeter_worst             1.000000000  0.97757809       0.23677460
## area_worst                  0.977578091  1.00000000       0.20914533
## smoothness_worst            0.236774604  0.20914533       1.00000000
## compactness_worst           0.529407690  0.43829628       0.56818652
## concavity_worst             0.618344080  0.54333053       0.51852329
## concave.points_worst        0.816322102  0.74741880       0.54769090
## symmetry_worst              0.269492769  0.20914551       0.49383833
## fractal_dimension_worst     0.138956862  0.07964703       0.61762419
##                         compactness_worst concavity_worst concave.points_worst
## radius_mean                    0.41346282      0.52691146            0.7442142
## texture_mean                   0.27782959      0.30102522            0.2953158
## perimeter_mean                 0.45577423      0.56387926            0.7712408
## area_mean                      0.39041031      0.51260592            0.7220166
## smoothness_mean                0.47246844      0.43492571            0.5030534
## compactness_mean               0.86580904      0.81627525            0.8155732
## concavity_mean                 0.75496802      0.88410264            0.8613230
## concave.points_mean            0.66745368      0.75239950            0.9101553
## symmetry_mean                  0.47320001      0.43372101            0.4302966
## fractal_dimension_mean         0.45879816      0.34623388            0.1753254
## radius_se                      0.28710317      0.38058463            0.5310623
## texture_se                    -0.09243935     -0.06895622           -0.1196375
## perimeter_se                   0.34191945      0.41889882            0.5548972
## area_se                        0.28325654      0.38510014            0.5381663
## smoothness_se                 -0.05555814     -0.05829839           -0.1020068
## compactness_se                 0.67878035      0.63914670            0.4832083
## concavity_se                   0.48485780      0.66256413            0.4404723
## concave.points_se              0.45288838      0.54959238            0.6024496
## symmetry_se                    0.06025488      0.03711905           -0.0304134
## fractal_dimension_se           0.39015884      0.37997466            0.2152040
## radius_worst                   0.47582004      0.57397471            0.7874239
## texture_worst                  0.36083234      0.36836561            0.3597546
## perimeter_worst                0.52940769      0.61834408            0.8163221
## area_worst                     0.43829628      0.54333053            0.7474188
## smoothness_worst               0.56818652      0.51852329            0.5476909
## compactness_worst              1.00000000      0.89226090            0.8010804
## concavity_worst                0.89226090      1.00000000            0.8554339
## concave.points_worst           0.80108036      0.85543386            1.0000000
## symmetry_worst                 0.61444050      0.53251973            0.5025285
## fractal_dimension_worst        0.81045486      0.68651092            0.5111141
##                         symmetry_worst fractal_dimension_worst
## radius_mean                 0.16395333             0.007065886
## texture_mean                0.10500791             0.119205351
## perimeter_mean              0.18911504             0.051018530
## area_mean                   0.14356991             0.003737597
## smoothness_mean             0.39430948             0.499316369
## compactness_mean            0.51022343             0.687382323
## concavity_mean              0.40946413             0.514929891
## concave.points_mean         0.37574415             0.368661134
## symmetry_mean               0.69982580             0.438413498
## fractal_dimension_mean      0.33401868             0.767296779
## radius_se                   0.09454283             0.049559432
## texture_se                 -0.12821476            -0.045654569
## perimeter_se                0.10993043             0.085432572
## area_se                     0.07412629             0.017539295
## smoothness_se              -0.10734210             0.101480315
## compactness_se              0.27787843             0.590972763
## concavity_se                0.19778782             0.439329269
## concave.points_se           0.14311567             0.310654551
## symmetry_se                 0.38940248             0.078079476
## fractal_dimension_se        0.11109396             0.591328066
## radius_worst                0.24352920             0.093491979
## texture_worst               0.23302746             0.219122425
## perimeter_worst             0.26949277             0.138956862
## area_worst                  0.20914551             0.079647034
## smoothness_worst            0.49383833             0.617624192
## compactness_worst           0.61444050             0.810454856
## concavity_worst             0.53251973             0.686510921
## concave.points_worst        0.50252849             0.511114146
## symmetry_worst              1.00000000             0.537848206
## fractal_dimension_worst     0.53784821             1.000000000
DPA_CorrelationTest <- cor.mtest(DPA.Predictors.Numeric,
                       method = "pearson",
                       conf.level = 0.95)

corrplot(cor(DPA.Predictors.Numeric,
             method = "pearson",
             use="pairwise.complete.obs"),
             method = "circle",
             type = "upper",
             order = "original",
             tl.col = "black",
             tl.cex = 0.75,
             tl.srt = 90,
             sig.level = 0.05,
             p.mat = DPA_CorrelationTest$p,
             insig = "blank")

corrplot(cor(DPA.Predictors.Numeric,
             method = "pearson",
             use="pairwise.complete.obs"),
             method = "number",
             type = "upper",
             order = "original",
             tl.col = "black",
             tl.cex = 0.75,
             tl.srt = 90,
             sig.level = 0.05,
             number.cex = 0.65,
             p.mat = DPA_CorrelationTest$p,
             insig = "blank")

##################################
# Identifying the highly correlated variables
##################################
(DPA_HighlyCorrelatedCount <- sum(abs(DPA_Correlation[upper.tri(DPA_Correlation)])>0.95))
## [1] 15
if (DPA_HighlyCorrelatedCount == 0) {
  print("No highly correlated predictors noted.")
} else {
  print(paste0("High correlation observed for ",
               (DPA_HighlyCorrelatedCount),
               " pairs of numeric variable(s) with Correlation.Coefficient>0.95."))
  
  (DPA_HighlyCorrelatedPairs <- corr_cross(DPA.Predictors.Numeric,
  max_pvalue = 0.05, 
  top = DPA_HighlyCorrelatedCount,
  rm.na = TRUE,
  grid = FALSE
))
  
}
## [1] "High correlation observed for 15 pairs of numeric variable(s) with Correlation.Coefficient>0.95."

if (DPA_HighlyCorrelatedCount > 0) {
  DPA_HighlyCorrelated <- findCorrelation(DPA_Correlation, cutoff = 0.95)

  (DPA_HighlyCorrelatedForRemoval <- length(DPA_HighlyCorrelated))

  print(paste0("High correlation can be resolved by removing ",
               (DPA_HighlyCorrelatedForRemoval),
               " numeric variable(s)."))

  for (j in 1:DPA_HighlyCorrelatedForRemoval) {
  DPA_HighlyCorrelatedRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_HighlyCorrelated[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_HighlyCorrelatedRemovedVariable))
  }

}
## [1] "High correlation can be resolved by removing 7 numeric variable(s)."
## [1] "Variable 1 for removal: perimeter_worst"
## [1] "Variable 2 for removal: radius_worst"
## [1] "Variable 3 for removal: perimeter_mean"
## [1] "Variable 4 for removal: area_worst"
## [1] "Variable 5 for removal: radius_mean"
## [1] "Variable 6 for removal: perimeter_se"
## [1] "Variable 7 for removal: area_se"

1.3.4 Linear Dependency


[A] No linear dependencies noted for any subset of numeric variables using the preprocessing summary from the caret package applying the findLinearCombos method which utilizes the QR decomposition of a matrix to enumerate sets of linear combinations (if they exist).

Code Chunk | Output
##################################
# Linear Dependencies
##################################

##################################
# Finding linear dependencies
##################################
DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)

##################################
# Identifying the linearly dependent variables
##################################
DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)

(DPA_LinearlyDependentCount <- length(DPA_LinearlyDependent$linearCombos))
## [1] 0
if (DPA_LinearlyDependentCount == 0) {
  print("No linearly dependent predictors noted.")
} else {
  print(paste0("Linear dependency observed for ",
               (DPA_LinearlyDependentCount),
               " subset(s) of numeric variable(s)."))
  
  for (i in 1:DPA_LinearlyDependentCount) {
    DPA_LinearlyDependentSubset <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$linearCombos[[i]]]
    print(paste0("Linear dependent variable(s) for subset ",
                 i,
                 " include: ",
                 DPA_LinearlyDependentSubset))
  }
  
}
## [1] "No linearly dependent predictors noted."
##################################
# Identifying the linearly dependent variables for removal
##################################

if (DPA_LinearlyDependentCount > 0) {
  DPA_LinearlyDependent <- findLinearCombos(DPA.Predictors.Numeric)
  
  DPA_LinearlyDependentForRemoval <- length(DPA_LinearlyDependent$remove)
  
  print(paste0("Linear dependency can be resolved by removing ",
               (DPA_LinearlyDependentForRemoval),
               " numeric variable(s)."))
  
  for (j in 1:DPA_LinearlyDependentForRemoval) {
  DPA_LinearlyDependentRemovedVariable <- colnames(DPA.Predictors.Numeric)[DPA_LinearlyDependent$remove[j]]
  print(paste0("Variable ",
               j,
               " for removal: ",
               DPA_LinearlyDependentRemovedVariable))
  }

}

1.3.5 Distributional Shape


[A] Shape transformation was applied to improve against skewness and minimize outliers for data distribution stability using the BoxCox method from the caret package which transforms the distributional shape for predictors with strictly positive values.

[B] Skewness measurements were improved for most except for 1 predictor with Skewness>3.
     [B.1] concavity_se = +5.10

[C] Outliers were minimized for most except for 5 predictors which did not show any improvement even after shape transformation as noted using the IQR criterion.
     [C.1] concavity_mean = 36
     [C.2] concave.points_mean = 20
     [C.3] concavity_se = 44
     [C.4] concave.points_se = 38
     [C.5] concavity_worst = 24

Code Chunk | Output
##################################
# Shape Transformation
##################################

##################################
# Applying a Box-Cox transformation
##################################
DPA_BoxCox <- preProcess(DPA.Predictors.Numeric, method = c("BoxCox"))
DPA_BoxCoxTransformed <- predict(DPA_BoxCox, DPA.Predictors.Numeric)

for (i in 1:ncol(DPA_BoxCoxTransformed)) {
  Median <- format(round(median(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
  Mean <- format(round(mean(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
  Skewness <- format(round(skewness(DPA_BoxCoxTransformed[,i],na.rm = TRUE),2), nsmall=2)
  print(
  ggplot(DPA_BoxCoxTransformed, aes(x=DPA_BoxCoxTransformed[,i])) +
  geom_histogram(binwidth=1,color="black", fill="white") +
  geom_vline(aes(xintercept=mean(DPA_BoxCoxTransformed[,i])),
            color="blue", size=1) +
    geom_vline(aes(xintercept=median(DPA_BoxCoxTransformed[,i])),
            color="red", size=1) +
  theme_bw() +
  ylab("Count") +
  xlab(names(DPA_BoxCoxTransformed)[i]) +
  labs(title=names(DPA_BoxCoxTransformed)[i],
       subtitle=paste0("Median = ", Median,
                       ", Mean = ", Mean,
                       ", Skewness = ", Skewness)))
}

##################################
# Identifying outliers for the numeric predictors
##################################
OutlierCountList <- c()

for (i in 1:ncol(DPA_BoxCoxTransformed)) {
  Outliers <- boxplot.stats(DPA_BoxCoxTransformed[,i])$out
  OutlierCount <- length(Outliers)
  OutlierCountList <- append(OutlierCountList,OutlierCount)
  OutlierIndices <- which(DPA_BoxCoxTransformed[,i] %in% c(Outliers))
  print(
  ggplot(DPA_BoxCoxTransformed, aes(x=DPA_BoxCoxTransformed[,i])) +
  geom_boxplot() +
  theme_bw() +
  theme(axis.text.y=element_blank(), 
        axis.ticks.y=element_blank()) +
  xlab(names(DPA_BoxCoxTransformed)[i]) +
  labs(title=names(DPA_BoxCoxTransformed)[i],
       subtitle=paste0(OutlierCount, " Outlier(s) Detected")))
}

DPA_BoxCoxTransformed$diagnosis <- DPA[,c("diagnosis")]

1.3.6 Pre-Processed Dataset


[A] A total of 12 predictors were removed prior to data exploration and modelling due to issues identified during data preprocessing.
     [A.1] concavity_se = Low variance and high skewness
     [A.2] perimeter_worst = High correlation with radius_worst, area_worst, perimeter_mean, radius_mean and area_mean
     [A.3] radius_worst = High correlation with perimeter_worst, area_worst, radius_mean, perimeter_mean and area_mean
     [A.4] perimeter_mean = High correlation with radius_mean, area_mean, perimeter_worst and radius_worst
     [A.5] area_worst = High correlation with radius_worst, perimeter_worst and area_mean
     [A.6] radius_mean = High correlation with perimeter_mean, area_mean, radius_worst and perimeter_worst .
     [A.7] perimeter_se = High correlation with radius_se
     [A.8] area_se = High correlation with radius_se
     [A.9] concavity_mean = High outlier count even after shape transformation
     [A.10] concave.points_mean = High outlier count even after shape transformation
     [A.11] concave.points_se = High outlier count even after shape transformation
     [A.12] concavity_worst = High outlier count even after shape transformation

[B] The preprocessed tabular dataset was comprised of 1138 observations and 19 variables (including 1 response and 18 predictors).
     [B.1] 1138 rows (observations)
     [B.2] 19 columns (variables)
            [B.2.1] 1/19 response = diagnosis (factor)
            [B.2.2] 18/19 predictors = 18/18 numeric
                     [B.2.2.1] texture_mean (numeric)
                     [B.2.2.2] area_mean (numeric)
                     [B.2.2.3] smoothness_mean (numeric)
                     [B.2.2.4] compactness_mean (numeric)
                     [B.2.2.5] symmetry_mean (numeric)
                     [B.2.2.6] fractal_dimension_mean (numeric)
                     [B.2.2.7] radius_se (numeric)
                     [B.2.2.8] texture_se (numeric)
                     [B.2.2.9] smoothness_se (numeric)
                     [B.2.2.10] compactness_se (numeric)
                     [B.2.2.11] symmetry_se (numeric)
                     [B.2.2.12] fractal_dimension_se (numeric)
                     [B.2.2.13] texture_worst (numeric)
                     [B.2.2.14] smoothness_worst (numeric)
                     [B.2.2.15] compactness_worst (numeric)
                     [B.2.2.16] concave.points_worst (numeric)
                     [B.2.2.17] symmetry_worst (numeric)
                     [B.2.2.18] fractal_dimension_worst (numeric)

Code Chunk | Output
##################################
# Creating the pre-modelling
# train set
##################################
PMA <- DPA_BoxCoxTransformed[,!names(DPA_BoxCoxTransformed) %in% c("concavity_se",
                                                                   "perimeter_worst",
                                                                   "radius_worst",
                                                                   "perimeter_mean",
                                                                   "area_worst",
                                                                   "radius_mean",
                                                                   "perimeter_se",
                                                                   "area_se",
                                                                   "concavity_mean",
                                                                   "concave.points_mean",
                                                                   "concave.points_se",
                                                                   "concavity_worst")]

##################################
# Gathering descriptive statistics
##################################
(PMA_Skimmed <- skim(PMA))
Data summary
Name PMA
Number of rows 1138
Number of columns 19
_______________________
Column type frequency:
factor 1
numeric 18
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
diagnosis 0 1 FALSE 2 B: 714, M: 424

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
texture_mean 0 1 2.94 0.22 2.27 2.78 2.94 3.08 3.67 ▁▅▇▃▁
area_mean 0 1 6.36 0.48 4.97 6.04 6.31 6.66 7.82 ▁▅▇▃▁
smoothness_mean 0 1 -2.35 0.15 -2.94 -2.45 -2.34 -2.25 -1.81 ▁▂▇▃▁
compactness_mean 0 1 -2.38 0.49 -3.94 -2.73 -2.38 -2.04 -1.06 ▁▅▇▇▂
symmetry_mean 0 1 -2.26 0.25 -3.20 -2.42 -2.25 -2.10 -1.43 ▁▂▇▅▁
fractal_dimension_mean 0 1 -130.58 26.03 -199.82 -149.68 -131.52 -113.87 -52.16 ▁▆▇▃▁
radius_se 0 1 -1.42 0.81 -3.51 -1.98 -1.42 -0.86 0.86 ▁▆▇▅▁
texture_se 0 1 0.10 0.43 -1.02 -0.18 0.10 0.39 1.59 ▂▆▇▂▁
smoothness_se 0 1 -11.83 1.66 -19.20 -12.84 -11.85 -10.78 -6.11 ▁▂▇▅▁
compactness_se 0 1 -3.88 0.65 -6.10 -4.34 -3.89 -3.43 -2.00 ▁▃▇▆▁
symmetry_se 0 1 -16.51 3.52 -28.80 -18.91 -16.46 -14.16 -5.98 ▁▃▇▅▁
fractal_dimension_se 0 1 -15.48 2.88 -24.04 -17.43 -15.37 -13.46 -6.23 ▁▅▇▃▁
texture_worst 0 1 4.53 0.46 3.22 4.20 4.55 4.85 5.91 ▁▅▇▅▁
smoothness_worst 0 1 -1.52 0.09 -1.82 -1.58 -1.52 -1.46 -1.21 ▁▃▇▃▁
compactness_worst 0 1 -1.55 0.62 -3.60 -1.92 -1.55 -1.08 0.06 ▁▃▇▆▁
concave.points_worst 0 1 0.11 0.07 0.00 0.06 0.10 0.16 0.29 ▅▇▅▃▁
symmetry_worst 0 1 -1.77 0.37 -3.06 -2.00 -1.76 -1.55 -0.45 ▁▃▇▂▁
fractal_dimension_worst 0 1 -19.62 4.79 -32.59 -22.99 -19.73 -16.32 -5.17 ▁▅▇▃▁

1.4 Data Exploration


[A] Individual predictors which demonstrated excellent discrimination between diagnosis=M and diagnosis=B in terms of the area under the receiver operating characteristics curve (AUROC>0.80) are as follows:
     [A.1] concave.points_worst = 0.97
     [A.2] area_mean = 0.94
     [A.3] radius_se = 0.87
     [A.4] compactness_mean = 0.86
     [A.5] compactness_worst = 0.86

[B] To allow a better comparison of the ensemble learning methods, only predictors which demonstrated fair discrimination between diagnosis=M and diagnosis=B in terms of the area under the receiver operating characteristics curve (0.70<AUROC<0.80) were selected to proceed with the modelling process, enumerated as follows:
     [B.1] texture_worst = 0.78
     [B.2] texture_mean = 0.77
     [B.3] smoothness_worst = 0.75
     [B.4] symmetry_worst = 0.74
     [B.5] compactness_se = 0.73
     [B.6] smoothness_mean = 0.72

[C] Using an 80-20 ratio, train and test sets were created from the preliminary dataset for the subsequent analysis and modelling steps:
     [C.1] Training Set = 912 observations
     [C.2] Test Set = 226 observations

Code Chunk | Output
##################################
# Loading dataset
##################################
DPA <- PMA

##################################
# Listing all predictors
##################################
DPA.Predictors <- DPA[,!names(DPA) %in% c("diagnosis")]

##################################
# Listing all numeric predictors
##################################
DPA.Predictors.Numeric <- DPA.Predictors[,sapply(DPA.Predictors, is.numeric)]
ncol(DPA.Predictors.Numeric)
## [1] 18
##################################
# Converting response variable data type to factor
##################################
DPA$diagnosis <- as.factor(DPA$diagnosis)
length(levels(DPA$diagnosis))
## [1] 2
##################################
# Formulating the box plots
##################################
featurePlot(x = DPA.Predictors.Numeric, 
            y = DPA$diagnosis,
            plot = "box",
            scales = list(x = list(relation="free", rot = 90), 
                          y = list(relation="free")),
            adjust = 1.5, 
            pch = "|", 
            layout = c(6, 3))

##################################
# Obtaining the AUROC
##################################
AUROC <- filterVarImp(x = DPA.Predictors.Numeric,
                        y = DPA$diagnosis)

##################################
# Formulating the summary table
##################################
AUROC_Summary <- AUROC 

AUROC_Summary$Predictor <- rownames(AUROC)
names(AUROC_Summary)[1] <- "AUROC"
AUROC_Summary$Metric <- rep("AUROC",nrow(AUROC))

AUROC_Summary[order(AUROC_Summary$AUROC, decreasing=TRUE),] 
##                             AUROC         M               Predictor Metric
## concave.points_worst    0.9667037 0.9667037    concave.points_worst  AUROC
## area_mean               0.9383159 0.9383159               area_mean  AUROC
## radius_se               0.8683341 0.8683341               radius_se  AUROC
## compactness_mean        0.8637823 0.8637823        compactness_mean  AUROC
## compactness_worst       0.8623025 0.8623025       compactness_worst  AUROC
## texture_worst           0.7846308 0.7846308           texture_worst  AUROC
## texture_mean            0.7758245 0.7758245            texture_mean  AUROC
## smoothness_worst        0.7540563 0.7540563        smoothness_worst  AUROC
## symmetry_worst          0.7369391 0.7369391          symmetry_worst  AUROC
## compactness_se          0.7272805 0.7272805          compactness_se  AUROC
## smoothness_mean         0.7220416 0.7220416         smoothness_mean  AUROC
## symmetry_mean           0.6985624 0.6985624           symmetry_mean  AUROC
## fractal_dimension_worst 0.6859706 0.6859706 fractal_dimension_worst  AUROC
## fractal_dimension_se    0.6203028 0.6203028    fractal_dimension_se  AUROC
## symmetry_se             0.5551107 0.5551107             symmetry_se  AUROC
## smoothness_se           0.5311625 0.5311625           smoothness_se  AUROC
## fractal_dimension_mean  0.5154656 0.5154656  fractal_dimension_mean  AUROC
## texture_se              0.5115943 0.5115943              texture_se  AUROC
##################################
# Exploring predictor performance
##################################
dotplot(Predictor ~ AUROC | Metric, 
        AUROC_Summary,
        origin = 0,
        type = c("p", "h"),
        pch = 16,
        cex = 2,
        alpha = 0.45,
        prepanel = function(x, y) {
            list(ylim = levels(reorder(y, x)))
        },
        panel = function(x, y, ...) {
            panel.dotplot(x, reorder(y, x), ...)
        })

##################################
# Creating the pre-modelling dataset
# into the train and test sets
##################################
DPA <- DPA[,colnames(DPA) %in% c("diagnosis",
                                 "texture_worst",
                                 "texture_mean",
                                 "smoothness_worst",
                                 "symmetry_worst",
                                 "compactness_se",
                                 "smoothness_mean")]
set.seed(12345678)
MA_Train_Index  <- createDataPartition(DPA$diagnosis,p=0.8)[[1]]
MA_Train        <- DPA[ MA_Train_Index, ]
MA_Test         <- DPA[-MA_Train_Index, ]

dim(MA_Train)
## [1] 912   7
dim(MA_Test)
## [1] 226   7

1.5 Model Boosting


Model Boosting is an ensemble approach which applies a sequential algorithm that makes predictions for a defined set of rounds on the entire training sample and iteratively improves the performance using the information from the prior round’s prediction accuracy. Boosted models build a weak learner that has low predictive accuracy - possessing low variance and high bias. As boosted models go through the process of sequentially improving previous learners, the overall model is able to slowly reduce the bias at each step with minimal variance increase. The final model tends to have sufficiently low bias and variance.

1.5.1 Adaptive Boosting (MBS_AB)


Adaptive Boosting applies an adaptive reweighting and combining approach which is initiated using a learner based on the overall mean or the log-odds of the target variable. For each boosting iteration, a weak learner (using a decision stump - a single level decision tree) is fitted to the training data applying equal sample weights. With the predictions obtained, the weighted error of the base learner is determined and used to calculate the base learner’s weight in the ensemble. The sample weights are recomputed, putting more weight on difficult to classify instances and less on those already handled well. The process is repeated for a defined number of cycles where new weak learners are added sequentially that focus their training on the more difficult patterns. The final ensemble prediction is determined as the weighted sum of the individual predictions from all boosting iterations.

[A] The adaptive boosting model was implemented through the adabag package.

[B] The model contains 3 hyperparameters:
     [B.1] mfinal = the number of iterations for which boosting is run or the number of trees to use made to vary across a range of values equal to 50 to 100
     [B.2] maxdepth = maximum depth of the trees made to vary across a range of values equal to 4 to 6
     [B.3] coeflearn = coefficient learning method held constant using the setting equal to Breiman

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mfinal=100, maxdepth=6 and coeflearn=Breiman
     [C.2] AUROC = 0.97109

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] symmetry_worst (numeric)
     [D.2] compactness_se (numeric)
     [D.3] smoothness_worst (numeric)
     [D.4] texture_mean (numeric)
     [D.5] smoothness_mean (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.99564

Code Chunk | Output
##################################
# Setting the cross validation process
# using the Repeated K-Fold
##################################
set.seed(12345678)
RKFold_Control <- trainControl(method="repeatedcv",
                              summaryFunction = twoClassSummary,
                              number=5,
                              repeats=5,
                              classProbs = TRUE)

##################################
# Setting the conditions
# for hyperparameter tuning
##################################
AB_Grid = expand.grid(mfinal = c(50,100,100),
                      maxdepth = c(4,5,6),
                      coeflearn = "Breiman")

##################################
# Running the adaptive boosting model
# by setting the caret method to 'AdaBoost.M1'
##################################
set.seed(12345678)
MBS_AB_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                 y = MA_Train$diagnosis,
                 method = "AdaBoost.M1",
                 tuneGrid = AB_Grid,
                 metric = "ROC",
                 trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
MBS_AB_Tune
## AdaBoost.M1 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   maxdepth  mfinal  ROC        Sens       Spec     
##   4          50     0.9539212  0.9454523  0.8682353
##   4         100     0.9600671  0.9506972  0.9017647
##   5          50     0.9624131  0.9531137  0.9011765
##   5         100     0.9671294  0.9506636  0.9000000
##   6          50     0.9666688  0.9496323  0.8982353
##   6         100     0.9710985  0.9527750  0.8964706
## 
## Tuning parameter 'coeflearn' was held constant at a value of Breiman
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were mfinal = 100, maxdepth = 6
##  and coeflearn = Breiman.
MBS_AB_Tune$finalModel
## $formula
## .outcome ~ .
## <environment: 0x0000024d60f9b4c0>
## 
## $trees
## $trees[[1]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 331 B (0.637061404 0.362938596)  
##     2) smoothness_worst< -1.499656 536 100 B (0.813432836 0.186567164)  
##       4) texture_mean< 2.963467 314  23 B (0.926751592 0.073248408)  
##         8) symmetry_worst>=-2.923662 311  20 B (0.935691318 0.064308682)  
##          16) compactness_se< -3.711798 242   7 B (0.971074380 0.028925620)  
##            32) texture_mean< 2.874407 167   1 B (0.994011976 0.005988024)  
##              64) compactness_se< -4.173143 126   0 B (1.000000000 0.000000000) *
##              65) compactness_se>=-4.173143 41   1 B (0.975609756 0.024390244) *
##            33) texture_mean>=2.874407 75   6 B (0.920000000 0.080000000)  
##              66) texture_mean>=2.879477 73   4 B (0.945205479 0.054794521) *
##              67) texture_mean< 2.879477 2   0 M (0.000000000 1.000000000) *
##          17) compactness_se>=-3.711798 69  13 B (0.811594203 0.188405797)  
##            34) compactness_se>=-3.48221 50   0 B (1.000000000 0.000000000) *
##            35) compactness_se< -3.48221 19   6 M (0.315789474 0.684210526)  
##              70) texture_worst< 3.888609 3   0 B (1.000000000 0.000000000) *
##              71) texture_worst>=3.888609 16   3 M (0.187500000 0.812500000) *
##         9) symmetry_worst< -2.923662 3   0 M (0.000000000 1.000000000) *
##       5) texture_mean>=2.963467 222  77 B (0.653153153 0.346846847)  
##        10) smoothness_mean< -2.488676 72   8 B (0.888888889 0.111111111)  
##          20) texture_mean>=2.971159 68   4 B (0.941176471 0.058823529)  
##            40) symmetry_worst< -1.667161 62   1 B (0.983870968 0.016129032)  
##              80) symmetry_worst< -1.695215 56   0 B (1.000000000 0.000000000) *
##              81) symmetry_worst>=-1.695215 6   1 B (0.833333333 0.166666667) *
##            41) symmetry_worst>=-1.667161 6   3 B (0.500000000 0.500000000)  
##              82) texture_mean>=3.135016 3   0 B (1.000000000 0.000000000) *
##              83) texture_mean< 3.135016 3   0 M (0.000000000 1.000000000) *
##          21) texture_mean< 2.971159 4   0 M (0.000000000 1.000000000) *
##        11) smoothness_mean>=-2.488676 150  69 B (0.540000000 0.460000000)  
##          22) symmetry_worst< -1.527595 128  50 B (0.609375000 0.390625000)  
##            44) texture_mean< 3.096482 64  13 B (0.796875000 0.203125000)  
##              88) smoothness_mean< -2.411294 23   0 B (1.000000000 0.000000000) *
##              89) smoothness_mean>=-2.411294 41  13 B (0.682926829 0.317073171) *
##            45) texture_mean>=3.096482 64  27 M (0.421875000 0.578125000)  
##              90) smoothness_mean< -2.471478 6   0 B (1.000000000 0.000000000) *
##              91) smoothness_mean>=-2.471478 58  21 M (0.362068966 0.637931034) *
##          23) symmetry_worst>=-1.527595 22   3 M (0.136363636 0.863636364)  
##            46) smoothness_worst>=-1.506135 3   0 B (1.000000000 0.000000000) *
##            47) smoothness_worst< -1.506135 19   0 M (0.000000000 1.000000000) *
##     3) smoothness_worst>=-1.499656 376 145 M (0.385638298 0.614361702)  
##       6) texture_mean< 2.927988 168  55 B (0.672619048 0.327380952)  
##        12) symmetry_worst< -1.611674 88   4 B (0.954545455 0.045454545)  
##          24) smoothness_worst< -1.427424 78   1 B (0.987179487 0.012820513)  
##            48) smoothness_worst>=-1.480531 54   0 B (1.000000000 0.000000000) *
##            49) smoothness_worst< -1.480531 24   1 B (0.958333333 0.041666667)  
##              98) smoothness_worst< -1.482701 23   0 B (1.000000000 0.000000000) *
##              99) smoothness_worst>=-1.482701 1   0 M (0.000000000 1.000000000) *
##          25) smoothness_worst>=-1.427424 10   3 B (0.700000000 0.300000000)  
##            50) texture_mean< 2.84692 7   0 B (1.000000000 0.000000000) *
##            51) texture_mean>=2.84692 3   0 M (0.000000000 1.000000000) *
##        13) symmetry_worst>=-1.611674 80  29 M (0.362500000 0.637500000)  
##          26) compactness_se< -3.646366 36  12 B (0.666666667 0.333333333)  
##            52) texture_worst< 4.517878 26   3 B (0.884615385 0.115384615)  
##             104) smoothness_mean>=-2.402211 23   0 B (1.000000000 0.000000000) *
##             105) smoothness_mean< -2.402211 3   0 M (0.000000000 1.000000000) *
##            53) texture_worst>=4.517878 10   1 M (0.100000000 0.900000000)  
##             106) smoothness_mean< -2.397771 1   0 B (1.000000000 0.000000000) *
##             107) smoothness_mean>=-2.397771 9   0 M (0.000000000 1.000000000) *
##          27) compactness_se>=-3.646366 44   5 M (0.113636364 0.886363636)  
##            54) compactness_se>=-2.646661 4   0 B (1.000000000 0.000000000) *
##            55) compactness_se< -2.646661 40   1 M (0.025000000 0.975000000)  
##             110) texture_mean< 2.77286 10   1 M (0.100000000 0.900000000) *
##             111) texture_mean>=2.77286 30   0 M (0.000000000 1.000000000) *
##       7) texture_mean>=2.927988 208  32 M (0.153846154 0.846153846)  
##        14) compactness_se< -4.025757 40  15 M (0.375000000 0.625000000)  
##          28) smoothness_mean>=-2.30109 17   4 B (0.764705882 0.235294118)  
##            56) smoothness_mean< -2.222419 13   0 B (1.000000000 0.000000000) *
##            57) smoothness_mean>=-2.222419 4   0 M (0.000000000 1.000000000) *
##          29) smoothness_mean< -2.30109 23   2 M (0.086956522 0.913043478)  
##            58) compactness_se>=-4.064037 1   0 B (1.000000000 0.000000000) *
##            59) compactness_se< -4.064037 22   1 M (0.045454545 0.954545455)  
##             118) texture_mean>=3.182435 2   1 B (0.500000000 0.500000000) *
##             119) texture_mean< 3.182435 20   0 M (0.000000000 1.000000000) *
##        15) compactness_se>=-4.025757 168  17 M (0.101190476 0.898809524)  
##          30) symmetry_worst< -2.179978 12   5 B (0.583333333 0.416666667)  
##            60) smoothness_mean< -2.272702 8   1 B (0.875000000 0.125000000)  
##             120) texture_mean>=3.061196 7   0 B (1.000000000 0.000000000) *
##             121) texture_mean< 3.061196 1   0 M (0.000000000 1.000000000) *
##            61) smoothness_mean>=-2.272702 4   0 M (0.000000000 1.000000000) *
##          31) symmetry_worst>=-2.179978 156  10 M (0.064102564 0.935897436)  
##            62) texture_worst< 4.414433 1   0 B (1.000000000 0.000000000) *
##            63) texture_worst>=4.414433 155   9 M (0.058064516 0.941935484)  
##             126) smoothness_mean>=-2.099273 18   4 M (0.222222222 0.777777778) *
##             127) smoothness_mean< -2.099273 137   5 M (0.036496350 0.963503650) *
## 
## $trees[[2]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 338 B (0.629385965 0.370614035)  
##     2) texture_worst< 4.577679 482  91 B (0.811203320 0.188796680)  
##       4) texture_mean< 2.96681 410  58 B (0.858536585 0.141463415)  
##         8) symmetry_worst< -1.294443 393  46 B (0.882951654 0.117048346)  
##          16) texture_worst< 4.262771 222   9 B (0.959459459 0.040540541)  
##            32) texture_mean< 2.909882 221   8 B (0.963800905 0.036199095)  
##              64) compactness_se< -3.957552 133   0 B (1.000000000 0.000000000) *
##              65) compactness_se>=-3.957552 88   8 B (0.909090909 0.090909091) *
##            33) texture_mean>=2.909882 1   0 M (0.000000000 1.000000000) *
##          17) texture_worst>=4.262771 171  37 B (0.783625731 0.216374269)  
##            34) symmetry_worst>=-2.49184 164  31 B (0.810975610 0.189024390)  
##              68) smoothness_worst< -1.55307 59   2 B (0.966101695 0.033898305) *
##              69) smoothness_worst>=-1.55307 105  29 B (0.723809524 0.276190476) *
##            35) symmetry_worst< -2.49184 7   1 M (0.142857143 0.857142857)  
##              70) texture_mean< 2.855865 1   0 B (1.000000000 0.000000000) *
##              71) texture_mean>=2.855865 6   0 M (0.000000000 1.000000000) *
##         9) symmetry_worst>=-1.294443 17   5 M (0.294117647 0.705882353)  
##          18) compactness_se>=-2.588521 4   0 B (1.000000000 0.000000000) *
##          19) compactness_se< -2.588521 13   1 M (0.076923077 0.923076923)  
##            38) smoothness_mean< -2.302887 1   0 B (1.000000000 0.000000000) *
##            39) smoothness_mean>=-2.302887 12   0 M (0.000000000 1.000000000) *
##       5) texture_mean>=2.96681 72  33 B (0.541666667 0.458333333)  
##        10) smoothness_worst< -1.481325 56  18 B (0.678571429 0.321428571)  
##          20) texture_mean>=2.996231 31   4 B (0.870967742 0.129032258)  
##            40) smoothness_worst>=-1.678162 29   2 B (0.931034483 0.068965517)  
##              80) symmetry_worst< -1.516281 28   1 B (0.964285714 0.035714286) *
##              81) symmetry_worst>=-1.516281 1   0 M (0.000000000 1.000000000) *
##            41) smoothness_worst< -1.678162 2   0 M (0.000000000 1.000000000) *
##          21) texture_mean< 2.996231 25  11 M (0.440000000 0.560000000)  
##            42) texture_worst< 4.357182 7   0 B (1.000000000 0.000000000) *
##            43) texture_worst>=4.357182 18   4 M (0.222222222 0.777777778)  
##              86) texture_worst>=4.467472 2   0 B (1.000000000 0.000000000) *
##              87) texture_worst< 4.467472 16   2 M (0.125000000 0.875000000) *
##        11) smoothness_worst>=-1.481325 16   1 M (0.062500000 0.937500000)  
##          22) compactness_se< -4.16079 1   0 B (1.000000000 0.000000000) *
##          23) compactness_se>=-4.16079 15   0 M (0.000000000 1.000000000) *
##     3) texture_worst>=4.577679 430 183 M (0.425581395 0.574418605)  
##       6) smoothness_mean< -2.362601 195  64 B (0.671794872 0.328205128)  
##        12) smoothness_worst< -1.60101 65   4 B (0.938461538 0.061538462)  
##          24) symmetry_worst< -1.180749 63   2 B (0.968253968 0.031746032)  
##            48) smoothness_mean< -2.4008 62   1 B (0.983870968 0.016129032)  
##              96) symmetry_worst< -1.681012 57   0 B (1.000000000 0.000000000) *
##              97) symmetry_worst>=-1.681012 5   1 B (0.800000000 0.200000000) *
##            49) smoothness_mean>=-2.4008 1   0 M (0.000000000 1.000000000) *
##          25) symmetry_worst>=-1.180749 2   0 M (0.000000000 1.000000000) *
##        13) smoothness_worst>=-1.60101 130  60 B (0.538461538 0.461538462)  
##          26) texture_worst>=4.646117 105  36 B (0.657142857 0.342857143)  
##            52) symmetry_worst< -1.39888 96  27 B (0.718750000 0.281250000)  
##             104) compactness_se>=-4.567426 89  20 B (0.775280899 0.224719101) *
##             105) compactness_se< -4.567426 7   0 M (0.000000000 1.000000000) *
##            53) symmetry_worst>=-1.39888 9   0 M (0.000000000 1.000000000) *
##          27) texture_worst< 4.646117 25   1 M (0.040000000 0.960000000)  
##            54) compactness_se< -4.694501 1   0 B (1.000000000 0.000000000) *
##            55) compactness_se>=-4.694501 24   0 M (0.000000000 1.000000000) *
##       7) smoothness_mean>=-2.362601 235  52 M (0.221276596 0.778723404)  
##        14) symmetry_worst< -1.659152 88  38 M (0.431818182 0.568181818)  
##          28) texture_mean< 3.081899 42  12 B (0.714285714 0.285714286)  
##            56) compactness_se< -3.644943 32   5 B (0.843750000 0.156250000)  
##             112) smoothness_mean< -2.22335 25   1 B (0.960000000 0.040000000) *
##             113) smoothness_mean>=-2.22335 7   3 M (0.428571429 0.571428571) *
##            57) compactness_se>=-3.644943 10   3 M (0.300000000 0.700000000)  
##             114) smoothness_mean>=-2.12394 3   0 B (1.000000000 0.000000000) *
##             115) smoothness_mean< -2.12394 7   0 M (0.000000000 1.000000000) *
##          29) texture_mean>=3.081899 46   8 M (0.173913043 0.826086957)  
##            58) smoothness_mean>=-2.099273 4   0 B (1.000000000 0.000000000) *
##            59) smoothness_mean< -2.099273 42   4 M (0.095238095 0.904761905)  
##             118) smoothness_worst< -1.550482 3   1 B (0.666666667 0.333333333) *
##             119) smoothness_worst>=-1.550482 39   2 M (0.051282051 0.948717949) *
##        15) symmetry_worst>=-1.659152 147  14 M (0.095238095 0.904761905)  
##          30) smoothness_worst< -1.500466 34  11 M (0.323529412 0.676470588)  
##            60) smoothness_worst>=-1.506135 7   0 B (1.000000000 0.000000000) *
##            61) smoothness_worst< -1.506135 27   4 M (0.148148148 0.851851852)  
##             122) smoothness_mean< -2.336585 9   4 M (0.444444444 0.555555556) *
##             123) smoothness_mean>=-2.336585 18   0 M (0.000000000 1.000000000) *
##          31) smoothness_worst>=-1.500466 113   3 M (0.026548673 0.973451327)  
##            62) texture_worst< 4.599763 2   0 B (1.000000000 0.000000000) *
##            63) texture_worst>=4.599763 111   1 M (0.009009009 0.990990991)  
##             126) texture_worst< 4.682677 7   1 M (0.142857143 0.857142857) *
##             127) texture_worst>=4.682677 104   0 M (0.000000000 1.000000000) *
## 
## $trees[[3]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 392 B (0.570175439 0.429824561)  
##     2) smoothness_worst< -1.603315 161  10 B (0.937888199 0.062111801)  
##       4) symmetry_worst< -1.165944 160   9 B (0.943750000 0.056250000)  
##         8) texture_worst< 4.850312 133   4 B (0.969924812 0.030075188)  
##          16) smoothness_worst>=-1.723213 119   1 B (0.991596639 0.008403361)  
##            32) symmetry_worst< -1.804928 83   0 B (1.000000000 0.000000000) *
##            33) symmetry_worst>=-1.804928 36   1 B (0.972222222 0.027777778)  
##              66) symmetry_worst>=-1.748651 35   0 B (1.000000000 0.000000000) *
##              67) symmetry_worst< -1.748651 1   0 M (0.000000000 1.000000000) *
##          17) smoothness_worst< -1.723213 14   3 B (0.785714286 0.214285714)  
##            34) compactness_se< -3.013033 11   0 B (1.000000000 0.000000000) *
##            35) compactness_se>=-3.013033 3   0 M (0.000000000 1.000000000) *
##         9) texture_worst>=4.850312 27   5 B (0.814814815 0.185185185)  
##          18) texture_mean>=2.992821 24   2 B (0.916666667 0.083333333)  
##            36) texture_worst>=4.929933 22   0 B (1.000000000 0.000000000) *
##            37) texture_worst< 4.929933 2   0 M (0.000000000 1.000000000) *
##          19) texture_mean< 2.992821 3   0 M (0.000000000 1.000000000) *
##       5) symmetry_worst>=-1.165944 1   0 M (0.000000000 1.000000000) *
##     3) smoothness_worst>=-1.603315 751 369 M (0.491344874 0.508655126)  
##       6) texture_worst< 4.275472 155  32 B (0.793548387 0.206451613)  
##        12) symmetry_worst< -1.42974 132  15 B (0.886363636 0.113636364)  
##          24) smoothness_mean< -2.074653 126  10 B (0.920634921 0.079365079)  
##            48) smoothness_worst>=-1.602623 124   8 B (0.935483871 0.064516129)  
##              96) compactness_se< -3.892047 80   0 B (1.000000000 0.000000000) *
##              97) compactness_se>=-3.892047 44   8 B (0.818181818 0.181818182) *
##            49) smoothness_worst< -1.602623 2   0 M (0.000000000 1.000000000) *
##          25) smoothness_mean>=-2.074653 6   1 M (0.166666667 0.833333333)  
##            50) texture_mean>=2.515298 1   0 B (1.000000000 0.000000000) *
##            51) texture_mean< 2.515298 5   0 M (0.000000000 1.000000000) *
##        13) symmetry_worst>=-1.42974 23   6 M (0.260869565 0.739130435)  
##          26) smoothness_worst< -1.505076 5   0 B (1.000000000 0.000000000) *
##          27) smoothness_worst>=-1.505076 18   1 M (0.055555556 0.944444444)  
##            54) texture_mean< 2.622235 3   1 M (0.333333333 0.666666667)  
##             108) texture_mean>=2.463446 1   0 B (1.000000000 0.000000000) *
##             109) texture_mean< 2.463446 2   0 M (0.000000000 1.000000000) *
##            55) texture_mean>=2.622235 15   0 M (0.000000000 1.000000000) *
##       7) texture_worst>=4.275472 596 246 M (0.412751678 0.587248322)  
##        14) smoothness_mean< -2.416986 117  39 B (0.666666667 0.333333333)  
##          28) smoothness_mean>=-2.467991 71  12 B (0.830985915 0.169014085)  
##            56) symmetry_worst>=-1.984547 58   3 B (0.948275862 0.051724138)  
##             112) compactness_se>=-4.650552 54   1 B (0.981481481 0.018518519) *
##             113) compactness_se< -4.650552 4   2 B (0.500000000 0.500000000) *
##            57) symmetry_worst< -1.984547 13   4 M (0.307692308 0.692307692)  
##             114) texture_mean< 2.991795 4   0 B (1.000000000 0.000000000) *
##             115) texture_mean>=2.991795 9   0 M (0.000000000 1.000000000) *
##          29) smoothness_mean< -2.467991 46  19 M (0.413043478 0.586956522)  
##            58) compactness_se< -4.356557 18   4 B (0.777777778 0.222222222)  
##             116) texture_worst< 5.05366 14   0 B (1.000000000 0.000000000) *
##             117) texture_worst>=5.05366 4   0 M (0.000000000 1.000000000) *
##            59) compactness_se>=-4.356557 28   5 M (0.178571429 0.821428571)  
##             118) texture_mean< 2.868712 2   0 B (1.000000000 0.000000000) *
##             119) texture_mean>=2.868712 26   3 M (0.115384615 0.884615385) *
##        15) smoothness_mean>=-2.416986 479 168 M (0.350730689 0.649269311)  
##          30) symmetry_worst< -1.652093 263 126 M (0.479087452 0.520912548)  
##            60) smoothness_mean>=-2.355934 155  56 B (0.638709677 0.361290323)  
##             120) texture_mean< 3.214868 142  44 B (0.690140845 0.309859155) *
##             121) texture_mean>=3.214868 13   1 M (0.076923077 0.923076923) *
##            61) smoothness_mean< -2.355934 108  27 M (0.250000000 0.750000000)  
##             122) smoothness_worst< -1.579002 11   0 B (1.000000000 0.000000000) *
##             123) smoothness_worst>=-1.579002 97  16 M (0.164948454 0.835051546) *
##          31) symmetry_worst>=-1.652093 216  42 M (0.194444444 0.805555556)  
##            62) compactness_se< -4.002529 43  21 B (0.511627907 0.488372093)  
##             124) symmetry_worst>=-1.539708 23   4 B (0.826086957 0.173913043) *
##             125) symmetry_worst< -1.539708 20   3 M (0.150000000 0.850000000) *
##            63) compactness_se>=-4.002529 173  20 M (0.115606936 0.884393064)  
##             126) smoothness_mean< -2.216408 92  20 M (0.217391304 0.782608696) *
##             127) smoothness_mean>=-2.216408 81   0 M (0.000000000 1.000000000) *
## 
## $trees[[4]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 414 B (0.546052632 0.453947368)  
##     2) smoothness_worst< -1.556752 261  57 B (0.781609195 0.218390805)  
##       4) compactness_se< -3.489046 203  31 B (0.847290640 0.152709360)  
##         8) symmetry_worst>=-2.896033 198  26 B (0.868686869 0.131313131)  
##          16) symmetry_worst< -1.863339 120   6 B (0.950000000 0.050000000)  
##            32) smoothness_mean< -2.332092 108   1 B (0.990740741 0.009259259)  
##              64) smoothness_worst< -1.558926 107   0 B (1.000000000 0.000000000) *
##              65) smoothness_worst>=-1.558926 1   0 M (0.000000000 1.000000000) *
##            33) smoothness_mean>=-2.332092 12   5 B (0.583333333 0.416666667)  
##              66) texture_mean< 2.884144 5   0 B (1.000000000 0.000000000) *
##              67) texture_mean>=2.884144 7   2 M (0.285714286 0.714285714) *
##          17) symmetry_worst>=-1.863339 78  20 B (0.743589744 0.256410256)  
##            34) symmetry_worst>=-1.859739 73  15 B (0.794520548 0.205479452)  
##              68) texture_worst< 5.110945 65  10 B (0.846153846 0.153846154) *
##              69) texture_worst>=5.110945 8   3 M (0.375000000 0.625000000) *
##            35) symmetry_worst< -1.859739 5   0 M (0.000000000 1.000000000) *
##         9) symmetry_worst< -2.896033 5   0 M (0.000000000 1.000000000) *
##       5) compactness_se>=-3.489046 58  26 B (0.551724138 0.448275862)  
##        10) texture_worst< 4.425081 25   3 B (0.880000000 0.120000000)  
##          20) compactness_se>=-3.439472 22   0 B (1.000000000 0.000000000) *
##          21) compactness_se< -3.439472 3   0 M (0.000000000 1.000000000) *
##        11) texture_worst>=4.425081 33  10 M (0.303030303 0.696969697)  
##          22) smoothness_worst< -1.647098 13   4 B (0.692307692 0.307692308)  
##            44) compactness_se< -2.979429 8   0 B (1.000000000 0.000000000) *
##            45) compactness_se>=-2.979429 5   1 M (0.200000000 0.800000000)  
##              90) texture_mean< 3.076827 1   0 B (1.000000000 0.000000000) *
##              91) texture_mean>=3.076827 4   0 M (0.000000000 1.000000000) *
##          23) smoothness_worst>=-1.647098 20   1 M (0.050000000 0.950000000)  
##            46) smoothness_worst< -1.603323 3   1 M (0.333333333 0.666666667)  
##              92) smoothness_mean< -2.421794 1   0 B (1.000000000 0.000000000) *
##              93) smoothness_mean>=-2.421794 2   0 M (0.000000000 1.000000000) *
##            47) smoothness_worst>=-1.603323 17   0 M (0.000000000 1.000000000) *
##     3) smoothness_worst>=-1.556752 651 294 M (0.451612903 0.548387097)  
##       6) texture_mean< 2.810904 136  37 B (0.727941176 0.272058824)  
##        12) smoothness_mean< -2.074653 119  23 B (0.806722689 0.193277311)  
##          24) symmetry_worst< -1.180109 113  17 B (0.849557522 0.150442478)  
##            48) smoothness_worst>=-1.54469 106  12 B (0.886792453 0.113207547)  
##              96) texture_mean< 2.739547 61   0 B (1.000000000 0.000000000) *
##              97) texture_mean>=2.739547 45  12 B (0.733333333 0.266666667) *
##            49) smoothness_worst< -1.54469 7   2 M (0.285714286 0.714285714)  
##              98) texture_mean< 2.679131 2   0 B (1.000000000 0.000000000) *
##              99) texture_mean>=2.679131 5   0 M (0.000000000 1.000000000) *
##          25) symmetry_worst>=-1.180109 6   0 M (0.000000000 1.000000000) *
##        13) smoothness_mean>=-2.074653 17   3 M (0.176470588 0.823529412)  
##          26) symmetry_worst>=-1.411591 6   3 B (0.500000000 0.500000000)  
##            52) texture_mean< 2.692775 3   0 B (1.000000000 0.000000000) *
##            53) texture_mean>=2.692775 3   0 M (0.000000000 1.000000000) *
##          27) symmetry_worst< -1.411591 11   0 M (0.000000000 1.000000000) *
##       7) texture_mean>=2.810904 515 195 M (0.378640777 0.621359223)  
##        14) smoothness_mean< -2.486388 17   0 B (1.000000000 0.000000000) *
##        15) smoothness_mean>=-2.486388 498 178 M (0.357429719 0.642570281)  
##          30) symmetry_worst< -2.202388 31   7 B (0.774193548 0.225806452)  
##            60) symmetry_worst>=-2.379234 27   3 B (0.888888889 0.111111111)  
##             120) smoothness_mean>=-2.443464 25   1 B (0.960000000 0.040000000) *
##             121) smoothness_mean< -2.443464 2   0 M (0.000000000 1.000000000) *
##            61) symmetry_worst< -2.379234 4   0 M (0.000000000 1.000000000) *
##          31) symmetry_worst>=-2.202388 467 154 M (0.329764454 0.670235546)  
##            62) symmetry_worst< -1.424186 391 146 M (0.373401535 0.626598465)  
##             124) smoothness_worst>=-1.536189 342 142 M (0.415204678 0.584795322) *
##             125) smoothness_worst< -1.536189 49   4 M (0.081632653 0.918367347) *
##            63) symmetry_worst>=-1.424186 76   8 M (0.105263158 0.894736842)  
##             126) smoothness_worst< -1.49649 6   2 B (0.666666667 0.333333333) *
##             127) smoothness_worst>=-1.49649 70   4 M (0.057142857 0.942857143) *
## 
## $trees[[5]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 912 374 B (0.58991228 0.41008772)  
##    2) symmetry_worst< -1.294443 861 327 B (0.62020906 0.37979094)  
##      4) compactness_se< -4.05215 321  79 B (0.75389408 0.24610592)  
##        8) smoothness_mean>=-2.294121 82   1 B (0.98780488 0.01219512)  
##         16) smoothness_worst< -1.433156 61   0 B (1.00000000 0.00000000) *
##         17) smoothness_worst>=-1.433156 21   1 B (0.95238095 0.04761905)  
##           34) smoothness_worst>=-1.428706 20   0 B (1.00000000 0.00000000) *
##           35) smoothness_worst< -1.428706 1   0 M (0.00000000 1.00000000) *
##        9) smoothness_mean< -2.294121 239  78 B (0.67364017 0.32635983)  
##         18) texture_mean< 2.897016 115  15 B (0.86956522 0.13043478)  
##           36) smoothness_mean< -2.295113 112  12 B (0.89285714 0.10714286)  
##             72) compactness_se< -4.17052 92   4 B (0.95652174 0.04347826) *
##             73) compactness_se>=-4.17052 20   8 B (0.60000000 0.40000000) *
##           37) smoothness_mean>=-2.295113 3   0 M (0.00000000 1.00000000) *
##         19) texture_mean>=2.897016 124  61 M (0.49193548 0.50806452)  
##           38) compactness_se< -4.706178 21   0 B (1.00000000 0.00000000) *
##           39) compactness_se>=-4.706178 103  40 M (0.38834951 0.61165049)  
##             78) smoothness_worst>=-1.452317 15   1 B (0.93333333 0.06666667) *
##             79) smoothness_worst< -1.452317 88  26 M (0.29545455 0.70454545) *
##      5) compactness_se>=-4.05215 540 248 B (0.54074074 0.45925926)  
##       10) smoothness_mean< -2.332015 250  74 B (0.70400000 0.29600000)  
##         20) smoothness_worst< -1.602165 61   6 B (0.90163934 0.09836066)  
##           40) smoothness_worst>=-1.723213 58   4 B (0.93103448 0.06896552)  
##             80) symmetry_worst< -1.806005 37   0 B (1.00000000 0.00000000) *
##             81) symmetry_worst>=-1.806005 21   4 B (0.80952381 0.19047619) *
##           41) smoothness_worst< -1.723213 3   1 M (0.33333333 0.66666667)  
##             82) texture_mean< 3.026052 1   0 B (1.00000000 0.00000000) *
##             83) texture_mean>=3.026052 2   0 M (0.00000000 1.00000000) *
##         21) smoothness_worst>=-1.602165 189  68 B (0.64021164 0.35978836)  
##           42) texture_mean< 3.038055 116  31 B (0.73275862 0.26724138)  
##             84) texture_worst>=4.450993 72   8 B (0.88888889 0.11111111) *
##             85) texture_worst< 4.450993 44  21 M (0.47727273 0.52272727) *
##           43) texture_mean>=3.038055 73  36 M (0.49315068 0.50684932)  
##             86) texture_worst>=4.803681 52  16 B (0.69230769 0.30769231) *
##             87) texture_worst< 4.803681 21   0 M (0.00000000 1.00000000) *
##       11) smoothness_mean>=-2.332015 290 116 M (0.40000000 0.60000000)  
##         22) smoothness_worst>=-1.479941 152  73 B (0.51973684 0.48026316)  
##           44) compactness_se< -3.294139 124  46 B (0.62903226 0.37096774)  
##             88) compactness_se>=-3.492992 49   4 B (0.91836735 0.08163265) *
##             89) compactness_se< -3.492992 75  33 M (0.44000000 0.56000000) *
##           45) compactness_se>=-3.294139 28   1 M (0.03571429 0.96428571)  
##             90) texture_mean< 2.701935 1   0 B (1.00000000 0.00000000) *
##             91) texture_mean>=2.701935 27   0 M (0.00000000 1.00000000) *
##         23) smoothness_worst< -1.479941 138  37 M (0.26811594 0.73188406)  
##           46) symmetry_worst< -2.182761 13   3 B (0.76923077 0.23076923)  
##             92) smoothness_mean< -2.27667 10   0 B (1.00000000 0.00000000) *
##             93) smoothness_mean>=-2.27667 3   0 M (0.00000000 1.00000000) *
##           47) symmetry_worst>=-2.182761 125  27 M (0.21600000 0.78400000)  
##             94) smoothness_mean>=-2.274972 53  18 M (0.33962264 0.66037736) *
##             95) smoothness_mean< -2.274972 72   9 M (0.12500000 0.87500000) *
##    3) symmetry_worst>=-1.294443 51   4 M (0.07843137 0.92156863)  
##      6) smoothness_mean< -2.28924 13   4 M (0.30769231 0.69230769)  
##       12) compactness_se>=-4.00428 6   2 B (0.66666667 0.33333333)  
##         24) compactness_se< -3.441917 4   0 B (1.00000000 0.00000000) *
##         25) compactness_se>=-3.441917 2   0 M (0.00000000 1.00000000) *
##       13) compactness_se< -4.00428 7   0 M (0.00000000 1.00000000) *
##      7) smoothness_mean>=-2.28924 38   0 M (0.00000000 1.00000000) *
## 
## $trees[[6]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 378 B (0.58552632 0.41447368)  
##     2) texture_worst< 4.178472 132  14 B (0.89393939 0.10606061)  
##       4) symmetry_worst< -1.086115 127   9 B (0.92913386 0.07086614)  
##         8) texture_mean< 2.767575 100   2 B (0.98000000 0.02000000)  
##          16) texture_mean>=2.479051 85   0 B (1.00000000 0.00000000) *
##          17) texture_mean< 2.479051 15   2 B (0.86666667 0.13333333)  
##            34) texture_mean< 2.449364 13   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.449364 2   0 M (0.00000000 1.00000000) *
##         9) texture_mean>=2.767575 27   7 B (0.74074074 0.25925926)  
##          18) symmetry_worst< -1.431268 23   3 B (0.86956522 0.13043478)  
##            36) texture_mean>=2.771335 20   0 B (1.00000000 0.00000000) *
##            37) texture_mean< 2.771335 3   0 M (0.00000000 1.00000000) *
##          19) symmetry_worst>=-1.431268 4   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.086115 5   0 M (0.00000000 1.00000000) *
##     3) texture_worst>=4.178472 780 364 B (0.53333333 0.46666667)  
##       6) smoothness_worst< -1.520292 366 122 B (0.66666667 0.33333333)  
##        12) symmetry_worst< -1.861897 175  30 B (0.82857143 0.17142857)  
##          24) symmetry_worst>=-3.054794 172  27 B (0.84302326 0.15697674)  
##            48) smoothness_worst>=-1.543427 50   1 B (0.98000000 0.02000000)  
##              96) smoothness_worst< -1.52112 49   0 B (1.00000000 0.00000000) *
##              97) smoothness_worst>=-1.52112 1   0 M (0.00000000 1.00000000) *
##            49) smoothness_worst< -1.543427 122  26 B (0.78688525 0.21311475)  
##              98) smoothness_worst< -1.550482 115  19 B (0.83478261 0.16521739) *
##              99) smoothness_worst>=-1.550482 7   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst< -3.054794 3   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst>=-1.861897 191  92 B (0.51832461 0.48167539)  
##          26) symmetry_worst>=-1.750623 128  48 B (0.62500000 0.37500000)  
##            52) texture_mean< 2.984348 62   9 B (0.85483871 0.14516129)  
##             104) compactness_se>=-4.62493 53   1 B (0.98113208 0.01886792) *
##             105) compactness_se< -4.62493 9   1 M (0.11111111 0.88888889) *
##            53) texture_mean>=2.984348 66  27 M (0.40909091 0.59090909)  
##             106) symmetry_worst< -1.720387 12   0 B (1.00000000 0.00000000) *
##             107) symmetry_worst>=-1.720387 54  15 M (0.27777778 0.72222222) *
##          27) symmetry_worst< -1.750623 63  19 M (0.30158730 0.69841270)  
##            54) compactness_se< -3.737913 33  16 M (0.48484848 0.51515152)  
##             108) compactness_se>=-4.157608 10   0 B (1.00000000 0.00000000) *
##             109) compactness_se< -4.157608 23   6 M (0.26086957 0.73913043) *
##            55) compactness_se>=-3.737913 30   3 M (0.10000000 0.90000000)  
##             110) symmetry_worst< -1.843767 2   0 B (1.00000000 0.00000000) *
##             111) symmetry_worst>=-1.843767 28   1 M (0.03571429 0.96428571) *
##       7) smoothness_worst>=-1.520292 414 172 M (0.41545894 0.58454106)  
##        14) symmetry_worst< -1.424186 346 162 M (0.46820809 0.53179191)  
##          28) smoothness_worst>=-1.51308 325 162 M (0.49846154 0.50153846)  
##            56) texture_worst< 4.858219 230  99 B (0.56956522 0.43043478)  
##             112) texture_worst>=4.352293 186  65 B (0.65053763 0.34946237) *
##             113) texture_worst< 4.352293 44  10 M (0.22727273 0.77272727) *
##            57) texture_worst>=4.858219 95  31 M (0.32631579 0.67368421)  
##             114) smoothness_mean< -2.336091 26   8 B (0.69230769 0.30769231) *
##             115) smoothness_mean>=-2.336091 69  13 M (0.18840580 0.81159420) *
##          29) smoothness_worst< -1.51308 21   0 M (0.00000000 1.00000000) *
##        15) symmetry_worst>=-1.424186 68  10 M (0.14705882 0.85294118)  
##          30) texture_worst< 4.391935 10   4 B (0.60000000 0.40000000)  
##            60) smoothness_mean< -2.187813 6   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.187813 4   0 M (0.00000000 1.00000000) *
##          31) texture_worst>=4.391935 58   4 M (0.06896552 0.93103448)  
##            62) smoothness_worst< -1.501886 3   0 B (1.00000000 0.00000000) *
##            63) smoothness_worst>=-1.501886 55   1 M (0.01818182 0.98181818)  
##             126) texture_worst< 4.575764 4   1 M (0.25000000 0.75000000) *
##             127) texture_worst>=4.575764 51   0 M (0.00000000 1.00000000) *
## 
## $trees[[7]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 413 B (0.54714912 0.45285088)  
##     2) smoothness_worst< -1.603315 113  14 B (0.87610619 0.12389381)  
##       4) smoothness_worst>=-1.723213 110  11 B (0.90000000 0.10000000)  
##         8) symmetry_worst< -1.777195 69   0 B (1.00000000 0.00000000) *
##         9) symmetry_worst>=-1.777195 41  11 B (0.73170732 0.26829268)  
##          18) symmetry_worst>=-1.748651 37   7 B (0.81081081 0.18918919)  
##            36) compactness_se>=-4.279133 26   2 B (0.92307692 0.07692308)  
##              72) texture_mean< 3.160844 25   1 B (0.96000000 0.04000000) *
##              73) texture_mean>=3.160844 1   0 M (0.00000000 1.00000000) *
##            37) compactness_se< -4.279133 11   5 B (0.54545455 0.45454545)  
##              74) smoothness_mean< -2.529127 5   0 B (1.00000000 0.00000000) *
##              75) smoothness_mean>=-2.529127 6   1 M (0.16666667 0.83333333) *
##          19) symmetry_worst< -1.748651 4   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.723213 3   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.603315 799 399 B (0.50062578 0.49937422)  
##       6) texture_mean< 2.927988 339 121 B (0.64306785 0.35693215)  
##        12) texture_mean>=2.89867 71   5 B (0.92957746 0.07042254)  
##          24) compactness_se>=-4.62493 65   1 B (0.98461538 0.01538462)  
##            48) texture_worst< 4.739939 64   0 B (1.00000000 0.00000000) *
##            49) texture_worst>=4.739939 1   0 M (0.00000000 1.00000000) *
##          25) compactness_se< -4.62493 6   2 M (0.33333333 0.66666667)  
##            50) texture_mean< 2.912851 2   0 B (1.00000000 0.00000000) *
##            51) texture_mean>=2.912851 4   0 M (0.00000000 1.00000000) *
##        13) texture_mean< 2.89867 268 116 B (0.56716418 0.43283582)  
##          26) texture_mean< 2.892591 239  88 B (0.63179916 0.36820084)  
##            52) texture_mean< 2.708379 62   6 B (0.90322581 0.09677419)  
##             104) texture_mean>=2.496294 51   0 B (1.00000000 0.00000000) *
##             105) texture_mean< 2.496294 11   5 M (0.45454545 0.54545455) *
##            53) texture_mean>=2.708379 177  82 B (0.53672316 0.46327684)  
##             106) compactness_se< -4.50262 20   0 B (1.00000000 0.00000000) *
##             107) compactness_se>=-4.50262 157  75 M (0.47770701 0.52229299) *
##          27) texture_mean>=2.892591 29   1 M (0.03448276 0.96551724)  
##            54) smoothness_mean< -2.409236 1   0 B (1.00000000 0.00000000) *
##            55) smoothness_mean>=-2.409236 28   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.927988 460 182 M (0.39565217 0.60434783)  
##        14) compactness_se< -3.721197 212  98 B (0.53773585 0.46226415)  
##          28) compactness_se>=-3.865662 44   7 B (0.84090909 0.15909091)  
##            56) smoothness_worst< -1.48132 33   0 B (1.00000000 0.00000000) *
##            57) smoothness_worst>=-1.48132 11   4 M (0.36363636 0.63636364)  
##             114) texture_mean< 2.971675 4   0 B (1.00000000 0.00000000) *
##             115) texture_mean>=2.971675 7   0 M (0.00000000 1.00000000) *
##          29) compactness_se< -3.865662 168  77 M (0.45833333 0.54166667)  
##            58) symmetry_worst< -2.218846 17   0 B (1.00000000 0.00000000) *
##            59) symmetry_worst>=-2.218846 151  60 M (0.39735099 0.60264901)  
##             118) compactness_se< -4.557422 19   3 B (0.84210526 0.15789474) *
##             119) compactness_se>=-4.557422 132  44 M (0.33333333 0.66666667) *
##        15) compactness_se>=-3.721197 248  68 M (0.27419355 0.72580645)  
##          30) texture_worst< 4.411908 18   3 B (0.83333333 0.16666667)  
##            60) smoothness_worst< -1.510166 15   0 B (1.00000000 0.00000000) *
##            61) smoothness_worst>=-1.510166 3   0 M (0.00000000 1.00000000) *
##          31) texture_worst>=4.411908 230  53 M (0.23043478 0.76956522)  
##            62) smoothness_mean< -2.289177 124  47 M (0.37903226 0.62096774)  
##             124) smoothness_worst>=-1.476409 37  11 B (0.70270270 0.29729730) *
##             125) smoothness_worst< -1.476409 87  21 M (0.24137931 0.75862069) *
##            63) smoothness_mean>=-2.289177 106   6 M (0.05660377 0.94339623)  
##             126) smoothness_mean>=-2.093138 15   6 M (0.40000000 0.60000000) *
##             127) smoothness_mean< -2.093138 91   0 M (0.00000000 1.00000000) *
## 
## $trees[[8]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 327 B (0.64144737 0.35855263)  
##     2) compactness_se< -3.678758 549 147 B (0.73224044 0.26775956)  
##       4) symmetry_worst< -1.329407 535 134 B (0.74953271 0.25046729)  
##         8) texture_worst< 4.389172 160  17 B (0.89375000 0.10625000)  
##          16) compactness_se< -4.166611 77   0 B (1.00000000 0.00000000) *
##          17) compactness_se>=-4.166611 83  17 B (0.79518072 0.20481928)  
##            34) compactness_se>=-4.160164 76  10 B (0.86842105 0.13157895)  
##              68) smoothness_mean< -2.099567 74   8 B (0.89189189 0.10810811) *
##              69) smoothness_mean>=-2.099567 2   0 M (0.00000000 1.00000000) *
##            35) compactness_se< -4.160164 7   0 M (0.00000000 1.00000000) *
##         9) texture_worst>=4.389172 375 117 B (0.68800000 0.31200000)  
##          18) symmetry_worst>=-2.164014 342  95 B (0.72222222 0.27777778)  
##            36) texture_worst>=4.642157 187  31 B (0.83422460 0.16577540)  
##              72) smoothness_mean< -2.203647 183  27 B (0.85245902 0.14754098) *
##              73) smoothness_mean>=-2.203647 4   0 M (0.00000000 1.00000000) *
##            37) texture_worst< 4.642157 155  64 B (0.58709677 0.41290323)  
##              74) compactness_se< -4.198706 61  12 B (0.80327869 0.19672131) *
##              75) compactness_se>=-4.198706 94  42 M (0.44680851 0.55319149) *
##          19) symmetry_worst< -2.164014 33  11 M (0.33333333 0.66666667)  
##            38) smoothness_mean< -2.392268 5   0 B (1.00000000 0.00000000) *
##            39) smoothness_mean>=-2.392268 28   6 M (0.21428571 0.78571429)  
##              78) smoothness_mean>=-2.302192 5   1 B (0.80000000 0.20000000) *
##              79) smoothness_mean< -2.302192 23   2 M (0.08695652 0.91304348) *
##       5) symmetry_worst>=-1.329407 14   1 M (0.07142857 0.92857143)  
##        10) texture_mean< 2.814567 1   0 B (1.00000000 0.00000000) *
##        11) texture_mean>=2.814567 13   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.678758 363 180 B (0.50413223 0.49586777)  
##       6) smoothness_mean< -2.296611 228  86 B (0.62280702 0.37719298)  
##        12) texture_mean< 3.058688 146  39 B (0.73287671 0.26712329)  
##          24) compactness_se>=-3.593774 129  24 B (0.81395349 0.18604651)  
##            48) texture_mean>=2.782752 96   8 B (0.91666667 0.08333333)  
##              96) texture_worst< 4.674843 72   1 B (0.98611111 0.01388889) *
##              97) texture_worst>=4.674843 24   7 B (0.70833333 0.29166667) *
##            49) texture_mean< 2.782752 33  16 B (0.51515152 0.48484848)  
##              98) smoothness_mean< -2.461467 15   0 B (1.00000000 0.00000000) *
##              99) smoothness_mean>=-2.461467 18   2 M (0.11111111 0.88888889) *
##          25) compactness_se< -3.593774 17   2 M (0.11764706 0.88235294)  
##            50) texture_worst< 4.254671 2   0 B (1.00000000 0.00000000) *
##            51) texture_worst>=4.254671 15   0 M (0.00000000 1.00000000) *
##        13) texture_mean>=3.058688 82  35 M (0.42682927 0.57317073)  
##          26) compactness_se< -3.477558 42  11 B (0.73809524 0.26190476)  
##            52) texture_mean< 3.410351 36   5 B (0.86111111 0.13888889)  
##             104) texture_mean>=3.101852 30   0 B (1.00000000 0.00000000) *
##             105) texture_mean< 3.101852 6   1 M (0.16666667 0.83333333) *
##            53) texture_mean>=3.410351 6   0 M (0.00000000 1.00000000) *
##          27) compactness_se>=-3.477558 40   4 M (0.10000000 0.90000000)  
##            54) smoothness_mean< -2.638103 3   0 B (1.00000000 0.00000000) *
##            55) smoothness_mean>=-2.638103 37   1 M (0.02702703 0.97297297)  
##             110) smoothness_worst>=-1.417917 1   0 B (1.00000000 0.00000000) *
##             111) smoothness_worst< -1.417917 36   0 M (0.00000000 1.00000000) *
##       7) smoothness_mean>=-2.296611 135  41 M (0.30370370 0.69629630)  
##        14) texture_worst< 4.391935 49  19 B (0.61224490 0.38775510)  
##          28) compactness_se>=-3.57366 43  13 B (0.69767442 0.30232558)  
##            56) texture_mean< 2.857891 30   5 B (0.83333333 0.16666667)  
##             112) symmetry_worst< -1.001713 28   3 B (0.89285714 0.10714286) *
##             113) symmetry_worst>=-1.001713 2   0 M (0.00000000 1.00000000) *
##            57) texture_mean>=2.857891 13   5 M (0.38461538 0.61538462)  
##             114) texture_mean>=2.870166 5   0 B (1.00000000 0.00000000) *
##             115) texture_mean< 2.870166 8   0 M (0.00000000 1.00000000) *
##          29) compactness_se< -3.57366 6   0 M (0.00000000 1.00000000) *
##        15) texture_worst>=4.391935 86  11 M (0.12790698 0.87209302)  
##          30) smoothness_mean>=-2.093138 12   3 B (0.75000000 0.25000000)  
##            60) compactness_se< -3.039084 9   0 B (1.00000000 0.00000000) *
##            61) compactness_se>=-3.039084 3   0 M (0.00000000 1.00000000) *
##          31) smoothness_mean< -2.093138 74   2 M (0.02702703 0.97297297)  
##            62) texture_worst< 4.541747 10   2 M (0.20000000 0.80000000)  
##             124) texture_worst>=4.530419 1   0 B (1.00000000 0.00000000) *
##             125) texture_worst< 4.530419 9   1 M (0.11111111 0.88888889) *
##            63) texture_worst>=4.541747 64   0 M (0.00000000 1.00000000) *
## 
## $trees[[9]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 396 B (0.56578947 0.43421053)  
##     2) texture_mean< 2.960623 438 139 B (0.68264840 0.31735160)  
##       4) smoothness_worst< -1.500665 225  45 B (0.80000000 0.20000000)  
##         8) symmetry_worst>=-1.748321 81   5 B (0.93827160 0.06172840)  
##          16) smoothness_mean< -2.171581 78   2 B (0.97435897 0.02564103)  
##            32) compactness_se>=-4.602061 70   0 B (1.00000000 0.00000000) *
##            33) compactness_se< -4.602061 8   2 B (0.75000000 0.25000000)  
##              66) compactness_se< -4.691273 6   0 B (1.00000000 0.00000000) *
##              67) compactness_se>=-4.691273 2   0 M (0.00000000 1.00000000) *
##          17) smoothness_mean>=-2.171581 3   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst< -1.748321 144  40 B (0.72222222 0.27777778)  
##          18) symmetry_worst< -1.815934 97   9 B (0.90721649 0.09278351)  
##            36) symmetry_worst>=-2.179403 78   3 B (0.96153846 0.03846154)  
##              72) compactness_se< -3.49316 69   1 B (0.98550725 0.01449275) *
##              73) compactness_se>=-3.49316 9   2 B (0.77777778 0.22222222) *
##            37) symmetry_worst< -2.179403 19   6 B (0.68421053 0.31578947)  
##              74) texture_mean< 2.876144 10   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.876144 9   3 M (0.33333333 0.66666667) *
##          19) symmetry_worst>=-1.815934 47  16 M (0.34042553 0.65957447)  
##            38) compactness_se< -4.354176 6   0 B (1.00000000 0.00000000) *
##            39) compactness_se>=-4.354176 41  10 M (0.24390244 0.75609756)  
##              78) smoothness_mean>=-2.313605 4   0 B (1.00000000 0.00000000) *
##              79) smoothness_mean< -2.313605 37   6 M (0.16216216 0.83783784) *
##       5) smoothness_worst>=-1.500665 213  94 B (0.55868545 0.44131455)  
##        10) smoothness_mean>=-2.290163 107  27 B (0.74766355 0.25233645)  
##          20) symmetry_worst< -1.511499 76   7 B (0.90789474 0.09210526)  
##            40) smoothness_worst>=-1.498447 74   5 B (0.93243243 0.06756757)  
##              80) smoothness_mean< -2.007355 73   4 B (0.94520548 0.05479452) *
##              81) smoothness_mean>=-2.007355 1   0 M (0.00000000 1.00000000) *
##            41) smoothness_worst< -1.498447 2   0 M (0.00000000 1.00000000) *
##          21) symmetry_worst>=-1.511499 31  11 M (0.35483871 0.64516129)  
##            42) smoothness_mean< -2.222401 13   4 B (0.69230769 0.30769231)  
##              84) texture_worst>=4.174841 10   1 B (0.90000000 0.10000000) *
##              85) texture_worst< 4.174841 3   0 M (0.00000000 1.00000000) *
##            43) smoothness_mean>=-2.222401 18   2 M (0.11111111 0.88888889)  
##              86) smoothness_mean>=-2.000349 1   0 B (1.00000000 0.00000000) *
##              87) smoothness_mean< -2.000349 17   1 M (0.05882353 0.94117647) *
##        11) smoothness_mean< -2.290163 106  39 M (0.36792453 0.63207547)  
##          22) symmetry_worst>=-1.759286 47  16 B (0.65957447 0.34042553)  
##            44) smoothness_mean< -2.296107 42  11 B (0.73809524 0.26190476)  
##              88) texture_worst>=4.382736 24   2 B (0.91666667 0.08333333) *
##              89) texture_worst< 4.382736 18   9 B (0.50000000 0.50000000) *
##            45) smoothness_mean>=-2.296107 5   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst< -1.759286 59   8 M (0.13559322 0.86440678)  
##            46) smoothness_mean< -2.3918 6   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean>=-2.3918 53   2 M (0.03773585 0.96226415)  
##              94) texture_mean< 2.755881 2   0 B (1.00000000 0.00000000) *
##              95) texture_mean>=2.755881 51   0 M (0.00000000 1.00000000) *
##     3) texture_mean>=2.960623 474 217 M (0.45780591 0.54219409)  
##       6) symmetry_worst< -2.01934 124  44 B (0.64516129 0.35483871)  
##        12) compactness_se< -3.037823 112  33 B (0.70535714 0.29464286)  
##          24) texture_mean>=3.336125 21   0 B (1.00000000 0.00000000) *
##          25) texture_mean< 3.336125 91  33 B (0.63736264 0.36263736)  
##            50) smoothness_mean>=-2.330377 36   4 B (0.88888889 0.11111111)  
##             100) smoothness_worst< -1.44137 34   2 B (0.94117647 0.05882353) *
##             101) smoothness_worst>=-1.44137 2   0 M (0.00000000 1.00000000) *
##            51) smoothness_mean< -2.330377 55  26 M (0.47272727 0.52727273)  
##             102) smoothness_worst< -1.604518 21   2 B (0.90476190 0.09523810) *
##             103) smoothness_worst>=-1.604518 34   7 M (0.20588235 0.79411765) *
##        13) compactness_se>=-3.037823 12   1 M (0.08333333 0.91666667)  
##          26) texture_mean< 3.005071 1   0 B (1.00000000 0.00000000) *
##          27) texture_mean>=3.005071 11   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-2.01934 350 137 M (0.39142857 0.60857143)  
##        14) texture_worst< 5.034396 276 131 M (0.47463768 0.52536232)  
##          28) texture_mean>=3.192731 36   3 B (0.91666667 0.08333333)  
##            56) symmetry_worst< -1.345645 34   1 B (0.97058824 0.02941176)  
##             112) texture_worst>=4.863973 33   0 B (1.00000000 0.00000000) *
##             113) texture_worst< 4.863973 1   0 M (0.00000000 1.00000000) *
##            57) symmetry_worst>=-1.345645 2   0 M (0.00000000 1.00000000) *
##          29) texture_mean< 3.192731 240  98 M (0.40833333 0.59166667)  
##            58) smoothness_worst>=-1.443422 76  30 B (0.60526316 0.39473684)  
##             116) texture_worst>=4.641775 58  12 B (0.79310345 0.20689655) *
##             117) texture_worst< 4.641775 18   0 M (0.00000000 1.00000000) *
##            59) smoothness_worst< -1.443422 164  52 M (0.31707317 0.68292683)  
##             118) smoothness_worst< -1.556752 52  25 B (0.51923077 0.48076923) *
##             119) smoothness_worst>=-1.556752 112  25 M (0.22321429 0.77678571) *
##        15) texture_worst>=5.034396 74   6 M (0.08108108 0.91891892)  
##          30) smoothness_mean< -2.526959 4   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean>=-2.526959 70   2 M (0.02857143 0.97142857)  
##            62) texture_mean>=3.35917 21   2 M (0.09523810 0.90476190)  
##             124) texture_mean< 3.386045 2   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.386045 19   0 M (0.00000000 1.00000000) *
##            63) texture_mean< 3.35917 49   0 M (0.00000000 1.00000000) *
## 
## $trees[[10]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 403 B (0.55811404 0.44188596)  
##     2) texture_worst< 4.260219 133  21 B (0.84210526 0.15789474)  
##       4) symmetry_worst< -1.429489 121  13 B (0.89256198 0.10743802)  
##         8) texture_mean< 2.909334 118  10 B (0.91525424 0.08474576)  
##          16) compactness_se< -3.894783 62   0 B (1.00000000 0.00000000) *
##          17) compactness_se>=-3.894783 56  10 B (0.82142857 0.17857143)  
##            34) compactness_se>=-3.878107 50   4 B (0.92000000 0.08000000)  
##              68) texture_mean>=2.534356 46   2 B (0.95652174 0.04347826) *
##              69) texture_mean< 2.534356 4   2 B (0.50000000 0.50000000) *
##            35) compactness_se< -3.878107 6   0 M (0.00000000 1.00000000) *
##         9) texture_mean>=2.909334 3   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.429489 12   4 M (0.33333333 0.66666667)  
##        10) texture_mean< 2.706904 4   0 B (1.00000000 0.00000000) *
##        11) texture_mean>=2.706904 8   0 M (0.00000000 1.00000000) *
##     3) texture_worst>=4.260219 779 382 B (0.50962773 0.49037227)  
##       6) symmetry_worst< -1.52865 651 291 B (0.55299539 0.44700461)  
##        12) compactness_se< -3.671151 404 151 B (0.62623762 0.37376238)  
##          24) smoothness_mean>=-2.283768 83  13 B (0.84337349 0.15662651)  
##            48) smoothness_worst< -1.419369 79   9 B (0.88607595 0.11392405)  
##              96) texture_mean< 3.133277 67   3 B (0.95522388 0.04477612) *
##              97) texture_mean>=3.133277 12   6 B (0.50000000 0.50000000) *
##            49) smoothness_worst>=-1.419369 4   0 M (0.00000000 1.00000000) *
##          25) smoothness_mean< -2.283768 321 138 B (0.57009346 0.42990654)  
##            50) texture_worst>=4.3976 278 107 B (0.61510791 0.38489209)  
##             100) texture_worst< 4.517889 42   2 B (0.95238095 0.04761905) *
##             101) texture_worst>=4.517889 236 105 B (0.55508475 0.44491525) *
##            51) texture_worst< 4.3976 43  12 M (0.27906977 0.72093023)  
##             102) texture_mean< 2.808677 8   0 B (1.00000000 0.00000000) *
##             103) texture_mean>=2.808677 35   4 M (0.11428571 0.88571429) *
##        13) compactness_se>=-3.671151 247 107 M (0.43319838 0.56680162)  
##          26) symmetry_worst>=-1.608735 35   6 B (0.82857143 0.17142857)  
##            52) smoothness_mean< -2.3007 29   1 B (0.96551724 0.03448276)  
##             104) texture_worst< 4.993407 28   0 B (1.00000000 0.00000000) *
##             105) texture_worst>=4.993407 1   0 M (0.00000000 1.00000000) *
##            53) smoothness_mean>=-2.3007 6   1 M (0.16666667 0.83333333)  
##             106) compactness_se>=-3.239083 1   0 B (1.00000000 0.00000000) *
##             107) compactness_se< -3.239083 5   0 M (0.00000000 1.00000000) *
##          27) symmetry_worst< -1.608735 212  78 M (0.36792453 0.63207547)  
##            54) symmetry_worst< -1.762226 137  68 B (0.50364964 0.49635036)  
##             108) smoothness_worst>=-1.468425 20   2 B (0.90000000 0.10000000) *
##             109) smoothness_worst< -1.468425 117  51 M (0.43589744 0.56410256) *
##            55) symmetry_worst>=-1.762226 75   9 M (0.12000000 0.88000000)  
##             110) smoothness_mean>=-2.109794 4   0 B (1.00000000 0.00000000) *
##             111) smoothness_mean< -2.109794 71   5 M (0.07042254 0.92957746) *
##       7) symmetry_worst>=-1.52865 128  37 M (0.28906250 0.71093750)  
##        14) texture_worst< 4.433296 26   3 B (0.88461538 0.11538462)  
##          28) smoothness_mean< -2.195585 23   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean>=-2.195585 3   0 M (0.00000000 1.00000000) *
##        15) texture_worst>=4.433296 102  14 M (0.13725490 0.86274510)  
##          30) texture_mean< 2.947292 21  10 M (0.47619048 0.52380952)  
##            60) symmetry_worst< -1.367423 10   0 B (1.00000000 0.00000000) *
##            61) symmetry_worst>=-1.367423 11   0 M (0.00000000 1.00000000) *
##          31) texture_mean>=2.947292 81   4 M (0.04938272 0.95061728)  
##            62) compactness_se< -4.507761 3   1 B (0.66666667 0.33333333)  
##             124) texture_mean>=3.111935 2   0 B (1.00000000 0.00000000) *
##             125) texture_mean< 3.111935 1   0 M (0.00000000 1.00000000) *
##            63) compactness_se>=-4.507761 78   2 M (0.02564103 0.97435897)  
##             126) compactness_se>=-2.983317 9   1 M (0.11111111 0.88888889) *
##             127) compactness_se< -2.983317 69   1 M (0.01449275 0.98550725) *
## 
## $trees[[11]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 410 B (0.55043860 0.44956140)  
##     2) texture_mean< 2.931727 329 105 B (0.68085106 0.31914894)  
##       4) smoothness_mean< -2.469112 36   0 B (1.00000000 0.00000000) *
##       5) smoothness_mean>=-2.469112 293 105 B (0.64163823 0.35836177)  
##        10) compactness_se>=-3.427747 56   8 B (0.85714286 0.14285714)  
##          20) smoothness_worst< -1.431481 48   2 B (0.95833333 0.04166667)  
##            40) symmetry_worst< -1.330042 41   0 B (1.00000000 0.00000000) *
##            41) symmetry_worst>=-1.330042 7   2 B (0.71428571 0.28571429)  
##              82) compactness_se>=-2.646661 5   0 B (1.00000000 0.00000000) *
##              83) compactness_se< -2.646661 2   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst>=-1.431481 8   2 M (0.25000000 0.75000000)  
##            42) texture_mean< 2.67609 2   0 B (1.00000000 0.00000000) *
##            43) texture_mean>=2.67609 6   0 M (0.00000000 1.00000000) *
##        11) compactness_se< -3.427747 237  97 B (0.59071730 0.40928270)  
##          22) compactness_se< -3.4389 221  81 B (0.63348416 0.36651584)  
##            44) texture_worst< 4.522453 152  44 B (0.71052632 0.28947368)  
##              88) smoothness_mean< -2.081877 140  34 B (0.75714286 0.24285714) *
##              89) smoothness_mean>=-2.081877 12   2 M (0.16666667 0.83333333) *
##            45) texture_worst>=4.522453 69  32 M (0.46376812 0.53623188)  
##              90) texture_worst>=4.543638 51  20 B (0.60784314 0.39215686) *
##              91) texture_worst< 4.543638 18   1 M (0.05555556 0.94444444) *
##          23) compactness_se>=-3.4389 16   0 M (0.00000000 1.00000000) *
##     3) texture_mean>=2.931727 583 278 M (0.47684391 0.52315609)  
##       6) symmetry_worst< -2.20425 53  12 B (0.77358491 0.22641509)  
##        12) texture_worst>=4.653864 43   4 B (0.90697674 0.09302326)  
##          24) smoothness_mean< -2.282229 40   1 B (0.97500000 0.02500000)  
##            48) texture_mean< 3.330945 35   0 B (1.00000000 0.00000000) *
##            49) texture_mean>=3.330945 5   1 B (0.80000000 0.20000000)  
##              98) texture_mean>=3.357516 4   0 B (1.00000000 0.00000000) *
##              99) texture_mean< 3.357516 1   0 M (0.00000000 1.00000000) *
##          25) smoothness_mean>=-2.282229 3   0 M (0.00000000 1.00000000) *
##        13) texture_worst< 4.653864 10   2 M (0.20000000 0.80000000)  
##          26) smoothness_mean>=-2.337576 3   1 B (0.66666667 0.33333333)  
##            52) smoothness_mean< -2.242961 2   0 B (1.00000000 0.00000000) *
##            53) smoothness_mean>=-2.242961 1   0 M (0.00000000 1.00000000) *
##          27) smoothness_mean< -2.337576 7   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-2.20425 530 237 M (0.44716981 0.55283019)  
##        14) texture_worst< 5.030101 444 215 M (0.48423423 0.51576577)  
##          28) compactness_se>=-4.094455 315 139 B (0.55873016 0.44126984)  
##            56) compactness_se< -4.05446 20   0 B (1.00000000 0.00000000) *
##            57) compactness_se>=-4.05446 295 139 B (0.52881356 0.47118644)  
##             114) smoothness_worst< -1.462821 208  81 B (0.61057692 0.38942308) *
##             115) smoothness_worst>=-1.462821 87  29 M (0.33333333 0.66666667) *
##          29) compactness_se< -4.094455 129  39 M (0.30232558 0.69767442)  
##            58) texture_mean>=3.181081 7   0 B (1.00000000 0.00000000) *
##            59) texture_mean< 3.181081 122  32 M (0.26229508 0.73770492)  
##             118) texture_worst< 4.849569 81  32 M (0.39506173 0.60493827) *
##             119) texture_worst>=4.849569 41   0 M (0.00000000 1.00000000) *
##        15) texture_worst>=5.030101 86  22 M (0.25581395 0.74418605)  
##          30) smoothness_mean< -2.505388 9   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean>=-2.505388 77  13 M (0.16883117 0.83116883)  
##            62) compactness_se< -4.509895 12   5 B (0.58333333 0.41666667)  
##             124) texture_mean>=3.186756 7   0 B (1.00000000 0.00000000) *
##             125) texture_mean< 3.186756 5   0 M (0.00000000 1.00000000) *
##            63) compactness_se>=-4.509895 65   6 M (0.09230769 0.90769231)  
##             126) smoothness_worst< -1.563077 4   1 B (0.75000000 0.25000000) *
##             127) smoothness_worst>=-1.563077 61   3 M (0.04918033 0.95081967) *
## 
## $trees[[12]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 453 B (0.50328947 0.49671053)  
##     2) symmetry_worst< -2.048468 145  29 B (0.80000000 0.20000000)  
##       4) symmetry_worst>=-2.923662 139  23 B (0.83453237 0.16546763)  
##         8) compactness_se< -3.351361 114  13 B (0.88596491 0.11403509)  
##          16) symmetry_worst>=-2.379234 102   7 B (0.93137255 0.06862745)  
##            32) texture_worst< 5.309594 94   3 B (0.96808511 0.03191489)  
##              64) texture_mean>=3.067819 59   0 B (1.00000000 0.00000000) *
##              65) texture_mean< 3.067819 35   3 B (0.91428571 0.08571429) *
##            33) texture_worst>=5.309594 8   4 B (0.50000000 0.50000000)  
##              66) texture_mean>=3.375155 4   0 B (1.00000000 0.00000000) *
##              67) texture_mean< 3.375155 4   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst< -2.379234 12   6 B (0.50000000 0.50000000)  
##            34) texture_mean< 2.865666 4   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.865666 8   2 M (0.25000000 0.75000000)  
##              70) symmetry_worst< -2.522371 2   0 B (1.00000000 0.00000000) *
##              71) symmetry_worst>=-2.522371 6   0 M (0.00000000 1.00000000) *
##         9) compactness_se>=-3.351361 25  10 B (0.60000000 0.40000000)  
##          18) texture_mean< 3.076827 14   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=3.076827 11   1 M (0.09090909 0.90909091)  
##            38) smoothness_mean< -2.638103 1   0 B (1.00000000 0.00000000) *
##            39) smoothness_mean>=-2.638103 10   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst< -2.923662 6   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-2.048468 767 343 M (0.44719687 0.55280313)  
##       6) texture_worst< 4.592857 350 132 B (0.62285714 0.37714286)  
##        12) texture_mean< 2.708379 36   1 B (0.97222222 0.02777778)  
##          24) texture_mean>=2.496294 30   0 B (1.00000000 0.00000000) *
##          25) texture_mean< 2.496294 6   1 B (0.83333333 0.16666667)  
##            50) texture_mean< 2.434062 5   0 B (1.00000000 0.00000000) *
##            51) texture_mean>=2.434062 1   0 M (0.00000000 1.00000000) *
##        13) texture_mean>=2.708379 314 131 B (0.58280255 0.41719745)  
##          26) texture_mean>=2.771335 256  93 B (0.63671875 0.36328125)  
##            52) texture_mean< 2.927988 146  34 B (0.76712329 0.23287671)  
##             104) texture_mean>=2.893423 40   0 B (1.00000000 0.00000000) *
##             105) texture_mean< 2.893423 106  34 B (0.67924528 0.32075472) *
##            53) texture_mean>=2.927988 110  51 M (0.46363636 0.53636364)  
##             106) texture_worst>=4.528527 38   9 B (0.76315789 0.23684211) *
##             107) texture_worst< 4.528527 72  22 M (0.30555556 0.69444444) *
##          27) texture_mean< 2.771335 58  20 M (0.34482759 0.65517241)  
##            54) smoothness_mean< -2.443516 7   0 B (1.00000000 0.00000000) *
##            55) smoothness_mean>=-2.443516 51  13 M (0.25490196 0.74509804)  
##             110) compactness_se>=-3.364454 5   0 B (1.00000000 0.00000000) *
##             111) compactness_se< -3.364454 46   8 M (0.17391304 0.82608696) *
##       7) texture_worst>=4.592857 417 125 M (0.29976019 0.70023981)  
##        14) smoothness_mean>=-2.093138 19   3 B (0.84210526 0.15789474)  
##          28) smoothness_mean< -2.073133 16   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean>=-2.073133 3   0 M (0.00000000 1.00000000) *
##        15) smoothness_mean< -2.093138 398 109 M (0.27386935 0.72613065)  
##          30) smoothness_mean< -2.549773 8   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean>=-2.549773 390 101 M (0.25897436 0.74102564)  
##            62) compactness_se>=-4.096569 233  77 M (0.33047210 0.66952790)  
##             124) compactness_se< -3.721197 85  42 M (0.49411765 0.50588235) *
##             125) compactness_se>=-3.721197 148  35 M (0.23648649 0.76351351) *
##            63) compactness_se< -4.096569 157  24 M (0.15286624 0.84713376)  
##             126) smoothness_worst>=-1.399898 4   0 B (1.00000000 0.00000000) *
##             127) smoothness_worst< -1.399898 153  20 M (0.13071895 0.86928105) *
## 
## $trees[[13]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 435 B (0.52302632 0.47697368)  
##     2) texture_mean< 2.711046 40   7 B (0.82500000 0.17500000)  
##       4) compactness_se< -3.039458 37   4 B (0.89189189 0.10810811)  
##         8) texture_mean>=2.479051 26   0 B (1.00000000 0.00000000) *
##         9) texture_mean< 2.479051 11   4 B (0.63636364 0.36363636)  
##          18) texture_mean< 2.471475 7   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=2.471475 4   0 M (0.00000000 1.00000000) *
##       5) compactness_se>=-3.039458 3   0 M (0.00000000 1.00000000) *
##     3) texture_mean>=2.711046 872 428 B (0.50917431 0.49082569)  
##       6) texture_mean>=2.856753 728 334 B (0.54120879 0.45879121)  
##        12) symmetry_worst>=-2.491275 713 319 B (0.55259467 0.44740533)  
##          24) texture_worst< 4.458511 92  22 B (0.76086957 0.23913043)  
##            48) symmetry_worst< -1.735506 51   2 B (0.96078431 0.03921569)  
##              96) compactness_se>=-4.327955 45   0 B (1.00000000 0.00000000) *
##              97) compactness_se< -4.327955 6   2 B (0.66666667 0.33333333) *
##            49) symmetry_worst>=-1.735506 41  20 B (0.51219512 0.48780488)  
##              98) smoothness_worst>=-1.566151 30   9 B (0.70000000 0.30000000) *
##              99) smoothness_worst< -1.566151 11   0 M (0.00000000 1.00000000) *
##          25) texture_worst>=4.458511 621 297 B (0.52173913 0.47826087)  
##            50) compactness_se>=-4.671834 576 263 B (0.54340278 0.45659722)  
##             100) smoothness_mean< -2.335108 312 114 B (0.63461538 0.36538462) *
##             101) smoothness_mean>=-2.335108 264 115 M (0.43560606 0.56439394) *
##            51) compactness_se< -4.671834 45  11 M (0.24444444 0.75555556)  
##             102) compactness_se< -4.803674 8   0 B (1.00000000 0.00000000) *
##             103) compactness_se>=-4.803674 37   3 M (0.08108108 0.91891892) *
##        13) symmetry_worst< -2.491275 15   0 M (0.00000000 1.00000000) *
##       7) texture_mean< 2.856753 144  50 M (0.34722222 0.65277778)  
##        14) smoothness_mean>=-2.271585 33  12 B (0.63636364 0.36363636)  
##          28) symmetry_worst< -1.524164 22   2 B (0.90909091 0.09090909)  
##            56) smoothness_mean< -2.061717 21   1 B (0.95238095 0.04761905)  
##             112) texture_mean< 2.834388 18   0 B (1.00000000 0.00000000) *
##             113) texture_mean>=2.834388 3   1 B (0.66666667 0.33333333) *
##            57) smoothness_mean>=-2.061717 1   0 M (0.00000000 1.00000000) *
##          29) symmetry_worst>=-1.524164 11   1 M (0.09090909 0.90909091)  
##            58) texture_mean>=2.850705 1   0 B (1.00000000 0.00000000) *
##            59) texture_mean< 2.850705 10   0 M (0.00000000 1.00000000) *
##        15) smoothness_mean< -2.271585 111  29 M (0.26126126 0.73873874)  
##          30) smoothness_mean< -2.447973 7   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean>=-2.447973 104  22 M (0.21153846 0.78846154)  
##            62) texture_mean< 2.758426 33  13 M (0.39393939 0.60606061)  
##             124) compactness_se< -3.697394 10   0 B (1.00000000 0.00000000) *
##             125) compactness_se>=-3.697394 23   3 M (0.13043478 0.86956522) *
##            63) texture_mean>=2.758426 71   9 M (0.12676056 0.87323944)  
##             126) compactness_se>=-3.483667 4   1 B (0.75000000 0.25000000) *
##             127) compactness_se< -3.483667 67   6 M (0.08955224 0.91044776) *
## 
## $trees[[14]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 454 M (0.49780702 0.50219298)  
##     2) smoothness_mean>=-2.275457 235  83 B (0.64680851 0.35319149)  
##       4) compactness_se< -3.646366 137  26 B (0.81021898 0.18978102)  
##         8) smoothness_worst< -1.459555 60   0 B (1.00000000 0.00000000) *
##         9) smoothness_worst>=-1.459555 77  26 B (0.66233766 0.33766234)  
##          18) compactness_se< -4.030558 42   4 B (0.90476190 0.09523810)  
##            36) texture_mean>=2.979048 33   0 B (1.00000000 0.00000000) *
##            37) texture_mean< 2.979048 9   4 B (0.55555556 0.44444444)  
##              74) texture_mean< 2.950291 5   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.950291 4   0 M (0.00000000 1.00000000) *
##          19) compactness_se>=-4.030558 35  13 M (0.37142857 0.62857143)  
##            38) texture_mean< 2.900047 15   2 B (0.86666667 0.13333333)  
##              76) texture_mean>=2.532482 13   0 B (1.00000000 0.00000000) *
##              77) texture_mean< 2.532482 2   0 M (0.00000000 1.00000000) *
##            39) texture_mean>=2.900047 20   0 M (0.00000000 1.00000000) *
##       5) compactness_se>=-3.646366 98  41 M (0.41836735 0.58163265)  
##        10) smoothness_mean>=-2.093138 20   3 B (0.85000000 0.15000000)  
##          20) symmetry_worst< -1.566249 17   0 B (1.00000000 0.00000000) *
##          21) symmetry_worst>=-1.566249 3   0 M (0.00000000 1.00000000) *
##        11) smoothness_mean< -2.093138 78  24 M (0.30769231 0.69230769)  
##          22) texture_worst< 4.548911 44  20 B (0.54545455 0.45454545)  
##            44) symmetry_worst< -1.814978 14   1 B (0.92857143 0.07142857)  
##              88) compactness_se>=-3.557543 13   0 B (1.00000000 0.00000000) *
##              89) compactness_se< -3.557543 1   0 M (0.00000000 1.00000000) *
##            45) symmetry_worst>=-1.814978 30  11 M (0.36666667 0.63333333)  
##              90) compactness_se>=-3.344528 18   7 B (0.61111111 0.38888889) *
##              91) compactness_se< -3.344528 12   0 M (0.00000000 1.00000000) *
##          23) texture_worst>=4.548911 34   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean< -2.275457 677 302 M (0.44608567 0.55391433)  
##       6) compactness_se< -4.705732 27   2 B (0.92592593 0.07407407)  
##        12) symmetry_worst< -1.170399 25   0 B (1.00000000 0.00000000) *
##        13) symmetry_worst>=-1.170399 2   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.705732 650 277 M (0.42615385 0.57384615)  
##        14) symmetry_worst>=-1.681676 237 103 B (0.56540084 0.43459916)  
##          28) compactness_se>=-4.089478 159  51 B (0.67924528 0.32075472)  
##            56) texture_worst< 5.003123 149  41 B (0.72483221 0.27516779)  
##             112) compactness_se< -3.483184 88  12 B (0.86363636 0.13636364) *
##             113) compactness_se>=-3.483184 61  29 B (0.52459016 0.47540984) *
##            57) texture_worst>=5.003123 10   0 M (0.00000000 1.00000000) *
##          29) compactness_se< -4.089478 78  26 M (0.33333333 0.66666667)  
##            58) compactness_se< -4.539406 22   7 B (0.68181818 0.31818182)  
##             116) texture_worst>=4.62656 15   0 B (1.00000000 0.00000000) *
##             117) texture_worst< 4.62656 7   0 M (0.00000000 1.00000000) *
##            59) compactness_se>=-4.539406 56  11 M (0.19642857 0.80357143)  
##             118) texture_worst< 4.496329 15   5 B (0.66666667 0.33333333) *
##             119) texture_worst>=4.496329 41   1 M (0.02439024 0.97560976) *
##        15) symmetry_worst< -1.681676 413 143 M (0.34624697 0.65375303)  
##          30) smoothness_worst< -1.604009 63  22 B (0.65079365 0.34920635)  
##            60) symmetry_worst< -1.895532 43   7 B (0.83720930 0.16279070)  
##             120) smoothness_worst>=-1.694089 29   0 B (1.00000000 0.00000000) *
##             121) smoothness_worst< -1.694089 14   7 B (0.50000000 0.50000000) *
##            61) symmetry_worst>=-1.895532 20   5 M (0.25000000 0.75000000)  
##             122) texture_mean< 2.923842 3   0 B (1.00000000 0.00000000) *
##             123) texture_mean>=2.923842 17   2 M (0.11764706 0.88235294) *
##          31) smoothness_worst>=-1.604009 350 102 M (0.29142857 0.70857143)  
##            62) smoothness_mean< -2.488015 18   3 B (0.83333333 0.16666667)  
##             124) smoothness_worst>=-1.572781 15   0 B (1.00000000 0.00000000) *
##             125) smoothness_worst< -1.572781 3   0 M (0.00000000 1.00000000) *
##            63) smoothness_mean>=-2.488015 332  87 M (0.26204819 0.73795181)  
##             126) symmetry_worst< -2.25148 23   8 B (0.65217391 0.34782609) *
##             127) symmetry_worst>=-2.25148 309  72 M (0.23300971 0.76699029) *
## 
## $trees[[15]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 397 B (0.56469298 0.43530702)  
##     2) symmetry_worst< -2.048053 139  37 B (0.73381295 0.26618705)  
##       4) smoothness_worst>=-1.493231 40   0 B (1.00000000 0.00000000) *
##       5) smoothness_worst< -1.493231 99  37 B (0.62626263 0.37373737)  
##        10) smoothness_worst< -1.499051 91  29 B (0.68131868 0.31868132)  
##          20) texture_worst< 4.371728 16   0 B (1.00000000 0.00000000) *
##          21) texture_worst>=4.371728 75  29 B (0.61333333 0.38666667)  
##            42) texture_worst>=4.755481 42   9 B (0.78571429 0.21428571)  
##              84) symmetry_worst< -2.063958 38   5 B (0.86842105 0.13157895) *
##              85) symmetry_worst>=-2.063958 4   0 M (0.00000000 1.00000000) *
##            43) texture_worst< 4.755481 33  13 M (0.39393939 0.60606061)  
##              86) symmetry_worst>=-2.096646 5   0 B (1.00000000 0.00000000) *
##              87) symmetry_worst< -2.096646 28   8 M (0.28571429 0.71428571) *
##        11) smoothness_worst>=-1.499051 8   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-2.048053 773 360 B (0.53428202 0.46571798)  
##       6) texture_mean< 3.058002 556 220 B (0.60431655 0.39568345)  
##        12) texture_mean>=2.987952 162  37 B (0.77160494 0.22839506)  
##          24) smoothness_worst>=-1.60795 148  25 B (0.83108108 0.16891892)  
##            48) smoothness_mean< -2.203647 134  18 B (0.86567164 0.13432836)  
##              96) texture_worst>=4.779866 57   1 B (0.98245614 0.01754386) *
##              97) texture_worst< 4.779866 77  17 B (0.77922078 0.22077922) *
##            49) smoothness_mean>=-2.203647 14   7 B (0.50000000 0.50000000)  
##              98) texture_worst< 4.69039 7   0 B (1.00000000 0.00000000) *
##              99) texture_worst>=4.69039 7   0 M (0.00000000 1.00000000) *
##          25) smoothness_worst< -1.60795 14   2 M (0.14285714 0.85714286)  
##            50) texture_mean< 2.999433 2   0 B (1.00000000 0.00000000) *
##            51) texture_mean>=2.999433 12   0 M (0.00000000 1.00000000) *
##        13) texture_mean< 2.987952 394 183 B (0.53553299 0.46446701)  
##          26) texture_mean< 2.976294 378 167 B (0.55820106 0.44179894)  
##            52) symmetry_worst>=-1.990832 346 142 B (0.58959538 0.41040462)  
##             104) symmetry_worst< -1.861897 53   5 B (0.90566038 0.09433962) *
##             105) symmetry_worst>=-1.861897 293 137 B (0.53242321 0.46757679) *
##            53) symmetry_worst< -1.990832 32   7 M (0.21875000 0.78125000)  
##             106) smoothness_mean< -2.445594 4   0 B (1.00000000 0.00000000) *
##             107) smoothness_mean>=-2.445594 28   3 M (0.10714286 0.89285714) *
##          27) texture_mean>=2.976294 16   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=3.058002 217  77 M (0.35483871 0.64516129)  
##        14) texture_worst>=4.753106 161  76 M (0.47204969 0.52795031)  
##          28) compactness_se>=-3.902076 90  31 B (0.65555556 0.34444444)  
##            56) compactness_se< -3.721197 30   1 B (0.96666667 0.03333333)  
##             112) smoothness_worst< -1.446315 29   0 B (1.00000000 0.00000000) *
##             113) smoothness_worst>=-1.446315 1   0 M (0.00000000 1.00000000) *
##            57) compactness_se>=-3.721197 60  30 B (0.50000000 0.50000000)  
##             114) texture_worst< 5.051039 45  15 B (0.66666667 0.33333333) *
##             115) texture_worst>=5.051039 15   0 M (0.00000000 1.00000000) *
##          29) compactness_se< -3.902076 71  17 M (0.23943662 0.76056338)  
##            58) smoothness_worst< -1.622284 6   0 B (1.00000000 0.00000000) *
##            59) smoothness_worst>=-1.622284 65  11 M (0.16923077 0.83076923)  
##             118) symmetry_worst>=-1.733593 36  11 M (0.30555556 0.69444444) *
##             119) symmetry_worst< -1.733593 29   0 M (0.00000000 1.00000000) *
##        15) texture_worst< 4.753106 56   1 M (0.01785714 0.98214286)  
##          30) smoothness_mean< -2.498594 1   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean>=-2.498594 55   0 M (0.00000000 1.00000000) *
## 
## $trees[[16]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 451 M (0.49451754 0.50548246)  
##     2) symmetry_worst< -1.424186 809 378 B (0.53275649 0.46724351)  
##       4) smoothness_worst>=-1.49223 347 131 B (0.62247839 0.37752161)  
##         8) texture_worst>=4.599485 199  53 B (0.73366834 0.26633166)  
##          16) texture_mean< 3.083495 124  17 B (0.86290323 0.13709677)  
##            32) compactness_se>=-4.280193 118  12 B (0.89830508 0.10169492)  
##              64) smoothness_mean< -2.184141 108   6 B (0.94444444 0.05555556) *
##              65) smoothness_mean>=-2.184141 10   4 M (0.40000000 0.60000000) *
##            33) compactness_se< -4.280193 6   1 M (0.16666667 0.83333333)  
##              66) texture_mean< 2.921626 1   0 B (1.00000000 0.00000000) *
##              67) texture_mean>=2.921626 5   0 M (0.00000000 1.00000000) *
##          17) texture_mean>=3.083495 75  36 B (0.52000000 0.48000000)  
##            34) texture_mean>=3.192731 43  10 B (0.76744186 0.23255814)  
##              68) texture_worst< 5.402766 37   4 B (0.89189189 0.10810811) *
##              69) texture_worst>=5.402766 6   0 M (0.00000000 1.00000000) *
##            35) texture_mean< 3.192731 32   6 M (0.18750000 0.81250000)  
##              70) symmetry_worst< -2.063609 10   4 B (0.60000000 0.40000000) *
##              71) symmetry_worst>=-2.063609 22   0 M (0.00000000 1.00000000) *
##         9) texture_worst< 4.599485 148  70 M (0.47297297 0.52702703)  
##          18) smoothness_worst< -1.450406 101  37 B (0.63366337 0.36633663)  
##            36) compactness_se< -3.458298 70  11 B (0.84285714 0.15714286)  
##              72) texture_worst>=4.180672 60   6 B (0.90000000 0.10000000) *
##              73) texture_worst< 4.180672 10   5 B (0.50000000 0.50000000) *
##            37) compactness_se>=-3.458298 31   5 M (0.16129032 0.83870968)  
##              74) smoothness_mean>=-2.27605 10   5 B (0.50000000 0.50000000) *
##              75) smoothness_mean< -2.27605 21   0 M (0.00000000 1.00000000) *
##          19) smoothness_worst>=-1.450406 47   6 M (0.12765957 0.87234043)  
##            38) texture_worst< 4.30106 10   4 B (0.60000000 0.40000000)  
##              76) smoothness_worst>=-1.434633 6   0 B (1.00000000 0.00000000) *
##              77) smoothness_worst< -1.434633 4   0 M (0.00000000 1.00000000) *
##            39) texture_worst>=4.30106 37   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.49223 462 215 M (0.46536797 0.53463203)  
##        10) symmetry_worst< -1.815934 238  97 B (0.59243697 0.40756303)  
##          20) smoothness_worst< -1.500665 222  82 B (0.63063063 0.36936937)  
##            40) smoothness_worst>=-1.539367 63  10 B (0.84126984 0.15873016)  
##              80) texture_worst< 4.566482 31   0 B (1.00000000 0.00000000) *
##              81) texture_worst>=4.566482 32  10 B (0.68750000 0.31250000) *
##            41) smoothness_worst< -1.539367 159  72 B (0.54716981 0.45283019)  
##              82) smoothness_worst< -1.559798 126  47 B (0.62698413 0.37301587) *
##              83) smoothness_worst>=-1.559798 33   8 M (0.24242424 0.75757576) *
##          21) smoothness_worst>=-1.500665 16   1 M (0.06250000 0.93750000)  
##            42) texture_worst< 4.593754 1   0 B (1.00000000 0.00000000) *
##            43) texture_worst>=4.593754 15   0 M (0.00000000 1.00000000) *
##        11) symmetry_worst>=-1.815934 224  74 M (0.33035714 0.66964286)  
##          22) texture_mean< 2.824054 23   2 B (0.91304348 0.08695652)  
##            44) symmetry_worst>=-1.792649 21   0 B (1.00000000 0.00000000) *
##            45) symmetry_worst< -1.792649 2   0 M (0.00000000 1.00000000) *
##          23) texture_mean>=2.824054 201  53 M (0.26368159 0.73631841)  
##            46) texture_worst>=4.751723 50  25 B (0.50000000 0.50000000)  
##              92) texture_worst< 4.996236 36  11 B (0.69444444 0.30555556) *
##              93) texture_worst>=4.996236 14   0 M (0.00000000 1.00000000) *
##            47) texture_worst< 4.751723 151  28 M (0.18543046 0.81456954)  
##              94) smoothness_mean>=-2.231223 11   3 B (0.72727273 0.27272727) *
##              95) smoothness_mean< -2.231223 140  20 M (0.14285714 0.85714286) *
##     3) symmetry_worst>=-1.424186 103  20 M (0.19417476 0.80582524)  
##       6) smoothness_worst< -1.501886 16   4 B (0.75000000 0.25000000)  
##        12) texture_mean< 3.126045 12   0 B (1.00000000 0.00000000) *
##        13) texture_mean>=3.126045 4   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst>=-1.501886 87   8 M (0.09195402 0.90804598)  
##        14) texture_mean< 2.77286 11   5 M (0.45454545 0.54545455)  
##          28) compactness_se< -3.173162 5   0 B (1.00000000 0.00000000) *
##          29) compactness_se>=-3.173162 6   0 M (0.00000000 1.00000000) *
##        15) texture_mean>=2.77286 76   3 M (0.03947368 0.96052632)  
##          30) compactness_se>=-2.524297 3   1 B (0.66666667 0.33333333)  
##            60) texture_mean< 2.915767 2   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=2.915767 1   0 M (0.00000000 1.00000000) *
##          31) compactness_se< -2.524297 73   1 M (0.01369863 0.98630137)  
##            62) compactness_se< -4.171724 2   1 B (0.50000000 0.50000000)  
##             124) texture_mean< 3.068796 1   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.068796 1   0 M (0.00000000 1.00000000) *
##            63) compactness_se>=-4.171724 71   0 M (0.00000000 1.00000000) *
## 
## $trees[[17]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 403 M (0.44188596 0.55811404)  
##     2) compactness_se< -4.706178 28   2 B (0.92857143 0.07142857)  
##       4) symmetry_worst< -1.170399 26   0 B (1.00000000 0.00000000) *
##       5) symmetry_worst>=-1.170399 2   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-4.706178 884 377 M (0.42647059 0.57352941)  
##       6) compactness_se>=-4.687525 855 375 M (0.43859649 0.56140351)  
##        12) smoothness_worst< -1.500665 467 233 B (0.50107066 0.49892934)  
##          24) texture_mean< 3.025285 237  89 B (0.62447257 0.37552743)  
##            48) compactness_se>=-4.327955 200  61 B (0.69500000 0.30500000)  
##              96) smoothness_worst>=-1.568787 143  29 B (0.79720280 0.20279720) *
##              97) smoothness_worst< -1.568787 57  25 M (0.43859649 0.56140351) *
##            49) compactness_se< -4.327955 37   9 M (0.24324324 0.75675676)  
##              98) texture_mean< 2.85595 6   0 B (1.00000000 0.00000000) *
##              99) texture_mean>=2.85595 31   3 M (0.09677419 0.90322581) *
##          25) texture_mean>=3.025285 230  86 M (0.37391304 0.62608696)  
##            50) smoothness_mean>=-2.317271 29   8 B (0.72413793 0.27586207)  
##             100) smoothness_mean< -2.266276 19   0 B (1.00000000 0.00000000) *
##             101) smoothness_mean>=-2.266276 10   2 M (0.20000000 0.80000000) *
##            51) smoothness_mean< -2.317271 201  65 M (0.32338308 0.67661692)  
##             102) smoothness_mean< -2.409448 104  51 M (0.49038462 0.50961538) *
##             103) smoothness_mean>=-2.409448 97  14 M (0.14432990 0.85567010) *
##        13) smoothness_worst>=-1.500665 388 141 M (0.36340206 0.63659794)  
##          26) texture_worst>=4.628023 152  76 B (0.50000000 0.50000000)  
##            52) texture_worst< 4.682677 25   2 B (0.92000000 0.08000000)  
##             104) texture_mean>=2.836998 23   0 B (1.00000000 0.00000000) *
##             105) texture_mean< 2.836998 2   0 M (0.00000000 1.00000000) *
##            53) texture_worst>=4.682677 127  53 M (0.41732283 0.58267717)  
##             106) smoothness_worst>=-1.430927 50  16 B (0.68000000 0.32000000) *
##             107) smoothness_worst< -1.430927 77  19 M (0.24675325 0.75324675) *
##          27) texture_worst< 4.628023 236  65 M (0.27542373 0.72457627)  
##            54) compactness_se< -4.50262 10   0 B (1.00000000 0.00000000) *
##            55) compactness_se>=-4.50262 226  55 M (0.24336283 0.75663717)  
##             110) symmetry_worst< -1.995212 21   7 B (0.66666667 0.33333333) *
##             111) symmetry_worst>=-1.995212 205  41 M (0.20000000 0.80000000) *
##       7) compactness_se< -4.687525 29   2 M (0.06896552 0.93103448)  
##        14) smoothness_mean>=-2.441817 2   0 B (1.00000000 0.00000000) *
##        15) smoothness_mean< -2.441817 27   0 M (0.00000000 1.00000000) *
## 
## $trees[[18]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 450 B (0.50657895 0.49342105)  
##     2) texture_worst>=5.16917 76  18 B (0.76315789 0.23684211)  
##       4) texture_worst< 5.636459 71  13 B (0.81690141 0.18309859)  
##         8) smoothness_mean< -2.331159 67   9 B (0.86567164 0.13432836)  
##          16) compactness_se< -3.328636 63   5 B (0.92063492 0.07936508)  
##            32) symmetry_worst< -1.41032 62   4 B (0.93548387 0.06451613)  
##              64) compactness_se>=-3.859901 36   0 B (1.00000000 0.00000000) *
##              65) compactness_se< -3.859901 26   4 B (0.84615385 0.15384615) *
##            33) symmetry_worst>=-1.41032 1   0 M (0.00000000 1.00000000) *
##          17) compactness_se>=-3.328636 4   0 M (0.00000000 1.00000000) *
##         9) smoothness_mean>=-2.331159 4   0 M (0.00000000 1.00000000) *
##       5) texture_worst>=5.636459 5   0 M (0.00000000 1.00000000) *
##     3) texture_worst< 5.16917 836 404 M (0.48325359 0.51674641)  
##       6) texture_mean< 2.708379 31   3 B (0.90322581 0.09677419)  
##        12) symmetry_worst< -1.112025 29   1 B (0.96551724 0.03448276)  
##          24) smoothness_mean< -2.114874 24   0 B (1.00000000 0.00000000) *
##          25) smoothness_mean>=-2.114874 5   1 B (0.80000000 0.20000000)  
##            50) smoothness_mean>=-2.060513 4   0 B (1.00000000 0.00000000) *
##            51) smoothness_mean< -2.060513 1   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst>=-1.112025 2   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.708379 805 376 M (0.46708075 0.53291925)  
##        14) symmetry_worst< -1.427209 735 359 M (0.48843537 0.51156463)  
##          28) compactness_se< -4.706178 13   0 B (1.00000000 0.00000000) *
##          29) compactness_se>=-4.706178 722 346 M (0.47922438 0.52077562)  
##            58) compactness_se>=-4.681232 704 346 M (0.49147727 0.50852273)  
##             116) texture_worst>=4.543638 408 180 B (0.55882353 0.44117647) *
##             117) texture_worst< 4.543638 296 118 M (0.39864865 0.60135135) *
##            59) compactness_se< -4.681232 18   0 M (0.00000000 1.00000000) *
##        15) symmetry_worst>=-1.427209 70  17 M (0.24285714 0.75714286)  
##          30) texture_worst< 4.595658 31  14 M (0.45161290 0.54838710)  
##            60) texture_worst>=4.251602 15   1 B (0.93333333 0.06666667)  
##             120) smoothness_mean< -2.156267 14   0 B (1.00000000 0.00000000) *
##             121) smoothness_mean>=-2.156267 1   0 M (0.00000000 1.00000000) *
##            61) texture_worst< 4.251602 16   0 M (0.00000000 1.00000000) *
##          31) texture_worst>=4.595658 39   3 M (0.07692308 0.92307692)  
##            62) texture_mean>=3.10949 11   3 M (0.27272727 0.72727273)  
##             124) texture_mean< 3.116842 3   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.116842 8   0 M (0.00000000 1.00000000) *
##            63) texture_mean< 3.10949 28   0 M (0.00000000 1.00000000) *
## 
## $trees[[19]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 426 M (0.46710526 0.53289474)  
##     2) symmetry_worst< -1.423936 816 407 M (0.49877451 0.50122549)  
##       4) compactness_se< -3.648711 496 208 B (0.58064516 0.41935484)  
##         8) symmetry_worst>=-1.749307 181  47 B (0.74033149 0.25966851)  
##          16) smoothness_mean>=-2.483393 162  34 B (0.79012346 0.20987654)  
##            32) compactness_se>=-4.676603 157  29 B (0.81528662 0.18471338)  
##              64) texture_worst< 5.402766 152  24 B (0.84210526 0.15789474) *
##              65) texture_worst>=5.402766 5   0 M (0.00000000 1.00000000) *
##            33) compactness_se< -4.676603 5   0 M (0.00000000 1.00000000) *
##          17) smoothness_mean< -2.483393 19   6 M (0.31578947 0.68421053)  
##            34) smoothness_mean< -2.536306 5   0 B (1.00000000 0.00000000) *
##            35) smoothness_mean>=-2.536306 14   1 M (0.07142857 0.92857143)  
##              70) smoothness_worst>=-1.560846 1   0 B (1.00000000 0.00000000) *
##              71) smoothness_worst< -1.560846 13   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst< -1.749307 315 154 M (0.48888889 0.51111111)  
##          18) symmetry_worst< -1.789136 274 125 B (0.54379562 0.45620438)  
##            36) symmetry_worst>=-1.855076 52   8 B (0.84615385 0.15384615)  
##              72) smoothness_mean>=-2.433246 41   2 B (0.95121951 0.04878049) *
##              73) smoothness_mean< -2.433246 11   5 M (0.45454545 0.54545455) *
##            37) symmetry_worst< -1.855076 222 105 M (0.47297297 0.52702703)  
##              74) smoothness_mean< -2.444437 39   7 B (0.82051282 0.17948718) *
##              75) smoothness_mean>=-2.444437 183  73 M (0.39890710 0.60109290) *
##          19) symmetry_worst>=-1.789136 41   5 M (0.12195122 0.87804878)  
##            38) smoothness_mean< -2.429074 2   0 B (1.00000000 0.00000000) *
##            39) smoothness_mean>=-2.429074 39   3 M (0.07692308 0.92307692)  
##              78) smoothness_worst< -1.550971 5   2 B (0.60000000 0.40000000) *
##              79) smoothness_worst>=-1.550971 34   0 M (0.00000000 1.00000000) *
##       5) compactness_se>=-3.648711 320 119 M (0.37187500 0.62812500)  
##        10) symmetry_worst< -1.840831 128  58 B (0.54687500 0.45312500)  
##          20) symmetry_worst>=-1.982941 43   0 B (1.00000000 0.00000000) *
##          21) symmetry_worst< -1.982941 85  27 M (0.31764706 0.68235294)  
##            42) texture_worst>=5.255485 6   0 B (1.00000000 0.00000000) *
##            43) texture_worst< 5.255485 79  21 M (0.26582278 0.73417722)  
##              86) texture_mean< 2.763153 4   0 B (1.00000000 0.00000000) *
##              87) texture_mean>=2.763153 75  17 M (0.22666667 0.77333333) *
##        11) symmetry_worst>=-1.840831 192  49 M (0.25520833 0.74479167)  
##          22) smoothness_mean< -2.503795 10   0 B (1.00000000 0.00000000) *
##          23) smoothness_mean>=-2.503795 182  39 M (0.21428571 0.78571429)  
##            46) symmetry_worst>=-1.471051 10   1 B (0.90000000 0.10000000)  
##              92) texture_mean< 3.100749 9   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=3.100749 1   0 M (0.00000000 1.00000000) *
##            47) symmetry_worst< -1.471051 172  30 M (0.17441860 0.82558140)  
##              94) compactness_se>=-2.853699 19   9 B (0.52631579 0.47368421) *
##              95) compactness_se< -2.853699 153  20 M (0.13071895 0.86928105) *
##     3) symmetry_worst>=-1.423936 96  19 M (0.19791667 0.80208333)  
##       6) texture_mean< 2.77286 10   2 B (0.80000000 0.20000000)  
##        12) compactness_se< -3.173162 8   0 B (1.00000000 0.00000000) *
##        13) compactness_se>=-3.173162 2   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.77286 86  11 M (0.12790698 0.87209302)  
##        14) smoothness_worst< -1.501886 15   7 B (0.53333333 0.46666667)  
##          28) texture_mean< 3.021535 6   0 B (1.00000000 0.00000000) *
##          29) texture_mean>=3.021535 9   2 M (0.22222222 0.77777778)  
##            58) smoothness_mean>=-2.349952 2   0 B (1.00000000 0.00000000) *
##            59) smoothness_mean< -2.349952 7   0 M (0.00000000 1.00000000) *
##        15) smoothness_worst>=-1.501886 71   3 M (0.04225352 0.95774648)  
##          30) compactness_se>=-2.567912 2   0 B (1.00000000 0.00000000) *
##          31) compactness_se< -2.567912 69   1 M (0.01449275 0.98550725)  
##            62) compactness_se< -4.171724 5   1 M (0.20000000 0.80000000)  
##             124) texture_mean< 3.006781 1   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.006781 4   0 M (0.00000000 1.00000000) *
##            63) compactness_se>=-4.171724 64   0 M (0.00000000 1.00000000) *
## 
## $trees[[20]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 450 B (0.50657895 0.49342105)  
##     2) symmetry_worst< -1.840831 390 150 B (0.61538462 0.38461538)  
##       4) compactness_se>=-4.434687 325 102 B (0.68615385 0.31384615)  
##         8) symmetry_worst>=-1.9261 88  10 B (0.88636364 0.11363636)  
##          16) texture_worst< 4.927821 82   6 B (0.92682927 0.07317073)  
##            32) smoothness_worst< -1.424105 77   3 B (0.96103896 0.03896104)  
##              64) smoothness_mean>=-2.390216 59   0 B (1.00000000 0.00000000) *
##              65) smoothness_mean< -2.390216 18   3 B (0.83333333 0.16666667) *
##            33) smoothness_worst>=-1.424105 5   2 M (0.40000000 0.60000000)  
##              66) texture_mean>=2.876957 2   0 B (1.00000000 0.00000000) *
##              67) texture_mean< 2.876957 3   0 M (0.00000000 1.00000000) *
##          17) texture_worst>=4.927821 6   2 M (0.33333333 0.66666667)  
##            34) texture_mean>=3.304052 2   0 B (1.00000000 0.00000000) *
##            35) texture_mean< 3.304052 4   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst< -1.9261 237  92 B (0.61181435 0.38818565)  
##          18) symmetry_worst< -1.964096 202  67 B (0.66831683 0.33168317)  
##            36) smoothness_mean< -2.242666 189  55 B (0.70899471 0.29100529)  
##              72) smoothness_mean>=-2.33454 44   3 B (0.93181818 0.06818182) *
##              73) smoothness_mean< -2.33454 145  52 B (0.64137931 0.35862069) *
##            37) smoothness_mean>=-2.242666 13   1 M (0.07692308 0.92307692)  
##              74) texture_mean< 2.885158 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.885158 12   0 M (0.00000000 1.00000000) *
##          19) symmetry_worst>=-1.964096 35  10 M (0.28571429 0.71428571)  
##            38) smoothness_mean>=-2.225218 8   0 B (1.00000000 0.00000000) *
##            39) smoothness_mean< -2.225218 27   2 M (0.07407407 0.92592593)  
##              78) smoothness_mean< -2.425835 2   0 B (1.00000000 0.00000000) *
##              79) smoothness_mean>=-2.425835 25   0 M (0.00000000 1.00000000) *
##       5) compactness_se< -4.434687 65  17 M (0.26153846 0.73846154)  
##        10) compactness_se< -4.706178 11   0 B (1.00000000 0.00000000) *
##        11) compactness_se>=-4.706178 54   6 M (0.11111111 0.88888889)  
##          22) texture_mean< 2.846651 2   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.846651 52   4 M (0.07692308 0.92307692)  
##            46) smoothness_mean>=-2.271294 2   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean< -2.271294 50   2 M (0.04000000 0.96000000)  
##              94) compactness_se>=-4.514873 18   2 M (0.11111111 0.88888889) *
##              95) compactness_se< -4.514873 32   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-1.840831 522 222 M (0.42528736 0.57471264)  
##       6) compactness_se< -4.510773 39   9 B (0.76923077 0.23076923)  
##        12) texture_worst>=4.622562 26   1 B (0.96153846 0.03846154)  
##          24) smoothness_worst< -1.491257 19   0 B (1.00000000 0.00000000) *
##          25) smoothness_worst>=-1.491257 7   1 B (0.85714286 0.14285714)  
##            50) compactness_se< -4.557422 6   0 B (1.00000000 0.00000000) *
##            51) compactness_se>=-4.557422 1   0 M (0.00000000 1.00000000) *
##        13) texture_worst< 4.622562 13   5 M (0.38461538 0.61538462)  
##          26) texture_worst< 4.468479 5   0 B (1.00000000 0.00000000) *
##          27) texture_worst>=4.468479 8   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.510773 483 192 M (0.39751553 0.60248447)  
##        14) smoothness_worst< -1.472307 322 149 M (0.46273292 0.53726708)  
##          28) smoothness_worst>=-1.4768 36   6 B (0.83333333 0.16666667)  
##            56) symmetry_worst>=-1.811141 30   0 B (1.00000000 0.00000000) *
##            57) symmetry_worst< -1.811141 6   0 M (0.00000000 1.00000000) *
##          29) smoothness_worst< -1.4768 286 119 M (0.41608392 0.58391608)  
##            58) compactness_se< -3.711591 134  62 B (0.53731343 0.46268657)  
##             116) compactness_se>=-4.159844 63  16 B (0.74603175 0.25396825) *
##             117) compactness_se< -4.159844 71  25 M (0.35211268 0.64788732) *
##            59) compactness_se>=-3.711591 152  47 M (0.30921053 0.69078947)  
##             118) smoothness_mean< -2.424641 27  10 B (0.62962963 0.37037037) *
##             119) smoothness_mean>=-2.424641 125  30 M (0.24000000 0.76000000) *
##        15) smoothness_worst>=-1.472307 161  43 M (0.26708075 0.73291925)  
##          30) smoothness_mean>=-2.093138 20   5 B (0.75000000 0.25000000)  
##            60) texture_mean>=2.515298 16   1 B (0.93750000 0.06250000)  
##             120) compactness_se< -2.887458 15   0 B (1.00000000 0.00000000) *
##             121) compactness_se>=-2.887458 1   0 M (0.00000000 1.00000000) *
##            61) texture_mean< 2.515298 4   0 M (0.00000000 1.00000000) *
##          31) smoothness_mean< -2.093138 141  28 M (0.19858156 0.80141844)  
##            62) symmetry_worst< -1.780671 8   2 B (0.75000000 0.25000000)  
##             124) smoothness_mean>=-2.223945 5   0 B (1.00000000 0.00000000) *
##             125) smoothness_mean< -2.223945 3   1 M (0.33333333 0.66666667) *
##            63) symmetry_worst>=-1.780671 133  22 M (0.16541353 0.83458647)  
##             126) compactness_se>=-2.540721 3   0 B (1.00000000 0.00000000) *
##             127) compactness_se< -2.540721 130  19 M (0.14615385 0.85384615) *
## 
## $trees[[21]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 435 B (0.52302632 0.47697368)  
##     2) texture_worst< 4.609772 471 190 B (0.59660297 0.40339703)  
##       4) compactness_se< -3.66733 304  95 B (0.68750000 0.31250000)  
##         8) symmetry_worst< -1.786753 149  28 B (0.81208054 0.18791946)  
##          16) symmetry_worst>=-2.49184 137  18 B (0.86861314 0.13138686)  
##            32) symmetry_worst< -1.957488 57   0 B (1.00000000 0.00000000) *
##            33) symmetry_worst>=-1.957488 80  18 B (0.77500000 0.22500000)  
##              66) symmetry_worst>=-1.919731 59   8 B (0.86440678 0.13559322) *
##              67) symmetry_worst< -1.919731 21  10 B (0.52380952 0.47619048) *
##          17) symmetry_worst< -2.49184 12   2 M (0.16666667 0.83333333)  
##            34) texture_mean< 2.855865 2   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.855865 10   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst>=-1.786753 155  67 B (0.56774194 0.43225806)  
##          18) symmetry_worst>=-1.749307 118  33 B (0.72033898 0.27966102)  
##            36) smoothness_mean>=-2.418898 88  14 B (0.84090909 0.15909091)  
##              72) smoothness_worst< -1.480927 39   0 B (1.00000000 0.00000000) *
##              73) smoothness_worst>=-1.480927 49  14 B (0.71428571 0.28571429) *
##            37) smoothness_mean< -2.418898 30  11 M (0.36666667 0.63333333)  
##              74) smoothness_mean< -2.43698 14   3 B (0.78571429 0.21428571) *
##              75) smoothness_mean>=-2.43698 16   0 M (0.00000000 1.00000000) *
##          19) symmetry_worst< -1.749307 37   3 M (0.08108108 0.91891892)  
##            38) texture_mean< 2.803754 2   0 B (1.00000000 0.00000000) *
##            39) texture_mean>=2.803754 35   1 M (0.02857143 0.97142857)  
##              78) smoothness_worst< -1.550971 1   0 B (1.00000000 0.00000000) *
##              79) smoothness_worst>=-1.550971 34   0 M (0.00000000 1.00000000) *
##       5) compactness_se>=-3.66733 167  72 M (0.43113772 0.56886228)  
##        10) compactness_se>=-3.483667 106  47 B (0.55660377 0.44339623)  
##          20) smoothness_worst< -1.496438 60  12 B (0.80000000 0.20000000)  
##            40) texture_mean< 3.049609 50   2 B (0.96000000 0.04000000)  
##              80) compactness_se>=-3.392487 41   0 B (1.00000000 0.00000000) *
##              81) compactness_se< -3.392487 9   2 B (0.77777778 0.22222222) *
##            41) texture_mean>=3.049609 10   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst>=-1.496438 46  11 M (0.23913043 0.76086957)  
##            42) smoothness_worst>=-1.4665 15   5 B (0.66666667 0.33333333)  
##              84) texture_worst>=4.250651 12   2 B (0.83333333 0.16666667) *
##              85) texture_worst< 4.250651 3   0 M (0.00000000 1.00000000) *
##            43) smoothness_worst< -1.4665 31   1 M (0.03225806 0.96774194)  
##              86) texture_mean< 2.8622 7   1 M (0.14285714 0.85714286) *
##              87) texture_mean>=2.8622 24   0 M (0.00000000 1.00000000) *
##        11) compactness_se< -3.483667 61  13 M (0.21311475 0.78688525)  
##          22) smoothness_mean< -2.322902 31  12 M (0.38709677 0.61290323)  
##            44) smoothness_mean>=-2.40657 12   0 B (1.00000000 0.00000000) *
##            45) smoothness_mean< -2.40657 19   0 M (0.00000000 1.00000000) *
##          23) smoothness_mean>=-2.322902 30   1 M (0.03333333 0.96666667)  
##            46) symmetry_worst< -1.900827 2   1 B (0.50000000 0.50000000)  
##              92) texture_mean< 2.874386 1   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=2.874386 1   0 M (0.00000000 1.00000000) *
##            47) symmetry_worst>=-1.900827 28   0 M (0.00000000 1.00000000) *
##     3) texture_worst>=4.609772 441 196 M (0.44444444 0.55555556)  
##       6) compactness_se>=-4.671834 412 195 M (0.47330097 0.52669903)  
##        12) texture_worst>=4.628023 381 189 B (0.50393701 0.49606299)  
##          24) texture_mean< 2.91424 28   3 B (0.89285714 0.10714286)  
##            48) symmetry_worst< -1.384729 25   0 B (1.00000000 0.00000000) *
##            49) symmetry_worst>=-1.384729 3   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=2.91424 353 167 M (0.47308782 0.52691218)  
##            50) texture_mean>=3.029409 277 129 B (0.53429603 0.46570397)  
##             100) texture_mean< 3.058002 38   0 B (1.00000000 0.00000000) *
##             101) texture_mean>=3.058002 239 110 M (0.46025105 0.53974895) *
##            51) texture_mean< 3.029409 76  19 M (0.25000000 0.75000000)  
##             102) smoothness_mean< -2.423157 8   0 B (1.00000000 0.00000000) *
##             103) smoothness_mean>=-2.423157 68  11 M (0.16176471 0.83823529) *
##        13) texture_worst< 4.628023 31   3 M (0.09677419 0.90322581)  
##          26) smoothness_mean< -2.471714 2   0 B (1.00000000 0.00000000) *
##          27) smoothness_mean>=-2.471714 29   1 M (0.03448276 0.96551724)  
##            54) symmetry_worst< -2.477165 1   0 B (1.00000000 0.00000000) *
##            55) symmetry_worst>=-2.477165 28   0 M (0.00000000 1.00000000) *
##       7) compactness_se< -4.671834 29   1 M (0.03448276 0.96551724)  
##        14) compactness_se< -4.938351 1   0 B (1.00000000 0.00000000) *
##        15) compactness_se>=-4.938351 28   0 M (0.00000000 1.00000000) *
## 
## $trees[[22]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 409 B (0.55153509 0.44846491)  
##     2) symmetry_worst< -2.193154 105  24 B (0.77142857 0.22857143)  
##       4) smoothness_mean< -2.217511 100  19 B (0.81000000 0.19000000)  
##         8) symmetry_worst>=-2.957999 97  16 B (0.83505155 0.16494845)  
##          16) texture_mean< 3.326618 89  11 B (0.87640449 0.12359551)  
##            32) compactness_se>=-3.861191 63   2 B (0.96825397 0.03174603)  
##              64) smoothness_mean>=-2.481712 57   0 B (1.00000000 0.00000000) *
##              65) smoothness_mean< -2.481712 6   2 B (0.66666667 0.33333333) *
##            33) compactness_se< -3.861191 26   9 B (0.65384615 0.34615385)  
##              66) compactness_se< -3.941046 21   4 B (0.80952381 0.19047619) *
##              67) compactness_se>=-3.941046 5   0 M (0.00000000 1.00000000) *
##          17) texture_mean>=3.326618 8   3 M (0.37500000 0.62500000)  
##            34) texture_mean>=3.379986 3   0 B (1.00000000 0.00000000) *
##            35) texture_mean< 3.379986 5   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst< -2.957999 3   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.217511 5   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-2.193154 807 385 B (0.52292441 0.47707559)  
##       6) texture_mean< 2.708379 30   2 B (0.93333333 0.06666667)  
##        12) compactness_se< -2.990558 29   1 B (0.96551724 0.03448276)  
##          24) symmetry_worst< -1.556816 22   0 B (1.00000000 0.00000000) *
##          25) symmetry_worst>=-1.556816 7   1 B (0.85714286 0.14285714)  
##            50) smoothness_mean< -2.081877 6   0 B (1.00000000 0.00000000) *
##            51) smoothness_mean>=-2.081877 1   0 M (0.00000000 1.00000000) *
##        13) compactness_se>=-2.990558 1   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.708379 777 383 B (0.50707851 0.49292149)  
##        14) texture_worst>=4.982438 116  36 B (0.68965517 0.31034483)  
##          28) smoothness_mean< -2.425205 69   7 B (0.89855072 0.10144928)  
##            56) smoothness_worst< -1.490267 64   3 B (0.95312500 0.04687500)  
##             112) symmetry_worst< -1.530091 63   2 B (0.96825397 0.03174603) *
##             113) symmetry_worst>=-1.530091 1   0 M (0.00000000 1.00000000) *
##            57) smoothness_worst>=-1.490267 5   1 M (0.20000000 0.80000000)  
##             114) texture_mean>=3.23593 1   0 B (1.00000000 0.00000000) *
##             115) texture_mean< 3.23593 4   0 M (0.00000000 1.00000000) *
##          29) smoothness_mean>=-2.425205 47  18 M (0.38297872 0.61702128)  
##            58) smoothness_worst>=-1.483884 29  11 B (0.62068966 0.37931034)  
##             116) symmetry_worst< -1.65672 19   3 B (0.84210526 0.15789474) *
##             117) symmetry_worst>=-1.65672 10   2 M (0.20000000 0.80000000) *
##            59) smoothness_worst< -1.483884 18   0 M (0.00000000 1.00000000) *
##        15) texture_worst< 4.982438 661 314 M (0.47503782 0.52496218)  
##          30) texture_worst< 4.976767 633 314 M (0.49605055 0.50394945)  
##            60) smoothness_worst< -1.374083 614 301 B (0.50977199 0.49022801)  
##             120) smoothness_mean>=-2.354774 327 135 B (0.58715596 0.41284404) *
##             121) smoothness_mean< -2.354774 287 121 M (0.42160279 0.57839721) *
##            61) smoothness_worst>=-1.374083 19   1 M (0.05263158 0.94736842)  
##             122) symmetry_worst< -1.846189 1   0 B (1.00000000 0.00000000) *
##             123) symmetry_worst>=-1.846189 18   0 M (0.00000000 1.00000000) *
##          31) texture_worst>=4.976767 28   0 M (0.00000000 1.00000000) *
## 
## $trees[[23]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 390 B (0.57236842 0.42763158)  
##     2) smoothness_mean< -2.392182 336 110 B (0.67261905 0.32738095)  
##       4) smoothness_mean>=-2.401687 39   0 B (1.00000000 0.00000000) *
##       5) smoothness_mean< -2.401687 297 110 B (0.62962963 0.37037037)  
##        10) texture_mean>=3.198061 61   9 B (0.85245902 0.14754098)  
##          20) symmetry_worst>=-2.242858 55   4 B (0.92727273 0.07272727)  
##            40) texture_mean< 3.440257 52   1 B (0.98076923 0.01923077)  
##              80) symmetry_worst< -1.345645 51   0 B (1.00000000 0.00000000) *
##              81) symmetry_worst>=-1.345645 1   0 M (0.00000000 1.00000000) *
##            41) texture_mean>=3.440257 3   0 M (0.00000000 1.00000000) *
##          21) symmetry_worst< -2.242858 6   1 M (0.16666667 0.83333333)  
##            42) texture_mean>=3.357516 1   0 B (1.00000000 0.00000000) *
##            43) texture_mean< 3.357516 5   0 M (0.00000000 1.00000000) *
##        11) texture_mean< 3.198061 236 101 B (0.57203390 0.42796610)  
##          22) texture_mean< 3.130673 216  82 B (0.62037037 0.37962963)  
##            44) smoothness_mean< -2.408446 201  67 B (0.66666667 0.33333333)  
##              88) smoothness_mean>=-2.495871 144  33 B (0.77083333 0.22916667) *
##              89) smoothness_mean< -2.495871 57  23 M (0.40350877 0.59649123) *
##            45) smoothness_mean>=-2.408446 15   0 M (0.00000000 1.00000000) *
##          23) texture_mean>=3.130673 20   1 M (0.05000000 0.95000000)  
##            46) smoothness_mean>=-2.417513 1   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean< -2.417513 19   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.392182 576 280 B (0.51388889 0.48611111)  
##       6) texture_worst< 4.1745 38   5 B (0.86842105 0.13157895)  
##        12) compactness_se< -3.032021 35   3 B (0.91428571 0.08571429)  
##          24) smoothness_mean< -2.07745 29   1 B (0.96551724 0.03448276)  
##            48) smoothness_worst>=-1.53208 26   0 B (1.00000000 0.00000000) *
##            49) smoothness_worst< -1.53208 3   1 B (0.66666667 0.33333333)  
##              98) texture_mean>=2.744166 2   0 B (1.00000000 0.00000000) *
##              99) texture_mean< 2.744166 1   0 M (0.00000000 1.00000000) *
##          25) smoothness_mean>=-2.07745 6   2 B (0.66666667 0.33333333)  
##            50) smoothness_mean>=-2.060513 4   0 B (1.00000000 0.00000000) *
##            51) smoothness_mean< -2.060513 2   0 M (0.00000000 1.00000000) *
##        13) compactness_se>=-3.032021 3   1 M (0.33333333 0.66666667)  
##          26) smoothness_mean< -2.298748 1   0 B (1.00000000 0.00000000) *
##          27) smoothness_mean>=-2.298748 2   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=4.1745 538 263 M (0.48884758 0.51115242)  
##        14) texture_worst>=4.751723 202  74 B (0.63366337 0.36633663)  
##          28) compactness_se< -3.352836 167  47 B (0.71856287 0.28143713)  
##            56) texture_worst< 4.818867 52   2 B (0.96153846 0.03846154)  
##             112) smoothness_worst< -1.425578 50   0 B (1.00000000 0.00000000) *
##             113) smoothness_worst>=-1.425578 2   0 M (0.00000000 1.00000000) *
##            57) texture_worst>=4.818867 115  45 B (0.60869565 0.39130435)  
##             114) texture_mean>=3.032246 96  29 B (0.69791667 0.30208333) *
##             115) texture_mean< 3.032246 19   3 M (0.15789474 0.84210526) *
##          29) compactness_se>=-3.352836 35   8 M (0.22857143 0.77142857)  
##            58) symmetry_worst>=-1.477364 10   2 B (0.80000000 0.20000000)  
##             116) texture_mean< 3.05648 8   0 B (1.00000000 0.00000000) *
##             117) texture_mean>=3.05648 2   0 M (0.00000000 1.00000000) *
##            59) symmetry_worst< -1.477364 25   0 M (0.00000000 1.00000000) *
##        15) texture_worst< 4.751723 336 135 M (0.40178571 0.59821429)  
##          30) texture_worst< 4.682677 287 132 M (0.45993031 0.54006969)  
##            60) texture_worst>=4.626933 42   6 B (0.85714286 0.14285714)  
##             120) smoothness_worst>=-1.505734 36   0 B (1.00000000 0.00000000) *
##             121) smoothness_worst< -1.505734 6   0 M (0.00000000 1.00000000) *
##            61) texture_worst< 4.626933 245  96 M (0.39183673 0.60816327)  
##             122) texture_worst< 4.50835 143  70 B (0.51048951 0.48951049) *
##             123) texture_worst>=4.50835 102  23 M (0.22549020 0.77450980) *
##          31) texture_worst>=4.682677 49   3 M (0.06122449 0.93877551)  
##            62) texture_mean< 2.909862 4   1 B (0.75000000 0.25000000)  
##             124) texture_worst>=4.709072 3   0 B (1.00000000 0.00000000) *
##             125) texture_worst< 4.709072 1   0 M (0.00000000 1.00000000) *
##            63) texture_mean>=2.909862 45   0 M (0.00000000 1.00000000) *
## 
## $trees[[24]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 432 B (0.52631579 0.47368421)  
##     2) smoothness_worst< -1.482699 593 231 B (0.61045531 0.38954469)  
##       4) smoothness_mean< -2.506908 68  13 B (0.80882353 0.19117647)  
##         8) compactness_se>=-4.692873 59   5 B (0.91525424 0.08474576)  
##          16) smoothness_worst>=-1.71076 52   2 B (0.96153846 0.03846154)  
##            32) symmetry_worst< -1.627715 43   0 B (1.00000000 0.00000000) *
##            33) symmetry_worst>=-1.627715 9   2 B (0.77777778 0.22222222)  
##              66) symmetry_worst>=-1.617577 7   0 B (1.00000000 0.00000000) *
##              67) symmetry_worst< -1.617577 2   0 M (0.00000000 1.00000000) *
##          17) smoothness_worst< -1.71076 7   3 B (0.57142857 0.42857143)  
##            34) compactness_se< -3.013033 4   0 B (1.00000000 0.00000000) *
##            35) compactness_se>=-3.013033 3   0 M (0.00000000 1.00000000) *
##         9) compactness_se< -4.692873 9   1 M (0.11111111 0.88888889)  
##          18) texture_mean>=3.172108 1   0 B (1.00000000 0.00000000) *
##          19) texture_mean< 3.172108 8   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.506908 525 218 B (0.58476190 0.41523810)  
##        10) smoothness_mean>=-2.4986 511 204 B (0.60078278 0.39921722)  
##          20) smoothness_worst< -1.618016 40   3 B (0.92500000 0.07500000)  
##            40) smoothness_mean< -2.337942 38   1 B (0.97368421 0.02631579)  
##              80) smoothness_worst>=-1.694089 37   0 B (1.00000000 0.00000000) *
##              81) smoothness_worst< -1.694089 1   0 M (0.00000000 1.00000000) *
##            41) smoothness_mean>=-2.337942 2   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst>=-1.618016 471 201 B (0.57324841 0.42675159)  
##            42) smoothness_worst>=-1.59596 423 168 B (0.60283688 0.39716312)  
##              84) smoothness_worst< -1.584838 47   4 B (0.91489362 0.08510638) *
##              85) smoothness_worst>=-1.584838 376 164 B (0.56382979 0.43617021) *
##            43) smoothness_worst< -1.59596 48  15 M (0.31250000 0.68750000)  
##              86) symmetry_worst>=-2.037346 22   9 B (0.59090909 0.40909091) *
##              87) symmetry_worst< -2.037346 26   2 M (0.07692308 0.92307692) *
##        11) smoothness_mean< -2.4986 14   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.482699 319 118 M (0.36990596 0.63009404)  
##       6) symmetry_worst< -1.658843 165  79 B (0.52121212 0.47878788)  
##        12) smoothness_worst>=-1.477976 132  47 B (0.64393939 0.35606061)  
##          24) compactness_se< -3.294139 114  32 B (0.71929825 0.28070175)  
##            48) texture_worst< 5.041355 108  27 B (0.75000000 0.25000000)  
##              96) texture_worst< 4.373034 19   0 B (1.00000000 0.00000000) *
##              97) texture_worst>=4.373034 89  27 B (0.69662921 0.30337079) *
##            49) texture_worst>=5.041355 6   1 M (0.16666667 0.83333333)  
##              98) texture_mean< 2.955358 1   0 B (1.00000000 0.00000000) *
##              99) texture_mean>=2.955358 5   0 M (0.00000000 1.00000000) *
##          25) compactness_se>=-3.294139 18   3 M (0.16666667 0.83333333)  
##            50) texture_mean>=3.23593 3   0 B (1.00000000 0.00000000) *
##            51) texture_mean< 3.23593 15   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst< -1.477976 33   1 M (0.03030303 0.96969697)  
##          26) compactness_se< -3.967101 1   0 B (1.00000000 0.00000000) *
##          27) compactness_se>=-3.967101 32   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-1.658843 154  32 M (0.20779221 0.79220779)  
##        14) smoothness_mean< -2.219198 101  31 M (0.30693069 0.69306931)  
##          28) smoothness_mean>=-2.233531 11   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean< -2.233531 90  20 M (0.22222222 0.77777778)  
##            58) texture_mean< 2.735974 4   0 B (1.00000000 0.00000000) *
##            59) texture_mean>=2.735974 86  16 M (0.18604651 0.81395349)  
##             118) compactness_se>=-3.05573 7   2 B (0.71428571 0.28571429) *
##             119) compactness_se< -3.05573 79  11 M (0.13924051 0.86075949) *
##        15) smoothness_mean>=-2.219198 53   1 M (0.01886792 0.98113208)  
##          30) compactness_se< -4.032019 1   0 B (1.00000000 0.00000000) *
##          31) compactness_se>=-4.032019 52   0 M (0.00000000 1.00000000) *
## 
## $trees[[25]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 411 M (0.45065789 0.54934211)  
##     2) smoothness_worst< -1.604472 107  29 B (0.72897196 0.27102804)  
##       4) compactness_se>=-4.507137 84  16 B (0.80952381 0.19047619)  
##         8) texture_worst>=4.680896 41   1 B (0.97560976 0.02439024)  
##          16) smoothness_mean< -2.337942 40   0 B (1.00000000 0.00000000) *
##          17) smoothness_mean>=-2.337942 1   0 M (0.00000000 1.00000000) *
##         9) texture_worst< 4.680896 43  15 B (0.65116279 0.34883721)  
##          18) texture_worst< 4.491851 20   1 B (0.95000000 0.05000000)  
##            36) smoothness_worst< -1.637109 18   0 B (1.00000000 0.00000000) *
##            37) smoothness_worst>=-1.637109 2   1 B (0.50000000 0.50000000)  
##              74) texture_mean< 2.675349 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.675349 1   0 M (0.00000000 1.00000000) *
##          19) texture_worst>=4.491851 23   9 M (0.39130435 0.60869565)  
##            38) compactness_se< -4.234991 8   0 B (1.00000000 0.00000000) *
##            39) compactness_se>=-4.234991 15   1 M (0.06666667 0.93333333)  
##              78) texture_worst>=4.619922 4   1 M (0.25000000 0.75000000) *
##              79) texture_worst< 4.619922 11   0 M (0.00000000 1.00000000) *
##       5) compactness_se< -4.507137 23  10 M (0.43478261 0.56521739)  
##        10) smoothness_mean< -2.549773 7   0 B (1.00000000 0.00000000) *
##        11) smoothness_mean>=-2.549773 16   3 M (0.18750000 0.81250000)  
##          22) symmetry_worst< -1.925408 6   3 B (0.50000000 0.50000000)  
##            44) texture_mean< 3.149769 3   0 B (1.00000000 0.00000000) *
##            45) texture_mean>=3.149769 3   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst>=-1.925408 10   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.604472 805 333 M (0.41366460 0.58633540)  
##       6) texture_mean< 2.707375 28   3 B (0.89285714 0.10714286)  
##        12) symmetry_worst< -1.577652 23   0 B (1.00000000 0.00000000) *
##        13) symmetry_worst>=-1.577652 5   2 M (0.40000000 0.60000000)  
##          26) texture_mean>=2.553793 2   0 B (1.00000000 0.00000000) *
##          27) texture_mean< 2.553793 3   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.707375 777 308 M (0.39639640 0.60360360)  
##        14) compactness_se< -4.224388 116  48 B (0.58620690 0.41379310)  
##          28) smoothness_mean>=-2.3007 25   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean< -2.3007 91  43 M (0.47252747 0.52747253)  
##            58) symmetry_worst>=-1.49608 11   0 B (1.00000000 0.00000000) *
##            59) symmetry_worst< -1.49608 80  32 M (0.40000000 0.60000000)  
##             118) texture_worst>=4.876647 29  10 B (0.65517241 0.34482759) *
##             119) texture_worst< 4.876647 51  13 M (0.25490196 0.74509804) *
##        15) compactness_se>=-4.224388 661 240 M (0.36308623 0.63691377)  
##          30) smoothness_mean< -2.2971 432 180 M (0.41666667 0.58333333)  
##            60) compactness_se>=-3.93685 283 140 B (0.50530035 0.49469965)  
##             120) smoothness_worst>=-1.565486 215  89 B (0.58604651 0.41395349) *
##             121) smoothness_worst< -1.565486 68  17 M (0.25000000 0.75000000) *
##            61) compactness_se< -3.93685 149  37 M (0.24832215 0.75167785)  
##             122) smoothness_mean>=-2.312236 10   1 B (0.90000000 0.10000000) *
##             123) smoothness_mean< -2.312236 139  28 M (0.20143885 0.79856115) *
##          31) smoothness_mean>=-2.2971 229  60 M (0.26200873 0.73799127)  
##            62) compactness_se< -4.032549 23   7 B (0.69565217 0.30434783)  
##             124) compactness_se>=-4.156842 15   0 B (1.00000000 0.00000000) *
##             125) compactness_se< -4.156842 8   1 M (0.12500000 0.87500000) *
##            63) compactness_se>=-4.032549 206  44 M (0.21359223 0.78640777)  
##             126) symmetry_worst< -1.660064 114  38 M (0.33333333 0.66666667) *
##             127) symmetry_worst>=-1.660064 92   6 M (0.06521739 0.93478261) *
## 
## $trees[[26]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 412 M (0.45175439 0.54824561)  
##     2) symmetry_worst< -1.816281 409 182 B (0.55501222 0.44498778)  
##       4) smoothness_worst< -1.52112 245  85 B (0.65306122 0.34693878)  
##         8) symmetry_worst>=-2.491275 229  71 B (0.68995633 0.31004367)  
##          16) symmetry_worst>=-1.934101 75  11 B (0.85333333 0.14666667)  
##            32) texture_mean>=2.718324 71   7 B (0.90140845 0.09859155)  
##              64) smoothness_mean< -2.257258 68   4 B (0.94117647 0.05882353) *
##              65) smoothness_mean>=-2.257258 3   0 M (0.00000000 1.00000000) *
##            33) texture_mean< 2.718324 4   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst< -1.934101 154  60 B (0.61038961 0.38961039)  
##            34) smoothness_worst< -1.604936 33   1 B (0.96969697 0.03030303)  
##              68) compactness_se< -2.951614 31   0 B (1.00000000 0.00000000) *
##              69) compactness_se>=-2.951614 2   1 B (0.50000000 0.50000000) *
##            35) smoothness_worst>=-1.604936 121  59 B (0.51239669 0.48760331)  
##              70) smoothness_worst>=-1.540014 22   0 B (1.00000000 0.00000000) *
##              71) smoothness_worst< -1.540014 99  40 M (0.40404040 0.59595960) *
##         9) symmetry_worst< -2.491275 16   2 M (0.12500000 0.87500000)  
##          18) compactness_se>=-3.572604 2   0 B (1.00000000 0.00000000) *
##          19) compactness_se< -3.572604 14   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst>=-1.52112 164  67 M (0.40853659 0.59146341)  
##        10) smoothness_mean>=-2.293133 58  21 B (0.63793103 0.36206897)  
##          20) texture_mean< 3.104804 47  10 B (0.78723404 0.21276596)  
##            40) compactness_se< -3.4389 35   2 B (0.94285714 0.05714286)  
##              80) texture_worst< 4.85229 33   0 B (1.00000000 0.00000000) *
##              81) texture_worst>=4.85229 2   0 M (0.00000000 1.00000000) *
##            41) compactness_se>=-3.4389 12   4 M (0.33333333 0.66666667)  
##              82) smoothness_worst< -1.495985 4   0 B (1.00000000 0.00000000) *
##              83) smoothness_worst>=-1.495985 8   0 M (0.00000000 1.00000000) *
##          21) texture_mean>=3.104804 11   0 M (0.00000000 1.00000000) *
##        11) smoothness_mean< -2.293133 106  30 M (0.28301887 0.71698113)  
##          22) compactness_se>=-3.601238 20   6 B (0.70000000 0.30000000)  
##            44) smoothness_worst< -1.473672 12   0 B (1.00000000 0.00000000) *
##            45) smoothness_worst>=-1.473672 8   2 M (0.25000000 0.75000000)  
##              90) texture_mean< 2.896181 2   0 B (1.00000000 0.00000000) *
##              91) texture_mean>=2.896181 6   0 M (0.00000000 1.00000000) *
##          23) compactness_se< -3.601238 86  16 M (0.18604651 0.81395349)  
##            46) smoothness_worst>=-1.479352 23  10 B (0.56521739 0.43478261)  
##              92) smoothness_mean>=-2.35715 13   0 B (1.00000000 0.00000000) *
##              93) smoothness_mean< -2.35715 10   0 M (0.00000000 1.00000000) *
##            47) smoothness_worst< -1.479352 63   3 M (0.04761905 0.95238095)  
##              94) texture_mean< 2.739678 1   0 B (1.00000000 0.00000000) *
##              95) texture_mean>=2.739678 62   2 M (0.03225806 0.96774194) *
##     3) symmetry_worst>=-1.816281 503 185 M (0.36779324 0.63220676)  
##       6) compactness_se< -3.71586 269 120 M (0.44609665 0.55390335)  
##        12) symmetry_worst>=-1.733593 179  81 B (0.54748603 0.45251397)  
##          24) symmetry_worst< -1.688251 26   0 B (1.00000000 0.00000000) *
##          25) symmetry_worst>=-1.688251 153  72 M (0.47058824 0.52941176)  
##            50) smoothness_worst< -1.488048 69  23 B (0.66666667 0.33333333)  
##             100) smoothness_worst>=-1.576547 51   7 B (0.86274510 0.13725490) *
##             101) smoothness_worst< -1.576547 18   2 M (0.11111111 0.88888889) *
##            51) smoothness_worst>=-1.488048 84  26 M (0.30952381 0.69047619)  
##             102) compactness_se< -4.480629 8   0 B (1.00000000 0.00000000) *
##             103) compactness_se>=-4.480629 76  18 M (0.23684211 0.76315789) *
##        13) symmetry_worst< -1.733593 90  22 M (0.24444444 0.75555556)  
##          26) smoothness_worst>=-1.427418 12   1 B (0.91666667 0.08333333)  
##            52) texture_mean>=3.039503 10   0 B (1.00000000 0.00000000) *
##            53) texture_mean< 3.039503 2   1 B (0.50000000 0.50000000)  
##             106) texture_mean< 2.938081 1   0 B (1.00000000 0.00000000) *
##             107) texture_mean>=2.938081 1   0 M (0.00000000 1.00000000) *
##          27) smoothness_worst< -1.427418 78  11 M (0.14102564 0.85897436)  
##            54) compactness_se>=-3.93685 8   0 B (1.00000000 0.00000000) *
##            55) compactness_se< -3.93685 70   3 M (0.04285714 0.95714286)  
##             110) texture_mean< 2.803754 2   0 B (1.00000000 0.00000000) *
##             111) texture_mean>=2.803754 68   1 M (0.01470588 0.98529412) *
##       7) compactness_se>=-3.71586 234  65 M (0.27777778 0.72222222)  
##        14) compactness_se>=-3.494301 160  57 M (0.35625000 0.64375000)  
##          28) compactness_se< -3.484318 13   0 B (1.00000000 0.00000000) *
##          29) compactness_se>=-3.484318 147  44 M (0.29931973 0.70068027)  
##            58) texture_mean< 2.96681 51  25 B (0.50980392 0.49019608)  
##             116) smoothness_worst< -1.473088 24   2 B (0.91666667 0.08333333) *
##             117) smoothness_worst>=-1.473088 27   4 M (0.14814815 0.85185185) *
##            59) texture_mean>=2.96681 96  18 M (0.18750000 0.81250000)  
##             118) symmetry_worst< -1.775603 11   2 B (0.81818182 0.18181818) *
##             119) symmetry_worst>=-1.775603 85   9 M (0.10588235 0.89411765) *
##        15) compactness_se< -3.494301 74   8 M (0.10810811 0.89189189)  
##          30) texture_worst>=4.900864 8   2 B (0.75000000 0.25000000)  
##            60) smoothness_mean< -2.358194 6   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.358194 2   0 M (0.00000000 1.00000000) *
##          31) texture_worst< 4.900864 66   2 M (0.03030303 0.96969697)  
##            62) texture_mean< 2.671633 2   0 B (1.00000000 0.00000000) *
##            63) texture_mean>=2.671633 64   0 M (0.00000000 1.00000000) *
## 
## $trees[[27]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 445 B (0.51206140 0.48793860)  
##     2) compactness_se< -3.969125 357 134 B (0.62464986 0.37535014)  
##       4) texture_mean< 2.81988 42   0 B (1.00000000 0.00000000) *
##       5) texture_mean>=2.81988 315 134 B (0.57460317 0.42539683)  
##        10) smoothness_mean>=-2.294121 66  13 B (0.80303030 0.19696970)  
##          20) texture_worst< 5.021606 59   6 B (0.89830508 0.10169492)  
##            40) symmetry_worst< -1.463197 52   2 B (0.96153846 0.03846154)  
##              80) smoothness_mean< -2.222419 47   1 B (0.97872340 0.02127660) *
##              81) smoothness_mean>=-2.222419 5   1 B (0.80000000 0.20000000) *
##            41) symmetry_worst>=-1.463197 7   3 M (0.42857143 0.57142857)  
##              82) texture_mean< 2.946426 3   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=2.946426 4   0 M (0.00000000 1.00000000) *
##          21) texture_worst>=5.021606 7   0 M (0.00000000 1.00000000) *
##        11) smoothness_mean< -2.294121 249 121 B (0.51405622 0.48594378)  
##          22) smoothness_worst< -1.556321 124  37 B (0.70161290 0.29838710)  
##            44) compactness_se>=-4.563271 84  10 B (0.88095238 0.11904762)  
##              88) texture_mean< 2.977058 38   0 B (1.00000000 0.00000000) *
##              89) texture_mean>=2.977058 46  10 B (0.78260870 0.21739130) *
##            45) compactness_se< -4.563271 40  13 M (0.32500000 0.67500000)  
##              90) smoothness_worst>=-1.595505 9   0 B (1.00000000 0.00000000) *
##              91) smoothness_worst< -1.595505 31   4 M (0.12903226 0.87096774) *
##          23) smoothness_worst>=-1.556321 125  41 M (0.32800000 0.67200000)  
##            46) smoothness_mean< -2.473387 11   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean>=-2.473387 114  30 M (0.26315789 0.73684211)  
##              94) symmetry_worst>=-1.52618 20   7 B (0.65000000 0.35000000) *
##              95) symmetry_worst< -1.52618 94  17 M (0.18085106 0.81914894) *
##     3) compactness_se>=-3.969125 555 244 M (0.43963964 0.56036036)  
##       6) smoothness_worst< -1.586874 97  34 B (0.64948454 0.35051546)  
##        12) smoothness_worst>=-1.59459 25   0 B (1.00000000 0.00000000) *
##        13) smoothness_worst< -1.59459 72  34 B (0.52777778 0.47222222)  
##          26) smoothness_worst< -1.616129 47  12 B (0.74468085 0.25531915)  
##            52) smoothness_worst>=-1.720903 38   5 B (0.86842105 0.13157895)  
##             104) compactness_se>=-3.570653 28   1 B (0.96428571 0.03571429) *
##             105) compactness_se< -3.570653 10   4 B (0.60000000 0.40000000) *
##            53) smoothness_worst< -1.720903 9   2 M (0.22222222 0.77777778)  
##             106) texture_mean>=3.103494 2   0 B (1.00000000 0.00000000) *
##             107) texture_mean< 3.103494 7   0 M (0.00000000 1.00000000) *
##          27) smoothness_worst>=-1.616129 25   3 M (0.12000000 0.88000000)  
##            54) texture_mean< 2.755158 2   0 B (1.00000000 0.00000000) *
##            55) texture_mean>=2.755158 23   1 M (0.04347826 0.95652174)  
##             110) compactness_se>=-3.126751 4   1 M (0.25000000 0.75000000) *
##             111) compactness_se< -3.126751 19   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst>=-1.586874 458 181 M (0.39519651 0.60480349)  
##        14) texture_mean>=3.192731 83  29 B (0.65060241 0.34939759)  
##          28) compactness_se< -3.055765 76  22 B (0.71052632 0.28947368)  
##            56) compactness_se>=-3.859901 57  10 B (0.82456140 0.17543860)  
##             112) smoothness_mean>=-2.473552 50   5 B (0.90000000 0.10000000) *
##             113) smoothness_mean< -2.473552 7   2 M (0.28571429 0.71428571) *
##            57) compactness_se< -3.859901 19   7 M (0.36842105 0.63157895)  
##             114) texture_mean< 3.216671 7   0 B (1.00000000 0.00000000) *
##             115) texture_mean>=3.216671 12   0 M (0.00000000 1.00000000) *
##          29) compactness_se>=-3.055765 7   0 M (0.00000000 1.00000000) *
##        15) texture_mean< 3.192731 375 127 M (0.33866667 0.66133333)  
##          30) smoothness_worst>=-1.477976 133  63 B (0.52631579 0.47368421)  
##            60) texture_worst< 4.879822 117  47 B (0.59829060 0.40170940)  
##             120) symmetry_worst< -1.895488 25   0 B (1.00000000 0.00000000) *
##             121) symmetry_worst>=-1.895488 92  45 M (0.48913043 0.51086957) *
##            61) texture_worst>=4.879822 16   0 M (0.00000000 1.00000000) *
##          31) smoothness_worst< -1.477976 242  57 M (0.23553719 0.76446281)  
##            62) compactness_se< -3.714286 57  26 M (0.45614035 0.54385965)  
##             124) compactness_se>=-3.869459 24   1 B (0.95833333 0.04166667) *
##             125) compactness_se< -3.869459 33   3 M (0.09090909 0.90909091) *
##            63) compactness_se>=-3.714286 185  31 M (0.16756757 0.83243243)  
##             126) smoothness_mean< -2.486577 6   0 B (1.00000000 0.00000000) *
##             127) smoothness_mean>=-2.486577 179  25 M (0.13966480 0.86033520) *
## 
## $trees[[28]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 423 B (0.53618421 0.46381579)  
##     2) symmetry_worst< -1.966052 223  68 B (0.69506726 0.30493274)  
##       4) smoothness_worst< -1.523408 163  34 B (0.79141104 0.20858896)  
##         8) compactness_se< -3.004445 149  25 B (0.83221477 0.16778523)  
##          16) smoothness_mean< -2.394379 90   8 B (0.91111111 0.08888889)  
##            32) compactness_se< -3.554993 65   1 B (0.98461538 0.01538462)  
##              64) smoothness_worst< -1.552639 54   0 B (1.00000000 0.00000000) *
##              65) smoothness_worst>=-1.552639 11   1 B (0.90909091 0.09090909) *
##            33) compactness_se>=-3.554993 25   7 B (0.72000000 0.28000000)  
##              66) texture_mean< 3.228271 21   3 B (0.85714286 0.14285714) *
##              67) texture_mean>=3.228271 4   0 M (0.00000000 1.00000000) *
##          17) smoothness_mean>=-2.394379 59  17 B (0.71186441 0.28813559)  
##            34) smoothness_mean>=-2.382983 48   6 B (0.87500000 0.12500000)  
##              68) symmetry_worst>=-2.424439 42   0 B (1.00000000 0.00000000) *
##              69) symmetry_worst< -2.424439 6   0 M (0.00000000 1.00000000) *
##            35) smoothness_mean< -2.382983 11   0 M (0.00000000 1.00000000) *
##         9) compactness_se>=-3.004445 14   5 M (0.35714286 0.64285714)  
##          18) texture_mean< 3.076827 5   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=3.076827 9   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst>=-1.523408 60  26 M (0.43333333 0.56666667)  
##        10) smoothness_worst>=-1.493231 26   5 B (0.80769231 0.19230769)  
##          20) smoothness_mean< -2.243629 22   1 B (0.95454545 0.04545455)  
##            40) compactness_se< -3.443758 20   0 B (1.00000000 0.00000000) *
##            41) compactness_se>=-3.443758 2   1 B (0.50000000 0.50000000)  
##              82) texture_mean>=2.866189 1   0 B (1.00000000 0.00000000) *
##              83) texture_mean< 2.866189 1   0 M (0.00000000 1.00000000) *
##          21) smoothness_mean>=-2.243629 4   0 M (0.00000000 1.00000000) *
##        11) smoothness_worst< -1.493231 34   5 M (0.14705882 0.85294118)  
##          22) texture_mean< 2.965389 7   2 B (0.71428571 0.28571429)  
##            44) texture_mean>=2.856718 5   0 B (1.00000000 0.00000000) *
##            45) texture_mean< 2.856718 2   0 M (0.00000000 1.00000000) *
##          23) texture_mean>=2.965389 27   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-1.966052 689 334 M (0.48476052 0.51523948)  
##       6) texture_mean< 3.058002 520 231 B (0.55576923 0.44423077)  
##        12) texture_worst< 4.858219 490 204 B (0.58367347 0.41632653)  
##          24) smoothness_worst>=-1.477389 184  51 B (0.72282609 0.27717391)  
##            48) smoothness_worst< -1.472307 42   0 B (1.00000000 0.00000000) *
##            49) smoothness_worst>=-1.472307 142  51 B (0.64084507 0.35915493)  
##              98) smoothness_worst>=-1.468619 133  42 B (0.68421053 0.31578947) *
##              99) smoothness_worst< -1.468619 9   0 M (0.00000000 1.00000000) *
##          25) smoothness_worst< -1.477389 306 153 B (0.50000000 0.50000000)  
##            50) smoothness_worst< -1.496036 235  99 B (0.57872340 0.42127660)  
##             100) smoothness_worst>=-1.519671 34   1 B (0.97058824 0.02941176) *
##             101) smoothness_worst< -1.519671 201  98 B (0.51243781 0.48756219) *
##            51) smoothness_worst>=-1.496036 71  17 M (0.23943662 0.76056338)  
##             102) compactness_se< -4.216002 8   0 B (1.00000000 0.00000000) *
##             103) compactness_se>=-4.216002 63   9 M (0.14285714 0.85714286) *
##        13) texture_worst>=4.858219 30   3 M (0.10000000 0.90000000)  
##          26) texture_mean>=3.04476 3   0 B (1.00000000 0.00000000) *
##          27) texture_mean< 3.04476 27   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=3.058002 169  45 M (0.26627219 0.73372781)  
##        14) smoothness_worst< -1.618721 11   1 B (0.90909091 0.09090909)  
##          28) smoothness_mean< -2.337942 10   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean>=-2.337942 1   0 M (0.00000000 1.00000000) *
##        15) smoothness_worst>=-1.618721 158  35 M (0.22151899 0.77848101)  
##          30) smoothness_mean< -2.41714 37  17 M (0.45945946 0.54054054)  
##            60) smoothness_mean>=-2.453967 16   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean< -2.453967 21   1 M (0.04761905 0.95238095)  
##             122) smoothness_mean< -2.521804 1   0 B (1.00000000 0.00000000) *
##             123) smoothness_mean>=-2.521804 20   0 M (0.00000000 1.00000000) *
##          31) smoothness_mean>=-2.41714 121  18 M (0.14876033 0.85123967)  
##            62) texture_mean>=3.36829 5   1 B (0.80000000 0.20000000)  
##             124) texture_mean< 3.407548 4   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.407548 1   0 M (0.00000000 1.00000000) *
##            63) texture_mean< 3.36829 116  14 M (0.12068966 0.87931034)  
##             126) smoothness_mean>=-2.301586 29  11 M (0.37931034 0.62068966) *
##             127) smoothness_mean< -2.301586 87   3 M (0.03448276 0.96551724) *
## 
## $trees[[29]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 421 B (0.53837719 0.46162281)  
##     2) symmetry_worst< -1.815238 382 135 B (0.64659686 0.35340314)  
##       4) texture_worst< 4.897936 285  79 B (0.72280702 0.27719298)  
##         8) texture_worst>=4.68481 73   6 B (0.91780822 0.08219178)  
##          16) compactness_se< -2.72933 69   2 B (0.97101449 0.02898551)  
##            32) texture_mean>=2.958239 59   0 B (1.00000000 0.00000000) *
##            33) texture_mean< 2.958239 10   2 B (0.80000000 0.20000000)  
##              66) texture_mean< 2.946804 8   0 B (1.00000000 0.00000000) *
##              67) texture_mean>=2.946804 2   0 M (0.00000000 1.00000000) *
##          17) compactness_se>=-2.72933 4   0 M (0.00000000 1.00000000) *
##         9) texture_worst< 4.68481 212  73 B (0.65566038 0.34433962)  
##          18) compactness_se>=-3.483667 68   9 B (0.86764706 0.13235294)  
##            36) texture_mean< 3.064089 63   4 B (0.93650794 0.06349206)  
##              72) smoothness_worst< -1.482504 49   0 B (1.00000000 0.00000000) *
##              73) smoothness_worst>=-1.482504 14   4 B (0.71428571 0.28571429) *
##            37) texture_mean>=3.064089 5   0 M (0.00000000 1.00000000) *
##          19) compactness_se< -3.483667 144  64 B (0.55555556 0.44444444)  
##            38) texture_worst< 4.612323 117  42 B (0.64102564 0.35897436)  
##              76) smoothness_worst< -1.427424 108  33 B (0.69444444 0.30555556) *
##              77) smoothness_worst>=-1.427424 9   0 M (0.00000000 1.00000000) *
##            39) texture_worst>=4.612323 27   5 M (0.18518519 0.81481481)  
##              78) smoothness_worst>=-1.452987 5   0 B (1.00000000 0.00000000) *
##              79) smoothness_worst< -1.452987 22   0 M (0.00000000 1.00000000) *
##       5) texture_worst>=4.897936 97  41 M (0.42268041 0.57731959)  
##        10) texture_worst>=5.011215 66  26 B (0.60606061 0.39393939)  
##          20) compactness_se< -3.413706 54  14 B (0.74074074 0.25925926)  
##            40) smoothness_mean< -2.397526 35   3 B (0.91428571 0.08571429)  
##              80) texture_mean< 3.431166 33   1 B (0.96969697 0.03030303) *
##              81) texture_mean>=3.431166 2   0 M (0.00000000 1.00000000) *
##            41) smoothness_mean>=-2.397526 19   8 M (0.42105263 0.57894737)  
##              82) symmetry_worst< -2.133872 8   0 B (1.00000000 0.00000000) *
##              83) symmetry_worst>=-2.133872 11   0 M (0.00000000 1.00000000) *
##          21) compactness_se>=-3.413706 12   0 M (0.00000000 1.00000000) *
##        11) texture_worst< 5.011215 31   1 M (0.03225806 0.96774194)  
##          22) compactness_se< -4.706178 1   0 B (1.00000000 0.00000000) *
##          23) compactness_se>=-4.706178 30   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-1.815238 530 244 M (0.46037736 0.53962264)  
##       6) smoothness_worst>=-1.537035 367 170 B (0.53678474 0.46321526)  
##        12) compactness_se< -3.955455 133  42 B (0.68421053 0.31578947)  
##          24) texture_mean< 2.956197 68   6 B (0.91176471 0.08823529)  
##            48) texture_worst< 4.514456 45   0 B (1.00000000 0.00000000) *
##            49) texture_worst>=4.514456 23   6 B (0.73913043 0.26086957)  
##              98) texture_worst>=4.527768 18   1 B (0.94444444 0.05555556) *
##              99) texture_worst< 4.527768 5   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=2.956197 65  29 M (0.44615385 0.55384615)  
##            50) texture_mean>=2.982883 51  22 B (0.56862745 0.43137255)  
##             100) texture_mean< 3.082128 30   6 B (0.80000000 0.20000000) *
##             101) texture_mean>=3.082128 21   5 M (0.23809524 0.76190476) *
##            51) texture_mean< 2.982883 14   0 M (0.00000000 1.00000000) *
##        13) compactness_se>=-3.955455 234 106 M (0.45299145 0.54700855)  
##          26) compactness_se>=-3.92342 212 106 B (0.50000000 0.50000000)  
##            52) smoothness_mean< -2.36186 47  10 B (0.78723404 0.21276596)  
##             104) smoothness_mean>=-2.453967 41   5 B (0.87804878 0.12195122) *
##             105) smoothness_mean< -2.453967 6   1 M (0.16666667 0.83333333) *
##            53) smoothness_mean>=-2.36186 165  69 M (0.41818182 0.58181818)  
##             106) texture_mean< 2.927988 76  28 B (0.63157895 0.36842105) *
##             107) texture_mean>=2.927988 89  21 M (0.23595506 0.76404494) *
##          27) compactness_se< -3.92342 22   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst< -1.537035 163  47 M (0.28834356 0.71165644)  
##        14) smoothness_mean< -2.528181 8   0 B (1.00000000 0.00000000) *
##        15) smoothness_mean>=-2.528181 155  39 M (0.25161290 0.74838710)  
##          30) symmetry_worst>=-1.750623 89  32 M (0.35955056 0.64044944)  
##            60) symmetry_worst< -1.549426 43  16 B (0.62790698 0.37209302)  
##             120) compactness_se>=-4.283814 29   5 B (0.82758621 0.17241379) *
##             121) compactness_se< -4.283814 14   3 M (0.21428571 0.78571429) *
##            61) symmetry_worst>=-1.549426 46   5 M (0.10869565 0.89130435)  
##             122) texture_worst< 4.496329 2   0 B (1.00000000 0.00000000) *
##             123) texture_worst>=4.496329 44   3 M (0.06818182 0.93181818) *
##          31) symmetry_worst< -1.750623 66   7 M (0.10606061 0.89393939)  
##            62) smoothness_mean>=-2.406089 17   7 M (0.41176471 0.58823529)  
##             124) smoothness_mean< -2.38134 7   0 B (1.00000000 0.00000000) *
##             125) smoothness_mean>=-2.38134 10   0 M (0.00000000 1.00000000) *
##            63) smoothness_mean< -2.406089 49   0 M (0.00000000 1.00000000) *
## 
## $trees[[30]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 452 M (0.49561404 0.50438596)  
##     2) compactness_se< -4.706178 32   3 B (0.90625000 0.09375000)  
##       4) symmetry_worst< -1.170399 29   0 B (1.00000000 0.00000000) *
##       5) symmetry_worst>=-1.170399 3   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-4.706178 880 423 M (0.48068182 0.51931818)  
##       6) texture_worst< 4.168738 85  26 B (0.69411765 0.30588235)  
##        12) symmetry_worst< -1.086115 75  16 B (0.78666667 0.21333333)  
##          24) smoothness_worst>=-1.59351 64   9 B (0.85937500 0.14062500)  
##            48) texture_mean>=2.515298 60   6 B (0.90000000 0.10000000)  
##              96) texture_mean< 2.805441 56   4 B (0.92857143 0.07142857) *
##              97) texture_mean>=2.805441 4   2 B (0.50000000 0.50000000) *
##            49) texture_mean< 2.515298 4   1 M (0.25000000 0.75000000)  
##              98) texture_mean< 2.434062 1   0 B (1.00000000 0.00000000) *
##              99) texture_mean>=2.434062 3   0 M (0.00000000 1.00000000) *
##          25) smoothness_worst< -1.59351 11   4 M (0.36363636 0.63636364)  
##            50) smoothness_worst< -1.607498 4   0 B (1.00000000 0.00000000) *
##            51) smoothness_worst>=-1.607498 7   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst>=-1.086115 10   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=4.168738 795 364 M (0.45786164 0.54213836)  
##        14) texture_mean>=2.761589 743 358 M (0.48183042 0.51816958)  
##          28) compactness_se>=-4.676462 714 355 M (0.49719888 0.50280112)  
##            56) symmetry_worst< -1.366937 661 317 B (0.52042360 0.47957640)  
##             112) texture_mean< 2.824054 19   0 B (1.00000000 0.00000000) *
##             113) texture_mean>=2.824054 642 317 B (0.50623053 0.49376947) *
##            57) symmetry_worst>=-1.366937 53  11 M (0.20754717 0.79245283)  
##             114) smoothness_worst< -1.49848 16   6 B (0.62500000 0.37500000) *
##             115) smoothness_worst>=-1.49848 37   1 M (0.02702703 0.97297297) *
##          29) compactness_se< -4.676462 29   3 M (0.10344828 0.89655172)  
##            58) smoothness_mean>=-2.443464 3   0 B (1.00000000 0.00000000) *
##            59) smoothness_mean< -2.443464 26   0 M (0.00000000 1.00000000) *
##        15) texture_mean< 2.761589 52   6 M (0.11538462 0.88461538)  
##          30) compactness_se< -3.892047 6   0 B (1.00000000 0.00000000) *
##          31) compactness_se>=-3.892047 46   0 M (0.00000000 1.00000000) *
## 
## $trees[[31]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 399 M (0.43750000 0.56250000)  
##     2) smoothness_mean< -2.506908 50  11 B (0.78000000 0.22000000)  
##       4) texture_mean< 2.960617 18   0 B (1.00000000 0.00000000) *
##       5) texture_mean>=2.960617 32  11 B (0.65625000 0.34375000)  
##        10) texture_mean>=2.986158 21   3 B (0.85714286 0.14285714)  
##          20) smoothness_worst>=-1.714091 17   0 B (1.00000000 0.00000000) *
##          21) smoothness_worst< -1.714091 4   1 M (0.25000000 0.75000000)  
##            42) texture_mean>=3.103494 1   0 B (1.00000000 0.00000000) *
##            43) texture_mean< 3.103494 3   0 M (0.00000000 1.00000000) *
##        11) texture_mean< 2.986158 11   3 M (0.27272727 0.72727273)  
##          22) smoothness_mean< -2.546123 3   0 B (1.00000000 0.00000000) *
##          23) smoothness_mean>=-2.546123 8   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.506908 862 360 M (0.41763341 0.58236659)  
##       6) texture_worst>=4.626933 360 178 B (0.50555556 0.49444444)  
##        12) smoothness_worst>=-1.400053 52   8 B (0.84615385 0.15384615)  
##          24) texture_mean< 3.222134 48   4 B (0.91666667 0.08333333)  
##            48) symmetry_worst< -1.405153 45   1 B (0.97777778 0.02222222)  
##              96) compactness_se< -2.783552 44   0 B (1.00000000 0.00000000) *
##              97) compactness_se>=-2.783552 1   0 M (0.00000000 1.00000000) *
##            49) symmetry_worst>=-1.405153 3   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=3.222134 4   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst< -1.400053 308 138 M (0.44805195 0.55194805)  
##          26) compactness_se< -3.379083 251 123 B (0.50996016 0.49003984)  
##            52) compactness_se>=-3.502612 47   7 B (0.85106383 0.14893617)  
##             104) smoothness_mean>=-2.355655 37   0 B (1.00000000 0.00000000) *
##             105) smoothness_mean< -2.355655 10   3 M (0.30000000 0.70000000) *
##            53) compactness_se< -3.502612 204  88 M (0.43137255 0.56862745)  
##             106) symmetry_worst< -2.207988 19   0 B (1.00000000 0.00000000) *
##             107) symmetry_worst>=-2.207988 185  69 M (0.37297297 0.62702703) *
##          27) compactness_se>=-3.379083 57  10 M (0.17543860 0.82456140)  
##            54) smoothness_worst< -1.647098 3   0 B (1.00000000 0.00000000) *
##            55) smoothness_worst>=-1.647098 54   7 M (0.12962963 0.87037037)  
##             110) texture_mean< 3.038537 13   5 M (0.38461538 0.61538462) *
##             111) texture_mean>=3.038537 41   2 M (0.04878049 0.95121951) *
##       7) texture_worst< 4.626933 502 178 M (0.35458167 0.64541833)  
##        14) texture_mean< 2.708379 28   5 B (0.82142857 0.17857143)  
##          28) symmetry_worst< -1.577652 19   0 B (1.00000000 0.00000000) *
##          29) symmetry_worst>=-1.577652 9   4 M (0.44444444 0.55555556)  
##            58) texture_mean>=2.553793 5   1 B (0.80000000 0.20000000)  
##             116) compactness_se< -3.3026 4   0 B (1.00000000 0.00000000) *
##             117) compactness_se>=-3.3026 1   0 M (0.00000000 1.00000000) *
##            59) texture_mean< 2.553793 4   0 M (0.00000000 1.00000000) *
##        15) texture_mean>=2.708379 474 155 M (0.32700422 0.67299578)  
##          30) compactness_se< -3.673868 260 112 M (0.43076923 0.56923077)  
##            60) smoothness_mean>=-2.233531 36   5 B (0.86111111 0.13888889)  
##             120) texture_worst< 4.489843 25   0 B (1.00000000 0.00000000) *
##             121) texture_worst>=4.489843 11   5 B (0.54545455 0.45454545) *
##            61) smoothness_mean< -2.233531 224  81 M (0.36160714 0.63839286)  
##             122) texture_mean< 2.756519 12   0 B (1.00000000 0.00000000) *
##             123) texture_mean>=2.756519 212  69 M (0.32547170 0.67452830) *
##          31) compactness_se>=-3.673868 214  43 M (0.20093458 0.79906542)  
##            62) compactness_se>=-2.716917 6   0 B (1.00000000 0.00000000) *
##            63) compactness_se< -2.716917 208  37 M (0.17788462 0.82211538)  
##             126) symmetry_worst< -1.816281 71  22 M (0.30985915 0.69014085) *
##             127) symmetry_worst>=-1.816281 137  15 M (0.10948905 0.89051095) *
## 
## $trees[[32]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 428 B (0.53070175 0.46929825)  
##     2) texture_mean>=3.192731 99  27 B (0.72727273 0.27272727)  
##       4) texture_worst>=4.881566 92  20 B (0.78260870 0.21739130)  
##         8) symmetry_worst< -1.41032 88  16 B (0.81818182 0.18181818)  
##          16) texture_worst< 5.194184 67   8 B (0.88059701 0.11940299)  
##            32) symmetry_worst>=-2.242858 65   6 B (0.90769231 0.09230769)  
##              64) smoothness_worst< -1.441559 49   2 B (0.95918367 0.04081633) *
##              65) smoothness_worst>=-1.441559 16   4 B (0.75000000 0.25000000) *
##            33) symmetry_worst< -2.242858 2   0 M (0.00000000 1.00000000) *
##          17) texture_worst>=5.194184 21   8 B (0.61904762 0.38095238)  
##            34) texture_mean>=3.332536 16   3 B (0.81250000 0.18750000)  
##              68) symmetry_worst< -1.612163 14   1 B (0.92857143 0.07142857) *
##              69) symmetry_worst>=-1.612163 2   0 M (0.00000000 1.00000000) *
##            35) texture_mean< 3.332536 5   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst>=-1.41032 4   0 M (0.00000000 1.00000000) *
##       5) texture_worst< 4.881566 7   0 M (0.00000000 1.00000000) *
##     3) texture_mean< 3.192731 813 401 B (0.50676507 0.49323493)  
##       6) symmetry_worst< -1.863339 253  98 B (0.61264822 0.38735178)  
##        12) texture_worst< 4.895326 231  77 B (0.66666667 0.33333333)  
##          24) texture_mean>=2.775685 187  49 B (0.73796791 0.26203209)  
##            48) texture_mean< 2.976803 87   9 B (0.89655172 0.10344828)  
##              96) symmetry_worst>=-1.990832 52   0 B (1.00000000 0.00000000) *
##              97) symmetry_worst< -1.990832 35   9 B (0.74285714 0.25714286) *
##            49) texture_mean>=2.976803 100  40 B (0.60000000 0.40000000)  
##              98) texture_worst>=4.530419 78  20 B (0.74358974 0.25641026) *
##              99) texture_worst< 4.530419 22   2 M (0.09090909 0.90909091) *
##          25) texture_mean< 2.775685 44  16 M (0.36363636 0.63636364)  
##            50) texture_mean< 2.758426 15   0 B (1.00000000 0.00000000) *
##            51) texture_mean>=2.758426 29   1 M (0.03448276 0.96551724)  
##             102) smoothness_mean< -2.479158 1   0 B (1.00000000 0.00000000) *
##             103) smoothness_mean>=-2.479158 28   0 M (0.00000000 1.00000000) *
##        13) texture_worst>=4.895326 22   1 M (0.04545455 0.95454545)  
##          26) texture_worst>=5.15394 1   0 B (1.00000000 0.00000000) *
##          27) texture_worst< 5.15394 21   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-1.863339 560 257 M (0.45892857 0.54107143)  
##        14) symmetry_worst>=-1.749963 396 190 B (0.52020202 0.47979798)  
##          28) smoothness_worst< -1.388752 371 167 B (0.54986523 0.45013477)  
##            56) smoothness_worst>=-1.439294 72  13 B (0.81944444 0.18055556)  
##             112) symmetry_worst< -1.36527 67   8 B (0.88059701 0.11940299) *
##             113) symmetry_worst>=-1.36527 5   0 M (0.00000000 1.00000000) *
##            57) smoothness_worst< -1.439294 299 145 M (0.48494983 0.51505017)  
##             114) smoothness_worst< -1.451541 269 125 B (0.53531599 0.46468401) *
##             115) smoothness_worst>=-1.451541 30   1 M (0.03333333 0.96666667) *
##          29) smoothness_worst>=-1.388752 25   2 M (0.08000000 0.92000000)  
##            58) texture_mean< 2.692775 2   0 B (1.00000000 0.00000000) *
##            59) texture_mean>=2.692775 23   0 M (0.00000000 1.00000000) *
##        15) symmetry_worst< -1.749963 164  51 M (0.31097561 0.68902439)  
##          30) symmetry_worst< -1.786753 98  48 M (0.48979592 0.51020408)  
##            60) symmetry_worst>=-1.85615 82  34 B (0.58536585 0.41463415)  
##             120) smoothness_mean< -2.327576 41   6 B (0.85365854 0.14634146) *
##             121) smoothness_mean>=-2.327576 41  13 M (0.31707317 0.68292683) *
##            61) symmetry_worst< -1.85615 16   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-1.786753 66   3 M (0.04545455 0.95454545)  
##            62) smoothness_worst>=-1.385102 1   0 B (1.00000000 0.00000000) *
##            63) smoothness_worst< -1.385102 65   2 M (0.03076923 0.96923077)  
##             126) texture_worst< 4.422428 10   2 M (0.20000000 0.80000000) *
##             127) texture_worst>=4.422428 55   0 M (0.00000000 1.00000000) *
## 
## $trees[[33]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 401 M (0.43969298 0.56030702)  
##     2) smoothness_worst>=-1.401479 74  24 B (0.67567568 0.32432432)  
##       4) symmetry_worst< -1.607739 46   6 B (0.86956522 0.13043478)  
##         8) compactness_se< -3.001392 42   2 B (0.95238095 0.04761905)  
##          16) texture_worst< 5.106195 40   0 B (1.00000000 0.00000000) *
##          17) texture_worst>=5.106195 2   0 M (0.00000000 1.00000000) *
##         9) compactness_se>=-3.001392 4   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.607739 28  10 M (0.35714286 0.64285714)  
##        10) smoothness_mean< -2.219224 10   1 B (0.90000000 0.10000000)  
##          20) texture_mean>=2.926371 9   0 B (1.00000000 0.00000000) *
##          21) texture_mean< 2.926371 1   0 M (0.00000000 1.00000000) *
##        11) smoothness_mean>=-2.219224 18   1 M (0.05555556 0.94444444)  
##          22) texture_mean< 2.688296 1   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.688296 17   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst< -1.401479 838 351 M (0.41885442 0.58114558)  
##       6) symmetry_worst< -1.713275 434 211 M (0.48617512 0.51382488)  
##        12) smoothness_mean>=-2.28279 86  25 B (0.70930233 0.29069767)  
##          24) symmetry_worst>=-1.994978 63  10 B (0.84126984 0.15873016)  
##            48) smoothness_worst>=-1.524868 61   8 B (0.86885246 0.13114754)  
##              96) smoothness_worst< -1.433156 56   5 B (0.91071429 0.08928571) *
##              97) smoothness_worst>=-1.433156 5   2 M (0.40000000 0.60000000) *
##            49) smoothness_worst< -1.524868 2   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst< -1.994978 23   8 M (0.34782609 0.65217391)  
##            50) texture_mean< 3.018626 11   3 B (0.72727273 0.27272727)  
##             100) smoothness_worst>=-1.56036 8   0 B (1.00000000 0.00000000) *
##             101) smoothness_worst< -1.56036 3   0 M (0.00000000 1.00000000) *
##            51) texture_mean>=3.018626 12   0 M (0.00000000 1.00000000) *
##        13) smoothness_mean< -2.28279 348 150 M (0.43103448 0.56896552)  
##          26) compactness_se< -4.705732 14   0 B (1.00000000 0.00000000) *
##          27) compactness_se>=-4.705732 334 136 M (0.40718563 0.59281437)  
##            54) compactness_se>=-4.493635 286 130 M (0.45454545 0.54545455)  
##             108) symmetry_worst< -2.202388 24   3 B (0.87500000 0.12500000) *
##             109) symmetry_worst>=-2.202388 262 109 M (0.41603053 0.58396947) *
##            55) compactness_se< -4.493635 48   6 M (0.12500000 0.87500000)  
##             110) texture_mean< 2.846651 3   0 B (1.00000000 0.00000000) *
##             111) texture_mean>=2.846651 45   3 M (0.06666667 0.93333333) *
##       7) symmetry_worst>=-1.713275 404 140 M (0.34653465 0.65346535)  
##        14) texture_mean>=3.21466 36   8 B (0.77777778 0.22222222)  
##          28) texture_mean< 3.260913 28   0 B (1.00000000 0.00000000) *
##          29) texture_mean>=3.260913 8   0 M (0.00000000 1.00000000) *
##        15) texture_mean< 3.21466 368 112 M (0.30434783 0.69565217)  
##          30) texture_worst< 4.818867 311 110 M (0.35369775 0.64630225)  
##            60) texture_mean>=3.110176 17   1 B (0.94117647 0.05882353)  
##             120) texture_mean< 3.137421 16   0 B (1.00000000 0.00000000) *
##             121) texture_mean>=3.137421 1   0 M (0.00000000 1.00000000) *
##            61) texture_mean< 3.110176 294  94 M (0.31972789 0.68027211)  
##             122) compactness_se< -3.821965 123  60 M (0.48780488 0.51219512) *
##             123) compactness_se>=-3.821965 171  34 M (0.19883041 0.80116959) *
##          31) texture_worst>=4.818867 57   2 M (0.03508772 0.96491228)  
##            62) smoothness_mean< -2.54971 1   0 B (1.00000000 0.00000000) *
##            63) smoothness_mean>=-2.54971 56   1 M (0.01785714 0.98214286)  
##             126) symmetry_worst< -1.664056 8   1 M (0.12500000 0.87500000) *
##             127) symmetry_worst>=-1.664056 48   0 M (0.00000000 1.00000000) *
## 
## $trees[[34]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 430 B (0.52850877 0.47149123)  
##     2) smoothness_mean>=-2.350891 461 191 B (0.58568330 0.41431670)  
##       4) smoothness_mean< -2.332581 44   2 B (0.95454545 0.04545455)  
##         8) smoothness_worst< -1.435092 43   1 B (0.97674419 0.02325581)  
##          16) symmetry_worst>=-2.189951 42   0 B (1.00000000 0.00000000) *
##          17) symmetry_worst< -2.189951 1   0 M (0.00000000 1.00000000) *
##         9) smoothness_worst>=-1.435092 1   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.332581 417 189 B (0.54676259 0.45323741)  
##        10) smoothness_worst>=-1.562856 392 165 B (0.57908163 0.42091837)  
##          20) symmetry_worst< -1.529476 294 101 B (0.65646259 0.34353741)  
##            40) texture_worst< 5.073596 284  91 B (0.67957746 0.32042254)  
##              80) smoothness_mean>=-2.328057 275  82 B (0.70181818 0.29818182) *
##              81) smoothness_mean< -2.328057 9   0 M (0.00000000 1.00000000) *
##            41) texture_worst>=5.073596 10   0 M (0.00000000 1.00000000) *
##          21) symmetry_worst>=-1.529476 98  34 M (0.34693878 0.65306122)  
##            42) texture_mean< 2.77286 24   8 B (0.66666667 0.33333333)  
##              84) smoothness_mean< -2.081877 16   1 B (0.93750000 0.06250000) *
##              85) smoothness_mean>=-2.081877 8   1 M (0.12500000 0.87500000) *
##            43) texture_mean>=2.77286 74  18 M (0.24324324 0.75675676)  
##              86) symmetry_worst>=-1.120651 11   2 B (0.81818182 0.18181818) *
##              87) symmetry_worst< -1.120651 63   9 M (0.14285714 0.85714286) *
##        11) smoothness_worst< -1.562856 25   1 M (0.04000000 0.96000000)  
##          22) smoothness_mean>=-2.277089 6   1 M (0.16666667 0.83333333)  
##            44) texture_mean< 2.898795 1   0 B (1.00000000 0.00000000) *
##            45) texture_mean>=2.898795 5   0 M (0.00000000 1.00000000) *
##          23) smoothness_mean< -2.277089 19   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean< -2.350891 451 212 M (0.47006652 0.52993348)  
##       6) smoothness_mean< -2.360532 411 200 B (0.51338200 0.48661800)  
##        12) texture_mean< 2.868712 72  16 B (0.77777778 0.22222222)  
##          24) smoothness_worst>=-1.602623 62   9 B (0.85483871 0.14516129)  
##            48) smoothness_worst< -1.452493 58   6 B (0.89655172 0.10344828)  
##              96) compactness_se>=-4.133653 32   0 B (1.00000000 0.00000000) *
##              97) compactness_se< -4.133653 26   6 B (0.76923077 0.23076923) *
##            49) smoothness_worst>=-1.452493 4   1 M (0.25000000 0.75000000)  
##              98) texture_mean< 2.764784 1   0 B (1.00000000 0.00000000) *
##              99) texture_mean>=2.764784 3   0 M (0.00000000 1.00000000) *
##          25) smoothness_worst< -1.602623 10   3 M (0.30000000 0.70000000)  
##            50) compactness_se< -3.815858 3   0 B (1.00000000 0.00000000) *
##            51) compactness_se>=-3.815858 7   0 M (0.00000000 1.00000000) *
##        13) texture_mean>=2.868712 339 155 M (0.45722714 0.54277286)  
##          26) texture_worst>=5.329405 16   0 B (1.00000000 0.00000000) *
##          27) texture_worst< 5.329405 323 139 M (0.43034056 0.56965944)  
##            54) smoothness_worst>=-1.427204 15   0 B (1.00000000 0.00000000) *
##            55) smoothness_worst< -1.427204 308 124 M (0.40259740 0.59740260)  
##             110) smoothness_worst< -1.584388 105  41 B (0.60952381 0.39047619) *
##             111) smoothness_worst>=-1.584388 203  60 M (0.29556650 0.70443350) *
##       7) smoothness_mean>=-2.360532 40   1 M (0.02500000 0.97500000)  
##        14) texture_mean< 2.698419 1   0 B (1.00000000 0.00000000) *
##        15) texture_mean>=2.698419 39   0 M (0.00000000 1.00000000) *
## 
## $trees[[35]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 450 M (0.49342105 0.50657895)  
##     2) compactness_se< -3.66733 515 220 B (0.57281553 0.42718447)  
##       4) texture_mean< 2.956197 264  85 B (0.67803030 0.32196970)  
##         8) texture_mean>=2.922355 66   7 B (0.89393939 0.10606061)  
##          16) compactness_se< -3.747374 63   4 B (0.93650794 0.06349206)  
##            32) texture_worst< 4.705422 61   2 B (0.96721311 0.03278689)  
##              64) smoothness_worst< -1.473478 59   0 B (1.00000000 0.00000000) *
##              65) smoothness_worst>=-1.473478 2   0 M (0.00000000 1.00000000) *
##            33) texture_worst>=4.705422 2   0 M (0.00000000 1.00000000) *
##          17) compactness_se>=-3.747374 3   0 M (0.00000000 1.00000000) *
##         9) texture_mean< 2.922355 198  78 B (0.60606061 0.39393939)  
##          18) smoothness_mean>=-2.28772 46   4 B (0.91304348 0.08695652)  
##            36) texture_worst< 4.740635 43   1 B (0.97674419 0.02325581)  
##              72) smoothness_mean< -2.11834 41   0 B (1.00000000 0.00000000) *
##              73) smoothness_mean>=-2.11834 2   1 B (0.50000000 0.50000000) *
##            37) texture_worst>=4.740635 3   0 M (0.00000000 1.00000000) *
##          19) smoothness_mean< -2.28772 152  74 B (0.51315789 0.48684211)  
##            38) texture_mean< 2.756519 24   0 B (1.00000000 0.00000000) *
##            39) texture_mean>=2.756519 128  54 M (0.42187500 0.57812500)  
##              78) smoothness_worst< -1.501474 89  38 B (0.57303371 0.42696629) *
##              79) smoothness_worst>=-1.501474 39   3 M (0.07692308 0.92307692) *
##       5) texture_mean>=2.956197 251 116 M (0.46215139 0.53784861)  
##        10) compactness_se>=-3.869459 43   9 B (0.79069767 0.20930233)  
##          20) smoothness_worst< -1.417195 40   6 B (0.85000000 0.15000000)  
##            40) compactness_se< -3.721197 27   1 B (0.96296296 0.03703704)  
##              80) symmetry_worst< -1.482402 26   0 B (1.00000000 0.00000000) *
##              81) symmetry_worst>=-1.482402 1   0 M (0.00000000 1.00000000) *
##            41) compactness_se>=-3.721197 13   5 B (0.61538462 0.38461538)  
##              82) texture_mean< 3.083513 8   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=3.083513 5   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst>=-1.417195 3   0 M (0.00000000 1.00000000) *
##        11) compactness_se< -3.869459 208  82 M (0.39423077 0.60576923)  
##          22) texture_worst>=4.749969 130  64 B (0.50769231 0.49230769)  
##            44) texture_worst< 4.822896 23   0 B (1.00000000 0.00000000) *
##            45) texture_worst>=4.822896 107  43 M (0.40186916 0.59813084)  
##              90) texture_mean>=3.210432 49  17 B (0.65306122 0.34693878) *
##              91) texture_mean< 3.210432 58  11 M (0.18965517 0.81034483) *
##          23) texture_worst< 4.749969 78  16 M (0.20512821 0.79487179)  
##            46) symmetry_worst< -1.953246 22  11 B (0.50000000 0.50000000)  
##              92) texture_mean< 3.183122 16   5 B (0.68750000 0.31250000) *
##              93) texture_mean>=3.183122 6   0 M (0.00000000 1.00000000) *
##            47) symmetry_worst>=-1.953246 56   5 M (0.08928571 0.91071429)  
##              94) symmetry_worst>=-1.490299 11   4 M (0.36363636 0.63636364) *
##              95) symmetry_worst< -1.490299 45   1 M (0.02222222 0.97777778) *
##     3) compactness_se>=-3.66733 397 155 M (0.39042821 0.60957179)  
##       6) symmetry_worst< -1.816281 139  62 B (0.55395683 0.44604317)  
##        12) smoothness_mean< -2.377849 74  19 B (0.74324324 0.25675676)  
##          24) smoothness_mean>=-2.438756 39   0 B (1.00000000 0.00000000) *
##          25) smoothness_mean< -2.438756 35  16 M (0.45714286 0.54285714)  
##            50) symmetry_worst>=-2.044741 14   2 B (0.85714286 0.14285714)  
##             100) smoothness_worst< -1.493511 12   0 B (1.00000000 0.00000000) *
##             101) smoothness_worst>=-1.493511 2   0 M (0.00000000 1.00000000) *
##            51) symmetry_worst< -2.044741 21   4 M (0.19047619 0.80952381)  
##             102) compactness_se< -3.514597 2   0 B (1.00000000 0.00000000) *
##             103) compactness_se>=-3.514597 19   2 M (0.10526316 0.89473684) *
##        13) smoothness_mean>=-2.377849 65  22 M (0.33846154 0.66153846)  
##          26) texture_worst< 4.248666 12   2 B (0.83333333 0.16666667)  
##            52) texture_mean< 2.874386 10   0 B (1.00000000 0.00000000) *
##            53) texture_mean>=2.874386 2   0 M (0.00000000 1.00000000) *
##          27) texture_worst>=4.248666 53  12 M (0.22641509 0.77358491)  
##            54) texture_mean>=3.284902 3   0 B (1.00000000 0.00000000) *
##            55) texture_mean< 3.284902 50   9 M (0.18000000 0.82000000)  
##             110) smoothness_worst>=-1.474648 5   1 B (0.80000000 0.20000000) *
##             111) smoothness_worst< -1.474648 45   5 M (0.11111111 0.88888889) *
##       7) symmetry_worst>=-1.816281 258  78 M (0.30232558 0.69767442)  
##        14) compactness_se>=-3.494301 191  78 M (0.40837696 0.59162304)  
##          28) compactness_se< -3.484318 15   0 B (1.00000000 0.00000000) *
##          29) compactness_se>=-3.484318 176  63 M (0.35795455 0.64204545)  
##            58) compactness_se>=-2.759266 15   1 B (0.93333333 0.06666667)  
##             116) smoothness_mean< -2.093543 14   0 B (1.00000000 0.00000000) *
##             117) smoothness_mean>=-2.093543 1   0 M (0.00000000 1.00000000) *
##            59) compactness_se< -2.759266 161  49 M (0.30434783 0.69565217)  
##             118) smoothness_mean>=-2.106736 27   9 B (0.66666667 0.33333333) *
##             119) smoothness_mean< -2.106736 134  31 M (0.23134328 0.76865672) *
##        15) compactness_se< -3.494301 67   0 M (0.00000000 1.00000000) *
## 
## $trees[[36]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 912 443 B (0.51425439 0.48574561)  
##    2) smoothness_mean< -2.21595 809 372 B (0.54017305 0.45982695)  
##      4) smoothness_mean>=-2.231196 40   2 B (0.95000000 0.05000000)  
##        8) texture_mean< 3.093624 38   0 B (1.00000000 0.00000000) *
##        9) texture_mean>=3.093624 2   0 M (0.00000000 1.00000000) *
##      5) smoothness_mean< -2.231196 769 370 B (0.51885566 0.48114434)  
##       10) smoothness_mean< -2.367284 399 168 B (0.57894737 0.42105263)  
##         20) compactness_se>=-3.230243 50   6 B (0.88000000 0.12000000)  
##           40) smoothness_worst>=-1.720903 47   3 B (0.93617021 0.06382979)  
##             80) texture_mean< 3.297828 46   2 B (0.95652174 0.04347826) *
##             81) texture_mean>=3.297828 1   0 M (0.00000000 1.00000000) *
##           41) smoothness_worst< -1.720903 3   0 M (0.00000000 1.00000000) *
##         21) compactness_se< -3.230243 349 162 B (0.53581662 0.46418338)  
##           42) symmetry_worst< -1.815934 159  52 B (0.67295597 0.32704403)  
##             84) texture_mean< 2.963209 52   7 B (0.86538462 0.13461538) *
##             85) texture_mean>=2.963209 107  45 B (0.57943925 0.42056075) *
##           43) symmetry_worst>=-1.815934 190  80 M (0.42105263 0.57894737)  
##             86) texture_worst>=4.901515 29   6 B (0.79310345 0.20689655) *
##             87) texture_worst< 4.901515 161  57 M (0.35403727 0.64596273) *
##       11) smoothness_mean>=-2.367284 370 168 M (0.45405405 0.54594595)  
##         22) compactness_se< -3.991189 119  44 B (0.63025210 0.36974790)  
##           44) compactness_se>=-4.353745 82  20 B (0.75609756 0.24390244)  
##             88) symmetry_worst< -1.614622 59   3 B (0.94915254 0.05084746) *
##             89) symmetry_worst>=-1.614622 23   6 M (0.26086957 0.73913043) *
##           45) compactness_se< -4.353745 37  13 M (0.35135135 0.64864865)  
##             90) symmetry_worst>=-1.506254 10   0 B (1.00000000 0.00000000) *
##             91) symmetry_worst< -1.506254 27   3 M (0.11111111 0.88888889) *
##         23) compactness_se>=-3.991189 251  93 M (0.37051793 0.62948207)  
##           46) symmetry_worst>=-1.770907 151  75 B (0.50331126 0.49668874)  
##             92) smoothness_mean< -2.296604 92  29 B (0.68478261 0.31521739) *
##             93) smoothness_mean>=-2.296604 59  13 M (0.22033898 0.77966102) *
##           47) symmetry_worst< -1.770907 100  17 M (0.17000000 0.83000000)  
##             94) symmetry_worst< -1.894024 51  16 M (0.31372549 0.68627451) *
##             95) symmetry_worst>=-1.894024 49   1 M (0.02040816 0.97959184) *
##    3) smoothness_mean>=-2.21595 103  32 M (0.31067961 0.68932039)  
##      6) symmetry_worst< -1.653707 49  22 B (0.55102041 0.44897959)  
##       12) smoothness_worst>=-1.427418 23   1 B (0.95652174 0.04347826)  
##         24) texture_worst< 5.106195 22   0 B (1.00000000 0.00000000) *
##         25) texture_worst>=5.106195 1   0 M (0.00000000 1.00000000) *
##       13) smoothness_worst< -1.427418 26   5 M (0.19230769 0.80769231)  
##         26) texture_worst< 4.490422 7   2 B (0.71428571 0.28571429)  
##           52) smoothness_worst>=-1.56036 5   0 B (1.00000000 0.00000000) *
##           53) smoothness_worst< -1.56036 2   0 M (0.00000000 1.00000000) *
##         27) texture_worst>=4.490422 19   0 M (0.00000000 1.00000000) *
##      7) symmetry_worst>=-1.653707 54   5 M (0.09259259 0.90740741)  
##       14) smoothness_worst>=-1.333822 6   2 B (0.66666667 0.33333333)  
##         28) texture_mean< 2.838682 4   0 B (1.00000000 0.00000000) *
##         29) texture_mean>=2.838682 2   0 M (0.00000000 1.00000000) *
##       15) smoothness_worst< -1.333822 48   1 M (0.02083333 0.97916667)  
##         30) compactness_se< -4.19021 1   0 B (1.00000000 0.00000000) *
##         31) compactness_se>=-4.19021 47   0 M (0.00000000 1.00000000) *
## 
## $trees[[37]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 449 B (0.50767544 0.49232456)  
##     2) compactness_se< -4.219581 216  71 B (0.67129630 0.32870370)  
##       4) symmetry_worst>=-1.508268 61   5 B (0.91803279 0.08196721)  
##         8) symmetry_worst< -1.312214 57   1 B (0.98245614 0.01754386)  
##          16) texture_worst< 5.204837 56   0 B (1.00000000 0.00000000) *
##          17) texture_worst>=5.204837 1   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst>=-1.312214 4   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst< -1.508268 155  66 B (0.57419355 0.42580645)  
##        10) symmetry_worst< -1.533879 133  47 B (0.64661654 0.35338346)  
##          20) smoothness_worst>=-1.596418 98  24 B (0.75510204 0.24489796)  
##            40) texture_worst< 5.05366 82  15 B (0.81707317 0.18292683)  
##              80) smoothness_worst< -1.555675 26   0 B (1.00000000 0.00000000) *
##              81) smoothness_worst>=-1.555675 56  15 B (0.73214286 0.26785714) *
##            41) texture_worst>=5.05366 16   7 M (0.43750000 0.56250000)  
##              82) texture_mean>=3.289936 7   0 B (1.00000000 0.00000000) *
##              83) texture_mean< 3.289936 9   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst< -1.596418 35  12 M (0.34285714 0.65714286)  
##            42) compactness_se< -4.711555 8   0 B (1.00000000 0.00000000) *
##            43) compactness_se>=-4.711555 27   4 M (0.14814815 0.85185185)  
##              86) texture_mean>=3.23119 3   0 B (1.00000000 0.00000000) *
##              87) texture_mean< 3.23119 24   1 M (0.04166667 0.95833333) *
##        11) symmetry_worst>=-1.533879 22   3 M (0.13636364 0.86363636)  
##          22) texture_mean< 2.906784 3   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.906784 19   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-4.219581 696 318 M (0.45689655 0.54310345)  
##       6) smoothness_mean< -2.478548 37   7 B (0.81081081 0.18918919)  
##        12) symmetry_worst>=-1.750953 20   0 B (1.00000000 0.00000000) *
##        13) symmetry_worst< -1.750953 17   7 B (0.58823529 0.41176471)  
##          26) smoothness_mean< -2.504718 10   0 B (1.00000000 0.00000000) *
##          27) smoothness_mean>=-2.504718 7   0 M (0.00000000 1.00000000) *
##       7) smoothness_mean>=-2.478548 659 288 M (0.43702580 0.56297420)  
##        14) smoothness_worst>=-1.565486 552 265 M (0.48007246 0.51992754)  
##          28) smoothness_worst< -1.560016 17   0 B (1.00000000 0.00000000) *
##          29) smoothness_worst>=-1.560016 535 248 M (0.46355140 0.53644860)  
##            58) compactness_se>=-4.113227 497 243 M (0.48893360 0.51106640)  
##             116) compactness_se< -4.024085 60  12 B (0.80000000 0.20000000) *
##             117) compactness_se>=-4.024085 437 195 M (0.44622426 0.55377574) *
##            59) compactness_se< -4.113227 38   5 M (0.13157895 0.86842105)  
##             118) symmetry_worst< -1.75757 8   3 B (0.62500000 0.37500000) *
##             119) symmetry_worst>=-1.75757 30   0 M (0.00000000 1.00000000) *
##        15) smoothness_worst< -1.565486 107  23 M (0.21495327 0.78504673)  
##          30) symmetry_worst< -2.25148 7   1 B (0.85714286 0.14285714)  
##            60) smoothness_mean< -2.242079 6   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.242079 1   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-2.25148 100  17 M (0.17000000 0.83000000)  
##            62) smoothness_worst< -1.618016 7   2 B (0.71428571 0.28571429)  
##             124) texture_mean< 3.160844 5   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.160844 2   0 M (0.00000000 1.00000000) *
##            63) smoothness_worst>=-1.618016 93  12 M (0.12903226 0.87096774)  
##             126) texture_worst< 4.585652 36  10 M (0.27777778 0.72222222) *
##             127) texture_worst>=4.585652 57   2 M (0.03508772 0.96491228) *
## 
## $trees[[38]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 418 B (0.54166667 0.45833333)  
##     2) smoothness_worst>=-1.4768 272  90 B (0.66911765 0.33088235)  
##       4) smoothness_mean< -2.079457 255  74 B (0.70980392 0.29019608)  
##         8) texture_mean< 3.081214 211  50 B (0.76303318 0.23696682)  
##          16) smoothness_worst< -1.473476 48   0 B (1.00000000 0.00000000) *
##          17) smoothness_worst>=-1.473476 163  50 B (0.69325153 0.30674847)  
##            34) smoothness_worst>=-1.441166 83  13 B (0.84337349 0.15662651)  
##              68) symmetry_worst< -1.36527 80  10 B (0.87500000 0.12500000) *
##              69) symmetry_worst>=-1.36527 3   0 M (0.00000000 1.00000000) *
##            35) smoothness_worst< -1.441166 80  37 B (0.53750000 0.46250000)  
##              70) compactness_se< -3.652905 52  16 B (0.69230769 0.30769231) *
##              71) compactness_se>=-3.652905 28   7 M (0.25000000 0.75000000) *
##         9) texture_mean>=3.081214 44  20 M (0.45454545 0.54545455)  
##          18) compactness_se>=-3.540614 23   5 B (0.78260870 0.21739130)  
##            36) texture_mean>=3.099415 19   1 B (0.94736842 0.05263158)  
##              72) texture_mean< 3.256167 18   0 B (1.00000000 0.00000000) *
##              73) texture_mean>=3.256167 1   0 M (0.00000000 1.00000000) *
##            37) texture_mean< 3.099415 4   0 M (0.00000000 1.00000000) *
##          19) compactness_se< -3.540614 21   2 M (0.09523810 0.90476190)  
##            38) compactness_se< -4.494315 2   0 B (1.00000000 0.00000000) *
##            39) compactness_se>=-4.494315 19   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.079457 17   1 M (0.05882353 0.94117647)  
##        10) smoothness_mean>=-1.879984 1   0 B (1.00000000 0.00000000) *
##        11) smoothness_mean< -1.879984 16   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst< -1.4768 640 312 M (0.48750000 0.51250000)  
##       6) smoothness_worst< -1.482699 603 294 B (0.51243781 0.48756219)  
##        12) texture_mean< 2.874407 110  34 B (0.69090909 0.30909091)  
##          24) symmetry_worst>=-1.74309 49   4 B (0.91836735 0.08163265)  
##            48) symmetry_worst< -1.129539 45   0 B (1.00000000 0.00000000) *
##            49) symmetry_worst>=-1.129539 4   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst< -1.74309 61  30 B (0.50819672 0.49180328)  
##            50) texture_worst>=4.320273 17   2 B (0.88235294 0.11764706)  
##             100) compactness_se>=-4.394685 14   0 B (1.00000000 0.00000000) *
##             101) compactness_se< -4.394685 3   1 M (0.33333333 0.66666667) *
##            51) texture_worst< 4.320273 44  16 M (0.36363636 0.63636364)  
##             102) compactness_se< -4.18512 8   0 B (1.00000000 0.00000000) *
##             103) compactness_se>=-4.18512 36   8 M (0.22222222 0.77777778) *
##        13) texture_mean>=2.874407 493 233 M (0.47261663 0.52738337)  
##          26) compactness_se>=-4.514873 442 219 B (0.50452489 0.49547511)  
##            52) texture_mean>=2.882272 427 204 B (0.52224824 0.47775176)  
##             104) smoothness_mean< -2.424301 140  42 B (0.70000000 0.30000000) *
##             105) smoothness_mean>=-2.424301 287 125 M (0.43554007 0.56445993) *
##            53) texture_mean< 2.882272 15   0 M (0.00000000 1.00000000) *
##          27) compactness_se< -4.514873 51  10 M (0.19607843 0.80392157)  
##            54) texture_worst>=4.62656 29  10 M (0.34482759 0.65517241)  
##             108) texture_mean< 2.957227 8   0 B (1.00000000 0.00000000) *
##             109) texture_mean>=2.957227 21   2 M (0.09523810 0.90476190) *
##            55) texture_worst< 4.62656 22   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst>=-1.482699 37   3 M (0.08108108 0.91891892)  
##        14) texture_mean< 2.755881 2   0 B (1.00000000 0.00000000) *
##        15) texture_mean>=2.755881 35   1 M (0.02857143 0.97142857)  
##          30) compactness_se< -3.967101 7   1 M (0.14285714 0.85714286)  
##            60) smoothness_mean>=-2.254596 1   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean< -2.254596 6   0 M (0.00000000 1.00000000) *
##          31) compactness_se>=-3.967101 28   0 M (0.00000000 1.00000000) *
## 
## $trees[[39]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 375 B (0.58881579 0.41118421)  
##     2) symmetry_worst>=-1.490299 141  27 B (0.80851064 0.19148936)  
##       4) symmetry_worst< -1.051331 135  21 B (0.84444444 0.15555556)  
##         8) smoothness_mean< -2.334751 75   3 B (0.96000000 0.04000000)  
##          16) texture_mean< 3.116237 67   0 B (1.00000000 0.00000000) *
##          17) texture_mean>=3.116237 8   3 B (0.62500000 0.37500000)  
##            34) smoothness_mean>=-2.350921 5   0 B (1.00000000 0.00000000) *
##            35) smoothness_mean< -2.350921 3   0 M (0.00000000 1.00000000) *
##         9) smoothness_mean>=-2.334751 60  18 B (0.70000000 0.30000000)  
##          18) texture_mean< 2.777879 27   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=2.777879 33  15 M (0.45454545 0.54545455)  
##            38) symmetry_worst>=-1.124686 10   0 B (1.00000000 0.00000000) *
##            39) symmetry_worst< -1.124686 23   5 M (0.21739130 0.78260870)  
##              78) compactness_se< -4.171724 5   0 B (1.00000000 0.00000000) *
##              79) compactness_se>=-4.171724 18   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.051331 6   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst< -1.490299 771 348 B (0.54863813 0.45136187)  
##       6) texture_worst< 4.389172 182  55 B (0.69780220 0.30219780)  
##        12) texture_mean>=2.857325 67   6 B (0.91044776 0.08955224)  
##          24) smoothness_mean>=-2.515683 62   2 B (0.96774194 0.03225806)  
##            48) smoothness_mean< -2.178638 61   1 B (0.98360656 0.01639344)  
##              96) smoothness_mean>=-2.27605 51   0 B (1.00000000 0.00000000) *
##              97) smoothness_mean< -2.27605 10   1 B (0.90000000 0.10000000) *
##            49) smoothness_mean>=-2.178638 1   0 M (0.00000000 1.00000000) *
##          25) smoothness_mean< -2.515683 5   1 M (0.20000000 0.80000000)  
##            50) texture_mean>=2.986158 1   0 B (1.00000000 0.00000000) *
##            51) texture_mean< 2.986158 4   0 M (0.00000000 1.00000000) *
##        13) texture_mean< 2.857325 115  49 B (0.57391304 0.42608696)  
##          26) texture_mean< 2.824054 94  30 B (0.68085106 0.31914894)  
##            52) texture_mean>=2.771335 23   0 B (1.00000000 0.00000000) *
##            53) texture_mean< 2.771335 71  30 B (0.57746479 0.42253521)  
##             106) texture_mean< 2.758426 57  17 B (0.70175439 0.29824561) *
##             107) texture_mean>=2.758426 14   1 M (0.07142857 0.92857143) *
##          27) texture_mean>=2.824054 21   2 M (0.09523810 0.90476190)  
##            54) smoothness_mean< -2.415139 2   0 B (1.00000000 0.00000000) *
##            55) smoothness_mean>=-2.415139 19   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=4.389172 589 293 B (0.50254669 0.49745331)  
##        14) texture_mean< 2.876103 37   5 B (0.86486486 0.13513514)  
##          28) symmetry_worst< -1.596157 32   0 B (1.00000000 0.00000000) *
##          29) symmetry_worst>=-1.596157 5   0 M (0.00000000 1.00000000) *
##        15) texture_mean>=2.876103 552 264 M (0.47826087 0.52173913)  
##          30) texture_worst>=4.406766 526 261 M (0.49619772 0.50380228)  
##            60) texture_mean< 2.892591 12   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=2.892591 514 249 M (0.48443580 0.51556420)  
##             122) symmetry_worst< -1.893233 179  74 B (0.58659218 0.41340782) *
##             123) symmetry_worst>=-1.893233 335 144 M (0.42985075 0.57014925) *
##          31) texture_worst< 4.406766 26   3 M (0.11538462 0.88461538)  
##            62) texture_mean>=2.918641 3   0 B (1.00000000 0.00000000) *
##            63) texture_mean< 2.918641 23   0 M (0.00000000 1.00000000) *
## 
## $trees[[40]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 379 B (0.58442982 0.41557018)  
##     2) smoothness_mean>=-2.441446 728 266 B (0.63461538 0.36538462)  
##       4) smoothness_mean< -2.425205 60   6 B (0.90000000 0.10000000)  
##         8) symmetry_worst< -1.496954 52   0 B (1.00000000 0.00000000) *
##         9) symmetry_worst>=-1.496954 8   2 M (0.25000000 0.75000000)  
##          18) texture_mean< 2.97943 2   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=2.97943 6   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.425205 668 260 B (0.61077844 0.38922156)  
##        10) texture_mean< 3.054236 489 166 B (0.66053170 0.33946830)  
##          20) texture_mean>=2.760642 418 123 B (0.70574163 0.29425837)  
##            40) smoothness_worst>=-1.593678 404 111 B (0.72524752 0.27475248)  
##              80) smoothness_worst< -1.551993 50   2 B (0.96000000 0.04000000) *
##              81) smoothness_worst>=-1.551993 354 109 B (0.69209040 0.30790960) *
##            41) smoothness_worst< -1.593678 14   2 M (0.14285714 0.85714286)  
##              82) texture_mean< 2.889781 2   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=2.889781 12   0 M (0.00000000 1.00000000) *
##          21) texture_mean< 2.760642 71  28 M (0.39436620 0.60563380)  
##            42) texture_worst< 4.16384 35  11 B (0.68571429 0.31428571)  
##              84) texture_mean>=2.715678 16   0 B (1.00000000 0.00000000) *
##              85) texture_mean< 2.715678 19   8 M (0.42105263 0.57894737) *
##            43) texture_worst>=4.16384 36   4 M (0.11111111 0.88888889)  
##              86) compactness_se< -3.892047 3   0 B (1.00000000 0.00000000) *
##              87) compactness_se>=-3.892047 33   1 M (0.03030303 0.96969697) *
##        11) texture_mean>=3.054236 179  85 M (0.47486034 0.52513966)  
##          22) smoothness_mean>=-2.383798 138  58 B (0.57971014 0.42028986)  
##            44) compactness_se< -3.304429 126  46 B (0.63492063 0.36507937)  
##              88) compactness_se>=-3.902076 89  20 B (0.77528090 0.22471910) *
##              89) compactness_se< -3.902076 37  11 M (0.29729730 0.70270270) *
##            45) compactness_se>=-3.304429 12   0 M (0.00000000 1.00000000) *
##          23) smoothness_mean< -2.383798 41   5 M (0.12195122 0.87804878)  
##            46) symmetry_worst< -2.145206 3   0 B (1.00000000 0.00000000) *
##            47) symmetry_worst>=-2.145206 38   2 M (0.05263158 0.94736842)  
##              94) smoothness_worst< -1.602866 2   0 B (1.00000000 0.00000000) *
##              95) smoothness_worst>=-1.602866 36   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean< -2.441446 184  71 M (0.38586957 0.61413043)  
##       6) compactness_se< -4.356557 63  25 B (0.60317460 0.39682540)  
##        12) symmetry_worst< -1.574457 50  12 B (0.76000000 0.24000000)  
##          24) smoothness_mean< -2.44767 46   8 B (0.82608696 0.17391304)  
##            48) smoothness_mean>=-2.496965 26   0 B (1.00000000 0.00000000) *
##            49) smoothness_mean< -2.496965 20   8 B (0.60000000 0.40000000)  
##              98) smoothness_mean< -2.507092 16   4 B (0.75000000 0.25000000) *
##              99) smoothness_mean>=-2.507092 4   0 M (0.00000000 1.00000000) *
##          25) smoothness_mean>=-2.44767 4   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst>=-1.574457 13   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.356557 121  33 M (0.27272727 0.72727273)  
##        14) texture_mean< 2.754836 8   0 B (1.00000000 0.00000000) *
##        15) texture_mean>=2.754836 113  25 M (0.22123894 0.77876106)  
##          30) compactness_se>=-2.839112 7   0 B (1.00000000 0.00000000) *
##          31) compactness_se< -2.839112 106  18 M (0.16981132 0.83018868)  
##            62) texture_worst>=5.316369 3   0 B (1.00000000 0.00000000) *
##            63) texture_worst< 5.316369 103  15 M (0.14563107 0.85436893)  
##             126) smoothness_mean>=-2.467755 33  10 M (0.30303030 0.69696970) *
##             127) smoothness_mean< -2.467755 70   5 M (0.07142857 0.92857143) *
## 
## $trees[[41]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 452 B (0.50438596 0.49561404)  
##     2) symmetry_worst>=-1.930267 653 296 B (0.54670750 0.45329250)  
##       4) smoothness_mean< -2.079457 631 277 B (0.56101426 0.43898574)  
##         8) smoothness_mean>=-2.235394 126  35 B (0.72222222 0.27777778)  
##          16) smoothness_mean< -2.222851 43   2 B (0.95348837 0.04651163)  
##            32) compactness_se< -2.985939 41   0 B (1.00000000 0.00000000) *
##            33) compactness_se>=-2.985939 2   0 M (0.00000000 1.00000000) *
##          17) smoothness_mean>=-2.222851 83  33 B (0.60240964 0.39759036)  
##            34) symmetry_worst< -1.765932 29   3 B (0.89655172 0.10344828)  
##              68) texture_mean< 3.232324 27   1 B (0.96296296 0.03703704) *
##              69) texture_mean>=3.232324 2   0 M (0.00000000 1.00000000) *
##            35) symmetry_worst>=-1.765932 54  24 M (0.44444444 0.55555556)  
##              70) smoothness_mean>=-2.092733 9   0 B (1.00000000 0.00000000) *
##              71) smoothness_mean< -2.092733 45  15 M (0.33333333 0.66666667) *
##         9) smoothness_mean< -2.235394 505 242 B (0.52079208 0.47920792)  
##          18) smoothness_mean< -2.36186 287 110 B (0.61672474 0.38327526)  
##            36) texture_mean< 2.956199 143  38 B (0.73426573 0.26573427)  
##              72) symmetry_worst>=-1.748649 78   7 B (0.91025641 0.08974359) *
##              73) symmetry_worst< -1.748649 65  31 B (0.52307692 0.47692308) *
##            37) texture_mean>=2.956199 144  72 B (0.50000000 0.50000000)  
##              74) texture_worst>=4.781424 82  24 B (0.70731707 0.29268293) *
##              75) texture_worst< 4.781424 62  14 M (0.22580645 0.77419355) *
##          19) smoothness_mean>=-2.36186 218  86 M (0.39449541 0.60550459)  
##            38) symmetry_worst>=-1.128751 15   1 B (0.93333333 0.06666667)  
##              76) smoothness_mean>=-2.321477 14   0 B (1.00000000 0.00000000) *
##              77) smoothness_mean< -2.321477 1   0 M (0.00000000 1.00000000) *
##            39) symmetry_worst< -1.128751 203  72 M (0.35467980 0.64532020)  
##              78) compactness_se< -4.025757 49  18 B (0.63265306 0.36734694) *
##              79) compactness_se>=-4.025757 154  41 M (0.26623377 0.73376623) *
##       5) smoothness_mean>=-2.079457 22   3 M (0.13636364 0.86363636)  
##        10) smoothness_mean>=-2.000349 5   2 B (0.60000000 0.40000000)  
##          20) texture_mean< 2.688296 3   0 B (1.00000000 0.00000000) *
##          21) texture_mean>=2.688296 2   0 M (0.00000000 1.00000000) *
##        11) smoothness_mean< -2.000349 17   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst< -1.930267 259 103 M (0.39768340 0.60231660)  
##       6) texture_worst< 4.605004 85  31 B (0.63529412 0.36470588)  
##        12) compactness_se>=-4.49319 71  19 B (0.73239437 0.26760563)  
##          24) symmetry_worst< -2.048468 38   2 B (0.94736842 0.05263158)  
##            48) smoothness_worst>=-1.720903 36   0 B (1.00000000 0.00000000) *
##            49) smoothness_worst< -1.720903 2   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst>=-2.048468 33  16 M (0.48484848 0.51515152)  
##            50) compactness_se< -3.88564 10   0 B (1.00000000 0.00000000) *
##            51) compactness_se>=-3.88564 23   6 M (0.26086957 0.73913043)  
##             102) texture_mean< 2.753964 2   0 B (1.00000000 0.00000000) *
##             103) texture_mean>=2.753964 21   4 M (0.19047619 0.80952381) *
##        13) compactness_se< -4.49319 14   2 M (0.14285714 0.85714286)  
##          26) compactness_se< -4.635639 2   0 B (1.00000000 0.00000000) *
##          27) compactness_se>=-4.635639 12   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=4.605004 174  49 M (0.28160920 0.71839080)  
##        14) smoothness_mean< -2.486268 11   0 B (1.00000000 0.00000000) *
##        15) smoothness_mean>=-2.486268 163  38 M (0.23312883 0.76687117)  
##          30) smoothness_worst< -1.576561 22   9 B (0.59090909 0.40909091)  
##            60) texture_mean< 3.256972 10   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=3.256972 12   3 M (0.25000000 0.75000000)  
##             122) texture_mean>=3.383004 3   0 B (1.00000000 0.00000000) *
##             123) texture_mean< 3.383004 9   0 M (0.00000000 1.00000000) *
##          31) smoothness_worst>=-1.576561 141  25 M (0.17730496 0.82269504)  
##            62) symmetry_worst< -2.233349 10   3 B (0.70000000 0.30000000)  
##             124) smoothness_mean< -2.337981 6   0 B (1.00000000 0.00000000) *
##             125) smoothness_mean>=-2.337981 4   1 M (0.25000000 0.75000000) *
##            63) symmetry_worst>=-2.233349 131  18 M (0.13740458 0.86259542)  
##             126) smoothness_mean>=-2.352488 31  13 M (0.41935484 0.58064516) *
##             127) smoothness_mean< -2.352488 100   5 M (0.05000000 0.95000000) *
## 
## $trees[[42]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 438 B (0.51973684 0.48026316)  
##     2) smoothness_mean>=-2.441446 720 315 B (0.56250000 0.43750000)  
##       4) smoothness_worst< -1.472307 493 183 B (0.62880325 0.37119675)  
##         8) smoothness_worst>=-1.476409 51   1 B (0.98039216 0.01960784)  
##          16) texture_worst< 4.844547 50   0 B (1.00000000 0.00000000) *
##          17) texture_worst>=4.844547 1   0 M (0.00000000 1.00000000) *
##         9) smoothness_worst< -1.476409 442 182 B (0.58823529 0.41176471)  
##          18) smoothness_worst< -1.482107 410 157 B (0.61707317 0.38292683)  
##            36) symmetry_worst>=-1.595052 106  21 B (0.80188679 0.19811321)  
##              72) smoothness_worst>=-1.607486 95  12 B (0.87368421 0.12631579) *
##              73) smoothness_worst< -1.607486 11   2 M (0.18181818 0.81818182) *
##            37) symmetry_worst< -1.595052 304 136 B (0.55263158 0.44736842)  
##              74) compactness_se>=-4.100467 214  79 B (0.63084112 0.36915888) *
##              75) compactness_se< -4.100467 90  33 M (0.36666667 0.63333333) *
##          19) smoothness_worst>=-1.482107 32   7 M (0.21875000 0.78125000)  
##            38) texture_mean< 2.755881 4   0 B (1.00000000 0.00000000) *
##            39) texture_mean>=2.755881 28   3 M (0.10714286 0.89285714)  
##              78) smoothness_mean>=-2.253991 7   3 M (0.42857143 0.57142857) *
##              79) smoothness_mean< -2.253991 21   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst>=-1.472307 227  95 M (0.41850220 0.58149780)  
##        10) compactness_se< -4.040144 66  23 B (0.65151515 0.34848485)  
##          20) texture_worst>=4.752437 48   9 B (0.81250000 0.18750000)  
##            40) compactness_se>=-4.348305 30   0 B (1.00000000 0.00000000) *
##            41) compactness_se< -4.348305 18   9 B (0.50000000 0.50000000)  
##              82) smoothness_mean< -2.333927 9   0 B (1.00000000 0.00000000) *
##              83) smoothness_mean>=-2.333927 9   0 M (0.00000000 1.00000000) *
##          21) texture_worst< 4.752437 18   4 M (0.22222222 0.77777778)  
##            42) texture_mean< 2.934384 4   0 B (1.00000000 0.00000000) *
##            43) texture_mean>=2.934384 14   0 M (0.00000000 1.00000000) *
##        11) compactness_se>=-4.040144 161  52 M (0.32298137 0.67701863)  
##          22) compactness_se>=-3.938669 124  52 M (0.41935484 0.58064516)  
##            44) smoothness_worst>=-1.434633 62  26 B (0.58064516 0.41935484)  
##              88) compactness_se< -3.311998 42  12 B (0.71428571 0.28571429) *
##              89) compactness_se>=-3.311998 20   6 M (0.30000000 0.70000000) *
##            45) smoothness_worst< -1.434633 62  16 M (0.25806452 0.74193548)  
##              90) symmetry_worst< -2.030418 7   0 B (1.00000000 0.00000000) *
##              91) symmetry_worst>=-2.030418 55   9 M (0.16363636 0.83636364) *
##          23) compactness_se< -3.938669 37   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean< -2.441446 192  69 M (0.35937500 0.64062500)  
##       6) texture_mean< 2.869285 17   3 B (0.82352941 0.17647059)  
##        12) smoothness_mean< -2.448147 14   0 B (1.00000000 0.00000000) *
##        13) smoothness_mean>=-2.448147 3   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.869285 175  55 M (0.31428571 0.68571429)  
##        14) compactness_se>=-2.839112 7   0 B (1.00000000 0.00000000) *
##        15) compactness_se< -2.839112 168  48 M (0.28571429 0.71428571)  
##          30) texture_mean>=2.881435 141  48 M (0.34042553 0.65957447)  
##            60) texture_mean< 2.921008 13   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=2.921008 128  35 M (0.27343750 0.72656250)  
##             122) symmetry_worst< -1.54778 102  35 M (0.34313725 0.65686275) *
##             123) symmetry_worst>=-1.54778 26   0 M (0.00000000 1.00000000) *
##          31) texture_mean< 2.881435 27   0 M (0.00000000 1.00000000) *
## 
## $trees[[43]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 436 B (0.52192982 0.47807018)  
##     2) texture_mean< 2.876103 198  63 B (0.68181818 0.31818182)  
##       4) texture_mean>=2.850128 50   3 B (0.94000000 0.06000000)  
##         8) smoothness_mean< -2.220156 48   1 B (0.97916667 0.02083333)  
##          16) smoothness_worst< -1.438497 47   0 B (1.00000000 0.00000000) *
##          17) smoothness_worst>=-1.438497 1   0 M (0.00000000 1.00000000) *
##         9) smoothness_mean>=-2.220156 2   0 M (0.00000000 1.00000000) *
##       5) texture_mean< 2.850128 148  60 B (0.59459459 0.40540541)  
##        10) texture_worst< 4.260219 78  19 B (0.75641026 0.24358974)  
##          20) symmetry_worst< -1.429489 69  13 B (0.81159420 0.18840580)  
##            40) smoothness_worst>=-1.54469 50   5 B (0.90000000 0.10000000)  
##              80) texture_worst< 4.176708 39   1 B (0.97435897 0.02564103) *
##              81) texture_worst>=4.176708 11   4 B (0.63636364 0.36363636) *
##            41) smoothness_worst< -1.54469 19   8 B (0.57894737 0.42105263)  
##              82) compactness_se< -3.541332 10   0 B (1.00000000 0.00000000) *
##              83) compactness_se>=-3.541332 9   1 M (0.11111111 0.88888889) *
##          21) symmetry_worst>=-1.429489 9   3 M (0.33333333 0.66666667)  
##            42) texture_worst>=4.136225 3   0 B (1.00000000 0.00000000) *
##            43) texture_worst< 4.136225 6   0 M (0.00000000 1.00000000) *
##        11) texture_worst>=4.260219 70  29 M (0.41428571 0.58571429)  
##          22) texture_worst>=4.338767 42  14 B (0.66666667 0.33333333)  
##            44) texture_worst< 4.517878 25   1 B (0.96000000 0.04000000)  
##              88) smoothness_mean< -2.137307 24   0 B (1.00000000 0.00000000) *
##              89) smoothness_mean>=-2.137307 1   0 M (0.00000000 1.00000000) *
##            45) texture_worst>=4.517878 17   4 M (0.23529412 0.76470588)  
##              90) smoothness_mean< -2.3918 3   0 B (1.00000000 0.00000000) *
##              91) smoothness_mean>=-2.3918 14   1 M (0.07142857 0.92857143) *
##          23) texture_worst< 4.338767 28   1 M (0.03571429 0.96428571)  
##            46) smoothness_mean< -2.417779 1   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean>=-2.417779 27   0 M (0.00000000 1.00000000) *
##     3) texture_mean>=2.876103 714 341 M (0.47759104 0.52240896)  
##       6) symmetry_worst< -1.317839 685 337 M (0.49197080 0.50802920)  
##        12) smoothness_worst>=-1.614253 623 302 B (0.51524880 0.48475120)  
##          24) compactness_se< -3.816486 309 124 B (0.59870550 0.40129450)  
##            48) smoothness_worst< -1.559798 93  18 B (0.80645161 0.19354839)  
##              96) texture_worst< 5.083395 82   9 B (0.89024390 0.10975610) *
##              97) texture_worst>=5.083395 11   2 M (0.18181818 0.81818182) *
##            49) smoothness_worst>=-1.559798 216 106 B (0.50925926 0.49074074)  
##              98) smoothness_worst>=-1.546619 168  67 B (0.60119048 0.39880952) *
##              99) smoothness_worst< -1.546619 48   9 M (0.18750000 0.81250000) *
##          25) compactness_se>=-3.816486 314 136 M (0.43312102 0.56687898)  
##            50) texture_mean< 2.925574 26   1 B (0.96153846 0.03846154)  
##             100) texture_worst>=4.12485 25   0 B (1.00000000 0.00000000) *
##             101) texture_worst< 4.12485 1   0 M (0.00000000 1.00000000) *
##            51) texture_mean>=2.925574 288 111 M (0.38541667 0.61458333)  
##             102) texture_mean>=2.936509 256 111 M (0.43359375 0.56640625) *
##             103) texture_mean< 2.936509 32   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst< -1.614253 62  16 M (0.25806452 0.74193548)  
##          26) texture_mean>=3.089887 8   1 B (0.87500000 0.12500000)  
##            52) compactness_se>=-4.480894 7   0 B (1.00000000 0.00000000) *
##            53) compactness_se< -4.480894 1   0 M (0.00000000 1.00000000) *
##          27) texture_mean< 3.089887 54   9 M (0.16666667 0.83333333)  
##            54) compactness_se>=-2.870592 3   0 B (1.00000000 0.00000000) *
##            55) compactness_se< -2.870592 51   6 M (0.11764706 0.88235294)  
##             110) texture_mean< 2.935975 1   0 B (1.00000000 0.00000000) *
##             111) texture_mean>=2.935975 50   5 M (0.10000000 0.90000000) *
##       7) symmetry_worst>=-1.317839 29   4 M (0.13793103 0.86206897)  
##        14) texture_mean>=3.099059 6   2 B (0.66666667 0.33333333)  
##          28) texture_mean< 3.163269 4   0 B (1.00000000 0.00000000) *
##          29) texture_mean>=3.163269 2   0 M (0.00000000 1.00000000) *
##        15) texture_mean< 3.099059 23   0 M (0.00000000 1.00000000) *
## 
## $trees[[44]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 432 B (0.52631579 0.47368421)  
##     2) compactness_se>=-3.494301 297  98 B (0.67003367 0.32996633)  
##       4) texture_mean< 3.059388 228  50 B (0.78070175 0.21929825)  
##         8) smoothness_mean< -2.066369 222  44 B (0.80180180 0.19819820)  
##          16) smoothness_mean< -2.395314 44   1 B (0.97727273 0.02272727)  
##            32) compactness_se>=-3.483667 43   0 B (1.00000000 0.00000000) *
##            33) compactness_se< -3.483667 1   0 M (0.00000000 1.00000000) *
##          17) smoothness_mean>=-2.395314 178  43 B (0.75842697 0.24157303)  
##            34) smoothness_mean>=-2.369527 172  37 B (0.78488372 0.21511628)  
##              68) smoothness_worst>=-1.477195 80   8 B (0.90000000 0.10000000) *
##              69) smoothness_worst< -1.477195 92  29 B (0.68478261 0.31521739) *
##            35) smoothness_mean< -2.369527 6   0 M (0.00000000 1.00000000) *
##         9) smoothness_mean>=-2.066369 6   0 M (0.00000000 1.00000000) *
##       5) texture_mean>=3.059388 69  21 M (0.30434783 0.69565217)  
##        10) smoothness_worst>=-1.513087 32  12 B (0.62500000 0.37500000)  
##          20) texture_worst>=4.744846 27   7 B (0.74074074 0.25925926)  
##            40) texture_mean< 3.220473 24   4 B (0.83333333 0.16666667)  
##              80) texture_worst< 5.016194 21   1 B (0.95238095 0.04761905) *
##              81) texture_worst>=5.016194 3   0 M (0.00000000 1.00000000) *
##            41) texture_mean>=3.220473 3   0 M (0.00000000 1.00000000) *
##          21) texture_worst< 4.744846 5   0 M (0.00000000 1.00000000) *
##        11) smoothness_worst< -1.513087 37   1 M (0.02702703 0.97297297)  
##          22) smoothness_mean< -2.638103 1   0 B (1.00000000 0.00000000) *
##          23) smoothness_mean>=-2.638103 36   0 M (0.00000000 1.00000000) *
##     3) compactness_se< -3.494301 615 281 M (0.45691057 0.54308943)  
##       6) smoothness_worst< -1.520292 340 155 B (0.54411765 0.45588235)  
##        12) texture_worst>=4.465917 249  92 B (0.63052209 0.36947791)  
##          24) smoothness_worst>=-1.570555 165  43 B (0.73939394 0.26060606)  
##            48) compactness_se< -3.512408 157  35 B (0.77707006 0.22292994)  
##              96) texture_worst< 4.949112 119  17 B (0.85714286 0.14285714) *
##              97) texture_worst>=4.949112 38  18 B (0.52631579 0.47368421) *
##            49) compactness_se>=-3.512408 8   0 M (0.00000000 1.00000000) *
##          25) smoothness_worst< -1.570555 84  35 M (0.41666667 0.58333333)  
##            50) smoothness_worst< -1.584838 59  24 B (0.59322034 0.40677966)  
##             100) smoothness_worst>=-1.607486 22   3 B (0.86363636 0.13636364) *
##             101) smoothness_worst< -1.607486 37  16 M (0.43243243 0.56756757) *
##            51) smoothness_worst>=-1.584838 25   0 M (0.00000000 1.00000000) *
##        13) texture_worst< 4.465917 91  28 M (0.30769231 0.69230769)  
##          26) symmetry_worst< -1.948608 23   6 B (0.73913043 0.26086957)  
##            52) symmetry_worst>=-2.391709 17   0 B (1.00000000 0.00000000) *
##            53) symmetry_worst< -2.391709 6   0 M (0.00000000 1.00000000) *
##          27) symmetry_worst>=-1.948608 68  11 M (0.16176471 0.83823529)  
##            54) symmetry_worst>=-1.603839 5   0 B (1.00000000 0.00000000) *
##            55) symmetry_worst< -1.603839 63   6 M (0.09523810 0.90476190)  
##             110) smoothness_worst< -1.556329 13   6 M (0.46153846 0.53846154) *
##             111) smoothness_worst>=-1.556329 50   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst>=-1.520292 275  96 M (0.34909091 0.65090909)  
##        14) texture_worst< 4.469369 51  15 B (0.70588235 0.29411765)  
##          28) smoothness_worst< -1.451541 29   3 B (0.89655172 0.10344828)  
##            56) symmetry_worst>=-1.886625 23   0 B (1.00000000 0.00000000) *
##            57) symmetry_worst< -1.886625 6   3 B (0.50000000 0.50000000)  
##             114) texture_mean>=2.796001 3   0 B (1.00000000 0.00000000) *
##             115) texture_mean< 2.796001 3   0 M (0.00000000 1.00000000) *
##          29) smoothness_worst>=-1.451541 22  10 M (0.45454545 0.54545455)  
##            58) smoothness_worst>=-1.434633 13   4 B (0.69230769 0.30769231)  
##             116) texture_worst< 4.30106 9   0 B (1.00000000 0.00000000) *
##             117) texture_worst>=4.30106 4   0 M (0.00000000 1.00000000) *
##            59) smoothness_worst< -1.434633 9   1 M (0.11111111 0.88888889)  
##             118) compactness_se< -4.188107 1   0 B (1.00000000 0.00000000) *
##             119) compactness_se>=-4.188107 8   0 M (0.00000000 1.00000000) *
##        15) texture_worst>=4.469369 224  60 M (0.26785714 0.73214286)  
##          30) texture_mean< 2.88392 26   8 B (0.69230769 0.30769231)  
##            60) texture_mean>=2.849548 17   0 B (1.00000000 0.00000000) *
##            61) texture_mean< 2.849548 9   1 M (0.11111111 0.88888889)  
##             122) texture_mean< 2.79419 1   0 B (1.00000000 0.00000000) *
##             123) texture_mean>=2.79419 8   0 M (0.00000000 1.00000000) *
##          31) texture_mean>=2.88392 198  42 M (0.21212121 0.78787879)  
##            62) texture_mean>=3.309778 17   8 B (0.52941176 0.47058824)  
##             124) texture_mean< 3.407548 12   3 B (0.75000000 0.25000000) *
##             125) texture_mean>=3.407548 5   0 M (0.00000000 1.00000000) *
##            63) texture_mean< 3.309778 181  33 M (0.18232044 0.81767956)  
##             126) smoothness_mean>=-2.311929 78  25 M (0.32051282 0.67948718) *
##             127) smoothness_mean< -2.311929 103   8 M (0.07766990 0.92233010) *
## 
## $trees[[45]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 446 M (0.48903509 0.51096491)  
##     2) smoothness_worst< -1.558926 239  80 B (0.66527197 0.33472803)  
##       4) smoothness_worst>=-1.565486 37   0 B (1.00000000 0.00000000) *
##       5) smoothness_worst< -1.565486 202  80 B (0.60396040 0.39603960)  
##        10) smoothness_worst< -1.584838 149  44 B (0.70469799 0.29530201)  
##          20) texture_mean< 3.204554 133  30 B (0.77443609 0.22556391)  
##            40) compactness_se< -2.951614 121  21 B (0.82644628 0.17355372)  
##              80) symmetry_worst>=-2.391709 116  16 B (0.86206897 0.13793103) *
##              81) symmetry_worst< -2.391709 5   0 M (0.00000000 1.00000000) *
##            41) compactness_se>=-2.951614 12   3 M (0.25000000 0.75000000)  
##              82) texture_mean< 3.045208 3   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=3.045208 9   0 M (0.00000000 1.00000000) *
##          21) texture_mean>=3.204554 16   2 M (0.12500000 0.87500000)  
##            42) smoothness_mean< -2.520061 2   0 B (1.00000000 0.00000000) *
##            43) smoothness_mean>=-2.520061 14   0 M (0.00000000 1.00000000) *
##        11) smoothness_worst>=-1.584838 53  17 M (0.32075472 0.67924528)  
##          22) smoothness_mean< -2.444611 10   1 B (0.90000000 0.10000000)  
##            44) texture_mean< 3.074043 9   0 B (1.00000000 0.00000000) *
##            45) texture_mean>=3.074043 1   0 M (0.00000000 1.00000000) *
##          23) smoothness_mean>=-2.444611 43   8 M (0.18604651 0.81395349)  
##            46) compactness_se< -4.144493 5   0 B (1.00000000 0.00000000) *
##            47) compactness_se>=-4.144493 38   3 M (0.07894737 0.92105263)  
##              94) texture_mean< 2.869214 6   3 B (0.50000000 0.50000000) *
##              95) texture_mean>=2.869214 32   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.558926 673 287 M (0.42644874 0.57355126)  
##       6) smoothness_worst>=-1.551128 616 280 M (0.45454545 0.54545455)  
##        12) smoothness_mean< -2.416986 80  26 B (0.67500000 0.32500000)  
##          24) texture_worst< 4.998431 67  13 B (0.80597015 0.19402985)  
##            48) symmetry_worst>=-1.995409 57   4 B (0.92982456 0.07017544)  
##              96) symmetry_worst< -1.429489 53   0 B (1.00000000 0.00000000) *
##              97) symmetry_worst>=-1.429489 4   0 M (0.00000000 1.00000000) *
##            49) symmetry_worst< -1.995409 10   1 M (0.10000000 0.90000000)  
##              98) texture_mean< 2.768852 1   0 B (1.00000000 0.00000000) *
##              99) texture_mean>=2.768852 9   0 M (0.00000000 1.00000000) *
##          25) texture_worst>=4.998431 13   0 M (0.00000000 1.00000000) *
##        13) smoothness_mean>=-2.416986 536 226 M (0.42164179 0.57835821)  
##          26) smoothness_mean>=-2.326878 361 180 B (0.50138504 0.49861496)  
##            52) symmetry_worst< -1.640882 188  68 B (0.63829787 0.36170213)  
##             104) smoothness_mean< -2.304488 43   2 B (0.95348837 0.04651163) *
##             105) smoothness_mean>=-2.304488 145  66 B (0.54482759 0.45517241) *
##            53) symmetry_worst>=-1.640882 173  61 M (0.35260116 0.64739884)  
##             106) smoothness_mean< -2.322588 11   0 B (1.00000000 0.00000000) *
##             107) smoothness_mean>=-2.322588 162  50 M (0.30864198 0.69135802) *
##          27) smoothness_mean< -2.326878 175  45 M (0.25714286 0.74285714)  
##            54) symmetry_worst>=-1.50256 27   6 B (0.77777778 0.22222222)  
##             108) symmetry_worst< -1.291518 21   1 B (0.95238095 0.04761905) *
##             109) symmetry_worst>=-1.291518 6   1 M (0.16666667 0.83333333) *
##            55) symmetry_worst< -1.50256 148  24 M (0.16216216 0.83783784)  
##             110) texture_worst< 4.242051 3   0 B (1.00000000 0.00000000) *
##             111) texture_worst>=4.242051 145  21 M (0.14482759 0.85517241) *
##       7) smoothness_worst< -1.551128 57   7 M (0.12280702 0.87719298)  
##        14) texture_mean>=3.344965 4   0 B (1.00000000 0.00000000) *
##        15) texture_mean< 3.344965 53   3 M (0.05660377 0.94339623)  
##          30) texture_mean< 2.850634 1   0 B (1.00000000 0.00000000) *
##          31) texture_mean>=2.850634 52   2 M (0.03846154 0.96153846)  
##            62) texture_mean< 2.919658 9   2 M (0.22222222 0.77777778)  
##             124) texture_mean>=2.897371 2   0 B (1.00000000 0.00000000) *
##             125) texture_mean< 2.897371 7   0 M (0.00000000 1.00000000) *
##            63) texture_mean>=2.919658 43   0 M (0.00000000 1.00000000) *
## 
## $trees[[46]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 448 B (0.50877193 0.49122807)  
##     2) texture_worst< 4.905415 705 310 B (0.56028369 0.43971631)  
##       4) smoothness_worst< -1.557621 154  41 B (0.73376623 0.26623377)  
##         8) symmetry_worst< -1.838755 69   7 B (0.89855072 0.10144928)  
##          16) smoothness_mean>=-2.603563 63   4 B (0.93650794 0.06349206)  
##            32) texture_worst>=3.965685 58   2 B (0.96551724 0.03448276)  
##              64) smoothness_worst< -1.575665 42   0 B (1.00000000 0.00000000) *
##              65) smoothness_worst>=-1.575665 16   2 B (0.87500000 0.12500000) *
##            33) texture_worst< 3.965685 5   2 B (0.60000000 0.40000000)  
##              66) texture_mean< 2.754513 3   0 B (1.00000000 0.00000000) *
##              67) texture_mean>=2.754513 2   0 M (0.00000000 1.00000000) *
##          17) smoothness_mean< -2.603563 6   3 B (0.50000000 0.50000000)  
##            34) texture_mean< 2.993132 3   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.993132 3   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst>=-1.838755 85  34 B (0.60000000 0.40000000)  
##          18) compactness_se>=-3.586422 35   5 B (0.85714286 0.14285714)  
##            36) symmetry_worst< -1.528105 33   3 B (0.90909091 0.09090909)  
##              72) compactness_se< -3.430879 25   0 B (1.00000000 0.00000000) *
##              73) compactness_se>=-3.430879 8   3 B (0.62500000 0.37500000) *
##            37) symmetry_worst>=-1.528105 2   0 M (0.00000000 1.00000000) *
##          19) compactness_se< -3.586422 50  21 M (0.42000000 0.58000000)  
##            38) smoothness_worst>=-1.567699 16   0 B (1.00000000 0.00000000) *
##            39) smoothness_worst< -1.567699 34   5 M (0.14705882 0.85294118)  
##              78) texture_worst>=4.658002 4   1 B (0.75000000 0.25000000) *
##              79) texture_worst< 4.658002 30   2 M (0.06666667 0.93333333) *
##       5) smoothness_worst>=-1.557621 551 269 B (0.51179673 0.48820327)  
##        10) smoothness_worst>=-1.537035 460 194 B (0.57826087 0.42173913)  
##          20) smoothness_worst< -1.501069 157  41 B (0.73885350 0.26114650)  
##            40) texture_mean< 3.065024 122  20 B (0.83606557 0.16393443)  
##              80) texture_mean>=2.893423 92   8 B (0.91304348 0.08695652) *
##              81) texture_mean< 2.893423 30  12 B (0.60000000 0.40000000) *
##            41) texture_mean>=3.065024 35  14 M (0.40000000 0.60000000)  
##              82) texture_worst>=4.864642 10   0 B (1.00000000 0.00000000) *
##              83) texture_worst< 4.864642 25   4 M (0.16000000 0.84000000) *
##          21) smoothness_worst>=-1.501069 303 150 M (0.49504950 0.50495050)  
##            42) smoothness_worst>=-1.477976 202  71 B (0.64851485 0.35148515)  
##              84) smoothness_worst< -1.472307 40   1 B (0.97500000 0.02500000) *
##              85) smoothness_worst>=-1.472307 162  70 B (0.56790123 0.43209877) *
##            43) smoothness_worst< -1.477976 101  19 M (0.18811881 0.81188119)  
##              86) smoothness_mean>=-2.231196 10   3 B (0.70000000 0.30000000) *
##              87) smoothness_mean< -2.231196 91  12 M (0.13186813 0.86813187) *
##        11) smoothness_worst< -1.537035 91  16 M (0.17582418 0.82417582)  
##          22) texture_mean< 2.919658 37  14 M (0.37837838 0.62162162)  
##            44) texture_worst>=4.403188 14   0 B (1.00000000 0.00000000) *
##            45) texture_worst< 4.403188 23   0 M (0.00000000 1.00000000) *
##          23) texture_mean>=2.919658 54   2 M (0.03703704 0.96296296)  
##            46) smoothness_mean< -2.457256 11   2 M (0.18181818 0.81818182)  
##              92) texture_mean< 3.006366 2   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=3.006366 9   0 M (0.00000000 1.00000000) *
##            47) smoothness_mean>=-2.457256 43   0 M (0.00000000 1.00000000) *
##     3) texture_worst>=4.905415 207  69 M (0.33333333 0.66666667)  
##       6) compactness_se>=-3.781676 80  39 B (0.51250000 0.48750000)  
##        12) smoothness_mean< -2.3667 45  12 B (0.73333333 0.26666667)  
##          24) symmetry_worst< -1.541072 39   6 B (0.84615385 0.15384615)  
##            48) smoothness_mean>=-2.473552 32   1 B (0.96875000 0.03125000)  
##              96) smoothness_worst>=-1.580728 28   0 B (1.00000000 0.00000000) *
##              97) smoothness_worst< -1.580728 4   1 B (0.75000000 0.25000000) *
##            49) smoothness_mean< -2.473552 7   2 M (0.28571429 0.71428571)  
##              98) smoothness_mean< -2.491711 2   0 B (1.00000000 0.00000000) *
##              99) smoothness_mean>=-2.491711 5   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst>=-1.541072 6   0 M (0.00000000 1.00000000) *
##        13) smoothness_mean>=-2.3667 35   8 M (0.22857143 0.77142857)  
##          26) smoothness_worst>=-1.362317 5   1 B (0.80000000 0.20000000)  
##            52) texture_mean>=3.181902 4   0 B (1.00000000 0.00000000) *
##            53) texture_mean< 3.181902 1   0 M (0.00000000 1.00000000) *
##          27) smoothness_worst< -1.362317 30   4 M (0.13333333 0.86666667)  
##            54) symmetry_worst< -2.116233 7   3 B (0.57142857 0.42857143)  
##             108) texture_mean>=3.253685 4   0 B (1.00000000 0.00000000) *
##             109) texture_mean< 3.253685 3   0 M (0.00000000 1.00000000) *
##            55) symmetry_worst>=-2.116233 23   0 M (0.00000000 1.00000000) *
##       7) compactness_se< -3.781676 127  28 M (0.22047244 0.77952756)  
##        14) compactness_se< -4.030876 73  26 M (0.35616438 0.64383562)  
##          28) smoothness_worst>=-1.452317 13   0 B (1.00000000 0.00000000) *
##          29) smoothness_worst< -1.452317 60  13 M (0.21666667 0.78333333)  
##            58) smoothness_worst< -1.624406 4   0 B (1.00000000 0.00000000) *
##            59) smoothness_worst>=-1.624406 56   9 M (0.16071429 0.83928571)  
##             118) texture_mean< 2.915217 2   0 B (1.00000000 0.00000000) *
##             119) texture_mean>=2.915217 54   7 M (0.12962963 0.87037037) *
##        15) compactness_se>=-4.030876 54   2 M (0.03703704 0.96296296)  
##          30) texture_mean>=3.348904 2   0 B (1.00000000 0.00000000) *
##          31) texture_mean< 3.348904 52   0 M (0.00000000 1.00000000) *
## 
## $trees[[47]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 455 B (0.50109649 0.49890351)  
##     2) smoothness_mean< -2.424301 214  76 B (0.64485981 0.35514019)  
##       4) symmetry_worst< -1.541072 166  44 B (0.73493976 0.26506024)  
##         8) smoothness_mean>=-2.439727 35   0 B (1.00000000 0.00000000) *
##         9) smoothness_mean< -2.439727 131  44 B (0.66412214 0.33587786)  
##          18) smoothness_mean< -2.444322 117  30 B (0.74358974 0.25641026)  
##            36) compactness_se>=-4.296297 63   9 B (0.85714286 0.14285714)  
##              72) symmetry_worst>=-2.081488 55   5 B (0.90909091 0.09090909) *
##              73) symmetry_worst< -2.081488 8   4 B (0.50000000 0.50000000) *
##            37) compactness_se< -4.296297 54  21 B (0.61111111 0.38888889)  
##              74) compactness_se< -4.510773 29   5 B (0.82758621 0.17241379) *
##              75) compactness_se>=-4.510773 25   9 M (0.36000000 0.64000000) *
##          19) smoothness_mean>=-2.444322 14   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.541072 48  16 M (0.33333333 0.66666667)  
##        10) texture_mean< 2.973222 22   7 B (0.68181818 0.31818182)  
##          20) smoothness_worst< -1.556321 15   0 B (1.00000000 0.00000000) *
##          21) smoothness_worst>=-1.556321 7   0 M (0.00000000 1.00000000) *
##        11) texture_mean>=2.973222 26   1 M (0.03846154 0.96153846)  
##          22) smoothness_mean< -2.540124 1   0 B (1.00000000 0.00000000) *
##          23) smoothness_mean>=-2.540124 25   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.424301 698 319 M (0.45702006 0.54297994)  
##       6) compactness_se< -4.219581 71  21 B (0.70422535 0.29577465)  
##        12) texture_mean< 2.99373 37   3 B (0.91891892 0.08108108)  
##          24) compactness_se>=-4.469757 29   0 B (1.00000000 0.00000000) *
##          25) compactness_se< -4.469757 8   3 B (0.62500000 0.37500000)  
##            50) texture_mean< 2.835488 3   0 B (1.00000000 0.00000000) *
##            51) texture_mean>=2.835488 5   2 M (0.40000000 0.60000000)  
##             102) smoothness_mean>=-2.277891 2   0 B (1.00000000 0.00000000) *
##             103) smoothness_mean< -2.277891 3   0 M (0.00000000 1.00000000) *
##        13) texture_mean>=2.99373 34  16 M (0.47058824 0.52941176)  
##          26) texture_mean>=3.227241 11   0 B (1.00000000 0.00000000) *
##          27) texture_mean< 3.227241 23   5 M (0.21739130 0.78260870)  
##            54) smoothness_mean>=-2.30036 3   0 B (1.00000000 0.00000000) *
##            55) smoothness_mean< -2.30036 20   2 M (0.10000000 0.90000000)  
##             110) compactness_se>=-4.332241 4   2 B (0.50000000 0.50000000) *
##             111) compactness_se< -4.332241 16   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.219581 627 269 M (0.42902711 0.57097289)  
##        14) compactness_se>=-4.09685 556 256 M (0.46043165 0.53956835)  
##          28) compactness_se< -4.025757 35   3 B (0.91428571 0.08571429)  
##            56) texture_worst< 5.105262 32   0 B (1.00000000 0.00000000) *
##            57) texture_worst>=5.105262 3   0 M (0.00000000 1.00000000) *
##          29) compactness_se>=-4.025757 521 224 M (0.42994242 0.57005758)  
##            58) smoothness_worst< -1.451541 383 183 M (0.47780679 0.52219321)  
##             116) symmetry_worst>=-1.609029 107  31 B (0.71028037 0.28971963) *
##             117) symmetry_worst< -1.609029 276 107 M (0.38768116 0.61231884) *
##            59) smoothness_worst>=-1.451541 138  41 M (0.29710145 0.70289855)  
##             118) compactness_se>=-3.68868 74  36 B (0.51351351 0.48648649) *
##             119) compactness_se< -3.68868 64   3 M (0.04687500 0.95312500) *
##        15) compactness_se< -4.09685 71  13 M (0.18309859 0.81690141)  
##          30) texture_mean< 2.936778 24  11 B (0.54166667 0.45833333)  
##            60) symmetry_worst< -1.589658 17   4 B (0.76470588 0.23529412)  
##             120) smoothness_mean>=-2.390594 13   0 B (1.00000000 0.00000000) *
##             121) smoothness_mean< -2.390594 4   0 M (0.00000000 1.00000000) *
##            61) symmetry_worst>=-1.589658 7   0 M (0.00000000 1.00000000) *
##          31) texture_mean>=2.936778 47   0 M (0.00000000 1.00000000) *
## 
## $trees[[48]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 449 M (0.49232456 0.50767544)  
##     2) smoothness_mean< -2.21595 785 368 B (0.53121019 0.46878981)  
##       4) symmetry_worst< -1.886611 259  88 B (0.66023166 0.33976834)  
##         8) symmetry_worst>=-1.926862 47   1 B (0.97872340 0.02127660)  
##          16) texture_mean< 3.241447 46   0 B (1.00000000 0.00000000) *
##          17) texture_mean>=3.241447 1   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst< -1.926862 212  87 B (0.58962264 0.41037736)  
##          18) symmetry_worst< -2.052205 106  28 B (0.73584906 0.26415094)  
##            36) texture_worst>=5.15236 20   0 B (1.00000000 0.00000000) *
##            37) texture_worst< 5.15236 86  28 B (0.67441860 0.32558140)  
##              74) texture_mean< 3.14457 73  18 B (0.75342466 0.24657534) *
##              75) texture_mean>=3.14457 13   3 M (0.23076923 0.76923077) *
##          19) symmetry_worst>=-2.052205 106  47 M (0.44339623 0.55660377)  
##            38) smoothness_worst>=-1.479155 13   0 B (1.00000000 0.00000000) *
##            39) smoothness_worst< -1.479155 93  34 M (0.36559140 0.63440860)  
##              78) smoothness_mean< -2.408892 49  18 B (0.63265306 0.36734694) *
##              79) smoothness_mean>=-2.408892 44   3 M (0.06818182 0.93181818) *
##       5) symmetry_worst>=-1.886611 526 246 M (0.46768061 0.53231939)  
##        10) smoothness_mean>=-2.235862 31   2 B (0.93548387 0.06451613)  
##          20) compactness_se< -3.143422 29   0 B (1.00000000 0.00000000) *
##          21) compactness_se>=-3.143422 2   0 M (0.00000000 1.00000000) *
##        11) smoothness_mean< -2.235862 495 217 M (0.43838384 0.56161616)  
##          22) smoothness_mean< -2.333148 280 129 B (0.53928571 0.46071429)  
##            44) compactness_se>=-4.663537 253 106 B (0.58102767 0.41897233)  
##              88) smoothness_mean>=-2.354616 22   1 B (0.95454545 0.04545455) *
##              89) smoothness_mean< -2.354616 231 105 B (0.54545455 0.45454545) *
##            45) compactness_se< -4.663537 27   4 M (0.14814815 0.85185185)  
##              90) smoothness_mean>=-2.441817 3   0 B (1.00000000 0.00000000) *
##              91) smoothness_mean< -2.441817 24   1 M (0.04166667 0.95833333) *
##          23) smoothness_mean>=-2.333148 215  66 M (0.30697674 0.69302326)  
##            46) symmetry_worst>=-1.769229 144  64 M (0.44444444 0.55555556)  
##              92) symmetry_worst< -1.606092 78  28 B (0.64102564 0.35897436) *
##              93) symmetry_worst>=-1.606092 66  14 M (0.21212121 0.78787879) *
##            47) symmetry_worst< -1.769229 71   2 M (0.02816901 0.97183099)  
##              94) symmetry_worst< -1.845834 1   0 B (1.00000000 0.00000000) *
##              95) symmetry_worst>=-1.845834 70   1 M (0.01428571 0.98571429) *
##     3) smoothness_mean>=-2.21595 127  32 M (0.25196850 0.74803150)  
##       6) texture_worst< 3.952268 20   8 B (0.60000000 0.40000000)  
##        12) texture_mean>=2.515298 12   0 B (1.00000000 0.00000000) *
##        13) texture_mean< 2.515298 8   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=3.952268 107  20 M (0.18691589 0.81308411)  
##        14) texture_mean>=2.999709 45  17 M (0.37777778 0.62222222)  
##          28) smoothness_mean>=-2.093138 9   1 B (0.88888889 0.11111111)  
##            56) smoothness_mean< -2.073133 8   0 B (1.00000000 0.00000000) *
##            57) smoothness_mean>=-2.073133 1   0 M (0.00000000 1.00000000) *
##          29) smoothness_mean< -2.093138 36   9 M (0.25000000 0.75000000)  
##            58) compactness_se< -4.054302 6   0 B (1.00000000 0.00000000) *
##            59) compactness_se>=-4.054302 30   3 M (0.10000000 0.90000000)  
##             118) texture_mean< 3.017902 3   0 B (1.00000000 0.00000000) *
##             119) texture_mean>=3.017902 27   0 M (0.00000000 1.00000000) *
##        15) texture_mean< 2.999709 62   3 M (0.04838710 0.95161290)  
##          30) texture_mean< 2.825779 10   3 M (0.30000000 0.70000000)  
##            60) smoothness_mean< -2.143945 3   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.143945 7   0 M (0.00000000 1.00000000) *
##          31) texture_mean>=2.825779 52   0 M (0.00000000 1.00000000) *
## 
## $trees[[49]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 396 M (0.43421053 0.56578947)  
##     2) compactness_se< -4.705732 22   1 B (0.95454545 0.04545455)  
##       4) symmetry_worst< -1.170399 21   0 B (1.00000000 0.00000000) *
##       5) symmetry_worst>=-1.170399 1   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-4.705732 890 375 M (0.42134831 0.57865169)  
##       6) texture_worst< 4.12321 41  11 B (0.73170732 0.26829268)  
##        12) texture_mean>=2.714689 25   2 B (0.92000000 0.08000000)  
##          24) smoothness_worst>=-1.590596 21   0 B (1.00000000 0.00000000) *
##          25) smoothness_worst< -1.590596 4   2 B (0.50000000 0.50000000)  
##            50) smoothness_mean< -2.465605 2   0 B (1.00000000 0.00000000) *
##            51) smoothness_mean>=-2.465605 2   0 M (0.00000000 1.00000000) *
##        13) texture_mean< 2.714689 16   7 M (0.43750000 0.56250000)  
##          26) texture_worst< 3.781157 5   0 B (1.00000000 0.00000000) *
##          27) texture_worst>=3.781157 11   2 M (0.18181818 0.81818182)  
##            54) compactness_se< -3.869334 2   0 B (1.00000000 0.00000000) *
##            55) compactness_se>=-3.869334 9   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=4.12321 849 345 M (0.40636042 0.59363958)  
##        14) smoothness_mean< -2.21595 748 323 M (0.43181818 0.56818182)  
##          28) smoothness_mean>=-2.235394 37   5 B (0.86486486 0.13513514)  
##            56) texture_mean< 3.035465 32   0 B (1.00000000 0.00000000) *
##            57) texture_mean>=3.035465 5   0 M (0.00000000 1.00000000) *
##          29) smoothness_mean< -2.235394 711 291 M (0.40928270 0.59071730)  
##            58) symmetry_worst>=-1.128751 16   1 B (0.93750000 0.06250000)  
##             116) compactness_se>=-3.52227 15   0 B (1.00000000 0.00000000) *
##             117) compactness_se< -3.52227 1   0 M (0.00000000 1.00000000) *
##            59) symmetry_worst< -1.128751 695 276 M (0.39712230 0.60287770)  
##             118) smoothness_mean< -2.242902 667 276 M (0.41379310 0.58620690) *
##             119) smoothness_mean>=-2.242902 28   0 M (0.00000000 1.00000000) *
##        15) smoothness_mean>=-2.21595 101  22 M (0.21782178 0.78217822)  
##          30) texture_mean>=3.033028 28  13 B (0.53571429 0.46428571)  
##            60) smoothness_mean>=-2.093138 9   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean< -2.093138 19   6 M (0.31578947 0.68421053)  
##             122) compactness_se< -4.054302 6   0 B (1.00000000 0.00000000) *
##             123) compactness_se>=-4.054302 13   0 M (0.00000000 1.00000000) *
##          31) texture_mean< 3.033028 73   7 M (0.09589041 0.90410959)  
##            62) symmetry_worst< -1.816375 10   5 B (0.50000000 0.50000000)  
##             124) texture_mean< 3.018626 5   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.018626 5   0 M (0.00000000 1.00000000) *
##            63) symmetry_worst>=-1.816375 63   2 M (0.03174603 0.96825397)  
##             126) texture_mean< 2.657764 1   0 B (1.00000000 0.00000000) *
##             127) texture_mean>=2.657764 62   1 M (0.01612903 0.98387097) *
## 
## $trees[[50]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 436 B (0.52192982 0.47807018)  
##     2) smoothness_worst< -1.473476 668 269 B (0.59730539 0.40269461)  
##       4) smoothness_worst>=-1.4768 51   0 B (1.00000000 0.00000000) *
##       5) smoothness_worst< -1.4768 617 269 B (0.56401945 0.43598055)  
##        10) smoothness_worst< -1.48191 589 245 B (0.58404075 0.41595925)  
##          20) compactness_se< -3.021724 542 212 B (0.60885609 0.39114391)  
##            40) smoothness_mean>=-2.301086 93  17 B (0.81720430 0.18279570)  
##              80) smoothness_worst>=-1.533868 79   7 B (0.91139241 0.08860759) *
##              81) smoothness_worst< -1.533868 14   4 M (0.28571429 0.71428571) *
##            41) smoothness_mean< -2.301086 449 195 B (0.56570156 0.43429844)  
##              82) smoothness_mean< -2.303285 434 180 B (0.58525346 0.41474654) *
##              83) smoothness_mean>=-2.303285 15   0 M (0.00000000 1.00000000) *
##          21) compactness_se>=-3.021724 47  14 M (0.29787234 0.70212766)  
##            42) texture_mean< 3.038537 23   9 B (0.60869565 0.39130435)  
##              84) smoothness_mean< -2.291354 14   0 B (1.00000000 0.00000000) *
##              85) smoothness_mean>=-2.291354 9   0 M (0.00000000 1.00000000) *
##            43) texture_mean>=3.038537 24   0 M (0.00000000 1.00000000) *
##        11) smoothness_worst>=-1.48191 28   4 M (0.14285714 0.85714286)  
##          22) texture_mean< 2.755881 3   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.755881 25   1 M (0.04000000 0.96000000)  
##            46) compactness_se< -3.967101 3   1 M (0.33333333 0.66666667)  
##              92) texture_mean>=2.844596 1   0 B (1.00000000 0.00000000) *
##              93) texture_mean< 2.844596 2   0 M (0.00000000 1.00000000) *
##            47) compactness_se>=-3.967101 22   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.473476 244  77 M (0.31557377 0.68442623)  
##       6) texture_worst>=4.76475 67  31 B (0.53731343 0.46268657)  
##        12) symmetry_worst>=-1.537481 30   5 B (0.83333333 0.16666667)  
##          24) symmetry_worst< -1.362966 27   2 B (0.92592593 0.07407407)  
##            48) smoothness_mean< -2.252478 26   1 B (0.96153846 0.03846154)  
##              96) smoothness_worst< -1.426496 19   0 B (1.00000000 0.00000000) *
##              97) smoothness_worst>=-1.426496 7   1 B (0.85714286 0.14285714) *
##            49) smoothness_mean>=-2.252478 1   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst>=-1.362966 3   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst< -1.537481 37  11 M (0.29729730 0.70270270)  
##          26) compactness_se>=-3.490357 9   3 B (0.66666667 0.33333333)  
##            52) symmetry_worst< -1.763957 6   0 B (1.00000000 0.00000000) *
##            53) symmetry_worst>=-1.763957 3   0 M (0.00000000 1.00000000) *
##          27) compactness_se< -3.490357 28   5 M (0.17857143 0.82142857)  
##            54) compactness_se< -4.054302 11   5 M (0.45454545 0.54545455)  
##             108) symmetry_worst< -1.650994 5   0 B (1.00000000 0.00000000) *
##             109) symmetry_worst>=-1.650994 6   0 M (0.00000000 1.00000000) *
##            55) compactness_se>=-4.054302 17   0 M (0.00000000 1.00000000) *
##       7) texture_worst< 4.76475 177  41 M (0.23163842 0.76836158)  
##        14) symmetry_worst< -1.895488 12   0 B (1.00000000 0.00000000) *
##        15) symmetry_worst>=-1.895488 165  29 M (0.17575758 0.82424242)  
##          30) texture_worst< 4.398698 62  25 M (0.40322581 0.59677419)  
##            60) smoothness_mean>=-2.326212 43  19 B (0.55813953 0.44186047)  
##             120) compactness_se< -3.786997 13   0 B (1.00000000 0.00000000) *
##             121) compactness_se>=-3.786997 30  11 M (0.36666667 0.63333333) *
##            61) smoothness_mean< -2.326212 19   1 M (0.05263158 0.94736842)  
##             122) texture_mean< 2.561441 1   0 B (1.00000000 0.00000000) *
##             123) texture_mean>=2.561441 18   0 M (0.00000000 1.00000000) *
##          31) texture_worst>=4.398698 103   4 M (0.03883495 0.96116505)  
##            62) compactness_se< -4.224437 11   3 M (0.27272727 0.72727273)  
##             124) texture_mean< 2.962963 3   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=2.962963 8   0 M (0.00000000 1.00000000) *
##            63) compactness_se>=-4.224437 92   1 M (0.01086957 0.98913043)  
##             126) smoothness_mean>=-2.090314 4   1 M (0.25000000 0.75000000) *
##             127) smoothness_mean< -2.090314 88   0 M (0.00000000 1.00000000) *
## 
## $trees[[51]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 408 M (0.44736842 0.55263158)  
##     2) smoothness_mean>=-2.328057 396 176 B (0.55555556 0.44444444)  
##       4) smoothness_mean< -2.305941 65  10 B (0.84615385 0.15384615)  
##         8) compactness_se< -3.202039 61   6 B (0.90163934 0.09836066)  
##          16) symmetry_worst< -1.40737 59   4 B (0.93220339 0.06779661)  
##            32) texture_mean< 3.321235 58   3 B (0.94827586 0.05172414)  
##              64) compactness_se>=-4.276389 51   1 B (0.98039216 0.01960784) *
##              65) compactness_se< -4.276389 7   2 B (0.71428571 0.28571429) *
##            33) texture_mean>=3.321235 1   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst>=-1.40737 2   0 M (0.00000000 1.00000000) *
##         9) compactness_se>=-3.202039 4   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.305941 331 165 M (0.49848943 0.50151057)  
##        10) symmetry_worst>=-1.930267 267 116 B (0.56554307 0.43445693)  
##          20) symmetry_worst< -1.825003 41   3 B (0.92682927 0.07317073)  
##            40) texture_worst< 4.927821 38   0 B (1.00000000 0.00000000) *
##            41) texture_worst>=4.927821 3   0 M (0.00000000 1.00000000) *
##          21) symmetry_worst>=-1.825003 226 113 B (0.50000000 0.50000000)  
##            42) texture_worst< 4.400395 86  22 B (0.74418605 0.25581395)  
##              84) symmetry_worst< -1.532237 44   2 B (0.95454545 0.04545455) *
##              85) symmetry_worst>=-1.532237 42  20 B (0.52380952 0.47619048) *
##            43) texture_worst>=4.400395 140  49 M (0.35000000 0.65000000)  
##              86) texture_worst>=4.769176 44  11 B (0.75000000 0.25000000) *
##              87) texture_worst< 4.769176 96  16 M (0.16666667 0.83333333) *
##        11) symmetry_worst< -1.930267 64  14 M (0.21875000 0.78125000)  
##          22) symmetry_worst< -2.188127 25  11 M (0.44000000 0.56000000)  
##            44) symmetry_worst>=-2.270701 11   0 B (1.00000000 0.00000000) *
##            45) symmetry_worst< -2.270701 14   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst>=-2.188127 39   3 M (0.07692308 0.92307692)  
##            46) compactness_se< -4.001166 1   0 B (1.00000000 0.00000000) *
##            47) compactness_se>=-4.001166 38   2 M (0.05263158 0.94736842)  
##              94) compactness_se>=-3.425209 4   2 B (0.50000000 0.50000000) *
##              95) compactness_se< -3.425209 34   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean< -2.328057 516 188 M (0.36434109 0.63565891)  
##       6) texture_mean< 2.74084 13   0 B (1.00000000 0.00000000) *
##       7) texture_mean>=2.74084 503 175 M (0.34791252 0.65208748)  
##        14) smoothness_mean< -2.564314 14   2 B (0.85714286 0.14285714)  
##          28) compactness_se< -3.021883 12   0 B (1.00000000 0.00000000) *
##          29) compactness_se>=-3.021883 2   0 M (0.00000000 1.00000000) *
##        15) smoothness_mean>=-2.564314 489 163 M (0.33333333 0.66666667)  
##          30) symmetry_worst< -2.25148 6   0 B (1.00000000 0.00000000) *
##          31) symmetry_worst>=-2.25148 483 157 M (0.32505176 0.67494824)  
##            62) smoothness_mean< -2.367284 359 132 M (0.36768802 0.63231198)  
##             124) smoothness_worst>=-1.512058 73  29 B (0.60273973 0.39726027) *
##             125) smoothness_worst< -1.512058 286  88 M (0.30769231 0.69230769) *
##            63) smoothness_mean>=-2.367284 124  25 M (0.20161290 0.79838710)  
##             126) smoothness_worst< -1.544057 11   3 B (0.72727273 0.27272727) *
##             127) smoothness_worst>=-1.544057 113  17 M (0.15044248 0.84955752) *
## 
## $trees[[52]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 451 B (0.50548246 0.49451754)  
##     2) symmetry_worst< -1.816281 352 139 B (0.60511364 0.39488636)  
##       4) texture_mean< 2.963209 114  26 B (0.77192982 0.22807018)  
##         8) smoothness_worst>=-1.595961 90  10 B (0.88888889 0.11111111)  
##          16) texture_worst< 4.734027 87   8 B (0.90804598 0.09195402)  
##            32) smoothness_worst< -1.441362 86   7 B (0.91860465 0.08139535)  
##              64) smoothness_mean< -2.30802 61   1 B (0.98360656 0.01639344) *
##              65) smoothness_mean>=-2.30802 25   6 B (0.76000000 0.24000000) *
##            33) smoothness_worst>=-1.441362 1   0 M (0.00000000 1.00000000) *
##          17) texture_worst>=4.734027 3   1 M (0.33333333 0.66666667)  
##            34) texture_mean< 2.946804 1   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.946804 2   0 M (0.00000000 1.00000000) *
##         9) smoothness_worst< -1.595961 24   8 M (0.33333333 0.66666667)  
##          18) smoothness_worst< -1.609607 8   0 B (1.00000000 0.00000000) *
##          19) smoothness_worst>=-1.609607 16   0 M (0.00000000 1.00000000) *
##       5) texture_mean>=2.963209 238 113 B (0.52521008 0.47478992)  
##        10) smoothness_worst< -1.52112 165  61 B (0.63030303 0.36969697)  
##          20) texture_mean>=3.087399 81  14 B (0.82716049 0.17283951)  
##            40) compactness_se< -3.400535 72   9 B (0.87500000 0.12500000)  
##              80) texture_worst< 5.309872 56   3 B (0.94642857 0.05357143) *
##              81) texture_worst>=5.309872 16   6 B (0.62500000 0.37500000) *
##            41) compactness_se>=-3.400535 9   4 M (0.44444444 0.55555556)  
##              82) texture_mean< 3.136493 4   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=3.136493 5   0 M (0.00000000 1.00000000) *
##          21) texture_mean< 3.087399 84  37 M (0.44047619 0.55952381)  
##            42) compactness_se>=-3.439035 23   3 B (0.86956522 0.13043478)  
##              84) texture_mean< 3.076827 20   0 B (1.00000000 0.00000000) *
##              85) texture_mean>=3.076827 3   0 M (0.00000000 1.00000000) *
##            43) compactness_se< -3.439035 61  17 M (0.27868852 0.72131148)  
##              86) symmetry_worst< -1.969194 20   7 B (0.65000000 0.35000000) *
##              87) symmetry_worst>=-1.969194 41   4 M (0.09756098 0.90243902) *
##        11) smoothness_worst>=-1.52112 73  21 M (0.28767123 0.71232877)  
##          22) texture_mean< 2.975782 8   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.975782 65  13 M (0.20000000 0.80000000)  
##            46) texture_worst< 4.469369 4   0 B (1.00000000 0.00000000) *
##            47) texture_worst>=4.469369 61   9 M (0.14754098 0.85245902)  
##              94) symmetry_worst< -2.188127 7   3 B (0.57142857 0.42857143) *
##              95) symmetry_worst>=-2.188127 54   5 M (0.09259259 0.90740741) *
##     3) symmetry_worst>=-1.816281 560 248 M (0.44285714 0.55714286)  
##       6) texture_worst< 4.514456 211  90 B (0.57345972 0.42654028)  
##        12) smoothness_mean< -2.173316 173  56 B (0.67630058 0.32369942)  
##          24) texture_worst>=4.463188 49   0 B (1.00000000 0.00000000) *
##          25) texture_worst< 4.463188 124  56 B (0.54838710 0.45161290)  
##            50) smoothness_mean>=-2.353616 70  15 B (0.78571429 0.21428571)  
##             100) smoothness_worst< -1.430373 66  11 B (0.83333333 0.16666667) *
##             101) smoothness_worst>=-1.430373 4   0 M (0.00000000 1.00000000) *
##            51) smoothness_mean< -2.353616 54  13 M (0.24074074 0.75925926)  
##             102) compactness_se< -4.559289 4   0 B (1.00000000 0.00000000) *
##             103) compactness_se>=-4.559289 50   9 M (0.18000000 0.82000000) *
##        13) smoothness_mean>=-2.173316 38   4 M (0.10526316 0.89473684)  
##          26) smoothness_mean>=-1.889548 3   0 B (1.00000000 0.00000000) *
##          27) smoothness_mean< -1.889548 35   1 M (0.02857143 0.97142857)  
##            54) smoothness_mean>=-2.000349 6   1 M (0.16666667 0.83333333)  
##             108) texture_mean< 2.688296 1   0 B (1.00000000 0.00000000) *
##             109) texture_mean>=2.688296 5   0 M (0.00000000 1.00000000) *
##            55) smoothness_mean< -2.000349 29   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=4.514456 349 127 M (0.36389685 0.63610315)  
##        14) symmetry_worst>=-1.749963 285 121 M (0.42456140 0.57543860)  
##          28) symmetry_worst< -1.716176 37   7 B (0.81081081 0.18918919)  
##            56) texture_mean< 3.407548 32   2 B (0.93750000 0.06250000)  
##             112) compactness_se>=-4.528789 29   0 B (1.00000000 0.00000000) *
##             113) compactness_se< -4.528789 3   1 M (0.33333333 0.66666667) *
##            57) texture_mean>=3.407548 5   0 M (0.00000000 1.00000000) *
##          29) symmetry_worst>=-1.716176 248  91 M (0.36693548 0.63306452)  
##            58) compactness_se< -3.447524 191  82 M (0.42931937 0.57068063)  
##             116) compactness_se>=-3.494961 28   4 B (0.85714286 0.14285714) *
##             117) compactness_se< -3.494961 163  58 M (0.35582822 0.64417178) *
##            59) compactness_se>=-3.447524 57   9 M (0.15789474 0.84210526)  
##             118) compactness_se>=-3.18382 19   9 M (0.47368421 0.52631579) *
##             119) compactness_se< -3.18382 38   0 M (0.00000000 1.00000000) *
##        15) symmetry_worst< -1.749963 64   6 M (0.09375000 0.90625000)  
##          30) texture_worst>=4.897895 6   1 B (0.83333333 0.16666667)  
##            60) compactness_se>=-4.246101 5   0 B (1.00000000 0.00000000) *
##            61) compactness_se< -4.246101 1   0 M (0.00000000 1.00000000) *
##          31) texture_worst< 4.897895 58   1 M (0.01724138 0.98275862)  
##            62) texture_mean< 2.875669 1   0 B (1.00000000 0.00000000) *
##            63) texture_mean>=2.875669 57   0 M (0.00000000 1.00000000) *
## 
## $trees[[53]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 409 B (0.55153509 0.44846491)  
##     2) compactness_se< -3.672219 541 208 B (0.61552680 0.38447320)  
##       4) compactness_se>=-3.761452 65   4 B (0.93846154 0.06153846)  
##         8) smoothness_worst>=-1.534142 58   0 B (1.00000000 0.00000000) *
##         9) smoothness_worst< -1.534142 7   3 M (0.42857143 0.57142857)  
##          18) smoothness_mean< -2.477152 3   0 B (1.00000000 0.00000000) *
##          19) smoothness_mean>=-2.477152 4   0 M (0.00000000 1.00000000) *
##       5) compactness_se< -3.761452 476 204 B (0.57142857 0.42857143)  
##        10) texture_mean< 2.976294 246  77 B (0.68699187 0.31300813)  
##          20) symmetry_worst>=-1.749307 135  21 B (0.84444444 0.15555556)  
##            40) smoothness_worst< -1.451541 112   6 B (0.94642857 0.05357143)  
##              80) texture_worst< 4.707428 107   3 B (0.97196262 0.02803738) *
##              81) texture_worst>=4.707428 5   2 M (0.40000000 0.60000000) *
##            41) smoothness_worst>=-1.451541 23   8 M (0.34782609 0.65217391)  
##              82) compactness_se< -4.023814 7   0 B (1.00000000 0.00000000) *
##              83) compactness_se>=-4.023814 16   1 M (0.06250000 0.93750000) *
##          21) symmetry_worst< -1.749307 111  55 M (0.49549550 0.50450450)  
##            42) symmetry_worst< -1.787433 93  39 B (0.58064516 0.41935484)  
##              84) texture_worst>=4.4131 56  13 B (0.76785714 0.23214286) *
##              85) texture_worst< 4.4131 37  11 M (0.29729730 0.70270270) *
##            43) symmetry_worst>=-1.787433 18   1 M (0.05555556 0.94444444)  
##              86) texture_mean< 2.788049 1   0 B (1.00000000 0.00000000) *
##              87) texture_mean>=2.788049 17   0 M (0.00000000 1.00000000) *
##        11) texture_mean>=2.976294 230 103 M (0.44782609 0.55217391)  
##          22) smoothness_mean>=-2.295291 48  13 B (0.72916667 0.27083333)  
##            44) compactness_se< -4.030876 28   0 B (1.00000000 0.00000000) *
##            45) compactness_se>=-4.030876 20   7 M (0.35000000 0.65000000)  
##              90) smoothness_worst< -1.475287 7   0 B (1.00000000 0.00000000) *
##              91) smoothness_worst>=-1.475287 13   0 M (0.00000000 1.00000000) *
##          23) smoothness_mean< -2.295291 182  68 M (0.37362637 0.62637363)  
##            46) compactness_se< -4.557422 22   4 B (0.81818182 0.18181818)  
##              92) texture_mean>=3.186756 12   0 B (1.00000000 0.00000000) *
##              93) texture_mean< 3.186756 10   4 B (0.60000000 0.40000000) *
##            47) compactness_se>=-4.557422 160  50 M (0.31250000 0.68750000)  
##              94) symmetry_worst< -1.670808 104  50 M (0.48076923 0.51923077) *
##              95) symmetry_worst>=-1.670808 56   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.672219 371 170 M (0.45822102 0.54177898)  
##       6) symmetry_worst< -1.816281 135  54 B (0.60000000 0.40000000)  
##        12) symmetry_worst>=-1.982941 64  13 B (0.79687500 0.20312500)  
##          24) texture_mean< 3.058819 56   6 B (0.89285714 0.10714286)  
##            48) compactness_se>=-3.596781 51   1 B (0.98039216 0.01960784)  
##              96) texture_worst< 4.806084 50   0 B (1.00000000 0.00000000) *
##              97) texture_worst>=4.806084 1   0 M (0.00000000 1.00000000) *
##            49) compactness_se< -3.596781 5   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=3.058819 8   1 M (0.12500000 0.87500000)  
##            50) smoothness_mean< -2.497464 1   0 B (1.00000000 0.00000000) *
##            51) smoothness_mean>=-2.497464 7   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst< -1.982941 71  30 M (0.42253521 0.57746479)  
##          26) texture_mean>=3.268457 14   0 B (1.00000000 0.00000000) *
##          27) texture_mean< 3.268457 57  16 M (0.28070175 0.71929825)  
##            54) compactness_se>=-3.41277 22   9 B (0.59090909 0.40909091)  
##             108) texture_mean< 3.076827 10   0 B (1.00000000 0.00000000) *
##             109) texture_mean>=3.076827 12   3 M (0.25000000 0.75000000) *
##            55) compactness_se< -3.41277 35   3 M (0.08571429 0.91428571)  
##             110) texture_mean>=3.07129 4   1 B (0.75000000 0.25000000) *
##             111) texture_mean< 3.07129 31   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-1.816281 236  89 M (0.37711864 0.62288136)  
##        14) compactness_se>=-3.494301 175  82 M (0.46857143 0.53142857)  
##          28) symmetry_worst< -1.001713 164  82 B (0.50000000 0.50000000)  
##            56) texture_mean< 2.927442 68  23 B (0.66176471 0.33823529)  
##             112) symmetry_worst< -1.343592 50   9 B (0.82000000 0.18000000) *
##             113) symmetry_worst>=-1.343592 18   4 M (0.22222222 0.77777778) *
##            57) texture_mean>=2.927442 96  37 M (0.38541667 0.61458333)  
##             114) symmetry_worst>=-1.694861 61  27 B (0.55737705 0.44262295) *
##             115) symmetry_worst< -1.694861 35   3 M (0.08571429 0.91428571) *
##          29) symmetry_worst>=-1.001713 11   0 M (0.00000000 1.00000000) *
##        15) compactness_se< -3.494301 61   7 M (0.11475410 0.88524590)  
##          30) texture_mean>=3.094444 7   1 B (0.85714286 0.14285714)  
##            60) texture_mean< 3.383373 6   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=3.383373 1   0 M (0.00000000 1.00000000) *
##          31) texture_mean< 3.094444 54   1 M (0.01851852 0.98148148)  
##            62) symmetry_worst>=-1.47212 6   1 M (0.16666667 0.83333333)  
##             124) texture_mean< 2.800842 1   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=2.800842 5   0 M (0.00000000 1.00000000) *
##            63) symmetry_worst< -1.47212 48   0 M (0.00000000 1.00000000) *
## 
## $trees[[54]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 452 M (0.49561404 0.50438596)  
##     2) compactness_se< -3.648711 530 221 B (0.58301887 0.41698113)  
##       4) compactness_se>=-4.676462 467 176 B (0.62312634 0.37687366)  
##         8) texture_mean< 2.960364 172  46 B (0.73255814 0.26744186)  
##          16) symmetry_worst>=-1.749307 99  10 B (0.89898990 0.10101010)  
##            32) texture_worst< 4.692158 95   6 B (0.93684211 0.06315789)  
##              64) texture_mean>=2.518783 93   4 B (0.95698925 0.04301075) *
##              65) texture_mean< 2.518783 2   0 M (0.00000000 1.00000000) *
##            33) texture_worst>=4.692158 4   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst< -1.749307 73  36 B (0.50684932 0.49315068)  
##            34) symmetry_worst< -1.786753 54  19 B (0.64814815 0.35185185)  
##              68) texture_worst< 4.608983 46  12 B (0.73913043 0.26086957) *
##              69) texture_worst>=4.608983 8   1 M (0.12500000 0.87500000) *
##            35) symmetry_worst>=-1.786753 19   2 M (0.10526316 0.89473684)  
##              70) texture_mean>=2.946722 2   0 B (1.00000000 0.00000000) *
##              71) texture_mean< 2.946722 17   0 M (0.00000000 1.00000000) *
##         9) texture_mean>=2.960364 295 130 B (0.55932203 0.44067797)  
##          18) symmetry_worst< -2.052205 49   9 B (0.81632653 0.18367347)  
##            36) smoothness_worst< -1.514694 43   3 B (0.93023256 0.06976744)  
##              72) smoothness_worst>=-1.668282 40   0 B (1.00000000 0.00000000) *
##              73) smoothness_worst< -1.668282 3   0 M (0.00000000 1.00000000) *
##            37) smoothness_worst>=-1.514694 6   0 M (0.00000000 1.00000000) *
##          19) symmetry_worst>=-2.052205 246 121 B (0.50813008 0.49186992)  
##            38) compactness_se>=-3.781676 47  10 B (0.78723404 0.21276596)  
##              76) texture_worst>=4.59283 41   4 B (0.90243902 0.09756098) *
##              77) texture_worst< 4.59283 6   0 M (0.00000000 1.00000000) *
##            39) compactness_se< -3.781676 199  88 M (0.44221106 0.55778894)  
##              78) texture_worst< 5.194184 165  80 B (0.51515152 0.48484848) *
##              79) texture_worst>=5.194184 34   3 M (0.08823529 0.91176471) *
##       5) compactness_se< -4.676462 63  18 M (0.28571429 0.71428571)  
##        10) compactness_se< -4.779408 10   0 B (1.00000000 0.00000000) *
##        11) compactness_se>=-4.779408 53   8 M (0.15094340 0.84905660)  
##          22) smoothness_mean>=-2.441817 7   0 B (1.00000000 0.00000000) *
##          23) smoothness_mean< -2.441817 46   1 M (0.02173913 0.97826087)  
##            46) texture_worst< 4.52395 1   0 B (1.00000000 0.00000000) *
##            47) texture_worst>=4.52395 45   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.648711 382 143 M (0.37434555 0.62565445)  
##       6) compactness_se>=-2.809774 27   5 B (0.81481481 0.18518519)  
##        12) texture_mean< 3.003947 20   0 B (1.00000000 0.00000000) *
##        13) texture_mean>=3.003947 7   2 M (0.28571429 0.71428571)  
##          26) smoothness_mean< -2.364398 2   0 B (1.00000000 0.00000000) *
##          27) smoothness_mean>=-2.364398 5   0 M (0.00000000 1.00000000) *
##       7) compactness_se< -2.809774 355 121 M (0.34084507 0.65915493)  
##        14) smoothness_mean< -2.503795 15   3 B (0.80000000 0.20000000)  
##          28) compactness_se< -2.979429 12   0 B (1.00000000 0.00000000) *
##          29) compactness_se>=-2.979429 3   0 M (0.00000000 1.00000000) *
##        15) smoothness_mean>=-2.503795 340 109 M (0.32058824 0.67941176)  
##          30) compactness_se< -2.910852 316 109 M (0.34493671 0.65506329)  
##            60) compactness_se>=-2.924003 9   0 B (1.00000000 0.00000000) *
##            61) compactness_se< -2.924003 307 100 M (0.32573290 0.67426710)  
##             122) smoothness_worst< -1.482896 167  72 M (0.43113772 0.56886228) *
##             123) smoothness_worst>=-1.482896 140  28 M (0.20000000 0.80000000) *
##          31) compactness_se>=-2.910852 24   0 M (0.00000000 1.00000000) *
## 
## $trees[[55]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 912 433 B (0.52521930 0.47478070)  
##    2) symmetry_worst< -1.424186 819 366 B (0.55311355 0.44688645)  
##      4) texture_worst< 4.260219 66  10 B (0.84848485 0.15151515)  
##        8) smoothness_mean< -2.318766 26   0 B (1.00000000 0.00000000) *
##        9) smoothness_mean>=-2.318766 40  10 B (0.75000000 0.25000000)  
##         18) smoothness_mean>=-2.280931 27   2 B (0.92592593 0.07407407)  
##           36) texture_mean< 2.878198 26   1 B (0.96153846 0.03846154)  
##             72) compactness_se>=-3.757389 23   0 B (1.00000000 0.00000000) *
##             73) compactness_se< -3.757389 3   1 B (0.66666667 0.33333333) *
##           37) texture_mean>=2.878198 1   0 M (0.00000000 1.00000000) *
##         19) smoothness_mean< -2.280931 13   5 M (0.38461538 0.61538462)  
##           38) texture_worst< 4.056844 5   0 B (1.00000000 0.00000000) *
##           39) texture_worst>=4.056844 8   0 M (0.00000000 1.00000000) *
##      5) texture_worst>=4.260219 753 356 B (0.52722444 0.47277556)  
##       10) symmetry_worst>=-1.471051 30   2 B (0.93333333 0.06666667)  
##         20) smoothness_mean< -2.29943 28   0 B (1.00000000 0.00000000) *
##         21) smoothness_mean>=-2.29943 2   0 M (0.00000000 1.00000000) *
##       11) symmetry_worst< -1.471051 723 354 B (0.51037344 0.48962656)  
##         22) smoothness_mean< -2.392182 304 115 B (0.62171053 0.37828947)  
##           44) symmetry_worst>=-1.860457 201  60 B (0.70149254 0.29850746)  
##             88) symmetry_worst< -1.541072 169  38 B (0.77514793 0.22485207) *
##             89) symmetry_worst>=-1.541072 32  10 M (0.31250000 0.68750000) *
##           45) symmetry_worst< -1.860457 103  48 M (0.46601942 0.53398058)  
##             90) symmetry_worst< -2.01934 40  10 B (0.75000000 0.25000000) *
##             91) symmetry_worst>=-2.01934 63  18 M (0.28571429 0.71428571) *
##         23) smoothness_mean>=-2.392182 419 180 M (0.42959427 0.57040573)  
##           46) smoothness_mean>=-2.38347 375 180 M (0.48000000 0.52000000)  
##             92) compactness_se< -3.445472 255 111 B (0.56470588 0.43529412) *
##             93) compactness_se>=-3.445472 120  36 M (0.30000000 0.70000000) *
##           47) smoothness_mean< -2.38347 44   0 M (0.00000000 1.00000000) *
##    3) symmetry_worst>=-1.424186 93  26 M (0.27956989 0.72043011)  
##      6) smoothness_worst< -1.49848 23   8 B (0.65217391 0.34782609)  
##       12) smoothness_worst>=-1.553939 13   0 B (1.00000000 0.00000000) *
##       13) smoothness_worst< -1.553939 10   2 M (0.20000000 0.80000000)  
##         26) texture_mean< 2.973222 2   0 B (1.00000000 0.00000000) *
##         27) texture_mean>=2.973222 8   0 M (0.00000000 1.00000000) *
##      7) smoothness_worst>=-1.49848 70  11 M (0.15714286 0.84285714)  
##       14) compactness_se>=-2.638423 6   0 B (1.00000000 0.00000000) *
##       15) compactness_se< -2.638423 64   5 M (0.07812500 0.92187500)  
##         30) texture_mean< 2.77286 10   5 B (0.50000000 0.50000000)  
##           60) symmetry_worst< -1.232339 5   0 B (1.00000000 0.00000000) *
##           61) symmetry_worst>=-1.232339 5   0 M (0.00000000 1.00000000) *
##         31) texture_mean>=2.77286 54   0 M (0.00000000 1.00000000) *
## 
## $trees[[56]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 452 B (0.50438596 0.49561404)  
##     2) smoothness_mean< -2.408446 299 107 B (0.64214047 0.35785953)  
##       4) compactness_se>=-4.658767 260  78 B (0.70000000 0.30000000)  
##         8) texture_worst>=4.498003 208  47 B (0.77403846 0.22596154)  
##          16) texture_mean< 3.388429 199  38 B (0.80904523 0.19095477)  
##            32) symmetry_worst>=-2.218277 190  30 B (0.84210526 0.15789474)  
##              64) symmetry_worst< -1.496954 184  25 B (0.86413043 0.13586957) *
##              65) symmetry_worst>=-1.496954 6   1 M (0.16666667 0.83333333) *
##            33) symmetry_worst< -2.218277 9   1 M (0.11111111 0.88888889)  
##              66) smoothness_mean< -2.57545 1   0 B (1.00000000 0.00000000) *
##              67) smoothness_mean>=-2.57545 8   0 M (0.00000000 1.00000000) *
##          17) texture_mean>=3.388429 9   0 M (0.00000000 1.00000000) *
##         9) texture_worst< 4.498003 52  21 M (0.40384615 0.59615385)  
##          18) compactness_se>=-3.483667 11   1 B (0.90909091 0.09090909)  
##            36) texture_mean< 3.038737 10   0 B (1.00000000 0.00000000) *
##            37) texture_mean>=3.038737 1   0 M (0.00000000 1.00000000) *
##          19) compactness_se< -3.483667 41  11 M (0.26829268 0.73170732)  
##            38) smoothness_mean< -2.469112 10   4 B (0.60000000 0.40000000)  
##              76) texture_mean< 2.94329 6   0 B (1.00000000 0.00000000) *
##              77) texture_mean>=2.94329 4   0 M (0.00000000 1.00000000) *
##            39) smoothness_mean>=-2.469112 31   5 M (0.16129032 0.83870968)  
##              78) texture_worst>=4.418221 8   3 B (0.62500000 0.37500000) *
##              79) texture_worst< 4.418221 23   0 M (0.00000000 1.00000000) *
##       5) compactness_se< -4.658767 39  10 M (0.25641026 0.74358974)  
##        10) compactness_se< -4.706178 9   2 B (0.77777778 0.22222222)  
##          20) symmetry_worst< -1.284644 7   0 B (1.00000000 0.00000000) *
##          21) symmetry_worst>=-1.284644 2   0 M (0.00000000 1.00000000) *
##        11) compactness_se>=-4.706178 30   3 M (0.10000000 0.90000000)  
##          22) smoothness_mean>=-2.441817 3   0 B (1.00000000 0.00000000) *
##          23) smoothness_mean< -2.441817 27   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.408446 613 268 M (0.43719413 0.56280587)  
##       6) texture_mean< 3.007414 361 175 B (0.51523546 0.48476454)  
##        12) texture_mean>=3.003452 27   2 B (0.92592593 0.07407407)  
##          24) smoothness_mean< -2.060282 25   0 B (1.00000000 0.00000000) *
##          25) smoothness_mean>=-2.060282 2   0 M (0.00000000 1.00000000) *
##        13) texture_mean< 3.003452 334 161 M (0.48203593 0.51796407)  
##          26) compactness_se>=-2.834229 16   0 B (1.00000000 0.00000000) *
##          27) compactness_se< -2.834229 318 145 M (0.45597484 0.54402516)  
##            54) symmetry_worst>=-2.400126 302 145 M (0.48013245 0.51986755)  
##             108) smoothness_worst< -1.549191 39   8 B (0.79487179 0.20512821) *
##             109) smoothness_worst>=-1.549191 263 114 M (0.43346008 0.56653992) *
##            55) symmetry_worst< -2.400126 16   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=3.007414 252  82 M (0.32539683 0.67460317)  
##        14) symmetry_worst< -2.207988 37   9 B (0.75675676 0.24324324)  
##          28) smoothness_mean< -2.282028 30   2 B (0.93333333 0.06666667)  
##            56) compactness_se>=-4.450281 28   0 B (1.00000000 0.00000000) *
##            57) compactness_se< -4.450281 2   0 M (0.00000000 1.00000000) *
##          29) smoothness_mean>=-2.282028 7   0 M (0.00000000 1.00000000) *
##        15) symmetry_worst>=-2.207988 215  54 M (0.25116279 0.74883721)  
##          30) smoothness_mean>=-2.383798 164  54 M (0.32926829 0.67073171)  
##            60) symmetry_worst>=-1.477364 25   7 B (0.72000000 0.28000000)  
##             120) symmetry_worst< -1.41845 14   0 B (1.00000000 0.00000000) *
##             121) symmetry_worst>=-1.41845 11   4 M (0.36363636 0.63636364) *
##            61) symmetry_worst< -1.477364 139  36 M (0.25899281 0.74100719)  
##             122) texture_worst< 4.682677 36  16 B (0.55555556 0.44444444) *
##             123) texture_worst>=4.682677 103  16 M (0.15533981 0.84466019) *
##          31) smoothness_mean< -2.383798 51   0 M (0.00000000 1.00000000) *
## 
## $trees[[57]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 443 B (0.51425439 0.48574561)  
##     2) texture_mean< 2.960364 375 133 B (0.64533333 0.35466667)  
##       4) compactness_se>=-3.344528 86   9 B (0.89534884 0.10465116)  
##         8) compactness_se< -3.086764 55   0 B (1.00000000 0.00000000) *
##         9) compactness_se>=-3.086764 31   9 B (0.70967742 0.29032258)  
##          18) texture_mean>=2.850705 16   0 B (1.00000000 0.00000000) *
##          19) texture_mean< 2.850705 15   6 M (0.40000000 0.60000000)  
##            38) symmetry_worst< -1.62579 6   0 B (1.00000000 0.00000000) *
##            39) symmetry_worst>=-1.62579 9   0 M (0.00000000 1.00000000) *
##       5) compactness_se< -3.344528 289 124 B (0.57093426 0.42906574)  
##        10) compactness_se< -3.668499 188  62 B (0.67021277 0.32978723)  
##          20) symmetry_worst>=-1.749307 92  14 B (0.84782609 0.15217391)  
##            40) symmetry_worst< -1.533879 43   0 B (1.00000000 0.00000000) *
##            41) symmetry_worst>=-1.533879 49  14 B (0.71428571 0.28571429)  
##              82) texture_worst< 4.61159 41   7 B (0.82926829 0.17073171) *
##              83) texture_worst>=4.61159 8   1 M (0.12500000 0.87500000) *
##          21) symmetry_worst< -1.749307 96  48 B (0.50000000 0.50000000)  
##            42) symmetry_worst< -1.814891 56  17 B (0.69642857 0.30357143)  
##              84) smoothness_mean< -2.311491 38   7 B (0.81578947 0.18421053) *
##              85) smoothness_mean>=-2.311491 18   8 M (0.44444444 0.55555556) *
##            43) symmetry_worst>=-1.814891 40   9 M (0.22500000 0.77500000)  
##              86) compactness_se>=-3.93685 8   1 B (0.87500000 0.12500000) *
##              87) compactness_se< -3.93685 32   2 M (0.06250000 0.93750000) *
##        11) compactness_se>=-3.668499 101  39 M (0.38613861 0.61386139)  
##          22) symmetry_worst< -1.834844 26   2 B (0.92307692 0.07692308)  
##            44) symmetry_worst>=-1.982941 19   0 B (1.00000000 0.00000000) *
##            45) symmetry_worst< -1.982941 7   2 B (0.71428571 0.28571429)  
##              90) texture_mean>=2.866189 5   0 B (1.00000000 0.00000000) *
##              91) texture_mean< 2.866189 2   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst>=-1.834844 75  15 M (0.20000000 0.80000000)  
##            46) texture_mean>=2.945474 8   0 B (1.00000000 0.00000000) *
##            47) texture_mean< 2.945474 67   7 M (0.10447761 0.89552239)  
##              94) compactness_se>=-3.394391 12   5 M (0.41666667 0.58333333) *
##              95) compactness_se< -3.394391 55   2 M (0.03636364 0.96363636) *
##     3) texture_mean>=2.960364 537 227 M (0.42271881 0.57728119)  
##       6) smoothness_mean< -2.425205 162  66 B (0.59259259 0.40740741)  
##        12) symmetry_worst< -1.541072 143  48 B (0.66433566 0.33566434)  
##          24) symmetry_worst>=-2.218277 131  37 B (0.71755725 0.28244275)  
##            48) compactness_se>=-4.496793 98  17 B (0.82653061 0.17346939)  
##              96) smoothness_worst< -1.522574 66   4 B (0.93939394 0.06060606) *
##              97) smoothness_worst>=-1.522574 32  13 B (0.59375000 0.40625000) *
##            49) compactness_se< -4.496793 33  13 M (0.39393939 0.60606061)  
##              98) compactness_se< -4.568856 19   6 B (0.68421053 0.31578947) *
##              99) compactness_se>=-4.568856 14   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst< -2.218277 12   1 M (0.08333333 0.91666667)  
##            50) smoothness_mean< -2.57545 1   0 B (1.00000000 0.00000000) *
##            51) smoothness_mean>=-2.57545 11   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst>=-1.541072 19   1 M (0.05263158 0.94736842)  
##          26) smoothness_mean< -2.540124 1   0 B (1.00000000 0.00000000) *
##          27) smoothness_mean>=-2.540124 18   0 M (0.00000000 1.00000000) *
##       7) smoothness_mean>=-2.425205 375 131 M (0.34933333 0.65066667)  
##        14) smoothness_mean>=-2.383798 294 120 M (0.40816327 0.59183673)  
##          28) smoothness_worst< -1.500061 118  50 B (0.57627119 0.42372881)  
##            56) compactness_se< -3.723892 39   5 B (0.87179487 0.12820513)  
##             112) texture_mean< 3.216271 32   0 B (1.00000000 0.00000000) *
##             113) texture_mean>=3.216271 7   2 M (0.28571429 0.71428571) *
##            57) compactness_se>=-3.723892 79  34 M (0.43037975 0.56962025)  
##             114) symmetry_worst>=-1.407053 14   0 B (1.00000000 0.00000000) *
##             115) symmetry_worst< -1.407053 65  20 M (0.30769231 0.69230769) *
##          29) smoothness_worst>=-1.500061 176  52 M (0.29545455 0.70454545)  
##            58) smoothness_worst>=-1.447374 90  44 M (0.48888889 0.51111111)  
##             116) texture_worst>=4.599485 68  24 B (0.64705882 0.35294118) *
##             117) texture_worst< 4.599485 22   0 M (0.00000000 1.00000000) *
##            59) smoothness_worst< -1.447374 86   8 M (0.09302326 0.90697674)  
##             118) smoothness_mean< -2.36516 3   1 B (0.66666667 0.33333333) *
##             119) smoothness_mean>=-2.36516 83   6 M (0.07228916 0.92771084) *
##        15) smoothness_mean< -2.383798 81  11 M (0.13580247 0.86419753)  
##          30) symmetry_worst< -1.966444 15   7 M (0.46666667 0.53333333)  
##            60) texture_mean< 3.127107 7   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=3.127107 8   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-1.966444 66   4 M (0.06060606 0.93939394)  
##            62) texture_mean< 2.974761 8   4 B (0.50000000 0.50000000)  
##             124) texture_mean>=2.966802 4   0 B (1.00000000 0.00000000) *
##             125) texture_mean< 2.966802 4   0 M (0.00000000 1.00000000) *
##            63) texture_mean>=2.974761 58   0 M (0.00000000 1.00000000) *
## 
## $trees[[58]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 433 M (0.47478070 0.52521930)  
##     2) texture_mean< 2.960364 368 141 B (0.61684783 0.38315217)  
##       4) smoothness_worst< -1.451541 309 104 B (0.66343042 0.33656958)  
##         8) texture_worst< 4.517889 178  43 B (0.75842697 0.24157303)  
##          16) symmetry_worst< -1.001713 174  39 B (0.77586207 0.22413793)  
##            32) compactness_se>=-3.343833 47   3 B (0.93617021 0.06382979)  
##              64) smoothness_worst< -1.464806 42   0 B (1.00000000 0.00000000) *
##              65) smoothness_worst>=-1.464806 5   2 M (0.40000000 0.60000000) *
##            33) compactness_se< -3.343833 127  36 B (0.71653543 0.28346457)  
##              66) texture_worst< 4.261496 59   8 B (0.86440678 0.13559322) *
##              67) texture_worst>=4.261496 68  28 B (0.58823529 0.41176471) *
##          17) symmetry_worst>=-1.001713 4   0 M (0.00000000 1.00000000) *
##         9) texture_worst>=4.517889 131  61 B (0.53435115 0.46564885)  
##          18) texture_mean>=2.851854 115  45 B (0.60869565 0.39130435)  
##            36) texture_worst>=4.545516 101  32 B (0.68316832 0.31683168)  
##              72) smoothness_worst>=-1.548117 49   5 B (0.89795918 0.10204082) *
##              73) smoothness_worst< -1.548117 52  25 M (0.48076923 0.51923077) *
##            37) texture_worst< 4.545516 14   1 M (0.07142857 0.92857143)  
##              74) texture_mean< 2.890089 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.890089 13   0 M (0.00000000 1.00000000) *
##          19) texture_mean< 2.851854 16   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst>=-1.451541 59  22 M (0.37288136 0.62711864)  
##        10) texture_mean< 2.780541 20   5 B (0.75000000 0.25000000)  
##          20) smoothness_worst>=-1.434076 15   0 B (1.00000000 0.00000000) *
##          21) smoothness_worst< -1.434076 5   0 M (0.00000000 1.00000000) *
##        11) texture_mean>=2.780541 39   7 M (0.17948718 0.82051282)  
##          22) texture_mean>=2.879842 15   7 M (0.46666667 0.53333333)  
##            44) texture_mean< 2.933323 7   0 B (1.00000000 0.00000000) *
##            45) texture_mean>=2.933323 8   0 M (0.00000000 1.00000000) *
##          23) texture_mean< 2.879842 24   0 M (0.00000000 1.00000000) *
##     3) texture_mean>=2.960364 544 206 M (0.37867647 0.62132353)  
##       6) texture_mean>=3.336125 28   4 B (0.85714286 0.14285714)  
##        12) compactness_se< -3.643388 25   1 B (0.96000000 0.04000000)  
##          24) smoothness_mean< -2.346938 24   0 B (1.00000000 0.00000000) *
##          25) smoothness_mean>=-2.346938 1   0 M (0.00000000 1.00000000) *
##        13) compactness_se>=-3.643388 3   0 M (0.00000000 1.00000000) *
##       7) texture_mean< 3.336125 516 182 M (0.35271318 0.64728682)  
##        14) texture_worst< 4.357182 11   0 B (1.00000000 0.00000000) *
##        15) texture_worst>=4.357182 505 171 M (0.33861386 0.66138614)  
##          30) texture_worst< 5.073596 447 166 M (0.37136465 0.62863535)  
##            60) texture_worst>=4.982438 42  11 B (0.73809524 0.26190476)  
##             120) symmetry_worst< -1.541072 36   5 B (0.86111111 0.13888889) *
##             121) symmetry_worst>=-1.541072 6   0 M (0.00000000 1.00000000) *
##            61) texture_worst< 4.982438 405 135 M (0.33333333 0.66666667)  
##             122) texture_worst< 4.911888 320 129 M (0.40312500 0.59687500) *
##             123) texture_worst>=4.911888 85   6 M (0.07058824 0.92941176) *
##          31) texture_worst>=5.073596 58   5 M (0.08620690 0.91379310)  
##            62) smoothness_worst< -1.609702 2   0 B (1.00000000 0.00000000) *
##            63) smoothness_worst>=-1.609702 56   3 M (0.05357143 0.94642857)  
##             126) symmetry_worst< -2.299309 1   0 B (1.00000000 0.00000000) *
##             127) symmetry_worst>=-2.299309 55   2 M (0.03636364 0.96363636) *
## 
## $trees[[59]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 416 B (0.54385965 0.45614035)  
##     2) texture_worst< 4.820212 652 257 B (0.60582822 0.39417178)  
##       4) texture_worst>=4.751723 68   2 B (0.97058824 0.02941176)  
##         8) symmetry_worst< -0.9904278 66   0 B (1.00000000 0.00000000) *
##         9) symmetry_worst>=-0.9904278 2   0 M (0.00000000 1.00000000) *
##       5) texture_worst< 4.751723 584 255 B (0.56335616 0.43664384)  
##        10) compactness_se>=-3.426516 167  48 B (0.71257485 0.28742515)  
##          20) smoothness_mean< -2.155475 150  34 B (0.77333333 0.22666667)  
##            40) compactness_se< -3.02233 110  10 B (0.90909091 0.09090909)  
##              80) texture_worst< 4.68552 106   6 B (0.94339623 0.05660377) *
##              81) texture_worst>=4.68552 4   0 M (0.00000000 1.00000000) *
##            41) compactness_se>=-3.02233 40  16 M (0.40000000 0.60000000)  
##              82) compactness_se>=-2.86687 19   4 B (0.78947368 0.21052632) *
##              83) compactness_se< -2.86687 21   1 M (0.04761905 0.95238095) *
##          21) smoothness_mean>=-2.155475 17   3 M (0.17647059 0.82352941)  
##            42) texture_mean< 2.664661 3   0 B (1.00000000 0.00000000) *
##            43) texture_mean>=2.664661 14   0 M (0.00000000 1.00000000) *
##        11) compactness_se< -3.426516 417 207 B (0.50359712 0.49640288)  
##          22) symmetry_worst>=-1.52618 66  14 B (0.78787879 0.21212121)  
##            44) texture_mean< 2.998678 59   7 B (0.88135593 0.11864407)  
##              88) compactness_se< -3.964431 42   0 B (1.00000000 0.00000000) *
##              89) compactness_se>=-3.964431 17   7 B (0.58823529 0.41176471) *
##            45) texture_mean>=2.998678 7   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst< -1.52618 351 158 M (0.45014245 0.54985755)  
##            46) smoothness_mean< -2.525043 14   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean>=-2.525043 337 144 M (0.42729970 0.57270030)  
##              94) texture_worst< 4.254671 37   9 B (0.75675676 0.24324324) *
##              95) texture_worst>=4.254671 300 116 M (0.38666667 0.61333333) *
##     3) texture_worst>=4.820212 260 101 M (0.38846154 0.61153846)  
##       6) symmetry_worst< -2.207988 26   4 B (0.84615385 0.15384615)  
##        12) compactness_se< -3.413706 22   0 B (1.00000000 0.00000000) *
##        13) compactness_se>=-3.413706 4   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-2.207988 234  79 M (0.33760684 0.66239316)  
##        14) symmetry_worst>=-1.857231 144  63 M (0.43750000 0.56250000)  
##          28) symmetry_worst< -1.661584 72  28 B (0.61111111 0.38888889)  
##            56) texture_worst< 5.052263 40   6 B (0.85000000 0.15000000)  
##             112) texture_worst>=4.940521 29   0 B (1.00000000 0.00000000) *
##             113) texture_worst< 4.940521 11   5 M (0.45454545 0.54545455) *
##            57) texture_worst>=5.052263 32  10 M (0.31250000 0.68750000)  
##             114) smoothness_mean< -2.544154 5   0 B (1.00000000 0.00000000) *
##             115) smoothness_mean>=-2.544154 27   5 M (0.18518519 0.81481481) *
##          29) symmetry_worst>=-1.661584 72  19 M (0.26388889 0.73611111)  
##            58) compactness_se< -4.539406 7   0 B (1.00000000 0.00000000) *
##            59) compactness_se>=-4.539406 65  12 M (0.18461538 0.81538462)  
##             118) compactness_se>=-3.132386 13   4 B (0.69230769 0.30769231) *
##             119) compactness_se< -3.132386 52   3 M (0.05769231 0.94230769) *
##        15) symmetry_worst< -1.857231 90  16 M (0.17777778 0.82222222)  
##          30) texture_worst< 4.907333 7   0 B (1.00000000 0.00000000) *
##          31) texture_worst>=4.907333 83   9 M (0.10843373 0.89156627)  
##            62) texture_mean>=3.287978 9   1 B (0.88888889 0.11111111)  
##             124) smoothness_mean< -2.380359 8   0 B (1.00000000 0.00000000) *
##             125) smoothness_mean>=-2.380359 1   0 M (0.00000000 1.00000000) *
##            63) texture_mean< 3.287978 74   1 M (0.01351351 0.98648649)  
##             126) compactness_se< -4.706178 1   0 B (1.00000000 0.00000000) *
##             127) compactness_se>=-4.706178 73   0 M (0.00000000 1.00000000) *
## 
## $trees[[60]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 406 B (0.55482456 0.44517544)  
##     2) texture_worst< 4.858219 714 281 B (0.60644258 0.39355742)  
##       4) symmetry_worst< -1.828847 263  67 B (0.74524715 0.25475285)  
##         8) symmetry_worst>=-2.400126 243  52 B (0.78600823 0.21399177)  
##          16) compactness_se>=-4.098964 195  32 B (0.83589744 0.16410256)  
##            32) texture_worst>=4.530419 124   8 B (0.93548387 0.06451613)  
##              64) symmetry_worst>=-2.221546 119   4 B (0.96638655 0.03361345) *
##              65) symmetry_worst< -2.221546 5   1 M (0.20000000 0.80000000) *
##            33) texture_worst< 4.530419 71  24 B (0.66197183 0.33802817)  
##              66) smoothness_worst< -1.482701 35   4 B (0.88571429 0.11428571) *
##              67) smoothness_worst>=-1.482701 36  16 M (0.44444444 0.55555556) *
##          17) compactness_se< -4.098964 48  20 B (0.58333333 0.41666667)  
##            34) smoothness_mean< -2.426727 20   0 B (1.00000000 0.00000000) *
##            35) smoothness_mean>=-2.426727 28   8 M (0.28571429 0.71428571)  
##              70) smoothness_mean>=-2.355463 8   0 B (1.00000000 0.00000000) *
##              71) smoothness_mean< -2.355463 20   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst< -2.400126 20   5 M (0.25000000 0.75000000)  
##          18) texture_mean< 2.855865 4   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=2.855865 16   1 M (0.06250000 0.93750000)  
##            38) texture_worst>=4.573991 1   0 B (1.00000000 0.00000000) *
##            39) texture_worst< 4.573991 15   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.828847 451 214 B (0.52549889 0.47450111)  
##        10) smoothness_worst>=-1.623935 431 194 B (0.54988399 0.45011601)  
##          20) texture_worst>=4.287261 344 136 B (0.60465116 0.39534884)  
##            40) smoothness_mean< -2.216408 310 108 B (0.65161290 0.34838710)  
##              80) texture_mean< 2.876103 49   0 B (1.00000000 0.00000000) *
##              81) texture_mean>=2.876103 261 108 B (0.58620690 0.41379310) *
##            41) smoothness_mean>=-2.216408 34   6 M (0.17647059 0.82352941)  
##              82) texture_mean>=3.039982 7   2 B (0.71428571 0.28571429) *
##              83) texture_mean< 3.039982 27   1 M (0.03703704 0.96296296) *
##          21) texture_worst< 4.287261 87  29 M (0.33333333 0.66666667)  
##            42) smoothness_mean< -2.437614 8   0 B (1.00000000 0.00000000) *
##            43) smoothness_mean>=-2.437614 79  21 M (0.26582278 0.73417722)  
##              86) smoothness_worst>=-1.35291 5   0 B (1.00000000 0.00000000) *
##              87) smoothness_worst< -1.35291 74  16 M (0.21621622 0.78378378) *
##        11) smoothness_worst< -1.623935 20   0 M (0.00000000 1.00000000) *
##     3) texture_worst>=4.858219 198  73 M (0.36868687 0.63131313)  
##       6) symmetry_worst< -2.063958 27   3 B (0.88888889 0.11111111)  
##        12) texture_mean>=3.038878 25   1 B (0.96000000 0.04000000)  
##          24) compactness_se< -3.400535 24   0 B (1.00000000 0.00000000) *
##          25) compactness_se>=-3.400535 1   0 M (0.00000000 1.00000000) *
##        13) texture_mean< 3.038878 2   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-2.063958 171  49 M (0.28654971 0.71345029)  
##        14) smoothness_worst< -1.623453 14   2 B (0.85714286 0.14285714)  
##          28) smoothness_mean< -2.396135 12   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean>=-2.396135 2   0 M (0.00000000 1.00000000) *
##        15) smoothness_worst>=-1.623453 157  37 M (0.23566879 0.76433121)  
##          30) compactness_se>=-3.902076 75  30 M (0.40000000 0.60000000)  
##            60) texture_worst< 5.032208 38  13 B (0.65789474 0.34210526)  
##             120) symmetry_worst< -1.541072 29   4 B (0.86206897 0.13793103) *
##             121) symmetry_worst>=-1.541072 9   0 M (0.00000000 1.00000000) *
##            61) texture_worst>=5.032208 37   5 M (0.13513514 0.86486486)  
##             122) texture_worst>=5.329405 13   5 M (0.38461538 0.61538462) *
##             123) texture_worst< 5.329405 24   0 M (0.00000000 1.00000000) *
##          31) compactness_se< -3.902076 82   7 M (0.08536585 0.91463415)  
##            62) compactness_se< -4.899363 2   0 B (1.00000000 0.00000000) *
##            63) compactness_se>=-4.899363 80   5 M (0.06250000 0.93750000)  
##             126) texture_mean< 2.915217 1   0 B (1.00000000 0.00000000) *
##             127) texture_mean>=2.915217 79   4 M (0.05063291 0.94936709) *
## 
## $trees[[61]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 912 450 M (0.49342105 0.50657895)  
##    2) symmetry_worst< -1.424186 827 396 B (0.52116082 0.47883918)  
##      4) compactness_se< -4.705732 17   0 B (1.00000000 0.00000000) *
##      5) compactness_se>=-4.705732 810 396 B (0.51111111 0.48888889)  
##       10) compactness_se>=-4.663537 792 378 B (0.52272727 0.47727273)  
##         20) symmetry_worst>=-1.440359 20   1 B (0.95000000 0.05000000)  
##           40) smoothness_mean< -2.257921 19   0 B (1.00000000 0.00000000) *
##           41) smoothness_mean>=-2.257921 1   0 M (0.00000000 1.00000000) *
##         21) symmetry_worst< -1.440359 772 377 B (0.51165803 0.48834197)  
##           42) symmetry_worst< -1.828847 319 126 B (0.60501567 0.39498433)  
##             84) texture_worst< 4.897936 246  78 B (0.68292683 0.31707317) *
##             85) texture_worst>=4.897936 73  25 M (0.34246575 0.65753425) *
##           43) symmetry_worst>=-1.828847 453 202 M (0.44591611 0.55408389)  
##             86) symmetry_worst>=-1.749635 322 155 B (0.51863354 0.48136646) *
##             87) symmetry_worst< -1.749635 131  35 M (0.26717557 0.73282443) *
##       11) compactness_se< -4.663537 18   0 M (0.00000000 1.00000000) *
##    3) symmetry_worst>=-1.424186 85  19 M (0.22352941 0.77647059)  
##      6) texture_mean< 2.77286 7   1 B (0.85714286 0.14285714)  
##       12) compactness_se< -3.1317 6   0 B (1.00000000 0.00000000) *
##       13) compactness_se>=-3.1317 1   0 M (0.00000000 1.00000000) *
##      7) texture_mean>=2.77286 78  13 M (0.16666667 0.83333333)  
##       14) smoothness_worst< -1.49848 19   9 B (0.52631579 0.47368421)  
##         28) smoothness_mean>=-2.45794 12   2 B (0.83333333 0.16666667)  
##           56) texture_worst< 4.857215 10   0 B (1.00000000 0.00000000) *
##           57) texture_worst>=4.857215 2   0 M (0.00000000 1.00000000) *
##         29) smoothness_mean< -2.45794 7   0 M (0.00000000 1.00000000) *
##       15) smoothness_worst>=-1.49848 59   3 M (0.05084746 0.94915254)  
##         30) compactness_se>=-2.567912 3   0 B (1.00000000 0.00000000) *
##         31) compactness_se< -2.567912 56   0 M (0.00000000 1.00000000) *
## 
## $trees[[62]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 429 M (0.47039474 0.52960526)  
##     2) symmetry_worst< -1.816281 361 155 B (0.57063712 0.42936288)  
##       4) compactness_se>=-4.44774 311 119 B (0.61736334 0.38263666)  
##         8) compactness_se< -4.244326 32   0 B (1.00000000 0.00000000) *
##         9) compactness_se>=-4.244326 279 119 B (0.57347670 0.42652330)  
##          18) texture_mean< 3.044457 165  49 B (0.70303030 0.29696970)  
##            36) texture_worst>=4.530419 95  13 B (0.86315789 0.13684211)  
##              72) texture_worst< 4.669081 69   0 B (1.00000000 0.00000000) *
##              73) texture_worst>=4.669081 26  13 B (0.50000000 0.50000000) *
##            37) texture_worst< 4.530419 70  34 M (0.48571429 0.51428571)  
##              74) smoothness_worst>=-1.477976 27   4 B (0.85185185 0.14814815) *
##              75) smoothness_worst< -1.477976 43  11 M (0.25581395 0.74418605) *
##          19) texture_mean>=3.044457 114  44 M (0.38596491 0.61403509)  
##            38) symmetry_worst< -2.188127 41  15 B (0.63414634 0.36585366)  
##              76) texture_worst>=4.762323 26   3 B (0.88461538 0.11538462) *
##              77) texture_worst< 4.762323 15   3 M (0.20000000 0.80000000) *
##            39) symmetry_worst>=-2.188127 73  18 M (0.24657534 0.75342466)  
##              78) smoothness_worst< -1.589834 6   1 B (0.83333333 0.16666667) *
##              79) smoothness_worst>=-1.589834 67  13 M (0.19402985 0.80597015) *
##       5) compactness_se< -4.44774 50  14 M (0.28000000 0.72000000)  
##        10) smoothness_worst< -1.626559 9   1 B (0.88888889 0.11111111)  
##          20) texture_mean< 3.146983 8   0 B (1.00000000 0.00000000) *
##          21) texture_mean>=3.146983 1   0 M (0.00000000 1.00000000) *
##        11) smoothness_worst>=-1.626559 41   6 M (0.14634146 0.85365854)  
##          22) compactness_se< -4.737326 2   0 B (1.00000000 0.00000000) *
##          23) compactness_se>=-4.737326 39   4 M (0.10256410 0.89743590)  
##            46) texture_mean< 2.846651 1   0 B (1.00000000 0.00000000) *
##            47) texture_mean>=2.846651 38   3 M (0.07894737 0.92105263)  
##              94) smoothness_mean>=-2.271294 1   0 B (1.00000000 0.00000000) *
##              95) smoothness_mean< -2.271294 37   2 M (0.05405405 0.94594595) *
##     3) symmetry_worst>=-1.816281 551 223 M (0.40471869 0.59528131)  
##       6) texture_mean< 2.960364 248 118 B (0.52419355 0.47580645)  
##        12) symmetry_worst>=-1.769229 196  75 B (0.61734694 0.38265306)  
##          24) smoothness_worst< -1.492248 83  12 B (0.85542169 0.14457831)  
##            48) compactness_se>=-4.681232 74   6 B (0.91891892 0.08108108)  
##              96) symmetry_worst>=-1.748321 67   1 B (0.98507463 0.01492537) *
##              97) symmetry_worst< -1.748321 7   2 M (0.28571429 0.71428571) *
##            49) compactness_se< -4.681232 9   3 M (0.33333333 0.66666667)  
##              98) texture_mean>=2.936149 3   0 B (1.00000000 0.00000000) *
##              99) texture_mean< 2.936149 6   0 M (0.00000000 1.00000000) *
##          25) smoothness_worst>=-1.492248 113  50 M (0.44247788 0.55752212)  
##            50) symmetry_worst< -1.641484 30   1 B (0.96666667 0.03333333)  
##             100) texture_mean< 2.933308 29   0 B (1.00000000 0.00000000) *
##             101) texture_mean>=2.933308 1   0 M (0.00000000 1.00000000) *
##            51) symmetry_worst>=-1.641484 83  21 M (0.25301205 0.74698795)  
##             102) compactness_se< -4.218076 3   0 B (1.00000000 0.00000000) *
##             103) compactness_se>=-4.218076 80  18 M (0.22500000 0.77500000) *
##        13) symmetry_worst< -1.769229 52   9 M (0.17307692 0.82692308)  
##          26) texture_mean< 2.862952 11   5 B (0.54545455 0.45454545)  
##            52) texture_mean>=2.739163 6   0 B (1.00000000 0.00000000) *
##            53) texture_mean< 2.739163 5   0 M (0.00000000 1.00000000) *
##          27) texture_mean>=2.862952 41   3 M (0.07317073 0.92682927)  
##            54) smoothness_mean< -2.480896 1   0 B (1.00000000 0.00000000) *
##            55) smoothness_mean>=-2.480896 40   2 M (0.05000000 0.95000000)  
##             110) smoothness_mean>=-2.31876 9   2 M (0.22222222 0.77777778) *
##             111) smoothness_mean< -2.31876 31   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.960364 303  93 M (0.30693069 0.69306931)  
##        14) texture_worst>=4.900538 68  25 B (0.63235294 0.36764706)  
##          28) smoothness_mean< -2.333105 45   8 B (0.82222222 0.17777778)  
##            56) compactness_se< -3.435038 39   4 B (0.89743590 0.10256410)  
##             112) texture_mean>=3.088538 32   1 B (0.96875000 0.03125000) *
##             113) texture_mean< 3.088538 7   3 B (0.57142857 0.42857143) *
##            57) compactness_se>=-3.435038 6   2 M (0.33333333 0.66666667)  
##             114) texture_mean>=3.165773 2   0 B (1.00000000 0.00000000) *
##             115) texture_mean< 3.165773 4   0 M (0.00000000 1.00000000) *
##          29) smoothness_mean>=-2.333105 23   6 M (0.26086957 0.73913043)  
##            58) symmetry_worst< -1.700833 6   0 B (1.00000000 0.00000000) *
##            59) symmetry_worst>=-1.700833 17   0 M (0.00000000 1.00000000) *
##        15) texture_worst< 4.900538 235  50 M (0.21276596 0.78723404)  
##          30) symmetry_worst>=-1.606972 109  40 M (0.36697248 0.63302752)  
##            60) compactness_se< -3.483184 67  31 B (0.53731343 0.46268657)  
##             120) compactness_se>=-3.494961 17   0 B (1.00000000 0.00000000) *
##             121) compactness_se< -3.494961 50  19 M (0.38000000 0.62000000) *
##            61) compactness_se>=-3.483184 42   4 M (0.09523810 0.90476190)  
##             122) symmetry_worst>=-1.471051 4   0 B (1.00000000 0.00000000) *
##             123) symmetry_worst< -1.471051 38   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst< -1.606972 126  10 M (0.07936508 0.92063492)  
##            62) smoothness_mean>=-2.137157 4   0 B (1.00000000 0.00000000) *
##            63) smoothness_mean< -2.137157 122   6 M (0.04918033 0.95081967)  
##             126) compactness_se>=-2.744014 10   4 M (0.40000000 0.60000000) *
##             127) compactness_se< -2.744014 112   2 M (0.01785714 0.98214286) *
## 
## $trees[[63]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 412 B (0.54824561 0.45175439)  
##     2) symmetry_worst< -1.758563 452 166 B (0.63274336 0.36725664)  
##       4) texture_worst< 4.605004 253  69 B (0.72727273 0.27272727)  
##         8) smoothness_mean>=-2.603563 246  62 B (0.74796748 0.25203252)  
##          16) symmetry_worst< -1.948993 96  10 B (0.89583333 0.10416667)  
##            32) symmetry_worst>=-2.49184 92   6 B (0.93478261 0.06521739)  
##              64) texture_worst>=3.98381 89   4 B (0.95505618 0.04494382) *
##              65) texture_worst< 3.98381 3   1 M (0.33333333 0.66666667) *
##            33) symmetry_worst< -2.49184 4   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst>=-1.948993 150  52 B (0.65333333 0.34666667)  
##            34) smoothness_worst< -1.455007 127  34 B (0.73228346 0.26771654)  
##              68) texture_mean>=2.766607 96  17 B (0.82291667 0.17708333) *
##              69) texture_mean< 2.766607 31  14 M (0.45161290 0.54838710) *
##            35) smoothness_worst>=-1.455007 23   5 M (0.21739130 0.78260870)  
##              70) smoothness_mean>=-2.212285 4   0 B (1.00000000 0.00000000) *
##              71) smoothness_mean< -2.212285 19   1 M (0.05263158 0.94736842) *
##         9) smoothness_mean< -2.603563 7   0 M (0.00000000 1.00000000) *
##       5) texture_worst>=4.605004 199  97 B (0.51256281 0.48743719)  
##        10) texture_mean>=3.021644 135  47 B (0.65185185 0.34814815)  
##          20) texture_worst>=4.651138 125  37 B (0.70400000 0.29600000)  
##            40) smoothness_worst< -1.52112 81  13 B (0.83950617 0.16049383)  
##              80) compactness_se< -2.810352 79  11 B (0.86075949 0.13924051) *
##              81) compactness_se>=-2.810352 2   0 M (0.00000000 1.00000000) *
##            41) smoothness_worst>=-1.52112 44  20 M (0.45454545 0.54545455)  
##              82) smoothness_worst>=-1.49243 30  10 B (0.66666667 0.33333333) *
##              83) smoothness_worst< -1.49243 14   0 M (0.00000000 1.00000000) *
##          21) texture_worst< 4.651138 10   0 M (0.00000000 1.00000000) *
##        11) texture_mean< 3.021644 64  14 M (0.21875000 0.78125000)  
##          22) smoothness_mean>=-2.33454 8   1 B (0.87500000 0.12500000)  
##            44) texture_worst< 4.831396 7   0 B (1.00000000 0.00000000) *
##            45) texture_worst>=4.831396 1   0 M (0.00000000 1.00000000) *
##          23) smoothness_mean< -2.33454 56   7 M (0.12500000 0.87500000)  
##            46) compactness_se< -4.737326 2   0 B (1.00000000 0.00000000) *
##            47) compactness_se>=-4.737326 54   5 M (0.09259259 0.90740741)  
##              94) smoothness_mean< -2.58747 1   0 B (1.00000000 0.00000000) *
##              95) smoothness_mean>=-2.58747 53   4 M (0.07547170 0.92452830) *
##     3) symmetry_worst>=-1.758563 460 214 M (0.46521739 0.53478261)  
##       6) texture_mean< 2.955938 175  67 B (0.61714286 0.38285714)  
##        12) smoothness_mean< -2.22055 131  35 B (0.73282443 0.26717557)  
##          24) symmetry_worst>=-1.749307 123  27 B (0.78048780 0.21951220)  
##            48) symmetry_worst< -1.426958 76   8 B (0.89473684 0.10526316)  
##              96) compactness_se>=-4.650552 70   4 B (0.94285714 0.05714286) *
##              97) compactness_se< -4.650552 6   2 M (0.33333333 0.66666667) *
##            49) symmetry_worst>=-1.426958 47  19 B (0.59574468 0.40425532)  
##              98) texture_worst>=4.136225 35   7 B (0.80000000 0.20000000) *
##              99) texture_worst< 4.136225 12   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst< -1.749307 8   0 M (0.00000000 1.00000000) *
##        13) smoothness_mean>=-2.22055 44  12 M (0.27272727 0.72727273)  
##          26) smoothness_worst>=-1.333822 6   0 B (1.00000000 0.00000000) *
##          27) smoothness_worst< -1.333822 38   6 M (0.15789474 0.84210526)  
##            54) smoothness_worst< -1.534923 4   0 B (1.00000000 0.00000000) *
##            55) smoothness_worst>=-1.534923 34   2 M (0.05882353 0.94117647)  
##             110) compactness_se< -3.796566 3   1 B (0.66666667 0.33333333) *
##             111) compactness_se>=-3.796566 31   0 M (0.00000000 1.00000000) *
##       7) texture_mean>=2.955938 285 106 M (0.37192982 0.62807018)  
##        14) compactness_se< -3.446121 218 102 M (0.46788991 0.53211009)  
##          28) texture_worst>=4.608306 153  64 B (0.58169935 0.41830065)  
##            56) smoothness_mean>=-2.306712 59   9 B (0.84745763 0.15254237)  
##             112) smoothness_worst< -1.394193 53   3 B (0.94339623 0.05660377) *
##             113) smoothness_worst>=-1.394193 6   0 M (0.00000000 1.00000000) *
##            57) smoothness_mean< -2.306712 94  39 M (0.41489362 0.58510638)  
##             114) compactness_se>=-3.765171 40  13 B (0.67500000 0.32500000) *
##             115) compactness_se< -3.765171 54  12 M (0.22222222 0.77777778) *
##          29) texture_worst< 4.608306 65  13 M (0.20000000 0.80000000)  
##            58) compactness_se< -4.291103 13   0 B (1.00000000 0.00000000) *
##            59) compactness_se>=-4.291103 52   0 M (0.00000000 1.00000000) *
##        15) compactness_se>=-3.446121 67   4 M (0.05970149 0.94029851)  
##          30) smoothness_mean< -2.476623 2   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean>=-2.476623 65   2 M (0.03076923 0.96923077)  
##            62) symmetry_worst>=-1.471051 10   2 M (0.20000000 0.80000000)  
##             124) symmetry_worst< -1.448226 2   0 B (1.00000000 0.00000000) *
##             125) symmetry_worst>=-1.448226 8   0 M (0.00000000 1.00000000) *
##            63) symmetry_worst< -1.471051 55   0 M (0.00000000 1.00000000) *
## 
## $trees[[64]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 452 B (0.50438596 0.49561404)  
##     2) texture_mean< 3.007414 529 228 B (0.56899811 0.43100189)  
##       4) texture_mean>=2.996482 45   3 B (0.93333333 0.06666667)  
##         8) compactness_se< -3.239931 41   0 B (1.00000000 0.00000000) *
##         9) compactness_se>=-3.239931 4   1 M (0.25000000 0.75000000)  
##          18) texture_mean>=3.003945 1   0 B (1.00000000 0.00000000) *
##          19) texture_mean< 3.003945 3   0 M (0.00000000 1.00000000) *
##       5) texture_mean< 2.996482 484 225 B (0.53512397 0.46487603)  
##        10) texture_mean< 2.737601 67  16 B (0.76119403 0.23880597)  
##          20) compactness_se< -3.768369 33   0 B (1.00000000 0.00000000) *
##          21) compactness_se>=-3.768369 34  16 B (0.52941176 0.47058824)  
##            42) texture_worst< 4.057309 24   6 B (0.75000000 0.25000000)  
##              84) compactness_se>=-3.734904 18   0 B (1.00000000 0.00000000) *
##              85) compactness_se< -3.734904 6   0 M (0.00000000 1.00000000) *
##            43) texture_worst>=4.057309 10   0 M (0.00000000 1.00000000) *
##        11) texture_mean>=2.737601 417 208 M (0.49880096 0.50119904)  
##          22) texture_worst>=4.543638 176  65 B (0.63068182 0.36931818)  
##            44) symmetry_worst< -1.362443 159  48 B (0.69811321 0.30188679)  
##              88) symmetry_worst>=-2.1835 146  37 B (0.74657534 0.25342466) *
##              89) symmetry_worst< -2.1835 13   2 M (0.15384615 0.84615385) *
##            45) symmetry_worst>=-1.362443 17   0 M (0.00000000 1.00000000) *
##          23) texture_worst< 4.543638 241  97 M (0.40248963 0.59751037)  
##            46) texture_worst< 4.389172 125  59 B (0.52800000 0.47200000)  
##              92) texture_worst>=4.365735 23   3 B (0.86956522 0.13043478) *
##              93) texture_worst< 4.365735 102  46 M (0.45098039 0.54901961) *
##            47) texture_worst>=4.389172 116  31 M (0.26724138 0.73275862)  
##              94) texture_worst>=4.465917 71  30 M (0.42253521 0.57746479) *
##              95) texture_worst< 4.465917 45   1 M (0.02222222 0.97777778) *
##     3) texture_mean>=3.007414 383 159 M (0.41514360 0.58485640)  
##       6) texture_mean>=3.029409 327 151 M (0.46177370 0.53822630)  
##        12) compactness_se< -3.05924 303 149 M (0.49174917 0.50825083)  
##          24) smoothness_worst< -1.618721 21   0 B (1.00000000 0.00000000) *
##          25) smoothness_worst>=-1.618721 282 128 M (0.45390071 0.54609929)  
##            50) compactness_se< -4.539406 21   3 B (0.85714286 0.14285714)  
##             100) symmetry_worst>=-1.674863 18   0 B (1.00000000 0.00000000) *
##             101) symmetry_worst< -1.674863 3   0 M (0.00000000 1.00000000) *
##            51) compactness_se>=-4.539406 261 110 M (0.42145594 0.57854406)  
##             102) symmetry_worst< -1.661892 185  91 B (0.50810811 0.49189189) *
##             103) symmetry_worst>=-1.661892 76  16 M (0.21052632 0.78947368) *
##        13) compactness_se>=-3.05924 24   2 M (0.08333333 0.91666667)  
##          26) texture_mean< 3.031099 2   0 B (1.00000000 0.00000000) *
##          27) texture_mean>=3.031099 22   0 M (0.00000000 1.00000000) *
##       7) texture_mean< 3.029409 56   8 M (0.14285714 0.85714286)  
##        14) compactness_se>=-3.446107 8   0 B (1.00000000 0.00000000) *
##        15) compactness_se< -3.446107 48   0 M (0.00000000 1.00000000) *
## 
## $trees[[65]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 433 M (0.47478070 0.52521930)  
##     2) texture_worst< 4.820212 669 300 B (0.55156951 0.44843049)  
##       4) symmetry_worst< -1.828847 249  77 B (0.69076305 0.30923695)  
##         8) smoothness_mean>=-2.358733 115  16 B (0.86086957 0.13913043)  
##          16) symmetry_worst>=-2.354921 104   9 B (0.91346154 0.08653846)  
##            32) compactness_se< -3.02233 97   5 B (0.94845361 0.05154639)  
##              64) compactness_se< -3.4389 75   1 B (0.98666667 0.01333333) *
##              65) compactness_se>=-3.4389 22   4 B (0.81818182 0.18181818) *
##            33) compactness_se>=-3.02233 7   3 M (0.42857143 0.57142857)  
##              66) texture_mean< 2.962882 3   0 B (1.00000000 0.00000000) *
##              67) texture_mean>=2.962882 4   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst< -2.354921 11   4 M (0.36363636 0.63636364)  
##            34) texture_mean< 2.855865 3   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.855865 8   1 M (0.12500000 0.87500000)  
##              70) compactness_se< -3.905141 3   1 M (0.33333333 0.66666667) *
##              71) compactness_se>=-3.905141 5   0 M (0.00000000 1.00000000) *
##         9) smoothness_mean< -2.358733 134  61 B (0.54477612 0.45522388)  
##          18) smoothness_worst< -1.559148 68  10 B (0.85294118 0.14705882)  
##            36) texture_worst>=4.018768 62   5 B (0.91935484 0.08064516)  
##              72) smoothness_mean< -2.378659 60   3 B (0.95000000 0.05000000) *
##              73) smoothness_mean>=-2.378659 2   0 M (0.00000000 1.00000000) *
##            37) texture_worst< 4.018768 6   1 M (0.16666667 0.83333333)  
##              74) texture_mean< 2.764104 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.764104 5   0 M (0.00000000 1.00000000) *
##          19) smoothness_worst>=-1.559148 66  15 M (0.22727273 0.77272727)  
##            38) smoothness_mean< -2.419122 17   2 B (0.88235294 0.11764706)  
##              76) texture_mean< 3.049127 15   0 B (1.00000000 0.00000000) *
##              77) texture_mean>=3.049127 2   0 M (0.00000000 1.00000000) *
##            39) smoothness_mean>=-2.419122 49   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.828847 420 197 M (0.46904762 0.53095238)  
##        10) texture_worst< 4.50835 171  65 B (0.61988304 0.38011696)  
##          20) symmetry_worst>=-1.809351 145  39 B (0.73103448 0.26896552)  
##            40) texture_mean< 2.96681 123  25 B (0.79674797 0.20325203)  
##              80) smoothness_worst< -1.451541 91   8 B (0.91208791 0.08791209) *
##              81) smoothness_worst>=-1.451541 32  15 M (0.46875000 0.53125000) *
##            41) texture_mean>=2.96681 22   8 M (0.36363636 0.63636364)  
##              82) smoothness_mean< -2.381799 10   2 B (0.80000000 0.20000000) *
##              83) smoothness_mean>=-2.381799 12   0 M (0.00000000 1.00000000) *
##          21) symmetry_worst< -1.809351 26   0 M (0.00000000 1.00000000) *
##        11) texture_worst>=4.50835 249  91 M (0.36546185 0.63453815)  
##          22) symmetry_worst>=-1.685469 156  76 M (0.48717949 0.51282051)  
##            44) symmetry_worst< -1.620541 21   2 B (0.90476190 0.09523810)  
##              88) compactness_se< -3.350492 19   0 B (1.00000000 0.00000000) *
##              89) compactness_se>=-3.350492 2   0 M (0.00000000 1.00000000) *
##            45) symmetry_worst>=-1.620541 135  57 M (0.42222222 0.57777778)  
##              90) symmetry_worst>=-1.606972 116  57 M (0.49137931 0.50862069) *
##              91) symmetry_worst< -1.606972 19   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst< -1.685469 93  15 M (0.16129032 0.83870968)  
##            46) symmetry_worst< -1.801087 21  10 B (0.52380952 0.47619048)  
##              92) texture_mean< 3.018415 11   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=3.018415 10   0 M (0.00000000 1.00000000) *
##            47) symmetry_worst>=-1.801087 72   4 M (0.05555556 0.94444444)  
##              94) compactness_se< -4.222363 2   0 B (1.00000000 0.00000000) *
##              95) compactness_se>=-4.222363 70   2 M (0.02857143 0.97142857) *
##     3) texture_worst>=4.820212 243  64 M (0.26337449 0.73662551)  
##       6) smoothness_worst< -1.623453 10   2 B (0.80000000 0.20000000)  
##        12) smoothness_mean< -2.382409 8   0 B (1.00000000 0.00000000) *
##        13) smoothness_mean>=-2.382409 2   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst>=-1.623453 233  56 M (0.24034335 0.75965665)  
##        14) texture_worst>=4.982438 137  46 M (0.33576642 0.66423358)  
##          28) texture_worst< 4.998743 20   1 B (0.95000000 0.05000000)  
##            56) texture_mean>=3.086552 19   0 B (1.00000000 0.00000000) *
##            57) texture_mean< 3.086552 1   0 M (0.00000000 1.00000000) *
##          29) texture_worst>=4.998743 117  27 M (0.23076923 0.76923077)  
##            58) symmetry_worst< -2.257286 7   1 B (0.85714286 0.14285714)  
##             116) smoothness_mean< -2.317053 6   0 B (1.00000000 0.00000000) *
##             117) smoothness_mean>=-2.317053 1   0 M (0.00000000 1.00000000) *
##            59) symmetry_worst>=-2.257286 110  21 M (0.19090909 0.80909091)  
##             118) smoothness_mean< -2.505388 4   0 B (1.00000000 0.00000000) *
##             119) smoothness_mean>=-2.505388 106  17 M (0.16037736 0.83962264) *
##        15) texture_worst< 4.982438 96  10 M (0.10416667 0.89583333)  
##          30) compactness_se>=-2.919705 2   0 B (1.00000000 0.00000000) *
##          31) compactness_se< -2.919705 94   8 M (0.08510638 0.91489362)  
##            62) texture_mean>=3.208403 15   6 M (0.40000000 0.60000000)  
##             124) smoothness_worst< -1.511906 6   0 B (1.00000000 0.00000000) *
##             125) smoothness_worst>=-1.511906 9   0 M (0.00000000 1.00000000) *
##            63) texture_mean< 3.208403 79   2 M (0.02531646 0.97468354)  
##             126) symmetry_worst< -2.139 1   0 B (1.00000000 0.00000000) *
##             127) symmetry_worst>=-2.139 78   1 M (0.01282051 0.98717949) *
## 
## $trees[[66]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 432 B (0.52631579 0.47368421)  
##     2) texture_mean< 3.007414 527 207 B (0.60721063 0.39278937)  
##       4) texture_mean>=2.995732 62   6 B (0.90322581 0.09677419)  
##         8) smoothness_mean>=-2.301343 48   0 B (1.00000000 0.00000000) *
##         9) smoothness_mean< -2.301343 14   6 B (0.57142857 0.42857143)  
##          18) smoothness_mean< -2.332196 8   0 B (1.00000000 0.00000000) *
##          19) smoothness_mean>=-2.332196 6   0 M (0.00000000 1.00000000) *
##       5) texture_mean< 2.995732 465 201 B (0.56774194 0.43225806)  
##        10) texture_mean< 2.993479 453 189 B (0.58278146 0.41721854)  
##          20) compactness_se< -3.726279 273  94 B (0.65567766 0.34432234)  
##            40) texture_mean< 2.813911 68  10 B (0.85294118 0.14705882)  
##              80) compactness_se< -3.88564 51   0 B (1.00000000 0.00000000) *
##              81) compactness_se>=-3.88564 17   7 M (0.41176471 0.58823529) *
##            41) texture_mean>=2.813911 205  84 B (0.59024390 0.40975610)  
##              82) smoothness_mean>=-2.31481 82  16 B (0.80487805 0.19512195) *
##              83) smoothness_mean< -2.31481 123  55 M (0.44715447 0.55284553) *
##          21) compactness_se>=-3.726279 180  85 M (0.47222222 0.52777778)  
##            42) compactness_se>=-3.344528 59  15 B (0.74576271 0.25423729)  
##              84) symmetry_worst< -1.316602 46   6 B (0.86956522 0.13043478) *
##              85) symmetry_worst>=-1.316602 13   4 M (0.30769231 0.69230769) *
##            43) compactness_se< -3.344528 121  41 M (0.33884298 0.66115702)  
##              86) symmetry_worst< -1.813857 45  18 B (0.60000000 0.40000000) *
##              87) symmetry_worst>=-1.813857 76  14 M (0.18421053 0.81578947) *
##        11) texture_mean>=2.993479 12   0 M (0.00000000 1.00000000) *
##     3) texture_mean>=3.007414 385 160 M (0.41558442 0.58441558)  
##       6) compactness_se< -4.26701 54  12 B (0.77777778 0.22222222)  
##        12) texture_mean>=3.227241 23   0 B (1.00000000 0.00000000) *
##        13) texture_mean< 3.227241 31  12 B (0.61290323 0.38709677)  
##          26) texture_mean< 3.108384 23   4 B (0.82608696 0.17391304)  
##            52) smoothness_worst< -1.508396 21   2 B (0.90476190 0.09523810)  
##             104) smoothness_mean>=-2.477398 15   0 B (1.00000000 0.00000000) *
##             105) smoothness_mean< -2.477398 6   2 B (0.66666667 0.33333333) *
##            53) smoothness_worst>=-1.508396 2   0 M (0.00000000 1.00000000) *
##          27) texture_mean>=3.108384 8   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.26701 331 118 M (0.35649547 0.64350453)  
##        14) texture_worst>=4.678763 224  97 M (0.43303571 0.56696429)  
##          28) texture_worst< 4.681966 18   0 B (1.00000000 0.00000000) *
##          29) texture_worst>=4.681966 206  79 M (0.38349515 0.61650485)  
##            58) smoothness_worst< -1.610115 11   0 B (1.00000000 0.00000000) *
##            59) smoothness_worst>=-1.610115 195  68 M (0.34871795 0.65128205)  
##             118) texture_worst>=4.80876 163  65 M (0.39877301 0.60122699) *
##             119) texture_worst< 4.80876 32   3 M (0.09375000 0.90625000) *
##        15) texture_worst< 4.678763 107  21 M (0.19626168 0.80373832)  
##          30) symmetry_worst< -2.232873 13   2 B (0.84615385 0.15384615)  
##            60) smoothness_mean< -2.242961 11   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.242961 2   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-2.232873 94  10 M (0.10638298 0.89361702)  
##            62) smoothness_worst>=-1.51308 33  10 M (0.30303030 0.69696970)  
##             124) symmetry_worst< -1.871076 12   2 B (0.83333333 0.16666667) *
##             125) symmetry_worst>=-1.871076 21   0 M (0.00000000 1.00000000) *
##            63) smoothness_worst< -1.51308 61   0 M (0.00000000 1.00000000) *
## 
## $trees[[67]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 387 B (0.57565789 0.42434211)  
##     2) compactness_se< -3.721197 515 170 B (0.66990291 0.33009709)  
##       4) compactness_se>=-3.867535 106  12 B (0.88679245 0.11320755)  
##         8) smoothness_worst< -1.48132 85   0 B (1.00000000 0.00000000) *
##         9) smoothness_worst>=-1.48132 21   9 M (0.42857143 0.57142857)  
##          18) texture_mean< 2.971675 13   4 B (0.69230769 0.30769231)  
##            36) symmetry_worst< -1.612049 9   0 B (1.00000000 0.00000000) *
##            37) symmetry_worst>=-1.612049 4   0 M (0.00000000 1.00000000) *
##          19) texture_mean>=2.971675 8   0 M (0.00000000 1.00000000) *
##       5) compactness_se< -3.867535 409 158 B (0.61369193 0.38630807)  
##        10) texture_worst< 4.822896 292  90 B (0.69178082 0.30821918)  
##          20) compactness_se< -4.356557 84   9 B (0.89285714 0.10714286)  
##            40) symmetry_worst>=-2.374205 79   6 B (0.92405063 0.07594937)  
##              80) compactness_se< -4.50262 66   3 B (0.95454545 0.04545455) *
##              81) compactness_se>=-4.50262 13   3 B (0.76923077 0.23076923) *
##            41) symmetry_worst< -2.374205 5   2 M (0.40000000 0.60000000)  
##              82) texture_mean< 2.828748 2   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=2.828748 3   0 M (0.00000000 1.00000000) *
##          21) compactness_se>=-4.356557 208  81 B (0.61057692 0.38942308)  
##            42) compactness_se>=-4.316443 195  68 B (0.65128205 0.34871795)  
##              84) texture_worst>=4.751011 26   0 B (1.00000000 0.00000000) *
##              85) texture_worst< 4.751011 169  68 B (0.59763314 0.40236686) *
##            43) compactness_se< -4.316443 13   0 M (0.00000000 1.00000000) *
##        11) texture_worst>=4.822896 117  49 M (0.41880342 0.58119658)  
##          22) compactness_se< -4.060578 82  36 B (0.56097561 0.43902439)  
##            44) smoothness_worst>=-1.453658 26   2 B (0.92307692 0.07692308)  
##              88) texture_worst>=4.831607 24   0 B (1.00000000 0.00000000) *
##              89) texture_worst< 4.831607 2   0 M (0.00000000 1.00000000) *
##            45) smoothness_worst< -1.453658 56  22 M (0.39285714 0.60714286)  
##              90) texture_worst>=4.984637 30  12 B (0.60000000 0.40000000) *
##              91) texture_worst< 4.984637 26   4 M (0.15384615 0.84615385) *
##          23) compactness_se>=-4.060578 35   3 M (0.08571429 0.91428571)  
##            46) texture_worst< 4.895983 2   0 B (1.00000000 0.00000000) *
##            47) texture_worst>=4.895983 33   1 M (0.03030303 0.96969697)  
##              94) texture_mean< 3.053025 7   1 M (0.14285714 0.85714286) *
##              95) texture_mean>=3.053025 26   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.721197 397 180 M (0.45340050 0.54659950)  
##       6) smoothness_mean< -2.298595 248 115 B (0.53629032 0.46370968)  
##        12) symmetry_worst>=-1.609029 74  17 B (0.77027027 0.22972973)  
##          24) compactness_se>=-3.592308 68  11 B (0.83823529 0.16176471)  
##            48) texture_worst< 4.993407 65   8 B (0.87692308 0.12307692)  
##              96) texture_mean>=2.896936 61   5 B (0.91803279 0.08196721) *
##              97) texture_mean< 2.896936 4   1 M (0.25000000 0.75000000) *
##            49) texture_worst>=4.993407 3   0 M (0.00000000 1.00000000) *
##          25) compactness_se< -3.592308 6   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst< -1.609029 174  76 M (0.43678161 0.56321839)  
##          26) texture_worst>=4.863167 43  13 B (0.69767442 0.30232558)  
##            52) smoothness_mean>=-2.457972 29   1 B (0.96551724 0.03448276)  
##             104) texture_mean< 3.329636 28   0 B (1.00000000 0.00000000) *
##             105) texture_mean>=3.329636 1   0 M (0.00000000 1.00000000) *
##            53) smoothness_mean< -2.457972 14   2 M (0.14285714 0.85714286)  
##             106) compactness_se< -3.643388 2   0 B (1.00000000 0.00000000) *
##             107) compactness_se>=-3.643388 12   0 M (0.00000000 1.00000000) *
##          27) texture_worst< 4.863167 131  46 M (0.35114504 0.64885496)  
##            54) smoothness_mean< -2.443631 42  19 B (0.54761905 0.45238095)  
##             108) texture_mean< 3.064089 23   3 B (0.86956522 0.13043478) *
##             109) texture_mean>=3.064089 19   3 M (0.15789474 0.84210526) *
##            55) smoothness_mean>=-2.443631 89  23 M (0.25842697 0.74157303)  
##             110) symmetry_worst< -1.813857 41  20 M (0.48780488 0.51219512) *
##             111) symmetry_worst>=-1.813857 48   3 M (0.06250000 0.93750000) *
##       7) smoothness_mean>=-2.298595 149  47 M (0.31543624 0.68456376)  
##        14) texture_mean< 2.8622 37   9 B (0.75675676 0.24324324)  
##          28) symmetry_worst< -1.53342 17   0 B (1.00000000 0.00000000) *
##          29) symmetry_worst>=-1.53342 20   9 B (0.55000000 0.45000000)  
##            58) smoothness_worst>=-1.454202 14   3 B (0.78571429 0.21428571)  
##             116) symmetry_worst>=-1.435787 11   0 B (1.00000000 0.00000000) *
##             117) symmetry_worst< -1.435787 3   0 M (0.00000000 1.00000000) *
##            59) smoothness_worst< -1.454202 6   0 M (0.00000000 1.00000000) *
##        15) texture_mean>=2.8622 112  19 M (0.16964286 0.83035714)  
##          30) smoothness_mean>=-2.093138 9   1 B (0.88888889 0.11111111)  
##            60) smoothness_mean< -2.073133 8   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.073133 1   0 M (0.00000000 1.00000000) *
##          31) smoothness_mean< -2.093138 103  11 M (0.10679612 0.89320388)  
##            62) texture_worst< 4.345743 8   4 B (0.50000000 0.50000000)  
##             124) smoothness_mean< -2.178638 4   0 B (1.00000000 0.00000000) *
##             125) smoothness_mean>=-2.178638 4   0 M (0.00000000 1.00000000) *
##            63) texture_worst>=4.345743 95   7 M (0.07368421 0.92631579)  
##             126) texture_mean< 2.925574 11   3 M (0.27272727 0.72727273) *
##             127) texture_mean>=2.925574 84   4 M (0.04761905 0.95238095) *
## 
## $trees[[68]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 431 B (0.52741228 0.47258772)  
##     2) compactness_se< -4.505325 96  24 B (0.75000000 0.25000000)  
##       4) smoothness_worst>=-1.576547 61   3 B (0.95081967 0.04918033)  
##         8) smoothness_worst>=-1.550704 49   0 B (1.00000000 0.00000000) *
##         9) smoothness_worst< -1.550704 12   3 B (0.75000000 0.25000000)  
##          18) texture_worst>=4.62656 9   0 B (1.00000000 0.00000000) *
##          19) texture_worst< 4.62656 3   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.576547 35  14 M (0.40000000 0.60000000)  
##        10) smoothness_worst< -1.629412 9   0 B (1.00000000 0.00000000) *
##        11) smoothness_worst>=-1.629412 26   5 M (0.19230769 0.80769231)  
##          22) compactness_se< -4.860597 2   0 B (1.00000000 0.00000000) *
##          23) compactness_se>=-4.860597 24   3 M (0.12500000 0.87500000)  
##            46) compactness_se>=-4.557299 8   3 M (0.37500000 0.62500000)  
##              92) texture_mean< 3.023648 3   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=3.023648 5   0 M (0.00000000 1.00000000) *
##            47) compactness_se< -4.557299 16   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-4.505325 816 407 B (0.50122549 0.49877451)  
##       6) compactness_se>=-3.933251 529 219 B (0.58601134 0.41398866)  
##        12) smoothness_worst< -1.499656 295  98 B (0.66779661 0.33220339)  
##          24) compactness_se< -3.723892 80   4 B (0.95000000 0.05000000)  
##            48) texture_worst< 5.269605 76   0 B (1.00000000 0.00000000) *
##            49) texture_worst>=5.269605 4   0 M (0.00000000 1.00000000) *
##          25) compactness_se>=-3.723892 215  94 B (0.56279070 0.43720930)  
##            50) smoothness_worst>=-1.555451 98  27 B (0.72448980 0.27551020)  
##             100) compactness_se>=-3.494301 68   8 B (0.88235294 0.11764706) *
##             101) compactness_se< -3.494301 30  11 M (0.36666667 0.63333333) *
##            51) smoothness_worst< -1.555451 117  50 M (0.42735043 0.57264957)  
##             102) smoothness_mean< -2.400474 85  37 B (0.56470588 0.43529412) *
##             103) smoothness_mean>=-2.400474 32   2 M (0.06250000 0.93750000) *
##        13) smoothness_worst>=-1.499656 234 113 M (0.48290598 0.51709402)  
##          26) smoothness_worst>=-1.49223 215 102 B (0.52558140 0.47441860)  
##            52) symmetry_worst< -2.037336 22   1 B (0.95454545 0.04545455)  
##             104) smoothness_mean< -2.231276 21   0 B (1.00000000 0.00000000) *
##             105) smoothness_mean>=-2.231276 1   0 M (0.00000000 1.00000000) *
##            53) symmetry_worst>=-2.037336 193  92 M (0.47668394 0.52331606)  
##             106) texture_worst< 4.683387 148  64 B (0.56756757 0.43243243) *
##             107) texture_worst>=4.683387 45   8 M (0.17777778 0.82222222) *
##          27) smoothness_worst< -1.49223 19   0 M (0.00000000 1.00000000) *
##       7) compactness_se< -3.933251 287  99 M (0.34494774 0.65505226)  
##        14) compactness_se< -3.996495 224  95 M (0.42410714 0.57589286)  
##          28) compactness_se>=-4.100467 52  16 B (0.69230769 0.30769231)  
##            56) texture_worst< 4.977078 42   6 B (0.85714286 0.14285714)  
##             112) symmetry_worst< -1.485318 35   0 B (1.00000000 0.00000000) *
##             113) symmetry_worst>=-1.485318 7   1 M (0.14285714 0.85714286) *
##            57) texture_worst>=4.977078 10   0 M (0.00000000 1.00000000) *
##          29) compactness_se< -4.100467 172  59 M (0.34302326 0.65697674)  
##            58) compactness_se< -4.219581 106  50 M (0.47169811 0.52830189)  
##             116) symmetry_worst>=-1.508268 19   0 B (1.00000000 0.00000000) *
##             117) symmetry_worst< -1.508268 87  31 M (0.35632184 0.64367816) *
##            59) compactness_se>=-4.219581 66   9 M (0.13636364 0.86363636)  
##             118) smoothness_mean< -2.434347 7   0 B (1.00000000 0.00000000) *
##             119) smoothness_mean>=-2.434347 59   2 M (0.03389831 0.96610169) *
##        15) compactness_se>=-3.996495 63   4 M (0.06349206 0.93650794)  
##          30) texture_worst< 4.514719 20   4 M (0.20000000 0.80000000)  
##            60) texture_mean>=2.888377 4   0 B (1.00000000 0.00000000) *
##            61) texture_mean< 2.888377 16   0 M (0.00000000 1.00000000) *
##          31) texture_worst>=4.514719 43   0 M (0.00000000 1.00000000) *
## 
## $trees[[69]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 453 B (0.50328947 0.49671053)  
##     2) texture_worst>=4.753106 275  90 B (0.67272727 0.32727273)  
##       4) compactness_se< -3.321165 247  65 B (0.73684211 0.26315789)  
##         8) texture_worst< 4.820212 75   3 B (0.96000000 0.04000000)  
##          16) symmetry_worst< -0.9904278 72   0 B (1.00000000 0.00000000) *
##          17) symmetry_worst>=-0.9904278 3   0 M (0.00000000 1.00000000) *
##         9) texture_worst>=4.820212 172  62 B (0.63953488 0.36046512)  
##          18) texture_mean>=3.166067 109  26 B (0.76146789 0.23853211)  
##            36) texture_worst< 5.194184 64   5 B (0.92187500 0.07812500)  
##              72) symmetry_worst< -1.302628 62   3 B (0.95161290 0.04838710) *
##              73) symmetry_worst>=-1.302628 2   0 M (0.00000000 1.00000000) *
##            37) texture_worst>=5.194184 45  21 B (0.53333333 0.46666667)  
##              74) smoothness_mean< -2.363096 30   6 B (0.80000000 0.20000000) *
##              75) smoothness_mean>=-2.363096 15   0 M (0.00000000 1.00000000) *
##          19) texture_mean< 3.166067 63  27 M (0.42857143 0.57142857)  
##            38) smoothness_worst>=-1.441541 14   2 B (0.85714286 0.14285714)  
##              76) compactness_se< -4.032549 12   0 B (1.00000000 0.00000000) *
##              77) compactness_se>=-4.032549 2   0 M (0.00000000 1.00000000) *
##            39) smoothness_worst< -1.441541 49  15 M (0.30612245 0.69387755)  
##              78) smoothness_worst< -1.52382 24  10 B (0.58333333 0.41666667) *
##              79) smoothness_worst>=-1.52382 25   1 M (0.04000000 0.96000000) *
##       5) compactness_se>=-3.321165 28   3 M (0.10714286 0.89285714)  
##        10) smoothness_mean< -2.576888 1   0 B (1.00000000 0.00000000) *
##        11) smoothness_mean>=-2.576888 27   2 M (0.07407407 0.92592593)  
##          22) smoothness_worst>=-1.415354 2   1 B (0.50000000 0.50000000)  
##            44) texture_mean>=3.085887 1   0 B (1.00000000 0.00000000) *
##            45) texture_mean< 3.085887 1   0 M (0.00000000 1.00000000) *
##          23) smoothness_worst< -1.415354 25   1 M (0.04000000 0.96000000)  
##            46) symmetry_worst>=-1.545802 2   1 B (0.50000000 0.50000000)  
##              92) texture_mean>=3.19534 1   0 B (1.00000000 0.00000000) *
##              93) texture_mean< 3.19534 1   0 M (0.00000000 1.00000000) *
##            47) symmetry_worst< -1.545802 23   0 M (0.00000000 1.00000000) *
##     3) texture_worst< 4.753106 637 274 M (0.43014129 0.56985871)  
##       6) texture_worst< 4.703562 586 271 M (0.46245734 0.53754266)  
##        12) symmetry_worst>=-1.56405 153  54 B (0.64705882 0.35294118)  
##          24) smoothness_worst>=-1.607486 138  39 B (0.71739130 0.28260870)  
##            48) smoothness_worst< -1.451541 110  23 B (0.79090909 0.20909091)  
##              96) compactness_se< -3.026518 92  13 B (0.85869565 0.14130435) *
##              97) compactness_se>=-3.026518 18   8 M (0.44444444 0.55555556) *
##            49) smoothness_worst>=-1.451541 28  12 M (0.42857143 0.57142857)  
##              98) smoothness_worst>=-1.434633 17   5 B (0.70588235 0.29411765) *
##              99) smoothness_worst< -1.434633 11   0 M (0.00000000 1.00000000) *
##          25) smoothness_worst< -1.607486 15   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst< -1.56405 433 172 M (0.39722864 0.60277136)  
##          26) texture_mean< 2.70704 19   0 B (1.00000000 0.00000000) *
##          27) texture_mean>=2.70704 414 153 M (0.36956522 0.63043478)  
##            54) symmetry_worst< -2.048468 57  19 B (0.66666667 0.33333333)  
##             108) symmetry_worst>=-2.103063 14   0 B (1.00000000 0.00000000) *
##             109) symmetry_worst< -2.103063 43  19 B (0.55813953 0.44186047) *
##            55) symmetry_worst>=-2.048468 357 115 M (0.32212885 0.67787115)  
##             110) texture_worst>=4.644679 34   8 B (0.76470588 0.23529412) *
##             111) texture_worst< 4.644679 323  89 M (0.27554180 0.72445820) *
##       7) texture_worst>=4.703562 51   3 M (0.05882353 0.94117647)  
##        14) compactness_se< -4.398027 4   1 B (0.75000000 0.25000000)  
##          28) texture_mean< 2.985881 3   0 B (1.00000000 0.00000000) *
##          29) texture_mean>=2.985881 1   0 M (0.00000000 1.00000000) *
##        15) compactness_se>=-4.398027 47   0 M (0.00000000 1.00000000) *
## 
## $trees[[70]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 434 B (0.52412281 0.47587719)  
##     2) smoothness_worst< -1.482502 585 240 B (0.58974359 0.41025641)  
##       4) smoothness_worst>=-1.598251 463 164 B (0.64578834 0.35421166)  
##         8) compactness_se>=-4.49319 399 122 B (0.69423559 0.30576441)  
##          16) texture_worst< 4.595069 205  45 B (0.78048780 0.21951220)  
##            32) symmetry_worst< -1.815934 92   5 B (0.94565217 0.05434783)  
##              64) texture_mean< 3.059757 91   4 B (0.95604396 0.04395604) *
##              65) texture_mean>=3.059757 1   0 M (0.00000000 1.00000000) *
##            33) symmetry_worst>=-1.815934 113  40 B (0.64601770 0.35398230)  
##              66) symmetry_worst>=-1.797319 100  27 B (0.73000000 0.27000000) *
##              67) symmetry_worst< -1.797319 13   0 M (0.00000000 1.00000000) *
##          17) texture_worst>=4.595069 194  77 B (0.60309278 0.39690722)  
##            34) compactness_se>=-3.902076 135  35 B (0.74074074 0.25925926)  
##              68) texture_worst>=4.606472 126  26 B (0.79365079 0.20634921) *
##              69) texture_worst< 4.606472 9   0 M (0.00000000 1.00000000) *
##            35) compactness_se< -3.902076 59  17 M (0.28813559 0.71186441)  
##              70) compactness_se< -4.276595 17   1 B (0.94117647 0.05882353) *
##              71) compactness_se>=-4.276595 42   1 M (0.02380952 0.97619048) *
##         9) compactness_se< -4.49319 64  22 M (0.34375000 0.65625000)  
##          18) compactness_se< -4.694501 20   0 B (1.00000000 0.00000000) *
##          19) compactness_se>=-4.694501 44   2 M (0.04545455 0.95454545)  
##            38) texture_mean>=3.192081 2   0 B (1.00000000 0.00000000) *
##            39) texture_mean< 3.192081 42   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.598251 122  46 M (0.37704918 0.62295082)  
##        10) symmetry_worst< -1.868413 42  15 B (0.64285714 0.35714286)  
##          20) texture_worst>=4.498003 22   0 B (1.00000000 0.00000000) *
##          21) texture_worst< 4.498003 20   5 M (0.25000000 0.75000000)  
##            42) symmetry_worst< -2.343297 5   0 B (1.00000000 0.00000000) *
##            43) symmetry_worst>=-2.343297 15   0 M (0.00000000 1.00000000) *
##        11) symmetry_worst>=-1.868413 80  19 M (0.23750000 0.76250000)  
##          22) texture_mean< 2.939162 11   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.939162 69   8 M (0.11594203 0.88405797)  
##            46) texture_mean>=3.083898 18   7 M (0.38888889 0.61111111)  
##              92) compactness_se< -3.477558 7   0 B (1.00000000 0.00000000) *
##              93) compactness_se>=-3.477558 11   0 M (0.00000000 1.00000000) *
##            47) texture_mean< 3.083898 51   1 M (0.01960784 0.98039216)  
##              94) compactness_se>=-3.433938 1   0 B (1.00000000 0.00000000) *
##              95) compactness_se< -3.433938 50   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.482502 327 133 M (0.40672783 0.59327217)  
##       6) smoothness_worst>=-1.477976 277 130 M (0.46931408 0.53068592)  
##        12) smoothness_worst< -1.472307 40   4 B (0.90000000 0.10000000)  
##          24) texture_mean< 3.069079 37   1 B (0.97297297 0.02702703)  
##            48) texture_worst< 4.844547 36   0 B (1.00000000 0.00000000) *
##            49) texture_worst>=4.844547 1   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=3.069079 3   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst>=-1.472307 237  94 M (0.39662447 0.60337553)  
##          26) smoothness_worst>=-1.465904 204  94 M (0.46078431 0.53921569)  
##            52) compactness_se< -4.040144 49  13 B (0.73469388 0.26530612)  
##             104) texture_mean< 3.082128 36   5 B (0.86111111 0.13888889) *
##             105) texture_mean>=3.082128 13   5 M (0.38461538 0.61538462) *
##            53) compactness_se>=-4.040144 155  58 M (0.37419355 0.62580645)  
##             106) compactness_se>=-3.813086 97  42 B (0.56701031 0.43298969) *
##             107) compactness_se< -3.813086 58   3 M (0.05172414 0.94827586) *
##          27) smoothness_worst< -1.465904 33   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst< -1.477976 50   3 M (0.06000000 0.94000000)  
##        14) texture_worst< 4.126187 3   0 B (1.00000000 0.00000000) *
##        15) texture_worst>=4.126187 47   0 M (0.00000000 1.00000000) *
## 
## $trees[[71]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 430 M (0.47149123 0.52850877)  
##     2) smoothness_mean< -2.201842 830 414 M (0.49879518 0.50120482)  
##       4) compactness_se< -3.439055 636 292 B (0.54088050 0.45911950)  
##         8) texture_mean< 2.756519 34   6 B (0.82352941 0.17647059)  
##          16) smoothness_worst>=-1.569234 26   0 B (1.00000000 0.00000000) *
##          17) smoothness_worst< -1.569234 8   2 M (0.25000000 0.75000000)  
##            34) texture_mean>=2.724206 2   0 B (1.00000000 0.00000000) *
##            35) texture_mean< 2.724206 6   0 M (0.00000000 1.00000000) *
##         9) texture_mean>=2.756519 602 286 B (0.52491694 0.47508306)  
##          18) texture_mean>=2.770085 579 264 B (0.54404145 0.45595855)  
##            36) texture_mean< 2.813911 19   0 B (1.00000000 0.00000000) *
##            37) texture_mean>=2.813911 560 264 B (0.52857143 0.47142857)  
##              74) compactness_se< -4.505325 83  25 B (0.69879518 0.30120482) *
##              75) compactness_se>=-4.505325 477 238 M (0.49895178 0.50104822) *
##          19) texture_mean< 2.770085 23   1 M (0.04347826 0.95652174)  
##            38) smoothness_mean< -2.443516 1   0 B (1.00000000 0.00000000) *
##            39) smoothness_mean>=-2.443516 22   0 M (0.00000000 1.00000000) *
##       5) compactness_se>=-3.439055 194  70 M (0.36082474 0.63917526)  
##        10) texture_mean< 3.071302 138  66 M (0.47826087 0.52173913)  
##          20) smoothness_worst< -1.502897 41   4 B (0.90243902 0.09756098)  
##            40) compactness_se>=-3.392487 28   0 B (1.00000000 0.00000000) *
##            41) compactness_se< -3.392487 13   4 B (0.69230769 0.30769231)  
##              82) compactness_se< -3.404656 9   0 B (1.00000000 0.00000000) *
##              83) compactness_se>=-3.404656 4   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst>=-1.502897 97  29 M (0.29896907 0.70103093)  
##            42) symmetry_worst>=-1.471051 38  14 B (0.63157895 0.36842105)  
##              84) texture_mean>=2.840763 27   4 B (0.85185185 0.14814815) *
##              85) texture_mean< 2.840763 11   1 M (0.09090909 0.90909091) *
##            43) symmetry_worst< -1.471051 59   5 M (0.08474576 0.91525424)  
##              86) texture_worst< 4.217 2   0 B (1.00000000 0.00000000) *
##              87) texture_worst>=4.217 57   3 M (0.05263158 0.94736842) *
##        11) texture_mean>=3.071302 56   4 M (0.07142857 0.92857143)  
##          22) smoothness_worst>=-1.427204 5   2 M (0.40000000 0.60000000)  
##            44) texture_mean>=3.16708 2   0 B (1.00000000 0.00000000) *
##            45) texture_mean< 3.16708 3   0 M (0.00000000 1.00000000) *
##          23) smoothness_worst< -1.427204 51   2 M (0.03921569 0.96078431)  
##            46) compactness_se>=-3.107684 22   2 M (0.09090909 0.90909091)  
##              92) compactness_se< -3.05924 2   0 B (1.00000000 0.00000000) *
##              93) compactness_se>=-3.05924 20   0 M (0.00000000 1.00000000) *
##            47) compactness_se< -3.107684 29   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.201842 82  16 M (0.19512195 0.80487805)  
##       6) symmetry_worst< -1.685481 18   8 B (0.55555556 0.44444444)  
##        12) smoothness_mean>=-2.176486 10   0 B (1.00000000 0.00000000) *
##        13) smoothness_mean< -2.176486 8   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-1.685481 64   6 M (0.09375000 0.90625000)  
##        14) compactness_se< -4.098715 3   0 B (1.00000000 0.00000000) *
##        15) compactness_se>=-4.098715 61   3 M (0.04918033 0.95081967)  
##          30) texture_mean>=3.037093 7   2 M (0.28571429 0.71428571)  
##            60) texture_mean< 3.044522 2   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=3.044522 5   0 M (0.00000000 1.00000000) *
##          31) texture_mean< 3.037093 54   1 M (0.01851852 0.98148148)  
##            62) smoothness_mean>=-2.000349 3   1 M (0.33333333 0.66666667)  
##             124) texture_mean< 2.688296 1   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=2.688296 2   0 M (0.00000000 1.00000000) *
##            63) smoothness_mean< -2.000349 51   0 M (0.00000000 1.00000000) *
## 
## $trees[[72]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 432 M (0.47368421 0.52631579)  
##     2) compactness_se< -3.488718 643 306 B (0.52410575 0.47589425)  
##       4) smoothness_worst< -1.425207 592 265 B (0.55236486 0.44763514)  
##         8) compactness_se>=-3.512073 25   0 B (1.00000000 0.00000000) *
##         9) compactness_se< -3.512073 567 265 B (0.53262787 0.46737213)  
##          18) symmetry_worst>=-1.559535 129  42 B (0.67441860 0.32558140)  
##            36) smoothness_mean>=-2.454281 109  27 B (0.75229358 0.24770642)  
##              72) symmetry_worst< -1.423936 84  14 B (0.83333333 0.16666667) *
##              73) symmetry_worst>=-1.423936 25  12 M (0.48000000 0.52000000) *
##            37) smoothness_mean< -2.454281 20   5 M (0.25000000 0.75000000)  
##              74) compactness_se>=-4.161775 6   1 B (0.83333333 0.16666667) *
##              75) compactness_se< -4.161775 14   0 M (0.00000000 1.00000000) *
##          19) symmetry_worst< -1.559535 438 215 M (0.49086758 0.50913242)  
##            38) texture_mean>=3.33381 31   6 B (0.80645161 0.19354839)  
##              76) texture_mean< 3.431382 26   1 B (0.96153846 0.03846154) *
##              77) texture_mean>=3.431382 5   0 M (0.00000000 1.00000000) *
##            39) texture_mean< 3.33381 407 190 M (0.46683047 0.53316953)  
##              78) symmetry_worst< -1.787433 255 120 B (0.52941176 0.47058824) *
##              79) symmetry_worst>=-1.787433 152  55 M (0.36184211 0.63815789) *
##       5) smoothness_worst>=-1.425207 51  10 M (0.19607843 0.80392157)  
##        10) texture_worst< 4.269167 6   0 B (1.00000000 0.00000000) *
##        11) texture_worst>=4.269167 45   4 M (0.08888889 0.91111111)  
##          22) compactness_se< -4.099998 6   2 B (0.66666667 0.33333333)  
##            44) texture_mean< 3.075523 4   0 B (1.00000000 0.00000000) *
##            45) texture_mean>=3.075523 2   0 M (0.00000000 1.00000000) *
##          23) compactness_se>=-4.099998 39   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.488718 269  95 M (0.35315985 0.64684015)  
##       6) symmetry_worst< -1.656074 146  72 M (0.49315068 0.50684932)  
##        12) symmetry_worst>=-1.982549 90  30 B (0.66666667 0.33333333)  
##          24) symmetry_worst< -1.839514 39   1 B (0.97435897 0.02564103)  
##            48) texture_mean< 3.088324 38   0 B (1.00000000 0.00000000) *
##            49) texture_mean>=3.088324 1   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst>=-1.839514 51  22 M (0.43137255 0.56862745)  
##            50) texture_worst< 4.40102 12   0 B (1.00000000 0.00000000) *
##            51) texture_worst>=4.40102 39  10 M (0.25641026 0.74358974)  
##             102) smoothness_mean>=-2.120284 6   0 B (1.00000000 0.00000000) *
##             103) smoothness_mean< -2.120284 33   4 M (0.12121212 0.87878788) *
##        13) symmetry_worst< -1.982549 56  12 M (0.21428571 0.78571429)  
##          26) smoothness_worst>=-1.477394 7   2 B (0.71428571 0.28571429)  
##            52) texture_mean< 3.158131 5   0 B (1.00000000 0.00000000) *
##            53) texture_mean>=3.158131 2   0 M (0.00000000 1.00000000) *
##          27) smoothness_worst< -1.477394 49   7 M (0.14285714 0.85714286)  
##            54) compactness_se>=-3.248462 16   7 M (0.43750000 0.56250000)  
##             108) texture_mean< 3.076827 7   0 B (1.00000000 0.00000000) *
##             109) texture_mean>=3.076827 9   0 M (0.00000000 1.00000000) *
##            55) compactness_se< -3.248462 33   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-1.656074 123  23 M (0.18699187 0.81300813)  
##        14) compactness_se>=-2.470993 5   0 B (1.00000000 0.00000000) *
##        15) compactness_se< -2.470993 118  18 M (0.15254237 0.84745763)  
##          30) texture_worst< 3.969009 5   1 B (0.80000000 0.20000000)  
##            60) texture_mean>=2.44739 4   0 B (1.00000000 0.00000000) *
##            61) texture_mean< 2.44739 1   0 M (0.00000000 1.00000000) *
##          31) texture_worst>=3.969009 113  14 M (0.12389381 0.87610619)  
##            62) smoothness_mean< -2.338805 36  11 M (0.30555556 0.69444444)  
##             124) symmetry_worst>=-1.497271 9   0 B (1.00000000 0.00000000) *
##             125) symmetry_worst< -1.497271 27   2 M (0.07407407 0.92592593) *
##            63) smoothness_mean>=-2.338805 77   3 M (0.03896104 0.96103896)  
##             126) symmetry_worst< -1.580867 7   2 M (0.28571429 0.71428571) *
##             127) symmetry_worst>=-1.580867 70   1 M (0.01428571 0.98571429) *
## 
## $trees[[73]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 452 M (0.49561404 0.50438596)  
##     2) compactness_se>=-4.49319 807 383 B (0.52540273 0.47459727)  
##       4) smoothness_mean< -2.2971 525 213 B (0.59428571 0.40571429)  
##         8) smoothness_mean>=-2.326878 95  15 B (0.84210526 0.15789474)  
##          16) smoothness_worst>=-1.560669 84   4 B (0.95238095 0.04761905)  
##            32) texture_worst< 5.091364 82   2 B (0.97560976 0.02439024)  
##              64) compactness_se>=-4.101376 81   1 B (0.98765432 0.01234568) *
##              65) compactness_se< -4.101376 1   0 M (0.00000000 1.00000000) *
##            33) texture_worst>=5.091364 2   0 M (0.00000000 1.00000000) *
##          17) smoothness_worst< -1.560669 11   0 M (0.00000000 1.00000000) *
##         9) smoothness_mean< -2.326878 430 198 B (0.53953488 0.46046512)  
##          18) symmetry_worst< -1.39888 409 178 B (0.56479218 0.43520782)  
##            36) symmetry_worst>=-1.750623 162  46 B (0.71604938 0.28395062)  
##              72) smoothness_worst>=-1.568787 119  18 B (0.84873950 0.15126050) *
##              73) smoothness_worst< -1.568787 43  15 M (0.34883721 0.65116279) *
##            37) symmetry_worst< -1.750623 247 115 M (0.46558704 0.53441296)  
##              74) symmetry_worst< -1.789477 202  92 B (0.54455446 0.45544554) *
##              75) symmetry_worst>=-1.789477 45   5 M (0.11111111 0.88888889) *
##          19) symmetry_worst>=-1.39888 21   1 M (0.04761905 0.95238095)  
##            38) texture_worst< 4.479829 1   0 B (1.00000000 0.00000000) *
##            39) texture_worst>=4.479829 20   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.2971 282 112 M (0.39716312 0.60283688)  
##        10) smoothness_mean>=-2.292637 245 110 M (0.44897959 0.55102041)  
##          20) compactness_se< -4.023814 46  11 B (0.76086957 0.23913043)  
##            40) smoothness_mean< -2.222419 27   0 B (1.00000000 0.00000000) *
##            41) smoothness_mean>=-2.222419 19   8 M (0.42105263 0.57894737)  
##              82) texture_mean< 2.910336 7   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=2.910336 12   1 M (0.08333333 0.91666667) *
##          21) compactness_se>=-4.023814 199  75 M (0.37688442 0.62311558)  
##            42) smoothness_worst< -1.482898 51  17 B (0.66666667 0.33333333)  
##              84) compactness_se< -3.656611 25   0 B (1.00000000 0.00000000) *
##              85) compactness_se>=-3.656611 26   9 M (0.34615385 0.65384615) *
##            43) smoothness_worst>=-1.482898 148  41 M (0.27702703 0.72297297)  
##              86) texture_worst< 4.398698 57  28 B (0.50877193 0.49122807) *
##              87) texture_worst>=4.398698 91  12 M (0.13186813 0.86813187) *
##        11) smoothness_mean< -2.292637 37   2 M (0.05405405 0.94594595)  
##          22) texture_mean< 2.753964 1   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.753964 36   1 M (0.02777778 0.97222222)  
##            46) compactness_se< -4.216002 1   0 B (1.00000000 0.00000000) *
##            47) compactness_se>=-4.216002 35   0 M (0.00000000 1.00000000) *
##     3) compactness_se< -4.49319 105  28 M (0.26666667 0.73333333)  
##       6) smoothness_worst>=-1.547264 30  10 B (0.66666667 0.33333333)  
##        12) symmetry_worst>=-1.696111 18   0 B (1.00000000 0.00000000) *
##        13) symmetry_worst< -1.696111 12   2 M (0.16666667 0.83333333)  
##          26) compactness_se< -4.631213 2   0 B (1.00000000 0.00000000) *
##          27) compactness_se>=-4.631213 10   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst< -1.547264 75   8 M (0.10666667 0.89333333)  
##        14) compactness_se< -4.727869 4   1 B (0.75000000 0.25000000)  
##          28) smoothness_worst< -1.634 3   0 B (1.00000000 0.00000000) *
##          29) smoothness_worst>=-1.634 1   0 M (0.00000000 1.00000000) *
##        15) compactness_se>=-4.727869 71   5 M (0.07042254 0.92957746)  
##          30) symmetry_worst>=-1.459568 1   0 B (1.00000000 0.00000000) *
##          31) symmetry_worst< -1.459568 70   4 M (0.05714286 0.94285714)  
##            62) texture_worst>=4.660194 31   4 M (0.12903226 0.87096774)  
##             124) texture_worst< 4.812659 4   0 B (1.00000000 0.00000000) *
##             125) texture_worst>=4.812659 27   0 M (0.00000000 1.00000000) *
##            63) texture_worst< 4.660194 39   0 M (0.00000000 1.00000000) *
## 
## $trees[[74]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 425 M (0.46600877 0.53399123)  
##     2) symmetry_worst>=-1.9261 650 314 B (0.51692308 0.48307692)  
##       4) compactness_se< -3.690481 374 146 B (0.60962567 0.39037433)  
##         8) smoothness_worst< -1.451541 283  92 B (0.67491166 0.32508834)  
##          16) compactness_se>=-4.160164 144  18 B (0.87500000 0.12500000)  
##            32) symmetry_worst>=-1.767566 92   3 B (0.96739130 0.03260870)  
##              64) symmetry_worst< -1.201763 91   2 B (0.97802198 0.02197802) *
##              65) symmetry_worst>=-1.201763 1   0 M (0.00000000 1.00000000) *
##            33) symmetry_worst< -1.767566 52  15 B (0.71153846 0.28846154)  
##              66) symmetry_worst< -1.786753 39   2 B (0.94871795 0.05128205) *
##              67) symmetry_worst>=-1.786753 13   0 M (0.00000000 1.00000000) *
##          17) compactness_se< -4.160164 139  65 M (0.46762590 0.53237410)  
##            34) compactness_se< -4.260936 110  48 B (0.56363636 0.43636364)  
##              68) smoothness_mean>=-2.454281 54  10 B (0.81481481 0.18518519) *
##              69) smoothness_mean< -2.454281 56  18 M (0.32142857 0.67857143) *
##            35) compactness_se>=-4.260936 29   3 M (0.10344828 0.89655172)  
##              70) symmetry_worst< -1.580909 11   3 M (0.27272727 0.72727273) *
##              71) symmetry_worst>=-1.580909 18   0 M (0.00000000 1.00000000) *
##         9) smoothness_worst>=-1.451541 91  37 M (0.40659341 0.59340659)  
##          18) compactness_se< -4.040144 41   9 B (0.78048780 0.21951220)  
##            36) smoothness_mean< -2.222419 34   3 B (0.91176471 0.08823529)  
##              72) smoothness_worst< -1.426496 29   0 B (1.00000000 0.00000000) *
##              73) smoothness_worst>=-1.426496 5   2 M (0.40000000 0.60000000) *
##            37) smoothness_mean>=-2.222419 7   1 M (0.14285714 0.85714286)  
##              74) texture_mean< 2.88089 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.88089 6   0 M (0.00000000 1.00000000) *
##          19) compactness_se>=-4.040144 50   5 M (0.10000000 0.90000000)  
##            38) smoothness_mean>=-2.166752 12   4 M (0.33333333 0.66666667)  
##              76) smoothness_mean< -2.111645 3   0 B (1.00000000 0.00000000) *
##              77) smoothness_mean>=-2.111645 9   1 M (0.11111111 0.88888889) *
##            39) smoothness_mean< -2.166752 38   1 M (0.02631579 0.97368421)  
##              78) symmetry_worst< -1.895488 1   0 B (1.00000000 0.00000000) *
##              79) symmetry_worst>=-1.895488 37   0 M (0.00000000 1.00000000) *
##       5) compactness_se>=-3.690481 276 108 M (0.39130435 0.60869565)  
##        10) compactness_se>=-3.586422 228 106 M (0.46491228 0.53508772)  
##          20) symmetry_worst< -1.656986 74  23 B (0.68918919 0.31081081)  
##            40) smoothness_mean< -2.389667 24   1 B (0.95833333 0.04166667)  
##              80) texture_mean< 3.09132 23   0 B (1.00000000 0.00000000) *
##              81) texture_mean>=3.09132 1   0 M (0.00000000 1.00000000) *
##            41) smoothness_mean>=-2.389667 50  22 B (0.56000000 0.44000000)  
##              82) compactness_se>=-3.355844 33   8 B (0.75757576 0.24242424) *
##              83) compactness_se< -3.355844 17   3 M (0.17647059 0.82352941) *
##          21) symmetry_worst>=-1.656986 154  55 M (0.35714286 0.64285714)  
##            42) smoothness_mean< -2.219632 121  54 M (0.44628099 0.55371901)  
##              84) symmetry_worst>=-1.629511 99  45 B (0.54545455 0.45454545) *
##              85) symmetry_worst< -1.629511 22   0 M (0.00000000 1.00000000) *
##            43) smoothness_mean>=-2.219632 33   1 M (0.03030303 0.96969697)  
##              86) smoothness_mean>=-1.889548 1   0 B (1.00000000 0.00000000) *
##              87) smoothness_mean< -1.889548 32   0 M (0.00000000 1.00000000) *
##        11) compactness_se< -3.586422 48   2 M (0.04166667 0.95833333)  
##          22) smoothness_mean< -2.509667 1   0 B (1.00000000 0.00000000) *
##          23) smoothness_mean>=-2.509667 47   1 M (0.02127660 0.97872340)  
##            46) compactness_se< -3.681134 3   1 M (0.33333333 0.66666667)  
##              92) texture_mean< 2.986001 1   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=2.986001 2   0 M (0.00000000 1.00000000) *
##            47) compactness_se>=-3.681134 44   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst< -1.9261 262  89 M (0.33969466 0.66030534)  
##       6) smoothness_worst>=-1.477976 30   8 B (0.73333333 0.26666667)  
##        12) texture_worst< 4.851322 22   0 B (1.00000000 0.00000000) *
##        13) texture_worst>=4.851322 8   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst< -1.477976 232  67 M (0.28879310 0.71120690)  
##        14) texture_mean>=3.336125 13   2 B (0.84615385 0.15384615)  
##          28) smoothness_mean< -2.380359 11   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean>=-2.380359 2   0 M (0.00000000 1.00000000) *
##        15) texture_mean< 3.336125 219  56 M (0.25570776 0.74429224)  
##          30) compactness_se< -4.614925 6   0 B (1.00000000 0.00000000) *
##          31) compactness_se>=-4.614925 213  50 M (0.23474178 0.76525822)  
##            62) symmetry_worst< -2.202388 63  27 M (0.42857143 0.57142857)  
##             124) smoothness_worst>=-1.553723 26   4 B (0.84615385 0.15384615) *
##             125) smoothness_worst< -1.553723 37   5 M (0.13513514 0.86486486) *
##            63) symmetry_worst>=-2.202388 150  23 M (0.15333333 0.84666667)  
##             126) texture_mean< 2.986405 61  20 M (0.32786885 0.67213115) *
##             127) texture_mean>=2.986405 89   3 M (0.03370787 0.96629213) *
## 
## $trees[[75]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 434 M (0.47587719 0.52412281)  
##     2) compactness_se< -3.987083 335 134 B (0.60000000 0.40000000)  
##       4) smoothness_mean>=-2.291157 69   8 B (0.88405797 0.11594203)  
##         8) symmetry_worst< -1.449852 65   4 B (0.93846154 0.06153846)  
##          16) texture_worst< 5.040422 63   2 B (0.96825397 0.03174603)  
##            32) symmetry_worst>=-1.743442 50   0 B (1.00000000 0.00000000) *
##            33) symmetry_worst< -1.743442 13   2 B (0.84615385 0.15384615)  
##              66) symmetry_worst< -1.765932 11   0 B (1.00000000 0.00000000) *
##              67) symmetry_worst>=-1.765932 2   0 M (0.00000000 1.00000000) *
##          17) texture_worst>=5.040422 2   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst>=-1.449852 4   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean< -2.291157 266 126 B (0.52631579 0.47368421)  
##        10) texture_mean< 2.947329 109  31 B (0.71559633 0.28440367)  
##          20) smoothness_mean< -2.329495 77  14 B (0.81818182 0.18181818)  
##            40) smoothness_worst< -1.555669 29   0 B (1.00000000 0.00000000) *
##            41) smoothness_worst>=-1.555669 48  14 B (0.70833333 0.29166667)  
##              82) smoothness_worst>=-1.541278 35   1 B (0.97142857 0.02857143) *
##              83) smoothness_worst< -1.541278 13   0 M (0.00000000 1.00000000) *
##          21) smoothness_mean>=-2.329495 32  15 M (0.46875000 0.53125000)  
##            42) texture_mean< 2.894246 19   4 B (0.78947368 0.21052632)  
##              84) smoothness_mean< -2.295113 15   0 B (1.00000000 0.00000000) *
##              85) smoothness_mean>=-2.295113 4   0 M (0.00000000 1.00000000) *
##            43) texture_mean>=2.894246 13   0 M (0.00000000 1.00000000) *
##        11) texture_mean>=2.947329 157  62 M (0.39490446 0.60509554)  
##          22) texture_mean>=3.227241 20   2 B (0.90000000 0.10000000)  
##            44) texture_mean< 3.409933 18   0 B (1.00000000 0.00000000) *
##            45) texture_mean>=3.409933 2   0 M (0.00000000 1.00000000) *
##          23) texture_mean< 3.227241 137  44 M (0.32116788 0.67883212)  
##            46) texture_mean< 3.107047 100  44 M (0.44000000 0.56000000)  
##              92) smoothness_mean< -2.422683 45  15 B (0.66666667 0.33333333) *
##              93) smoothness_mean>=-2.422683 55  14 M (0.25454545 0.74545455) *
##            47) texture_mean>=3.107047 37   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.987083 577 233 M (0.40381282 0.59618718)  
##       6) smoothness_worst< -1.499656 283 136 B (0.51943463 0.48056537)  
##        12) texture_mean< 3.006671 103  25 B (0.75728155 0.24271845)  
##          24) compactness_se>=-3.93685 98  20 B (0.79591837 0.20408163)  
##            48) smoothness_worst>=-1.568787 59   2 B (0.96610169 0.03389831)  
##              96) smoothness_mean< -2.176018 57   0 B (1.00000000 0.00000000) *
##              97) smoothness_mean>=-2.176018 2   0 M (0.00000000 1.00000000) *
##            49) smoothness_worst< -1.568787 39  18 B (0.53846154 0.46153846)  
##              98) texture_worst< 4.56463 30   9 B (0.70000000 0.30000000) *
##              99) texture_worst>=4.56463 9   0 M (0.00000000 1.00000000) *
##          25) compactness_se< -3.93685 5   0 M (0.00000000 1.00000000) *
##        13) texture_mean>=3.006671 180  69 M (0.38333333 0.61666667)  
##          26) smoothness_worst>=-1.553723 82  37 B (0.54878049 0.45121951)  
##            52) compactness_se< -3.616009 27   3 B (0.88888889 0.11111111)  
##             104) texture_mean>=3.059872 24   0 B (1.00000000 0.00000000) *
##             105) texture_mean< 3.059872 3   0 M (0.00000000 1.00000000) *
##            53) compactness_se>=-3.616009 55  21 M (0.38181818 0.61818182)  
##             106) texture_worst< 4.566107 11   0 B (1.00000000 0.00000000) *
##             107) texture_worst>=4.566107 44  10 M (0.22727273 0.77272727) *
##          27) smoothness_worst< -1.553723 98  24 M (0.24489796 0.75510204)  
##            54) symmetry_worst>=-2.04723 45  19 M (0.42222222 0.57777778)  
##             108) symmetry_worst< -1.550826 27   8 B (0.70370370 0.29629630) *
##             109) symmetry_worst>=-1.550826 18   0 M (0.00000000 1.00000000) *
##            55) symmetry_worst< -2.04723 53   5 M (0.09433962 0.90566038)  
##             110) compactness_se>=-3.179583 19   5 M (0.26315789 0.73684211) *
##             111) compactness_se< -3.179583 34   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst>=-1.499656 294  86 M (0.29251701 0.70748299)  
##        14) symmetry_worst< -1.352813 244  82 M (0.33606557 0.66393443)  
##          28) symmetry_worst>=-1.471051 17   4 B (0.76470588 0.23529412)  
##            56) texture_mean< 2.794024 10   0 B (1.00000000 0.00000000) *
##            57) texture_mean>=2.794024 7   3 M (0.42857143 0.57142857)  
##             114) texture_mean>=2.887911 3   0 B (1.00000000 0.00000000) *
##             115) texture_mean< 2.887911 4   0 M (0.00000000 1.00000000) *
##          29) symmetry_worst< -1.471051 227  69 M (0.30396476 0.69603524)  
##            58) symmetry_worst< -1.641484 175  64 M (0.36571429 0.63428571)  
##             116) smoothness_mean>=-2.14559 15   0 B (1.00000000 0.00000000) *
##             117) smoothness_mean< -2.14559 160  49 M (0.30625000 0.69375000) *
##            59) symmetry_worst>=-1.641484 52   5 M (0.09615385 0.90384615)  
##             118) texture_mean>=3.04903 1   0 B (1.00000000 0.00000000) *
##             119) texture_mean< 3.04903 51   4 M (0.07843137 0.92156863) *
##        15) symmetry_worst>=-1.352813 50   4 M (0.08000000 0.92000000)  
##          30) smoothness_mean< -2.365259 2   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean>=-2.365259 48   2 M (0.04166667 0.95833333)  
##            62) compactness_se>=-2.588521 2   0 B (1.00000000 0.00000000) *
##            63) compactness_se< -2.588521 46   0 M (0.00000000 1.00000000) *
## 
## $trees[[76]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 455 M (0.49890351 0.50109649)  
##     2) compactness_se< -3.643388 525 222 B (0.57714286 0.42285714)  
##       4) compactness_se>=-3.867535 115  25 B (0.78260870 0.21739130)  
##         8) smoothness_worst>=-1.574151 105  16 B (0.84761905 0.15238095)  
##          16) symmetry_worst< -1.3705 98  10 B (0.89795918 0.10204082)  
##            32) smoothness_worst< -1.417195 91   5 B (0.94505495 0.05494505)  
##              64) texture_mean>=2.680808 90   4 B (0.95555556 0.04444444) *
##              65) texture_mean< 2.680808 1   0 M (0.00000000 1.00000000) *
##            33) smoothness_worst>=-1.417195 7   2 M (0.28571429 0.71428571)  
##              66) texture_mean< 2.89891 2   0 B (1.00000000 0.00000000) *
##              67) texture_mean>=2.89891 5   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst>=-1.3705 7   1 M (0.14285714 0.85714286)  
##            34) texture_mean< 2.76528 1   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.76528 6   0 M (0.00000000 1.00000000) *
##         9) smoothness_worst< -1.574151 10   1 M (0.10000000 0.90000000)  
##          18) texture_mean< 2.850088 1   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=2.850088 9   0 M (0.00000000 1.00000000) *
##       5) compactness_se< -3.867535 410 197 B (0.51951220 0.48048780)  
##        10) compactness_se< -3.885633 387 174 B (0.55038760 0.44961240)  
##          20) texture_mean< 2.947329 159  49 B (0.69182390 0.30817610)  
##            40) compactness_se>=-4.334002 105  20 B (0.80952381 0.19047619)  
##              80) smoothness_worst< -1.451541 85   9 B (0.89411765 0.10588235) *
##              81) smoothness_worst>=-1.451541 20   9 M (0.45000000 0.55000000) *
##            41) compactness_se< -4.334002 54  25 M (0.46296296 0.53703704)  
##              82) texture_worst< 4.35485 15   0 B (1.00000000 0.00000000) *
##              83) texture_worst>=4.35485 39  10 M (0.25641026 0.74358974) *
##          21) texture_mean>=2.947329 228 103 M (0.45175439 0.54824561)  
##            42) symmetry_worst< -1.724518 152  71 B (0.53289474 0.46710526)  
##              84) smoothness_worst< -1.576561 58  11 B (0.81034483 0.18965517) *
##              85) smoothness_worst>=-1.576561 94  34 M (0.36170213 0.63829787) *
##            43) symmetry_worst>=-1.724518 76  22 M (0.28947368 0.71052632)  
##              86) symmetry_worst>=-1.490299 17   4 B (0.76470588 0.23529412) *
##              87) symmetry_worst< -1.490299 59   9 M (0.15254237 0.84745763) *
##        11) compactness_se>=-3.885633 23   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.643388 387 152 M (0.39276486 0.60723514)  
##       6) symmetry_worst< -1.65431 225 112 B (0.50222222 0.49777778)  
##        12) compactness_se>=-3.483667 135  48 B (0.64444444 0.35555556)  
##          24) texture_mean< 3.135612 111  30 B (0.72972973 0.27027027)  
##            48) smoothness_mean>=-2.563309 104  23 B (0.77884615 0.22115385)  
##              96) smoothness_mean< -2.385259 37   0 B (1.00000000 0.00000000) *
##              97) smoothness_mean>=-2.385259 67  23 B (0.65671642 0.34328358) *
##            49) smoothness_mean< -2.563309 7   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=3.135612 24   6 M (0.25000000 0.75000000)  
##            50) smoothness_worst>=-1.43594 6   0 B (1.00000000 0.00000000) *
##            51) smoothness_worst< -1.43594 18   0 M (0.00000000 1.00000000) *
##        13) compactness_se< -3.483667 90  26 M (0.28888889 0.71111111)  
##          26) texture_mean>=3.138519 18   5 B (0.72222222 0.27777778)  
##            52) texture_mean< 3.399247 13   0 B (1.00000000 0.00000000) *
##            53) texture_mean>=3.399247 5   0 M (0.00000000 1.00000000) *
##          27) texture_mean< 3.138519 72  13 M (0.18055556 0.81944444)  
##            54) smoothness_mean< -2.380923 23  10 M (0.43478261 0.56521739)  
##             108) smoothness_mean>=-2.436819 10   0 B (1.00000000 0.00000000) *
##             109) smoothness_mean< -2.436819 13   0 M (0.00000000 1.00000000) *
##            55) smoothness_mean>=-2.380923 49   3 M (0.06122449 0.93877551)  
##             110) smoothness_worst>=-1.459744 2   0 B (1.00000000 0.00000000) *
##             111) smoothness_worst< -1.459744 47   1 M (0.02127660 0.97872340) *
##       7) symmetry_worst>=-1.65431 162  39 M (0.24074074 0.75925926)  
##        14) compactness_se< -3.484318 29  11 B (0.62068966 0.37931034)  
##          28) compactness_se>=-3.502612 17   0 B (1.00000000 0.00000000) *
##          29) compactness_se< -3.502612 12   1 M (0.08333333 0.91666667)  
##            58) texture_mean>=3.08111 1   0 B (1.00000000 0.00000000) *
##            59) texture_mean< 3.08111 11   0 M (0.00000000 1.00000000) *
##        15) compactness_se>=-3.484318 133  21 M (0.15789474 0.84210526)  
##          30) compactness_se>=-2.659237 7   2 B (0.71428571 0.28571429)  
##            60) texture_mean< 3.031641 5   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=3.031641 2   0 M (0.00000000 1.00000000) *
##          31) compactness_se< -2.659237 126  16 M (0.12698413 0.87301587)  
##            62) smoothness_worst>=-1.533662 90  16 M (0.17777778 0.82222222)  
##             124) smoothness_worst< -1.482108 39  14 M (0.35897436 0.64102564) *
##             125) smoothness_worst>=-1.482108 51   2 M (0.03921569 0.96078431) *
##            63) smoothness_worst< -1.533662 36   0 M (0.00000000 1.00000000) *
## 
## $trees[[77]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 450 B (0.50657895 0.49342105)  
##     2) compactness_se< -3.672219 561 230 B (0.59001783 0.40998217)  
##       4) smoothness_worst>=-1.6166 507 187 B (0.63116371 0.36883629)  
##         8) smoothness_mean< -2.468758 46   2 B (0.95652174 0.04347826)  
##          16) texture_mean< 3.388429 44   0 B (1.00000000 0.00000000) *
##          17) texture_mean>=3.388429 2   0 M (0.00000000 1.00000000) *
##         9) smoothness_mean>=-2.468758 461 185 B (0.59869848 0.40130152)  
##          18) smoothness_mean>=-2.382983 284  90 B (0.68309859 0.31690141)  
##            36) symmetry_worst< -1.293329 270  77 B (0.71481481 0.28518519)  
##              72) symmetry_worst< -1.786753 114  20 B (0.82456140 0.17543860) *
##              73) symmetry_worst>=-1.786753 156  57 B (0.63461538 0.36538462) *
##            37) symmetry_worst>=-1.293329 14   1 M (0.07142857 0.92857143)  
##              74) texture_mean< 2.824658 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.824658 13   0 M (0.00000000 1.00000000) *
##          19) smoothness_mean< -2.382983 177  82 M (0.46327684 0.53672316)  
##            38) smoothness_mean< -2.394871 137  57 B (0.58394161 0.41605839)  
##              76) texture_worst>=4.465917 111  35 B (0.68468468 0.31531532) *
##              77) texture_worst< 4.465917 26   4 M (0.15384615 0.84615385) *
##            39) smoothness_mean>=-2.394871 40   2 M (0.05000000 0.95000000)  
##              78) texture_mean< 2.909709 2   0 B (1.00000000 0.00000000) *
##              79) texture_mean>=2.909709 38   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.6166 54  11 M (0.20370370 0.79629630)  
##        10) smoothness_mean< -2.572721 6   0 B (1.00000000 0.00000000) *
##        11) smoothness_mean>=-2.572721 48   5 M (0.10416667 0.89583333)  
##          22) texture_mean< 2.936117 2   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.936117 46   3 M (0.06521739 0.93478261)  
##            46) texture_mean>=3.23119 2   0 B (1.00000000 0.00000000) *
##            47) texture_mean< 3.23119 44   1 M (0.02272727 0.97727273)  
##              94) compactness_se< -4.803674 1   0 B (1.00000000 0.00000000) *
##              95) compactness_se>=-4.803674 43   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-3.672219 351 131 M (0.37321937 0.62678063)  
##       6) smoothness_mean< -2.413575 75  27 B (0.64000000 0.36000000)  
##        12) compactness_se>=-3.125122 40   6 B (0.85000000 0.15000000)  
##          24) smoothness_worst>=-1.708845 33   0 B (1.00000000 0.00000000) *
##          25) smoothness_worst< -1.708845 7   1 M (0.14285714 0.85714286)  
##            50) texture_mean>=3.103494 1   0 B (1.00000000 0.00000000) *
##            51) texture_mean< 3.103494 6   0 M (0.00000000 1.00000000) *
##        13) compactness_se< -3.125122 35  14 M (0.40000000 0.60000000)  
##          26) texture_mean< 3.049127 20   7 B (0.65000000 0.35000000)  
##            52) texture_worst>=3.981964 14   2 B (0.85714286 0.14285714)  
##             104) symmetry_worst< -1.851403 11   0 B (1.00000000 0.00000000) *
##             105) symmetry_worst>=-1.851403 3   1 M (0.33333333 0.66666667) *
##            53) texture_worst< 3.981964 6   1 M (0.16666667 0.83333333)  
##             106) texture_mean< 2.754513 1   0 B (1.00000000 0.00000000) *
##             107) texture_mean>=2.754513 5   0 M (0.00000000 1.00000000) *
##          27) texture_mean>=3.049127 15   1 M (0.06666667 0.93333333)  
##            54) texture_mean>=3.337721 2   1 B (0.50000000 0.50000000)  
##             108) texture_mean< 3.410351 1   0 B (1.00000000 0.00000000) *
##             109) texture_mean>=3.410351 1   0 M (0.00000000 1.00000000) *
##            55) texture_mean< 3.337721 13   0 M (0.00000000 1.00000000) *
##       7) smoothness_mean>=-2.413575 276  83 M (0.30072464 0.69927536)  
##        14) texture_worst< 3.832298 7   0 B (1.00000000 0.00000000) *
##        15) texture_worst>=3.832298 269  76 M (0.28252788 0.71747212)  
##          30) symmetry_worst< -2.156952 15   5 B (0.66666667 0.33333333)  
##            60) smoothness_mean< -2.244441 10   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.244441 5   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-2.156952 254  66 M (0.25984252 0.74015748)  
##            62) texture_worst< 4.55941 139  49 M (0.35251799 0.64748201)  
##             124) smoothness_worst< -1.503711 53  20 B (0.62264151 0.37735849) *
##             125) smoothness_worst>=-1.503711 86  16 M (0.18604651 0.81395349) *
##            63) texture_worst>=4.55941 115  17 M (0.14782609 0.85217391)  
##             126) smoothness_mean>=-2.093138 4   0 B (1.00000000 0.00000000) *
##             127) smoothness_mean< -2.093138 111  13 M (0.11711712 0.88288288) *
## 
## $trees[[78]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 446 M (0.48903509 0.51096491)  
##     2) smoothness_mean< -2.413908 240  93 B (0.61250000 0.38750000)  
##       4) smoothness_worst>=-1.548762 84  11 B (0.86904762 0.13095238)  
##         8) symmetry_worst>=-1.996006 77   5 B (0.93506494 0.06493506)  
##          16) texture_mean< 3.359301 75   3 B (0.96000000 0.04000000)  
##            32) symmetry_worst< -1.429489 73   1 B (0.98630137 0.01369863)  
##              64) texture_worst< 5.003123 70   0 B (1.00000000 0.00000000) *
##              65) texture_worst>=5.003123 3   1 B (0.66666667 0.33333333) *
##            33) symmetry_worst>=-1.429489 2   0 M (0.00000000 1.00000000) *
##          17) texture_mean>=3.359301 2   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst< -1.996006 7   1 M (0.14285714 0.85714286)  
##          18) texture_mean< 3.047283 1   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=3.047283 6   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.548762 156  74 M (0.47435897 0.52564103)  
##        10) texture_mean< 2.921008 43  13 B (0.69767442 0.30232558)  
##          20) texture_mean>=2.881715 20   0 B (1.00000000 0.00000000) *
##          21) texture_mean< 2.881715 23  10 M (0.43478261 0.56521739)  
##            42) smoothness_mean< -2.469112 7   0 B (1.00000000 0.00000000) *
##            43) smoothness_mean>=-2.469112 16   3 M (0.18750000 0.81250000)  
##              86) compactness_se< -4.514299 3   0 B (1.00000000 0.00000000) *
##              87) compactness_se>=-4.514299 13   0 M (0.00000000 1.00000000) *
##        11) texture_mean>=2.921008 113  44 M (0.38938053 0.61061947)  
##          22) smoothness_worst< -1.623453 28   9 B (0.67857143 0.32142857)  
##            44) texture_worst>=4.576562 17   1 B (0.94117647 0.05882353)  
##              88) symmetry_worst< -1.18694 16   0 B (1.00000000 0.00000000) *
##              89) symmetry_worst>=-1.18694 1   0 M (0.00000000 1.00000000) *
##            45) texture_worst< 4.576562 11   3 M (0.27272727 0.72727273)  
##              90) texture_worst< 4.457426 4   1 B (0.75000000 0.25000000) *
##              91) texture_worst>=4.457426 7   0 M (0.00000000 1.00000000) *
##          23) smoothness_worst>=-1.623453 85  25 M (0.29411765 0.70588235)  
##            46) texture_mean>=3.337367 7   1 B (0.85714286 0.14285714)  
##              92) texture_mean< 3.388429 6   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=3.388429 1   0 M (0.00000000 1.00000000) *
##            47) texture_mean< 3.337367 78  19 M (0.24358974 0.75641026)  
##              94) texture_worst< 4.828203 40  17 M (0.42500000 0.57500000) *
##              95) texture_worst>=4.828203 38   2 M (0.05263158 0.94736842) *
##     3) smoothness_mean>=-2.413908 672 299 M (0.44494048 0.55505952)  
##       6) smoothness_mean>=-2.354774 460 222 B (0.51739130 0.48260870)  
##        12) compactness_se< -3.952856 130  34 B (0.73846154 0.26153846)  
##          24) symmetry_worst< -1.33108 124  28 B (0.77419355 0.22580645)  
##            48) smoothness_mean< -2.329495 28   0 B (1.00000000 0.00000000) *
##            49) smoothness_mean>=-2.329495 96  28 B (0.70833333 0.29166667)  
##              98) smoothness_mean>=-2.294121 70  10 B (0.85714286 0.14285714) *
##              99) smoothness_mean< -2.294121 26   8 M (0.30769231 0.69230769) *
##          25) symmetry_worst>=-1.33108 6   0 M (0.00000000 1.00000000) *
##        13) compactness_se>=-3.952856 330 142 M (0.43030303 0.56969697)  
##          26) compactness_se>=-3.904303 291 141 M (0.48453608 0.51546392)  
##            52) texture_mean>=3.039742 91  27 B (0.70329670 0.29670330)  
##             104) compactness_se< -3.352836 78  14 B (0.82051282 0.17948718) *
##             105) compactness_se>=-3.352836 13   0 M (0.00000000 1.00000000) *
##            53) texture_mean< 3.039742 200  77 M (0.38500000 0.61500000)  
##             106) smoothness_mean>=-2.262404 107  48 B (0.55140187 0.44859813) *
##             107) smoothness_mean< -2.262404 93  18 M (0.19354839 0.80645161) *
##          27) compactness_se< -3.904303 39   1 M (0.02564103 0.97435897)  
##            54) texture_mean< 2.858451 1   0 B (1.00000000 0.00000000) *
##            55) texture_mean>=2.858451 38   0 M (0.00000000 1.00000000) *
##       7) smoothness_mean< -2.354774 212  61 M (0.28773585 0.71226415)  
##        14) texture_mean< 2.974761 70  28 B (0.60000000 0.40000000)  
##          28) smoothness_worst< -1.549191 22   0 B (1.00000000 0.00000000) *
##          29) smoothness_worst>=-1.549191 48  20 M (0.41666667 0.58333333)  
##            58) symmetry_worst>=-1.582804 11   0 B (1.00000000 0.00000000) *
##            59) symmetry_worst< -1.582804 37   9 M (0.24324324 0.75675676)  
##             118) texture_worst< 4.228934 4   0 B (1.00000000 0.00000000) *
##             119) texture_worst>=4.228934 33   5 M (0.15151515 0.84848485) *
##        15) texture_mean>=2.974761 142  19 M (0.13380282 0.86619718)  
##          30) texture_mean>=3.351321 13   2 B (0.84615385 0.15384615)  
##            60) texture_mean< 3.431382 11   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=3.431382 2   0 M (0.00000000 1.00000000) *
##          31) texture_mean< 3.351321 129   8 M (0.06201550 0.93798450)  
##            62) symmetry_worst< -2.204211 7   3 B (0.57142857 0.42857143)  
##             124) smoothness_mean< -2.372601 4   0 B (1.00000000 0.00000000) *
##             125) smoothness_mean>=-2.372601 3   0 M (0.00000000 1.00000000) *
##            63) symmetry_worst>=-2.204211 122   4 M (0.03278689 0.96721311)  
##             126) smoothness_worst>=-1.421107 2   0 B (1.00000000 0.00000000) *
##             127) smoothness_worst< -1.421107 120   2 M (0.01666667 0.98333333) *
## 
## $trees[[79]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 423 M (0.46381579 0.53618421)  
##     2) smoothness_mean< -2.408446 266  89 B (0.66541353 0.33458647)  
##       4) texture_mean< 2.959066 95  17 B (0.82105263 0.17894737)  
##         8) compactness_se< -3.734437 72   6 B (0.91666667 0.08333333)  
##          16) smoothness_worst< -1.555886 32   0 B (1.00000000 0.00000000) *
##          17) smoothness_worst>=-1.555886 40   6 B (0.85000000 0.15000000)  
##            34) smoothness_worst>=-1.551775 35   1 B (0.97142857 0.02857143)  
##              68) texture_mean>=2.837818 32   0 B (1.00000000 0.00000000) *
##              69) texture_mean< 2.837818 3   1 B (0.66666667 0.33333333) *
##            35) smoothness_worst< -1.551775 5   0 M (0.00000000 1.00000000) *
##         9) compactness_se>=-3.734437 23  11 B (0.52173913 0.47826087)  
##          18) compactness_se>=-3.483667 11   0 B (1.00000000 0.00000000) *
##          19) compactness_se< -3.483667 12   1 M (0.08333333 0.91666667)  
##            38) texture_mean< 2.680923 1   0 B (1.00000000 0.00000000) *
##            39) texture_mean>=2.680923 11   0 M (0.00000000 1.00000000) *
##       5) texture_mean>=2.959066 171  72 B (0.57894737 0.42105263)  
##        10) symmetry_worst< -1.541072 158  59 B (0.62658228 0.37341772)  
##          20) texture_worst>=4.498003 143  45 B (0.68531469 0.31468531)  
##            40) symmetry_worst>=-2.218277 132  36 B (0.72727273 0.27272727)  
##              80) compactness_se>=-4.658767 115  24 B (0.79130435 0.20869565) *
##              81) compactness_se< -4.658767 17   5 M (0.29411765 0.70588235) *
##            41) symmetry_worst< -2.218277 11   2 M (0.18181818 0.81818182)  
##              82) smoothness_mean< -2.490273 2   0 B (1.00000000 0.00000000) *
##              83) smoothness_mean>=-2.490273 9   0 M (0.00000000 1.00000000) *
##          21) texture_worst< 4.498003 15   1 M (0.06666667 0.93333333)  
##            42) compactness_se>=-2.715861 1   0 B (1.00000000 0.00000000) *
##            43) compactness_se< -2.715861 14   0 M (0.00000000 1.00000000) *
##        11) symmetry_worst>=-1.541072 13   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.408446 646 246 M (0.38080495 0.61919505)  
##       6) compactness_se< -3.063476 566 237 M (0.41872792 0.58127208)  
##        12) smoothness_mean>=-2.354774 419 201 M (0.47971360 0.52028640)  
##          24) smoothness_mean< -2.344241 30   0 B (1.00000000 0.00000000) *
##          25) smoothness_mean>=-2.344241 389 171 M (0.43958869 0.56041131)  
##            50) texture_worst< 4.895983 318 157 M (0.49371069 0.50628931)  
##             100) texture_worst>=4.775439 37   2 B (0.94594595 0.05405405) *
##             101) texture_worst< 4.775439 281 122 M (0.43416370 0.56583630) *
##            51) texture_worst>=4.895983 71  14 M (0.19718310 0.80281690)  
##             102) compactness_se< -4.040144 9   1 B (0.88888889 0.11111111) *
##             103) compactness_se>=-4.040144 62   6 M (0.09677419 0.90322581) *
##        13) smoothness_mean< -2.354774 147  36 M (0.24489796 0.75510204)  
##          26) texture_mean>=3.351321 15   3 B (0.80000000 0.20000000)  
##            52) texture_mean< 3.407548 12   0 B (1.00000000 0.00000000) *
##            53) texture_mean>=3.407548 3   0 M (0.00000000 1.00000000) *
##          27) texture_mean< 3.351321 132  24 M (0.18181818 0.81818182)  
##            54) texture_worst< 4.212101 4   0 B (1.00000000 0.00000000) *
##            55) texture_worst>=4.212101 128  20 M (0.15625000 0.84375000)  
##             110) smoothness_mean< -2.367284 82  20 M (0.24390244 0.75609756) *
##             111) smoothness_mean>=-2.367284 46   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-3.063476 80   9 M (0.11250000 0.88750000)  
##        14) compactness_se>=-2.721974 12   6 B (0.50000000 0.50000000)  
##          28) texture_worst< 4.41664 6   0 B (1.00000000 0.00000000) *
##          29) texture_worst>=4.41664 6   0 M (0.00000000 1.00000000) *
##        15) compactness_se< -2.721974 68   3 M (0.04411765 0.95588235)  
##          30) smoothness_mean>=-2.080253 1   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean< -2.080253 67   2 M (0.02985075 0.97014925)  
##            62) texture_worst>=4.801107 5   2 M (0.40000000 0.60000000)  
##             124) texture_mean< 3.159827 2   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=3.159827 3   0 M (0.00000000 1.00000000) *
##            63) texture_worst< 4.801107 62   0 M (0.00000000 1.00000000) *
## 
## $trees[[80]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 434 B (0.52412281 0.47587719)  
##     2) texture_worst< 4.818867 696 288 B (0.58620690 0.41379310)  
##       4) texture_worst>=4.753106 59   4 B (0.93220339 0.06779661)  
##         8) compactness_se< -3.322755 57   2 B (0.96491228 0.03508772)  
##          16) symmetry_worst< -0.9904278 55   0 B (1.00000000 0.00000000) *
##          17) symmetry_worst>=-0.9904278 2   0 M (0.00000000 1.00000000) *
##         9) compactness_se>=-3.322755 2   0 M (0.00000000 1.00000000) *
##       5) texture_worst< 4.753106 637 284 B (0.55416013 0.44583987)  
##        10) texture_worst< 4.681966 554 224 B (0.59566787 0.40433213)  
##          20) texture_worst>=4.642157 47   3 B (0.93617021 0.06382979)  
##            40) texture_mean< 3.062639 45   1 B (0.97777778 0.02222222)  
##              80) texture_mean>=2.836998 44   0 B (1.00000000 0.00000000) *
##              81) texture_mean< 2.836998 1   0 M (0.00000000 1.00000000) *
##            41) texture_mean>=3.062639 2   0 M (0.00000000 1.00000000) *
##          21) texture_worst< 4.642157 507 221 B (0.56410256 0.43589744)  
##            42) texture_worst< 4.580648 427 164 B (0.61592506 0.38407494)  
##              84) smoothness_worst< -1.384694 404 144 B (0.64356436 0.35643564) *
##              85) smoothness_worst>=-1.384694 23   3 M (0.13043478 0.86956522) *
##            43) texture_worst>=4.580648 80  23 M (0.28750000 0.71250000)  
##              86) symmetry_worst>=-1.580305 17   6 B (0.64705882 0.35294118) *
##              87) symmetry_worst< -1.580305 63  12 M (0.19047619 0.80952381) *
##        11) texture_worst>=4.681966 83  23 M (0.27710843 0.72289157)  
##          22) symmetry_worst< -1.87333 36  13 B (0.63888889 0.36111111)  
##            44) smoothness_mean< -2.391331 23   0 B (1.00000000 0.00000000) *
##            45) smoothness_mean>=-2.391331 13   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst>=-1.87333 47   0 M (0.00000000 1.00000000) *
##     3) texture_worst>=4.818867 216  70 M (0.32407407 0.67592593)  
##       6) smoothness_worst< -1.52112 105  50 M (0.47619048 0.52380952)  
##        12) smoothness_worst>=-1.588911 67  23 B (0.65671642 0.34328358)  
##          24) texture_worst< 5.084467 46   8 B (0.82608696 0.17391304)  
##            48) compactness_se< -3.56617 44   6 B (0.86363636 0.13636364)  
##              96) compactness_se>=-4.393029 30   0 B (1.00000000 0.00000000) *
##              97) compactness_se< -4.393029 14   6 B (0.57142857 0.42857143) *
##            49) compactness_se>=-3.56617 2   0 M (0.00000000 1.00000000) *
##          25) texture_worst>=5.084467 21   6 M (0.28571429 0.71428571)  
##            50) symmetry_worst< -2.159635 3   0 B (1.00000000 0.00000000) *
##            51) symmetry_worst>=-2.159635 18   3 M (0.16666667 0.83333333)  
##             102) smoothness_mean< -2.431488 4   1 B (0.75000000 0.25000000) *
##             103) smoothness_mean>=-2.431488 14   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst< -1.588911 38   6 M (0.15789474 0.84210526)  
##          26) compactness_se< -4.899363 3   0 B (1.00000000 0.00000000) *
##          27) compactness_se>=-4.899363 35   3 M (0.08571429 0.91428571)  
##            54) smoothness_worst< -1.62752 6   3 B (0.50000000 0.50000000)  
##             108) texture_mean>=3.22319 3   0 B (1.00000000 0.00000000) *
##             109) texture_mean< 3.22319 3   0 M (0.00000000 1.00000000) *
##            55) smoothness_worst>=-1.62752 29   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst>=-1.52112 111  20 M (0.18018018 0.81981982)  
##        14) smoothness_mean>=-2.209101 8   1 B (0.87500000 0.12500000)  
##          28) smoothness_mean< -2.075957 7   0 B (1.00000000 0.00000000) *
##          29) smoothness_mean>=-2.075957 1   0 M (0.00000000 1.00000000) *
##        15) smoothness_mean< -2.209101 103  13 M (0.12621359 0.87378641)  
##          30) compactness_se>=-3.106177 7   2 B (0.71428571 0.28571429)  
##            60) smoothness_mean< -2.309338 5   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.309338 2   0 M (0.00000000 1.00000000) *
##          31) compactness_se< -3.106177 96   8 M (0.08333333 0.91666667)  
##            62) compactness_se< -4.557422 5   1 B (0.80000000 0.20000000)  
##             124) texture_worst>=5.08621 4   0 B (1.00000000 0.00000000) *
##             125) texture_worst< 5.08621 1   0 M (0.00000000 1.00000000) *
##            63) compactness_se>=-4.557422 91   4 M (0.04395604 0.95604396)  
##             126) texture_mean>=3.309778 12   2 M (0.16666667 0.83333333) *
##             127) texture_mean< 3.309778 79   2 M (0.02531646 0.97468354) *
## 
## $trees[[81]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 445 M (0.48793860 0.51206140)  
##     2) compactness_se< -4.219581 196  66 B (0.66326531 0.33673469)  
##       4) smoothness_mean>=-2.3007 41   0 B (1.00000000 0.00000000) *
##       5) smoothness_mean< -2.3007 155  66 B (0.57419355 0.42580645)  
##        10) symmetry_worst>=-1.52618 27   1 B (0.96296296 0.03703704)  
##          20) smoothness_mean>=-2.466044 26   0 B (1.00000000 0.00000000) *
##          21) smoothness_mean< -2.466044 1   0 M (0.00000000 1.00000000) *
##        11) symmetry_worst< -1.52618 128  63 M (0.49218750 0.50781250)  
##          22) texture_mean< 2.841101 17   0 B (1.00000000 0.00000000) *
##          23) texture_mean>=2.841101 111  46 M (0.41441441 0.58558559)  
##            46) texture_mean>=3.232565 12   0 B (1.00000000 0.00000000) *
##            47) texture_mean< 3.232565 99  34 M (0.34343434 0.65656566)  
##              94) smoothness_worst< -1.557411 57  27 B (0.52631579 0.47368421) *
##              95) smoothness_worst>=-1.557411 42   4 M (0.09523810 0.90476190) *
##     3) compactness_se>=-4.219581 716 315 M (0.43994413 0.56005587)  
##       6) compactness_se>=-4.180058 689 314 M (0.45573295 0.54426705)  
##        12) compactness_se< -3.027402 618 298 M (0.48220065 0.51779935)  
##          24) compactness_se>=-3.239083 43   6 B (0.86046512 0.13953488)  
##            48) smoothness_worst< -1.477215 38   2 B (0.94736842 0.05263158)  
##              96) symmetry_worst< -1.339667 36   0 B (1.00000000 0.00000000) *
##              97) symmetry_worst>=-1.339667 2   0 M (0.00000000 1.00000000) *
##            49) smoothness_worst>=-1.477215 5   1 M (0.20000000 0.80000000)  
##              98) texture_mean< 2.701935 1   0 B (1.00000000 0.00000000) *
##              99) texture_mean>=2.701935 4   0 M (0.00000000 1.00000000) *
##          25) compactness_se< -3.239083 575 261 M (0.45391304 0.54608696)  
##            50) smoothness_worst>=-1.434633 101  36 B (0.64356436 0.35643564)  
##             100) texture_mean< 3.05894 81  19 B (0.76543210 0.23456790) *
##             101) texture_mean>=3.05894 20   3 M (0.15000000 0.85000000) *
##            51) smoothness_worst< -1.434633 474 196 M (0.41350211 0.58649789)  
##             102) smoothness_worst< -1.452493 400 187 M (0.46750000 0.53250000) *
##             103) smoothness_worst>=-1.452493 74   9 M (0.12162162 0.87837838) *
##        13) compactness_se>=-3.027402 71  16 M (0.22535211 0.77464789)  
##          26) smoothness_mean< -2.336585 23   9 B (0.60869565 0.39130435)  
##            52) texture_mean< 3.076827 14   1 B (0.92857143 0.07142857)  
##             104) compactness_se>=-2.984387 13   0 B (1.00000000 0.00000000) *
##             105) compactness_se< -2.984387 1   0 M (0.00000000 1.00000000) *
##            53) texture_mean>=3.076827 9   1 M (0.11111111 0.88888889)  
##             106) texture_mean>=3.166628 1   0 B (1.00000000 0.00000000) *
##             107) texture_mean< 3.166628 8   0 M (0.00000000 1.00000000) *
##          27) smoothness_mean>=-2.336585 48   2 M (0.04166667 0.95833333)  
##            54) compactness_se>=-2.470993 3   1 B (0.66666667 0.33333333)  
##             108) texture_mean< 2.929061 2   0 B (1.00000000 0.00000000) *
##             109) texture_mean>=2.929061 1   0 M (0.00000000 1.00000000) *
##            55) compactness_se< -2.470993 45   0 M (0.00000000 1.00000000) *
##       7) compactness_se< -4.180058 27   1 M (0.03703704 0.96296296)  
##        14) smoothness_mean< -2.456941 1   0 B (1.00000000 0.00000000) *
##        15) smoothness_mean>=-2.456941 26   0 M (0.00000000 1.00000000) *
## 
## $trees[[82]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 451 B (0.50548246 0.49451754)  
##     2) smoothness_worst< -1.458403 707 311 B (0.56011315 0.43988685)  
##       4) smoothness_worst>=-1.477976 115  22 B (0.80869565 0.19130435)  
##         8) texture_worst< 4.682677 84   6 B (0.92857143 0.07142857)  
##          16) symmetry_worst< -1.35761 82   4 B (0.95121951 0.04878049)  
##            32) smoothness_mean>=-2.354774 77   1 B (0.98701299 0.01298701)  
##              64) texture_mean< 3.069079 76   0 B (1.00000000 0.00000000) *
##              65) texture_mean>=3.069079 1   0 M (0.00000000 1.00000000) *
##            33) smoothness_mean< -2.354774 5   2 M (0.40000000 0.60000000)  
##              66) texture_mean>=2.774841 2   0 B (1.00000000 0.00000000) *
##              67) texture_mean< 2.774841 3   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst>=-1.35761 2   0 M (0.00000000 1.00000000) *
##         9) texture_worst>=4.682677 31  15 M (0.48387097 0.51612903)  
##          18) texture_mean< 2.978826 11   1 B (0.90909091 0.09090909)  
##            36) smoothness_mean< -2.304115 10   0 B (1.00000000 0.00000000) *
##            37) smoothness_mean>=-2.304115 1   0 M (0.00000000 1.00000000) *
##          19) texture_mean>=2.978826 20   5 M (0.25000000 0.75000000)  
##            38) symmetry_worst< -2.052347 5   0 B (1.00000000 0.00000000) *
##            39) symmetry_worst>=-2.052347 15   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.477976 592 289 B (0.51182432 0.48817568)  
##        10) smoothness_worst< -1.482107 549 248 B (0.54826958 0.45173042)  
##          20) smoothness_worst>=-1.484675 37   0 B (1.00000000 0.00000000) *
##          21) smoothness_worst< -1.484675 512 248 B (0.51562500 0.48437500)  
##            42) texture_worst< 4.961576 417 184 B (0.55875300 0.44124700)  
##              84) symmetry_worst>=-2.391709 388 160 B (0.58762887 0.41237113) *
##              85) symmetry_worst< -2.391709 29   5 M (0.17241379 0.82758621) *
##            43) texture_worst>=4.961576 95  31 M (0.32631579 0.67368421)  
##              86) symmetry_worst< -2.057752 23   7 B (0.69565217 0.30434783) *
##              87) symmetry_worst>=-2.057752 72  15 M (0.20833333 0.79166667) *
##        11) smoothness_worst>=-1.482107 43   2 M (0.04651163 0.95348837)  
##          22) texture_worst< 4.126187 1   0 B (1.00000000 0.00000000) *
##          23) texture_worst>=4.126187 42   1 M (0.02380952 0.97619048)  
##            46) texture_worst>=4.635614 2   1 B (0.50000000 0.50000000)  
##              92) texture_mean< 2.931199 1   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=2.931199 1   0 M (0.00000000 1.00000000) *
##            47) texture_worst< 4.635614 40   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.458403 205  65 M (0.31707317 0.68292683)  
##       6) symmetry_worst< -1.895488 19   2 B (0.89473684 0.10526316)  
##        12) texture_mean< 3.129344 17   0 B (1.00000000 0.00000000) *
##        13) texture_mean>=3.129344 2   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-1.895488 186  48 M (0.25806452 0.74193548)  
##        14) compactness_se< -4.02632 38  13 B (0.65789474 0.34210526)  
##          28) texture_worst< 5.196207 30   5 B (0.83333333 0.16666667)  
##            56) compactness_se>=-4.186419 22   1 B (0.95454545 0.04545455)  
##             112) symmetry_worst< -1.180039 21   0 B (1.00000000 0.00000000) *
##             113) symmetry_worst>=-1.180039 1   0 M (0.00000000 1.00000000) *
##            57) compactness_se< -4.186419 8   4 B (0.50000000 0.50000000)  
##             114) texture_mean< 2.950291 3   0 B (1.00000000 0.00000000) *
##             115) texture_mean>=2.950291 5   1 M (0.20000000 0.80000000) *
##          29) texture_worst>=5.196207 8   0 M (0.00000000 1.00000000) *
##        15) compactness_se>=-4.02632 148  23 M (0.15540541 0.84459459)  
##          30) smoothness_worst>=-1.351748 17   8 B (0.52941176 0.47058824)  
##            60) symmetry_worst< -1.596878 7   0 B (1.00000000 0.00000000) *
##            61) symmetry_worst>=-1.596878 10   2 M (0.20000000 0.80000000)  
##             122) texture_mean< 2.688296 2   0 B (1.00000000 0.00000000) *
##             123) texture_mean>=2.688296 8   0 M (0.00000000 1.00000000) *
##          31) smoothness_worst< -1.351748 131  14 M (0.10687023 0.89312977)  
##            62) texture_mean< 2.777879 27   9 M (0.33333333 0.66666667)  
##             124) texture_mean>=2.603081 9   0 B (1.00000000 0.00000000) *
##             125) texture_mean< 2.603081 18   0 M (0.00000000 1.00000000) *
##            63) texture_mean>=2.777879 104   5 M (0.04807692 0.95192308)  
##             126) compactness_se>=-3.702474 50   5 M (0.10000000 0.90000000) *
##             127) compactness_se< -3.702474 54   0 M (0.00000000 1.00000000) *
## 
## $trees[[83]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 391 M (0.42872807 0.57127193)  
##     2) compactness_se< -4.705732 18   1 B (0.94444444 0.05555556)  
##       4) symmetry_worst< -1.19897 17   0 B (1.00000000 0.00000000) *
##       5) symmetry_worst>=-1.19897 1   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-4.705732 894 374 M (0.41834452 0.58165548)  
##       6) smoothness_worst>=-1.477976 241 111 B (0.53941909 0.46058091)  
##        12) smoothness_worst< -1.473476 38   2 B (0.94736842 0.05263158)  
##          24) texture_mean< 3.069079 36   0 B (1.00000000 0.00000000) *
##          25) texture_mean>=3.069079 2   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst>=-1.473476 203  94 M (0.46305419 0.53694581)  
##          26) symmetry_worst< -1.920541 25   3 B (0.88000000 0.12000000)  
##            52) texture_mean< 3.159934 22   0 B (1.00000000 0.00000000) *
##            53) texture_mean>=3.159934 3   0 M (0.00000000 1.00000000) *
##          27) symmetry_worst>=-1.920541 178  72 M (0.40449438 0.59550562)  
##            54) smoothness_mean< -2.428454 10   0 B (1.00000000 0.00000000) *
##            55) smoothness_mean>=-2.428454 168  62 M (0.36904762 0.63095238)  
##             110) smoothness_mean>=-2.239141 78  36 B (0.53846154 0.46153846) *
##             111) smoothness_mean< -2.239141 90  20 M (0.22222222 0.77777778) *
##       7) smoothness_worst< -1.477976 653 244 M (0.37366003 0.62633997)  
##        14) compactness_se>=-4.49319 568 231 M (0.40669014 0.59330986)  
##          28) symmetry_worst< -2.052205 89  35 B (0.60674157 0.39325843)  
##            56) symmetry_worst>=-2.107807 24   0 B (1.00000000 0.00000000) *
##            57) symmetry_worst< -2.107807 65  30 M (0.46153846 0.53846154)  
##             114) compactness_se< -4.170636 11   0 B (1.00000000 0.00000000) *
##             115) compactness_se>=-4.170636 54  19 M (0.35185185 0.64814815) *
##          29) symmetry_worst>=-2.052205 479 177 M (0.36951983 0.63048017)  
##            58) symmetry_worst>=-1.98727 427 172 M (0.40281030 0.59718970)  
##             116) smoothness_mean>=-2.224699 43  12 B (0.72093023 0.27906977) *
##             117) smoothness_mean< -2.224699 384 141 M (0.36718750 0.63281250) *
##            59) symmetry_worst< -1.98727 52   5 M (0.09615385 0.90384615)  
##             118) smoothness_mean< -2.458231 4   0 B (1.00000000 0.00000000) *
##             119) smoothness_mean>=-2.458231 48   1 M (0.02083333 0.97916667) *
##        15) compactness_se< -4.49319 85  13 M (0.15294118 0.84705882)  
##          30) smoothness_mean>=-2.295268 3   0 B (1.00000000 0.00000000) *
##          31) smoothness_mean< -2.295268 82  10 M (0.12195122 0.87804878)  
##            62) texture_mean< 2.960617 33   8 M (0.24242424 0.75757576)  
##             124) texture_mean>=2.930624 6   0 B (1.00000000 0.00000000) *
##             125) texture_mean< 2.930624 27   2 M (0.07407407 0.92592593) *
##            63) texture_mean>=2.960617 49   2 M (0.04081633 0.95918367)  
##             126) texture_mean>=3.232565 1   0 B (1.00000000 0.00000000) *
##             127) texture_mean< 3.232565 48   1 M (0.02083333 0.97916667) *
## 
## $trees[[84]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 453 B (0.50328947 0.49671053)  
##     2) smoothness_mean< -2.216408 798 372 B (0.53383459 0.46616541)  
##       4) smoothness_worst>=-1.484675 254  88 B (0.65354331 0.34645669)  
##         8) smoothness_worst< -1.372876 242  76 B (0.68595041 0.31404959)  
##          16) smoothness_worst< -1.482502 33   0 B (1.00000000 0.00000000) *
##          17) smoothness_worst>=-1.482502 209  76 B (0.63636364 0.36363636)  
##            34) smoothness_worst>=-1.478565 187  54 B (0.71122995 0.28877005)  
##              68) smoothness_worst< -1.472307 54   1 B (0.98148148 0.01851852) *
##              69) smoothness_worst>=-1.472307 133  53 B (0.60150376 0.39849624) *
##            35) smoothness_worst< -1.478565 22   0 M (0.00000000 1.00000000) *
##         9) smoothness_worst>=-1.372876 12   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.484675 544 260 M (0.47794118 0.52205882)  
##        10) compactness_se>=-4.49319 472 229 B (0.51483051 0.48516949)  
##          20) compactness_se< -3.488718 333 138 B (0.58558559 0.41441441)  
##            40) symmetry_worst< -2.207519 24   0 B (1.00000000 0.00000000) *
##            41) symmetry_worst>=-2.207519 309 138 B (0.55339806 0.44660194)  
##              82) smoothness_worst< -1.556752 159  50 B (0.68553459 0.31446541) *
##              83) smoothness_worst>=-1.556752 150  62 M (0.41333333 0.58666667) *
##          21) compactness_se>=-3.488718 139  48 M (0.34532374 0.65467626)  
##            42) smoothness_mean>=-2.224699 8   0 B (1.00000000 0.00000000) *
##            43) smoothness_mean< -2.224699 131  40 M (0.30534351 0.69465649)  
##              86) texture_mean< 3.038537 77  32 M (0.41558442 0.58441558) *
##              87) texture_mean>=3.038537 54   8 M (0.14814815 0.85185185) *
##        11) compactness_se< -4.49319 72  17 M (0.23611111 0.76388889)  
##          22) compactness_se< -4.706178 13   2 B (0.84615385 0.15384615)  
##            44) symmetry_worst< -1.19897 11   0 B (1.00000000 0.00000000) *
##            45) symmetry_worst>=-1.19897 2   0 M (0.00000000 1.00000000) *
##          23) compactness_se>=-4.706178 59   6 M (0.10169492 0.89830508)  
##            46) smoothness_mean>=-2.295268 2   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean< -2.295268 57   4 M (0.07017544 0.92982456)  
##              94) symmetry_worst>=-1.459568 1   0 B (1.00000000 0.00000000) *
##              95) symmetry_worst< -1.459568 56   3 M (0.05357143 0.94642857) *
##     3) smoothness_mean>=-2.216408 114  33 M (0.28947368 0.71052632)  
##       6) smoothness_worst>=-1.426679 37  16 B (0.56756757 0.43243243)  
##        12) symmetry_worst< -1.710625 11   0 B (1.00000000 0.00000000) *
##        13) symmetry_worst>=-1.710625 26  10 M (0.38461538 0.61538462)  
##          26) texture_mean< 2.688296 11   2 B (0.81818182 0.18181818)  
##            52) texture_mean>=2.450874 9   0 B (1.00000000 0.00000000) *
##            53) texture_mean< 2.450874 2   0 M (0.00000000 1.00000000) *
##          27) texture_mean>=2.688296 15   1 M (0.06666667 0.93333333)  
##            54) smoothness_worst< -1.388752 3   1 M (0.33333333 0.66666667)  
##             108) texture_mean>=3.037093 1   0 B (1.00000000 0.00000000) *
##             109) texture_mean< 3.037093 2   0 M (0.00000000 1.00000000) *
##            55) smoothness_worst>=-1.388752 12   0 M (0.00000000 1.00000000) *
##       7) smoothness_worst< -1.426679 77  12 M (0.15584416 0.84415584)  
##        14) smoothness_worst< -1.482898 28  10 M (0.35714286 0.64285714)  
##          28) smoothness_worst>=-1.530722 10   1 B (0.90000000 0.10000000)  
##            56) smoothness_mean>=-2.213204 9   0 B (1.00000000 0.00000000) *
##            57) smoothness_mean< -2.213204 1   0 M (0.00000000 1.00000000) *
##          29) smoothness_worst< -1.530722 18   1 M (0.05555556 0.94444444)  
##            58) texture_mean< 2.820036 1   0 B (1.00000000 0.00000000) *
##            59) texture_mean>=2.820036 17   0 M (0.00000000 1.00000000) *
##        15) smoothness_worst>=-1.482898 49   2 M (0.04081633 0.95918367)  
##          30) texture_mean< 2.434062 1   0 B (1.00000000 0.00000000) *
##          31) texture_mean>=2.434062 48   1 M (0.02083333 0.97916667)  
##            62) compactness_se< -4.089448 6   1 M (0.16666667 0.83333333)  
##             124) texture_mean< 2.892399 1   0 B (1.00000000 0.00000000) *
##             125) texture_mean>=2.892399 5   0 M (0.00000000 1.00000000) *
##            63) compactness_se>=-4.089448 42   0 M (0.00000000 1.00000000) *
## 
## $trees[[85]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 441 B (0.51644737 0.48355263)  
##     2) smoothness_worst< -1.472307 699 306 B (0.56223176 0.43776824)  
##       4) smoothness_worst>=-1.477976 50   3 B (0.94000000 0.06000000)  
##         8) texture_mean< 3.069079 47   0 B (1.00000000 0.00000000) *
##         9) texture_mean>=3.069079 3   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.477976 649 303 B (0.53312789 0.46687211)  
##        10) smoothness_worst< -1.482502 621 276 B (0.55555556 0.44444444)  
##          20) smoothness_worst>=-1.537883 272  90 B (0.66911765 0.33088235)  
##            40) compactness_se< -2.985939 256  76 B (0.70312500 0.29687500)  
##              80) texture_worst< 4.521311 63   5 B (0.92063492 0.07936508) *
##              81) texture_worst>=4.521311 193  71 B (0.63212435 0.36787565) *
##            41) compactness_se>=-2.985939 16   2 M (0.12500000 0.87500000)  
##              82) smoothness_mean< -2.310579 2   0 B (1.00000000 0.00000000) *
##              83) smoothness_mean>=-2.310579 14   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst< -1.537883 349 163 M (0.46704871 0.53295129)  
##            42) texture_worst>=4.683744 145  50 B (0.65517241 0.34482759)  
##              84) smoothness_worst< -1.647098 20   0 B (1.00000000 0.00000000) *
##              85) smoothness_worst>=-1.647098 125  50 B (0.60000000 0.40000000) *
##            43) texture_worst< 4.683744 204  68 M (0.33333333 0.66666667)  
##              86) texture_mean< 2.976803 118  57 M (0.48305085 0.51694915) *
##              87) texture_mean>=2.976803 86  11 M (0.12790698 0.87209302) *
##        11) smoothness_worst>=-1.482502 28   1 M (0.03571429 0.96428571)  
##          22) compactness_se< -4.290267 1   0 B (1.00000000 0.00000000) *
##          23) compactness_se>=-4.290267 27   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.472307 213  78 M (0.36619718 0.63380282)  
##       6) compactness_se< -4.02632 47  16 B (0.65957447 0.34042553)  
##        12) smoothness_worst>=-1.456873 34   6 B (0.82352941 0.17647059)  
##          24) symmetry_worst< -1.136473 32   4 B (0.87500000 0.12500000)  
##            48) compactness_se>=-4.186419 19   0 B (1.00000000 0.00000000) *
##            49) compactness_se< -4.186419 13   4 B (0.69230769 0.30769231)  
##              98) compactness_se< -4.224437 11   2 B (0.81818182 0.18181818) *
##              99) compactness_se>=-4.224437 2   0 M (0.00000000 1.00000000) *
##          25) symmetry_worst>=-1.136473 2   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst< -1.456873 13   3 M (0.23076923 0.76923077)  
##          26) texture_mean< 2.901883 3   0 B (1.00000000 0.00000000) *
##          27) texture_mean>=2.901883 10   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.02632 166  47 M (0.28313253 0.71686747)  
##        14) symmetry_worst< -1.905461 22   5 B (0.77272727 0.22727273)  
##          28) texture_worst< 4.851322 17   0 B (1.00000000 0.00000000) *
##          29) texture_worst>=4.851322 5   0 M (0.00000000 1.00000000) *
##        15) symmetry_worst>=-1.905461 144  30 M (0.20833333 0.79166667)  
##          30) compactness_se>=-3.479267 59  23 M (0.38983051 0.61016949)  
##            60) smoothness_mean< -2.359377 8   0 B (1.00000000 0.00000000) *
##            61) smoothness_mean>=-2.359377 51  15 M (0.29411765 0.70588235)  
##             122) smoothness_mean>=-2.239141 29  14 B (0.51724138 0.48275862) *
##             123) smoothness_mean< -2.239141 22   0 M (0.00000000 1.00000000) *
##          31) compactness_se< -3.479267 85   7 M (0.08235294 0.91764706)  
##            62) texture_worst< 4.110502 18   6 M (0.33333333 0.66666667)  
##             124) texture_mean>=2.618802 5   0 B (1.00000000 0.00000000) *
##             125) texture_mean< 2.618802 13   1 M (0.07692308 0.92307692) *
##            63) texture_worst>=4.110502 67   1 M (0.01492537 0.98507463)  
##             126) texture_worst< 4.30106 7   1 M (0.14285714 0.85714286) *
##             127) texture_worst>=4.30106 60   0 M (0.00000000 1.00000000) *
## 
## $trees[[86]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 442 M (0.48464912 0.51535088)  
##     2) smoothness_mean< -2.209551 812 393 B (0.51600985 0.48399015)  
##       4) smoothness_mean< -2.413908 255  99 B (0.61176471 0.38823529)  
##         8) texture_mean< 2.963209 111  25 B (0.77477477 0.22522523)  
##          16) compactness_se>=-4.688717 103  19 B (0.81553398 0.18446602)  
##            32) symmetry_worst>=-1.748651 51   2 B (0.96078431 0.03921569)  
##              64) smoothness_worst< -1.470029 49   0 B (1.00000000 0.00000000) *
##              65) smoothness_worst>=-1.470029 2   0 M (0.00000000 1.00000000) *
##            33) symmetry_worst< -1.748651 52  17 B (0.67307692 0.32692308)  
##              66) symmetry_worst< -1.818723 40   5 B (0.87500000 0.12500000) *
##              67) symmetry_worst>=-1.818723 12   0 M (0.00000000 1.00000000) *
##          17) compactness_se< -4.688717 8   2 M (0.25000000 0.75000000)  
##            34) compactness_se< -4.694501 2   0 B (1.00000000 0.00000000) *
##            35) compactness_se>=-4.694501 6   0 M (0.00000000 1.00000000) *
##         9) texture_mean>=2.963209 144  70 M (0.48611111 0.51388889)  
##          18) texture_mean>=3.015024 107  40 B (0.62616822 0.37383178)  
##            36) texture_mean< 3.071535 27   2 B (0.92592593 0.07407407)  
##              72) symmetry_worst>=-2.196711 25   0 B (1.00000000 0.00000000) *
##              73) symmetry_worst< -2.196711 2   0 M (0.00000000 1.00000000) *
##            37) texture_mean>=3.071535 80  38 B (0.52500000 0.47500000)  
##              74) texture_mean>=3.198061 29   5 B (0.82758621 0.17241379) *
##              75) texture_mean< 3.198061 51  18 M (0.35294118 0.64705882) *
##          19) texture_mean< 3.015024 37   3 M (0.08108108 0.91891892)  
##            38) compactness_se>=-3.794131 2   0 B (1.00000000 0.00000000) *
##            39) compactness_se< -3.794131 35   1 M (0.02857143 0.97142857)  
##              78) compactness_se< -4.803674 1   0 B (1.00000000 0.00000000) *
##              79) compactness_se>=-4.803674 34   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.413908 557 263 M (0.47217235 0.52782765)  
##        10) smoothness_mean>=-2.404673 502 246 B (0.50996016 0.49003984)  
##          20) texture_worst< 4.818867 411 184 B (0.55231144 0.44768856)  
##            40) texture_worst>=4.751723 42   1 B (0.97619048 0.02380952)  
##              80) texture_mean>=2.936904 41   0 B (1.00000000 0.00000000) *
##              81) texture_mean< 2.936904 1   0 M (0.00000000 1.00000000) *
##            41) texture_worst< 4.751723 369 183 B (0.50406504 0.49593496)  
##              82) texture_worst< 4.682677 325 145 B (0.55384615 0.44615385) *
##              83) texture_worst>=4.682677 44   6 M (0.13636364 0.86363636) *
##          21) texture_worst>=4.818867 91  29 M (0.31868132 0.68131868)  
##            42) symmetry_worst< -2.207988 10   0 B (1.00000000 0.00000000) *
##            43) symmetry_worst>=-2.207988 81  19 M (0.23456790 0.76543210)  
##              86) symmetry_worst>=-1.733268 39  18 M (0.46153846 0.53846154) *
##              87) symmetry_worst< -1.733268 42   1 M (0.02380952 0.97619048) *
##        11) smoothness_mean< -2.404673 55   7 M (0.12727273 0.87272727)  
##          22) smoothness_worst< -1.602866 3   0 B (1.00000000 0.00000000) *
##          23) smoothness_worst>=-1.602866 52   4 M (0.07692308 0.92307692)  
##            46) symmetry_worst>=-1.685469 11   4 M (0.36363636 0.63636364)  
##              92) texture_mean< 3.023311 4   0 B (1.00000000 0.00000000) *
##              93) texture_mean>=3.023311 7   0 M (0.00000000 1.00000000) *
##            47) symmetry_worst< -1.685469 41   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.209551 100  23 M (0.23000000 0.77000000)  
##       6) texture_worst< 3.781157 11   0 B (1.00000000 0.00000000) *
##       7) texture_worst>=3.781157 89  12 M (0.13483146 0.86516854)  
##        14) compactness_se< -4.024648 5   1 B (0.80000000 0.20000000)  
##          28) texture_mean< 3.047521 4   0 B (1.00000000 0.00000000) *
##          29) texture_mean>=3.047521 1   0 M (0.00000000 1.00000000) *
##        15) compactness_se>=-4.024648 84   8 M (0.09523810 0.90476190)  
##          30) symmetry_worst< -1.653707 21   6 M (0.28571429 0.71428571)  
##            60) texture_mean< 2.909334 4   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=2.909334 17   2 M (0.11764706 0.88235294)  
##             122) smoothness_mean>=-2.120284 2   0 B (1.00000000 0.00000000) *
##             123) smoothness_mean< -2.120284 15   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-1.653707 63   2 M (0.03174603 0.96825397)  
##            62) smoothness_worst< -1.534923 1   0 B (1.00000000 0.00000000) *
##            63) smoothness_worst>=-1.534923 62   1 M (0.01612903 0.98387097)  
##             126) smoothness_worst>=-1.333822 3   1 M (0.33333333 0.66666667) *
##             127) smoothness_worst< -1.333822 59   0 M (0.00000000 1.00000000) *
## 
## $trees[[87]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 449 M (0.49232456 0.50767544)  
##     2) smoothness_worst< -1.647098 37   3 B (0.91891892 0.08108108)  
##       4) texture_worst>=4.595702 22   0 B (1.00000000 0.00000000) *
##       5) texture_worst< 4.595702 15   3 B (0.80000000 0.20000000)  
##        10) texture_worst< 4.563505 13   1 B (0.92307692 0.07692308)  
##          20) texture_mean< 3.075433 12   0 B (1.00000000 0.00000000) *
##          21) texture_mean>=3.075433 1   0 M (0.00000000 1.00000000) *
##        11) texture_worst>=4.563505 2   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.647098 875 415 M (0.47428571 0.52571429)  
##       6) smoothness_mean>=-2.496541 837 411 M (0.49103943 0.50896057)  
##        12) smoothness_mean< -2.332581 414 178 B (0.57004831 0.42995169)  
##          24) texture_mean< 2.976294 192  54 B (0.71875000 0.28125000)  
##            48) smoothness_worst< -1.452493 184  46 B (0.75000000 0.25000000)  
##              96) smoothness_mean>=-2.354774 35   0 B (1.00000000 0.00000000) *
##              97) smoothness_mean< -2.354774 149  46 B (0.69127517 0.30872483) *
##            49) smoothness_worst>=-1.452493 8   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=2.976294 222  98 M (0.44144144 0.55855856)  
##            50) texture_worst>=4.753106 129  47 B (0.63565891 0.36434109)  
##             100) symmetry_worst>=-1.74642 75  10 B (0.86666667 0.13333333) *
##             101) symmetry_worst< -1.74642 54  17 M (0.31481481 0.68518519) *
##            51) texture_worst< 4.753106 93  16 M (0.17204301 0.82795699)  
##             102) smoothness_worst< -1.610979 12   3 B (0.75000000 0.25000000) *
##             103) smoothness_worst>=-1.610979 81   7 M (0.08641975 0.91358025) *
##        13) smoothness_mean>=-2.332581 423 175 M (0.41371158 0.58628842)  
##          26) symmetry_worst< -1.839065 105  34 B (0.67619048 0.32380952)  
##            52) smoothness_worst>=-1.567424 89  21 B (0.76404494 0.23595506)  
##             104) compactness_se< -3.02233 84  16 B (0.80952381 0.19047619) *
##             105) compactness_se>=-3.02233 5   0 M (0.00000000 1.00000000) *
##            53) smoothness_worst< -1.567424 16   3 M (0.18750000 0.81250000)  
##             106) compactness_se< -3.863524 7   3 M (0.42857143 0.57142857) *
##             107) compactness_se>=-3.863524 9   0 M (0.00000000 1.00000000) *
##          27) symmetry_worst>=-1.839065 318 104 M (0.32704403 0.67295597)  
##            54) symmetry_worst>=-1.781339 257 101 M (0.39299611 0.60700389)  
##             108) compactness_se< -3.294139 198  92 M (0.46464646 0.53535354) *
##             109) compactness_se>=-3.294139 59   9 M (0.15254237 0.84745763) *
##            55) symmetry_worst< -1.781339 61   3 M (0.04918033 0.95081967)  
##             110) texture_worst< 4.216838 3   0 B (1.00000000 0.00000000) *
##             111) texture_worst>=4.216838 58   0 M (0.00000000 1.00000000) *
##       7) smoothness_mean< -2.496541 38   4 M (0.10526316 0.89473684)  
##        14) smoothness_worst>=-1.570144 3   0 B (1.00000000 0.00000000) *
##        15) smoothness_worst< -1.570144 35   1 M (0.02857143 0.97142857)  
##          30) compactness_se< -4.899363 1   0 B (1.00000000 0.00000000) *
##          31) compactness_se>=-4.899363 34   0 M (0.00000000 1.00000000) *
## 
## $trees[[88]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 436 M (0.47807018 0.52192982)  
##     2) smoothness_mean< -2.413908 234  91 B (0.61111111 0.38888889)  
##       4) texture_worst< 4.961576 162  50 B (0.69135802 0.30864198)  
##         8) texture_worst>=4.528519 101  18 B (0.82178218 0.17821782)  
##          16) compactness_se>=-4.663537 94  12 B (0.87234043 0.12765957)  
##            32) texture_mean< 3.172196 85   8 B (0.90588235 0.09411765)  
##              64) symmetry_worst< -1.3705 84   7 B (0.91666667 0.08333333) *
##              65) symmetry_worst>=-1.3705 1   0 M (0.00000000 1.00000000) *
##            33) texture_mean>=3.172196 9   4 B (0.55555556 0.44444444)  
##              66) texture_mean>=3.176386 5   0 B (1.00000000 0.00000000) *
##              67) texture_mean< 3.176386 4   0 M (0.00000000 1.00000000) *
##          17) compactness_se< -4.663537 7   1 M (0.14285714 0.85714286)  
##            34) compactness_se< -4.803674 1   0 B (1.00000000 0.00000000) *
##            35) compactness_se>=-4.803674 6   0 M (0.00000000 1.00000000) *
##         9) texture_worst< 4.528519 61  29 M (0.47540984 0.52459016)  
##          18) texture_mean< 2.963351 39  11 B (0.71794872 0.28205128)  
##            36) texture_worst>=3.981964 31   4 B (0.87096774 0.12903226)  
##              72) texture_mean< 2.869285 20   0 B (1.00000000 0.00000000) *
##              73) texture_mean>=2.869285 11   4 B (0.63636364 0.36363636) *
##            37) texture_worst< 3.981964 8   1 M (0.12500000 0.87500000)  
##              74) texture_mean< 2.764104 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.764104 7   0 M (0.00000000 1.00000000) *
##          19) texture_mean>=2.963351 22   1 M (0.04545455 0.95454545)  
##            38) compactness_se< -4.501722 1   0 B (1.00000000 0.00000000) *
##            39) compactness_se>=-4.501722 21   0 M (0.00000000 1.00000000) *
##       5) texture_worst>=4.961576 72  31 M (0.43055556 0.56944444)  
##        10) symmetry_worst>=-1.857231 39  12 B (0.69230769 0.30769231)  
##          20) symmetry_worst< -1.541072 27   1 B (0.96296296 0.03703704)  
##            40) compactness_se>=-4.645782 25   0 B (1.00000000 0.00000000) *
##            41) compactness_se< -4.645782 2   1 B (0.50000000 0.50000000)  
##              82) texture_mean< 3.083637 1   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=3.083637 1   0 M (0.00000000 1.00000000) *
##          21) symmetry_worst>=-1.541072 12   1 M (0.08333333 0.91666667)  
##            42) smoothness_mean< -2.540124 1   0 B (1.00000000 0.00000000) *
##            43) smoothness_mean>=-2.540124 11   0 M (0.00000000 1.00000000) *
##        11) symmetry_worst< -1.857231 33   4 M (0.12121212 0.87878788)  
##          22) texture_worst>=5.222912 4   0 B (1.00000000 0.00000000) *
##          23) texture_worst< 5.222912 29   0 M (0.00000000 1.00000000) *
##     3) smoothness_mean>=-2.413908 678 293 M (0.43215339 0.56784661)  
##       6) symmetry_worst< -2.193154 42  12 B (0.71428571 0.28571429)  
##        12) smoothness_mean< -2.266808 35   6 B (0.82857143 0.17142857)  
##          24) compactness_se>=-4.398122 31   2 B (0.93548387 0.06451613)  
##            48) compactness_se< -2.576401 30   1 B (0.96666667 0.03333333)  
##              96) symmetry_worst< -2.202388 27   0 B (1.00000000 0.00000000) *
##              97) symmetry_worst>=-2.202388 3   1 B (0.66666667 0.33333333) *
##            49) compactness_se>=-2.576401 1   0 M (0.00000000 1.00000000) *
##          25) compactness_se< -4.398122 4   0 M (0.00000000 1.00000000) *
##        13) smoothness_mean>=-2.266808 7   1 M (0.14285714 0.85714286)  
##          26) texture_mean< 2.864879 1   0 B (1.00000000 0.00000000) *
##          27) texture_mean>=2.864879 6   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-2.193154 636 263 M (0.41352201 0.58647799)  
##        14) symmetry_worst< -1.072749 618 263 M (0.42556634 0.57443366)  
##          28) compactness_se>=-2.622717 10   0 B (1.00000000 0.00000000) *
##          29) compactness_se< -2.622717 608 253 M (0.41611842 0.58388158)  
##            58) texture_worst< 4.168738 51  17 B (0.66666667 0.33333333)  
##             116) texture_mean>=2.515298 40   7 B (0.82500000 0.17500000) *
##             117) texture_mean< 2.515298 11   1 M (0.09090909 0.90909091) *
##            59) texture_worst>=4.168738 557 219 M (0.39317774 0.60682226)  
##             118) texture_mean>=2.899221 373 174 M (0.46648794 0.53351206) *
##             119) texture_mean< 2.899221 184  45 M (0.24456522 0.75543478) *
##        15) symmetry_worst>=-1.072749 18   0 M (0.00000000 1.00000000) *
## 
## $trees[[89]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 912 399 B (0.56250000 0.43750000)  
##    2) compactness_se< -3.488718 678 269 B (0.60324484 0.39675516)  
##      4) compactness_se>=-3.494301 38   0 B (1.00000000 0.00000000) *
##      5) compactness_se< -3.494301 640 269 B (0.57968750 0.42031250)  
##       10) smoothness_mean>=-2.311929 259  79 B (0.69498069 0.30501931)  
##         20) compactness_se< -3.658265 213  44 B (0.79342723 0.20657277)  
##           40) texture_worst< 5.031275 205  36 B (0.82439024 0.17560976)  
##             80) symmetry_worst>=-1.926862 180  23 B (0.87222222 0.12777778) *
##             81) symmetry_worst< -1.926862 25  12 M (0.48000000 0.52000000) *
##           41) texture_worst>=5.031275 8   0 M (0.00000000 1.00000000) *
##         21) compactness_se>=-3.658265 46  11 M (0.23913043 0.76086957)  
##           42) symmetry_worst< -1.834844 16   5 B (0.68750000 0.31250000)  
##             84) symmetry_worst>=-2.311448 11   0 B (1.00000000 0.00000000) *
##             85) symmetry_worst< -2.311448 5   0 M (0.00000000 1.00000000) *
##           43) symmetry_worst>=-1.834844 30   0 M (0.00000000 1.00000000) *
##       11) smoothness_mean< -2.311929 381 190 B (0.50131234 0.49868766)  
##         22) smoothness_mean< -2.366751 278 111 B (0.60071942 0.39928058)  
##           44) compactness_se>=-4.098964 143  35 B (0.75524476 0.24475524)  
##             88) smoothness_worst< -1.51761 104  14 B (0.86538462 0.13461538) *
##             89) smoothness_worst>=-1.51761 39  18 M (0.46153846 0.53846154) *
##           45) compactness_se< -4.098964 135  59 M (0.43703704 0.56296296)  
##             90) smoothness_worst< -1.556321 80  35 B (0.56250000 0.43750000) *
##             91) smoothness_worst>=-1.556321 55  14 M (0.25454545 0.74545455) *
##         23) smoothness_mean>=-2.366751 103  24 M (0.23300971 0.76699029)  
##           46) symmetry_worst< -1.995212 25  12 B (0.52000000 0.48000000)  
##             92) symmetry_worst>=-2.121358 10   0 B (1.00000000 0.00000000) *
##             93) symmetry_worst< -2.121358 15   3 M (0.20000000 0.80000000) *
##           47) symmetry_worst>=-1.995212 78  11 M (0.14102564 0.85897436)  
##             94) compactness_se< -4.534889 3   0 B (1.00000000 0.00000000) *
##             95) compactness_se>=-4.534889 75   8 M (0.10666667 0.89333333) *
##    3) compactness_se>=-3.488718 234 104 M (0.44444444 0.55555556)  
##      6) symmetry_worst< -1.317839 203 101 M (0.49753695 0.50246305)  
##       12) compactness_se>=-3.476676 188  87 B (0.53723404 0.46276596)  
##         24) texture_worst< 5.016194 176  75 B (0.57386364 0.42613636)  
##           48) smoothness_mean< -2.385259 47   9 B (0.80851064 0.19148936)  
##             96) symmetry_worst< -1.636934 40   3 B (0.92500000 0.07500000) *
##             97) symmetry_worst>=-1.636934 7   1 M (0.14285714 0.85714286) *
##           49) smoothness_mean>=-2.385259 129  63 M (0.48837209 0.51162791)  
##             98) symmetry_worst>=-1.471051 20   2 B (0.90000000 0.10000000) *
##             99) symmetry_worst< -1.471051 109  45 M (0.41284404 0.58715596) *
##         25) texture_worst>=5.016194 12   0 M (0.00000000 1.00000000) *
##       13) compactness_se< -3.476676 15   0 M (0.00000000 1.00000000) *
##      7) symmetry_worst>=-1.317839 31   3 M (0.09677419 0.90322581)  
##       14) compactness_se>=-2.646661 6   3 B (0.50000000 0.50000000)  
##         28) texture_mean< 2.915767 3   0 B (1.00000000 0.00000000) *
##         29) texture_mean>=2.915767 3   0 M (0.00000000 1.00000000) *
##       15) compactness_se< -2.646661 25   0 M (0.00000000 1.00000000) *
## 
## $trees[[90]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 424 B (0.53508772 0.46491228)  
##     2) symmetry_worst< -1.619058 630 261 B (0.58571429 0.41428571)  
##       4) smoothness_worst>=-1.480334 155  41 B (0.73548387 0.26451613)  
##         8) texture_worst< 5.032208 142  30 B (0.78873239 0.21126761)  
##          16) smoothness_mean>=-2.354774 130  21 B (0.83846154 0.16153846)  
##            32) compactness_se< -3.294139 119  13 B (0.89075630 0.10924370)  
##              64) texture_mean< 2.932513 61   0 B (1.00000000 0.00000000) *
##              65) texture_mean>=2.932513 58  13 B (0.77586207 0.22413793) *
##            33) compactness_se>=-3.294139 11   3 M (0.27272727 0.72727273)  
##              66) texture_mean< 2.781176 3   0 B (1.00000000 0.00000000) *
##              67) texture_mean>=2.781176 8   0 M (0.00000000 1.00000000) *
##          17) smoothness_mean< -2.354774 12   3 M (0.25000000 0.75000000)  
##            34) smoothness_mean< -2.396647 3   0 B (1.00000000 0.00000000) *
##            35) smoothness_mean>=-2.396647 9   0 M (0.00000000 1.00000000) *
##         9) texture_worst>=5.032208 13   2 M (0.15384615 0.84615385)  
##          18) texture_mean< 2.955358 2   0 B (1.00000000 0.00000000) *
##          19) texture_mean>=2.955358 11   0 M (0.00000000 1.00000000) *
##       5) smoothness_worst< -1.480334 475 220 B (0.53684211 0.46315789)  
##        10) smoothness_worst< -1.482107 459 204 B (0.55555556 0.44444444)  
##          20) smoothness_worst>=-1.49223 32   3 B (0.90625000 0.09375000)  
##            40) compactness_se>=-4.133152 29   0 B (1.00000000 0.00000000) *
##            41) compactness_se< -4.133152 3   0 M (0.00000000 1.00000000) *
##          21) smoothness_worst< -1.49223 427 201 B (0.52927400 0.47072600)  
##            42) smoothness_worst< -1.501879 404 179 B (0.55693069 0.44306931)  
##              84) texture_mean>=2.717337 389 165 B (0.57583548 0.42416452) *
##              85) texture_mean< 2.717337 15   1 M (0.06666667 0.93333333) *
##            43) smoothness_worst>=-1.501879 23   1 M (0.04347826 0.95652174)  
##              86) texture_mean< 2.835488 1   0 B (1.00000000 0.00000000) *
##              87) texture_mean>=2.835488 22   0 M (0.00000000 1.00000000) *
##        11) smoothness_worst>=-1.482107 16   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-1.619058 282 119 M (0.42198582 0.57801418)  
##       6) compactness_se>=-3.759737 149  64 B (0.57046980 0.42953020)  
##        12) smoothness_mean< -2.216408 121  39 B (0.67768595 0.32231405)  
##          24) smoothness_mean>=-2.230731 29   0 B (1.00000000 0.00000000) *
##          25) smoothness_mean< -2.230731 92  39 B (0.57608696 0.42391304)  
##            50) smoothness_mean< -2.298098 70  18 B (0.74285714 0.25714286)  
##             100) smoothness_worst>=-1.513087 46   5 B (0.89130435 0.10869565) *
##             101) smoothness_worst< -1.513087 24  11 M (0.45833333 0.54166667) *
##            51) smoothness_mean>=-2.298098 22   1 M (0.04545455 0.95454545)  
##             102) texture_mean< 2.622235 1   0 B (1.00000000 0.00000000) *
##             103) texture_mean>=2.622235 21   0 M (0.00000000 1.00000000) *
##        13) smoothness_mean>=-2.216408 28   3 M (0.10714286 0.89285714)  
##          26) compactness_se< -3.646366 3   0 B (1.00000000 0.00000000) *
##          27) compactness_se>=-3.646366 25   0 M (0.00000000 1.00000000) *
##       7) compactness_se< -3.759737 133  34 M (0.25563910 0.74436090)  
##        14) texture_mean< 2.956197 54  25 M (0.46296296 0.53703704)  
##          28) smoothness_mean< -2.295113 23   6 B (0.73913043 0.26086957)  
##            56) texture_mean< 2.919658 16   0 B (1.00000000 0.00000000) *
##            57) texture_mean>=2.919658 7   1 M (0.14285714 0.85714286)  
##             114) texture_mean>=2.92664 1   0 B (1.00000000 0.00000000) *
##             115) texture_mean< 2.92664 6   0 M (0.00000000 1.00000000) *
##          29) smoothness_mean>=-2.295113 31   8 M (0.25806452 0.74193548)  
##            58) texture_mean>=2.912011 7   2 B (0.71428571 0.28571429)  
##             116) smoothness_mean< -2.200472 5   0 B (1.00000000 0.00000000) *
##             117) smoothness_mean>=-2.200472 2   0 M (0.00000000 1.00000000) *
##            59) texture_mean< 2.912011 24   3 M (0.12500000 0.87500000)  
##             118) smoothness_worst>=-1.425992 2   0 B (1.00000000 0.00000000) *
##             119) smoothness_worst< -1.425992 22   1 M (0.04545455 0.95454545) *
##        15) texture_mean>=2.956197 79   9 M (0.11392405 0.88607595)  
##          30) compactness_se< -4.291103 15   7 B (0.53333333 0.46666667)  
##            60) symmetry_worst< -1.41032 9   1 B (0.88888889 0.11111111)  
##             120) smoothness_worst< -1.43601 8   0 B (1.00000000 0.00000000) *
##             121) smoothness_worst>=-1.43601 1   0 M (0.00000000 1.00000000) *
##            61) symmetry_worst>=-1.41032 6   0 M (0.00000000 1.00000000) *
##          31) compactness_se>=-4.291103 64   1 M (0.01562500 0.98437500)  
##            62) smoothness_worst>=-1.433164 7   1 M (0.14285714 0.85714286)  
##             124) smoothness_mean< -2.265514 1   0 B (1.00000000 0.00000000) *
##             125) smoothness_mean>=-2.265514 6   0 M (0.00000000 1.00000000) *
##            63) smoothness_worst< -1.433164 57   0 M (0.00000000 1.00000000) *
## 
## $trees[[91]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 404 M (0.44298246 0.55701754)  
##     2) compactness_se>=-4.49319 817 389 M (0.47613219 0.52386781)  
##       4) symmetry_worst< -1.427209 746 370 M (0.49597855 0.50402145)  
##         8) symmetry_worst>=-1.749963 317 126 B (0.60252366 0.39747634)  
##          16) symmetry_worst< -1.713275 57   5 B (0.91228070 0.08771930)  
##            32) texture_mean< 3.407548 54   2 B (0.96296296 0.03703704)  
##              64) smoothness_mean< -2.223835 51   0 B (1.00000000 0.00000000) *
##              65) smoothness_mean>=-2.223835 3   1 M (0.33333333 0.66666667) *
##            33) texture_mean>=3.407548 3   0 M (0.00000000 1.00000000) *
##          17) symmetry_worst>=-1.713275 260 121 B (0.53461538 0.46538462)  
##            34) texture_mean< 2.925843 87  19 B (0.78160920 0.21839080)  
##              68) smoothness_mean< -2.081877 80  12 B (0.85000000 0.15000000) *
##              69) smoothness_mean>=-2.081877 7   0 M (0.00000000 1.00000000) *
##            35) texture_mean>=2.925843 173  71 M (0.41040462 0.58959538)  
##              70) compactness_se>=-3.863738 107  50 B (0.53271028 0.46728972) *
##              71) compactness_se< -3.863738 66  14 M (0.21212121 0.78787879) *
##         9) symmetry_worst< -1.749963 429 179 M (0.41724942 0.58275058)  
##          18) smoothness_mean>=-2.317597 159  67 B (0.57861635 0.42138365)  
##            36) symmetry_worst< -1.759228 144  52 B (0.63888889 0.36111111)  
##              72) compactness_se< -3.734237 70  12 B (0.82857143 0.17142857) *
##              73) compactness_se>=-3.734237 74  34 M (0.45945946 0.54054054) *
##            37) symmetry_worst>=-1.759228 15   0 M (0.00000000 1.00000000) *
##          19) smoothness_mean< -2.317597 270  87 M (0.32222222 0.67777778)  
##            38) symmetry_worst< -1.815934 181  83 M (0.45856354 0.54143646)  
##              76) symmetry_worst>=-1.88003 30   2 B (0.93333333 0.06666667) *
##              77) symmetry_worst< -1.88003 151  55 M (0.36423841 0.63576159) *
##            39) symmetry_worst>=-1.815934 89   4 M (0.04494382 0.95505618)  
##              78) smoothness_mean< -2.518446 1   0 B (1.00000000 0.00000000) *
##              79) smoothness_mean>=-2.518446 88   3 M (0.03409091 0.96590909) *
##       5) symmetry_worst>=-1.427209 71  19 M (0.26760563 0.73239437)  
##        10) smoothness_worst< -1.497484 15   4 B (0.73333333 0.26666667)  
##          20) smoothness_mean>=-2.372291 11   0 B (1.00000000 0.00000000) *
##          21) smoothness_mean< -2.372291 4   0 M (0.00000000 1.00000000) *
##        11) smoothness_worst>=-1.497484 56   8 M (0.14285714 0.85714286)  
##          22) smoothness_mean>=-2.231196 19   8 M (0.42105263 0.57894737)  
##            44) smoothness_mean< -2.217831 7   0 B (1.00000000 0.00000000) *
##            45) smoothness_mean>=-2.217831 12   1 M (0.08333333 0.91666667)  
##              90) texture_mean< 2.745901 2   1 B (0.50000000 0.50000000) *
##              91) texture_mean>=2.745901 10   0 M (0.00000000 1.00000000) *
##          23) smoothness_mean< -2.231196 37   0 M (0.00000000 1.00000000) *
##     3) compactness_se< -4.49319 95  15 M (0.15789474 0.84210526)  
##       6) compactness_se< -4.705732 7   1 B (0.85714286 0.14285714)  
##        12) texture_mean< 2.952113 6   0 B (1.00000000 0.00000000) *
##        13) texture_mean>=2.952113 1   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.705732 88   9 M (0.10227273 0.89772727)  
##        14) texture_worst>=5.185666 2   0 B (1.00000000 0.00000000) *
##        15) texture_worst< 5.185666 86   7 M (0.08139535 0.91860465)  
##          30) texture_mean>=3.232565 1   0 B (1.00000000 0.00000000) *
##          31) texture_mean< 3.232565 85   6 M (0.07058824 0.92941176)  
##            62) smoothness_mean< -2.572721 1   0 B (1.00000000 0.00000000) *
##            63) smoothness_mean>=-2.572721 84   5 M (0.05952381 0.94047619)  
##             126) texture_worst< 4.800175 31   5 M (0.16129032 0.83870968) *
##             127) texture_worst>=4.800175 53   0 M (0.00000000 1.00000000) *
## 
## $trees[[92]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 441 M (0.48355263 0.51644737)  
##     2) symmetry_worst< -2.052205 118  38 B (0.67796610 0.32203390)  
##       4) symmetry_worst>=-2.107807 24   0 B (1.00000000 0.00000000) *
##       5) symmetry_worst< -2.107807 94  38 B (0.59574468 0.40425532)  
##        10) texture_mean< 2.883577 11   0 B (1.00000000 0.00000000) *
##        11) texture_mean>=2.883577 83  38 B (0.54216867 0.45783133)  
##          22) texture_worst>=4.7448 37  10 B (0.72972973 0.27027027)  
##            44) smoothness_mean< -2.280871 33   6 B (0.81818182 0.18181818)  
##              88) texture_mean< 3.326618 27   2 B (0.92592593 0.07407407) *
##              89) texture_mean>=3.326618 6   2 M (0.33333333 0.66666667) *
##            45) smoothness_mean>=-2.280871 4   0 M (0.00000000 1.00000000) *
##          23) texture_worst< 4.7448 46  18 M (0.39130435 0.60869565)  
##            46) smoothness_mean>=-2.30269 7   0 B (1.00000000 0.00000000) *
##            47) smoothness_mean< -2.30269 39  11 M (0.28205128 0.71794872)  
##              94) smoothness_worst< -1.614216 17   7 B (0.58823529 0.41176471) *
##              95) smoothness_worst>=-1.614216 22   1 M (0.04545455 0.95454545) *
##     3) symmetry_worst>=-2.052205 794 361 M (0.45465995 0.54534005)  
##       6) smoothness_worst>=-1.568787 608 299 B (0.50822368 0.49177632)  
##        12) smoothness_worst< -1.559144 32   0 B (1.00000000 0.00000000) *
##        13) smoothness_worst>=-1.559144 576 277 M (0.48090278 0.51909722)  
##          26) symmetry_worst>=-1.982941 515 248 B (0.51844660 0.48155340)  
##            52) smoothness_mean< -2.413908 68  16 B (0.76470588 0.23529412)  
##             104) texture_worst< 5.003123 56   7 B (0.87500000 0.12500000) *
##             105) texture_worst>=5.003123 12   3 M (0.25000000 0.75000000) *
##            53) smoothness_mean>=-2.413908 447 215 M (0.48098434 0.51901566)  
##             106) smoothness_worst>=-1.533868 406 196 B (0.51724138 0.48275862) *
##             107) smoothness_worst< -1.533868 41   5 M (0.12195122 0.87804878) *
##          27) symmetry_worst< -1.982941 61  10 M (0.16393443 0.83606557)  
##            54) smoothness_worst>=-1.453469 5   0 B (1.00000000 0.00000000) *
##            55) smoothness_worst< -1.453469 56   5 M (0.08928571 0.91071429)  
##             110) texture_mean< 2.841101 3   0 B (1.00000000 0.00000000) *
##             111) texture_mean>=2.841101 53   2 M (0.03773585 0.96226415) *
##       7) smoothness_worst< -1.568787 186  52 M (0.27956989 0.72043011)  
##        14) smoothness_worst< -1.658238 9   0 B (1.00000000 0.00000000) *
##        15) smoothness_worst>=-1.658238 177  43 M (0.24293785 0.75706215)  
##          30) texture_worst>=4.683744 73  30 M (0.41095890 0.58904110)  
##            60) smoothness_mean>=-2.472257 28   4 B (0.85714286 0.14285714)  
##             120) texture_mean< 3.194865 24   0 B (1.00000000 0.00000000) *
##             121) texture_mean>=3.194865 4   0 M (0.00000000 1.00000000) *
##            61) smoothness_mean< -2.472257 45   6 M (0.13333333 0.86666667)  
##             122) compactness_se< -4.938351 3   0 B (1.00000000 0.00000000) *
##             123) compactness_se>=-4.938351 42   3 M (0.07142857 0.92857143) *
##          31) texture_worst< 4.683744 104  13 M (0.12500000 0.87500000)  
##            62) compactness_se< -4.387578 4   0 B (1.00000000 0.00000000) *
##            63) compactness_se>=-4.387578 100   9 M (0.09000000 0.91000000)  
##             126) texture_mean< 2.67759 2   0 B (1.00000000 0.00000000) *
##             127) texture_mean>=2.67759 98   7 M (0.07142857 0.92857143) *
## 
## $trees[[93]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 394 M (0.43201754 0.56798246)  
##     2) symmetry_worst< -1.8637 273 117 B (0.57142857 0.42857143)  
##       4) texture_worst< 4.907333 228  82 B (0.64035088 0.35964912)  
##         8) smoothness_mean>=-2.357468 97  21 B (0.78350515 0.21649485)  
##          16) texture_worst>=4.425254 53   1 B (0.98113208 0.01886792)  
##            32) texture_mean< 3.104804 50   0 B (1.00000000 0.00000000) *
##            33) texture_mean>=3.104804 3   1 B (0.66666667 0.33333333)  
##              66) texture_mean>=3.124007 2   0 B (1.00000000 0.00000000) *
##              67) texture_mean< 3.124007 1   0 M (0.00000000 1.00000000) *
##          17) texture_worst< 4.425254 44  20 B (0.54545455 0.45454545)  
##            34) texture_mean< 2.755881 15   0 B (1.00000000 0.00000000) *
##            35) texture_mean>=2.755881 29   9 M (0.31034483 0.68965517)  
##              70) smoothness_mean>=-2.278455 10   2 B (0.80000000 0.20000000) *
##              71) smoothness_mean< -2.278455 19   1 M (0.05263158 0.94736842) *
##         9) smoothness_mean< -2.357468 131  61 B (0.53435115 0.46564885)  
##          18) smoothness_worst< -1.557839 91  28 B (0.69230769 0.30769231)  
##            36) texture_mean>=2.786702 81  19 B (0.76543210 0.23456790)  
##              72) smoothness_worst>=-1.694089 68   9 B (0.86764706 0.13235294) *
##              73) smoothness_worst< -1.694089 13   3 M (0.23076923 0.76923077) *
##            37) texture_mean< 2.786702 10   1 M (0.10000000 0.90000000)  
##              74) texture_mean< 2.764104 1   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.764104 9   0 M (0.00000000 1.00000000) *
##          19) smoothness_worst>=-1.557839 40   7 M (0.17500000 0.82500000)  
##            38) compactness_se>=-3.455891 6   0 B (1.00000000 0.00000000) *
##            39) compactness_se< -3.455891 34   1 M (0.02941176 0.97058824)  
##              78) texture_worst>=4.815376 1   0 B (1.00000000 0.00000000) *
##              79) texture_worst< 4.815376 33   0 M (0.00000000 1.00000000) *
##       5) texture_worst>=4.907333 45  10 M (0.22222222 0.77777778)  
##        10) symmetry_worst< -2.207988 7   0 B (1.00000000 0.00000000) *
##        11) symmetry_worst>=-2.207988 38   3 M (0.07894737 0.92105263)  
##          22) texture_mean>=3.361554 3   0 B (1.00000000 0.00000000) *
##          23) texture_mean< 3.361554 35   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst>=-1.8637 639 238 M (0.37245696 0.62754304)  
##       6) texture_mean>=3.176386 51  15 B (0.70588235 0.29411765)  
##        12) symmetry_worst< -1.453337 46  10 B (0.78260870 0.21739130)  
##          24) texture_mean< 3.386045 40   5 B (0.87500000 0.12500000)  
##            48) smoothness_mean< -2.340941 33   1 B (0.96969697 0.03030303)  
##              96) compactness_se< -3.055765 28   0 B (1.00000000 0.00000000) *
##              97) compactness_se>=-3.055765 5   1 B (0.80000000 0.20000000) *
##            49) smoothness_mean>=-2.340941 7   3 M (0.42857143 0.57142857)  
##              98) texture_mean< 3.247139 3   0 B (1.00000000 0.00000000) *
##              99) texture_mean>=3.247139 4   0 M (0.00000000 1.00000000) *
##          25) texture_mean>=3.386045 6   1 M (0.16666667 0.83333333)  
##            50) texture_mean>=3.500537 1   0 B (1.00000000 0.00000000) *
##            51) texture_mean< 3.500537 5   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst>=-1.453337 5   0 M (0.00000000 1.00000000) *
##       7) texture_mean< 3.176386 588 202 M (0.34353741 0.65646259)  
##        14) texture_mean< 2.960364 319 138 M (0.43260188 0.56739812)  
##          28) smoothness_mean< -2.22055 272 135 B (0.50367647 0.49632353)  
##            56) symmetry_worst>=-1.769229 162  49 B (0.69753086 0.30246914)  
##             112) symmetry_worst< -1.36527 141  31 B (0.78014184 0.21985816) *
##             113) symmetry_worst>=-1.36527 21   3 M (0.14285714 0.85714286) *
##            57) symmetry_worst< -1.769229 110  24 M (0.21818182 0.78181818)  
##             114) texture_mean>=2.93492 16   4 B (0.75000000 0.25000000) *
##             115) texture_mean< 2.93492 94  12 M (0.12765957 0.87234043) *
##          29) smoothness_mean>=-2.22055 47   1 M (0.02127660 0.97872340)  
##            58) smoothness_worst< -1.534923 1   0 B (1.00000000 0.00000000) *
##            59) smoothness_worst>=-1.534923 46   0 M (0.00000000 1.00000000) *
##        15) texture_mean>=2.960364 269  64 M (0.23791822 0.76208178)  
##          30) texture_mean>=2.987952 154  51 M (0.33116883 0.66883117)  
##            60) texture_mean< 3.005682 20   6 B (0.70000000 0.30000000)  
##             120) compactness_se>=-4.280193 14   1 B (0.92857143 0.07142857) *
##             121) compactness_se< -4.280193 6   1 M (0.16666667 0.83333333) *
##            61) texture_mean>=3.005682 134  37 M (0.27611940 0.72388060)  
##             122) texture_worst>=4.667341 95  36 M (0.37894737 0.62105263) *
##             123) texture_worst< 4.667341 39   1 M (0.02564103 0.97435897) *
##          31) texture_mean< 2.987952 115  13 M (0.11304348 0.88695652)  
##            62) texture_worst< 4.31854 5   0 B (1.00000000 0.00000000) *
##            63) texture_worst>=4.31854 110   8 M (0.07272727 0.92727273)  
##             126) compactness_se< -4.291103 20   8 M (0.40000000 0.60000000) *
##             127) compactness_se>=-4.291103 90   0 M (0.00000000 1.00000000) *
## 
## $trees[[94]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 438 M (0.48026316 0.51973684)  
##     2) symmetry_worst>=-1.234283 45  10 B (0.77777778 0.22222222)  
##       4) symmetry_worst< -1.069325 37   2 B (0.94594595 0.05405405)  
##         8) smoothness_mean< -2.185335 35   0 B (1.00000000 0.00000000) *
##         9) smoothness_mean>=-2.185335 2   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.069325 8   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst< -1.234283 867 403 M (0.46482122 0.53517878)  
##       6) texture_worst< 4.517889 307 135 B (0.56026059 0.43973941)  
##        12) compactness_se< -4.020169 86  20 B (0.76744186 0.23255814)  
##          24) texture_worst>=4.3976 48   1 B (0.97916667 0.02083333)  
##            48) compactness_se>=-4.484801 42   0 B (1.00000000 0.00000000) *
##            49) compactness_se< -4.484801 6   1 B (0.83333333 0.16666667)  
##              98) compactness_se< -4.501722 5   0 B (1.00000000 0.00000000) *
##              99) compactness_se>=-4.501722 1   0 M (0.00000000 1.00000000) *
##          25) texture_worst< 4.3976 38  19 B (0.50000000 0.50000000)  
##            50) texture_worst< 4.271231 17   0 B (1.00000000 0.00000000) *
##            51) texture_worst>=4.271231 21   2 M (0.09523810 0.90476190)  
##             102) smoothness_worst< -1.654625 1   0 B (1.00000000 0.00000000) *
##             103) smoothness_worst>=-1.654625 20   1 M (0.05000000 0.95000000) *
##        13) compactness_se>=-4.020169 221 106 M (0.47963801 0.52036199)  
##          26) smoothness_worst< -1.473088 139  58 B (0.58273381 0.41726619)  
##            52) smoothness_worst>=-1.479941 19   0 B (1.00000000 0.00000000) *
##            53) smoothness_worst< -1.479941 120  58 B (0.51666667 0.48333333)  
##             106) smoothness_worst< -1.482701 103  41 B (0.60194175 0.39805825) *
##             107) smoothness_worst>=-1.482701 17   0 M (0.00000000 1.00000000) *
##          27) smoothness_worst>=-1.473088 82  25 M (0.30487805 0.69512195)  
##            54) smoothness_mean>=-2.267218 45  21 B (0.53333333 0.46666667)  
##             108) symmetry_worst< -1.619683 18   2 B (0.88888889 0.11111111) *
##             109) symmetry_worst>=-1.619683 27   8 M (0.29629630 0.70370370) *
##            55) smoothness_mean< -2.267218 37   1 M (0.02702703 0.97297297)  
##             110) smoothness_mean< -2.405579 6   1 M (0.16666667 0.83333333) *
##             111) smoothness_mean>=-2.405579 31   0 M (0.00000000 1.00000000) *
##       7) texture_worst>=4.517889 560 231 M (0.41250000 0.58750000)  
##        14) texture_worst>=4.543638 476 218 M (0.45798319 0.54201681)  
##          28) texture_worst< 4.577679 38   6 B (0.84210526 0.15789474)  
##            56) smoothness_mean< -2.246212 34   3 B (0.91176471 0.08823529)  
##             112) smoothness_mean>=-2.494905 31   1 B (0.96774194 0.03225806) *
##             113) smoothness_mean< -2.494905 3   1 M (0.33333333 0.66666667) *
##            57) smoothness_mean>=-2.246212 4   1 M (0.25000000 0.75000000)  
##             114) texture_mean< 2.943507 1   0 B (1.00000000 0.00000000) *
##             115) texture_mean>=2.943507 3   0 M (0.00000000 1.00000000) *
##          29) texture_worst>=4.577679 438 186 M (0.42465753 0.57534247)  
##            58) texture_worst>=4.642157 328 163 M (0.49695122 0.50304878)  
##             116) symmetry_worst< -1.39888 312 149 B (0.52243590 0.47756410) *
##             117) symmetry_worst>=-1.39888 16   0 M (0.00000000 1.00000000) *
##            59) texture_worst< 4.642157 110  23 M (0.20909091 0.79090909)  
##             118) symmetry_worst>=-1.685469 34  16 M (0.47058824 0.52941176) *
##             119) symmetry_worst< -1.685469 76   7 M (0.09210526 0.90789474) *
##        15) texture_worst< 4.543638 84  13 M (0.15476190 0.84523810)  
##          30) symmetry_worst< -1.859307 13   3 B (0.76923077 0.23076923)  
##            60) texture_mean< 3.157578 10   0 B (1.00000000 0.00000000) *
##            61) texture_mean>=3.157578 3   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-1.859307 71   3 M (0.04225352 0.95774648)  
##            62) smoothness_mean>=-2.234468 3   0 B (1.00000000 0.00000000) *
##            63) smoothness_mean< -2.234468 68   0 M (0.00000000 1.00000000) *
## 
## $trees[[95]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 436 M (0.47807018 0.52192982)  
##     2) symmetry_worst>=-1.412496 61  18 B (0.70491803 0.29508197)  
##       4) symmetry_worst< -1.072749 56  13 B (0.76785714 0.23214286)  
##         8) symmetry_worst>=-1.126811 22   0 B (1.00000000 0.00000000) *
##         9) symmetry_worst< -1.126811 34  13 B (0.61764706 0.38235294)  
##          18) symmetry_worst< -1.293329 24   4 B (0.83333333 0.16666667)  
##            36) texture_worst< 4.689831 18   0 B (1.00000000 0.00000000) *
##            37) texture_worst>=4.689831 6   2 M (0.33333333 0.66666667)  
##              74) texture_mean< 2.89312 2   0 B (1.00000000 0.00000000) *
##              75) texture_mean>=2.89312 4   0 M (0.00000000 1.00000000) *
##          19) symmetry_worst>=-1.293329 10   1 M (0.10000000 0.90000000)  
##            38) texture_mean< 2.756192 1   0 B (1.00000000 0.00000000) *
##            39) texture_mean>=2.756192 9   0 M (0.00000000 1.00000000) *
##       5) symmetry_worst>=-1.072749 5   0 M (0.00000000 1.00000000) *
##     3) symmetry_worst< -1.412496 851 393 M (0.46180964 0.53819036)  
##       6) texture_worst< 3.788077 11   0 B (1.00000000 0.00000000) *
##       7) texture_worst>=3.788077 840 382 M (0.45476190 0.54523810)  
##        14) compactness_se< -3.721197 453 220 B (0.51434879 0.48565121)  
##          28) compactness_se>=-3.867535 65  12 B (0.81538462 0.18461538)  
##            56) smoothness_worst< -1.461024 52   0 B (1.00000000 0.00000000) *
##            57) smoothness_worst>=-1.461024 13   1 M (0.07692308 0.92307692)  
##             114) compactness_se< -3.816941 1   0 B (1.00000000 0.00000000) *
##             115) compactness_se>=-3.816941 12   0 M (0.00000000 1.00000000) *
##          29) compactness_se< -3.867535 388 180 M (0.46391753 0.53608247)  
##            58) compactness_se< -3.987083 315 149 B (0.52698413 0.47301587)  
##             116) smoothness_mean>=-2.356093 125  42 B (0.66400000 0.33600000) *
##             117) smoothness_mean< -2.356093 190  83 M (0.43684211 0.56315789) *
##            59) compactness_se>=-3.987083 73  14 M (0.19178082 0.80821918)  
##             118) smoothness_mean< -2.394871 14   5 B (0.64285714 0.35714286) *
##             119) smoothness_mean>=-2.394871 59   5 M (0.08474576 0.91525424) *
##        15) compactness_se>=-3.721197 387 149 M (0.38501292 0.61498708)  
##          30) symmetry_worst< -1.849754 141  65 B (0.53900709 0.46099291)  
##            60) smoothness_worst>=-1.565486 74  21 B (0.71621622 0.28378378)  
##             120) texture_worst< 4.605004 43   6 B (0.86046512 0.13953488) *
##             121) texture_worst>=4.605004 31  15 B (0.51612903 0.48387097) *
##            61) smoothness_worst< -1.565486 67  23 M (0.34328358 0.65671642)  
##             122) symmetry_worst>=-1.934101 9   0 B (1.00000000 0.00000000) *
##             123) symmetry_worst< -1.934101 58  14 M (0.24137931 0.75862069) *
##          31) symmetry_worst>=-1.849754 246  73 M (0.29674797 0.70325203)  
##            62) symmetry_worst>=-1.608735 88  41 B (0.53409091 0.46590909)  
##             124) texture_mean< 2.955045 31   1 B (0.96774194 0.03225806) *
##             125) texture_mean>=2.955045 57  17 M (0.29824561 0.70175439) *
##            63) symmetry_worst< -1.608735 158  26 M (0.16455696 0.83544304)  
##             126) smoothness_mean>=-2.120284 4   0 B (1.00000000 0.00000000) *
##             127) smoothness_mean< -2.120284 154  22 M (0.14285714 0.85714286) *
## 
## $trees[[96]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 424 M (0.46491228 0.53508772)  
##     2) smoothness_mean< -2.392182 322 125 B (0.61180124 0.38819876)  
##       4) smoothness_mean>=-2.441446 159  37 B (0.76729560 0.23270440)  
##         8) symmetry_worst< -1.448573 146  27 B (0.81506849 0.18493151)  
##          16) smoothness_mean< -2.424301 44   0 B (1.00000000 0.00000000) *
##          17) smoothness_mean>=-2.424301 102  27 B (0.73529412 0.26470588)  
##            34) smoothness_mean>=-2.405782 50   2 B (0.96000000 0.04000000)  
##              68) texture_mean< 3.082932 42   0 B (1.00000000 0.00000000) *
##              69) texture_mean>=3.082932 8   2 B (0.75000000 0.25000000) *
##            35) smoothness_mean< -2.405782 52  25 B (0.51923077 0.48076923)  
##              70) smoothness_mean< -2.408446 43  16 B (0.62790698 0.37209302) *
##              71) smoothness_mean>=-2.408446 9   0 M (0.00000000 1.00000000) *
##         9) symmetry_worst>=-1.448573 13   3 M (0.23076923 0.76923077)  
##          18) smoothness_mean< -2.425324 3   0 B (1.00000000 0.00000000) *
##          19) smoothness_mean>=-2.425324 10   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean< -2.441446 163  75 M (0.46012270 0.53987730)  
##        10) texture_mean< 2.921008 23   3 B (0.86956522 0.13043478)  
##          20) smoothness_mean< -2.444843 21   1 B (0.95238095 0.04761905)  
##            40) symmetry_worst>=-1.811428 17   0 B (1.00000000 0.00000000) *
##            41) symmetry_worst< -1.811428 4   1 B (0.75000000 0.25000000)  
##              82) texture_mean< 2.85595 3   0 B (1.00000000 0.00000000) *
##              83) texture_mean>=2.85595 1   0 M (0.00000000 1.00000000) *
##          21) smoothness_mean>=-2.444843 2   0 M (0.00000000 1.00000000) *
##        11) texture_mean>=2.921008 140  55 M (0.39285714 0.60714286)  
##          22) symmetry_worst< -1.868413 70  31 B (0.55714286 0.44285714)  
##            44) compactness_se< -4.169518 24   2 B (0.91666667 0.08333333)  
##              88) smoothness_mean< -2.44767 20   0 B (1.00000000 0.00000000) *
##              89) smoothness_mean>=-2.44767 4   2 B (0.50000000 0.50000000) *
##            45) compactness_se>=-4.169518 46  17 M (0.36956522 0.63043478)  
##              90) smoothness_worst< -1.601489 20   6 B (0.70000000 0.30000000) *
##              91) smoothness_worst>=-1.601489 26   3 M (0.11538462 0.88461538) *
##          23) symmetry_worst>=-1.868413 70  16 M (0.22857143 0.77142857)  
##            46) smoothness_worst< -1.657635 7   0 B (1.00000000 0.00000000) *
##            47) smoothness_worst>=-1.657635 63   9 M (0.14285714 0.85714286)  
##              94) smoothness_worst>=-1.549205 5   1 B (0.80000000 0.20000000) *
##              95) smoothness_worst< -1.549205 58   5 M (0.08620690 0.91379310) *
##     3) smoothness_mean>=-2.392182 590 227 M (0.38474576 0.61525424)  
##       6) symmetry_worst>=-1.234283 29   6 B (0.79310345 0.20689655)  
##        12) smoothness_worst< -1.440335 24   1 B (0.95833333 0.04166667)  
##          24) texture_mean>=2.693961 23   0 B (1.00000000 0.00000000) *
##          25) texture_mean< 2.693961 1   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst>=-1.440335 5   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst< -1.234283 561 204 M (0.36363636 0.63636364)  
##        14) smoothness_worst< -1.472307 372 156 M (0.41935484 0.58064516)  
##          28) smoothness_worst>=-1.477976 38   0 B (1.00000000 0.00000000) *
##          29) smoothness_worst< -1.477976 334 118 M (0.35329341 0.64670659)  
##            58) smoothness_worst< -1.482699 286 115 M (0.40209790 0.59790210)  
##             116) compactness_se< -3.965703 62  21 B (0.66129032 0.33870968) *
##             117) compactness_se>=-3.965703 224  74 M (0.33035714 0.66964286) *
##            59) smoothness_worst>=-1.482699 48   3 M (0.06250000 0.93750000)  
##             118) texture_worst< 4.136746 2   0 B (1.00000000 0.00000000) *
##             119) texture_worst>=4.136746 46   1 M (0.02173913 0.97826087) *
##        15) smoothness_worst>=-1.472307 189  48 M (0.25396825 0.74603175)  
##          30) symmetry_worst< -1.941776 14   5 B (0.64285714 0.35714286)  
##            60) texture_worst< 4.85229 9   0 B (1.00000000 0.00000000) *
##            61) texture_worst>=4.85229 5   0 M (0.00000000 1.00000000) *
##          31) symmetry_worst>=-1.941776 175  39 M (0.22285714 0.77714286)  
##            62) smoothness_mean>=-2.094359 22  10 B (0.54545455 0.45454545)  
##             124) symmetry_worst< -1.596878 9   0 B (1.00000000 0.00000000) *
##             125) symmetry_worst>=-1.596878 13   3 M (0.23076923 0.76923077) *
##            63) smoothness_mean< -2.094359 153  27 M (0.17647059 0.82352941)  
##             126) compactness_se< -4.040144 49  20 M (0.40816327 0.59183673) *
##             127) compactness_se>=-4.040144 104   7 M (0.06730769 0.93269231) *
## 
## $trees[[97]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 447 B (0.50986842 0.49013158)  
##     2) compactness_se< -4.705732 17   1 B (0.94117647 0.05882353)  
##       4) symmetry_worst< -1.179946 16   0 B (1.00000000 0.00000000) *
##       5) symmetry_worst>=-1.179946 1   0 M (0.00000000 1.00000000) *
##     3) compactness_se>=-4.705732 895 446 B (0.50167598 0.49832402)  
##       6) symmetry_worst>=-2.923662 883 434 B (0.50849377 0.49150623)  
##        12) symmetry_worst< -2.202388 65  17 B (0.73846154 0.26153846)  
##          24) smoothness_mean>=-2.469349 52   6 B (0.88461538 0.11538462)  
##            48) compactness_se>=-4.492707 49   3 B (0.93877551 0.06122449)  
##              96) smoothness_mean< -2.266808 45   0 B (1.00000000 0.00000000) *
##              97) smoothness_mean>=-2.266808 4   1 M (0.25000000 0.75000000) *
##            49) compactness_se< -4.492707 3   0 M (0.00000000 1.00000000) *
##          25) smoothness_mean< -2.469349 13   2 M (0.15384615 0.84615385)  
##            50) smoothness_mean< -2.57545 2   0 B (1.00000000 0.00000000) *
##            51) smoothness_mean>=-2.57545 11   0 M (0.00000000 1.00000000) *
##        13) symmetry_worst>=-2.202388 818 401 M (0.49022005 0.50977995)  
##          26) smoothness_mean>=-2.262885 196  77 B (0.60714286 0.39285714)  
##            52) smoothness_mean< -2.21595 114  28 B (0.75438596 0.24561404)  
##             104) texture_mean< 3.081899 106  20 B (0.81132075 0.18867925) *
##             105) texture_mean>=3.081899 8   0 M (0.00000000 1.00000000) *
##            53) smoothness_mean>=-2.21595 82  33 M (0.40243902 0.59756098)  
##             106) smoothness_mean>=-2.188811 61  30 B (0.50819672 0.49180328) *
##             107) smoothness_mean< -2.188811 21   2 M (0.09523810 0.90476190) *
##          27) smoothness_mean< -2.262885 622 282 M (0.45337621 0.54662379)  
##            54) smoothness_mean< -2.295113 557 271 M (0.48653501 0.51346499)  
##             108) smoothness_mean>=-2.311929 60  13 B (0.78333333 0.21666667) *
##             109) smoothness_mean< -2.311929 497 224 M (0.45070423 0.54929577) *
##            55) smoothness_mean>=-2.295113 65  11 M (0.16923077 0.83076923)  
##             110) smoothness_worst< -1.514953 8   2 B (0.75000000 0.25000000) *
##             111) smoothness_worst>=-1.514953 57   5 M (0.08771930 0.91228070) *
##       7) symmetry_worst< -2.923662 12   0 M (0.00000000 1.00000000) *
## 
## $trees[[98]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 448 B (0.50877193 0.49122807)  
##     2) smoothness_mean< -2.258569 749 337 B (0.55006676 0.44993324)  
##       4) smoothness_mean>=-2.267218 31   1 B (0.96774194 0.03225806)  
##         8) compactness_se< -3.294139 30   0 B (1.00000000 0.00000000) *
##         9) compactness_se>=-3.294139 1   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean< -2.267218 718 336 B (0.53203343 0.46796657)  
##        10) compactness_se>=-4.406791 616 270 B (0.56168831 0.43831169)  
##          20) texture_worst>=4.726366 205  60 B (0.70731707 0.29268293)  
##            40) texture_worst< 5.003123 139  23 B (0.83453237 0.16546763)  
##              80) compactness_se< -2.614641 135  19 B (0.85925926 0.14074074) *
##              81) compactness_se>=-2.614641 4   0 M (0.00000000 1.00000000) *
##            41) texture_worst>=5.003123 66  29 M (0.43939394 0.56060606)  
##              82) smoothness_mean< -2.363096 46  19 B (0.58695652 0.41304348) *
##              83) smoothness_mean>=-2.363096 20   2 M (0.10000000 0.90000000) *
##          21) texture_worst< 4.726366 411 201 M (0.48905109 0.51094891)  
##            42) smoothness_mean< -2.296106 353 164 B (0.53541076 0.46458924)  
##              84) texture_mean< 2.976548 248  94 B (0.62096774 0.37903226) *
##              85) texture_mean>=2.976548 105  35 M (0.33333333 0.66666667) *
##            43) smoothness_mean>=-2.296106 58  12 M (0.20689655 0.79310345)  
##              86) symmetry_worst< -1.93369 10   2 B (0.80000000 0.20000000) *
##              87) symmetry_worst>=-1.93369 48   4 M (0.08333333 0.91666667) *
##        11) compactness_se< -4.406791 102  36 M (0.35294118 0.64705882)  
##          22) compactness_se< -4.520844 55  25 B (0.54545455 0.45454545)  
##            44) smoothness_mean>=-2.536393 41  12 B (0.70731707 0.29268293)  
##              88) symmetry_worst>=-2.330898 33   4 B (0.87878788 0.12121212) *
##              89) symmetry_worst< -2.330898 8   0 M (0.00000000 1.00000000) *
##            45) smoothness_mean< -2.536393 14   1 M (0.07142857 0.92857143)  
##              90) texture_mean< 2.933381 1   0 B (1.00000000 0.00000000) *
##              91) texture_mean>=2.933381 13   0 M (0.00000000 1.00000000) *
##          23) compactness_se>=-4.520844 47   6 M (0.12765957 0.87234043)  
##            46) texture_mean< 2.841101 3   0 B (1.00000000 0.00000000) *
##            47) texture_mean>=2.841101 44   3 M (0.06818182 0.93181818)  
##              94) texture_mean>=3.28326 1   0 B (1.00000000 0.00000000) *
##              95) texture_mean< 3.28326 43   2 M (0.04651163 0.95348837) *
##     3) smoothness_mean>=-2.258569 163  52 M (0.31901840 0.68098160)  
##       6) symmetry_worst< -1.765932 51  25 M (0.49019608 0.50980392)  
##        12) texture_mean< 2.909334 13   0 B (1.00000000 0.00000000) *
##        13) texture_mean>=2.909334 38  12 M (0.31578947 0.68421053)  
##          26) smoothness_worst>=-1.433185 9   2 B (0.77777778 0.22222222)  
##            52) texture_mean>=3.014892 7   0 B (1.00000000 0.00000000) *
##            53) texture_mean< 3.014892 2   0 M (0.00000000 1.00000000) *
##          27) smoothness_worst< -1.433185 29   5 M (0.17241379 0.82758621)  
##            54) texture_worst< 4.489662 7   3 B (0.57142857 0.42857143)  
##             108) texture_mean>=2.956939 4   0 B (1.00000000 0.00000000) *
##             109) texture_mean< 2.956939 3   0 M (0.00000000 1.00000000) *
##            55) texture_worst>=4.489662 22   1 M (0.04545455 0.95454545)  
##             110) smoothness_worst< -1.506961 2   1 B (0.50000000 0.50000000) *
##             111) smoothness_worst>=-1.506961 20   0 M (0.00000000 1.00000000) *
##       7) symmetry_worst>=-1.765932 112  27 M (0.24107143 0.75892857)  
##        14) texture_worst< 4.680515 91  27 M (0.29670330 0.70329670)  
##          28) texture_worst>=4.623656 4   0 B (1.00000000 0.00000000) *
##          29) texture_worst< 4.623656 87  23 M (0.26436782 0.73563218)  
##            58) smoothness_mean< -2.216408 31  14 M (0.45161290 0.54838710)  
##             116) smoothness_mean>=-2.231196 12   0 B (1.00000000 0.00000000) *
##             117) smoothness_mean< -2.231196 19   2 M (0.10526316 0.89473684) *
##            59) smoothness_mean>=-2.216408 56   9 M (0.16071429 0.83928571)  
##             118) texture_worst< 4.185244 20   8 M (0.40000000 0.60000000) *
##             119) texture_worst>=4.185244 36   1 M (0.02777778 0.97222222) *
##        15) texture_worst>=4.680515 21   0 M (0.00000000 1.00000000) *
## 
## $trees[[99]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 456 B (0.50000000 0.50000000)  
##     2) compactness_se>=-2.809774 31   3 B (0.90322581 0.09677419)  
##       4) smoothness_mean< -2.085882 29   1 B (0.96551724 0.03448276)  
##         8) symmetry_worst>=-2.167572 28   0 B (1.00000000 0.00000000) *
##         9) symmetry_worst< -2.167572 1   0 M (0.00000000 1.00000000) *
##       5) smoothness_mean>=-2.085882 2   0 M (0.00000000 1.00000000) *
##     3) compactness_se< -2.809774 881 428 M (0.48581158 0.51418842)  
##       6) compactness_se< -4.274791 137  46 B (0.66423358 0.33576642)  
##        12) compactness_se>=-4.49319 57   7 B (0.87719298 0.12280702)  
##          24) smoothness_mean>=-2.467165 47   3 B (0.93617021 0.06382979)  
##            48) texture_mean< 3.151222 46   2 B (0.95652174 0.04347826)  
##              96) smoothness_worst< -1.483426 38   0 B (1.00000000 0.00000000) *
##              97) smoothness_worst>=-1.483426 8   2 B (0.75000000 0.25000000) *
##            49) texture_mean>=3.151222 1   0 M (0.00000000 1.00000000) *
##          25) smoothness_mean< -2.467165 10   4 B (0.60000000 0.40000000)  
##            50) compactness_se< -4.341665 6   0 B (1.00000000 0.00000000) *
##            51) compactness_se>=-4.341665 4   0 M (0.00000000 1.00000000) *
##        13) compactness_se< -4.49319 80  39 B (0.51250000 0.48750000)  
##          26) compactness_se< -4.704842 12   0 B (1.00000000 0.00000000) *
##          27) compactness_se>=-4.704842 68  29 M (0.42647059 0.57352941)  
##            54) smoothness_worst>=-1.547264 23   6 B (0.73913043 0.26086957)  
##             108) symmetry_worst>=-1.809609 16   1 B (0.93750000 0.06250000) *
##             109) symmetry_worst< -1.809609 7   2 M (0.28571429 0.71428571) *
##            55) smoothness_worst< -1.547264 45  12 M (0.26666667 0.73333333)  
##             110) texture_worst< 4.812659 29  12 M (0.41379310 0.58620690) *
##             111) texture_worst>=4.812659 16   0 M (0.00000000 1.00000000) *
##       7) compactness_se>=-4.274791 744 337 M (0.45295699 0.54704301)  
##        14) smoothness_worst>=-1.40309 48  10 B (0.79166667 0.20833333)  
##          28) texture_mean< 3.05894 45   7 B (0.84444444 0.15555556)  
##            56) texture_mean>=3.008413 19   0 B (1.00000000 0.00000000) *
##            57) texture_mean< 3.008413 26   7 B (0.73076923 0.26923077)  
##             114) compactness_se< -3.086764 23   4 B (0.82608696 0.17391304) *
##             115) compactness_se>=-3.086764 3   0 M (0.00000000 1.00000000) *
##          29) texture_mean>=3.05894 3   0 M (0.00000000 1.00000000) *
##        15) smoothness_worst< -1.40309 696 299 M (0.42959770 0.57040230)  
##          30) smoothness_worst< -1.603778 81  25 B (0.69135802 0.30864198)  
##            60) texture_mean>=3.086027 40   0 B (1.00000000 0.00000000) *
##            61) texture_mean< 3.086027 41  16 M (0.39024390 0.60975610)  
##             122) texture_mean< 2.939162 11   0 B (1.00000000 0.00000000) *
##             123) texture_mean>=2.939162 30   5 M (0.16666667 0.83333333) *
##          31) smoothness_worst>=-1.603778 615 243 M (0.39512195 0.60487805)  
##            62) smoothness_worst>=-1.567247 530 230 M (0.43396226 0.56603774)  
##             124) smoothness_worst< -1.55958 30   3 B (0.90000000 0.10000000) *
##             125) smoothness_worst>=-1.55958 500 203 M (0.40600000 0.59400000) *
##            63) smoothness_worst< -1.567247 85  13 M (0.15294118 0.84705882)  
##             126) smoothness_mean>=-2.419351 42  12 M (0.28571429 0.71428571) *
##             127) smoothness_mean< -2.419351 43   1 M (0.02325581 0.97674419) *
## 
## $trees[[100]]
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##   1) root 912 427 B (0.53179825 0.46820175)  
##     2) smoothness_worst< -1.603315 108  29 B (0.73148148 0.26851852)  
##       4) texture_mean>=3.086027 40   2 B (0.95000000 0.05000000)  
##         8) compactness_se>=-4.480894 38   0 B (1.00000000 0.00000000) *
##         9) compactness_se< -4.480894 2   0 M (0.00000000 1.00000000) *
##       5) texture_mean< 3.086027 68  27 B (0.60294118 0.39705882)  
##        10) smoothness_worst>=-1.60795 17   0 B (1.00000000 0.00000000) *
##        11) smoothness_worst< -1.60795 51  24 M (0.47058824 0.52941176)  
##          22) symmetry_worst< -1.667161 36  13 B (0.63888889 0.36111111)  
##            44) texture_mean< 3.080067 29   6 B (0.79310345 0.20689655)  
##              88) texture_worst< 4.864124 24   1 B (0.95833333 0.04166667) *
##              89) texture_worst>=4.864124 5   0 M (0.00000000 1.00000000) *
##            45) texture_mean>=3.080067 7   0 M (0.00000000 1.00000000) *
##          23) symmetry_worst>=-1.667161 15   1 M (0.06666667 0.93333333)  
##            46) texture_mean< 2.885795 1   0 B (1.00000000 0.00000000) *
##            47) texture_mean>=2.885795 14   0 M (0.00000000 1.00000000) *
##     3) smoothness_worst>=-1.603315 804 398 B (0.50497512 0.49502488)  
##       6) smoothness_worst>=-1.59459 778 374 B (0.51928021 0.48071979)  
##        12) smoothness_worst< -1.584388 33   1 B (0.96969697 0.03030303)  
##          24) texture_mean< 3.267122 32   0 B (1.00000000 0.00000000) *
##          25) texture_mean>=3.267122 1   0 M (0.00000000 1.00000000) *
##        13) smoothness_worst>=-1.584388 745 372 M (0.49932886 0.50067114)  
##          26) compactness_se>=-3.494301 226  87 B (0.61504425 0.38495575)  
##            52) compactness_se< -3.444843 49   3 B (0.93877551 0.06122449)  
##             104) smoothness_mean>=-2.463517 46   0 B (1.00000000 0.00000000) *
##             105) smoothness_mean< -2.463517 3   0 M (0.00000000 1.00000000) *
##            53) compactness_se>=-3.444843 177  84 B (0.52542373 0.47457627)  
##             106) compactness_se>=-3.426516 154  63 B (0.59090909 0.40909091) *
##             107) compactness_se< -3.426516 23   2 M (0.08695652 0.91304348) *
##          27) compactness_se< -3.494301 519 233 M (0.44894027 0.55105973)  
##            54) compactness_se< -3.66733 444 219 M (0.49324324 0.50675676)  
##             108) texture_mean>=3.348904 20   1 B (0.95000000 0.05000000) *
##             109) texture_mean< 3.348904 424 200 M (0.47169811 0.52830189) *
##            55) compactness_se>=-3.66733 75  14 M (0.18666667 0.81333333)  
##             110) texture_mean>=3.145434 10   1 B (0.90000000 0.10000000) *
##             111) texture_mean< 3.145434 65   5 M (0.07692308 0.92307692) *
##       7) smoothness_worst< -1.59459 26   2 M (0.07692308 0.92307692)  
##        14) texture_mean< 2.755158 2   0 B (1.00000000 0.00000000) *
##        15) texture_mean>=2.755158 24   0 M (0.00000000 1.00000000) *
## 
## 
## $weights
##   [1] 1.0642386 0.9517970 0.7684041 0.5793833 0.6323994 0.7337124 0.5493768
##   [8] 0.7347059 0.8042379 0.5636014 0.5367516 0.4876431 0.3206582 0.6539157
##  [15] 0.5093635 0.6648857 0.5026250 0.2927844 0.5666438 0.6402904 0.6201142
##  [22] 0.3569723 0.5418616 0.4304642 0.5381729 0.9289972 0.6696281 0.6369112
##  [29] 0.7936017 0.2413852 0.5679277 0.5423372 0.4333344 0.4961133 0.7167576
##  [36] 0.5443922 0.4028488 0.4175805 0.4115830 0.5246761 0.6065379 0.5421187
##  [43] 0.4854263 0.6947258 0.6230596 0.6219552 0.5126567 0.4969624 0.3586968
##  [50] 0.4692455 0.4498236 0.6898165 0.7332071 0.5226157 0.3772735 0.5096765
##  [57] 0.7364397 0.4606224 0.6473455 0.6227635 0.3472248 0.7561317 0.7708424
##  [64] 0.4784138 0.7103869 0.5683997 0.6992354 0.6129001 0.5718152 0.7558681
##  [71] 0.4084518 0.5597012 0.5215857 0.7652235 0.8515905 0.6346368 0.5966106
##  [78] 0.6937558 0.5497377 0.5101590 0.3734845 0.5873386 0.4147868 0.4774993
##  [85] 0.5152268 0.4816840 0.5237209 0.3983270 0.5446059 0.5659719 0.5241156
##  [92] 0.4338659 0.7521560 0.5336086 0.5130153 0.6569338 0.2870437 0.4795788
##  [99] 0.4234391 0.3298559
## 
## $votes
##             [,1]      [,2]
##   [1,] 15.770631 40.942345
##   [2,] 17.213111 39.499864
##   [3,] 13.287915 43.425060
##   [4,] 15.945589 40.767387
##   [5,] 16.166797 40.546178
##   [6,] 14.949651 41.763325
##   [7,] 12.289696 44.423280
##   [8,]  9.831883 46.881093
##   [9,] 16.486741 40.226235
##  [10,] 17.584448 39.128527
##  [11,] 17.015885 39.697091
##  [12,] 11.398470 45.314506
##  [13,]  8.843713 47.869262
##  [14,] 16.359905 40.353071
##  [15,] 10.331381 46.381594
##  [16,] 44.274543 12.438432
##  [17,] 44.179938 12.533037
##  [18,] 44.653472 12.059503
##  [19,] 16.029224 40.683752
##  [20,]  8.258340 48.454635
##  [21,] 15.460261 41.252714
##  [22,] 13.423686 43.289289
##  [23,] 17.922414 38.790561
##  [24,] 18.012245 38.700730
##  [25,]  9.799023 46.913952
##  [26,] 13.934914 42.778062
##  [27,] 43.495625 13.217351
##  [28,] 16.615958 40.097017
##  [29,] 16.588248 40.124728
##  [30,] 16.274650 40.438325
##  [31,] 14.644228 42.068747
##  [32,] 12.793774 43.919202
##  [33,] 15.603049 41.109927
##  [34,] 41.356636 15.356340
##  [35,] 12.885000 43.827976
##  [36,] 42.718814 13.994161
##  [37,] 45.950137 10.762838
##  [38,] 41.568239 15.144736
##  [39,] 17.790713 38.922262
##  [40,] 15.448864 41.264111
##  [41,] 43.478189 13.234787
##  [42,] 16.601468 40.111507
##  [43,] 11.966156 44.746819
##  [44,] 44.323688 12.389288
##  [45,] 45.682097 11.030878
##  [46,] 40.440032 16.272944
##  [47,] 44.870215 11.842760
##  [48,] 12.696284 44.016691
##  [49,] 38.915553 17.797423
##  [50,] 40.186094 16.526882
##  [51,] 39.774979 16.937997
##  [52,] 17.520022 39.192953
##  [53,] 14.362500 42.350475
##  [54,] 17.269488 39.443487
##  [55,] 41.030742 15.682233
##  [56,] 17.444534 39.268441
##  [57,] 10.804987 45.907989
##  [58,] 39.109539 17.603436
##  [59,] 38.949864 17.763112
##  [60,] 39.733432 16.979543
##  [61,] 13.527358 43.185618
##  [62,] 14.516071 42.196904
##  [63,] 41.248066 15.464910
##  [64,] 16.986440 39.726535
##  [65,] 17.105598 39.607377
##  [66,] 14.781496 41.931480
##  [67,] 39.092940 17.620036
##  [68,] 39.754907 16.958069
##  [69,] 40.833049 15.879927
##  [70,] 16.198770 40.514205
##  [71,] 46.788657  9.924319
##  [72,] 41.490335 15.222641
##  [73,] 16.688301 40.024675
##  [74,] 14.605614 42.107362
##  [75,] 42.474587 14.238388
##  [76,] 42.544582 14.168393
##  [77,] 16.613916 40.099059
##  [78,] 48.799685  7.913290
##  [79,] 40.697132 16.015844
##  [80,] 39.470015 17.242960
##  [81,] 39.525214 17.187761
##  [82,] 16.072117 40.640858
##  [83,] 39.695935 17.017041
##  [84,] 14.623544 42.089431
##  [85,] 39.044648 17.668328
##  [86,] 39.928659 16.784317
##  [87,] 39.714371 16.998604
##  [88,] 42.245444 14.467532
##  [89,] 39.984787 16.728189
##  [90,] 39.038393 17.674582
##  [91,] 38.672522 18.040454
##  [92,] 40.654793 16.058183
##  [93,] 14.571006 42.141970
##  [94,] 13.159873 43.553102
##  [95,] 15.743529 40.969446
##  [96,] 42.805768 13.907208
##  [97,] 15.613982 41.098993
##  [98,] 42.686093 14.026883
##  [99,] 40.676317 16.036658
## [100,] 16.278184 40.434791
## [101,] 17.444143 39.268833
## [102,] 41.168457 15.544518
## [103,] 15.511556 41.201419
## [104,] 41.302831 15.410145
## [105,] 17.320774 39.392202
## [106,] 13.628987 43.083989
## [107,] 41.673650 15.039326
## [108,] 13.692129 43.020846
## [109,] 42.497151 14.215825
## [110,] 40.543216 16.169760
## [111,] 16.352812 40.360164
## [112,] 41.984485 14.728491
## [113,] 44.732094 11.980881
## [114,] 18.544930 38.168045
## [115,] 41.676366 15.036610
## [116,] 43.822652 12.890324
## [117,] 15.868165 40.844811
## [118,] 40.818102 15.894873
## [119,] 40.375090 16.337886
## [120,] 44.526715 12.186261
## [121,] 38.935307 17.777668
## [122,] 48.652987  8.059988
## [123,] 39.687404 17.025572
## [124,] 41.409094 15.303882
## [125,] 40.600126 16.112850
## [126,] 43.323440 13.389536
## [127,] 45.845442 10.867534
## [128,] 38.047626 18.665350
## [129,] 17.591765 39.121210
## [130,] 15.892801 40.820174
## [131,] 40.469760 16.243215
## [132,] 15.232856 41.480120
## [133,] 42.493406 14.219570
## [134,] 18.184074 38.528901
## [135,] 16.589639 40.123337
## [136,] 43.545566 13.167409
## [137,] 18.005034 38.707942
## [138,] 44.074254 12.638721
## [139,] 47.694887  9.018089
## [140,] 40.986591 15.726384
## [141,] 16.673528 40.039447
## [142,] 46.207421 10.505554
## [143,] 48.178617  8.534359
## [144,]  7.743186 48.969789
## [145,] 14.577974 42.135001
## [146,] 42.140904 14.572071
## [147,] 17.142220 39.570756
## [148,] 43.341310 13.371666
## [149,] 41.016437 15.696538
## [150,] 42.432610 14.280366
## [151,] 13.441184 43.271791
## [152,] 39.833034 16.879941
## [153,] 42.803156 13.909820
## [154,] 10.891920 45.821055
## [155,] 42.941229 13.771746
## [156,] 12.892587 43.820388
## [157,] 17.611585 39.101391
## [158,] 15.750297 40.962679
## [159,] 39.904668 16.808308
## [160,] 18.168566 38.544409
## [161,] 12.465104 44.247871
## [162,] 12.206802 44.506173
## [163,] 39.032284 17.680692
## [164,] 17.435224 39.277751
## [165,] 41.716372 14.996604
## [166,] 16.615957 40.097018
## [167,] 38.825920 17.887055
## [168,] 47.571713  9.141263
## [169,] 16.345455 40.367521
## [170,] 39.259423 17.453553
## [171,] 15.867135 40.845840
## [172,] 15.673557 41.039418
## [173,] 40.344147 16.368828
## [174,] 41.973868 14.739107
## [175,] 16.468344 40.244631
## [176,] 40.679791 16.033184
## [177,] 40.562979 16.149997
## [178,] 11.877042 44.835934
## [179,] 40.388609 16.324366
## [180,] 44.874083 11.838893
## [181,] 41.131513 15.581463
## [182,] 40.597623 16.115353
## [183,] 15.145747 41.567228
## [184,] 44.026069 12.686906
## [185,] 41.938170 14.774805
## [186,] 18.112535 38.600440
## [187,] 41.146846 15.566129
## [188,] 40.751791 15.961184
## [189,] 40.932340 15.780636
## [190,] 12.908527 43.804448
## [191,] 41.519504 15.193471
## [192,] 45.438347 11.274628
## [193,] 38.456309 18.256666
## [194,] 38.804761 17.908215
## [195,] 15.585494 41.127481
## [196,] 39.733489 16.979486
## [197,] 42.426717 14.286258
## [198,] 39.525587 17.187389
## [199,] 44.512441 12.200535
## [200,] 17.263380 39.449595
## [201,] 16.539118 40.173857
## [202,] 18.234634 38.478342
## [203,] 17.519738 39.193237
## [204,] 15.848679 40.864296
## [205,] 17.020160 39.692816
## [206,] 16.282094 40.430882
## [207,] 12.278382 44.434593
## [208,] 16.010525 40.702450
## [209,] 17.557445 39.155531
## [210,] 15.722596 40.990379
## [211,] 38.755595 17.957380
## [212,] 44.151227 12.561749
## [213,] 41.383506 15.329469
## [214,] 40.441111 16.271865
## [215,] 42.890948 13.822027
## [216,] 16.491647 40.221329
## [217,] 40.100003 16.612972
## [218,] 16.519004 40.193971
## [219,] 44.935116 11.777859
## [220,] 43.694015 13.018960
## [221,] 15.470179 41.242797
## [222,] 48.249954  8.463022
## [223,] 14.069065 42.643911
## [224,] 45.662435 11.050541
## [225,] 14.230133 42.482843
## [226,] 17.012664 39.700311
## [227,] 47.317972  9.395003
## [228,] 47.180112  9.532864
## [229,] 41.217196 15.495780
## [230,] 47.957359  8.755617
## [231,] 41.085638 15.627337
## [232,] 39.475226 17.237750
## [233,] 45.515224 11.197751
## [234,] 39.063678 17.649297
## [235,] 39.041382 17.671594
## [236,] 40.136644 16.576331
## [237,] 47.321821  9.391155
## [238,] 45.788023 10.924953
## [239,] 48.511766  8.201209
## [240,] 17.202376 39.510599
## [241,] 43.623547 13.089428
## [242,] 41.235680 15.477296
## [243,] 16.587225 40.125750
## [244,] 41.071650 15.641326
## [245,] 15.931765 40.781210
## [246,] 41.648704 15.064271
## [247,] 41.423976 15.289000
## [248,] 44.800090 11.912886
## [249,] 46.542954 10.170021
## [250,] 51.478066  5.234909
## [251,] 52.726681  3.986294
## [252,] 51.816131  4.896844
## [253,] 42.156969 14.556006
## [254,] 46.789302  9.923673
## [255,] 47.033954  9.679021
## [256,] 17.939534 38.773442
## [257,] 40.388572 16.324403
## [258,] 43.852414 12.860562
## [259,] 39.387312 17.325664
## [260,] 17.431963 39.281013
## [261,] 42.986149 13.726827
## [262,] 12.582705 44.130271
## [263,] 40.602830 16.110146
## [264,] 41.618293 15.094682
## [265,] 15.995097 40.717878
## [266,] 18.088077 38.624899
## [267,] 39.847651 16.865324
## [268,] 40.128674 16.584302
## [269,] 43.028728 13.684247
## [270,] 17.380567 39.332409
## [271,] 42.102490 14.610485
## [272,] 39.678887 17.034088
## [273,] 15.803214 40.909762
## [274,] 39.073850 17.639125
## [275,] 40.497825 16.215150
## [276,] 40.625114 16.087861
## [277,] 15.386031 41.326945
## [278,] 45.839495 10.873480
## [279,] 41.734782 14.978194
## [280,] 39.424901 17.288075
## [281,] 45.550802 11.162173
## [282,] 43.880849 12.832127
## [283,] 41.618059 15.094916
## [284,] 46.103154 10.609821
## [285,] 15.180581 41.532395
## [286,] 14.204322 42.508653
## [287,] 15.885888 40.827087
## [288,] 46.325575 10.387400
## [289,] 46.857229  9.855747
## [290,] 43.221246 13.491729
## [291,] 41.586639 15.126336
## [292,] 48.464399  8.248576
## [293,] 40.953283 15.759693
## [294,] 38.964295 17.748681
## [295,] 42.035816 14.677159
## [296,] 16.199566 40.513409
## [297,] 12.404138 44.308838
## [298,] 16.911264 39.801711
## [299,] 16.573321 40.139654
## [300,] 10.160189 46.552786
## [301,] 45.691797 11.021178
## [302,] 16.801802 39.911173
## [303,] 45.585617 11.127359
## [304,] 42.898341 13.814634
## [305,] 39.847554 16.865421
## [306,] 39.915071 16.797905
## [307,] 39.738535 16.974440
## [308,] 12.408280 44.304696
## [309,] 39.040940 17.672035
## [310,] 45.472008 11.240967
## [311,] 40.427360 16.285615
## [312,] 38.808080 17.904895
## [313,] 41.597075 15.115900
## [314,] 17.046261 39.666715
## [315,] 45.442685 11.270290
## [316,] 16.077227 40.635749
## [317,] 39.739712 16.973263
## [318,] 11.487710 45.225265
## [319,] 38.982141 17.730834
## [320,] 42.992476 13.720499
## [321,] 42.800140 13.912836
## [322,] 37.924094 18.788881
## [323,] 14.918980 41.793995
## [324,] 43.296495 13.416481
## [325,] 43.493131 13.219844
## [326,] 49.647363  7.065613
## [327,] 40.933615 15.779360
## [328,] 40.979971 15.733004
## [329,] 43.223226 13.489750
## [330,] 14.037143 42.675832
## [331,] 39.932592 16.780384
## [332,] 40.253440 16.459536
## [333,] 41.609674 15.103302
## [334,] 40.019841 16.693134
## [335,] 39.021293 17.691682
## [336,] 16.943069 39.769907
## [337,] 37.716459 18.996517
## [338,] 38.519345 18.193631
## [339,] 14.188733 42.524242
## [340,] 41.726306 14.986670
## [341,] 41.968979 14.743996
## [342,] 40.958076 15.754899
## [343,] 38.937311 17.775664
## [344,] 40.583640 16.129336
## [345,] 46.425265 10.287711
## [346,] 39.386938 17.326038
## [347,] 15.254605 41.458371
## [348,] 40.276430 16.436546
## [349,] 13.590664 43.122312
## [350,] 14.138133 42.574842
## [351,] 17.469015 39.243960
## [352,] 37.551109 19.161866
## [353,] 41.110565 15.602410
## [354,] 39.820370 16.892605
## [355,] 48.450657  8.262318
## [356,] 41.018459 15.694516
## [357,] 42.188299 14.524677
## [358,] 40.576433 16.136542
## [359,] 18.109353 38.603622
## [360,] 38.948052 17.764924
## [361,] 15.688920 41.024056
## [362,] 42.645322 14.067653
## [363,] 44.151560 12.561415
## [364,] 16.199682 40.513293
## [365,] 41.125843 15.587133
## [366,] 17.194501 39.518475
## [367,] 40.566917 16.146058
## [368,] 42.936683 13.776292
## [369,] 41.360363 15.352612
## [370,] 38.264808 18.448168
## [371,] 40.270093 16.442882
## [372,] 45.213239 11.499736
## [373,] 15.610357 41.102619
## [374,] 14.175765 42.537211
## [375,] 41.264621 15.448354
## [376,] 44.233821 12.479154
## [377,] 39.689827 17.023148
## [378,] 39.011788 17.701187
## [379,] 40.836809 15.876167
## [380,] 16.677779 40.035196
## [381,] 41.515173 15.197802
## [382,] 43.290172 13.422803
## [383,] 45.065436 11.647539
## [384,] 39.069503 17.643472
## [385,] 43.578182 13.134794
## [386,] 39.200069 17.512907
## [387,] 17.837099 38.875876
## [388,] 40.092031 16.620945
## [389,] 39.900827 16.812148
## [390,] 45.618491 11.094484
## [391,] 43.052873 13.660102
## [392,] 42.678594 14.034381
## [393,] 13.100300 43.612676
## [394,] 15.531682 41.181294
## [395,] 48.522581  8.190395
## [396,] 41.292767 15.420208
## [397,] 40.655632 16.057343
## [398,] 39.200737 17.512238
## [399,] 41.025748 15.687228
## [400,] 16.922252 39.790724
## [401,]  8.462537 48.250438
## [402,] 18.100017 38.612958
## [403,] 40.485095 16.227880
## [404,] 41.357128 15.355847
## [405,] 41.060965 15.652011
## [406,] 11.507211 45.205764
## [407,] 45.611610 11.101366
## [408,] 45.326365 11.386611
## [409,] 11.342092 45.370883
## [410,] 17.798164 38.914812
## [411,] 40.642342 16.070633
## [412,] 16.700959 40.012017
## [413,] 40.998006 15.714970
## [414,] 39.166810 17.546165
## [415,] 39.324534 17.388441
## [416,] 16.502283 40.210693
## [417,] 40.052772 16.660203
## [418,] 39.781287 16.931688
## [419,] 45.491418 11.221557
## [420,] 40.167569 16.545406
## [421,] 44.141764 12.571211
## [422,] 40.440480 16.272496
## [423,] 46.413372 10.299604
## [424,] 40.087520 16.625456
## [425,] 39.345624 17.367352
## [426,] 42.872903 13.840072
## [427,] 14.150743 42.562233
## [428,] 40.232852 16.480123
## [429,] 39.835103 16.877873
## [430,] 40.232987 16.479988
## [431,] 41.231814 15.481162
## [432,] 40.518414 16.194561
## [433,] 40.245791 16.467185
## [434,] 39.219541 17.493435
## [435,] 43.455687 13.257288
## [436,] 40.894248 15.818727
## [437,] 40.549726 16.163249
## [438,] 39.073660 17.639316
## [439,] 40.724560 15.988415
## [440,] 39.075012 17.637963
## [441,] 42.758726 13.954249
## [442,] 39.917893 16.795082
## [443,] 39.396710 17.316266
## [444,] 41.247325 15.465651
## [445,] 40.138234 16.574741
## [446,] 40.360527 16.352449
## [447,] 46.528963 10.184012
## [448,] 15.429840 41.283136
## [449,] 15.046920 41.666056
## [450,] 17.815924 38.897051
## [451,]  9.742806 46.970169
## [452,] 15.770631 40.942345
## [453,] 17.213111 39.499864
## [454,] 13.287915 43.425060
## [455,] 13.530525 43.182451
## [456,] 15.945589 40.767387
## [457,] 16.166797 40.546178
## [458,] 14.949651 41.763325
## [459,] 12.289696 44.423280
## [460,]  9.831883 46.881093
## [461,] 16.486741 40.226235
## [462,] 17.176570 39.536405
## [463,] 11.398470 45.314506
## [464,]  8.843713 47.869262
## [465,] 16.359905 40.353071
## [466,] 10.331381 46.381594
## [467,] 15.855439 40.857537
## [468,] 44.274543 12.438432
## [469,] 44.179938 12.533037
## [470,] 44.653472 12.059503
## [471,] 16.029224 40.683752
## [472,] 14.218191 42.494784
## [473,] 15.460261 41.252714
## [474,]  9.799023 46.913952
## [475,] 14.930952 41.782024
## [476,] 16.848789 39.864186
## [477,] 13.934914 42.778062
## [478,] 16.662135 40.050841
## [479,] 12.949429 43.763546
## [480,] 43.495625 13.217351
## [481,] 16.615958 40.097017
## [482,] 16.588248 40.124728
## [483,] 18.322208 38.390768
## [484,] 16.274650 40.438325
## [485,]  9.023127 47.689849
## [486,] 12.793774 43.919202
## [487,] 15.603049 41.109927
## [488,] 42.718814 13.994161
## [489,] 38.454828 18.258147
## [490,] 40.489526 16.223449
## [491,] 45.950137 10.762838
## [492,] 41.568239 15.144736
## [493,] 17.790713 38.922262
## [494,] 15.448864 41.264111
## [495,] 43.478189 13.234787
## [496,] 11.966156 44.746819
## [497,] 44.323688 12.389288
## [498,] 41.755059 14.957917
## [499,] 45.682097 11.030878
## [500,] 40.440032 16.272944
## [501,] 16.383585 40.329390
## [502,] 44.870215 11.842760
## [503,] 14.304082 42.408893
## [504,] 38.915553 17.797423
## [505,] 40.186094 16.526882
## [506,] 39.774979 16.937997
## [507,] 17.520022 39.192953
## [508,] 14.362500 42.350475
## [509,] 17.269488 39.443487
## [510,] 41.030742 15.682233
## [511,] 16.323325 40.389651
## [512,] 39.647228 17.065747
## [513,] 17.444534 39.268441
## [514,] 10.804987 45.907989
## [515,] 39.109539 17.603436
## [516,] 39.733432 16.979543
## [517,] 13.527358 43.185618
## [518,] 14.516071 42.196904
## [519,] 41.248066 15.464910
## [520,] 16.986440 39.726535
## [521,] 17.105598 39.607377
## [522,] 14.781496 41.931480
## [523,] 39.092940 17.620036
## [524,] 39.754907 16.958069
## [525,] 40.833049 15.879927
## [526,] 16.198770 40.514205
## [527,] 46.788657  9.924319
## [528,] 41.490335 15.222641
## [529,] 16.688301 40.024675
## [530,] 39.696382 17.016593
## [531,] 42.544582 14.168393
## [532,] 16.613916 40.099059
## [533,] 16.683302 40.029673
## [534,] 48.799685  7.913290
## [535,] 40.697132 16.015844
## [536,] 39.525214 17.187761
## [537,] 16.072117 40.640858
## [538,] 39.695935 17.017041
## [539,] 14.623544 42.089431
## [540,] 39.044648 17.668328
## [541,] 39.928659 16.784317
## [542,] 39.714371 16.998604
## [543,] 42.245444 14.467532
## [544,] 39.984787 16.728189
## [545,] 38.672522 18.040454
## [546,] 40.654793 16.058183
## [547,] 14.571006 42.141970
## [548,] 15.743529 40.969446
## [549,] 42.805768 13.907208
## [550,] 15.613982 41.098993
## [551,] 45.420123 11.292853
## [552,] 42.686093 14.026883
## [553,] 40.676317 16.036658
## [554,] 17.444143 39.268833
## [555,] 41.168457 15.544518
## [556,] 15.511556 41.201419
## [557,] 41.302831 15.410145
## [558,] 17.320774 39.392202
## [559,] 13.628987 43.083989
## [560,] 41.673650 15.039326
## [561,] 13.692129 43.020846
## [562,] 15.277871 41.435105
## [563,] 42.497151 14.215825
## [564,] 40.543216 16.169760
## [565,] 16.352812 40.360164
## [566,] 18.544930 38.168045
## [567,] 39.541857 17.171119
## [568,] 46.784456  9.928519
## [569,] 43.822652 12.890324
## [570,] 15.868165 40.844811
## [571,] 40.818102 15.894873
## [572,] 40.375090 16.337886
## [573,] 44.526715 12.186261
## [574,] 38.925216 17.787760
## [575,] 38.935307 17.777668
## [576,] 42.641153 14.071823
## [577,] 48.652987  8.059988
## [578,] 39.687404 17.025572
## [579,] 41.409094 15.303882
## [580,] 17.652693 39.060282
## [581,] 43.323440 13.389536
## [582,] 45.845442 10.867534
## [583,] 17.591765 39.121210
## [584,] 40.469760 16.243215
## [585,] 15.232856 41.480120
## [586,] 42.493406 14.219570
## [587,] 45.902626 10.810349
## [588,] 18.184074 38.528901
## [589,] 16.589639 40.123337
## [590,] 41.189926 15.523050
## [591,] 17.777558 38.935417
## [592,] 39.995146 16.717829
## [593,] 44.074254 12.638721
## [594,] 47.694887  9.018089
## [595,] 40.986591 15.726384
## [596,] 16.673528 40.039447
## [597,] 46.207421 10.505554
## [598,] 48.178617  8.534359
## [599,] 15.600277 41.112698
## [600,]  7.743186 48.969789
## [601,] 14.577974 42.135001
## [602,] 42.140904 14.572071
## [603,] 17.938006 38.774969
## [604,] 40.514984 16.197991
## [605,] 17.142220 39.570756
## [606,] 43.341310 13.371666
## [607,] 41.016437 15.696538
## [608,] 42.432610 14.280366
## [609,] 13.441184 43.271791
## [610,] 39.833034 16.879941
## [611,] 42.803156 13.909820
## [612,] 10.605669 46.107307
## [613,] 42.941229 13.771746
## [614,] 12.892587 43.820388
## [615,] 17.611585 39.101391
## [616,] 18.340842 38.372133
## [617,] 39.904668 16.808308
## [618,] 18.168566 38.544409
## [619,] 12.465104 44.247871
## [620,] 12.206802 44.506173
## [621,] 39.032284 17.680692
## [622,] 17.435224 39.277751
## [623,] 41.716372 14.996604
## [624,] 16.615957 40.097018
## [625,] 38.825920 17.887055
## [626,] 47.571713  9.141263
## [627,] 16.345455 40.367521
## [628,] 39.259423 17.453553
## [629,] 17.306208 39.406767
## [630,] 15.867135 40.845840
## [631,] 10.553852 46.159124
## [632,] 15.673557 41.039418
## [633,] 40.344147 16.368828
## [634,] 41.973868 14.739107
## [635,] 16.468344 40.244631
## [636,] 40.388609 16.324366
## [637,] 44.874083 11.838893
## [638,] 49.197464  7.515512
## [639,] 41.131513 15.581463
## [640,] 40.597623 16.115353
## [641,] 15.145747 41.567228
## [642,] 16.428731 40.284245
## [643,] 41.938170 14.774805
## [644,] 41.146846 15.566129
## [645,] 40.751791 15.961184
## [646,] 16.956111 39.756864
## [647,] 40.932340 15.780636
## [648,] 12.908527 43.804448
## [649,] 45.438347 11.274628
## [650,] 15.585494 41.127481
## [651,] 39.733489 16.979486
## [652,] 41.117037 15.595938
## [653,] 42.426717 14.286258
## [654,] 39.525587 17.187389
## [655,] 44.512441 12.200535
## [656,] 17.263380 39.449595
## [657,] 16.539118 40.173857
## [658,] 18.234634 38.478342
## [659,] 17.519738 39.193237
## [660,] 15.848679 40.864296
## [661,] 17.020160 39.692816
## [662,] 16.282094 40.430882
## [663,] 12.278382 44.434593
## [664,]  9.364056 47.348919
## [665,] 16.193422 40.519554
## [666,] 17.856578 38.856398
## [667,] 16.010525 40.702450
## [668,] 17.557445 39.155531
## [669,] 17.337711 39.375264
## [670,] 15.722596 40.990379
## [671,] 44.151227 12.561749
## [672,] 41.383506 15.329469
## [673,] 40.441111 16.271865
## [674,] 48.505728  8.207247
## [675,] 42.890948 13.822027
## [676,] 16.519004 40.193971
## [677,] 44.935116 11.777859
## [678,] 43.694015 13.018960
## [679,] 15.470179 41.242797
## [680,] 41.721868 14.991108
## [681,] 14.069065 42.643911
## [682,] 45.662435 11.050541
## [683,] 14.230133 42.482843
## [684,] 47.317972  9.395003
## [685,] 47.180112  9.532864
## [686,] 41.217196 15.495780
## [687,] 47.957359  8.755617
## [688,] 41.085638 15.627337
## [689,] 39.475226 17.237750
## [690,] 45.515224 11.197751
## [691,] 39.063678 17.649297
## [692,] 40.136644 16.576331
## [693,] 47.321821  9.391155
## [694,] 48.511766  8.201209
## [695,] 17.202376 39.510599
## [696,] 43.623547 13.089428
## [697,] 41.235680 15.477296
## [698,] 16.587225 40.125750
## [699,] 41.071650 15.641326
## [700,] 15.931765 40.781210
## [701,] 41.648704 15.064271
## [702,] 40.690834 16.022141
## [703,] 41.423976 15.289000
## [704,] 44.800090 11.912886
## [705,] 46.542954 10.170021
## [706,] 51.478066  5.234909
## [707,] 39.985224 16.727751
## [708,] 51.816131  4.896844
## [709,] 42.156969 14.556006
## [710,] 46.789302  9.923673
## [711,] 44.785147 11.927828
## [712,] 47.033954  9.679021
## [713,] 51.991081  4.721894
## [714,] 17.939534 38.773442
## [715,] 40.388572 16.324403
## [716,] 43.852414 12.860562
## [717,] 42.986149 13.726827
## [718,] 12.582705 44.130271
## [719,] 40.602830 16.110146
## [720,] 41.618293 15.094682
## [721,] 46.949851  9.763124
## [722,] 15.995097 40.717878
## [723,] 16.525116 40.187860
## [724,] 18.088077 38.624899
## [725,] 39.847651 16.865324
## [726,] 43.909733 12.803243
## [727,] 14.420848 42.292128
## [728,] 39.678887 17.034088
## [729,] 15.803214 40.909762
## [730,] 39.073850 17.639125
## [731,] 40.497825 16.215150
## [732,] 40.625114 16.087861
## [733,] 15.386031 41.326945
## [734,] 45.839495 10.873480
## [735,] 41.734782 14.978194
## [736,] 45.550802 11.162173
## [737,] 43.880849 12.832127
## [738,] 15.180581 41.532395
## [739,] 14.204322 42.508653
## [740,] 15.885888 40.827087
## [741,] 46.325575 10.387400
## [742,] 42.856689 13.856287
## [743,] 38.975272 17.737704
## [744,] 46.857229  9.855747
## [745,] 43.221246 13.491729
## [746,] 41.586639 15.126336
## [747,] 40.953283 15.759693
## [748,] 38.964295 17.748681
## [749,] 40.455755 16.257220
## [750,] 42.035816 14.677159
## [751,] 16.199566 40.513409
## [752,] 12.404138 44.308838
## [753,] 41.026138 15.686838
## [754,] 16.911264 39.801711
## [755,] 16.573321 40.139654
## [756,] 45.691797 11.021178
## [757,] 18.327690 38.385286
## [758,] 16.801802 39.911173
## [759,] 45.585617 11.127359
## [760,] 39.847554 16.865421
## [761,] 12.408280 44.304696
## [762,] 39.040940 17.672035
## [763,] 40.427360 16.285615
## [764,] 38.808080 17.904895
## [765,] 41.597075 15.115900
## [766,] 17.046261 39.666715
## [767,] 45.442685 11.270290
## [768,] 45.413882 11.299094
## [769,] 46.519439 10.193537
## [770,] 16.077227 40.635749
## [771,] 45.905112 10.807864
## [772,] 15.892853 40.820123
## [773,] 11.487710 45.225265
## [774,] 38.982141 17.730834
## [775,] 44.170004 12.542972
## [776,] 42.992476 13.720499
## [777,] 42.800140 13.912836
## [778,] 14.918980 41.793995
## [779,] 43.296495 13.416481
## [780,] 43.493131 13.219844
## [781,] 43.447472 13.265504
## [782,] 49.647363  7.065613
## [783,] 40.933615 15.779360
## [784,] 40.979971 15.733004
## [785,] 43.223226 13.489750
## [786,] 14.037143 42.675832
## [787,] 40.253440 16.459536
## [788,] 41.609674 15.103302
## [789,] 40.019841 16.693134
## [790,] 39.021293 17.691682
## [791,] 16.943069 39.769907
## [792,] 38.519345 18.193631
## [793,] 14.188733 42.524242
## [794,] 41.726306 14.986670
## [795,] 40.789262 15.923713
## [796,] 41.968979 14.743996
## [797,] 40.958076 15.754899
## [798,] 38.937311 17.775664
## [799,] 40.583640 16.129336
## [800,] 46.425265 10.287711
## [801,] 39.386938 17.326038
## [802,] 15.254605 41.458371
## [803,] 40.276430 16.436546
## [804,] 13.590664 43.122312
## [805,] 14.138133 42.574842
## [806,] 41.238877 15.474098
## [807,] 39.820370 16.892605
## [808,] 41.018459 15.694516
## [809,] 16.135632 40.577343
## [810,] 42.188299 14.524677
## [811,] 40.576433 16.136542
## [812,] 18.109353 38.603622
## [813,] 15.688920 41.024056
## [814,] 42.645322 14.067653
## [815,] 44.151560 12.561415
## [816,] 16.199682 40.513293
## [817,] 41.125843 15.587133
## [818,] 40.566917 16.146058
## [819,] 49.289136  7.423839
## [820,] 42.936683 13.776292
## [821,] 41.360363 15.352612
## [822,] 38.264808 18.448168
## [823,] 40.270093 16.442882
## [824,] 45.213239 11.499736
## [825,] 15.610357 41.102619
## [826,] 14.175765 42.537211
## [827,] 44.983785 11.729191
## [828,] 44.233821 12.479154
## [829,] 39.689827 17.023148
## [830,] 39.011788 17.701187
## [831,] 40.836809 15.876167
## [832,] 16.677779 40.035196
## [833,] 39.333316 17.379660
## [834,] 41.515173 15.197802
## [835,] 43.290172 13.422803
## [836,] 49.360465  7.352510
## [837,] 43.578182 13.134794
## [838,] 39.200069 17.512907
## [839,] 44.116239 12.596737
## [840,] 42.501050 14.211925
## [841,] 40.092031 16.620945
## [842,] 39.900827 16.812148
## [843,] 45.618491 11.094484
## [844,] 41.857680 14.855295
## [845,] 43.052873 13.660102
## [846,] 40.090241 16.622734
## [847,] 42.678594 14.034381
## [848,] 13.100300 43.612676
## [849,] 41.410645 15.302331
## [850,] 49.399813  7.313162
## [851,] 15.531682 41.181294
## [852,] 41.292767 15.420208
## [853,] 40.655632 16.057343
## [854,] 39.200737 17.512238
## [855,] 41.025748 15.687228
## [856,] 17.769347 38.943629
## [857,] 16.922252 39.790724
## [858,] 40.138020 16.574956
## [859,]  8.462537 48.250438
## [860,] 39.517066 17.195909
## [861,] 18.100017 38.612958
## [862,] 40.485095 16.227880
## [863,] 39.695010 17.017965
## [864,] 41.060965 15.652011
## [865,] 40.893101 15.819874
## [866,] 11.507211 45.205764
## [867,] 45.611610 11.101366
## [868,] 45.326365 11.386611
## [869,] 11.342092 45.370883
## [870,] 41.215841 15.497134
## [871,] 17.798164 38.914812
## [872,] 40.642342 16.070633
## [873,] 16.700959 40.012017
## [874,] 40.998006 15.714970
## [875,] 39.324534 17.388441
## [876,] 16.502283 40.210693
## [877,] 42.486641 14.226335
## [878,] 40.052772 16.660203
## [879,] 39.781287 16.931688
## [880,] 40.167569 16.545406
## [881,] 44.141764 12.571211
## [882,] 40.087520 16.625456
## [883,] 39.345624 17.367352
## [884,] 17.531309 39.181666
## [885,] 39.584891 17.128084
## [886,] 17.076299 39.636676
## [887,] 40.232852 16.480123
## [888,] 41.231814 15.481162
## [889,] 38.916149 17.796827
## [890,] 40.518414 16.194561
## [891,] 39.219541 17.493435
## [892,] 43.455687 13.257288
## [893,] 40.894248 15.818727
## [894,] 38.452624 18.260351
## [895,] 40.549726 16.163249
## [896,] 39.073660 17.639316
## [897,] 40.724560 15.988415
## [898,] 39.075012 17.637963
## [899,] 42.758726 13.954249
## [900,] 39.917893 16.795082
## [901,] 39.396710 17.316266
## [902,] 41.247325 15.465651
## [903,] 40.138234 16.574741
## [904,] 40.360527 16.352449
## [905,] 38.858543 17.854432
## [906,] 46.528963 10.184012
## [907,]  7.507534 49.205442
## [908,] 15.046920 41.666056
## [909,] 16.947548 39.765427
## [910,] 17.815924 38.897051
## [911,]  9.742806 46.970169
## [912,] 41.443213 15.269763
## 
## $prob
##             [,1]       [,2]
##   [1,] 0.2780780 0.72192200
##   [2,] 0.3035127 0.69648725
##   [3,] 0.2343011 0.76569885
##   [4,] 0.2811630 0.71883703
##   [5,] 0.2850635 0.71493654
##   [6,] 0.2636019 0.73639805
##   [7,] 0.2166999 0.78330010
##   [8,] 0.1733621 0.82663786
##   [9,] 0.2907049 0.70929508
##  [10,] 0.3100604 0.68993960
##  [11,] 0.3000351 0.69996487
##  [12,] 0.2009852 0.79901479
##  [13,] 0.1559381 0.84406191
##  [14,] 0.2884685 0.71153154
##  [15,] 0.1821696 0.81783038
##  [16,] 0.7806775 0.21932251
##  [17,] 0.7790094 0.22099065
##  [18,] 0.7873590 0.21264099
##  [19,] 0.2826377 0.71736233
##  [20,] 0.1456164 0.85438359
##  [21,] 0.2726054 0.72739464
##  [22,] 0.2366951 0.76330485
##  [23,] 0.3160196 0.68398036
##  [24,] 0.3176036 0.68239639
##  [25,] 0.1727827 0.82721726
##  [26,] 0.2457094 0.75429056
##  [27,] 0.7669431 0.23305691
##  [28,] 0.2929834 0.70701664
##  [29,] 0.2924948 0.70750524
##  [30,] 0.2869652 0.71303480
##  [31,] 0.2582165 0.74178346
##  [32,] 0.2255881 0.77441187
##  [33,] 0.2751231 0.72487692
##  [34,] 0.7292270 0.27077295
##  [35,] 0.2271967 0.77280332
##  [36,] 0.7532459 0.24675413
##  [37,] 0.8102226 0.18977735
##  [38,] 0.7329582 0.26704182
##  [39,] 0.3136974 0.68630259
##  [40,] 0.2724044 0.72759560
##  [41,] 0.7666356 0.23336435
##  [42,] 0.2927279 0.70727214
##  [43,] 0.2109950 0.78900497
##  [44,] 0.7815440 0.21845596
##  [45,] 0.8054964 0.19450361
##  [46,] 0.7130649 0.28693511
##  [47,] 0.7911808 0.20881924
##  [48,] 0.2238691 0.77613088
##  [49,] 0.6861843 0.31381571
##  [50,] 0.7085873 0.29141271
##  [51,] 0.7013382 0.29866175
##  [52,] 0.3089244 0.69107559
##  [53,] 0.2532489 0.74675108
##  [54,] 0.3045068 0.69549317
##  [55,] 0.7234807 0.27651932
##  [56,] 0.3075934 0.69240665
##  [57,] 0.1905205 0.80947946
##  [58,] 0.6896048 0.31039522
##  [59,] 0.6867893 0.31321072
##  [60,] 0.7006057 0.29939433
##  [61,] 0.2385232 0.76147685
##  [62,] 0.2559568 0.74404321
##  [63,] 0.7273127 0.27268733
##  [64,] 0.2995159 0.70048406
##  [65,] 0.3016170 0.69838299
##  [66,] 0.2606369 0.73936307
##  [67,] 0.6893121 0.31068790
##  [68,] 0.7009843 0.29901567
##  [69,] 0.7199948 0.28000518
##  [70,] 0.2856272 0.71437277
##  [71,] 0.8250080 0.17499203
##  [72,] 0.7315845 0.26841548
##  [73,] 0.2942590 0.70574105
##  [74,] 0.2575357 0.74246434
##  [75,] 0.7489395 0.25106051
##  [76,] 0.7501737 0.24982631
##  [77,] 0.2929474 0.70705265
##  [78,] 0.8604677 0.13953227
##  [79,] 0.7175983 0.28240175
##  [80,] 0.6959609 0.30403907
##  [81,] 0.6969342 0.30306576
##  [82,] 0.2833940 0.71660599
##  [83,] 0.6999445 0.30005551
##  [84,] 0.2578518 0.74214818
##  [85,] 0.6884606 0.31153943
##  [86,] 0.7040480 0.29595197
##  [87,] 0.7002696 0.29973043
##  [88,] 0.7448991 0.25510091
##  [89,] 0.7050377 0.29496229
##  [90,] 0.6883503 0.31164971
##  [91,] 0.6818990 0.31810099
##  [92,] 0.7168517 0.28314831
##  [93,] 0.2569254 0.74307457
##  [94,] 0.2320434 0.76795657
##  [95,] 0.2776001 0.72239987
##  [96,] 0.7547791 0.24522091
##  [97,] 0.2753159 0.72468413
##  [98,] 0.7526689 0.24733110
##  [99,] 0.7172312 0.28276877
## [100,] 0.2870275 0.71297249
## [101,] 0.3075865 0.69241355
## [102,] 0.7259090 0.27409104
## [103,] 0.2735098 0.72649017
## [104,] 0.7282783 0.27172167
## [105,] 0.3054111 0.69458887
## [106,] 0.2403151 0.75968486
## [107,] 0.7348168 0.26518316
## [108,] 0.2414285 0.75857149
## [109,] 0.7493374 0.25066265
## [110,] 0.7148843 0.28511570
## [111,] 0.2883434 0.71165661
## [112,] 0.7402977 0.25970231
## [113,] 0.7887453 0.21125468
## [114,] 0.3269963 0.67300375
## [115,] 0.7348647 0.26513526
## [116,] 0.7727094 0.22729056
## [117,] 0.2797978 0.72020222
## [118,] 0.7197313 0.28026872
## [119,] 0.7119198 0.28808020
## [120,] 0.7851239 0.21487606
## [121,] 0.6865326 0.31346738
## [122,] 0.8578811 0.14211895
## [123,] 0.6997941 0.30020594
## [124,] 0.7301520 0.26984798
## [125,] 0.7158878 0.28411223
## [126,] 0.7639070 0.23609299
## [127,] 0.8083766 0.19162341
## [128,] 0.6708804 0.32911956
## [129,] 0.3101894 0.68981058
## [130,] 0.2802322 0.71976781
## [131,] 0.7135891 0.28641092
## [132,] 0.2685956 0.73140440
## [133,] 0.7492713 0.25072868
## [134,] 0.3206334 0.67936660
## [135,] 0.2925193 0.70748072
## [136,] 0.7678237 0.23217631
## [137,] 0.3174764 0.68252356
## [138,] 0.7771459 0.22285414
## [139,] 0.8409872 0.15901279
## [140,] 0.7227022 0.27729781
## [141,] 0.2939985 0.70600153
## [142,] 0.8147592 0.18524076
## [143,] 0.8495166 0.15048335
## [144,] 0.1365329 0.86346711
## [145,] 0.2570483 0.74295169
## [146,] 0.7430558 0.25694422
## [147,] 0.3022627 0.69773725
## [148,] 0.7642221 0.23577789
## [149,] 0.7232284 0.27677155
## [150,] 0.7481993 0.25180068
## [151,] 0.2370037 0.76299631
## [152,] 0.7023619 0.29763808
## [153,] 0.7547330 0.24526697
## [154,] 0.1920534 0.80794659
## [155,] 0.7571676 0.24283237
## [156,] 0.2273305 0.77266953
## [157,] 0.3105389 0.68946111
## [158,] 0.2777195 0.72228054
## [159,] 0.7036250 0.29637499
## [160,] 0.3203600 0.67964005
## [161,] 0.2197928 0.78020719
## [162,] 0.2152383 0.78476173
## [163,] 0.6882426 0.31175743
## [164,] 0.3074292 0.69257081
## [165,] 0.7355701 0.26442986
## [166,] 0.2929833 0.70701665
## [167,] 0.6846038 0.31539617
## [168,] 0.8388153 0.16118468
## [169,] 0.2882137 0.71178633
## [170,] 0.6922476 0.30775237
## [171,] 0.2797796 0.72022037
## [172,] 0.2763663 0.72363367
## [173,] 0.7113742 0.28862580
## [174,] 0.7401105 0.25988951
## [175,] 0.2903805 0.70961946
## [176,] 0.7172925 0.28270751
## [177,] 0.7152328 0.28476723
## [178,] 0.2094237 0.79057629
## [179,] 0.7121582 0.28784183
## [180,] 0.7912490 0.20875104
## [181,] 0.7252575 0.27474247
## [182,] 0.7158436 0.28415636
## [183,] 0.2670597 0.73294035
## [184,] 0.7762962 0.22370376
## [185,] 0.7394810 0.26051896
## [186,] 0.3193720 0.68062802
## [187,] 0.7255279 0.27447210
## [188,] 0.7185620 0.28143796
## [189,] 0.7217456 0.27825441
## [190,] 0.2276115 0.77238847
## [191,] 0.7320989 0.26790115
## [192,] 0.8011984 0.19880156
## [193,] 0.6780866 0.32191339
## [194,] 0.6842307 0.31576927
## [195,] 0.2748136 0.72518644
## [196,] 0.7006067 0.29939332
## [197,] 0.7480954 0.25190458
## [198,] 0.6969408 0.30305920
## [199,] 0.7848723 0.21512775
## [200,] 0.3043991 0.69560087
## [201,] 0.2916285 0.70837153
## [202,] 0.3215249 0.67847510
## [203,] 0.3089194 0.69108061
## [204,] 0.2794542 0.72054580
## [205,] 0.3001105 0.69988949
## [206,] 0.2870964 0.71290355
## [207,] 0.2165004 0.78349959
## [208,] 0.2823080 0.71769203
## [209,] 0.3095843 0.69041574
## [210,] 0.2772310 0.72276898
## [211,] 0.6833638 0.31663618
## [212,] 0.7785031 0.22149691
## [213,] 0.7297008 0.27029915
## [214,] 0.7130839 0.28691608
## [215,] 0.7562810 0.24371895
## [216,] 0.2907914 0.70920858
## [217,] 0.7070693 0.29293071
## [218,] 0.2912738 0.70872620
## [219,] 0.7923251 0.20767486
## [220,] 0.7704412 0.22955876
## [221,] 0.2727802 0.72721976
## [222,] 0.8507745 0.14922550
## [223,] 0.2480749 0.75192512
## [224,] 0.8051497 0.19485031
## [225,] 0.2509149 0.74908506
## [226,] 0.2999783 0.70002166
## [227,] 0.8343412 0.16565880
## [228,] 0.8319104 0.16808964
## [229,] 0.7267684 0.27323165
## [230,] 0.8456153 0.15438472
## [231,] 0.7244486 0.27555136
## [232,] 0.6960528 0.30394720
## [233,] 0.8025540 0.19744602
## [234,] 0.6887961 0.31120387
## [235,] 0.6884030 0.31159701
## [236,] 0.7077154 0.29228464
## [237,] 0.8344091 0.16559093
## [238,] 0.8073641 0.19263586
## [239,] 0.8553910 0.14460905
## [240,] 0.3033235 0.69667653
## [241,] 0.7691987 0.23080129
## [242,] 0.7270943 0.27290573
## [243,] 0.2924767 0.70752327
## [244,] 0.7242020 0.27579801
## [245,] 0.2809192 0.71908078
## [246,] 0.7343770 0.26562301
## [247,] 0.7304144 0.26958557
## [248,] 0.7899443 0.21005573
## [249,] 0.8206756 0.17932442
## [250,] 0.9076947 0.09230532
## [251,] 0.9297111 0.07028892
## [252,] 0.9136557 0.08634434
## [253,] 0.7433390 0.25666095
## [254,] 0.8250193 0.17498065
## [255,] 0.8293332 0.17066679
## [256,] 0.3163215 0.68367850
## [257,] 0.7121575 0.28784248
## [258,] 0.7732342 0.22676577
## [259,] 0.6945027 0.30549735
## [260,] 0.3073717 0.69262832
## [261,] 0.7579597 0.24204032
## [262,] 0.2218664 0.77813358
## [263,] 0.7159355 0.28406455
## [264,] 0.7338408 0.26615924
## [265,] 0.2820359 0.71796406
## [266,] 0.3189407 0.68105929
## [267,] 0.7026197 0.29738035
## [268,] 0.7075748 0.29242517
## [269,] 0.7587105 0.24128953
## [270,] 0.3064654 0.69353457
## [271,] 0.7423784 0.25762156
## [272,] 0.6996439 0.30035610
## [273,] 0.2786525 0.72134748
## [274,] 0.6889755 0.31102451
## [275,] 0.7140839 0.28591606
## [276,] 0.7163284 0.28367161
## [277,] 0.2712965 0.72870351
## [278,] 0.8082717 0.19172827
## [279,] 0.7358948 0.26410523
## [280,] 0.6951654 0.30483456
## [281,] 0.8031813 0.19681869
## [282,] 0.7737356 0.22626439
## [283,] 0.7338366 0.26616336
## [284,] 0.8129207 0.18707926
## [285,] 0.2676739 0.73232615
## [286,] 0.2504598 0.74954017
## [287,] 0.2801103 0.71988970
## [288,] 0.8168426 0.18315739
## [289,] 0.8262171 0.17378293
## [290,] 0.7621051 0.23789493
## [291,] 0.7332826 0.26671738
## [292,] 0.8545558 0.14544425
## [293,] 0.7221149 0.27788513
## [294,] 0.6870437 0.31295626
## [295,] 0.7412028 0.25879720
## [296,] 0.2856413 0.71435873
## [297,] 0.2187178 0.78128219
## [298,] 0.2981904 0.70180961
## [299,] 0.2922316 0.70776844
## [300,] 0.1791511 0.82084894
## [301,] 0.8056674 0.19433257
## [302,] 0.2962603 0.70373972
## [303,] 0.8037952 0.19620482
## [304,] 0.7564114 0.24358860
## [305,] 0.7026179 0.29738206
## [306,] 0.7038084 0.29619156
## [307,] 0.7006956 0.29930435
## [308,] 0.2187908 0.78120916
## [309,] 0.6883952 0.31160479
## [310,] 0.8017920 0.19820804
## [311,] 0.7128415 0.28715854
## [312,] 0.6842893 0.31571074
## [313,] 0.7334666 0.26653336
## [314,] 0.3005707 0.69942926
## [315,] 0.8012749 0.19872507
## [316,] 0.2834841 0.71651590
## [317,] 0.7007164 0.29928359
## [318,] 0.2025588 0.79744124
## [319,] 0.6873584 0.31264158
## [320,] 0.7580712 0.24192875
## [321,] 0.7546798 0.24532015
## [322,] 0.6687022 0.33129775
## [323,] 0.2630611 0.73693886
## [324,] 0.7634319 0.23656810
## [325,] 0.7668991 0.23310088
## [326,] 0.8754145 0.12458547
## [327,] 0.7217681 0.27823193
## [328,] 0.7225855 0.27741454
## [329,] 0.7621400 0.23786002
## [330,] 0.2475120 0.75248798
## [331,] 0.7041174 0.29588262
## [332,] 0.7097748 0.29022522
## [333,] 0.7336888 0.26631122
## [334,] 0.7056558 0.29434418
## [335,] 0.6880488 0.31195122
## [336,] 0.2987512 0.70124881
## [337,] 0.6650411 0.33495891
## [338,] 0.6791981 0.32080191
## [339,] 0.2501850 0.74981504
## [340,] 0.7357453 0.26425469
## [341,] 0.7400243 0.25997572
## [342,] 0.7221994 0.27780061
## [343,] 0.6865679 0.31343206
## [344,] 0.7155971 0.28440291
## [345,] 0.8186004 0.18139959
## [346,] 0.6944961 0.30550394
## [347,] 0.2689791 0.73102091
## [348,] 0.7101802 0.28981984
## [349,] 0.2396394 0.76036059
## [350,] 0.2492927 0.75070726
## [351,] 0.3080250 0.69197499
## [352,] 0.6621255 0.33787447
## [353,] 0.7248882 0.27511183
## [354,] 0.7021386 0.29786138
## [355,] 0.8543134 0.14568656
## [356,] 0.7232641 0.27673589
## [357,] 0.7438915 0.25610853
## [358,] 0.7154700 0.28452999
## [359,] 0.3193159 0.68068413
## [360,] 0.6867573 0.31324267
## [361,] 0.2766372 0.72336278
## [362,] 0.7519500 0.24804999
## [363,] 0.7785090 0.22149103
## [364,] 0.2856433 0.71435669
## [365,] 0.7251576 0.27484245
## [366,] 0.3031846 0.69681540
## [367,] 0.7153022 0.28469778
## [368,] 0.7570875 0.24291253
## [369,] 0.7292928 0.27070722
## [370,] 0.6747099 0.32529007
## [371,] 0.7100684 0.28993157
## [372,] 0.7972292 0.20277081
## [373,] 0.2752519 0.72474806
## [374,] 0.2499563 0.75004371
## [375,] 0.7276046 0.27239541
## [376,] 0.7799595 0.22004055
## [377,] 0.6998368 0.30016320
## [378,] 0.6878812 0.31211882
## [379,] 0.7200611 0.27993888
## [380,] 0.2940734 0.70592657
## [381,] 0.7320225 0.26797752
## [382,] 0.7633204 0.23667958
## [383,] 0.7946230 0.20537698
## [384,] 0.6888988 0.31110116
## [385,] 0.7683988 0.23160121
## [386,] 0.6912011 0.30879894
## [387,] 0.3145153 0.68548468
## [388,] 0.7069287 0.29307129
## [389,] 0.7035573 0.29644272
## [390,] 0.8043749 0.19562515
## [391,] 0.7591362 0.24086379
## [392,] 0.7525367 0.24746332
## [393,] 0.2309930 0.76900701
## [394,] 0.2738647 0.72613530
## [395,] 0.8555816 0.14441835
## [396,] 0.7281009 0.27189912
## [397,] 0.7168665 0.28313350
## [398,] 0.6912128 0.30878715
## [399,] 0.7233926 0.27660738
## [400,] 0.2983841 0.70161588
## [401,] 0.1492170 0.85078305
## [402,] 0.3191513 0.68084875
## [403,] 0.7138595 0.28614052
## [404,] 0.7292357 0.27076426
## [405,] 0.7240136 0.27598642
## [406,] 0.2029026 0.79709738
## [407,] 0.8042535 0.19574648
## [408,] 0.7992239 0.20077612
## [409,] 0.1999911 0.80000887
## [410,] 0.3138288 0.68617123
## [411,] 0.7166322 0.28336784
## [412,] 0.2944821 0.70551785
## [413,] 0.7229035 0.27709655
## [414,] 0.6906146 0.30938537
## [415,] 0.6933957 0.30660428
## [416,] 0.2909790 0.70902104
## [417,] 0.7062365 0.29376352
## [418,] 0.7014495 0.29855052
## [419,] 0.8021342 0.19786579
## [420,] 0.7082607 0.29173934
## [421,] 0.7783362 0.22166375
## [422,] 0.7130728 0.28692721
## [423,] 0.8183907 0.18160930
## [424,] 0.7068492 0.29315083
## [425,] 0.6937676 0.30623242
## [426,] 0.7559629 0.24403713
## [427,] 0.2495151 0.75048492
## [428,] 0.7094118 0.29058824
## [429,] 0.7023984 0.29760160
## [430,] 0.7094141 0.29058585
## [431,] 0.7270261 0.27297390
## [432,] 0.7144470 0.28555302
## [433,] 0.7096399 0.29036009
## [434,] 0.6915444 0.30845560
## [435,] 0.7662389 0.23376111
## [436,] 0.7210739 0.27892607
## [437,] 0.7149991 0.28500091
## [438,] 0.6889721 0.31102786
## [439,] 0.7180819 0.28191811
## [440,] 0.6889960 0.31100402
## [441,] 0.7539496 0.24605038
## [442,] 0.7038582 0.29614179
## [443,] 0.6946684 0.30533164
## [444,] 0.7272996 0.27270039
## [445,] 0.7077434 0.29225660
## [446,] 0.7116630 0.28833699
## [447,] 0.8204289 0.17957111
## [448,] 0.2720689 0.72793105
## [449,] 0.2653171 0.73468294
## [450,] 0.3141419 0.68585806
## [451,] 0.1717915 0.82820851
## [452,] 0.2780780 0.72192200
## [453,] 0.3035127 0.69648725
## [454,] 0.2343011 0.76569885
## [455,] 0.2385790 0.76142100
## [456,] 0.2811630 0.71883703
## [457,] 0.2850635 0.71493654
## [458,] 0.2636019 0.73639805
## [459,] 0.2166999 0.78330010
## [460,] 0.1733621 0.82663786
## [461,] 0.2907049 0.70929508
## [462,] 0.3028684 0.69713156
## [463,] 0.2009852 0.79901479
## [464,] 0.1559381 0.84406191
## [465,] 0.2884685 0.71153154
## [466,] 0.1821696 0.81783038
## [467,] 0.2795734 0.72042661
## [468,] 0.7806775 0.21932251
## [469,] 0.7790094 0.22099065
## [470,] 0.7873590 0.21264099
## [471,] 0.2826377 0.71736233
## [472,] 0.2507044 0.74929562
## [473,] 0.2726054 0.72739464
## [474,] 0.1727827 0.82721726
## [475,] 0.2632722 0.73672776
## [476,] 0.2970888 0.70291121
## [477,] 0.2457094 0.75429056
## [478,] 0.2937976 0.70620242
## [479,] 0.2283327 0.77166725
## [480,] 0.7669431 0.23305691
## [481,] 0.2929834 0.70701664
## [482,] 0.2924948 0.70750524
## [483,] 0.3230691 0.67693094
## [484,] 0.2869652 0.71303480
## [485,] 0.1591016 0.84089837
## [486,] 0.2255881 0.77441187
## [487,] 0.2751231 0.72487692
## [488,] 0.7532459 0.24675413
## [489,] 0.6780605 0.32193950
## [490,] 0.7139376 0.28606239
## [491,] 0.8102226 0.18977735
## [492,] 0.7329582 0.26704182
## [493,] 0.3136974 0.68630259
## [494,] 0.2724044 0.72759560
## [495,] 0.7666356 0.23336435
## [496,] 0.2109950 0.78900497
## [497,] 0.7815440 0.21845596
## [498,] 0.7362523 0.26374770
## [499,] 0.8054964 0.19450361
## [500,] 0.7130649 0.28693511
## [501,] 0.2888860 0.71111399
## [502,] 0.7911808 0.20881924
## [503,] 0.2522189 0.74778113
## [504,] 0.6861843 0.31381571
## [505,] 0.7085873 0.29141271
## [506,] 0.7013382 0.29866175
## [507,] 0.3089244 0.69107559
## [508,] 0.2532489 0.74675108
## [509,] 0.3045068 0.69549317
## [510,] 0.7234807 0.27651932
## [511,] 0.2878235 0.71217654
## [512,] 0.6990857 0.30091434
## [513,] 0.3075934 0.69240665
## [514,] 0.1905205 0.80947946
## [515,] 0.6896048 0.31039522
## [516,] 0.7006057 0.29939433
## [517,] 0.2385232 0.76147685
## [518,] 0.2559568 0.74404321
## [519,] 0.7273127 0.27268733
## [520,] 0.2995159 0.70048406
## [521,] 0.3016170 0.69838299
## [522,] 0.2606369 0.73936307
## [523,] 0.6893121 0.31068790
## [524,] 0.7009843 0.29901567
## [525,] 0.7199948 0.28000518
## [526,] 0.2856272 0.71437277
## [527,] 0.8250080 0.17499203
## [528,] 0.7315845 0.26841548
## [529,] 0.2942590 0.70574105
## [530,] 0.6999524 0.30004762
## [531,] 0.7501737 0.24982631
## [532,] 0.2929474 0.70705265
## [533,] 0.2941708 0.70582918
## [534,] 0.8604677 0.13953227
## [535,] 0.7175983 0.28240175
## [536,] 0.6969342 0.30306576
## [537,] 0.2833940 0.71660599
## [538,] 0.6999445 0.30005551
## [539,] 0.2578518 0.74214818
## [540,] 0.6884606 0.31153943
## [541,] 0.7040480 0.29595197
## [542,] 0.7002696 0.29973043
## [543,] 0.7448991 0.25510091
## [544,] 0.7050377 0.29496229
## [545,] 0.6818990 0.31810099
## [546,] 0.7168517 0.28314831
## [547,] 0.2569254 0.74307457
## [548,] 0.2776001 0.72239987
## [549,] 0.7547791 0.24522091
## [550,] 0.2753159 0.72468413
## [551,] 0.8008771 0.19912291
## [552,] 0.7526689 0.24733110
## [553,] 0.7172312 0.28276877
## [554,] 0.3075865 0.69241355
## [555,] 0.7259090 0.27409104
## [556,] 0.2735098 0.72649017
## [557,] 0.7282783 0.27172167
## [558,] 0.3054111 0.69458887
## [559,] 0.2403151 0.75968486
## [560,] 0.7348168 0.26518316
## [561,] 0.2414285 0.75857149
## [562,] 0.2693893 0.73061067
## [563,] 0.7493374 0.25066265
## [564,] 0.7148843 0.28511570
## [565,] 0.2883434 0.71165661
## [566,] 0.3269963 0.67300375
## [567,] 0.6972277 0.30277231
## [568,] 0.8249339 0.17506609
## [569,] 0.7727094 0.22729056
## [570,] 0.2797978 0.72020222
## [571,] 0.7197313 0.28026872
## [572,] 0.7119198 0.28808020
## [573,] 0.7851239 0.21487606
## [574,] 0.6863547 0.31364533
## [575,] 0.6865326 0.31346738
## [576,] 0.7518765 0.24812351
## [577,] 0.8578811 0.14211895
## [578,] 0.6997941 0.30020594
## [579,] 0.7301520 0.26984798
## [580,] 0.3112637 0.68873626
## [581,] 0.7639070 0.23609299
## [582,] 0.8083766 0.19162341
## [583,] 0.3101894 0.68981058
## [584,] 0.7135891 0.28641092
## [585,] 0.2685956 0.73140440
## [586,] 0.7492713 0.25072868
## [587,] 0.8093849 0.19061510
## [588,] 0.3206334 0.67936660
## [589,] 0.2925193 0.70748072
## [590,] 0.7262875 0.27371249
## [591,] 0.3134654 0.68653455
## [592,] 0.7052204 0.29477962
## [593,] 0.7771459 0.22285414
## [594,] 0.8409872 0.15901279
## [595,] 0.7227022 0.27729781
## [596,] 0.2939985 0.70600153
## [597,] 0.8147592 0.18524076
## [598,] 0.8495166 0.15048335
## [599,] 0.2750742 0.72492578
## [600,] 0.1365329 0.86346711
## [601,] 0.2570483 0.74295169
## [602,] 0.7430558 0.25694422
## [603,] 0.3162946 0.68370542
## [604,] 0.7143865 0.28561349
## [605,] 0.3022627 0.69773725
## [606,] 0.7642221 0.23577789
## [607,] 0.7232284 0.27677155
## [608,] 0.7481993 0.25180068
## [609,] 0.2370037 0.76299631
## [610,] 0.7023619 0.29763808
## [611,] 0.7547330 0.24526697
## [612,] 0.1870060 0.81299396
## [613,] 0.7571676 0.24283237
## [614,] 0.2273305 0.77266953
## [615,] 0.3105389 0.68946111
## [616,] 0.3233976 0.67660236
## [617,] 0.7036250 0.29637499
## [618,] 0.3203600 0.67964005
## [619,] 0.2197928 0.78020719
## [620,] 0.2152383 0.78476173
## [621,] 0.6882426 0.31175743
## [622,] 0.3074292 0.69257081
## [623,] 0.7355701 0.26442986
## [624,] 0.2929833 0.70701665
## [625,] 0.6846038 0.31539617
## [626,] 0.8388153 0.16118468
## [627,] 0.2882137 0.71178633
## [628,] 0.6922476 0.30775237
## [629,] 0.3051543 0.69484570
## [630,] 0.2797796 0.72022037
## [631,] 0.1860924 0.81390764
## [632,] 0.2763663 0.72363367
## [633,] 0.7113742 0.28862580
## [634,] 0.7401105 0.25988951
## [635,] 0.2903805 0.70961946
## [636,] 0.7121582 0.28784183
## [637,] 0.7912490 0.20875104
## [638,] 0.8674816 0.13251838
## [639,] 0.7252575 0.27474247
## [640,] 0.7158436 0.28415636
## [641,] 0.2670597 0.73294035
## [642,] 0.2896820 0.71031796
## [643,] 0.7394810 0.26051896
## [644,] 0.7255279 0.27447210
## [645,] 0.7185620 0.28143796
## [646,] 0.2989812 0.70101884
## [647,] 0.7217456 0.27825441
## [648,] 0.2276115 0.77238847
## [649,] 0.8011984 0.19880156
## [650,] 0.2748136 0.72518644
## [651,] 0.7006067 0.29939332
## [652,] 0.7250023 0.27499771
## [653,] 0.7480954 0.25190458
## [654,] 0.6969408 0.30305920
## [655,] 0.7848723 0.21512775
## [656,] 0.3043991 0.69560087
## [657,] 0.2916285 0.70837153
## [658,] 0.3215249 0.67847510
## [659,] 0.3089194 0.69108061
## [660,] 0.2794542 0.72054580
## [661,] 0.3001105 0.69988949
## [662,] 0.2870964 0.71290355
## [663,] 0.2165004 0.78349959
## [664,] 0.1651131 0.83488688
## [665,] 0.2855329 0.71446707
## [666,] 0.3148588 0.68514123
## [667,] 0.2823080 0.71769203
## [668,] 0.3095843 0.69041574
## [669,] 0.3057098 0.69429022
## [670,] 0.2772310 0.72276898
## [671,] 0.7785031 0.22149691
## [672,] 0.7297008 0.27029915
## [673,] 0.7130839 0.28691608
## [674,] 0.8552845 0.14471551
## [675,] 0.7562810 0.24371895
## [676,] 0.2912738 0.70872620
## [677,] 0.7923251 0.20767486
## [678,] 0.7704412 0.22955876
## [679,] 0.2727802 0.72721976
## [680,] 0.7356671 0.26433294
## [681,] 0.2480749 0.75192512
## [682,] 0.8051497 0.19485031
## [683,] 0.2509149 0.74908506
## [684,] 0.8343412 0.16565880
## [685,] 0.8319104 0.16808964
## [686,] 0.7267684 0.27323165
## [687,] 0.8456153 0.15438472
## [688,] 0.7244486 0.27555136
## [689,] 0.6960528 0.30394720
## [690,] 0.8025540 0.19744602
## [691,] 0.6887961 0.31120387
## [692,] 0.7077154 0.29228464
## [693,] 0.8344091 0.16559093
## [694,] 0.8553910 0.14460905
## [695,] 0.3033235 0.69667653
## [696,] 0.7691987 0.23080129
## [697,] 0.7270943 0.27290573
## [698,] 0.2924767 0.70752327
## [699,] 0.7242020 0.27579801
## [700,] 0.2809192 0.71908078
## [701,] 0.7343770 0.26562301
## [702,] 0.7174872 0.28251279
## [703,] 0.7304144 0.26958557
## [704,] 0.7899443 0.21005573
## [705,] 0.8206756 0.17932442
## [706,] 0.9076947 0.09230532
## [707,] 0.7050454 0.29495457
## [708,] 0.9136557 0.08634434
## [709,] 0.7433390 0.25666095
## [710,] 0.8250193 0.17498065
## [711,] 0.7896808 0.21031921
## [712,] 0.8293332 0.17066679
## [713,] 0.9167405 0.08325950
## [714,] 0.3163215 0.68367850
## [715,] 0.7121575 0.28784248
## [716,] 0.7732342 0.22676577
## [717,] 0.7579597 0.24204032
## [718,] 0.2218664 0.77813358
## [719,] 0.7159355 0.28406455
## [720,] 0.7338408 0.26615924
## [721,] 0.8278503 0.17214975
## [722,] 0.2820359 0.71796406
## [723,] 0.2913816 0.70861843
## [724,] 0.3189407 0.68105929
## [725,] 0.7026197 0.29738035
## [726,] 0.7742449 0.22575509
## [727,] 0.2542778 0.74572225
## [728,] 0.6996439 0.30035610
## [729,] 0.2786525 0.72134748
## [730,] 0.6889755 0.31102451
## [731,] 0.7140839 0.28591606
## [732,] 0.7163284 0.28367161
## [733,] 0.2712965 0.72870351
## [734,] 0.8082717 0.19172827
## [735,] 0.7358948 0.26410523
## [736,] 0.8031813 0.19681869
## [737,] 0.7737356 0.22626439
## [738,] 0.2676739 0.73232615
## [739,] 0.2504598 0.74954017
## [740,] 0.2801103 0.71988970
## [741,] 0.8168426 0.18315739
## [742,] 0.7556770 0.24432305
## [743,] 0.6872373 0.31276271
## [744,] 0.8262171 0.17378293
## [745,] 0.7621051 0.23789493
## [746,] 0.7332826 0.26671738
## [747,] 0.7221149 0.27788513
## [748,] 0.6870437 0.31295626
## [749,] 0.7133421 0.28665786
## [750,] 0.7412028 0.25879720
## [751,] 0.2856413 0.71435873
## [752,] 0.2187178 0.78128219
## [753,] 0.7233995 0.27660051
## [754,] 0.2981904 0.70180961
## [755,] 0.2922316 0.70776844
## [756,] 0.8056674 0.19433257
## [757,] 0.3231657 0.67683428
## [758,] 0.2962603 0.70373972
## [759,] 0.8037952 0.19620482
## [760,] 0.7026179 0.29738206
## [761,] 0.2187908 0.78120916
## [762,] 0.6883952 0.31160479
## [763,] 0.7128415 0.28715854
## [764,] 0.6842893 0.31571074
## [765,] 0.7334666 0.26653336
## [766,] 0.3005707 0.69942926
## [767,] 0.8012749 0.19872507
## [768,] 0.8007670 0.19923296
## [769,] 0.8202609 0.17973906
## [770,] 0.2834841 0.71651590
## [771,] 0.8094287 0.19057127
## [772,] 0.2802331 0.71976690
## [773,] 0.2025588 0.79744124
## [774,] 0.6873584 0.31264158
## [775,] 0.7788342 0.22116582
## [776,] 0.7580712 0.24192875
## [777,] 0.7546798 0.24532015
## [778,] 0.2630611 0.73693886
## [779,] 0.7634319 0.23656810
## [780,] 0.7668991 0.23310088
## [781,] 0.7660940 0.23390597
## [782,] 0.8754145 0.12458547
## [783,] 0.7217681 0.27823193
## [784,] 0.7225855 0.27741454
## [785,] 0.7621400 0.23786002
## [786,] 0.2475120 0.75248798
## [787,] 0.7097748 0.29022522
## [788,] 0.7336888 0.26631122
## [789,] 0.7056558 0.29434418
## [790,] 0.6880488 0.31195122
## [791,] 0.2987512 0.70124881
## [792,] 0.6791981 0.32080191
## [793,] 0.2501850 0.74981504
## [794,] 0.7357453 0.26425469
## [795,] 0.7192227 0.28077725
## [796,] 0.7400243 0.25997572
## [797,] 0.7221994 0.27780061
## [798,] 0.6865679 0.31343206
## [799,] 0.7155971 0.28440291
## [800,] 0.8186004 0.18139959
## [801,] 0.6944961 0.30550394
## [802,] 0.2689791 0.73102091
## [803,] 0.7101802 0.28981984
## [804,] 0.2396394 0.76036059
## [805,] 0.2492927 0.75070726
## [806,] 0.7271507 0.27284935
## [807,] 0.7021386 0.29786138
## [808,] 0.7232641 0.27673589
## [809,] 0.2845139 0.71548606
## [810,] 0.7438915 0.25610853
## [811,] 0.7154700 0.28452999
## [812,] 0.3193159 0.68068413
## [813,] 0.2766372 0.72336278
## [814,] 0.7519500 0.24804999
## [815,] 0.7785090 0.22149103
## [816,] 0.2856433 0.71435669
## [817,] 0.7251576 0.27484245
## [818,] 0.7153022 0.28469778
## [819,] 0.8690980 0.13090196
## [820,] 0.7570875 0.24291253
## [821,] 0.7292928 0.27070722
## [822,] 0.6747099 0.32529007
## [823,] 0.7100684 0.28993157
## [824,] 0.7972292 0.20277081
## [825,] 0.2752519 0.72474806
## [826,] 0.2499563 0.75004371
## [827,] 0.7931833 0.20681671
## [828,] 0.7799595 0.22004055
## [829,] 0.6998368 0.30016320
## [830,] 0.6878812 0.31211882
## [831,] 0.7200611 0.27993888
## [832,] 0.2940734 0.70592657
## [833,] 0.6935506 0.30644944
## [834,] 0.7320225 0.26797752
## [835,] 0.7633204 0.23667958
## [836,] 0.8703558 0.12964423
## [837,] 0.7683988 0.23160121
## [838,] 0.6912011 0.30879894
## [839,] 0.7778862 0.22211384
## [840,] 0.7494061 0.25059389
## [841,] 0.7069287 0.29307129
## [842,] 0.7035573 0.29644272
## [843,] 0.8043749 0.19562515
## [844,] 0.7380618 0.26193821
## [845,] 0.7591362 0.24086379
## [846,] 0.7068972 0.29310284
## [847,] 0.7525367 0.24746332
## [848,] 0.2309930 0.76900701
## [849,] 0.7301794 0.26982063
## [850,] 0.8710496 0.12895043
## [851,] 0.2738647 0.72613530
## [852,] 0.7281009 0.27189912
## [853,] 0.7168665 0.28313350
## [854,] 0.6912128 0.30878715
## [855,] 0.7233926 0.27660738
## [856,] 0.3133207 0.68667934
## [857,] 0.2983841 0.70161588
## [858,] 0.7077396 0.29226038
## [859,] 0.1492170 0.85078305
## [860,] 0.6967906 0.30320944
## [861,] 0.3191513 0.68084875
## [862,] 0.7138595 0.28614052
## [863,] 0.6999282 0.30007181
## [864,] 0.7240136 0.27598642
## [865,] 0.7210537 0.27894629
## [866,] 0.2029026 0.79709738
## [867,] 0.8042535 0.19574648
## [868,] 0.7992239 0.20077612
## [869,] 0.1999911 0.80000887
## [870,] 0.7267445 0.27325554
## [871,] 0.3138288 0.68617123
## [872,] 0.7166322 0.28336784
## [873,] 0.2944821 0.70551785
## [874,] 0.7229035 0.27709655
## [875,] 0.6933957 0.30660428
## [876,] 0.2909790 0.70902104
## [877,] 0.7491520 0.25084797
## [878,] 0.7062365 0.29376352
## [879,] 0.7014495 0.29855052
## [880,] 0.7082607 0.29173934
## [881,] 0.7783362 0.22166375
## [882,] 0.7068492 0.29315083
## [883,] 0.6937676 0.30623242
## [884,] 0.3091234 0.69087658
## [885,] 0.6979865 0.30201350
## [886,] 0.3011004 0.69889960
## [887,] 0.7094118 0.29058824
## [888,] 0.7270261 0.27297390
## [889,] 0.6861948 0.31380520
## [890,] 0.7144470 0.28555302
## [891,] 0.6915444 0.30845560
## [892,] 0.7662389 0.23376111
## [893,] 0.7210739 0.27892607
## [894,] 0.6780216 0.32197837
## [895,] 0.7149991 0.28500091
## [896,] 0.6889721 0.31102786
## [897,] 0.7180819 0.28191811
## [898,] 0.6889960 0.31100402
## [899,] 0.7539496 0.24605038
## [900,] 0.7038582 0.29614179
## [901,] 0.6946684 0.30533164
## [902,] 0.7272996 0.27270039
## [903,] 0.7077434 0.29225660
## [904,] 0.7116630 0.28833699
## [905,] 0.6851791 0.31482094
## [906,] 0.8204289 0.17957111
## [907,] 0.1323777 0.86762229
## [908,] 0.2653171 0.73468294
## [909,] 0.2988302 0.70116983
## [910,] 0.3141419 0.68585806
## [911,] 0.1717915 0.82820851
## [912,] 0.7307536 0.26924637
## 
## $class
##   [1] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "B" "B" "B"
##  [19] "M" "M" "M" "M" "M" "M" "M" "M" "B" "M" "M" "M" "M" "M" "M" "B" "M" "B"
##  [37] "B" "B" "M" "M" "B" "M" "M" "B" "B" "B" "B" "M" "B" "B" "B" "M" "M" "M"
##  [55] "B" "M" "M" "B" "B" "B" "M" "M" "B" "M" "M" "M" "B" "B" "B" "M" "B" "B"
##  [73] "M" "M" "B" "B" "M" "B" "B" "B" "B" "M" "B" "M" "B" "B" "B" "B" "B" "B"
##  [91] "B" "B" "M" "M" "M" "B" "M" "B" "B" "M" "M" "B" "M" "B" "M" "M" "B" "M"
## [109] "B" "B" "M" "B" "B" "M" "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "B"
## [127] "B" "B" "M" "M" "B" "M" "B" "M" "M" "B" "M" "B" "B" "B" "M" "B" "B" "M"
## [145] "M" "B" "M" "B" "B" "B" "M" "B" "B" "M" "B" "M" "M" "M" "B" "M" "M" "M"
## [163] "B" "M" "B" "M" "B" "B" "M" "B" "M" "M" "B" "B" "M" "B" "B" "M" "B" "B"
## [181] "B" "B" "M" "B" "B" "M" "B" "B" "B" "M" "B" "B" "B" "B" "M" "B" "B" "B"
## [199] "B" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "B" "B" "B" "B" "B" "M"
## [217] "B" "M" "B" "B" "M" "B" "M" "B" "M" "M" "B" "B" "B" "B" "B" "B" "B" "B"
## [235] "B" "B" "B" "B" "B" "M" "B" "B" "M" "B" "M" "B" "B" "B" "B" "B" "B" "B"
## [253] "B" "B" "B" "M" "B" "B" "B" "M" "B" "M" "B" "B" "M" "M" "B" "B" "B" "M"
## [271] "B" "B" "M" "B" "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "M" "M" "M" "B"
## [289] "B" "B" "B" "B" "B" "B" "B" "M" "M" "M" "M" "M" "B" "M" "B" "B" "B" "B"
## [307] "B" "M" "B" "B" "B" "B" "B" "M" "B" "M" "B" "M" "B" "B" "B" "B" "M" "B"
## [325] "B" "B" "B" "B" "B" "M" "B" "B" "B" "B" "B" "M" "B" "B" "M" "B" "B" "B"
## [343] "B" "B" "B" "B" "M" "B" "M" "M" "M" "B" "B" "B" "B" "B" "B" "B" "M" "B"
## [361] "M" "B" "B" "M" "B" "M" "B" "B" "B" "B" "B" "B" "M" "M" "B" "B" "B" "B"
## [379] "B" "M" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "B" "B" "M" "M" "B" "B"
## [397] "B" "B" "B" "M" "M" "M" "B" "B" "B" "M" "B" "B" "M" "M" "B" "M" "B" "B"
## [415] "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "B" "B"
## [433] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "M" "M"
## [451] "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "B"
## [469] "B" "B" "M" "M" "M" "M" "M" "M" "M" "M" "M" "B" "M" "M" "M" "M" "M" "M"
## [487] "M" "B" "B" "B" "B" "B" "M" "M" "B" "M" "B" "B" "B" "B" "M" "B" "M" "B"
## [505] "B" "B" "M" "M" "M" "B" "M" "B" "M" "M" "B" "B" "M" "M" "B" "M" "M" "M"
## [523] "B" "B" "B" "M" "B" "B" "M" "B" "B" "M" "M" "B" "B" "B" "M" "B" "M" "B"
## [541] "B" "B" "B" "B" "B" "B" "M" "M" "B" "M" "B" "B" "B" "M" "B" "M" "B" "M"
## [559] "M" "B" "M" "M" "B" "B" "M" "M" "B" "B" "B" "M" "B" "B" "B" "B" "B" "B"
## [577] "B" "B" "B" "M" "B" "B" "M" "B" "M" "B" "B" "M" "M" "B" "M" "B" "B" "B"
## [595] "B" "M" "B" "B" "M" "M" "M" "B" "M" "B" "M" "B" "B" "B" "M" "B" "B" "M"
## [613] "B" "M" "M" "M" "B" "M" "M" "M" "B" "M" "B" "M" "B" "B" "M" "B" "M" "M"
## [631] "M" "M" "B" "B" "M" "B" "B" "B" "B" "B" "M" "M" "B" "B" "B" "M" "B" "M"
## [649] "B" "M" "B" "B" "B" "B" "B" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M" "M"
## [667] "M" "M" "M" "M" "B" "B" "B" "B" "B" "M" "B" "B" "M" "B" "M" "B" "M" "B"
## [685] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "M" "B" "M" "B" "B"
## [703] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "M" "B" "B"
## [721] "B" "M" "M" "M" "B" "B" "M" "B" "M" "B" "B" "B" "M" "B" "B" "B" "B" "M"
## [739] "M" "M" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "M" "M" "B" "M" "M" "B"
## [757] "M" "M" "B" "B" "M" "B" "B" "B" "B" "M" "B" "B" "B" "M" "B" "M" "M" "B"
## [775] "B" "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "M" "B" "B" "B" "B" "M" "B"
## [793] "M" "B" "B" "B" "B" "B" "B" "B" "B" "M" "B" "M" "M" "B" "B" "B" "M" "B"
## [811] "B" "M" "M" "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "M" "M" "B" "B"
## [829] "B" "B" "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"
## [847] "B" "M" "B" "B" "M" "B" "B" "B" "B" "M" "M" "B" "M" "B" "M" "B" "B" "B"
## [865] "B" "M" "B" "B" "M" "B" "M" "B" "M" "B" "B" "M" "B" "B" "B" "B" "B" "B"
## [883] "B" "M" "B" "M" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"
## [901] "B" "B" "B" "B" "B" "B" "M" "M" "M" "M" "M" "B"
## 
## $importance
##   compactness_se  smoothness_mean smoothness_worst   symmetry_worst 
##         17.98418         16.04764         16.93026         18.55361 
##     texture_mean    texture_worst 
##         16.81249         13.67182 
## 
## $terms
## .outcome ~ texture_mean + smoothness_mean + compactness_se + 
##     texture_worst + smoothness_worst + symmetry_worst
## attr(,"variables")
## list(.outcome, texture_mean, smoothness_mean, compactness_se, 
##     texture_worst, smoothness_worst, symmetry_worst)
## attr(,"factors")
##                  texture_mean smoothness_mean compactness_se texture_worst
## .outcome                    0               0              0             0
## texture_mean                1               0              0             0
## smoothness_mean             0               1              0             0
## compactness_se              0               0              1             0
## texture_worst               0               0              0             1
## smoothness_worst            0               0              0             0
## symmetry_worst              0               0              0             0
##                  smoothness_worst symmetry_worst
## .outcome                        0              0
## texture_mean                    0              0
## smoothness_mean                 0              0
## compactness_se                  0              0
## texture_worst                   0              0
## smoothness_worst                1              0
## symmetry_worst                  0              1
## attr(,"term.labels")
## [1] "texture_mean"     "smoothness_mean"  "compactness_se"   "texture_worst"   
## [5] "smoothness_worst" "symmetry_worst"  
## attr(,"order")
## [1] 1 1 1 1 1 1
## attr(,"intercept")
## [1] 1
## attr(,"response")
## [1] 1
## attr(,".Environment")
## <environment: 0x0000024d60f9b4c0>
## attr(,"predvars")
## list(.outcome, texture_mean, smoothness_mean, compactness_se, 
##     texture_worst, smoothness_worst, symmetry_worst)
## attr(,"dataClasses")
##         .outcome     texture_mean  smoothness_mean   compactness_se 
##         "factor"        "numeric"        "numeric"        "numeric" 
##    texture_worst smoothness_worst   symmetry_worst 
##        "numeric"        "numeric"        "numeric" 
## 
## $call
## (function (formula, data, boos = TRUE, mfinal = 100, coeflearn = "Breiman", 
##     control, ...) 
## {
##     if (!(as.character(coeflearn) %in% c("Freund", "Breiman", 
##         "Zhu"))) {
##         stop("coeflearn must be 'Freund', 'Breiman' or 'Zhu' ")
##     }
##     formula <- as.formula(formula)
##     vardep <- data[, as.character(formula[[2]])]
##     n <- length(data[, 1])
##     nclases <- nlevels(vardep)
##     pesos <- rep(1/n, n)
##     guardarpesos <- array(0, c(n, mfinal))
##     w <- rep(1/n, n)
##     data <- cbind(pesos, data)
##     arboles <- list()
##     pond <- rep(0, mfinal)
##     pred <- data.frame(rep(0, n))
##     arboles[[1]] <- rpart(formula, data = data[, -1], control = rpart.control(minsplit = 1, 
##         cp = -1, maxdepth = 30))
##     nvar <- dim(varImp(arboles[[1]], surrogates = FALSE, competes = FALSE))[1]
##     imp <- array(0, c(mfinal, nvar))
##     for (m in 1:mfinal) {
##         if (boos == TRUE) {
##             k <- 1
##             while (k == 1) {
##                 boostrap <- sample(1:n, replace = TRUE, prob = pesos)
##                 fit <- rpart(formula, data = data[boostrap, -1], 
##                   control = control)
##                 k <- length(fit$frame$var)
##             }
##             flearn <- predict(fit, newdata = data[, -1], type = "class")
##             ind <- as.numeric(vardep != flearn)
##             err <- sum(pesos * ind)
##         }
##         if (boos == FALSE) {
##             w <<- pesos
##             fit <- rpart(formula = formula, data = data[, -1], 
##                 weights = w, control = control)
##             flearn <- predict(fit, data = data[, -1], type = "class")
##             ind <- as.numeric(vardep != flearn)
##             err <- sum(pesos * ind)
##         }
##         c <- log((1 - err)/err)
##         if (coeflearn == "Breiman") {
##             c <- (1/2) * c
##         }
##         if (coeflearn == "Zhu") {
##             c <- c + log(nclases - 1)
##         }
##         guardarpesos[, m] <- pesos
##         pesos <- pesos * exp(c * ind)
##         pesos <- pesos/sum(pesos)
##         maxerror <- 0.5
##         eac <- 0.001
##         if (coeflearn == "Zhu") {
##             maxerror <- 1 - 1/nclases
##         }
##         if (err >= maxerror) {
##             pesos <- rep(1/n, n)
##             maxerror <- maxerror - eac
##             c <- log((1 - maxerror)/maxerror)
##             if (coeflearn == "Breiman") {
##                 c <- (1/2) * c
##             }
##             if (coeflearn == "Zhu") {
##                 c <- c + log(nclases - 1)
##             }
##         }
##         if (err == 0) {
##             pesos <- rep(1/n, n)
##             c <- log((1 - eac)/eac)
##             if (coeflearn == "Breiman") {
##                 c <- (1/2) * c
##             }
##             if (coeflearn == "Zhu") {
##                 c <- c + log(nclases - 1)
##             }
##         }
##         arboles[[m]] <- fit
##         pond[m] <- c
##         if (m == 1) {
##             pred <- flearn
##         }
##         else {
##             pred <- data.frame(pred, flearn)
##         }
##         if (length(fit$frame$var) > 1) {
##             k <- varImp(fit, surrogates = FALSE, competes = FALSE)
##             imp[m, ] <- k[sort(row.names(k)), ]
##         }
##         else {
##             imp[m, ] <- rep(0, nvar)
##         }
##     }
##     classfinal <- array(0, c(n, nlevels(vardep)))
##     for (i in 1:nlevels(vardep)) {
##         classfinal[, i] <- matrix(as.numeric(pred == levels(vardep)[i]), 
##             nrow = n) %*% as.vector(pond)
##     }
##     predclass <- rep("O", n)
##     predclass[] <- apply(classfinal, 1, FUN = select, vardep.summary = summary(vardep))
##     imppond <- as.vector(as.vector(pond) %*% imp)
##     imppond <- imppond/sum(imppond) * 100
##     names(imppond) <- sort(row.names(k))
##     votosporc <- classfinal/apply(classfinal, 1, sum)
##     ans <- list(formula = formula, trees = arboles, weights = pond, 
##         votes = classfinal, prob = votosporc, class = predclass, 
##         importance = imppond)
##     attr(ans, "vardep.summary") <- summary(vardep, maxsum = 700)
##     mf <- model.frame(formula = formula, data = data[, -1])
##     terms <- attr(mf, "terms")
##     ans$terms <- terms
##     ans$call <- match.call()
##     class(ans) <- "boosting"
##     ans
## })(formula = .outcome ~ ., data = list(texture_mean = c(2.33988087773774, 
## 2.87751164216656, 3.05635689537043, 2.75366071235426, 2.99473177322041, 
## 3.03639425527288, 3.08282698040492, 3.17971910966701, 3.14587493198371, 
## 2.88424189752063, 3.21084365317094, 3.11839228628988, 3.31563949330051, 
## 3.0022112396517, 3.02916704964023, 2.66444656362008, 2.75429745226753, 
## 2.52091708731103, 2.65745841498615, 3.0624559055969, 2.79728133483015, 
## 3.06944731137627, 3.00815479355255, 2.71137799119488, 2.92852352386054, 
## 2.88368276974537, 2.91343703082716, 3.22684399451738, 3.03591406318682, 
## 3.06105173967463, 3.21124679770371, 3.08236858021354, 2.86789890204411, 
## 2.82375700881418, 2.9263821954192, 2.68307421503203, 2.79361608943186, 
## 2.90361698464619, 2.92852352386054, 3.09195113129453, 2.93119375241642, 
## 2.92154737536461, 3.07223024452672, 2.96062309644042, 2.70001802940495, 
## 3.04356960296815, 2.62900699376176, 3.17136484219715, 3.04499851485691, 
## 2.94654202936322, 2.85243910372751, 3.05917644611053, 3.19948911106801, 
## 2.75937682826755, 2.80457176809283, 2.78192004966867, 3.17680304844629, 
## 2.89037175789616, 3.04309284491383, 2.7638002162067, 3.21526932927409, 
## 3.26918863874179, 2.75047091698616, 2.91885122921803, 3.06619073720255, 
## 3.2023398562281, 3.08190996979504, 2.7239235502585, 3.17888681665184, 
## 3.12500460925813, 2.69192081917233, 2.90690105984738, 2.9871959425317, 
## 3.13679771383259, 2.88144312715186, 2.55256529826182, 2.98416563718253, 
## 2.59749101053515, 3.02140002030257, 2.96527306606928, 2.95958682691764, 
## 2.74470351875025, 2.91993056013771, 2.97909463240097, 3.0568273729138, 
## 2.83262493568384, 3.03302805829769, 2.97807733831527, 3.00518743232475, 
## 2.76190687389292, 3.06944731137627, 2.75747508442973, 2.8136106967627, 
## 3.1315734964654, 2.99623214859564, 2.38139627341834, 3.00568260440716, 
## 2.79667139275574, 2.84549061022345, 3.20639830335709, 2.93969088267037, 
## 2.79667139275574, 3.2236643416, 2.58701187272515, 2.96938829821439, 
## 3.06991167172824, 2.63404478779171, 3.08694315360738, 2.8136106967627, 
## 2.73371794785079, 2.86619290219901, 2.59450815970308, 2.48240351956988, 
## 2.89314568477889, 2.76757618041624, 2.68444033546308, 2.80819714970715, 
## 2.93225985059842, 2.71997877196748, 2.88535921607262, 3.03013370027132, 
## 2.57108434602905, 2.73046379593911, 2.88703285663065, 2.96836107675786, 
## 2.54474665014402, 2.56186769092413, 3.00469201492546, 2.76883167336207, 
## 2.89867056071086, 3.10099278421148, 3.09285898428471, 2.98365969231972, 
## 2.9338568698359, 3.20599319903719, 2.51688969564105, 2.97705900828837, 
## 2.71800053195538, 2.67069441455844, 2.89369954798884, 3.00121720378456, 
## 3.10099278421148, 2.56955412384829, 3.27978275977172, 3.01111337559229, 
## 2.70270259477561, 2.92208573338569, 2.84432781939476, 2.85589532836619, 
## 2.76631910922619, 3.14069804380418, 3.06385810260159, 2.90251989183181, 
## 3.29063819109509, 2.79300390698237, 3.10413814739778, 3.0837431508767, 
## 3.00667221359233, 2.97348666460667, 2.96114082878437, 3.28353933819392, 
## 3.16758253048065, 2.92316158071916, 2.8142103969306, 2.84897089215859, 
## 3.00864849882054, 3.11529150861163, 2.55800220485855, 3.09738592728049, 
## 2.94127608775793, 3.24102862950933, 2.82908719614504, 2.90962957450058, 
## 2.86105737022739, 3.48031658611475, 2.63188884013665, 2.86391369893314, 
## 3.00815479355255, 2.83438912314523, 2.60046499042227, 2.74148497718845, 
## 3.17680304844629, 3.10593106585207, 3.29879544804407, 3.52075661671979, 
## 3.32539566824587, 2.7669478423497, 3.05635689537043, 3.32683296637329, 
## 3.67071548348627, 2.74727091425549, 2.71071331852169, 2.90087199253003, 
## 3.1684242813721, 3.15700042115011, 2.98870765861703, 2.64688376586472, 
## 3.22763733053677, 2.7033726115511, 3.15955035878339, 2.98669152890184, 
## 2.83790818836042, 2.96165829322024, 2.83615020372953, 3.35933317756346, 
## 2.84897089215859, 3.14415227867226, 3.09693415406296, 2.96424160646262, 
## 3.43785069931019, 2.94180393152844, 3.0837431508767, 2.78562833574758, 
## 3.01504458458636, 2.56802155649851, 3.04404613383254, 2.75174805636793, 
## 3.19785645764413, 2.8541687092322, 2.65042108826557, 2.99473177322041, 
## 2.88144312715186, 3.28091121578765, 2.64048488160644, 2.90032208874933, 
## 2.93225985059842, 2.75366071235426, 2.91235066461494, 3.03302805829769, 
## 2.57413778351594, 2.99373027088332, 2.93863268151342, 2.98214032003452, 
## 2.94968833505258, 2.77383794164021, 2.85991255041146, 2.62321826558551, 
## 2.58550584834412, 2.51365606307399, 2.89811944468699, 2.89977188240808, 
## 3.1393996233664, 2.9391619220656, 2.99021709286588, 3.17220341666977, 
## 2.92369907065416, 3.19826487096408, 2.76127496233951, 2.66722820658195, 
## 2.54238908520136, 2.62756295018952, 2.75302356674494, 2.59301339111385, 
## 2.37211115564266, 2.82435065679837, 2.93757335938046, 2.9391619220656, 
## 2.83321334405622, 2.78377591163035, 2.97858611471902, 2.58926666511224, 
## 3.06851794327964, 2.7219531062712, 2.85070650150373, 3.03061667540749, 
## 2.74148497718845, 2.96269241947579, 2.98870765861703, 2.94549105711724, 
## 3.04452243772342, 2.65535241210176, 2.86391369893314, 3.18924101973851, 
## 2.80578168959555, 2.82375700881418, 2.70537997254633, 3.07639017657145, 
## 2.73760900334375, 2.68852753461335, 2.9391619220656, 2.69056488676119, 
## 2.77446196662146, 2.70537997254633, 2.83732253680635, 2.95595140354215, 
## 2.85991255041146, 3.24804620216798, 2.6440448711263, 2.78562833574758, 
## 2.74019465442878, 2.90799335924598, 2.89425310460414, 3.07130346040107, 
## 2.93598226914822, 2.83026783382646, 3.08099211750481, 3.28952066443753, 
## 2.84781214347737, 3.08648663682246, 3.14802408389625, 2.58097411853423, 
## 2.85359250639287, 2.77695417974942, 2.77695417974942, 3.00667221359233, 
## 3.33967652501391, 2.71800053195538, 2.93545134266906, 2.56186769092413, 
## 2.7033726115511, 3.12324559385295, 2.86105737022739, 2.61885462229774, 
## 3.14802408389625, 2.64546532591059, 3.14458322028635, 2.82375700881418, 
## 3.10368941505908, 2.87469394517693, 2.85991255041146, 2.69665215614984, 
## 2.84839168565528, 3.04547436544881, 2.38967979984498, 2.90635446240277, 
## 2.7047112998367, 2.92262380173335, 2.69867303928961, 3.06198806933106, 
## 3.02819946369149, 2.88591740754678, 2.86619290219901, 2.82316300820271, 
## 3.07639017657145, 3.09602999486936, 3.39484390768998, 3.05258508514677, 
## 3.07731226054641, 3.04832472367316, 2.49897390699944, 2.94654202936322, 
## 2.77383794164021, 2.95125778345216, 2.95073490762326, 3.05776766447344, 
## 3.09013294897548, 3.11484775444415, 2.8724340572095, 2.97246364661464, 
## 3.08967788639652, 2.97654945413722, 2.97246364661464, 2.77133794033813, 
## 2.97552956623647, 2.75110969056266, 2.84490938381941, 2.75937682826755, 
## 2.90799335924598, 2.82435065679837, 3.2144661163795, 3.3332753651767, 
## 2.87130219517581, 2.96217549002515, 3.02140002030257, 3.06991167172824, 
## 3.2188758248682, 3.3403852422654, 2.84199817361195, 3.42491390827947, 
## 3.37724616083964, 3.2240623515555, 3.33932197794407, 3.30137704637994, 
## 3.26842760369745, 2.91017438519234, 2.90251989183181, 3.0022112396517, 
## 3.03206420280138, 2.89591193827178, 3.14974008603334, 2.91723004539903, 
## 3.33719205168624, 2.7033726115511, 2.74855214441154, 2.75556971707019, 
## 3.02188723103084, 2.97092715463502, 2.89203703721523, 2.95699144523756, 
## 2.64333388638252, 2.42303124606991, 2.82435065679837, 2.93492013415723, 
## 3.02334744058696, 2.55178617862755, 3.02237420450041, 3.00617753141553, 
## 2.89977188240808, 2.85128436918812, 3.05588619637374, 3.19826487096408, 
## 2.9871959425317, 2.55489902160804, 2.57566101305646, 2.8402473707136, 
## 3.17596832385692, 2.68716699018579, 2.68784749378469, 3.02140002030257, 
## 2.94811641961233, 2.92369907065416, 3.0243197304059, 2.90251989183181, 
## 2.81540871942271, 2.63188884013665, 3.07269331469012, 2.9274534328007, 
## 2.75238601492226, 2.57261223020711, 2.93119375241642, 2.50715725872282, 
## 2.57794151575519, 2.598235335095, 2.86562358820697, 2.99673177388707, 
## 2.79300390698237, 3.11573506594869, 3.19622113430339, 3.23828621838802, 
## 3.23632273847192, 2.67000213346468, 3.23553626576131, 3.33434507467431, 
## 3.14544454678232, 2.79422789734326, 2.80819714970715, 3.06712226964066, 
## 3.1108450806545, 3.38201456224538, 3.08831145484708, 3.36453339729056, 
## 3.31817802594206, 2.97501923195645, 3.32790958589232, 3.12148347885955, 
## 3.17513290192028, 3.37997374521053, 3.22246936037833, 3.10861443061066, 
## 3.33505757915761, 3.37861088298936, 2.33988087773774, 2.87751164216656, 
## 3.05635689537043, 3.01455402779458, 2.75366071235426, 2.99473177322041, 
## 3.03639425527288, 3.08282698040492, 3.17971910966701, 3.14587493198371, 
## 3.17596832385692, 3.11839228628988, 3.31563949330051, 3.0022112396517, 
## 3.02916704964023, 3.09783749649114, 2.66444656362008, 2.75429745226753, 
## 2.52091708731103, 2.65745841498615, 3.13723183582769, 2.79728133483015, 
## 2.92852352386054, 3.17722014959937, 3.27601201623901, 2.88368276974537, 
## 3.07223024452672, 3.07823349506573, 2.91343703082716, 3.22684399451738, 
## 3.03591406318682, 3.07176695982999, 3.06105173967463, 3.00963517872298, 
## 3.08236858021354, 2.86789890204411, 2.68307421503203, 3.10458667846607, 
## 3.07269331469012, 2.79361608943186, 2.90361698464619, 2.92852352386054, 
## 3.09195113129453, 2.93119375241642, 3.07223024452672, 2.96062309644042, 
## 2.46725171454928, 2.70001802940495, 3.04356960296815, 3.09783749649114, 
## 2.62900699376176, 3.17555070012983, 3.04499851485691, 2.94654202936322, 
## 2.85243910372751, 3.05917644611053, 3.19948911106801, 2.75937682826755, 
## 2.80457176809283, 2.97807733831527, 2.39242579699384, 2.78192004966867, 
## 3.17680304844629, 2.89037175789616, 2.7638002162067, 3.21526932927409, 
## 3.26918863874179, 2.75047091698616, 2.91885122921803, 3.06619073720255, 
## 3.2023398562281, 3.08190996979504, 2.7239235502585, 3.17888681665184, 
## 3.12500460925813, 2.69192081917233, 2.90690105984738, 2.9871959425317, 
## 2.99272776453369, 2.55256529826182, 2.98416563718253, 3.21807550469743, 
## 2.59749101053515, 3.02140002030257, 2.95958682691764, 2.74470351875025, 
## 2.91993056013771, 2.97909463240097, 3.0568273729138, 2.83262493568384, 
## 3.03302805829769, 2.97807733831527, 3.00518743232475, 3.06944731137627, 
## 2.75747508442973, 2.8136106967627, 2.99623214859564, 2.38139627341834, 
## 3.00568260440716, 2.38784493694487, 2.79667139275574, 2.84549061022345, 
## 2.93969088267037, 2.79667139275574, 3.2236643416, 2.58701187272515, 
## 2.96938829821439, 3.06991167172824, 2.63404478779171, 3.08694315360738, 
## 3.11218108619724, 2.8136106967627, 2.73371794785079, 2.86619290219901, 
## 2.89314568477889, 2.85128436918812, 2.70604819843154, 2.68444033546308, 
## 2.80819714970715, 2.93225985059842, 2.71997877196748, 2.88535921607262, 
## 3.03399098567108, 3.03013370027132, 2.73046379593911, 2.57108434602905, 
## 2.73046379593911, 2.88703285663065, 3.03206420280138, 2.54474665014402, 
## 2.56186769092413, 2.76883167336207, 3.10099278421148, 3.09285898428471, 
## 2.98365969231972, 2.27315628230323, 2.9338568698359, 3.20599319903719, 
## 2.83026783382646, 2.47569771070269, 2.68852753461335, 2.71800053195538, 
## 2.67069441455844, 2.89369954798884, 3.00121720378456, 3.10099278421148, 
## 2.56955412384829, 3.08511583468868, 3.27978275977172, 3.01111337559229, 
## 2.70270259477561, 3.10950728781284, 2.71535677628465, 2.92208573338569, 
## 2.84432781939476, 2.85589532836619, 2.76631910922619, 3.14069804380418, 
## 3.06385810260159, 2.90251989183181, 3.14458322028635, 2.79300390698237, 
## 3.10413814739778, 3.0837431508767, 3.11307076597122, 2.97348666460667, 
## 2.96114082878437, 3.28353933819392, 3.16758253048065, 2.92316158071916, 
## 2.8142103969306, 2.84897089215859, 3.00864849882054, 3.11529150861163, 
## 2.55800220485855, 3.09738592728049, 2.94127608775793, 2.91614779421115, 
## 3.24102862950933, 3.17010566049877, 2.82908719614504, 2.90962957450058, 
## 2.86105737022739, 3.48031658611475, 2.83438912314523, 2.60046499042227, 
## 2.73825604315928, 2.74148497718845, 3.17680304844629, 3.10593106585207, 
## 2.94864066602014, 3.52075661671979, 2.7669478423497, 3.05635689537043, 
## 3.06619073720255, 3.32683296637329, 3.67071548348627, 2.71071331852169, 
## 3.15700042115011, 2.98870765861703, 2.85819285953193, 2.64688376586472, 
## 3.22763733053677, 2.7033726115511, 3.15955035878339, 2.98669152890184, 
## 2.83790818836042, 2.96165829322024, 2.83615020372953, 3.35933317756346, 
## 2.84897089215859, 3.14415227867226, 3.51333488159901, 3.29805662274264, 
## 3.13809951484091, 3.09693415406296, 2.96424160646262, 3.09421922026864, 
## 3.43785069931019, 3.0837431508767, 2.78562833574758, 3.01504458458636, 
## 2.8225686545448, 2.56802155649851, 3.19785645764413, 2.8541687092322, 
## 2.65042108826557, 2.99473177322041, 2.71997877196748, 3.28091121578765, 
## 2.64048488160644, 2.90032208874933, 2.75366071235426, 2.91235066461494, 
## 3.03302805829769, 2.57413778351594, 2.99373027088332, 2.93863268151342, 
## 2.98214032003452, 2.94968833505258, 2.85991255041146, 2.62321826558551, 
## 2.51365606307399, 2.89811944468699, 2.89977188240808, 3.1393996233664, 
## 2.9391619220656, 2.99021709286588, 3.17220341666977, 2.92369907065416, 
## 2.89922137317315, 3.19826487096408, 2.76127496233951, 2.66722820658195, 
## 2.54238908520136, 2.95021175825218, 2.75302356674494, 2.59301339111385, 
## 2.37211115564266, 2.92316158071916, 2.82435065679837, 2.6447553507299, 
## 2.93757335938046, 2.9391619220656, 2.83321334405622, 2.58926666511224, 
## 3.06851794327964, 2.7219531062712, 2.85070650150373, 2.55567572067621, 
## 3.03061667540749, 3.08557297755378, 2.74148497718845, 2.96269241947579, 
## 2.69327491552006, 3.06479180948549, 2.86391369893314, 3.18924101973851, 
## 2.80578168959555, 2.82375700881418, 2.70537997254633, 3.07639017657145, 
## 2.73760900334375, 2.68852753461335, 2.69056488676119, 2.77446196662146, 
## 2.95595140354215, 2.85991255041146, 3.24804620216798, 2.6440448711263, 
## 2.94811641961233, 2.92262380173335, 2.78562833574758, 2.74019465442878, 
## 2.90799335924598, 3.07130346040107, 2.93598226914822, 2.90635446240277, 
## 2.83026783382646, 3.08099211750481, 3.28952066443753, 2.89148225218019, 
## 2.84781214347737, 3.08648663682246, 2.58097411853423, 2.71469474382088, 
## 2.85359250639287, 2.77695417974942, 3.00667221359233, 2.93545134266906, 
## 2.56186769092413, 3.12324559385295, 2.86105737022739, 2.61885462229774, 
## 3.14802408389625, 2.64546532591059, 2.78253905309295, 2.7408400239252, 
## 3.14458322028635, 2.50307395374345, 2.99423114742772, 3.10368941505908, 
## 2.87469394517693, 2.84374591655611, 2.85991255041146, 2.69665215614984, 
## 3.04547436544881, 2.38967979984498, 2.90635446240277, 2.78315767358902, 
## 2.7047112998367, 2.92262380173335, 2.69867303928961, 3.06198806933106, 
## 3.02819946369149, 2.86619290219901, 2.82316300820271, 3.07639017657145, 
## 3.09602999486936, 3.39484390768998, 3.07731226054641, 3.04832472367316, 
## 2.49897390699944, 3.06385810260159, 2.94654202936322, 2.77383794164021, 
## 2.95125778345216, 2.95073490762326, 3.05776766447344, 3.09013294897548, 
## 3.11484775444415, 2.8724340572095, 2.97246364661464, 3.08967788639652, 
## 2.82967768922391, 2.97552956623647, 2.84490938381941, 3.23553626576131, 
## 2.75937682826755, 2.90799335924598, 2.82435065679837, 3.3332753651767, 
## 2.87130219517581, 2.96217549002515, 3.02140002030257, 3.06991167172824, 
## 3.3403852422654, 2.63762773680566, 2.84199817361195, 3.42491390827947, 
## 3.37724616083964, 3.2240623515555, 3.33932197794407, 3.30137704637994, 
## 3.26842760369745, 3.29546642702991, 2.90251989183181, 3.0022112396517, 
## 3.03206420280138, 2.89591193827178, 3.14974008603334, 2.90032208874933, 
## 2.91723004539903, 3.33719205168624, 3.40019688132857, 2.75556971707019, 
## 3.02188723103084, 2.8106067894273, 2.68033636253469, 2.89203703721523, 
## 2.95699144523756, 2.64333388638252, 2.87016905057865, 2.42303124606991, 
## 2.797890905102, 2.82435065679837, 2.93492013415723, 2.78315767358902, 
## 2.58248697812686, 3.02334744058696, 3.02237420450041, 3.00617753141553, 
## 2.89977188240808, 2.85128436918812, 2.86334308550825, 3.05588619637374, 
## 2.81780106506133, 3.19826487096408, 2.79239134953596, 2.9871959425317, 
## 2.55489902160804, 2.99773027621666, 2.8402473707136, 2.75366071235426, 
## 3.17596832385692, 2.68716699018579, 2.68784749378469, 3.02140002030257, 
## 2.61447185414264, 2.94811641961233, 2.92369907065416, 3.0243197304059, 
## 2.90251989183181, 2.63188884013665, 3.07269331469012, 2.9871959425317, 
## 2.9274534328007, 2.75238601492226, 2.93119375241642, 2.50715725872282, 
## 2.86562358820697, 2.99673177388707, 3.02868337369368, 2.86903462050803, 
## 3.03783344957263, 3.19622113430339, 2.67000213346468, 3.21847574484686, 
## 3.23553626576131, 3.14544454678232, 2.79422789734326, 2.80819714970715, 
## 2.96217549002515, 3.06712226964066, 3.1108450806545, 3.38201456224538, 
## 3.08831145484708, 3.36453339729056, 3.31817802594206, 2.97501923195645, 
## 3.32790958589232, 3.12148347885955, 3.17513290192028, 3.30137704637994, 
## 3.37997374521053, 3.42165339022954, 3.10861443061066, 3.34109345759245, 
## 3.33505757915761, 3.37861088298936, 3.20030443928277), smoothness_mean = c(-2.13368655653223, 
## -2.46816753378372, -2.21091790446822, -2.0572887370387, -2.357780728462, 
## -2.1294724752854, -2.06120877341878, -2.13199879241851, -2.5003045919681, 
## -2.33201390368486, -2.32892906833365, -2.17948289586006, -2.172434408529, 
## -2.31597433011306, -2.14558134418438, -2.32493295665795, -2.23026443141442, 
## -2.27886856637673, -2.23212662934548, -2.18836394890402, -2.13199879241851, 
## -2.24999264287488, -2.36021420583068, -2.31800334572243, -2.19912638462582, 
## -2.26336437984076, -2.40983628374102, -2.36584443263324, -2.28671174383776, 
## -2.09801292726527, -2.3989858672804, -2.33160204206454, -2.20818441757256, 
## -2.45340798272863, -2.15589071384324, -2.27205588795922, -2.56589980899753, 
## -2.49362454040772, -2.16456379509667, -2.40174266452726, -2.35135525736347, 
## -2.25094185984221, -2.17419187822565, -2.51825662946955, -2.17683388768849, 
## -2.08505728046547, -2.56122629666141, -2.18747228589354, -2.2595256035336, 
## -2.50850286364319, -2.23867176725039, -2.40694610831879, -2.23399230152843, 
## -2.29560947925762, -2.38901482099243, -2.23961029383266, -2.05104846717862, 
## -2.30920696930293, -2.20545838226332, -2.22747762050724, -2.24148999363423, 
## -2.10784101620153, -2.33067597316057, -2.31526514615142, -2.35979056676483, 
## -2.40472856666275, -2.43360535543245, -2.17859911321305, -2.4108386784343, 
## -2.3859667019331, -2.60978983193469, -2.28082360121253, -2.26432638087696, 
## -2.39931628195382, -2.25856820757727, -2.40983628374102, -2.32769779380912, 
## -2.14558134418438, -2.52410496319216, -2.29759755148301, -2.30368569843808, 
## -1.96754244918243, -2.46781357236182, -2.02041820123037, -2.43508844280714, 
## -2.26625316374666, -2.30930763875487, -2.54631407791736, -2.18747228589354, 
## -2.16282315061889, -2.32605844917969, -2.35788640877914, -2.15244243456433, 
## -2.15848474902029, -2.4767004132409, -2.36733697022374, -1.9330926453447, 
## -2.64296495444628, -2.43212446434903, -2.37968214337901, -2.49896500703904, 
## -2.16282315061889, -2.2876964805003, -2.23867176725039, -2.21457421567133, 
## -2.29461692334487, -2.35788640877914, -2.36127408934273, -2.25284300109923, 
## -2.33935281718626, -2.14814873968963, -2.1507227436848, -2.38054663446376, 
## -2.33088169214916, -2.44449433917674, -2.16108553072035, -2.21549038614311, 
## -2.50862573640859, -2.30558960201434, -2.53275325924522, -2.3639287232351, 
## -2.32749272870023, -2.36616407463692, -2.4471485441854, -2.59762751985212, 
## -2.3739736890817, -2.58826916278315, -2.21732524904322, -2.44253705342149, 
## -2.18925640768704, -2.29065652212877, -2.47230636781226, -2.47444159994024, 
## -2.42305924646192, -2.25474776357989, -2.27496992596107, -2.40262644717427, 
## -2.43132796888677, -2.39272864284701, -2.33314739857669, -2.3196295276033, 
## -2.77242873503842, -2.43737441934268, -2.17068002211411, -2.3437196363526, 
## -2.40141144730094, -2.45480430597156, -2.32544438714013, -2.29560947925762, 
## -2.51577831345509, -2.23026443141442, -2.43623077786396, -2.66642852641139, 
## -2.26915031690781, -2.53313097407502, -2.12026353620009, -2.60761680378094, 
## -2.31546771882506, -2.34486648525065, -2.41150750021823, -2.17068002211411, 
## -2.02268320786123, -2.30609123232333, -2.42181918091774, -2.21732524904322, 
## -2.43360535543245, -2.30058709033137, -2.50323356648088, -2.3979952777987, 
## -2.42238265644964, -2.2966030213165, -2.27691734624547, -2.36840443403134, 
## -2.51900132355883, -2.47456035773386, -2.25284300109923, -2.2433732333622, 
## -2.27789248040367, -2.47159563572833, -2.31202955182205, -2.48039683431017, 
## -2.53792775176525, -2.2182439445603, -2.67611558257186, -2.55361384779779, 
## -2.39043318356724, -2.46934831087215, -2.40019792186105, -2.49823507999933, 
## -2.32156405959185, -2.36201667676347, -2.53502169121985, -2.34424076826288, 
## -2.52036803806616, -2.27594316204762, -2.23492644452023, -2.43497428103979, 
## -2.33748714500331, -2.2896688677275, -2.29560947925762, -2.2424311701743, 
## -2.29461692334487, -2.26818366627671, -2.21091790446822, -2.37946613733, 
## -2.01365380114183, -2.19912638462582, -2.40805672593628, -2.54593135162578, 
## -2.35714688098673, -2.3342821797373, -2.53124382499637, -2.36180445265402, 
## -2.22377391256976, -2.31932441699834, -2.36435411939168, -2.40384292506827, 
## -2.42418791475329, -2.09964424899736, -2.36669703846129, -2.41653797307008, 
## -2.53224986129852, -2.28278246569787, -2.54938117297348, -2.26625316374666, 
## -2.23867176725039, -2.54874141861733, -2.4777721608874, -2.45282675632459, 
## -2.66570936061269, -2.52323176410967, -2.44035402273894, -2.435316805448, 
## -2.40883489283676, -2.29759755148301, -2.48027738140434, -2.33645216250562, 
## -2.38618411687036, -2.46298861448707, -2.30579022394299, -2.72174352823421, 
## -2.2876964805003, -2.16282315061889, -2.47088540842575, -2.22562405185792, 
## -2.23679735245604, -2.5937398549248, -2.46381074149327, -2.65854600619912, 
## -2.6069386997338, -2.48266915484781, -2.57465631793168, -2.43110051522947, 
## -2.45375688079578, -2.46381074149327, -2.32831324156678, -2.30579022394299, 
## -2.58269589994951, -2.2433732333622, -2.52323176410967, -2.17683388768849, 
## -2.14558134418438, -2.44495543428577, -2.27496992596107, -2.14643641050411, 
## -2.35482620483974, -2.34559698358734, -2.24999264287488, -2.48734963143914, 
## -2.19014966366426, -2.35788640877914, -2.29560947925762, -2.23586146095114, 
## -2.32780034213511, -2.46734181860853, -2.27011790285654, -2.32309396962559, 
## -2.16282315061889, -2.31445526556453, -2.47860653723952, -2.42193185062661, 
## -2.3995366190705, -2.15589071384324, -2.58216672941196, -2.08505728046547, 
## -2.16369309412743, -2.27886856637673, -2.62086383942329, -2.43691680578934, 
## -2.48975840051902, -2.29362535162257, -2.59883711612889, -2.45550319941876, 
## -2.33552159324031, -2.53363481587935, -2.39141630670066, -2.31213050583758, 
## -2.36616407463692, -2.24148999363423, -2.32872375060374, -2.53036437271278, 
## -2.35957881451417, -2.48867373635724, -2.31465767422831, -2.3998672158006, 
## -2.58800306379276, -2.49277754416857, -2.10701830945007, -2.08989599958369, 
## -2.52735496605284, -2.6685891322213, -2.26144314966287, -2.4813529715887, 
## -2.44391826911069, -2.51231895739834, -2.29263476214088, -2.26432638087696, 
## -2.14814873968963, -2.27399763614213, -2.52024371407769, -2.55863930776551, 
## -2.39832536527488, -2.09557092360972, -2.42226993594003, -2.61033382759614, 
## -2.44391826911069, -2.29859307172451, -2.35440484172384, -2.5834901811668, 
## -2.26721794915675, -2.44357278629502, -2.42384918048708, -2.22840569481979, 
## -2.52961117157248, -2.46334087187344, -2.48650793115497, -2.32554670463139, 
## -2.2595256035336, -2.18925640768704, -2.43212446434903, -2.45970684876626, 
## -2.2182439445603, -2.40163224659528, -2.23026443141442, -2.51120955820905, 
## -2.43030483459642, -2.30789918781781, -2.24999264287488, -2.17771611094818, 
## -2.28474517486571, -2.24431618487007, -2.39294753307444, -2.47005744693779, 
## -2.44368793397205, -2.52998770122864, -2.41743493467299, -2.4284885098832, 
## -2.5081343359073, -2.41385190542263, -2.2730262907525, -2.30288513800305, 
## -2.38825191975114, -2.47836807294842, -2.33469514691228, -2.71613277729557, 
## -2.27108642593467, -2.4725433908046, -2.45538668325201, -2.381087321149, 
## -2.36904545969432, -2.48063578293735, -2.52773064697893, -2.3128374694584, 
## -2.22192718997659, -2.4641632886501, -2.5948108054957, -2.49084424245475, 
## -2.44472486015517, -2.4875902474172, -2.37633928158271, -2.41396368097744, 
## -2.43588794030847, -2.51355306837812, -2.29560947925762, -2.40351101158401, 
## -2.41564181528634, -2.27691734624547, -2.39832536527488, -2.52685427759577, 
## -2.23399230152843, -2.26048391697541, -2.44865186912883, -2.21732524904322, 
## -2.30158559266096, -2.60748114618051, -2.61251277439315, -2.34476217189323, 
## -2.22933463125445, -2.41597778034914, -2.22100510600162, -2.15244243456433, 
## -2.37064982390818, -1.81155409655623, -2.0754495204103, -2.12527607802364, 
## -2.1345315079978, -2.51342958872124, -2.46840357768899, -2.2018351898939, 
## -2.3843375948663, -2.25474776357989, -2.23679735245604, -2.10537492370634, 
## -2.18480205733766, -1.98704469241387, -2.2730262907525, -2.31102057181515, 
## -2.35472084741457, -2.26721794915675, -2.23026443141442, -2.40761233086175, 
## -2.08104282304681, -2.20727491318972, -2.23212662934548, -2.28671174383776, 
## -2.37763196731696, -2.26528930825035, -2.09070473395855, -2.51355306837812, 
## -2.44553210231398, -2.30418637436102, -2.49193126472496, -2.44518606159307, 
## -2.38097916042206, -2.36085000112602, -2.42170652390191, -2.59950974681276, 
## -2.34695504072999, -2.49181042610479, -2.3816283003345, -2.51047064191927, 
## -2.4046178185592, -2.29958958401425, -2.51047064191927, -2.46828554877176, 
## -2.37935815179996, -2.59709039079395, -2.20818441757256, -2.1982250776698, 
## -2.47041220363755, -2.13876700776465, -2.13368655653223, -2.46816753378372, 
## -2.21091790446822, -1.94841327927343, -2.0572887370387, -2.357780728462, 
## -2.1294724752854, -2.06120877341878, -2.13199879241851, -2.5003045919681, 
## -2.47681943960538, -2.17948289586006, -2.172434408529, -2.31597433011306, 
## -2.14558134418438, -2.3196295276033, -2.32493295665795, -2.23026443141442, 
## -2.27886856637673, -2.23212662934548, -2.36148620091421, -2.13199879241851, 
## -2.19912638462582, -2.12276666641821, -2.36435411939168, -2.26336437984076, 
## -2.34236596300589, -2.32044361129536, -2.40983628374102, -2.36584443263324, 
## -2.28671174383776, -2.50568094900448, -2.09801292726527, -2.26240330336121, 
## -2.33160204206454, -2.20818441757256, -2.27205588795922, -2.43588794030847, 
## -2.44911488568994, -2.56589980899753, -2.49362454040772, -2.16456379509667, 
## -2.40174266452726, -2.35135525736347, -2.17419187822565, -2.51825662946955, 
## -2.32769779380912, -2.17683388768849, -2.08505728046547, -2.25474776357989, 
## -2.56122629666141, -2.14387340183922, -2.2595256035336, -2.50850286364319, 
## -2.23867176725039, -2.40694610831879, -2.23399230152843, -2.29560947925762, 
## -2.38901482099243, -2.38945102601571, -2.04716798112954, -2.23961029383266, 
## -2.05104846717862, -2.30920696930293, -2.22747762050724, -2.24148999363423, 
## -2.10784101620153, -2.33067597316057, -2.31526514615142, -2.35979056676483, 
## -2.40472856666275, -2.43360535543245, -2.17859911321305, -2.4108386784343, 
## -2.3859667019331, -2.60978983193469, -2.28082360121253, -2.26432638087696, 
## -2.27886856637673, -2.40983628374102, -2.32769779380912, -2.35514234373272, 
## -2.14558134418438, -2.52410496319216, -2.30368569843808, -1.96754244918243, 
## -2.46781357236182, -2.02041820123037, -2.43508844280714, -2.26625316374666, 
## -2.30930763875487, -2.54631407791736, -2.18747228589354, -2.32605844917969, 
## -2.35788640877914, -2.15244243456433, -2.4767004132409, -2.36733697022374, 
## -1.9330926453447, -2.2063662352535, -2.64296495444628, -2.43212446434903, 
## -2.49896500703904, -2.16282315061889, -2.2876964805003, -2.23867176725039, 
## -2.21457421567133, -2.29461692334487, -2.35788640877914, -2.36127408934273, 
## -2.40185309465271, -2.25284300109923, -2.33935281718626, -2.14814873968963, 
## -2.33088169214916, -2.21457421567133, -2.55194429112667, -2.16108553072035, 
## -2.21549038614311, -2.50862573640859, -2.30558960201434, -2.53275325924522, 
## -2.17595244206068, -2.3639287232351, -2.23305903034544, -2.32749272870023, 
## -2.36616407463692, -2.4471485441854, -2.19373068808196, -2.3739736890817, 
## -2.58826916278315, -2.44253705342149, -2.29065652212877, -2.47230636781226, 
## -2.47444159994024, -2.34403228290822, -2.42305924646192, -2.25474776357989, 
## -2.31719124538341, -2.07385716338594, -2.2966030213165, -2.43132796888677, 
## -2.39272864284701, -2.33314739857669, -2.3196295276033, -2.77242873503842, 
## -2.43737441934268, -2.21274438899426, -2.17068002211411, -2.3437196363526, 
## -2.40141144730094, -2.40163224659528, -2.37871048338354, -2.45480430597156, 
## -2.32544438714013, -2.29560947925762, -2.51577831345509, -2.23026443141442, 
## -2.43623077786396, -2.66642852641139, -2.2595256035336, -2.53313097407502, 
## -2.12026353620009, -2.60761680378094, -2.46240179444793, -2.34486648525065, 
## -2.41150750021823, -2.17068002211411, -2.02268320786123, -2.30609123232333, 
## -2.42181918091774, -2.21732524904322, -2.43360535543245, -2.30058709033137, 
## -2.50323356648088, -2.3979952777987, -2.42238265644964, -2.16980398176023, 
## -2.2966030213165, -2.357780728462, -2.27691734624547, -2.36840443403134, 
## -2.51900132355883, -2.47456035773386, -2.47159563572833, -2.31202955182205, 
## -2.25094185984221, -2.48039683431017, -2.53792775176525, -2.2182439445603, 
## -2.17068002211411, -2.55361384779779, -2.46934831087215, -2.40019792186105, 
## -2.48231002394073, -2.49823507999933, -2.32156405959185, -2.53502169121985, 
## -2.27594316204762, -2.23492644452023, -2.62900799376226, -2.43497428103979, 
## -2.33748714500331, -2.2896688677275, -2.29560947925762, -2.2424311701743, 
## -2.29461692334487, -2.26818366627671, -2.21091790446822, -2.37946613733, 
## -2.01365380114183, -2.19912638462582, -2.24148999363423, -2.30258509299405, 
## -2.44622454319566, -2.40805672593628, -2.54593135162578, -2.3303674740065, 
## -2.35714688098673, -2.53124382499637, -2.36180445265402, -2.22377391256976, 
## -2.74435118082854, -2.31932441699834, -2.42418791475329, -2.09964424899736, 
## -2.36669703846129, -2.41653797307008, -2.35219559354738, -2.28278246569787, 
## -2.54938117297348, -2.26625316374666, -2.54874141861733, -2.4777721608874, 
## -2.45282675632459, -2.66570936061269, -2.52323176410967, -2.44035402273894, 
## -2.435316805448, -2.40883489283676, -2.48027738140434, -2.33645216250562, 
## -2.46298861448707, -2.30579022394299, -2.72174352823421, -2.2876964805003, 
## -2.16282315061889, -2.47088540842575, -2.22562405185792, -2.23679735245604, 
## -2.42441380135918, -2.5937398549248, -2.46381074149327, -2.65854600619912, 
## -2.6069386997338, -2.4288288195683, -2.57465631793168, -2.43110051522947, 
## -2.45375688079578, -2.23119509690737, -2.46381074149327, -2.55954399280299, 
## -2.32831324156678, -2.30579022394299, -2.58269589994951, -2.17683388768849, 
## -2.14558134418438, -2.44495543428577, -2.27496992596107, -2.37418851185374, 
## -2.14643641050411, -2.14986400597638, -2.35482620483974, -2.34559698358734, 
## -2.48819204077953, -2.39513907460465, -2.29560947925762, -2.23586146095114, 
## -2.32780034213511, -2.46734181860853, -2.27011790285654, -2.32309396962559, 
## -2.16282315061889, -2.31445526556453, -2.42193185062661, -2.3995366190705, 
## -2.08505728046547, -2.16369309412743, -2.27886856637673, -2.62086383942329, 
## -2.43497428103979, -2.22377391256976, -2.43691680578934, -2.48975840051902, 
## -2.29362535162257, -2.45550319941876, -2.33552159324031, -2.33448864200705, 
## -2.53363481587935, -2.39141630670066, -2.31213050583758, -2.38260280098008, 
## -2.36616407463692, -2.24148999363423, -2.53036437271278, -2.30158559266096, 
## -2.35957881451417, -2.48867373635724, -2.3998672158006, -2.10701830945007, 
## -2.08989599958369, -2.6685891322213, -2.26144314966287, -2.4813529715887, 
## -2.44391826911069, -2.51231895739834, -2.65555263214446, -2.4811138515493, 
## -2.29263476214088, -2.30298517301539, -2.15416508787577, -2.14814873968963, 
## -2.27399763614213, -2.52011940554375, -2.52024371407769, -2.55863930776551, 
## -2.09557092360972, -2.42226993594003, -2.61033382759614, -2.31475889392575, 
## -2.44391826911069, -2.29859307172451, -2.35440484172384, -2.5834901811668, 
## -2.26721794915675, -2.42384918048708, -2.22840569481979, -2.52961117157248, 
## -2.46334087187344, -2.48650793115497, -2.2595256035336, -2.18925640768704, 
## -2.43212446434903, -2.28474517486571, -2.45970684876626, -2.2182439445603, 
## -2.40163224659528, -2.23026443141442, -2.51120955820905, -2.43030483459642, 
## -2.30789918781781, -2.24999264287488, -2.17771611094818, -2.28474517486571, 
## -2.41642590941781, -2.44368793397205, -2.41743493467299, -2.48518668899532, 
## -2.4284885098832, -2.5081343359073, -2.41385190542263, -2.30288513800305, 
## -2.38825191975114, -2.47836807294842, -2.33469514691228, -2.71613277729557, 
## -2.4725433908046, -2.20818441757256, -2.45538668325201, -2.381087321149, 
## -2.36904545969432, -2.48063578293735, -2.52773064697893, -2.3128374694584, 
## -2.22192718997659, -2.65997457787065, -2.5948108054957, -2.49084424245475, 
## -2.44472486015517, -2.4875902474172, -2.37633928158271, -2.14131694539792, 
## -2.41396368097744, -2.43588794030847, -2.56407973569218, -2.40351101158401, 
## -2.41564181528634, -2.6841383810559, -2.25761172735131, -2.39832536527488, 
## -2.52685427759577, -2.23399230152843, -2.30759763481759, -2.26048391697541, 
## -2.352405787978, -2.44865186912883, -2.21732524904322, -2.18213893991818, 
## -2.54618648621065, -2.30158559266096, -2.61251277439315, -2.34476217189323, 
## -2.22933463125445, -2.41597778034914, -2.29065652212877, -2.22100510600162, 
## -2.31435407659404, -2.15244243456433, -2.15589071384324, -2.37064982390818, 
## -1.81155409655623, -2.21091790446822, -2.12527607802364, -2.36159227357408, 
## -2.1345315079978, -2.51342958872124, -2.46840357768899, -2.2018351898939, 
## -2.31952781372436, -2.3843375948663, -2.25474776357989, -2.23679735245604, 
## -2.10537492370634, -1.98704469241387, -2.2730262907525, -2.46381074149327, 
## -2.31102057181515, -2.35472084741457, -2.23026443141442, -2.40761233086175, 
## -2.23212662934548, -2.28671174383776, -2.39076078389777, -2.33438540554384, 
## -2.25761172735131, -2.09070473395855, -2.30418637436102, -2.42622273345222, 
## -2.49193126472496, -2.38097916042206, -2.36085000112602, -2.42170652390191, 
## -2.46616340697086, -2.59950974681276, -2.34695504072999, -2.49181042610479, 
## -2.3816283003345, -2.51047064191927, -2.4046178185592, -2.29958958401425, 
## -2.51047064191927, -2.46828554877176, -2.37935815179996, -2.30971041793663, 
## -2.59709039079395, -2.2557015070952, -2.1982250776698, -2.32483070194137, 
## -2.47041220363755, -2.13876700776465, -2.94446897961645), compactness_se = c(-3.01511898735418, 
## -4.33667093295308, -3.21737694874447, -3.3977034924079, -4.28163846064261, 
## -3.49693765394299, -3.35183595212443, -2.62873083189796, -4.68107978008844, 
## -3.20374093728393, -2.48927618230594, -2.82413468012301, -3.16060691674423, 
## -4.45502752755837, -3.68847953409261, -4.22673375026785, -3.96436948580036, 
## -4.24609811744964, -2.93219425275, -3.9728351448249, -3.2704323117826, 
## -3.48839059336453, -3.60380328175882, -3.49561795728165, -3.37728556161584, 
## -3.55155526325072, -5.3187241763257, -4.5153294819883, -3.79914084837147, 
## -4.03758622840349, -2.2966030213165, -4.28019232879261, -3.22037695099447, 
## -4.10682208373321, -3.75673012102211, -4.24959584749339, -4.44220135770995, 
## -4.78190736448814, -3.51964313686864, -4.57561138374655, -4.74190670956156, 
## -3.76965576414122, -3.55609834288012, -4.75680736065105, -4.51076951056661, 
## -3.45396544720081, -3.23449720577116, -3.63136554791333, -4.04270132907026, 
## -4.6868141750286, -2.45271055157168, -4.1031835108893, -2.87955051926458, 
## -3.8800399595751, -4.00688328645211, -2.84061063668669, -2.68311371581218, 
## -4.09775035535693, -4.0710187369186, -3.33120500984212, -2.86593283601915, 
## -2.80511191394534, -4.0107389783673, -4.10500114241063, -3.51224068045548, 
## -3.99431824815498, -3.69168338144667, -3.12084208459684, -4.0074331902328, 
## -3.71153414467874, -4.56787440124439, -4.20572315020549, -3.29279150781837, 
## -3.35756334464209, -4.44050356443286, -4.31999124375443, -3.54218507496313, 
## -4.52451228297064, -5.09979443041607, -3.81853266234081, -3.80811354203763, 
## -3.53633005565365, -4.55924125409969, -2.44553210231398, -4.16240929313623, 
## -3.52948540196369, -3.20843056700666, -2.59749321053757, -3.28421466617654, 
## -3.81082112491918, -3.68608336681194, -2.69414729593322, -3.66399173860616, 
## -3.22489389719376, -4.7769079492424, -4.18055625904117, -2.32217574275905, 
## -3.42038020107893, -4.69192704991437, -4.44475346458219, -3.60050234349652, 
## -3.17366348204665, -3.44860350405943, -3.7066361757032, -4.2104290412429, 
## -3.93631569799719, -4.18975474702676, -4.25310585460704, -4.28308668681898, 
## -4.18580217271094, -3.35813789220171, -3.35297880939168, -5.17503835038787, 
## -3.94351367251952, -4.15856313454875, -3.04892210206811, -3.31511143274903, 
## -3.02063990926018, -3.77356626228113, -4.1401790985659, -2.91581265037812, 
## -4.71219875874661, -3.90355892701602, -4.1592031345706, -3.62646819399254, 
## -4.62649597270284, -5.09390821329008, -3.72762028243037, -3.48839059336453, 
## -3.78231139890649, -3.44986255364344, -3.67143254051022, -4.83044099831848, 
## -3.70095203534821, -3.31483621601411, -4.43965574751052, -4.54407508662828, 
## -4.58831306892167, -4.82743911989164, -2.42950978656771, -3.19564769874899, 
## -6.09593656870469, -5.0570981685066, -3.04513262384912, -3.78847881933669, 
## -3.28929828916475, -4.69061914782057, -4.74397258886855, -4.73573455600921, 
## -3.811273102328, -1.99952191850396, -4.02295456613543, -5.00028900204211, 
## -3.25839658303048, -4.14332474444382, -3.39680703336086, -2.93821836735338, 
## -4.13704331675522, -4.02911877730439, -3.66165346786034, -2.97182045350768, 
## -3.47119075348269, -3.95754352072996, -3.95336596896253, -4.38282695484465, 
## -4.19770707521725, -3.49298377729286, -4.39328982695259, -3.32118544369277, 
## -4.05878438682355, -2.45865427864393, -3.37028027902743, -3.17199223896935, 
## -3.4673371841667, -3.63287726399865, -3.76619255721661, -4.26869794936688, 
## -3.74059388980062, -4.50623023813319, -4.2488953220707, -3.43983426527707, 
## -3.77487316728091, -3.25502127150455, -4.10621473479259, -4.98892272719061, 
## -3.88149380039332, -4.56594947283481, -4.28091513330547, -3.5596071184098, 
## -3.58092231260884, -4.38362791604086, -5.31241629092754, -2.82784776455781, 
## -3.62421594078821, -3.42589999430253, -4.27874828522038, -2.88383318105658, 
## -4.57076875927076, -4.39978335626314, -3.24214445180756, -2.98439676389025, 
## -4.19770707521725, -4.01738352108597, -3.61972659542562, -3.04387264888193, 
## -3.08172598672097, -2.81424439750861, -2.81658240792567, -4.69893156580257, 
## -4.21448036346208, -3.3295280949718, -3.7272045684356, -3.82676316147732, 
## -3.03968416108317, -4.49005737888759, -3.00376444525126, -4.54031921366848, 
## -4.44902150349816, -4.20706543228622, -4.71075294856316, -4.497213044483, 
## -5.24496619105104, -3.70949040801806, -4.23913914712533, -3.81716747441547, 
## -3.35785057715879, -3.22867366734831, -4.82731423696922, -2.96500910091115, 
## -4.30877617293429, -2.49350349701352, -4.27227577071476, -2.24054970207459, 
## -3.85611537348985, -3.91052412930441, -4.19970507787993, -4.43965574751052, 
## -4.80936932130136, -4.40549999085952, -4.60018264447705, -4.28526296624157, 
## -4.23844590619636, -3.44108231536107, -3.39055422156368, -3.05082223987195, 
## -4.67109633610426, -3.75630213043137, -4.84584145417052, -5.32199549390261, 
## -5.58706667496024, -5.35785507926423, -5.11250192049983, -3.58704514823267, 
## -4.31250057202527, -5.80515096904449, -4.09895517477978, -2.71961683747368, 
## -4.52913549971209, -3.15472800504445, -4.28598944647694, -3.90405483577897, 
## -3.71686749065411, -4.25592275787816, -4.65499088097205, -3.87136102370926, 
## -3.42805483583204, -3.42497791032756, -4.50623023813319, -4.77572128718313, 
## -4.01905157818667, -3.77008950953948, -4.23429652264955, -3.92662915781751, 
## -3.48904547223535, -3.36072744910844, -3.97549542838372, -3.39085108960801, 
## -4.512591004695, -3.06379700446812, -4.51350299746227, -4.19571305661039, 
## -4.76205794152524, -3.72264308426675, -4.96313167145229, -2.72433203367649, 
## -3.1598996197679, -3.71686749065411, -3.38522561215246, -4.83596795623916, 
## -3.54080433604857, -4.71253270431659, -5.36168324216986, -3.88977239649333, 
## -4.10682208373321, -4.38202663467388, -3.96016338075608, -3.06315494987143, 
## -4.4990099901597, -3.56807875396823, -3.2398441313044, -4.20975541373343, 
## -3.9659513474537, -4.14332474444382, -4.0107389783673, -2.57137998972734, 
## -4.42035174899555, -3.51190550364658, -3.09026275740022, -4.03024363681558, 
## -3.96173859767408, -3.0878475624618, -3.29548692724004, -3.87617335253445, 
## -4.05013630755778, -3.49792857062193, -3.19491518742336, -3.92916916426312, 
## -3.28983491380869, -4.11597686234921, -3.35900033296237, -4.22058828879635, 
## -3.93018697605582, -3.29198429668884, -4.41952083910146, -3.29333001079315, 
## -4.76874849996491, -3.84717203310853, -4.38523176562283, -3.1055471395612, 
## -3.58560110466043, -3.76792266145439, -4.61048428081186, -4.67184431925608, 
## -3.62159470730834, -3.57269769982453, -4.24959584749339, -3.48904547223535, 
## -4.08995421392081, -3.24701813081448, -4.37168034261974, -3.88879487930894, 
## -3.90952612522956, -3.57234163786598, -3.97124236508812, -5.16781555848388, 
## -3.84063300934147, -2.77852631490653, -3.41276401803362, -3.60637823260219, 
## -3.19711433308669, -4.02239606290952, -4.29621597826077, -4.34665949083659, 
## -4.51441582271963, -4.68442986697372, -3.07088694715475, -4.46020441573791, 
## -4.31923964657512, -4.16048436472665, -3.89960048542959, -3.90455099058945, 
## -4.44731210137251, -3.88830647881083, -3.87520903230543, -2.8029654588985, 
## -3.9481684520645, -3.65389848521869, -4.76311137405667, -4.38523176562283, 
## -3.72222943379549, -4.71342377142835, -4.36615328551759, -3.80811354203763, 
## -2.92359767579479, -4.07395387257437, -4.20438266743104, -2.70950125336952, 
## -3.44860350405943, -4.37644225637998, -2.65569497076828, -3.91753818611626, 
## -4.16369464035689, -4.03419063940235, -3.47602869228516, -4.01960821610808, 
## -3.41489070879416, -2.9058915695542, -4.09474464224344, -4.5263590055638, 
## -4.23222826958549, -4.00633368489939, -4.27371049119042, -3.56383396513971, 
## -3.61191841297781, -4.60217467700829, -3.88635525867957, -4.28962978540791, 
## -3.68807977394337, -4.28962978540791, -3.57877023143391, -3.25553980923979, 
## -3.39442039738313, -3.09180274230472, -3.0183869641188, -3.75160628402224, 
## -3.00780485478826, -3.24009946131983, -4.42535175941225, -3.78759542705309, 
## -4.11659017116942, -4.10986437388014, -3.97549542838372, -3.75973119508589, 
## -4.1598435444548, -3.67300610495765, -3.43827638990358, -3.7937956240635, 
## -3.89124046624562, -4.0387206584741, -4.23844590619636, -4.69192704991437, 
## -3.42743869286738, -4.46280294470117, -4.00908471827128, -4.05878438682355, 
## -4.92979290625216, -3.65621867187439, -3.35383681030232, -4.63645447602786, 
## -2.74000537234376, -3.19126065783523, -4.44645849483327, -4.2889006566844, 
## -3.8637091451496, -4.92716768885499, -3.47894273028701, -4.50623023813319, 
## -3.48970078025356, -4.39571996180588, -3.99867081215382, -3.83830796760587, 
## -3.59867318622779, -3.80676249477065, -4.48827643451659, -3.07067136021848, 
## -3.51257596964554, -4.72417897257029, -3.14423228187243, -3.54356772295388, 
## -3.28849389174907, -2.78741813648578, -3.01511898735418, -4.33667093295308, 
## -3.21737694874447, -2.59588290423146, -3.3977034924079, -4.28163846064261, 
## -3.49693765394299, -3.35183595212443, -2.62873083189796, -4.68107978008844, 
## -3.46541595398881, -2.82413468012301, -3.16060691674423, -4.45502752755837, 
## -3.68847953409261, -3.96700731376091, -4.22673375026785, -3.96436948580036, 
## -4.24609811744964, -2.93219425275, -4.37485243092588, -3.2704323117826, 
## -3.37728556161584, -3.47959144909017, -3.40580799421984, -3.55155526325072, 
## -3.68927953413528, -3.50822595442068, -5.3187241763257, -4.5153294819883, 
## -3.79914084837147, -4.50804347525737, -4.03758622840349, -3.84109866709145, 
## -4.28019232879261, -3.22037695099447, -4.24959584749339, -4.28163846064261, 
## -4.62966781758849, -4.44220135770995, -4.78190736448814, -3.51964313686864, 
## -4.57561138374655, -4.74190670956156, -3.55609834288012, -4.75680736065105, 
## -4.55162941906006, -4.51076951056661, -3.45396544720081, -2.6512918672836, 
## -3.23449720577116, -3.76792266145439, -4.04270132907026, -4.6868141750286, 
## -2.45271055157168, -4.1031835108893, -2.87955051926458, -3.8800399595751, 
## -4.00688328645211, -3.81535011816789, -3.56171830849726, -2.84061063668669, 
## -2.68311371581218, -4.09775035535693, -3.33120500984212, -2.86593283601915, 
## -2.80511191394534, -4.0107389783673, -4.10500114241063, -3.51224068045548, 
## -3.99431824815498, -3.69168338144667, -3.12084208459684, -4.0074331902328, 
## -3.71153414467874, -4.56787440124439, -4.20572315020549, -3.29279150781837, 
## -4.2246810639501, -4.31999124375443, -3.54218507496313, -4.20773724957719, 
## -4.52451228297064, -5.09979443041607, -3.80811354203763, -3.53633005565365, 
## -4.55924125409969, -2.44553210231398, -4.16240929313623, -3.52948540196369, 
## -3.20843056700666, -2.59749321053757, -3.28421466617654, -3.68608336681194, 
## -2.69414729593322, -3.66399173860616, -4.7769079492424, -4.18055625904117, 
## -2.32217574275905, -4.36144000106549, -3.42038020107893, -4.69192704991437, 
## -3.60050234349652, -3.17366348204665, -3.44860350405943, -3.7066361757032, 
## -4.2104290412429, -3.93631569799719, -4.18975474702676, -4.25310585460704, 
## -4.42118334987508, -4.28308668681898, -4.18580217271094, -3.35813789220171, 
## -3.94351367251952, -4.05416277258927, -4.02799518168057, -3.04892210206811, 
## -3.31511143274903, -3.02063990926018, -3.77356626228113, -4.1401790985659, 
## -4.47238907475427, -2.91581265037812, -2.34486648525065, -4.71219875874661, 
## -3.90355892701602, -4.1592031345706, -3.00497485492092, -4.62649597270284, 
## -5.09390821329008, -3.48839059336453, -3.44986255364344, -3.67143254051022, 
## -4.83044099831848, -4.62374157157353, -3.70095203534821, -3.31483621601411, 
## -4.29035944614806, -3.76317205869579, -3.85328251040555, -4.58831306892167, 
## -4.82743911989164, -2.42950978656771, -3.19564769874899, -6.09593656870469, 
## -5.0570981685066, -3.67418790537095, -3.04513262384912, -3.78847881933669, 
## -3.28929828916475, -4.27227577071476, -4.42284862919414, -4.69061914782057, 
## -4.74397258886855, -4.73573455600921, -3.811273102328, -1.99952191850396, 
## -4.02295456613543, -5.00028900204211, -2.97162519821076, -4.14332474444382, 
## -3.39680703336086, -2.93821836735338, -3.29737805302316, -4.02911877730439, 
## -3.66165346786034, -2.97182045350768, -3.47119075348269, -3.95754352072996, 
## -3.95336596896253, -4.38282695484465, -4.19770707521725, -3.49298377729286, 
## -4.39328982695259, -3.32118544369277, -4.05878438682355, -3.58560110466043, 
## -2.45865427864393, -3.29413830936875, -3.37028027902743, -3.17199223896935, 
## -3.4673371841667, -3.63287726399865, -4.50623023813319, -4.2488953220707, 
## -4.82071766068067, -3.43983426527707, -3.77487316728091, -3.25502127150455, 
## -3.90803098415861, -4.98892272719061, -4.56594947283481, -4.28091513330547, 
## -3.46317917401804, -3.5596071184098, -3.58092231260884, -5.31241629092754, 
## -3.42589999430253, -4.27874828522038, -4.1547317122372, -2.88383318105658, 
## -4.57076875927076, -4.39978335626314, -3.24214445180756, -2.98439676389025, 
## -4.19770707521725, -4.01738352108597, -3.61972659542562, -3.04387264888193, 
## -3.08172598672097, -2.81424439750861, -3.6667266494728, -4.14901196356441, 
## -4.50442028288795, -2.81658240792567, -4.69893156580257, -4.4178610876831, 
## -4.21448036346208, -3.7272045684356, -3.82676316147732, -3.03968416108317, 
## -5.59672340236279, -4.49005737888759, -4.44902150349816, -4.20706543228622, 
## -4.71075294856316, -4.497213044483, -4.17273862965011, -3.70949040801806, 
## -4.23913914712533, -3.81716747441547, -3.22867366734831, -4.82731423696922, 
## -2.96500910091115, -4.30877617293429, -2.49350349701352, -4.27227577071476, 
## -2.24054970207459, -3.85611537348985, -4.19970507787993, -4.43965574751052, 
## -4.40549999085952, -4.60018264447705, -4.28526296624157, -4.23844590619636, 
## -3.44108231536107, -3.39055422156368, -3.05082223987195, -4.67109633610426, 
## -3.62985611366448, -3.75630213043137, -4.84584145417052, -5.32199549390261, 
## -5.58706667496024, -4.69838256771027, -5.11250192049983, -3.58704514823267, 
## -4.31250057202527, -4.26655738486777, -5.80515096904449, -5.15560326434886, 
## -4.09895517477978, -2.71961683747368, -4.52913549971209, -3.90405483577897, 
## -3.71686749065411, -4.25592275787816, -4.65499088097205, -4.4811842062071, 
## -3.87136102370926, -3.28181562464207, -3.42805483583204, -3.42497791032756, 
## -4.94428591355472, -3.24496315963152, -4.23429652264955, -3.92662915781751, 
## -3.48904547223535, -3.36072744910844, -3.97549542838372, -3.39085108960801, 
## -4.512591004695, -3.06379700446812, -4.19571305661039, -4.76205794152524, 
## -2.72433203367649, -3.1598996197679, -3.71686749065411, -3.38522561215246, 
## -3.16178685788407, -3.23602198370317, -4.83596795623916, -3.54080433604857, 
## -4.71253270431659, -3.88977239649333, -4.10682208373321, -4.01460959420325, 
## -4.38202663467388, -3.96016338075608, -3.06315494987143, -4.27730632390348, 
## -4.4990099901597, -3.56807875396823, -4.20975541373343, -3.62122080564012, 
## -3.9659513474537, -4.14332474444382, -2.57137998972734, -3.09026275740022, 
## -4.03024363681558, -3.0878475624618, -3.29548692724004, -3.87617335253445, 
## -4.05013630755778, -3.49792857062193, -4.25804065489289, -2.70770026233792, 
## -3.19491518742336, -4.29401575735117, -3.53085058988903, -3.28983491380869, 
## -4.11597686234921, -4.36379386641282, -3.35900033296237, -4.22058828879635, 
## -3.29198429668884, -4.41952083910146, -3.29333001079315, -4.35441146764091, 
## -4.76874849996491, -3.84717203310853, -4.38523176562283, -3.1055471395612, 
## -3.58560110466043, -4.61048428081186, -4.67184431925608, -3.62159470730834, 
## -3.57269769982453, -4.24959584749339, -4.08995421392081, -3.24701813081448, 
## -4.37168034261974, -4.66258745685804, -3.88879487930894, -3.90952612522956, 
## -3.57234163786598, -3.97124236508812, -5.16781555848388, -3.84063300934147, 
## -2.77852631490653, -3.41276401803362, -3.60637823260219, -3.19711433308669, 
## -4.09534506255568, -4.51441582271963, -3.07088694715475, -3.14469642669395, 
## -4.46020441573791, -4.31923964657512, -4.16048436472665, -3.90455099058945, 
## -4.44731210137251, -3.88830647881083, -3.87520903230543, -2.8029654588985, 
## -3.65389848521869, -4.38122695450332, -4.76311137405667, -4.38523176562283, 
## -3.72222943379549, -4.71342377142835, -4.36615328551759, -3.80811354203763, 
## -2.92359767579479, -4.08697180789269, -4.20438266743104, -2.70950125336952, 
## -3.44860350405943, -4.37644225637998, -2.65569497076828, -3.44014613180073, 
## -3.91753818611626, -4.16369464035689, -4.79839092365105, -4.01960821610808, 
## -3.41489070879416, -4.33133352035836, -3.85658829854005, -4.09474464224344, 
## -4.5263590055638, -4.23222826958549, -4.80532990091193, -4.00633368489939, 
## -2.59414132699443, -4.27371049119042, -3.56383396513971, -4.34897878062768, 
## -4.79463721094292, -3.61191841297781, -3.88635525867957, -4.28962978540791, 
## -3.68807977394337, -4.28962978540791, -3.43765391867277, -3.57877023143391, 
## -4.00688328645211, -3.25553980923979, -4.15600722261421, -3.39442039738313, 
## -3.09180274230472, -3.81762233000666, -3.75160628402224, -4.42035174899555, 
## -3.00780485478826, -3.24009946131983, -4.42535175941225, -3.78759542705309, 
## -4.0107389783673, -4.11659017116942, -4.10986437388014, -3.97549542838372, 
## -3.75973119508589, -3.67300610495765, -3.43827638990358, -5.13280292807046, 
## -3.7937956240635, -3.89124046624562, -4.23844590619636, -4.69192704991437, 
## -4.00908471827128, -4.05878438682355, -3.47732277205165, -3.38788636760248, 
## -3.64352375239314, -3.35383681030232, -3.19126065783523, -3.06765801312558, 
## -4.44645849483327, -3.8637091451496, -4.92716768885499, -3.47894273028701, 
## -4.48916651023178, -4.50623023813319, -3.48970078025356, -4.39571996180588, 
## -3.99867081215382, -3.83830796760587, -3.59867318622779, -3.80676249477065, 
## -4.48827643451659, -3.07067136021848, -3.51257596964554, -3.62009993871911, 
## -4.72417897257029, -3.02742936029725, -3.54356772295388, -3.7201637441537, 
## -3.28849389174907, -2.78741813648578, -5.36873983084458), texture_worst = c(3.84564929607836, 
## 4.39399418633571, 4.55828921539398, 4.4211241551246, 4.71271039433389, 
## 4.74618886322936, 4.91933405670256, 5.49170795573549, 5.1148322519163, 
## 4.68587539087759, 4.86780056544559, 5.00062492188965, 5.30184459476561, 
## 4.92899890199126, 4.9672866665904, 4.03444047673929, 4.14699403807913, 
## 3.66818867730445, 4.01749018754573, 4.9723474900504, 4.22683509877394, 
## 5.07450645475586, 4.68445475787559, 4.05870187270786, 4.74480308344018, 
## 4.68445475787559, 4.3453390314034, 4.53345042416724, 4.59470138513544, 
## 5.20054352680722, 5.07207842375622, 4.86450250302232, 4.2199261916611, 
## 4.27462740540287, 4.73299200833398, 4.16566697228562, 4.37627106269926, 
## 4.22079093808333, 4.45108063957035, 4.98054948250216, 4.31731157691913, 
## 4.74618886322936, 4.91739656048269, 4.29899485449732, 3.85786568417726, 
## 4.66877250239633, 4.03162425409815, 5.09023188209693, 4.9723474900504, 
## 4.42825357700912, 4.33219157542828, 4.63564962539988, 5.11124712616235, 
## 4.17979251337981, 4.37788780062843, 4.00136370799379, 4.98243842645474, 
## 4.50452373965997, 5.0099800597908, 4.37627106269926, 5.09925984037004, 
## 5.04460038283339, 4.51064286511708, 4.71411457400721, 4.82189254351365, 
## 4.89858891132473, 4.90444106677773, 3.93665456449412, 4.81247233739534, 
## 4.5813897395165, 4.30733851517092, 4.58879422265363, 4.4589011555627, 
## 4.97424265314624, 4.18506724920057, 3.82822637799617, 4.92771242891074, 
## 4.06055740376743, 5.05195727576962, 4.65370756626545, 4.38595481282061, 
## 4.31149915094838, 4.70074195576864, 4.73716716909308, 4.81516751663526, 
## 4.23286346360635, 4.55379225305673, 4.41953690473458, 4.34041740713414, 
## 4.06796436841826, 4.60426960897484, 3.81894651195118, 4.69225794719606, 
## 4.90444106677773, 4.72462012983057, 3.70223861716733, 4.44008824220022, 
## 4.34041740713414, 4.40759828979585, 5.21780342847701, 4.57321828343664, 
## 3.94545627679901, 5.09685554064732, 3.89411597678992, 4.59322595812653, 
## 4.97991951661426, 4.03350212602557, 4.96158092693842, 4.55454233489475, 
## 4.27968997796331, 4.22942061247119, 3.6803321374997, 3.4881652680553, 
## 4.53874091045711, 4.26277156096358, 3.76030887491783, 4.62110518228067, 
## 4.55379225305673, 4.08912563560772, 4.31648211802796, 4.85325597503937, 
## 3.73790915557037, 4.14788668902207, 4.53496319009936, 4.74133518110845, 
## 3.95325104412725, 3.93273153639511, 4.60867288259549, 3.89411597678992, 
## 4.62183449590202, 4.78331042054293, 4.75172411533717, 4.57990609284585, 
## 4.61526269721601, 5.02054044452534, 3.66597344862832, 4.86318204216207, 
## 4.02880451447434, 3.81584452507305, 4.47136044125528, 4.76756833954403, 
## 4.80639733438528, 3.72176758750256, 5.0908347519036, 5.05073262206906, 
## 3.88310217785028, 4.61964589127126, 4.22597261650997, 4.62838838909742, 
## 4.06518959300002, 5.30461763543518, 4.40120616682715, 4.17715059261016, 
## 5.42165939938186, 4.27800368129042, 5.12258263348064, 4.49531539967184, 
## 4.8796372255157, 4.76138067250417, 4.5813897395165, 5.04214328851219, 
## 5.55137593525295, 4.49069780205868, 4.12456366980809, 4.37869575168726, 
## 4.52207395926043, 4.81584084911856, 3.69678266390047, 4.72531888820021, 
## 4.51750811014081, 4.74133518110845, 4.66089306552781, 4.67305957436053, 
## 4.47756557994607, 5.7250741812419, 3.82513742469316, 4.34779596076712, 
## 4.89076444551659, 4.40919360925164, 3.80131055253282, 4.0391263923702, 
## 4.95649816088697, 4.88160449712241, 5.10705804269966, 5.54784383979588, 
## 5.31568005236977, 4.02503937366727, 4.89011128798296, 5.48447656291417, 
## 5.69944420254844, 4.01465271367111, 4.1362549488282, 4.73368836607226, 
## 4.61818571423201, 4.90638871527655, 4.83595544584434, 3.88310217785028, 
## 5.19186958268757, 4.20865485453779, 4.66591022465882, 4.56277773074029, 
## 4.52511300047923, 4.48529922188488, 4.28390036534887, 5.25367423284224, 
## 4.33301546451814, 4.977398061134, 4.68303329080159, 4.97928939162397, 
## 5.80649267996141, 4.35596712356414, 4.87438349362812, 4.41238100619215, 
## 4.53420692714647, 3.72500546771211, 4.74895806068259, 4.18155210571024, 
## 5.16274115651175, 4.00896702468464, 4.00896702468464, 4.4643601672029, 
## 4.60059403590832, 5.23266824566795, 3.93861349816864, 4.78126284597665, 
## 4.52511300047923, 4.07442566880621, 4.36735901153395, 4.68658539494554, 
## 3.65486318971188, 4.30567217570052, 4.60353494442031, 4.28894276917322, 
## 4.60720602154206, 4.09644010087559, 4.57470607871923, 3.86090927635756, 
## 3.8044330617929, 3.57313465469149, 4.39238851250693, 4.53798584507042, 
## 4.45812026715483, 4.61087149610063, 4.36654714126594, 4.83395137977617, 
## 4.48298177738099, 4.97613637696856, 4.14341994534426, 4.10918408776423, 
## 3.80547291455154, 3.85278371543535, 4.25682080339513, 3.74860430284226, 
## 3.33461827035041, 4.07626837901377, 4.51826969357939, 4.39319148665841, 
## 4.12185715449991, 4.15768292970039, 4.36329684217773, 4.19907427922337, 
## 4.99123464718118, 4.22510981161163, 4.20081917204225, 4.8966351137691, 
## 4.27631615777365, 4.27378256776766, 4.57693603923099, 4.76825489106129, 
## 5.07086352975503, 3.80235188130695, 4.65442707939607, 4.91933405670256, 
## 4.23630118715586, 4.36654714126594, 4.09369993366443, 5.16098279528589, 
## 3.92880160458909, 4.05498624312565, 4.67020237121107, 3.90606913806289, 
## 4.1736232924066, 3.88510875184718, 4.07902964158111, 4.45421195165986, 
## 4.40759828979585, 5.0751130969265, 3.68582950234986, 4.56203022993144, 
## 3.88310217785028, 4.51979212962875, 4.19032989622769, 4.81853233316707, 
## 4.59248790411271, 4.2525608748516, 4.62037564745409, 5.11064911059594, 
## 4.62547775120469, 4.5784215265119, 4.93862626226538, 3.67592419710848, 
## 4.37465320891252, 4.12185715449991, 4.02315444464448, 4.34615829494115, 
## 5.21722997447023, 4.06981233359486, 5.05073262206906, 4.15056255337101, 
## 4.17715059261016, 4.78535628237399, 4.37141414682473, 3.84972892391568, 
## 4.98180893733216, 4.03725319225232, 4.90054116752379, 4.34451948048039, 
## 4.78740043468991, 4.5784215265119, 4.19732806150465, 4.13446018295962, 
## 4.4791143283873, 4.72112332197546, 4.11552943063158, 4.48838562918339, 
## 3.79609650233605, 4.56203022993144, 4.0642639124341, 4.66662611195927, 
## 4.54928680787707, 4.7969173026623, 5.25649971528638, 4.62547775120469, 
## 4.73577624450677, 4.97171544875428, 5.289607608586, 4.68089952389297, 
## 4.95204221081654, 4.7120079998809, 3.80339271755236, 4.66447781347784, 
## 4.07258146061223, 4.55604179233441, 4.37465320891252, 4.80098466524709, 
## 5.00249875093668, 4.70638151598143, 4.35351877174842, 4.52359396475879, 
## 4.93221217091729, 4.92384900352362, 4.47058365452776, 4.24230491665047, 
## 4.73716716909308, 4.0391263923702, 4.6565843327947, 3.86293601702622, 
## 4.38595481282061, 4.27968997796331, 4.89533172440296, 5.3789243482449, 
## 4.33959612712433, 4.76344497143527, 5.00437117689173, 4.74895806068259, 
## 4.93413813813035, 5.3431303609114, 4.29062114000629, 5.53924614207584, 
## 5.39342611034402, 4.99248872462087, 5.29016509938456, 5.15099568604474, 
## 4.96031120783185, 4.44244806790354, 4.43220506774196, 4.55604179233441, 
## 4.55304193558474, 4.48915660389326, 4.79623875179676, 4.56501883193107, 
## 5.0817765373419, 3.93469391170234, 4.04286814109814, 4.04286814109814, 
## 4.68445475787559, 4.36492255576514, 4.72741395924518, 4.62402111104245, 
## 3.9444800183149, 3.50017120752803, 4.55154059307216, 4.89728655105185, 
## 4.59764951947146, 3.74433252136007, 4.76825489106129, 4.76962741533791, 
## 4.29062114000629, 4.46747395638393, 4.92127004033648, 5.05807160953597, 
## 4.43062526611781, 3.74646945527153, 3.91697011212309, 4.16920652420897, 
## 5.25706443832225, 3.87304201366326, 3.87102449594356, 4.84927432396436, 
## 4.74064100771146, 4.36329684217773, 4.60793956404291, 4.4698066128653, 
## 4.25596944489609, 3.89711029325023, 4.66089306552781, 4.56576539912967, 
## 4.36004202368276, 3.95713827061974, 4.53042200855463, 4.03537843777246, 
## 3.63696722222788, 3.6803321374997, 4.73508048403053, 4.7921634933305, 
## 4.12095426849246, 5.13801256667971, 5.01184689693292, 4.93156984974714, 
## 4.99311552733089, 4.07350375212876, 5.01805965188487, 5.30406326607349, 
## 4.81112363659015, 4.25852258139477, 4.28137504979732, 4.5006912691636, 
## 4.75448703520705, 5.2383625553961, 4.52207395926043, 5.22353090036469, 
## 5.17559876883805, 4.35106785374955, 5.13623697910506, 4.68516517856677, 
## 5.30350877738352, 5.3659655010133, 4.83261442759844, 4.62256358846899, 
## 5.12912215905078, 5.42589455648472, 3.84564929607836, 4.39399418633571, 
## 4.55828921539398, 4.62984238922248, 4.4211241551246, 4.71271039433389, 
## 4.74618886322936, 4.91933405670256, 5.49170795573549, 5.1148322519163, 
## 4.71271039433389, 5.00062492188965, 5.30184459476561, 4.92899890199126, 
## 4.9672866665904, 4.92899890199126, 4.03444047673929, 4.14699403807913, 
## 3.66818867730445, 4.01749018754573, 5.21493487007181, 4.22683509877394, 
## 4.74480308344018, 5.00561868253273, 4.93028470867799, 4.68445475787559, 
## 4.80639733438528, 4.89533172440296, 4.3453390314034, 4.53345042416724, 
## 4.59470138513544, 4.88815077944616, 5.20054352680722, 4.73647180615168, 
## 4.86450250302232, 4.2199261916611, 4.16566697228562, 4.98872460173249, 
## 4.57247403882814, 4.37627106269926, 4.22079093808333, 4.45108063957035, 
## 4.98054948250216, 4.31731157691913, 4.91739656048269, 4.29899485449732, 
## 3.63921234008317, 3.85786568417726, 4.66877250239633, 4.83929193082027, 
## 4.03162425409815, 5.08540372897595, 4.9723474900504, 4.42825357700912, 
## 4.33219157542828, 4.63564962539988, 5.11124712616235, 4.17979251337981, 
## 4.37788780062843, 4.48452699202674, 3.28480883728916, 4.00136370799379, 
## 4.98243842645474, 4.50452373965997, 4.37627106269926, 5.09925984037004, 
## 5.04460038283339, 4.51064286511708, 4.71411457400721, 4.82189254351365, 
## 4.89858891132473, 4.90444106677773, 3.93665456449412, 4.81247233739534, 
## 4.5813897395165, 4.30733851517092, 4.58879422265363, 4.4589011555627, 
## 4.61453138729751, 3.82822637799617, 4.92771242891074, 5.19649935898102, 
## 4.06055740376743, 5.05195727576962, 4.38595481282061, 4.31149915094838, 
## 4.70074195576864, 4.73716716909308, 4.81516751663526, 4.23286346360635, 
## 4.55379225305673, 4.41953690473458, 4.34041740713414, 4.60426960897484, 
## 3.81894651195118, 4.69225794719606, 4.72462012983057, 3.70223861716733, 
## 4.44008824220022, 3.70332816754794, 4.34041740713414, 4.40759828979585, 
## 4.57321828343664, 3.94545627679901, 5.09685554064732, 3.89411597678992, 
## 4.59322595812653, 4.97991951661426, 4.03350212602557, 4.96158092693842, 
## 5.08419524488049, 4.55454233489475, 4.27968997796331, 4.22942061247119, 
## 4.53874091045711, 4.64866495826235, 4.16743743155859, 3.76030887491783, 
## 4.62110518228067, 4.55379225305673, 4.08912563560772, 4.31648211802796, 
## 4.44951342604587, 4.85325597503937, 4.05591572233258, 3.73790915557037, 
## 4.14788668902207, 4.53496319009936, 4.52663106781278, 3.95325104412725, 
## 3.93273153639511, 3.89411597678992, 4.78331042054293, 4.75172411533717, 
## 4.57990609284585, 3.221496909402, 4.61526269721601, 5.02054044452534, 
## 4.36085615277429, 3.81584452507305, 3.79296212815746, 4.02880451447434, 
## 3.81584452507305, 4.47136044125528, 4.76756833954403, 4.80639733438528, 
## 3.72176758750256, 5.05256937888436, 5.0908347519036, 5.05073262206906, 
## 3.88310217785028, 4.7385572993759, 4.20778553942227, 4.61964589127126, 
## 4.22597261650997, 4.62838838909742, 4.06518959300002, 5.30461763543518, 
## 4.40120616682715, 4.17715059261016, 4.72112332197546, 4.27800368129042, 
## 5.12258263348064, 4.49531539967184, 5.00374719065992, 4.76138067250417, 
## 4.5813897395165, 5.04214328851219, 5.55137593525295, 4.49069780205868, 
## 4.12456366980809, 4.37869575168726, 4.52207395926043, 4.81584084911856, 
## 3.69678266390047, 4.72531888820021, 4.51750811014081, 3.95907935613536, 
## 4.74133518110845, 5.1720985907114, 4.66089306552781, 4.67305957436053, 
## 4.47756557994607, 5.7250741812419, 4.40919360925164, 3.80131055253282, 
## 4.08454211051463, 4.0391263923702, 4.95649816088697, 4.88160449712241, 
## 4.50987883531407, 5.54784383979588, 4.02503937366727, 4.89011128798296, 
## 4.60573826407968, 5.48447656291417, 5.69944420254844, 4.1362549488282, 
## 4.90638871527655, 4.83595544584434, 4.72392117056727, 3.88310217785028, 
## 5.19186958268757, 4.20865485453779, 4.66591022465882, 4.56277773074029, 
## 4.52511300047923, 4.48529922188488, 4.28390036534887, 5.25367423284224, 
## 4.33301546451814, 4.977398061134, 5.91342843222292, 5.41210504547204, 
## 4.96665334045321, 4.68303329080159, 4.97928939162397, 4.82725933452894, 
## 5.80649267996141, 4.87438349362812, 4.41238100619215, 4.53420692714647, 
## 4.16123482951012, 3.72500546771211, 5.16274115651175, 4.00896702468464, 
## 4.00896702468464, 4.4643601672029, 4.25596944489609, 5.23266824566795, 
## 3.93861349816864, 4.78126284597665, 4.07442566880621, 4.36735901153395, 
## 4.68658539494554, 3.65486318971188, 4.30567217570052, 4.60353494442031, 
## 4.28894276917322, 4.60720602154206, 4.57470607871923, 3.86090927635756, 
## 3.57313465469149, 4.39238851250693, 4.53798584507042, 4.45812026715483, 
## 4.61087149610063, 4.36654714126594, 4.83395137977617, 4.48298177738099, 
## 4.24487317517505, 4.97613637696856, 4.14341994534426, 4.10918408776423, 
## 3.80547291455154, 4.63347355254343, 4.25682080339513, 3.74860430284226, 
## 3.33461827035041, 4.31482231351887, 4.07626837901377, 3.75605990535429, 
## 4.51826969357939, 4.39319148665841, 4.12185715449991, 4.19907427922337, 
## 4.99123464718118, 4.22510981161163, 4.20081917204225, 3.91301228983002, 
## 4.8966351137691, 4.53420692714647, 4.27631615777365, 4.27378256776766, 
## 4.28305889879237, 5.14392222535321, 4.65442707939607, 4.91933405670256, 
## 4.23630118715586, 4.36654714126594, 4.09369993366443, 5.16098279528589, 
## 3.92880160458909, 4.05498624312565, 3.90606913806289, 4.1736232924066, 
## 4.45421195165986, 4.40759828979585, 5.0751130969265, 3.68582950234986, 
## 4.31399196742674, 4.50682025822858, 4.56203022993144, 3.88310217785028, 
## 4.51979212962875, 4.81853233316707, 4.59248790411271, 4.55229138231215, 
## 4.2525608748516, 4.62037564745409, 5.11064911059594, 4.44401997544328, 
## 4.62547775120469, 4.5784215265119, 3.67592419710848, 4.26446897202882, 
## 4.37465320891252, 4.12185715449991, 4.34615829494115, 5.05073262206906, 
## 4.15056255337101, 4.78535628237399, 4.37141414682473, 3.84972892391568, 
## 4.98180893733216, 4.03725319225232, 4.10008852884187, 4.00326694607662, 
## 4.90054116752379, 3.66708134606272, 4.83261442759844, 4.78740043468991, 
## 4.5784215265119, 4.54401968563775, 4.19732806150465, 4.13446018295962, 
## 4.72112332197546, 4.11552943063158, 4.48838562918339, 4.36248356180047, 
## 3.79609650233605, 4.56203022993144, 4.0642639124341, 4.66662611195927, 
## 4.54928680787707, 5.25649971528638, 4.62547775120469, 4.73577624450677, 
## 4.97171544875428, 5.289607608586, 4.95204221081654, 4.7120079998809, 
## 3.80339271755236, 4.79962962791266, 4.66447781347784, 4.07258146061223, 
## 4.55604179233441, 4.37465320891252, 4.80098466524709, 5.00249875093668, 
## 4.70638151598143, 4.35351877174842, 4.52359396475879, 4.93221217091729, 
## 4.15145381301131, 4.73716716909308, 4.6565843327947, 5.20746150097278, 
## 3.86293601702622, 4.38595481282061, 4.27968997796331, 5.3789243482449, 
## 4.33959612712433, 4.76344497143527, 5.00437117689173, 4.74895806068259, 
## 5.3431303609114, 3.8044330617929, 4.29062114000629, 5.53924614207584, 
## 5.39342611034402, 4.99248872462087, 5.29016509938456, 5.15099568604474, 
## 4.96031120783185, 4.99874968738276, 4.43220506774196, 4.55604179233441, 
## 4.55304193558474, 4.48915660389326, 4.79623875179676, 4.54853507309582, 
## 4.56501883193107, 5.0817765373419, 5.35239743682106, 4.04286814109814, 
## 4.68445475787559, 4.26107290477726, 4.26955375498823, 4.72741395924518, 
## 4.62402111104245, 3.9444800183149, 4.40360525003346, 3.50017120752803, 
## 4.19470624578159, 4.55154059307216, 4.89728655105185, 4.24316132001179, 
## 3.95422348371184, 4.59764951947146, 4.76825489106129, 4.76962741533791, 
## 4.29062114000629, 4.46747395638393, 4.35106785374955, 4.92127004033648, 
## 4.14163080129856, 5.05807160953597, 4.22683509877394, 4.43062526611781, 
## 3.74646945527153, 4.45421195165986, 4.16920652420897, 3.88911647055105, 
## 5.25706443832225, 3.87304201366326, 3.87102449594356, 4.84927432396436, 
## 3.83644251728315, 4.74064100771146, 4.36329684217773, 4.60793956404291, 
## 4.4698066128653, 3.89711029325023, 4.66089306552781, 4.62474954134985, 
## 4.56576539912967, 4.36004202368276, 4.53042200855463, 4.03537843777246, 
## 4.73508048403053, 4.7921634933305, 4.67662633771017, 4.63056906010227, 
## 4.55454233489475, 5.01184689693292, 4.07350375212876, 4.98306775683589, 
## 5.01805965188487, 4.81112363659015, 4.25852258139477, 4.28137504979732, 
## 4.56277773074029, 4.5006912691636, 4.75448703520705, 5.2383625553961, 
## 4.52207395926043, 5.22353090036469, 5.17559876883805, 4.35106785374955, 
## 5.13623697910506, 4.68516517856677, 5.30350877738352, 5.07207842375622, 
## 5.3659655010133, 5.59835498011832, 4.62256358846899, 5.36325756817213, 
## 5.12912215905078, 5.42589455648472, 4.89598350492003), smoothness_worst = c(-1.40183650096854, 
## -1.55220612193591, -1.46803241840246, -1.34354252185399, -1.46880785019902, 
## -1.39048277340616, -1.3733916940331, -1.3231236019111, -1.57721525174517, 
## -1.48685434191659, -1.64440052484827, -1.39154061904023, -1.38206798475272, 
## -1.46031914038324, -1.34420937914042, -1.46958403520788, -1.52091312537128, 
## -1.51595585913422, -1.48923877900503, -1.33888905569403, -1.42981400758559, 
## -1.43724005615725, -1.51021197356396, -1.54490367636292, -1.39649510187451, 
## -1.46725773804559, -1.67785425471799, -1.6941150453434, -1.40613457096515, 
## -1.30508782071433, -1.54833143908053, -1.44548787503347, -1.38171920194798, 
## -1.52715454306599, -1.34521064424351, -1.44888634599264, -1.61942689900374, 
## -1.59390494932646, -1.53428953643525, -1.48963688528217, -1.54747305858427, 
## -1.40112232198728, -1.49804385635261, -1.65226073987208, -1.53640067966101, 
## -1.39578550727826, -1.67097631500598, -1.32377475234327, -1.42870591413312, 
## -1.53008450627828, -1.45344000592858, -1.57188106834428, -1.41516143031734, 
## -1.48092447390449, -1.57944902805708, -1.4549636269214, -1.39578550727826, 
## -1.53050398030052, -1.42539062731438, -1.43314735095279, -1.4195297558875, 
## -1.48844316751003, -1.49442988431315, -1.48606112392627, -1.52340366783141, 
## -1.54747305858427, -1.52423562829466, -1.53555552814175, -1.60725220038208, 
## -1.5440491267089, -1.65970839141552, -1.50980330884167, -1.42759932289029, 
## -1.57321108034171, -1.5957317618608, -1.47308623661435, -1.47308623661435, 
## -1.41552457144521, -1.60354616102531, -1.42465571958716, -1.56045122596102, 
## -1.32019949774685, -1.57587816190535, -1.37408250358882, -1.37477388194629, 
## -1.45916852210433, -1.53134361222597, -1.71744592147873, -1.52590223262381, 
## -1.36617225167842, -1.44661911204314, -1.57810796637572, -1.31502542614399, 
## -1.32247294325797, -1.62749770507757, -1.42870591413312, -1.37581201847778, 
## -1.65028764768472, -1.58799851382772, -1.45763692373978, -1.65226073987208, 
## -1.49083240917807, -1.53640067966101, -1.47464772083503, -1.42944447588348, 
## -1.48725124924937, -1.55870797763166, -1.45993541772284, -1.53809377073995, 
## -1.57321108034171, -1.48092447390449, -1.49844643513038, -1.55393453399349, 
## -1.52008471650699, -1.52091312537128, -1.47582084584847, -1.49123131965263, 
## -1.6642143643724, -1.51925718980053, -1.67734248825545, -1.39898347234133, 
## -1.50898661988177, -1.4549636269214, -1.56132435202346, -1.72699126094039, 
## -1.53640067966101, -1.5816894624428, -1.50207895410352, -1.60308420688558, 
## -1.47036097520833, -1.46493818798572, -1.55653452068464, -1.64050222044834, 
## -1.5830369390616, -1.49483061874586, -1.49123131965263, -1.48487278500486, 
## -1.62559067609645, -1.58573917754001, -1.52548524538613, -1.47935063364482, 
## -1.76360044982201, -1.58573917754001, -1.45002235376791, -1.47974380144674, 
## -1.60447093386092, -1.55393453399349, -1.51636776051741, -1.50288846770294, 
## -1.61612925391863, -1.43426150312693, -1.69406265936793, -1.82475510742266, 
## -1.34554466088782, -1.61565936633134, -1.36173387206049, -1.72435994432552, 
## -1.42723079211313, -1.47386659627565, -1.4928289806949, -1.43314735095279, 
## -1.20942243559218, -1.47503857052102, -1.45002235376791, -1.47935063364482, 
## -1.60911220342376, -1.50572836428609, -1.55914341511068, -1.57855472125531, 
## -1.53428953643525, -1.5500510954301, -1.46185586833818, -1.48329110073087, 
## -1.68681869997878, -1.48210690487441, -1.49483061874586, -1.48289617228522, 
## -1.42723079211313, -1.53597798799109, -1.52715454306599, -1.59756306683032, 
## -1.55696871583034, -1.34822152100929, -1.70382130009779, -1.66300999675367, 
## -1.55870797763166, -1.44511114728777, -1.53134361222597, -1.62321385571701, 
## -1.49925221154687, -1.53513329980447, -1.64440052484827, -1.50654165744372, 
## -1.69511112194495, -1.46070304656148, -1.44097866837128, -1.54533130870895, 
## -1.44699654296734, -1.48963688528217, -1.56394977145742, -1.37097832354581, 
## -1.47895766029479, -1.44775193389517, -1.44210361946329, -1.5338680007895, 
## -1.35225267363822, -1.44511114728777, -1.59848041238222, -1.62179145524877, 
## -1.48487278500486, -1.56307362195144, -1.6602076580791, -1.54447628247046, 
## -1.5114392519592, -1.50207895410352, -1.53767014868934, -1.45916852210433, 
## -1.51967084302662, -1.50167451022945, -1.54319552829131, -1.5500510954301, 
## -1.63807637754432, -1.34654749739611, -1.6448892914313, -1.43985527553856, 
## -1.49925221154687, -1.66642765300822, -1.64391208808319, -1.60678792964066, 
## -1.68221925036159, -1.64881136280715, -1.60586026106885, -1.6635617469794, 
## -1.52049881052667, -1.4530595505586, -1.49764148352008, -1.52673688116944, 
## -1.58213835253834, -1.69805517741032, -1.59710481795407, -1.69108309352359, 
## -1.59436123275711, -1.44850803159816, -1.63807637754432, -1.50654165744372, 
## -1.48013716393439, -1.68588605530976, -1.60123926203061, -1.66970988531176, 
## -1.7134488980851, -1.65473472907519, -1.65721725562206, -1.57143825131019, 
## -1.61801181100177, -1.61237852008231, -1.4719171273346, -1.55957910209346, 
## -1.74733746712263, -1.48447706788501, -1.63614151870987, -1.42907511146058, 
## -1.41262392240711, -1.54447628247046, -1.49163043179358, -1.41334812638161, 
## -1.47152780472688, -1.53092368218281, -1.47582084584847, -1.55914341511068, 
## -1.4660971225983, -1.59481779571206, -1.48447706788501, -1.44097866837128, 
## -1.52840888279519, -1.55436724964736, -1.47817229601729, -1.56088766354308, 
## -1.46185586833818, -1.50127027462458, -1.53050398030052, -1.56001503892749, 
## -1.43500511941966, -1.52882744837297, -1.66481730933909, -1.42796802003095, 
## -1.43537718258408, -1.38837110473461, -1.72206575085892, -1.58981090884964, 
## -1.65523054910995, -1.51225851047311, -1.69905686874236, -1.5957317618608, 
## -1.52673688116944, -1.56307362195144, -1.5147214601588, -1.53513329980447, 
## -1.50005881482507, -1.52840888279519, -1.47935063364482, -1.60216116098467, 
## -1.42355459440915, -1.61191101750064, -1.55350206373273, -1.59436123275711, 
## -1.61051028430753, -1.53640067966101, -1.22152482402453, -1.40613457096515, 
## -1.61659944171252, -1.72561952965551, -1.47464772083503, -1.58393660330422, 
## -1.52091312537128, -1.64979521705898, -1.5466156397054, -1.46185586833818, 
## -1.44586477827542, -1.47269634305255, -1.68645585838021, -1.60493375343096, 
## -1.54962081859927, -1.31663899762533, -1.49563269960508, -1.69716013926355, 
## -1.63904574231491, -1.50005881482507, -1.56614458542139, -1.6933296655119, 
## -1.45344000592858, -1.55134338153222, -1.46455224894641, -1.49764148352008, 
## -1.620844718463, -1.62511469446343, -1.59208260255658, -1.47503857052102, 
## -1.43686713977629, -1.44022956699973, -1.52008471650699, -1.54747305858427, 
## -1.47935063364482, -1.59253777203273, -1.48606112392627, -1.60216116098467, 
## -1.52465194351403, -1.47777990462435, -1.46571062459338, -1.38661545837086, 
## -1.48923877900503, -1.40505795674331, -1.5626359263642, -1.57099569380803, 
## -1.60586026106885, -1.64586781621825, -1.48884087316261, -1.62749770507757, 
## -1.67310899881542, -1.54149117490669, -1.52132766132703, -1.48487278500486, 
## -1.55740315875384, -1.61942689900374, -1.49804385635261, -1.69045742134115, 
## -1.43612181989407, -1.56526589687447, -1.55783784979882, -1.58124084060449, 
## -1.48289617228522, -1.56088766354308, -1.60957793643666, -1.40973345879038, 
## -1.50248360650758, -1.50857859510293, -1.53344669542821, -1.5683457783542, 
## -1.50491591473139, -1.4900351922394, -1.56570511374899, -1.55393453399349, 
## -1.64244875130296, -1.6308470262566, -1.51266846242613, -1.51513270923389, 
## -1.58981090884964, -1.49442988431315, -1.56526589687447, -1.63132675755449, 
## -1.48804566180285, -1.43129381087306, -1.59481779571206, -1.44135347866954, 
## -1.52215739771971, -1.69139613830031, -1.60586026106885, -1.56176129175274, 
## -1.43426150312693, -1.53597798799109, -1.46031914038324, -1.34254321262109, 
## -1.56922805174919, -1.30732186646871, -1.27470462970427, -1.38766840258161, 
## -1.36343818040496, -1.62702048148246, -1.59618916589, -1.41916483956829, 
## -1.54876099075454, -1.4530595505586, -1.44964350687541, -1.46339554627544, 
## -1.45610823795418, -1.32410051225878, -1.50857859510293, -1.47542961211584, 
## -1.47777990462435, -1.39507651854449, -1.40112232198728, -1.52924624061376, 
## -1.48764835579712, -1.43873343573348, -1.50572836428609, -1.42796802003095, 
## -1.54106567708497, -1.49322890198397, -1.351243091246, -1.54447628247046, 
## -1.41117742285008, -1.50735579633476, -1.63324884496924, -1.62749770507757, 
## -1.56176129175274, -1.5321841580014, -1.46147141032506, -1.66220820932499, 
## -1.62037180769071, -1.55393453399349, -1.61284631918178, -1.55696871583034, 
## -1.49163043179358, -1.54064041483767, -1.62702048148246, -1.64979521705898, 
## -1.52673688116944, -1.70042993006451, -1.48250144041222, -1.48131842185686, 
## -1.59618916589, -1.39189353324403, -1.40183650096854, -1.55220612193591, 
## -1.46803241840246, -1.24682371794616, -1.34354252185399, -1.46880785019902, 
## -1.39048277340616, -1.3733916940331, -1.3231236019111, -1.57721525174517, 
## -1.59985855657163, -1.39154061904023, -1.38206798475272, -1.46031914038324, 
## -1.34420937914042, -1.44210361946329, -1.46958403520788, -1.52091312537128, 
## -1.51595585913422, -1.48923877900503, -1.48487278500486, -1.42981400758559, 
## -1.39649510187451, -1.39756063251601, -1.44323013407429, -1.46725773804559, 
## -1.42318788167546, -1.46725773804559, -1.67785425471799, -1.6941150453434, 
## -1.40613457096515, -1.61706993017923, -1.30508782071433, -1.43537718258408, 
## -1.44548787503347, -1.38171920194798, -1.44888634599264, -1.58573917754001, 
## -1.62131793415638, -1.61942689900374, -1.59390494932646, -1.53428953643525, 
## -1.48963688528217, -1.54747305858427, -1.49804385635261, -1.65226073987208, 
## -1.36309704347488, -1.53640067966101, -1.39578550727826, -1.39543093725709, 
## -1.67097631500598, -1.39259981106491, -1.42870591413312, -1.53008450627828, 
## -1.45344000592858, -1.57188106834428, -1.41516143031734, -1.48092447390449, 
## -1.57944902805708, -1.44661911204314, -1.46532431312868, -1.4549636269214, 
## -1.39578550727826, -1.53050398030052, -1.43314735095279, -1.4195297558875, 
## -1.48844316751003, -1.49442988431315, -1.48606112392627, -1.52340366783141, 
## -1.54747305858427, -1.52423562829466, -1.53555552814175, -1.60725220038208, 
## -1.5440491267089, -1.65970839141552, -1.50980330884167, -1.42759932289029, 
## -1.51925718980053, -1.47308623661435, -1.47308623661435, -1.54064041483767, 
## -1.41552457144521, -1.60354616102531, -1.56045122596102, -1.32019949774685, 
## -1.57587816190535, -1.37408250358882, -1.37477388194629, -1.45916852210433, 
## -1.53134361222597, -1.71744592147873, -1.52590223262381, -1.44661911204314, 
## -1.57810796637572, -1.31502542614399, -1.62749770507757, -1.42870591413312, 
## -1.37581201847778, -1.52049881052667, -1.65028764768472, -1.58799851382772, 
## -1.65226073987208, -1.49083240917807, -1.53640067966101, -1.47464772083503, 
## -1.42944447588348, -1.48725124924937, -1.55870797763166, -1.45993541772284, 
## -1.47777990462435, -1.53809377073995, -1.57321108034171, -1.48092447390449, 
## -1.52008471650699, -1.48013716393439, -1.62559067609645, -1.47582084584847, 
## -1.49123131965263, -1.6642143643724, -1.51925718980053, -1.67734248825545, 
## -1.52715454306599, -1.39898347234133, -1.52924624061376, -1.50898661988177, 
## -1.4549636269214, -1.56132435202346, -1.47817229601729, -1.53640067966101, 
## -1.5816894624428, -1.60308420688558, -1.46493818798572, -1.55653452068464, 
## -1.64050222044834, -1.47113867198634, -1.5830369390616, -1.49483061874586, 
## -1.56176129175274, -1.43500511941966, -1.56176129175274, -1.62559067609645, 
## -1.58573917754001, -1.52548524538613, -1.47935063364482, -1.76360044982201, 
## -1.58573917754001, -1.4572544797648, -1.45002235376791, -1.47974380144674, 
## -1.60447093386092, -1.52548524538613, -1.43873343573348, -1.55393453399349, 
## -1.51636776051741, -1.50288846770294, -1.61612925391863, -1.43426150312693, 
## -1.69406265936793, -1.82475510742266, -1.51925718980053, -1.61565936633134, 
## -1.36173387206049, -1.72435994432552, -1.51677987989553, -1.47386659627565, 
## -1.4928289806949, -1.43314735095279, -1.20942243559218, -1.47503857052102, 
## -1.45002235376791, -1.47935063364482, -1.60911220342376, -1.50572836428609, 
## -1.55914341511068, -1.57855472125531, -1.53428953643525, -1.59481779571206, 
## -1.5500510954301, -1.42465571958716, -1.46185586833818, -1.48329110073087, 
## -1.68681869997878, -1.48210690487441, -1.53597798799109, -1.52715454306599, 
## -1.50898661988177, -1.59756306683032, -1.55696871583034, -1.34822152100929, 
## -1.3733916940331, -1.66300999675367, -1.44511114728777, -1.53134361222597, 
## -1.55653452068464, -1.62321385571701, -1.49925221154687, -1.64440052484827, 
## -1.46070304656148, -1.44097866837128, -1.6137828087638, -1.54533130870895, 
## -1.44699654296734, -1.48963688528217, -1.56394977145742, -1.37097832354581, 
## -1.47895766029479, -1.44775193389517, -1.44210361946329, -1.5338680007895, 
## -1.35225267363822, -1.44511114728777, -1.31341485905556, -1.43835983334882, 
## -1.55134338153222, -1.59848041238222, -1.62179145524877, -1.42502309090337, 
## -1.48487278500486, -1.6602076580791, -1.54447628247046, -1.5114392519592, 
## -1.73845567122268, -1.50207895410352, -1.51967084302662, -1.50167451022945, 
## -1.54319552829131, -1.5500510954301, -1.57543299233561, -1.34654749739611, 
## -1.6448892914313, -1.43985527553856, -1.66642765300822, -1.64391208808319, 
## -1.60678792964066, -1.68221925036159, -1.64881136280715, -1.60586026106885, 
## -1.6635617469794, -1.52049881052667, -1.49764148352008, -1.52673688116944, 
## -1.69805517741032, -1.59710481795407, -1.69108309352359, -1.59436123275711, 
## -1.44850803159816, -1.63807637754432, -1.50654165744372, -1.48013716393439, 
## -1.59390494932646, -1.68588605530976, -1.60123926203061, -1.66970988531176, 
## -1.7134488980851, -1.55870797763166, -1.65721725562206, -1.57143825131019, 
## -1.61801181100177, -1.50654165744372, -1.61237852008231, -1.66220820932499, 
## -1.4719171273346, -1.55957910209346, -1.74733746712263, -1.42907511146058, 
## -1.41262392240711, -1.54447628247046, -1.49163043179358, -1.5338680007895, 
## -1.41334812638161, -1.47503857052102, -1.47152780472688, -1.53092368218281, 
## -1.58393660330422, -1.44737415018464, -1.48447706788501, -1.44097866837128, 
## -1.52840888279519, -1.55436724964736, -1.47817229601729, -1.56088766354308, 
## -1.46185586833818, -1.50127027462458, -1.56001503892749, -1.43500511941966, 
## -1.42796802003095, -1.43537718258408, -1.38837110473461, -1.72206575085892, 
## -1.61612925391863, -1.50817078309823, -1.58981090884964, -1.65523054910995, 
## -1.51225851047311, -1.5957317618608, -1.52673688116944, -1.51021197356396, 
## -1.56307362195144, -1.5147214601588, -1.53513329980447, -1.49804385635261, 
## -1.50005881482507, -1.52840888279519, -1.60216116098467, -1.57232414528024, 
## -1.42355459440915, -1.61191101750064, -1.59436123275711, -1.22152482402453, 
## -1.40613457096515, -1.72561952965551, -1.47464772083503, -1.58393660330422, 
## -1.52091312537128, -1.64979521705898, -1.7431069913647, -1.61331441525618, 
## -1.5466156397054, -1.50817078309823, -1.3810220723387, -1.44586477827542, 
## -1.47269634305255, -1.63036761017151, -1.68645585838021, -1.60493375343096, 
## -1.31663899762533, -1.49563269960508, -1.69716013926355, -1.58124084060449, 
## -1.63904574231491, -1.50005881482507, -1.56614458542139, -1.6933296655119, 
## -1.45344000592858, -1.46455224894641, -1.49764148352008, -1.620844718463, 
## -1.62511469446343, -1.59208260255658, -1.43686713977629, -1.44022956699973, 
## -1.52008471650699, -1.53344669542821, -1.54747305858427, -1.47935063364482, 
## -1.59253777203273, -1.48606112392627, -1.60216116098467, -1.52465194351403, 
## -1.47777990462435, -1.46571062459338, -1.38661545837086, -1.48923877900503, 
## -1.56088766354308, -1.60586026106885, -1.48884087316261, -1.47113867198634, 
## -1.62749770507757, -1.67310899881542, -1.54149117490669, -1.48487278500486, 
## -1.55740315875384, -1.61942689900374, -1.49804385635261, -1.69045742134115, 
## -1.56526589687447, -1.50654165744372, -1.55783784979882, -1.58124084060449, 
## -1.48289617228522, -1.56088766354308, -1.60957793643666, -1.40973345879038, 
## -1.50248360650758, -1.65423925053115, -1.53344669542821, -1.5683457783542, 
## -1.50491591473139, -1.4900351922394, -1.56570511374899, -1.34721671179882, 
## -1.55393453399349, -1.64244875130296, -1.69228385560889, -1.51513270923389, 
## -1.58981090884964, -1.69427222671242, -1.50451000564169, -1.56526589687447, 
## -1.63132675755449, -1.48804566180285, -1.56922805174919, -1.43129381087306, 
## -1.57989658074747, -1.59481779571206, -1.44135347866954, -1.43686713977629, 
## -1.66965927489485, -1.52215739771971, -1.60586026106885, -1.56176129175274, 
## -1.43426150312693, -1.53597798799109, -1.48053072134206, -1.46031914038324, 
## -1.59802159816531, -1.34254321262109, -1.41697874282747, -1.56922805174919, 
## -1.30732186646871, -1.48447706788501, -1.38766840258161, -1.50369881751537, 
## -1.36343818040496, -1.62702048148246, -1.59618916589, -1.41916483956829, 
## -1.55870797763166, -1.54876099075454, -1.4530595505586, -1.44964350687541, 
## -1.46339554627544, -1.32410051225878, -1.50857859510293, -1.61051028430753, 
## -1.47542961211584, -1.47777990462435, -1.40112232198728, -1.52924624061376, 
## -1.50572836428609, -1.42796802003095, -1.61565936633134, -1.47425706282928, 
## -1.53936603838066, -1.351243091246, -1.50735579633476, -1.50939485770457, 
## -1.63324884496924, -1.56176129175274, -1.5321841580014, -1.46147141032506, 
## -1.56922805174919, -1.66220820932499, -1.62037180769071, -1.55393453399349, 
## -1.61284631918178, -1.55696871583034, -1.49163043179358, -1.54064041483767, 
## -1.62702048148246, -1.64979521705898, -1.52673688116944, -1.55091237656436, 
## -1.70042993006451, -1.47856488116327, -1.48131842185686, -1.58393660330422, 
## -1.59618916589, -1.39189353324403, -1.71490460342403), symmetry_worst = c(-0.948518649356509, 
## -1.81385035698237, -1.32733106607223, -1.1682236591391, -1.61373662475265, 
## -1.53774568838613, -1.02267961437611, -1.02683069843001, -1.68354734341879, 
## -1.24784901230815, -1.54886720493838, -1.33518672982535, -1.07947517897193, 
## -1.6339618107143, -1.28531705455465, -1.6655620734172, -1.54440602504168, 
## -2.04061017820884, -0.927595663724632, -1.32733106607223, -1.13650734223903, 
## -1.06281945915844, -2.13360799774556, -1.8096965887973, -0.898550724637681, 
## -1.0606668389142, -2.48674163825318, -3.05560139165559, -1.77492901430698, 
## -1.67359179185323, -0.926655171438096, -1.29109441738175, -1.24485540536667, 
## -1.58921268038777, -1.20256307610174, -1.81593234259298, -2.12920069507667, 
## -1.78980963790557, -1.63877023069482, -1.86694595618265, -1.47839238026982, 
## -1.36288848203546, -1.28886874970487, -2.04971159487191, -1.35342087180173, 
## -1.66864419123526, -1.49108728516819, -1.43857892266411, -1.7280746576794, 
## -2.08248290463863, -1.07583125960433, -1.9598138139316, -1.47471570930472, 
## -1.93064634475351, -1.90881552497052, -1.26555094594136, -0.711630722733202, 
## -1.79389862629642, -1.80555636306181, -1.3676524573408, -2.12130294982622, 
## -2.16035148134034, -1.44061358492657, -1.29020360821199, -1.63937262623419, 
## -1.17981500374447, -1.66864419123526, -1.56291772787971, -1.98251531466764, 
## -1.95593886064618, -2.44225128149598, -1.86477939744156, -1.75690378382672, 
## -1.29287820852485, -2.23808718958129, -1.79868588198793, -1.83623558432291, 
## -1.69358427576559, -1.85328560426458, -1.90583283432253, -1.76221765322067, 
## -1.56518133530493, -1.6618737658522, -1.14075866336532, -1.76022231091473, 
## -1.97385851785602, -2.23903903399297, -2.08418500306765, -2.09701896683472, 
## -1.69736933323268, -2.05054204942691, -2.92067831305123, -1.34029955479447, 
## -1.49534990859376, -0.862405173218095, -1.64178520364615, -1.52344281721127, 
## -2.41941738241592, -2.11345034894864, -1.39519918732522, -1.75227257197787, 
## -1.9298874594593, -1.47891857229768, -1.39568851487512, -1.75491687996779, 
## -1.39031751810405, -1.8327118988321, -1.5869030194791, -2.83368244522832, 
## -1.8662233651353, -1.42293173005074, -2.36228102239682, -1.58921268038777, 
## -1.78505582052232, -1.35719831132296, -1.82989993080951, -0.632034671494683, 
## -1.74502943136569, -1.85543287977493, -2.12568498503517, -1.47000564743879, 
## -1.74044194062115, -1.22371054699841, -1.58459781164493, -1.97857340009713, 
## -1.98884682155025, -1.82219881722458, -1.55334527259351, -2.04639487720259, 
## -1.31360250635687, -2.19960525565808, -1.3384376262469, -1.8880789567987, 
## -1.77291338952272, -2.30331482911935, -1.761552186221, -1.72419461361929, 
## -1.84189375197649, -1.92837100659193, -1.91180505926984, -1.61905746683644, 
## -2.17482860723433, -2.73646490874199, -1.12423733983001, -1.41145957686351, 
## -2.69970686492617, -1.53222399672915, -1.9436150336255, -1.53553390593274, 
## -2.0144782295185, -0.782612903765608, -2.28451216777744, -2.57748607123174, 
## -1.52727651691069, -1.63696483726654, -1.60374985078224, -2.10910714179416, 
## -0.900989043238912, -1.87201546331183, -1.69610635477286, -1.5366392784487, 
## -1.00420884063055, -1.6429932929823, -1.42243053204966, -1.65819656951131, 
## -1.49481622664415, -1.11286403182345, -2.152273992687, -1.70815718395649, 
## -1.97229061149479, -2.99531908151406, -1.31953065154646, -1.4314859277946, 
## -1.73456843486636, -1.83976900644465, -1.61255739919515, -1.6184651012597, 
## -1.1650482901036, -1.99520862275621, -1.61432667073989, -1.6798045339746, 
## -1.76221765322067, -1.42644629234223, -1.74700067253984, -1.70688312201064, 
## -2.05137301508329, -1.80900561271674, -2.23903903399297, -2.60043706228236, 
## -1.74437304201154, -1.97621386243772, -1.71326660034339, -1.4773407121036, 
## -1.87564877129273, -1.70116605098803, -1.72484044638468, -1.89323214521904, 
## -1.42544102716222, -1.87492129146064, -1.57713646794481, -1.81454397349388, 
## -1.57029026747251, -1.44061358492657, -1.61079072337059, -1.76755413484372, 
## -1.50392220818424, -1.49374959569404, -1.61137932729061, -1.86117654460525, 
## -1.73456843486636, -1.68855556781659, -2.04391267992747, -1.33148302326385, 
## -1.91855666953546, -1.82569355949001, -1.75756678635263, -1.75227257197787, 
## -1.99680383488716, -2.24476359978009, -1.80831501247306, -1.94745384990834, 
## -2.13891543583711, -1.50392220818424, -1.59152680872644, -1.33797263040563, 
## -1.80005700128253, -2.47325440842584, -1.99600599001747, -2.0282974725538, 
## -2.16215288929717, -1.67918184092775, -1.49909254054319, -2.19590679148344, 
## -1.67483182287313, -1.44010458076891, -1.59152680872644, -2.10910714179416, 
## -1.76421617535536, -2.32034978967903, -2.49693750413288, -1.8954469356581, 
## -2.23808718958129, -1.67111549107176, -1.85973822213232, -1.48472248992878, 
## -2.25147166248137, -1.51147493610312, -1.88441061089581, -1.65697329692419, 
## -2.20053140083543, -2.35710200950299, -1.97621386243772, -1.94976252766682, 
## -1.43502693286363, -2.56792473218354, -1.77157143202357, -1.57199813184547, 
## -2.58710770259687, -1.91630224993979, -1.6184651012597, -2.09787887217882, 
## -0.682691445788528, -1.87710496100081, -1.8575837490523, -1.59036918522861, 
## -1.63997532105098, -1.33518672982535, -1.48578087187875, -1.95748747642702, 
## -1.9050882279228, -2.05553552826906, -1.71775470803394, -1.9276134381717, 
## -1.61965012343041, -1.66248771065756, -1.48102573092353, -1.14463853966039, 
## -1.80349130564482, -2.05386898390929, -1.72677996249965, -1.5869030194791, 
## -1.74568616603648, -1.57828133482257, -1.8270941429378, -1.06966617277021, 
## -1.29243198883197, -1.88221458097702, -1.9405520311955, -2.11519149203145, 
## -2.05386898390929, -2.0373157543605, -2.23238955690485, -1.89470825224657, 
## -1.81801774160606, -1.8201065633589, -1.91555164097267, -1.49695242258118, 
## -1.992023920279, -1.8201065633589, -0.879561418604534, -2.01044073656347, 
## -1.85686639270039, -1.46948348873484, -1.56178753983291, -1.92458754139111, 
## -1.85328560426458, -1.43654786582851, -1.10310698975869, -1.45908956637123, 
## -1.53442956921802, -2.27276302636913, -1.7668858325529, -1.82359556450936, 
## -2.01852794126098, -1.86550117901428, -1.9405520311955, -2.04473957139505, 
## -1.23254091917618, -1.62202366475002, -2.48561304016257, -1.9298874594593, 
## -1.79389862629642, -1.51093383510043, -2.03238919272756, -1.53167324846093, 
## -2.17210263331832, -2.21543355460736, -1.79458141198112, -2.00963469882313, 
## -1.61550763031094, -1.40256139153357, -1.66802714570214, -1.65270148685892, 
## -2.10304969931109, -1.55615268811606, -1.51744360676264, -1.60667853866973, 
## -1.73196685431038, -1.64965934300906, -1.79663198301, -1.63036797913392, 
## -1.78844957698328, -1.81801774160606, -1.53774568838613, -2.12656307060115, 
## -1.67297224689699, -1.73587126708281, -1.95593886064618, -1.63216356146074, 
## -1.64723109301103, -1.54719228915016, -1.47471570930472, -1.83130514088461, 
## -1.98964038503598, -2.32742322407915, -1.96837895066273, -2.63863607042713, 
## -1.84971477076266, -1.75161236742064, -1.92307721324537, -1.66864419123526, 
## -1.33333333333333, -2.02340381113284, -2.19960525565808, -2.16576273636713, 
## -2.17664889448334, -2.04308629539244, -1.49748708391334, -2.2678959977632, 
## -1.72419461361929, -2.16485939411725, -2.15137939524202, -1.64541308288245, 
## -1.89175771526834, -1.53002254809104, -2.23049544646902, -1.74963384269795, 
## -1.95053298754495, -1.61728124220584, -2.16938199225083, -1.54998513446837, 
## -2.07908508224002, -1.8575837490523, -1.93673329589478, -1.64783770109722, 
## -1.97307433264506, -1.47209664229407, -2.07738934943665, -2.12042821715165, 
## -1.52071210083019, -1.9551652341871, -2.03649340670876, -1.49962818425708, 
## -1.50769247373693, -2.18853908291695, -1.8583015058264, -2.10910714179416, 
## -1.51907671538893, -1.63036797913392, -2.01609664451249, -1.30997016489089, 
## -1.70879470776142, -1.6285750571483, -1.74765844497931, -1.79321620905441, 
## -1.64359778867931, -1.9193090083481, -2.13980199800554, -1.34029955479447, 
## -2.18670321209332, -1.61550763031094, -1.60726513354043, -1.93597088022076, 
## -1.60902663692541, -1.29645450956099, -1.55953038653916, -1.74700067253984, 
## -1.99840095936045, -1.6618737658522, -1.37195739086684, -1.58632630060416, 
## -2.30331482911935, -1.79253415992383, -2.01771701845154, -1.53222399672915, 
## -1.77560160745518, -1.8504281432826, -1.77762154604325, -1.61668974825337, 
## -1.78641222831377, -2.14424337037824, -1.83341585914639, -2.02177654966643, 
## -1.89102112820481, -1.86261647624009, -1.85543287977493, -2.03402937550546, 
## -1.55278458694543, -2.07654227570788, -2.05303648179888, -2.10650781176591, 
## -2.23903903399297, -2.2051713353118, -2.02015126103685, -2.20889437396518, 
## -2.35194139889245, -3.05398695719269, -1.69547535069575, -2.40652649239232, 
## -2.24667694835586, -1.12843889570337, -0.948518649356509, -1.81385035698237, 
## -1.32733106607223, -0.45477319096941, -1.1682236591391, -1.61373662475265, 
## -1.53774568838613, -1.02267961437611, -1.02683069843001, -1.68354734341879, 
## -1.77358490566038, -1.33518672982535, -1.07947517897193, -1.6339618107143, 
## -1.28531705455465, -1.80142960634853, -1.6655620734172, -1.54440602504168, 
## -2.04061017820884, -0.927595663724632, -1.76488305748928, -1.13650734223903, 
## -0.898550724637681, -1.36622113937971, -1.30049180992225, -1.0606668389142, 
## -0.867991506742528, -1.33750782881173, -2.48674163825318, -3.05560139165559, 
## -1.77492901430698, -1.6551406867881, -1.67359179185323, -1.27078700106134, 
## -1.29109441738175, -1.24485540536667, -1.81593234259298, -1.7326167397057, 
## -2.05470199922352, -2.12920069507667, -1.78980963790557, -1.63877023069482, 
## -1.86694595618265, -1.47839238026982, -1.28886874970487, -2.04971159487191, 
## -1.52453688425121, -1.35342087180173, -1.66864419123526, -1.75029300308675, 
## -1.49108728516819, -1.47052804196902, -1.7280746576794, -2.08248290463863, 
## -1.07583125960433, -1.9598138139316, -1.47471570930472, -1.93064634475351, 
## -1.90881552497052, -1.88514344942906, -1.84189375197649, -1.26555094594136, 
## -0.711630722733202, -1.79389862629642, -1.3676524573408, -2.12130294982622, 
## -2.16035148134034, -1.44061358492657, -1.29020360821199, -1.63937262623419, 
## -1.17981500374447, -1.66864419123526, -1.56291772787971, -1.98251531466764, 
## -1.95593886064618, -2.44225128149598, -1.86477939744156, -1.75690378382672, 
## -2.54780422488025, -1.79868588198793, -1.83623558432291, -1.88441061089581, 
## -1.69358427576559, -1.85328560426458, -1.76221765322067, -1.56518133530493, 
## -1.6618737658522, -1.14075866336532, -1.76022231091473, -1.97385851785602, 
## -2.23903903399297, -2.08418500306765, -2.09701896683472, -2.05054204942691, 
## -2.92067831305123, -1.34029955479447, -0.862405173218095, -1.64178520364615, 
## -1.52344281721127, -1.72097048123965, -2.41941738241592, -2.11345034894864, 
## -1.75227257197787, -1.9298874594593, -1.47891857229768, -1.39568851487512, 
## -1.75491687996779, -1.39031751810405, -1.8327118988321, -1.5869030194791, 
## -1.76022231091473, -2.83368244522832, -1.8662233651353, -1.42293173005074, 
## -1.78505582052232, -1.93444737682317, -2.1702882811415, -1.82989993080951, 
## -0.632034671494683, -1.74502943136569, -1.85543287977493, -2.12568498503517, 
## -1.53774568838613, -1.47000564743879, -1.58748001667088, -1.74044194062115, 
## -1.22371054699841, -1.58459781164493, -2.02993266542511, -1.98884682155025, 
## -1.82219881722458, -2.04639487720259, -2.19960525565808, -1.3384376262469, 
## -1.8880789567987, -2.37478639259807, -1.77291338952272, -2.30331482911935, 
## -2.07908508224002, -1.52672807929299, -2.58590167978055, -1.84189375197649, 
## -1.92837100659193, -1.91180505926984, -1.61905746683644, -2.17482860723433, 
## -2.73646490874199, -1.7424059428256, -1.12423733983001, -1.41145957686351, 
## -2.69970686492617, -1.54942603766446, -1.69295456230508, -1.53222399672915, 
## -1.9436150336255, -1.53553390593274, -2.0144782295185, -0.782612903765608, 
## -2.28451216777744, -2.57748607123174, -1.65148371670111, -1.63696483726654, 
## -1.60374985078224, -2.10910714179416, -1.53940725201044, -1.87201546331183, 
## -1.69610635477286, -1.5366392784487, -1.00420884063055, -1.6429932929823, 
## -1.42243053204966, -1.65819656951131, -1.49481622664415, -1.11286403182345, 
## -2.152273992687, -1.70815718395649, -1.97229061149479, -2.92664639082147, 
## -2.99531908151406, -0.909879809896627, -1.31953065154646, -1.4314859277946, 
## -1.73456843486636, -1.83976900644465, -1.99520862275621, -1.61432667073989, 
## -1.91105703267169, -1.6798045339746, -1.76221765322067, -1.42644629234223, 
## -1.5869030194791, -1.70688312201064, -1.80900561271674, -2.23903903399297, 
## -2.22765904290076, -2.60043706228236, -1.74437304201154, -1.71326660034339, 
## -1.70116605098803, -1.72484044638468, -1.80211646688469, -1.89323214521904, 
## -1.42544102716222, -1.87492129146064, -1.57713646794481, -1.81454397349388, 
## -1.57029026747251, -1.44061358492657, -1.61079072337059, -1.76755413484372, 
## -1.50392220818424, -1.49374959569404, -1.37483653531413, -1.56291772787971, 
## -2.0389619586101, -1.61137932729061, -1.86117654460525, -1.52672807929299, 
## -1.73456843486636, -2.04391267992747, -1.33148302326385, -1.91855666953546, 
## -2.03402937550546, -1.82569355949001, -1.99680383488716, -2.24476359978009, 
## -1.80831501247306, -1.94745384990834, -1.67918184092775, -1.50392220818424, 
## -1.59152680872644, -1.33797263040563, -2.47325440842584, -1.99600599001747, 
## -2.0282974725538, -2.16215288929717, -1.67918184092775, -1.49909254054319, 
## -2.19590679148344, -1.67483182287313, -1.59152680872644, -2.10910714179416, 
## -2.32034978967903, -2.49693750413288, -1.8954469356581, -2.23808718958129, 
## -1.67111549107176, -1.85973822213232, -1.48472248992878, -2.25147166248137, 
## -2.25628265379374, -1.51147493610312, -1.88441061089581, -1.65697329692419, 
## -2.20053140083543, -1.38691285149289, -1.97621386243772, -1.94976252766682, 
## -1.43502693286363, -1.56801692100357, -2.56792473218354, -2.17664889448334, 
## -1.77157143202357, -1.57199813184547, -2.58710770259687, -2.09787887217882, 
## -0.682691445788528, -1.87710496100081, -1.8575837490523, -2.36435780471985, 
## -1.59036918522861, -1.82359556450936, -1.63997532105098, -1.33518672982535, 
## -1.76956117794169, -1.29735040698467, -1.71775470803394, -1.9276134381717, 
## -1.61965012343041, -1.66248771065756, -1.48102573092353, -1.14463853966039, 
## -1.80349130564482, -2.05386898390929, -1.5869030194791, -1.74568616603648, 
## -1.06966617277021, -1.29243198883197, -1.88221458097702, -1.9405520311955, 
## -2.34269832707947, -1.58459781164493, -2.11519149203145, -2.05386898390929, 
## -2.0373157543605, -1.89470825224657, -1.81801774160606, -2.08759559656644, 
## -1.8201065633589, -1.91555164097267, -1.49695242258118, -1.52563197108336, 
## -1.992023920279, -1.8201065633589, -2.01044073656347, -1.82779501175476, 
## -1.85686639270039, -1.46948348873484, -1.92458754139111, -1.10310698975869, 
## -1.45908956637123, -2.27276302636913, -1.7668858325529, -1.82359556450936, 
## -2.01852794126098, -1.86550117901428, -1.9668175187901, -2.30630635873273, 
## -1.9405520311955, -1.69043892539032, -1.5427374148158, -1.23254091917618, 
## -1.62202366475002, -1.98172599441121, -2.48561304016257, -1.9298874594593, 
## -1.51093383510043, -2.03238919272756, -1.53167324846093, -1.48313672307081, 
## -2.17210263331832, -2.21543355460736, -1.79458141198112, -2.00963469882313, 
## -1.61550763031094, -1.66802714570214, -1.65270148685892, -2.10304969931109, 
## -1.55615268811606, -1.51744360676264, -1.73196685431038, -1.64965934300906, 
## -1.79663198301, -1.66617787553383, -1.63036797913392, -1.78844957698328, 
## -1.81801774160606, -1.53774568838613, -2.12656307060115, -1.67297224689699, 
## -1.73587126708281, -1.95593886064618, -1.63216356146074, -1.64723109301103, 
## -1.98014876083996, -1.98964038503598, -1.96837895066273, -2, 
## -2.63863607042713, -1.84971477076266, -1.75161236742064, -1.66864419123526, 
## -1.33333333333333, -2.02340381113284, -2.19960525565808, -2.16576273636713, 
## -2.04308629539244, -1.91780476380667, -1.49748708391334, -2.2678959977632, 
## -1.72419461361929, -2.16485939411725, -2.15137939524202, -1.64541308288245, 
## -1.89175771526834, -2.130081027822, -2.23049544646902, -1.74963384269795, 
## -1.95053298754495, -1.61728124220584, -2.16938199225083, -1.87783367164741, 
## -1.54998513446837, -2.07908508224002, -2.07484971085364, -1.64783770109722, 
## -1.97307433264506, -1.86405802003958, -1.68792842242945, -2.07738934943665, 
## -2.12042821715165, -1.52071210083019, -1.98567729636041, -1.9551652341871, 
## -1.5185320931284, -2.03649340670876, -1.49962818425708, -1.77694787300249, 
## -2.73646490874199, -1.50769247373693, -1.8583015058264, -2.10910714179416, 
## -1.51907671538893, -1.63036797913392, -1.992023920279, -2.01609664451249, 
## -2.28647979689047, -1.30997016489089, -1.56065842662025, -1.70879470776142, 
## -1.6285750571483, -1.8426027846949, -1.79321620905441, -2.1702882811415, 
## -1.64359778867931, -1.9193090083481, -2.13980199800554, -1.34029955479447, 
## -1.90285696125482, -2.18670321209332, -1.61550763031094, -1.60726513354043, 
## -1.93597088022076, -1.29645450956099, -1.55953038653916, -1.9551652341871, 
## -1.74700067253984, -1.99840095936045, -1.37195739086684, -1.58632630060416, 
## -2.01771701845154, -1.53222399672915, -1.52453688425121, -2.18029662347075, 
## -1.60550620691808, -1.77762154604325, -2.14424337037824, -1.5427374148158, 
## -1.83341585914639, -1.89102112820481, -1.86261647624009, -1.85543287977493, 
## -1.95903791232448, -2.03402937550546, -1.55278458694543, -2.07654227570788, 
## -2.05303648179888, -2.10650781176591, -2.23903903399297, -2.2051713353118, 
## -2.02015126103685, -2.20889437396518, -2.35194139889245, -2.21637021355784, 
## -3.05398695719269, -1.12767371557802, -2.40652649239232, -1.9436150336255, 
## -2.24667694835586, -1.12843889570337, -1.7326167397057), .outcome = c(2L, 
## 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 
## 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
## 1L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 
## 1L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 
## 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
## 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 
## 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 
## 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 
## 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 
## 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 
## 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 
## 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
## 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
## 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 
## 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
## 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
## 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 
## 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 
## 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 
## 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
## 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 
## 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
## 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
## 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
## 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 
## 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 
## 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 
## 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 
## 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 
## 2L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 1L, 
## 1L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 
## 1L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 
## 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 
## 2L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 
## 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 
## 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
## 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 
## 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 
## 2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 
## 2L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
## 2L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
## 2L, 1L, 2L, 2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
## 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 
## 2L, 1L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
## 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 1L)), 
##     mfinal = 100, coeflearn = "Breiman", control = list(minsplit = 0, 
##         minbucket = 0, cp = -1, maxcompete = 4L, maxsurrogate = 5L, 
##         usesurrogate = 2L, surrogatestyle = 0L, maxdepth = 6, 
##         xval = 0))
## 
## $xNames
## [1] "texture_mean"     "smoothness_mean"  "compactness_se"   "texture_worst"   
## [5] "smoothness_worst" "symmetry_worst"  
## 
## $problemType
## [1] "Classification"
## 
## $tuneValue
##   mfinal maxdepth coeflearn
## 6    100        6   Breiman
## 
## $obsLevels
## [1] "B" "M"
## attr(,"ordered")
## [1] FALSE
## 
## $param
## list()
## 
## attr(,"vardep.summary")
##   B   M 
## 572 340 
## attr(,"class")
## [1] "boosting"
MBS_AB_Tune$results
##   coeflearn maxdepth mfinal       ROC      Sens      Spec      ROCSD     SensSD
## 1   Breiman        4     50 0.9539212 0.9454523 0.8682353 0.02278794 0.02792403
## 3   Breiman        5     50 0.9624131 0.9531137 0.9011765 0.01779028 0.02435207
## 5   Breiman        6     50 0.9666688 0.9496323 0.8982353 0.01854771 0.02567639
## 2   Breiman        4    100 0.9600671 0.9506972 0.9017647 0.02131985 0.02653148
## 4   Breiman        5    100 0.9671294 0.9506636 0.9000000 0.01843939 0.02577619
## 6   Breiman        6    100 0.9710985 0.9527750 0.8964706 0.01750303 0.02587865
##       SpecSD
## 1 0.04502338
## 3 0.03737725
## 5 0.04744784
## 2 0.04281576
## 4 0.03422608
## 6 0.04561985
(MBS_AB_Train_AUROC <- MBS_AB_Tune$results[MBS_AB_Tune$results$mfinal==MBS_AB_Tune$bestTune$mfinal &
                                           MBS_AB_Tune$results$maxdepth==MBS_AB_Tune$bestTune$maxdepth &
                                           MBS_AB_Tune$results$coeflearn==MBS_AB_Tune$bestTune$coeflearn,
                                           c("ROC")])
## [1] 0.9710985
##################################
# Identifying and plotting the
# best model predictors
##################################
MBS_AB_VarImp <- varImp(MBS_AB_Tune, scale = TRUE)
plot(MBS_AB_VarImp,
     top=6,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Adaptive Boosting",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
MBS_AB_Test <- data.frame(MBS_AB_Test_Observed = MA_Test$diagnosis,
                          MBS_AB_Test_Predicted = predict(MBS_AB_Tune,
                                                          MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                          type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
MBS_AB_Test_ROC <- roc(response = MBS_AB_Test$MBS_AB_Test_Observed,
                       predictor = MBS_AB_Test$MBS_AB_Test_Predicted.M,
                       levels = rev(levels(MBS_AB_Test$MBS_AB_Test_Observed)))

(MBS_AB_Test_AUROC <- auc(MBS_AB_Test_ROC)[1])
## [1] 0.9956405

1.5.2 Stochastic Gradient Boosting (MBS_GBM)


Stochastic Gradient Boosting works on the principle of the stage-wise addition method but the statistical framework cast boosting as a numerical optimization problem where the objective is to minimize the loss of the model by adding weak learners using a gradient descent-like procedure. An initial learner is developed based on the overall mean or the log-odds of the target variable. For each boosting iteration, a subset of the training data will be sampled with replacement and pseudo-residuals are calculated. A new base learner is fitted to the subsampled data using the pseudo-residuals as the target variable. Gradient descent optimization is applied to minimize the loss function (mean squared error or cross-entropy). Predicted values are obtained and the ensemble prediction is updated for all training samples. The process is repeated for a defined number of cycles with the final ensemble prediction determined as the sum of the individual predictions from all boosting iterations.

[A] The stochastic gradient boosting model was implemented through the gbm package.

[B] The model contains 1 hyperparameter:
     [B.1] n.trees = total number of trees to fit (equivalent to the number of iterations and the number of basis functions in the additive expansion) held constant at a value equal to 500
     [B.2] interaction.depth = maximum depth of each tree (equivalent to the highest level of variable interactions allowed) made to vary across a range of values equal to 4 to 6
     [B.3] shrinkage = learning rate or step-size reduction applied to each tree in the expansion made to vary across a range of values equal to 0.001 to 0.1
     [B.4] n.minobsinnode = minimum number of observations in the terminal nodes of the trees made to vary across a range of values equal to 5 to 15

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves n.trees=500, interaction.depth=5, shrinkage=0.1 and n.minobsinnode=5
     [C.2] AUROC = 0.96473

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] symmetry_worst (numeric)
     [D.2] texture_worst (numeric)
     [D.3] texture_mean (numeric)
     [D.4] smoothness_worst (numeric)
     [D.5] smoothness_mean (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.98306

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
GBM_Grid = expand.grid(n.trees = 500,
                      interaction.depth = c(4,5,6),
                      shrinkage = c(0.1,0.01,0.001),
                      n.minobsinnode = c(5, 10, 15))

##################################
# Running the stochastic gradient boosting model
# by setting the caret method to 'gbm'
##################################
set.seed(12345678)
MBS_GBM_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                 y = MA_Train$diagnosis,
                 method = "gbm",
                 tuneGrid = GBM_Grid,
                 metric = "ROC",
                 trControl = RKFold_Control)
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3144             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3043             nan     0.0010    0.0004
##     40        1.2881             nan     0.0010    0.0003
##     60        1.2723             nan     0.0010    0.0003
##     80        1.2570             nan     0.0010    0.0004
##    100        1.2426             nan     0.0010    0.0003
##    120        1.2286             nan     0.0010    0.0003
##    140        1.2148             nan     0.0010    0.0003
##    160        1.2015             nan     0.0010    0.0003
##    180        1.1885             nan     0.0010    0.0003
##    200        1.1760             nan     0.0010    0.0002
##    220        1.1635             nan     0.0010    0.0003
##    240        1.1518             nan     0.0010    0.0002
##    260        1.1404             nan     0.0010    0.0002
##    280        1.1296             nan     0.0010    0.0002
##    300        1.1187             nan     0.0010    0.0003
##    320        1.1085             nan     0.0010    0.0002
##    340        1.0984             nan     0.0010    0.0003
##    360        1.0884             nan     0.0010    0.0002
##    380        1.0787             nan     0.0010    0.0002
##    400        1.0691             nan     0.0010    0.0002
##    420        1.0600             nan     0.0010    0.0002
##    440        1.0514             nan     0.0010    0.0002
##    460        1.0430             nan     0.0010    0.0002
##    480        1.0347             nan     0.0010    0.0002
##    500        1.0265             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0003
##     20        1.3044             nan     0.0010    0.0004
##     40        1.2883             nan     0.0010    0.0004
##     60        1.2725             nan     0.0010    0.0003
##     80        1.2574             nan     0.0010    0.0003
##    100        1.2426             nan     0.0010    0.0003
##    120        1.2288             nan     0.0010    0.0004
##    140        1.2151             nan     0.0010    0.0003
##    160        1.2019             nan     0.0010    0.0003
##    180        1.1892             nan     0.0010    0.0003
##    200        1.1769             nan     0.0010    0.0003
##    220        1.1648             nan     0.0010    0.0003
##    240        1.1532             nan     0.0010    0.0003
##    260        1.1419             nan     0.0010    0.0003
##    280        1.1308             nan     0.0010    0.0002
##    300        1.1201             nan     0.0010    0.0003
##    320        1.1097             nan     0.0010    0.0002
##    340        1.0997             nan     0.0010    0.0002
##    360        1.0899             nan     0.0010    0.0002
##    380        1.0800             nan     0.0010    0.0002
##    400        1.0707             nan     0.0010    0.0002
##    420        1.0617             nan     0.0010    0.0002
##    440        1.0529             nan     0.0010    0.0002
##    460        1.0443             nan     0.0010    0.0002
##    480        1.0359             nan     0.0010    0.0002
##    500        1.0276             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0003
##      4        1.3179             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3044             nan     0.0010    0.0004
##     40        1.2885             nan     0.0010    0.0004
##     60        1.2731             nan     0.0010    0.0004
##     80        1.2581             nan     0.0010    0.0003
##    100        1.2435             nan     0.0010    0.0003
##    120        1.2296             nan     0.0010    0.0003
##    140        1.2161             nan     0.0010    0.0003
##    160        1.2029             nan     0.0010    0.0003
##    180        1.1903             nan     0.0010    0.0003
##    200        1.1781             nan     0.0010    0.0003
##    220        1.1659             nan     0.0010    0.0003
##    240        1.1542             nan     0.0010    0.0003
##    260        1.1428             nan     0.0010    0.0003
##    280        1.1317             nan     0.0010    0.0002
##    300        1.1211             nan     0.0010    0.0002
##    320        1.1107             nan     0.0010    0.0002
##    340        1.1008             nan     0.0010    0.0002
##    360        1.0911             nan     0.0010    0.0002
##    380        1.0815             nan     0.0010    0.0002
##    400        1.0723             nan     0.0010    0.0002
##    420        1.0633             nan     0.0010    0.0002
##    440        1.0543             nan     0.0010    0.0002
##    460        1.0457             nan     0.0010    0.0002
##    480        1.0373             nan     0.0010    0.0002
##    500        1.0290             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0003
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3035             nan     0.0010    0.0004
##     40        1.2861             nan     0.0010    0.0004
##     60        1.2695             nan     0.0010    0.0004
##     80        1.2535             nan     0.0010    0.0003
##    100        1.2381             nan     0.0010    0.0003
##    120        1.2231             nan     0.0010    0.0003
##    140        1.2084             nan     0.0010    0.0003
##    160        1.1946             nan     0.0010    0.0003
##    180        1.1814             nan     0.0010    0.0003
##    200        1.1680             nan     0.0010    0.0003
##    220        1.1549             nan     0.0010    0.0003
##    240        1.1424             nan     0.0010    0.0002
##    260        1.1304             nan     0.0010    0.0002
##    280        1.1188             nan     0.0010    0.0003
##    300        1.1077             nan     0.0010    0.0002
##    320        1.0965             nan     0.0010    0.0003
##    340        1.0859             nan     0.0010    0.0003
##    360        1.0755             nan     0.0010    0.0002
##    380        1.0654             nan     0.0010    0.0002
##    400        1.0556             nan     0.0010    0.0002
##    420        1.0459             nan     0.0010    0.0002
##    440        1.0366             nan     0.0010    0.0002
##    460        1.0276             nan     0.0010    0.0002
##    480        1.0186             nan     0.0010    0.0002
##    500        1.0099             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0003
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3035             nan     0.0010    0.0004
##     40        1.2863             nan     0.0010    0.0004
##     60        1.2698             nan     0.0010    0.0004
##     80        1.2541             nan     0.0010    0.0004
##    100        1.2389             nan     0.0010    0.0003
##    120        1.2243             nan     0.0010    0.0003
##    140        1.2096             nan     0.0010    0.0003
##    160        1.1959             nan     0.0010    0.0003
##    180        1.1823             nan     0.0010    0.0003
##    200        1.1690             nan     0.0010    0.0003
##    220        1.1562             nan     0.0010    0.0002
##    240        1.1439             nan     0.0010    0.0003
##    260        1.1320             nan     0.0010    0.0002
##    280        1.1205             nan     0.0010    0.0002
##    300        1.1093             nan     0.0010    0.0003
##    320        1.0985             nan     0.0010    0.0002
##    340        1.0875             nan     0.0010    0.0002
##    360        1.0772             nan     0.0010    0.0002
##    380        1.0671             nan     0.0010    0.0002
##    400        1.0574             nan     0.0010    0.0002
##    420        1.0476             nan     0.0010    0.0002
##    440        1.0381             nan     0.0010    0.0002
##    460        1.0290             nan     0.0010    0.0002
##    480        1.0200             nan     0.0010    0.0002
##    500        1.0115             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3125             nan     0.0010    0.0004
##     20        1.3038             nan     0.0010    0.0004
##     40        1.2870             nan     0.0010    0.0004
##     60        1.2704             nan     0.0010    0.0004
##     80        1.2549             nan     0.0010    0.0004
##    100        1.2395             nan     0.0010    0.0003
##    120        1.2247             nan     0.0010    0.0004
##    140        1.2106             nan     0.0010    0.0003
##    160        1.1967             nan     0.0010    0.0003
##    180        1.1835             nan     0.0010    0.0002
##    200        1.1703             nan     0.0010    0.0003
##    220        1.1578             nan     0.0010    0.0002
##    240        1.1457             nan     0.0010    0.0003
##    260        1.1340             nan     0.0010    0.0002
##    280        1.1225             nan     0.0010    0.0002
##    300        1.1112             nan     0.0010    0.0002
##    320        1.1006             nan     0.0010    0.0002
##    340        1.0901             nan     0.0010    0.0002
##    360        1.0797             nan     0.0010    0.0002
##    380        1.0698             nan     0.0010    0.0002
##    400        1.0601             nan     0.0010    0.0002
##    420        1.0507             nan     0.0010    0.0002
##    440        1.0418             nan     0.0010    0.0002
##    460        1.0327             nan     0.0010    0.0002
##    480        1.0243             nan     0.0010    0.0001
##    500        1.0157             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0005
##      2        1.3192             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0005
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3026             nan     0.0010    0.0004
##     40        1.2848             nan     0.0010    0.0004
##     60        1.2675             nan     0.0010    0.0004
##     80        1.2509             nan     0.0010    0.0003
##    100        1.2346             nan     0.0010    0.0003
##    120        1.2190             nan     0.0010    0.0003
##    140        1.2040             nan     0.0010    0.0002
##    160        1.1895             nan     0.0010    0.0003
##    180        1.1753             nan     0.0010    0.0003
##    200        1.1617             nan     0.0010    0.0003
##    220        1.1482             nan     0.0010    0.0003
##    240        1.1352             nan     0.0010    0.0003
##    260        1.1224             nan     0.0010    0.0003
##    280        1.1105             nan     0.0010    0.0002
##    300        1.0987             nan     0.0010    0.0002
##    320        1.0874             nan     0.0010    0.0003
##    340        1.0762             nan     0.0010    0.0002
##    360        1.0651             nan     0.0010    0.0002
##    380        1.0547             nan     0.0010    0.0002
##    400        1.0446             nan     0.0010    0.0002
##    420        1.0347             nan     0.0010    0.0002
##    440        1.0249             nan     0.0010    0.0001
##    460        1.0154             nan     0.0010    0.0002
##    480        1.0062             nan     0.0010    0.0002
##    500        0.9972             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0004
##     40        1.2853             nan     0.0010    0.0004
##     60        1.2684             nan     0.0010    0.0004
##     80        1.2519             nan     0.0010    0.0004
##    100        1.2361             nan     0.0010    0.0004
##    120        1.2207             nan     0.0010    0.0003
##    140        1.2057             nan     0.0010    0.0003
##    160        1.1915             nan     0.0010    0.0003
##    180        1.1778             nan     0.0010    0.0003
##    200        1.1639             nan     0.0010    0.0002
##    220        1.1507             nan     0.0010    0.0003
##    240        1.1382             nan     0.0010    0.0002
##    260        1.1257             nan     0.0010    0.0003
##    280        1.1136             nan     0.0010    0.0003
##    300        1.1019             nan     0.0010    0.0002
##    320        1.0904             nan     0.0010    0.0002
##    340        1.0794             nan     0.0010    0.0002
##    360        1.0687             nan     0.0010    0.0002
##    380        1.0585             nan     0.0010    0.0002
##    400        1.0482             nan     0.0010    0.0002
##    420        1.0384             nan     0.0010    0.0002
##    440        1.0288             nan     0.0010    0.0002
##    460        1.0194             nan     0.0010    0.0002
##    480        1.0103             nan     0.0010    0.0002
##    500        1.0013             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0005
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2853             nan     0.0010    0.0004
##     60        1.2686             nan     0.0010    0.0004
##     80        1.2523             nan     0.0010    0.0004
##    100        1.2366             nan     0.0010    0.0003
##    120        1.2214             nan     0.0010    0.0003
##    140        1.2067             nan     0.0010    0.0003
##    160        1.1923             nan     0.0010    0.0003
##    180        1.1783             nan     0.0010    0.0003
##    200        1.1651             nan     0.0010    0.0003
##    220        1.1522             nan     0.0010    0.0003
##    240        1.1396             nan     0.0010    0.0003
##    260        1.1275             nan     0.0010    0.0003
##    280        1.1156             nan     0.0010    0.0003
##    300        1.1043             nan     0.0010    0.0002
##    320        1.0932             nan     0.0010    0.0002
##    340        1.0822             nan     0.0010    0.0003
##    360        1.0718             nan     0.0010    0.0002
##    380        1.0615             nan     0.0010    0.0002
##    400        1.0514             nan     0.0010    0.0002
##    420        1.0419             nan     0.0010    0.0002
##    440        1.0322             nan     0.0010    0.0002
##    460        1.0229             nan     0.0010    0.0002
##    480        1.0139             nan     0.0010    0.0002
##    500        1.0051             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3134             nan     0.0100    0.0032
##      2        1.3061             nan     0.0100    0.0036
##      3        1.2981             nan     0.0100    0.0037
##      4        1.2896             nan     0.0100    0.0039
##      5        1.2823             nan     0.0100    0.0034
##      6        1.2742             nan     0.0100    0.0038
##      7        1.2666             nan     0.0100    0.0038
##      8        1.2592             nan     0.0100    0.0034
##      9        1.2525             nan     0.0100    0.0028
##     10        1.2453             nan     0.0100    0.0035
##     20        1.1779             nan     0.0100    0.0024
##     40        1.0706             nan     0.0100    0.0020
##     60        0.9874             nan     0.0100    0.0017
##     80        0.9243             nan     0.0100    0.0011
##    100        0.8736             nan     0.0100    0.0009
##    120        0.8316             nan     0.0100    0.0006
##    140        0.7966             nan     0.0100    0.0004
##    160        0.7688             nan     0.0100    0.0003
##    180        0.7435             nan     0.0100    0.0004
##    200        0.7220             nan     0.0100    0.0004
##    220        0.7034             nan     0.0100    0.0000
##    240        0.6859             nan     0.0100    0.0002
##    260        0.6707             nan     0.0100    0.0002
##    280        0.6570             nan     0.0100    0.0000
##    300        0.6436             nan     0.0100   -0.0001
##    320        0.6315             nan     0.0100   -0.0000
##    340        0.6205             nan     0.0100   -0.0001
##    360        0.6104             nan     0.0100   -0.0001
##    380        0.6008             nan     0.0100    0.0000
##    400        0.5915             nan     0.0100    0.0000
##    420        0.5823             nan     0.0100   -0.0000
##    440        0.5728             nan     0.0100   -0.0000
##    460        0.5640             nan     0.0100   -0.0002
##    480        0.5559             nan     0.0100   -0.0000
##    500        0.5473             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0039
##      2        1.3047             nan     0.0100    0.0033
##      3        1.2961             nan     0.0100    0.0038
##      4        1.2873             nan     0.0100    0.0038
##      5        1.2791             nan     0.0100    0.0036
##      6        1.2715             nan     0.0100    0.0035
##      7        1.2634             nan     0.0100    0.0038
##      8        1.2560             nan     0.0100    0.0031
##      9        1.2494             nan     0.0100    0.0033
##     10        1.2424             nan     0.0100    0.0034
##     20        1.1766             nan     0.0100    0.0031
##     40        1.0713             nan     0.0100    0.0020
##     60        0.9897             nan     0.0100    0.0015
##     80        0.9261             nan     0.0100    0.0013
##    100        0.8752             nan     0.0100    0.0008
##    120        0.8357             nan     0.0100    0.0006
##    140        0.8024             nan     0.0100    0.0005
##    160        0.7738             nan     0.0100    0.0002
##    180        0.7496             nan     0.0100    0.0004
##    200        0.7287             nan     0.0100    0.0003
##    220        0.7106             nan     0.0100    0.0001
##    240        0.6941             nan     0.0100   -0.0001
##    260        0.6788             nan     0.0100    0.0001
##    280        0.6645             nan     0.0100   -0.0000
##    300        0.6519             nan     0.0100   -0.0001
##    320        0.6390             nan     0.0100   -0.0001
##    340        0.6282             nan     0.0100    0.0000
##    360        0.6176             nan     0.0100    0.0000
##    380        0.6072             nan     0.0100   -0.0001
##    400        0.5979             nan     0.0100   -0.0001
##    420        0.5891             nan     0.0100   -0.0002
##    440        0.5804             nan     0.0100   -0.0001
##    460        0.5718             nan     0.0100    0.0000
##    480        0.5639             nan     0.0100   -0.0001
##    500        0.5554             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3136             nan     0.0100    0.0034
##      2        1.3048             nan     0.0100    0.0040
##      3        1.2971             nan     0.0100    0.0036
##      4        1.2891             nan     0.0100    0.0035
##      5        1.2807             nan     0.0100    0.0036
##      6        1.2730             nan     0.0100    0.0037
##      7        1.2658             nan     0.0100    0.0034
##      8        1.2581             nan     0.0100    0.0033
##      9        1.2513             nan     0.0100    0.0030
##     10        1.2438             nan     0.0100    0.0034
##     20        1.1781             nan     0.0100    0.0028
##     40        1.0717             nan     0.0100    0.0023
##     60        0.9920             nan     0.0100    0.0014
##     80        0.9291             nan     0.0100    0.0011
##    100        0.8785             nan     0.0100    0.0007
##    120        0.8378             nan     0.0100    0.0006
##    140        0.8042             nan     0.0100    0.0007
##    160        0.7757             nan     0.0100    0.0003
##    180        0.7518             nan     0.0100    0.0001
##    200        0.7304             nan     0.0100    0.0002
##    220        0.7123             nan     0.0100    0.0002
##    240        0.6969             nan     0.0100    0.0000
##    260        0.6819             nan     0.0100   -0.0001
##    280        0.6686             nan     0.0100    0.0001
##    300        0.6569             nan     0.0100    0.0000
##    320        0.6462             nan     0.0100    0.0001
##    340        0.6362             nan     0.0100   -0.0000
##    360        0.6266             nan     0.0100   -0.0001
##    380        0.6164             nan     0.0100   -0.0001
##    400        0.6069             nan     0.0100   -0.0002
##    420        0.5976             nan     0.0100   -0.0001
##    440        0.5901             nan     0.0100   -0.0000
##    460        0.5825             nan     0.0100   -0.0001
##    480        0.5750             nan     0.0100   -0.0000
##    500        0.5667             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0044
##      2        1.3032             nan     0.0100    0.0037
##      3        1.2944             nan     0.0100    0.0044
##      4        1.2855             nan     0.0100    0.0041
##      5        1.2774             nan     0.0100    0.0037
##      6        1.2688             nan     0.0100    0.0037
##      7        1.2606             nan     0.0100    0.0039
##      8        1.2535             nan     0.0100    0.0032
##      9        1.2460             nan     0.0100    0.0035
##     10        1.2380             nan     0.0100    0.0041
##     20        1.1689             nan     0.0100    0.0028
##     40        1.0555             nan     0.0100    0.0022
##     60        0.9721             nan     0.0100    0.0014
##     80        0.9061             nan     0.0100    0.0011
##    100        0.8504             nan     0.0100    0.0010
##    120        0.8079             nan     0.0100    0.0005
##    140        0.7702             nan     0.0100    0.0007
##    160        0.7390             nan     0.0100    0.0003
##    180        0.7130             nan     0.0100    0.0003
##    200        0.6894             nan     0.0100    0.0003
##    220        0.6694             nan     0.0100    0.0003
##    240        0.6516             nan     0.0100    0.0001
##    260        0.6354             nan     0.0100    0.0001
##    280        0.6195             nan     0.0100    0.0000
##    300        0.6049             nan     0.0100   -0.0001
##    320        0.5915             nan     0.0100    0.0001
##    340        0.5794             nan     0.0100    0.0000
##    360        0.5680             nan     0.0100    0.0000
##    380        0.5565             nan     0.0100    0.0001
##    400        0.5450             nan     0.0100    0.0001
##    420        0.5357             nan     0.0100    0.0001
##    440        0.5258             nan     0.0100    0.0000
##    460        0.5165             nan     0.0100    0.0001
##    480        0.5064             nan     0.0100   -0.0000
##    500        0.4965             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0041
##      2        1.3037             nan     0.0100    0.0040
##      3        1.2952             nan     0.0100    0.0038
##      4        1.2863             nan     0.0100    0.0039
##      5        1.2785             nan     0.0100    0.0037
##      6        1.2698             nan     0.0100    0.0037
##      7        1.2611             nan     0.0100    0.0038
##      8        1.2531             nan     0.0100    0.0034
##      9        1.2454             nan     0.0100    0.0032
##     10        1.2371             nan     0.0100    0.0034
##     20        1.1674             nan     0.0100    0.0025
##     40        1.0547             nan     0.0100    0.0024
##     60        0.9700             nan     0.0100    0.0016
##     80        0.9049             nan     0.0100    0.0010
##    100        0.8541             nan     0.0100    0.0010
##    120        0.8108             nan     0.0100    0.0005
##    140        0.7761             nan     0.0100    0.0004
##    160        0.7462             nan     0.0100    0.0001
##    180        0.7212             nan     0.0100    0.0002
##    200        0.6981             nan     0.0100    0.0001
##    220        0.6768             nan     0.0100    0.0002
##    240        0.6580             nan     0.0100    0.0002
##    260        0.6416             nan     0.0100    0.0002
##    280        0.6260             nan     0.0100    0.0001
##    300        0.6123             nan     0.0100   -0.0002
##    320        0.5989             nan     0.0100    0.0001
##    340        0.5864             nan     0.0100   -0.0000
##    360        0.5741             nan     0.0100    0.0000
##    380        0.5626             nan     0.0100   -0.0001
##    400        0.5518             nan     0.0100   -0.0000
##    420        0.5420             nan     0.0100   -0.0001
##    440        0.5321             nan     0.0100   -0.0001
##    460        0.5228             nan     0.0100   -0.0001
##    480        0.5139             nan     0.0100    0.0001
##    500        0.5049             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0042
##      2        1.3047             nan     0.0100    0.0035
##      3        1.2955             nan     0.0100    0.0038
##      4        1.2870             nan     0.0100    0.0037
##      5        1.2789             nan     0.0100    0.0033
##      6        1.2705             nan     0.0100    0.0039
##      7        1.2626             nan     0.0100    0.0036
##      8        1.2543             nan     0.0100    0.0034
##      9        1.2459             nan     0.0100    0.0035
##     10        1.2385             nan     0.0100    0.0035
##     20        1.1693             nan     0.0100    0.0027
##     40        1.0591             nan     0.0100    0.0021
##     60        0.9756             nan     0.0100    0.0013
##     80        0.9092             nan     0.0100    0.0012
##    100        0.8561             nan     0.0100    0.0008
##    120        0.8139             nan     0.0100    0.0007
##    140        0.7796             nan     0.0100    0.0003
##    160        0.7506             nan     0.0100    0.0002
##    180        0.7266             nan     0.0100    0.0001
##    200        0.7041             nan     0.0100    0.0003
##    220        0.6853             nan     0.0100    0.0001
##    240        0.6680             nan     0.0100   -0.0000
##    260        0.6518             nan     0.0100    0.0002
##    280        0.6374             nan     0.0100    0.0002
##    300        0.6238             nan     0.0100    0.0000
##    320        0.6107             nan     0.0100    0.0000
##    340        0.5979             nan     0.0100    0.0000
##    360        0.5871             nan     0.0100    0.0000
##    380        0.5770             nan     0.0100    0.0000
##    400        0.5663             nan     0.0100   -0.0003
##    420        0.5559             nan     0.0100   -0.0000
##    440        0.5472             nan     0.0100    0.0000
##    460        0.5392             nan     0.0100    0.0000
##    480        0.5303             nan     0.0100    0.0002
##    500        0.5215             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0043
##      2        1.3026             nan     0.0100    0.0043
##      3        1.2939             nan     0.0100    0.0042
##      4        1.2854             nan     0.0100    0.0041
##      5        1.2768             nan     0.0100    0.0042
##      6        1.2688             nan     0.0100    0.0038
##      7        1.2603             nan     0.0100    0.0039
##      8        1.2520             nan     0.0100    0.0036
##      9        1.2441             nan     0.0100    0.0033
##     10        1.2356             nan     0.0100    0.0037
##     20        1.1623             nan     0.0100    0.0028
##     40        1.0439             nan     0.0100    0.0023
##     60        0.9554             nan     0.0100    0.0018
##     80        0.8847             nan     0.0100    0.0012
##    100        0.8284             nan     0.0100    0.0009
##    120        0.7836             nan     0.0100    0.0007
##    140        0.7450             nan     0.0100    0.0006
##    160        0.7140             nan     0.0100    0.0001
##    180        0.6869             nan     0.0100   -0.0000
##    200        0.6627             nan     0.0100    0.0003
##    220        0.6416             nan     0.0100    0.0001
##    240        0.6212             nan     0.0100    0.0000
##    260        0.6030             nan     0.0100    0.0000
##    280        0.5858             nan     0.0100    0.0000
##    300        0.5689             nan     0.0100    0.0000
##    320        0.5532             nan     0.0100    0.0001
##    340        0.5396             nan     0.0100    0.0001
##    360        0.5266             nan     0.0100   -0.0000
##    380        0.5149             nan     0.0100    0.0000
##    400        0.5027             nan     0.0100    0.0001
##    420        0.4912             nan     0.0100   -0.0001
##    440        0.4808             nan     0.0100   -0.0001
##    460        0.4690             nan     0.0100    0.0000
##    480        0.4587             nan     0.0100   -0.0001
##    500        0.4493             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0042
##      2        1.3030             nan     0.0100    0.0042
##      3        1.2941             nan     0.0100    0.0040
##      4        1.2848             nan     0.0100    0.0041
##      5        1.2761             nan     0.0100    0.0040
##      6        1.2675             nan     0.0100    0.0039
##      7        1.2588             nan     0.0100    0.0038
##      8        1.2501             nan     0.0100    0.0037
##      9        1.2421             nan     0.0100    0.0035
##     10        1.2340             nan     0.0100    0.0033
##     20        1.1626             nan     0.0100    0.0028
##     40        1.0480             nan     0.0100    0.0020
##     60        0.9600             nan     0.0100    0.0017
##     80        0.8915             nan     0.0100    0.0015
##    100        0.8368             nan     0.0100    0.0008
##    120        0.7910             nan     0.0100    0.0007
##    140        0.7548             nan     0.0100    0.0001
##    160        0.7234             nan     0.0100    0.0004
##    180        0.6963             nan     0.0100    0.0003
##    200        0.6730             nan     0.0100    0.0002
##    220        0.6522             nan     0.0100   -0.0001
##    240        0.6330             nan     0.0100    0.0001
##    260        0.6153             nan     0.0100    0.0000
##    280        0.5998             nan     0.0100    0.0001
##    300        0.5851             nan     0.0100   -0.0001
##    320        0.5707             nan     0.0100   -0.0000
##    340        0.5577             nan     0.0100   -0.0000
##    360        0.5448             nan     0.0100    0.0000
##    380        0.5321             nan     0.0100   -0.0000
##    400        0.5199             nan     0.0100    0.0000
##    420        0.5083             nan     0.0100    0.0000
##    440        0.4969             nan     0.0100   -0.0000
##    460        0.4864             nan     0.0100   -0.0001
##    480        0.4757             nan     0.0100   -0.0000
##    500        0.4651             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0038
##      2        1.3033             nan     0.0100    0.0041
##      3        1.2947             nan     0.0100    0.0041
##      4        1.2861             nan     0.0100    0.0035
##      5        1.2776             nan     0.0100    0.0044
##      6        1.2691             nan     0.0100    0.0036
##      7        1.2615             nan     0.0100    0.0033
##      8        1.2539             nan     0.0100    0.0037
##      9        1.2465             nan     0.0100    0.0032
##     10        1.2383             nan     0.0100    0.0034
##     20        1.1672             nan     0.0100    0.0029
##     40        1.0512             nan     0.0100    0.0022
##     60        0.9623             nan     0.0100    0.0015
##     80        0.8945             nan     0.0100    0.0008
##    100        0.8415             nan     0.0100    0.0009
##    120        0.7982             nan     0.0100    0.0006
##    140        0.7614             nan     0.0100    0.0006
##    160        0.7308             nan     0.0100    0.0003
##    180        0.7046             nan     0.0100    0.0003
##    200        0.6809             nan     0.0100    0.0001
##    220        0.6604             nan     0.0100    0.0000
##    240        0.6406             nan     0.0100    0.0001
##    260        0.6228             nan     0.0100    0.0000
##    280        0.6082             nan     0.0100    0.0001
##    300        0.5930             nan     0.0100    0.0001
##    320        0.5789             nan     0.0100   -0.0000
##    340        0.5658             nan     0.0100    0.0001
##    360        0.5527             nan     0.0100   -0.0001
##    380        0.5415             nan     0.0100    0.0000
##    400        0.5293             nan     0.0100    0.0001
##    420        0.5185             nan     0.0100   -0.0000
##    440        0.5076             nan     0.0100    0.0000
##    460        0.4968             nan     0.0100    0.0000
##    480        0.4876             nan     0.0100   -0.0001
##    500        0.4776             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2438             nan     0.1000    0.0383
##      2        1.1707             nan     0.1000    0.0330
##      3        1.1182             nan     0.1000    0.0240
##      4        1.0655             nan     0.1000    0.0228
##      5        1.0191             nan     0.1000    0.0200
##      6        0.9854             nan     0.1000    0.0136
##      7        0.9504             nan     0.1000    0.0142
##      8        0.9220             nan     0.1000    0.0090
##      9        0.8946             nan     0.1000    0.0103
##     10        0.8712             nan     0.1000    0.0084
##     20        0.7244             nan     0.1000    0.0033
##     40        0.5936             nan     0.1000    0.0002
##     60        0.5104             nan     0.1000   -0.0012
##     80        0.4405             nan     0.1000    0.0006
##    100        0.3898             nan     0.1000   -0.0004
##    120        0.3544             nan     0.1000   -0.0006
##    140        0.3150             nan     0.1000   -0.0018
##    160        0.2823             nan     0.1000   -0.0010
##    180        0.2540             nan     0.1000    0.0001
##    200        0.2296             nan     0.1000   -0.0002
##    220        0.2081             nan     0.1000   -0.0005
##    240        0.1905             nan     0.1000    0.0000
##    260        0.1739             nan     0.1000   -0.0002
##    280        0.1585             nan     0.1000   -0.0003
##    300        0.1463             nan     0.1000   -0.0004
##    320        0.1352             nan     0.1000   -0.0001
##    340        0.1247             nan     0.1000   -0.0006
##    360        0.1144             nan     0.1000   -0.0005
##    380        0.1074             nan     0.1000   -0.0003
##    400        0.0996             nan     0.1000   -0.0002
##    420        0.0910             nan     0.1000   -0.0001
##    440        0.0832             nan     0.1000   -0.0001
##    460        0.0769             nan     0.1000   -0.0002
##    480        0.0710             nan     0.1000   -0.0002
##    500        0.0663             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2379             nan     0.1000    0.0374
##      2        1.1677             nan     0.1000    0.0303
##      3        1.1124             nan     0.1000    0.0259
##      4        1.0638             nan     0.1000    0.0228
##      5        1.0229             nan     0.1000    0.0164
##      6        0.9838             nan     0.1000    0.0154
##      7        0.9534             nan     0.1000    0.0143
##      8        0.9247             nan     0.1000    0.0104
##      9        0.8986             nan     0.1000    0.0084
##     10        0.8740             nan     0.1000    0.0081
##     20        0.7318             nan     0.1000    0.0032
##     40        0.6121             nan     0.1000   -0.0002
##     60        0.5309             nan     0.1000   -0.0001
##     80        0.4740             nan     0.1000   -0.0011
##    100        0.4186             nan     0.1000   -0.0003
##    120        0.3693             nan     0.1000   -0.0011
##    140        0.3328             nan     0.1000   -0.0008
##    160        0.3001             nan     0.1000   -0.0018
##    180        0.2721             nan     0.1000    0.0000
##    200        0.2482             nan     0.1000   -0.0005
##    220        0.2270             nan     0.1000   -0.0007
##    240        0.2053             nan     0.1000   -0.0001
##    260        0.1865             nan     0.1000   -0.0006
##    280        0.1702             nan     0.1000   -0.0004
##    300        0.1572             nan     0.1000   -0.0004
##    320        0.1444             nan     0.1000   -0.0005
##    340        0.1336             nan     0.1000    0.0001
##    360        0.1238             nan     0.1000   -0.0006
##    380        0.1136             nan     0.1000   -0.0003
##    400        0.1048             nan     0.1000   -0.0003
##    420        0.0974             nan     0.1000   -0.0003
##    440        0.0899             nan     0.1000   -0.0004
##    460        0.0828             nan     0.1000   -0.0002
##    480        0.0770             nan     0.1000   -0.0001
##    500        0.0720             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2459             nan     0.1000    0.0395
##      2        1.1778             nan     0.1000    0.0291
##      3        1.1190             nan     0.1000    0.0258
##      4        1.0676             nan     0.1000    0.0212
##      5        1.0289             nan     0.1000    0.0170
##      6        0.9952             nan     0.1000    0.0141
##      7        0.9601             nan     0.1000    0.0149
##      8        0.9289             nan     0.1000    0.0136
##      9        0.9034             nan     0.1000    0.0099
##     10        0.8773             nan     0.1000    0.0107
##     20        0.7349             nan     0.1000    0.0003
##     40        0.6162             nan     0.1000   -0.0006
##     60        0.5400             nan     0.1000   -0.0025
##     80        0.4767             nan     0.1000    0.0001
##    100        0.4273             nan     0.1000   -0.0028
##    120        0.3853             nan     0.1000   -0.0009
##    140        0.3566             nan     0.1000   -0.0017
##    160        0.3254             nan     0.1000   -0.0010
##    180        0.2943             nan     0.1000   -0.0010
##    200        0.2693             nan     0.1000   -0.0007
##    220        0.2459             nan     0.1000   -0.0014
##    240        0.2260             nan     0.1000   -0.0007
##    260        0.2093             nan     0.1000   -0.0007
##    280        0.1942             nan     0.1000   -0.0006
##    300        0.1776             nan     0.1000   -0.0003
##    320        0.1642             nan     0.1000   -0.0005
##    340        0.1525             nan     0.1000   -0.0005
##    360        0.1398             nan     0.1000   -0.0004
##    380        0.1311             nan     0.1000   -0.0003
##    400        0.1201             nan     0.1000   -0.0002
##    420        0.1099             nan     0.1000   -0.0001
##    440        0.1024             nan     0.1000   -0.0005
##    460        0.0957             nan     0.1000   -0.0004
##    480        0.0888             nan     0.1000   -0.0002
##    500        0.0836             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2284             nan     0.1000    0.0379
##      2        1.1599             nan     0.1000    0.0297
##      3        1.1071             nan     0.1000    0.0195
##      4        1.0564             nan     0.1000    0.0226
##      5        1.0111             nan     0.1000    0.0192
##      6        0.9641             nan     0.1000    0.0170
##      7        0.9317             nan     0.1000    0.0117
##      8        0.9026             nan     0.1000    0.0111
##      9        0.8794             nan     0.1000    0.0071
##     10        0.8517             nan     0.1000    0.0100
##     20        0.6992             nan     0.1000    0.0012
##     40        0.5544             nan     0.1000   -0.0001
##     60        0.4582             nan     0.1000   -0.0014
##     80        0.3939             nan     0.1000   -0.0006
##    100        0.3414             nan     0.1000   -0.0012
##    120        0.2963             nan     0.1000   -0.0006
##    140        0.2623             nan     0.1000   -0.0004
##    160        0.2305             nan     0.1000   -0.0008
##    180        0.2022             nan     0.1000   -0.0003
##    200        0.1801             nan     0.1000    0.0002
##    220        0.1611             nan     0.1000   -0.0008
##    240        0.1442             nan     0.1000   -0.0001
##    260        0.1318             nan     0.1000   -0.0005
##    280        0.1179             nan     0.1000   -0.0003
##    300        0.1061             nan     0.1000   -0.0003
##    320        0.0953             nan     0.1000   -0.0003
##    340        0.0864             nan     0.1000   -0.0001
##    360        0.0783             nan     0.1000   -0.0001
##    380        0.0708             nan     0.1000   -0.0002
##    400        0.0648             nan     0.1000   -0.0002
##    420        0.0588             nan     0.1000   -0.0001
##    440        0.0527             nan     0.1000   -0.0001
##    460        0.0478             nan     0.1000   -0.0001
##    480        0.0439             nan     0.1000   -0.0003
##    500        0.0403             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2358             nan     0.1000    0.0378
##      2        1.1608             nan     0.1000    0.0326
##      3        1.0972             nan     0.1000    0.0271
##      4        1.0472             nan     0.1000    0.0215
##      5        1.0044             nan     0.1000    0.0168
##      6        0.9633             nan     0.1000    0.0154
##      7        0.9292             nan     0.1000    0.0143
##      8        0.9005             nan     0.1000    0.0120
##      9        0.8746             nan     0.1000    0.0085
##     10        0.8469             nan     0.1000    0.0090
##     20        0.6939             nan     0.1000    0.0008
##     40        0.5697             nan     0.1000   -0.0018
##     60        0.4851             nan     0.1000   -0.0010
##     80        0.4147             nan     0.1000    0.0004
##    100        0.3594             nan     0.1000   -0.0009
##    120        0.3118             nan     0.1000   -0.0005
##    140        0.2779             nan     0.1000   -0.0009
##    160        0.2470             nan     0.1000   -0.0003
##    180        0.2180             nan     0.1000   -0.0000
##    200        0.1946             nan     0.1000   -0.0012
##    220        0.1708             nan     0.1000   -0.0000
##    240        0.1526             nan     0.1000   -0.0006
##    260        0.1358             nan     0.1000   -0.0004
##    280        0.1219             nan     0.1000   -0.0005
##    300        0.1105             nan     0.1000   -0.0004
##    320        0.1000             nan     0.1000   -0.0001
##    340        0.0907             nan     0.1000   -0.0003
##    360        0.0815             nan     0.1000   -0.0004
##    380        0.0742             nan     0.1000   -0.0002
##    400        0.0663             nan     0.1000    0.0000
##    420        0.0597             nan     0.1000   -0.0001
##    440        0.0542             nan     0.1000   -0.0001
##    460        0.0498             nan     0.1000   -0.0001
##    480        0.0456             nan     0.1000   -0.0001
##    500        0.0413             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2346             nan     0.1000    0.0379
##      2        1.1630             nan     0.1000    0.0327
##      3        1.1014             nan     0.1000    0.0281
##      4        1.0501             nan     0.1000    0.0208
##      5        1.0016             nan     0.1000    0.0191
##      6        0.9664             nan     0.1000    0.0155
##      7        0.9309             nan     0.1000    0.0149
##      8        0.8995             nan     0.1000    0.0124
##      9        0.8754             nan     0.1000    0.0077
##     10        0.8507             nan     0.1000    0.0091
##     20        0.7054             nan     0.1000    0.0023
##     40        0.5701             nan     0.1000   -0.0011
##     60        0.4835             nan     0.1000   -0.0015
##     80        0.4214             nan     0.1000   -0.0020
##    100        0.3666             nan     0.1000   -0.0012
##    120        0.3210             nan     0.1000   -0.0014
##    140        0.2823             nan     0.1000   -0.0003
##    160        0.2505             nan     0.1000   -0.0014
##    180        0.2189             nan     0.1000   -0.0012
##    200        0.1941             nan     0.1000   -0.0013
##    220        0.1723             nan     0.1000   -0.0004
##    240        0.1552             nan     0.1000   -0.0006
##    260        0.1388             nan     0.1000   -0.0005
##    280        0.1245             nan     0.1000   -0.0005
##    300        0.1138             nan     0.1000   -0.0006
##    320        0.1045             nan     0.1000   -0.0004
##    340        0.0934             nan     0.1000   -0.0004
##    360        0.0845             nan     0.1000   -0.0003
##    380        0.0771             nan     0.1000   -0.0002
##    400        0.0711             nan     0.1000   -0.0000
##    420        0.0647             nan     0.1000   -0.0003
##    440        0.0590             nan     0.1000   -0.0002
##    460        0.0536             nan     0.1000   -0.0002
##    480        0.0490             nan     0.1000   -0.0001
##    500        0.0448             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2375             nan     0.1000    0.0387
##      2        1.1569             nan     0.1000    0.0386
##      3        1.0856             nan     0.1000    0.0303
##      4        1.0302             nan     0.1000    0.0217
##      5        0.9813             nan     0.1000    0.0216
##      6        0.9453             nan     0.1000    0.0127
##      7        0.9138             nan     0.1000    0.0118
##      8        0.8829             nan     0.1000    0.0121
##      9        0.8554             nan     0.1000    0.0091
##     10        0.8257             nan     0.1000    0.0118
##     20        0.6587             nan     0.1000    0.0028
##     40        0.5094             nan     0.1000   -0.0010
##     60        0.4041             nan     0.1000   -0.0013
##     80        0.3264             nan     0.1000   -0.0004
##    100        0.2751             nan     0.1000   -0.0005
##    120        0.2340             nan     0.1000   -0.0008
##    140        0.2001             nan     0.1000   -0.0000
##    160        0.1719             nan     0.1000   -0.0004
##    180        0.1478             nan     0.1000   -0.0002
##    200        0.1270             nan     0.1000   -0.0000
##    220        0.1101             nan     0.1000   -0.0005
##    240        0.0973             nan     0.1000   -0.0003
##    260        0.0858             nan     0.1000   -0.0002
##    280        0.0759             nan     0.1000   -0.0003
##    300        0.0682             nan     0.1000   -0.0003
##    320        0.0604             nan     0.1000   -0.0002
##    340        0.0532             nan     0.1000   -0.0001
##    360        0.0469             nan     0.1000   -0.0002
##    380        0.0422             nan     0.1000   -0.0002
##    400        0.0376             nan     0.1000   -0.0001
##    420        0.0336             nan     0.1000   -0.0001
##    440        0.0301             nan     0.1000   -0.0000
##    460        0.0265             nan     0.1000   -0.0001
##    480        0.0237             nan     0.1000   -0.0001
##    500        0.0212             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2296             nan     0.1000    0.0396
##      2        1.1548             nan     0.1000    0.0355
##      3        1.0951             nan     0.1000    0.0256
##      4        1.0417             nan     0.1000    0.0247
##      5        0.9941             nan     0.1000    0.0204
##      6        0.9571             nan     0.1000    0.0135
##      7        0.9221             nan     0.1000    0.0119
##      8        0.8892             nan     0.1000    0.0110
##      9        0.8605             nan     0.1000    0.0115
##     10        0.8356             nan     0.1000    0.0077
##     20        0.6743             nan     0.1000    0.0006
##     40        0.5249             nan     0.1000    0.0010
##     60        0.4186             nan     0.1000   -0.0009
##     80        0.3490             nan     0.1000    0.0001
##    100        0.2951             nan     0.1000   -0.0012
##    120        0.2525             nan     0.1000   -0.0013
##    140        0.2151             nan     0.1000   -0.0007
##    160        0.1876             nan     0.1000   -0.0003
##    180        0.1643             nan     0.1000   -0.0002
##    200        0.1424             nan     0.1000    0.0002
##    220        0.1251             nan     0.1000   -0.0004
##    240        0.1101             nan     0.1000   -0.0006
##    260        0.0961             nan     0.1000   -0.0005
##    280        0.0847             nan     0.1000   -0.0004
##    300        0.0756             nan     0.1000   -0.0001
##    320        0.0677             nan     0.1000   -0.0005
##    340        0.0608             nan     0.1000   -0.0000
##    360        0.0530             nan     0.1000   -0.0002
##    380        0.0472             nan     0.1000   -0.0000
##    400        0.0420             nan     0.1000   -0.0002
##    420        0.0373             nan     0.1000   -0.0001
##    440        0.0334             nan     0.1000   -0.0002
##    460        0.0296             nan     0.1000   -0.0000
##    480        0.0263             nan     0.1000   -0.0001
##    500        0.0236             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2333             nan     0.1000    0.0414
##      2        1.1631             nan     0.1000    0.0274
##      3        1.1019             nan     0.1000    0.0251
##      4        1.0483             nan     0.1000    0.0235
##      5        1.0040             nan     0.1000    0.0178
##      6        0.9620             nan     0.1000    0.0153
##      7        0.9242             nan     0.1000    0.0151
##      8        0.8972             nan     0.1000    0.0092
##      9        0.8674             nan     0.1000    0.0108
##     10        0.8395             nan     0.1000    0.0115
##     20        0.6897             nan     0.1000    0.0021
##     40        0.5415             nan     0.1000   -0.0013
##     60        0.4573             nan     0.1000   -0.0006
##     80        0.3777             nan     0.1000   -0.0005
##    100        0.3217             nan     0.1000   -0.0028
##    120        0.2745             nan     0.1000   -0.0006
##    140        0.2333             nan     0.1000   -0.0007
##    160        0.2006             nan     0.1000   -0.0006
##    180        0.1740             nan     0.1000   -0.0009
##    200        0.1527             nan     0.1000   -0.0007
##    220        0.1325             nan     0.1000   -0.0005
##    240        0.1180             nan     0.1000   -0.0003
##    260        0.1042             nan     0.1000   -0.0004
##    280        0.0937             nan     0.1000   -0.0003
##    300        0.0823             nan     0.1000   -0.0004
##    320        0.0739             nan     0.1000   -0.0002
##    340        0.0654             nan     0.1000   -0.0002
##    360        0.0587             nan     0.1000   -0.0003
##    380        0.0529             nan     0.1000   -0.0001
##    400        0.0476             nan     0.1000   -0.0002
##    420        0.0426             nan     0.1000   -0.0003
##    440        0.0380             nan     0.1000   -0.0001
##    460        0.0342             nan     0.1000   -0.0002
##    480        0.0306             nan     0.1000    0.0000
##    500        0.0276             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0003
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0003
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3129             nan     0.0010    0.0003
##     20        1.3047             nan     0.0010    0.0003
##     40        1.2885             nan     0.0010    0.0004
##     60        1.2736             nan     0.0010    0.0003
##     80        1.2588             nan     0.0010    0.0003
##    100        1.2446             nan     0.0010    0.0003
##    120        1.2307             nan     0.0010    0.0004
##    140        1.2175             nan     0.0010    0.0003
##    160        1.2050             nan     0.0010    0.0003
##    180        1.1925             nan     0.0010    0.0002
##    200        1.1802             nan     0.0010    0.0003
##    220        1.1685             nan     0.0010    0.0002
##    240        1.1573             nan     0.0010    0.0003
##    260        1.1460             nan     0.0010    0.0002
##    280        1.1351             nan     0.0010    0.0003
##    300        1.1245             nan     0.0010    0.0002
##    320        1.1143             nan     0.0010    0.0002
##    340        1.1044             nan     0.0010    0.0002
##    360        1.0947             nan     0.0010    0.0002
##    380        1.0850             nan     0.0010    0.0002
##    400        1.0758             nan     0.0010    0.0002
##    420        1.0669             nan     0.0010    0.0002
##    440        1.0581             nan     0.0010    0.0002
##    460        1.0499             nan     0.0010    0.0002
##    480        1.0417             nan     0.0010    0.0002
##    500        1.0336             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0003
##      8        1.3144             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3046             nan     0.0010    0.0003
##     40        1.2890             nan     0.0010    0.0004
##     60        1.2741             nan     0.0010    0.0004
##     80        1.2595             nan     0.0010    0.0003
##    100        1.2457             nan     0.0010    0.0003
##    120        1.2319             nan     0.0010    0.0003
##    140        1.2190             nan     0.0010    0.0002
##    160        1.2060             nan     0.0010    0.0003
##    180        1.1935             nan     0.0010    0.0003
##    200        1.1815             nan     0.0010    0.0003
##    220        1.1697             nan     0.0010    0.0003
##    240        1.1581             nan     0.0010    0.0002
##    260        1.1469             nan     0.0010    0.0003
##    280        1.1360             nan     0.0010    0.0002
##    300        1.1253             nan     0.0010    0.0002
##    320        1.1154             nan     0.0010    0.0002
##    340        1.1054             nan     0.0010    0.0003
##    360        1.0957             nan     0.0010    0.0002
##    380        1.0863             nan     0.0010    0.0002
##    400        1.0772             nan     0.0010    0.0002
##    420        1.0681             nan     0.0010    0.0002
##    440        1.0592             nan     0.0010    0.0002
##    460        1.0508             nan     0.0010    0.0002
##    480        1.0425             nan     0.0010    0.0002
##    500        1.0343             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3188             nan     0.0010    0.0003
##      4        1.3179             nan     0.0010    0.0004
##      5        1.3171             nan     0.0010    0.0004
##      6        1.3163             nan     0.0010    0.0004
##      7        1.3154             nan     0.0010    0.0003
##      8        1.3146             nan     0.0010    0.0003
##      9        1.3138             nan     0.0010    0.0004
##     10        1.3130             nan     0.0010    0.0003
##     20        1.3053             nan     0.0010    0.0004
##     40        1.2899             nan     0.0010    0.0003
##     60        1.2748             nan     0.0010    0.0003
##     80        1.2597             nan     0.0010    0.0003
##    100        1.2460             nan     0.0010    0.0003
##    120        1.2325             nan     0.0010    0.0003
##    140        1.2194             nan     0.0010    0.0003
##    160        1.2065             nan     0.0010    0.0003
##    180        1.1941             nan     0.0010    0.0003
##    200        1.1821             nan     0.0010    0.0002
##    220        1.1702             nan     0.0010    0.0003
##    240        1.1591             nan     0.0010    0.0002
##    260        1.1484             nan     0.0010    0.0002
##    280        1.1374             nan     0.0010    0.0002
##    300        1.1270             nan     0.0010    0.0002
##    320        1.1166             nan     0.0010    0.0002
##    340        1.1064             nan     0.0010    0.0002
##    360        1.0968             nan     0.0010    0.0002
##    380        1.0874             nan     0.0010    0.0002
##    400        1.0784             nan     0.0010    0.0002
##    420        1.0692             nan     0.0010    0.0002
##    440        1.0604             nan     0.0010    0.0002
##    460        1.0519             nan     0.0010    0.0001
##    480        1.0436             nan     0.0010    0.0002
##    500        1.0354             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0003
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3125             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2875             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0004
##     80        1.2555             nan     0.0010    0.0004
##    100        1.2400             nan     0.0010    0.0003
##    120        1.2256             nan     0.0010    0.0003
##    140        1.2114             nan     0.0010    0.0003
##    160        1.1976             nan     0.0010    0.0003
##    180        1.1841             nan     0.0010    0.0003
##    200        1.1707             nan     0.0010    0.0003
##    220        1.1582             nan     0.0010    0.0003
##    240        1.1462             nan     0.0010    0.0002
##    260        1.1342             nan     0.0010    0.0003
##    280        1.1229             nan     0.0010    0.0002
##    300        1.1116             nan     0.0010    0.0002
##    320        1.1009             nan     0.0010    0.0002
##    340        1.0903             nan     0.0010    0.0003
##    360        1.0799             nan     0.0010    0.0002
##    380        1.0700             nan     0.0010    0.0002
##    400        1.0603             nan     0.0010    0.0002
##    420        1.0508             nan     0.0010    0.0002
##    440        1.0416             nan     0.0010    0.0002
##    460        1.0328             nan     0.0010    0.0002
##    480        1.0239             nan     0.0010    0.0002
##    500        1.0154             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0005
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0003
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0003
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2870             nan     0.0010    0.0003
##     60        1.2710             nan     0.0010    0.0003
##     80        1.2556             nan     0.0010    0.0004
##    100        1.2406             nan     0.0010    0.0003
##    120        1.2265             nan     0.0010    0.0003
##    140        1.2124             nan     0.0010    0.0003
##    160        1.1986             nan     0.0010    0.0003
##    180        1.1857             nan     0.0010    0.0003
##    200        1.1727             nan     0.0010    0.0003
##    220        1.1605             nan     0.0010    0.0003
##    240        1.1483             nan     0.0010    0.0003
##    260        1.1364             nan     0.0010    0.0003
##    280        1.1249             nan     0.0010    0.0003
##    300        1.1136             nan     0.0010    0.0002
##    320        1.1029             nan     0.0010    0.0002
##    340        1.0922             nan     0.0010    0.0002
##    360        1.0818             nan     0.0010    0.0002
##    380        1.0719             nan     0.0010    0.0002
##    400        1.0621             nan     0.0010    0.0002
##    420        1.0526             nan     0.0010    0.0002
##    440        1.0434             nan     0.0010    0.0002
##    460        1.0344             nan     0.0010    0.0002
##    480        1.0256             nan     0.0010    0.0001
##    500        1.0169             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0003
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0003
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0003
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3129             nan     0.0010    0.0004
##     20        1.3044             nan     0.0010    0.0003
##     40        1.2882             nan     0.0010    0.0003
##     60        1.2722             nan     0.0010    0.0004
##     80        1.2571             nan     0.0010    0.0004
##    100        1.2420             nan     0.0010    0.0003
##    120        1.2275             nan     0.0010    0.0003
##    140        1.2135             nan     0.0010    0.0003
##    160        1.1998             nan     0.0010    0.0003
##    180        1.1868             nan     0.0010    0.0003
##    200        1.1743             nan     0.0010    0.0003
##    220        1.1622             nan     0.0010    0.0002
##    240        1.1500             nan     0.0010    0.0003
##    260        1.1382             nan     0.0010    0.0003
##    280        1.1267             nan     0.0010    0.0002
##    300        1.1157             nan     0.0010    0.0002
##    320        1.1048             nan     0.0010    0.0002
##    340        1.0943             nan     0.0010    0.0002
##    360        1.0842             nan     0.0010    0.0002
##    380        1.0743             nan     0.0010    0.0002
##    400        1.0647             nan     0.0010    0.0002
##    420        1.0555             nan     0.0010    0.0002
##    440        1.0466             nan     0.0010    0.0002
##    460        1.0375             nan     0.0010    0.0002
##    480        1.0287             nan     0.0010    0.0002
##    500        1.0203             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0003
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0005
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2854             nan     0.0010    0.0004
##     60        1.2686             nan     0.0010    0.0004
##     80        1.2522             nan     0.0010    0.0004
##    100        1.2366             nan     0.0010    0.0003
##    120        1.2212             nan     0.0010    0.0003
##    140        1.2068             nan     0.0010    0.0003
##    160        1.1925             nan     0.0010    0.0003
##    180        1.1785             nan     0.0010    0.0004
##    200        1.1649             nan     0.0010    0.0003
##    220        1.1522             nan     0.0010    0.0003
##    240        1.1395             nan     0.0010    0.0002
##    260        1.1272             nan     0.0010    0.0002
##    280        1.1153             nan     0.0010    0.0003
##    300        1.1037             nan     0.0010    0.0002
##    320        1.0925             nan     0.0010    0.0002
##    340        1.0814             nan     0.0010    0.0002
##    360        1.0706             nan     0.0010    0.0002
##    380        1.0602             nan     0.0010    0.0002
##    400        1.0503             nan     0.0010    0.0002
##    420        1.0403             nan     0.0010    0.0002
##    440        1.0308             nan     0.0010    0.0002
##    460        1.0211             nan     0.0010    0.0002
##    480        1.0120             nan     0.0010    0.0002
##    500        1.0030             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0005
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2690             nan     0.0010    0.0004
##     80        1.2529             nan     0.0010    0.0004
##    100        1.2370             nan     0.0010    0.0003
##    120        1.2218             nan     0.0010    0.0003
##    140        1.2074             nan     0.0010    0.0003
##    160        1.1930             nan     0.0010    0.0003
##    180        1.1791             nan     0.0010    0.0003
##    200        1.1655             nan     0.0010    0.0003
##    220        1.1525             nan     0.0010    0.0003
##    240        1.1403             nan     0.0010    0.0003
##    260        1.1283             nan     0.0010    0.0002
##    280        1.1163             nan     0.0010    0.0002
##    300        1.1045             nan     0.0010    0.0002
##    320        1.0931             nan     0.0010    0.0003
##    340        1.0821             nan     0.0010    0.0003
##    360        1.0713             nan     0.0010    0.0002
##    380        1.0610             nan     0.0010    0.0002
##    400        1.0508             nan     0.0010    0.0002
##    420        1.0410             nan     0.0010    0.0002
##    440        1.0315             nan     0.0010    0.0002
##    460        1.0223             nan     0.0010    0.0002
##    480        1.0133             nan     0.0010    0.0002
##    500        1.0043             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0004
##     40        1.2866             nan     0.0010    0.0003
##     60        1.2701             nan     0.0010    0.0004
##     80        1.2541             nan     0.0010    0.0004
##    100        1.2385             nan     0.0010    0.0003
##    120        1.2236             nan     0.0010    0.0004
##    140        1.2090             nan     0.0010    0.0003
##    160        1.1945             nan     0.0010    0.0003
##    180        1.1805             nan     0.0010    0.0003
##    200        1.1673             nan     0.0010    0.0003
##    220        1.1544             nan     0.0010    0.0003
##    240        1.1418             nan     0.0010    0.0003
##    260        1.1299             nan     0.0010    0.0003
##    280        1.1185             nan     0.0010    0.0002
##    300        1.1071             nan     0.0010    0.0002
##    320        1.0961             nan     0.0010    0.0002
##    340        1.0853             nan     0.0010    0.0002
##    360        1.0748             nan     0.0010    0.0002
##    380        1.0647             nan     0.0010    0.0002
##    400        1.0545             nan     0.0010    0.0002
##    420        1.0452             nan     0.0010    0.0002
##    440        1.0358             nan     0.0010    0.0002
##    460        1.0267             nan     0.0010    0.0002
##    480        1.0177             nan     0.0010    0.0002
##    500        1.0091             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3136             nan     0.0100    0.0034
##      2        1.3047             nan     0.0100    0.0034
##      3        1.2965             nan     0.0100    0.0038
##      4        1.2901             nan     0.0100    0.0030
##      5        1.2829             nan     0.0100    0.0032
##      6        1.2749             nan     0.0100    0.0037
##      7        1.2672             nan     0.0100    0.0036
##      8        1.2599             nan     0.0100    0.0031
##      9        1.2532             nan     0.0100    0.0029
##     10        1.2462             nan     0.0100    0.0030
##     20        1.1827             nan     0.0100    0.0030
##     40        1.0806             nan     0.0100    0.0019
##     60        1.0011             nan     0.0100    0.0015
##     80        0.9360             nan     0.0100    0.0010
##    100        0.8844             nan     0.0100    0.0007
##    120        0.8427             nan     0.0100    0.0006
##    140        0.8076             nan     0.0100    0.0004
##    160        0.7778             nan     0.0100    0.0004
##    180        0.7528             nan     0.0100    0.0003
##    200        0.7307             nan     0.0100    0.0001
##    220        0.7120             nan     0.0100    0.0001
##    240        0.6950             nan     0.0100    0.0000
##    260        0.6793             nan     0.0100   -0.0001
##    280        0.6649             nan     0.0100    0.0001
##    300        0.6508             nan     0.0100    0.0001
##    320        0.6381             nan     0.0100    0.0002
##    340        0.6266             nan     0.0100   -0.0000
##    360        0.6162             nan     0.0100    0.0000
##    380        0.6064             nan     0.0100    0.0001
##    400        0.5970             nan     0.0100   -0.0001
##    420        0.5878             nan     0.0100    0.0002
##    440        0.5784             nan     0.0100    0.0001
##    460        0.5691             nan     0.0100    0.0000
##    480        0.5607             nan     0.0100    0.0000
##    500        0.5530             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0038
##      2        1.3042             nan     0.0100    0.0036
##      3        1.2962             nan     0.0100    0.0039
##      4        1.2882             nan     0.0100    0.0032
##      5        1.2813             nan     0.0100    0.0030
##      6        1.2747             nan     0.0100    0.0032
##      7        1.2681             nan     0.0100    0.0031
##      8        1.2606             nan     0.0100    0.0033
##      9        1.2544             nan     0.0100    0.0028
##     10        1.2461             nan     0.0100    0.0037
##     20        1.1796             nan     0.0100    0.0028
##     40        1.0759             nan     0.0100    0.0020
##     60        0.9970             nan     0.0100    0.0013
##     80        0.9352             nan     0.0100    0.0010
##    100        0.8836             nan     0.0100    0.0007
##    120        0.8416             nan     0.0100    0.0005
##    140        0.8062             nan     0.0100    0.0005
##    160        0.7780             nan     0.0100    0.0003
##    180        0.7532             nan     0.0100    0.0002
##    200        0.7312             nan     0.0100    0.0003
##    220        0.7128             nan     0.0100    0.0002
##    240        0.6959             nan     0.0100   -0.0000
##    260        0.6811             nan     0.0100    0.0002
##    280        0.6669             nan     0.0100   -0.0001
##    300        0.6536             nan     0.0100    0.0003
##    320        0.6425             nan     0.0100    0.0000
##    340        0.6314             nan     0.0100   -0.0001
##    360        0.6207             nan     0.0100   -0.0001
##    380        0.6113             nan     0.0100   -0.0000
##    400        0.6013             nan     0.0100    0.0000
##    420        0.5915             nan     0.0100   -0.0001
##    440        0.5827             nan     0.0100   -0.0000
##    460        0.5743             nan     0.0100   -0.0001
##    480        0.5658             nan     0.0100   -0.0000
##    500        0.5588             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3141             nan     0.0100    0.0031
##      2        1.3061             nan     0.0100    0.0036
##      3        1.2980             nan     0.0100    0.0039
##      4        1.2907             nan     0.0100    0.0033
##      5        1.2832             nan     0.0100    0.0031
##      6        1.2756             nan     0.0100    0.0037
##      7        1.2683             nan     0.0100    0.0031
##      8        1.2616             nan     0.0100    0.0030
##      9        1.2548             nan     0.0100    0.0031
##     10        1.2481             nan     0.0100    0.0030
##     20        1.1814             nan     0.0100    0.0031
##     40        1.0765             nan     0.0100    0.0020
##     60        0.9977             nan     0.0100    0.0015
##     80        0.9354             nan     0.0100    0.0012
##    100        0.8862             nan     0.0100    0.0009
##    120        0.8443             nan     0.0100    0.0004
##    140        0.8103             nan     0.0100    0.0005
##    160        0.7818             nan     0.0100    0.0004
##    180        0.7567             nan     0.0100    0.0003
##    200        0.7343             nan     0.0100    0.0001
##    220        0.7158             nan     0.0100    0.0000
##    240        0.6990             nan     0.0100    0.0002
##    260        0.6849             nan     0.0100    0.0002
##    280        0.6708             nan     0.0100   -0.0000
##    300        0.6572             nan     0.0100    0.0000
##    320        0.6456             nan     0.0100   -0.0001
##    340        0.6350             nan     0.0100   -0.0000
##    360        0.6245             nan     0.0100    0.0002
##    380        0.6150             nan     0.0100    0.0000
##    400        0.6057             nan     0.0100    0.0001
##    420        0.5960             nan     0.0100    0.0001
##    440        0.5888             nan     0.0100   -0.0001
##    460        0.5806             nan     0.0100   -0.0000
##    480        0.5719             nan     0.0100    0.0000
##    500        0.5639             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0037
##      2        1.3041             nan     0.0100    0.0039
##      3        1.2954             nan     0.0100    0.0038
##      4        1.2873             nan     0.0100    0.0034
##      5        1.2791             nan     0.0100    0.0038
##      6        1.2708             nan     0.0100    0.0037
##      7        1.2631             nan     0.0100    0.0035
##      8        1.2568             nan     0.0100    0.0027
##      9        1.2488             nan     0.0100    0.0036
##     10        1.2414             nan     0.0100    0.0033
##     20        1.1749             nan     0.0100    0.0030
##     40        1.0615             nan     0.0100    0.0021
##     60        0.9765             nan     0.0100    0.0017
##     80        0.9093             nan     0.0100    0.0013
##    100        0.8561             nan     0.0100    0.0008
##    120        0.8124             nan     0.0100    0.0007
##    140        0.7763             nan     0.0100    0.0003
##    160        0.7451             nan     0.0100    0.0003
##    180        0.7179             nan     0.0100    0.0003
##    200        0.6949             nan     0.0100    0.0001
##    220        0.6758             nan     0.0100    0.0002
##    240        0.6571             nan     0.0100    0.0001
##    260        0.6396             nan     0.0100   -0.0002
##    280        0.6238             nan     0.0100    0.0001
##    300        0.6086             nan     0.0100    0.0001
##    320        0.5952             nan     0.0100    0.0000
##    340        0.5811             nan     0.0100   -0.0000
##    360        0.5684             nan     0.0100   -0.0000
##    380        0.5578             nan     0.0100   -0.0002
##    400        0.5477             nan     0.0100    0.0000
##    420        0.5371             nan     0.0100   -0.0000
##    440        0.5271             nan     0.0100   -0.0002
##    460        0.5178             nan     0.0100   -0.0000
##    480        0.5089             nan     0.0100    0.0000
##    500        0.4993             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3125             nan     0.0100    0.0040
##      2        1.3039             nan     0.0100    0.0039
##      3        1.2952             nan     0.0100    0.0039
##      4        1.2871             nan     0.0100    0.0036
##      5        1.2790             nan     0.0100    0.0035
##      6        1.2706             nan     0.0100    0.0040
##      7        1.2629             nan     0.0100    0.0039
##      8        1.2557             nan     0.0100    0.0031
##      9        1.2479             nan     0.0100    0.0034
##     10        1.2394             nan     0.0100    0.0037
##     20        1.1715             nan     0.0100    0.0026
##     40        1.0632             nan     0.0100    0.0021
##     60        0.9780             nan     0.0100    0.0018
##     80        0.9127             nan     0.0100    0.0011
##    100        0.8579             nan     0.0100    0.0008
##    120        0.8153             nan     0.0100    0.0007
##    140        0.7789             nan     0.0100    0.0004
##    160        0.7475             nan     0.0100    0.0005
##    180        0.7228             nan     0.0100    0.0000
##    200        0.7005             nan     0.0100    0.0004
##    220        0.6795             nan     0.0100    0.0001
##    240        0.6597             nan     0.0100    0.0001
##    260        0.6430             nan     0.0100    0.0002
##    280        0.6275             nan     0.0100    0.0000
##    300        0.6130             nan     0.0100    0.0000
##    320        0.6014             nan     0.0100    0.0000
##    340        0.5885             nan     0.0100    0.0002
##    360        0.5769             nan     0.0100    0.0000
##    380        0.5661             nan     0.0100    0.0001
##    400        0.5549             nan     0.0100   -0.0001
##    420        0.5444             nan     0.0100    0.0000
##    440        0.5332             nan     0.0100    0.0000
##    460        0.5243             nan     0.0100    0.0001
##    480        0.5155             nan     0.0100   -0.0001
##    500        0.5059             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3112             nan     0.0100    0.0043
##      2        1.3032             nan     0.0100    0.0037
##      3        1.2943             nan     0.0100    0.0038
##      4        1.2859             nan     0.0100    0.0037
##      5        1.2772             nan     0.0100    0.0039
##      6        1.2697             nan     0.0100    0.0033
##      7        1.2620             nan     0.0100    0.0038
##      8        1.2545             nan     0.0100    0.0034
##      9        1.2469             nan     0.0100    0.0037
##     10        1.2394             nan     0.0100    0.0033
##     20        1.1725             nan     0.0100    0.0028
##     40        1.0631             nan     0.0100    0.0017
##     60        0.9781             nan     0.0100    0.0016
##     80        0.9124             nan     0.0100    0.0013
##    100        0.8603             nan     0.0100    0.0007
##    120        0.8178             nan     0.0100    0.0007
##    140        0.7817             nan     0.0100    0.0006
##    160        0.7523             nan     0.0100    0.0005
##    180        0.7269             nan     0.0100    0.0002
##    200        0.7045             nan     0.0100    0.0001
##    220        0.6860             nan     0.0100    0.0003
##    240        0.6692             nan     0.0100    0.0001
##    260        0.6529             nan     0.0100    0.0001
##    280        0.6376             nan     0.0100    0.0000
##    300        0.6238             nan     0.0100    0.0000
##    320        0.6118             nan     0.0100   -0.0001
##    340        0.6000             nan     0.0100   -0.0000
##    360        0.5880             nan     0.0100   -0.0000
##    380        0.5773             nan     0.0100   -0.0000
##    400        0.5671             nan     0.0100    0.0000
##    420        0.5574             nan     0.0100   -0.0000
##    440        0.5479             nan     0.0100   -0.0001
##    460        0.5383             nan     0.0100   -0.0000
##    480        0.5301             nan     0.0100   -0.0000
##    500        0.5207             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3125             nan     0.0100    0.0039
##      2        1.3030             nan     0.0100    0.0045
##      3        1.2939             nan     0.0100    0.0043
##      4        1.2849             nan     0.0100    0.0042
##      5        1.2763             nan     0.0100    0.0034
##      6        1.2683             nan     0.0100    0.0033
##      7        1.2604             nan     0.0100    0.0036
##      8        1.2517             nan     0.0100    0.0037
##      9        1.2437             nan     0.0100    0.0037
##     10        1.2361             nan     0.0100    0.0034
##     20        1.1626             nan     0.0100    0.0032
##     40        1.0481             nan     0.0100    0.0017
##     60        0.9607             nan     0.0100    0.0014
##     80        0.8911             nan     0.0100    0.0009
##    100        0.8375             nan     0.0100    0.0007
##    120        0.7922             nan     0.0100    0.0009
##    140        0.7550             nan     0.0100    0.0005
##    160        0.7230             nan     0.0100    0.0003
##    180        0.6937             nan     0.0100    0.0004
##    200        0.6686             nan     0.0100    0.0004
##    220        0.6469             nan     0.0100    0.0004
##    240        0.6263             nan     0.0100    0.0001
##    260        0.6075             nan     0.0100    0.0000
##    280        0.5902             nan     0.0100    0.0001
##    300        0.5749             nan     0.0100   -0.0000
##    320        0.5615             nan     0.0100    0.0001
##    340        0.5475             nan     0.0100    0.0001
##    360        0.5342             nan     0.0100   -0.0000
##    380        0.5219             nan     0.0100   -0.0000
##    400        0.5105             nan     0.0100    0.0000
##    420        0.4989             nan     0.0100    0.0000
##    440        0.4873             nan     0.0100   -0.0000
##    460        0.4768             nan     0.0100   -0.0001
##    480        0.4659             nan     0.0100    0.0000
##    500        0.4565             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0045
##      2        1.3033             nan     0.0100    0.0036
##      3        1.2941             nan     0.0100    0.0042
##      4        1.2861             nan     0.0100    0.0037
##      5        1.2777             nan     0.0100    0.0036
##      6        1.2684             nan     0.0100    0.0040
##      7        1.2614             nan     0.0100    0.0030
##      8        1.2537             nan     0.0100    0.0036
##      9        1.2454             nan     0.0100    0.0033
##     10        1.2377             nan     0.0100    0.0031
##     20        1.1657             nan     0.0100    0.0033
##     40        1.0509             nan     0.0100    0.0021
##     60        0.9630             nan     0.0100    0.0013
##     80        0.8950             nan     0.0100    0.0012
##    100        0.8401             nan     0.0100    0.0008
##    120        0.7958             nan     0.0100    0.0009
##    140        0.7568             nan     0.0100    0.0005
##    160        0.7248             nan     0.0100    0.0006
##    180        0.6968             nan     0.0100    0.0002
##    200        0.6722             nan     0.0100    0.0002
##    220        0.6508             nan     0.0100    0.0002
##    240        0.6321             nan     0.0100    0.0000
##    260        0.6141             nan     0.0100    0.0000
##    280        0.5973             nan     0.0100   -0.0000
##    300        0.5815             nan     0.0100    0.0001
##    320        0.5670             nan     0.0100    0.0001
##    340        0.5540             nan     0.0100   -0.0001
##    360        0.5416             nan     0.0100   -0.0001
##    380        0.5295             nan     0.0100    0.0000
##    400        0.5174             nan     0.0100    0.0001
##    420        0.5068             nan     0.0100   -0.0000
##    440        0.4967             nan     0.0100    0.0000
##    460        0.4873             nan     0.0100    0.0000
##    480        0.4779             nan     0.0100   -0.0000
##    500        0.4693             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0039
##      2        1.3034             nan     0.0100    0.0041
##      3        1.2943             nan     0.0100    0.0042
##      4        1.2857             nan     0.0100    0.0036
##      5        1.2774             nan     0.0100    0.0038
##      6        1.2693             nan     0.0100    0.0035
##      7        1.2610             nan     0.0100    0.0036
##      8        1.2536             nan     0.0100    0.0034
##      9        1.2452             nan     0.0100    0.0038
##     10        1.2369             nan     0.0100    0.0037
##     20        1.1664             nan     0.0100    0.0029
##     40        1.0525             nan     0.0100    0.0022
##     60        0.9675             nan     0.0100    0.0013
##     80        0.8987             nan     0.0100    0.0011
##    100        0.8449             nan     0.0100    0.0008
##    120        0.8013             nan     0.0100    0.0005
##    140        0.7625             nan     0.0100    0.0004
##    160        0.7318             nan     0.0100    0.0002
##    180        0.7061             nan     0.0100    0.0002
##    200        0.6831             nan     0.0100    0.0001
##    220        0.6619             nan     0.0100    0.0002
##    240        0.6425             nan     0.0100    0.0000
##    260        0.6248             nan     0.0100    0.0000
##    280        0.6079             nan     0.0100   -0.0000
##    300        0.5938             nan     0.0100    0.0000
##    320        0.5795             nan     0.0100    0.0001
##    340        0.5670             nan     0.0100   -0.0003
##    360        0.5551             nan     0.0100   -0.0000
##    380        0.5438             nan     0.0100    0.0001
##    400        0.5326             nan     0.0100   -0.0001
##    420        0.5208             nan     0.0100   -0.0001
##    440        0.5114             nan     0.0100   -0.0001
##    460        0.5008             nan     0.0100   -0.0000
##    480        0.4912             nan     0.0100   -0.0001
##    500        0.4823             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2458             nan     0.1000    0.0331
##      2        1.1915             nan     0.1000    0.0239
##      3        1.1326             nan     0.1000    0.0215
##      4        1.0847             nan     0.1000    0.0220
##      5        1.0401             nan     0.1000    0.0200
##      6        1.0028             nan     0.1000    0.0147
##      7        0.9636             nan     0.1000    0.0166
##      8        0.9380             nan     0.1000    0.0081
##      9        0.9121             nan     0.1000    0.0100
##     10        0.8861             nan     0.1000    0.0112
##     20        0.7392             nan     0.1000    0.0011
##     40        0.6112             nan     0.1000   -0.0021
##     60        0.5321             nan     0.1000   -0.0006
##     80        0.4658             nan     0.1000   -0.0008
##    100        0.4114             nan     0.1000   -0.0011
##    120        0.3715             nan     0.1000   -0.0007
##    140        0.3334             nan     0.1000   -0.0009
##    160        0.3005             nan     0.1000   -0.0003
##    180        0.2700             nan     0.1000   -0.0003
##    200        0.2428             nan     0.1000   -0.0006
##    220        0.2190             nan     0.1000   -0.0008
##    240        0.1988             nan     0.1000   -0.0013
##    260        0.1821             nan     0.1000   -0.0004
##    280        0.1647             nan     0.1000   -0.0003
##    300        0.1493             nan     0.1000   -0.0003
##    320        0.1360             nan     0.1000   -0.0008
##    340        0.1258             nan     0.1000   -0.0003
##    360        0.1150             nan     0.1000   -0.0007
##    380        0.1057             nan     0.1000   -0.0003
##    400        0.0976             nan     0.1000   -0.0001
##    420        0.0901             nan     0.1000   -0.0001
##    440        0.0828             nan     0.1000   -0.0001
##    460        0.0766             nan     0.1000   -0.0003
##    480        0.0710             nan     0.1000   -0.0002
##    500        0.0651             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2535             nan     0.1000    0.0320
##      2        1.1850             nan     0.1000    0.0282
##      3        1.1256             nan     0.1000    0.0279
##      4        1.0712             nan     0.1000    0.0233
##      5        1.0271             nan     0.1000    0.0156
##      6        0.9910             nan     0.1000    0.0130
##      7        0.9561             nan     0.1000    0.0140
##      8        0.9245             nan     0.1000    0.0119
##      9        0.8980             nan     0.1000    0.0083
##     10        0.8757             nan     0.1000    0.0082
##     20        0.7350             nan     0.1000    0.0021
##     40        0.6115             nan     0.1000   -0.0012
##     60        0.5290             nan     0.1000   -0.0010
##     80        0.4697             nan     0.1000   -0.0000
##    100        0.4256             nan     0.1000   -0.0015
##    120        0.3852             nan     0.1000   -0.0008
##    140        0.3450             nan     0.1000   -0.0006
##    160        0.3136             nan     0.1000   -0.0000
##    180        0.2833             nan     0.1000   -0.0004
##    200        0.2565             nan     0.1000   -0.0008
##    220        0.2350             nan     0.1000   -0.0005
##    240        0.2163             nan     0.1000   -0.0005
##    260        0.1990             nan     0.1000   -0.0005
##    280        0.1830             nan     0.1000   -0.0006
##    300        0.1683             nan     0.1000   -0.0011
##    320        0.1547             nan     0.1000   -0.0008
##    340        0.1418             nan     0.1000   -0.0004
##    360        0.1305             nan     0.1000   -0.0002
##    380        0.1194             nan     0.1000   -0.0004
##    400        0.1099             nan     0.1000   -0.0002
##    420        0.1004             nan     0.1000   -0.0004
##    440        0.0922             nan     0.1000   -0.0001
##    460        0.0855             nan     0.1000   -0.0001
##    480        0.0789             nan     0.1000   -0.0001
##    500        0.0728             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2415             nan     0.1000    0.0382
##      2        1.1776             nan     0.1000    0.0283
##      3        1.1214             nan     0.1000    0.0259
##      4        1.0725             nan     0.1000    0.0210
##      5        1.0299             nan     0.1000    0.0177
##      6        0.9931             nan     0.1000    0.0134
##      7        0.9608             nan     0.1000    0.0137
##      8        0.9339             nan     0.1000    0.0102
##      9        0.9052             nan     0.1000    0.0102
##     10        0.8818             nan     0.1000    0.0083
##     20        0.7271             nan     0.1000    0.0031
##     40        0.6087             nan     0.1000   -0.0004
##     60        0.5356             nan     0.1000    0.0000
##     80        0.4652             nan     0.1000   -0.0004
##    100        0.4191             nan     0.1000   -0.0016
##    120        0.3786             nan     0.1000   -0.0015
##    140        0.3416             nan     0.1000   -0.0004
##    160        0.3122             nan     0.1000   -0.0008
##    180        0.2824             nan     0.1000   -0.0010
##    200        0.2584             nan     0.1000   -0.0008
##    220        0.2391             nan     0.1000   -0.0008
##    240        0.2207             nan     0.1000   -0.0011
##    260        0.2030             nan     0.1000    0.0000
##    280        0.1869             nan     0.1000   -0.0005
##    300        0.1727             nan     0.1000   -0.0010
##    320        0.1582             nan     0.1000   -0.0002
##    340        0.1471             nan     0.1000   -0.0005
##    360        0.1369             nan     0.1000   -0.0006
##    380        0.1278             nan     0.1000   -0.0004
##    400        0.1192             nan     0.1000   -0.0005
##    420        0.1105             nan     0.1000   -0.0003
##    440        0.1020             nan     0.1000   -0.0003
##    460        0.0949             nan     0.1000   -0.0002
##    480        0.0881             nan     0.1000   -0.0003
##    500        0.0820             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2399             nan     0.1000    0.0318
##      2        1.1655             nan     0.1000    0.0299
##      3        1.1067             nan     0.1000    0.0240
##      4        1.0539             nan     0.1000    0.0217
##      5        1.0117             nan     0.1000    0.0181
##      6        0.9719             nan     0.1000    0.0166
##      7        0.9391             nan     0.1000    0.0122
##      8        0.9043             nan     0.1000    0.0131
##      9        0.8815             nan     0.1000    0.0088
##     10        0.8559             nan     0.1000    0.0098
##     20        0.7031             nan     0.1000    0.0016
##     40        0.5556             nan     0.1000   -0.0005
##     60        0.4734             nan     0.1000   -0.0016
##     80        0.4132             nan     0.1000   -0.0007
##    100        0.3566             nan     0.1000   -0.0014
##    120        0.3107             nan     0.1000   -0.0002
##    140        0.2686             nan     0.1000   -0.0002
##    160        0.2381             nan     0.1000   -0.0005
##    180        0.2076             nan     0.1000   -0.0004
##    200        0.1825             nan     0.1000    0.0003
##    220        0.1632             nan     0.1000   -0.0002
##    240        0.1468             nan     0.1000   -0.0006
##    260        0.1334             nan     0.1000   -0.0004
##    280        0.1201             nan     0.1000   -0.0004
##    300        0.1084             nan     0.1000   -0.0000
##    320        0.0971             nan     0.1000   -0.0003
##    340        0.0881             nan     0.1000   -0.0004
##    360        0.0798             nan     0.1000   -0.0003
##    380        0.0726             nan     0.1000   -0.0003
##    400        0.0657             nan     0.1000   -0.0001
##    420        0.0587             nan     0.1000   -0.0001
##    440        0.0529             nan     0.1000   -0.0002
##    460        0.0478             nan     0.1000   -0.0001
##    480        0.0427             nan     0.1000   -0.0000
##    500        0.0391             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2376             nan     0.1000    0.0343
##      2        1.1673             nan     0.1000    0.0325
##      3        1.1066             nan     0.1000    0.0252
##      4        1.0550             nan     0.1000    0.0191
##      5        1.0080             nan     0.1000    0.0191
##      6        0.9714             nan     0.1000    0.0147
##      7        0.9380             nan     0.1000    0.0138
##      8        0.9039             nan     0.1000    0.0128
##      9        0.8781             nan     0.1000    0.0086
##     10        0.8514             nan     0.1000    0.0101
##     20        0.6975             nan     0.1000    0.0031
##     40        0.5671             nan     0.1000    0.0004
##     60        0.4781             nan     0.1000   -0.0004
##     80        0.4137             nan     0.1000   -0.0002
##    100        0.3559             nan     0.1000    0.0004
##    120        0.3116             nan     0.1000   -0.0008
##    140        0.2702             nan     0.1000   -0.0005
##    160        0.2402             nan     0.1000   -0.0011
##    180        0.2082             nan     0.1000   -0.0008
##    200        0.1842             nan     0.1000   -0.0003
##    220        0.1649             nan     0.1000   -0.0003
##    240        0.1479             nan     0.1000   -0.0002
##    260        0.1323             nan     0.1000   -0.0003
##    280        0.1189             nan     0.1000   -0.0004
##    300        0.1075             nan     0.1000   -0.0002
##    320        0.0973             nan     0.1000   -0.0002
##    340        0.0871             nan     0.1000   -0.0003
##    360        0.0788             nan     0.1000   -0.0002
##    380        0.0726             nan     0.1000   -0.0005
##    400        0.0658             nan     0.1000   -0.0002
##    420        0.0600             nan     0.1000    0.0000
##    440        0.0545             nan     0.1000   -0.0002
##    460        0.0495             nan     0.1000   -0.0001
##    480        0.0446             nan     0.1000    0.0000
##    500        0.0407             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2380             nan     0.1000    0.0365
##      2        1.1705             nan     0.1000    0.0299
##      3        1.1123             nan     0.1000    0.0228
##      4        1.0602             nan     0.1000    0.0191
##      5        1.0095             nan     0.1000    0.0216
##      6        0.9681             nan     0.1000    0.0152
##      7        0.9358             nan     0.1000    0.0131
##      8        0.9065             nan     0.1000    0.0111
##      9        0.8777             nan     0.1000    0.0125
##     10        0.8551             nan     0.1000    0.0090
##     20        0.7100             nan     0.1000    0.0009
##     40        0.5780             nan     0.1000    0.0002
##     60        0.4880             nan     0.1000   -0.0006
##     80        0.4229             nan     0.1000   -0.0010
##    100        0.3682             nan     0.1000   -0.0016
##    120        0.3230             nan     0.1000   -0.0009
##    140        0.2857             nan     0.1000   -0.0016
##    160        0.2553             nan     0.1000   -0.0010
##    180        0.2271             nan     0.1000   -0.0006
##    200        0.2035             nan     0.1000   -0.0013
##    220        0.1778             nan     0.1000   -0.0001
##    240        0.1612             nan     0.1000   -0.0009
##    260        0.1441             nan     0.1000   -0.0002
##    280        0.1308             nan     0.1000   -0.0006
##    300        0.1192             nan     0.1000   -0.0003
##    320        0.1083             nan     0.1000   -0.0004
##    340        0.0991             nan     0.1000   -0.0001
##    360        0.0898             nan     0.1000   -0.0004
##    380        0.0813             nan     0.1000   -0.0003
##    400        0.0749             nan     0.1000   -0.0002
##    420        0.0679             nan     0.1000   -0.0001
##    440        0.0628             nan     0.1000   -0.0002
##    460        0.0571             nan     0.1000   -0.0002
##    480        0.0520             nan     0.1000   -0.0002
##    500        0.0468             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2388             nan     0.1000    0.0357
##      2        1.1737             nan     0.1000    0.0258
##      3        1.1102             nan     0.1000    0.0226
##      4        1.0559             nan     0.1000    0.0240
##      5        1.0070             nan     0.1000    0.0215
##      6        0.9601             nan     0.1000    0.0199
##      7        0.9237             nan     0.1000    0.0147
##      8        0.8940             nan     0.1000    0.0103
##      9        0.8633             nan     0.1000    0.0120
##     10        0.8355             nan     0.1000    0.0088
##     20        0.6673             nan     0.1000   -0.0001
##     40        0.5067             nan     0.1000   -0.0007
##     60        0.4133             nan     0.1000   -0.0000
##     80        0.3447             nan     0.1000   -0.0013
##    100        0.2920             nan     0.1000   -0.0005
##    120        0.2507             nan     0.1000   -0.0003
##    140        0.2152             nan     0.1000   -0.0001
##    160        0.1868             nan     0.1000   -0.0004
##    180        0.1606             nan     0.1000   -0.0009
##    200        0.1396             nan     0.1000   -0.0005
##    220        0.1223             nan     0.1000   -0.0004
##    240        0.1080             nan     0.1000    0.0000
##    260        0.0949             nan     0.1000    0.0001
##    280        0.0832             nan     0.1000   -0.0001
##    300        0.0739             nan     0.1000    0.0000
##    320        0.0649             nan     0.1000   -0.0001
##    340        0.0571             nan     0.1000   -0.0002
##    360        0.0503             nan     0.1000   -0.0002
##    380        0.0447             nan     0.1000    0.0000
##    400        0.0396             nan     0.1000   -0.0000
##    420        0.0358             nan     0.1000   -0.0001
##    440        0.0315             nan     0.1000   -0.0000
##    460        0.0280             nan     0.1000   -0.0001
##    480        0.0249             nan     0.1000   -0.0000
##    500        0.0221             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2388             nan     0.1000    0.0387
##      2        1.1634             nan     0.1000    0.0341
##      3        1.1048             nan     0.1000    0.0244
##      4        1.0513             nan     0.1000    0.0248
##      5        1.0047             nan     0.1000    0.0189
##      6        0.9565             nan     0.1000    0.0210
##      7        0.9196             nan     0.1000    0.0135
##      8        0.8867             nan     0.1000    0.0131
##      9        0.8601             nan     0.1000    0.0095
##     10        0.8350             nan     0.1000    0.0099
##     20        0.6728             nan     0.1000    0.0012
##     40        0.5167             nan     0.1000    0.0006
##     60        0.4234             nan     0.1000   -0.0020
##     80        0.3590             nan     0.1000   -0.0002
##    100        0.3009             nan     0.1000   -0.0014
##    120        0.2592             nan     0.1000   -0.0005
##    140        0.2240             nan     0.1000    0.0010
##    160        0.1923             nan     0.1000   -0.0005
##    180        0.1654             nan     0.1000   -0.0004
##    200        0.1433             nan     0.1000   -0.0004
##    220        0.1255             nan     0.1000   -0.0001
##    240        0.1114             nan     0.1000   -0.0002
##    260        0.0975             nan     0.1000   -0.0006
##    280        0.0860             nan     0.1000   -0.0003
##    300        0.0758             nan     0.1000   -0.0002
##    320        0.0674             nan     0.1000   -0.0004
##    340        0.0595             nan     0.1000   -0.0002
##    360        0.0524             nan     0.1000   -0.0001
##    380        0.0464             nan     0.1000   -0.0001
##    400        0.0412             nan     0.1000    0.0001
##    420        0.0367             nan     0.1000   -0.0000
##    440        0.0324             nan     0.1000   -0.0001
##    460        0.0293             nan     0.1000   -0.0001
##    480        0.0256             nan     0.1000   -0.0000
##    500        0.0225             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2323             nan     0.1000    0.0387
##      2        1.1627             nan     0.1000    0.0312
##      3        1.1052             nan     0.1000    0.0231
##      4        1.0532             nan     0.1000    0.0191
##      5        1.0070             nan     0.1000    0.0201
##      6        0.9681             nan     0.1000    0.0154
##      7        0.9332             nan     0.1000    0.0155
##      8        0.9038             nan     0.1000    0.0117
##      9        0.8751             nan     0.1000    0.0104
##     10        0.8500             nan     0.1000    0.0080
##     20        0.6781             nan     0.1000    0.0047
##     40        0.5396             nan     0.1000    0.0002
##     60        0.4520             nan     0.1000   -0.0017
##     80        0.3819             nan     0.1000   -0.0006
##    100        0.3242             nan     0.1000   -0.0017
##    120        0.2768             nan     0.1000   -0.0019
##    140        0.2398             nan     0.1000   -0.0009
##    160        0.2088             nan     0.1000   -0.0005
##    180        0.1826             nan     0.1000   -0.0004
##    200        0.1572             nan     0.1000   -0.0008
##    220        0.1384             nan     0.1000   -0.0007
##    240        0.1211             nan     0.1000   -0.0002
##    260        0.1075             nan     0.1000   -0.0007
##    280        0.0962             nan     0.1000   -0.0005
##    300        0.0834             nan     0.1000   -0.0002
##    320        0.0736             nan     0.1000   -0.0003
##    340        0.0656             nan     0.1000   -0.0002
##    360        0.0589             nan     0.1000   -0.0003
##    380        0.0528             nan     0.1000   -0.0002
##    400        0.0472             nan     0.1000   -0.0003
##    420        0.0421             nan     0.1000   -0.0001
##    440        0.0376             nan     0.1000   -0.0001
##    460        0.0336             nan     0.1000   -0.0002
##    480        0.0297             nan     0.1000   -0.0001
##    500        0.0267             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0003
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0003
##      7        1.3147             nan     0.0010    0.0003
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3130             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3041             nan     0.0010    0.0003
##     40        1.2878             nan     0.0010    0.0003
##     60        1.2725             nan     0.0010    0.0004
##     80        1.2575             nan     0.0010    0.0003
##    100        1.2425             nan     0.0010    0.0003
##    120        1.2282             nan     0.0010    0.0003
##    140        1.2145             nan     0.0010    0.0003
##    160        1.2009             nan     0.0010    0.0003
##    180        1.1880             nan     0.0010    0.0003
##    200        1.1753             nan     0.0010    0.0003
##    220        1.1634             nan     0.0010    0.0003
##    240        1.1514             nan     0.0010    0.0002
##    260        1.1396             nan     0.0010    0.0002
##    280        1.1282             nan     0.0010    0.0003
##    300        1.1172             nan     0.0010    0.0002
##    320        1.1065             nan     0.0010    0.0002
##    340        1.0961             nan     0.0010    0.0002
##    360        1.0860             nan     0.0010    0.0002
##    380        1.0760             nan     0.0010    0.0002
##    400        1.0666             nan     0.0010    0.0001
##    420        1.0571             nan     0.0010    0.0002
##    440        1.0480             nan     0.0010    0.0002
##    460        1.0389             nan     0.0010    0.0002
##    480        1.0305             nan     0.0010    0.0002
##    500        1.0222             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0003
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3041             nan     0.0010    0.0004
##     40        1.2878             nan     0.0010    0.0003
##     60        1.2726             nan     0.0010    0.0003
##     80        1.2572             nan     0.0010    0.0003
##    100        1.2427             nan     0.0010    0.0003
##    120        1.2282             nan     0.0010    0.0003
##    140        1.2145             nan     0.0010    0.0003
##    160        1.2012             nan     0.0010    0.0003
##    180        1.1885             nan     0.0010    0.0003
##    200        1.1759             nan     0.0010    0.0003
##    220        1.1639             nan     0.0010    0.0003
##    240        1.1520             nan     0.0010    0.0003
##    260        1.1406             nan     0.0010    0.0002
##    280        1.1293             nan     0.0010    0.0003
##    300        1.1184             nan     0.0010    0.0002
##    320        1.1078             nan     0.0010    0.0002
##    340        1.0973             nan     0.0010    0.0002
##    360        1.0870             nan     0.0010    0.0002
##    380        1.0770             nan     0.0010    0.0002
##    400        1.0672             nan     0.0010    0.0002
##    420        1.0578             nan     0.0010    0.0002
##    440        1.0487             nan     0.0010    0.0002
##    460        1.0400             nan     0.0010    0.0002
##    480        1.0310             nan     0.0010    0.0002
##    500        1.0224             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0003
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0003
##     20        1.3038             nan     0.0010    0.0004
##     40        1.2880             nan     0.0010    0.0004
##     60        1.2729             nan     0.0010    0.0003
##     80        1.2580             nan     0.0010    0.0003
##    100        1.2435             nan     0.0010    0.0004
##    120        1.2296             nan     0.0010    0.0003
##    140        1.2160             nan     0.0010    0.0003
##    160        1.2028             nan     0.0010    0.0003
##    180        1.1897             nan     0.0010    0.0003
##    200        1.1770             nan     0.0010    0.0003
##    220        1.1647             nan     0.0010    0.0003
##    240        1.1528             nan     0.0010    0.0002
##    260        1.1415             nan     0.0010    0.0003
##    280        1.1303             nan     0.0010    0.0002
##    300        1.1192             nan     0.0010    0.0003
##    320        1.1084             nan     0.0010    0.0002
##    340        1.0978             nan     0.0010    0.0003
##    360        1.0877             nan     0.0010    0.0002
##    380        1.0779             nan     0.0010    0.0002
##    400        1.0681             nan     0.0010    0.0002
##    420        1.0590             nan     0.0010    0.0002
##    440        1.0500             nan     0.0010    0.0002
##    460        1.0411             nan     0.0010    0.0002
##    480        1.0327             nan     0.0010    0.0002
##    500        1.0241             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3030             nan     0.0010    0.0004
##     40        1.2860             nan     0.0010    0.0004
##     60        1.2693             nan     0.0010    0.0004
##     80        1.2532             nan     0.0010    0.0004
##    100        1.2372             nan     0.0010    0.0004
##    120        1.2222             nan     0.0010    0.0003
##    140        1.2077             nan     0.0010    0.0003
##    160        1.1934             nan     0.0010    0.0003
##    180        1.1796             nan     0.0010    0.0004
##    200        1.1663             nan     0.0010    0.0003
##    220        1.1532             nan     0.0010    0.0002
##    240        1.1401             nan     0.0010    0.0003
##    260        1.1280             nan     0.0010    0.0003
##    280        1.1160             nan     0.0010    0.0003
##    300        1.1040             nan     0.0010    0.0003
##    320        1.0928             nan     0.0010    0.0003
##    340        1.0817             nan     0.0010    0.0002
##    360        1.0709             nan     0.0010    0.0002
##    380        1.0606             nan     0.0010    0.0002
##    400        1.0506             nan     0.0010    0.0002
##    420        1.0410             nan     0.0010    0.0002
##    440        1.0313             nan     0.0010    0.0002
##    460        1.0219             nan     0.0010    0.0002
##    480        1.0127             nan     0.0010    0.0002
##    500        1.0038             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0003
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3030             nan     0.0010    0.0004
##     40        1.2862             nan     0.0010    0.0004
##     60        1.2698             nan     0.0010    0.0003
##     80        1.2536             nan     0.0010    0.0004
##    100        1.2380             nan     0.0010    0.0003
##    120        1.2227             nan     0.0010    0.0004
##    140        1.2080             nan     0.0010    0.0003
##    160        1.1938             nan     0.0010    0.0003
##    180        1.1802             nan     0.0010    0.0003
##    200        1.1670             nan     0.0010    0.0003
##    220        1.1537             nan     0.0010    0.0003
##    240        1.1411             nan     0.0010    0.0003
##    260        1.1289             nan     0.0010    0.0003
##    280        1.1170             nan     0.0010    0.0003
##    300        1.1055             nan     0.0010    0.0003
##    320        1.0941             nan     0.0010    0.0002
##    340        1.0831             nan     0.0010    0.0003
##    360        1.0726             nan     0.0010    0.0002
##    380        1.0622             nan     0.0010    0.0002
##    400        1.0518             nan     0.0010    0.0002
##    420        1.0422             nan     0.0010    0.0002
##    440        1.0325             nan     0.0010    0.0002
##    460        1.0232             nan     0.0010    0.0002
##    480        1.0142             nan     0.0010    0.0002
##    500        1.0052             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2861             nan     0.0010    0.0003
##     60        1.2694             nan     0.0010    0.0003
##     80        1.2532             nan     0.0010    0.0004
##    100        1.2379             nan     0.0010    0.0004
##    120        1.2232             nan     0.0010    0.0003
##    140        1.2084             nan     0.0010    0.0003
##    160        1.1945             nan     0.0010    0.0003
##    180        1.1808             nan     0.0010    0.0003
##    200        1.1678             nan     0.0010    0.0003
##    220        1.1548             nan     0.0010    0.0003
##    240        1.1423             nan     0.0010    0.0003
##    260        1.1301             nan     0.0010    0.0003
##    280        1.1181             nan     0.0010    0.0002
##    300        1.1064             nan     0.0010    0.0002
##    320        1.0952             nan     0.0010    0.0002
##    340        1.0841             nan     0.0010    0.0003
##    360        1.0737             nan     0.0010    0.0002
##    380        1.0634             nan     0.0010    0.0002
##    400        1.0534             nan     0.0010    0.0002
##    420        1.0435             nan     0.0010    0.0002
##    440        1.0339             nan     0.0010    0.0002
##    460        1.0247             nan     0.0010    0.0002
##    480        1.0157             nan     0.0010    0.0002
##    500        1.0068             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3168             nan     0.0010    0.0004
##      5        1.3157             nan     0.0010    0.0004
##      6        1.3149             nan     0.0010    0.0003
##      7        1.3139             nan     0.0010    0.0004
##      8        1.3129             nan     0.0010    0.0004
##      9        1.3119             nan     0.0010    0.0004
##     10        1.3110             nan     0.0010    0.0004
##     20        1.3017             nan     0.0010    0.0004
##     40        1.2836             nan     0.0010    0.0004
##     60        1.2662             nan     0.0010    0.0004
##     80        1.2495             nan     0.0010    0.0004
##    100        1.2333             nan     0.0010    0.0003
##    120        1.2174             nan     0.0010    0.0003
##    140        1.2019             nan     0.0010    0.0003
##    160        1.1870             nan     0.0010    0.0004
##    180        1.1725             nan     0.0010    0.0003
##    200        1.1583             nan     0.0010    0.0003
##    220        1.1446             nan     0.0010    0.0003
##    240        1.1313             nan     0.0010    0.0003
##    260        1.1185             nan     0.0010    0.0003
##    280        1.1060             nan     0.0010    0.0003
##    300        1.0939             nan     0.0010    0.0003
##    320        1.0823             nan     0.0010    0.0002
##    340        1.0710             nan     0.0010    0.0003
##    360        1.0599             nan     0.0010    0.0002
##    380        1.0493             nan     0.0010    0.0002
##    400        1.0390             nan     0.0010    0.0002
##    420        1.0288             nan     0.0010    0.0002
##    440        1.0189             nan     0.0010    0.0002
##    460        1.0091             nan     0.0010    0.0002
##    480        0.9995             nan     0.0010    0.0002
##    500        0.9904             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0004
##      6        1.3150             nan     0.0010    0.0004
##      7        1.3141             nan     0.0010    0.0004
##      8        1.3132             nan     0.0010    0.0004
##      9        1.3122             nan     0.0010    0.0004
##     10        1.3113             nan     0.0010    0.0004
##     20        1.3021             nan     0.0010    0.0004
##     40        1.2841             nan     0.0010    0.0004
##     60        1.2665             nan     0.0010    0.0004
##     80        1.2494             nan     0.0010    0.0003
##    100        1.2331             nan     0.0010    0.0003
##    120        1.2175             nan     0.0010    0.0003
##    140        1.2021             nan     0.0010    0.0003
##    160        1.1870             nan     0.0010    0.0003
##    180        1.1732             nan     0.0010    0.0003
##    200        1.1592             nan     0.0010    0.0003
##    220        1.1459             nan     0.0010    0.0003
##    240        1.1329             nan     0.0010    0.0003
##    260        1.1200             nan     0.0010    0.0003
##    280        1.1076             nan     0.0010    0.0003
##    300        1.0958             nan     0.0010    0.0003
##    320        1.0842             nan     0.0010    0.0002
##    340        1.0728             nan     0.0010    0.0002
##    360        1.0616             nan     0.0010    0.0002
##    380        1.0511             nan     0.0010    0.0002
##    400        1.0406             nan     0.0010    0.0002
##    420        1.0300             nan     0.0010    0.0002
##    440        1.0201             nan     0.0010    0.0002
##    460        1.0103             nan     0.0010    0.0002
##    480        1.0006             nan     0.0010    0.0002
##    500        0.9917             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0005
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3124             nan     0.0010    0.0004
##     10        1.3115             nan     0.0010    0.0003
##     20        1.3023             nan     0.0010    0.0004
##     40        1.2847             nan     0.0010    0.0004
##     60        1.2675             nan     0.0010    0.0004
##     80        1.2509             nan     0.0010    0.0003
##    100        1.2349             nan     0.0010    0.0003
##    120        1.2193             nan     0.0010    0.0004
##    140        1.2042             nan     0.0010    0.0004
##    160        1.1895             nan     0.0010    0.0003
##    180        1.1752             nan     0.0010    0.0003
##    200        1.1615             nan     0.0010    0.0003
##    220        1.1483             nan     0.0010    0.0003
##    240        1.1350             nan     0.0010    0.0003
##    260        1.1224             nan     0.0010    0.0002
##    280        1.1101             nan     0.0010    0.0003
##    300        1.0982             nan     0.0010    0.0002
##    320        1.0866             nan     0.0010    0.0002
##    340        1.0753             nan     0.0010    0.0002
##    360        1.0643             nan     0.0010    0.0003
##    380        1.0536             nan     0.0010    0.0002
##    400        1.0434             nan     0.0010    0.0002
##    420        1.0336             nan     0.0010    0.0002
##    440        1.0239             nan     0.0010    0.0002
##    460        1.0144             nan     0.0010    0.0002
##    480        1.0050             nan     0.0010    0.0002
##    500        0.9959             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0036
##      2        1.3037             nan     0.0100    0.0036
##      3        1.2950             nan     0.0100    0.0047
##      4        1.2871             nan     0.0100    0.0038
##      5        1.2791             nan     0.0100    0.0036
##      6        1.2711             nan     0.0100    0.0037
##      7        1.2638             nan     0.0100    0.0037
##      8        1.2565             nan     0.0100    0.0031
##      9        1.2486             nan     0.0100    0.0035
##     10        1.2414             nan     0.0100    0.0033
##     20        1.1747             nan     0.0100    0.0025
##     40        1.0650             nan     0.0100    0.0020
##     60        0.9803             nan     0.0100    0.0015
##     80        0.9146             nan     0.0100    0.0011
##    100        0.8627             nan     0.0100    0.0005
##    120        0.8193             nan     0.0100    0.0008
##    140        0.7835             nan     0.0100    0.0003
##    160        0.7538             nan     0.0100    0.0003
##    180        0.7285             nan     0.0100    0.0002
##    200        0.7060             nan     0.0100    0.0002
##    220        0.6863             nan     0.0100    0.0003
##    240        0.6683             nan     0.0100    0.0001
##    260        0.6531             nan     0.0100    0.0001
##    280        0.6381             nan     0.0100    0.0003
##    300        0.6245             nan     0.0100   -0.0001
##    320        0.6113             nan     0.0100   -0.0000
##    340        0.5998             nan     0.0100    0.0001
##    360        0.5892             nan     0.0100    0.0001
##    380        0.5787             nan     0.0100    0.0001
##    400        0.5686             nan     0.0100    0.0001
##    420        0.5603             nan     0.0100   -0.0000
##    440        0.5521             nan     0.0100   -0.0001
##    460        0.5429             nan     0.0100   -0.0001
##    480        0.5348             nan     0.0100   -0.0001
##    500        0.5275             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3132             nan     0.0100    0.0036
##      2        1.3049             nan     0.0100    0.0032
##      3        1.2969             nan     0.0100    0.0034
##      4        1.2893             nan     0.0100    0.0033
##      5        1.2810             nan     0.0100    0.0041
##      6        1.2729             nan     0.0100    0.0038
##      7        1.2654             nan     0.0100    0.0035
##      8        1.2584             nan     0.0100    0.0029
##      9        1.2512             nan     0.0100    0.0033
##     10        1.2438             nan     0.0100    0.0030
##     20        1.1751             nan     0.0100    0.0028
##     40        1.0659             nan     0.0100    0.0024
##     60        0.9816             nan     0.0100    0.0014
##     80        0.9172             nan     0.0100    0.0013
##    100        0.8641             nan     0.0100    0.0007
##    120        0.8197             nan     0.0100    0.0006
##    140        0.7844             nan     0.0100    0.0006
##    160        0.7541             nan     0.0100    0.0004
##    180        0.7280             nan     0.0100    0.0002
##    200        0.7066             nan     0.0100    0.0002
##    220        0.6881             nan     0.0100    0.0003
##    240        0.6726             nan     0.0100   -0.0001
##    260        0.6572             nan     0.0100    0.0001
##    280        0.6429             nan     0.0100   -0.0000
##    300        0.6313             nan     0.0100    0.0000
##    320        0.6200             nan     0.0100    0.0000
##    340        0.6089             nan     0.0100   -0.0001
##    360        0.5982             nan     0.0100   -0.0000
##    380        0.5883             nan     0.0100   -0.0001
##    400        0.5783             nan     0.0100   -0.0001
##    420        0.5692             nan     0.0100    0.0000
##    440        0.5615             nan     0.0100   -0.0001
##    460        0.5535             nan     0.0100   -0.0001
##    480        0.5457             nan     0.0100   -0.0001
##    500        0.5384             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0042
##      2        1.3030             nan     0.0100    0.0035
##      3        1.2948             nan     0.0100    0.0037
##      4        1.2870             nan     0.0100    0.0035
##      5        1.2787             nan     0.0100    0.0039
##      6        1.2710             nan     0.0100    0.0037
##      7        1.2634             nan     0.0100    0.0030
##      8        1.2557             nan     0.0100    0.0035
##      9        1.2482             nan     0.0100    0.0036
##     10        1.2406             nan     0.0100    0.0031
##     20        1.1743             nan     0.0100    0.0028
##     40        1.0683             nan     0.0100    0.0018
##     60        0.9859             nan     0.0100    0.0015
##     80        0.9186             nan     0.0100    0.0009
##    100        0.8658             nan     0.0100    0.0008
##    120        0.8226             nan     0.0100    0.0007
##    140        0.7865             nan     0.0100    0.0008
##    160        0.7565             nan     0.0100    0.0003
##    180        0.7313             nan     0.0100    0.0003
##    200        0.7100             nan     0.0100    0.0002
##    220        0.6914             nan     0.0100    0.0003
##    240        0.6746             nan     0.0100    0.0001
##    260        0.6604             nan     0.0100    0.0001
##    280        0.6474             nan     0.0100    0.0001
##    300        0.6358             nan     0.0100    0.0000
##    320        0.6246             nan     0.0100   -0.0001
##    340        0.6142             nan     0.0100    0.0000
##    360        0.6057             nan     0.0100   -0.0001
##    380        0.5960             nan     0.0100   -0.0002
##    400        0.5872             nan     0.0100   -0.0000
##    420        0.5788             nan     0.0100    0.0000
##    440        0.5706             nan     0.0100   -0.0002
##    460        0.5635             nan     0.0100   -0.0001
##    480        0.5561             nan     0.0100   -0.0001
##    500        0.5488             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0042
##      2        1.3027             nan     0.0100    0.0041
##      3        1.2939             nan     0.0100    0.0038
##      4        1.2848             nan     0.0100    0.0037
##      5        1.2762             nan     0.0100    0.0034
##      6        1.2692             nan     0.0100    0.0032
##      7        1.2610             nan     0.0100    0.0037
##      8        1.2532             nan     0.0100    0.0035
##      9        1.2455             nan     0.0100    0.0036
##     10        1.2376             nan     0.0100    0.0035
##     20        1.1687             nan     0.0100    0.0027
##     40        1.0519             nan     0.0100    0.0021
##     60        0.9627             nan     0.0100    0.0016
##     80        0.8926             nan     0.0100    0.0010
##    100        0.8357             nan     0.0100    0.0011
##    120        0.7902             nan     0.0100    0.0008
##    140        0.7525             nan     0.0100    0.0005
##    160        0.7217             nan     0.0100    0.0002
##    180        0.6946             nan     0.0100    0.0003
##    200        0.6723             nan     0.0100    0.0001
##    220        0.6517             nan     0.0100    0.0001
##    240        0.6326             nan     0.0100    0.0002
##    260        0.6165             nan     0.0100    0.0001
##    280        0.6007             nan     0.0100   -0.0000
##    300        0.5861             nan     0.0100    0.0001
##    320        0.5726             nan     0.0100    0.0000
##    340        0.5610             nan     0.0100    0.0000
##    360        0.5490             nan     0.0100   -0.0001
##    380        0.5377             nan     0.0100   -0.0000
##    400        0.5269             nan     0.0100   -0.0000
##    420        0.5162             nan     0.0100   -0.0001
##    440        0.5060             nan     0.0100   -0.0000
##    460        0.4965             nan     0.0100   -0.0000
##    480        0.4874             nan     0.0100   -0.0000
##    500        0.4795             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3112             nan     0.0100    0.0041
##      2        1.3019             nan     0.0100    0.0040
##      3        1.2936             nan     0.0100    0.0037
##      4        1.2848             nan     0.0100    0.0042
##      5        1.2760             nan     0.0100    0.0036
##      6        1.2673             nan     0.0100    0.0043
##      7        1.2588             nan     0.0100    0.0038
##      8        1.2516             nan     0.0100    0.0034
##      9        1.2441             nan     0.0100    0.0034
##     10        1.2356             nan     0.0100    0.0035
##     20        1.1643             nan     0.0100    0.0026
##     40        1.0514             nan     0.0100    0.0025
##     60        0.9639             nan     0.0100    0.0018
##     80        0.8931             nan     0.0100    0.0012
##    100        0.8405             nan     0.0100    0.0008
##    120        0.7959             nan     0.0100    0.0009
##    140        0.7584             nan     0.0100    0.0006
##    160        0.7291             nan     0.0100    0.0001
##    180        0.7019             nan     0.0100    0.0002
##    200        0.6788             nan     0.0100    0.0003
##    220        0.6579             nan     0.0100    0.0003
##    240        0.6410             nan     0.0100    0.0001
##    260        0.6245             nan     0.0100    0.0001
##    280        0.6095             nan     0.0100    0.0001
##    300        0.5962             nan     0.0100   -0.0001
##    320        0.5832             nan     0.0100    0.0001
##    340        0.5708             nan     0.0100    0.0002
##    360        0.5595             nan     0.0100    0.0001
##    380        0.5487             nan     0.0100    0.0001
##    400        0.5383             nan     0.0100   -0.0000
##    420        0.5300             nan     0.0100   -0.0001
##    440        0.5196             nan     0.0100   -0.0001
##    460        0.5102             nan     0.0100    0.0000
##    480        0.5015             nan     0.0100   -0.0001
##    500        0.4928             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0040
##      2        1.3025             nan     0.0100    0.0038
##      3        1.2941             nan     0.0100    0.0041
##      4        1.2855             nan     0.0100    0.0039
##      5        1.2771             nan     0.0100    0.0029
##      6        1.2694             nan     0.0100    0.0039
##      7        1.2610             nan     0.0100    0.0038
##      8        1.2539             nan     0.0100    0.0030
##      9        1.2460             nan     0.0100    0.0034
##     10        1.2386             nan     0.0100    0.0035
##     20        1.1679             nan     0.0100    0.0031
##     40        1.0532             nan     0.0100    0.0023
##     60        0.9656             nan     0.0100    0.0016
##     80        0.8977             nan     0.0100    0.0010
##    100        0.8423             nan     0.0100    0.0008
##    120        0.7984             nan     0.0100    0.0007
##    140        0.7608             nan     0.0100    0.0006
##    160        0.7311             nan     0.0100    0.0003
##    180        0.7045             nan     0.0100    0.0000
##    200        0.6838             nan     0.0100    0.0003
##    220        0.6636             nan     0.0100    0.0001
##    240        0.6464             nan     0.0100    0.0000
##    260        0.6301             nan     0.0100    0.0000
##    280        0.6150             nan     0.0100   -0.0000
##    300        0.6023             nan     0.0100    0.0002
##    320        0.5905             nan     0.0100    0.0000
##    340        0.5788             nan     0.0100   -0.0001
##    360        0.5686             nan     0.0100   -0.0000
##    380        0.5582             nan     0.0100    0.0001
##    400        0.5483             nan     0.0100   -0.0000
##    420        0.5397             nan     0.0100    0.0000
##    440        0.5309             nan     0.0100   -0.0002
##    460        0.5221             nan     0.0100    0.0000
##    480        0.5130             nan     0.0100   -0.0000
##    500        0.5048             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3112             nan     0.0100    0.0041
##      2        1.3020             nan     0.0100    0.0039
##      3        1.2932             nan     0.0100    0.0039
##      4        1.2838             nan     0.0100    0.0042
##      5        1.2756             nan     0.0100    0.0033
##      6        1.2665             nan     0.0100    0.0042
##      7        1.2574             nan     0.0100    0.0038
##      8        1.2492             nan     0.0100    0.0035
##      9        1.2413             nan     0.0100    0.0031
##     10        1.2331             nan     0.0100    0.0035
##     20        1.1593             nan     0.0100    0.0031
##     40        1.0388             nan     0.0100    0.0020
##     60        0.9485             nan     0.0100    0.0016
##     80        0.8750             nan     0.0100    0.0010
##    100        0.8158             nan     0.0100    0.0008
##    120        0.7692             nan     0.0100    0.0005
##    140        0.7297             nan     0.0100    0.0002
##    160        0.6965             nan     0.0100    0.0004
##    180        0.6671             nan     0.0100    0.0004
##    200        0.6430             nan     0.0100    0.0003
##    220        0.6215             nan     0.0100    0.0003
##    240        0.5998             nan     0.0100    0.0001
##    260        0.5815             nan     0.0100    0.0000
##    280        0.5644             nan     0.0100    0.0001
##    300        0.5486             nan     0.0100    0.0002
##    320        0.5339             nan     0.0100   -0.0001
##    340        0.5202             nan     0.0100    0.0001
##    360        0.5078             nan     0.0100   -0.0001
##    380        0.4959             nan     0.0100    0.0001
##    400        0.4841             nan     0.0100   -0.0001
##    420        0.4738             nan     0.0100    0.0001
##    440        0.4645             nan     0.0100   -0.0001
##    460        0.4550             nan     0.0100   -0.0001
##    480        0.4458             nan     0.0100   -0.0002
##    500        0.4347             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3109             nan     0.0100    0.0040
##      2        1.3012             nan     0.0100    0.0049
##      3        1.2917             nan     0.0100    0.0043
##      4        1.2831             nan     0.0100    0.0039
##      5        1.2740             nan     0.0100    0.0043
##      6        1.2647             nan     0.0100    0.0038
##      7        1.2565             nan     0.0100    0.0037
##      8        1.2473             nan     0.0100    0.0040
##      9        1.2394             nan     0.0100    0.0032
##     10        1.2313             nan     0.0100    0.0036
##     20        1.1574             nan     0.0100    0.0031
##     40        1.0384             nan     0.0100    0.0023
##     60        0.9492             nan     0.0100    0.0016
##     80        0.8776             nan     0.0100    0.0014
##    100        0.8208             nan     0.0100    0.0010
##    120        0.7748             nan     0.0100    0.0008
##    140        0.7377             nan     0.0100    0.0005
##    160        0.7062             nan     0.0100    0.0004
##    180        0.6780             nan     0.0100    0.0004
##    200        0.6539             nan     0.0100    0.0003
##    220        0.6320             nan     0.0100    0.0002
##    240        0.6120             nan     0.0100    0.0002
##    260        0.5942             nan     0.0100    0.0001
##    280        0.5777             nan     0.0100   -0.0000
##    300        0.5636             nan     0.0100    0.0002
##    320        0.5500             nan     0.0100   -0.0001
##    340        0.5372             nan     0.0100   -0.0001
##    360        0.5248             nan     0.0100   -0.0001
##    380        0.5116             nan     0.0100    0.0000
##    400        0.5000             nan     0.0100   -0.0001
##    420        0.4887             nan     0.0100   -0.0001
##    440        0.4780             nan     0.0100    0.0000
##    460        0.4677             nan     0.0100   -0.0000
##    480        0.4579             nan     0.0100   -0.0000
##    500        0.4494             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3113             nan     0.0100    0.0045
##      2        1.3022             nan     0.0100    0.0041
##      3        1.2929             nan     0.0100    0.0038
##      4        1.2845             nan     0.0100    0.0038
##      5        1.2760             nan     0.0100    0.0034
##      6        1.2664             nan     0.0100    0.0040
##      7        1.2579             nan     0.0100    0.0038
##      8        1.2494             nan     0.0100    0.0032
##      9        1.2414             nan     0.0100    0.0033
##     10        1.2325             nan     0.0100    0.0036
##     20        1.1595             nan     0.0100    0.0034
##     40        1.0427             nan     0.0100    0.0021
##     60        0.9541             nan     0.0100    0.0016
##     80        0.8835             nan     0.0100    0.0009
##    100        0.8257             nan     0.0100    0.0009
##    120        0.7794             nan     0.0100    0.0007
##    140        0.7432             nan     0.0100    0.0003
##    160        0.7113             nan     0.0100    0.0002
##    180        0.6845             nan     0.0100    0.0002
##    200        0.6613             nan     0.0100   -0.0002
##    220        0.6413             nan     0.0100    0.0001
##    240        0.6224             nan     0.0100    0.0002
##    260        0.6039             nan     0.0100    0.0001
##    280        0.5885             nan     0.0100    0.0003
##    300        0.5736             nan     0.0100    0.0001
##    320        0.5609             nan     0.0100   -0.0001
##    340        0.5488             nan     0.0100   -0.0000
##    360        0.5367             nan     0.0100   -0.0000
##    380        0.5257             nan     0.0100    0.0000
##    400        0.5144             nan     0.0100    0.0000
##    420        0.5041             nan     0.0100   -0.0002
##    440        0.4943             nan     0.0100   -0.0002
##    460        0.4854             nan     0.0100   -0.0001
##    480        0.4757             nan     0.0100   -0.0001
##    500        0.4659             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2317             nan     0.1000    0.0382
##      2        1.1609             nan     0.1000    0.0319
##      3        1.1012             nan     0.1000    0.0230
##      4        1.0546             nan     0.1000    0.0210
##      5        1.0142             nan     0.1000    0.0170
##      6        0.9734             nan     0.1000    0.0182
##      7        0.9376             nan     0.1000    0.0143
##      8        0.9118             nan     0.1000    0.0101
##      9        0.8851             nan     0.1000    0.0104
##     10        0.8641             nan     0.1000    0.0071
##     20        0.7084             nan     0.1000    0.0030
##     40        0.5717             nan     0.1000   -0.0011
##     60        0.4943             nan     0.1000   -0.0011
##     80        0.4376             nan     0.1000    0.0000
##    100        0.3901             nan     0.1000   -0.0008
##    120        0.3501             nan     0.1000   -0.0012
##    140        0.3118             nan     0.1000    0.0001
##    160        0.2833             nan     0.1000   -0.0009
##    180        0.2542             nan     0.1000   -0.0003
##    200        0.2290             nan     0.1000   -0.0002
##    220        0.2093             nan     0.1000   -0.0004
##    240        0.1895             nan     0.1000    0.0004
##    260        0.1729             nan     0.1000   -0.0000
##    280        0.1572             nan     0.1000   -0.0006
##    300        0.1450             nan     0.1000   -0.0003
##    320        0.1334             nan     0.1000   -0.0000
##    340        0.1226             nan     0.1000   -0.0004
##    360        0.1114             nan     0.1000   -0.0002
##    380        0.1016             nan     0.1000   -0.0001
##    400        0.0934             nan     0.1000   -0.0002
##    420        0.0858             nan     0.1000   -0.0002
##    440        0.0800             nan     0.1000   -0.0001
##    460        0.0735             nan     0.1000   -0.0001
##    480        0.0680             nan     0.1000   -0.0004
##    500        0.0628             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2424             nan     0.1000    0.0370
##      2        1.1698             nan     0.1000    0.0316
##      3        1.1115             nan     0.1000    0.0271
##      4        1.0587             nan     0.1000    0.0226
##      5        1.0135             nan     0.1000    0.0223
##      6        0.9786             nan     0.1000    0.0128
##      7        0.9431             nan     0.1000    0.0156
##      8        0.9120             nan     0.1000    0.0121
##      9        0.8836             nan     0.1000    0.0115
##     10        0.8566             nan     0.1000    0.0102
##     20        0.7126             nan     0.1000    0.0022
##     40        0.5808             nan     0.1000   -0.0009
##     60        0.5091             nan     0.1000   -0.0011
##     80        0.4531             nan     0.1000   -0.0004
##    100        0.3989             nan     0.1000   -0.0014
##    120        0.3558             nan     0.1000   -0.0004
##    140        0.3250             nan     0.1000   -0.0003
##    160        0.2956             nan     0.1000   -0.0004
##    180        0.2698             nan     0.1000   -0.0007
##    200        0.2452             nan     0.1000   -0.0005
##    220        0.2246             nan     0.1000   -0.0002
##    240        0.2073             nan     0.1000    0.0000
##    260        0.1909             nan     0.1000   -0.0005
##    280        0.1737             nan     0.1000   -0.0003
##    300        0.1593             nan     0.1000   -0.0005
##    320        0.1460             nan     0.1000   -0.0003
##    340        0.1337             nan     0.1000   -0.0002
##    360        0.1238             nan     0.1000    0.0003
##    380        0.1138             nan     0.1000   -0.0006
##    400        0.1053             nan     0.1000   -0.0001
##    420        0.0971             nan     0.1000   -0.0004
##    440        0.0898             nan     0.1000   -0.0001
##    460        0.0830             nan     0.1000   -0.0002
##    480        0.0770             nan     0.1000   -0.0002
##    500        0.0718             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2406             nan     0.1000    0.0359
##      2        1.1777             nan     0.1000    0.0309
##      3        1.1210             nan     0.1000    0.0250
##      4        1.0721             nan     0.1000    0.0212
##      5        1.0292             nan     0.1000    0.0181
##      6        0.9870             nan     0.1000    0.0182
##      7        0.9525             nan     0.1000    0.0141
##      8        0.9197             nan     0.1000    0.0135
##      9        0.8914             nan     0.1000    0.0118
##     10        0.8641             nan     0.1000    0.0101
##     20        0.7186             nan     0.1000    0.0029
##     40        0.5927             nan     0.1000   -0.0012
##     60        0.5180             nan     0.1000    0.0002
##     80        0.4649             nan     0.1000   -0.0010
##    100        0.4102             nan     0.1000   -0.0007
##    120        0.3739             nan     0.1000   -0.0016
##    140        0.3376             nan     0.1000   -0.0007
##    160        0.3065             nan     0.1000   -0.0008
##    180        0.2809             nan     0.1000   -0.0013
##    200        0.2587             nan     0.1000   -0.0008
##    220        0.2378             nan     0.1000   -0.0010
##    240        0.2173             nan     0.1000   -0.0005
##    260        0.1983             nan     0.1000   -0.0003
##    280        0.1837             nan     0.1000   -0.0007
##    300        0.1711             nan     0.1000   -0.0005
##    320        0.1589             nan     0.1000   -0.0008
##    340        0.1484             nan     0.1000   -0.0006
##    360        0.1374             nan     0.1000   -0.0003
##    380        0.1268             nan     0.1000   -0.0002
##    400        0.1173             nan     0.1000   -0.0001
##    420        0.1086             nan     0.1000   -0.0002
##    440        0.1006             nan     0.1000   -0.0003
##    460        0.0927             nan     0.1000   -0.0005
##    480        0.0854             nan     0.1000   -0.0002
##    500        0.0789             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2268             nan     0.1000    0.0457
##      2        1.1601             nan     0.1000    0.0300
##      3        1.0936             nan     0.1000    0.0286
##      4        1.0402             nan     0.1000    0.0235
##      5        0.9945             nan     0.1000    0.0185
##      6        0.9552             nan     0.1000    0.0135
##      7        0.9243             nan     0.1000    0.0111
##      8        0.8939             nan     0.1000    0.0100
##      9        0.8679             nan     0.1000    0.0102
##     10        0.8462             nan     0.1000    0.0060
##     20        0.6707             nan     0.1000   -0.0001
##     40        0.5270             nan     0.1000    0.0014
##     60        0.4319             nan     0.1000    0.0002
##     80        0.3796             nan     0.1000   -0.0016
##    100        0.3275             nan     0.1000    0.0005
##    120        0.2838             nan     0.1000   -0.0002
##    140        0.2486             nan     0.1000   -0.0002
##    160        0.2166             nan     0.1000   -0.0005
##    180        0.1921             nan     0.1000   -0.0008
##    200        0.1700             nan     0.1000   -0.0009
##    220        0.1512             nan     0.1000   -0.0005
##    240        0.1339             nan     0.1000   -0.0001
##    260        0.1189             nan     0.1000   -0.0002
##    280        0.1069             nan     0.1000   -0.0003
##    300        0.0966             nan     0.1000   -0.0002
##    320        0.0873             nan     0.1000   -0.0002
##    340        0.0789             nan     0.1000   -0.0001
##    360        0.0716             nan     0.1000   -0.0001
##    380        0.0649             nan     0.1000   -0.0002
##    400        0.0594             nan     0.1000    0.0000
##    420        0.0539             nan     0.1000   -0.0001
##    440        0.0485             nan     0.1000   -0.0000
##    460        0.0441             nan     0.1000   -0.0002
##    480        0.0402             nan     0.1000   -0.0001
##    500        0.0365             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2358             nan     0.1000    0.0413
##      2        1.1594             nan     0.1000    0.0339
##      3        1.0990             nan     0.1000    0.0283
##      4        1.0473             nan     0.1000    0.0208
##      5        0.9968             nan     0.1000    0.0204
##      6        0.9544             nan     0.1000    0.0176
##      7        0.9158             nan     0.1000    0.0160
##      8        0.8864             nan     0.1000    0.0091
##      9        0.8577             nan     0.1000    0.0120
##     10        0.8328             nan     0.1000    0.0091
##     20        0.6825             nan     0.1000    0.0028
##     40        0.5438             nan     0.1000   -0.0020
##     60        0.4611             nan     0.1000   -0.0011
##     80        0.3940             nan     0.1000   -0.0005
##    100        0.3326             nan     0.1000   -0.0005
##    120        0.2868             nan     0.1000   -0.0015
##    140        0.2489             nan     0.1000   -0.0004
##    160        0.2187             nan     0.1000   -0.0010
##    180        0.1934             nan     0.1000   -0.0010
##    200        0.1716             nan     0.1000   -0.0004
##    220        0.1516             nan     0.1000   -0.0006
##    240        0.1351             nan     0.1000   -0.0008
##    260        0.1208             nan     0.1000   -0.0001
##    280        0.1083             nan     0.1000   -0.0004
##    300        0.0968             nan     0.1000   -0.0002
##    320        0.0879             nan     0.1000   -0.0006
##    340        0.0797             nan     0.1000   -0.0002
##    360        0.0716             nan     0.1000   -0.0001
##    380        0.0647             nan     0.1000   -0.0002
##    400        0.0590             nan     0.1000   -0.0002
##    420        0.0530             nan     0.1000   -0.0003
##    440        0.0487             nan     0.1000   -0.0001
##    460        0.0447             nan     0.1000   -0.0002
##    480        0.0410             nan     0.1000   -0.0001
##    500        0.0371             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2352             nan     0.1000    0.0386
##      2        1.1654             nan     0.1000    0.0314
##      3        1.0990             nan     0.1000    0.0295
##      4        1.0449             nan     0.1000    0.0228
##      5        0.9996             nan     0.1000    0.0200
##      6        0.9577             nan     0.1000    0.0178
##      7        0.9249             nan     0.1000    0.0118
##      8        0.8991             nan     0.1000    0.0091
##      9        0.8657             nan     0.1000    0.0110
##     10        0.8410             nan     0.1000    0.0092
##     20        0.6850             nan     0.1000    0.0001
##     40        0.5577             nan     0.1000   -0.0003
##     60        0.4830             nan     0.1000   -0.0013
##     80        0.4130             nan     0.1000   -0.0021
##    100        0.3626             nan     0.1000    0.0006
##    120        0.3188             nan     0.1000   -0.0015
##    140        0.2815             nan     0.1000   -0.0006
##    160        0.2493             nan     0.1000   -0.0013
##    180        0.2202             nan     0.1000   -0.0013
##    200        0.1964             nan     0.1000   -0.0002
##    220        0.1770             nan     0.1000   -0.0005
##    240        0.1611             nan     0.1000   -0.0007
##    260        0.1443             nan     0.1000   -0.0005
##    280        0.1300             nan     0.1000   -0.0008
##    300        0.1168             nan     0.1000   -0.0003
##    320        0.1069             nan     0.1000   -0.0005
##    340        0.0964             nan     0.1000   -0.0001
##    360        0.0870             nan     0.1000   -0.0003
##    380        0.0800             nan     0.1000   -0.0005
##    400        0.0729             nan     0.1000   -0.0002
##    420        0.0662             nan     0.1000   -0.0004
##    440        0.0608             nan     0.1000   -0.0004
##    460        0.0548             nan     0.1000   -0.0003
##    480        0.0496             nan     0.1000   -0.0001
##    500        0.0455             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2355             nan     0.1000    0.0332
##      2        1.1565             nan     0.1000    0.0372
##      3        1.0930             nan     0.1000    0.0277
##      4        1.0372             nan     0.1000    0.0231
##      5        0.9927             nan     0.1000    0.0176
##      6        0.9480             nan     0.1000    0.0155
##      7        0.9091             nan     0.1000    0.0170
##      8        0.8783             nan     0.1000    0.0124
##      9        0.8468             nan     0.1000    0.0109
##     10        0.8215             nan     0.1000    0.0096
##     20        0.6506             nan     0.1000    0.0017
##     40        0.4879             nan     0.1000   -0.0004
##     60        0.4003             nan     0.1000   -0.0001
##     80        0.3321             nan     0.1000   -0.0004
##    100        0.2853             nan     0.1000    0.0004
##    120        0.2420             nan     0.1000   -0.0002
##    140        0.2057             nan     0.1000    0.0001
##    160        0.1755             nan     0.1000   -0.0002
##    180        0.1505             nan     0.1000   -0.0002
##    200        0.1311             nan     0.1000   -0.0001
##    220        0.1144             nan     0.1000    0.0000
##    240        0.0999             nan     0.1000   -0.0004
##    260        0.0880             nan     0.1000   -0.0001
##    280        0.0772             nan     0.1000   -0.0002
##    300        0.0682             nan     0.1000   -0.0001
##    320        0.0602             nan     0.1000   -0.0002
##    340        0.0527             nan     0.1000   -0.0001
##    360        0.0466             nan     0.1000   -0.0001
##    380        0.0411             nan     0.1000   -0.0001
##    400        0.0369             nan     0.1000   -0.0001
##    420        0.0321             nan     0.1000   -0.0001
##    440        0.0287             nan     0.1000   -0.0001
##    460        0.0255             nan     0.1000   -0.0002
##    480        0.0227             nan     0.1000   -0.0001
##    500        0.0204             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2183             nan     0.1000    0.0402
##      2        1.1477             nan     0.1000    0.0283
##      3        1.0855             nan     0.1000    0.0331
##      4        1.0329             nan     0.1000    0.0230
##      5        0.9858             nan     0.1000    0.0181
##      6        0.9398             nan     0.1000    0.0156
##      7        0.9030             nan     0.1000    0.0142
##      8        0.8684             nan     0.1000    0.0106
##      9        0.8368             nan     0.1000    0.0115
##     10        0.8114             nan     0.1000    0.0090
##     20        0.6492             nan     0.1000    0.0032
##     40        0.5044             nan     0.1000    0.0003
##     60        0.4109             nan     0.1000   -0.0007
##     80        0.3421             nan     0.1000   -0.0004
##    100        0.2889             nan     0.1000   -0.0003
##    120        0.2409             nan     0.1000   -0.0005
##    140        0.2003             nan     0.1000   -0.0002
##    160        0.1719             nan     0.1000   -0.0003
##    180        0.1501             nan     0.1000   -0.0004
##    200        0.1312             nan     0.1000   -0.0004
##    220        0.1140             nan     0.1000   -0.0002
##    240        0.1001             nan     0.1000   -0.0004
##    260        0.0882             nan     0.1000   -0.0003
##    280        0.0783             nan     0.1000   -0.0002
##    300        0.0683             nan     0.1000   -0.0001
##    320        0.0609             nan     0.1000   -0.0003
##    340        0.0541             nan     0.1000   -0.0001
##    360        0.0480             nan     0.1000    0.0001
##    380        0.0429             nan     0.1000   -0.0001
##    400        0.0381             nan     0.1000   -0.0002
##    420        0.0342             nan     0.1000   -0.0001
##    440        0.0305             nan     0.1000   -0.0001
##    460        0.0271             nan     0.1000   -0.0001
##    480        0.0246             nan     0.1000   -0.0001
##    500        0.0218             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2368             nan     0.1000    0.0358
##      2        1.1576             nan     0.1000    0.0361
##      3        1.0924             nan     0.1000    0.0305
##      4        1.0330             nan     0.1000    0.0239
##      5        0.9790             nan     0.1000    0.0233
##      6        0.9393             nan     0.1000    0.0156
##      7        0.9022             nan     0.1000    0.0147
##      8        0.8726             nan     0.1000    0.0102
##      9        0.8453             nan     0.1000    0.0084
##     10        0.8206             nan     0.1000    0.0120
##     20        0.6593             nan     0.1000    0.0028
##     40        0.5233             nan     0.1000    0.0006
##     60        0.4412             nan     0.1000   -0.0017
##     80        0.3734             nan     0.1000   -0.0010
##    100        0.3172             nan     0.1000   -0.0006
##    120        0.2729             nan     0.1000   -0.0011
##    140        0.2367             nan     0.1000   -0.0009
##    160        0.2019             nan     0.1000   -0.0012
##    180        0.1769             nan     0.1000   -0.0003
##    200        0.1559             nan     0.1000   -0.0007
##    220        0.1388             nan     0.1000   -0.0005
##    240        0.1220             nan     0.1000   -0.0004
##    260        0.1062             nan     0.1000   -0.0002
##    280        0.0942             nan     0.1000   -0.0004
##    300        0.0836             nan     0.1000   -0.0002
##    320        0.0740             nan     0.1000   -0.0001
##    340        0.0664             nan     0.1000   -0.0003
##    360        0.0597             nan     0.1000   -0.0002
##    380        0.0534             nan     0.1000   -0.0003
##    400        0.0474             nan     0.1000   -0.0002
##    420        0.0423             nan     0.1000   -0.0002
##    440        0.0385             nan     0.1000   -0.0001
##    460        0.0344             nan     0.1000   -0.0002
##    480        0.0305             nan     0.1000   -0.0001
##    500        0.0274             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0003
##      6        1.3159             nan     0.0010    0.0003
##      7        1.3151             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0003
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3050             nan     0.0010    0.0004
##     40        1.2895             nan     0.0010    0.0003
##     60        1.2745             nan     0.0010    0.0004
##     80        1.2603             nan     0.0010    0.0003
##    100        1.2462             nan     0.0010    0.0003
##    120        1.2325             nan     0.0010    0.0003
##    140        1.2193             nan     0.0010    0.0003
##    160        1.2065             nan     0.0010    0.0003
##    180        1.1942             nan     0.0010    0.0002
##    200        1.1820             nan     0.0010    0.0002
##    220        1.1702             nan     0.0010    0.0002
##    240        1.1586             nan     0.0010    0.0003
##    260        1.1473             nan     0.0010    0.0002
##    280        1.1364             nan     0.0010    0.0003
##    300        1.1263             nan     0.0010    0.0002
##    320        1.1164             nan     0.0010    0.0002
##    340        1.1066             nan     0.0010    0.0002
##    360        1.0969             nan     0.0010    0.0002
##    380        1.0874             nan     0.0010    0.0002
##    400        1.0780             nan     0.0010    0.0002
##    420        1.0690             nan     0.0010    0.0002
##    440        1.0604             nan     0.0010    0.0002
##    460        1.0520             nan     0.0010    0.0002
##    480        1.0439             nan     0.0010    0.0001
##    500        1.0359             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0003
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0003
##      8        1.3144             nan     0.0010    0.0003
##      9        1.3136             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3051             nan     0.0010    0.0003
##     40        1.2898             nan     0.0010    0.0004
##     60        1.2748             nan     0.0010    0.0004
##     80        1.2602             nan     0.0010    0.0003
##    100        1.2463             nan     0.0010    0.0003
##    120        1.2327             nan     0.0010    0.0003
##    140        1.2200             nan     0.0010    0.0003
##    160        1.2070             nan     0.0010    0.0003
##    180        1.1945             nan     0.0010    0.0003
##    200        1.1826             nan     0.0010    0.0003
##    220        1.1712             nan     0.0010    0.0002
##    240        1.1602             nan     0.0010    0.0002
##    260        1.1493             nan     0.0010    0.0002
##    280        1.1384             nan     0.0010    0.0003
##    300        1.1277             nan     0.0010    0.0002
##    320        1.1175             nan     0.0010    0.0003
##    340        1.1079             nan     0.0010    0.0002
##    360        1.0983             nan     0.0010    0.0002
##    380        1.0892             nan     0.0010    0.0002
##    400        1.0801             nan     0.0010    0.0002
##    420        1.0710             nan     0.0010    0.0002
##    440        1.0624             nan     0.0010    0.0002
##    460        1.0539             nan     0.0010    0.0002
##    480        1.0456             nan     0.0010    0.0002
##    500        1.0376             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0003
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3044             nan     0.0010    0.0003
##     40        1.2889             nan     0.0010    0.0004
##     60        1.2740             nan     0.0010    0.0003
##     80        1.2595             nan     0.0010    0.0003
##    100        1.2457             nan     0.0010    0.0003
##    120        1.2322             nan     0.0010    0.0003
##    140        1.2190             nan     0.0010    0.0003
##    160        1.2062             nan     0.0010    0.0003
##    180        1.1941             nan     0.0010    0.0003
##    200        1.1822             nan     0.0010    0.0003
##    220        1.1704             nan     0.0010    0.0002
##    240        1.1592             nan     0.0010    0.0002
##    260        1.1486             nan     0.0010    0.0002
##    280        1.1379             nan     0.0010    0.0002
##    300        1.1273             nan     0.0010    0.0002
##    320        1.1173             nan     0.0010    0.0002
##    340        1.1076             nan     0.0010    0.0002
##    360        1.0977             nan     0.0010    0.0002
##    380        1.0885             nan     0.0010    0.0002
##    400        1.0795             nan     0.0010    0.0002
##    420        1.0707             nan     0.0010    0.0002
##    440        1.0623             nan     0.0010    0.0002
##    460        1.0541             nan     0.0010    0.0002
##    480        1.0459             nan     0.0010    0.0002
##    500        1.0379             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3035             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0004
##     60        1.2708             nan     0.0010    0.0004
##     80        1.2554             nan     0.0010    0.0003
##    100        1.2401             nan     0.0010    0.0003
##    120        1.2259             nan     0.0010    0.0003
##    140        1.2121             nan     0.0010    0.0002
##    160        1.1985             nan     0.0010    0.0003
##    180        1.1850             nan     0.0010    0.0003
##    200        1.1721             nan     0.0010    0.0003
##    220        1.1596             nan     0.0010    0.0003
##    240        1.1477             nan     0.0010    0.0003
##    260        1.1362             nan     0.0010    0.0002
##    280        1.1251             nan     0.0010    0.0002
##    300        1.1140             nan     0.0010    0.0002
##    320        1.1033             nan     0.0010    0.0002
##    340        1.0930             nan     0.0010    0.0002
##    360        1.0828             nan     0.0010    0.0002
##    380        1.0729             nan     0.0010    0.0002
##    400        1.0631             nan     0.0010    0.0002
##    420        1.0537             nan     0.0010    0.0002
##    440        1.0444             nan     0.0010    0.0002
##    460        1.0355             nan     0.0010    0.0002
##    480        1.0268             nan     0.0010    0.0002
##    500        1.0185             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3032             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0004
##     60        1.2707             nan     0.0010    0.0004
##     80        1.2554             nan     0.0010    0.0003
##    100        1.2404             nan     0.0010    0.0003
##    120        1.2262             nan     0.0010    0.0003
##    140        1.2121             nan     0.0010    0.0003
##    160        1.1988             nan     0.0010    0.0003
##    180        1.1857             nan     0.0010    0.0002
##    200        1.1726             nan     0.0010    0.0003
##    220        1.1602             nan     0.0010    0.0003
##    240        1.1483             nan     0.0010    0.0003
##    260        1.1366             nan     0.0010    0.0002
##    280        1.1254             nan     0.0010    0.0002
##    300        1.1143             nan     0.0010    0.0002
##    320        1.1036             nan     0.0010    0.0002
##    340        1.0935             nan     0.0010    0.0002
##    360        1.0838             nan     0.0010    0.0002
##    380        1.0739             nan     0.0010    0.0002
##    400        1.0642             nan     0.0010    0.0002
##    420        1.0550             nan     0.0010    0.0002
##    440        1.0459             nan     0.0010    0.0002
##    460        1.0372             nan     0.0010    0.0002
##    480        1.0285             nan     0.0010    0.0002
##    500        1.0201             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0003
##     40        1.2873             nan     0.0010    0.0003
##     60        1.2715             nan     0.0010    0.0004
##     80        1.2560             nan     0.0010    0.0003
##    100        1.2417             nan     0.0010    0.0004
##    120        1.2273             nan     0.0010    0.0003
##    140        1.2136             nan     0.0010    0.0003
##    160        1.2003             nan     0.0010    0.0003
##    180        1.1874             nan     0.0010    0.0003
##    200        1.1748             nan     0.0010    0.0003
##    220        1.1624             nan     0.0010    0.0003
##    240        1.1505             nan     0.0010    0.0003
##    260        1.1388             nan     0.0010    0.0002
##    280        1.1274             nan     0.0010    0.0003
##    300        1.1166             nan     0.0010    0.0002
##    320        1.1061             nan     0.0010    0.0002
##    340        1.0960             nan     0.0010    0.0002
##    360        1.0858             nan     0.0010    0.0002
##    380        1.0760             nan     0.0010    0.0002
##    400        1.0665             nan     0.0010    0.0002
##    420        1.0573             nan     0.0010    0.0002
##    440        1.0482             nan     0.0010    0.0002
##    460        1.0395             nan     0.0010    0.0002
##    480        1.0309             nan     0.0010    0.0002
##    500        1.0226             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2856             nan     0.0010    0.0004
##     60        1.2686             nan     0.0010    0.0004
##     80        1.2522             nan     0.0010    0.0003
##    100        1.2366             nan     0.0010    0.0004
##    120        1.2214             nan     0.0010    0.0003
##    140        1.2068             nan     0.0010    0.0003
##    160        1.1928             nan     0.0010    0.0003
##    180        1.1792             nan     0.0010    0.0003
##    200        1.1658             nan     0.0010    0.0003
##    220        1.1529             nan     0.0010    0.0003
##    240        1.1404             nan     0.0010    0.0003
##    260        1.1281             nan     0.0010    0.0002
##    280        1.1162             nan     0.0010    0.0002
##    300        1.1046             nan     0.0010    0.0003
##    320        1.0934             nan     0.0010    0.0002
##    340        1.0825             nan     0.0010    0.0002
##    360        1.0717             nan     0.0010    0.0002
##    380        1.0613             nan     0.0010    0.0001
##    400        1.0516             nan     0.0010    0.0002
##    420        1.0419             nan     0.0010    0.0002
##    440        1.0322             nan     0.0010    0.0002
##    460        1.0229             nan     0.0010    0.0002
##    480        1.0139             nan     0.0010    0.0001
##    500        1.0050             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0005
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0003
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2697             nan     0.0010    0.0003
##     80        1.2538             nan     0.0010    0.0004
##    100        1.2381             nan     0.0010    0.0003
##    120        1.2230             nan     0.0010    0.0003
##    140        1.2086             nan     0.0010    0.0003
##    160        1.1942             nan     0.0010    0.0003
##    180        1.1806             nan     0.0010    0.0003
##    200        1.1674             nan     0.0010    0.0003
##    220        1.1547             nan     0.0010    0.0003
##    240        1.1425             nan     0.0010    0.0002
##    260        1.1302             nan     0.0010    0.0003
##    280        1.1180             nan     0.0010    0.0002
##    300        1.1068             nan     0.0010    0.0002
##    320        1.0959             nan     0.0010    0.0002
##    340        1.0848             nan     0.0010    0.0002
##    360        1.0741             nan     0.0010    0.0002
##    380        1.0640             nan     0.0010    0.0002
##    400        1.0543             nan     0.0010    0.0002
##    420        1.0445             nan     0.0010    0.0002
##    440        1.0351             nan     0.0010    0.0002
##    460        1.0259             nan     0.0010    0.0002
##    480        1.0169             nan     0.0010    0.0002
##    500        1.0082             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3030             nan     0.0010    0.0004
##     40        1.2861             nan     0.0010    0.0004
##     60        1.2697             nan     0.0010    0.0004
##     80        1.2534             nan     0.0010    0.0004
##    100        1.2380             nan     0.0010    0.0003
##    120        1.2234             nan     0.0010    0.0003
##    140        1.2090             nan     0.0010    0.0003
##    160        1.1950             nan     0.0010    0.0003
##    180        1.1816             nan     0.0010    0.0003
##    200        1.1686             nan     0.0010    0.0003
##    220        1.1557             nan     0.0010    0.0003
##    240        1.1434             nan     0.0010    0.0002
##    260        1.1318             nan     0.0010    0.0003
##    280        1.1200             nan     0.0010    0.0003
##    300        1.1087             nan     0.0010    0.0002
##    320        1.0975             nan     0.0010    0.0003
##    340        1.0867             nan     0.0010    0.0003
##    360        1.0761             nan     0.0010    0.0002
##    380        1.0659             nan     0.0010    0.0002
##    400        1.0561             nan     0.0010    0.0002
##    420        1.0466             nan     0.0010    0.0002
##    440        1.0373             nan     0.0010    0.0002
##    460        1.0279             nan     0.0010    0.0002
##    480        1.0190             nan     0.0010    0.0002
##    500        1.0103             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3128             nan     0.0100    0.0038
##      2        1.3052             nan     0.0100    0.0036
##      3        1.2974             nan     0.0100    0.0036
##      4        1.2897             nan     0.0100    0.0034
##      5        1.2819             nan     0.0100    0.0037
##      6        1.2739             nan     0.0100    0.0037
##      7        1.2659             nan     0.0100    0.0036
##      8        1.2584             nan     0.0100    0.0035
##      9        1.2515             nan     0.0100    0.0034
##     10        1.2443             nan     0.0100    0.0030
##     20        1.1811             nan     0.0100    0.0025
##     40        1.0754             nan     0.0100    0.0017
##     60        0.9959             nan     0.0100    0.0013
##     80        0.9353             nan     0.0100    0.0008
##    100        0.8837             nan     0.0100    0.0008
##    120        0.8427             nan     0.0100    0.0003
##    140        0.8080             nan     0.0100    0.0003
##    160        0.7799             nan     0.0100    0.0003
##    180        0.7555             nan     0.0100    0.0003
##    200        0.7334             nan     0.0100    0.0003
##    220        0.7147             nan     0.0100    0.0001
##    240        0.6973             nan     0.0100    0.0001
##    260        0.6810             nan     0.0100    0.0001
##    280        0.6678             nan     0.0100    0.0001
##    300        0.6556             nan     0.0100    0.0002
##    320        0.6433             nan     0.0100    0.0000
##    340        0.6311             nan     0.0100    0.0002
##    360        0.6207             nan     0.0100    0.0001
##    380        0.6096             nan     0.0100   -0.0000
##    400        0.6000             nan     0.0100    0.0000
##    420        0.5906             nan     0.0100   -0.0001
##    440        0.5808             nan     0.0100    0.0001
##    460        0.5723             nan     0.0100    0.0001
##    480        0.5635             nan     0.0100   -0.0000
##    500        0.5548             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3135             nan     0.0100    0.0032
##      2        1.3058             nan     0.0100    0.0038
##      3        1.2980             nan     0.0100    0.0035
##      4        1.2902             nan     0.0100    0.0036
##      5        1.2817             nan     0.0100    0.0036
##      6        1.2751             nan     0.0100    0.0031
##      7        1.2677             nan     0.0100    0.0034
##      8        1.2601             nan     0.0100    0.0033
##      9        1.2533             nan     0.0100    0.0029
##     10        1.2463             nan     0.0100    0.0029
##     20        1.1820             nan     0.0100    0.0025
##     40        1.0800             nan     0.0100    0.0019
##     60        0.9970             nan     0.0100    0.0016
##     80        0.9344             nan     0.0100    0.0009
##    100        0.8853             nan     0.0100    0.0007
##    120        0.8445             nan     0.0100    0.0005
##    140        0.8113             nan     0.0100    0.0006
##    160        0.7832             nan     0.0100    0.0002
##    180        0.7594             nan     0.0100    0.0001
##    200        0.7395             nan     0.0100    0.0002
##    220        0.7208             nan     0.0100    0.0003
##    240        0.7033             nan     0.0100    0.0002
##    260        0.6879             nan     0.0100   -0.0000
##    280        0.6730             nan     0.0100    0.0001
##    300        0.6607             nan     0.0100    0.0000
##    320        0.6489             nan     0.0100    0.0001
##    340        0.6386             nan     0.0100    0.0000
##    360        0.6280             nan     0.0100   -0.0002
##    380        0.6186             nan     0.0100   -0.0001
##    400        0.6090             nan     0.0100    0.0001
##    420        0.6000             nan     0.0100   -0.0002
##    440        0.5924             nan     0.0100   -0.0000
##    460        0.5829             nan     0.0100    0.0002
##    480        0.5741             nan     0.0100   -0.0001
##    500        0.5660             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0035
##      2        1.3041             nan     0.0100    0.0037
##      3        1.2970             nan     0.0100    0.0032
##      4        1.2893             nan     0.0100    0.0039
##      5        1.2825             nan     0.0100    0.0031
##      6        1.2747             nan     0.0100    0.0037
##      7        1.2665             nan     0.0100    0.0037
##      8        1.2594             nan     0.0100    0.0035
##      9        1.2533             nan     0.0100    0.0027
##     10        1.2467             nan     0.0100    0.0029
##     20        1.1839             nan     0.0100    0.0025
##     40        1.0796             nan     0.0100    0.0019
##     60        0.9999             nan     0.0100    0.0015
##     80        0.9400             nan     0.0100    0.0009
##    100        0.8907             nan     0.0100    0.0009
##    120        0.8505             nan     0.0100    0.0005
##    140        0.8168             nan     0.0100    0.0007
##    160        0.7882             nan     0.0100    0.0004
##    180        0.7641             nan     0.0100    0.0003
##    200        0.7431             nan     0.0100    0.0002
##    220        0.7259             nan     0.0100    0.0002
##    240        0.7097             nan     0.0100    0.0001
##    260        0.6952             nan     0.0100    0.0002
##    280        0.6821             nan     0.0100    0.0001
##    300        0.6697             nan     0.0100   -0.0001
##    320        0.6581             nan     0.0100    0.0001
##    340        0.6482             nan     0.0100   -0.0001
##    360        0.6377             nan     0.0100   -0.0001
##    380        0.6274             nan     0.0100    0.0001
##    400        0.6185             nan     0.0100   -0.0001
##    420        0.6089             nan     0.0100   -0.0001
##    440        0.6002             nan     0.0100   -0.0000
##    460        0.5922             nan     0.0100    0.0001
##    480        0.5840             nan     0.0100   -0.0000
##    500        0.5757             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0042
##      2        1.3026             nan     0.0100    0.0041
##      3        1.2950             nan     0.0100    0.0034
##      4        1.2868             nan     0.0100    0.0039
##      5        1.2790             nan     0.0100    0.0035
##      6        1.2711             nan     0.0100    0.0034
##      7        1.2635             nan     0.0100    0.0036
##      8        1.2561             nan     0.0100    0.0031
##      9        1.2481             nan     0.0100    0.0031
##     10        1.2400             nan     0.0100    0.0038
##     20        1.1704             nan     0.0100    0.0026
##     40        1.0598             nan     0.0100    0.0022
##     60        0.9768             nan     0.0100    0.0014
##     80        0.9089             nan     0.0100    0.0010
##    100        0.8563             nan     0.0100    0.0010
##    120        0.8150             nan     0.0100    0.0003
##    140        0.7799             nan     0.0100    0.0005
##    160        0.7492             nan     0.0100    0.0001
##    180        0.7242             nan     0.0100    0.0000
##    200        0.7012             nan     0.0100    0.0001
##    220        0.6804             nan     0.0100    0.0001
##    240        0.6607             nan     0.0100    0.0003
##    260        0.6427             nan     0.0100    0.0001
##    280        0.6266             nan     0.0100    0.0001
##    300        0.6126             nan     0.0100    0.0000
##    320        0.5976             nan     0.0100    0.0001
##    340        0.5842             nan     0.0100    0.0000
##    360        0.5708             nan     0.0100    0.0001
##    380        0.5585             nan     0.0100    0.0001
##    400        0.5472             nan     0.0100   -0.0001
##    420        0.5363             nan     0.0100   -0.0001
##    440        0.5272             nan     0.0100    0.0000
##    460        0.5165             nan     0.0100   -0.0001
##    480        0.5074             nan     0.0100   -0.0001
##    500        0.4982             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0038
##      2        1.3037             nan     0.0100    0.0034
##      3        1.2949             nan     0.0100    0.0038
##      4        1.2866             nan     0.0100    0.0039
##      5        1.2783             nan     0.0100    0.0039
##      6        1.2699             nan     0.0100    0.0039
##      7        1.2625             nan     0.0100    0.0034
##      8        1.2547             nan     0.0100    0.0035
##      9        1.2470             nan     0.0100    0.0034
##     10        1.2395             nan     0.0100    0.0036
##     20        1.1732             nan     0.0100    0.0031
##     40        1.0655             nan     0.0100    0.0020
##     60        0.9813             nan     0.0100    0.0014
##     80        0.9166             nan     0.0100    0.0010
##    100        0.8645             nan     0.0100    0.0007
##    120        0.8211             nan     0.0100    0.0006
##    140        0.7867             nan     0.0100    0.0005
##    160        0.7567             nan     0.0100    0.0006
##    180        0.7316             nan     0.0100    0.0004
##    200        0.7071             nan     0.0100   -0.0001
##    220        0.6878             nan     0.0100    0.0002
##    240        0.6693             nan     0.0100    0.0001
##    260        0.6520             nan     0.0100    0.0001
##    280        0.6367             nan     0.0100   -0.0001
##    300        0.6226             nan     0.0100    0.0001
##    320        0.6092             nan     0.0100    0.0001
##    340        0.5967             nan     0.0100   -0.0001
##    360        0.5851             nan     0.0100    0.0001
##    380        0.5741             nan     0.0100    0.0000
##    400        0.5629             nan     0.0100   -0.0000
##    420        0.5520             nan     0.0100   -0.0001
##    440        0.5424             nan     0.0100    0.0001
##    460        0.5326             nan     0.0100   -0.0001
##    480        0.5228             nan     0.0100    0.0001
##    500        0.5138             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0037
##      2        1.3036             nan     0.0100    0.0036
##      3        1.2943             nan     0.0100    0.0041
##      4        1.2867             nan     0.0100    0.0030
##      5        1.2791             nan     0.0100    0.0036
##      6        1.2714             nan     0.0100    0.0036
##      7        1.2643             nan     0.0100    0.0034
##      8        1.2568             nan     0.0100    0.0032
##      9        1.2489             nan     0.0100    0.0037
##     10        1.2413             nan     0.0100    0.0031
##     20        1.1741             nan     0.0100    0.0027
##     40        1.0649             nan     0.0100    0.0022
##     60        0.9831             nan     0.0100    0.0016
##     80        0.9197             nan     0.0100    0.0010
##    100        0.8690             nan     0.0100    0.0007
##    120        0.8286             nan     0.0100    0.0002
##    140        0.7935             nan     0.0100    0.0004
##    160        0.7653             nan     0.0100    0.0002
##    180        0.7397             nan     0.0100    0.0002
##    200        0.7180             nan     0.0100    0.0001
##    220        0.6974             nan     0.0100    0.0001
##    240        0.6792             nan     0.0100   -0.0001
##    260        0.6639             nan     0.0100   -0.0000
##    280        0.6477             nan     0.0100    0.0001
##    300        0.6351             nan     0.0100    0.0000
##    320        0.6221             nan     0.0100   -0.0000
##    340        0.6099             nan     0.0100    0.0001
##    360        0.5975             nan     0.0100    0.0001
##    380        0.5854             nan     0.0100    0.0000
##    400        0.5751             nan     0.0100   -0.0001
##    420        0.5640             nan     0.0100    0.0001
##    440        0.5553             nan     0.0100   -0.0001
##    460        0.5457             nan     0.0100   -0.0002
##    480        0.5364             nan     0.0100   -0.0000
##    500        0.5272             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3107             nan     0.0100    0.0046
##      2        1.3020             nan     0.0100    0.0039
##      3        1.2926             nan     0.0100    0.0039
##      4        1.2833             nan     0.0100    0.0041
##      5        1.2756             nan     0.0100    0.0036
##      6        1.2675             nan     0.0100    0.0036
##      7        1.2595             nan     0.0100    0.0036
##      8        1.2513             nan     0.0100    0.0038
##      9        1.2435             nan     0.0100    0.0031
##     10        1.2362             nan     0.0100    0.0032
##     20        1.1667             nan     0.0100    0.0025
##     40        1.0518             nan     0.0100    0.0024
##     60        0.9638             nan     0.0100    0.0015
##     80        0.8947             nan     0.0100    0.0008
##    100        0.8407             nan     0.0100    0.0009
##    120        0.7938             nan     0.0100    0.0007
##    140        0.7569             nan     0.0100    0.0004
##    160        0.7239             nan     0.0100    0.0003
##    180        0.6948             nan     0.0100    0.0004
##    200        0.6710             nan     0.0100    0.0002
##    220        0.6485             nan     0.0100    0.0002
##    240        0.6293             nan     0.0100    0.0000
##    260        0.6109             nan     0.0100    0.0002
##    280        0.5931             nan     0.0100    0.0002
##    300        0.5770             nan     0.0100   -0.0001
##    320        0.5621             nan     0.0100    0.0001
##    340        0.5481             nan     0.0100    0.0002
##    360        0.5348             nan     0.0100    0.0001
##    380        0.5227             nan     0.0100    0.0000
##    400        0.5113             nan     0.0100   -0.0000
##    420        0.5002             nan     0.0100    0.0000
##    440        0.4897             nan     0.0100    0.0001
##    460        0.4786             nan     0.0100   -0.0001
##    480        0.4687             nan     0.0100   -0.0000
##    500        0.4577             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0043
##      2        1.3029             nan     0.0100    0.0040
##      3        1.2937             nan     0.0100    0.0040
##      4        1.2847             nan     0.0100    0.0044
##      5        1.2762             nan     0.0100    0.0036
##      6        1.2680             nan     0.0100    0.0036
##      7        1.2600             nan     0.0100    0.0035
##      8        1.2523             nan     0.0100    0.0032
##      9        1.2436             nan     0.0100    0.0038
##     10        1.2360             nan     0.0100    0.0032
##     20        1.1692             nan     0.0100    0.0030
##     40        1.0548             nan     0.0100    0.0022
##     60        0.9681             nan     0.0100    0.0017
##     80        0.8999             nan     0.0100    0.0010
##    100        0.8461             nan     0.0100    0.0004
##    120        0.8019             nan     0.0100    0.0007
##    140        0.7644             nan     0.0100    0.0003
##    160        0.7324             nan     0.0100    0.0003
##    180        0.7047             nan     0.0100    0.0003
##    200        0.6793             nan     0.0100    0.0001
##    220        0.6577             nan     0.0100    0.0002
##    240        0.6387             nan     0.0100    0.0001
##    260        0.6206             nan     0.0100   -0.0000
##    280        0.6051             nan     0.0100   -0.0000
##    300        0.5896             nan     0.0100   -0.0001
##    320        0.5743             nan     0.0100    0.0004
##    340        0.5606             nan     0.0100    0.0000
##    360        0.5475             nan     0.0100    0.0000
##    380        0.5341             nan     0.0100    0.0001
##    400        0.5224             nan     0.0100   -0.0000
##    420        0.5111             nan     0.0100    0.0000
##    440        0.5003             nan     0.0100   -0.0001
##    460        0.4901             nan     0.0100   -0.0000
##    480        0.4788             nan     0.0100    0.0001
##    500        0.4684             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3110             nan     0.0100    0.0043
##      2        1.3022             nan     0.0100    0.0039
##      3        1.2932             nan     0.0100    0.0043
##      4        1.2851             nan     0.0100    0.0032
##      5        1.2771             nan     0.0100    0.0036
##      6        1.2694             nan     0.0100    0.0034
##      7        1.2612             nan     0.0100    0.0036
##      8        1.2531             nan     0.0100    0.0035
##      9        1.2452             nan     0.0100    0.0038
##     10        1.2378             nan     0.0100    0.0032
##     20        1.1686             nan     0.0100    0.0029
##     40        1.0545             nan     0.0100    0.0022
##     60        0.9691             nan     0.0100    0.0015
##     80        0.9042             nan     0.0100    0.0014
##    100        0.8516             nan     0.0100    0.0010
##    120        0.8076             nan     0.0100    0.0006
##    140        0.7730             nan     0.0100    0.0007
##    160        0.7426             nan     0.0100    0.0005
##    180        0.7149             nan     0.0100    0.0004
##    200        0.6899             nan     0.0100    0.0003
##    220        0.6697             nan     0.0100    0.0000
##    240        0.6511             nan     0.0100   -0.0001
##    260        0.6341             nan     0.0100    0.0001
##    280        0.6189             nan     0.0100    0.0002
##    300        0.6031             nan     0.0100   -0.0000
##    320        0.5894             nan     0.0100   -0.0000
##    340        0.5755             nan     0.0100    0.0000
##    360        0.5632             nan     0.0100    0.0001
##    380        0.5513             nan     0.0100   -0.0000
##    400        0.5406             nan     0.0100    0.0001
##    420        0.5299             nan     0.0100   -0.0002
##    440        0.5191             nan     0.0100   -0.0001
##    460        0.5086             nan     0.0100   -0.0000
##    480        0.4989             nan     0.0100   -0.0000
##    500        0.4892             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2377             nan     0.1000    0.0394
##      2        1.1647             nan     0.1000    0.0329
##      3        1.1150             nan     0.1000    0.0207
##      4        1.0740             nan     0.1000    0.0184
##      5        1.0333             nan     0.1000    0.0198
##      6        0.9989             nan     0.1000    0.0106
##      7        0.9726             nan     0.1000    0.0074
##      8        0.9407             nan     0.1000    0.0112
##      9        0.9115             nan     0.1000    0.0129
##     10        0.8886             nan     0.1000    0.0096
##     20        0.7392             nan     0.1000    0.0025
##     40        0.6029             nan     0.1000   -0.0002
##     60        0.5196             nan     0.1000   -0.0012
##     80        0.4498             nan     0.1000    0.0003
##    100        0.3879             nan     0.1000    0.0005
##    120        0.3468             nan     0.1000   -0.0006
##    140        0.3144             nan     0.1000   -0.0008
##    160        0.2830             nan     0.1000   -0.0001
##    180        0.2573             nan     0.1000   -0.0002
##    200        0.2325             nan     0.1000   -0.0002
##    220        0.2111             nan     0.1000   -0.0006
##    240        0.1917             nan     0.1000   -0.0000
##    260        0.1740             nan     0.1000   -0.0000
##    280        0.1597             nan     0.1000   -0.0002
##    300        0.1455             nan     0.1000    0.0001
##    320        0.1328             nan     0.1000   -0.0003
##    340        0.1231             nan     0.1000    0.0000
##    360        0.1135             nan     0.1000   -0.0003
##    380        0.1043             nan     0.1000   -0.0002
##    400        0.0957             nan     0.1000    0.0001
##    420        0.0893             nan     0.1000   -0.0002
##    440        0.0822             nan     0.1000   -0.0002
##    460        0.0763             nan     0.1000   -0.0000
##    480        0.0704             nan     0.1000   -0.0000
##    500        0.0649             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2451             nan     0.1000    0.0349
##      2        1.1749             nan     0.1000    0.0335
##      3        1.1207             nan     0.1000    0.0219
##      4        1.0786             nan     0.1000    0.0180
##      5        1.0403             nan     0.1000    0.0138
##      6        1.0012             nan     0.1000    0.0170
##      7        0.9653             nan     0.1000    0.0147
##      8        0.9329             nan     0.1000    0.0127
##      9        0.9056             nan     0.1000    0.0112
##     10        0.8802             nan     0.1000    0.0106
##     20        0.7353             nan     0.1000    0.0017
##     40        0.6077             nan     0.1000   -0.0009
##     60        0.5234             nan     0.1000   -0.0009
##     80        0.4588             nan     0.1000   -0.0001
##    100        0.4046             nan     0.1000    0.0000
##    120        0.3583             nan     0.1000   -0.0009
##    140        0.3236             nan     0.1000   -0.0011
##    160        0.2920             nan     0.1000   -0.0014
##    180        0.2670             nan     0.1000   -0.0008
##    200        0.2430             nan     0.1000   -0.0006
##    220        0.2230             nan     0.1000   -0.0004
##    240        0.2042             nan     0.1000   -0.0005
##    260        0.1858             nan     0.1000   -0.0008
##    280        0.1710             nan     0.1000   -0.0004
##    300        0.1558             nan     0.1000   -0.0003
##    320        0.1418             nan     0.1000   -0.0004
##    340        0.1305             nan     0.1000   -0.0003
##    360        0.1202             nan     0.1000   -0.0006
##    380        0.1099             nan     0.1000   -0.0005
##    400        0.1011             nan     0.1000   -0.0001
##    420        0.0932             nan     0.1000   -0.0002
##    440        0.0862             nan     0.1000   -0.0001
##    460        0.0795             nan     0.1000   -0.0003
##    480        0.0734             nan     0.1000   -0.0003
##    500        0.0683             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2538             nan     0.1000    0.0265
##      2        1.1924             nan     0.1000    0.0268
##      3        1.1294             nan     0.1000    0.0274
##      4        1.0806             nan     0.1000    0.0233
##      5        1.0365             nan     0.1000    0.0205
##      6        1.0025             nan     0.1000    0.0152
##      7        0.9715             nan     0.1000    0.0114
##      8        0.9405             nan     0.1000    0.0142
##      9        0.9168             nan     0.1000    0.0062
##     10        0.8950             nan     0.1000    0.0091
##     20        0.7542             nan     0.1000    0.0015
##     40        0.6220             nan     0.1000    0.0018
##     60        0.5430             nan     0.1000    0.0003
##     80        0.4906             nan     0.1000   -0.0014
##    100        0.4405             nan     0.1000   -0.0008
##    120        0.3928             nan     0.1000   -0.0007
##    140        0.3533             nan     0.1000   -0.0007
##    160        0.3195             nan     0.1000   -0.0010
##    180        0.2912             nan     0.1000   -0.0010
##    200        0.2643             nan     0.1000   -0.0008
##    220        0.2390             nan     0.1000   -0.0012
##    240        0.2166             nan     0.1000   -0.0001
##    260        0.1984             nan     0.1000   -0.0012
##    280        0.1845             nan     0.1000   -0.0008
##    300        0.1683             nan     0.1000   -0.0004
##    320        0.1551             nan     0.1000   -0.0008
##    340        0.1421             nan     0.1000   -0.0003
##    360        0.1317             nan     0.1000   -0.0005
##    380        0.1221             nan     0.1000   -0.0001
##    400        0.1134             nan     0.1000   -0.0006
##    420        0.1050             nan     0.1000   -0.0003
##    440        0.0983             nan     0.1000   -0.0004
##    460        0.0917             nan     0.1000   -0.0002
##    480        0.0844             nan     0.1000   -0.0003
##    500        0.0787             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2352             nan     0.1000    0.0369
##      2        1.1665             nan     0.1000    0.0337
##      3        1.1090             nan     0.1000    0.0255
##      4        1.0583             nan     0.1000    0.0245
##      5        1.0133             nan     0.1000    0.0178
##      6        0.9767             nan     0.1000    0.0132
##      7        0.9436             nan     0.1000    0.0124
##      8        0.9075             nan     0.1000    0.0136
##      9        0.8817             nan     0.1000    0.0099
##     10        0.8601             nan     0.1000    0.0087
##     20        0.7040             nan     0.1000    0.0015
##     40        0.5596             nan     0.1000    0.0003
##     60        0.4619             nan     0.1000    0.0008
##     80        0.3900             nan     0.1000   -0.0007
##    100        0.3409             nan     0.1000   -0.0001
##    120        0.2949             nan     0.1000   -0.0011
##    140        0.2570             nan     0.1000   -0.0003
##    160        0.2273             nan     0.1000   -0.0002
##    180        0.2021             nan     0.1000    0.0000
##    200        0.1783             nan     0.1000   -0.0009
##    220        0.1605             nan     0.1000   -0.0005
##    240        0.1420             nan     0.1000   -0.0002
##    260        0.1271             nan     0.1000   -0.0003
##    280        0.1138             nan     0.1000   -0.0003
##    300        0.1008             nan     0.1000   -0.0000
##    320        0.0911             nan     0.1000   -0.0001
##    340        0.0825             nan     0.1000   -0.0003
##    360        0.0745             nan     0.1000   -0.0001
##    380        0.0673             nan     0.1000   -0.0001
##    400        0.0612             nan     0.1000   -0.0001
##    420        0.0555             nan     0.1000   -0.0002
##    440        0.0500             nan     0.1000   -0.0001
##    460        0.0457             nan     0.1000   -0.0001
##    480        0.0413             nan     0.1000   -0.0001
##    500        0.0374             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2408             nan     0.1000    0.0372
##      2        1.1738             nan     0.1000    0.0248
##      3        1.1183             nan     0.1000    0.0245
##      4        1.0663             nan     0.1000    0.0234
##      5        1.0204             nan     0.1000    0.0197
##      6        0.9858             nan     0.1000    0.0140
##      7        0.9552             nan     0.1000    0.0133
##      8        0.9246             nan     0.1000    0.0126
##      9        0.8899             nan     0.1000    0.0136
##     10        0.8644             nan     0.1000    0.0112
##     20        0.7156             nan     0.1000    0.0037
##     40        0.5734             nan     0.1000   -0.0011
##     60        0.4829             nan     0.1000    0.0004
##     80        0.4091             nan     0.1000    0.0004
##    100        0.3564             nan     0.1000   -0.0016
##    120        0.3171             nan     0.1000   -0.0009
##    140        0.2751             nan     0.1000   -0.0004
##    160        0.2426             nan     0.1000   -0.0014
##    180        0.2139             nan     0.1000   -0.0003
##    200        0.1886             nan     0.1000   -0.0011
##    220        0.1678             nan     0.1000   -0.0009
##    240        0.1495             nan     0.1000   -0.0004
##    260        0.1347             nan     0.1000   -0.0006
##    280        0.1227             nan     0.1000   -0.0002
##    300        0.1109             nan     0.1000   -0.0001
##    320        0.1002             nan     0.1000   -0.0004
##    340        0.0897             nan     0.1000   -0.0002
##    360        0.0799             nan     0.1000   -0.0003
##    380        0.0723             nan     0.1000   -0.0002
##    400        0.0652             nan     0.1000   -0.0001
##    420        0.0589             nan     0.1000   -0.0001
##    440        0.0539             nan     0.1000   -0.0002
##    460        0.0491             nan     0.1000   -0.0002
##    480        0.0449             nan     0.1000   -0.0002
##    500        0.0410             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2358             nan     0.1000    0.0365
##      2        1.1739             nan     0.1000    0.0252
##      3        1.1178             nan     0.1000    0.0265
##      4        1.0743             nan     0.1000    0.0185
##      5        1.0254             nan     0.1000    0.0218
##      6        0.9864             nan     0.1000    0.0149
##      7        0.9571             nan     0.1000    0.0117
##      8        0.9241             nan     0.1000    0.0098
##      9        0.8967             nan     0.1000    0.0099
##     10        0.8720             nan     0.1000    0.0093
##     20        0.7240             nan     0.1000    0.0020
##     40        0.5901             nan     0.1000   -0.0010
##     60        0.4930             nan     0.1000    0.0008
##     80        0.4156             nan     0.1000   -0.0020
##    100        0.3582             nan     0.1000   -0.0008
##    120        0.3154             nan     0.1000   -0.0009
##    140        0.2799             nan     0.1000   -0.0004
##    160        0.2474             nan     0.1000   -0.0007
##    180        0.2168             nan     0.1000   -0.0009
##    200        0.1917             nan     0.1000   -0.0004
##    220        0.1733             nan     0.1000   -0.0006
##    240        0.1565             nan     0.1000   -0.0003
##    260        0.1399             nan     0.1000   -0.0006
##    280        0.1259             nan     0.1000   -0.0003
##    300        0.1145             nan     0.1000   -0.0004
##    320        0.1023             nan     0.1000   -0.0003
##    340        0.0922             nan     0.1000   -0.0000
##    360        0.0831             nan     0.1000   -0.0002
##    380        0.0745             nan     0.1000   -0.0003
##    400        0.0683             nan     0.1000   -0.0000
##    420        0.0619             nan     0.1000   -0.0002
##    440        0.0565             nan     0.1000   -0.0002
##    460        0.0521             nan     0.1000   -0.0002
##    480        0.0478             nan     0.1000   -0.0001
##    500        0.0433             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2381             nan     0.1000    0.0364
##      2        1.1613             nan     0.1000    0.0347
##      3        1.1067             nan     0.1000    0.0240
##      4        1.0568             nan     0.1000    0.0194
##      5        1.0098             nan     0.1000    0.0198
##      6        0.9690             nan     0.1000    0.0160
##      7        0.9290             nan     0.1000    0.0127
##      8        0.8984             nan     0.1000    0.0117
##      9        0.8679             nan     0.1000    0.0122
##     10        0.8399             nan     0.1000    0.0101
##     20        0.6780             nan     0.1000    0.0000
##     40        0.5153             nan     0.1000   -0.0009
##     60        0.4154             nan     0.1000   -0.0007
##     80        0.3412             nan     0.1000   -0.0002
##    100        0.2875             nan     0.1000   -0.0011
##    120        0.2410             nan     0.1000   -0.0007
##    140        0.2035             nan     0.1000   -0.0001
##    160        0.1758             nan     0.1000   -0.0003
##    180        0.1514             nan     0.1000   -0.0004
##    200        0.1329             nan     0.1000   -0.0004
##    220        0.1162             nan     0.1000   -0.0004
##    240        0.1002             nan     0.1000   -0.0001
##    260        0.0884             nan     0.1000   -0.0002
##    280        0.0776             nan     0.1000   -0.0002
##    300        0.0691             nan     0.1000    0.0000
##    320        0.0608             nan     0.1000   -0.0001
##    340        0.0538             nan     0.1000   -0.0000
##    360        0.0471             nan     0.1000   -0.0000
##    380        0.0419             nan     0.1000   -0.0001
##    400        0.0369             nan     0.1000   -0.0000
##    420        0.0327             nan     0.1000   -0.0001
##    440        0.0291             nan     0.1000   -0.0000
##    460        0.0258             nan     0.1000   -0.0000
##    480        0.0230             nan     0.1000   -0.0000
##    500        0.0204             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2278             nan     0.1000    0.0391
##      2        1.1651             nan     0.1000    0.0313
##      3        1.1032             nan     0.1000    0.0215
##      4        1.0494             nan     0.1000    0.0230
##      5        1.0053             nan     0.1000    0.0193
##      6        0.9649             nan     0.1000    0.0147
##      7        0.9271             nan     0.1000    0.0149
##      8        0.8952             nan     0.1000    0.0096
##      9        0.8635             nan     0.1000    0.0123
##     10        0.8401             nan     0.1000    0.0075
##     20        0.6785             nan     0.1000    0.0033
##     40        0.5274             nan     0.1000   -0.0010
##     60        0.4233             nan     0.1000   -0.0004
##     80        0.3541             nan     0.1000   -0.0008
##    100        0.2965             nan     0.1000    0.0000
##    120        0.2500             nan     0.1000    0.0002
##    140        0.2136             nan     0.1000   -0.0006
##    160        0.1833             nan     0.1000   -0.0005
##    180        0.1592             nan     0.1000   -0.0005
##    200        0.1379             nan     0.1000   -0.0001
##    220        0.1208             nan     0.1000   -0.0001
##    240        0.1051             nan     0.1000   -0.0004
##    260        0.0933             nan     0.1000   -0.0003
##    280        0.0809             nan     0.1000   -0.0001
##    300        0.0716             nan     0.1000   -0.0003
##    320        0.0631             nan     0.1000   -0.0002
##    340        0.0562             nan     0.1000   -0.0002
##    360        0.0508             nan     0.1000   -0.0002
##    380        0.0451             nan     0.1000   -0.0002
##    400        0.0401             nan     0.1000   -0.0001
##    420        0.0361             nan     0.1000   -0.0002
##    440        0.0326             nan     0.1000   -0.0001
##    460        0.0291             nan     0.1000   -0.0000
##    480        0.0257             nan     0.1000   -0.0001
##    500        0.0230             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2349             nan     0.1000    0.0392
##      2        1.1618             nan     0.1000    0.0301
##      3        1.1028             nan     0.1000    0.0239
##      4        1.0528             nan     0.1000    0.0225
##      5        1.0038             nan     0.1000    0.0205
##      6        0.9653             nan     0.1000    0.0167
##      7        0.9304             nan     0.1000    0.0145
##      8        0.9082             nan     0.1000    0.0058
##      9        0.8852             nan     0.1000    0.0084
##     10        0.8581             nan     0.1000    0.0095
##     20        0.6884             nan     0.1000    0.0019
##     40        0.5469             nan     0.1000    0.0006
##     60        0.4472             nan     0.1000   -0.0007
##     80        0.3777             nan     0.1000    0.0000
##    100        0.3151             nan     0.1000   -0.0003
##    120        0.2686             nan     0.1000   -0.0010
##    140        0.2271             nan     0.1000   -0.0006
##    160        0.1975             nan     0.1000   -0.0008
##    180        0.1728             nan     0.1000   -0.0005
##    200        0.1500             nan     0.1000   -0.0004
##    220        0.1322             nan     0.1000   -0.0002
##    240        0.1179             nan     0.1000   -0.0003
##    260        0.1036             nan     0.1000   -0.0004
##    280        0.0915             nan     0.1000   -0.0003
##    300        0.0814             nan     0.1000   -0.0003
##    320        0.0716             nan     0.1000   -0.0002
##    340        0.0644             nan     0.1000   -0.0002
##    360        0.0573             nan     0.1000   -0.0002
##    380        0.0514             nan     0.1000   -0.0001
##    400        0.0454             nan     0.1000   -0.0001
##    420        0.0405             nan     0.1000   -0.0002
##    440        0.0363             nan     0.1000   -0.0001
##    460        0.0326             nan     0.1000   -0.0001
##    480        0.0290             nan     0.1000   -0.0001
##    500        0.0260             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0003
##      6        1.3159             nan     0.0010    0.0003
##      7        1.3150             nan     0.0010    0.0003
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0003
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3048             nan     0.0010    0.0003
##     40        1.2896             nan     0.0010    0.0003
##     60        1.2746             nan     0.0010    0.0003
##     80        1.2604             nan     0.0010    0.0003
##    100        1.2463             nan     0.0010    0.0003
##    120        1.2329             nan     0.0010    0.0003
##    140        1.2196             nan     0.0010    0.0003
##    160        1.2067             nan     0.0010    0.0002
##    180        1.1942             nan     0.0010    0.0003
##    200        1.1821             nan     0.0010    0.0003
##    220        1.1701             nan     0.0010    0.0003
##    240        1.1588             nan     0.0010    0.0002
##    260        1.1479             nan     0.0010    0.0002
##    280        1.1371             nan     0.0010    0.0002
##    300        1.1267             nan     0.0010    0.0002
##    320        1.1168             nan     0.0010    0.0002
##    340        1.1071             nan     0.0010    0.0002
##    360        1.0976             nan     0.0010    0.0002
##    380        1.0880             nan     0.0010    0.0002
##    400        1.0788             nan     0.0010    0.0002
##    420        1.0699             nan     0.0010    0.0002
##    440        1.0611             nan     0.0010    0.0002
##    460        1.0526             nan     0.0010    0.0001
##    480        1.0442             nan     0.0010    0.0002
##    500        1.0362             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0003
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0003
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3040             nan     0.0010    0.0004
##     40        1.2885             nan     0.0010    0.0003
##     60        1.2735             nan     0.0010    0.0004
##     80        1.2591             nan     0.0010    0.0003
##    100        1.2450             nan     0.0010    0.0003
##    120        1.2314             nan     0.0010    0.0003
##    140        1.2183             nan     0.0010    0.0003
##    160        1.2055             nan     0.0010    0.0003
##    180        1.1934             nan     0.0010    0.0003
##    200        1.1812             nan     0.0010    0.0003
##    220        1.1694             nan     0.0010    0.0002
##    240        1.1580             nan     0.0010    0.0002
##    260        1.1470             nan     0.0010    0.0002
##    280        1.1362             nan     0.0010    0.0002
##    300        1.1257             nan     0.0010    0.0002
##    320        1.1156             nan     0.0010    0.0002
##    340        1.1057             nan     0.0010    0.0002
##    360        1.0963             nan     0.0010    0.0002
##    380        1.0870             nan     0.0010    0.0002
##    400        1.0781             nan     0.0010    0.0002
##    420        1.0691             nan     0.0010    0.0002
##    440        1.0606             nan     0.0010    0.0002
##    460        1.0524             nan     0.0010    0.0002
##    480        1.0442             nan     0.0010    0.0002
##    500        1.0360             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0003
##      5        1.3166             nan     0.0010    0.0003
##      6        1.3158             nan     0.0010    0.0003
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3047             nan     0.0010    0.0003
##     40        1.2892             nan     0.0010    0.0003
##     60        1.2741             nan     0.0010    0.0004
##     80        1.2597             nan     0.0010    0.0003
##    100        1.2461             nan     0.0010    0.0003
##    120        1.2325             nan     0.0010    0.0003
##    140        1.2195             nan     0.0010    0.0003
##    160        1.2072             nan     0.0010    0.0003
##    180        1.1949             nan     0.0010    0.0003
##    200        1.1830             nan     0.0010    0.0003
##    220        1.1714             nan     0.0010    0.0002
##    240        1.1601             nan     0.0010    0.0002
##    260        1.1493             nan     0.0010    0.0003
##    280        1.1386             nan     0.0010    0.0003
##    300        1.1285             nan     0.0010    0.0002
##    320        1.1183             nan     0.0010    0.0002
##    340        1.1083             nan     0.0010    0.0002
##    360        1.0986             nan     0.0010    0.0002
##    380        1.0895             nan     0.0010    0.0002
##    400        1.0805             nan     0.0010    0.0002
##    420        1.0715             nan     0.0010    0.0002
##    440        1.0629             nan     0.0010    0.0002
##    460        1.0545             nan     0.0010    0.0002
##    480        1.0463             nan     0.0010    0.0002
##    500        1.0382             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0003
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3130             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0004
##     60        1.2707             nan     0.0010    0.0003
##     80        1.2552             nan     0.0010    0.0003
##    100        1.2403             nan     0.0010    0.0003
##    120        1.2255             nan     0.0010    0.0003
##    140        1.2113             nan     0.0010    0.0003
##    160        1.1976             nan     0.0010    0.0003
##    180        1.1847             nan     0.0010    0.0003
##    200        1.1719             nan     0.0010    0.0003
##    220        1.1594             nan     0.0010    0.0003
##    240        1.1473             nan     0.0010    0.0003
##    260        1.1358             nan     0.0010    0.0002
##    280        1.1240             nan     0.0010    0.0002
##    300        1.1128             nan     0.0010    0.0002
##    320        1.1021             nan     0.0010    0.0002
##    340        1.0916             nan     0.0010    0.0002
##    360        1.0818             nan     0.0010    0.0002
##    380        1.0721             nan     0.0010    0.0002
##    400        1.0625             nan     0.0010    0.0002
##    420        1.0531             nan     0.0010    0.0002
##    440        1.0436             nan     0.0010    0.0002
##    460        1.0349             nan     0.0010    0.0002
##    480        1.0262             nan     0.0010    0.0002
##    500        1.0175             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0004
##     60        1.2708             nan     0.0010    0.0003
##     80        1.2553             nan     0.0010    0.0004
##    100        1.2406             nan     0.0010    0.0004
##    120        1.2261             nan     0.0010    0.0003
##    140        1.2121             nan     0.0010    0.0003
##    160        1.1983             nan     0.0010    0.0003
##    180        1.1853             nan     0.0010    0.0003
##    200        1.1723             nan     0.0010    0.0003
##    220        1.1598             nan     0.0010    0.0003
##    240        1.1477             nan     0.0010    0.0002
##    260        1.1360             nan     0.0010    0.0002
##    280        1.1249             nan     0.0010    0.0002
##    300        1.1138             nan     0.0010    0.0002
##    320        1.1031             nan     0.0010    0.0002
##    340        1.0928             nan     0.0010    0.0002
##    360        1.0827             nan     0.0010    0.0002
##    380        1.0726             nan     0.0010    0.0002
##    400        1.0630             nan     0.0010    0.0002
##    420        1.0537             nan     0.0010    0.0002
##    440        1.0446             nan     0.0010    0.0002
##    460        1.0358             nan     0.0010    0.0002
##    480        1.0270             nan     0.0010    0.0002
##    500        1.0185             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0003
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3130             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0004
##     40        1.2873             nan     0.0010    0.0003
##     60        1.2715             nan     0.0010    0.0003
##     80        1.2562             nan     0.0010    0.0003
##    100        1.2413             nan     0.0010    0.0003
##    120        1.2268             nan     0.0010    0.0003
##    140        1.2130             nan     0.0010    0.0003
##    160        1.1995             nan     0.0010    0.0003
##    180        1.1866             nan     0.0010    0.0003
##    200        1.1741             nan     0.0010    0.0002
##    220        1.1620             nan     0.0010    0.0003
##    240        1.1503             nan     0.0010    0.0003
##    260        1.1387             nan     0.0010    0.0003
##    280        1.1274             nan     0.0010    0.0003
##    300        1.1162             nan     0.0010    0.0002
##    320        1.1054             nan     0.0010    0.0002
##    340        1.0950             nan     0.0010    0.0002
##    360        1.0849             nan     0.0010    0.0002
##    380        1.0751             nan     0.0010    0.0002
##    400        1.0656             nan     0.0010    0.0002
##    420        1.0562             nan     0.0010    0.0002
##    440        1.0474             nan     0.0010    0.0002
##    460        1.0385             nan     0.0010    0.0002
##    480        1.0297             nan     0.0010    0.0002
##    500        1.0216             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0003
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3142             nan     0.0010    0.0004
##      8        1.3133             nan     0.0010    0.0004
##      9        1.3123             nan     0.0010    0.0004
##     10        1.3114             nan     0.0010    0.0004
##     20        1.3023             nan     0.0010    0.0004
##     40        1.2849             nan     0.0010    0.0004
##     60        1.2681             nan     0.0010    0.0004
##     80        1.2519             nan     0.0010    0.0003
##    100        1.2361             nan     0.0010    0.0004
##    120        1.2208             nan     0.0010    0.0003
##    140        1.2060             nan     0.0010    0.0003
##    160        1.1916             nan     0.0010    0.0003
##    180        1.1779             nan     0.0010    0.0003
##    200        1.1643             nan     0.0010    0.0002
##    220        1.1512             nan     0.0010    0.0003
##    240        1.1386             nan     0.0010    0.0003
##    260        1.1263             nan     0.0010    0.0002
##    280        1.1144             nan     0.0010    0.0002
##    300        1.1026             nan     0.0010    0.0003
##    320        1.0912             nan     0.0010    0.0002
##    340        1.0804             nan     0.0010    0.0002
##    360        1.0698             nan     0.0010    0.0002
##    380        1.0595             nan     0.0010    0.0002
##    400        1.0494             nan     0.0010    0.0002
##    420        1.0396             nan     0.0010    0.0002
##    440        1.0299             nan     0.0010    0.0002
##    460        1.0206             nan     0.0010    0.0002
##    480        1.0113             nan     0.0010    0.0002
##    500        1.0024             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2855             nan     0.0010    0.0004
##     60        1.2685             nan     0.0010    0.0004
##     80        1.2523             nan     0.0010    0.0004
##    100        1.2365             nan     0.0010    0.0003
##    120        1.2215             nan     0.0010    0.0003
##    140        1.2068             nan     0.0010    0.0003
##    160        1.1927             nan     0.0010    0.0003
##    180        1.1789             nan     0.0010    0.0003
##    200        1.1655             nan     0.0010    0.0003
##    220        1.1523             nan     0.0010    0.0003
##    240        1.1398             nan     0.0010    0.0003
##    260        1.1278             nan     0.0010    0.0002
##    280        1.1157             nan     0.0010    0.0002
##    300        1.1040             nan     0.0010    0.0003
##    320        1.0929             nan     0.0010    0.0002
##    340        1.0821             nan     0.0010    0.0002
##    360        1.0714             nan     0.0010    0.0002
##    380        1.0611             nan     0.0010    0.0002
##    400        1.0512             nan     0.0010    0.0002
##    420        1.0415             nan     0.0010    0.0002
##    440        1.0321             nan     0.0010    0.0002
##    460        1.0228             nan     0.0010    0.0002
##    480        1.0138             nan     0.0010    0.0002
##    500        1.0048             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0003
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2694             nan     0.0010    0.0004
##     80        1.2532             nan     0.0010    0.0004
##    100        1.2375             nan     0.0010    0.0003
##    120        1.2225             nan     0.0010    0.0003
##    140        1.2081             nan     0.0010    0.0003
##    160        1.1942             nan     0.0010    0.0003
##    180        1.1806             nan     0.0010    0.0003
##    200        1.1675             nan     0.0010    0.0003
##    220        1.1546             nan     0.0010    0.0003
##    240        1.1422             nan     0.0010    0.0003
##    260        1.1298             nan     0.0010    0.0003
##    280        1.1180             nan     0.0010    0.0003
##    300        1.1066             nan     0.0010    0.0002
##    320        1.0957             nan     0.0010    0.0002
##    340        1.0852             nan     0.0010    0.0002
##    360        1.0746             nan     0.0010    0.0002
##    380        1.0643             nan     0.0010    0.0002
##    400        1.0543             nan     0.0010    0.0002
##    420        1.0448             nan     0.0010    0.0002
##    440        1.0356             nan     0.0010    0.0002
##    460        1.0264             nan     0.0010    0.0002
##    480        1.0171             nan     0.0010    0.0002
##    500        1.0085             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3128             nan     0.0100    0.0037
##      2        1.3062             nan     0.0100    0.0028
##      3        1.2990             nan     0.0100    0.0030
##      4        1.2919             nan     0.0100    0.0033
##      5        1.2837             nan     0.0100    0.0036
##      6        1.2764             nan     0.0100    0.0036
##      7        1.2690             nan     0.0100    0.0035
##      8        1.2610             nan     0.0100    0.0032
##      9        1.2542             nan     0.0100    0.0032
##     10        1.2468             nan     0.0100    0.0034
##     20        1.1828             nan     0.0100    0.0026
##     40        1.0788             nan     0.0100    0.0020
##     60        0.9969             nan     0.0100    0.0014
##     80        0.9348             nan     0.0100    0.0012
##    100        0.8837             nan     0.0100    0.0008
##    120        0.8408             nan     0.0100    0.0008
##    140        0.8047             nan     0.0100    0.0004
##    160        0.7742             nan     0.0100    0.0005
##    180        0.7476             nan     0.0100    0.0002
##    200        0.7254             nan     0.0100    0.0002
##    220        0.7050             nan     0.0100    0.0001
##    240        0.6875             nan     0.0100    0.0003
##    260        0.6707             nan     0.0100    0.0002
##    280        0.6562             nan     0.0100   -0.0000
##    300        0.6434             nan     0.0100    0.0001
##    320        0.6315             nan     0.0100   -0.0000
##    340        0.6201             nan     0.0100   -0.0000
##    360        0.6096             nan     0.0100   -0.0000
##    380        0.5991             nan     0.0100   -0.0002
##    400        0.5885             nan     0.0100   -0.0001
##    420        0.5777             nan     0.0100   -0.0000
##    440        0.5684             nan     0.0100   -0.0000
##    460        0.5594             nan     0.0100   -0.0001
##    480        0.5508             nan     0.0100   -0.0001
##    500        0.5429             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0038
##      2        1.3050             nan     0.0100    0.0033
##      3        1.2978             nan     0.0100    0.0030
##      4        1.2898             nan     0.0100    0.0034
##      5        1.2827             nan     0.0100    0.0033
##      6        1.2755             nan     0.0100    0.0029
##      7        1.2674             nan     0.0100    0.0035
##      8        1.2602             nan     0.0100    0.0027
##      9        1.2535             nan     0.0100    0.0032
##     10        1.2463             nan     0.0100    0.0034
##     20        1.1830             nan     0.0100    0.0029
##     40        1.0780             nan     0.0100    0.0019
##     60        0.9977             nan     0.0100    0.0013
##     80        0.9350             nan     0.0100    0.0009
##    100        0.8841             nan     0.0100    0.0010
##    120        0.8414             nan     0.0100    0.0008
##    140        0.8068             nan     0.0100    0.0006
##    160        0.7768             nan     0.0100    0.0004
##    180        0.7510             nan     0.0100    0.0002
##    200        0.7302             nan     0.0100    0.0002
##    220        0.7119             nan     0.0100    0.0002
##    240        0.6948             nan     0.0100    0.0000
##    260        0.6799             nan     0.0100    0.0000
##    280        0.6658             nan     0.0100    0.0000
##    300        0.6530             nan     0.0100    0.0001
##    320        0.6400             nan     0.0100    0.0002
##    340        0.6286             nan     0.0100   -0.0001
##    360        0.6164             nan     0.0100    0.0001
##    380        0.6057             nan     0.0100    0.0001
##    400        0.5954             nan     0.0100   -0.0000
##    420        0.5856             nan     0.0100    0.0002
##    440        0.5763             nan     0.0100   -0.0001
##    460        0.5674             nan     0.0100   -0.0001
##    480        0.5587             nan     0.0100   -0.0003
##    500        0.5498             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3128             nan     0.0100    0.0035
##      2        1.3048             nan     0.0100    0.0035
##      3        1.2964             nan     0.0100    0.0037
##      4        1.2885             nan     0.0100    0.0034
##      5        1.2811             nan     0.0100    0.0035
##      6        1.2728             nan     0.0100    0.0037
##      7        1.2660             nan     0.0100    0.0030
##      8        1.2586             nan     0.0100    0.0035
##      9        1.2512             nan     0.0100    0.0029
##     10        1.2446             nan     0.0100    0.0029
##     20        1.1826             nan     0.0100    0.0025
##     40        1.0800             nan     0.0100    0.0023
##     60        0.9989             nan     0.0100    0.0014
##     80        0.9374             nan     0.0100    0.0010
##    100        0.8850             nan     0.0100    0.0008
##    120        0.8433             nan     0.0100    0.0007
##    140        0.8093             nan     0.0100    0.0005
##    160        0.7793             nan     0.0100    0.0002
##    180        0.7546             nan     0.0100    0.0005
##    200        0.7332             nan     0.0100   -0.0002
##    220        0.7135             nan     0.0100    0.0003
##    240        0.6972             nan     0.0100    0.0002
##    260        0.6834             nan     0.0100    0.0001
##    280        0.6700             nan     0.0100    0.0001
##    300        0.6565             nan     0.0100    0.0000
##    320        0.6452             nan     0.0100    0.0001
##    340        0.6332             nan     0.0100    0.0001
##    360        0.6229             nan     0.0100    0.0001
##    380        0.6126             nan     0.0100   -0.0000
##    400        0.6023             nan     0.0100   -0.0001
##    420        0.5921             nan     0.0100    0.0000
##    440        0.5822             nan     0.0100    0.0000
##    460        0.5735             nan     0.0100    0.0000
##    480        0.5649             nan     0.0100    0.0000
##    500        0.5563             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0037
##      2        1.3043             nan     0.0100    0.0036
##      3        1.2965             nan     0.0100    0.0031
##      4        1.2881             nan     0.0100    0.0039
##      5        1.2796             nan     0.0100    0.0034
##      6        1.2714             nan     0.0100    0.0033
##      7        1.2641             nan     0.0100    0.0033
##      8        1.2565             nan     0.0100    0.0034
##      9        1.2480             nan     0.0100    0.0035
##     10        1.2404             nan     0.0100    0.0036
##     20        1.1730             nan     0.0100    0.0028
##     40        1.0630             nan     0.0100    0.0018
##     60        0.9777             nan     0.0100    0.0017
##     80        0.9105             nan     0.0100    0.0014
##    100        0.8556             nan     0.0100    0.0009
##    120        0.8126             nan     0.0100    0.0006
##    140        0.7756             nan     0.0100    0.0004
##    160        0.7437             nan     0.0100    0.0005
##    180        0.7173             nan     0.0100    0.0003
##    200        0.6934             nan     0.0100    0.0002
##    220        0.6715             nan     0.0100    0.0004
##    240        0.6514             nan     0.0100    0.0002
##    260        0.6343             nan     0.0100    0.0001
##    280        0.6187             nan     0.0100    0.0001
##    300        0.6028             nan     0.0100    0.0001
##    320        0.5890             nan     0.0100   -0.0001
##    340        0.5755             nan     0.0100    0.0000
##    360        0.5641             nan     0.0100   -0.0001
##    380        0.5518             nan     0.0100    0.0001
##    400        0.5400             nan     0.0100    0.0001
##    420        0.5292             nan     0.0100    0.0000
##    440        0.5200             nan     0.0100   -0.0000
##    460        0.5100             nan     0.0100    0.0000
##    480        0.5000             nan     0.0100   -0.0001
##    500        0.4904             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0038
##      2        1.3028             nan     0.0100    0.0038
##      3        1.2946             nan     0.0100    0.0037
##      4        1.2864             nan     0.0100    0.0038
##      5        1.2781             nan     0.0100    0.0035
##      6        1.2706             nan     0.0100    0.0037
##      7        1.2631             nan     0.0100    0.0037
##      8        1.2553             nan     0.0100    0.0034
##      9        1.2475             nan     0.0100    0.0031
##     10        1.2401             nan     0.0100    0.0035
##     20        1.1728             nan     0.0100    0.0027
##     40        1.0619             nan     0.0100    0.0020
##     60        0.9766             nan     0.0100    0.0015
##     80        0.9098             nan     0.0100    0.0012
##    100        0.8556             nan     0.0100    0.0009
##    120        0.8111             nan     0.0100    0.0007
##    140        0.7742             nan     0.0100    0.0005
##    160        0.7435             nan     0.0100    0.0004
##    180        0.7155             nan     0.0100    0.0004
##    200        0.6917             nan     0.0100    0.0004
##    220        0.6707             nan     0.0100    0.0001
##    240        0.6519             nan     0.0100    0.0002
##    260        0.6347             nan     0.0100    0.0000
##    280        0.6179             nan     0.0100    0.0002
##    300        0.6031             nan     0.0100    0.0000
##    320        0.5900             nan     0.0100    0.0001
##    340        0.5776             nan     0.0100    0.0001
##    360        0.5654             nan     0.0100   -0.0000
##    380        0.5541             nan     0.0100   -0.0001
##    400        0.5438             nan     0.0100   -0.0001
##    420        0.5335             nan     0.0100    0.0001
##    440        0.5235             nan     0.0100   -0.0002
##    460        0.5138             nan     0.0100   -0.0001
##    480        0.5040             nan     0.0100   -0.0001
##    500        0.4944             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0039
##      2        1.3031             nan     0.0100    0.0038
##      3        1.2945             nan     0.0100    0.0041
##      4        1.2866             nan     0.0100    0.0038
##      5        1.2787             nan     0.0100    0.0034
##      6        1.2709             nan     0.0100    0.0034
##      7        1.2634             nan     0.0100    0.0036
##      8        1.2560             nan     0.0100    0.0032
##      9        1.2496             nan     0.0100    0.0028
##     10        1.2417             nan     0.0100    0.0035
##     20        1.1751             nan     0.0100    0.0027
##     40        1.0653             nan     0.0100    0.0021
##     60        0.9821             nan     0.0100    0.0013
##     80        0.9158             nan     0.0100    0.0010
##    100        0.8618             nan     0.0100    0.0007
##    120        0.8177             nan     0.0100    0.0006
##    140        0.7809             nan     0.0100    0.0004
##    160        0.7513             nan     0.0100    0.0005
##    180        0.7255             nan     0.0100    0.0004
##    200        0.7017             nan     0.0100    0.0003
##    220        0.6817             nan     0.0100    0.0001
##    240        0.6638             nan     0.0100    0.0001
##    260        0.6476             nan     0.0100    0.0002
##    280        0.6325             nan     0.0100    0.0001
##    300        0.6182             nan     0.0100   -0.0002
##    320        0.6055             nan     0.0100   -0.0002
##    340        0.5931             nan     0.0100   -0.0001
##    360        0.5815             nan     0.0100    0.0001
##    380        0.5697             nan     0.0100   -0.0000
##    400        0.5589             nan     0.0100    0.0001
##    420        0.5490             nan     0.0100   -0.0001
##    440        0.5380             nan     0.0100   -0.0000
##    460        0.5296             nan     0.0100   -0.0000
##    480        0.5194             nan     0.0100    0.0000
##    500        0.5094             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0042
##      2        1.3030             nan     0.0100    0.0040
##      3        1.2939             nan     0.0100    0.0037
##      4        1.2853             nan     0.0100    0.0041
##      5        1.2767             nan     0.0100    0.0038
##      6        1.2690             nan     0.0100    0.0031
##      7        1.2607             nan     0.0100    0.0037
##      8        1.2522             nan     0.0100    0.0035
##      9        1.2440             nan     0.0100    0.0035
##     10        1.2357             nan     0.0100    0.0034
##     20        1.1640             nan     0.0100    0.0028
##     40        1.0473             nan     0.0100    0.0020
##     60        0.9597             nan     0.0100    0.0018
##     80        0.8901             nan     0.0100    0.0011
##    100        0.8326             nan     0.0100    0.0009
##    120        0.7861             nan     0.0100    0.0008
##    140        0.7464             nan     0.0100    0.0007
##    160        0.7123             nan     0.0100    0.0008
##    180        0.6831             nan     0.0100    0.0006
##    200        0.6573             nan     0.0100    0.0003
##    220        0.6335             nan     0.0100    0.0001
##    240        0.6131             nan     0.0100    0.0003
##    260        0.5942             nan     0.0100    0.0002
##    280        0.5783             nan     0.0100    0.0001
##    300        0.5622             nan     0.0100    0.0001
##    320        0.5477             nan     0.0100    0.0000
##    340        0.5332             nan     0.0100   -0.0000
##    360        0.5196             nan     0.0100    0.0000
##    380        0.5076             nan     0.0100   -0.0001
##    400        0.4959             nan     0.0100   -0.0000
##    420        0.4847             nan     0.0100   -0.0001
##    440        0.4730             nan     0.0100    0.0000
##    460        0.4618             nan     0.0100    0.0000
##    480        0.4515             nan     0.0100    0.0001
##    500        0.4418             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0034
##      2        1.3034             nan     0.0100    0.0038
##      3        1.2950             nan     0.0100    0.0039
##      4        1.2863             nan     0.0100    0.0035
##      5        1.2784             nan     0.0100    0.0037
##      6        1.2705             nan     0.0100    0.0033
##      7        1.2624             nan     0.0100    0.0034
##      8        1.2538             nan     0.0100    0.0037
##      9        1.2460             nan     0.0100    0.0035
##     10        1.2385             nan     0.0100    0.0031
##     20        1.1676             nan     0.0100    0.0029
##     40        1.0538             nan     0.0100    0.0021
##     60        0.9651             nan     0.0100    0.0014
##     80        0.8952             nan     0.0100    0.0010
##    100        0.8389             nan     0.0100    0.0010
##    120        0.7937             nan     0.0100    0.0007
##    140        0.7546             nan     0.0100    0.0006
##    160        0.7206             nan     0.0100    0.0005
##    180        0.6925             nan     0.0100    0.0004
##    200        0.6665             nan     0.0100    0.0000
##    220        0.6439             nan     0.0100    0.0003
##    240        0.6243             nan     0.0100    0.0002
##    260        0.6054             nan     0.0100    0.0001
##    280        0.5892             nan     0.0100    0.0001
##    300        0.5733             nan     0.0100   -0.0000
##    320        0.5578             nan     0.0100    0.0003
##    340        0.5431             nan     0.0100   -0.0000
##    360        0.5292             nan     0.0100    0.0001
##    380        0.5164             nan     0.0100   -0.0000
##    400        0.5044             nan     0.0100   -0.0002
##    420        0.4931             nan     0.0100    0.0001
##    440        0.4830             nan     0.0100   -0.0000
##    460        0.4727             nan     0.0100   -0.0001
##    480        0.4619             nan     0.0100   -0.0000
##    500        0.4511             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0036
##      2        1.3031             nan     0.0100    0.0039
##      3        1.2937             nan     0.0100    0.0041
##      4        1.2854             nan     0.0100    0.0038
##      5        1.2764             nan     0.0100    0.0041
##      6        1.2687             nan     0.0100    0.0036
##      7        1.2611             nan     0.0100    0.0036
##      8        1.2531             nan     0.0100    0.0037
##      9        1.2450             nan     0.0100    0.0037
##     10        1.2370             nan     0.0100    0.0033
##     20        1.1674             nan     0.0100    0.0032
##     40        1.0561             nan     0.0100    0.0019
##     60        0.9680             nan     0.0100    0.0013
##     80        0.9002             nan     0.0100    0.0011
##    100        0.8444             nan     0.0100    0.0009
##    120        0.7993             nan     0.0100    0.0008
##    140        0.7628             nan     0.0100    0.0005
##    160        0.7320             nan     0.0100    0.0001
##    180        0.7051             nan     0.0100    0.0001
##    200        0.6792             nan     0.0100    0.0002
##    220        0.6578             nan     0.0100    0.0002
##    240        0.6379             nan     0.0100    0.0002
##    260        0.6197             nan     0.0100    0.0001
##    280        0.6030             nan     0.0100    0.0001
##    300        0.5867             nan     0.0100    0.0000
##    320        0.5723             nan     0.0100   -0.0000
##    340        0.5578             nan     0.0100   -0.0000
##    360        0.5450             nan     0.0100    0.0001
##    380        0.5327             nan     0.0100   -0.0001
##    400        0.5208             nan     0.0100    0.0001
##    420        0.5087             nan     0.0100   -0.0000
##    440        0.4969             nan     0.0100   -0.0000
##    460        0.4862             nan     0.0100   -0.0002
##    480        0.4755             nan     0.0100   -0.0000
##    500        0.4652             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2382             nan     0.1000    0.0361
##      2        1.1684             nan     0.1000    0.0311
##      3        1.1128             nan     0.1000    0.0241
##      4        1.0661             nan     0.1000    0.0195
##      5        1.0238             nan     0.1000    0.0180
##      6        0.9878             nan     0.1000    0.0130
##      7        0.9536             nan     0.1000    0.0123
##      8        0.9231             nan     0.1000    0.0105
##      9        0.8985             nan     0.1000    0.0096
##     10        0.8725             nan     0.1000    0.0091
##     20        0.7264             nan     0.1000    0.0026
##     40        0.5872             nan     0.1000   -0.0003
##     60        0.5086             nan     0.1000   -0.0019
##     80        0.4445             nan     0.1000   -0.0009
##    100        0.3904             nan     0.1000   -0.0013
##    120        0.3434             nan     0.1000   -0.0005
##    140        0.3068             nan     0.1000   -0.0010
##    160        0.2757             nan     0.1000   -0.0003
##    180        0.2505             nan     0.1000   -0.0015
##    200        0.2268             nan     0.1000   -0.0003
##    220        0.2060             nan     0.1000   -0.0005
##    240        0.1822             nan     0.1000   -0.0001
##    260        0.1671             nan     0.1000   -0.0006
##    280        0.1519             nan     0.1000   -0.0004
##    300        0.1393             nan     0.1000   -0.0002
##    320        0.1268             nan     0.1000   -0.0001
##    340        0.1162             nan     0.1000   -0.0001
##    360        0.1062             nan     0.1000   -0.0002
##    380        0.0981             nan     0.1000    0.0000
##    400        0.0913             nan     0.1000   -0.0002
##    420        0.0844             nan     0.1000   -0.0002
##    440        0.0780             nan     0.1000   -0.0002
##    460        0.0721             nan     0.1000   -0.0002
##    480        0.0664             nan     0.1000   -0.0003
##    500        0.0613             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2384             nan     0.1000    0.0356
##      2        1.1724             nan     0.1000    0.0302
##      3        1.1189             nan     0.1000    0.0247
##      4        1.0693             nan     0.1000    0.0221
##      5        1.0277             nan     0.1000    0.0175
##      6        0.9871             nan     0.1000    0.0116
##      7        0.9554             nan     0.1000    0.0138
##      8        0.9308             nan     0.1000    0.0091
##      9        0.9060             nan     0.1000    0.0104
##     10        0.8833             nan     0.1000    0.0083
##     20        0.7294             nan     0.1000    0.0030
##     40        0.5873             nan     0.1000   -0.0011
##     60        0.5065             nan     0.1000   -0.0010
##     80        0.4444             nan     0.1000   -0.0008
##    100        0.3967             nan     0.1000   -0.0011
##    120        0.3541             nan     0.1000   -0.0004
##    140        0.3122             nan     0.1000    0.0007
##    160        0.2858             nan     0.1000   -0.0007
##    180        0.2579             nan     0.1000    0.0002
##    200        0.2299             nan     0.1000   -0.0007
##    220        0.2077             nan     0.1000   -0.0003
##    240        0.1919             nan     0.1000   -0.0008
##    260        0.1760             nan     0.1000   -0.0011
##    280        0.1604             nan     0.1000   -0.0005
##    300        0.1482             nan     0.1000   -0.0008
##    320        0.1357             nan     0.1000   -0.0003
##    340        0.1251             nan     0.1000   -0.0004
##    360        0.1142             nan     0.1000   -0.0001
##    380        0.1049             nan     0.1000   -0.0001
##    400        0.0966             nan     0.1000   -0.0003
##    420        0.0900             nan     0.1000   -0.0002
##    440        0.0835             nan     0.1000   -0.0004
##    460        0.0769             nan     0.1000   -0.0003
##    480        0.0718             nan     0.1000   -0.0001
##    500        0.0669             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2462             nan     0.1000    0.0343
##      2        1.1869             nan     0.1000    0.0261
##      3        1.1257             nan     0.1000    0.0246
##      4        1.0800             nan     0.1000    0.0209
##      5        1.0396             nan     0.1000    0.0163
##      6        1.0001             nan     0.1000    0.0149
##      7        0.9691             nan     0.1000    0.0127
##      8        0.9380             nan     0.1000    0.0125
##      9        0.9136             nan     0.1000    0.0102
##     10        0.8842             nan     0.1000    0.0106
##     20        0.7323             nan     0.1000    0.0032
##     40        0.6031             nan     0.1000    0.0003
##     60        0.5256             nan     0.1000   -0.0001
##     80        0.4669             nan     0.1000   -0.0012
##    100        0.4190             nan     0.1000   -0.0006
##    120        0.3783             nan     0.1000   -0.0012
##    140        0.3367             nan     0.1000   -0.0003
##    160        0.3080             nan     0.1000   -0.0008
##    180        0.2777             nan     0.1000   -0.0006
##    200        0.2530             nan     0.1000   -0.0006
##    220        0.2291             nan     0.1000   -0.0006
##    240        0.2081             nan     0.1000   -0.0010
##    260        0.1922             nan     0.1000   -0.0004
##    280        0.1775             nan     0.1000   -0.0006
##    300        0.1664             nan     0.1000   -0.0006
##    320        0.1532             nan     0.1000   -0.0008
##    340        0.1405             nan     0.1000    0.0000
##    360        0.1296             nan     0.1000   -0.0004
##    380        0.1186             nan     0.1000   -0.0002
##    400        0.1088             nan     0.1000   -0.0001
##    420        0.1008             nan     0.1000   -0.0003
##    440        0.0924             nan     0.1000   -0.0002
##    460        0.0841             nan     0.1000   -0.0002
##    480        0.0780             nan     0.1000   -0.0004
##    500        0.0716             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2312             nan     0.1000    0.0392
##      2        1.1613             nan     0.1000    0.0294
##      3        1.1001             nan     0.1000    0.0267
##      4        1.0501             nan     0.1000    0.0223
##      5        1.0040             nan     0.1000    0.0191
##      6        0.9613             nan     0.1000    0.0161
##      7        0.9264             nan     0.1000    0.0114
##      8        0.8981             nan     0.1000    0.0096
##      9        0.8706             nan     0.1000    0.0083
##     10        0.8459             nan     0.1000    0.0080
##     20        0.6910             nan     0.1000    0.0008
##     40        0.5411             nan     0.1000   -0.0001
##     60        0.4516             nan     0.1000   -0.0009
##     80        0.3879             nan     0.1000    0.0002
##    100        0.3331             nan     0.1000   -0.0007
##    120        0.2907             nan     0.1000   -0.0006
##    140        0.2504             nan     0.1000   -0.0008
##    160        0.2178             nan     0.1000   -0.0009
##    180        0.1898             nan     0.1000   -0.0008
##    200        0.1685             nan     0.1000   -0.0003
##    220        0.1489             nan     0.1000   -0.0003
##    240        0.1326             nan     0.1000   -0.0000
##    260        0.1177             nan     0.1000   -0.0004
##    280        0.1049             nan     0.1000   -0.0003
##    300        0.0947             nan     0.1000    0.0000
##    320        0.0836             nan     0.1000   -0.0004
##    340        0.0752             nan     0.1000   -0.0002
##    360        0.0685             nan     0.1000   -0.0001
##    380        0.0613             nan     0.1000   -0.0002
##    400        0.0560             nan     0.1000   -0.0002
##    420        0.0513             nan     0.1000   -0.0002
##    440        0.0458             nan     0.1000   -0.0001
##    460        0.0410             nan     0.1000    0.0001
##    480        0.0365             nan     0.1000   -0.0000
##    500        0.0330             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2439             nan     0.1000    0.0346
##      2        1.1725             nan     0.1000    0.0301
##      3        1.1044             nan     0.1000    0.0289
##      4        1.0567             nan     0.1000    0.0199
##      5        1.0098             nan     0.1000    0.0170
##      6        0.9697             nan     0.1000    0.0174
##      7        0.9346             nan     0.1000    0.0132
##      8        0.9036             nan     0.1000    0.0118
##      9        0.8711             nan     0.1000    0.0108
##     10        0.8476             nan     0.1000    0.0088
##     20        0.6882             nan     0.1000    0.0024
##     40        0.5450             nan     0.1000    0.0001
##     60        0.4627             nan     0.1000   -0.0005
##     80        0.3992             nan     0.1000   -0.0011
##    100        0.3413             nan     0.1000   -0.0002
##    120        0.2999             nan     0.1000   -0.0005
##    140        0.2598             nan     0.1000   -0.0003
##    160        0.2304             nan     0.1000   -0.0004
##    180        0.1994             nan     0.1000   -0.0003
##    200        0.1758             nan     0.1000   -0.0003
##    220        0.1550             nan     0.1000   -0.0002
##    240        0.1377             nan     0.1000   -0.0003
##    260        0.1220             nan     0.1000   -0.0000
##    280        0.1093             nan     0.1000   -0.0003
##    300        0.0986             nan     0.1000   -0.0001
##    320        0.0895             nan     0.1000   -0.0004
##    340        0.0811             nan     0.1000   -0.0002
##    360        0.0727             nan     0.1000   -0.0002
##    380        0.0648             nan     0.1000   -0.0000
##    400        0.0582             nan     0.1000   -0.0004
##    420        0.0522             nan     0.1000   -0.0001
##    440        0.0471             nan     0.1000   -0.0002
##    460        0.0430             nan     0.1000   -0.0003
##    480        0.0387             nan     0.1000   -0.0001
##    500        0.0351             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2453             nan     0.1000    0.0374
##      2        1.1707             nan     0.1000    0.0321
##      3        1.1157             nan     0.1000    0.0240
##      4        1.0604             nan     0.1000    0.0235
##      5        1.0190             nan     0.1000    0.0173
##      6        0.9792             nan     0.1000    0.0173
##      7        0.9391             nan     0.1000    0.0169
##      8        0.9043             nan     0.1000    0.0146
##      9        0.8778             nan     0.1000    0.0100
##     10        0.8520             nan     0.1000    0.0093
##     20        0.6957             nan     0.1000    0.0003
##     40        0.5610             nan     0.1000    0.0003
##     60        0.4637             nan     0.1000   -0.0008
##     80        0.3987             nan     0.1000   -0.0007
##    100        0.3456             nan     0.1000   -0.0008
##    120        0.3036             nan     0.1000    0.0006
##    140        0.2654             nan     0.1000   -0.0019
##    160        0.2355             nan     0.1000   -0.0005
##    180        0.2096             nan     0.1000    0.0001
##    200        0.1873             nan     0.1000   -0.0007
##    220        0.1662             nan     0.1000    0.0001
##    240        0.1492             nan     0.1000   -0.0013
##    260        0.1349             nan     0.1000   -0.0003
##    280        0.1220             nan     0.1000   -0.0004
##    300        0.1091             nan     0.1000   -0.0008
##    320        0.0974             nan     0.1000   -0.0005
##    340        0.0871             nan     0.1000   -0.0005
##    360        0.0780             nan     0.1000   -0.0003
##    380        0.0707             nan     0.1000   -0.0002
##    400        0.0638             nan     0.1000   -0.0002
##    420        0.0577             nan     0.1000   -0.0002
##    440        0.0524             nan     0.1000   -0.0002
##    460        0.0476             nan     0.1000   -0.0002
##    480        0.0436             nan     0.1000   -0.0002
##    500        0.0402             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2334             nan     0.1000    0.0357
##      2        1.1634             nan     0.1000    0.0333
##      3        1.0990             nan     0.1000    0.0266
##      4        1.0466             nan     0.1000    0.0235
##      5        0.9980             nan     0.1000    0.0184
##      6        0.9624             nan     0.1000    0.0128
##      7        0.9263             nan     0.1000    0.0155
##      8        0.8882             nan     0.1000    0.0108
##      9        0.8584             nan     0.1000    0.0092
##     10        0.8294             nan     0.1000    0.0105
##     20        0.6632             nan     0.1000    0.0021
##     40        0.5049             nan     0.1000   -0.0004
##     60        0.4016             nan     0.1000   -0.0003
##     80        0.3368             nan     0.1000   -0.0001
##    100        0.2807             nan     0.1000    0.0007
##    120        0.2411             nan     0.1000   -0.0009
##    140        0.2101             nan     0.1000   -0.0010
##    160        0.1790             nan     0.1000   -0.0011
##    180        0.1535             nan     0.1000   -0.0002
##    200        0.1304             nan     0.1000   -0.0003
##    220        0.1146             nan     0.1000   -0.0005
##    240        0.0986             nan     0.1000   -0.0001
##    260        0.0856             nan     0.1000    0.0000
##    280        0.0750             nan     0.1000   -0.0002
##    300        0.0662             nan     0.1000   -0.0002
##    320        0.0578             nan     0.1000   -0.0001
##    340        0.0511             nan     0.1000   -0.0002
##    360        0.0452             nan     0.1000   -0.0002
##    380        0.0398             nan     0.1000   -0.0000
##    400        0.0350             nan     0.1000   -0.0001
##    420        0.0311             nan     0.1000   -0.0000
##    440        0.0272             nan     0.1000   -0.0000
##    460        0.0243             nan     0.1000   -0.0001
##    480        0.0216             nan     0.1000   -0.0001
##    500        0.0191             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2334             nan     0.1000    0.0404
##      2        1.1633             nan     0.1000    0.0305
##      3        1.1051             nan     0.1000    0.0221
##      4        1.0559             nan     0.1000    0.0218
##      5        1.0143             nan     0.1000    0.0155
##      6        0.9736             nan     0.1000    0.0180
##      7        0.9393             nan     0.1000    0.0125
##      8        0.9097             nan     0.1000    0.0109
##      9        0.8770             nan     0.1000    0.0125
##     10        0.8458             nan     0.1000    0.0093
##     20        0.6754             nan     0.1000    0.0022
##     40        0.5126             nan     0.1000    0.0006
##     60        0.4212             nan     0.1000   -0.0014
##     80        0.3528             nan     0.1000   -0.0023
##    100        0.2925             nan     0.1000   -0.0015
##    120        0.2528             nan     0.1000   -0.0008
##    140        0.2138             nan     0.1000   -0.0000
##    160        0.1849             nan     0.1000   -0.0006
##    180        0.1569             nan     0.1000   -0.0003
##    200        0.1363             nan     0.1000   -0.0005
##    220        0.1185             nan     0.1000   -0.0001
##    240        0.1035             nan     0.1000   -0.0004
##    260        0.0900             nan     0.1000   -0.0005
##    280        0.0788             nan     0.1000   -0.0003
##    300        0.0686             nan     0.1000   -0.0004
##    320        0.0611             nan     0.1000   -0.0002
##    340        0.0540             nan     0.1000   -0.0001
##    360        0.0478             nan     0.1000   -0.0003
##    380        0.0420             nan     0.1000   -0.0002
##    400        0.0376             nan     0.1000   -0.0002
##    420        0.0336             nan     0.1000   -0.0002
##    440        0.0303             nan     0.1000   -0.0001
##    460        0.0271             nan     0.1000   -0.0001
##    480        0.0239             nan     0.1000   -0.0001
##    500        0.0211             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2317             nan     0.1000    0.0425
##      2        1.1614             nan     0.1000    0.0332
##      3        1.0980             nan     0.1000    0.0281
##      4        1.0501             nan     0.1000    0.0224
##      5        1.0042             nan     0.1000    0.0166
##      6        0.9622             nan     0.1000    0.0166
##      7        0.9258             nan     0.1000    0.0145
##      8        0.8920             nan     0.1000    0.0108
##      9        0.8620             nan     0.1000    0.0111
##     10        0.8406             nan     0.1000    0.0068
##     20        0.6752             nan     0.1000    0.0010
##     40        0.5242             nan     0.1000   -0.0005
##     60        0.4385             nan     0.1000   -0.0010
##     80        0.3599             nan     0.1000   -0.0008
##    100        0.3034             nan     0.1000   -0.0004
##    120        0.2601             nan     0.1000   -0.0004
##    140        0.2176             nan     0.1000   -0.0013
##    160        0.1902             nan     0.1000   -0.0009
##    180        0.1639             nan     0.1000   -0.0003
##    200        0.1444             nan     0.1000   -0.0005
##    220        0.1264             nan     0.1000   -0.0006
##    240        0.1121             nan     0.1000   -0.0005
##    260        0.0983             nan     0.1000   -0.0003
##    280        0.0862             nan     0.1000   -0.0004
##    300        0.0766             nan     0.1000   -0.0003
##    320        0.0678             nan     0.1000   -0.0003
##    340        0.0608             nan     0.1000   -0.0001
##    360        0.0535             nan     0.1000   -0.0001
##    380        0.0483             nan     0.1000   -0.0002
##    400        0.0429             nan     0.1000   -0.0000
##    420        0.0386             nan     0.1000   -0.0002
##    440        0.0340             nan     0.1000   -0.0001
##    460        0.0302             nan     0.1000   -0.0001
##    480        0.0268             nan     0.1000   -0.0002
##    500        0.0237             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3184             nan     0.0010    0.0003
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3144             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0003
##     10        1.3129             nan     0.0010    0.0003
##     20        1.3048             nan     0.0010    0.0003
##     40        1.2894             nan     0.0010    0.0003
##     60        1.2741             nan     0.0010    0.0004
##     80        1.2597             nan     0.0010    0.0004
##    100        1.2452             nan     0.0010    0.0004
##    120        1.2315             nan     0.0010    0.0003
##    140        1.2181             nan     0.0010    0.0003
##    160        1.2051             nan     0.0010    0.0003
##    180        1.1929             nan     0.0010    0.0003
##    200        1.1810             nan     0.0010    0.0002
##    220        1.1694             nan     0.0010    0.0003
##    240        1.1581             nan     0.0010    0.0002
##    260        1.1469             nan     0.0010    0.0002
##    280        1.1362             nan     0.0010    0.0002
##    300        1.1258             nan     0.0010    0.0002
##    320        1.1155             nan     0.0010    0.0002
##    340        1.1057             nan     0.0010    0.0002
##    360        1.0962             nan     0.0010    0.0002
##    380        1.0870             nan     0.0010    0.0002
##    400        1.0783             nan     0.0010    0.0002
##    420        1.0694             nan     0.0010    0.0002
##    440        1.0609             nan     0.0010    0.0002
##    460        1.0525             nan     0.0010    0.0002
##    480        1.0444             nan     0.0010    0.0002
##    500        1.0364             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0003
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0003
##      7        1.3150             nan     0.0010    0.0003
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0003
##     10        1.3125             nan     0.0010    0.0004
##     20        1.3044             nan     0.0010    0.0004
##     40        1.2891             nan     0.0010    0.0003
##     60        1.2739             nan     0.0010    0.0003
##     80        1.2597             nan     0.0010    0.0003
##    100        1.2459             nan     0.0010    0.0003
##    120        1.2321             nan     0.0010    0.0003
##    140        1.2190             nan     0.0010    0.0003
##    160        1.2062             nan     0.0010    0.0003
##    180        1.1937             nan     0.0010    0.0002
##    200        1.1815             nan     0.0010    0.0003
##    220        1.1699             nan     0.0010    0.0003
##    240        1.1587             nan     0.0010    0.0003
##    260        1.1476             nan     0.0010    0.0002
##    280        1.1365             nan     0.0010    0.0002
##    300        1.1259             nan     0.0010    0.0002
##    320        1.1159             nan     0.0010    0.0002
##    340        1.1064             nan     0.0010    0.0002
##    360        1.0965             nan     0.0010    0.0002
##    380        1.0871             nan     0.0010    0.0002
##    400        1.0780             nan     0.0010    0.0002
##    420        1.0696             nan     0.0010    0.0001
##    440        1.0610             nan     0.0010    0.0002
##    460        1.0526             nan     0.0010    0.0002
##    480        1.0446             nan     0.0010    0.0001
##    500        1.0367             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0003
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3046             nan     0.0010    0.0004
##     40        1.2892             nan     0.0010    0.0003
##     60        1.2741             nan     0.0010    0.0003
##     80        1.2598             nan     0.0010    0.0003
##    100        1.2460             nan     0.0010    0.0004
##    120        1.2328             nan     0.0010    0.0003
##    140        1.2199             nan     0.0010    0.0003
##    160        1.2071             nan     0.0010    0.0003
##    180        1.1948             nan     0.0010    0.0002
##    200        1.1829             nan     0.0010    0.0003
##    220        1.1712             nan     0.0010    0.0003
##    240        1.1601             nan     0.0010    0.0002
##    260        1.1492             nan     0.0010    0.0003
##    280        1.1382             nan     0.0010    0.0002
##    300        1.1281             nan     0.0010    0.0002
##    320        1.1179             nan     0.0010    0.0002
##    340        1.1082             nan     0.0010    0.0002
##    360        1.0988             nan     0.0010    0.0002
##    380        1.0897             nan     0.0010    0.0002
##    400        1.0804             nan     0.0010    0.0002
##    420        1.0716             nan     0.0010    0.0001
##    440        1.0630             nan     0.0010    0.0002
##    460        1.0547             nan     0.0010    0.0002
##    480        1.0463             nan     0.0010    0.0002
##    500        1.0383             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0004
##     40        1.2867             nan     0.0010    0.0003
##     60        1.2710             nan     0.0010    0.0003
##     80        1.2558             nan     0.0010    0.0003
##    100        1.2410             nan     0.0010    0.0004
##    120        1.2265             nan     0.0010    0.0003
##    140        1.2127             nan     0.0010    0.0003
##    160        1.1990             nan     0.0010    0.0003
##    180        1.1856             nan     0.0010    0.0003
##    200        1.1731             nan     0.0010    0.0002
##    220        1.1606             nan     0.0010    0.0002
##    240        1.1486             nan     0.0010    0.0003
##    260        1.1369             nan     0.0010    0.0002
##    280        1.1254             nan     0.0010    0.0002
##    300        1.1144             nan     0.0010    0.0002
##    320        1.1038             nan     0.0010    0.0002
##    340        1.0931             nan     0.0010    0.0003
##    360        1.0830             nan     0.0010    0.0002
##    380        1.0732             nan     0.0010    0.0002
##    400        1.0634             nan     0.0010    0.0002
##    420        1.0541             nan     0.0010    0.0002
##    440        1.0448             nan     0.0010    0.0002
##    460        1.0362             nan     0.0010    0.0002
##    480        1.0276             nan     0.0010    0.0002
##    500        1.0193             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0003
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3035             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0004
##     80        1.2560             nan     0.0010    0.0003
##    100        1.2412             nan     0.0010    0.0003
##    120        1.2268             nan     0.0010    0.0003
##    140        1.2128             nan     0.0010    0.0003
##    160        1.1993             nan     0.0010    0.0003
##    180        1.1862             nan     0.0010    0.0003
##    200        1.1738             nan     0.0010    0.0003
##    220        1.1615             nan     0.0010    0.0003
##    240        1.1494             nan     0.0010    0.0002
##    260        1.1377             nan     0.0010    0.0002
##    280        1.1261             nan     0.0010    0.0003
##    300        1.1151             nan     0.0010    0.0002
##    320        1.1048             nan     0.0010    0.0003
##    340        1.0943             nan     0.0010    0.0002
##    360        1.0842             nan     0.0010    0.0002
##    380        1.0742             nan     0.0010    0.0002
##    400        1.0648             nan     0.0010    0.0002
##    420        1.0553             nan     0.0010    0.0002
##    440        1.0460             nan     0.0010    0.0002
##    460        1.0372             nan     0.0010    0.0002
##    480        1.0287             nan     0.0010    0.0002
##    500        1.0202             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0003
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3038             nan     0.0010    0.0004
##     40        1.2875             nan     0.0010    0.0004
##     60        1.2716             nan     0.0010    0.0004
##     80        1.2565             nan     0.0010    0.0004
##    100        1.2420             nan     0.0010    0.0003
##    120        1.2278             nan     0.0010    0.0003
##    140        1.2139             nan     0.0010    0.0003
##    160        1.2005             nan     0.0010    0.0003
##    180        1.1876             nan     0.0010    0.0003
##    200        1.1748             nan     0.0010    0.0003
##    220        1.1625             nan     0.0010    0.0002
##    240        1.1507             nan     0.0010    0.0003
##    260        1.1392             nan     0.0010    0.0003
##    280        1.1282             nan     0.0010    0.0002
##    300        1.1176             nan     0.0010    0.0002
##    320        1.1069             nan     0.0010    0.0002
##    340        1.0964             nan     0.0010    0.0002
##    360        1.0863             nan     0.0010    0.0002
##    380        1.0766             nan     0.0010    0.0002
##    400        1.0671             nan     0.0010    0.0002
##    420        1.0581             nan     0.0010    0.0002
##    440        1.0490             nan     0.0010    0.0002
##    460        1.0402             nan     0.0010    0.0002
##    480        1.0317             nan     0.0010    0.0002
##    500        1.0232             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0003
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3142             nan     0.0010    0.0004
##      8        1.3132             nan     0.0010    0.0004
##      9        1.3124             nan     0.0010    0.0004
##     10        1.3115             nan     0.0010    0.0003
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2857             nan     0.0010    0.0003
##     60        1.2694             nan     0.0010    0.0004
##     80        1.2536             nan     0.0010    0.0004
##    100        1.2382             nan     0.0010    0.0004
##    120        1.2227             nan     0.0010    0.0003
##    140        1.2082             nan     0.0010    0.0003
##    160        1.1944             nan     0.0010    0.0003
##    180        1.1809             nan     0.0010    0.0002
##    200        1.1677             nan     0.0010    0.0003
##    220        1.1545             nan     0.0010    0.0003
##    240        1.1418             nan     0.0010    0.0003
##    260        1.1293             nan     0.0010    0.0003
##    280        1.1174             nan     0.0010    0.0003
##    300        1.1059             nan     0.0010    0.0003
##    320        1.0946             nan     0.0010    0.0003
##    340        1.0838             nan     0.0010    0.0003
##    360        1.0732             nan     0.0010    0.0002
##    380        1.0630             nan     0.0010    0.0002
##    400        1.0532             nan     0.0010    0.0002
##    420        1.0436             nan     0.0010    0.0002
##    440        1.0343             nan     0.0010    0.0002
##    460        1.0252             nan     0.0010    0.0002
##    480        1.0159             nan     0.0010    0.0002
##    500        1.0071             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0005
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3030             nan     0.0010    0.0004
##     40        1.2857             nan     0.0010    0.0004
##     60        1.2692             nan     0.0010    0.0003
##     80        1.2532             nan     0.0010    0.0004
##    100        1.2381             nan     0.0010    0.0004
##    120        1.2231             nan     0.0010    0.0003
##    140        1.2085             nan     0.0010    0.0003
##    160        1.1942             nan     0.0010    0.0003
##    180        1.1804             nan     0.0010    0.0003
##    200        1.1671             nan     0.0010    0.0003
##    220        1.1540             nan     0.0010    0.0003
##    240        1.1418             nan     0.0010    0.0003
##    260        1.1298             nan     0.0010    0.0003
##    280        1.1181             nan     0.0010    0.0002
##    300        1.1066             nan     0.0010    0.0002
##    320        1.0954             nan     0.0010    0.0002
##    340        1.0846             nan     0.0010    0.0003
##    360        1.0742             nan     0.0010    0.0002
##    380        1.0642             nan     0.0010    0.0002
##    400        1.0543             nan     0.0010    0.0002
##    420        1.0447             nan     0.0010    0.0002
##    440        1.0354             nan     0.0010    0.0002
##    460        1.0261             nan     0.0010    0.0002
##    480        1.0171             nan     0.0010    0.0002
##    500        1.0084             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0004
##     40        1.2865             nan     0.0010    0.0004
##     60        1.2704             nan     0.0010    0.0004
##     80        1.2544             nan     0.0010    0.0003
##    100        1.2390             nan     0.0010    0.0004
##    120        1.2241             nan     0.0010    0.0003
##    140        1.2096             nan     0.0010    0.0003
##    160        1.1959             nan     0.0010    0.0003
##    180        1.1825             nan     0.0010    0.0003
##    200        1.1696             nan     0.0010    0.0003
##    220        1.1571             nan     0.0010    0.0003
##    240        1.1448             nan     0.0010    0.0003
##    260        1.1326             nan     0.0010    0.0003
##    280        1.1210             nan     0.0010    0.0002
##    300        1.1095             nan     0.0010    0.0002
##    320        1.0986             nan     0.0010    0.0002
##    340        1.0880             nan     0.0010    0.0002
##    360        1.0777             nan     0.0010    0.0002
##    380        1.0675             nan     0.0010    0.0002
##    400        1.0576             nan     0.0010    0.0002
##    420        1.0481             nan     0.0010    0.0001
##    440        1.0386             nan     0.0010    0.0002
##    460        1.0295             nan     0.0010    0.0002
##    480        1.0207             nan     0.0010    0.0002
##    500        1.0119             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3125             nan     0.0100    0.0041
##      2        1.3044             nan     0.0100    0.0036
##      3        1.2964             nan     0.0100    0.0036
##      4        1.2887             nan     0.0100    0.0034
##      5        1.2813             nan     0.0100    0.0035
##      6        1.2748             nan     0.0100    0.0028
##      7        1.2670             nan     0.0100    0.0030
##      8        1.2603             nan     0.0100    0.0028
##      9        1.2535             nan     0.0100    0.0029
##     10        1.2459             nan     0.0100    0.0032
##     20        1.1812             nan     0.0100    0.0026
##     40        1.0792             nan     0.0100    0.0019
##     60        1.0000             nan     0.0100    0.0013
##     80        0.9375             nan     0.0100    0.0012
##    100        0.8883             nan     0.0100    0.0005
##    120        0.8462             nan     0.0100    0.0004
##    140        0.8108             nan     0.0100    0.0004
##    160        0.7828             nan     0.0100    0.0004
##    180        0.7581             nan     0.0100    0.0001
##    200        0.7366             nan     0.0100    0.0004
##    220        0.7172             nan     0.0100    0.0002
##    240        0.6985             nan     0.0100    0.0003
##    260        0.6828             nan     0.0100    0.0001
##    280        0.6685             nan     0.0100   -0.0001
##    300        0.6559             nan     0.0100    0.0000
##    320        0.6439             nan     0.0100   -0.0001
##    340        0.6323             nan     0.0100   -0.0002
##    360        0.6216             nan     0.0100    0.0000
##    380        0.6109             nan     0.0100   -0.0001
##    400        0.6008             nan     0.0100    0.0001
##    420        0.5915             nan     0.0100   -0.0001
##    440        0.5823             nan     0.0100    0.0000
##    460        0.5730             nan     0.0100   -0.0000
##    480        0.5642             nan     0.0100   -0.0000
##    500        0.5553             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0033
##      2        1.3045             nan     0.0100    0.0037
##      3        1.2965             nan     0.0100    0.0035
##      4        1.2886             nan     0.0100    0.0039
##      5        1.2818             nan     0.0100    0.0026
##      6        1.2736             nan     0.0100    0.0038
##      7        1.2661             nan     0.0100    0.0034
##      8        1.2588             nan     0.0100    0.0032
##      9        1.2518             nan     0.0100    0.0031
##     10        1.2446             nan     0.0100    0.0031
##     20        1.1801             nan     0.0100    0.0021
##     40        1.0792             nan     0.0100    0.0020
##     60        1.0022             nan     0.0100    0.0014
##     80        0.9391             nan     0.0100    0.0010
##    100        0.8896             nan     0.0100    0.0005
##    120        0.8474             nan     0.0100    0.0008
##    140        0.8140             nan     0.0100    0.0006
##    160        0.7849             nan     0.0100    0.0004
##    180        0.7586             nan     0.0100    0.0003
##    200        0.7381             nan     0.0100    0.0002
##    220        0.7196             nan     0.0100    0.0001
##    240        0.7037             nan     0.0100    0.0002
##    260        0.6891             nan     0.0100    0.0001
##    280        0.6754             nan     0.0100    0.0002
##    300        0.6636             nan     0.0100   -0.0000
##    320        0.6515             nan     0.0100    0.0001
##    340        0.6405             nan     0.0100   -0.0000
##    360        0.6307             nan     0.0100    0.0000
##    380        0.6207             nan     0.0100    0.0000
##    400        0.6106             nan     0.0100   -0.0002
##    420        0.6013             nan     0.0100   -0.0000
##    440        0.5928             nan     0.0100   -0.0001
##    460        0.5841             nan     0.0100   -0.0001
##    480        0.5759             nan     0.0100    0.0000
##    500        0.5677             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0039
##      2        1.3043             nan     0.0100    0.0038
##      3        1.2968             nan     0.0100    0.0036
##      4        1.2891             nan     0.0100    0.0036
##      5        1.2816             nan     0.0100    0.0036
##      6        1.2744             nan     0.0100    0.0030
##      7        1.2671             nan     0.0100    0.0033
##      8        1.2601             nan     0.0100    0.0030
##      9        1.2527             nan     0.0100    0.0035
##     10        1.2455             nan     0.0100    0.0031
##     20        1.1812             nan     0.0100    0.0025
##     40        1.0788             nan     0.0100    0.0019
##     60        1.0009             nan     0.0100    0.0013
##     80        0.9399             nan     0.0100    0.0010
##    100        0.8913             nan     0.0100    0.0007
##    120        0.8513             nan     0.0100    0.0005
##    140        0.8170             nan     0.0100    0.0005
##    160        0.7886             nan     0.0100    0.0004
##    180        0.7646             nan     0.0100    0.0002
##    200        0.7441             nan     0.0100    0.0002
##    220        0.7261             nan     0.0100    0.0001
##    240        0.7106             nan     0.0100    0.0000
##    260        0.6956             nan     0.0100   -0.0001
##    280        0.6809             nan     0.0100    0.0001
##    300        0.6688             nan     0.0100    0.0001
##    320        0.6575             nan     0.0100   -0.0000
##    340        0.6470             nan     0.0100    0.0001
##    360        0.6378             nan     0.0100    0.0000
##    380        0.6274             nan     0.0100    0.0000
##    400        0.6187             nan     0.0100   -0.0002
##    420        0.6107             nan     0.0100   -0.0001
##    440        0.6030             nan     0.0100   -0.0000
##    460        0.5956             nan     0.0100    0.0001
##    480        0.5872             nan     0.0100   -0.0001
##    500        0.5786             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0034
##      2        1.3040             nan     0.0100    0.0040
##      3        1.2956             nan     0.0100    0.0035
##      4        1.2876             nan     0.0100    0.0033
##      5        1.2786             nan     0.0100    0.0038
##      6        1.2706             nan     0.0100    0.0034
##      7        1.2634             nan     0.0100    0.0031
##      8        1.2557             nan     0.0100    0.0034
##      9        1.2486             nan     0.0100    0.0029
##     10        1.2406             nan     0.0100    0.0035
##     20        1.1723             nan     0.0100    0.0029
##     40        1.0649             nan     0.0100    0.0017
##     60        0.9798             nan     0.0100    0.0017
##     80        0.9136             nan     0.0100    0.0014
##    100        0.8610             nan     0.0100    0.0007
##    120        0.8169             nan     0.0100    0.0005
##    140        0.7817             nan     0.0100    0.0003
##    160        0.7513             nan     0.0100    0.0003
##    180        0.7240             nan     0.0100    0.0003
##    200        0.7009             nan     0.0100    0.0002
##    220        0.6820             nan     0.0100    0.0002
##    240        0.6646             nan     0.0100    0.0000
##    260        0.6470             nan     0.0100    0.0001
##    280        0.6327             nan     0.0100    0.0001
##    300        0.6192             nan     0.0100   -0.0000
##    320        0.6050             nan     0.0100   -0.0000
##    340        0.5908             nan     0.0100    0.0001
##    360        0.5787             nan     0.0100   -0.0001
##    380        0.5683             nan     0.0100   -0.0001
##    400        0.5578             nan     0.0100   -0.0000
##    420        0.5474             nan     0.0100   -0.0001
##    440        0.5371             nan     0.0100   -0.0000
##    460        0.5280             nan     0.0100   -0.0001
##    480        0.5183             nan     0.0100    0.0001
##    500        0.5087             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0041
##      2        1.3028             nan     0.0100    0.0038
##      3        1.2935             nan     0.0100    0.0037
##      4        1.2845             nan     0.0100    0.0038
##      5        1.2767             nan     0.0100    0.0033
##      6        1.2686             nan     0.0100    0.0036
##      7        1.2618             nan     0.0100    0.0030
##      8        1.2551             nan     0.0100    0.0032
##      9        1.2479             nan     0.0100    0.0034
##     10        1.2405             nan     0.0100    0.0029
##     20        1.1725             nan     0.0100    0.0030
##     40        1.0641             nan     0.0100    0.0022
##     60        0.9802             nan     0.0100    0.0014
##     80        0.9140             nan     0.0100    0.0011
##    100        0.8620             nan     0.0100    0.0009
##    120        0.8196             nan     0.0100    0.0006
##    140        0.7856             nan     0.0100    0.0003
##    160        0.7581             nan     0.0100    0.0004
##    180        0.7323             nan     0.0100    0.0004
##    200        0.7082             nan     0.0100    0.0003
##    220        0.6874             nan     0.0100    0.0001
##    240        0.6686             nan     0.0100    0.0003
##    260        0.6519             nan     0.0100    0.0002
##    280        0.6372             nan     0.0100    0.0003
##    300        0.6228             nan     0.0100    0.0001
##    320        0.6089             nan     0.0100   -0.0001
##    340        0.5961             nan     0.0100    0.0000
##    360        0.5835             nan     0.0100    0.0000
##    380        0.5727             nan     0.0100   -0.0000
##    400        0.5626             nan     0.0100   -0.0001
##    420        0.5530             nan     0.0100   -0.0001
##    440        0.5424             nan     0.0100   -0.0002
##    460        0.5329             nan     0.0100   -0.0001
##    480        0.5239             nan     0.0100    0.0000
##    500        0.5149             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0038
##      2        1.3041             nan     0.0100    0.0038
##      3        1.2963             nan     0.0100    0.0038
##      4        1.2878             nan     0.0100    0.0039
##      5        1.2796             nan     0.0100    0.0037
##      6        1.2718             nan     0.0100    0.0036
##      7        1.2645             nan     0.0100    0.0032
##      8        1.2566             nan     0.0100    0.0034
##      9        1.2494             nan     0.0100    0.0029
##     10        1.2418             nan     0.0100    0.0036
##     20        1.1770             nan     0.0100    0.0024
##     40        1.0683             nan     0.0100    0.0019
##     60        0.9846             nan     0.0100    0.0016
##     80        0.9175             nan     0.0100    0.0011
##    100        0.8666             nan     0.0100    0.0008
##    120        0.8255             nan     0.0100    0.0005
##    140        0.7905             nan     0.0100    0.0004
##    160        0.7615             nan     0.0100    0.0003
##    180        0.7373             nan     0.0100    0.0004
##    200        0.7140             nan     0.0100    0.0003
##    220        0.6935             nan     0.0100    0.0001
##    240        0.6758             nan     0.0100   -0.0001
##    260        0.6600             nan     0.0100    0.0001
##    280        0.6453             nan     0.0100    0.0001
##    300        0.6319             nan     0.0100    0.0001
##    320        0.6198             nan     0.0100   -0.0002
##    340        0.6086             nan     0.0100   -0.0000
##    360        0.5968             nan     0.0100   -0.0001
##    380        0.5871             nan     0.0100   -0.0000
##    400        0.5770             nan     0.0100    0.0000
##    420        0.5665             nan     0.0100    0.0000
##    440        0.5574             nan     0.0100    0.0001
##    460        0.5480             nan     0.0100   -0.0001
##    480        0.5384             nan     0.0100   -0.0000
##    500        0.5293             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3105             nan     0.0100    0.0044
##      2        1.3022             nan     0.0100    0.0037
##      3        1.2935             nan     0.0100    0.0038
##      4        1.2844             nan     0.0100    0.0041
##      5        1.2761             nan     0.0100    0.0037
##      6        1.2687             nan     0.0100    0.0031
##      7        1.2603             nan     0.0100    0.0035
##      8        1.2520             nan     0.0100    0.0035
##      9        1.2441             nan     0.0100    0.0038
##     10        1.2357             nan     0.0100    0.0039
##     20        1.1630             nan     0.0100    0.0029
##     40        1.0504             nan     0.0100    0.0016
##     60        0.9637             nan     0.0100    0.0013
##     80        0.8949             nan     0.0100    0.0012
##    100        0.8394             nan     0.0100    0.0007
##    120        0.7945             nan     0.0100    0.0004
##    140        0.7555             nan     0.0100    0.0005
##    160        0.7230             nan     0.0100    0.0003
##    180        0.6945             nan     0.0100    0.0004
##    200        0.6703             nan     0.0100    0.0003
##    220        0.6479             nan     0.0100    0.0001
##    240        0.6282             nan     0.0100    0.0002
##    260        0.6104             nan     0.0100    0.0001
##    280        0.5936             nan     0.0100    0.0001
##    300        0.5779             nan     0.0100    0.0002
##    320        0.5639             nan     0.0100    0.0001
##    340        0.5512             nan     0.0100    0.0001
##    360        0.5383             nan     0.0100   -0.0001
##    380        0.5268             nan     0.0100    0.0000
##    400        0.5153             nan     0.0100   -0.0001
##    420        0.5033             nan     0.0100   -0.0001
##    440        0.4925             nan     0.0100    0.0002
##    460        0.4821             nan     0.0100   -0.0000
##    480        0.4721             nan     0.0100    0.0000
##    500        0.4618             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3106             nan     0.0100    0.0044
##      2        1.3019             nan     0.0100    0.0042
##      3        1.2929             nan     0.0100    0.0040
##      4        1.2843             nan     0.0100    0.0036
##      5        1.2753             nan     0.0100    0.0037
##      6        1.2671             nan     0.0100    0.0038
##      7        1.2589             nan     0.0100    0.0035
##      8        1.2503             nan     0.0100    0.0037
##      9        1.2429             nan     0.0100    0.0032
##     10        1.2352             nan     0.0100    0.0037
##     20        1.1642             nan     0.0100    0.0031
##     40        1.0505             nan     0.0100    0.0017
##     60        0.9653             nan     0.0100    0.0016
##     80        0.8967             nan     0.0100    0.0011
##    100        0.8434             nan     0.0100    0.0010
##    120        0.7990             nan     0.0100    0.0007
##    140        0.7615             nan     0.0100    0.0005
##    160        0.7302             nan     0.0100    0.0003
##    180        0.7034             nan     0.0100    0.0004
##    200        0.6799             nan     0.0100    0.0001
##    220        0.6590             nan     0.0100   -0.0000
##    240        0.6402             nan     0.0100   -0.0001
##    260        0.6225             nan     0.0100    0.0001
##    280        0.6061             nan     0.0100   -0.0000
##    300        0.5907             nan     0.0100   -0.0001
##    320        0.5765             nan     0.0100   -0.0003
##    340        0.5634             nan     0.0100   -0.0000
##    360        0.5512             nan     0.0100    0.0001
##    380        0.5380             nan     0.0100   -0.0000
##    400        0.5266             nan     0.0100    0.0001
##    420        0.5153             nan     0.0100   -0.0001
##    440        0.5045             nan     0.0100    0.0000
##    460        0.4939             nan     0.0100   -0.0001
##    480        0.4832             nan     0.0100    0.0000
##    500        0.4740             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3113             nan     0.0100    0.0042
##      2        1.3020             nan     0.0100    0.0042
##      3        1.2940             nan     0.0100    0.0037
##      4        1.2857             nan     0.0100    0.0036
##      5        1.2773             nan     0.0100    0.0040
##      6        1.2692             nan     0.0100    0.0038
##      7        1.2616             nan     0.0100    0.0034
##      8        1.2535             nan     0.0100    0.0034
##      9        1.2461             nan     0.0100    0.0032
##     10        1.2390             nan     0.0100    0.0033
##     20        1.1692             nan     0.0100    0.0026
##     40        1.0585             nan     0.0100    0.0020
##     60        0.9745             nan     0.0100    0.0014
##     80        0.9082             nan     0.0100    0.0010
##    100        0.8530             nan     0.0100    0.0007
##    120        0.8104             nan     0.0100    0.0008
##    140        0.7759             nan     0.0100    0.0004
##    160        0.7442             nan     0.0100    0.0002
##    180        0.7164             nan     0.0100    0.0001
##    200        0.6920             nan     0.0100    0.0003
##    220        0.6715             nan     0.0100    0.0002
##    240        0.6533             nan     0.0100    0.0000
##    260        0.6359             nan     0.0100    0.0000
##    280        0.6199             nan     0.0100    0.0002
##    300        0.6052             nan     0.0100    0.0000
##    320        0.5914             nan     0.0100    0.0002
##    340        0.5775             nan     0.0100    0.0002
##    360        0.5645             nan     0.0100    0.0001
##    380        0.5527             nan     0.0100   -0.0000
##    400        0.5423             nan     0.0100   -0.0000
##    420        0.5320             nan     0.0100    0.0000
##    440        0.5214             nan     0.0100    0.0000
##    460        0.5113             nan     0.0100   -0.0001
##    480        0.5013             nan     0.0100   -0.0001
##    500        0.4917             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2333             nan     0.1000    0.0384
##      2        1.1751             nan     0.1000    0.0211
##      3        1.1296             nan     0.1000    0.0187
##      4        1.0791             nan     0.1000    0.0237
##      5        1.0393             nan     0.1000    0.0161
##      6        1.0005             nan     0.1000    0.0173
##      7        0.9673             nan     0.1000    0.0102
##      8        0.9372             nan     0.1000    0.0098
##      9        0.9113             nan     0.1000    0.0115
##     10        0.8892             nan     0.1000    0.0077
##     20        0.7379             nan     0.1000    0.0021
##     40        0.5983             nan     0.1000    0.0016
##     60        0.5242             nan     0.1000   -0.0009
##     80        0.4616             nan     0.1000   -0.0004
##    100        0.4131             nan     0.1000   -0.0000
##    120        0.3679             nan     0.1000   -0.0019
##    140        0.3269             nan     0.1000    0.0006
##    160        0.2903             nan     0.1000   -0.0005
##    180        0.2632             nan     0.1000   -0.0008
##    200        0.2368             nan     0.1000   -0.0010
##    220        0.2160             nan     0.1000   -0.0005
##    240        0.1955             nan     0.1000   -0.0006
##    260        0.1765             nan     0.1000   -0.0002
##    280        0.1615             nan     0.1000   -0.0007
##    300        0.1472             nan     0.1000   -0.0000
##    320        0.1369             nan     0.1000   -0.0001
##    340        0.1267             nan     0.1000   -0.0003
##    360        0.1177             nan     0.1000    0.0001
##    380        0.1101             nan     0.1000   -0.0001
##    400        0.1020             nan     0.1000    0.0001
##    420        0.0947             nan     0.1000   -0.0003
##    440        0.0883             nan     0.1000   -0.0002
##    460        0.0818             nan     0.1000   -0.0002
##    480        0.0759             nan     0.1000   -0.0001
##    500        0.0712             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2446             nan     0.1000    0.0345
##      2        1.1704             nan     0.1000    0.0320
##      3        1.1179             nan     0.1000    0.0212
##      4        1.0743             nan     0.1000    0.0183
##      5        1.0333             nan     0.1000    0.0160
##      6        0.9923             nan     0.1000    0.0170
##      7        0.9521             nan     0.1000    0.0161
##      8        0.9194             nan     0.1000    0.0147
##      9        0.8984             nan     0.1000    0.0078
##     10        0.8777             nan     0.1000    0.0065
##     20        0.7314             nan     0.1000    0.0028
##     40        0.6115             nan     0.1000   -0.0014
##     60        0.5357             nan     0.1000   -0.0002
##     80        0.4758             nan     0.1000   -0.0009
##    100        0.4222             nan     0.1000   -0.0004
##    120        0.3784             nan     0.1000   -0.0011
##    140        0.3405             nan     0.1000   -0.0015
##    160        0.3045             nan     0.1000   -0.0014
##    180        0.2780             nan     0.1000    0.0002
##    200        0.2548             nan     0.1000   -0.0007
##    220        0.2317             nan     0.1000   -0.0006
##    240        0.2135             nan     0.1000   -0.0008
##    260        0.1969             nan     0.1000   -0.0007
##    280        0.1808             nan     0.1000   -0.0003
##    300        0.1668             nan     0.1000   -0.0006
##    320        0.1532             nan     0.1000   -0.0008
##    340        0.1424             nan     0.1000   -0.0004
##    360        0.1332             nan     0.1000   -0.0003
##    380        0.1232             nan     0.1000   -0.0003
##    400        0.1147             nan     0.1000   -0.0002
##    420        0.1063             nan     0.1000   -0.0001
##    440        0.0980             nan     0.1000   -0.0006
##    460        0.0915             nan     0.1000   -0.0004
##    480        0.0844             nan     0.1000   -0.0003
##    500        0.0788             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2363             nan     0.1000    0.0388
##      2        1.1681             nan     0.1000    0.0294
##      3        1.1138             nan     0.1000    0.0262
##      4        1.0703             nan     0.1000    0.0196
##      5        1.0317             nan     0.1000    0.0184
##      6        0.9948             nan     0.1000    0.0154
##      7        0.9626             nan     0.1000    0.0124
##      8        0.9387             nan     0.1000    0.0071
##      9        0.9133             nan     0.1000    0.0126
##     10        0.8921             nan     0.1000    0.0065
##     20        0.7389             nan     0.1000    0.0059
##     40        0.6130             nan     0.1000    0.0004
##     60        0.5299             nan     0.1000   -0.0025
##     80        0.4716             nan     0.1000   -0.0004
##    100        0.4235             nan     0.1000   -0.0007
##    120        0.3777             nan     0.1000   -0.0012
##    140        0.3459             nan     0.1000   -0.0016
##    160        0.3119             nan     0.1000   -0.0007
##    180        0.2878             nan     0.1000   -0.0009
##    200        0.2633             nan     0.1000   -0.0004
##    220        0.2387             nan     0.1000   -0.0000
##    240        0.2201             nan     0.1000   -0.0010
##    260        0.2015             nan     0.1000   -0.0013
##    280        0.1856             nan     0.1000   -0.0006
##    300        0.1718             nan     0.1000   -0.0005
##    320        0.1601             nan     0.1000   -0.0005
##    340        0.1482             nan     0.1000   -0.0002
##    360        0.1378             nan     0.1000   -0.0004
##    380        0.1288             nan     0.1000   -0.0005
##    400        0.1199             nan     0.1000   -0.0004
##    420        0.1120             nan     0.1000   -0.0003
##    440        0.1057             nan     0.1000   -0.0003
##    460        0.0990             nan     0.1000   -0.0003
##    480        0.0925             nan     0.1000   -0.0006
##    500        0.0862             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2379             nan     0.1000    0.0347
##      2        1.1778             nan     0.1000    0.0266
##      3        1.1257             nan     0.1000    0.0245
##      4        1.0755             nan     0.1000    0.0198
##      5        1.0261             nan     0.1000    0.0223
##      6        0.9773             nan     0.1000    0.0158
##      7        0.9408             nan     0.1000    0.0117
##      8        0.9116             nan     0.1000    0.0132
##      9        0.8840             nan     0.1000    0.0111
##     10        0.8597             nan     0.1000    0.0093
##     20        0.7030             nan     0.1000    0.0047
##     40        0.5579             nan     0.1000    0.0002
##     60        0.4718             nan     0.1000   -0.0012
##     80        0.3988             nan     0.1000   -0.0005
##    100        0.3444             nan     0.1000   -0.0005
##    120        0.3006             nan     0.1000   -0.0008
##    140        0.2657             nan     0.1000   -0.0007
##    160        0.2350             nan     0.1000    0.0002
##    180        0.2103             nan     0.1000   -0.0009
##    200        0.1886             nan     0.1000    0.0004
##    220        0.1681             nan     0.1000   -0.0003
##    240        0.1496             nan     0.1000   -0.0002
##    260        0.1351             nan     0.1000   -0.0002
##    280        0.1229             nan     0.1000   -0.0003
##    300        0.1105             nan     0.1000   -0.0003
##    320        0.1002             nan     0.1000   -0.0001
##    340        0.0905             nan     0.1000   -0.0002
##    360        0.0816             nan     0.1000   -0.0002
##    380        0.0747             nan     0.1000   -0.0003
##    400        0.0683             nan     0.1000   -0.0001
##    420        0.0627             nan     0.1000   -0.0001
##    440        0.0577             nan     0.1000   -0.0001
##    460        0.0521             nan     0.1000   -0.0001
##    480        0.0474             nan     0.1000   -0.0002
##    500        0.0434             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2470             nan     0.1000    0.0314
##      2        1.1746             nan     0.1000    0.0324
##      3        1.1217             nan     0.1000    0.0243
##      4        1.0721             nan     0.1000    0.0212
##      5        1.0330             nan     0.1000    0.0172
##      6        0.9932             nan     0.1000    0.0155
##      7        0.9601             nan     0.1000    0.0127
##      8        0.9262             nan     0.1000    0.0124
##      9        0.8959             nan     0.1000    0.0112
##     10        0.8702             nan     0.1000    0.0100
##     20        0.7257             nan     0.1000    0.0018
##     40        0.5737             nan     0.1000   -0.0010
##     60        0.4821             nan     0.1000    0.0003
##     80        0.4135             nan     0.1000   -0.0008
##    100        0.3577             nan     0.1000   -0.0020
##    120        0.3132             nan     0.1000   -0.0004
##    140        0.2721             nan     0.1000   -0.0006
##    160        0.2387             nan     0.1000   -0.0010
##    180        0.2139             nan     0.1000   -0.0008
##    200        0.1923             nan     0.1000   -0.0012
##    220        0.1704             nan     0.1000   -0.0012
##    240        0.1517             nan     0.1000   -0.0005
##    260        0.1366             nan     0.1000   -0.0002
##    280        0.1242             nan     0.1000   -0.0006
##    300        0.1121             nan     0.1000   -0.0001
##    320        0.1016             nan     0.1000   -0.0003
##    340        0.0913             nan     0.1000   -0.0001
##    360        0.0831             nan     0.1000   -0.0003
##    380        0.0738             nan     0.1000   -0.0003
##    400        0.0674             nan     0.1000   -0.0001
##    420        0.0623             nan     0.1000   -0.0001
##    440        0.0570             nan     0.1000   -0.0001
##    460        0.0523             nan     0.1000   -0.0001
##    480        0.0485             nan     0.1000   -0.0003
##    500        0.0440             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2394             nan     0.1000    0.0396
##      2        1.1733             nan     0.1000    0.0263
##      3        1.1140             nan     0.1000    0.0244
##      4        1.0634             nan     0.1000    0.0192
##      5        1.0189             nan     0.1000    0.0175
##      6        0.9812             nan     0.1000    0.0149
##      7        0.9467             nan     0.1000    0.0137
##      8        0.9169             nan     0.1000    0.0109
##      9        0.8888             nan     0.1000    0.0112
##     10        0.8617             nan     0.1000    0.0104
##     20        0.7167             nan     0.1000    0.0022
##     40        0.5768             nan     0.1000   -0.0004
##     60        0.4887             nan     0.1000   -0.0015
##     80        0.4159             nan     0.1000   -0.0000
##    100        0.3621             nan     0.1000   -0.0006
##    120        0.3158             nan     0.1000   -0.0016
##    140        0.2845             nan     0.1000   -0.0012
##    160        0.2550             nan     0.1000   -0.0014
##    180        0.2276             nan     0.1000   -0.0007
##    200        0.2029             nan     0.1000   -0.0005
##    220        0.1823             nan     0.1000   -0.0005
##    240        0.1634             nan     0.1000   -0.0001
##    260        0.1462             nan     0.1000   -0.0008
##    280        0.1324             nan     0.1000   -0.0003
##    300        0.1203             nan     0.1000   -0.0007
##    320        0.1085             nan     0.1000   -0.0001
##    340        0.0996             nan     0.1000   -0.0007
##    360        0.0907             nan     0.1000   -0.0002
##    380        0.0828             nan     0.1000   -0.0004
##    400        0.0754             nan     0.1000   -0.0002
##    420        0.0691             nan     0.1000   -0.0003
##    440        0.0630             nan     0.1000   -0.0002
##    460        0.0579             nan     0.1000   -0.0003
##    480        0.0533             nan     0.1000   -0.0001
##    500        0.0488             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2374             nan     0.1000    0.0370
##      2        1.1697             nan     0.1000    0.0292
##      3        1.1112             nan     0.1000    0.0258
##      4        1.0585             nan     0.1000    0.0243
##      5        1.0118             nan     0.1000    0.0197
##      6        0.9717             nan     0.1000    0.0146
##      7        0.9368             nan     0.1000    0.0148
##      8        0.9058             nan     0.1000    0.0111
##      9        0.8776             nan     0.1000    0.0103
##     10        0.8560             nan     0.1000    0.0071
##     20        0.6814             nan     0.1000    0.0036
##     40        0.5277             nan     0.1000   -0.0001
##     60        0.4203             nan     0.1000    0.0001
##     80        0.3495             nan     0.1000   -0.0002
##    100        0.2927             nan     0.1000   -0.0004
##    120        0.2474             nan     0.1000   -0.0007
##    140        0.2144             nan     0.1000   -0.0012
##    160        0.1850             nan     0.1000   -0.0003
##    180        0.1610             nan     0.1000   -0.0007
##    200        0.1411             nan     0.1000   -0.0004
##    220        0.1244             nan     0.1000   -0.0004
##    240        0.1088             nan     0.1000   -0.0007
##    260        0.0960             nan     0.1000   -0.0003
##    280        0.0853             nan     0.1000   -0.0000
##    300        0.0751             nan     0.1000   -0.0002
##    320        0.0663             nan     0.1000   -0.0001
##    340        0.0589             nan     0.1000   -0.0001
##    360        0.0524             nan     0.1000   -0.0000
##    380        0.0471             nan     0.1000   -0.0001
##    400        0.0420             nan     0.1000   -0.0002
##    420        0.0376             nan     0.1000   -0.0001
##    440        0.0341             nan     0.1000   -0.0001
##    460        0.0308             nan     0.1000   -0.0001
##    480        0.0277             nan     0.1000   -0.0002
##    500        0.0248             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2349             nan     0.1000    0.0375
##      2        1.1647             nan     0.1000    0.0294
##      3        1.1003             nan     0.1000    0.0290
##      4        1.0551             nan     0.1000    0.0177
##      5        1.0070             nan     0.1000    0.0202
##      6        0.9668             nan     0.1000    0.0169
##      7        0.9333             nan     0.1000    0.0128
##      8        0.8966             nan     0.1000    0.0149
##      9        0.8691             nan     0.1000    0.0108
##     10        0.8430             nan     0.1000    0.0104
##     20        0.6799             nan     0.1000    0.0031
##     40        0.5260             nan     0.1000   -0.0003
##     60        0.4293             nan     0.1000   -0.0006
##     80        0.3606             nan     0.1000    0.0003
##    100        0.3018             nan     0.1000   -0.0011
##    120        0.2588             nan     0.1000    0.0004
##    140        0.2218             nan     0.1000   -0.0003
##    160        0.1936             nan     0.1000   -0.0010
##    180        0.1681             nan     0.1000   -0.0009
##    200        0.1477             nan     0.1000   -0.0005
##    220        0.1278             nan     0.1000   -0.0004
##    240        0.1111             nan     0.1000   -0.0005
##    260        0.0982             nan     0.1000   -0.0003
##    280        0.0870             nan     0.1000   -0.0001
##    300        0.0786             nan     0.1000   -0.0003
##    320        0.0706             nan     0.1000   -0.0001
##    340        0.0627             nan     0.1000   -0.0001
##    360        0.0560             nan     0.1000   -0.0001
##    380        0.0489             nan     0.1000   -0.0001
##    400        0.0439             nan     0.1000   -0.0002
##    420        0.0397             nan     0.1000   -0.0001
##    440        0.0358             nan     0.1000   -0.0001
##    460        0.0323             nan     0.1000   -0.0002
##    480        0.0293             nan     0.1000   -0.0001
##    500        0.0264             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2307             nan     0.1000    0.0350
##      2        1.1581             nan     0.1000    0.0325
##      3        1.0971             nan     0.1000    0.0233
##      4        1.0422             nan     0.1000    0.0222
##      5        1.0060             nan     0.1000    0.0140
##      6        0.9635             nan     0.1000    0.0171
##      7        0.9296             nan     0.1000    0.0145
##      8        0.9000             nan     0.1000    0.0122
##      9        0.8757             nan     0.1000    0.0089
##     10        0.8525             nan     0.1000    0.0067
##     20        0.6910             nan     0.1000    0.0026
##     40        0.5468             nan     0.1000   -0.0010
##     60        0.4605             nan     0.1000   -0.0013
##     80        0.3852             nan     0.1000   -0.0014
##    100        0.3300             nan     0.1000   -0.0007
##    120        0.2837             nan     0.1000   -0.0016
##    140        0.2448             nan     0.1000   -0.0002
##    160        0.2152             nan     0.1000   -0.0005
##    180        0.1892             nan     0.1000   -0.0004
##    200        0.1664             nan     0.1000   -0.0002
##    220        0.1452             nan     0.1000   -0.0005
##    240        0.1278             nan     0.1000   -0.0005
##    260        0.1144             nan     0.1000   -0.0009
##    280        0.1019             nan     0.1000   -0.0004
##    300        0.0899             nan     0.1000   -0.0001
##    320        0.0799             nan     0.1000   -0.0001
##    340        0.0708             nan     0.1000   -0.0005
##    360        0.0629             nan     0.1000   -0.0001
##    380        0.0559             nan     0.1000   -0.0002
##    400        0.0505             nan     0.1000   -0.0002
##    420        0.0452             nan     0.1000   -0.0002
##    440        0.0406             nan     0.1000   -0.0001
##    460        0.0365             nan     0.1000   -0.0001
##    480        0.0329             nan     0.1000   -0.0001
##    500        0.0298             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3174             nan     0.0010    0.0003
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0003
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3040             nan     0.0010    0.0004
##     40        1.2881             nan     0.0010    0.0004
##     60        1.2724             nan     0.0010    0.0003
##     80        1.2573             nan     0.0010    0.0003
##    100        1.2424             nan     0.0010    0.0003
##    120        1.2283             nan     0.0010    0.0004
##    140        1.2141             nan     0.0010    0.0003
##    160        1.2006             nan     0.0010    0.0003
##    180        1.1879             nan     0.0010    0.0003
##    200        1.1753             nan     0.0010    0.0003
##    220        1.1633             nan     0.0010    0.0002
##    240        1.1514             nan     0.0010    0.0002
##    260        1.1395             nan     0.0010    0.0003
##    280        1.1283             nan     0.0010    0.0002
##    300        1.1177             nan     0.0010    0.0002
##    320        1.1074             nan     0.0010    0.0002
##    340        1.0971             nan     0.0010    0.0002
##    360        1.0872             nan     0.0010    0.0002
##    380        1.0779             nan     0.0010    0.0002
##    400        1.0682             nan     0.0010    0.0002
##    420        1.0589             nan     0.0010    0.0002
##    440        1.0497             nan     0.0010    0.0002
##    460        1.0411             nan     0.0010    0.0002
##    480        1.0327             nan     0.0010    0.0002
##    500        1.0245             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0003
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3044             nan     0.0010    0.0004
##     40        1.2886             nan     0.0010    0.0003
##     60        1.2733             nan     0.0010    0.0003
##     80        1.2581             nan     0.0010    0.0003
##    100        1.2433             nan     0.0010    0.0003
##    120        1.2301             nan     0.0010    0.0003
##    140        1.2164             nan     0.0010    0.0003
##    160        1.2029             nan     0.0010    0.0003
##    180        1.1900             nan     0.0010    0.0003
##    200        1.1774             nan     0.0010    0.0003
##    220        1.1650             nan     0.0010    0.0003
##    240        1.1531             nan     0.0010    0.0003
##    260        1.1416             nan     0.0010    0.0003
##    280        1.1304             nan     0.0010    0.0002
##    300        1.1195             nan     0.0010    0.0002
##    320        1.1092             nan     0.0010    0.0002
##    340        1.0990             nan     0.0010    0.0002
##    360        1.0889             nan     0.0010    0.0002
##    380        1.0793             nan     0.0010    0.0002
##    400        1.0697             nan     0.0010    0.0002
##    420        1.0606             nan     0.0010    0.0002
##    440        1.0517             nan     0.0010    0.0002
##    460        1.0427             nan     0.0010    0.0002
##    480        1.0343             nan     0.0010    0.0002
##    500        1.0260             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0003
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3038             nan     0.0010    0.0004
##     40        1.2878             nan     0.0010    0.0003
##     60        1.2728             nan     0.0010    0.0003
##     80        1.2577             nan     0.0010    0.0004
##    100        1.2433             nan     0.0010    0.0003
##    120        1.2293             nan     0.0010    0.0003
##    140        1.2155             nan     0.0010    0.0003
##    160        1.2027             nan     0.0010    0.0003
##    180        1.1899             nan     0.0010    0.0003
##    200        1.1775             nan     0.0010    0.0003
##    220        1.1653             nan     0.0010    0.0003
##    240        1.1535             nan     0.0010    0.0003
##    260        1.1419             nan     0.0010    0.0003
##    280        1.1306             nan     0.0010    0.0002
##    300        1.1196             nan     0.0010    0.0002
##    320        1.1091             nan     0.0010    0.0002
##    340        1.0992             nan     0.0010    0.0002
##    360        1.0894             nan     0.0010    0.0002
##    380        1.0796             nan     0.0010    0.0002
##    400        1.0702             nan     0.0010    0.0002
##    420        1.0610             nan     0.0010    0.0002
##    440        1.0520             nan     0.0010    0.0002
##    460        1.0432             nan     0.0010    0.0002
##    480        1.0347             nan     0.0010    0.0002
##    500        1.0264             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0005
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3029             nan     0.0010    0.0003
##     40        1.2852             nan     0.0010    0.0004
##     60        1.2689             nan     0.0010    0.0003
##     80        1.2529             nan     0.0010    0.0003
##    100        1.2371             nan     0.0010    0.0003
##    120        1.2218             nan     0.0010    0.0004
##    140        1.2071             nan     0.0010    0.0003
##    160        1.1928             nan     0.0010    0.0003
##    180        1.1789             nan     0.0010    0.0004
##    200        1.1655             nan     0.0010    0.0003
##    220        1.1529             nan     0.0010    0.0003
##    240        1.1405             nan     0.0010    0.0003
##    260        1.1281             nan     0.0010    0.0002
##    280        1.1164             nan     0.0010    0.0002
##    300        1.1049             nan     0.0010    0.0002
##    320        1.0937             nan     0.0010    0.0002
##    340        1.0832             nan     0.0010    0.0002
##    360        1.0728             nan     0.0010    0.0002
##    380        1.0624             nan     0.0010    0.0002
##    400        1.0525             nan     0.0010    0.0002
##    420        1.0427             nan     0.0010    0.0002
##    440        1.0331             nan     0.0010    0.0002
##    460        1.0238             nan     0.0010    0.0002
##    480        1.0150             nan     0.0010    0.0002
##    500        1.0065             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0005
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2859             nan     0.0010    0.0004
##     60        1.2694             nan     0.0010    0.0003
##     80        1.2534             nan     0.0010    0.0004
##    100        1.2380             nan     0.0010    0.0003
##    120        1.2230             nan     0.0010    0.0004
##    140        1.2084             nan     0.0010    0.0003
##    160        1.1946             nan     0.0010    0.0003
##    180        1.1809             nan     0.0010    0.0003
##    200        1.1675             nan     0.0010    0.0003
##    220        1.1542             nan     0.0010    0.0003
##    240        1.1417             nan     0.0010    0.0002
##    260        1.1295             nan     0.0010    0.0003
##    280        1.1178             nan     0.0010    0.0003
##    300        1.1064             nan     0.0010    0.0002
##    320        1.0953             nan     0.0010    0.0003
##    340        1.0844             nan     0.0010    0.0002
##    360        1.0741             nan     0.0010    0.0002
##    380        1.0639             nan     0.0010    0.0002
##    400        1.0539             nan     0.0010    0.0002
##    420        1.0442             nan     0.0010    0.0002
##    440        1.0347             nan     0.0010    0.0002
##    460        1.0255             nan     0.0010    0.0002
##    480        1.0168             nan     0.0010    0.0002
##    500        1.0081             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0005
##      5        1.3161             nan     0.0010    0.0003
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2695             nan     0.0010    0.0004
##     80        1.2535             nan     0.0010    0.0003
##    100        1.2380             nan     0.0010    0.0003
##    120        1.2234             nan     0.0010    0.0003
##    140        1.2087             nan     0.0010    0.0004
##    160        1.1949             nan     0.0010    0.0003
##    180        1.1814             nan     0.0010    0.0002
##    200        1.1684             nan     0.0010    0.0003
##    220        1.1554             nan     0.0010    0.0003
##    240        1.1431             nan     0.0010    0.0002
##    260        1.1313             nan     0.0010    0.0003
##    280        1.1198             nan     0.0010    0.0002
##    300        1.1087             nan     0.0010    0.0003
##    320        1.0974             nan     0.0010    0.0003
##    340        1.0868             nan     0.0010    0.0002
##    360        1.0763             nan     0.0010    0.0002
##    380        1.0664             nan     0.0010    0.0002
##    400        1.0567             nan     0.0010    0.0002
##    420        1.0470             nan     0.0010    0.0002
##    440        1.0374             nan     0.0010    0.0002
##    460        1.0282             nan     0.0010    0.0002
##    480        1.0193             nan     0.0010    0.0002
##    500        1.0106             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3196             nan     0.0010    0.0005
##      2        1.3186             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3168             nan     0.0010    0.0004
##      5        1.3158             nan     0.0010    0.0005
##      6        1.3149             nan     0.0010    0.0004
##      7        1.3139             nan     0.0010    0.0004
##      8        1.3129             nan     0.0010    0.0005
##      9        1.3120             nan     0.0010    0.0004
##     10        1.3111             nan     0.0010    0.0004
##     20        1.3018             nan     0.0010    0.0004
##     40        1.2841             nan     0.0010    0.0004
##     60        1.2666             nan     0.0010    0.0004
##     80        1.2497             nan     0.0010    0.0003
##    100        1.2335             nan     0.0010    0.0004
##    120        1.2178             nan     0.0010    0.0003
##    140        1.2027             nan     0.0010    0.0003
##    160        1.1878             nan     0.0010    0.0003
##    180        1.1736             nan     0.0010    0.0004
##    200        1.1596             nan     0.0010    0.0003
##    220        1.1462             nan     0.0010    0.0003
##    240        1.1332             nan     0.0010    0.0003
##    260        1.1208             nan     0.0010    0.0003
##    280        1.1087             nan     0.0010    0.0002
##    300        1.0967             nan     0.0010    0.0003
##    320        1.0849             nan     0.0010    0.0003
##    340        1.0735             nan     0.0010    0.0003
##    360        1.0626             nan     0.0010    0.0002
##    380        1.0520             nan     0.0010    0.0002
##    400        1.0415             nan     0.0010    0.0002
##    420        1.0314             nan     0.0010    0.0002
##    440        1.0217             nan     0.0010    0.0002
##    460        1.0120             nan     0.0010    0.0002
##    480        1.0027             nan     0.0010    0.0002
##    500        0.9936             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0005
##      4        1.3168             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3141             nan     0.0010    0.0005
##      8        1.3131             nan     0.0010    0.0004
##      9        1.3122             nan     0.0010    0.0004
##     10        1.3113             nan     0.0010    0.0004
##     20        1.3019             nan     0.0010    0.0004
##     40        1.2842             nan     0.0010    0.0004
##     60        1.2671             nan     0.0010    0.0004
##     80        1.2504             nan     0.0010    0.0004
##    100        1.2342             nan     0.0010    0.0003
##    120        1.2185             nan     0.0010    0.0004
##    140        1.2034             nan     0.0010    0.0003
##    160        1.1888             nan     0.0010    0.0003
##    180        1.1747             nan     0.0010    0.0003
##    200        1.1609             nan     0.0010    0.0003
##    220        1.1474             nan     0.0010    0.0003
##    240        1.1344             nan     0.0010    0.0003
##    260        1.1219             nan     0.0010    0.0003
##    280        1.1101             nan     0.0010    0.0002
##    300        1.0985             nan     0.0010    0.0003
##    320        1.0868             nan     0.0010    0.0002
##    340        1.0755             nan     0.0010    0.0002
##    360        1.0648             nan     0.0010    0.0002
##    380        1.0542             nan     0.0010    0.0002
##    400        1.0440             nan     0.0010    0.0002
##    420        1.0341             nan     0.0010    0.0002
##    440        1.0243             nan     0.0010    0.0002
##    460        1.0146             nan     0.0010    0.0002
##    480        1.0055             nan     0.0010    0.0002
##    500        0.9964             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0004
##     40        1.2850             nan     0.0010    0.0004
##     60        1.2678             nan     0.0010    0.0004
##     80        1.2512             nan     0.0010    0.0003
##    100        1.2352             nan     0.0010    0.0003
##    120        1.2195             nan     0.0010    0.0003
##    140        1.2044             nan     0.0010    0.0003
##    160        1.1901             nan     0.0010    0.0003
##    180        1.1764             nan     0.0010    0.0003
##    200        1.1627             nan     0.0010    0.0003
##    220        1.1494             nan     0.0010    0.0003
##    240        1.1367             nan     0.0010    0.0003
##    260        1.1245             nan     0.0010    0.0003
##    280        1.1121             nan     0.0010    0.0003
##    300        1.1006             nan     0.0010    0.0002
##    320        1.0895             nan     0.0010    0.0002
##    340        1.0783             nan     0.0010    0.0002
##    360        1.0674             nan     0.0010    0.0002
##    380        1.0570             nan     0.0010    0.0002
##    400        1.0469             nan     0.0010    0.0002
##    420        1.0367             nan     0.0010    0.0002
##    440        1.0270             nan     0.0010    0.0002
##    460        1.0178             nan     0.0010    0.0002
##    480        1.0086             nan     0.0010    0.0002
##    500        0.9997             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0042
##      2        1.3038             nan     0.0100    0.0040
##      3        1.2965             nan     0.0100    0.0032
##      4        1.2887             nan     0.0100    0.0035
##      5        1.2804             nan     0.0100    0.0039
##      6        1.2725             nan     0.0100    0.0036
##      7        1.2645             nan     0.0100    0.0037
##      8        1.2567             nan     0.0100    0.0035
##      9        1.2495             nan     0.0100    0.0035
##     10        1.2420             nan     0.0100    0.0033
##     20        1.1724             nan     0.0100    0.0029
##     40        1.0642             nan     0.0100    0.0018
##     60        0.9809             nan     0.0100    0.0017
##     80        0.9198             nan     0.0100    0.0011
##    100        0.8680             nan     0.0100    0.0009
##    120        0.8262             nan     0.0100    0.0007
##    140        0.7906             nan     0.0100    0.0004
##    160        0.7623             nan     0.0100    0.0004
##    180        0.7373             nan     0.0100    0.0004
##    200        0.7152             nan     0.0100    0.0001
##    220        0.6952             nan     0.0100    0.0002
##    240        0.6768             nan     0.0100    0.0003
##    260        0.6622             nan     0.0100   -0.0001
##    280        0.6481             nan     0.0100    0.0001
##    300        0.6342             nan     0.0100    0.0001
##    320        0.6217             nan     0.0100   -0.0000
##    340        0.6095             nan     0.0100    0.0001
##    360        0.5997             nan     0.0100    0.0000
##    380        0.5898             nan     0.0100    0.0000
##    400        0.5784             nan     0.0100    0.0001
##    420        0.5686             nan     0.0100   -0.0001
##    440        0.5595             nan     0.0100   -0.0000
##    460        0.5505             nan     0.0100   -0.0000
##    480        0.5425             nan     0.0100   -0.0001
##    500        0.5346             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0031
##      2        1.3045             nan     0.0100    0.0040
##      3        1.2956             nan     0.0100    0.0039
##      4        1.2878             nan     0.0100    0.0033
##      5        1.2795             nan     0.0100    0.0039
##      6        1.2715             nan     0.0100    0.0037
##      7        1.2625             nan     0.0100    0.0038
##      8        1.2553             nan     0.0100    0.0031
##      9        1.2480             nan     0.0100    0.0031
##     10        1.2405             nan     0.0100    0.0033
##     20        1.1748             nan     0.0100    0.0032
##     40        1.0669             nan     0.0100    0.0017
##     60        0.9851             nan     0.0100    0.0015
##     80        0.9210             nan     0.0100    0.0013
##    100        0.8678             nan     0.0100    0.0007
##    120        0.8270             nan     0.0100    0.0006
##    140        0.7920             nan     0.0100    0.0005
##    160        0.7628             nan     0.0100    0.0004
##    180        0.7391             nan     0.0100    0.0003
##    200        0.7192             nan     0.0100    0.0001
##    220        0.7020             nan     0.0100    0.0002
##    240        0.6855             nan     0.0100   -0.0000
##    260        0.6701             nan     0.0100   -0.0001
##    280        0.6567             nan     0.0100    0.0001
##    300        0.6447             nan     0.0100   -0.0000
##    320        0.6318             nan     0.0100    0.0001
##    340        0.6208             nan     0.0100    0.0001
##    360        0.6102             nan     0.0100    0.0001
##    380        0.6001             nan     0.0100   -0.0003
##    400        0.5915             nan     0.0100   -0.0002
##    420        0.5816             nan     0.0100    0.0001
##    440        0.5720             nan     0.0100   -0.0001
##    460        0.5627             nan     0.0100    0.0000
##    480        0.5541             nan     0.0100    0.0001
##    500        0.5460             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0039
##      2        1.3042             nan     0.0100    0.0034
##      3        1.2958             nan     0.0100    0.0040
##      4        1.2885             nan     0.0100    0.0033
##      5        1.2807             nan     0.0100    0.0035
##      6        1.2735             nan     0.0100    0.0029
##      7        1.2657             nan     0.0100    0.0034
##      8        1.2580             nan     0.0100    0.0031
##      9        1.2503             nan     0.0100    0.0034
##     10        1.2428             nan     0.0100    0.0034
##     20        1.1773             nan     0.0100    0.0031
##     40        1.0717             nan     0.0100    0.0021
##     60        0.9886             nan     0.0100    0.0013
##     80        0.9234             nan     0.0100    0.0011
##    100        0.8695             nan     0.0100    0.0007
##    120        0.8274             nan     0.0100    0.0006
##    140        0.7929             nan     0.0100    0.0004
##    160        0.7656             nan     0.0100    0.0002
##    180        0.7412             nan     0.0100    0.0004
##    200        0.7212             nan     0.0100    0.0003
##    220        0.7028             nan     0.0100    0.0003
##    240        0.6872             nan     0.0100   -0.0000
##    260        0.6746             nan     0.0100   -0.0000
##    280        0.6611             nan     0.0100   -0.0000
##    300        0.6496             nan     0.0100    0.0000
##    320        0.6388             nan     0.0100    0.0002
##    340        0.6283             nan     0.0100   -0.0001
##    360        0.6180             nan     0.0100   -0.0000
##    380        0.6087             nan     0.0100    0.0000
##    400        0.5992             nan     0.0100   -0.0001
##    420        0.5906             nan     0.0100   -0.0000
##    440        0.5816             nan     0.0100   -0.0001
##    460        0.5734             nan     0.0100   -0.0001
##    480        0.5654             nan     0.0100   -0.0001
##    500        0.5579             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3112             nan     0.0100    0.0039
##      2        1.3021             nan     0.0100    0.0041
##      3        1.2928             nan     0.0100    0.0045
##      4        1.2846             nan     0.0100    0.0036
##      5        1.2771             nan     0.0100    0.0036
##      6        1.2690             nan     0.0100    0.0031
##      7        1.2615             nan     0.0100    0.0032
##      8        1.2529             nan     0.0100    0.0037
##      9        1.2452             nan     0.0100    0.0035
##     10        1.2376             nan     0.0100    0.0031
##     20        1.1674             nan     0.0100    0.0025
##     40        1.0558             nan     0.0100    0.0020
##     60        0.9697             nan     0.0100    0.0016
##     80        0.9015             nan     0.0100    0.0014
##    100        0.8470             nan     0.0100    0.0008
##    120        0.8022             nan     0.0100    0.0006
##    140        0.7655             nan     0.0100    0.0006
##    160        0.7343             nan     0.0100    0.0004
##    180        0.7078             nan     0.0100    0.0003
##    200        0.6829             nan     0.0100    0.0001
##    220        0.6617             nan     0.0100    0.0002
##    240        0.6424             nan     0.0100    0.0002
##    260        0.6246             nan     0.0100    0.0001
##    280        0.6086             nan     0.0100    0.0002
##    300        0.5938             nan     0.0100    0.0001
##    320        0.5793             nan     0.0100    0.0002
##    340        0.5647             nan     0.0100   -0.0000
##    360        0.5524             nan     0.0100    0.0000
##    380        0.5408             nan     0.0100    0.0000
##    400        0.5306             nan     0.0100   -0.0000
##    420        0.5206             nan     0.0100   -0.0001
##    440        0.5109             nan     0.0100    0.0000
##    460        0.5008             nan     0.0100   -0.0000
##    480        0.4917             nan     0.0100    0.0000
##    500        0.4826             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3112             nan     0.0100    0.0041
##      2        1.3027             nan     0.0100    0.0034
##      3        1.2940             nan     0.0100    0.0045
##      4        1.2853             nan     0.0100    0.0040
##      5        1.2772             nan     0.0100    0.0036
##      6        1.2674             nan     0.0100    0.0044
##      7        1.2592             nan     0.0100    0.0037
##      8        1.2511             nan     0.0100    0.0034
##      9        1.2430             nan     0.0100    0.0039
##     10        1.2354             nan     0.0100    0.0031
##     20        1.1653             nan     0.0100    0.0029
##     40        1.0527             nan     0.0100    0.0022
##     60        0.9651             nan     0.0100    0.0015
##     80        0.8987             nan     0.0100    0.0014
##    100        0.8451             nan     0.0100    0.0009
##    120        0.8004             nan     0.0100    0.0007
##    140        0.7659             nan     0.0100    0.0003
##    160        0.7360             nan     0.0100    0.0004
##    180        0.7122             nan     0.0100    0.0003
##    200        0.6893             nan     0.0100    0.0003
##    220        0.6696             nan     0.0100    0.0004
##    240        0.6508             nan     0.0100   -0.0000
##    260        0.6343             nan     0.0100    0.0001
##    280        0.6192             nan     0.0100    0.0002
##    300        0.6058             nan     0.0100    0.0002
##    320        0.5921             nan     0.0100   -0.0000
##    340        0.5792             nan     0.0100    0.0000
##    360        0.5668             nan     0.0100   -0.0001
##    380        0.5548             nan     0.0100    0.0000
##    400        0.5427             nan     0.0100   -0.0001
##    420        0.5314             nan     0.0100    0.0000
##    440        0.5220             nan     0.0100   -0.0001
##    460        0.5131             nan     0.0100   -0.0001
##    480        0.5033             nan     0.0100    0.0002
##    500        0.4940             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0044
##      2        1.3025             nan     0.0100    0.0042
##      3        1.2939             nan     0.0100    0.0037
##      4        1.2853             nan     0.0100    0.0037
##      5        1.2766             nan     0.0100    0.0039
##      6        1.2685             nan     0.0100    0.0036
##      7        1.2605             nan     0.0100    0.0037
##      8        1.2528             nan     0.0100    0.0034
##      9        1.2461             nan     0.0100    0.0030
##     10        1.2388             nan     0.0100    0.0036
##     20        1.1659             nan     0.0100    0.0030
##     40        1.0519             nan     0.0100    0.0019
##     60        0.9672             nan     0.0100    0.0015
##     80        0.9000             nan     0.0100    0.0014
##    100        0.8488             nan     0.0100    0.0008
##    120        0.8058             nan     0.0100    0.0007
##    140        0.7708             nan     0.0100    0.0004
##    160        0.7417             nan     0.0100    0.0003
##    180        0.7161             nan     0.0100    0.0001
##    200        0.6932             nan     0.0100    0.0004
##    220        0.6740             nan     0.0100    0.0002
##    240        0.6568             nan     0.0100    0.0004
##    260        0.6400             nan     0.0100    0.0002
##    280        0.6259             nan     0.0100   -0.0001
##    300        0.6121             nan     0.0100    0.0000
##    320        0.6001             nan     0.0100   -0.0000
##    340        0.5883             nan     0.0100   -0.0000
##    360        0.5770             nan     0.0100   -0.0002
##    380        0.5666             nan     0.0100    0.0001
##    400        0.5544             nan     0.0100   -0.0001
##    420        0.5442             nan     0.0100   -0.0001
##    440        0.5350             nan     0.0100    0.0000
##    460        0.5255             nan     0.0100    0.0000
##    480        0.5167             nan     0.0100    0.0000
##    500        0.5084             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0043
##      2        1.3023             nan     0.0100    0.0045
##      3        1.2928             nan     0.0100    0.0040
##      4        1.2840             nan     0.0100    0.0038
##      5        1.2748             nan     0.0100    0.0044
##      6        1.2663             nan     0.0100    0.0039
##      7        1.2577             nan     0.0100    0.0041
##      8        1.2491             nan     0.0100    0.0037
##      9        1.2409             nan     0.0100    0.0035
##     10        1.2330             nan     0.0100    0.0036
##     20        1.1597             nan     0.0100    0.0032
##     40        1.0406             nan     0.0100    0.0019
##     60        0.9508             nan     0.0100    0.0014
##     80        0.8823             nan     0.0100    0.0014
##    100        0.8259             nan     0.0100    0.0009
##    120        0.7811             nan     0.0100    0.0005
##    140        0.7417             nan     0.0100    0.0006
##    160        0.7085             nan     0.0100    0.0005
##    180        0.6798             nan     0.0100    0.0004
##    200        0.6544             nan     0.0100    0.0001
##    220        0.6312             nan     0.0100    0.0002
##    240        0.6096             nan     0.0100    0.0001
##    260        0.5909             nan     0.0100    0.0002
##    280        0.5720             nan     0.0100    0.0001
##    300        0.5562             nan     0.0100    0.0001
##    320        0.5413             nan     0.0100    0.0000
##    340        0.5274             nan     0.0100    0.0001
##    360        0.5129             nan     0.0100   -0.0000
##    380        0.4998             nan     0.0100   -0.0000
##    400        0.4885             nan     0.0100    0.0000
##    420        0.4771             nan     0.0100   -0.0002
##    440        0.4657             nan     0.0100    0.0001
##    460        0.4553             nan     0.0100    0.0000
##    480        0.4452             nan     0.0100   -0.0001
##    500        0.4352             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0041
##      2        1.3021             nan     0.0100    0.0043
##      3        1.2927             nan     0.0100    0.0043
##      4        1.2842             nan     0.0100    0.0035
##      5        1.2748             nan     0.0100    0.0042
##      6        1.2670             nan     0.0100    0.0034
##      7        1.2581             nan     0.0100    0.0040
##      8        1.2505             nan     0.0100    0.0031
##      9        1.2429             nan     0.0100    0.0036
##     10        1.2351             nan     0.0100    0.0033
##     20        1.1603             nan     0.0100    0.0030
##     40        1.0435             nan     0.0100    0.0019
##     60        0.9539             nan     0.0100    0.0013
##     80        0.8859             nan     0.0100    0.0010
##    100        0.8298             nan     0.0100    0.0008
##    120        0.7844             nan     0.0100    0.0007
##    140        0.7478             nan     0.0100    0.0005
##    160        0.7164             nan     0.0100    0.0002
##    180        0.6889             nan     0.0100    0.0005
##    200        0.6635             nan     0.0100    0.0004
##    220        0.6430             nan     0.0100    0.0001
##    240        0.6227             nan     0.0100    0.0003
##    260        0.6039             nan     0.0100    0.0001
##    280        0.5874             nan     0.0100   -0.0001
##    300        0.5726             nan     0.0100    0.0000
##    320        0.5587             nan     0.0100   -0.0000
##    340        0.5448             nan     0.0100    0.0001
##    360        0.5319             nan     0.0100    0.0000
##    380        0.5193             nan     0.0100   -0.0000
##    400        0.5068             nan     0.0100    0.0001
##    420        0.4956             nan     0.0100   -0.0001
##    440        0.4841             nan     0.0100   -0.0001
##    460        0.4740             nan     0.0100   -0.0002
##    480        0.4644             nan     0.0100   -0.0002
##    500        0.4545             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0041
##      2        1.3033             nan     0.0100    0.0033
##      3        1.2939             nan     0.0100    0.0043
##      4        1.2847             nan     0.0100    0.0042
##      5        1.2761             nan     0.0100    0.0039
##      6        1.2669             nan     0.0100    0.0042
##      7        1.2576             nan     0.0100    0.0042
##      8        1.2501             nan     0.0100    0.0032
##      9        1.2425             nan     0.0100    0.0034
##     10        1.2339             nan     0.0100    0.0041
##     20        1.1614             nan     0.0100    0.0032
##     40        1.0457             nan     0.0100    0.0023
##     60        0.9563             nan     0.0100    0.0018
##     80        0.8896             nan     0.0100    0.0013
##    100        0.8342             nan     0.0100    0.0009
##    120        0.7914             nan     0.0100    0.0006
##    140        0.7544             nan     0.0100    0.0006
##    160        0.7226             nan     0.0100    0.0006
##    180        0.6943             nan     0.0100    0.0006
##    200        0.6708             nan     0.0100    0.0001
##    220        0.6502             nan     0.0100   -0.0000
##    240        0.6302             nan     0.0100    0.0002
##    260        0.6137             nan     0.0100   -0.0001
##    280        0.5969             nan     0.0100   -0.0001
##    300        0.5823             nan     0.0100    0.0000
##    320        0.5691             nan     0.0100   -0.0000
##    340        0.5561             nan     0.0100    0.0000
##    360        0.5440             nan     0.0100   -0.0001
##    380        0.5322             nan     0.0100   -0.0001
##    400        0.5206             nan     0.0100   -0.0001
##    420        0.5083             nan     0.0100   -0.0001
##    440        0.4979             nan     0.0100   -0.0000
##    460        0.4871             nan     0.0100   -0.0001
##    480        0.4771             nan     0.0100   -0.0001
##    500        0.4677             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2501             nan     0.1000    0.0289
##      2        1.1745             nan     0.1000    0.0341
##      3        1.1301             nan     0.1000    0.0171
##      4        1.0727             nan     0.1000    0.0228
##      5        1.0225             nan     0.1000    0.0227
##      6        0.9845             nan     0.1000    0.0151
##      7        0.9489             nan     0.1000    0.0132
##      8        0.9224             nan     0.1000    0.0102
##      9        0.8961             nan     0.1000    0.0099
##     10        0.8693             nan     0.1000    0.0116
##     20        0.7129             nan     0.1000    0.0043
##     40        0.5715             nan     0.1000   -0.0003
##     60        0.4917             nan     0.1000   -0.0014
##     80        0.4298             nan     0.1000    0.0007
##    100        0.3799             nan     0.1000   -0.0016
##    120        0.3331             nan     0.1000   -0.0004
##    140        0.2960             nan     0.1000   -0.0003
##    160        0.2665             nan     0.1000   -0.0005
##    180        0.2431             nan     0.1000    0.0005
##    200        0.2176             nan     0.1000   -0.0004
##    220        0.1952             nan     0.1000    0.0000
##    240        0.1757             nan     0.1000   -0.0004
##    260        0.1599             nan     0.1000    0.0000
##    280        0.1461             nan     0.1000   -0.0003
##    300        0.1348             nan     0.1000   -0.0003
##    320        0.1230             nan     0.1000   -0.0003
##    340        0.1128             nan     0.1000   -0.0001
##    360        0.1034             nan     0.1000   -0.0001
##    380        0.0949             nan     0.1000   -0.0003
##    400        0.0872             nan     0.1000   -0.0002
##    420        0.0810             nan     0.1000   -0.0002
##    440        0.0750             nan     0.1000   -0.0001
##    460        0.0689             nan     0.1000   -0.0003
##    480        0.0633             nan     0.1000   -0.0001
##    500        0.0585             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2389             nan     0.1000    0.0376
##      2        1.1674             nan     0.1000    0.0334
##      3        1.1051             nan     0.1000    0.0279
##      4        1.0553             nan     0.1000    0.0222
##      5        1.0120             nan     0.1000    0.0189
##      6        0.9776             nan     0.1000    0.0133
##      7        0.9485             nan     0.1000    0.0117
##      8        0.9161             nan     0.1000    0.0140
##      9        0.8881             nan     0.1000    0.0113
##     10        0.8651             nan     0.1000    0.0107
##     20        0.7188             nan     0.1000    0.0038
##     40        0.5994             nan     0.1000   -0.0009
##     60        0.5107             nan     0.1000    0.0001
##     80        0.4574             nan     0.1000   -0.0015
##    100        0.4027             nan     0.1000   -0.0016
##    120        0.3570             nan     0.1000    0.0000
##    140        0.3235             nan     0.1000   -0.0008
##    160        0.2957             nan     0.1000   -0.0006
##    180        0.2625             nan     0.1000   -0.0010
##    200        0.2363             nan     0.1000   -0.0002
##    220        0.2176             nan     0.1000   -0.0008
##    240        0.2013             nan     0.1000    0.0001
##    260        0.1834             nan     0.1000   -0.0001
##    280        0.1668             nan     0.1000   -0.0010
##    300        0.1521             nan     0.1000   -0.0005
##    320        0.1394             nan     0.1000   -0.0002
##    340        0.1283             nan     0.1000   -0.0002
##    360        0.1172             nan     0.1000   -0.0002
##    380        0.1080             nan     0.1000   -0.0001
##    400        0.0987             nan     0.1000   -0.0001
##    420        0.0907             nan     0.1000   -0.0002
##    440        0.0841             nan     0.1000   -0.0002
##    460        0.0782             nan     0.1000   -0.0001
##    480        0.0726             nan     0.1000   -0.0004
##    500        0.0672             nan     0.1000    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2340             nan     0.1000    0.0380
##      2        1.1709             nan     0.1000    0.0277
##      3        1.1142             nan     0.1000    0.0230
##      4        1.0646             nan     0.1000    0.0205
##      5        1.0194             nan     0.1000    0.0212
##      6        0.9825             nan     0.1000    0.0159
##      7        0.9459             nan     0.1000    0.0134
##      8        0.9166             nan     0.1000    0.0121
##      9        0.8876             nan     0.1000    0.0116
##     10        0.8640             nan     0.1000    0.0104
##     20        0.7158             nan     0.1000    0.0032
##     40        0.5890             nan     0.1000   -0.0014
##     60        0.5133             nan     0.1000   -0.0005
##     80        0.4494             nan     0.1000   -0.0008
##    100        0.4031             nan     0.1000   -0.0008
##    120        0.3605             nan     0.1000    0.0001
##    140        0.3306             nan     0.1000    0.0000
##    160        0.2955             nan     0.1000   -0.0002
##    180        0.2705             nan     0.1000   -0.0008
##    200        0.2442             nan     0.1000    0.0000
##    220        0.2234             nan     0.1000   -0.0001
##    240        0.2045             nan     0.1000   -0.0006
##    260        0.1877             nan     0.1000   -0.0000
##    280        0.1704             nan     0.1000   -0.0004
##    300        0.1551             nan     0.1000   -0.0003
##    320        0.1437             nan     0.1000   -0.0002
##    340        0.1304             nan     0.1000   -0.0004
##    360        0.1212             nan     0.1000   -0.0003
##    380        0.1117             nan     0.1000    0.0001
##    400        0.1043             nan     0.1000    0.0001
##    420        0.0961             nan     0.1000   -0.0002
##    440        0.0886             nan     0.1000   -0.0004
##    460        0.0817             nan     0.1000   -0.0003
##    480        0.0757             nan     0.1000   -0.0003
##    500        0.0710             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2329             nan     0.1000    0.0415
##      2        1.1613             nan     0.1000    0.0309
##      3        1.0943             nan     0.1000    0.0281
##      4        1.0443             nan     0.1000    0.0207
##      5        1.0003             nan     0.1000    0.0192
##      6        0.9699             nan     0.1000    0.0097
##      7        0.9334             nan     0.1000    0.0156
##      8        0.8994             nan     0.1000    0.0125
##      9        0.8727             nan     0.1000    0.0074
##     10        0.8466             nan     0.1000    0.0076
##     20        0.6920             nan     0.1000    0.0010
##     40        0.5355             nan     0.1000   -0.0003
##     60        0.4382             nan     0.1000   -0.0012
##     80        0.3686             nan     0.1000   -0.0000
##    100        0.3146             nan     0.1000   -0.0009
##    120        0.2742             nan     0.1000   -0.0005
##    140        0.2395             nan     0.1000   -0.0011
##    160        0.2074             nan     0.1000   -0.0005
##    180        0.1845             nan     0.1000   -0.0010
##    200        0.1623             nan     0.1000   -0.0002
##    220        0.1437             nan     0.1000   -0.0001
##    240        0.1276             nan     0.1000   -0.0001
##    260        0.1152             nan     0.1000   -0.0006
##    280        0.1036             nan     0.1000   -0.0003
##    300        0.0929             nan     0.1000    0.0000
##    320        0.0828             nan     0.1000    0.0000
##    340        0.0734             nan     0.1000   -0.0001
##    360        0.0661             nan     0.1000   -0.0001
##    380        0.0596             nan     0.1000   -0.0002
##    400        0.0532             nan     0.1000   -0.0001
##    420        0.0482             nan     0.1000   -0.0002
##    440        0.0438             nan     0.1000   -0.0001
##    460        0.0395             nan     0.1000   -0.0001
##    480        0.0357             nan     0.1000   -0.0002
##    500        0.0321             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2383             nan     0.1000    0.0367
##      2        1.1624             nan     0.1000    0.0313
##      3        1.1016             nan     0.1000    0.0281
##      4        1.0516             nan     0.1000    0.0233
##      5        1.0105             nan     0.1000    0.0179
##      6        0.9675             nan     0.1000    0.0178
##      7        0.9301             nan     0.1000    0.0157
##      8        0.8989             nan     0.1000    0.0115
##      9        0.8703             nan     0.1000    0.0116
##     10        0.8465             nan     0.1000    0.0090
##     20        0.6862             nan     0.1000    0.0035
##     40        0.5443             nan     0.1000    0.0001
##     60        0.4581             nan     0.1000   -0.0013
##     80        0.3891             nan     0.1000   -0.0003
##    100        0.3367             nan     0.1000   -0.0008
##    120        0.2916             nan     0.1000    0.0000
##    140        0.2570             nan     0.1000   -0.0006
##    160        0.2230             nan     0.1000    0.0001
##    180        0.1988             nan     0.1000   -0.0007
##    200        0.1752             nan     0.1000   -0.0003
##    220        0.1520             nan     0.1000   -0.0002
##    240        0.1340             nan     0.1000   -0.0005
##    260        0.1213             nan     0.1000   -0.0004
##    280        0.1091             nan     0.1000   -0.0002
##    300        0.0974             nan     0.1000   -0.0002
##    320        0.0874             nan     0.1000   -0.0001
##    340        0.0780             nan     0.1000   -0.0003
##    360        0.0711             nan     0.1000   -0.0002
##    380        0.0634             nan     0.1000   -0.0003
##    400        0.0567             nan     0.1000   -0.0002
##    420        0.0512             nan     0.1000   -0.0001
##    440        0.0467             nan     0.1000   -0.0002
##    460        0.0418             nan     0.1000   -0.0001
##    480        0.0376             nan     0.1000   -0.0000
##    500        0.0339             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2438             nan     0.1000    0.0347
##      2        1.1778             nan     0.1000    0.0290
##      3        1.1053             nan     0.1000    0.0303
##      4        1.0515             nan     0.1000    0.0249
##      5        0.9984             nan     0.1000    0.0225
##      6        0.9579             nan     0.1000    0.0162
##      7        0.9215             nan     0.1000    0.0152
##      8        0.8907             nan     0.1000    0.0112
##      9        0.8666             nan     0.1000    0.0098
##     10        0.8424             nan     0.1000    0.0095
##     20        0.6922             nan     0.1000    0.0016
##     40        0.5648             nan     0.1000   -0.0021
##     60        0.4738             nan     0.1000   -0.0022
##     80        0.4131             nan     0.1000   -0.0021
##    100        0.3609             nan     0.1000    0.0000
##    120        0.3197             nan     0.1000   -0.0014
##    140        0.2821             nan     0.1000   -0.0010
##    160        0.2502             nan     0.1000   -0.0005
##    180        0.2185             nan     0.1000   -0.0007
##    200        0.1952             nan     0.1000   -0.0005
##    220        0.1743             nan     0.1000   -0.0003
##    240        0.1561             nan     0.1000   -0.0005
##    260        0.1421             nan     0.1000   -0.0006
##    280        0.1280             nan     0.1000   -0.0003
##    300        0.1146             nan     0.1000   -0.0000
##    320        0.1021             nan     0.1000   -0.0001
##    340        0.0914             nan     0.1000   -0.0002
##    360        0.0829             nan     0.1000   -0.0002
##    380        0.0753             nan     0.1000   -0.0003
##    400        0.0688             nan     0.1000   -0.0001
##    420        0.0628             nan     0.1000   -0.0001
##    440        0.0564             nan     0.1000   -0.0001
##    460        0.0519             nan     0.1000   -0.0001
##    480        0.0472             nan     0.1000   -0.0002
##    500        0.0433             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2283             nan     0.1000    0.0395
##      2        1.1577             nan     0.1000    0.0303
##      3        1.0896             nan     0.1000    0.0310
##      4        1.0343             nan     0.1000    0.0242
##      5        0.9949             nan     0.1000    0.0148
##      6        0.9516             nan     0.1000    0.0172
##      7        0.9121             nan     0.1000    0.0131
##      8        0.8814             nan     0.1000    0.0116
##      9        0.8507             nan     0.1000    0.0112
##     10        0.8199             nan     0.1000    0.0122
##     20        0.6605             nan     0.1000    0.0029
##     40        0.4998             nan     0.1000   -0.0014
##     60        0.3944             nan     0.1000   -0.0010
##     80        0.3314             nan     0.1000   -0.0017
##    100        0.2782             nan     0.1000   -0.0002
##    120        0.2316             nan     0.1000   -0.0008
##    140        0.1982             nan     0.1000   -0.0009
##    160        0.1693             nan     0.1000   -0.0005
##    180        0.1457             nan     0.1000   -0.0005
##    200        0.1258             nan     0.1000    0.0002
##    220        0.1106             nan     0.1000   -0.0005
##    240        0.0967             nan     0.1000   -0.0003
##    260        0.0851             nan     0.1000   -0.0001
##    280        0.0734             nan     0.1000   -0.0001
##    300        0.0645             nan     0.1000   -0.0000
##    320        0.0557             nan     0.1000   -0.0001
##    340        0.0492             nan     0.1000   -0.0001
##    360        0.0432             nan     0.1000   -0.0000
##    380        0.0379             nan     0.1000   -0.0001
##    400        0.0337             nan     0.1000   -0.0003
##    420        0.0296             nan     0.1000   -0.0001
##    440        0.0260             nan     0.1000   -0.0000
##    460        0.0228             nan     0.1000    0.0000
##    480        0.0203             nan     0.1000   -0.0001
##    500        0.0179             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2350             nan     0.1000    0.0420
##      2        1.1697             nan     0.1000    0.0292
##      3        1.1099             nan     0.1000    0.0268
##      4        1.0557             nan     0.1000    0.0250
##      5        1.0031             nan     0.1000    0.0240
##      6        0.9662             nan     0.1000    0.0163
##      7        0.9270             nan     0.1000    0.0179
##      8        0.8885             nan     0.1000    0.0157
##      9        0.8603             nan     0.1000    0.0101
##     10        0.8333             nan     0.1000    0.0087
##     20        0.6693             nan     0.1000    0.0026
##     40        0.5194             nan     0.1000   -0.0015
##     60        0.4271             nan     0.1000   -0.0005
##     80        0.3539             nan     0.1000   -0.0009
##    100        0.2923             nan     0.1000    0.0005
##    120        0.2431             nan     0.1000   -0.0014
##    140        0.2067             nan     0.1000   -0.0004
##    160        0.1772             nan     0.1000    0.0000
##    180        0.1513             nan     0.1000   -0.0006
##    200        0.1303             nan     0.1000   -0.0002
##    220        0.1140             nan     0.1000   -0.0004
##    240        0.0996             nan     0.1000   -0.0002
##    260        0.0880             nan     0.1000   -0.0003
##    280        0.0781             nan     0.1000   -0.0002
##    300        0.0690             nan     0.1000   -0.0002
##    320        0.0609             nan     0.1000   -0.0001
##    340        0.0540             nan     0.1000   -0.0003
##    360        0.0483             nan     0.1000   -0.0001
##    380        0.0423             nan     0.1000   -0.0001
##    400        0.0368             nan     0.1000   -0.0000
##    420        0.0327             nan     0.1000    0.0000
##    440        0.0285             nan     0.1000   -0.0001
##    460        0.0253             nan     0.1000   -0.0001
##    480        0.0223             nan     0.1000   -0.0001
##    500        0.0197             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2371             nan     0.1000    0.0391
##      2        1.1684             nan     0.1000    0.0290
##      3        1.1038             nan     0.1000    0.0277
##      4        1.0436             nan     0.1000    0.0255
##      5        1.0002             nan     0.1000    0.0151
##      6        0.9588             nan     0.1000    0.0161
##      7        0.9208             nan     0.1000    0.0170
##      8        0.8884             nan     0.1000    0.0160
##      9        0.8605             nan     0.1000    0.0126
##     10        0.8355             nan     0.1000    0.0074
##     20        0.6695             nan     0.1000    0.0054
##     40        0.5187             nan     0.1000   -0.0009
##     60        0.4299             nan     0.1000   -0.0001
##     80        0.3569             nan     0.1000   -0.0002
##    100        0.2994             nan     0.1000   -0.0000
##    120        0.2529             nan     0.1000   -0.0010
##    140        0.2174             nan     0.1000   -0.0010
##    160        0.1856             nan     0.1000   -0.0005
##    180        0.1611             nan     0.1000    0.0000
##    200        0.1405             nan     0.1000   -0.0000
##    220        0.1228             nan     0.1000   -0.0006
##    240        0.1060             nan     0.1000   -0.0003
##    260        0.0929             nan     0.1000   -0.0005
##    280        0.0824             nan     0.1000   -0.0002
##    300        0.0719             nan     0.1000   -0.0002
##    320        0.0628             nan     0.1000   -0.0002
##    340        0.0554             nan     0.1000   -0.0001
##    360        0.0496             nan     0.1000   -0.0001
##    380        0.0449             nan     0.1000   -0.0003
##    400        0.0399             nan     0.1000   -0.0002
##    420        0.0353             nan     0.1000   -0.0002
##    440        0.0314             nan     0.1000   -0.0001
##    460        0.0280             nan     0.1000   -0.0002
##    480        0.0249             nan     0.1000   -0.0000
##    500        0.0218             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0003
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0003
##     20        1.3039             nan     0.0010    0.0004
##     40        1.2877             nan     0.0010    0.0004
##     60        1.2719             nan     0.0010    0.0004
##     80        1.2568             nan     0.0010    0.0004
##    100        1.2420             nan     0.0010    0.0003
##    120        1.2281             nan     0.0010    0.0003
##    140        1.2145             nan     0.0010    0.0003
##    160        1.2010             nan     0.0010    0.0003
##    180        1.1882             nan     0.0010    0.0003
##    200        1.1758             nan     0.0010    0.0002
##    220        1.1636             nan     0.0010    0.0002
##    240        1.1521             nan     0.0010    0.0002
##    260        1.1405             nan     0.0010    0.0002
##    280        1.1291             nan     0.0010    0.0002
##    300        1.1178             nan     0.0010    0.0002
##    320        1.1069             nan     0.0010    0.0002
##    340        1.0964             nan     0.0010    0.0003
##    360        1.0865             nan     0.0010    0.0002
##    380        1.0768             nan     0.0010    0.0002
##    400        1.0672             nan     0.0010    0.0002
##    420        1.0578             nan     0.0010    0.0002
##    440        1.0488             nan     0.0010    0.0002
##    460        1.0403             nan     0.0010    0.0002
##    480        1.0318             nan     0.0010    0.0002
##    500        1.0236             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3038             nan     0.0010    0.0004
##     40        1.2876             nan     0.0010    0.0003
##     60        1.2719             nan     0.0010    0.0003
##     80        1.2565             nan     0.0010    0.0003
##    100        1.2419             nan     0.0010    0.0003
##    120        1.2274             nan     0.0010    0.0003
##    140        1.2140             nan     0.0010    0.0003
##    160        1.2009             nan     0.0010    0.0003
##    180        1.1880             nan     0.0010    0.0003
##    200        1.1753             nan     0.0010    0.0003
##    220        1.1633             nan     0.0010    0.0003
##    240        1.1516             nan     0.0010    0.0003
##    260        1.1400             nan     0.0010    0.0002
##    280        1.1286             nan     0.0010    0.0002
##    300        1.1179             nan     0.0010    0.0002
##    320        1.1074             nan     0.0010    0.0002
##    340        1.0972             nan     0.0010    0.0002
##    360        1.0873             nan     0.0010    0.0002
##    380        1.0775             nan     0.0010    0.0002
##    400        1.0680             nan     0.0010    0.0002
##    420        1.0589             nan     0.0010    0.0002
##    440        1.0500             nan     0.0010    0.0002
##    460        1.0412             nan     0.0010    0.0002
##    480        1.0327             nan     0.0010    0.0002
##    500        1.0244             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0003
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0003
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0003
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3041             nan     0.0010    0.0003
##     40        1.2884             nan     0.0010    0.0003
##     60        1.2732             nan     0.0010    0.0003
##     80        1.2589             nan     0.0010    0.0003
##    100        1.2445             nan     0.0010    0.0003
##    120        1.2303             nan     0.0010    0.0003
##    140        1.2168             nan     0.0010    0.0003
##    160        1.2036             nan     0.0010    0.0003
##    180        1.1909             nan     0.0010    0.0003
##    200        1.1778             nan     0.0010    0.0003
##    220        1.1655             nan     0.0010    0.0003
##    240        1.1537             nan     0.0010    0.0002
##    260        1.1425             nan     0.0010    0.0003
##    280        1.1311             nan     0.0010    0.0003
##    300        1.1202             nan     0.0010    0.0002
##    320        1.1097             nan     0.0010    0.0002
##    340        1.0996             nan     0.0010    0.0002
##    360        1.0897             nan     0.0010    0.0002
##    380        1.0801             nan     0.0010    0.0002
##    400        1.0708             nan     0.0010    0.0002
##    420        1.0618             nan     0.0010    0.0002
##    440        1.0529             nan     0.0010    0.0002
##    460        1.0442             nan     0.0010    0.0002
##    480        1.0360             nan     0.0010    0.0002
##    500        1.0277             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0003
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0005
##      7        1.3142             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0004
##     40        1.2854             nan     0.0010    0.0004
##     60        1.2686             nan     0.0010    0.0004
##     80        1.2524             nan     0.0010    0.0003
##    100        1.2364             nan     0.0010    0.0003
##    120        1.2214             nan     0.0010    0.0004
##    140        1.2069             nan     0.0010    0.0003
##    160        1.1928             nan     0.0010    0.0003
##    180        1.1791             nan     0.0010    0.0003
##    200        1.1656             nan     0.0010    0.0003
##    220        1.1529             nan     0.0010    0.0003
##    240        1.1404             nan     0.0010    0.0002
##    260        1.1284             nan     0.0010    0.0003
##    280        1.1166             nan     0.0010    0.0003
##    300        1.1052             nan     0.0010    0.0002
##    320        1.0939             nan     0.0010    0.0002
##    340        1.0831             nan     0.0010    0.0002
##    360        1.0723             nan     0.0010    0.0002
##    380        1.0622             nan     0.0010    0.0002
##    400        1.0524             nan     0.0010    0.0002
##    420        1.0425             nan     0.0010    0.0002
##    440        1.0331             nan     0.0010    0.0002
##    460        1.0242             nan     0.0010    0.0002
##    480        1.0155             nan     0.0010    0.0002
##    500        1.0069             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2692             nan     0.0010    0.0004
##     80        1.2533             nan     0.0010    0.0003
##    100        1.2379             nan     0.0010    0.0004
##    120        1.2230             nan     0.0010    0.0003
##    140        1.2083             nan     0.0010    0.0003
##    160        1.1943             nan     0.0010    0.0003
##    180        1.1809             nan     0.0010    0.0003
##    200        1.1678             nan     0.0010    0.0003
##    220        1.1551             nan     0.0010    0.0003
##    240        1.1427             nan     0.0010    0.0002
##    260        1.1307             nan     0.0010    0.0003
##    280        1.1189             nan     0.0010    0.0002
##    300        1.1077             nan     0.0010    0.0003
##    320        1.0970             nan     0.0010    0.0002
##    340        1.0861             nan     0.0010    0.0003
##    360        1.0756             nan     0.0010    0.0002
##    380        1.0655             nan     0.0010    0.0002
##    400        1.0557             nan     0.0010    0.0002
##    420        1.0462             nan     0.0010    0.0002
##    440        1.0369             nan     0.0010    0.0002
##    460        1.0276             nan     0.0010    0.0002
##    480        1.0188             nan     0.0010    0.0002
##    500        1.0102             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2863             nan     0.0010    0.0004
##     60        1.2702             nan     0.0010    0.0004
##     80        1.2548             nan     0.0010    0.0003
##    100        1.2393             nan     0.0010    0.0003
##    120        1.2246             nan     0.0010    0.0003
##    140        1.2106             nan     0.0010    0.0003
##    160        1.1965             nan     0.0010    0.0004
##    180        1.1829             nan     0.0010    0.0003
##    200        1.1699             nan     0.0010    0.0003
##    220        1.1573             nan     0.0010    0.0003
##    240        1.1450             nan     0.0010    0.0002
##    260        1.1333             nan     0.0010    0.0003
##    280        1.1219             nan     0.0010    0.0002
##    300        1.1106             nan     0.0010    0.0003
##    320        1.0999             nan     0.0010    0.0002
##    340        1.0893             nan     0.0010    0.0002
##    360        1.0792             nan     0.0010    0.0002
##    380        1.0690             nan     0.0010    0.0002
##    400        1.0590             nan     0.0010    0.0002
##    420        1.0496             nan     0.0010    0.0002
##    440        1.0403             nan     0.0010    0.0002
##    460        1.0312             nan     0.0010    0.0002
##    480        1.0224             nan     0.0010    0.0002
##    500        1.0141             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0005
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0005
##      6        1.3150             nan     0.0010    0.0004
##      7        1.3140             nan     0.0010    0.0005
##      8        1.3130             nan     0.0010    0.0004
##      9        1.3121             nan     0.0010    0.0004
##     10        1.3112             nan     0.0010    0.0004
##     20        1.3020             nan     0.0010    0.0004
##     40        1.2840             nan     0.0010    0.0004
##     60        1.2666             nan     0.0010    0.0004
##     80        1.2498             nan     0.0010    0.0004
##    100        1.2335             nan     0.0010    0.0004
##    120        1.2176             nan     0.0010    0.0004
##    140        1.2019             nan     0.0010    0.0003
##    160        1.1872             nan     0.0010    0.0003
##    180        1.1732             nan     0.0010    0.0003
##    200        1.1595             nan     0.0010    0.0003
##    220        1.1460             nan     0.0010    0.0003
##    240        1.1329             nan     0.0010    0.0003
##    260        1.1203             nan     0.0010    0.0003
##    280        1.1081             nan     0.0010    0.0002
##    300        1.0960             nan     0.0010    0.0002
##    320        1.0844             nan     0.0010    0.0003
##    340        1.0732             nan     0.0010    0.0002
##    360        1.0625             nan     0.0010    0.0002
##    380        1.0517             nan     0.0010    0.0002
##    400        1.0414             nan     0.0010    0.0002
##    420        1.0312             nan     0.0010    0.0002
##    440        1.0215             nan     0.0010    0.0002
##    460        1.0119             nan     0.0010    0.0002
##    480        1.0024             nan     0.0010    0.0002
##    500        0.9934             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3150             nan     0.0010    0.0005
##      7        1.3141             nan     0.0010    0.0004
##      8        1.3132             nan     0.0010    0.0004
##      9        1.3122             nan     0.0010    0.0004
##     10        1.3114             nan     0.0010    0.0004
##     20        1.3019             nan     0.0010    0.0004
##     40        1.2839             nan     0.0010    0.0004
##     60        1.2668             nan     0.0010    0.0004
##     80        1.2502             nan     0.0010    0.0004
##    100        1.2339             nan     0.0010    0.0004
##    120        1.2184             nan     0.0010    0.0003
##    140        1.2034             nan     0.0010    0.0003
##    160        1.1888             nan     0.0010    0.0003
##    180        1.1748             nan     0.0010    0.0003
##    200        1.1608             nan     0.0010    0.0003
##    220        1.1476             nan     0.0010    0.0003
##    240        1.1349             nan     0.0010    0.0003
##    260        1.1224             nan     0.0010    0.0002
##    280        1.1101             nan     0.0010    0.0002
##    300        1.0982             nan     0.0010    0.0003
##    320        1.0868             nan     0.0010    0.0002
##    340        1.0756             nan     0.0010    0.0002
##    360        1.0648             nan     0.0010    0.0002
##    380        1.0543             nan     0.0010    0.0002
##    400        1.0441             nan     0.0010    0.0002
##    420        1.0343             nan     0.0010    0.0002
##    440        1.0244             nan     0.0010    0.0002
##    460        1.0152             nan     0.0010    0.0002
##    480        1.0061             nan     0.0010    0.0002
##    500        0.9973             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3142             nan     0.0010    0.0004
##      8        1.3133             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3115             nan     0.0010    0.0004
##     20        1.3023             nan     0.0010    0.0004
##     40        1.2853             nan     0.0010    0.0003
##     60        1.2687             nan     0.0010    0.0004
##     80        1.2522             nan     0.0010    0.0003
##    100        1.2365             nan     0.0010    0.0003
##    120        1.2210             nan     0.0010    0.0003
##    140        1.2060             nan     0.0010    0.0003
##    160        1.1918             nan     0.0010    0.0003
##    180        1.1780             nan     0.0010    0.0003
##    200        1.1646             nan     0.0010    0.0003
##    220        1.1514             nan     0.0010    0.0003
##    240        1.1388             nan     0.0010    0.0003
##    260        1.1264             nan     0.0010    0.0003
##    280        1.1146             nan     0.0010    0.0003
##    300        1.1029             nan     0.0010    0.0002
##    320        1.0915             nan     0.0010    0.0002
##    340        1.0806             nan     0.0010    0.0002
##    360        1.0698             nan     0.0010    0.0002
##    380        1.0594             nan     0.0010    0.0002
##    400        1.0495             nan     0.0010    0.0002
##    420        1.0397             nan     0.0010    0.0002
##    440        1.0301             nan     0.0010    0.0002
##    460        1.0206             nan     0.0010    0.0002
##    480        1.0116             nan     0.0010    0.0002
##    500        1.0027             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0036
##      2        1.3038             nan     0.0100    0.0037
##      3        1.2960             nan     0.0100    0.0034
##      4        1.2884             nan     0.0100    0.0035
##      5        1.2803             nan     0.0100    0.0036
##      6        1.2720             nan     0.0100    0.0038
##      7        1.2643             nan     0.0100    0.0033
##      8        1.2570             nan     0.0100    0.0035
##      9        1.2498             nan     0.0100    0.0029
##     10        1.2417             nan     0.0100    0.0036
##     20        1.1747             nan     0.0100    0.0030
##     40        1.0670             nan     0.0100    0.0021
##     60        0.9837             nan     0.0100    0.0018
##     80        0.9198             nan     0.0100    0.0010
##    100        0.8685             nan     0.0100    0.0009
##    120        0.8269             nan     0.0100    0.0007
##    140        0.7915             nan     0.0100    0.0005
##    160        0.7628             nan     0.0100    0.0002
##    180        0.7358             nan     0.0100    0.0005
##    200        0.7114             nan     0.0100    0.0002
##    220        0.6916             nan     0.0100    0.0001
##    240        0.6741             nan     0.0100    0.0001
##    260        0.6581             nan     0.0100    0.0002
##    280        0.6433             nan     0.0100   -0.0000
##    300        0.6294             nan     0.0100    0.0000
##    320        0.6169             nan     0.0100   -0.0000
##    340        0.6052             nan     0.0100   -0.0001
##    360        0.5934             nan     0.0100    0.0001
##    380        0.5837             nan     0.0100   -0.0000
##    400        0.5734             nan     0.0100   -0.0000
##    420        0.5641             nan     0.0100   -0.0001
##    440        0.5547             nan     0.0100    0.0000
##    460        0.5451             nan     0.0100   -0.0000
##    480        0.5372             nan     0.0100   -0.0001
##    500        0.5292             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3133             nan     0.0100    0.0034
##      2        1.3039             nan     0.0100    0.0041
##      3        1.2963             nan     0.0100    0.0032
##      4        1.2879             nan     0.0100    0.0037
##      5        1.2806             nan     0.0100    0.0032
##      6        1.2725             nan     0.0100    0.0038
##      7        1.2641             nan     0.0100    0.0038
##      8        1.2572             nan     0.0100    0.0031
##      9        1.2504             nan     0.0100    0.0034
##     10        1.2431             nan     0.0100    0.0035
##     20        1.1769             nan     0.0100    0.0029
##     40        1.0682             nan     0.0100    0.0022
##     60        0.9872             nan     0.0100    0.0014
##     80        0.9245             nan     0.0100    0.0013
##    100        0.8722             nan     0.0100    0.0009
##    120        0.8307             nan     0.0100    0.0006
##    140        0.7954             nan     0.0100    0.0005
##    160        0.7672             nan     0.0100    0.0005
##    180        0.7428             nan     0.0100    0.0003
##    200        0.7204             nan     0.0100    0.0004
##    220        0.7011             nan     0.0100    0.0003
##    240        0.6837             nan     0.0100    0.0002
##    260        0.6673             nan     0.0100   -0.0001
##    280        0.6529             nan     0.0100    0.0000
##    300        0.6397             nan     0.0100   -0.0000
##    320        0.6271             nan     0.0100    0.0000
##    340        0.6151             nan     0.0100    0.0001
##    360        0.6049             nan     0.0100    0.0001
##    380        0.5941             nan     0.0100   -0.0001
##    400        0.5840             nan     0.0100   -0.0000
##    420        0.5748             nan     0.0100   -0.0000
##    440        0.5652             nan     0.0100    0.0000
##    460        0.5568             nan     0.0100   -0.0000
##    480        0.5482             nan     0.0100   -0.0001
##    500        0.5404             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0037
##      2        1.3036             nan     0.0100    0.0042
##      3        1.2958             nan     0.0100    0.0036
##      4        1.2875             nan     0.0100    0.0037
##      5        1.2791             nan     0.0100    0.0038
##      6        1.2713             nan     0.0100    0.0034
##      7        1.2632             nan     0.0100    0.0037
##      8        1.2553             nan     0.0100    0.0036
##      9        1.2479             nan     0.0100    0.0029
##     10        1.2405             nan     0.0100    0.0033
##     20        1.1749             nan     0.0100    0.0028
##     40        1.0678             nan     0.0100    0.0020
##     60        0.9855             nan     0.0100    0.0017
##     80        0.9229             nan     0.0100    0.0011
##    100        0.8716             nan     0.0100    0.0007
##    120        0.8301             nan     0.0100    0.0008
##    140        0.7946             nan     0.0100    0.0005
##    160        0.7657             nan     0.0100    0.0002
##    180        0.7414             nan     0.0100    0.0003
##    200        0.7204             nan     0.0100    0.0002
##    220        0.7026             nan     0.0100    0.0002
##    240        0.6851             nan     0.0100    0.0002
##    260        0.6700             nan     0.0100    0.0003
##    280        0.6553             nan     0.0100    0.0001
##    300        0.6434             nan     0.0100   -0.0001
##    320        0.6308             nan     0.0100    0.0000
##    340        0.6203             nan     0.0100    0.0000
##    360        0.6105             nan     0.0100   -0.0000
##    380        0.6006             nan     0.0100   -0.0001
##    400        0.5918             nan     0.0100    0.0000
##    420        0.5830             nan     0.0100   -0.0002
##    440        0.5745             nan     0.0100   -0.0000
##    460        0.5656             nan     0.0100   -0.0001
##    480        0.5576             nan     0.0100   -0.0002
##    500        0.5493             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3110             nan     0.0100    0.0045
##      2        1.3022             nan     0.0100    0.0038
##      3        1.2931             nan     0.0100    0.0043
##      4        1.2855             nan     0.0100    0.0037
##      5        1.2771             nan     0.0100    0.0038
##      6        1.2693             nan     0.0100    0.0038
##      7        1.2609             nan     0.0100    0.0037
##      8        1.2527             nan     0.0100    0.0039
##      9        1.2455             nan     0.0100    0.0032
##     10        1.2378             nan     0.0100    0.0033
##     20        1.1681             nan     0.0100    0.0029
##     40        1.0547             nan     0.0100    0.0023
##     60        0.9663             nan     0.0100    0.0014
##     80        0.8995             nan     0.0100    0.0011
##    100        0.8454             nan     0.0100    0.0010
##    120        0.8030             nan     0.0100    0.0006
##    140        0.7654             nan     0.0100    0.0006
##    160        0.7340             nan     0.0100    0.0004
##    180        0.7076             nan     0.0100    0.0003
##    200        0.6850             nan     0.0100    0.0001
##    220        0.6634             nan     0.0100    0.0001
##    240        0.6442             nan     0.0100    0.0001
##    260        0.6258             nan     0.0100    0.0000
##    280        0.6092             nan     0.0100    0.0001
##    300        0.5944             nan     0.0100    0.0000
##    320        0.5813             nan     0.0100    0.0001
##    340        0.5680             nan     0.0100    0.0000
##    360        0.5558             nan     0.0100   -0.0001
##    380        0.5440             nan     0.0100   -0.0000
##    400        0.5321             nan     0.0100    0.0001
##    420        0.5210             nan     0.0100   -0.0000
##    440        0.5099             nan     0.0100   -0.0001
##    460        0.5001             nan     0.0100   -0.0000
##    480        0.4910             nan     0.0100   -0.0000
##    500        0.4821             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0042
##      2        1.3028             nan     0.0100    0.0040
##      3        1.2928             nan     0.0100    0.0043
##      4        1.2842             nan     0.0100    0.0043
##      5        1.2757             nan     0.0100    0.0036
##      6        1.2675             nan     0.0100    0.0037
##      7        1.2592             nan     0.0100    0.0033
##      8        1.2512             nan     0.0100    0.0037
##      9        1.2430             nan     0.0100    0.0037
##     10        1.2355             nan     0.0100    0.0039
##     20        1.1673             nan     0.0100    0.0029
##     40        1.0541             nan     0.0100    0.0022
##     60        0.9683             nan     0.0100    0.0016
##     80        0.9019             nan     0.0100    0.0009
##    100        0.8498             nan     0.0100    0.0009
##    120        0.8057             nan     0.0100    0.0006
##    140        0.7697             nan     0.0100    0.0006
##    160        0.7377             nan     0.0100    0.0004
##    180        0.7108             nan     0.0100    0.0004
##    200        0.6880             nan     0.0100    0.0002
##    220        0.6676             nan     0.0100   -0.0002
##    240        0.6500             nan     0.0100    0.0001
##    260        0.6326             nan     0.0100    0.0001
##    280        0.6173             nan     0.0100    0.0002
##    300        0.6022             nan     0.0100    0.0002
##    320        0.5882             nan     0.0100    0.0001
##    340        0.5749             nan     0.0100    0.0000
##    360        0.5627             nan     0.0100   -0.0000
##    380        0.5520             nan     0.0100    0.0001
##    400        0.5400             nan     0.0100    0.0000
##    420        0.5297             nan     0.0100    0.0001
##    440        0.5195             nan     0.0100   -0.0000
##    460        0.5103             nan     0.0100   -0.0001
##    480        0.5013             nan     0.0100    0.0001
##    500        0.4909             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3111             nan     0.0100    0.0046
##      2        1.3021             nan     0.0100    0.0036
##      3        1.2937             nan     0.0100    0.0037
##      4        1.2848             nan     0.0100    0.0037
##      5        1.2762             nan     0.0100    0.0037
##      6        1.2687             nan     0.0100    0.0033
##      7        1.2605             nan     0.0100    0.0037
##      8        1.2518             nan     0.0100    0.0037
##      9        1.2438             nan     0.0100    0.0034
##     10        1.2362             nan     0.0100    0.0033
##     20        1.1664             nan     0.0100    0.0032
##     40        1.0565             nan     0.0100    0.0018
##     60        0.9696             nan     0.0100    0.0014
##     80        0.9049             nan     0.0100    0.0009
##    100        0.8521             nan     0.0100    0.0009
##    120        0.8097             nan     0.0100    0.0007
##    140        0.7744             nan     0.0100    0.0005
##    160        0.7443             nan     0.0100    0.0003
##    180        0.7184             nan     0.0100    0.0002
##    200        0.6965             nan     0.0100    0.0001
##    220        0.6762             nan     0.0100   -0.0001
##    240        0.6575             nan     0.0100   -0.0000
##    260        0.6396             nan     0.0100    0.0001
##    280        0.6256             nan     0.0100    0.0002
##    300        0.6119             nan     0.0100    0.0001
##    320        0.5991             nan     0.0100    0.0001
##    340        0.5864             nan     0.0100   -0.0001
##    360        0.5746             nan     0.0100   -0.0000
##    380        0.5632             nan     0.0100    0.0001
##    400        0.5522             nan     0.0100    0.0001
##    420        0.5430             nan     0.0100   -0.0000
##    440        0.5326             nan     0.0100    0.0002
##    460        0.5232             nan     0.0100   -0.0000
##    480        0.5143             nan     0.0100    0.0001
##    500        0.5051             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0040
##      2        1.3027             nan     0.0100    0.0042
##      3        1.2939             nan     0.0100    0.0038
##      4        1.2847             nan     0.0100    0.0035
##      5        1.2766             nan     0.0100    0.0032
##      6        1.2675             nan     0.0100    0.0043
##      7        1.2592             nan     0.0100    0.0038
##      8        1.2508             nan     0.0100    0.0037
##      9        1.2420             nan     0.0100    0.0039
##     10        1.2335             nan     0.0100    0.0035
##     20        1.1587             nan     0.0100    0.0030
##     40        1.0391             nan     0.0100    0.0025
##     60        0.9497             nan     0.0100    0.0019
##     80        0.8793             nan     0.0100    0.0011
##    100        0.8224             nan     0.0100    0.0009
##    120        0.7742             nan     0.0100    0.0006
##    140        0.7332             nan     0.0100    0.0005
##    160        0.7006             nan     0.0100    0.0003
##    180        0.6726             nan     0.0100    0.0001
##    200        0.6479             nan     0.0100    0.0002
##    220        0.6244             nan     0.0100    0.0002
##    240        0.6051             nan     0.0100    0.0002
##    260        0.5864             nan     0.0100    0.0001
##    280        0.5685             nan     0.0100    0.0001
##    300        0.5527             nan     0.0100    0.0000
##    320        0.5371             nan     0.0100    0.0001
##    340        0.5226             nan     0.0100    0.0001
##    360        0.5091             nan     0.0100    0.0001
##    380        0.4966             nan     0.0100    0.0000
##    400        0.4843             nan     0.0100    0.0000
##    420        0.4735             nan     0.0100   -0.0000
##    440        0.4624             nan     0.0100    0.0001
##    460        0.4518             nan     0.0100   -0.0000
##    480        0.4417             nan     0.0100   -0.0002
##    500        0.4322             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0038
##      2        1.3026             nan     0.0100    0.0042
##      3        1.2935             nan     0.0100    0.0037
##      4        1.2846             nan     0.0100    0.0040
##      5        1.2768             nan     0.0100    0.0034
##      6        1.2683             nan     0.0100    0.0033
##      7        1.2595             nan     0.0100    0.0041
##      8        1.2514             nan     0.0100    0.0036
##      9        1.2432             nan     0.0100    0.0040
##     10        1.2351             nan     0.0100    0.0038
##     20        1.1611             nan     0.0100    0.0031
##     40        1.0456             nan     0.0100    0.0022
##     60        0.9545             nan     0.0100    0.0016
##     80        0.8841             nan     0.0100    0.0014
##    100        0.8279             nan     0.0100    0.0010
##    120        0.7838             nan     0.0100    0.0006
##    140        0.7453             nan     0.0100    0.0006
##    160        0.7126             nan     0.0100    0.0004
##    180        0.6853             nan     0.0100    0.0002
##    200        0.6596             nan     0.0100    0.0003
##    220        0.6380             nan     0.0100    0.0001
##    240        0.6178             nan     0.0100    0.0001
##    260        0.5989             nan     0.0100    0.0002
##    280        0.5829             nan     0.0100    0.0000
##    300        0.5661             nan     0.0100    0.0002
##    320        0.5505             nan     0.0100   -0.0001
##    340        0.5364             nan     0.0100   -0.0001
##    360        0.5238             nan     0.0100    0.0000
##    380        0.5118             nan     0.0100    0.0000
##    400        0.4997             nan     0.0100   -0.0001
##    420        0.4889             nan     0.0100   -0.0001
##    440        0.4784             nan     0.0100   -0.0000
##    460        0.4678             nan     0.0100   -0.0001
##    480        0.4578             nan     0.0100   -0.0001
##    500        0.4486             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3107             nan     0.0100    0.0044
##      2        1.3014             nan     0.0100    0.0044
##      3        1.2937             nan     0.0100    0.0035
##      4        1.2852             nan     0.0100    0.0039
##      5        1.2767             nan     0.0100    0.0034
##      6        1.2679             nan     0.0100    0.0039
##      7        1.2596             nan     0.0100    0.0033
##      8        1.2517             nan     0.0100    0.0034
##      9        1.2429             nan     0.0100    0.0040
##     10        1.2347             nan     0.0100    0.0036
##     20        1.1628             nan     0.0100    0.0028
##     40        1.0485             nan     0.0100    0.0021
##     60        0.9613             nan     0.0100    0.0015
##     80        0.8934             nan     0.0100    0.0013
##    100        0.8411             nan     0.0100    0.0010
##    120        0.7944             nan     0.0100    0.0007
##    140        0.7574             nan     0.0100    0.0003
##    160        0.7240             nan     0.0100    0.0007
##    180        0.6959             nan     0.0100    0.0003
##    200        0.6736             nan     0.0100    0.0002
##    220        0.6520             nan     0.0100    0.0000
##    240        0.6326             nan     0.0100    0.0000
##    260        0.6137             nan     0.0100    0.0003
##    280        0.5977             nan     0.0100    0.0001
##    300        0.5817             nan     0.0100   -0.0001
##    320        0.5662             nan     0.0100    0.0002
##    340        0.5537             nan     0.0100   -0.0000
##    360        0.5408             nan     0.0100   -0.0001
##    380        0.5270             nan     0.0100   -0.0001
##    400        0.5152             nan     0.0100    0.0001
##    420        0.5041             nan     0.0100   -0.0001
##    440        0.4944             nan     0.0100   -0.0000
##    460        0.4848             nan     0.0100   -0.0001
##    480        0.4744             nan     0.0100   -0.0000
##    500        0.4657             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2442             nan     0.1000    0.0379
##      2        1.1770             nan     0.1000    0.0305
##      3        1.1243             nan     0.1000    0.0251
##      4        1.0739             nan     0.1000    0.0218
##      5        1.0295             nan     0.1000    0.0198
##      6        0.9918             nan     0.1000    0.0157
##      7        0.9542             nan     0.1000    0.0156
##      8        0.9259             nan     0.1000    0.0115
##      9        0.9003             nan     0.1000    0.0098
##     10        0.8788             nan     0.1000    0.0073
##     20        0.7228             nan     0.1000    0.0025
##     40        0.5800             nan     0.1000   -0.0001
##     60        0.5008             nan     0.1000   -0.0002
##     80        0.4411             nan     0.1000    0.0000
##    100        0.3915             nan     0.1000   -0.0010
##    120        0.3509             nan     0.1000   -0.0005
##    140        0.3083             nan     0.1000   -0.0005
##    160        0.2763             nan     0.1000   -0.0011
##    180        0.2475             nan     0.1000   -0.0008
##    200        0.2241             nan     0.1000   -0.0007
##    220        0.1994             nan     0.1000   -0.0002
##    240        0.1804             nan     0.1000    0.0001
##    260        0.1650             nan     0.1000    0.0000
##    280        0.1495             nan     0.1000   -0.0001
##    300        0.1354             nan     0.1000   -0.0002
##    320        0.1235             nan     0.1000   -0.0003
##    340        0.1135             nan     0.1000   -0.0003
##    360        0.1043             nan     0.1000   -0.0003
##    380        0.0966             nan     0.1000   -0.0002
##    400        0.0892             nan     0.1000   -0.0002
##    420        0.0824             nan     0.1000   -0.0003
##    440        0.0758             nan     0.1000   -0.0002
##    460        0.0708             nan     0.1000   -0.0001
##    480        0.0656             nan     0.1000   -0.0002
##    500        0.0607             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2429             nan     0.1000    0.0330
##      2        1.1750             nan     0.1000    0.0307
##      3        1.1208             nan     0.1000    0.0242
##      4        1.0707             nan     0.1000    0.0239
##      5        1.0276             nan     0.1000    0.0166
##      6        0.9881             nan     0.1000    0.0183
##      7        0.9527             nan     0.1000    0.0144
##      8        0.9250             nan     0.1000    0.0113
##      9        0.8982             nan     0.1000    0.0093
##     10        0.8723             nan     0.1000    0.0105
##     20        0.7249             nan     0.1000    0.0010
##     40        0.5830             nan     0.1000   -0.0010
##     60        0.5021             nan     0.1000   -0.0024
##     80        0.4461             nan     0.1000   -0.0003
##    100        0.3945             nan     0.1000   -0.0006
##    120        0.3555             nan     0.1000   -0.0005
##    140        0.3146             nan     0.1000   -0.0013
##    160        0.2810             nan     0.1000   -0.0004
##    180        0.2562             nan     0.1000   -0.0006
##    200        0.2311             nan     0.1000   -0.0005
##    220        0.2104             nan     0.1000   -0.0008
##    240        0.1903             nan     0.1000   -0.0005
##    260        0.1761             nan     0.1000   -0.0004
##    280        0.1599             nan     0.1000   -0.0005
##    300        0.1454             nan     0.1000   -0.0005
##    320        0.1334             nan     0.1000   -0.0003
##    340        0.1246             nan     0.1000   -0.0003
##    360        0.1137             nan     0.1000   -0.0003
##    380        0.1048             nan     0.1000   -0.0004
##    400        0.0965             nan     0.1000   -0.0001
##    420        0.0887             nan     0.1000   -0.0001
##    440        0.0825             nan     0.1000   -0.0004
##    460        0.0765             nan     0.1000   -0.0001
##    480        0.0709             nan     0.1000   -0.0002
##    500        0.0665             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2477             nan     0.1000    0.0355
##      2        1.1845             nan     0.1000    0.0327
##      3        1.1242             nan     0.1000    0.0276
##      4        1.0688             nan     0.1000    0.0214
##      5        1.0243             nan     0.1000    0.0193
##      6        0.9920             nan     0.1000    0.0126
##      7        0.9621             nan     0.1000    0.0146
##      8        0.9329             nan     0.1000    0.0119
##      9        0.9035             nan     0.1000    0.0116
##     10        0.8815             nan     0.1000    0.0067
##     20        0.7298             nan     0.1000    0.0030
##     40        0.5922             nan     0.1000   -0.0008
##     60        0.5056             nan     0.1000   -0.0000
##     80        0.4498             nan     0.1000   -0.0007
##    100        0.4063             nan     0.1000    0.0001
##    120        0.3590             nan     0.1000    0.0000
##    140        0.3287             nan     0.1000   -0.0010
##    160        0.2967             nan     0.1000   -0.0008
##    180        0.2689             nan     0.1000   -0.0011
##    200        0.2460             nan     0.1000   -0.0012
##    220        0.2259             nan     0.1000   -0.0015
##    240        0.2077             nan     0.1000   -0.0007
##    260        0.1912             nan     0.1000   -0.0006
##    280        0.1758             nan     0.1000   -0.0006
##    300        0.1629             nan     0.1000   -0.0005
##    320        0.1497             nan     0.1000   -0.0003
##    340        0.1371             nan     0.1000   -0.0008
##    360        0.1261             nan     0.1000   -0.0007
##    380        0.1173             nan     0.1000   -0.0004
##    400        0.1095             nan     0.1000   -0.0005
##    420        0.1019             nan     0.1000   -0.0006
##    440        0.0948             nan     0.1000   -0.0002
##    460        0.0881             nan     0.1000   -0.0002
##    480        0.0815             nan     0.1000   -0.0002
##    500        0.0759             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2369             nan     0.1000    0.0332
##      2        1.1576             nan     0.1000    0.0338
##      3        1.0979             nan     0.1000    0.0232
##      4        1.0453             nan     0.1000    0.0233
##      5        1.0016             nan     0.1000    0.0179
##      6        0.9618             nan     0.1000    0.0156
##      7        0.9269             nan     0.1000    0.0127
##      8        0.8961             nan     0.1000    0.0116
##      9        0.8737             nan     0.1000    0.0097
##     10        0.8492             nan     0.1000    0.0099
##     20        0.6857             nan     0.1000    0.0027
##     40        0.5318             nan     0.1000   -0.0011
##     60        0.4432             nan     0.1000   -0.0004
##     80        0.3800             nan     0.1000   -0.0002
##    100        0.3256             nan     0.1000   -0.0010
##    120        0.2817             nan     0.1000   -0.0003
##    140        0.2483             nan     0.1000   -0.0010
##    160        0.2197             nan     0.1000   -0.0008
##    180        0.1928             nan     0.1000   -0.0011
##    200        0.1686             nan     0.1000   -0.0003
##    220        0.1497             nan     0.1000   -0.0003
##    240        0.1326             nan     0.1000   -0.0004
##    260        0.1188             nan     0.1000   -0.0002
##    280        0.1077             nan     0.1000   -0.0005
##    300        0.0979             nan     0.1000   -0.0000
##    320        0.0872             nan     0.1000   -0.0004
##    340        0.0789             nan     0.1000   -0.0002
##    360        0.0712             nan     0.1000   -0.0002
##    380        0.0639             nan     0.1000   -0.0001
##    400        0.0574             nan     0.1000   -0.0000
##    420        0.0523             nan     0.1000   -0.0002
##    440        0.0472             nan     0.1000   -0.0000
##    460        0.0432             nan     0.1000   -0.0001
##    480        0.0383             nan     0.1000   -0.0000
##    500        0.0345             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2300             nan     0.1000    0.0407
##      2        1.1688             nan     0.1000    0.0266
##      3        1.1066             nan     0.1000    0.0272
##      4        1.0567             nan     0.1000    0.0208
##      5        1.0101             nan     0.1000    0.0190
##      6        0.9738             nan     0.1000    0.0163
##      7        0.9391             nan     0.1000    0.0129
##      8        0.9063             nan     0.1000    0.0119
##      9        0.8750             nan     0.1000    0.0119
##     10        0.8487             nan     0.1000    0.0084
##     20        0.6857             nan     0.1000    0.0026
##     40        0.5574             nan     0.1000   -0.0001
##     60        0.4652             nan     0.1000   -0.0023
##     80        0.3967             nan     0.1000   -0.0012
##    100        0.3432             nan     0.1000   -0.0014
##    120        0.3005             nan     0.1000   -0.0007
##    140        0.2629             nan     0.1000   -0.0017
##    160        0.2294             nan     0.1000   -0.0005
##    180        0.2034             nan     0.1000   -0.0010
##    200        0.1855             nan     0.1000   -0.0010
##    220        0.1670             nan     0.1000   -0.0002
##    240        0.1464             nan     0.1000   -0.0000
##    260        0.1307             nan     0.1000   -0.0006
##    280        0.1170             nan     0.1000   -0.0002
##    300        0.1057             nan     0.1000   -0.0003
##    320        0.0946             nan     0.1000   -0.0003
##    340        0.0847             nan     0.1000   -0.0004
##    360        0.0758             nan     0.1000   -0.0003
##    380        0.0697             nan     0.1000   -0.0003
##    400        0.0623             nan     0.1000   -0.0003
##    420        0.0560             nan     0.1000   -0.0002
##    440        0.0508             nan     0.1000   -0.0002
##    460        0.0456             nan     0.1000   -0.0001
##    480        0.0411             nan     0.1000   -0.0002
##    500        0.0373             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2341             nan     0.1000    0.0414
##      2        1.1665             nan     0.1000    0.0306
##      3        1.1110             nan     0.1000    0.0224
##      4        1.0585             nan     0.1000    0.0170
##      5        1.0111             nan     0.1000    0.0212
##      6        0.9705             nan     0.1000    0.0180
##      7        0.9375             nan     0.1000    0.0140
##      8        0.9051             nan     0.1000    0.0123
##      9        0.8798             nan     0.1000    0.0091
##     10        0.8530             nan     0.1000    0.0108
##     20        0.6957             nan     0.1000    0.0040
##     40        0.5621             nan     0.1000    0.0015
##     60        0.4668             nan     0.1000    0.0001
##     80        0.3989             nan     0.1000    0.0003
##    100        0.3425             nan     0.1000   -0.0001
##    120        0.3014             nan     0.1000   -0.0008
##    140        0.2658             nan     0.1000   -0.0017
##    160        0.2348             nan     0.1000   -0.0011
##    180        0.2115             nan     0.1000   -0.0009
##    200        0.1875             nan     0.1000   -0.0007
##    220        0.1662             nan     0.1000   -0.0005
##    240        0.1502             nan     0.1000   -0.0006
##    260        0.1347             nan     0.1000   -0.0008
##    280        0.1219             nan     0.1000   -0.0004
##    300        0.1099             nan     0.1000   -0.0004
##    320        0.1003             nan     0.1000   -0.0005
##    340        0.0902             nan     0.1000   -0.0003
##    360        0.0818             nan     0.1000   -0.0002
##    380        0.0742             nan     0.1000   -0.0002
##    400        0.0669             nan     0.1000   -0.0003
##    420        0.0613             nan     0.1000   -0.0002
##    440        0.0554             nan     0.1000   -0.0002
##    460        0.0505             nan     0.1000   -0.0002
##    480        0.0462             nan     0.1000   -0.0001
##    500        0.0420             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2292             nan     0.1000    0.0391
##      2        1.1599             nan     0.1000    0.0313
##      3        1.0946             nan     0.1000    0.0278
##      4        1.0397             nan     0.1000    0.0216
##      5        0.9902             nan     0.1000    0.0193
##      6        0.9422             nan     0.1000    0.0178
##      7        0.9064             nan     0.1000    0.0132
##      8        0.8781             nan     0.1000    0.0085
##      9        0.8510             nan     0.1000    0.0098
##     10        0.8261             nan     0.1000    0.0092
##     20        0.6554             nan     0.1000    0.0022
##     40        0.5017             nan     0.1000    0.0003
##     60        0.4048             nan     0.1000   -0.0002
##     80        0.3334             nan     0.1000   -0.0009
##    100        0.2762             nan     0.1000   -0.0002
##    120        0.2322             nan     0.1000   -0.0009
##    140        0.1962             nan     0.1000   -0.0008
##    160        0.1680             nan     0.1000   -0.0002
##    180        0.1464             nan     0.1000   -0.0002
##    200        0.1274             nan     0.1000   -0.0003
##    220        0.1103             nan     0.1000   -0.0003
##    240        0.0968             nan     0.1000   -0.0000
##    260        0.0847             nan     0.1000   -0.0002
##    280        0.0744             nan     0.1000   -0.0003
##    300        0.0659             nan     0.1000   -0.0001
##    320        0.0579             nan     0.1000   -0.0000
##    340        0.0513             nan     0.1000   -0.0003
##    360        0.0455             nan     0.1000   -0.0001
##    380        0.0402             nan     0.1000   -0.0001
##    400        0.0351             nan     0.1000   -0.0001
##    420        0.0309             nan     0.1000    0.0000
##    440        0.0272             nan     0.1000    0.0000
##    460        0.0240             nan     0.1000   -0.0001
##    480        0.0213             nan     0.1000   -0.0001
##    500        0.0190             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2314             nan     0.1000    0.0401
##      2        1.1590             nan     0.1000    0.0310
##      3        1.0965             nan     0.1000    0.0233
##      4        1.0397             nan     0.1000    0.0248
##      5        0.9911             nan     0.1000    0.0205
##      6        0.9499             nan     0.1000    0.0188
##      7        0.9164             nan     0.1000    0.0140
##      8        0.8847             nan     0.1000    0.0111
##      9        0.8560             nan     0.1000    0.0128
##     10        0.8278             nan     0.1000    0.0112
##     20        0.6675             nan     0.1000    0.0014
##     40        0.5026             nan     0.1000   -0.0004
##     60        0.4144             nan     0.1000    0.0001
##     80        0.3421             nan     0.1000   -0.0014
##    100        0.2897             nan     0.1000   -0.0018
##    120        0.2494             nan     0.1000   -0.0007
##    140        0.2130             nan     0.1000   -0.0004
##    160        0.1828             nan     0.1000   -0.0003
##    180        0.1554             nan     0.1000   -0.0006
##    200        0.1312             nan     0.1000   -0.0003
##    220        0.1127             nan     0.1000   -0.0005
##    240        0.0997             nan     0.1000   -0.0006
##    260        0.0868             nan     0.1000   -0.0002
##    280        0.0762             nan     0.1000   -0.0003
##    300        0.0679             nan     0.1000   -0.0001
##    320        0.0591             nan     0.1000   -0.0003
##    340        0.0526             nan     0.1000   -0.0001
##    360        0.0471             nan     0.1000   -0.0001
##    380        0.0411             nan     0.1000   -0.0001
##    400        0.0366             nan     0.1000   -0.0002
##    420        0.0320             nan     0.1000   -0.0000
##    440        0.0287             nan     0.1000   -0.0002
##    460        0.0252             nan     0.1000   -0.0001
##    480        0.0223             nan     0.1000   -0.0000
##    500        0.0199             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2391             nan     0.1000    0.0368
##      2        1.1585             nan     0.1000    0.0343
##      3        1.0956             nan     0.1000    0.0289
##      4        1.0422             nan     0.1000    0.0208
##      5        0.9990             nan     0.1000    0.0172
##      6        0.9563             nan     0.1000    0.0165
##      7        0.9228             nan     0.1000    0.0135
##      8        0.8905             nan     0.1000    0.0129
##      9        0.8628             nan     0.1000    0.0121
##     10        0.8342             nan     0.1000    0.0097
##     20        0.6641             nan     0.1000    0.0013
##     40        0.5125             nan     0.1000   -0.0001
##     60        0.4160             nan     0.1000    0.0012
##     80        0.3433             nan     0.1000   -0.0007
##    100        0.2933             nan     0.1000   -0.0009
##    120        0.2498             nan     0.1000   -0.0004
##    140        0.2126             nan     0.1000   -0.0003
##    160        0.1828             nan     0.1000   -0.0002
##    180        0.1615             nan     0.1000   -0.0010
##    200        0.1411             nan     0.1000   -0.0002
##    220        0.1237             nan     0.1000   -0.0003
##    240        0.1100             nan     0.1000   -0.0003
##    260        0.0970             nan     0.1000   -0.0004
##    280        0.0858             nan     0.1000   -0.0002
##    300        0.0763             nan     0.1000   -0.0003
##    320        0.0673             nan     0.1000   -0.0002
##    340        0.0593             nan     0.1000   -0.0003
##    360        0.0523             nan     0.1000   -0.0001
##    380        0.0462             nan     0.1000   -0.0001
##    400        0.0409             nan     0.1000   -0.0002
##    420        0.0369             nan     0.1000   -0.0000
##    440        0.0328             nan     0.1000   -0.0001
##    460        0.0294             nan     0.1000   -0.0002
##    480        0.0262             nan     0.1000   -0.0001
##    500        0.0233             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3188             nan     0.0010    0.0003
##      4        1.3181             nan     0.0010    0.0004
##      5        1.3172             nan     0.0010    0.0004
##      6        1.3166             nan     0.0010    0.0003
##      7        1.3158             nan     0.0010    0.0003
##      8        1.3150             nan     0.0010    0.0003
##      9        1.3143             nan     0.0010    0.0003
##     10        1.3135             nan     0.0010    0.0003
##     20        1.3060             nan     0.0010    0.0004
##     40        1.2910             nan     0.0010    0.0003
##     60        1.2765             nan     0.0010    0.0003
##     80        1.2623             nan     0.0010    0.0003
##    100        1.2486             nan     0.0010    0.0003
##    120        1.2354             nan     0.0010    0.0002
##    140        1.2223             nan     0.0010    0.0003
##    160        1.2097             nan     0.0010    0.0003
##    180        1.1977             nan     0.0010    0.0003
##    200        1.1858             nan     0.0010    0.0002
##    220        1.1744             nan     0.0010    0.0002
##    240        1.1632             nan     0.0010    0.0002
##    260        1.1525             nan     0.0010    0.0001
##    280        1.1418             nan     0.0010    0.0002
##    300        1.1315             nan     0.0010    0.0003
##    320        1.1213             nan     0.0010    0.0002
##    340        1.1111             nan     0.0010    0.0002
##    360        1.1015             nan     0.0010    0.0002
##    380        1.0922             nan     0.0010    0.0002
##    400        1.0827             nan     0.0010    0.0002
##    420        1.0738             nan     0.0010    0.0002
##    440        1.0652             nan     0.0010    0.0002
##    460        1.0567             nan     0.0010    0.0002
##    480        1.0485             nan     0.0010    0.0002
##    500        1.0404             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0003
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3188             nan     0.0010    0.0004
##      4        1.3179             nan     0.0010    0.0004
##      5        1.3171             nan     0.0010    0.0004
##      6        1.3163             nan     0.0010    0.0003
##      7        1.3155             nan     0.0010    0.0004
##      8        1.3147             nan     0.0010    0.0003
##      9        1.3140             nan     0.0010    0.0004
##     10        1.3132             nan     0.0010    0.0003
##     20        1.3053             nan     0.0010    0.0004
##     40        1.2903             nan     0.0010    0.0004
##     60        1.2759             nan     0.0010    0.0003
##     80        1.2617             nan     0.0010    0.0003
##    100        1.2480             nan     0.0010    0.0003
##    120        1.2345             nan     0.0010    0.0003
##    140        1.2215             nan     0.0010    0.0003
##    160        1.2092             nan     0.0010    0.0003
##    180        1.1971             nan     0.0010    0.0002
##    200        1.1852             nan     0.0010    0.0002
##    220        1.1738             nan     0.0010    0.0002
##    240        1.1625             nan     0.0010    0.0002
##    260        1.1516             nan     0.0010    0.0002
##    280        1.1412             nan     0.0010    0.0002
##    300        1.1309             nan     0.0010    0.0002
##    320        1.1210             nan     0.0010    0.0002
##    340        1.1113             nan     0.0010    0.0002
##    360        1.1018             nan     0.0010    0.0002
##    380        1.0925             nan     0.0010    0.0002
##    400        1.0832             nan     0.0010    0.0002
##    420        1.0744             nan     0.0010    0.0002
##    440        1.0659             nan     0.0010    0.0002
##    460        1.0575             nan     0.0010    0.0002
##    480        1.0491             nan     0.0010    0.0002
##    500        1.0413             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3197             nan     0.0010    0.0003
##      3        1.3189             nan     0.0010    0.0004
##      4        1.3181             nan     0.0010    0.0004
##      5        1.3173             nan     0.0010    0.0003
##      6        1.3165             nan     0.0010    0.0003
##      7        1.3158             nan     0.0010    0.0004
##      8        1.3149             nan     0.0010    0.0004
##      9        1.3141             nan     0.0010    0.0004
##     10        1.3133             nan     0.0010    0.0004
##     20        1.3057             nan     0.0010    0.0003
##     40        1.2909             nan     0.0010    0.0003
##     60        1.2766             nan     0.0010    0.0003
##     80        1.2624             nan     0.0010    0.0003
##    100        1.2490             nan     0.0010    0.0003
##    120        1.2356             nan     0.0010    0.0003
##    140        1.2227             nan     0.0010    0.0003
##    160        1.2103             nan     0.0010    0.0003
##    180        1.1983             nan     0.0010    0.0003
##    200        1.1865             nan     0.0010    0.0003
##    220        1.1750             nan     0.0010    0.0002
##    240        1.1639             nan     0.0010    0.0002
##    260        1.1528             nan     0.0010    0.0003
##    280        1.1422             nan     0.0010    0.0002
##    300        1.1320             nan     0.0010    0.0002
##    320        1.1221             nan     0.0010    0.0002
##    340        1.1122             nan     0.0010    0.0002
##    360        1.1027             nan     0.0010    0.0002
##    380        1.0936             nan     0.0010    0.0002
##    400        1.0847             nan     0.0010    0.0002
##    420        1.0758             nan     0.0010    0.0002
##    440        1.0671             nan     0.0010    0.0002
##    460        1.0587             nan     0.0010    0.0002
##    480        1.0505             nan     0.0010    0.0002
##    500        1.0423             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0003
##      5        1.3169             nan     0.0010    0.0003
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0003
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3042             nan     0.0010    0.0004
##     40        1.2879             nan     0.0010    0.0004
##     60        1.2719             nan     0.0010    0.0004
##     80        1.2570             nan     0.0010    0.0003
##    100        1.2424             nan     0.0010    0.0003
##    120        1.2284             nan     0.0010    0.0003
##    140        1.2142             nan     0.0010    0.0002
##    160        1.2009             nan     0.0010    0.0003
##    180        1.1879             nan     0.0010    0.0003
##    200        1.1752             nan     0.0010    0.0003
##    220        1.1626             nan     0.0010    0.0003
##    240        1.1506             nan     0.0010    0.0003
##    260        1.1388             nan     0.0010    0.0003
##    280        1.1275             nan     0.0010    0.0002
##    300        1.1164             nan     0.0010    0.0003
##    320        1.1055             nan     0.0010    0.0003
##    340        1.0950             nan     0.0010    0.0002
##    360        1.0849             nan     0.0010    0.0002
##    380        1.0746             nan     0.0010    0.0002
##    400        1.0650             nan     0.0010    0.0002
##    420        1.0558             nan     0.0010    0.0002
##    440        1.0468             nan     0.0010    0.0001
##    460        1.0378             nan     0.0010    0.0002
##    480        1.0291             nan     0.0010    0.0002
##    500        1.0207             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0003
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0003
##     20        1.3045             nan     0.0010    0.0004
##     40        1.2883             nan     0.0010    0.0004
##     60        1.2727             nan     0.0010    0.0003
##     80        1.2575             nan     0.0010    0.0003
##    100        1.2429             nan     0.0010    0.0003
##    120        1.2287             nan     0.0010    0.0003
##    140        1.2150             nan     0.0010    0.0003
##    160        1.2015             nan     0.0010    0.0003
##    180        1.1885             nan     0.0010    0.0003
##    200        1.1757             nan     0.0010    0.0003
##    220        1.1636             nan     0.0010    0.0002
##    240        1.1516             nan     0.0010    0.0002
##    260        1.1399             nan     0.0010    0.0002
##    280        1.1287             nan     0.0010    0.0003
##    300        1.1176             nan     0.0010    0.0002
##    320        1.1069             nan     0.0010    0.0002
##    340        1.0964             nan     0.0010    0.0002
##    360        1.0863             nan     0.0010    0.0002
##    380        1.0762             nan     0.0010    0.0001
##    400        1.0666             nan     0.0010    0.0002
##    420        1.0570             nan     0.0010    0.0002
##    440        1.0481             nan     0.0010    0.0002
##    460        1.0394             nan     0.0010    0.0002
##    480        1.0306             nan     0.0010    0.0002
##    500        1.0223             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0003
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0003
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3045             nan     0.0010    0.0003
##     40        1.2882             nan     0.0010    0.0004
##     60        1.2726             nan     0.0010    0.0003
##     80        1.2572             nan     0.0010    0.0004
##    100        1.2427             nan     0.0010    0.0002
##    120        1.2286             nan     0.0010    0.0003
##    140        1.2150             nan     0.0010    0.0003
##    160        1.2014             nan     0.0010    0.0003
##    180        1.1885             nan     0.0010    0.0003
##    200        1.1760             nan     0.0010    0.0002
##    220        1.1637             nan     0.0010    0.0003
##    240        1.1520             nan     0.0010    0.0003
##    260        1.1403             nan     0.0010    0.0003
##    280        1.1289             nan     0.0010    0.0002
##    300        1.1176             nan     0.0010    0.0002
##    320        1.1069             nan     0.0010    0.0002
##    340        1.0966             nan     0.0010    0.0002
##    360        1.0867             nan     0.0010    0.0002
##    380        1.0770             nan     0.0010    0.0002
##    400        1.0674             nan     0.0010    0.0002
##    420        1.0581             nan     0.0010    0.0002
##    440        1.0491             nan     0.0010    0.0002
##    460        1.0401             nan     0.0010    0.0002
##    480        1.0316             nan     0.0010    0.0002
##    500        1.0230             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3130             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0004
##     40        1.2860             nan     0.0010    0.0004
##     60        1.2693             nan     0.0010    0.0003
##     80        1.2532             nan     0.0010    0.0003
##    100        1.2376             nan     0.0010    0.0004
##    120        1.2227             nan     0.0010    0.0003
##    140        1.2079             nan     0.0010    0.0003
##    160        1.1940             nan     0.0010    0.0003
##    180        1.1803             nan     0.0010    0.0003
##    200        1.1670             nan     0.0010    0.0003
##    220        1.1542             nan     0.0010    0.0003
##    240        1.1417             nan     0.0010    0.0002
##    260        1.1294             nan     0.0010    0.0003
##    280        1.1176             nan     0.0010    0.0003
##    300        1.1064             nan     0.0010    0.0002
##    320        1.0953             nan     0.0010    0.0002
##    340        1.0845             nan     0.0010    0.0002
##    360        1.0740             nan     0.0010    0.0002
##    380        1.0637             nan     0.0010    0.0002
##    400        1.0536             nan     0.0010    0.0002
##    420        1.0440             nan     0.0010    0.0002
##    440        1.0345             nan     0.0010    0.0002
##    460        1.0250             nan     0.0010    0.0002
##    480        1.0161             nan     0.0010    0.0002
##    500        1.0072             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2865             nan     0.0010    0.0004
##     60        1.2699             nan     0.0010    0.0004
##     80        1.2536             nan     0.0010    0.0004
##    100        1.2380             nan     0.0010    0.0003
##    120        1.2230             nan     0.0010    0.0003
##    140        1.2085             nan     0.0010    0.0003
##    160        1.1942             nan     0.0010    0.0003
##    180        1.1805             nan     0.0010    0.0003
##    200        1.1675             nan     0.0010    0.0003
##    220        1.1547             nan     0.0010    0.0003
##    240        1.1421             nan     0.0010    0.0003
##    260        1.1300             nan     0.0010    0.0003
##    280        1.1184             nan     0.0010    0.0002
##    300        1.1070             nan     0.0010    0.0002
##    320        1.0961             nan     0.0010    0.0002
##    340        1.0853             nan     0.0010    0.0002
##    360        1.0746             nan     0.0010    0.0003
##    380        1.0641             nan     0.0010    0.0002
##    400        1.0543             nan     0.0010    0.0002
##    420        1.0445             nan     0.0010    0.0002
##    440        1.0351             nan     0.0010    0.0002
##    460        1.0260             nan     0.0010    0.0002
##    480        1.0170             nan     0.0010    0.0002
##    500        1.0082             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0003
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2863             nan     0.0010    0.0004
##     60        1.2697             nan     0.0010    0.0004
##     80        1.2540             nan     0.0010    0.0004
##    100        1.2387             nan     0.0010    0.0003
##    120        1.2238             nan     0.0010    0.0003
##    140        1.2094             nan     0.0010    0.0003
##    160        1.1958             nan     0.0010    0.0003
##    180        1.1822             nan     0.0010    0.0003
##    200        1.1691             nan     0.0010    0.0003
##    220        1.1564             nan     0.0010    0.0003
##    240        1.1442             nan     0.0010    0.0003
##    260        1.1320             nan     0.0010    0.0003
##    280        1.1205             nan     0.0010    0.0003
##    300        1.1091             nan     0.0010    0.0002
##    320        1.0980             nan     0.0010    0.0003
##    340        1.0873             nan     0.0010    0.0002
##    360        1.0768             nan     0.0010    0.0002
##    380        1.0665             nan     0.0010    0.0002
##    400        1.0566             nan     0.0010    0.0002
##    420        1.0468             nan     0.0010    0.0002
##    440        1.0373             nan     0.0010    0.0002
##    460        1.0282             nan     0.0010    0.0002
##    480        1.0194             nan     0.0010    0.0002
##    500        1.0107             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3135             nan     0.0100    0.0037
##      2        1.3055             nan     0.0100    0.0039
##      3        1.2977             nan     0.0100    0.0037
##      4        1.2900             nan     0.0100    0.0036
##      5        1.2822             nan     0.0100    0.0032
##      6        1.2750             nan     0.0100    0.0033
##      7        1.2680             nan     0.0100    0.0031
##      8        1.2606             nan     0.0100    0.0032
##      9        1.2535             nan     0.0100    0.0033
##     10        1.2468             nan     0.0100    0.0031
##     20        1.1838             nan     0.0100    0.0025
##     40        1.0827             nan     0.0100    0.0019
##     60        1.0027             nan     0.0100    0.0017
##     80        0.9396             nan     0.0100    0.0008
##    100        0.8883             nan     0.0100    0.0010
##    120        0.8468             nan     0.0100    0.0006
##    140        0.8127             nan     0.0100    0.0005
##    160        0.7827             nan     0.0100    0.0005
##    180        0.7576             nan     0.0100    0.0004
##    200        0.7359             nan     0.0100    0.0003
##    220        0.7154             nan     0.0100    0.0002
##    240        0.6983             nan     0.0100    0.0002
##    260        0.6822             nan     0.0100    0.0002
##    280        0.6681             nan     0.0100    0.0001
##    300        0.6546             nan     0.0100    0.0000
##    320        0.6419             nan     0.0100   -0.0000
##    340        0.6304             nan     0.0100    0.0001
##    360        0.6197             nan     0.0100    0.0001
##    380        0.6095             nan     0.0100    0.0001
##    400        0.5991             nan     0.0100    0.0000
##    420        0.5895             nan     0.0100   -0.0001
##    440        0.5800             nan     0.0100    0.0000
##    460        0.5714             nan     0.0100   -0.0001
##    480        0.5628             nan     0.0100   -0.0001
##    500        0.5537             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3135             nan     0.0100    0.0035
##      2        1.3056             nan     0.0100    0.0035
##      3        1.2981             nan     0.0100    0.0036
##      4        1.2902             nan     0.0100    0.0031
##      5        1.2824             nan     0.0100    0.0033
##      6        1.2756             nan     0.0100    0.0028
##      7        1.2688             nan     0.0100    0.0031
##      8        1.2612             nan     0.0100    0.0032
##      9        1.2544             nan     0.0100    0.0033
##     10        1.2476             nan     0.0100    0.0028
##     20        1.1852             nan     0.0100    0.0024
##     40        1.0832             nan     0.0100    0.0020
##     60        1.0038             nan     0.0100    0.0016
##     80        0.9420             nan     0.0100    0.0010
##    100        0.8911             nan     0.0100    0.0009
##    120        0.8499             nan     0.0100    0.0006
##    140        0.8160             nan     0.0100    0.0006
##    160        0.7882             nan     0.0100    0.0005
##    180        0.7632             nan     0.0100    0.0003
##    200        0.7414             nan     0.0100    0.0002
##    220        0.7223             nan     0.0100    0.0003
##    240        0.7051             nan     0.0100    0.0002
##    260        0.6903             nan     0.0100    0.0000
##    280        0.6754             nan     0.0100   -0.0000
##    300        0.6620             nan     0.0100    0.0001
##    320        0.6498             nan     0.0100   -0.0001
##    340        0.6382             nan     0.0100   -0.0001
##    360        0.6286             nan     0.0100    0.0001
##    380        0.6177             nan     0.0100    0.0001
##    400        0.6078             nan     0.0100   -0.0001
##    420        0.5987             nan     0.0100   -0.0001
##    440        0.5898             nan     0.0100   -0.0001
##    460        0.5810             nan     0.0100   -0.0001
##    480        0.5723             nan     0.0100   -0.0000
##    500        0.5636             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0035
##      2        1.3056             nan     0.0100    0.0032
##      3        1.2978             nan     0.0100    0.0033
##      4        1.2898             nan     0.0100    0.0035
##      5        1.2829             nan     0.0100    0.0031
##      6        1.2756             nan     0.0100    0.0034
##      7        1.2681             nan     0.0100    0.0033
##      8        1.2603             nan     0.0100    0.0033
##      9        1.2540             nan     0.0100    0.0029
##     10        1.2465             nan     0.0100    0.0033
##     20        1.1833             nan     0.0100    0.0024
##     40        1.0830             nan     0.0100    0.0018
##     60        1.0031             nan     0.0100    0.0015
##     80        0.9411             nan     0.0100    0.0011
##    100        0.8904             nan     0.0100    0.0009
##    120        0.8498             nan     0.0100    0.0005
##    140        0.8159             nan     0.0100    0.0004
##    160        0.7867             nan     0.0100    0.0003
##    180        0.7624             nan     0.0100    0.0001
##    200        0.7416             nan     0.0100    0.0003
##    220        0.7227             nan     0.0100    0.0003
##    240        0.7057             nan     0.0100    0.0001
##    260        0.6905             nan     0.0100    0.0001
##    280        0.6769             nan     0.0100   -0.0000
##    300        0.6638             nan     0.0100    0.0000
##    320        0.6519             nan     0.0100    0.0000
##    340        0.6409             nan     0.0100   -0.0002
##    360        0.6302             nan     0.0100    0.0000
##    380        0.6210             nan     0.0100    0.0001
##    400        0.6110             nan     0.0100   -0.0000
##    420        0.6026             nan     0.0100   -0.0000
##    440        0.5937             nan     0.0100   -0.0002
##    460        0.5847             nan     0.0100   -0.0000
##    480        0.5769             nan     0.0100   -0.0001
##    500        0.5678             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3132             nan     0.0100    0.0034
##      2        1.3049             nan     0.0100    0.0035
##      3        1.2968             nan     0.0100    0.0036
##      4        1.2891             nan     0.0100    0.0036
##      5        1.2803             nan     0.0100    0.0038
##      6        1.2729             nan     0.0100    0.0033
##      7        1.2647             nan     0.0100    0.0035
##      8        1.2568             nan     0.0100    0.0036
##      9        1.2492             nan     0.0100    0.0036
##     10        1.2418             nan     0.0100    0.0037
##     20        1.1762             nan     0.0100    0.0025
##     40        1.0678             nan     0.0100    0.0020
##     60        0.9818             nan     0.0100    0.0016
##     80        0.9160             nan     0.0100    0.0008
##    100        0.8624             nan     0.0100    0.0009
##    120        0.8192             nan     0.0100    0.0009
##    140        0.7836             nan     0.0100    0.0005
##    160        0.7540             nan     0.0100    0.0004
##    180        0.7264             nan     0.0100    0.0004
##    200        0.7029             nan     0.0100    0.0002
##    220        0.6826             nan     0.0100    0.0001
##    240        0.6641             nan     0.0100    0.0002
##    260        0.6459             nan     0.0100    0.0000
##    280        0.6298             nan     0.0100    0.0000
##    300        0.6153             nan     0.0100    0.0001
##    320        0.6013             nan     0.0100    0.0003
##    340        0.5887             nan     0.0100    0.0001
##    360        0.5764             nan     0.0100    0.0000
##    380        0.5642             nan     0.0100   -0.0001
##    400        0.5524             nan     0.0100   -0.0000
##    420        0.5415             nan     0.0100   -0.0001
##    440        0.5309             nan     0.0100   -0.0002
##    460        0.5211             nan     0.0100   -0.0000
##    480        0.5115             nan     0.0100   -0.0001
##    500        0.5030             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0038
##      2        1.3036             nan     0.0100    0.0038
##      3        1.2950             nan     0.0100    0.0038
##      4        1.2880             nan     0.0100    0.0034
##      5        1.2804             nan     0.0100    0.0034
##      6        1.2721             nan     0.0100    0.0038
##      7        1.2640             nan     0.0100    0.0036
##      8        1.2565             nan     0.0100    0.0030
##      9        1.2489             nan     0.0100    0.0028
##     10        1.2414             nan     0.0100    0.0031
##     20        1.1726             nan     0.0100    0.0023
##     40        1.0647             nan     0.0100    0.0018
##     60        0.9801             nan     0.0100    0.0016
##     80        0.9127             nan     0.0100    0.0011
##    100        0.8602             nan     0.0100    0.0009
##    120        0.8187             nan     0.0100    0.0006
##    140        0.7839             nan     0.0100    0.0004
##    160        0.7528             nan     0.0100    0.0005
##    180        0.7271             nan     0.0100    0.0005
##    200        0.7042             nan     0.0100    0.0002
##    220        0.6840             nan     0.0100    0.0002
##    240        0.6663             nan     0.0100   -0.0000
##    260        0.6499             nan     0.0100   -0.0000
##    280        0.6341             nan     0.0100    0.0001
##    300        0.6196             nan     0.0100    0.0001
##    320        0.6053             nan     0.0100    0.0000
##    340        0.5934             nan     0.0100   -0.0000
##    360        0.5815             nan     0.0100   -0.0001
##    380        0.5703             nan     0.0100   -0.0001
##    400        0.5603             nan     0.0100    0.0000
##    420        0.5497             nan     0.0100   -0.0000
##    440        0.5402             nan     0.0100   -0.0001
##    460        0.5309             nan     0.0100   -0.0001
##    480        0.5218             nan     0.0100   -0.0001
##    500        0.5125             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0036
##      2        1.3043             nan     0.0100    0.0035
##      3        1.2963             nan     0.0100    0.0034
##      4        1.2889             nan     0.0100    0.0035
##      5        1.2809             nan     0.0100    0.0037
##      6        1.2734             nan     0.0100    0.0029
##      7        1.2651             nan     0.0100    0.0038
##      8        1.2569             nan     0.0100    0.0031
##      9        1.2497             nan     0.0100    0.0030
##     10        1.2421             nan     0.0100    0.0029
##     20        1.1741             nan     0.0100    0.0027
##     40        1.0652             nan     0.0100    0.0018
##     60        0.9831             nan     0.0100    0.0016
##     80        0.9192             nan     0.0100    0.0011
##    100        0.8675             nan     0.0100    0.0009
##    120        0.8244             nan     0.0100    0.0007
##    140        0.7901             nan     0.0100    0.0003
##    160        0.7603             nan     0.0100    0.0003
##    180        0.7354             nan     0.0100    0.0004
##    200        0.7140             nan     0.0100    0.0001
##    220        0.6933             nan     0.0100    0.0000
##    240        0.6766             nan     0.0100    0.0001
##    260        0.6607             nan     0.0100    0.0000
##    280        0.6461             nan     0.0100   -0.0001
##    300        0.6314             nan     0.0100    0.0000
##    320        0.6180             nan     0.0100    0.0000
##    340        0.6056             nan     0.0100   -0.0000
##    360        0.5938             nan     0.0100    0.0000
##    380        0.5819             nan     0.0100   -0.0000
##    400        0.5711             nan     0.0100    0.0001
##    420        0.5618             nan     0.0100   -0.0001
##    440        0.5515             nan     0.0100    0.0000
##    460        0.5412             nan     0.0100   -0.0001
##    480        0.5322             nan     0.0100    0.0000
##    500        0.5241             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0043
##      2        1.3031             nan     0.0100    0.0039
##      3        1.2945             nan     0.0100    0.0037
##      4        1.2861             nan     0.0100    0.0033
##      5        1.2777             nan     0.0100    0.0034
##      6        1.2692             nan     0.0100    0.0036
##      7        1.2619             nan     0.0100    0.0036
##      8        1.2535             nan     0.0100    0.0037
##      9        1.2462             nan     0.0100    0.0030
##     10        1.2374             nan     0.0100    0.0036
##     20        1.1674             nan     0.0100    0.0029
##     40        1.0518             nan     0.0100    0.0022
##     60        0.9638             nan     0.0100    0.0018
##     80        0.8971             nan     0.0100    0.0008
##    100        0.8418             nan     0.0100    0.0006
##    120        0.7957             nan     0.0100    0.0004
##    140        0.7585             nan     0.0100    0.0005
##    160        0.7251             nan     0.0100    0.0006
##    180        0.6958             nan     0.0100    0.0003
##    200        0.6710             nan     0.0100    0.0001
##    220        0.6492             nan     0.0100    0.0002
##    240        0.6281             nan     0.0100    0.0002
##    260        0.6091             nan     0.0100    0.0001
##    280        0.5913             nan     0.0100   -0.0001
##    300        0.5746             nan     0.0100    0.0001
##    320        0.5598             nan     0.0100    0.0000
##    340        0.5466             nan     0.0100    0.0000
##    360        0.5331             nan     0.0100    0.0000
##    380        0.5205             nan     0.0100    0.0001
##    400        0.5086             nan     0.0100   -0.0001
##    420        0.4964             nan     0.0100    0.0000
##    440        0.4852             nan     0.0100    0.0000
##    460        0.4747             nan     0.0100    0.0001
##    480        0.4644             nan     0.0100    0.0000
##    500        0.4553             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0045
##      2        1.3025             nan     0.0100    0.0042
##      3        1.2938             nan     0.0100    0.0042
##      4        1.2847             nan     0.0100    0.0040
##      5        1.2765             nan     0.0100    0.0037
##      6        1.2685             nan     0.0100    0.0034
##      7        1.2599             nan     0.0100    0.0037
##      8        1.2522             nan     0.0100    0.0035
##      9        1.2449             nan     0.0100    0.0030
##     10        1.2375             nan     0.0100    0.0032
##     20        1.1653             nan     0.0100    0.0029
##     40        1.0506             nan     0.0100    0.0024
##     60        0.9663             nan     0.0100    0.0010
##     80        0.8980             nan     0.0100    0.0011
##    100        0.8430             nan     0.0100    0.0009
##    120        0.7990             nan     0.0100    0.0007
##    140        0.7608             nan     0.0100    0.0005
##    160        0.7295             nan     0.0100    0.0004
##    180        0.7018             nan     0.0100    0.0004
##    200        0.6776             nan     0.0100    0.0001
##    220        0.6554             nan     0.0100    0.0002
##    240        0.6366             nan     0.0100    0.0002
##    260        0.6192             nan     0.0100    0.0000
##    280        0.6032             nan     0.0100    0.0001
##    300        0.5875             nan     0.0100    0.0002
##    320        0.5735             nan     0.0100    0.0000
##    340        0.5602             nan     0.0100    0.0001
##    360        0.5451             nan     0.0100   -0.0001
##    380        0.5322             nan     0.0100   -0.0001
##    400        0.5201             nan     0.0100    0.0000
##    420        0.5083             nan     0.0100   -0.0000
##    440        0.4969             nan     0.0100   -0.0001
##    460        0.4858             nan     0.0100    0.0002
##    480        0.4752             nan     0.0100   -0.0001
##    500        0.4658             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0042
##      2        1.3042             nan     0.0100    0.0035
##      3        1.2952             nan     0.0100    0.0042
##      4        1.2866             nan     0.0100    0.0039
##      5        1.2790             nan     0.0100    0.0035
##      6        1.2709             nan     0.0100    0.0034
##      7        1.2630             nan     0.0100    0.0034
##      8        1.2557             nan     0.0100    0.0033
##      9        1.2481             nan     0.0100    0.0034
##     10        1.2406             nan     0.0100    0.0031
##     20        1.1706             nan     0.0100    0.0027
##     40        1.0581             nan     0.0100    0.0024
##     60        0.9715             nan     0.0100    0.0015
##     80        0.9044             nan     0.0100    0.0011
##    100        0.8508             nan     0.0100    0.0010
##    120        0.8074             nan     0.0100    0.0004
##    140        0.7699             nan     0.0100    0.0003
##    160        0.7382             nan     0.0100    0.0004
##    180        0.7108             nan     0.0100    0.0002
##    200        0.6869             nan     0.0100    0.0002
##    220        0.6654             nan     0.0100   -0.0001
##    240        0.6466             nan     0.0100    0.0002
##    260        0.6298             nan     0.0100   -0.0001
##    280        0.6143             nan     0.0100   -0.0001
##    300        0.5997             nan     0.0100    0.0000
##    320        0.5851             nan     0.0100    0.0002
##    340        0.5705             nan     0.0100    0.0001
##    360        0.5571             nan     0.0100   -0.0000
##    380        0.5451             nan     0.0100   -0.0002
##    400        0.5329             nan     0.0100   -0.0001
##    420        0.5221             nan     0.0100   -0.0001
##    440        0.5116             nan     0.0100   -0.0000
##    460        0.5013             nan     0.0100   -0.0001
##    480        0.4914             nan     0.0100    0.0001
##    500        0.4822             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2455             nan     0.1000    0.0356
##      2        1.1801             nan     0.1000    0.0263
##      3        1.1242             nan     0.1000    0.0253
##      4        1.0772             nan     0.1000    0.0209
##      5        1.0382             nan     0.1000    0.0162
##      6        1.0034             nan     0.1000    0.0128
##      7        0.9698             nan     0.1000    0.0117
##      8        0.9359             nan     0.1000    0.0129
##      9        0.9077             nan     0.1000    0.0123
##     10        0.8843             nan     0.1000    0.0081
##     20        0.7317             nan     0.1000    0.0035
##     40        0.5999             nan     0.1000    0.0002
##     60        0.5085             nan     0.1000    0.0007
##     80        0.4494             nan     0.1000    0.0002
##    100        0.3962             nan     0.1000   -0.0003
##    120        0.3496             nan     0.1000   -0.0010
##    140        0.3158             nan     0.1000   -0.0001
##    160        0.2825             nan     0.1000   -0.0003
##    180        0.2582             nan     0.1000   -0.0002
##    200        0.2334             nan     0.1000   -0.0006
##    220        0.2125             nan     0.1000   -0.0007
##    240        0.1941             nan     0.1000   -0.0002
##    260        0.1784             nan     0.1000   -0.0002
##    280        0.1641             nan     0.1000   -0.0001
##    300        0.1498             nan     0.1000   -0.0001
##    320        0.1383             nan     0.1000   -0.0003
##    340        0.1280             nan     0.1000    0.0001
##    360        0.1197             nan     0.1000   -0.0005
##    380        0.1109             nan     0.1000   -0.0002
##    400        0.1028             nan     0.1000   -0.0001
##    420        0.0950             nan     0.1000   -0.0003
##    440        0.0884             nan     0.1000   -0.0003
##    460        0.0819             nan     0.1000   -0.0002
##    480        0.0758             nan     0.1000   -0.0002
##    500        0.0703             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2370             nan     0.1000    0.0368
##      2        1.1663             nan     0.1000    0.0293
##      3        1.1083             nan     0.1000    0.0237
##      4        1.0638             nan     0.1000    0.0183
##      5        1.0288             nan     0.1000    0.0136
##      6        0.9911             nan     0.1000    0.0144
##      7        0.9591             nan     0.1000    0.0123
##      8        0.9286             nan     0.1000    0.0132
##      9        0.9045             nan     0.1000    0.0085
##     10        0.8808             nan     0.1000    0.0059
##     20        0.7413             nan     0.1000    0.0020
##     40        0.6143             nan     0.1000   -0.0013
##     60        0.5282             nan     0.1000   -0.0001
##     80        0.4724             nan     0.1000   -0.0002
##    100        0.4165             nan     0.1000   -0.0010
##    120        0.3702             nan     0.1000   -0.0009
##    140        0.3289             nan     0.1000   -0.0000
##    160        0.2963             nan     0.1000   -0.0008
##    180        0.2704             nan     0.1000   -0.0007
##    200        0.2479             nan     0.1000   -0.0004
##    220        0.2257             nan     0.1000   -0.0011
##    240        0.2049             nan     0.1000   -0.0002
##    260        0.1877             nan     0.1000    0.0000
##    280        0.1729             nan     0.1000   -0.0005
##    300        0.1591             nan     0.1000   -0.0003
##    320        0.1472             nan     0.1000   -0.0004
##    340        0.1351             nan     0.1000   -0.0003
##    360        0.1247             nan     0.1000   -0.0003
##    380        0.1154             nan     0.1000   -0.0005
##    400        0.1068             nan     0.1000   -0.0002
##    420        0.1005             nan     0.1000   -0.0003
##    440        0.0928             nan     0.1000   -0.0001
##    460        0.0858             nan     0.1000   -0.0000
##    480        0.0805             nan     0.1000   -0.0002
##    500        0.0742             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2426             nan     0.1000    0.0295
##      2        1.1792             nan     0.1000    0.0242
##      3        1.1208             nan     0.1000    0.0249
##      4        1.0708             nan     0.1000    0.0195
##      5        1.0384             nan     0.1000    0.0133
##      6        0.9981             nan     0.1000    0.0146
##      7        0.9640             nan     0.1000    0.0134
##      8        0.9349             nan     0.1000    0.0123
##      9        0.9080             nan     0.1000    0.0108
##     10        0.8859             nan     0.1000    0.0091
##     20        0.7442             nan     0.1000    0.0022
##     40        0.6243             nan     0.1000   -0.0008
##     60        0.5509             nan     0.1000   -0.0011
##     80        0.4842             nan     0.1000   -0.0008
##    100        0.4358             nan     0.1000   -0.0007
##    120        0.3898             nan     0.1000   -0.0005
##    140        0.3544             nan     0.1000   -0.0004
##    160        0.3225             nan     0.1000   -0.0004
##    180        0.2961             nan     0.1000   -0.0011
##    200        0.2712             nan     0.1000   -0.0004
##    220        0.2462             nan     0.1000   -0.0016
##    240        0.2246             nan     0.1000   -0.0005
##    260        0.2074             nan     0.1000   -0.0005
##    280        0.1913             nan     0.1000   -0.0011
##    300        0.1766             nan     0.1000   -0.0002
##    320        0.1628             nan     0.1000   -0.0002
##    340        0.1493             nan     0.1000   -0.0002
##    360        0.1358             nan     0.1000   -0.0003
##    380        0.1262             nan     0.1000   -0.0004
##    400        0.1159             nan     0.1000   -0.0004
##    420        0.1086             nan     0.1000   -0.0002
##    440        0.1013             nan     0.1000   -0.0004
##    460        0.0950             nan     0.1000   -0.0005
##    480        0.0884             nan     0.1000   -0.0002
##    500        0.0830             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2426             nan     0.1000    0.0350
##      2        1.1684             nan     0.1000    0.0326
##      3        1.1100             nan     0.1000    0.0224
##      4        1.0600             nan     0.1000    0.0204
##      5        1.0126             nan     0.1000    0.0188
##      6        0.9727             nan     0.1000    0.0154
##      7        0.9395             nan     0.1000    0.0138
##      8        0.9096             nan     0.1000    0.0129
##      9        0.8808             nan     0.1000    0.0112
##     10        0.8576             nan     0.1000    0.0094
##     20        0.7002             nan     0.1000    0.0010
##     40        0.5580             nan     0.1000   -0.0006
##     60        0.4611             nan     0.1000    0.0006
##     80        0.3901             nan     0.1000   -0.0001
##    100        0.3328             nan     0.1000    0.0001
##    120        0.2872             nan     0.1000    0.0000
##    140        0.2487             nan     0.1000   -0.0000
##    160        0.2204             nan     0.1000    0.0001
##    180        0.1932             nan     0.1000   -0.0003
##    200        0.1696             nan     0.1000   -0.0002
##    220        0.1504             nan     0.1000   -0.0001
##    240        0.1337             nan     0.1000    0.0001
##    260        0.1189             nan     0.1000   -0.0003
##    280        0.1071             nan     0.1000   -0.0000
##    300        0.0964             nan     0.1000   -0.0001
##    320        0.0858             nan     0.1000   -0.0001
##    340        0.0778             nan     0.1000   -0.0001
##    360        0.0698             nan     0.1000   -0.0003
##    380        0.0631             nan     0.1000   -0.0000
##    400        0.0575             nan     0.1000   -0.0002
##    420        0.0522             nan     0.1000   -0.0002
##    440        0.0475             nan     0.1000   -0.0001
##    460        0.0430             nan     0.1000   -0.0001
##    480        0.0392             nan     0.1000   -0.0001
##    500        0.0358             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2444             nan     0.1000    0.0326
##      2        1.1729             nan     0.1000    0.0338
##      3        1.1099             nan     0.1000    0.0232
##      4        1.0545             nan     0.1000    0.0227
##      5        1.0113             nan     0.1000    0.0188
##      6        0.9757             nan     0.1000    0.0143
##      7        0.9388             nan     0.1000    0.0148
##      8        0.9118             nan     0.1000    0.0114
##      9        0.8860             nan     0.1000    0.0070
##     10        0.8628             nan     0.1000    0.0081
##     20        0.7133             nan     0.1000    0.0011
##     40        0.5673             nan     0.1000    0.0010
##     60        0.4748             nan     0.1000   -0.0009
##     80        0.4060             nan     0.1000   -0.0003
##    100        0.3530             nan     0.1000   -0.0012
##    120        0.3069             nan     0.1000    0.0009
##    140        0.2654             nan     0.1000   -0.0006
##    160        0.2336             nan     0.1000   -0.0002
##    180        0.2064             nan     0.1000   -0.0010
##    200        0.1848             nan     0.1000   -0.0001
##    220        0.1643             nan     0.1000   -0.0006
##    240        0.1472             nan     0.1000   -0.0009
##    260        0.1332             nan     0.1000   -0.0002
##    280        0.1202             nan     0.1000   -0.0005
##    300        0.1084             nan     0.1000   -0.0003
##    320        0.0980             nan     0.1000   -0.0002
##    340        0.0878             nan     0.1000   -0.0004
##    360        0.0788             nan     0.1000   -0.0001
##    380        0.0708             nan     0.1000   -0.0003
##    400        0.0645             nan     0.1000   -0.0001
##    420        0.0582             nan     0.1000   -0.0002
##    440        0.0530             nan     0.1000   -0.0001
##    460        0.0487             nan     0.1000   -0.0002
##    480        0.0442             nan     0.1000   -0.0001
##    500        0.0399             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2418             nan     0.1000    0.0329
##      2        1.1758             nan     0.1000    0.0265
##      3        1.1156             nan     0.1000    0.0274
##      4        1.0612             nan     0.1000    0.0214
##      5        1.0198             nan     0.1000    0.0153
##      6        0.9773             nan     0.1000    0.0156
##      7        0.9396             nan     0.1000    0.0141
##      8        0.9162             nan     0.1000    0.0081
##      9        0.8891             nan     0.1000    0.0098
##     10        0.8622             nan     0.1000    0.0099
##     20        0.7152             nan     0.1000    0.0027
##     40        0.5785             nan     0.1000    0.0006
##     60        0.4802             nan     0.1000   -0.0008
##     80        0.4102             nan     0.1000    0.0002
##    100        0.3653             nan     0.1000   -0.0013
##    120        0.3241             nan     0.1000   -0.0006
##    140        0.2857             nan     0.1000   -0.0010
##    160        0.2534             nan     0.1000   -0.0010
##    180        0.2257             nan     0.1000   -0.0003
##    200        0.2037             nan     0.1000   -0.0009
##    220        0.1854             nan     0.1000   -0.0007
##    240        0.1687             nan     0.1000   -0.0001
##    260        0.1526             nan     0.1000   -0.0009
##    280        0.1391             nan     0.1000   -0.0006
##    300        0.1262             nan     0.1000   -0.0003
##    320        0.1155             nan     0.1000   -0.0006
##    340        0.1060             nan     0.1000   -0.0003
##    360        0.0959             nan     0.1000   -0.0003
##    380        0.0884             nan     0.1000   -0.0003
##    400        0.0805             nan     0.1000   -0.0001
##    420        0.0732             nan     0.1000   -0.0003
##    440        0.0670             nan     0.1000   -0.0003
##    460        0.0611             nan     0.1000   -0.0002
##    480        0.0554             nan     0.1000   -0.0002
##    500        0.0505             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2315             nan     0.1000    0.0413
##      2        1.1582             nan     0.1000    0.0317
##      3        1.0991             nan     0.1000    0.0269
##      4        1.0496             nan     0.1000    0.0224
##      5        0.9992             nan     0.1000    0.0201
##      6        0.9581             nan     0.1000    0.0162
##      7        0.9226             nan     0.1000    0.0138
##      8        0.8906             nan     0.1000    0.0145
##      9        0.8584             nan     0.1000    0.0124
##     10        0.8314             nan     0.1000    0.0117
##     20        0.6734             nan     0.1000    0.0038
##     40        0.5177             nan     0.1000    0.0007
##     60        0.4140             nan     0.1000   -0.0007
##     80        0.3421             nan     0.1000   -0.0010
##    100        0.2886             nan     0.1000   -0.0004
##    120        0.2463             nan     0.1000   -0.0001
##    140        0.2108             nan     0.1000   -0.0009
##    160        0.1812             nan     0.1000   -0.0004
##    180        0.1557             nan     0.1000   -0.0008
##    200        0.1374             nan     0.1000   -0.0000
##    220        0.1213             nan     0.1000   -0.0003
##    240        0.1050             nan     0.1000   -0.0002
##    260        0.0934             nan     0.1000   -0.0004
##    280        0.0836             nan     0.1000   -0.0001
##    300        0.0738             nan     0.1000   -0.0002
##    320        0.0654             nan     0.1000   -0.0001
##    340        0.0575             nan     0.1000   -0.0002
##    360        0.0512             nan     0.1000   -0.0001
##    380        0.0453             nan     0.1000   -0.0001
##    400        0.0405             nan     0.1000   -0.0001
##    420        0.0359             nan     0.1000   -0.0001
##    440        0.0321             nan     0.1000   -0.0001
##    460        0.0286             nan     0.1000   -0.0001
##    480        0.0255             nan     0.1000   -0.0001
##    500        0.0224             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2322             nan     0.1000    0.0404
##      2        1.1642             nan     0.1000    0.0292
##      3        1.1028             nan     0.1000    0.0285
##      4        1.0488             nan     0.1000    0.0236
##      5        1.0046             nan     0.1000    0.0179
##      6        0.9639             nan     0.1000    0.0167
##      7        0.9286             nan     0.1000    0.0146
##      8        0.8978             nan     0.1000    0.0104
##      9        0.8741             nan     0.1000    0.0075
##     10        0.8455             nan     0.1000    0.0110
##     20        0.6748             nan     0.1000    0.0056
##     40        0.5235             nan     0.1000   -0.0004
##     60        0.4239             nan     0.1000   -0.0000
##     80        0.3485             nan     0.1000   -0.0009
##    100        0.2880             nan     0.1000   -0.0005
##    120        0.2442             nan     0.1000   -0.0004
##    140        0.2070             nan     0.1000   -0.0001
##    160        0.1786             nan     0.1000   -0.0001
##    180        0.1549             nan     0.1000   -0.0006
##    200        0.1348             nan     0.1000   -0.0008
##    220        0.1202             nan     0.1000   -0.0008
##    240        0.1048             nan     0.1000   -0.0002
##    260        0.0931             nan     0.1000   -0.0004
##    280        0.0828             nan     0.1000   -0.0003
##    300        0.0726             nan     0.1000   -0.0002
##    320        0.0642             nan     0.1000   -0.0002
##    340        0.0570             nan     0.1000   -0.0003
##    360        0.0499             nan     0.1000   -0.0002
##    380        0.0447             nan     0.1000   -0.0001
##    400        0.0395             nan     0.1000   -0.0000
##    420        0.0353             nan     0.1000   -0.0001
##    440        0.0316             nan     0.1000   -0.0001
##    460        0.0281             nan     0.1000   -0.0001
##    480        0.0251             nan     0.1000   -0.0001
##    500        0.0223             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2313             nan     0.1000    0.0392
##      2        1.1544             nan     0.1000    0.0350
##      3        1.0936             nan     0.1000    0.0268
##      4        1.0483             nan     0.1000    0.0147
##      5        1.0049             nan     0.1000    0.0198
##      6        0.9646             nan     0.1000    0.0160
##      7        0.9304             nan     0.1000    0.0132
##      8        0.8987             nan     0.1000    0.0105
##      9        0.8686             nan     0.1000    0.0117
##     10        0.8415             nan     0.1000    0.0093
##     20        0.6871             nan     0.1000    0.0019
##     40        0.5390             nan     0.1000   -0.0007
##     60        0.4441             nan     0.1000   -0.0012
##     80        0.3725             nan     0.1000   -0.0011
##    100        0.3192             nan     0.1000    0.0002
##    120        0.2683             nan     0.1000   -0.0011
##    140        0.2307             nan     0.1000   -0.0011
##    160        0.1985             nan     0.1000   -0.0004
##    180        0.1735             nan     0.1000   -0.0005
##    200        0.1535             nan     0.1000   -0.0007
##    220        0.1351             nan     0.1000   -0.0007
##    240        0.1190             nan     0.1000   -0.0001
##    260        0.1048             nan     0.1000   -0.0006
##    280        0.0928             nan     0.1000   -0.0001
##    300        0.0813             nan     0.1000   -0.0001
##    320        0.0722             nan     0.1000   -0.0004
##    340        0.0644             nan     0.1000   -0.0004
##    360        0.0581             nan     0.1000   -0.0001
##    380        0.0522             nan     0.1000   -0.0002
##    400        0.0472             nan     0.1000   -0.0002
##    420        0.0421             nan     0.1000   -0.0002
##    440        0.0376             nan     0.1000   -0.0002
##    460        0.0336             nan     0.1000   -0.0001
##    480        0.0303             nan     0.1000   -0.0002
##    500        0.0272             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0003
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0003
##      9        1.3138             nan     0.0010    0.0003
##     10        1.3129             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0003
##     40        1.2892             nan     0.0010    0.0003
##     60        1.2740             nan     0.0010    0.0004
##     80        1.2591             nan     0.0010    0.0003
##    100        1.2448             nan     0.0010    0.0003
##    120        1.2310             nan     0.0010    0.0003
##    140        1.2173             nan     0.0010    0.0003
##    160        1.2040             nan     0.0010    0.0003
##    180        1.1913             nan     0.0010    0.0003
##    200        1.1789             nan     0.0010    0.0002
##    220        1.1666             nan     0.0010    0.0002
##    240        1.1550             nan     0.0010    0.0002
##    260        1.1434             nan     0.0010    0.0003
##    280        1.1326             nan     0.0010    0.0002
##    300        1.1220             nan     0.0010    0.0002
##    320        1.1114             nan     0.0010    0.0002
##    340        1.1013             nan     0.0010    0.0002
##    360        1.0913             nan     0.0010    0.0002
##    380        1.0815             nan     0.0010    0.0002
##    400        1.0721             nan     0.0010    0.0002
##    420        1.0630             nan     0.0010    0.0001
##    440        1.0539             nan     0.0010    0.0002
##    460        1.0453             nan     0.0010    0.0002
##    480        1.0369             nan     0.0010    0.0002
##    500        1.0284             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0003
##      6        1.3161             nan     0.0010    0.0003
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3138             nan     0.0010    0.0003
##     10        1.3130             nan     0.0010    0.0003
##     20        1.3047             nan     0.0010    0.0004
##     40        1.2891             nan     0.0010    0.0003
##     60        1.2736             nan     0.0010    0.0004
##     80        1.2590             nan     0.0010    0.0003
##    100        1.2446             nan     0.0010    0.0003
##    120        1.2310             nan     0.0010    0.0003
##    140        1.2176             nan     0.0010    0.0003
##    160        1.2043             nan     0.0010    0.0003
##    180        1.1915             nan     0.0010    0.0002
##    200        1.1792             nan     0.0010    0.0003
##    220        1.1673             nan     0.0010    0.0003
##    240        1.1555             nan     0.0010    0.0002
##    260        1.1442             nan     0.0010    0.0002
##    280        1.1334             nan     0.0010    0.0002
##    300        1.1226             nan     0.0010    0.0002
##    320        1.1119             nan     0.0010    0.0002
##    340        1.1018             nan     0.0010    0.0002
##    360        1.0922             nan     0.0010    0.0002
##    380        1.0825             nan     0.0010    0.0002
##    400        1.0729             nan     0.0010    0.0002
##    420        1.0636             nan     0.0010    0.0002
##    440        1.0546             nan     0.0010    0.0002
##    460        1.0457             nan     0.0010    0.0002
##    480        1.0372             nan     0.0010    0.0002
##    500        1.0288             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3188             nan     0.0010    0.0004
##      4        1.3180             nan     0.0010    0.0003
##      5        1.3172             nan     0.0010    0.0004
##      6        1.3164             nan     0.0010    0.0004
##      7        1.3156             nan     0.0010    0.0003
##      8        1.3148             nan     0.0010    0.0004
##      9        1.3139             nan     0.0010    0.0004
##     10        1.3131             nan     0.0010    0.0004
##     20        1.3050             nan     0.0010    0.0004
##     40        1.2891             nan     0.0010    0.0004
##     60        1.2739             nan     0.0010    0.0003
##     80        1.2591             nan     0.0010    0.0003
##    100        1.2449             nan     0.0010    0.0003
##    120        1.2310             nan     0.0010    0.0003
##    140        1.2175             nan     0.0010    0.0003
##    160        1.2043             nan     0.0010    0.0003
##    180        1.1916             nan     0.0010    0.0003
##    200        1.1794             nan     0.0010    0.0003
##    220        1.1674             nan     0.0010    0.0002
##    240        1.1556             nan     0.0010    0.0002
##    260        1.1443             nan     0.0010    0.0002
##    280        1.1333             nan     0.0010    0.0002
##    300        1.1225             nan     0.0010    0.0002
##    320        1.1123             nan     0.0010    0.0002
##    340        1.1022             nan     0.0010    0.0002
##    360        1.0923             nan     0.0010    0.0002
##    380        1.0826             nan     0.0010    0.0002
##    400        1.0733             nan     0.0010    0.0002
##    420        1.0643             nan     0.0010    0.0002
##    440        1.0553             nan     0.0010    0.0002
##    460        1.0464             nan     0.0010    0.0002
##    480        1.0381             nan     0.0010    0.0002
##    500        1.0298             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2864             nan     0.0010    0.0004
##     60        1.2697             nan     0.0010    0.0004
##     80        1.2541             nan     0.0010    0.0003
##    100        1.2390             nan     0.0010    0.0004
##    120        1.2241             nan     0.0010    0.0003
##    140        1.2097             nan     0.0010    0.0003
##    160        1.1960             nan     0.0010    0.0003
##    180        1.1826             nan     0.0010    0.0003
##    200        1.1696             nan     0.0010    0.0003
##    220        1.1569             nan     0.0010    0.0003
##    240        1.1445             nan     0.0010    0.0003
##    260        1.1325             nan     0.0010    0.0002
##    280        1.1210             nan     0.0010    0.0002
##    300        1.1095             nan     0.0010    0.0003
##    320        1.0986             nan     0.0010    0.0002
##    340        1.0878             nan     0.0010    0.0002
##    360        1.0774             nan     0.0010    0.0002
##    380        1.0673             nan     0.0010    0.0002
##    400        1.0572             nan     0.0010    0.0002
##    420        1.0476             nan     0.0010    0.0002
##    440        1.0382             nan     0.0010    0.0002
##    460        1.0291             nan     0.0010    0.0002
##    480        1.0203             nan     0.0010    0.0002
##    500        1.0117             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0003
##     20        1.3037             nan     0.0010    0.0003
##     40        1.2867             nan     0.0010    0.0004
##     60        1.2701             nan     0.0010    0.0004
##     80        1.2544             nan     0.0010    0.0003
##    100        1.2389             nan     0.0010    0.0004
##    120        1.2239             nan     0.0010    0.0003
##    140        1.2097             nan     0.0010    0.0003
##    160        1.1956             nan     0.0010    0.0003
##    180        1.1821             nan     0.0010    0.0003
##    200        1.1690             nan     0.0010    0.0003
##    220        1.1564             nan     0.0010    0.0003
##    240        1.1442             nan     0.0010    0.0002
##    260        1.1326             nan     0.0010    0.0002
##    280        1.1206             nan     0.0010    0.0002
##    300        1.1094             nan     0.0010    0.0002
##    320        1.0984             nan     0.0010    0.0003
##    340        1.0878             nan     0.0010    0.0002
##    360        1.0774             nan     0.0010    0.0002
##    380        1.0671             nan     0.0010    0.0002
##    400        1.0571             nan     0.0010    0.0002
##    420        1.0474             nan     0.0010    0.0002
##    440        1.0378             nan     0.0010    0.0002
##    460        1.0287             nan     0.0010    0.0002
##    480        1.0197             nan     0.0010    0.0002
##    500        1.0108             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0003
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0003
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3041             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0003
##     60        1.2711             nan     0.0010    0.0004
##     80        1.2555             nan     0.0010    0.0004
##    100        1.2405             nan     0.0010    0.0004
##    120        1.2255             nan     0.0010    0.0003
##    140        1.2114             nan     0.0010    0.0003
##    160        1.1980             nan     0.0010    0.0003
##    180        1.1843             nan     0.0010    0.0003
##    200        1.1715             nan     0.0010    0.0003
##    220        1.1592             nan     0.0010    0.0003
##    240        1.1469             nan     0.0010    0.0003
##    260        1.1349             nan     0.0010    0.0002
##    280        1.1235             nan     0.0010    0.0002
##    300        1.1120             nan     0.0010    0.0003
##    320        1.1009             nan     0.0010    0.0003
##    340        1.0901             nan     0.0010    0.0003
##    360        1.0797             nan     0.0010    0.0002
##    380        1.0697             nan     0.0010    0.0002
##    400        1.0598             nan     0.0010    0.0002
##    420        1.0503             nan     0.0010    0.0002
##    440        1.0410             nan     0.0010    0.0002
##    460        1.0321             nan     0.0010    0.0002
##    480        1.0234             nan     0.0010    0.0002
##    500        1.0149             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0005
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3029             nan     0.0010    0.0004
##     40        1.2850             nan     0.0010    0.0004
##     60        1.2680             nan     0.0010    0.0003
##     80        1.2513             nan     0.0010    0.0003
##    100        1.2354             nan     0.0010    0.0003
##    120        1.2197             nan     0.0010    0.0004
##    140        1.2049             nan     0.0010    0.0003
##    160        1.1902             nan     0.0010    0.0003
##    180        1.1759             nan     0.0010    0.0003
##    200        1.1623             nan     0.0010    0.0003
##    220        1.1489             nan     0.0010    0.0003
##    240        1.1358             nan     0.0010    0.0003
##    260        1.1231             nan     0.0010    0.0002
##    280        1.1106             nan     0.0010    0.0002
##    300        1.0985             nan     0.0010    0.0003
##    320        1.0871             nan     0.0010    0.0002
##    340        1.0756             nan     0.0010    0.0003
##    360        1.0647             nan     0.0010    0.0002
##    380        1.0538             nan     0.0010    0.0002
##    400        1.0433             nan     0.0010    0.0002
##    420        1.0333             nan     0.0010    0.0002
##    440        1.0235             nan     0.0010    0.0002
##    460        1.0139             nan     0.0010    0.0002
##    480        1.0045             nan     0.0010    0.0002
##    500        0.9957             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3192             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0003
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0003
##      8        1.3138             nan     0.0010    0.0005
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3029             nan     0.0010    0.0004
##     40        1.2851             nan     0.0010    0.0004
##     60        1.2683             nan     0.0010    0.0004
##     80        1.2518             nan     0.0010    0.0003
##    100        1.2359             nan     0.0010    0.0004
##    120        1.2201             nan     0.0010    0.0004
##    140        1.2055             nan     0.0010    0.0003
##    160        1.1912             nan     0.0010    0.0003
##    180        1.1770             nan     0.0010    0.0003
##    200        1.1632             nan     0.0010    0.0003
##    220        1.1499             nan     0.0010    0.0002
##    240        1.1372             nan     0.0010    0.0003
##    260        1.1244             nan     0.0010    0.0003
##    280        1.1120             nan     0.0010    0.0002
##    300        1.1001             nan     0.0010    0.0003
##    320        1.0886             nan     0.0010    0.0002
##    340        1.0774             nan     0.0010    0.0002
##    360        1.0666             nan     0.0010    0.0002
##    380        1.0559             nan     0.0010    0.0002
##    400        1.0458             nan     0.0010    0.0002
##    420        1.0358             nan     0.0010    0.0002
##    440        1.0260             nan     0.0010    0.0002
##    460        1.0167             nan     0.0010    0.0002
##    480        1.0074             nan     0.0010    0.0002
##    500        0.9983             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0005
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0003
##     40        1.2859             nan     0.0010    0.0003
##     60        1.2691             nan     0.0010    0.0004
##     80        1.2526             nan     0.0010    0.0004
##    100        1.2367             nan     0.0010    0.0003
##    120        1.2216             nan     0.0010    0.0003
##    140        1.2065             nan     0.0010    0.0003
##    160        1.1922             nan     0.0010    0.0003
##    180        1.1781             nan     0.0010    0.0003
##    200        1.1647             nan     0.0010    0.0003
##    220        1.1516             nan     0.0010    0.0003
##    240        1.1391             nan     0.0010    0.0002
##    260        1.1266             nan     0.0010    0.0003
##    280        1.1146             nan     0.0010    0.0003
##    300        1.1030             nan     0.0010    0.0003
##    320        1.0915             nan     0.0010    0.0002
##    340        1.0804             nan     0.0010    0.0002
##    360        1.0697             nan     0.0010    0.0003
##    380        1.0592             nan     0.0010    0.0002
##    400        1.0486             nan     0.0010    0.0002
##    420        1.0387             nan     0.0010    0.0002
##    440        1.0292             nan     0.0010    0.0002
##    460        1.0198             nan     0.0010    0.0002
##    480        1.0108             nan     0.0010    0.0002
##    500        1.0018             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3129             nan     0.0100    0.0038
##      2        1.3039             nan     0.0100    0.0041
##      3        1.2957             nan     0.0100    0.0033
##      4        1.2876             nan     0.0100    0.0038
##      5        1.2794             nan     0.0100    0.0036
##      6        1.2721             nan     0.0100    0.0030
##      7        1.2647             nan     0.0100    0.0035
##      8        1.2572             nan     0.0100    0.0032
##      9        1.2496             nan     0.0100    0.0035
##     10        1.2423             nan     0.0100    0.0031
##     20        1.1775             nan     0.0100    0.0029
##     40        1.0695             nan     0.0100    0.0018
##     60        0.9858             nan     0.0100    0.0017
##     80        0.9211             nan     0.0100    0.0013
##    100        0.8687             nan     0.0100    0.0008
##    120        0.8256             nan     0.0100    0.0007
##    140        0.7887             nan     0.0100    0.0004
##    160        0.7598             nan     0.0100    0.0002
##    180        0.7347             nan     0.0100    0.0003
##    200        0.7117             nan     0.0100    0.0004
##    220        0.6918             nan     0.0100    0.0003
##    240        0.6739             nan     0.0100    0.0003
##    260        0.6581             nan     0.0100    0.0000
##    280        0.6438             nan     0.0100   -0.0000
##    300        0.6315             nan     0.0100    0.0000
##    320        0.6193             nan     0.0100    0.0001
##    340        0.6080             nan     0.0100    0.0000
##    360        0.5974             nan     0.0100   -0.0000
##    380        0.5866             nan     0.0100    0.0001
##    400        0.5771             nan     0.0100    0.0001
##    420        0.5684             nan     0.0100   -0.0001
##    440        0.5595             nan     0.0100   -0.0001
##    460        0.5508             nan     0.0100    0.0000
##    480        0.5428             nan     0.0100   -0.0000
##    500        0.5352             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3130             nan     0.0100    0.0033
##      2        1.3046             nan     0.0100    0.0038
##      3        1.2967             nan     0.0100    0.0037
##      4        1.2890             nan     0.0100    0.0033
##      5        1.2808             nan     0.0100    0.0036
##      6        1.2730             nan     0.0100    0.0037
##      7        1.2651             nan     0.0100    0.0033
##      8        1.2568             nan     0.0100    0.0035
##      9        1.2502             nan     0.0100    0.0026
##     10        1.2434             nan     0.0100    0.0034
##     20        1.1772             nan     0.0100    0.0027
##     40        1.0715             nan     0.0100    0.0021
##     60        0.9882             nan     0.0100    0.0015
##     80        0.9234             nan     0.0100    0.0007
##    100        0.8708             nan     0.0100    0.0009
##    120        0.8280             nan     0.0100    0.0008
##    140        0.7928             nan     0.0100    0.0005
##    160        0.7653             nan     0.0100    0.0002
##    180        0.7394             nan     0.0100    0.0003
##    200        0.7171             nan     0.0100    0.0003
##    220        0.6971             nan     0.0100    0.0004
##    240        0.6796             nan     0.0100   -0.0000
##    260        0.6647             nan     0.0100    0.0002
##    280        0.6499             nan     0.0100    0.0001
##    300        0.6369             nan     0.0100    0.0000
##    320        0.6245             nan     0.0100    0.0002
##    340        0.6129             nan     0.0100   -0.0001
##    360        0.6020             nan     0.0100    0.0000
##    380        0.5913             nan     0.0100   -0.0001
##    400        0.5807             nan     0.0100   -0.0000
##    420        0.5726             nan     0.0100   -0.0001
##    440        0.5647             nan     0.0100    0.0001
##    460        0.5566             nan     0.0100    0.0000
##    480        0.5477             nan     0.0100    0.0000
##    500        0.5395             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0037
##      2        1.3045             nan     0.0100    0.0037
##      3        1.2965             nan     0.0100    0.0038
##      4        1.2887             nan     0.0100    0.0038
##      5        1.2812             nan     0.0100    0.0032
##      6        1.2726             nan     0.0100    0.0038
##      7        1.2652             nan     0.0100    0.0031
##      8        1.2574             nan     0.0100    0.0037
##      9        1.2501             nan     0.0100    0.0035
##     10        1.2431             nan     0.0100    0.0034
##     20        1.1776             nan     0.0100    0.0027
##     40        1.0724             nan     0.0100    0.0019
##     60        0.9923             nan     0.0100    0.0012
##     80        0.9264             nan     0.0100    0.0014
##    100        0.8725             nan     0.0100    0.0010
##    120        0.8298             nan     0.0100    0.0008
##    140        0.7940             nan     0.0100    0.0006
##    160        0.7655             nan     0.0100    0.0004
##    180        0.7403             nan     0.0100    0.0003
##    200        0.7195             nan     0.0100    0.0002
##    220        0.7011             nan     0.0100    0.0001
##    240        0.6843             nan     0.0100    0.0002
##    260        0.6682             nan     0.0100    0.0001
##    280        0.6550             nan     0.0100    0.0001
##    300        0.6420             nan     0.0100    0.0002
##    320        0.6299             nan     0.0100   -0.0001
##    340        0.6194             nan     0.0100    0.0000
##    360        0.6087             nan     0.0100    0.0000
##    380        0.5984             nan     0.0100   -0.0001
##    400        0.5893             nan     0.0100   -0.0000
##    420        0.5810             nan     0.0100   -0.0000
##    440        0.5725             nan     0.0100   -0.0000
##    460        0.5638             nan     0.0100   -0.0000
##    480        0.5557             nan     0.0100   -0.0001
##    500        0.5471             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0042
##      2        1.3041             nan     0.0100    0.0036
##      3        1.2960             nan     0.0100    0.0035
##      4        1.2878             nan     0.0100    0.0037
##      5        1.2794             nan     0.0100    0.0038
##      6        1.2714             nan     0.0100    0.0036
##      7        1.2641             nan     0.0100    0.0025
##      8        1.2562             nan     0.0100    0.0032
##      9        1.2479             nan     0.0100    0.0035
##     10        1.2406             nan     0.0100    0.0028
##     20        1.1724             nan     0.0100    0.0026
##     40        1.0587             nan     0.0100    0.0020
##     60        0.9728             nan     0.0100    0.0015
##     80        0.9050             nan     0.0100    0.0010
##    100        0.8496             nan     0.0100    0.0006
##    120        0.8043             nan     0.0100    0.0008
##    140        0.7656             nan     0.0100    0.0006
##    160        0.7324             nan     0.0100    0.0004
##    180        0.7058             nan     0.0100    0.0004
##    200        0.6827             nan     0.0100    0.0000
##    220        0.6614             nan     0.0100    0.0003
##    240        0.6412             nan     0.0100    0.0002
##    260        0.6241             nan     0.0100    0.0000
##    280        0.6073             nan     0.0100    0.0001
##    300        0.5923             nan     0.0100    0.0000
##    320        0.5786             nan     0.0100    0.0000
##    340        0.5666             nan     0.0100   -0.0001
##    360        0.5539             nan     0.0100   -0.0000
##    380        0.5429             nan     0.0100    0.0000
##    400        0.5320             nan     0.0100    0.0001
##    420        0.5223             nan     0.0100    0.0002
##    440        0.5125             nan     0.0100   -0.0002
##    460        0.5028             nan     0.0100   -0.0000
##    480        0.4935             nan     0.0100    0.0001
##    500        0.4846             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0041
##      2        1.3029             nan     0.0100    0.0040
##      3        1.2957             nan     0.0100    0.0036
##      4        1.2867             nan     0.0100    0.0039
##      5        1.2780             nan     0.0100    0.0039
##      6        1.2698             nan     0.0100    0.0035
##      7        1.2620             nan     0.0100    0.0034
##      8        1.2540             nan     0.0100    0.0038
##      9        1.2463             nan     0.0100    0.0031
##     10        1.2386             nan     0.0100    0.0032
##     20        1.1691             nan     0.0100    0.0029
##     40        1.0573             nan     0.0100    0.0022
##     60        0.9698             nan     0.0100    0.0018
##     80        0.9020             nan     0.0100    0.0013
##    100        0.8456             nan     0.0100    0.0007
##    120        0.8014             nan     0.0100    0.0007
##    140        0.7648             nan     0.0100    0.0004
##    160        0.7340             nan     0.0100    0.0004
##    180        0.7069             nan     0.0100    0.0004
##    200        0.6836             nan     0.0100    0.0001
##    220        0.6630             nan     0.0100    0.0000
##    240        0.6455             nan     0.0100    0.0004
##    260        0.6297             nan     0.0100    0.0001
##    280        0.6143             nan     0.0100    0.0001
##    300        0.5993             nan     0.0100    0.0001
##    320        0.5862             nan     0.0100    0.0001
##    340        0.5733             nan     0.0100   -0.0001
##    360        0.5616             nan     0.0100    0.0000
##    380        0.5498             nan     0.0100   -0.0001
##    400        0.5388             nan     0.0100    0.0001
##    420        0.5285             nan     0.0100   -0.0001
##    440        0.5188             nan     0.0100    0.0001
##    460        0.5090             nan     0.0100   -0.0002
##    480        0.4998             nan     0.0100   -0.0001
##    500        0.4917             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0040
##      2        1.3042             nan     0.0100    0.0037
##      3        1.2956             nan     0.0100    0.0042
##      4        1.2869             nan     0.0100    0.0040
##      5        1.2791             nan     0.0100    0.0032
##      6        1.2708             nan     0.0100    0.0036
##      7        1.2621             nan     0.0100    0.0037
##      8        1.2542             nan     0.0100    0.0032
##      9        1.2466             nan     0.0100    0.0035
##     10        1.2391             nan     0.0100    0.0034
##     20        1.1701             nan     0.0100    0.0026
##     40        1.0582             nan     0.0100    0.0023
##     60        0.9739             nan     0.0100    0.0016
##     80        0.9054             nan     0.0100    0.0014
##    100        0.8511             nan     0.0100    0.0008
##    120        0.8076             nan     0.0100    0.0008
##    140        0.7709             nan     0.0100    0.0005
##    160        0.7385             nan     0.0100    0.0005
##    180        0.7134             nan     0.0100    0.0002
##    200        0.6907             nan     0.0100    0.0002
##    220        0.6713             nan     0.0100    0.0001
##    240        0.6536             nan     0.0100    0.0002
##    260        0.6371             nan     0.0100    0.0001
##    280        0.6221             nan     0.0100    0.0002
##    300        0.6085             nan     0.0100    0.0000
##    320        0.5953             nan     0.0100    0.0001
##    340        0.5832             nan     0.0100   -0.0001
##    360        0.5715             nan     0.0100   -0.0001
##    380        0.5613             nan     0.0100   -0.0001
##    400        0.5516             nan     0.0100    0.0001
##    420        0.5415             nan     0.0100   -0.0000
##    440        0.5321             nan     0.0100   -0.0001
##    460        0.5228             nan     0.0100   -0.0000
##    480        0.5141             nan     0.0100   -0.0001
##    500        0.5052             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3113             nan     0.0100    0.0043
##      2        1.3012             nan     0.0100    0.0042
##      3        1.2923             nan     0.0100    0.0038
##      4        1.2841             nan     0.0100    0.0035
##      5        1.2747             nan     0.0100    0.0044
##      6        1.2657             nan     0.0100    0.0036
##      7        1.2570             nan     0.0100    0.0036
##      8        1.2494             nan     0.0100    0.0034
##      9        1.2415             nan     0.0100    0.0032
##     10        1.2338             nan     0.0100    0.0033
##     20        1.1613             nan     0.0100    0.0030
##     40        1.0438             nan     0.0100    0.0024
##     60        0.9528             nan     0.0100    0.0016
##     80        0.8806             nan     0.0100    0.0012
##    100        0.8236             nan     0.0100    0.0009
##    120        0.7763             nan     0.0100    0.0008
##    140        0.7362             nan     0.0100    0.0005
##    160        0.7033             nan     0.0100    0.0004
##    180        0.6748             nan     0.0100    0.0003
##    200        0.6492             nan     0.0100    0.0001
##    220        0.6259             nan     0.0100    0.0003
##    240        0.6061             nan     0.0100    0.0002
##    260        0.5882             nan     0.0100    0.0002
##    280        0.5716             nan     0.0100    0.0003
##    300        0.5564             nan     0.0100    0.0000
##    320        0.5421             nan     0.0100    0.0001
##    340        0.5290             nan     0.0100   -0.0001
##    360        0.5165             nan     0.0100   -0.0000
##    380        0.5045             nan     0.0100    0.0001
##    400        0.4916             nan     0.0100   -0.0002
##    420        0.4799             nan     0.0100    0.0001
##    440        0.4695             nan     0.0100   -0.0000
##    460        0.4592             nan     0.0100    0.0002
##    480        0.4485             nan     0.0100   -0.0001
##    500        0.4390             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3115             nan     0.0100    0.0046
##      2        1.3027             nan     0.0100    0.0041
##      3        1.2939             nan     0.0100    0.0040
##      4        1.2850             nan     0.0100    0.0041
##      5        1.2759             nan     0.0100    0.0041
##      6        1.2679             nan     0.0100    0.0035
##      7        1.2594             nan     0.0100    0.0036
##      8        1.2509             nan     0.0100    0.0038
##      9        1.2429             nan     0.0100    0.0036
##     10        1.2358             nan     0.0100    0.0030
##     20        1.1641             nan     0.0100    0.0025
##     40        1.0456             nan     0.0100    0.0019
##     60        0.9581             nan     0.0100    0.0016
##     80        0.8863             nan     0.0100    0.0012
##    100        0.8303             nan     0.0100    0.0010
##    120        0.7833             nan     0.0100    0.0007
##    140        0.7439             nan     0.0100    0.0003
##    160        0.7102             nan     0.0100    0.0004
##    180        0.6819             nan     0.0100    0.0001
##    200        0.6567             nan     0.0100    0.0002
##    220        0.6353             nan     0.0100    0.0002
##    240        0.6160             nan     0.0100    0.0001
##    260        0.5978             nan     0.0100    0.0003
##    280        0.5816             nan     0.0100    0.0001
##    300        0.5665             nan     0.0100    0.0001
##    320        0.5525             nan     0.0100    0.0000
##    340        0.5388             nan     0.0100   -0.0000
##    360        0.5261             nan     0.0100    0.0000
##    380        0.5140             nan     0.0100    0.0001
##    400        0.5033             nan     0.0100   -0.0001
##    420        0.4915             nan     0.0100    0.0001
##    440        0.4801             nan     0.0100    0.0000
##    460        0.4702             nan     0.0100    0.0000
##    480        0.4605             nan     0.0100   -0.0000
##    500        0.4508             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0044
##      2        1.3021             nan     0.0100    0.0039
##      3        1.2928             nan     0.0100    0.0042
##      4        1.2839             nan     0.0100    0.0037
##      5        1.2762             nan     0.0100    0.0036
##      6        1.2678             nan     0.0100    0.0037
##      7        1.2590             nan     0.0100    0.0036
##      8        1.2509             nan     0.0100    0.0034
##      9        1.2428             nan     0.0100    0.0032
##     10        1.2354             nan     0.0100    0.0031
##     20        1.1614             nan     0.0100    0.0031
##     40        1.0442             nan     0.0100    0.0022
##     60        0.9536             nan     0.0100    0.0016
##     80        0.8846             nan     0.0100    0.0013
##    100        0.8279             nan     0.0100    0.0009
##    120        0.7819             nan     0.0100    0.0007
##    140        0.7438             nan     0.0100    0.0005
##    160        0.7118             nan     0.0100    0.0005
##    180        0.6847             nan     0.0100    0.0004
##    200        0.6611             nan     0.0100    0.0002
##    220        0.6399             nan     0.0100    0.0001
##    240        0.6211             nan     0.0100    0.0001
##    260        0.6034             nan     0.0100    0.0001
##    280        0.5879             nan     0.0100   -0.0001
##    300        0.5723             nan     0.0100    0.0000
##    320        0.5579             nan     0.0100   -0.0003
##    340        0.5438             nan     0.0100   -0.0001
##    360        0.5306             nan     0.0100   -0.0001
##    380        0.5192             nan     0.0100   -0.0000
##    400        0.5084             nan     0.0100   -0.0001
##    420        0.4967             nan     0.0100    0.0000
##    440        0.4864             nan     0.0100    0.0000
##    460        0.4762             nan     0.0100   -0.0000
##    480        0.4664             nan     0.0100   -0.0001
##    500        0.4570             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2371             nan     0.1000    0.0350
##      2        1.1688             nan     0.1000    0.0332
##      3        1.1141             nan     0.1000    0.0253
##      4        1.0668             nan     0.1000    0.0198
##      5        1.0290             nan     0.1000    0.0138
##      6        0.9913             nan     0.1000    0.0153
##      7        0.9629             nan     0.1000    0.0119
##      8        0.9345             nan     0.1000    0.0119
##      9        0.9094             nan     0.1000    0.0087
##     10        0.8836             nan     0.1000    0.0086
##     20        0.7168             nan     0.1000    0.0001
##     40        0.5774             nan     0.1000   -0.0001
##     60        0.4981             nan     0.1000    0.0000
##     80        0.4358             nan     0.1000    0.0002
##    100        0.3820             nan     0.1000   -0.0009
##    120        0.3404             nan     0.1000   -0.0007
##    140        0.3062             nan     0.1000   -0.0012
##    160        0.2757             nan     0.1000   -0.0002
##    180        0.2470             nan     0.1000    0.0000
##    200        0.2205             nan     0.1000   -0.0001
##    220        0.2013             nan     0.1000   -0.0007
##    240        0.1807             nan     0.1000   -0.0004
##    260        0.1646             nan     0.1000   -0.0003
##    280        0.1515             nan     0.1000   -0.0003
##    300        0.1379             nan     0.1000   -0.0004
##    320        0.1255             nan     0.1000   -0.0004
##    340        0.1129             nan     0.1000   -0.0002
##    360        0.1018             nan     0.1000   -0.0001
##    380        0.0933             nan     0.1000   -0.0002
##    400        0.0859             nan     0.1000   -0.0000
##    420        0.0788             nan     0.1000   -0.0003
##    440        0.0722             nan     0.1000   -0.0002
##    460        0.0678             nan     0.1000   -0.0002
##    480        0.0612             nan     0.1000   -0.0002
##    500        0.0567             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2409             nan     0.1000    0.0362
##      2        1.1744             nan     0.1000    0.0340
##      3        1.1116             nan     0.1000    0.0251
##      4        1.0595             nan     0.1000    0.0213
##      5        1.0150             nan     0.1000    0.0202
##      6        0.9805             nan     0.1000    0.0126
##      7        0.9478             nan     0.1000    0.0136
##      8        0.9183             nan     0.1000    0.0127
##      9        0.8890             nan     0.1000    0.0106
##     10        0.8645             nan     0.1000    0.0108
##     20        0.7184             nan     0.1000    0.0028
##     40        0.5998             nan     0.1000    0.0001
##     60        0.5173             nan     0.1000   -0.0009
##     80        0.4584             nan     0.1000   -0.0010
##    100        0.4009             nan     0.1000   -0.0004
##    120        0.3563             nan     0.1000   -0.0014
##    140        0.3193             nan     0.1000    0.0000
##    160        0.2880             nan     0.1000   -0.0009
##    180        0.2582             nan     0.1000   -0.0004
##    200        0.2347             nan     0.1000   -0.0007
##    220        0.2129             nan     0.1000   -0.0005
##    240        0.1932             nan     0.1000   -0.0003
##    260        0.1771             nan     0.1000   -0.0008
##    280        0.1614             nan     0.1000   -0.0005
##    300        0.1475             nan     0.1000   -0.0002
##    320        0.1348             nan     0.1000   -0.0005
##    340        0.1235             nan     0.1000   -0.0001
##    360        0.1147             nan     0.1000   -0.0008
##    380        0.1056             nan     0.1000   -0.0002
##    400        0.0978             nan     0.1000   -0.0003
##    420        0.0905             nan     0.1000   -0.0003
##    440        0.0834             nan     0.1000   -0.0000
##    460        0.0771             nan     0.1000   -0.0004
##    480        0.0716             nan     0.1000   -0.0003
##    500        0.0664             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2397             nan     0.1000    0.0378
##      2        1.1726             nan     0.1000    0.0310
##      3        1.1083             nan     0.1000    0.0290
##      4        1.0607             nan     0.1000    0.0212
##      5        1.0227             nan     0.1000    0.0179
##      6        0.9898             nan     0.1000    0.0134
##      7        0.9604             nan     0.1000    0.0117
##      8        0.9328             nan     0.1000    0.0101
##      9        0.9033             nan     0.1000    0.0128
##     10        0.8784             nan     0.1000    0.0105
##     20        0.7264             nan     0.1000    0.0015
##     40        0.6068             nan     0.1000   -0.0003
##     60        0.5203             nan     0.1000   -0.0013
##     80        0.4656             nan     0.1000   -0.0013
##    100        0.4127             nan     0.1000   -0.0009
##    120        0.3703             nan     0.1000   -0.0010
##    140        0.3309             nan     0.1000   -0.0006
##    160        0.2965             nan     0.1000   -0.0005
##    180        0.2645             nan     0.1000   -0.0003
##    200        0.2384             nan     0.1000   -0.0008
##    220        0.2177             nan     0.1000   -0.0011
##    240        0.1992             nan     0.1000   -0.0008
##    260        0.1804             nan     0.1000   -0.0004
##    280        0.1646             nan     0.1000   -0.0002
##    300        0.1511             nan     0.1000   -0.0005
##    320        0.1383             nan     0.1000   -0.0000
##    340        0.1274             nan     0.1000   -0.0006
##    360        0.1176             nan     0.1000   -0.0001
##    380        0.1084             nan     0.1000   -0.0002
##    400        0.1001             nan     0.1000   -0.0002
##    420        0.0927             nan     0.1000   -0.0003
##    440        0.0865             nan     0.1000   -0.0004
##    460        0.0797             nan     0.1000   -0.0002
##    480        0.0743             nan     0.1000   -0.0002
##    500        0.0694             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2401             nan     0.1000    0.0378
##      2        1.1714             nan     0.1000    0.0290
##      3        1.1112             nan     0.1000    0.0239
##      4        1.0593             nan     0.1000    0.0235
##      5        1.0093             nan     0.1000    0.0236
##      6        0.9703             nan     0.1000    0.0138
##      7        0.9365             nan     0.1000    0.0120
##      8        0.9054             nan     0.1000    0.0145
##      9        0.8767             nan     0.1000    0.0092
##     10        0.8507             nan     0.1000    0.0102
##     20        0.6876             nan     0.1000    0.0005
##     40        0.5419             nan     0.1000   -0.0012
##     60        0.4595             nan     0.1000   -0.0028
##     80        0.3933             nan     0.1000   -0.0011
##    100        0.3328             nan     0.1000   -0.0008
##    120        0.2879             nan     0.1000   -0.0012
##    140        0.2499             nan     0.1000   -0.0007
##    160        0.2202             nan     0.1000   -0.0001
##    180        0.1921             nan     0.1000   -0.0005
##    200        0.1693             nan     0.1000   -0.0007
##    220        0.1517             nan     0.1000   -0.0000
##    240        0.1347             nan     0.1000   -0.0004
##    260        0.1200             nan     0.1000   -0.0001
##    280        0.1075             nan     0.1000   -0.0001
##    300        0.0971             nan     0.1000   -0.0002
##    320        0.0867             nan     0.1000   -0.0004
##    340        0.0773             nan     0.1000   -0.0002
##    360        0.0700             nan     0.1000   -0.0002
##    380        0.0623             nan     0.1000   -0.0001
##    400        0.0569             nan     0.1000   -0.0001
##    420        0.0518             nan     0.1000   -0.0001
##    440        0.0468             nan     0.1000   -0.0002
##    460        0.0426             nan     0.1000   -0.0001
##    480        0.0384             nan     0.1000   -0.0001
##    500        0.0349             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2369             nan     0.1000    0.0407
##      2        1.1608             nan     0.1000    0.0340
##      3        1.1053             nan     0.1000    0.0279
##      4        1.0493             nan     0.1000    0.0243
##      5        1.0053             nan     0.1000    0.0171
##      6        0.9656             nan     0.1000    0.0180
##      7        0.9311             nan     0.1000    0.0160
##      8        0.9021             nan     0.1000    0.0109
##      9        0.8743             nan     0.1000    0.0088
##     10        0.8493             nan     0.1000    0.0094
##     20        0.6853             nan     0.1000    0.0018
##     40        0.5473             nan     0.1000    0.0001
##     60        0.4505             nan     0.1000   -0.0007
##     80        0.3848             nan     0.1000   -0.0016
##    100        0.3370             nan     0.1000   -0.0000
##    120        0.2907             nan     0.1000   -0.0008
##    140        0.2559             nan     0.1000   -0.0001
##    160        0.2248             nan     0.1000   -0.0003
##    180        0.1974             nan     0.1000   -0.0005
##    200        0.1760             nan     0.1000   -0.0009
##    220        0.1571             nan     0.1000   -0.0003
##    240        0.1405             nan     0.1000   -0.0003
##    260        0.1264             nan     0.1000   -0.0003
##    280        0.1121             nan     0.1000   -0.0003
##    300        0.1008             nan     0.1000   -0.0001
##    320        0.0904             nan     0.1000   -0.0000
##    340        0.0815             nan     0.1000   -0.0002
##    360        0.0735             nan     0.1000   -0.0002
##    380        0.0662             nan     0.1000   -0.0003
##    400        0.0603             nan     0.1000   -0.0002
##    420        0.0552             nan     0.1000   -0.0002
##    440        0.0502             nan     0.1000   -0.0001
##    460        0.0452             nan     0.1000   -0.0001
##    480        0.0411             nan     0.1000   -0.0001
##    500        0.0370             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2357             nan     0.1000    0.0363
##      2        1.1726             nan     0.1000    0.0275
##      3        1.1146             nan     0.1000    0.0274
##      4        1.0586             nan     0.1000    0.0256
##      5        1.0102             nan     0.1000    0.0196
##      6        0.9701             nan     0.1000    0.0157
##      7        0.9365             nan     0.1000    0.0141
##      8        0.9029             nan     0.1000    0.0139
##      9        0.8777             nan     0.1000    0.0093
##     10        0.8535             nan     0.1000    0.0102
##     20        0.6964             nan     0.1000    0.0016
##     40        0.5495             nan     0.1000   -0.0004
##     60        0.4639             nan     0.1000   -0.0011
##     80        0.3948             nan     0.1000   -0.0004
##    100        0.3454             nan     0.1000   -0.0016
##    120        0.3027             nan     0.1000   -0.0019
##    140        0.2667             nan     0.1000   -0.0003
##    160        0.2366             nan     0.1000   -0.0009
##    180        0.2106             nan     0.1000   -0.0007
##    200        0.1891             nan     0.1000   -0.0006
##    220        0.1680             nan     0.1000   -0.0000
##    240        0.1516             nan     0.1000   -0.0005
##    260        0.1356             nan     0.1000   -0.0005
##    280        0.1214             nan     0.1000   -0.0006
##    300        0.1093             nan     0.1000   -0.0008
##    320        0.0997             nan     0.1000   -0.0003
##    340        0.0886             nan     0.1000   -0.0003
##    360        0.0809             nan     0.1000   -0.0002
##    380        0.0731             nan     0.1000   -0.0002
##    400        0.0671             nan     0.1000   -0.0002
##    420        0.0607             nan     0.1000   -0.0001
##    440        0.0554             nan     0.1000   -0.0001
##    460        0.0506             nan     0.1000   -0.0002
##    480        0.0458             nan     0.1000   -0.0002
##    500        0.0417             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2403             nan     0.1000    0.0394
##      2        1.1616             nan     0.1000    0.0363
##      3        1.1005             nan     0.1000    0.0246
##      4        1.0468             nan     0.1000    0.0219
##      5        0.9977             nan     0.1000    0.0216
##      6        0.9526             nan     0.1000    0.0192
##      7        0.9180             nan     0.1000    0.0129
##      8        0.8855             nan     0.1000    0.0127
##      9        0.8546             nan     0.1000    0.0107
##     10        0.8276             nan     0.1000    0.0092
##     20        0.6545             nan     0.1000    0.0019
##     40        0.5027             nan     0.1000   -0.0013
##     60        0.4003             nan     0.1000   -0.0016
##     80        0.3313             nan     0.1000   -0.0002
##    100        0.2815             nan     0.1000   -0.0003
##    120        0.2454             nan     0.1000   -0.0009
##    140        0.2049             nan     0.1000   -0.0004
##    160        0.1745             nan     0.1000   -0.0002
##    180        0.1491             nan     0.1000   -0.0004
##    200        0.1292             nan     0.1000   -0.0004
##    220        0.1130             nan     0.1000   -0.0003
##    240        0.0986             nan     0.1000   -0.0005
##    260        0.0882             nan     0.1000   -0.0004
##    280        0.0782             nan     0.1000   -0.0003
##    300        0.0686             nan     0.1000   -0.0002
##    320        0.0607             nan     0.1000   -0.0001
##    340        0.0539             nan     0.1000   -0.0001
##    360        0.0469             nan     0.1000   -0.0000
##    380        0.0416             nan     0.1000   -0.0001
##    400        0.0367             nan     0.1000    0.0000
##    420        0.0321             nan     0.1000   -0.0001
##    440        0.0286             nan     0.1000   -0.0001
##    460        0.0256             nan     0.1000   -0.0000
##    480        0.0229             nan     0.1000   -0.0001
##    500        0.0202             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2367             nan     0.1000    0.0389
##      2        1.1643             nan     0.1000    0.0291
##      3        1.0923             nan     0.1000    0.0311
##      4        1.0380             nan     0.1000    0.0219
##      5        0.9910             nan     0.1000    0.0197
##      6        0.9471             nan     0.1000    0.0167
##      7        0.9127             nan     0.1000    0.0150
##      8        0.8831             nan     0.1000    0.0113
##      9        0.8550             nan     0.1000    0.0114
##     10        0.8280             nan     0.1000    0.0098
##     20        0.6623             nan     0.1000    0.0030
##     40        0.5102             nan     0.1000   -0.0014
##     60        0.4213             nan     0.1000   -0.0016
##     80        0.3473             nan     0.1000   -0.0006
##    100        0.2955             nan     0.1000   -0.0000
##    120        0.2507             nan     0.1000   -0.0007
##    140        0.2121             nan     0.1000   -0.0007
##    160        0.1808             nan     0.1000   -0.0003
##    180        0.1544             nan     0.1000   -0.0005
##    200        0.1341             nan     0.1000   -0.0003
##    220        0.1168             nan     0.1000   -0.0005
##    240        0.1018             nan     0.1000   -0.0003
##    260        0.0892             nan     0.1000   -0.0002
##    280        0.0785             nan     0.1000   -0.0003
##    300        0.0687             nan     0.1000   -0.0003
##    320        0.0606             nan     0.1000   -0.0001
##    340        0.0528             nan     0.1000   -0.0001
##    360        0.0463             nan     0.1000   -0.0001
##    380        0.0406             nan     0.1000   -0.0002
##    400        0.0356             nan     0.1000   -0.0001
##    420        0.0317             nan     0.1000   -0.0000
##    440        0.0284             nan     0.1000   -0.0001
##    460        0.0248             nan     0.1000   -0.0001
##    480        0.0218             nan     0.1000   -0.0000
##    500        0.0194             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2320             nan     0.1000    0.0410
##      2        1.1620             nan     0.1000    0.0305
##      3        1.1031             nan     0.1000    0.0272
##      4        1.0519             nan     0.1000    0.0200
##      5        1.0070             nan     0.1000    0.0199
##      6        0.9596             nan     0.1000    0.0204
##      7        0.9246             nan     0.1000    0.0112
##      8        0.8866             nan     0.1000    0.0144
##      9        0.8580             nan     0.1000    0.0098
##     10        0.8330             nan     0.1000    0.0053
##     20        0.6744             nan     0.1000    0.0006
##     40        0.5217             nan     0.1000    0.0016
##     60        0.4239             nan     0.1000   -0.0004
##     80        0.3529             nan     0.1000   -0.0010
##    100        0.2978             nan     0.1000   -0.0019
##    120        0.2534             nan     0.1000   -0.0011
##    140        0.2178             nan     0.1000   -0.0006
##    160        0.1886             nan     0.1000   -0.0009
##    180        0.1613             nan     0.1000   -0.0002
##    200        0.1413             nan     0.1000   -0.0002
##    220        0.1227             nan     0.1000   -0.0001
##    240        0.1083             nan     0.1000   -0.0002
##    260        0.0950             nan     0.1000   -0.0003
##    280        0.0845             nan     0.1000   -0.0002
##    300        0.0746             nan     0.1000   -0.0004
##    320        0.0650             nan     0.1000   -0.0002
##    340        0.0579             nan     0.1000   -0.0002
##    360        0.0515             nan     0.1000   -0.0002
##    380        0.0453             nan     0.1000   -0.0002
##    400        0.0401             nan     0.1000   -0.0003
##    420        0.0354             nan     0.1000   -0.0001
##    440        0.0315             nan     0.1000   -0.0001
##    460        0.0279             nan     0.1000   -0.0002
##    480        0.0247             nan     0.1000   -0.0001
##    500        0.0219             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3192             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0003
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0003
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0003
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0003
##     10        1.3129             nan     0.0010    0.0003
##     20        1.3048             nan     0.0010    0.0004
##     40        1.2896             nan     0.0010    0.0003
##     60        1.2745             nan     0.0010    0.0004
##     80        1.2602             nan     0.0010    0.0003
##    100        1.2461             nan     0.0010    0.0003
##    120        1.2327             nan     0.0010    0.0003
##    140        1.2200             nan     0.0010    0.0003
##    160        1.2071             nan     0.0010    0.0003
##    180        1.1946             nan     0.0010    0.0002
##    200        1.1826             nan     0.0010    0.0003
##    220        1.1711             nan     0.0010    0.0003
##    240        1.1598             nan     0.0010    0.0003
##    260        1.1486             nan     0.0010    0.0002
##    280        1.1381             nan     0.0010    0.0002
##    300        1.1274             nan     0.0010    0.0002
##    320        1.1173             nan     0.0010    0.0002
##    340        1.1074             nan     0.0010    0.0002
##    360        1.0979             nan     0.0010    0.0002
##    380        1.0886             nan     0.0010    0.0002
##    400        1.0790             nan     0.0010    0.0002
##    420        1.0701             nan     0.0010    0.0002
##    440        1.0614             nan     0.0010    0.0002
##    460        1.0530             nan     0.0010    0.0001
##    480        1.0448             nan     0.0010    0.0002
##    500        1.0369             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0003
##      9        1.3135             nan     0.0010    0.0003
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0004
##     40        1.2895             nan     0.0010    0.0004
##     60        1.2749             nan     0.0010    0.0003
##     80        1.2603             nan     0.0010    0.0003
##    100        1.2465             nan     0.0010    0.0003
##    120        1.2328             nan     0.0010    0.0003
##    140        1.2196             nan     0.0010    0.0003
##    160        1.2067             nan     0.0010    0.0003
##    180        1.1945             nan     0.0010    0.0003
##    200        1.1823             nan     0.0010    0.0002
##    220        1.1703             nan     0.0010    0.0003
##    240        1.1589             nan     0.0010    0.0003
##    260        1.1479             nan     0.0010    0.0002
##    280        1.1372             nan     0.0010    0.0002
##    300        1.1267             nan     0.0010    0.0002
##    320        1.1164             nan     0.0010    0.0002
##    340        1.1065             nan     0.0010    0.0002
##    360        1.0969             nan     0.0010    0.0002
##    380        1.0875             nan     0.0010    0.0002
##    400        1.0787             nan     0.0010    0.0002
##    420        1.0697             nan     0.0010    0.0002
##    440        1.0610             nan     0.0010    0.0002
##    460        1.0527             nan     0.0010    0.0002
##    480        1.0443             nan     0.0010    0.0002
##    500        1.0365             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0003
##      7        1.3151             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0004
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3050             nan     0.0010    0.0004
##     40        1.2896             nan     0.0010    0.0003
##     60        1.2747             nan     0.0010    0.0003
##     80        1.2603             nan     0.0010    0.0003
##    100        1.2462             nan     0.0010    0.0003
##    120        1.2326             nan     0.0010    0.0003
##    140        1.2197             nan     0.0010    0.0003
##    160        1.2070             nan     0.0010    0.0003
##    180        1.1943             nan     0.0010    0.0003
##    200        1.1825             nan     0.0010    0.0003
##    220        1.1707             nan     0.0010    0.0003
##    240        1.1594             nan     0.0010    0.0002
##    260        1.1486             nan     0.0010    0.0002
##    280        1.1380             nan     0.0010    0.0003
##    300        1.1279             nan     0.0010    0.0002
##    320        1.1176             nan     0.0010    0.0002
##    340        1.1078             nan     0.0010    0.0002
##    360        1.0983             nan     0.0010    0.0002
##    380        1.0891             nan     0.0010    0.0002
##    400        1.0798             nan     0.0010    0.0002
##    420        1.0711             nan     0.0010    0.0002
##    440        1.0625             nan     0.0010    0.0002
##    460        1.0541             nan     0.0010    0.0002
##    480        1.0459             nan     0.0010    0.0002
##    500        1.0377             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0004
##     40        1.2867             nan     0.0010    0.0004
##     60        1.2709             nan     0.0010    0.0004
##     80        1.2553             nan     0.0010    0.0003
##    100        1.2406             nan     0.0010    0.0003
##    120        1.2259             nan     0.0010    0.0003
##    140        1.2120             nan     0.0010    0.0003
##    160        1.1986             nan     0.0010    0.0003
##    180        1.1853             nan     0.0010    0.0003
##    200        1.1726             nan     0.0010    0.0003
##    220        1.1601             nan     0.0010    0.0003
##    240        1.1481             nan     0.0010    0.0002
##    260        1.1364             nan     0.0010    0.0002
##    280        1.1249             nan     0.0010    0.0002
##    300        1.1140             nan     0.0010    0.0002
##    320        1.1032             nan     0.0010    0.0002
##    340        1.0926             nan     0.0010    0.0002
##    360        1.0823             nan     0.0010    0.0002
##    380        1.0724             nan     0.0010    0.0002
##    400        1.0627             nan     0.0010    0.0002
##    420        1.0535             nan     0.0010    0.0002
##    440        1.0445             nan     0.0010    0.0002
##    460        1.0354             nan     0.0010    0.0002
##    480        1.0267             nan     0.0010    0.0002
##    500        1.0182             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3032             nan     0.0010    0.0004
##     40        1.2871             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0004
##     80        1.2558             nan     0.0010    0.0003
##    100        1.2410             nan     0.0010    0.0003
##    120        1.2268             nan     0.0010    0.0003
##    140        1.2128             nan     0.0010    0.0003
##    160        1.1991             nan     0.0010    0.0003
##    180        1.1856             nan     0.0010    0.0003
##    200        1.1729             nan     0.0010    0.0003
##    220        1.1605             nan     0.0010    0.0003
##    240        1.1486             nan     0.0010    0.0003
##    260        1.1369             nan     0.0010    0.0003
##    280        1.1256             nan     0.0010    0.0002
##    300        1.1148             nan     0.0010    0.0002
##    320        1.1041             nan     0.0010    0.0002
##    340        1.0935             nan     0.0010    0.0002
##    360        1.0834             nan     0.0010    0.0002
##    380        1.0737             nan     0.0010    0.0002
##    400        1.0640             nan     0.0010    0.0002
##    420        1.0544             nan     0.0010    0.0002
##    440        1.0456             nan     0.0010    0.0002
##    460        1.0369             nan     0.0010    0.0002
##    480        1.0281             nan     0.0010    0.0002
##    500        1.0198             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0003
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3035             nan     0.0010    0.0003
##     40        1.2872             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0003
##     80        1.2560             nan     0.0010    0.0003
##    100        1.2409             nan     0.0010    0.0003
##    120        1.2266             nan     0.0010    0.0003
##    140        1.2127             nan     0.0010    0.0003
##    160        1.1993             nan     0.0010    0.0003
##    180        1.1860             nan     0.0010    0.0003
##    200        1.1732             nan     0.0010    0.0003
##    220        1.1610             nan     0.0010    0.0002
##    240        1.1492             nan     0.0010    0.0003
##    260        1.1375             nan     0.0010    0.0003
##    280        1.1261             nan     0.0010    0.0002
##    300        1.1151             nan     0.0010    0.0002
##    320        1.1042             nan     0.0010    0.0002
##    340        1.0938             nan     0.0010    0.0002
##    360        1.0835             nan     0.0010    0.0002
##    380        1.0738             nan     0.0010    0.0002
##    400        1.0643             nan     0.0010    0.0002
##    420        1.0550             nan     0.0010    0.0002
##    440        1.0459             nan     0.0010    0.0002
##    460        1.0373             nan     0.0010    0.0002
##    480        1.0289             nan     0.0010    0.0002
##    500        1.0206             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3150             nan     0.0010    0.0004
##      7        1.3141             nan     0.0010    0.0004
##      8        1.3133             nan     0.0010    0.0004
##      9        1.3124             nan     0.0010    0.0004
##     10        1.3114             nan     0.0010    0.0004
##     20        1.3024             nan     0.0010    0.0004
##     40        1.2854             nan     0.0010    0.0003
##     60        1.2686             nan     0.0010    0.0004
##     80        1.2523             nan     0.0010    0.0003
##    100        1.2368             nan     0.0010    0.0003
##    120        1.2214             nan     0.0010    0.0003
##    140        1.2068             nan     0.0010    0.0003
##    160        1.1926             nan     0.0010    0.0003
##    180        1.1787             nan     0.0010    0.0003
##    200        1.1657             nan     0.0010    0.0003
##    220        1.1528             nan     0.0010    0.0003
##    240        1.1403             nan     0.0010    0.0002
##    260        1.1281             nan     0.0010    0.0002
##    280        1.1160             nan     0.0010    0.0003
##    300        1.1044             nan     0.0010    0.0002
##    320        1.0932             nan     0.0010    0.0002
##    340        1.0821             nan     0.0010    0.0002
##    360        1.0714             nan     0.0010    0.0002
##    380        1.0612             nan     0.0010    0.0002
##    400        1.0510             nan     0.0010    0.0002
##    420        1.0413             nan     0.0010    0.0001
##    440        1.0317             nan     0.0010    0.0002
##    460        1.0225             nan     0.0010    0.0002
##    480        1.0135             nan     0.0010    0.0002
##    500        1.0047             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0003
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3142             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0003
##     40        1.2855             nan     0.0010    0.0004
##     60        1.2688             nan     0.0010    0.0004
##     80        1.2527             nan     0.0010    0.0003
##    100        1.2373             nan     0.0010    0.0004
##    120        1.2222             nan     0.0010    0.0003
##    140        1.2077             nan     0.0010    0.0003
##    160        1.1935             nan     0.0010    0.0003
##    180        1.1799             nan     0.0010    0.0003
##    200        1.1667             nan     0.0010    0.0003
##    220        1.1536             nan     0.0010    0.0003
##    240        1.1411             nan     0.0010    0.0002
##    260        1.1293             nan     0.0010    0.0003
##    280        1.1174             nan     0.0010    0.0002
##    300        1.1059             nan     0.0010    0.0003
##    320        1.0948             nan     0.0010    0.0002
##    340        1.0839             nan     0.0010    0.0002
##    360        1.0735             nan     0.0010    0.0002
##    380        1.0634             nan     0.0010    0.0002
##    400        1.0534             nan     0.0010    0.0002
##    420        1.0438             nan     0.0010    0.0002
##    440        1.0342             nan     0.0010    0.0002
##    460        1.0249             nan     0.0010    0.0002
##    480        1.0161             nan     0.0010    0.0002
##    500        1.0071             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0003
##     40        1.2862             nan     0.0010    0.0004
##     60        1.2697             nan     0.0010    0.0004
##     80        1.2535             nan     0.0010    0.0004
##    100        1.2378             nan     0.0010    0.0003
##    120        1.2226             nan     0.0010    0.0003
##    140        1.2083             nan     0.0010    0.0003
##    160        1.1943             nan     0.0010    0.0003
##    180        1.1807             nan     0.0010    0.0003
##    200        1.1676             nan     0.0010    0.0003
##    220        1.1551             nan     0.0010    0.0002
##    240        1.1430             nan     0.0010    0.0003
##    260        1.1308             nan     0.0010    0.0003
##    280        1.1191             nan     0.0010    0.0002
##    300        1.1073             nan     0.0010    0.0002
##    320        1.0964             nan     0.0010    0.0002
##    340        1.0857             nan     0.0010    0.0002
##    360        1.0751             nan     0.0010    0.0002
##    380        1.0650             nan     0.0010    0.0002
##    400        1.0551             nan     0.0010    0.0002
##    420        1.0453             nan     0.0010    0.0002
##    440        1.0360             nan     0.0010    0.0002
##    460        1.0267             nan     0.0010    0.0002
##    480        1.0179             nan     0.0010    0.0002
##    500        1.0092             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0039
##      2        1.3041             nan     0.0100    0.0037
##      3        1.2973             nan     0.0100    0.0031
##      4        1.2900             nan     0.0100    0.0031
##      5        1.2825             nan     0.0100    0.0033
##      6        1.2748             nan     0.0100    0.0035
##      7        1.2679             nan     0.0100    0.0027
##      8        1.2608             nan     0.0100    0.0032
##      9        1.2536             nan     0.0100    0.0031
##     10        1.2460             nan     0.0100    0.0031
##     20        1.1829             nan     0.0100    0.0026
##     40        1.0789             nan     0.0100    0.0019
##     60        1.0016             nan     0.0100    0.0016
##     80        0.9369             nan     0.0100    0.0009
##    100        0.8881             nan     0.0100    0.0009
##    120        0.8468             nan     0.0100    0.0008
##    140        0.8130             nan     0.0100    0.0003
##    160        0.7844             nan     0.0100    0.0004
##    180        0.7585             nan     0.0100    0.0002
##    200        0.7373             nan     0.0100    0.0003
##    220        0.7174             nan     0.0100    0.0001
##    240        0.6999             nan     0.0100    0.0001
##    260        0.6843             nan     0.0100   -0.0001
##    280        0.6696             nan     0.0100    0.0000
##    300        0.6565             nan     0.0100    0.0002
##    320        0.6440             nan     0.0100   -0.0001
##    340        0.6330             nan     0.0100   -0.0001
##    360        0.6230             nan     0.0100   -0.0001
##    380        0.6121             nan     0.0100   -0.0000
##    400        0.6027             nan     0.0100    0.0001
##    420        0.5940             nan     0.0100   -0.0001
##    440        0.5843             nan     0.0100    0.0001
##    460        0.5752             nan     0.0100    0.0000
##    480        0.5662             nan     0.0100   -0.0001
##    500        0.5573             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0036
##      2        1.3047             nan     0.0100    0.0038
##      3        1.2964             nan     0.0100    0.0040
##      4        1.2900             nan     0.0100    0.0028
##      5        1.2830             nan     0.0100    0.0033
##      6        1.2759             nan     0.0100    0.0033
##      7        1.2686             nan     0.0100    0.0033
##      8        1.2621             nan     0.0100    0.0030
##      9        1.2546             nan     0.0100    0.0033
##     10        1.2474             nan     0.0100    0.0031
##     20        1.1838             nan     0.0100    0.0025
##     40        1.0797             nan     0.0100    0.0020
##     60        0.9986             nan     0.0100    0.0013
##     80        0.9356             nan     0.0100    0.0013
##    100        0.8861             nan     0.0100    0.0010
##    120        0.8451             nan     0.0100    0.0006
##    140        0.8116             nan     0.0100    0.0004
##    160        0.7839             nan     0.0100    0.0003
##    180        0.7599             nan     0.0100    0.0003
##    200        0.7395             nan     0.0100    0.0002
##    220        0.7213             nan     0.0100    0.0002
##    240        0.7049             nan     0.0100    0.0002
##    260        0.6900             nan     0.0100    0.0000
##    280        0.6764             nan     0.0100    0.0001
##    300        0.6629             nan     0.0100    0.0000
##    320        0.6515             nan     0.0100    0.0000
##    340        0.6394             nan     0.0100   -0.0001
##    360        0.6299             nan     0.0100    0.0000
##    380        0.6200             nan     0.0100   -0.0001
##    400        0.6103             nan     0.0100    0.0000
##    420        0.6002             nan     0.0100   -0.0001
##    440        0.5907             nan     0.0100   -0.0000
##    460        0.5826             nan     0.0100    0.0000
##    480        0.5743             nan     0.0100   -0.0001
##    500        0.5653             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0035
##      2        1.3050             nan     0.0100    0.0032
##      3        1.2970             nan     0.0100    0.0036
##      4        1.2889             nan     0.0100    0.0036
##      5        1.2815             nan     0.0100    0.0033
##      6        1.2733             nan     0.0100    0.0035
##      7        1.2662             nan     0.0100    0.0029
##      8        1.2595             nan     0.0100    0.0026
##      9        1.2528             nan     0.0100    0.0031
##     10        1.2458             nan     0.0100    0.0028
##     20        1.1820             nan     0.0100    0.0027
##     40        1.0790             nan     0.0100    0.0018
##     60        1.0013             nan     0.0100    0.0013
##     80        0.9380             nan     0.0100    0.0009
##    100        0.8891             nan     0.0100    0.0009
##    120        0.8483             nan     0.0100    0.0007
##    140        0.8142             nan     0.0100    0.0005
##    160        0.7857             nan     0.0100    0.0004
##    180        0.7619             nan     0.0100    0.0003
##    200        0.7397             nan     0.0100    0.0003
##    220        0.7207             nan     0.0100    0.0001
##    240        0.7048             nan     0.0100   -0.0002
##    260        0.6895             nan     0.0100   -0.0000
##    280        0.6756             nan     0.0100    0.0001
##    300        0.6628             nan     0.0100    0.0000
##    320        0.6514             nan     0.0100    0.0000
##    340        0.6411             nan     0.0100   -0.0000
##    360        0.6306             nan     0.0100   -0.0002
##    380        0.6201             nan     0.0100    0.0001
##    400        0.6108             nan     0.0100   -0.0002
##    420        0.6018             nan     0.0100   -0.0002
##    440        0.5938             nan     0.0100    0.0000
##    460        0.5862             nan     0.0100   -0.0000
##    480        0.5786             nan     0.0100   -0.0002
##    500        0.5704             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0041
##      2        1.3025             nan     0.0100    0.0042
##      3        1.2931             nan     0.0100    0.0038
##      4        1.2845             nan     0.0100    0.0034
##      5        1.2768             nan     0.0100    0.0031
##      6        1.2685             nan     0.0100    0.0035
##      7        1.2607             nan     0.0100    0.0033
##      8        1.2535             nan     0.0100    0.0033
##      9        1.2461             nan     0.0100    0.0033
##     10        1.2385             nan     0.0100    0.0034
##     20        1.1692             nan     0.0100    0.0028
##     40        1.0603             nan     0.0100    0.0016
##     60        0.9769             nan     0.0100    0.0014
##     80        0.9108             nan     0.0100    0.0011
##    100        0.8587             nan     0.0100    0.0010
##    120        0.8165             nan     0.0100    0.0008
##    140        0.7813             nan     0.0100    0.0006
##    160        0.7496             nan     0.0100    0.0003
##    180        0.7244             nan     0.0100    0.0003
##    200        0.7009             nan     0.0100    0.0001
##    220        0.6807             nan     0.0100    0.0001
##    240        0.6625             nan     0.0100    0.0002
##    260        0.6450             nan     0.0100    0.0001
##    280        0.6293             nan     0.0100    0.0000
##    300        0.6139             nan     0.0100   -0.0001
##    320        0.6011             nan     0.0100   -0.0001
##    340        0.5877             nan     0.0100    0.0001
##    360        0.5764             nan     0.0100    0.0001
##    380        0.5653             nan     0.0100   -0.0001
##    400        0.5538             nan     0.0100   -0.0000
##    420        0.5425             nan     0.0100    0.0001
##    440        0.5327             nan     0.0100    0.0000
##    460        0.5231             nan     0.0100   -0.0000
##    480        0.5141             nan     0.0100   -0.0000
##    500        0.5056             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0039
##      2        1.3034             nan     0.0100    0.0042
##      3        1.2946             nan     0.0100    0.0037
##      4        1.2860             nan     0.0100    0.0040
##      5        1.2780             nan     0.0100    0.0035
##      6        1.2703             nan     0.0100    0.0032
##      7        1.2623             nan     0.0100    0.0036
##      8        1.2548             nan     0.0100    0.0038
##      9        1.2468             nan     0.0100    0.0033
##     10        1.2393             nan     0.0100    0.0034
##     20        1.1718             nan     0.0100    0.0030
##     40        1.0631             nan     0.0100    0.0018
##     60        0.9811             nan     0.0100    0.0016
##     80        0.9158             nan     0.0100    0.0013
##    100        0.8616             nan     0.0100    0.0007
##    120        0.8181             nan     0.0100    0.0008
##    140        0.7836             nan     0.0100    0.0005
##    160        0.7548             nan     0.0100    0.0003
##    180        0.7285             nan     0.0100    0.0002
##    200        0.7048             nan     0.0100   -0.0000
##    220        0.6849             nan     0.0100    0.0002
##    240        0.6669             nan     0.0100    0.0004
##    260        0.6499             nan     0.0100    0.0000
##    280        0.6351             nan     0.0100    0.0001
##    300        0.6209             nan     0.0100    0.0003
##    320        0.6076             nan     0.0100   -0.0001
##    340        0.5954             nan     0.0100   -0.0001
##    360        0.5834             nan     0.0100    0.0001
##    380        0.5723             nan     0.0100   -0.0002
##    400        0.5621             nan     0.0100   -0.0002
##    420        0.5522             nan     0.0100   -0.0001
##    440        0.5425             nan     0.0100   -0.0000
##    460        0.5326             nan     0.0100   -0.0002
##    480        0.5228             nan     0.0100   -0.0001
##    500        0.5139             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0039
##      2        1.3036             nan     0.0100    0.0040
##      3        1.2949             nan     0.0100    0.0039
##      4        1.2866             nan     0.0100    0.0036
##      5        1.2793             nan     0.0100    0.0033
##      6        1.2711             nan     0.0100    0.0035
##      7        1.2630             nan     0.0100    0.0037
##      8        1.2557             nan     0.0100    0.0033
##      9        1.2489             nan     0.0100    0.0031
##     10        1.2412             nan     0.0100    0.0034
##     20        1.1745             nan     0.0100    0.0025
##     40        1.0647             nan     0.0100    0.0019
##     60        0.9813             nan     0.0100    0.0014
##     80        0.9169             nan     0.0100    0.0012
##    100        0.8654             nan     0.0100    0.0007
##    120        0.8232             nan     0.0100    0.0005
##    140        0.7892             nan     0.0100    0.0004
##    160        0.7596             nan     0.0100    0.0005
##    180        0.7351             nan     0.0100    0.0003
##    200        0.7133             nan     0.0100    0.0004
##    220        0.6940             nan     0.0100    0.0001
##    240        0.6772             nan     0.0100    0.0001
##    260        0.6611             nan     0.0100    0.0000
##    280        0.6461             nan     0.0100    0.0001
##    300        0.6314             nan     0.0100    0.0001
##    320        0.6191             nan     0.0100    0.0001
##    340        0.6066             nan     0.0100   -0.0001
##    360        0.5946             nan     0.0100   -0.0000
##    380        0.5846             nan     0.0100   -0.0000
##    400        0.5734             nan     0.0100   -0.0000
##    420        0.5626             nan     0.0100   -0.0001
##    440        0.5530             nan     0.0100   -0.0001
##    460        0.5429             nan     0.0100    0.0001
##    480        0.5335             nan     0.0100    0.0001
##    500        0.5245             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3115             nan     0.0100    0.0043
##      2        1.3027             nan     0.0100    0.0040
##      3        1.2937             nan     0.0100    0.0044
##      4        1.2856             nan     0.0100    0.0036
##      5        1.2775             nan     0.0100    0.0036
##      6        1.2688             nan     0.0100    0.0040
##      7        1.2604             nan     0.0100    0.0037
##      8        1.2515             nan     0.0100    0.0036
##      9        1.2430             nan     0.0100    0.0038
##     10        1.2348             nan     0.0100    0.0035
##     20        1.1648             nan     0.0100    0.0030
##     40        1.0496             nan     0.0100    0.0019
##     60        0.9615             nan     0.0100    0.0014
##     80        0.8931             nan     0.0100    0.0012
##    100        0.8387             nan     0.0100    0.0009
##    120        0.7926             nan     0.0100    0.0004
##    140        0.7536             nan     0.0100    0.0006
##    160        0.7215             nan     0.0100    0.0003
##    180        0.6953             nan     0.0100    0.0002
##    200        0.6712             nan     0.0100    0.0003
##    220        0.6479             nan     0.0100    0.0003
##    240        0.6290             nan     0.0100    0.0004
##    260        0.6100             nan     0.0100    0.0001
##    280        0.5923             nan     0.0100    0.0001
##    300        0.5751             nan     0.0100   -0.0000
##    320        0.5596             nan     0.0100    0.0002
##    340        0.5462             nan     0.0100   -0.0000
##    360        0.5321             nan     0.0100   -0.0001
##    380        0.5202             nan     0.0100    0.0000
##    400        0.5079             nan     0.0100   -0.0000
##    420        0.4969             nan     0.0100    0.0001
##    440        0.4855             nan     0.0100    0.0000
##    460        0.4751             nan     0.0100   -0.0001
##    480        0.4643             nan     0.0100    0.0000
##    500        0.4540             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0040
##      2        1.3026             nan     0.0100    0.0039
##      3        1.2939             nan     0.0100    0.0040
##      4        1.2851             nan     0.0100    0.0035
##      5        1.2769             nan     0.0100    0.0039
##      6        1.2690             nan     0.0100    0.0033
##      7        1.2614             nan     0.0100    0.0034
##      8        1.2537             nan     0.0100    0.0033
##      9        1.2460             nan     0.0100    0.0034
##     10        1.2380             nan     0.0100    0.0036
##     20        1.1663             nan     0.0100    0.0030
##     40        1.0530             nan     0.0100    0.0021
##     60        0.9661             nan     0.0100    0.0014
##     80        0.8985             nan     0.0100    0.0009
##    100        0.8440             nan     0.0100    0.0010
##    120        0.8002             nan     0.0100    0.0007
##    140        0.7635             nan     0.0100    0.0003
##    160        0.7314             nan     0.0100    0.0005
##    180        0.7040             nan     0.0100    0.0002
##    200        0.6803             nan     0.0100    0.0002
##    220        0.6604             nan     0.0100    0.0000
##    240        0.6406             nan     0.0100   -0.0002
##    260        0.6221             nan     0.0100    0.0001
##    280        0.6048             nan     0.0100    0.0001
##    300        0.5898             nan     0.0100   -0.0001
##    320        0.5758             nan     0.0100   -0.0000
##    340        0.5621             nan     0.0100    0.0001
##    360        0.5477             nan     0.0100    0.0000
##    380        0.5344             nan     0.0100    0.0001
##    400        0.5220             nan     0.0100    0.0002
##    420        0.5098             nan     0.0100    0.0001
##    440        0.4994             nan     0.0100    0.0000
##    460        0.4896             nan     0.0100   -0.0000
##    480        0.4797             nan     0.0100    0.0000
##    500        0.4691             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3110             nan     0.0100    0.0045
##      2        1.3017             nan     0.0100    0.0042
##      3        1.2932             nan     0.0100    0.0036
##      4        1.2844             nan     0.0100    0.0039
##      5        1.2761             nan     0.0100    0.0037
##      6        1.2681             nan     0.0100    0.0034
##      7        1.2597             nan     0.0100    0.0040
##      8        1.2520             nan     0.0100    0.0034
##      9        1.2437             nan     0.0100    0.0040
##     10        1.2363             nan     0.0100    0.0032
##     20        1.1660             nan     0.0100    0.0028
##     40        1.0544             nan     0.0100    0.0016
##     60        0.9678             nan     0.0100    0.0017
##     80        0.9021             nan     0.0100    0.0011
##    100        0.8469             nan     0.0100    0.0009
##    120        0.8047             nan     0.0100    0.0006
##    140        0.7676             nan     0.0100    0.0004
##    160        0.7369             nan     0.0100    0.0004
##    180        0.7115             nan     0.0100    0.0003
##    200        0.6884             nan     0.0100    0.0003
##    220        0.6680             nan     0.0100   -0.0000
##    240        0.6493             nan     0.0100    0.0002
##    260        0.6327             nan     0.0100    0.0000
##    280        0.6159             nan     0.0100    0.0000
##    300        0.6003             nan     0.0100    0.0001
##    320        0.5873             nan     0.0100   -0.0001
##    340        0.5746             nan     0.0100    0.0002
##    360        0.5615             nan     0.0100   -0.0001
##    380        0.5495             nan     0.0100   -0.0000
##    400        0.5384             nan     0.0100    0.0000
##    420        0.5272             nan     0.0100   -0.0001
##    440        0.5167             nan     0.0100   -0.0000
##    460        0.5059             nan     0.0100   -0.0001
##    480        0.4962             nan     0.0100   -0.0000
##    500        0.4873             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2468             nan     0.1000    0.0341
##      2        1.1834             nan     0.1000    0.0235
##      3        1.1221             nan     0.1000    0.0258
##      4        1.0735             nan     0.1000    0.0201
##      5        1.0316             nan     0.1000    0.0182
##      6        0.9951             nan     0.1000    0.0140
##      7        0.9626             nan     0.1000    0.0130
##      8        0.9320             nan     0.1000    0.0107
##      9        0.9045             nan     0.1000    0.0100
##     10        0.8812             nan     0.1000    0.0096
##     20        0.7335             nan     0.1000    0.0020
##     40        0.6046             nan     0.1000   -0.0006
##     60        0.5233             nan     0.1000   -0.0010
##     80        0.4591             nan     0.1000   -0.0008
##    100        0.4024             nan     0.1000    0.0003
##    120        0.3538             nan     0.1000   -0.0002
##    140        0.3194             nan     0.1000   -0.0005
##    160        0.2860             nan     0.1000   -0.0001
##    180        0.2575             nan     0.1000   -0.0004
##    200        0.2326             nan     0.1000   -0.0002
##    220        0.2085             nan     0.1000   -0.0007
##    240        0.1906             nan     0.1000   -0.0006
##    260        0.1731             nan     0.1000   -0.0006
##    280        0.1591             nan     0.1000   -0.0004
##    300        0.1439             nan     0.1000   -0.0004
##    320        0.1325             nan     0.1000    0.0001
##    340        0.1205             nan     0.1000   -0.0003
##    360        0.1101             nan     0.1000   -0.0005
##    380        0.1013             nan     0.1000   -0.0003
##    400        0.0928             nan     0.1000   -0.0001
##    420        0.0851             nan     0.1000   -0.0001
##    440        0.0790             nan     0.1000   -0.0001
##    460        0.0729             nan     0.1000    0.0000
##    480        0.0671             nan     0.1000   -0.0001
##    500        0.0615             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2478             nan     0.1000    0.0328
##      2        1.1834             nan     0.1000    0.0296
##      3        1.1244             nan     0.1000    0.0260
##      4        1.0736             nan     0.1000    0.0217
##      5        1.0293             nan     0.1000    0.0180
##      6        0.9950             nan     0.1000    0.0137
##      7        0.9640             nan     0.1000    0.0121
##      8        0.9377             nan     0.1000    0.0106
##      9        0.9100             nan     0.1000    0.0110
##     10        0.8833             nan     0.1000    0.0101
##     20        0.7386             nan     0.1000    0.0030
##     40        0.6094             nan     0.1000   -0.0001
##     60        0.5323             nan     0.1000   -0.0005
##     80        0.4671             nan     0.1000   -0.0010
##    100        0.4143             nan     0.1000   -0.0012
##    120        0.3653             nan     0.1000   -0.0006
##    140        0.3244             nan     0.1000   -0.0011
##    160        0.2955             nan     0.1000   -0.0012
##    180        0.2676             nan     0.1000   -0.0004
##    200        0.2401             nan     0.1000   -0.0002
##    220        0.2191             nan     0.1000   -0.0007
##    240        0.1991             nan     0.1000   -0.0007
##    260        0.1814             nan     0.1000   -0.0000
##    280        0.1689             nan     0.1000   -0.0004
##    300        0.1563             nan     0.1000   -0.0002
##    320        0.1424             nan     0.1000   -0.0004
##    340        0.1301             nan     0.1000   -0.0006
##    360        0.1205             nan     0.1000   -0.0005
##    380        0.1111             nan     0.1000   -0.0004
##    400        0.1014             nan     0.1000   -0.0001
##    420        0.0937             nan     0.1000   -0.0000
##    440        0.0859             nan     0.1000   -0.0002
##    460        0.0788             nan     0.1000   -0.0002
##    480        0.0730             nan     0.1000   -0.0003
##    500        0.0677             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2446             nan     0.1000    0.0350
##      2        1.1811             nan     0.1000    0.0283
##      3        1.1292             nan     0.1000    0.0240
##      4        1.0800             nan     0.1000    0.0215
##      5        1.0386             nan     0.1000    0.0182
##      6        1.0017             nan     0.1000    0.0153
##      7        0.9710             nan     0.1000    0.0142
##      8        0.9389             nan     0.1000    0.0145
##      9        0.9153             nan     0.1000    0.0107
##     10        0.8911             nan     0.1000    0.0101
##     20        0.7474             nan     0.1000    0.0032
##     40        0.6205             nan     0.1000   -0.0004
##     60        0.5439             nan     0.1000   -0.0012
##     80        0.4863             nan     0.1000   -0.0010
##    100        0.4269             nan     0.1000   -0.0006
##    120        0.3867             nan     0.1000   -0.0016
##    140        0.3477             nan     0.1000    0.0001
##    160        0.3125             nan     0.1000   -0.0013
##    180        0.2802             nan     0.1000   -0.0002
##    200        0.2550             nan     0.1000   -0.0004
##    220        0.2323             nan     0.1000   -0.0009
##    240        0.2127             nan     0.1000   -0.0005
##    260        0.1960             nan     0.1000   -0.0008
##    280        0.1811             nan     0.1000   -0.0005
##    300        0.1674             nan     0.1000   -0.0006
##    320        0.1543             nan     0.1000   -0.0005
##    340        0.1430             nan     0.1000   -0.0003
##    360        0.1310             nan     0.1000   -0.0004
##    380        0.1211             nan     0.1000   -0.0002
##    400        0.1125             nan     0.1000   -0.0004
##    420        0.1037             nan     0.1000   -0.0003
##    440        0.0960             nan     0.1000   -0.0005
##    460        0.0887             nan     0.1000   -0.0002
##    480        0.0825             nan     0.1000   -0.0002
##    500        0.0774             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2368             nan     0.1000    0.0357
##      2        1.1694             nan     0.1000    0.0287
##      3        1.1077             nan     0.1000    0.0287
##      4        1.0546             nan     0.1000    0.0229
##      5        1.0169             nan     0.1000    0.0160
##      6        0.9760             nan     0.1000    0.0156
##      7        0.9377             nan     0.1000    0.0141
##      8        0.9068             nan     0.1000    0.0076
##      9        0.8787             nan     0.1000    0.0096
##     10        0.8570             nan     0.1000    0.0079
##     20        0.6945             nan     0.1000    0.0024
##     40        0.5458             nan     0.1000   -0.0004
##     60        0.4578             nan     0.1000    0.0005
##     80        0.3871             nan     0.1000    0.0000
##    100        0.3310             nan     0.1000    0.0001
##    120        0.2872             nan     0.1000   -0.0011
##    140        0.2503             nan     0.1000   -0.0005
##    160        0.2213             nan     0.1000   -0.0007
##    180        0.1978             nan     0.1000   -0.0008
##    200        0.1754             nan     0.1000   -0.0004
##    220        0.1563             nan     0.1000   -0.0004
##    240        0.1402             nan     0.1000   -0.0004
##    260        0.1252             nan     0.1000    0.0000
##    280        0.1135             nan     0.1000   -0.0003
##    300        0.1004             nan     0.1000   -0.0001
##    320        0.0902             nan     0.1000   -0.0002
##    340        0.0817             nan     0.1000   -0.0004
##    360        0.0737             nan     0.1000   -0.0001
##    380        0.0662             nan     0.1000   -0.0003
##    400        0.0595             nan     0.1000   -0.0001
##    420        0.0535             nan     0.1000   -0.0002
##    440        0.0486             nan     0.1000   -0.0002
##    460        0.0439             nan     0.1000   -0.0001
##    480        0.0396             nan     0.1000   -0.0001
##    500        0.0359             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2405             nan     0.1000    0.0368
##      2        1.1686             nan     0.1000    0.0346
##      3        1.1090             nan     0.1000    0.0293
##      4        1.0579             nan     0.1000    0.0215
##      5        1.0141             nan     0.1000    0.0159
##      6        0.9773             nan     0.1000    0.0153
##      7        0.9434             nan     0.1000    0.0136
##      8        0.9140             nan     0.1000    0.0110
##      9        0.8802             nan     0.1000    0.0124
##     10        0.8554             nan     0.1000    0.0092
##     20        0.7003             nan     0.1000    0.0010
##     40        0.5591             nan     0.1000   -0.0008
##     60        0.4735             nan     0.1000   -0.0003
##     80        0.4054             nan     0.1000   -0.0005
##    100        0.3474             nan     0.1000    0.0001
##    120        0.3021             nan     0.1000   -0.0001
##    140        0.2605             nan     0.1000   -0.0008
##    160        0.2302             nan     0.1000   -0.0004
##    180        0.2027             nan     0.1000   -0.0008
##    200        0.1811             nan     0.1000   -0.0006
##    220        0.1598             nan     0.1000    0.0001
##    240        0.1415             nan     0.1000   -0.0010
##    260        0.1265             nan     0.1000   -0.0006
##    280        0.1140             nan     0.1000   -0.0002
##    300        0.1007             nan     0.1000   -0.0001
##    320        0.0910             nan     0.1000   -0.0004
##    340        0.0821             nan     0.1000   -0.0001
##    360        0.0745             nan     0.1000   -0.0002
##    380        0.0684             nan     0.1000   -0.0001
##    400        0.0608             nan     0.1000   -0.0002
##    420        0.0552             nan     0.1000   -0.0002
##    440        0.0500             nan     0.1000   -0.0002
##    460        0.0454             nan     0.1000   -0.0002
##    480        0.0413             nan     0.1000   -0.0001
##    500        0.0376             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2418             nan     0.1000    0.0347
##      2        1.1762             nan     0.1000    0.0328
##      3        1.1105             nan     0.1000    0.0273
##      4        1.0616             nan     0.1000    0.0185
##      5        1.0153             nan     0.1000    0.0215
##      6        0.9722             nan     0.1000    0.0160
##      7        0.9378             nan     0.1000    0.0139
##      8        0.9142             nan     0.1000    0.0090
##      9        0.8889             nan     0.1000    0.0109
##     10        0.8607             nan     0.1000    0.0118
##     20        0.7068             nan     0.1000    0.0024
##     40        0.5751             nan     0.1000   -0.0014
##     60        0.4903             nan     0.1000   -0.0009
##     80        0.4284             nan     0.1000   -0.0004
##    100        0.3769             nan     0.1000   -0.0012
##    120        0.3304             nan     0.1000   -0.0006
##    140        0.2922             nan     0.1000   -0.0016
##    160        0.2558             nan     0.1000   -0.0007
##    180        0.2266             nan     0.1000   -0.0005
##    200        0.2031             nan     0.1000   -0.0004
##    220        0.1808             nan     0.1000   -0.0009
##    240        0.1618             nan     0.1000   -0.0006
##    260        0.1451             nan     0.1000   -0.0007
##    280        0.1310             nan     0.1000   -0.0003
##    300        0.1188             nan     0.1000   -0.0003
##    320        0.1069             nan     0.1000   -0.0006
##    340        0.0962             nan     0.1000   -0.0003
##    360        0.0876             nan     0.1000   -0.0003
##    380        0.0793             nan     0.1000   -0.0002
##    400        0.0717             nan     0.1000   -0.0002
##    420        0.0647             nan     0.1000   -0.0001
##    440        0.0581             nan     0.1000   -0.0002
##    460        0.0534             nan     0.1000   -0.0002
##    480        0.0487             nan     0.1000   -0.0001
##    500        0.0445             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2376             nan     0.1000    0.0362
##      2        1.1634             nan     0.1000    0.0316
##      3        1.0971             nan     0.1000    0.0288
##      4        1.0398             nan     0.1000    0.0234
##      5        0.9940             nan     0.1000    0.0191
##      6        0.9582             nan     0.1000    0.0151
##      7        0.9272             nan     0.1000    0.0109
##      8        0.8945             nan     0.1000    0.0132
##      9        0.8684             nan     0.1000    0.0098
##     10        0.8423             nan     0.1000    0.0090
##     20        0.6711             nan     0.1000    0.0029
##     40        0.5180             nan     0.1000   -0.0003
##     60        0.4239             nan     0.1000   -0.0016
##     80        0.3567             nan     0.1000   -0.0004
##    100        0.2943             nan     0.1000   -0.0004
##    120        0.2479             nan     0.1000   -0.0003
##    140        0.2162             nan     0.1000   -0.0005
##    160        0.1842             nan     0.1000   -0.0002
##    180        0.1600             nan     0.1000   -0.0001
##    200        0.1396             nan     0.1000   -0.0000
##    220        0.1228             nan     0.1000   -0.0002
##    240        0.1077             nan     0.1000   -0.0008
##    260        0.0947             nan     0.1000   -0.0001
##    280        0.0821             nan     0.1000   -0.0001
##    300        0.0720             nan     0.1000   -0.0000
##    320        0.0632             nan     0.1000    0.0001
##    340        0.0563             nan     0.1000   -0.0002
##    360        0.0490             nan     0.1000   -0.0000
##    380        0.0433             nan     0.1000    0.0000
##    400        0.0385             nan     0.1000    0.0000
##    420        0.0341             nan     0.1000   -0.0000
##    440        0.0304             nan     0.1000   -0.0001
##    460        0.0265             nan     0.1000   -0.0000
##    480        0.0235             nan     0.1000   -0.0001
##    500        0.0210             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2376             nan     0.1000    0.0374
##      2        1.1699             nan     0.1000    0.0318
##      3        1.1079             nan     0.1000    0.0257
##      4        1.0550             nan     0.1000    0.0245
##      5        1.0074             nan     0.1000    0.0199
##      6        0.9664             nan     0.1000    0.0160
##      7        0.9312             nan     0.1000    0.0127
##      8        0.8967             nan     0.1000    0.0130
##      9        0.8722             nan     0.1000    0.0100
##     10        0.8477             nan     0.1000    0.0076
##     20        0.6880             nan     0.1000    0.0027
##     40        0.5311             nan     0.1000    0.0009
##     60        0.4227             nan     0.1000   -0.0002
##     80        0.3560             nan     0.1000   -0.0009
##    100        0.2962             nan     0.1000   -0.0004
##    120        0.2492             nan     0.1000   -0.0004
##    140        0.2099             nan     0.1000   -0.0007
##    160        0.1786             nan     0.1000   -0.0005
##    180        0.1545             nan     0.1000   -0.0004
##    200        0.1317             nan     0.1000   -0.0006
##    220        0.1143             nan     0.1000   -0.0004
##    240        0.0994             nan     0.1000   -0.0003
##    260        0.0886             nan     0.1000   -0.0005
##    280        0.0778             nan     0.1000   -0.0002
##    300        0.0686             nan     0.1000   -0.0002
##    320        0.0607             nan     0.1000   -0.0001
##    340        0.0545             nan     0.1000   -0.0001
##    360        0.0484             nan     0.1000   -0.0002
##    380        0.0433             nan     0.1000   -0.0002
##    400        0.0386             nan     0.1000   -0.0002
##    420        0.0340             nan     0.1000   -0.0000
##    440        0.0304             nan     0.1000   -0.0000
##    460        0.0272             nan     0.1000   -0.0000
##    480        0.0245             nan     0.1000   -0.0001
##    500        0.0216             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2352             nan     0.1000    0.0333
##      2        1.1661             nan     0.1000    0.0334
##      3        1.1136             nan     0.1000    0.0236
##      4        1.0588             nan     0.1000    0.0245
##      5        1.0065             nan     0.1000    0.0203
##      6        0.9671             nan     0.1000    0.0162
##      7        0.9315             nan     0.1000    0.0130
##      8        0.8992             nan     0.1000    0.0125
##      9        0.8720             nan     0.1000    0.0109
##     10        0.8491             nan     0.1000    0.0077
##     20        0.6896             nan     0.1000    0.0010
##     40        0.5499             nan     0.1000   -0.0014
##     60        0.4583             nan     0.1000   -0.0016
##     80        0.3850             nan     0.1000   -0.0011
##    100        0.3288             nan     0.1000   -0.0004
##    120        0.2830             nan     0.1000   -0.0013
##    140        0.2413             nan     0.1000   -0.0011
##    160        0.2059             nan     0.1000   -0.0006
##    180        0.1801             nan     0.1000   -0.0004
##    200        0.1578             nan     0.1000   -0.0004
##    220        0.1384             nan     0.1000   -0.0005
##    240        0.1228             nan     0.1000   -0.0001
##    260        0.1086             nan     0.1000    0.0000
##    280        0.0964             nan     0.1000   -0.0002
##    300        0.0845             nan     0.1000   -0.0001
##    320        0.0742             nan     0.1000   -0.0003
##    340        0.0655             nan     0.1000   -0.0001
##    360        0.0585             nan     0.1000   -0.0003
##    380        0.0519             nan     0.1000   -0.0003
##    400        0.0462             nan     0.1000   -0.0002
##    420        0.0416             nan     0.1000   -0.0000
##    440        0.0371             nan     0.1000   -0.0002
##    460        0.0331             nan     0.1000   -0.0001
##    480        0.0301             nan     0.1000   -0.0002
##    500        0.0269             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0005
##      2        1.3189             nan     0.0010    0.0003
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0004
##     80        1.2558             nan     0.0010    0.0004
##    100        1.2406             nan     0.0010    0.0003
##    120        1.2266             nan     0.0010    0.0003
##    140        1.2127             nan     0.0010    0.0003
##    160        1.1993             nan     0.0010    0.0002
##    180        1.1867             nan     0.0010    0.0002
##    200        1.1740             nan     0.0010    0.0003
##    220        1.1617             nan     0.0010    0.0002
##    240        1.1496             nan     0.0010    0.0002
##    260        1.1382             nan     0.0010    0.0002
##    280        1.1270             nan     0.0010    0.0002
##    300        1.1160             nan     0.0010    0.0002
##    320        1.1055             nan     0.0010    0.0002
##    340        1.0952             nan     0.0010    0.0002
##    360        1.0855             nan     0.0010    0.0002
##    380        1.0759             nan     0.0010    0.0002
##    400        1.0666             nan     0.0010    0.0002
##    420        1.0574             nan     0.0010    0.0002
##    440        1.0484             nan     0.0010    0.0002
##    460        1.0394             nan     0.0010    0.0002
##    480        1.0309             nan     0.0010    0.0002
##    500        1.0226             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0003
##      6        1.3158             nan     0.0010    0.0003
##      7        1.3150             nan     0.0010    0.0003
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0003
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3042             nan     0.0010    0.0004
##     40        1.2878             nan     0.0010    0.0003
##     60        1.2719             nan     0.0010    0.0003
##     80        1.2566             nan     0.0010    0.0003
##    100        1.2417             nan     0.0010    0.0003
##    120        1.2275             nan     0.0010    0.0003
##    140        1.2136             nan     0.0010    0.0003
##    160        1.2001             nan     0.0010    0.0003
##    180        1.1875             nan     0.0010    0.0003
##    200        1.1752             nan     0.0010    0.0002
##    220        1.1629             nan     0.0010    0.0003
##    240        1.1511             nan     0.0010    0.0002
##    260        1.1399             nan     0.0010    0.0003
##    280        1.1287             nan     0.0010    0.0002
##    300        1.1178             nan     0.0010    0.0003
##    320        1.1071             nan     0.0010    0.0002
##    340        1.0970             nan     0.0010    0.0002
##    360        1.0870             nan     0.0010    0.0003
##    380        1.0774             nan     0.0010    0.0002
##    400        1.0679             nan     0.0010    0.0002
##    420        1.0588             nan     0.0010    0.0002
##    440        1.0498             nan     0.0010    0.0002
##    460        1.0411             nan     0.0010    0.0002
##    480        1.0323             nan     0.0010    0.0002
##    500        1.0240             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0003
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3040             nan     0.0010    0.0004
##     40        1.2875             nan     0.0010    0.0003
##     60        1.2718             nan     0.0010    0.0004
##     80        1.2571             nan     0.0010    0.0003
##    100        1.2424             nan     0.0010    0.0002
##    120        1.2283             nan     0.0010    0.0003
##    140        1.2150             nan     0.0010    0.0003
##    160        1.2018             nan     0.0010    0.0002
##    180        1.1888             nan     0.0010    0.0003
##    200        1.1763             nan     0.0010    0.0003
##    220        1.1642             nan     0.0010    0.0003
##    240        1.1525             nan     0.0010    0.0002
##    260        1.1411             nan     0.0010    0.0002
##    280        1.1302             nan     0.0010    0.0002
##    300        1.1195             nan     0.0010    0.0002
##    320        1.1091             nan     0.0010    0.0002
##    340        1.0993             nan     0.0010    0.0002
##    360        1.0894             nan     0.0010    0.0002
##    380        1.0794             nan     0.0010    0.0002
##    400        1.0701             nan     0.0010    0.0002
##    420        1.0610             nan     0.0010    0.0002
##    440        1.0524             nan     0.0010    0.0002
##    460        1.0435             nan     0.0010    0.0002
##    480        1.0351             nan     0.0010    0.0002
##    500        1.0271             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3115             nan     0.0010    0.0004
##     20        1.3024             nan     0.0010    0.0004
##     40        1.2849             nan     0.0010    0.0004
##     60        1.2680             nan     0.0010    0.0004
##     80        1.2520             nan     0.0010    0.0003
##    100        1.2361             nan     0.0010    0.0003
##    120        1.2211             nan     0.0010    0.0003
##    140        1.2067             nan     0.0010    0.0003
##    160        1.1927             nan     0.0010    0.0003
##    180        1.1788             nan     0.0010    0.0003
##    200        1.1657             nan     0.0010    0.0003
##    220        1.1528             nan     0.0010    0.0002
##    240        1.1403             nan     0.0010    0.0002
##    260        1.1281             nan     0.0010    0.0003
##    280        1.1160             nan     0.0010    0.0003
##    300        1.1041             nan     0.0010    0.0002
##    320        1.0929             nan     0.0010    0.0002
##    340        1.0818             nan     0.0010    0.0002
##    360        1.0712             nan     0.0010    0.0002
##    380        1.0610             nan     0.0010    0.0002
##    400        1.0509             nan     0.0010    0.0002
##    420        1.0411             nan     0.0010    0.0002
##    440        1.0320             nan     0.0010    0.0002
##    460        1.0226             nan     0.0010    0.0002
##    480        1.0134             nan     0.0010    0.0002
##    500        1.0048             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0003
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3026             nan     0.0010    0.0003
##     40        1.2855             nan     0.0010    0.0004
##     60        1.2686             nan     0.0010    0.0004
##     80        1.2527             nan     0.0010    0.0004
##    100        1.2373             nan     0.0010    0.0003
##    120        1.2223             nan     0.0010    0.0004
##    140        1.2078             nan     0.0010    0.0003
##    160        1.1932             nan     0.0010    0.0003
##    180        1.1795             nan     0.0010    0.0003
##    200        1.1662             nan     0.0010    0.0003
##    220        1.1531             nan     0.0010    0.0003
##    240        1.1400             nan     0.0010    0.0003
##    260        1.1279             nan     0.0010    0.0002
##    280        1.1163             nan     0.0010    0.0003
##    300        1.1049             nan     0.0010    0.0002
##    320        1.0937             nan     0.0010    0.0003
##    340        1.0829             nan     0.0010    0.0002
##    360        1.0723             nan     0.0010    0.0002
##    380        1.0623             nan     0.0010    0.0002
##    400        1.0525             nan     0.0010    0.0002
##    420        1.0427             nan     0.0010    0.0002
##    440        1.0333             nan     0.0010    0.0002
##    460        1.0238             nan     0.0010    0.0002
##    480        1.0148             nan     0.0010    0.0002
##    500        1.0060             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0004
##     40        1.2865             nan     0.0010    0.0004
##     60        1.2702             nan     0.0010    0.0003
##     80        1.2544             nan     0.0010    0.0004
##    100        1.2393             nan     0.0010    0.0003
##    120        1.2247             nan     0.0010    0.0003
##    140        1.2106             nan     0.0010    0.0003
##    160        1.1966             nan     0.0010    0.0003
##    180        1.1831             nan     0.0010    0.0003
##    200        1.1702             nan     0.0010    0.0003
##    220        1.1572             nan     0.0010    0.0003
##    240        1.1448             nan     0.0010    0.0003
##    260        1.1326             nan     0.0010    0.0003
##    280        1.1209             nan     0.0010    0.0002
##    300        1.1096             nan     0.0010    0.0003
##    320        1.0985             nan     0.0010    0.0002
##    340        1.0878             nan     0.0010    0.0002
##    360        1.0774             nan     0.0010    0.0002
##    380        1.0673             nan     0.0010    0.0002
##    400        1.0575             nan     0.0010    0.0002
##    420        1.0480             nan     0.0010    0.0002
##    440        1.0388             nan     0.0010    0.0002
##    460        1.0298             nan     0.0010    0.0002
##    480        1.0210             nan     0.0010    0.0002
##    500        1.0124             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3186             nan     0.0010    0.0005
##      3        1.3177             nan     0.0010    0.0004
##      4        1.3168             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0004
##      6        1.3149             nan     0.0010    0.0005
##      7        1.3140             nan     0.0010    0.0004
##      8        1.3131             nan     0.0010    0.0004
##      9        1.3121             nan     0.0010    0.0004
##     10        1.3112             nan     0.0010    0.0004
##     20        1.3021             nan     0.0010    0.0005
##     40        1.2835             nan     0.0010    0.0003
##     60        1.2662             nan     0.0010    0.0003
##     80        1.2494             nan     0.0010    0.0004
##    100        1.2330             nan     0.0010    0.0004
##    120        1.2172             nan     0.0010    0.0003
##    140        1.2022             nan     0.0010    0.0003
##    160        1.1872             nan     0.0010    0.0003
##    180        1.1729             nan     0.0010    0.0003
##    200        1.1589             nan     0.0010    0.0003
##    220        1.1457             nan     0.0010    0.0003
##    240        1.1324             nan     0.0010    0.0003
##    260        1.1195             nan     0.0010    0.0003
##    280        1.1070             nan     0.0010    0.0003
##    300        1.0951             nan     0.0010    0.0002
##    320        1.0835             nan     0.0010    0.0003
##    340        1.0722             nan     0.0010    0.0003
##    360        1.0611             nan     0.0010    0.0002
##    380        1.0499             nan     0.0010    0.0003
##    400        1.0395             nan     0.0010    0.0002
##    420        1.0292             nan     0.0010    0.0002
##    440        1.0191             nan     0.0010    0.0003
##    460        1.0093             nan     0.0010    0.0002
##    480        1.0000             nan     0.0010    0.0002
##    500        0.9909             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0005
##      2        1.3186             nan     0.0010    0.0004
##      3        1.3177             nan     0.0010    0.0005
##      4        1.3168             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0004
##      6        1.3149             nan     0.0010    0.0004
##      7        1.3139             nan     0.0010    0.0005
##      8        1.3130             nan     0.0010    0.0004
##      9        1.3121             nan     0.0010    0.0005
##     10        1.3111             nan     0.0010    0.0004
##     20        1.3021             nan     0.0010    0.0004
##     40        1.2841             nan     0.0010    0.0004
##     60        1.2663             nan     0.0010    0.0004
##     80        1.2495             nan     0.0010    0.0004
##    100        1.2330             nan     0.0010    0.0003
##    120        1.2176             nan     0.0010    0.0003
##    140        1.2025             nan     0.0010    0.0003
##    160        1.1878             nan     0.0010    0.0003
##    180        1.1736             nan     0.0010    0.0003
##    200        1.1598             nan     0.0010    0.0003
##    220        1.1460             nan     0.0010    0.0003
##    240        1.1329             nan     0.0010    0.0003
##    260        1.1207             nan     0.0010    0.0003
##    280        1.1084             nan     0.0010    0.0003
##    300        1.0965             nan     0.0010    0.0003
##    320        1.0851             nan     0.0010    0.0003
##    340        1.0738             nan     0.0010    0.0002
##    360        1.0628             nan     0.0010    0.0003
##    380        1.0520             nan     0.0010    0.0002
##    400        1.0418             nan     0.0010    0.0002
##    420        1.0314             nan     0.0010    0.0002
##    440        1.0218             nan     0.0010    0.0002
##    460        1.0122             nan     0.0010    0.0002
##    480        1.0027             nan     0.0010    0.0002
##    500        0.9935             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0005
##      9        1.3124             nan     0.0010    0.0004
##     10        1.3115             nan     0.0010    0.0005
##     20        1.3025             nan     0.0010    0.0004
##     40        1.2852             nan     0.0010    0.0004
##     60        1.2685             nan     0.0010    0.0004
##     80        1.2521             nan     0.0010    0.0003
##    100        1.2363             nan     0.0010    0.0003
##    120        1.2210             nan     0.0010    0.0004
##    140        1.2063             nan     0.0010    0.0003
##    160        1.1920             nan     0.0010    0.0003
##    180        1.1780             nan     0.0010    0.0004
##    200        1.1644             nan     0.0010    0.0002
##    220        1.1515             nan     0.0010    0.0003
##    240        1.1387             nan     0.0010    0.0003
##    260        1.1261             nan     0.0010    0.0003
##    280        1.1139             nan     0.0010    0.0003
##    300        1.1020             nan     0.0010    0.0002
##    320        1.0909             nan     0.0010    0.0002
##    340        1.0802             nan     0.0010    0.0002
##    360        1.0694             nan     0.0010    0.0002
##    380        1.0590             nan     0.0010    0.0002
##    400        1.0489             nan     0.0010    0.0002
##    420        1.0388             nan     0.0010    0.0002
##    440        1.0290             nan     0.0010    0.0002
##    460        1.0198             nan     0.0010    0.0002
##    480        1.0105             nan     0.0010    0.0002
##    500        1.0017             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0039
##      2        1.3030             nan     0.0100    0.0045
##      3        1.2944             nan     0.0100    0.0040
##      4        1.2858             nan     0.0100    0.0041
##      5        1.2784             nan     0.0100    0.0033
##      6        1.2714             nan     0.0100    0.0033
##      7        1.2640             nan     0.0100    0.0035
##      8        1.2570             nan     0.0100    0.0031
##      9        1.2494             nan     0.0100    0.0033
##     10        1.2425             nan     0.0100    0.0032
##     20        1.1734             nan     0.0100    0.0027
##     40        1.0635             nan     0.0100    0.0021
##     60        0.9836             nan     0.0100    0.0012
##     80        0.9199             nan     0.0100    0.0012
##    100        0.8683             nan     0.0100    0.0009
##    120        0.8257             nan     0.0100    0.0006
##    140        0.7911             nan     0.0100    0.0005
##    160        0.7615             nan     0.0100    0.0005
##    180        0.7354             nan     0.0100    0.0006
##    200        0.7126             nan     0.0100    0.0000
##    220        0.6926             nan     0.0100    0.0003
##    240        0.6745             nan     0.0100   -0.0001
##    260        0.6584             nan     0.0100    0.0002
##    280        0.6429             nan     0.0100    0.0002
##    300        0.6301             nan     0.0100    0.0001
##    320        0.6170             nan     0.0100   -0.0000
##    340        0.6053             nan     0.0100    0.0001
##    360        0.5939             nan     0.0100   -0.0001
##    380        0.5828             nan     0.0100   -0.0001
##    400        0.5719             nan     0.0100    0.0001
##    420        0.5614             nan     0.0100   -0.0000
##    440        0.5515             nan     0.0100   -0.0001
##    460        0.5412             nan     0.0100    0.0000
##    480        0.5328             nan     0.0100   -0.0001
##    500        0.5244             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0039
##      2        1.3038             nan     0.0100    0.0043
##      3        1.2962             nan     0.0100    0.0032
##      4        1.2890             nan     0.0100    0.0032
##      5        1.2803             nan     0.0100    0.0042
##      6        1.2736             nan     0.0100    0.0028
##      7        1.2661             nan     0.0100    0.0031
##      8        1.2580             nan     0.0100    0.0037
##      9        1.2500             nan     0.0100    0.0037
##     10        1.2415             nan     0.0100    0.0035
##     20        1.1760             nan     0.0100    0.0028
##     40        1.0679             nan     0.0100    0.0022
##     60        0.9845             nan     0.0100    0.0013
##     80        0.9205             nan     0.0100    0.0011
##    100        0.8690             nan     0.0100    0.0008
##    120        0.8275             nan     0.0100    0.0008
##    140        0.7927             nan     0.0100    0.0001
##    160        0.7623             nan     0.0100    0.0005
##    180        0.7376             nan     0.0100    0.0001
##    200        0.7156             nan     0.0100    0.0003
##    220        0.6973             nan     0.0100    0.0001
##    240        0.6792             nan     0.0100    0.0001
##    260        0.6636             nan     0.0100    0.0003
##    280        0.6505             nan     0.0100    0.0001
##    300        0.6368             nan     0.0100    0.0000
##    320        0.6243             nan     0.0100    0.0000
##    340        0.6126             nan     0.0100    0.0001
##    360        0.6005             nan     0.0100    0.0001
##    380        0.5895             nan     0.0100   -0.0001
##    400        0.5799             nan     0.0100    0.0000
##    420        0.5712             nan     0.0100   -0.0000
##    440        0.5618             nan     0.0100   -0.0001
##    460        0.5529             nan     0.0100   -0.0001
##    480        0.5445             nan     0.0100    0.0000
##    500        0.5362             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3134             nan     0.0100    0.0032
##      2        1.3047             nan     0.0100    0.0038
##      3        1.2957             nan     0.0100    0.0040
##      4        1.2885             nan     0.0100    0.0033
##      5        1.2806             nan     0.0100    0.0035
##      6        1.2735             nan     0.0100    0.0030
##      7        1.2656             nan     0.0100    0.0037
##      8        1.2584             nan     0.0100    0.0034
##      9        1.2513             nan     0.0100    0.0033
##     10        1.2448             nan     0.0100    0.0027
##     20        1.1773             nan     0.0100    0.0030
##     40        1.0688             nan     0.0100    0.0022
##     60        0.9880             nan     0.0100    0.0014
##     80        0.9246             nan     0.0100    0.0009
##    100        0.8732             nan     0.0100    0.0007
##    120        0.8293             nan     0.0100    0.0007
##    140        0.7938             nan     0.0100    0.0006
##    160        0.7646             nan     0.0100    0.0004
##    180        0.7403             nan     0.0100    0.0002
##    200        0.7203             nan     0.0100    0.0002
##    220        0.7012             nan     0.0100    0.0003
##    240        0.6848             nan     0.0100    0.0002
##    260        0.6701             nan     0.0100    0.0002
##    280        0.6556             nan     0.0100    0.0001
##    300        0.6426             nan     0.0100    0.0001
##    320        0.6316             nan     0.0100    0.0002
##    340        0.6197             nan     0.0100   -0.0001
##    360        0.6093             nan     0.0100   -0.0000
##    380        0.6002             nan     0.0100   -0.0001
##    400        0.5907             nan     0.0100    0.0000
##    420        0.5809             nan     0.0100    0.0000
##    440        0.5722             nan     0.0100    0.0001
##    460        0.5641             nan     0.0100    0.0001
##    480        0.5565             nan     0.0100   -0.0003
##    500        0.5487             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0042
##      2        1.3016             nan     0.0100    0.0047
##      3        1.2922             nan     0.0100    0.0041
##      4        1.2833             nan     0.0100    0.0040
##      5        1.2750             nan     0.0100    0.0040
##      6        1.2663             nan     0.0100    0.0042
##      7        1.2584             nan     0.0100    0.0036
##      8        1.2500             nan     0.0100    0.0038
##      9        1.2417             nan     0.0100    0.0040
##     10        1.2331             nan     0.0100    0.0040
##     20        1.1612             nan     0.0100    0.0031
##     40        1.0468             nan     0.0100    0.0024
##     60        0.9597             nan     0.0100    0.0017
##     80        0.8938             nan     0.0100    0.0012
##    100        0.8389             nan     0.0100    0.0011
##    120        0.7941             nan     0.0100    0.0006
##    140        0.7574             nan     0.0100    0.0006
##    160        0.7263             nan     0.0100    0.0006
##    180        0.6990             nan     0.0100    0.0004
##    200        0.6737             nan     0.0100    0.0004
##    220        0.6522             nan     0.0100    0.0002
##    240        0.6344             nan     0.0100    0.0001
##    260        0.6155             nan     0.0100    0.0002
##    280        0.5981             nan     0.0100    0.0001
##    300        0.5833             nan     0.0100   -0.0000
##    320        0.5685             nan     0.0100    0.0001
##    340        0.5547             nan     0.0100   -0.0000
##    360        0.5422             nan     0.0100    0.0001
##    380        0.5304             nan     0.0100    0.0000
##    400        0.5200             nan     0.0100   -0.0001
##    420        0.5087             nan     0.0100    0.0000
##    440        0.4992             nan     0.0100   -0.0000
##    460        0.4892             nan     0.0100   -0.0000
##    480        0.4796             nan     0.0100   -0.0001
##    500        0.4702             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3125             nan     0.0100    0.0038
##      2        1.3040             nan     0.0100    0.0037
##      3        1.2958             nan     0.0100    0.0039
##      4        1.2876             nan     0.0100    0.0036
##      5        1.2803             nan     0.0100    0.0033
##      6        1.2714             nan     0.0100    0.0041
##      7        1.2623             nan     0.0100    0.0038
##      8        1.2542             nan     0.0100    0.0036
##      9        1.2458             nan     0.0100    0.0037
##     10        1.2384             nan     0.0100    0.0034
##     20        1.1701             nan     0.0100    0.0028
##     40        1.0541             nan     0.0100    0.0024
##     60        0.9668             nan     0.0100    0.0015
##     80        0.8997             nan     0.0100    0.0011
##    100        0.8442             nan     0.0100    0.0011
##    120        0.7998             nan     0.0100    0.0007
##    140        0.7630             nan     0.0100    0.0007
##    160        0.7311             nan     0.0100    0.0004
##    180        0.7050             nan     0.0100    0.0002
##    200        0.6820             nan     0.0100    0.0002
##    220        0.6614             nan     0.0100    0.0002
##    240        0.6421             nan     0.0100    0.0002
##    260        0.6255             nan     0.0100    0.0003
##    280        0.6095             nan     0.0100    0.0002
##    300        0.5954             nan     0.0100    0.0001
##    320        0.5819             nan     0.0100   -0.0001
##    340        0.5689             nan     0.0100    0.0001
##    360        0.5577             nan     0.0100   -0.0001
##    380        0.5454             nan     0.0100   -0.0001
##    400        0.5350             nan     0.0100   -0.0001
##    420        0.5249             nan     0.0100   -0.0000
##    440        0.5145             nan     0.0100    0.0001
##    460        0.5047             nan     0.0100   -0.0001
##    480        0.4945             nan     0.0100    0.0002
##    500        0.4841             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0043
##      2        1.3024             nan     0.0100    0.0041
##      3        1.2934             nan     0.0100    0.0038
##      4        1.2847             nan     0.0100    0.0035
##      5        1.2761             nan     0.0100    0.0041
##      6        1.2678             nan     0.0100    0.0036
##      7        1.2601             nan     0.0100    0.0034
##      8        1.2517             nan     0.0100    0.0038
##      9        1.2441             nan     0.0100    0.0033
##     10        1.2370             nan     0.0100    0.0031
##     20        1.1675             nan     0.0100    0.0026
##     40        1.0543             nan     0.0100    0.0021
##     60        0.9699             nan     0.0100    0.0017
##     80        0.9021             nan     0.0100    0.0012
##    100        0.8491             nan     0.0100    0.0008
##    120        0.8053             nan     0.0100    0.0006
##    140        0.7691             nan     0.0100    0.0005
##    160        0.7391             nan     0.0100    0.0003
##    180        0.7136             nan     0.0100    0.0005
##    200        0.6912             nan     0.0100    0.0003
##    220        0.6708             nan     0.0100    0.0002
##    240        0.6526             nan     0.0100    0.0001
##    260        0.6351             nan     0.0100    0.0001
##    280        0.6206             nan     0.0100   -0.0000
##    300        0.6073             nan     0.0100   -0.0000
##    320        0.5936             nan     0.0100   -0.0001
##    340        0.5819             nan     0.0100   -0.0000
##    360        0.5703             nan     0.0100   -0.0001
##    380        0.5592             nan     0.0100   -0.0002
##    400        0.5482             nan     0.0100    0.0000
##    420        0.5377             nan     0.0100   -0.0001
##    440        0.5273             nan     0.0100   -0.0000
##    460        0.5173             nan     0.0100   -0.0001
##    480        0.5079             nan     0.0100   -0.0001
##    500        0.4992             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3110             nan     0.0100    0.0041
##      2        1.3007             nan     0.0100    0.0044
##      3        1.2917             nan     0.0100    0.0042
##      4        1.2819             nan     0.0100    0.0038
##      5        1.2731             nan     0.0100    0.0041
##      6        1.2645             nan     0.0100    0.0037
##      7        1.2556             nan     0.0100    0.0041
##      8        1.2471             nan     0.0100    0.0034
##      9        1.2393             nan     0.0100    0.0035
##     10        1.2313             nan     0.0100    0.0032
##     20        1.1589             nan     0.0100    0.0033
##     40        1.0411             nan     0.0100    0.0019
##     60        0.9510             nan     0.0100    0.0016
##     80        0.8790             nan     0.0100    0.0014
##    100        0.8228             nan     0.0100    0.0007
##    120        0.7763             nan     0.0100    0.0009
##    140        0.7370             nan     0.0100    0.0004
##    160        0.7035             nan     0.0100    0.0005
##    180        0.6743             nan     0.0100    0.0003
##    200        0.6475             nan     0.0100    0.0004
##    220        0.6237             nan     0.0100    0.0002
##    240        0.6038             nan     0.0100    0.0001
##    260        0.5846             nan     0.0100    0.0001
##    280        0.5670             nan     0.0100    0.0003
##    300        0.5500             nan     0.0100    0.0001
##    320        0.5345             nan     0.0100   -0.0000
##    340        0.5197             nan     0.0100   -0.0000
##    360        0.5059             nan     0.0100    0.0000
##    380        0.4928             nan     0.0100   -0.0000
##    400        0.4799             nan     0.0100   -0.0000
##    420        0.4683             nan     0.0100    0.0000
##    440        0.4578             nan     0.0100    0.0000
##    460        0.4473             nan     0.0100   -0.0000
##    480        0.4381             nan     0.0100   -0.0002
##    500        0.4280             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0040
##      2        1.3029             nan     0.0100    0.0039
##      3        1.2934             nan     0.0100    0.0044
##      4        1.2845             nan     0.0100    0.0041
##      5        1.2764             nan     0.0100    0.0035
##      6        1.2686             nan     0.0100    0.0034
##      7        1.2598             nan     0.0100    0.0036
##      8        1.2507             nan     0.0100    0.0039
##      9        1.2430             nan     0.0100    0.0037
##     10        1.2349             nan     0.0100    0.0037
##     20        1.1607             nan     0.0100    0.0027
##     40        1.0433             nan     0.0100    0.0024
##     60        0.9543             nan     0.0100    0.0016
##     80        0.8825             nan     0.0100    0.0011
##    100        0.8263             nan     0.0100    0.0007
##    120        0.7811             nan     0.0100    0.0004
##    140        0.7441             nan     0.0100    0.0006
##    160        0.7119             nan     0.0100    0.0003
##    180        0.6820             nan     0.0100    0.0003
##    200        0.6566             nan     0.0100    0.0003
##    220        0.6336             nan     0.0100    0.0004
##    240        0.6135             nan     0.0100    0.0000
##    260        0.5946             nan     0.0100    0.0003
##    280        0.5783             nan     0.0100   -0.0001
##    300        0.5631             nan     0.0100    0.0002
##    320        0.5482             nan     0.0100    0.0000
##    340        0.5338             nan     0.0100    0.0001
##    360        0.5197             nan     0.0100    0.0001
##    380        0.5073             nan     0.0100   -0.0000
##    400        0.4944             nan     0.0100    0.0001
##    420        0.4835             nan     0.0100    0.0000
##    440        0.4728             nan     0.0100   -0.0001
##    460        0.4609             nan     0.0100   -0.0001
##    480        0.4505             nan     0.0100   -0.0001
##    500        0.4405             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3112             nan     0.0100    0.0046
##      2        1.3018             nan     0.0100    0.0044
##      3        1.2936             nan     0.0100    0.0038
##      4        1.2850             nan     0.0100    0.0041
##      5        1.2757             nan     0.0100    0.0038
##      6        1.2671             nan     0.0100    0.0040
##      7        1.2588             nan     0.0100    0.0039
##      8        1.2507             nan     0.0100    0.0034
##      9        1.2426             nan     0.0100    0.0035
##     10        1.2353             nan     0.0100    0.0031
##     20        1.1636             nan     0.0100    0.0033
##     40        1.0490             nan     0.0100    0.0019
##     60        0.9603             nan     0.0100    0.0016
##     80        0.8908             nan     0.0100    0.0012
##    100        0.8381             nan     0.0100    0.0008
##    120        0.7909             nan     0.0100    0.0005
##    140        0.7527             nan     0.0100    0.0004
##    160        0.7205             nan     0.0100    0.0005
##    180        0.6913             nan     0.0100    0.0004
##    200        0.6678             nan     0.0100    0.0002
##    220        0.6460             nan     0.0100    0.0003
##    240        0.6260             nan     0.0100    0.0001
##    260        0.6082             nan     0.0100    0.0001
##    280        0.5914             nan     0.0100    0.0001
##    300        0.5763             nan     0.0100    0.0001
##    320        0.5615             nan     0.0100    0.0003
##    340        0.5478             nan     0.0100    0.0001
##    360        0.5355             nan     0.0100    0.0000
##    380        0.5236             nan     0.0100   -0.0002
##    400        0.5112             nan     0.0100    0.0000
##    420        0.4992             nan     0.0100   -0.0000
##    440        0.4892             nan     0.0100    0.0001
##    460        0.4791             nan     0.0100   -0.0002
##    480        0.4679             nan     0.0100    0.0000
##    500        0.4579             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2442             nan     0.1000    0.0350
##      2        1.1672             nan     0.1000    0.0338
##      3        1.1129             nan     0.1000    0.0205
##      4        1.0685             nan     0.1000    0.0204
##      5        1.0245             nan     0.1000    0.0168
##      6        0.9790             nan     0.1000    0.0172
##      7        0.9461             nan     0.1000    0.0153
##      8        0.9129             nan     0.1000    0.0113
##      9        0.8890             nan     0.1000    0.0102
##     10        0.8611             nan     0.1000    0.0106
##     20        0.7108             nan     0.1000    0.0017
##     40        0.5714             nan     0.1000   -0.0001
##     60        0.4883             nan     0.1000   -0.0004
##     80        0.4195             nan     0.1000   -0.0011
##    100        0.3627             nan     0.1000   -0.0005
##    120        0.3222             nan     0.1000    0.0001
##    140        0.2855             nan     0.1000   -0.0000
##    160        0.2563             nan     0.1000   -0.0004
##    180        0.2325             nan     0.1000   -0.0006
##    200        0.2111             nan     0.1000   -0.0008
##    220        0.1932             nan     0.1000   -0.0011
##    240        0.1754             nan     0.1000   -0.0001
##    260        0.1594             nan     0.1000   -0.0002
##    280        0.1459             nan     0.1000   -0.0006
##    300        0.1326             nan     0.1000   -0.0006
##    320        0.1207             nan     0.1000   -0.0001
##    340        0.1108             nan     0.1000   -0.0004
##    360        0.1023             nan     0.1000   -0.0001
##    380        0.0944             nan     0.1000   -0.0000
##    400        0.0869             nan     0.1000   -0.0001
##    420        0.0797             nan     0.1000   -0.0000
##    440        0.0731             nan     0.1000   -0.0000
##    460        0.0675             nan     0.1000   -0.0001
##    480        0.0626             nan     0.1000   -0.0001
##    500        0.0581             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2398             nan     0.1000    0.0374
##      2        1.1704             nan     0.1000    0.0286
##      3        1.1170             nan     0.1000    0.0271
##      4        1.0679             nan     0.1000    0.0211
##      5        1.0298             nan     0.1000    0.0174
##      6        0.9952             nan     0.1000    0.0137
##      7        0.9633             nan     0.1000    0.0127
##      8        0.9386             nan     0.1000    0.0106
##      9        0.9126             nan     0.1000    0.0096
##     10        0.8903             nan     0.1000    0.0086
##     20        0.7290             nan     0.1000    0.0014
##     40        0.5817             nan     0.1000   -0.0006
##     60        0.5004             nan     0.1000    0.0004
##     80        0.4446             nan     0.1000    0.0000
##    100        0.3866             nan     0.1000   -0.0014
##    120        0.3444             nan     0.1000   -0.0006
##    140        0.3085             nan     0.1000   -0.0006
##    160        0.2740             nan     0.1000   -0.0003
##    180        0.2460             nan     0.1000    0.0002
##    200        0.2222             nan     0.1000   -0.0002
##    220        0.2019             nan     0.1000   -0.0007
##    240        0.1832             nan     0.1000   -0.0005
##    260        0.1657             nan     0.1000   -0.0003
##    280        0.1506             nan     0.1000   -0.0007
##    300        0.1382             nan     0.1000   -0.0002
##    320        0.1269             nan     0.1000   -0.0006
##    340        0.1162             nan     0.1000   -0.0000
##    360        0.1057             nan     0.1000   -0.0003
##    380        0.0961             nan     0.1000   -0.0001
##    400        0.0888             nan     0.1000   -0.0001
##    420        0.0816             nan     0.1000   -0.0002
##    440        0.0750             nan     0.1000   -0.0002
##    460        0.0693             nan     0.1000   -0.0001
##    480        0.0641             nan     0.1000   -0.0005
##    500        0.0595             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2502             nan     0.1000    0.0305
##      2        1.1767             nan     0.1000    0.0361
##      3        1.1154             nan     0.1000    0.0278
##      4        1.0663             nan     0.1000    0.0206
##      5        1.0214             nan     0.1000    0.0170
##      6        0.9842             nan     0.1000    0.0178
##      7        0.9530             nan     0.1000    0.0122
##      8        0.9224             nan     0.1000    0.0107
##      9        0.8952             nan     0.1000    0.0117
##     10        0.8760             nan     0.1000    0.0076
##     20        0.7186             nan     0.1000    0.0024
##     40        0.5998             nan     0.1000   -0.0018
##     60        0.5117             nan     0.1000    0.0005
##     80        0.4578             nan     0.1000    0.0002
##    100        0.3997             nan     0.1000   -0.0014
##    120        0.3590             nan     0.1000   -0.0009
##    140        0.3242             nan     0.1000   -0.0007
##    160        0.2943             nan     0.1000   -0.0011
##    180        0.2647             nan     0.1000   -0.0005
##    200        0.2412             nan     0.1000   -0.0005
##    220        0.2182             nan     0.1000   -0.0008
##    240        0.2005             nan     0.1000   -0.0004
##    260        0.1840             nan     0.1000   -0.0003
##    280        0.1690             nan     0.1000   -0.0005
##    300        0.1553             nan     0.1000   -0.0003
##    320        0.1425             nan     0.1000   -0.0004
##    340        0.1331             nan     0.1000   -0.0004
##    360        0.1218             nan     0.1000   -0.0002
##    380        0.1130             nan     0.1000   -0.0001
##    400        0.1039             nan     0.1000   -0.0002
##    420        0.0962             nan     0.1000   -0.0007
##    440        0.0886             nan     0.1000   -0.0002
##    460        0.0819             nan     0.1000   -0.0001
##    480        0.0753             nan     0.1000   -0.0001
##    500        0.0691             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2283             nan     0.1000    0.0373
##      2        1.1616             nan     0.1000    0.0255
##      3        1.1045             nan     0.1000    0.0259
##      4        1.0567             nan     0.1000    0.0207
##      5        1.0165             nan     0.1000    0.0175
##      6        0.9714             nan     0.1000    0.0188
##      7        0.9325             nan     0.1000    0.0163
##      8        0.9044             nan     0.1000    0.0103
##      9        0.8700             nan     0.1000    0.0122
##     10        0.8442             nan     0.1000    0.0092
##     20        0.6885             nan     0.1000    0.0017
##     40        0.5407             nan     0.1000   -0.0020
##     60        0.4496             nan     0.1000   -0.0011
##     80        0.3733             nan     0.1000   -0.0006
##    100        0.3170             nan     0.1000   -0.0001
##    120        0.2772             nan     0.1000   -0.0002
##    140        0.2432             nan     0.1000   -0.0005
##    160        0.2133             nan     0.1000   -0.0003
##    180        0.1877             nan     0.1000   -0.0004
##    200        0.1641             nan     0.1000   -0.0002
##    220        0.1440             nan     0.1000   -0.0004
##    240        0.1287             nan     0.1000   -0.0002
##    260        0.1151             nan     0.1000   -0.0002
##    280        0.1022             nan     0.1000   -0.0001
##    300        0.0917             nan     0.1000   -0.0003
##    320        0.0833             nan     0.1000   -0.0001
##    340        0.0742             nan     0.1000   -0.0004
##    360        0.0660             nan     0.1000   -0.0004
##    380        0.0599             nan     0.1000    0.0001
##    400        0.0541             nan     0.1000   -0.0001
##    420        0.0491             nan     0.1000   -0.0002
##    440        0.0442             nan     0.1000   -0.0000
##    460        0.0401             nan     0.1000   -0.0002
##    480        0.0364             nan     0.1000   -0.0001
##    500        0.0330             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2299             nan     0.1000    0.0411
##      2        1.1613             nan     0.1000    0.0251
##      3        1.0973             nan     0.1000    0.0251
##      4        1.0495             nan     0.1000    0.0221
##      5        1.0059             nan     0.1000    0.0201
##      6        0.9681             nan     0.1000    0.0136
##      7        0.9314             nan     0.1000    0.0159
##      8        0.8969             nan     0.1000    0.0126
##      9        0.8674             nan     0.1000    0.0110
##     10        0.8417             nan     0.1000    0.0121
##     20        0.6834             nan     0.1000    0.0030
##     40        0.5452             nan     0.1000   -0.0005
##     60        0.4552             nan     0.1000    0.0004
##     80        0.3789             nan     0.1000   -0.0005
##    100        0.3265             nan     0.1000   -0.0003
##    120        0.2820             nan     0.1000   -0.0002
##    140        0.2438             nan     0.1000   -0.0008
##    160        0.2139             nan     0.1000   -0.0006
##    180        0.1902             nan     0.1000   -0.0003
##    200        0.1707             nan     0.1000   -0.0008
##    220        0.1532             nan     0.1000   -0.0008
##    240        0.1356             nan     0.1000   -0.0007
##    260        0.1206             nan     0.1000   -0.0002
##    280        0.1074             nan     0.1000   -0.0004
##    300        0.0959             nan     0.1000   -0.0004
##    320        0.0869             nan     0.1000   -0.0003
##    340        0.0793             nan     0.1000   -0.0003
##    360        0.0708             nan     0.1000   -0.0001
##    380        0.0641             nan     0.1000   -0.0002
##    400        0.0574             nan     0.1000   -0.0003
##    420        0.0514             nan     0.1000   -0.0001
##    440        0.0458             nan     0.1000   -0.0002
##    460        0.0413             nan     0.1000   -0.0001
##    480        0.0374             nan     0.1000   -0.0001
##    500        0.0343             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2354             nan     0.1000    0.0382
##      2        1.1588             nan     0.1000    0.0357
##      3        1.0930             nan     0.1000    0.0272
##      4        1.0394             nan     0.1000    0.0214
##      5        0.9959             nan     0.1000    0.0165
##      6        0.9526             nan     0.1000    0.0172
##      7        0.9148             nan     0.1000    0.0153
##      8        0.8851             nan     0.1000    0.0115
##      9        0.8574             nan     0.1000    0.0129
##     10        0.8322             nan     0.1000    0.0087
##     20        0.6779             nan     0.1000    0.0021
##     40        0.5410             nan     0.1000    0.0004
##     60        0.4543             nan     0.1000   -0.0032
##     80        0.3930             nan     0.1000   -0.0009
##    100        0.3434             nan     0.1000    0.0001
##    120        0.3011             nan     0.1000   -0.0007
##    140        0.2612             nan     0.1000   -0.0003
##    160        0.2283             nan     0.1000   -0.0008
##    180        0.2007             nan     0.1000   -0.0000
##    200        0.1775             nan     0.1000    0.0000
##    220        0.1594             nan     0.1000   -0.0009
##    240        0.1444             nan     0.1000   -0.0005
##    260        0.1288             nan     0.1000   -0.0003
##    280        0.1164             nan     0.1000   -0.0003
##    300        0.1051             nan     0.1000   -0.0000
##    320        0.0944             nan     0.1000   -0.0004
##    340        0.0847             nan     0.1000   -0.0001
##    360        0.0761             nan     0.1000   -0.0002
##    380        0.0687             nan     0.1000   -0.0003
##    400        0.0629             nan     0.1000   -0.0002
##    420        0.0558             nan     0.1000   -0.0001
##    440        0.0508             nan     0.1000   -0.0001
##    460        0.0455             nan     0.1000   -0.0001
##    480        0.0416             nan     0.1000   -0.0001
##    500        0.0380             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2379             nan     0.1000    0.0398
##      2        1.1642             nan     0.1000    0.0283
##      3        1.0981             nan     0.1000    0.0325
##      4        1.0438             nan     0.1000    0.0238
##      5        0.9983             nan     0.1000    0.0178
##      6        0.9545             nan     0.1000    0.0139
##      7        0.9171             nan     0.1000    0.0132
##      8        0.8861             nan     0.1000    0.0096
##      9        0.8525             nan     0.1000    0.0125
##     10        0.8252             nan     0.1000    0.0080
##     20        0.6495             nan     0.1000    0.0046
##     40        0.4886             nan     0.1000   -0.0004
##     60        0.3988             nan     0.1000   -0.0011
##     80        0.3304             nan     0.1000   -0.0014
##    100        0.2740             nan     0.1000   -0.0001
##    120        0.2298             nan     0.1000   -0.0007
##    140        0.1954             nan     0.1000   -0.0003
##    160        0.1701             nan     0.1000   -0.0011
##    180        0.1457             nan     0.1000   -0.0005
##    200        0.1260             nan     0.1000   -0.0003
##    220        0.1099             nan     0.1000   -0.0001
##    240        0.0954             nan     0.1000   -0.0002
##    260        0.0835             nan     0.1000    0.0000
##    280        0.0726             nan     0.1000   -0.0001
##    300        0.0647             nan     0.1000    0.0002
##    320        0.0568             nan     0.1000   -0.0000
##    340        0.0495             nan     0.1000   -0.0000
##    360        0.0442             nan     0.1000   -0.0001
##    380        0.0386             nan     0.1000   -0.0001
##    400        0.0344             nan     0.1000   -0.0001
##    420        0.0306             nan     0.1000    0.0000
##    440        0.0270             nan     0.1000   -0.0001
##    460        0.0237             nan     0.1000   -0.0000
##    480        0.0211             nan     0.1000    0.0000
##    500        0.0186             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2288             nan     0.1000    0.0421
##      2        1.1489             nan     0.1000    0.0369
##      3        1.0851             nan     0.1000    0.0245
##      4        1.0306             nan     0.1000    0.0224
##      5        0.9900             nan     0.1000    0.0171
##      6        0.9497             nan     0.1000    0.0173
##      7        0.9080             nan     0.1000    0.0158
##      8        0.8758             nan     0.1000    0.0115
##      9        0.8437             nan     0.1000    0.0116
##     10        0.8139             nan     0.1000    0.0118
##     20        0.6454             nan     0.1000    0.0038
##     40        0.4964             nan     0.1000    0.0002
##     60        0.4013             nan     0.1000    0.0009
##     80        0.3267             nan     0.1000   -0.0001
##    100        0.2770             nan     0.1000   -0.0010
##    120        0.2318             nan     0.1000   -0.0003
##    140        0.1973             nan     0.1000   -0.0004
##    160        0.1694             nan     0.1000   -0.0008
##    180        0.1441             nan     0.1000   -0.0001
##    200        0.1238             nan     0.1000   -0.0006
##    220        0.1066             nan     0.1000   -0.0004
##    240        0.0922             nan     0.1000   -0.0002
##    260        0.0808             nan     0.1000   -0.0003
##    280        0.0708             nan     0.1000    0.0000
##    300        0.0630             nan     0.1000   -0.0002
##    320        0.0554             nan     0.1000    0.0001
##    340        0.0489             nan     0.1000   -0.0002
##    360        0.0434             nan     0.1000   -0.0002
##    380        0.0384             nan     0.1000   -0.0001
##    400        0.0338             nan     0.1000   -0.0001
##    420        0.0297             nan     0.1000   -0.0002
##    440        0.0263             nan     0.1000   -0.0001
##    460        0.0232             nan     0.1000   -0.0002
##    480        0.0207             nan     0.1000   -0.0001
##    500        0.0184             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2273             nan     0.1000    0.0428
##      2        1.1555             nan     0.1000    0.0329
##      3        1.0949             nan     0.1000    0.0236
##      4        1.0385             nan     0.1000    0.0248
##      5        0.9936             nan     0.1000    0.0166
##      6        0.9543             nan     0.1000    0.0146
##      7        0.9211             nan     0.1000    0.0119
##      8        0.8906             nan     0.1000    0.0123
##      9        0.8556             nan     0.1000    0.0121
##     10        0.8282             nan     0.1000    0.0086
##     20        0.6629             nan     0.1000    0.0024
##     40        0.5129             nan     0.1000   -0.0026
##     60        0.4177             nan     0.1000   -0.0004
##     80        0.3508             nan     0.1000   -0.0002
##    100        0.2918             nan     0.1000   -0.0008
##    120        0.2493             nan     0.1000   -0.0005
##    140        0.2121             nan     0.1000   -0.0010
##    160        0.1817             nan     0.1000   -0.0004
##    180        0.1585             nan     0.1000   -0.0001
##    200        0.1396             nan     0.1000   -0.0006
##    220        0.1209             nan     0.1000   -0.0002
##    240        0.1056             nan     0.1000   -0.0003
##    260        0.0920             nan     0.1000   -0.0004
##    280        0.0817             nan     0.1000   -0.0002
##    300        0.0719             nan     0.1000   -0.0002
##    320        0.0637             nan     0.1000   -0.0003
##    340        0.0557             nan     0.1000   -0.0001
##    360        0.0493             nan     0.1000   -0.0002
##    380        0.0439             nan     0.1000   -0.0002
##    400        0.0394             nan     0.1000   -0.0001
##    420        0.0349             nan     0.1000   -0.0001
##    440        0.0309             nan     0.1000   -0.0001
##    460        0.0274             nan     0.1000   -0.0001
##    480        0.0241             nan     0.1000   -0.0000
##    500        0.0215             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3205             nan     0.0010    0.0003
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0003
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3155             nan     0.0010    0.0004
##      8        1.3146             nan     0.0010    0.0004
##      9        1.3138             nan     0.0010    0.0004
##     10        1.3130             nan     0.0010    0.0004
##     20        1.3054             nan     0.0010    0.0003
##     40        1.2900             nan     0.0010    0.0003
##     60        1.2755             nan     0.0010    0.0003
##     80        1.2611             nan     0.0010    0.0003
##    100        1.2469             nan     0.0010    0.0004
##    120        1.2337             nan     0.0010    0.0003
##    140        1.2211             nan     0.0010    0.0002
##    160        1.2084             nan     0.0010    0.0002
##    180        1.1962             nan     0.0010    0.0002
##    200        1.1846             nan     0.0010    0.0002
##    220        1.1730             nan     0.0010    0.0002
##    240        1.1621             nan     0.0010    0.0003
##    260        1.1512             nan     0.0010    0.0002
##    280        1.1406             nan     0.0010    0.0003
##    300        1.1302             nan     0.0010    0.0002
##    320        1.1205             nan     0.0010    0.0002
##    340        1.1110             nan     0.0010    0.0002
##    360        1.1012             nan     0.0010    0.0002
##    380        1.0921             nan     0.0010    0.0002
##    400        1.0833             nan     0.0010    0.0002
##    420        1.0746             nan     0.0010    0.0002
##    440        1.0660             nan     0.0010    0.0002
##    460        1.0575             nan     0.0010    0.0002
##    480        1.0493             nan     0.0010    0.0002
##    500        1.0413             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0003
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3189             nan     0.0010    0.0003
##      4        1.3181             nan     0.0010    0.0003
##      5        1.3174             nan     0.0010    0.0003
##      6        1.3166             nan     0.0010    0.0003
##      7        1.3158             nan     0.0010    0.0004
##      8        1.3151             nan     0.0010    0.0003
##      9        1.3143             nan     0.0010    0.0004
##     10        1.3135             nan     0.0010    0.0003
##     20        1.3059             nan     0.0010    0.0003
##     40        1.2910             nan     0.0010    0.0004
##     60        1.2758             nan     0.0010    0.0004
##     80        1.2619             nan     0.0010    0.0003
##    100        1.2480             nan     0.0010    0.0003
##    120        1.2353             nan     0.0010    0.0003
##    140        1.2223             nan     0.0010    0.0002
##    160        1.2097             nan     0.0010    0.0003
##    180        1.1975             nan     0.0010    0.0002
##    200        1.1856             nan     0.0010    0.0003
##    220        1.1743             nan     0.0010    0.0002
##    240        1.1634             nan     0.0010    0.0002
##    260        1.1528             nan     0.0010    0.0002
##    280        1.1425             nan     0.0010    0.0002
##    300        1.1322             nan     0.0010    0.0002
##    320        1.1225             nan     0.0010    0.0002
##    340        1.1128             nan     0.0010    0.0002
##    360        1.1036             nan     0.0010    0.0002
##    380        1.0945             nan     0.0010    0.0002
##    400        1.0857             nan     0.0010    0.0002
##    420        1.0769             nan     0.0010    0.0002
##    440        1.0685             nan     0.0010    0.0002
##    460        1.0602             nan     0.0010    0.0002
##    480        1.0521             nan     0.0010    0.0002
##    500        1.0441             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3197             nan     0.0010    0.0003
##      3        1.3189             nan     0.0010    0.0003
##      4        1.3181             nan     0.0010    0.0003
##      5        1.3174             nan     0.0010    0.0003
##      6        1.3166             nan     0.0010    0.0003
##      7        1.3159             nan     0.0010    0.0004
##      8        1.3152             nan     0.0010    0.0003
##      9        1.3144             nan     0.0010    0.0003
##     10        1.3137             nan     0.0010    0.0003
##     20        1.3058             nan     0.0010    0.0003
##     40        1.2906             nan     0.0010    0.0003
##     60        1.2761             nan     0.0010    0.0004
##     80        1.2617             nan     0.0010    0.0003
##    100        1.2481             nan     0.0010    0.0003
##    120        1.2344             nan     0.0010    0.0003
##    140        1.2218             nan     0.0010    0.0003
##    160        1.2094             nan     0.0010    0.0003
##    180        1.1971             nan     0.0010    0.0002
##    200        1.1855             nan     0.0010    0.0003
##    220        1.1741             nan     0.0010    0.0003
##    240        1.1629             nan     0.0010    0.0003
##    260        1.1523             nan     0.0010    0.0002
##    280        1.1421             nan     0.0010    0.0003
##    300        1.1319             nan     0.0010    0.0002
##    320        1.1221             nan     0.0010    0.0002
##    340        1.1125             nan     0.0010    0.0002
##    360        1.1028             nan     0.0010    0.0002
##    380        1.0935             nan     0.0010    0.0002
##    400        1.0845             nan     0.0010    0.0002
##    420        1.0759             nan     0.0010    0.0002
##    440        1.0677             nan     0.0010    0.0002
##    460        1.0595             nan     0.0010    0.0002
##    480        1.0515             nan     0.0010    0.0002
##    500        1.0436             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3154             nan     0.0010    0.0004
##      8        1.3146             nan     0.0010    0.0003
##      9        1.3138             nan     0.0010    0.0004
##     10        1.3129             nan     0.0010    0.0004
##     20        1.3046             nan     0.0010    0.0004
##     40        1.2885             nan     0.0010    0.0004
##     60        1.2727             nan     0.0010    0.0004
##     80        1.2578             nan     0.0010    0.0003
##    100        1.2431             nan     0.0010    0.0003
##    120        1.2291             nan     0.0010    0.0003
##    140        1.2155             nan     0.0010    0.0003
##    160        1.2022             nan     0.0010    0.0003
##    180        1.1894             nan     0.0010    0.0003
##    200        1.1768             nan     0.0010    0.0003
##    220        1.1644             nan     0.0010    0.0002
##    240        1.1526             nan     0.0010    0.0003
##    260        1.1409             nan     0.0010    0.0002
##    280        1.1296             nan     0.0010    0.0003
##    300        1.1186             nan     0.0010    0.0002
##    320        1.1081             nan     0.0010    0.0002
##    340        1.0977             nan     0.0010    0.0002
##    360        1.0877             nan     0.0010    0.0002
##    380        1.0781             nan     0.0010    0.0002
##    400        1.0686             nan     0.0010    0.0002
##    420        1.0593             nan     0.0010    0.0002
##    440        1.0501             nan     0.0010    0.0002
##    460        1.0412             nan     0.0010    0.0002
##    480        1.0327             nan     0.0010    0.0001
##    500        1.0244             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0003
##      2        1.3195             nan     0.0010    0.0003
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3046             nan     0.0010    0.0003
##     40        1.2882             nan     0.0010    0.0003
##     60        1.2725             nan     0.0010    0.0004
##     80        1.2575             nan     0.0010    0.0003
##    100        1.2429             nan     0.0010    0.0003
##    120        1.2286             nan     0.0010    0.0003
##    140        1.2151             nan     0.0010    0.0003
##    160        1.2017             nan     0.0010    0.0003
##    180        1.1889             nan     0.0010    0.0003
##    200        1.1764             nan     0.0010    0.0002
##    220        1.1647             nan     0.0010    0.0003
##    240        1.1526             nan     0.0010    0.0003
##    260        1.1410             nan     0.0010    0.0003
##    280        1.1299             nan     0.0010    0.0002
##    300        1.1190             nan     0.0010    0.0002
##    320        1.1085             nan     0.0010    0.0002
##    340        1.0985             nan     0.0010    0.0002
##    360        1.0886             nan     0.0010    0.0002
##    380        1.0791             nan     0.0010    0.0002
##    400        1.0698             nan     0.0010    0.0002
##    420        1.0606             nan     0.0010    0.0002
##    440        1.0517             nan     0.0010    0.0002
##    460        1.0430             nan     0.0010    0.0002
##    480        1.0346             nan     0.0010    0.0001
##    500        1.0266             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0003
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0004
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3046             nan     0.0010    0.0004
##     40        1.2887             nan     0.0010    0.0003
##     60        1.2732             nan     0.0010    0.0004
##     80        1.2580             nan     0.0010    0.0004
##    100        1.2435             nan     0.0010    0.0003
##    120        1.2293             nan     0.0010    0.0003
##    140        1.2157             nan     0.0010    0.0003
##    160        1.2029             nan     0.0010    0.0003
##    180        1.1903             nan     0.0010    0.0003
##    200        1.1777             nan     0.0010    0.0003
##    220        1.1654             nan     0.0010    0.0002
##    240        1.1536             nan     0.0010    0.0003
##    260        1.1422             nan     0.0010    0.0002
##    280        1.1313             nan     0.0010    0.0003
##    300        1.1205             nan     0.0010    0.0002
##    320        1.1102             nan     0.0010    0.0002
##    340        1.0999             nan     0.0010    0.0002
##    360        1.0899             nan     0.0010    0.0002
##    380        1.0801             nan     0.0010    0.0002
##    400        1.0708             nan     0.0010    0.0002
##    420        1.0616             nan     0.0010    0.0002
##    440        1.0529             nan     0.0010    0.0002
##    460        1.0444             nan     0.0010    0.0002
##    480        1.0360             nan     0.0010    0.0002
##    500        1.0277             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0005
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3130             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0004
##     40        1.2869             nan     0.0010    0.0004
##     60        1.2706             nan     0.0010    0.0003
##     80        1.2545             nan     0.0010    0.0003
##    100        1.2389             nan     0.0010    0.0003
##    120        1.2238             nan     0.0010    0.0004
##    140        1.2089             nan     0.0010    0.0003
##    160        1.1952             nan     0.0010    0.0003
##    180        1.1816             nan     0.0010    0.0003
##    200        1.1685             nan     0.0010    0.0003
##    220        1.1558             nan     0.0010    0.0003
##    240        1.1434             nan     0.0010    0.0003
##    260        1.1315             nan     0.0010    0.0002
##    280        1.1198             nan     0.0010    0.0003
##    300        1.1085             nan     0.0010    0.0003
##    320        1.0976             nan     0.0010    0.0002
##    340        1.0867             nan     0.0010    0.0002
##    360        1.0760             nan     0.0010    0.0002
##    380        1.0659             nan     0.0010    0.0002
##    400        1.0561             nan     0.0010    0.0002
##    420        1.0468             nan     0.0010    0.0002
##    440        1.0373             nan     0.0010    0.0002
##    460        1.0282             nan     0.0010    0.0002
##    480        1.0192             nan     0.0010    0.0002
##    500        1.0105             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0003
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2863             nan     0.0010    0.0003
##     60        1.2702             nan     0.0010    0.0003
##     80        1.2543             nan     0.0010    0.0004
##    100        1.2393             nan     0.0010    0.0004
##    120        1.2247             nan     0.0010    0.0003
##    140        1.2104             nan     0.0010    0.0003
##    160        1.1966             nan     0.0010    0.0003
##    180        1.1830             nan     0.0010    0.0003
##    200        1.1703             nan     0.0010    0.0003
##    220        1.1575             nan     0.0010    0.0002
##    240        1.1454             nan     0.0010    0.0002
##    260        1.1334             nan     0.0010    0.0002
##    280        1.1220             nan     0.0010    0.0003
##    300        1.1107             nan     0.0010    0.0003
##    320        1.0998             nan     0.0010    0.0002
##    340        1.0890             nan     0.0010    0.0002
##    360        1.0785             nan     0.0010    0.0002
##    380        1.0683             nan     0.0010    0.0002
##    400        1.0586             nan     0.0010    0.0002
##    420        1.0492             nan     0.0010    0.0002
##    440        1.0397             nan     0.0010    0.0002
##    460        1.0305             nan     0.0010    0.0002
##    480        1.0216             nan     0.0010    0.0002
##    500        1.0128             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3125             nan     0.0010    0.0004
##     20        1.3038             nan     0.0010    0.0004
##     40        1.2872             nan     0.0010    0.0004
##     60        1.2712             nan     0.0010    0.0004
##     80        1.2555             nan     0.0010    0.0003
##    100        1.2407             nan     0.0010    0.0003
##    120        1.2259             nan     0.0010    0.0003
##    140        1.2119             nan     0.0010    0.0003
##    160        1.1977             nan     0.0010    0.0003
##    180        1.1847             nan     0.0010    0.0003
##    200        1.1715             nan     0.0010    0.0003
##    220        1.1592             nan     0.0010    0.0003
##    240        1.1470             nan     0.0010    0.0002
##    260        1.1352             nan     0.0010    0.0003
##    280        1.1236             nan     0.0010    0.0002
##    300        1.1124             nan     0.0010    0.0003
##    320        1.1015             nan     0.0010    0.0002
##    340        1.0910             nan     0.0010    0.0002
##    360        1.0805             nan     0.0010    0.0002
##    380        1.0705             nan     0.0010    0.0002
##    400        1.0608             nan     0.0010    0.0002
##    420        1.0512             nan     0.0010    0.0002
##    440        1.0421             nan     0.0010    0.0002
##    460        1.0332             nan     0.0010    0.0002
##    480        1.0245             nan     0.0010    0.0002
##    500        1.0158             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3128             nan     0.0100    0.0038
##      2        1.3059             nan     0.0100    0.0032
##      3        1.2981             nan     0.0100    0.0034
##      4        1.2908             nan     0.0100    0.0033
##      5        1.2839             nan     0.0100    0.0028
##      6        1.2776             nan     0.0100    0.0028
##      7        1.2700             nan     0.0100    0.0034
##      8        1.2632             nan     0.0100    0.0029
##      9        1.2557             nan     0.0100    0.0034
##     10        1.2492             nan     0.0100    0.0029
##     20        1.1862             nan     0.0100    0.0023
##     40        1.0848             nan     0.0100    0.0017
##     60        1.0071             nan     0.0100    0.0014
##     80        0.9464             nan     0.0100    0.0013
##    100        0.8968             nan     0.0100    0.0008
##    120        0.8567             nan     0.0100    0.0007
##    140        0.8218             nan     0.0100    0.0005
##    160        0.7931             nan     0.0100    0.0001
##    180        0.7674             nan     0.0100    0.0002
##    200        0.7446             nan     0.0100    0.0004
##    220        0.7246             nan     0.0100    0.0002
##    240        0.7085             nan     0.0100    0.0002
##    260        0.6920             nan     0.0100    0.0002
##    280        0.6777             nan     0.0100   -0.0000
##    300        0.6643             nan     0.0100   -0.0000
##    320        0.6515             nan     0.0100    0.0000
##    340        0.6403             nan     0.0100    0.0000
##    360        0.6281             nan     0.0100    0.0000
##    380        0.6168             nan     0.0100    0.0001
##    400        0.6059             nan     0.0100   -0.0001
##    420        0.5968             nan     0.0100    0.0000
##    440        0.5873             nan     0.0100    0.0000
##    460        0.5785             nan     0.0100    0.0000
##    480        0.5693             nan     0.0100   -0.0000
##    500        0.5602             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3133             nan     0.0100    0.0038
##      2        1.3045             nan     0.0100    0.0036
##      3        1.2971             nan     0.0100    0.0031
##      4        1.2903             nan     0.0100    0.0030
##      5        1.2839             nan     0.0100    0.0024
##      6        1.2766             nan     0.0100    0.0034
##      7        1.2695             nan     0.0100    0.0034
##      8        1.2625             nan     0.0100    0.0033
##      9        1.2548             nan     0.0100    0.0034
##     10        1.2484             nan     0.0100    0.0030
##     20        1.1850             nan     0.0100    0.0024
##     40        1.0839             nan     0.0100    0.0019
##     60        1.0052             nan     0.0100    0.0017
##     80        0.9431             nan     0.0100    0.0010
##    100        0.8931             nan     0.0100    0.0011
##    120        0.8510             nan     0.0100    0.0007
##    140        0.8172             nan     0.0100    0.0004
##    160        0.7894             nan     0.0100    0.0002
##    180        0.7651             nan     0.0100    0.0005
##    200        0.7446             nan     0.0100    0.0001
##    220        0.7253             nan     0.0100    0.0003
##    240        0.7077             nan     0.0100    0.0001
##    260        0.6922             nan     0.0100    0.0001
##    280        0.6770             nan     0.0100    0.0001
##    300        0.6634             nan     0.0100    0.0000
##    320        0.6516             nan     0.0100   -0.0001
##    340        0.6397             nan     0.0100   -0.0000
##    360        0.6292             nan     0.0100   -0.0000
##    380        0.6181             nan     0.0100    0.0001
##    400        0.6079             nan     0.0100   -0.0003
##    420        0.5974             nan     0.0100   -0.0001
##    440        0.5887             nan     0.0100    0.0001
##    460        0.5796             nan     0.0100   -0.0001
##    480        0.5713             nan     0.0100    0.0001
##    500        0.5632             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3134             nan     0.0100    0.0038
##      2        1.3050             nan     0.0100    0.0037
##      3        1.2972             nan     0.0100    0.0035
##      4        1.2903             nan     0.0100    0.0031
##      5        1.2829             nan     0.0100    0.0035
##      6        1.2757             nan     0.0100    0.0035
##      7        1.2682             nan     0.0100    0.0034
##      8        1.2609             nan     0.0100    0.0031
##      9        1.2540             nan     0.0100    0.0030
##     10        1.2469             nan     0.0100    0.0032
##     20        1.1855             nan     0.0100    0.0025
##     40        1.0839             nan     0.0100    0.0019
##     60        1.0086             nan     0.0100    0.0015
##     80        0.9482             nan     0.0100    0.0012
##    100        0.9001             nan     0.0100    0.0008
##    120        0.8588             nan     0.0100    0.0008
##    140        0.8246             nan     0.0100    0.0005
##    160        0.7976             nan     0.0100    0.0003
##    180        0.7735             nan     0.0100    0.0003
##    200        0.7512             nan     0.0100    0.0003
##    220        0.7317             nan     0.0100    0.0002
##    240        0.7149             nan     0.0100    0.0002
##    260        0.6993             nan     0.0100    0.0000
##    280        0.6845             nan     0.0100    0.0000
##    300        0.6725             nan     0.0100    0.0001
##    320        0.6602             nan     0.0100    0.0001
##    340        0.6495             nan     0.0100    0.0001
##    360        0.6386             nan     0.0100    0.0001
##    380        0.6292             nan     0.0100    0.0001
##    400        0.6188             nan     0.0100    0.0001
##    420        0.6094             nan     0.0100   -0.0002
##    440        0.6006             nan     0.0100   -0.0001
##    460        0.5920             nan     0.0100    0.0000
##    480        0.5836             nan     0.0100   -0.0000
##    500        0.5758             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0038
##      2        1.3037             nan     0.0100    0.0039
##      3        1.2955             nan     0.0100    0.0040
##      4        1.2875             nan     0.0100    0.0037
##      5        1.2793             nan     0.0100    0.0038
##      6        1.2712             nan     0.0100    0.0034
##      7        1.2636             nan     0.0100    0.0032
##      8        1.2557             nan     0.0100    0.0036
##      9        1.2484             nan     0.0100    0.0034
##     10        1.2409             nan     0.0100    0.0033
##     20        1.1745             nan     0.0100    0.0028
##     40        1.0678             nan     0.0100    0.0020
##     60        0.9852             nan     0.0100    0.0013
##     80        0.9193             nan     0.0100    0.0012
##    100        0.8652             nan     0.0100    0.0009
##    120        0.8243             nan     0.0100    0.0006
##    140        0.7875             nan     0.0100    0.0006
##    160        0.7571             nan     0.0100    0.0005
##    180        0.7311             nan     0.0100    0.0003
##    200        0.7057             nan     0.0100    0.0002
##    220        0.6846             nan     0.0100    0.0000
##    240        0.6667             nan     0.0100    0.0002
##    260        0.6490             nan     0.0100   -0.0001
##    280        0.6348             nan     0.0100    0.0001
##    300        0.6196             nan     0.0100    0.0001
##    320        0.6046             nan     0.0100   -0.0002
##    340        0.5912             nan     0.0100    0.0000
##    360        0.5782             nan     0.0100   -0.0001
##    380        0.5663             nan     0.0100   -0.0001
##    400        0.5540             nan     0.0100   -0.0001
##    420        0.5415             nan     0.0100    0.0000
##    440        0.5306             nan     0.0100    0.0000
##    460        0.5202             nan     0.0100    0.0000
##    480        0.5108             nan     0.0100   -0.0001
##    500        0.5007             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0040
##      2        1.3034             nan     0.0100    0.0039
##      3        1.2955             nan     0.0100    0.0033
##      4        1.2881             nan     0.0100    0.0034
##      5        1.2806             nan     0.0100    0.0035
##      6        1.2728             nan     0.0100    0.0032
##      7        1.2655             nan     0.0100    0.0032
##      8        1.2582             nan     0.0100    0.0031
##      9        1.2504             nan     0.0100    0.0032
##     10        1.2430             nan     0.0100    0.0034
##     20        1.1770             nan     0.0100    0.0025
##     40        1.0716             nan     0.0100    0.0018
##     60        0.9892             nan     0.0100    0.0016
##     80        0.9247             nan     0.0100    0.0013
##    100        0.8732             nan     0.0100    0.0006
##    120        0.8312             nan     0.0100    0.0007
##    140        0.7950             nan     0.0100    0.0006
##    160        0.7641             nan     0.0100    0.0001
##    180        0.7369             nan     0.0100    0.0005
##    200        0.7130             nan     0.0100    0.0001
##    220        0.6921             nan     0.0100    0.0002
##    240        0.6729             nan     0.0100    0.0002
##    260        0.6563             nan     0.0100    0.0001
##    280        0.6414             nan     0.0100    0.0001
##    300        0.6254             nan     0.0100    0.0001
##    320        0.6109             nan     0.0100   -0.0001
##    340        0.5981             nan     0.0100    0.0002
##    360        0.5851             nan     0.0100   -0.0001
##    380        0.5743             nan     0.0100    0.0001
##    400        0.5628             nan     0.0100   -0.0001
##    420        0.5523             nan     0.0100    0.0001
##    440        0.5417             nan     0.0100   -0.0001
##    460        0.5314             nan     0.0100   -0.0000
##    480        0.5224             nan     0.0100    0.0001
##    500        0.5118             nan     0.0100   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3128             nan     0.0100    0.0041
##      2        1.3052             nan     0.0100    0.0038
##      3        1.2974             nan     0.0100    0.0035
##      4        1.2895             nan     0.0100    0.0036
##      5        1.2815             nan     0.0100    0.0036
##      6        1.2736             nan     0.0100    0.0038
##      7        1.2657             nan     0.0100    0.0037
##      8        1.2589             nan     0.0100    0.0032
##      9        1.2510             nan     0.0100    0.0035
##     10        1.2442             nan     0.0100    0.0028
##     20        1.1779             nan     0.0100    0.0029
##     40        1.0712             nan     0.0100    0.0022
##     60        0.9899             nan     0.0100    0.0012
##     80        0.9283             nan     0.0100    0.0012
##    100        0.8787             nan     0.0100    0.0008
##    120        0.8359             nan     0.0100    0.0007
##    140        0.8008             nan     0.0100    0.0005
##    160        0.7711             nan     0.0100    0.0002
##    180        0.7451             nan     0.0100    0.0002
##    200        0.7209             nan     0.0100    0.0001
##    220        0.6999             nan     0.0100    0.0002
##    240        0.6811             nan     0.0100    0.0001
##    260        0.6637             nan     0.0100    0.0003
##    280        0.6485             nan     0.0100    0.0001
##    300        0.6342             nan     0.0100    0.0001
##    320        0.6199             nan     0.0100    0.0000
##    340        0.6070             nan     0.0100   -0.0001
##    360        0.5946             nan     0.0100    0.0000
##    380        0.5827             nan     0.0100   -0.0001
##    400        0.5725             nan     0.0100   -0.0000
##    420        0.5617             nan     0.0100   -0.0001
##    440        0.5512             nan     0.0100    0.0000
##    460        0.5413             nan     0.0100   -0.0002
##    480        0.5318             nan     0.0100   -0.0001
##    500        0.5227             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0038
##      2        1.3035             nan     0.0100    0.0041
##      3        1.2945             nan     0.0100    0.0043
##      4        1.2857             nan     0.0100    0.0038
##      5        1.2776             nan     0.0100    0.0037
##      6        1.2696             nan     0.0100    0.0037
##      7        1.2618             nan     0.0100    0.0032
##      8        1.2545             nan     0.0100    0.0034
##      9        1.2466             nan     0.0100    0.0038
##     10        1.2393             nan     0.0100    0.0031
##     20        1.1703             nan     0.0100    0.0029
##     40        1.0568             nan     0.0100    0.0025
##     60        0.9682             nan     0.0100    0.0017
##     80        0.9012             nan     0.0100    0.0012
##    100        0.8445             nan     0.0100    0.0011
##    120        0.7997             nan     0.0100    0.0007
##    140        0.7602             nan     0.0100    0.0004
##    160        0.7270             nan     0.0100    0.0004
##    180        0.7005             nan     0.0100    0.0003
##    200        0.6745             nan     0.0100    0.0003
##    220        0.6525             nan     0.0100    0.0004
##    240        0.6311             nan     0.0100    0.0000
##    260        0.6117             nan     0.0100    0.0003
##    280        0.5935             nan     0.0100    0.0001
##    300        0.5765             nan     0.0100   -0.0000
##    320        0.5615             nan     0.0100    0.0001
##    340        0.5463             nan     0.0100   -0.0001
##    360        0.5329             nan     0.0100    0.0000
##    380        0.5206             nan     0.0100   -0.0001
##    400        0.5075             nan     0.0100    0.0002
##    420        0.4956             nan     0.0100   -0.0001
##    440        0.4844             nan     0.0100   -0.0000
##    460        0.4732             nan     0.0100    0.0001
##    480        0.4637             nan     0.0100   -0.0000
##    500        0.4531             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0037
##      2        1.3039             nan     0.0100    0.0034
##      3        1.2956             nan     0.0100    0.0034
##      4        1.2873             nan     0.0100    0.0038
##      5        1.2791             nan     0.0100    0.0036
##      6        1.2705             nan     0.0100    0.0038
##      7        1.2624             nan     0.0100    0.0035
##      8        1.2542             nan     0.0100    0.0034
##      9        1.2470             nan     0.0100    0.0032
##     10        1.2389             nan     0.0100    0.0034
##     20        1.1665             nan     0.0100    0.0030
##     40        1.0568             nan     0.0100    0.0022
##     60        0.9711             nan     0.0100    0.0015
##     80        0.9028             nan     0.0100    0.0011
##    100        0.8483             nan     0.0100    0.0008
##    120        0.8049             nan     0.0100    0.0006
##    140        0.7676             nan     0.0100    0.0003
##    160        0.7343             nan     0.0100    0.0004
##    180        0.7082             nan     0.0100    0.0003
##    200        0.6841             nan     0.0100    0.0002
##    220        0.6621             nan     0.0100    0.0001
##    240        0.6396             nan     0.0100    0.0001
##    260        0.6217             nan     0.0100   -0.0000
##    280        0.6040             nan     0.0100    0.0001
##    300        0.5890             nan     0.0100    0.0001
##    320        0.5740             nan     0.0100    0.0001
##    340        0.5605             nan     0.0100    0.0000
##    360        0.5463             nan     0.0100    0.0000
##    380        0.5340             nan     0.0100   -0.0001
##    400        0.5212             nan     0.0100    0.0001
##    420        0.5089             nan     0.0100   -0.0002
##    440        0.4971             nan     0.0100   -0.0001
##    460        0.4865             nan     0.0100   -0.0000
##    480        0.4766             nan     0.0100    0.0001
##    500        0.4663             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0040
##      2        1.3037             nan     0.0100    0.0036
##      3        1.2951             nan     0.0100    0.0038
##      4        1.2873             nan     0.0100    0.0031
##      5        1.2791             nan     0.0100    0.0035
##      6        1.2716             nan     0.0100    0.0035
##      7        1.2639             nan     0.0100    0.0037
##      8        1.2559             nan     0.0100    0.0038
##      9        1.2481             nan     0.0100    0.0036
##     10        1.2416             nan     0.0100    0.0027
##     20        1.1728             nan     0.0100    0.0026
##     40        1.0639             nan     0.0100    0.0022
##     60        0.9786             nan     0.0100    0.0013
##     80        0.9100             nan     0.0100    0.0013
##    100        0.8574             nan     0.0100    0.0009
##    120        0.8130             nan     0.0100    0.0007
##    140        0.7756             nan     0.0100    0.0006
##    160        0.7422             nan     0.0100    0.0006
##    180        0.7144             nan     0.0100    0.0002
##    200        0.6896             nan     0.0100    0.0002
##    220        0.6685             nan     0.0100    0.0001
##    240        0.6479             nan     0.0100    0.0004
##    260        0.6289             nan     0.0100    0.0000
##    280        0.6115             nan     0.0100    0.0000
##    300        0.5955             nan     0.0100    0.0001
##    320        0.5814             nan     0.0100   -0.0001
##    340        0.5675             nan     0.0100   -0.0001
##    360        0.5544             nan     0.0100   -0.0001
##    380        0.5412             nan     0.0100   -0.0001
##    400        0.5304             nan     0.0100   -0.0001
##    420        0.5192             nan     0.0100    0.0001
##    440        0.5083             nan     0.0100    0.0001
##    460        0.4986             nan     0.0100   -0.0002
##    480        0.4886             nan     0.0100   -0.0000
##    500        0.4794             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2466             nan     0.1000    0.0341
##      2        1.1851             nan     0.1000    0.0261
##      3        1.1371             nan     0.1000    0.0178
##      4        1.0881             nan     0.1000    0.0224
##      5        1.0454             nan     0.1000    0.0202
##      6        1.0081             nan     0.1000    0.0161
##      7        0.9755             nan     0.1000    0.0140
##      8        0.9444             nan     0.1000    0.0119
##      9        0.9206             nan     0.1000    0.0103
##     10        0.8935             nan     0.1000    0.0095
##     20        0.7499             nan     0.1000    0.0007
##     40        0.6096             nan     0.1000    0.0015
##     60        0.5238             nan     0.1000    0.0001
##     80        0.4565             nan     0.1000   -0.0006
##    100        0.4006             nan     0.1000   -0.0015
##    120        0.3560             nan     0.1000   -0.0008
##    140        0.3207             nan     0.1000   -0.0011
##    160        0.2900             nan     0.1000   -0.0002
##    180        0.2647             nan     0.1000   -0.0007
##    200        0.2404             nan     0.1000    0.0000
##    220        0.2179             nan     0.1000    0.0004
##    240        0.1978             nan     0.1000   -0.0004
##    260        0.1794             nan     0.1000   -0.0002
##    280        0.1641             nan     0.1000   -0.0006
##    300        0.1487             nan     0.1000   -0.0003
##    320        0.1338             nan     0.1000   -0.0001
##    340        0.1224             nan     0.1000   -0.0003
##    360        0.1124             nan     0.1000   -0.0003
##    380        0.1032             nan     0.1000   -0.0002
##    400        0.0948             nan     0.1000   -0.0000
##    420        0.0876             nan     0.1000   -0.0001
##    440        0.0810             nan     0.1000   -0.0002
##    460        0.0750             nan     0.1000   -0.0001
##    480        0.0697             nan     0.1000   -0.0002
##    500        0.0646             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2457             nan     0.1000    0.0316
##      2        1.1830             nan     0.1000    0.0266
##      3        1.1296             nan     0.1000    0.0240
##      4        1.0807             nan     0.1000    0.0174
##      5        1.0444             nan     0.1000    0.0180
##      6        1.0097             nan     0.1000    0.0120
##      7        0.9782             nan     0.1000    0.0127
##      8        0.9470             nan     0.1000    0.0109
##      9        0.9241             nan     0.1000    0.0099
##     10        0.8993             nan     0.1000    0.0084
##     20        0.7491             nan     0.1000    0.0003
##     40        0.6209             nan     0.1000   -0.0009
##     60        0.5344             nan     0.1000   -0.0001
##     80        0.4732             nan     0.1000   -0.0002
##    100        0.4241             nan     0.1000   -0.0019
##    120        0.3775             nan     0.1000   -0.0005
##    140        0.3362             nan     0.1000   -0.0004
##    160        0.2996             nan     0.1000   -0.0004
##    180        0.2694             nan     0.1000   -0.0002
##    200        0.2450             nan     0.1000   -0.0009
##    220        0.2198             nan     0.1000    0.0002
##    240        0.1993             nan     0.1000   -0.0008
##    260        0.1823             nan     0.1000   -0.0007
##    280        0.1681             nan     0.1000   -0.0006
##    300        0.1545             nan     0.1000   -0.0005
##    320        0.1432             nan     0.1000   -0.0005
##    340        0.1315             nan     0.1000   -0.0003
##    360        0.1211             nan     0.1000   -0.0004
##    380        0.1116             nan     0.1000   -0.0005
##    400        0.1029             nan     0.1000   -0.0003
##    420        0.0955             nan     0.1000   -0.0003
##    440        0.0886             nan     0.1000   -0.0002
##    460        0.0827             nan     0.1000   -0.0002
##    480        0.0761             nan     0.1000   -0.0001
##    500        0.0703             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2498             nan     0.1000    0.0301
##      2        1.1844             nan     0.1000    0.0287
##      3        1.1393             nan     0.1000    0.0164
##      4        1.0858             nan     0.1000    0.0251
##      5        1.0491             nan     0.1000    0.0147
##      6        1.0090             nan     0.1000    0.0157
##      7        0.9732             nan     0.1000    0.0146
##      8        0.9430             nan     0.1000    0.0125
##      9        0.9198             nan     0.1000    0.0078
##     10        0.8973             nan     0.1000    0.0091
##     20        0.7612             nan     0.1000   -0.0007
##     40        0.6302             nan     0.1000   -0.0000
##     60        0.5407             nan     0.1000   -0.0002
##     80        0.4783             nan     0.1000    0.0000
##    100        0.4218             nan     0.1000   -0.0010
##    120        0.3789             nan     0.1000   -0.0011
##    140        0.3393             nan     0.1000   -0.0007
##    160        0.3048             nan     0.1000   -0.0010
##    180        0.2789             nan     0.1000   -0.0014
##    200        0.2567             nan     0.1000   -0.0006
##    220        0.2373             nan     0.1000   -0.0010
##    240        0.2165             nan     0.1000   -0.0006
##    260        0.1981             nan     0.1000   -0.0009
##    280        0.1805             nan     0.1000   -0.0003
##    300        0.1658             nan     0.1000   -0.0005
##    320        0.1527             nan     0.1000    0.0000
##    340        0.1407             nan     0.1000   -0.0004
##    360        0.1301             nan     0.1000   -0.0003
##    380        0.1196             nan     0.1000   -0.0004
##    400        0.1100             nan     0.1000   -0.0002
##    420        0.1015             nan     0.1000   -0.0002
##    440        0.0933             nan     0.1000   -0.0002
##    460        0.0864             nan     0.1000   -0.0003
##    480        0.0799             nan     0.1000   -0.0002
##    500        0.0740             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2460             nan     0.1000    0.0314
##      2        1.1746             nan     0.1000    0.0307
##      3        1.1172             nan     0.1000    0.0226
##      4        1.0678             nan     0.1000    0.0215
##      5        1.0243             nan     0.1000    0.0196
##      6        0.9826             nan     0.1000    0.0169
##      7        0.9441             nan     0.1000    0.0144
##      8        0.9181             nan     0.1000    0.0092
##      9        0.8907             nan     0.1000    0.0096
##     10        0.8694             nan     0.1000    0.0071
##     20        0.7170             nan     0.1000    0.0027
##     40        0.5588             nan     0.1000   -0.0020
##     60        0.4697             nan     0.1000   -0.0002
##     80        0.3926             nan     0.1000    0.0002
##    100        0.3378             nan     0.1000   -0.0012
##    120        0.2923             nan     0.1000   -0.0004
##    140        0.2523             nan     0.1000   -0.0001
##    160        0.2209             nan     0.1000    0.0002
##    180        0.1964             nan     0.1000   -0.0004
##    200        0.1738             nan     0.1000   -0.0004
##    220        0.1548             nan     0.1000   -0.0005
##    240        0.1370             nan     0.1000   -0.0003
##    260        0.1208             nan     0.1000   -0.0001
##    280        0.1083             nan     0.1000   -0.0001
##    300        0.0981             nan     0.1000   -0.0004
##    320        0.0883             nan     0.1000   -0.0004
##    340        0.0794             nan     0.1000   -0.0003
##    360        0.0713             nan     0.1000   -0.0001
##    380        0.0649             nan     0.1000   -0.0003
##    400        0.0597             nan     0.1000   -0.0000
##    420        0.0546             nan     0.1000   -0.0002
##    440        0.0497             nan     0.1000   -0.0002
##    460        0.0452             nan     0.1000   -0.0001
##    480        0.0408             nan     0.1000   -0.0001
##    500        0.0369             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2452             nan     0.1000    0.0345
##      2        1.1755             nan     0.1000    0.0311
##      3        1.1188             nan     0.1000    0.0223
##      4        1.0779             nan     0.1000    0.0189
##      5        1.0334             nan     0.1000    0.0207
##      6        0.9928             nan     0.1000    0.0171
##      7        0.9565             nan     0.1000    0.0156
##      8        0.9266             nan     0.1000    0.0111
##      9        0.8946             nan     0.1000    0.0110
##     10        0.8696             nan     0.1000    0.0079
##     20        0.7127             nan     0.1000    0.0009
##     40        0.5664             nan     0.1000    0.0002
##     60        0.4744             nan     0.1000   -0.0013
##     80        0.4055             nan     0.1000   -0.0001
##    100        0.3510             nan     0.1000   -0.0000
##    120        0.3077             nan     0.1000   -0.0007
##    140        0.2696             nan     0.1000   -0.0003
##    160        0.2345             nan     0.1000   -0.0010
##    180        0.2083             nan     0.1000   -0.0006
##    200        0.1852             nan     0.1000   -0.0007
##    220        0.1661             nan     0.1000   -0.0012
##    240        0.1484             nan     0.1000   -0.0005
##    260        0.1336             nan     0.1000   -0.0004
##    280        0.1188             nan     0.1000   -0.0002
##    300        0.1080             nan     0.1000   -0.0003
##    320        0.0970             nan     0.1000   -0.0001
##    340        0.0881             nan     0.1000   -0.0004
##    360        0.0787             nan     0.1000    0.0000
##    380        0.0709             nan     0.1000   -0.0003
##    400        0.0642             nan     0.1000   -0.0000
##    420        0.0582             nan     0.1000   -0.0001
##    440        0.0526             nan     0.1000   -0.0000
##    460        0.0475             nan     0.1000   -0.0001
##    480        0.0433             nan     0.1000   -0.0001
##    500        0.0390             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2384             nan     0.1000    0.0374
##      2        1.1670             nan     0.1000    0.0269
##      3        1.1085             nan     0.1000    0.0227
##      4        1.0553             nan     0.1000    0.0222
##      5        1.0126             nan     0.1000    0.0172
##      6        0.9778             nan     0.1000    0.0154
##      7        0.9428             nan     0.1000    0.0126
##      8        0.9125             nan     0.1000    0.0111
##      9        0.8877             nan     0.1000    0.0097
##     10        0.8667             nan     0.1000    0.0061
##     20        0.7228             nan     0.1000    0.0027
##     40        0.5806             nan     0.1000   -0.0006
##     60        0.4966             nan     0.1000   -0.0021
##     80        0.4272             nan     0.1000   -0.0008
##    100        0.3699             nan     0.1000   -0.0017
##    120        0.3246             nan     0.1000   -0.0004
##    140        0.2824             nan     0.1000   -0.0006
##    160        0.2525             nan     0.1000   -0.0008
##    180        0.2239             nan     0.1000   -0.0007
##    200        0.2012             nan     0.1000   -0.0009
##    220        0.1792             nan     0.1000   -0.0005
##    240        0.1591             nan     0.1000   -0.0001
##    260        0.1421             nan     0.1000   -0.0007
##    280        0.1279             nan     0.1000   -0.0004
##    300        0.1145             nan     0.1000   -0.0007
##    320        0.1028             nan     0.1000   -0.0004
##    340        0.0920             nan     0.1000   -0.0003
##    360        0.0839             nan     0.1000   -0.0004
##    380        0.0769             nan     0.1000   -0.0003
##    400        0.0699             nan     0.1000   -0.0003
##    420        0.0637             nan     0.1000   -0.0004
##    440        0.0576             nan     0.1000   -0.0003
##    460        0.0527             nan     0.1000   -0.0000
##    480        0.0479             nan     0.1000   -0.0003
##    500        0.0438             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2361             nan     0.1000    0.0401
##      2        1.1665             nan     0.1000    0.0298
##      3        1.1087             nan     0.1000    0.0203
##      4        1.0538             nan     0.1000    0.0207
##      5        1.0068             nan     0.1000    0.0184
##      6        0.9611             nan     0.1000    0.0165
##      7        0.9291             nan     0.1000    0.0108
##      8        0.8982             nan     0.1000    0.0118
##      9        0.8722             nan     0.1000    0.0076
##     10        0.8465             nan     0.1000    0.0088
##     20        0.6692             nan     0.1000    0.0036
##     40        0.5076             nan     0.1000    0.0012
##     60        0.4065             nan     0.1000    0.0001
##     80        0.3323             nan     0.1000   -0.0002
##    100        0.2780             nan     0.1000   -0.0005
##    120        0.2296             nan     0.1000   -0.0002
##    140        0.1962             nan     0.1000   -0.0005
##    160        0.1701             nan     0.1000   -0.0001
##    180        0.1474             nan     0.1000   -0.0005
##    200        0.1276             nan     0.1000   -0.0003
##    220        0.1111             nan     0.1000    0.0002
##    240        0.0975             nan     0.1000   -0.0002
##    260        0.0852             nan     0.1000   -0.0002
##    280        0.0754             nan     0.1000   -0.0001
##    300        0.0661             nan     0.1000   -0.0002
##    320        0.0586             nan     0.1000   -0.0003
##    340        0.0520             nan     0.1000   -0.0002
##    360        0.0461             nan     0.1000   -0.0002
##    380        0.0408             nan     0.1000   -0.0002
##    400        0.0367             nan     0.1000   -0.0001
##    420        0.0324             nan     0.1000   -0.0001
##    440        0.0286             nan     0.1000   -0.0000
##    460        0.0255             nan     0.1000   -0.0001
##    480        0.0227             nan     0.1000   -0.0000
##    500        0.0202             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2361             nan     0.1000    0.0369
##      2        1.1675             nan     0.1000    0.0286
##      3        1.1065             nan     0.1000    0.0263
##      4        1.0605             nan     0.1000    0.0192
##      5        1.0169             nan     0.1000    0.0199
##      6        0.9747             nan     0.1000    0.0176
##      7        0.9404             nan     0.1000    0.0130
##      8        0.9103             nan     0.1000    0.0105
##      9        0.8796             nan     0.1000    0.0120
##     10        0.8524             nan     0.1000    0.0091
##     20        0.6867             nan     0.1000    0.0006
##     40        0.5318             nan     0.1000   -0.0024
##     60        0.4401             nan     0.1000   -0.0014
##     80        0.3595             nan     0.1000   -0.0005
##    100        0.3075             nan     0.1000   -0.0005
##    120        0.2630             nan     0.1000   -0.0008
##    140        0.2268             nan     0.1000   -0.0017
##    160        0.1960             nan     0.1000   -0.0004
##    180        0.1690             nan     0.1000   -0.0005
##    200        0.1475             nan     0.1000   -0.0007
##    220        0.1267             nan     0.1000   -0.0006
##    240        0.1100             nan     0.1000   -0.0003
##    260        0.0964             nan     0.1000   -0.0004
##    280        0.0844             nan     0.1000   -0.0006
##    300        0.0737             nan     0.1000   -0.0002
##    320        0.0651             nan     0.1000   -0.0002
##    340        0.0571             nan     0.1000   -0.0001
##    360        0.0504             nan     0.1000   -0.0002
##    380        0.0443             nan     0.1000   -0.0000
##    400        0.0393             nan     0.1000   -0.0001
##    420        0.0354             nan     0.1000   -0.0001
##    440        0.0315             nan     0.1000   -0.0001
##    460        0.0279             nan     0.1000   -0.0000
##    480        0.0251             nan     0.1000   -0.0001
##    500        0.0224             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2285             nan     0.1000    0.0381
##      2        1.1627             nan     0.1000    0.0329
##      3        1.1049             nan     0.1000    0.0245
##      4        1.0575             nan     0.1000    0.0187
##      5        1.0143             nan     0.1000    0.0190
##      6        0.9759             nan     0.1000    0.0167
##      7        0.9405             nan     0.1000    0.0135
##      8        0.9080             nan     0.1000    0.0151
##      9        0.8802             nan     0.1000    0.0088
##     10        0.8533             nan     0.1000    0.0118
##     20        0.6891             nan     0.1000    0.0027
##     40        0.5265             nan     0.1000   -0.0007
##     60        0.4257             nan     0.1000   -0.0006
##     80        0.3565             nan     0.1000   -0.0001
##    100        0.2999             nan     0.1000   -0.0014
##    120        0.2534             nan     0.1000   -0.0005
##    140        0.2190             nan     0.1000   -0.0002
##    160        0.1902             nan     0.1000   -0.0009
##    180        0.1665             nan     0.1000   -0.0006
##    200        0.1451             nan     0.1000   -0.0004
##    220        0.1278             nan     0.1000   -0.0002
##    240        0.1124             nan     0.1000   -0.0002
##    260        0.1000             nan     0.1000   -0.0006
##    280        0.0870             nan     0.1000   -0.0005
##    300        0.0782             nan     0.1000   -0.0003
##    320        0.0698             nan     0.1000   -0.0004
##    340        0.0623             nan     0.1000   -0.0001
##    360        0.0554             nan     0.1000   -0.0003
##    380        0.0495             nan     0.1000   -0.0003
##    400        0.0437             nan     0.1000   -0.0002
##    420        0.0390             nan     0.1000   -0.0001
##    440        0.0345             nan     0.1000   -0.0001
##    460        0.0304             nan     0.1000   -0.0001
##    480        0.0269             nan     0.1000   -0.0001
##    500        0.0242             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0005
##      4        1.3179             nan     0.0010    0.0003
##      5        1.3171             nan     0.0010    0.0004
##      6        1.3163             nan     0.0010    0.0003
##      7        1.3155             nan     0.0010    0.0004
##      8        1.3147             nan     0.0010    0.0004
##      9        1.3138             nan     0.0010    0.0004
##     10        1.3130             nan     0.0010    0.0004
##     20        1.3050             nan     0.0010    0.0003
##     40        1.2891             nan     0.0010    0.0004
##     60        1.2738             nan     0.0010    0.0003
##     80        1.2587             nan     0.0010    0.0003
##    100        1.2442             nan     0.0010    0.0004
##    120        1.2304             nan     0.0010    0.0003
##    140        1.2170             nan     0.0010    0.0003
##    160        1.2037             nan     0.0010    0.0003
##    180        1.1911             nan     0.0010    0.0003
##    200        1.1787             nan     0.0010    0.0003
##    220        1.1667             nan     0.0010    0.0003
##    240        1.1552             nan     0.0010    0.0002
##    260        1.1441             nan     0.0010    0.0002
##    280        1.1331             nan     0.0010    0.0003
##    300        1.1224             nan     0.0010    0.0002
##    320        1.1119             nan     0.0010    0.0002
##    340        1.1017             nan     0.0010    0.0002
##    360        1.0917             nan     0.0010    0.0002
##    380        1.0824             nan     0.0010    0.0002
##    400        1.0729             nan     0.0010    0.0002
##    420        1.0638             nan     0.0010    0.0002
##    440        1.0551             nan     0.0010    0.0001
##    460        1.0464             nan     0.0010    0.0002
##    480        1.0379             nan     0.0010    0.0002
##    500        1.0296             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3189             nan     0.0010    0.0004
##      4        1.3181             nan     0.0010    0.0004
##      5        1.3173             nan     0.0010    0.0004
##      6        1.3166             nan     0.0010    0.0003
##      7        1.3157             nan     0.0010    0.0004
##      8        1.3150             nan     0.0010    0.0003
##      9        1.3141             nan     0.0010    0.0004
##     10        1.3134             nan     0.0010    0.0003
##     20        1.3051             nan     0.0010    0.0004
##     40        1.2894             nan     0.0010    0.0003
##     60        1.2741             nan     0.0010    0.0004
##     80        1.2591             nan     0.0010    0.0003
##    100        1.2447             nan     0.0010    0.0003
##    120        1.2308             nan     0.0010    0.0003
##    140        1.2177             nan     0.0010    0.0003
##    160        1.2042             nan     0.0010    0.0003
##    180        1.1913             nan     0.0010    0.0002
##    200        1.1791             nan     0.0010    0.0003
##    220        1.1673             nan     0.0010    0.0002
##    240        1.1553             nan     0.0010    0.0003
##    260        1.1440             nan     0.0010    0.0003
##    280        1.1331             nan     0.0010    0.0002
##    300        1.1224             nan     0.0010    0.0003
##    320        1.1123             nan     0.0010    0.0002
##    340        1.1023             nan     0.0010    0.0002
##    360        1.0924             nan     0.0010    0.0002
##    380        1.0829             nan     0.0010    0.0002
##    400        1.0734             nan     0.0010    0.0002
##    420        1.0639             nan     0.0010    0.0002
##    440        1.0548             nan     0.0010    0.0002
##    460        1.0464             nan     0.0010    0.0002
##    480        1.0383             nan     0.0010    0.0002
##    500        1.0303             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0003
##      2        1.3196             nan     0.0010    0.0004
##      3        1.3188             nan     0.0010    0.0004
##      4        1.3180             nan     0.0010    0.0003
##      5        1.3173             nan     0.0010    0.0003
##      6        1.3165             nan     0.0010    0.0004
##      7        1.3157             nan     0.0010    0.0003
##      8        1.3149             nan     0.0010    0.0003
##      9        1.3141             nan     0.0010    0.0004
##     10        1.3132             nan     0.0010    0.0004
##     20        1.3050             nan     0.0010    0.0004
##     40        1.2894             nan     0.0010    0.0004
##     60        1.2740             nan     0.0010    0.0003
##     80        1.2590             nan     0.0010    0.0003
##    100        1.2452             nan     0.0010    0.0003
##    120        1.2314             nan     0.0010    0.0003
##    140        1.2180             nan     0.0010    0.0003
##    160        1.2050             nan     0.0010    0.0003
##    180        1.1922             nan     0.0010    0.0003
##    200        1.1801             nan     0.0010    0.0002
##    220        1.1679             nan     0.0010    0.0002
##    240        1.1564             nan     0.0010    0.0003
##    260        1.1451             nan     0.0010    0.0003
##    280        1.1345             nan     0.0010    0.0002
##    300        1.1240             nan     0.0010    0.0002
##    320        1.1137             nan     0.0010    0.0002
##    340        1.1037             nan     0.0010    0.0002
##    360        1.0939             nan     0.0010    0.0002
##    380        1.0845             nan     0.0010    0.0002
##    400        1.0749             nan     0.0010    0.0002
##    420        1.0655             nan     0.0010    0.0002
##    440        1.0567             nan     0.0010    0.0002
##    460        1.0480             nan     0.0010    0.0002
##    480        1.0397             nan     0.0010    0.0002
##    500        1.0313             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0003
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3125             nan     0.0010    0.0004
##     20        1.3039             nan     0.0010    0.0004
##     40        1.2873             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0003
##     80        1.2554             nan     0.0010    0.0004
##    100        1.2398             nan     0.0010    0.0004
##    120        1.2251             nan     0.0010    0.0003
##    140        1.2108             nan     0.0010    0.0003
##    160        1.1971             nan     0.0010    0.0003
##    180        1.1834             nan     0.0010    0.0003
##    200        1.1702             nan     0.0010    0.0002
##    220        1.1577             nan     0.0010    0.0003
##    240        1.1456             nan     0.0010    0.0003
##    260        1.1334             nan     0.0010    0.0003
##    280        1.1218             nan     0.0010    0.0002
##    300        1.1105             nan     0.0010    0.0003
##    320        1.0998             nan     0.0010    0.0002
##    340        1.0894             nan     0.0010    0.0002
##    360        1.0791             nan     0.0010    0.0002
##    380        1.0690             nan     0.0010    0.0002
##    400        1.0591             nan     0.0010    0.0002
##    420        1.0495             nan     0.0010    0.0002
##    440        1.0399             nan     0.0010    0.0002
##    460        1.0307             nan     0.0010    0.0002
##    480        1.0217             nan     0.0010    0.0002
##    500        1.0132             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3196             nan     0.0010    0.0003
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0005
##      5        1.3169             nan     0.0010    0.0005
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3035             nan     0.0010    0.0004
##     40        1.2868             nan     0.0010    0.0004
##     60        1.2703             nan     0.0010    0.0004
##     80        1.2546             nan     0.0010    0.0003
##    100        1.2395             nan     0.0010    0.0003
##    120        1.2247             nan     0.0010    0.0003
##    140        1.2106             nan     0.0010    0.0003
##    160        1.1970             nan     0.0010    0.0003
##    180        1.1836             nan     0.0010    0.0003
##    200        1.1705             nan     0.0010    0.0003
##    220        1.1579             nan     0.0010    0.0003
##    240        1.1457             nan     0.0010    0.0003
##    260        1.1337             nan     0.0010    0.0003
##    280        1.1218             nan     0.0010    0.0003
##    300        1.1103             nan     0.0010    0.0002
##    320        1.0993             nan     0.0010    0.0002
##    340        1.0885             nan     0.0010    0.0002
##    360        1.0783             nan     0.0010    0.0002
##    380        1.0683             nan     0.0010    0.0002
##    400        1.0586             nan     0.0010    0.0002
##    420        1.0491             nan     0.0010    0.0001
##    440        1.0400             nan     0.0010    0.0002
##    460        1.0309             nan     0.0010    0.0002
##    480        1.0219             nan     0.0010    0.0002
##    500        1.0134             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0003
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3125             nan     0.0010    0.0003
##     20        1.3040             nan     0.0010    0.0004
##     40        1.2872             nan     0.0010    0.0004
##     60        1.2709             nan     0.0010    0.0003
##     80        1.2551             nan     0.0010    0.0004
##    100        1.2399             nan     0.0010    0.0003
##    120        1.2256             nan     0.0010    0.0004
##    140        1.2117             nan     0.0010    0.0003
##    160        1.1979             nan     0.0010    0.0003
##    180        1.1844             nan     0.0010    0.0002
##    200        1.1718             nan     0.0010    0.0003
##    220        1.1591             nan     0.0010    0.0003
##    240        1.1470             nan     0.0010    0.0003
##    260        1.1350             nan     0.0010    0.0003
##    280        1.1233             nan     0.0010    0.0003
##    300        1.1121             nan     0.0010    0.0003
##    320        1.1013             nan     0.0010    0.0002
##    340        1.0908             nan     0.0010    0.0002
##    360        1.0806             nan     0.0010    0.0002
##    380        1.0705             nan     0.0010    0.0002
##    400        1.0609             nan     0.0010    0.0002
##    420        1.0514             nan     0.0010    0.0002
##    440        1.0420             nan     0.0010    0.0002
##    460        1.0332             nan     0.0010    0.0002
##    480        1.0244             nan     0.0010    0.0002
##    500        1.0159             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0005
##      2        1.3192             nan     0.0010    0.0005
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0005
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3025             nan     0.0010    0.0004
##     40        1.2846             nan     0.0010    0.0004
##     60        1.2673             nan     0.0010    0.0004
##     80        1.2505             nan     0.0010    0.0004
##    100        1.2345             nan     0.0010    0.0003
##    120        1.2189             nan     0.0010    0.0003
##    140        1.2044             nan     0.0010    0.0003
##    160        1.1896             nan     0.0010    0.0003
##    180        1.1756             nan     0.0010    0.0003
##    200        1.1624             nan     0.0010    0.0002
##    220        1.1491             nan     0.0010    0.0003
##    240        1.1362             nan     0.0010    0.0003
##    260        1.1236             nan     0.0010    0.0002
##    280        1.1116             nan     0.0010    0.0002
##    300        1.1000             nan     0.0010    0.0003
##    320        1.0885             nan     0.0010    0.0002
##    340        1.0774             nan     0.0010    0.0002
##    360        1.0665             nan     0.0010    0.0002
##    380        1.0559             nan     0.0010    0.0002
##    400        1.0457             nan     0.0010    0.0002
##    420        1.0357             nan     0.0010    0.0002
##    440        1.0261             nan     0.0010    0.0002
##    460        1.0168             nan     0.0010    0.0002
##    480        1.0075             nan     0.0010    0.0002
##    500        0.9985             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0005
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3130             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2850             nan     0.0010    0.0004
##     60        1.2680             nan     0.0010    0.0004
##     80        1.2514             nan     0.0010    0.0004
##    100        1.2358             nan     0.0010    0.0003
##    120        1.2201             nan     0.0010    0.0003
##    140        1.2049             nan     0.0010    0.0004
##    160        1.1906             nan     0.0010    0.0003
##    180        1.1767             nan     0.0010    0.0003
##    200        1.1633             nan     0.0010    0.0003
##    220        1.1502             nan     0.0010    0.0003
##    240        1.1376             nan     0.0010    0.0002
##    260        1.1254             nan     0.0010    0.0003
##    280        1.1132             nan     0.0010    0.0003
##    300        1.1014             nan     0.0010    0.0002
##    320        1.0901             nan     0.0010    0.0002
##    340        1.0790             nan     0.0010    0.0002
##    360        1.0682             nan     0.0010    0.0002
##    380        1.0575             nan     0.0010    0.0002
##    400        1.0473             nan     0.0010    0.0002
##    420        1.0373             nan     0.0010    0.0002
##    440        1.0278             nan     0.0010    0.0002
##    460        1.0183             nan     0.0010    0.0002
##    480        1.0092             nan     0.0010    0.0002
##    500        1.0003             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0005
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3032             nan     0.0010    0.0004
##     40        1.2855             nan     0.0010    0.0003
##     60        1.2688             nan     0.0010    0.0004
##     80        1.2525             nan     0.0010    0.0003
##    100        1.2368             nan     0.0010    0.0003
##    120        1.2217             nan     0.0010    0.0003
##    140        1.2071             nan     0.0010    0.0003
##    160        1.1930             nan     0.0010    0.0003
##    180        1.1792             nan     0.0010    0.0003
##    200        1.1657             nan     0.0010    0.0003
##    220        1.1526             nan     0.0010    0.0003
##    240        1.1400             nan     0.0010    0.0002
##    260        1.1276             nan     0.0010    0.0003
##    280        1.1158             nan     0.0010    0.0003
##    300        1.1043             nan     0.0010    0.0003
##    320        1.0928             nan     0.0010    0.0002
##    340        1.0818             nan     0.0010    0.0003
##    360        1.0714             nan     0.0010    0.0002
##    380        1.0608             nan     0.0010    0.0002
##    400        1.0504             nan     0.0010    0.0002
##    420        1.0405             nan     0.0010    0.0002
##    440        1.0310             nan     0.0010    0.0002
##    460        1.0219             nan     0.0010    0.0002
##    480        1.0127             nan     0.0010    0.0002
##    500        1.0039             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0036
##      2        1.3056             nan     0.0100    0.0031
##      3        1.2989             nan     0.0100    0.0031
##      4        1.2915             nan     0.0100    0.0033
##      5        1.2844             nan     0.0100    0.0034
##      6        1.2760             nan     0.0100    0.0039
##      7        1.2689             nan     0.0100    0.0030
##      8        1.2617             nan     0.0100    0.0030
##      9        1.2550             nan     0.0100    0.0028
##     10        1.2476             nan     0.0100    0.0033
##     20        1.1810             nan     0.0100    0.0026
##     40        1.0770             nan     0.0100    0.0019
##     60        0.9941             nan     0.0100    0.0015
##     80        0.9291             nan     0.0100    0.0012
##    100        0.8778             nan     0.0100    0.0008
##    120        0.8359             nan     0.0100    0.0005
##    140        0.8006             nan     0.0100    0.0001
##    160        0.7702             nan     0.0100    0.0003
##    180        0.7437             nan     0.0100    0.0003
##    200        0.7208             nan     0.0100    0.0004
##    220        0.7012             nan     0.0100    0.0002
##    240        0.6837             nan     0.0100    0.0001
##    260        0.6676             nan     0.0100    0.0000
##    280        0.6541             nan     0.0100    0.0001
##    300        0.6411             nan     0.0100    0.0001
##    320        0.6286             nan     0.0100    0.0001
##    340        0.6162             nan     0.0100   -0.0001
##    360        0.6051             nan     0.0100    0.0002
##    380        0.5945             nan     0.0100   -0.0001
##    400        0.5843             nan     0.0100    0.0000
##    420        0.5745             nan     0.0100   -0.0002
##    440        0.5655             nan     0.0100   -0.0000
##    460        0.5561             nan     0.0100   -0.0001
##    480        0.5472             nan     0.0100   -0.0000
##    500        0.5394             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3135             nan     0.0100    0.0035
##      2        1.3046             nan     0.0100    0.0040
##      3        1.2961             nan     0.0100    0.0037
##      4        1.2893             nan     0.0100    0.0031
##      5        1.2815             nan     0.0100    0.0038
##      6        1.2734             nan     0.0100    0.0038
##      7        1.2659             nan     0.0100    0.0035
##      8        1.2591             nan     0.0100    0.0031
##      9        1.2524             nan     0.0100    0.0028
##     10        1.2448             nan     0.0100    0.0035
##     20        1.1812             nan     0.0100    0.0022
##     40        1.0738             nan     0.0100    0.0018
##     60        0.9950             nan     0.0100    0.0015
##     80        0.9284             nan     0.0100    0.0010
##    100        0.8757             nan     0.0100    0.0009
##    120        0.8329             nan     0.0100    0.0005
##    140        0.7977             nan     0.0100    0.0006
##    160        0.7680             nan     0.0100    0.0004
##    180        0.7428             nan     0.0100    0.0002
##    200        0.7210             nan     0.0100    0.0003
##    220        0.7031             nan     0.0100   -0.0000
##    240        0.6867             nan     0.0100   -0.0000
##    260        0.6708             nan     0.0100    0.0001
##    280        0.6578             nan     0.0100   -0.0000
##    300        0.6446             nan     0.0100    0.0001
##    320        0.6326             nan     0.0100    0.0000
##    340        0.6218             nan     0.0100   -0.0000
##    360        0.6117             nan     0.0100    0.0000
##    380        0.6011             nan     0.0100    0.0001
##    400        0.5916             nan     0.0100   -0.0001
##    420        0.5826             nan     0.0100    0.0000
##    440        0.5731             nan     0.0100   -0.0000
##    460        0.5654             nan     0.0100   -0.0000
##    480        0.5569             nan     0.0100   -0.0002
##    500        0.5484             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0040
##      2        1.3049             nan     0.0100    0.0029
##      3        1.2962             nan     0.0100    0.0038
##      4        1.2886             nan     0.0100    0.0038
##      5        1.2812             nan     0.0100    0.0032
##      6        1.2732             nan     0.0100    0.0034
##      7        1.2653             nan     0.0100    0.0035
##      8        1.2582             nan     0.0100    0.0030
##      9        1.2510             nan     0.0100    0.0034
##     10        1.2441             nan     0.0100    0.0035
##     20        1.1805             nan     0.0100    0.0026
##     40        1.0739             nan     0.0100    0.0023
##     60        0.9941             nan     0.0100    0.0013
##     80        0.9314             nan     0.0100    0.0011
##    100        0.8796             nan     0.0100    0.0007
##    120        0.8379             nan     0.0100    0.0008
##    140        0.8038             nan     0.0100    0.0005
##    160        0.7737             nan     0.0100    0.0004
##    180        0.7497             nan     0.0100    0.0003
##    200        0.7289             nan     0.0100    0.0002
##    220        0.7098             nan     0.0100    0.0004
##    240        0.6931             nan     0.0100    0.0001
##    260        0.6774             nan     0.0100   -0.0000
##    280        0.6634             nan     0.0100   -0.0001
##    300        0.6515             nan     0.0100    0.0000
##    320        0.6408             nan     0.0100   -0.0001
##    340        0.6308             nan     0.0100    0.0001
##    360        0.6205             nan     0.0100    0.0001
##    380        0.6108             nan     0.0100   -0.0001
##    400        0.6019             nan     0.0100    0.0000
##    420        0.5924             nan     0.0100    0.0000
##    440        0.5833             nan     0.0100   -0.0000
##    460        0.5731             nan     0.0100   -0.0001
##    480        0.5653             nan     0.0100   -0.0001
##    500        0.5580             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0043
##      2        1.3038             nan     0.0100    0.0041
##      3        1.2951             nan     0.0100    0.0039
##      4        1.2865             nan     0.0100    0.0041
##      5        1.2787             nan     0.0100    0.0037
##      6        1.2698             nan     0.0100    0.0038
##      7        1.2616             nan     0.0100    0.0037
##      8        1.2542             nan     0.0100    0.0034
##      9        1.2465             nan     0.0100    0.0037
##     10        1.2394             nan     0.0100    0.0031
##     20        1.1698             nan     0.0100    0.0030
##     40        1.0587             nan     0.0100    0.0021
##     60        0.9710             nan     0.0100    0.0017
##     80        0.9029             nan     0.0100    0.0009
##    100        0.8483             nan     0.0100    0.0009
##    120        0.8030             nan     0.0100    0.0006
##    140        0.7663             nan     0.0100    0.0004
##    160        0.7354             nan     0.0100    0.0002
##    180        0.7083             nan     0.0100    0.0002
##    200        0.6859             nan     0.0100    0.0002
##    220        0.6637             nan     0.0100    0.0002
##    240        0.6442             nan     0.0100    0.0001
##    260        0.6264             nan     0.0100    0.0002
##    280        0.6114             nan     0.0100    0.0001
##    300        0.5976             nan     0.0100   -0.0001
##    320        0.5828             nan     0.0100    0.0000
##    340        0.5696             nan     0.0100    0.0001
##    360        0.5566             nan     0.0100    0.0000
##    380        0.5453             nan     0.0100   -0.0001
##    400        0.5354             nan     0.0100   -0.0001
##    420        0.5235             nan     0.0100   -0.0001
##    440        0.5137             nan     0.0100   -0.0000
##    460        0.5040             nan     0.0100   -0.0002
##    480        0.4943             nan     0.0100   -0.0000
##    500        0.4852             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0042
##      2        1.3042             nan     0.0100    0.0041
##      3        1.2958             nan     0.0100    0.0037
##      4        1.2875             nan     0.0100    0.0039
##      5        1.2789             nan     0.0100    0.0040
##      6        1.2705             nan     0.0100    0.0038
##      7        1.2628             nan     0.0100    0.0032
##      8        1.2549             nan     0.0100    0.0034
##      9        1.2478             nan     0.0100    0.0035
##     10        1.2396             nan     0.0100    0.0036
##     20        1.1691             nan     0.0100    0.0027
##     40        1.0552             nan     0.0100    0.0022
##     60        0.9716             nan     0.0100    0.0014
##     80        0.9060             nan     0.0100    0.0012
##    100        0.8526             nan     0.0100    0.0007
##    120        0.8094             nan     0.0100    0.0008
##    140        0.7729             nan     0.0100    0.0007
##    160        0.7428             nan     0.0100    0.0003
##    180        0.7174             nan     0.0100    0.0001
##    200        0.6948             nan     0.0100    0.0002
##    220        0.6748             nan     0.0100    0.0001
##    240        0.6551             nan     0.0100    0.0001
##    260        0.6387             nan     0.0100    0.0003
##    280        0.6239             nan     0.0100    0.0000
##    300        0.6099             nan     0.0100    0.0000
##    320        0.5974             nan     0.0100   -0.0001
##    340        0.5846             nan     0.0100    0.0001
##    360        0.5733             nan     0.0100    0.0000
##    380        0.5626             nan     0.0100   -0.0001
##    400        0.5509             nan     0.0100   -0.0001
##    420        0.5407             nan     0.0100    0.0000
##    440        0.5303             nan     0.0100   -0.0002
##    460        0.5197             nan     0.0100   -0.0001
##    480        0.5102             nan     0.0100   -0.0000
##    500        0.5011             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0042
##      2        1.3030             nan     0.0100    0.0036
##      3        1.2947             nan     0.0100    0.0035
##      4        1.2864             nan     0.0100    0.0036
##      5        1.2790             nan     0.0100    0.0035
##      6        1.2706             nan     0.0100    0.0037
##      7        1.2632             nan     0.0100    0.0035
##      8        1.2545             nan     0.0100    0.0036
##      9        1.2467             nan     0.0100    0.0035
##     10        1.2399             nan     0.0100    0.0032
##     20        1.1702             nan     0.0100    0.0025
##     40        1.0588             nan     0.0100    0.0022
##     60        0.9763             nan     0.0100    0.0014
##     80        0.9095             nan     0.0100    0.0014
##    100        0.8547             nan     0.0100    0.0009
##    120        0.8119             nan     0.0100    0.0007
##    140        0.7765             nan     0.0100    0.0007
##    160        0.7465             nan     0.0100    0.0003
##    180        0.7196             nan     0.0100    0.0003
##    200        0.6972             nan     0.0100    0.0003
##    220        0.6778             nan     0.0100    0.0001
##    240        0.6605             nan     0.0100    0.0003
##    260        0.6453             nan     0.0100    0.0001
##    280        0.6300             nan     0.0100    0.0001
##    300        0.6160             nan     0.0100    0.0001
##    320        0.6029             nan     0.0100   -0.0002
##    340        0.5910             nan     0.0100   -0.0001
##    360        0.5787             nan     0.0100    0.0001
##    380        0.5681             nan     0.0100   -0.0001
##    400        0.5577             nan     0.0100   -0.0000
##    420        0.5475             nan     0.0100    0.0001
##    440        0.5381             nan     0.0100   -0.0001
##    460        0.5278             nan     0.0100   -0.0001
##    480        0.5184             nan     0.0100   -0.0002
##    500        0.5092             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0039
##      2        1.3032             nan     0.0100    0.0039
##      3        1.2941             nan     0.0100    0.0041
##      4        1.2853             nan     0.0100    0.0042
##      5        1.2760             nan     0.0100    0.0037
##      6        1.2677             nan     0.0100    0.0039
##      7        1.2588             nan     0.0100    0.0039
##      8        1.2507             nan     0.0100    0.0038
##      9        1.2432             nan     0.0100    0.0036
##     10        1.2357             nan     0.0100    0.0032
##     20        1.1618             nan     0.0100    0.0028
##     40        1.0451             nan     0.0100    0.0020
##     60        0.9574             nan     0.0100    0.0015
##     80        0.8876             nan     0.0100    0.0012
##    100        0.8308             nan     0.0100    0.0009
##    120        0.7837             nan     0.0100    0.0009
##    140        0.7445             nan     0.0100    0.0005
##    160        0.7127             nan     0.0100    0.0001
##    180        0.6835             nan     0.0100    0.0003
##    200        0.6577             nan     0.0100    0.0001
##    220        0.6351             nan     0.0100    0.0003
##    240        0.6147             nan     0.0100    0.0002
##    260        0.5947             nan     0.0100    0.0002
##    280        0.5773             nan     0.0100    0.0001
##    300        0.5605             nan     0.0100    0.0000
##    320        0.5457             nan     0.0100   -0.0000
##    340        0.5309             nan     0.0100    0.0001
##    360        0.5182             nan     0.0100   -0.0000
##    380        0.5066             nan     0.0100    0.0001
##    400        0.4946             nan     0.0100   -0.0001
##    420        0.4833             nan     0.0100   -0.0001
##    440        0.4720             nan     0.0100   -0.0000
##    460        0.4603             nan     0.0100    0.0000
##    480        0.4507             nan     0.0100   -0.0001
##    500        0.4412             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0039
##      2        1.3032             nan     0.0100    0.0036
##      3        1.2942             nan     0.0100    0.0042
##      4        1.2854             nan     0.0100    0.0043
##      5        1.2760             nan     0.0100    0.0040
##      6        1.2669             nan     0.0100    0.0041
##      7        1.2582             nan     0.0100    0.0036
##      8        1.2502             nan     0.0100    0.0036
##      9        1.2429             nan     0.0100    0.0032
##     10        1.2346             nan     0.0100    0.0037
##     20        1.1635             nan     0.0100    0.0030
##     40        1.0476             nan     0.0100    0.0022
##     60        0.9599             nan     0.0100    0.0015
##     80        0.8907             nan     0.0100    0.0013
##    100        0.8334             nan     0.0100    0.0007
##    120        0.7874             nan     0.0100    0.0005
##    140        0.7486             nan     0.0100    0.0003
##    160        0.7170             nan     0.0100    0.0003
##    180        0.6893             nan     0.0100    0.0003
##    200        0.6647             nan     0.0100    0.0002
##    220        0.6437             nan     0.0100   -0.0000
##    240        0.6235             nan     0.0100    0.0001
##    260        0.6056             nan     0.0100    0.0002
##    280        0.5885             nan     0.0100    0.0001
##    300        0.5728             nan     0.0100   -0.0001
##    320        0.5596             nan     0.0100    0.0001
##    340        0.5467             nan     0.0100   -0.0000
##    360        0.5336             nan     0.0100    0.0001
##    380        0.5210             nan     0.0100   -0.0002
##    400        0.5085             nan     0.0100    0.0000
##    420        0.4974             nan     0.0100    0.0001
##    440        0.4865             nan     0.0100   -0.0001
##    460        0.4744             nan     0.0100    0.0000
##    480        0.4642             nan     0.0100   -0.0000
##    500        0.4552             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0042
##      2        1.3032             nan     0.0100    0.0038
##      3        1.2946             nan     0.0100    0.0039
##      4        1.2859             nan     0.0100    0.0037
##      5        1.2777             nan     0.0100    0.0033
##      6        1.2686             nan     0.0100    0.0037
##      7        1.2608             nan     0.0100    0.0035
##      8        1.2526             nan     0.0100    0.0038
##      9        1.2445             nan     0.0100    0.0035
##     10        1.2367             nan     0.0100    0.0034
##     20        1.1643             nan     0.0100    0.0031
##     40        1.0478             nan     0.0100    0.0022
##     60        0.9598             nan     0.0100    0.0017
##     80        0.8910             nan     0.0100    0.0012
##    100        0.8363             nan     0.0100    0.0006
##    120        0.7915             nan     0.0100    0.0005
##    140        0.7534             nan     0.0100    0.0005
##    160        0.7220             nan     0.0100    0.0006
##    180        0.6960             nan     0.0100    0.0002
##    200        0.6714             nan     0.0100    0.0001
##    220        0.6508             nan     0.0100    0.0001
##    240        0.6315             nan     0.0100   -0.0001
##    260        0.6138             nan     0.0100    0.0002
##    280        0.5967             nan     0.0100    0.0001
##    300        0.5815             nan     0.0100    0.0001
##    320        0.5672             nan     0.0100   -0.0001
##    340        0.5548             nan     0.0100   -0.0001
##    360        0.5425             nan     0.0100    0.0001
##    380        0.5311             nan     0.0100   -0.0001
##    400        0.5199             nan     0.0100    0.0000
##    420        0.5093             nan     0.0100    0.0000
##    440        0.4988             nan     0.0100    0.0001
##    460        0.4876             nan     0.0100   -0.0000
##    480        0.4769             nan     0.0100   -0.0000
##    500        0.4677             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2436             nan     0.1000    0.0331
##      2        1.1719             nan     0.1000    0.0327
##      3        1.1169             nan     0.1000    0.0219
##      4        1.0648             nan     0.1000    0.0199
##      5        1.0278             nan     0.1000    0.0159
##      6        0.9878             nan     0.1000    0.0180
##      7        0.9507             nan     0.1000    0.0138
##      8        0.9179             nan     0.1000    0.0117
##      9        0.8921             nan     0.1000    0.0094
##     10        0.8644             nan     0.1000    0.0113
##     20        0.7172             nan     0.1000    0.0037
##     40        0.5838             nan     0.1000   -0.0001
##     60        0.5030             nan     0.1000   -0.0006
##     80        0.4408             nan     0.1000    0.0008
##    100        0.3873             nan     0.1000   -0.0003
##    120        0.3478             nan     0.1000   -0.0019
##    140        0.3101             nan     0.1000    0.0002
##    160        0.2765             nan     0.1000   -0.0003
##    180        0.2507             nan     0.1000   -0.0009
##    200        0.2245             nan     0.1000   -0.0003
##    220        0.2047             nan     0.1000   -0.0000
##    240        0.1841             nan     0.1000   -0.0004
##    260        0.1672             nan     0.1000   -0.0003
##    280        0.1508             nan     0.1000   -0.0004
##    300        0.1365             nan     0.1000   -0.0003
##    320        0.1254             nan     0.1000    0.0001
##    340        0.1129             nan     0.1000   -0.0002
##    360        0.1040             nan     0.1000    0.0000
##    380        0.0948             nan     0.1000    0.0001
##    400        0.0860             nan     0.1000    0.0001
##    420        0.0787             nan     0.1000   -0.0001
##    440        0.0726             nan     0.1000   -0.0003
##    460        0.0664             nan     0.1000   -0.0002
##    480        0.0613             nan     0.1000   -0.0001
##    500        0.0569             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2400             nan     0.1000    0.0331
##      2        1.1701             nan     0.1000    0.0312
##      3        1.1141             nan     0.1000    0.0224
##      4        1.0693             nan     0.1000    0.0215
##      5        1.0268             nan     0.1000    0.0191
##      6        0.9905             nan     0.1000    0.0123
##      7        0.9549             nan     0.1000    0.0143
##      8        0.9303             nan     0.1000    0.0060
##      9        0.9049             nan     0.1000    0.0107
##     10        0.8813             nan     0.1000    0.0080
##     20        0.7258             nan     0.1000    0.0036
##     40        0.6031             nan     0.1000   -0.0012
##     60        0.5170             nan     0.1000   -0.0001
##     80        0.4544             nan     0.1000   -0.0010
##    100        0.4002             nan     0.1000   -0.0003
##    120        0.3515             nan     0.1000    0.0000
##    140        0.3152             nan     0.1000   -0.0005
##    160        0.2830             nan     0.1000   -0.0003
##    180        0.2551             nan     0.1000   -0.0003
##    200        0.2295             nan     0.1000   -0.0007
##    220        0.2091             nan     0.1000   -0.0006
##    240        0.1904             nan     0.1000   -0.0007
##    260        0.1727             nan     0.1000   -0.0003
##    280        0.1565             nan     0.1000   -0.0001
##    300        0.1437             nan     0.1000   -0.0004
##    320        0.1304             nan     0.1000   -0.0002
##    340        0.1208             nan     0.1000   -0.0001
##    360        0.1119             nan     0.1000    0.0001
##    380        0.1038             nan     0.1000   -0.0001
##    400        0.0951             nan     0.1000   -0.0003
##    420        0.0870             nan     0.1000   -0.0005
##    440        0.0800             nan     0.1000   -0.0002
##    460        0.0741             nan     0.1000   -0.0001
##    480        0.0693             nan     0.1000   -0.0001
##    500        0.0634             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2423             nan     0.1000    0.0317
##      2        1.1759             nan     0.1000    0.0272
##      3        1.1235             nan     0.1000    0.0233
##      4        1.0776             nan     0.1000    0.0190
##      5        1.0380             nan     0.1000    0.0173
##      6        0.9965             nan     0.1000    0.0162
##      7        0.9659             nan     0.1000    0.0141
##      8        0.9307             nan     0.1000    0.0136
##      9        0.9049             nan     0.1000    0.0098
##     10        0.8817             nan     0.1000    0.0103
##     20        0.7282             nan     0.1000    0.0036
##     40        0.5988             nan     0.1000   -0.0012
##     60        0.5198             nan     0.1000   -0.0009
##     80        0.4583             nan     0.1000   -0.0017
##    100        0.4085             nan     0.1000   -0.0007
##    120        0.3698             nan     0.1000    0.0001
##    140        0.3329             nan     0.1000   -0.0010
##    160        0.3020             nan     0.1000   -0.0005
##    180        0.2755             nan     0.1000   -0.0003
##    200        0.2487             nan     0.1000   -0.0012
##    220        0.2263             nan     0.1000   -0.0005
##    240        0.2048             nan     0.1000   -0.0005
##    260        0.1860             nan     0.1000   -0.0003
##    280        0.1703             nan     0.1000   -0.0000
##    300        0.1567             nan     0.1000   -0.0005
##    320        0.1444             nan     0.1000   -0.0004
##    340        0.1325             nan     0.1000   -0.0003
##    360        0.1220             nan     0.1000   -0.0005
##    380        0.1112             nan     0.1000   -0.0002
##    400        0.1027             nan     0.1000   -0.0001
##    420        0.0945             nan     0.1000   -0.0000
##    440        0.0878             nan     0.1000   -0.0003
##    460        0.0803             nan     0.1000   -0.0003
##    480        0.0748             nan     0.1000   -0.0003
##    500        0.0698             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2412             nan     0.1000    0.0374
##      2        1.1728             nan     0.1000    0.0306
##      3        1.1056             nan     0.1000    0.0285
##      4        1.0541             nan     0.1000    0.0207
##      5        1.0081             nan     0.1000    0.0212
##      6        0.9691             nan     0.1000    0.0161
##      7        0.9348             nan     0.1000    0.0141
##      8        0.9001             nan     0.1000    0.0132
##      9        0.8728             nan     0.1000    0.0106
##     10        0.8433             nan     0.1000    0.0123
##     20        0.6791             nan     0.1000    0.0036
##     40        0.5331             nan     0.1000    0.0013
##     60        0.4468             nan     0.1000   -0.0013
##     80        0.3822             nan     0.1000   -0.0006
##    100        0.3189             nan     0.1000   -0.0003
##    120        0.2758             nan     0.1000   -0.0009
##    140        0.2392             nan     0.1000   -0.0003
##    160        0.2095             nan     0.1000   -0.0004
##    180        0.1843             nan     0.1000   -0.0007
##    200        0.1630             nan     0.1000   -0.0004
##    220        0.1451             nan     0.1000   -0.0000
##    240        0.1300             nan     0.1000   -0.0003
##    260        0.1153             nan     0.1000   -0.0005
##    280        0.1010             nan     0.1000   -0.0001
##    300        0.0893             nan     0.1000    0.0001
##    320        0.0800             nan     0.1000   -0.0001
##    340        0.0721             nan     0.1000   -0.0003
##    360        0.0651             nan     0.1000   -0.0001
##    380        0.0589             nan     0.1000   -0.0001
##    400        0.0531             nan     0.1000   -0.0001
##    420        0.0481             nan     0.1000   -0.0001
##    440        0.0438             nan     0.1000   -0.0001
##    460        0.0393             nan     0.1000   -0.0001
##    480        0.0352             nan     0.1000   -0.0000
##    500        0.0319             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2403             nan     0.1000    0.0369
##      2        1.1657             nan     0.1000    0.0336
##      3        1.1088             nan     0.1000    0.0239
##      4        1.0575             nan     0.1000    0.0199
##      5        1.0073             nan     0.1000    0.0189
##      6        0.9711             nan     0.1000    0.0143
##      7        0.9346             nan     0.1000    0.0143
##      8        0.9008             nan     0.1000    0.0131
##      9        0.8750             nan     0.1000    0.0096
##     10        0.8458             nan     0.1000    0.0114
##     20        0.6868             nan     0.1000    0.0038
##     40        0.5439             nan     0.1000   -0.0001
##     60        0.4617             nan     0.1000   -0.0004
##     80        0.3869             nan     0.1000   -0.0008
##    100        0.3362             nan     0.1000    0.0002
##    120        0.2920             nan     0.1000   -0.0024
##    140        0.2517             nan     0.1000   -0.0009
##    160        0.2223             nan     0.1000   -0.0007
##    180        0.1955             nan     0.1000   -0.0004
##    200        0.1717             nan     0.1000   -0.0007
##    220        0.1521             nan     0.1000    0.0000
##    240        0.1340             nan     0.1000   -0.0002
##    260        0.1206             nan     0.1000   -0.0002
##    280        0.1088             nan     0.1000   -0.0001
##    300        0.0968             nan     0.1000   -0.0003
##    320        0.0864             nan     0.1000   -0.0002
##    340        0.0769             nan     0.1000   -0.0000
##    360        0.0690             nan     0.1000   -0.0002
##    380        0.0633             nan     0.1000   -0.0002
##    400        0.0570             nan     0.1000   -0.0002
##    420        0.0522             nan     0.1000   -0.0003
##    440        0.0470             nan     0.1000   -0.0001
##    460        0.0421             nan     0.1000   -0.0002
##    480        0.0378             nan     0.1000   -0.0001
##    500        0.0340             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2396             nan     0.1000    0.0396
##      2        1.1711             nan     0.1000    0.0288
##      3        1.1114             nan     0.1000    0.0274
##      4        1.0533             nan     0.1000    0.0265
##      5        1.0075             nan     0.1000    0.0216
##      6        0.9690             nan     0.1000    0.0170
##      7        0.9355             nan     0.1000    0.0131
##      8        0.9022             nan     0.1000    0.0121
##      9        0.8735             nan     0.1000    0.0117
##     10        0.8495             nan     0.1000    0.0109
##     20        0.7045             nan     0.1000    0.0019
##     40        0.5598             nan     0.1000   -0.0003
##     60        0.4729             nan     0.1000   -0.0021
##     80        0.4054             nan     0.1000   -0.0011
##    100        0.3555             nan     0.1000   -0.0005
##    120        0.3114             nan     0.1000   -0.0012
##    140        0.2722             nan     0.1000   -0.0008
##    160        0.2413             nan     0.1000   -0.0012
##    180        0.2133             nan     0.1000   -0.0003
##    200        0.1898             nan     0.1000   -0.0008
##    220        0.1686             nan     0.1000   -0.0006
##    240        0.1499             nan     0.1000   -0.0004
##    260        0.1341             nan     0.1000   -0.0003
##    280        0.1196             nan     0.1000   -0.0002
##    300        0.1076             nan     0.1000   -0.0002
##    320        0.0978             nan     0.1000   -0.0003
##    340        0.0871             nan     0.1000   -0.0003
##    360        0.0780             nan     0.1000   -0.0001
##    380        0.0705             nan     0.1000   -0.0002
##    400        0.0626             nan     0.1000   -0.0003
##    420        0.0566             nan     0.1000   -0.0003
##    440        0.0516             nan     0.1000   -0.0001
##    460        0.0465             nan     0.1000   -0.0001
##    480        0.0429             nan     0.1000   -0.0001
##    500        0.0388             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2250             nan     0.1000    0.0400
##      2        1.1572             nan     0.1000    0.0306
##      3        1.0904             nan     0.1000    0.0275
##      4        1.0394             nan     0.1000    0.0202
##      5        0.9936             nan     0.1000    0.0192
##      6        0.9503             nan     0.1000    0.0179
##      7        0.9198             nan     0.1000    0.0117
##      8        0.8849             nan     0.1000    0.0126
##      9        0.8546             nan     0.1000    0.0119
##     10        0.8336             nan     0.1000    0.0076
##     20        0.6669             nan     0.1000    0.0013
##     40        0.5028             nan     0.1000   -0.0004
##     60        0.4057             nan     0.1000    0.0008
##     80        0.3339             nan     0.1000   -0.0004
##    100        0.2793             nan     0.1000   -0.0008
##    120        0.2359             nan     0.1000   -0.0003
##    140        0.1971             nan     0.1000   -0.0003
##    160        0.1673             nan     0.1000   -0.0003
##    180        0.1440             nan     0.1000   -0.0001
##    200        0.1229             nan     0.1000   -0.0003
##    220        0.1066             nan     0.1000   -0.0001
##    240        0.0922             nan     0.1000   -0.0001
##    260        0.0803             nan     0.1000   -0.0001
##    280        0.0693             nan     0.1000   -0.0002
##    300        0.0607             nan     0.1000   -0.0001
##    320        0.0536             nan     0.1000   -0.0002
##    340        0.0469             nan     0.1000    0.0000
##    360        0.0407             nan     0.1000   -0.0001
##    380        0.0362             nan     0.1000   -0.0001
##    400        0.0322             nan     0.1000   -0.0000
##    420        0.0284             nan     0.1000   -0.0000
##    440        0.0250             nan     0.1000   -0.0001
##    460        0.0221             nan     0.1000   -0.0000
##    480        0.0191             nan     0.1000   -0.0000
##    500        0.0166             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2260             nan     0.1000    0.0424
##      2        1.1547             nan     0.1000    0.0328
##      3        1.0917             nan     0.1000    0.0276
##      4        1.0383             nan     0.1000    0.0232
##      5        0.9924             nan     0.1000    0.0199
##      6        0.9546             nan     0.1000    0.0165
##      7        0.9212             nan     0.1000    0.0088
##      8        0.8891             nan     0.1000    0.0127
##      9        0.8605             nan     0.1000    0.0099
##     10        0.8311             nan     0.1000    0.0102
##     20        0.6672             nan     0.1000    0.0010
##     40        0.5128             nan     0.1000    0.0010
##     60        0.4136             nan     0.1000   -0.0005
##     80        0.3448             nan     0.1000    0.0008
##    100        0.2927             nan     0.1000   -0.0013
##    120        0.2409             nan     0.1000   -0.0002
##    140        0.2067             nan     0.1000   -0.0004
##    160        0.1750             nan     0.1000   -0.0008
##    180        0.1503             nan     0.1000   -0.0005
##    200        0.1301             nan     0.1000   -0.0005
##    220        0.1137             nan     0.1000   -0.0005
##    240        0.0973             nan     0.1000   -0.0004
##    260        0.0839             nan     0.1000   -0.0003
##    280        0.0725             nan     0.1000    0.0002
##    300        0.0629             nan     0.1000   -0.0001
##    320        0.0558             nan     0.1000   -0.0000
##    340        0.0492             nan     0.1000   -0.0001
##    360        0.0437             nan     0.1000   -0.0002
##    380        0.0385             nan     0.1000   -0.0001
##    400        0.0343             nan     0.1000   -0.0002
##    420        0.0302             nan     0.1000   -0.0000
##    440        0.0266             nan     0.1000   -0.0000
##    460        0.0233             nan     0.1000   -0.0000
##    480        0.0205             nan     0.1000   -0.0000
##    500        0.0181             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2337             nan     0.1000    0.0382
##      2        1.1610             nan     0.1000    0.0312
##      3        1.0937             nan     0.1000    0.0269
##      4        1.0439             nan     0.1000    0.0224
##      5        0.9954             nan     0.1000    0.0192
##      6        0.9569             nan     0.1000    0.0150
##      7        0.9237             nan     0.1000    0.0131
##      8        0.8890             nan     0.1000    0.0119
##      9        0.8635             nan     0.1000    0.0097
##     10        0.8387             nan     0.1000    0.0087
##     20        0.6812             nan     0.1000    0.0029
##     40        0.5281             nan     0.1000   -0.0007
##     60        0.4291             nan     0.1000   -0.0010
##     80        0.3561             nan     0.1000    0.0002
##    100        0.3033             nan     0.1000   -0.0001
##    120        0.2546             nan     0.1000   -0.0004
##    140        0.2191             nan     0.1000   -0.0005
##    160        0.1897             nan     0.1000   -0.0013
##    180        0.1620             nan     0.1000   -0.0000
##    200        0.1396             nan     0.1000    0.0000
##    220        0.1208             nan     0.1000   -0.0001
##    240        0.1044             nan     0.1000   -0.0001
##    260        0.0920             nan     0.1000   -0.0004
##    280        0.0803             nan     0.1000   -0.0006
##    300        0.0710             nan     0.1000   -0.0001
##    320        0.0627             nan     0.1000   -0.0002
##    340        0.0558             nan     0.1000   -0.0001
##    360        0.0493             nan     0.1000   -0.0002
##    380        0.0434             nan     0.1000   -0.0001
##    400        0.0385             nan     0.1000   -0.0001
##    420        0.0341             nan     0.1000   -0.0000
##    440        0.0303             nan     0.1000   -0.0001
##    460        0.0267             nan     0.1000   -0.0001
##    480        0.0239             nan     0.1000   -0.0001
##    500        0.0213             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0003
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0003
##     40        1.2868             nan     0.0010    0.0004
##     60        1.2710             nan     0.0010    0.0004
##     80        1.2558             nan     0.0010    0.0003
##    100        1.2412             nan     0.0010    0.0003
##    120        1.2271             nan     0.0010    0.0003
##    140        1.2133             nan     0.0010    0.0003
##    160        1.1999             nan     0.0010    0.0003
##    180        1.1873             nan     0.0010    0.0003
##    200        1.1747             nan     0.0010    0.0002
##    220        1.1626             nan     0.0010    0.0002
##    240        1.1507             nan     0.0010    0.0002
##    260        1.1392             nan     0.0010    0.0002
##    280        1.1281             nan     0.0010    0.0003
##    300        1.1172             nan     0.0010    0.0003
##    320        1.1064             nan     0.0010    0.0002
##    340        1.0960             nan     0.0010    0.0002
##    360        1.0858             nan     0.0010    0.0002
##    380        1.0761             nan     0.0010    0.0002
##    400        1.0664             nan     0.0010    0.0002
##    420        1.0571             nan     0.0010    0.0002
##    440        1.0481             nan     0.0010    0.0002
##    460        1.0394             nan     0.0010    0.0002
##    480        1.0308             nan     0.0010    0.0002
##    500        1.0224             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0003
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0003
##     20        1.3039             nan     0.0010    0.0004
##     40        1.2877             nan     0.0010    0.0003
##     60        1.2720             nan     0.0010    0.0003
##     80        1.2568             nan     0.0010    0.0004
##    100        1.2420             nan     0.0010    0.0003
##    120        1.2275             nan     0.0010    0.0003
##    140        1.2135             nan     0.0010    0.0003
##    160        1.2000             nan     0.0010    0.0003
##    180        1.1870             nan     0.0010    0.0003
##    200        1.1744             nan     0.0010    0.0002
##    220        1.1620             nan     0.0010    0.0003
##    240        1.1499             nan     0.0010    0.0003
##    260        1.1383             nan     0.0010    0.0002
##    280        1.1269             nan     0.0010    0.0002
##    300        1.1162             nan     0.0010    0.0002
##    320        1.1057             nan     0.0010    0.0002
##    340        1.0956             nan     0.0010    0.0002
##    360        1.0855             nan     0.0010    0.0002
##    380        1.0757             nan     0.0010    0.0002
##    400        1.0661             nan     0.0010    0.0002
##    420        1.0567             nan     0.0010    0.0002
##    440        1.0476             nan     0.0010    0.0002
##    460        1.0389             nan     0.0010    0.0002
##    480        1.0302             nan     0.0010    0.0002
##    500        1.0218             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0003
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0003
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3039             nan     0.0010    0.0003
##     40        1.2876             nan     0.0010    0.0004
##     60        1.2716             nan     0.0010    0.0003
##     80        1.2564             nan     0.0010    0.0003
##    100        1.2417             nan     0.0010    0.0003
##    120        1.2274             nan     0.0010    0.0003
##    140        1.2139             nan     0.0010    0.0003
##    160        1.2007             nan     0.0010    0.0003
##    180        1.1877             nan     0.0010    0.0003
##    200        1.1752             nan     0.0010    0.0003
##    220        1.1629             nan     0.0010    0.0003
##    240        1.1512             nan     0.0010    0.0003
##    260        1.1397             nan     0.0010    0.0003
##    280        1.1286             nan     0.0010    0.0003
##    300        1.1178             nan     0.0010    0.0002
##    320        1.1073             nan     0.0010    0.0002
##    340        1.0971             nan     0.0010    0.0002
##    360        1.0870             nan     0.0010    0.0002
##    380        1.0774             nan     0.0010    0.0002
##    400        1.0681             nan     0.0010    0.0002
##    420        1.0587             nan     0.0010    0.0002
##    440        1.0496             nan     0.0010    0.0002
##    460        1.0408             nan     0.0010    0.0002
##    480        1.0324             nan     0.0010    0.0002
##    500        1.0241             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3026             nan     0.0010    0.0004
##     40        1.2850             nan     0.0010    0.0004
##     60        1.2685             nan     0.0010    0.0003
##     80        1.2525             nan     0.0010    0.0003
##    100        1.2367             nan     0.0010    0.0003
##    120        1.2215             nan     0.0010    0.0003
##    140        1.2070             nan     0.0010    0.0003
##    160        1.1928             nan     0.0010    0.0003
##    180        1.1793             nan     0.0010    0.0003
##    200        1.1656             nan     0.0010    0.0003
##    220        1.1528             nan     0.0010    0.0002
##    240        1.1403             nan     0.0010    0.0002
##    260        1.1280             nan     0.0010    0.0003
##    280        1.1162             nan     0.0010    0.0002
##    300        1.1048             nan     0.0010    0.0002
##    320        1.0933             nan     0.0010    0.0002
##    340        1.0823             nan     0.0010    0.0002
##    360        1.0717             nan     0.0010    0.0002
##    380        1.0611             nan     0.0010    0.0002
##    400        1.0514             nan     0.0010    0.0002
##    420        1.0416             nan     0.0010    0.0002
##    440        1.0319             nan     0.0010    0.0002
##    460        1.0225             nan     0.0010    0.0002
##    480        1.0133             nan     0.0010    0.0002
##    500        1.0045             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0003
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2694             nan     0.0010    0.0004
##     80        1.2532             nan     0.0010    0.0004
##    100        1.2372             nan     0.0010    0.0004
##    120        1.2222             nan     0.0010    0.0003
##    140        1.2076             nan     0.0010    0.0003
##    160        1.1936             nan     0.0010    0.0003
##    180        1.1798             nan     0.0010    0.0003
##    200        1.1666             nan     0.0010    0.0003
##    220        1.1536             nan     0.0010    0.0003
##    240        1.1409             nan     0.0010    0.0003
##    260        1.1285             nan     0.0010    0.0003
##    280        1.1169             nan     0.0010    0.0003
##    300        1.1053             nan     0.0010    0.0003
##    320        1.0941             nan     0.0010    0.0002
##    340        1.0831             nan     0.0010    0.0002
##    360        1.0724             nan     0.0010    0.0002
##    380        1.0623             nan     0.0010    0.0002
##    400        1.0524             nan     0.0010    0.0002
##    420        1.0427             nan     0.0010    0.0002
##    440        1.0334             nan     0.0010    0.0002
##    460        1.0242             nan     0.0010    0.0002
##    480        1.0153             nan     0.0010    0.0002
##    500        1.0066             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0005
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0005
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3029             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2690             nan     0.0010    0.0004
##     80        1.2531             nan     0.0010    0.0003
##    100        1.2375             nan     0.0010    0.0003
##    120        1.2225             nan     0.0010    0.0004
##    140        1.2080             nan     0.0010    0.0003
##    160        1.1939             nan     0.0010    0.0003
##    180        1.1802             nan     0.0010    0.0003
##    200        1.1671             nan     0.0010    0.0003
##    220        1.1544             nan     0.0010    0.0002
##    240        1.1420             nan     0.0010    0.0003
##    260        1.1301             nan     0.0010    0.0003
##    280        1.1181             nan     0.0010    0.0003
##    300        1.1065             nan     0.0010    0.0002
##    320        1.0954             nan     0.0010    0.0002
##    340        1.0846             nan     0.0010    0.0003
##    360        1.0741             nan     0.0010    0.0002
##    380        1.0639             nan     0.0010    0.0002
##    400        1.0540             nan     0.0010    0.0002
##    420        1.0444             nan     0.0010    0.0002
##    440        1.0350             nan     0.0010    0.0002
##    460        1.0259             nan     0.0010    0.0002
##    480        1.0170             nan     0.0010    0.0002
##    500        1.0083             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3196             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0004
##      3        1.3177             nan     0.0010    0.0004
##      4        1.3168             nan     0.0010    0.0004
##      5        1.3158             nan     0.0010    0.0004
##      6        1.3148             nan     0.0010    0.0004
##      7        1.3139             nan     0.0010    0.0005
##      8        1.3130             nan     0.0010    0.0004
##      9        1.3120             nan     0.0010    0.0004
##     10        1.3111             nan     0.0010    0.0004
##     20        1.3018             nan     0.0010    0.0003
##     40        1.2835             nan     0.0010    0.0004
##     60        1.2659             nan     0.0010    0.0004
##     80        1.2492             nan     0.0010    0.0003
##    100        1.2326             nan     0.0010    0.0004
##    120        1.2166             nan     0.0010    0.0003
##    140        1.2012             nan     0.0010    0.0004
##    160        1.1864             nan     0.0010    0.0003
##    180        1.1717             nan     0.0010    0.0003
##    200        1.1579             nan     0.0010    0.0003
##    220        1.1446             nan     0.0010    0.0003
##    240        1.1313             nan     0.0010    0.0003
##    260        1.1185             nan     0.0010    0.0003
##    280        1.1062             nan     0.0010    0.0002
##    300        1.0942             nan     0.0010    0.0002
##    320        1.0824             nan     0.0010    0.0003
##    340        1.0710             nan     0.0010    0.0002
##    360        1.0597             nan     0.0010    0.0002
##    380        1.0491             nan     0.0010    0.0002
##    400        1.0387             nan     0.0010    0.0002
##    420        1.0284             nan     0.0010    0.0002
##    440        1.0186             nan     0.0010    0.0002
##    460        1.0088             nan     0.0010    0.0002
##    480        0.9992             nan     0.0010    0.0002
##    500        0.9900             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0004
##      6        1.3150             nan     0.0010    0.0004
##      7        1.3141             nan     0.0010    0.0004
##      8        1.3132             nan     0.0010    0.0004
##      9        1.3123             nan     0.0010    0.0004
##     10        1.3114             nan     0.0010    0.0004
##     20        1.3020             nan     0.0010    0.0004
##     40        1.2840             nan     0.0010    0.0004
##     60        1.2667             nan     0.0010    0.0004
##     80        1.2501             nan     0.0010    0.0004
##    100        1.2341             nan     0.0010    0.0004
##    120        1.2186             nan     0.0010    0.0003
##    140        1.2034             nan     0.0010    0.0003
##    160        1.1885             nan     0.0010    0.0004
##    180        1.1743             nan     0.0010    0.0003
##    200        1.1607             nan     0.0010    0.0003
##    220        1.1473             nan     0.0010    0.0003
##    240        1.1342             nan     0.0010    0.0003
##    260        1.1216             nan     0.0010    0.0003
##    280        1.1093             nan     0.0010    0.0003
##    300        1.0976             nan     0.0010    0.0003
##    320        1.0861             nan     0.0010    0.0003
##    340        1.0752             nan     0.0010    0.0002
##    360        1.0644             nan     0.0010    0.0002
##    380        1.0538             nan     0.0010    0.0002
##    400        1.0434             nan     0.0010    0.0002
##    420        1.0333             nan     0.0010    0.0002
##    440        1.0234             nan     0.0010    0.0002
##    460        1.0135             nan     0.0010    0.0002
##    480        1.0042             nan     0.0010    0.0002
##    500        0.9952             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0005
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3150             nan     0.0010    0.0004
##      7        1.3141             nan     0.0010    0.0004
##      8        1.3131             nan     0.0010    0.0004
##      9        1.3122             nan     0.0010    0.0004
##     10        1.3113             nan     0.0010    0.0004
##     20        1.3022             nan     0.0010    0.0004
##     40        1.2842             nan     0.0010    0.0004
##     60        1.2672             nan     0.0010    0.0004
##     80        1.2506             nan     0.0010    0.0004
##    100        1.2345             nan     0.0010    0.0004
##    120        1.2189             nan     0.0010    0.0003
##    140        1.2038             nan     0.0010    0.0003
##    160        1.1891             nan     0.0010    0.0003
##    180        1.1749             nan     0.0010    0.0003
##    200        1.1612             nan     0.0010    0.0003
##    220        1.1481             nan     0.0010    0.0003
##    240        1.1354             nan     0.0010    0.0003
##    260        1.1229             nan     0.0010    0.0003
##    280        1.1108             nan     0.0010    0.0003
##    300        1.0989             nan     0.0010    0.0002
##    320        1.0874             nan     0.0010    0.0002
##    340        1.0762             nan     0.0010    0.0002
##    360        1.0654             nan     0.0010    0.0003
##    380        1.0547             nan     0.0010    0.0002
##    400        1.0444             nan     0.0010    0.0002
##    420        1.0344             nan     0.0010    0.0002
##    440        1.0245             nan     0.0010    0.0002
##    460        1.0150             nan     0.0010    0.0002
##    480        1.0057             nan     0.0010    0.0002
##    500        0.9967             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0040
##      2        1.3035             nan     0.0100    0.0039
##      3        1.2956             nan     0.0100    0.0038
##      4        1.2875             nan     0.0100    0.0033
##      5        1.2794             nan     0.0100    0.0035
##      6        1.2715             nan     0.0100    0.0037
##      7        1.2634             nan     0.0100    0.0033
##      8        1.2567             nan     0.0100    0.0030
##      9        1.2492             nan     0.0100    0.0035
##     10        1.2422             nan     0.0100    0.0031
##     20        1.1765             nan     0.0100    0.0030
##     40        1.0656             nan     0.0100    0.0022
##     60        0.9816             nan     0.0100    0.0013
##     80        0.9162             nan     0.0100    0.0010
##    100        0.8624             nan     0.0100    0.0010
##    120        0.8194             nan     0.0100    0.0006
##    140        0.7824             nan     0.0100    0.0006
##    160        0.7522             nan     0.0100    0.0002
##    180        0.7261             nan     0.0100    0.0003
##    200        0.7033             nan     0.0100    0.0002
##    220        0.6842             nan     0.0100    0.0002
##    240        0.6664             nan     0.0100    0.0000
##    260        0.6507             nan     0.0100    0.0001
##    280        0.6369             nan     0.0100    0.0001
##    300        0.6232             nan     0.0100    0.0000
##    320        0.6113             nan     0.0100   -0.0001
##    340        0.5994             nan     0.0100    0.0001
##    360        0.5888             nan     0.0100   -0.0000
##    380        0.5790             nan     0.0100   -0.0001
##    400        0.5696             nan     0.0100    0.0000
##    420        0.5605             nan     0.0100   -0.0000
##    440        0.5518             nan     0.0100    0.0000
##    460        0.5426             nan     0.0100   -0.0001
##    480        0.5336             nan     0.0100   -0.0000
##    500        0.5255             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0037
##      2        1.3044             nan     0.0100    0.0039
##      3        1.2961             nan     0.0100    0.0037
##      4        1.2885             nan     0.0100    0.0033
##      5        1.2804             nan     0.0100    0.0038
##      6        1.2727             nan     0.0100    0.0037
##      7        1.2648             nan     0.0100    0.0040
##      8        1.2580             nan     0.0100    0.0034
##      9        1.2504             nan     0.0100    0.0034
##     10        1.2431             nan     0.0100    0.0032
##     20        1.1762             nan     0.0100    0.0030
##     40        1.0685             nan     0.0100    0.0020
##     60        0.9842             nan     0.0100    0.0017
##     80        0.9164             nan     0.0100    0.0014
##    100        0.8655             nan     0.0100    0.0011
##    120        0.8213             nan     0.0100    0.0007
##    140        0.7872             nan     0.0100    0.0004
##    160        0.7553             nan     0.0100    0.0006
##    180        0.7306             nan     0.0100    0.0005
##    200        0.7083             nan     0.0100    0.0003
##    220        0.6891             nan     0.0100    0.0002
##    240        0.6717             nan     0.0100    0.0002
##    260        0.6561             nan     0.0100    0.0001
##    280        0.6423             nan     0.0100    0.0001
##    300        0.6290             nan     0.0100    0.0000
##    320        0.6169             nan     0.0100    0.0001
##    340        0.6054             nan     0.0100    0.0002
##    360        0.5942             nan     0.0100    0.0001
##    380        0.5841             nan     0.0100    0.0000
##    400        0.5752             nan     0.0100   -0.0000
##    420        0.5660             nan     0.0100   -0.0000
##    440        0.5575             nan     0.0100    0.0001
##    460        0.5483             nan     0.0100   -0.0001
##    480        0.5404             nan     0.0100    0.0000
##    500        0.5324             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0039
##      2        1.3036             nan     0.0100    0.0037
##      3        1.2950             nan     0.0100    0.0040
##      4        1.2872             nan     0.0100    0.0038
##      5        1.2795             nan     0.0100    0.0035
##      6        1.2717             nan     0.0100    0.0035
##      7        1.2640             nan     0.0100    0.0038
##      8        1.2567             nan     0.0100    0.0034
##      9        1.2489             nan     0.0100    0.0034
##     10        1.2415             nan     0.0100    0.0032
##     20        1.1739             nan     0.0100    0.0022
##     40        1.0672             nan     0.0100    0.0020
##     60        0.9831             nan     0.0100    0.0016
##     80        0.9191             nan     0.0100    0.0011
##    100        0.8649             nan     0.0100    0.0009
##    120        0.8228             nan     0.0100    0.0007
##    140        0.7885             nan     0.0100    0.0006
##    160        0.7607             nan     0.0100    0.0003
##    180        0.7354             nan     0.0100    0.0002
##    200        0.7132             nan     0.0100    0.0002
##    220        0.6937             nan     0.0100    0.0001
##    240        0.6769             nan     0.0100    0.0001
##    260        0.6617             nan     0.0100    0.0000
##    280        0.6475             nan     0.0100    0.0001
##    300        0.6347             nan     0.0100    0.0000
##    320        0.6225             nan     0.0100   -0.0001
##    340        0.6121             nan     0.0100   -0.0001
##    360        0.6026             nan     0.0100    0.0001
##    380        0.5925             nan     0.0100    0.0002
##    400        0.5831             nan     0.0100   -0.0000
##    420        0.5736             nan     0.0100    0.0002
##    440        0.5654             nan     0.0100   -0.0002
##    460        0.5575             nan     0.0100   -0.0002
##    480        0.5494             nan     0.0100   -0.0001
##    500        0.5422             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0038
##      2        1.3025             nan     0.0100    0.0042
##      3        1.2931             nan     0.0100    0.0041
##      4        1.2851             nan     0.0100    0.0036
##      5        1.2764             nan     0.0100    0.0040
##      6        1.2678             nan     0.0100    0.0038
##      7        1.2594             nan     0.0100    0.0037
##      8        1.2508             nan     0.0100    0.0037
##      9        1.2427             nan     0.0100    0.0037
##     10        1.2347             nan     0.0100    0.0034
##     20        1.1647             nan     0.0100    0.0029
##     40        1.0524             nan     0.0100    0.0020
##     60        0.9646             nan     0.0100    0.0014
##     80        0.8959             nan     0.0100    0.0010
##    100        0.8411             nan     0.0100    0.0008
##    120        0.7965             nan     0.0100    0.0006
##    140        0.7581             nan     0.0100    0.0004
##    160        0.7251             nan     0.0100    0.0006
##    180        0.6979             nan     0.0100    0.0004
##    200        0.6740             nan     0.0100    0.0005
##    220        0.6519             nan     0.0100    0.0002
##    240        0.6323             nan     0.0100    0.0001
##    260        0.6153             nan     0.0100    0.0003
##    280        0.6001             nan     0.0100    0.0001
##    300        0.5855             nan     0.0100    0.0002
##    320        0.5724             nan     0.0100    0.0001
##    340        0.5594             nan     0.0100    0.0001
##    360        0.5480             nan     0.0100   -0.0002
##    380        0.5369             nan     0.0100   -0.0000
##    400        0.5266             nan     0.0100    0.0001
##    420        0.5157             nan     0.0100    0.0001
##    440        0.5057             nan     0.0100   -0.0001
##    460        0.4958             nan     0.0100   -0.0001
##    480        0.4863             nan     0.0100    0.0000
##    500        0.4772             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0040
##      2        1.3035             nan     0.0100    0.0037
##      3        1.2944             nan     0.0100    0.0038
##      4        1.2860             nan     0.0100    0.0040
##      5        1.2773             nan     0.0100    0.0038
##      6        1.2692             nan     0.0100    0.0037
##      7        1.2613             nan     0.0100    0.0034
##      8        1.2535             nan     0.0100    0.0035
##      9        1.2456             nan     0.0100    0.0033
##     10        1.2377             nan     0.0100    0.0036
##     20        1.1664             nan     0.0100    0.0029
##     40        1.0519             nan     0.0100    0.0022
##     60        0.9647             nan     0.0100    0.0017
##     80        0.8951             nan     0.0100    0.0012
##    100        0.8421             nan     0.0100    0.0008
##    120        0.7991             nan     0.0100    0.0006
##    140        0.7600             nan     0.0100    0.0005
##    160        0.7280             nan     0.0100    0.0002
##    180        0.7007             nan     0.0100    0.0004
##    200        0.6771             nan     0.0100    0.0002
##    220        0.6566             nan     0.0100    0.0003
##    240        0.6381             nan     0.0100    0.0001
##    260        0.6211             nan     0.0100    0.0001
##    280        0.6062             nan     0.0100    0.0001
##    300        0.5919             nan     0.0100   -0.0001
##    320        0.5793             nan     0.0100    0.0000
##    340        0.5671             nan     0.0100   -0.0000
##    360        0.5552             nan     0.0100   -0.0000
##    380        0.5431             nan     0.0100   -0.0001
##    400        0.5318             nan     0.0100    0.0001
##    420        0.5211             nan     0.0100    0.0000
##    440        0.5117             nan     0.0100    0.0000
##    460        0.5014             nan     0.0100    0.0000
##    480        0.4926             nan     0.0100   -0.0001
##    500        0.4835             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0036
##      2        1.3031             nan     0.0100    0.0040
##      3        1.2941             nan     0.0100    0.0041
##      4        1.2857             nan     0.0100    0.0036
##      5        1.2769             nan     0.0100    0.0039
##      6        1.2687             nan     0.0100    0.0039
##      7        1.2598             nan     0.0100    0.0038
##      8        1.2520             nan     0.0100    0.0034
##      9        1.2439             nan     0.0100    0.0038
##     10        1.2357             nan     0.0100    0.0035
##     20        1.1656             nan     0.0100    0.0030
##     40        1.0531             nan     0.0100    0.0021
##     60        0.9670             nan     0.0100    0.0015
##     80        0.8999             nan     0.0100    0.0013
##    100        0.8451             nan     0.0100    0.0010
##    120        0.8003             nan     0.0100    0.0005
##    140        0.7638             nan     0.0100    0.0003
##    160        0.7325             nan     0.0100    0.0003
##    180        0.7054             nan     0.0100    0.0002
##    200        0.6831             nan     0.0100    0.0003
##    220        0.6637             nan     0.0100    0.0001
##    240        0.6457             nan     0.0100    0.0001
##    260        0.6284             nan     0.0100    0.0001
##    280        0.6136             nan     0.0100    0.0000
##    300        0.6007             nan     0.0100    0.0000
##    320        0.5875             nan     0.0100   -0.0000
##    340        0.5760             nan     0.0100   -0.0001
##    360        0.5653             nan     0.0100    0.0001
##    380        0.5542             nan     0.0100   -0.0001
##    400        0.5434             nan     0.0100   -0.0000
##    420        0.5342             nan     0.0100   -0.0000
##    440        0.5252             nan     0.0100   -0.0002
##    460        0.5167             nan     0.0100   -0.0001
##    480        0.5080             nan     0.0100   -0.0001
##    500        0.4981             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3108             nan     0.0100    0.0048
##      2        1.3014             nan     0.0100    0.0042
##      3        1.2927             nan     0.0100    0.0040
##      4        1.2835             nan     0.0100    0.0044
##      5        1.2746             nan     0.0100    0.0041
##      6        1.2660             nan     0.0100    0.0037
##      7        1.2567             nan     0.0100    0.0039
##      8        1.2481             nan     0.0100    0.0039
##      9        1.2398             nan     0.0100    0.0041
##     10        1.2316             nan     0.0100    0.0035
##     20        1.1558             nan     0.0100    0.0028
##     40        1.0371             nan     0.0100    0.0018
##     60        0.9458             nan     0.0100    0.0015
##     80        0.8743             nan     0.0100    0.0012
##    100        0.8173             nan     0.0100    0.0009
##    120        0.7714             nan     0.0100    0.0006
##    140        0.7307             nan     0.0100    0.0005
##    160        0.6976             nan     0.0100    0.0003
##    180        0.6688             nan     0.0100    0.0005
##    200        0.6428             nan     0.0100    0.0002
##    220        0.6200             nan     0.0100    0.0003
##    240        0.5990             nan     0.0100    0.0001
##    260        0.5806             nan     0.0100    0.0001
##    280        0.5635             nan     0.0100    0.0001
##    300        0.5476             nan     0.0100    0.0001
##    320        0.5320             nan     0.0100   -0.0000
##    340        0.5171             nan     0.0100    0.0000
##    360        0.5033             nan     0.0100    0.0001
##    380        0.4902             nan     0.0100   -0.0000
##    400        0.4791             nan     0.0100   -0.0001
##    420        0.4689             nan     0.0100   -0.0001
##    440        0.4590             nan     0.0100    0.0001
##    460        0.4489             nan     0.0100   -0.0001
##    480        0.4390             nan     0.0100    0.0002
##    500        0.4305             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3112             nan     0.0100    0.0042
##      2        1.3019             nan     0.0100    0.0044
##      3        1.2929             nan     0.0100    0.0038
##      4        1.2841             nan     0.0100    0.0040
##      5        1.2751             nan     0.0100    0.0037
##      6        1.2664             nan     0.0100    0.0040
##      7        1.2580             nan     0.0100    0.0036
##      8        1.2499             nan     0.0100    0.0035
##      9        1.2414             nan     0.0100    0.0037
##     10        1.2331             nan     0.0100    0.0036
##     20        1.1581             nan     0.0100    0.0032
##     40        1.0423             nan     0.0100    0.0022
##     60        0.9514             nan     0.0100    0.0016
##     80        0.8823             nan     0.0100    0.0014
##    100        0.8229             nan     0.0100    0.0009
##    120        0.7755             nan     0.0100    0.0006
##    140        0.7382             nan     0.0100    0.0004
##    160        0.7049             nan     0.0100    0.0004
##    180        0.6768             nan     0.0100    0.0003
##    200        0.6514             nan     0.0100    0.0002
##    220        0.6289             nan     0.0100    0.0002
##    240        0.6098             nan     0.0100    0.0001
##    260        0.5919             nan     0.0100    0.0002
##    280        0.5756             nan     0.0100    0.0000
##    300        0.5596             nan     0.0100    0.0001
##    320        0.5454             nan     0.0100    0.0000
##    340        0.5312             nan     0.0100   -0.0000
##    360        0.5183             nan     0.0100   -0.0000
##    380        0.5065             nan     0.0100    0.0001
##    400        0.4949             nan     0.0100   -0.0000
##    420        0.4839             nan     0.0100   -0.0001
##    440        0.4731             nan     0.0100   -0.0001
##    460        0.4636             nan     0.0100   -0.0001
##    480        0.4540             nan     0.0100   -0.0001
##    500        0.4441             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3109             nan     0.0100    0.0043
##      2        1.3020             nan     0.0100    0.0040
##      3        1.2929             nan     0.0100    0.0040
##      4        1.2845             nan     0.0100    0.0035
##      5        1.2750             nan     0.0100    0.0043
##      6        1.2665             nan     0.0100    0.0040
##      7        1.2577             nan     0.0100    0.0040
##      8        1.2496             nan     0.0100    0.0038
##      9        1.2411             nan     0.0100    0.0035
##     10        1.2325             nan     0.0100    0.0034
##     20        1.1614             nan     0.0100    0.0031
##     40        1.0446             nan     0.0100    0.0021
##     60        0.9539             nan     0.0100    0.0017
##     80        0.8837             nan     0.0100    0.0010
##    100        0.8266             nan     0.0100    0.0011
##    120        0.7802             nan     0.0100    0.0007
##    140        0.7426             nan     0.0100    0.0003
##    160        0.7102             nan     0.0100    0.0003
##    180        0.6833             nan     0.0100    0.0002
##    200        0.6600             nan     0.0100    0.0003
##    220        0.6386             nan     0.0100    0.0002
##    240        0.6185             nan     0.0100    0.0002
##    260        0.6005             nan     0.0100    0.0001
##    280        0.5840             nan     0.0100    0.0000
##    300        0.5680             nan     0.0100    0.0001
##    320        0.5540             nan     0.0100    0.0000
##    340        0.5414             nan     0.0100    0.0000
##    360        0.5294             nan     0.0100   -0.0000
##    380        0.5177             nan     0.0100   -0.0000
##    400        0.5059             nan     0.0100   -0.0001
##    420        0.4954             nan     0.0100   -0.0002
##    440        0.4849             nan     0.0100    0.0002
##    460        0.4753             nan     0.0100   -0.0001
##    480        0.4665             nan     0.0100   -0.0001
##    500        0.4575             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2377             nan     0.1000    0.0329
##      2        1.1714             nan     0.1000    0.0296
##      3        1.1159             nan     0.1000    0.0245
##      4        1.0606             nan     0.1000    0.0222
##      5        1.0134             nan     0.1000    0.0209
##      6        0.9734             nan     0.1000    0.0154
##      7        0.9407             nan     0.1000    0.0129
##      8        0.9124             nan     0.1000    0.0115
##      9        0.8865             nan     0.1000    0.0079
##     10        0.8650             nan     0.1000    0.0094
##     20        0.7155             nan     0.1000    0.0009
##     40        0.5787             nan     0.1000   -0.0012
##     60        0.4938             nan     0.1000   -0.0003
##     80        0.4313             nan     0.1000   -0.0006
##    100        0.3868             nan     0.1000   -0.0010
##    120        0.3428             nan     0.1000   -0.0001
##    140        0.3062             nan     0.1000    0.0002
##    160        0.2771             nan     0.1000   -0.0005
##    180        0.2489             nan     0.1000   -0.0001
##    200        0.2235             nan     0.1000   -0.0002
##    220        0.2005             nan     0.1000   -0.0001
##    240        0.1821             nan     0.1000   -0.0006
##    260        0.1664             nan     0.1000   -0.0007
##    280        0.1514             nan     0.1000   -0.0002
##    300        0.1385             nan     0.1000   -0.0007
##    320        0.1265             nan     0.1000   -0.0001
##    340        0.1160             nan     0.1000   -0.0006
##    360        0.1062             nan     0.1000   -0.0001
##    380        0.0975             nan     0.1000   -0.0003
##    400        0.0898             nan     0.1000   -0.0003
##    420        0.0825             nan     0.1000   -0.0001
##    440        0.0768             nan     0.1000   -0.0004
##    460        0.0706             nan     0.1000   -0.0004
##    480        0.0650             nan     0.1000   -0.0003
##    500        0.0589             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2333             nan     0.1000    0.0347
##      2        1.1655             nan     0.1000    0.0310
##      3        1.1108             nan     0.1000    0.0218
##      4        1.0556             nan     0.1000    0.0226
##      5        1.0129             nan     0.1000    0.0165
##      6        0.9762             nan     0.1000    0.0158
##      7        0.9421             nan     0.1000    0.0133
##      8        0.9158             nan     0.1000    0.0114
##      9        0.8858             nan     0.1000    0.0109
##     10        0.8624             nan     0.1000    0.0068
##     20        0.7191             nan     0.1000    0.0025
##     40        0.5778             nan     0.1000    0.0001
##     60        0.4976             nan     0.1000   -0.0018
##     80        0.4386             nan     0.1000    0.0007
##    100        0.3899             nan     0.1000   -0.0003
##    120        0.3442             nan     0.1000   -0.0008
##    140        0.3062             nan     0.1000   -0.0007
##    160        0.2768             nan     0.1000   -0.0016
##    180        0.2490             nan     0.1000   -0.0006
##    200        0.2262             nan     0.1000   -0.0005
##    220        0.2046             nan     0.1000   -0.0003
##    240        0.1867             nan     0.1000   -0.0001
##    260        0.1695             nan     0.1000   -0.0003
##    280        0.1547             nan     0.1000   -0.0000
##    300        0.1418             nan     0.1000   -0.0001
##    320        0.1294             nan     0.1000   -0.0006
##    340        0.1188             nan     0.1000   -0.0004
##    360        0.1095             nan     0.1000   -0.0002
##    380        0.1004             nan     0.1000   -0.0001
##    400        0.0928             nan     0.1000   -0.0003
##    420        0.0852             nan     0.1000   -0.0001
##    440        0.0789             nan     0.1000   -0.0004
##    460        0.0723             nan     0.1000   -0.0002
##    480        0.0671             nan     0.1000   -0.0002
##    500        0.0624             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2412             nan     0.1000    0.0365
##      2        1.1751             nan     0.1000    0.0274
##      3        1.1175             nan     0.1000    0.0233
##      4        1.0627             nan     0.1000    0.0249
##      5        1.0152             nan     0.1000    0.0206
##      6        0.9796             nan     0.1000    0.0125
##      7        0.9441             nan     0.1000    0.0156
##      8        0.9135             nan     0.1000    0.0114
##      9        0.8863             nan     0.1000    0.0108
##     10        0.8602             nan     0.1000    0.0099
##     20        0.7106             nan     0.1000    0.0013
##     40        0.5746             nan     0.1000   -0.0004
##     60        0.5084             nan     0.1000   -0.0017
##     80        0.4550             nan     0.1000   -0.0010
##    100        0.4051             nan     0.1000   -0.0013
##    120        0.3624             nan     0.1000   -0.0010
##    140        0.3214             nan     0.1000   -0.0005
##    160        0.2906             nan     0.1000   -0.0010
##    180        0.2676             nan     0.1000   -0.0013
##    200        0.2460             nan     0.1000   -0.0012
##    220        0.2267             nan     0.1000   -0.0012
##    240        0.2061             nan     0.1000   -0.0006
##    260        0.1879             nan     0.1000   -0.0005
##    280        0.1735             nan     0.1000   -0.0011
##    300        0.1608             nan     0.1000   -0.0013
##    320        0.1484             nan     0.1000   -0.0004
##    340        0.1355             nan     0.1000   -0.0004
##    360        0.1247             nan     0.1000   -0.0006
##    380        0.1127             nan     0.1000    0.0001
##    400        0.1035             nan     0.1000   -0.0004
##    420        0.0958             nan     0.1000   -0.0003
##    440        0.0889             nan     0.1000   -0.0003
##    460        0.0830             nan     0.1000   -0.0003
##    480        0.0772             nan     0.1000   -0.0002
##    500        0.0712             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2291             nan     0.1000    0.0394
##      2        1.1562             nan     0.1000    0.0360
##      3        1.0966             nan     0.1000    0.0242
##      4        1.0431             nan     0.1000    0.0241
##      5        1.0002             nan     0.1000    0.0164
##      6        0.9651             nan     0.1000    0.0137
##      7        0.9258             nan     0.1000    0.0170
##      8        0.8933             nan     0.1000    0.0115
##      9        0.8643             nan     0.1000    0.0101
##     10        0.8358             nan     0.1000    0.0090
##     20        0.6692             nan     0.1000    0.0053
##     40        0.5183             nan     0.1000    0.0013
##     60        0.4231             nan     0.1000    0.0001
##     80        0.3563             nan     0.1000   -0.0005
##    100        0.3125             nan     0.1000   -0.0008
##    120        0.2695             nan     0.1000    0.0003
##    140        0.2364             nan     0.1000   -0.0007
##    160        0.2052             nan     0.1000    0.0002
##    180        0.1806             nan     0.1000   -0.0004
##    200        0.1608             nan     0.1000   -0.0005
##    220        0.1415             nan     0.1000   -0.0001
##    240        0.1261             nan     0.1000   -0.0001
##    260        0.1128             nan     0.1000   -0.0004
##    280        0.1015             nan     0.1000   -0.0001
##    300        0.0920             nan     0.1000   -0.0004
##    320        0.0825             nan     0.1000   -0.0002
##    340        0.0743             nan     0.1000   -0.0003
##    360        0.0658             nan     0.1000   -0.0002
##    380        0.0592             nan     0.1000   -0.0001
##    400        0.0538             nan     0.1000   -0.0001
##    420        0.0485             nan     0.1000   -0.0002
##    440        0.0434             nan     0.1000   -0.0001
##    460        0.0391             nan     0.1000   -0.0002
##    480        0.0355             nan     0.1000   -0.0000
##    500        0.0319             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2375             nan     0.1000    0.0394
##      2        1.1607             nan     0.1000    0.0333
##      3        1.1010             nan     0.1000    0.0256
##      4        1.0490             nan     0.1000    0.0233
##      5        1.0087             nan     0.1000    0.0193
##      6        0.9665             nan     0.1000    0.0163
##      7        0.9349             nan     0.1000    0.0115
##      8        0.9056             nan     0.1000    0.0106
##      9        0.8796             nan     0.1000    0.0081
##     10        0.8581             nan     0.1000    0.0072
##     20        0.6824             nan     0.1000   -0.0005
##     40        0.5409             nan     0.1000   -0.0003
##     60        0.4578             nan     0.1000   -0.0009
##     80        0.3836             nan     0.1000   -0.0009
##    100        0.3261             nan     0.1000   -0.0006
##    120        0.2803             nan     0.1000   -0.0010
##    140        0.2475             nan     0.1000   -0.0005
##    160        0.2143             nan     0.1000   -0.0007
##    180        0.1911             nan     0.1000   -0.0005
##    200        0.1668             nan     0.1000   -0.0004
##    220        0.1497             nan     0.1000   -0.0008
##    240        0.1335             nan     0.1000   -0.0002
##    260        0.1191             nan     0.1000   -0.0004
##    280        0.1067             nan     0.1000   -0.0002
##    300        0.0951             nan     0.1000   -0.0000
##    320        0.0841             nan     0.1000   -0.0001
##    340        0.0759             nan     0.1000   -0.0000
##    360        0.0677             nan     0.1000   -0.0003
##    380        0.0612             nan     0.1000   -0.0003
##    400        0.0548             nan     0.1000   -0.0000
##    420        0.0497             nan     0.1000   -0.0001
##    440        0.0453             nan     0.1000   -0.0002
##    460        0.0410             nan     0.1000   -0.0000
##    480        0.0375             nan     0.1000   -0.0002
##    500        0.0340             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2323             nan     0.1000    0.0426
##      2        1.1593             nan     0.1000    0.0311
##      3        1.0959             nan     0.1000    0.0260
##      4        1.0466             nan     0.1000    0.0237
##      5        1.0039             nan     0.1000    0.0190
##      6        0.9678             nan     0.1000    0.0154
##      7        0.9352             nan     0.1000    0.0125
##      8        0.9030             nan     0.1000    0.0127
##      9        0.8756             nan     0.1000    0.0104
##     10        0.8536             nan     0.1000    0.0078
##     20        0.6988             nan     0.1000   -0.0001
##     40        0.5580             nan     0.1000   -0.0001
##     60        0.4674             nan     0.1000   -0.0011
##     80        0.4048             nan     0.1000   -0.0016
##    100        0.3544             nan     0.1000   -0.0011
##    120        0.3129             nan     0.1000   -0.0004
##    140        0.2743             nan     0.1000   -0.0002
##    160        0.2419             nan     0.1000   -0.0014
##    180        0.2175             nan     0.1000   -0.0014
##    200        0.1918             nan     0.1000   -0.0009
##    220        0.1705             nan     0.1000   -0.0007
##    240        0.1541             nan     0.1000   -0.0006
##    260        0.1391             nan     0.1000   -0.0006
##    280        0.1257             nan     0.1000   -0.0008
##    300        0.1126             nan     0.1000   -0.0001
##    320        0.1026             nan     0.1000   -0.0007
##    340        0.0927             nan     0.1000   -0.0005
##    360        0.0832             nan     0.1000   -0.0003
##    380        0.0760             nan     0.1000   -0.0003
##    400        0.0692             nan     0.1000   -0.0004
##    420        0.0627             nan     0.1000   -0.0000
##    440        0.0565             nan     0.1000   -0.0001
##    460        0.0509             nan     0.1000   -0.0001
##    480        0.0462             nan     0.1000   -0.0001
##    500        0.0421             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2248             nan     0.1000    0.0403
##      2        1.1497             nan     0.1000    0.0344
##      3        1.0846             nan     0.1000    0.0313
##      4        1.0259             nan     0.1000    0.0236
##      5        0.9801             nan     0.1000    0.0214
##      6        0.9396             nan     0.1000    0.0152
##      7        0.9047             nan     0.1000    0.0148
##      8        0.8753             nan     0.1000    0.0119
##      9        0.8443             nan     0.1000    0.0108
##     10        0.8201             nan     0.1000    0.0092
##     20        0.6546             nan     0.1000    0.0014
##     40        0.4964             nan     0.1000    0.0002
##     60        0.4024             nan     0.1000   -0.0012
##     80        0.3299             nan     0.1000   -0.0003
##    100        0.2741             nan     0.1000   -0.0003
##    120        0.2324             nan     0.1000   -0.0002
##    140        0.2001             nan     0.1000   -0.0005
##    160        0.1711             nan     0.1000   -0.0003
##    180        0.1460             nan     0.1000   -0.0004
##    200        0.1267             nan     0.1000   -0.0006
##    220        0.1083             nan     0.1000   -0.0001
##    240        0.0945             nan     0.1000   -0.0002
##    260        0.0824             nan     0.1000   -0.0001
##    280        0.0719             nan     0.1000   -0.0002
##    300        0.0634             nan     0.1000   -0.0003
##    320        0.0561             nan     0.1000   -0.0001
##    340        0.0494             nan     0.1000   -0.0000
##    360        0.0430             nan     0.1000   -0.0001
##    380        0.0381             nan     0.1000   -0.0000
##    400        0.0335             nan     0.1000   -0.0001
##    420        0.0297             nan     0.1000   -0.0001
##    440        0.0260             nan     0.1000   -0.0001
##    460        0.0231             nan     0.1000    0.0000
##    480        0.0204             nan     0.1000   -0.0000
##    500        0.0180             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2255             nan     0.1000    0.0443
##      2        1.1543             nan     0.1000    0.0319
##      3        1.0906             nan     0.1000    0.0276
##      4        1.0399             nan     0.1000    0.0207
##      5        0.9941             nan     0.1000    0.0200
##      6        0.9510             nan     0.1000    0.0162
##      7        0.9140             nan     0.1000    0.0155
##      8        0.8790             nan     0.1000    0.0127
##      9        0.8482             nan     0.1000    0.0111
##     10        0.8225             nan     0.1000    0.0102
##     20        0.6573             nan     0.1000    0.0012
##     40        0.5057             nan     0.1000   -0.0024
##     60        0.4092             nan     0.1000   -0.0001
##     80        0.3386             nan     0.1000   -0.0004
##    100        0.2903             nan     0.1000   -0.0009
##    120        0.2455             nan     0.1000    0.0005
##    140        0.2094             nan     0.1000   -0.0000
##    160        0.1835             nan     0.1000   -0.0010
##    180        0.1525             nan     0.1000   -0.0004
##    200        0.1326             nan     0.1000   -0.0009
##    220        0.1151             nan     0.1000   -0.0003
##    240        0.0988             nan     0.1000   -0.0004
##    260        0.0857             nan     0.1000   -0.0001
##    280        0.0765             nan     0.1000   -0.0006
##    300        0.0673             nan     0.1000   -0.0002
##    320        0.0591             nan     0.1000    0.0000
##    340        0.0523             nan     0.1000   -0.0002
##    360        0.0458             nan     0.1000   -0.0001
##    380        0.0400             nan     0.1000   -0.0002
##    400        0.0351             nan     0.1000   -0.0001
##    420        0.0311             nan     0.1000   -0.0001
##    440        0.0276             nan     0.1000   -0.0001
##    460        0.0246             nan     0.1000   -0.0000
##    480        0.0218             nan     0.1000   -0.0000
##    500        0.0193             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2282             nan     0.1000    0.0434
##      2        1.1482             nan     0.1000    0.0367
##      3        1.0902             nan     0.1000    0.0237
##      4        1.0405             nan     0.1000    0.0174
##      5        0.9875             nan     0.1000    0.0217
##      6        0.9459             nan     0.1000    0.0184
##      7        0.9103             nan     0.1000    0.0133
##      8        0.8746             nan     0.1000    0.0151
##      9        0.8450             nan     0.1000    0.0120
##     10        0.8189             nan     0.1000    0.0100
##     20        0.6598             nan     0.1000    0.0009
##     40        0.5050             nan     0.1000   -0.0001
##     60        0.4150             nan     0.1000   -0.0001
##     80        0.3510             nan     0.1000   -0.0016
##    100        0.2980             nan     0.1000   -0.0007
##    120        0.2560             nan     0.1000   -0.0002
##    140        0.2217             nan     0.1000   -0.0010
##    160        0.1919             nan     0.1000   -0.0006
##    180        0.1683             nan     0.1000   -0.0005
##    200        0.1439             nan     0.1000   -0.0004
##    220        0.1260             nan     0.1000   -0.0006
##    240        0.1105             nan     0.1000   -0.0001
##    260        0.0963             nan     0.1000   -0.0005
##    280        0.0855             nan     0.1000   -0.0003
##    300        0.0759             nan     0.1000   -0.0002
##    320        0.0676             nan     0.1000   -0.0001
##    340        0.0608             nan     0.1000   -0.0003
##    360        0.0537             nan     0.1000   -0.0001
##    380        0.0474             nan     0.1000   -0.0001
##    400        0.0420             nan     0.1000   -0.0002
##    420        0.0374             nan     0.1000   -0.0001
##    440        0.0331             nan     0.1000   -0.0001
##    460        0.0291             nan     0.1000   -0.0000
##    480        0.0260             nan     0.1000   -0.0001
##    500        0.0235             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3191             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0003
##      6        1.3160             nan     0.0010    0.0003
##      7        1.3152             nan     0.0010    0.0003
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0003
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3047             nan     0.0010    0.0004
##     40        1.2893             nan     0.0010    0.0003
##     60        1.2744             nan     0.0010    0.0003
##     80        1.2603             nan     0.0010    0.0003
##    100        1.2460             nan     0.0010    0.0003
##    120        1.2323             nan     0.0010    0.0003
##    140        1.2191             nan     0.0010    0.0003
##    160        1.2064             nan     0.0010    0.0003
##    180        1.1936             nan     0.0010    0.0002
##    200        1.1815             nan     0.0010    0.0002
##    220        1.1696             nan     0.0010    0.0003
##    240        1.1581             nan     0.0010    0.0003
##    260        1.1467             nan     0.0010    0.0002
##    280        1.1359             nan     0.0010    0.0003
##    300        1.1254             nan     0.0010    0.0002
##    320        1.1152             nan     0.0010    0.0002
##    340        1.1053             nan     0.0010    0.0002
##    360        1.0956             nan     0.0010    0.0002
##    380        1.0864             nan     0.0010    0.0002
##    400        1.0771             nan     0.0010    0.0002
##    420        1.0680             nan     0.0010    0.0002
##    440        1.0595             nan     0.0010    0.0002
##    460        1.0512             nan     0.0010    0.0001
##    480        1.0428             nan     0.0010    0.0002
##    500        1.0345             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0003
##      6        1.3159             nan     0.0010    0.0003
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3048             nan     0.0010    0.0004
##     40        1.2892             nan     0.0010    0.0004
##     60        1.2744             nan     0.0010    0.0003
##     80        1.2596             nan     0.0010    0.0003
##    100        1.2455             nan     0.0010    0.0003
##    120        1.2316             nan     0.0010    0.0003
##    140        1.2186             nan     0.0010    0.0003
##    160        1.2057             nan     0.0010    0.0003
##    180        1.1931             nan     0.0010    0.0003
##    200        1.1812             nan     0.0010    0.0003
##    220        1.1696             nan     0.0010    0.0003
##    240        1.1583             nan     0.0010    0.0002
##    260        1.1473             nan     0.0010    0.0003
##    280        1.1360             nan     0.0010    0.0003
##    300        1.1256             nan     0.0010    0.0002
##    320        1.1153             nan     0.0010    0.0002
##    340        1.1055             nan     0.0010    0.0002
##    360        1.0957             nan     0.0010    0.0002
##    380        1.0863             nan     0.0010    0.0002
##    400        1.0771             nan     0.0010    0.0002
##    420        1.0683             nan     0.0010    0.0002
##    440        1.0594             nan     0.0010    0.0002
##    460        1.0506             nan     0.0010    0.0002
##    480        1.0423             nan     0.0010    0.0001
##    500        1.0343             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0003
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0003
##      9        1.3133             nan     0.0010    0.0003
##     10        1.3126             nan     0.0010    0.0003
##     20        1.3045             nan     0.0010    0.0004
##     40        1.2889             nan     0.0010    0.0003
##     60        1.2738             nan     0.0010    0.0003
##     80        1.2591             nan     0.0010    0.0003
##    100        1.2451             nan     0.0010    0.0003
##    120        1.2316             nan     0.0010    0.0003
##    140        1.2182             nan     0.0010    0.0003
##    160        1.2051             nan     0.0010    0.0003
##    180        1.1929             nan     0.0010    0.0003
##    200        1.1810             nan     0.0010    0.0002
##    220        1.1691             nan     0.0010    0.0003
##    240        1.1579             nan     0.0010    0.0003
##    260        1.1468             nan     0.0010    0.0002
##    280        1.1359             nan     0.0010    0.0002
##    300        1.1251             nan     0.0010    0.0002
##    320        1.1150             nan     0.0010    0.0002
##    340        1.1050             nan     0.0010    0.0002
##    360        1.0957             nan     0.0010    0.0002
##    380        1.0865             nan     0.0010    0.0002
##    400        1.0775             nan     0.0010    0.0002
##    420        1.0684             nan     0.0010    0.0002
##    440        1.0599             nan     0.0010    0.0002
##    460        1.0515             nan     0.0010    0.0002
##    480        1.0434             nan     0.0010    0.0002
##    500        1.0354             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0003
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3035             nan     0.0010    0.0004
##     40        1.2867             nan     0.0010    0.0004
##     60        1.2707             nan     0.0010    0.0004
##     80        1.2553             nan     0.0010    0.0003
##    100        1.2404             nan     0.0010    0.0003
##    120        1.2258             nan     0.0010    0.0003
##    140        1.2115             nan     0.0010    0.0003
##    160        1.1978             nan     0.0010    0.0003
##    180        1.1844             nan     0.0010    0.0003
##    200        1.1715             nan     0.0010    0.0003
##    220        1.1592             nan     0.0010    0.0003
##    240        1.1472             nan     0.0010    0.0003
##    260        1.1352             nan     0.0010    0.0003
##    280        1.1239             nan     0.0010    0.0003
##    300        1.1128             nan     0.0010    0.0002
##    320        1.1023             nan     0.0010    0.0002
##    340        1.0917             nan     0.0010    0.0002
##    360        1.0814             nan     0.0010    0.0002
##    380        1.0718             nan     0.0010    0.0002
##    400        1.0622             nan     0.0010    0.0002
##    420        1.0525             nan     0.0010    0.0002
##    440        1.0433             nan     0.0010    0.0002
##    460        1.0345             nan     0.0010    0.0002
##    480        1.0257             nan     0.0010    0.0002
##    500        1.0169             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0003
##      3        1.3181             nan     0.0010    0.0003
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0004
##     40        1.2870             nan     0.0010    0.0004
##     60        1.2710             nan     0.0010    0.0004
##     80        1.2555             nan     0.0010    0.0004
##    100        1.2405             nan     0.0010    0.0003
##    120        1.2261             nan     0.0010    0.0004
##    140        1.2120             nan     0.0010    0.0003
##    160        1.1984             nan     0.0010    0.0003
##    180        1.1852             nan     0.0010    0.0003
##    200        1.1725             nan     0.0010    0.0002
##    220        1.1598             nan     0.0010    0.0003
##    240        1.1479             nan     0.0010    0.0002
##    260        1.1363             nan     0.0010    0.0003
##    280        1.1249             nan     0.0010    0.0003
##    300        1.1138             nan     0.0010    0.0002
##    320        1.1032             nan     0.0010    0.0003
##    340        1.0927             nan     0.0010    0.0002
##    360        1.0825             nan     0.0010    0.0002
##    380        1.0724             nan     0.0010    0.0002
##    400        1.0626             nan     0.0010    0.0002
##    420        1.0531             nan     0.0010    0.0002
##    440        1.0439             nan     0.0010    0.0002
##    460        1.0352             nan     0.0010    0.0002
##    480        1.0264             nan     0.0010    0.0002
##    500        1.0178             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3041             nan     0.0010    0.0004
##     40        1.2880             nan     0.0010    0.0003
##     60        1.2721             nan     0.0010    0.0004
##     80        1.2570             nan     0.0010    0.0003
##    100        1.2419             nan     0.0010    0.0004
##    120        1.2278             nan     0.0010    0.0003
##    140        1.2141             nan     0.0010    0.0003
##    160        1.2007             nan     0.0010    0.0003
##    180        1.1874             nan     0.0010    0.0003
##    200        1.1746             nan     0.0010    0.0003
##    220        1.1620             nan     0.0010    0.0003
##    240        1.1502             nan     0.0010    0.0003
##    260        1.1383             nan     0.0010    0.0003
##    280        1.1272             nan     0.0010    0.0002
##    300        1.1163             nan     0.0010    0.0002
##    320        1.1055             nan     0.0010    0.0003
##    340        1.0951             nan     0.0010    0.0002
##    360        1.0849             nan     0.0010    0.0002
##    380        1.0753             nan     0.0010    0.0002
##    400        1.0657             nan     0.0010    0.0002
##    420        1.0563             nan     0.0010    0.0002
##    440        1.0471             nan     0.0010    0.0002
##    460        1.0383             nan     0.0010    0.0002
##    480        1.0294             nan     0.0010    0.0002
##    500        1.0210             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0003
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2855             nan     0.0010    0.0004
##     60        1.2684             nan     0.0010    0.0003
##     80        1.2521             nan     0.0010    0.0004
##    100        1.2363             nan     0.0010    0.0003
##    120        1.2210             nan     0.0010    0.0003
##    140        1.2062             nan     0.0010    0.0003
##    160        1.1920             nan     0.0010    0.0003
##    180        1.1784             nan     0.0010    0.0003
##    200        1.1650             nan     0.0010    0.0003
##    220        1.1523             nan     0.0010    0.0003
##    240        1.1396             nan     0.0010    0.0003
##    260        1.1270             nan     0.0010    0.0002
##    280        1.1151             nan     0.0010    0.0003
##    300        1.1036             nan     0.0010    0.0002
##    320        1.0923             nan     0.0010    0.0002
##    340        1.0810             nan     0.0010    0.0002
##    360        1.0705             nan     0.0010    0.0002
##    380        1.0601             nan     0.0010    0.0002
##    400        1.0501             nan     0.0010    0.0002
##    420        1.0402             nan     0.0010    0.0002
##    440        1.0305             nan     0.0010    0.0002
##    460        1.0210             nan     0.0010    0.0002
##    480        1.0120             nan     0.0010    0.0002
##    500        1.0032             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0003
##     40        1.2855             nan     0.0010    0.0003
##     60        1.2689             nan     0.0010    0.0004
##     80        1.2530             nan     0.0010    0.0004
##    100        1.2373             nan     0.0010    0.0003
##    120        1.2222             nan     0.0010    0.0004
##    140        1.2075             nan     0.0010    0.0003
##    160        1.1931             nan     0.0010    0.0003
##    180        1.1795             nan     0.0010    0.0003
##    200        1.1662             nan     0.0010    0.0002
##    220        1.1532             nan     0.0010    0.0003
##    240        1.1406             nan     0.0010    0.0003
##    260        1.1288             nan     0.0010    0.0003
##    280        1.1169             nan     0.0010    0.0003
##    300        1.1055             nan     0.0010    0.0002
##    320        1.0942             nan     0.0010    0.0002
##    340        1.0835             nan     0.0010    0.0002
##    360        1.0729             nan     0.0010    0.0002
##    380        1.0624             nan     0.0010    0.0002
##    400        1.0523             nan     0.0010    0.0002
##    420        1.0425             nan     0.0010    0.0002
##    440        1.0328             nan     0.0010    0.0002
##    460        1.0236             nan     0.0010    0.0002
##    480        1.0150             nan     0.0010    0.0002
##    500        1.0060             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2863             nan     0.0010    0.0003
##     60        1.2699             nan     0.0010    0.0003
##     80        1.2537             nan     0.0010    0.0004
##    100        1.2381             nan     0.0010    0.0003
##    120        1.2230             nan     0.0010    0.0003
##    140        1.2086             nan     0.0010    0.0003
##    160        1.1948             nan     0.0010    0.0003
##    180        1.1812             nan     0.0010    0.0003
##    200        1.1681             nan     0.0010    0.0003
##    220        1.1554             nan     0.0010    0.0003
##    240        1.1430             nan     0.0010    0.0003
##    260        1.1308             nan     0.0010    0.0002
##    280        1.1193             nan     0.0010    0.0002
##    300        1.1080             nan     0.0010    0.0002
##    320        1.0970             nan     0.0010    0.0003
##    340        1.0864             nan     0.0010    0.0002
##    360        1.0760             nan     0.0010    0.0002
##    380        1.0657             nan     0.0010    0.0002
##    400        1.0558             nan     0.0010    0.0002
##    420        1.0463             nan     0.0010    0.0002
##    440        1.0371             nan     0.0010    0.0002
##    460        1.0279             nan     0.0010    0.0002
##    480        1.0191             nan     0.0010    0.0002
##    500        1.0104             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0038
##      2        1.3037             nan     0.0100    0.0033
##      3        1.2955             nan     0.0100    0.0037
##      4        1.2878             nan     0.0100    0.0034
##      5        1.2792             nan     0.0100    0.0037
##      6        1.2717             nan     0.0100    0.0033
##      7        1.2644             nan     0.0100    0.0033
##      8        1.2568             nan     0.0100    0.0030
##      9        1.2498             nan     0.0100    0.0031
##     10        1.2435             nan     0.0100    0.0028
##     20        1.1798             nan     0.0100    0.0028
##     40        1.0760             nan     0.0100    0.0016
##     60        0.9961             nan     0.0100    0.0016
##     80        0.9339             nan     0.0100    0.0011
##    100        0.8844             nan     0.0100    0.0007
##    120        0.8438             nan     0.0100    0.0006
##    140        0.8088             nan     0.0100    0.0005
##    160        0.7789             nan     0.0100    0.0003
##    180        0.7526             nan     0.0100    0.0002
##    200        0.7313             nan     0.0100    0.0001
##    220        0.7124             nan     0.0100    0.0002
##    240        0.6943             nan     0.0100    0.0002
##    260        0.6789             nan     0.0100    0.0000
##    280        0.6636             nan     0.0100   -0.0002
##    300        0.6492             nan     0.0100    0.0001
##    320        0.6371             nan     0.0100    0.0000
##    340        0.6249             nan     0.0100    0.0001
##    360        0.6138             nan     0.0100    0.0000
##    380        0.6051             nan     0.0100   -0.0001
##    400        0.5950             nan     0.0100   -0.0001
##    420        0.5842             nan     0.0100    0.0000
##    440        0.5744             nan     0.0100   -0.0000
##    460        0.5661             nan     0.0100   -0.0001
##    480        0.5568             nan     0.0100   -0.0001
##    500        0.5487             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0039
##      2        1.3038             nan     0.0100    0.0039
##      3        1.2957             nan     0.0100    0.0030
##      4        1.2886             nan     0.0100    0.0030
##      5        1.2805             nan     0.0100    0.0036
##      6        1.2733             nan     0.0100    0.0030
##      7        1.2656             nan     0.0100    0.0034
##      8        1.2581             nan     0.0100    0.0036
##      9        1.2509             nan     0.0100    0.0032
##     10        1.2439             nan     0.0100    0.0032
##     20        1.1807             nan     0.0100    0.0024
##     40        1.0763             nan     0.0100    0.0017
##     60        0.9954             nan     0.0100    0.0015
##     80        0.9334             nan     0.0100    0.0011
##    100        0.8846             nan     0.0100    0.0009
##    120        0.8429             nan     0.0100    0.0007
##    140        0.8085             nan     0.0100    0.0004
##    160        0.7797             nan     0.0100    0.0005
##    180        0.7549             nan     0.0100    0.0003
##    200        0.7340             nan     0.0100    0.0001
##    220        0.7147             nan     0.0100    0.0000
##    240        0.6992             nan     0.0100    0.0000
##    260        0.6839             nan     0.0100    0.0003
##    280        0.6704             nan     0.0100    0.0000
##    300        0.6580             nan     0.0100   -0.0002
##    320        0.6466             nan     0.0100    0.0001
##    340        0.6354             nan     0.0100   -0.0001
##    360        0.6250             nan     0.0100    0.0000
##    380        0.6164             nan     0.0100   -0.0001
##    400        0.6070             nan     0.0100    0.0001
##    420        0.5988             nan     0.0100    0.0001
##    440        0.5907             nan     0.0100   -0.0000
##    460        0.5821             nan     0.0100    0.0000
##    480        0.5733             nan     0.0100    0.0000
##    500        0.5653             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0037
##      2        1.3045             nan     0.0100    0.0035
##      3        1.2965             nan     0.0100    0.0037
##      4        1.2895             nan     0.0100    0.0025
##      5        1.2816             nan     0.0100    0.0034
##      6        1.2743             nan     0.0100    0.0029
##      7        1.2673             nan     0.0100    0.0029
##      8        1.2602             nan     0.0100    0.0030
##      9        1.2527             nan     0.0100    0.0032
##     10        1.2451             nan     0.0100    0.0031
##     20        1.1789             nan     0.0100    0.0029
##     40        1.0746             nan     0.0100    0.0020
##     60        0.9955             nan     0.0100    0.0014
##     80        0.9346             nan     0.0100    0.0009
##    100        0.8837             nan     0.0100    0.0008
##    120        0.8432             nan     0.0100    0.0008
##    140        0.8104             nan     0.0100    0.0004
##    160        0.7818             nan     0.0100    0.0005
##    180        0.7579             nan     0.0100    0.0003
##    200        0.7370             nan     0.0100    0.0004
##    220        0.7186             nan     0.0100    0.0001
##    240        0.7026             nan     0.0100    0.0001
##    260        0.6871             nan     0.0100   -0.0002
##    280        0.6740             nan     0.0100   -0.0000
##    300        0.6616             nan     0.0100   -0.0000
##    320        0.6506             nan     0.0100   -0.0001
##    340        0.6405             nan     0.0100   -0.0001
##    360        0.6309             nan     0.0100   -0.0001
##    380        0.6224             nan     0.0100   -0.0000
##    400        0.6129             nan     0.0100    0.0000
##    420        0.6051             nan     0.0100   -0.0002
##    440        0.5957             nan     0.0100    0.0002
##    460        0.5874             nan     0.0100   -0.0002
##    480        0.5795             nan     0.0100    0.0000
##    500        0.5717             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3125             nan     0.0100    0.0032
##      2        1.3046             nan     0.0100    0.0036
##      3        1.2965             nan     0.0100    0.0038
##      4        1.2878             nan     0.0100    0.0041
##      5        1.2795             nan     0.0100    0.0035
##      6        1.2720             nan     0.0100    0.0032
##      7        1.2642             nan     0.0100    0.0036
##      8        1.2565             nan     0.0100    0.0034
##      9        1.2486             nan     0.0100    0.0039
##     10        1.2404             nan     0.0100    0.0035
##     20        1.1695             nan     0.0100    0.0028
##     40        1.0617             nan     0.0100    0.0022
##     60        0.9772             nan     0.0100    0.0015
##     80        0.9108             nan     0.0100    0.0013
##    100        0.8576             nan     0.0100    0.0009
##    120        0.8145             nan     0.0100    0.0008
##    140        0.7768             nan     0.0100    0.0006
##    160        0.7474             nan     0.0100    0.0001
##    180        0.7195             nan     0.0100    0.0004
##    200        0.6960             nan     0.0100    0.0004
##    220        0.6765             nan     0.0100    0.0001
##    240        0.6579             nan     0.0100    0.0003
##    260        0.6406             nan     0.0100    0.0000
##    280        0.6244             nan     0.0100    0.0002
##    300        0.6102             nan     0.0100    0.0000
##    320        0.5967             nan     0.0100    0.0001
##    340        0.5840             nan     0.0100   -0.0000
##    360        0.5724             nan     0.0100    0.0001
##    380        0.5598             nan     0.0100    0.0000
##    400        0.5493             nan     0.0100   -0.0000
##    420        0.5395             nan     0.0100   -0.0001
##    440        0.5285             nan     0.0100   -0.0000
##    460        0.5186             nan     0.0100   -0.0001
##    480        0.5091             nan     0.0100    0.0000
##    500        0.4993             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3111             nan     0.0100    0.0041
##      2        1.3023             nan     0.0100    0.0039
##      3        1.2942             nan     0.0100    0.0036
##      4        1.2856             nan     0.0100    0.0036
##      5        1.2780             nan     0.0100    0.0033
##      6        1.2701             nan     0.0100    0.0037
##      7        1.2620             nan     0.0100    0.0036
##      8        1.2547             nan     0.0100    0.0033
##      9        1.2472             nan     0.0100    0.0029
##     10        1.2394             nan     0.0100    0.0036
##     20        1.1716             nan     0.0100    0.0025
##     40        1.0618             nan     0.0100    0.0020
##     60        0.9782             nan     0.0100    0.0016
##     80        0.9135             nan     0.0100    0.0011
##    100        0.8621             nan     0.0100    0.0008
##    120        0.8185             nan     0.0100    0.0008
##    140        0.7830             nan     0.0100    0.0003
##    160        0.7519             nan     0.0100    0.0003
##    180        0.7262             nan     0.0100    0.0004
##    200        0.7015             nan     0.0100    0.0004
##    220        0.6816             nan     0.0100    0.0003
##    240        0.6636             nan     0.0100    0.0003
##    260        0.6452             nan     0.0100    0.0002
##    280        0.6291             nan     0.0100    0.0001
##    300        0.6160             nan     0.0100    0.0001
##    320        0.6030             nan     0.0100    0.0001
##    340        0.5911             nan     0.0100   -0.0001
##    360        0.5788             nan     0.0100   -0.0000
##    380        0.5676             nan     0.0100    0.0001
##    400        0.5572             nan     0.0100   -0.0001
##    420        0.5475             nan     0.0100   -0.0001
##    440        0.5374             nan     0.0100   -0.0000
##    460        0.5283             nan     0.0100   -0.0001
##    480        0.5192             nan     0.0100   -0.0001
##    500        0.5097             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0038
##      2        1.3034             nan     0.0100    0.0041
##      3        1.2954             nan     0.0100    0.0032
##      4        1.2877             nan     0.0100    0.0035
##      5        1.2797             nan     0.0100    0.0034
##      6        1.2713             nan     0.0100    0.0035
##      7        1.2635             nan     0.0100    0.0037
##      8        1.2556             nan     0.0100    0.0036
##      9        1.2485             nan     0.0100    0.0031
##     10        1.2410             nan     0.0100    0.0029
##     20        1.1732             nan     0.0100    0.0026
##     40        1.0638             nan     0.0100    0.0021
##     60        0.9798             nan     0.0100    0.0014
##     80        0.9134             nan     0.0100    0.0011
##    100        0.8619             nan     0.0100    0.0007
##    120        0.8197             nan     0.0100    0.0006
##    140        0.7847             nan     0.0100    0.0004
##    160        0.7559             nan     0.0100    0.0002
##    180        0.7313             nan     0.0100    0.0004
##    200        0.7097             nan     0.0100    0.0002
##    220        0.6895             nan     0.0100    0.0003
##    240        0.6719             nan     0.0100   -0.0002
##    260        0.6568             nan     0.0100    0.0002
##    280        0.6424             nan     0.0100    0.0000
##    300        0.6284             nan     0.0100    0.0000
##    320        0.6148             nan     0.0100    0.0001
##    340        0.6030             nan     0.0100    0.0001
##    360        0.5909             nan     0.0100   -0.0000
##    380        0.5807             nan     0.0100   -0.0001
##    400        0.5698             nan     0.0100   -0.0001
##    420        0.5592             nan     0.0100   -0.0000
##    440        0.5490             nan     0.0100   -0.0001
##    460        0.5397             nan     0.0100   -0.0001
##    480        0.5305             nan     0.0100    0.0002
##    500        0.5222             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0039
##      2        1.3031             nan     0.0100    0.0040
##      3        1.2942             nan     0.0100    0.0042
##      4        1.2858             nan     0.0100    0.0039
##      5        1.2770             nan     0.0100    0.0037
##      6        1.2683             nan     0.0100    0.0037
##      7        1.2601             nan     0.0100    0.0037
##      8        1.2520             nan     0.0100    0.0035
##      9        1.2432             nan     0.0100    0.0034
##     10        1.2352             nan     0.0100    0.0033
##     20        1.1631             nan     0.0100    0.0027
##     40        1.0471             nan     0.0100    0.0021
##     60        0.9591             nan     0.0100    0.0017
##     80        0.8903             nan     0.0100    0.0015
##    100        0.8349             nan     0.0100    0.0009
##    120        0.7887             nan     0.0100    0.0006
##    140        0.7507             nan     0.0100    0.0005
##    160        0.7177             nan     0.0100    0.0003
##    180        0.6902             nan     0.0100    0.0001
##    200        0.6671             nan     0.0100    0.0001
##    220        0.6453             nan     0.0100    0.0002
##    240        0.6249             nan     0.0100    0.0003
##    260        0.6048             nan     0.0100    0.0000
##    280        0.5875             nan     0.0100    0.0000
##    300        0.5702             nan     0.0100   -0.0001
##    320        0.5559             nan     0.0100   -0.0001
##    340        0.5417             nan     0.0100    0.0000
##    360        0.5287             nan     0.0100    0.0000
##    380        0.5168             nan     0.0100    0.0001
##    400        0.5056             nan     0.0100    0.0000
##    420        0.4942             nan     0.0100   -0.0001
##    440        0.4847             nan     0.0100   -0.0001
##    460        0.4742             nan     0.0100   -0.0001
##    480        0.4646             nan     0.0100   -0.0000
##    500        0.4548             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0040
##      2        1.3027             nan     0.0100    0.0041
##      3        1.2944             nan     0.0100    0.0034
##      4        1.2856             nan     0.0100    0.0038
##      5        1.2774             nan     0.0100    0.0038
##      6        1.2688             nan     0.0100    0.0036
##      7        1.2602             nan     0.0100    0.0038
##      8        1.2522             nan     0.0100    0.0039
##      9        1.2446             nan     0.0100    0.0033
##     10        1.2370             nan     0.0100    0.0034
##     20        1.1670             nan     0.0100    0.0031
##     40        1.0506             nan     0.0100    0.0021
##     60        0.9655             nan     0.0100    0.0017
##     80        0.8963             nan     0.0100    0.0009
##    100        0.8422             nan     0.0100    0.0009
##    120        0.7967             nan     0.0100    0.0004
##    140        0.7594             nan     0.0100    0.0004
##    160        0.7273             nan     0.0100    0.0004
##    180        0.7002             nan     0.0100    0.0003
##    200        0.6755             nan     0.0100    0.0003
##    220        0.6550             nan     0.0100   -0.0001
##    240        0.6351             nan     0.0100    0.0002
##    260        0.6170             nan     0.0100    0.0002
##    280        0.6009             nan     0.0100   -0.0002
##    300        0.5860             nan     0.0100   -0.0001
##    320        0.5713             nan     0.0100    0.0000
##    340        0.5578             nan     0.0100    0.0000
##    360        0.5446             nan     0.0100   -0.0000
##    380        0.5314             nan     0.0100    0.0002
##    400        0.5199             nan     0.0100   -0.0002
##    420        0.5097             nan     0.0100   -0.0000
##    440        0.4980             nan     0.0100    0.0002
##    460        0.4870             nan     0.0100   -0.0001
##    480        0.4772             nan     0.0100   -0.0000
##    500        0.4668             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0039
##      2        1.3033             nan     0.0100    0.0037
##      3        1.2952             nan     0.0100    0.0035
##      4        1.2870             nan     0.0100    0.0037
##      5        1.2786             nan     0.0100    0.0037
##      6        1.2701             nan     0.0100    0.0038
##      7        1.2618             nan     0.0100    0.0033
##      8        1.2534             nan     0.0100    0.0034
##      9        1.2453             nan     0.0100    0.0035
##     10        1.2376             nan     0.0100    0.0033
##     20        1.1687             nan     0.0100    0.0033
##     40        1.0562             nan     0.0100    0.0020
##     60        0.9708             nan     0.0100    0.0014
##     80        0.9047             nan     0.0100    0.0010
##    100        0.8498             nan     0.0100    0.0011
##    120        0.8061             nan     0.0100    0.0008
##    140        0.7686             nan     0.0100    0.0005
##    160        0.7369             nan     0.0100    0.0002
##    180        0.7108             nan     0.0100    0.0004
##    200        0.6863             nan     0.0100    0.0000
##    220        0.6645             nan     0.0100    0.0001
##    240        0.6462             nan     0.0100    0.0002
##    260        0.6290             nan     0.0100    0.0001
##    280        0.6123             nan     0.0100   -0.0000
##    300        0.5974             nan     0.0100   -0.0001
##    320        0.5834             nan     0.0100   -0.0001
##    340        0.5693             nan     0.0100   -0.0001
##    360        0.5561             nan     0.0100   -0.0000
##    380        0.5439             nan     0.0100   -0.0002
##    400        0.5330             nan     0.0100   -0.0000
##    420        0.5219             nan     0.0100   -0.0002
##    440        0.5122             nan     0.0100    0.0000
##    460        0.5015             nan     0.0100    0.0000
##    480        0.4916             nan     0.0100   -0.0002
##    500        0.4825             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2502             nan     0.1000    0.0310
##      2        1.1941             nan     0.1000    0.0222
##      3        1.1409             nan     0.1000    0.0222
##      4        1.0922             nan     0.1000    0.0219
##      5        1.0514             nan     0.1000    0.0165
##      6        1.0108             nan     0.1000    0.0163
##      7        0.9734             nan     0.1000    0.0130
##      8        0.9370             nan     0.1000    0.0137
##      9        0.9158             nan     0.1000    0.0071
##     10        0.8921             nan     0.1000    0.0095
##     20        0.7340             nan     0.1000    0.0037
##     40        0.6019             nan     0.1000   -0.0008
##     60        0.5167             nan     0.1000    0.0003
##     80        0.4604             nan     0.1000   -0.0008
##    100        0.4053             nan     0.1000   -0.0005
##    120        0.3595             nan     0.1000   -0.0005
##    140        0.3205             nan     0.1000   -0.0006
##    160        0.2892             nan     0.1000    0.0000
##    180        0.2606             nan     0.1000   -0.0010
##    200        0.2373             nan     0.1000   -0.0004
##    220        0.2159             nan     0.1000   -0.0000
##    240        0.1981             nan     0.1000   -0.0003
##    260        0.1798             nan     0.1000   -0.0004
##    280        0.1665             nan     0.1000   -0.0004
##    300        0.1528             nan     0.1000   -0.0002
##    320        0.1411             nan     0.1000   -0.0003
##    340        0.1296             nan     0.1000   -0.0002
##    360        0.1202             nan     0.1000   -0.0004
##    380        0.1097             nan     0.1000   -0.0004
##    400        0.0998             nan     0.1000   -0.0001
##    420        0.0923             nan     0.1000   -0.0003
##    440        0.0852             nan     0.1000   -0.0003
##    460        0.0793             nan     0.1000   -0.0001
##    480        0.0738             nan     0.1000   -0.0000
##    500        0.0681             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2359             nan     0.1000    0.0365
##      2        1.1720             nan     0.1000    0.0259
##      3        1.1154             nan     0.1000    0.0232
##      4        1.0671             nan     0.1000    0.0201
##      5        1.0294             nan     0.1000    0.0165
##      6        0.9922             nan     0.1000    0.0157
##      7        0.9595             nan     0.1000    0.0156
##      8        0.9266             nan     0.1000    0.0118
##      9        0.9019             nan     0.1000    0.0098
##     10        0.8812             nan     0.1000    0.0067
##     20        0.7315             nan     0.1000    0.0032
##     40        0.6053             nan     0.1000   -0.0018
##     60        0.5237             nan     0.1000   -0.0013
##     80        0.4635             nan     0.1000   -0.0009
##    100        0.4139             nan     0.1000    0.0006
##    120        0.3709             nan     0.1000    0.0004
##    140        0.3322             nan     0.1000   -0.0008
##    160        0.2983             nan     0.1000   -0.0005
##    180        0.2710             nan     0.1000   -0.0001
##    200        0.2446             nan     0.1000   -0.0010
##    220        0.2222             nan     0.1000   -0.0006
##    240        0.2029             nan     0.1000   -0.0008
##    260        0.1869             nan     0.1000   -0.0006
##    280        0.1721             nan     0.1000   -0.0007
##    300        0.1584             nan     0.1000   -0.0001
##    320        0.1447             nan     0.1000   -0.0003
##    340        0.1340             nan     0.1000   -0.0001
##    360        0.1229             nan     0.1000   -0.0004
##    380        0.1130             nan     0.1000   -0.0000
##    400        0.1044             nan     0.1000   -0.0002
##    420        0.0962             nan     0.1000   -0.0003
##    440        0.0894             nan     0.1000   -0.0002
##    460        0.0830             nan     0.1000   -0.0003
##    480        0.0777             nan     0.1000   -0.0003
##    500        0.0724             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2404             nan     0.1000    0.0370
##      2        1.1727             nan     0.1000    0.0342
##      3        1.1160             nan     0.1000    0.0276
##      4        1.0706             nan     0.1000    0.0190
##      5        1.0299             nan     0.1000    0.0162
##      6        0.9940             nan     0.1000    0.0157
##      7        0.9625             nan     0.1000    0.0115
##      8        0.9338             nan     0.1000    0.0101
##      9        0.9036             nan     0.1000    0.0126
##     10        0.8813             nan     0.1000    0.0074
##     20        0.7389             nan     0.1000    0.0046
##     40        0.6106             nan     0.1000   -0.0000
##     60        0.5407             nan     0.1000   -0.0002
##     80        0.4790             nan     0.1000   -0.0016
##    100        0.4314             nan     0.1000   -0.0013
##    120        0.3893             nan     0.1000   -0.0014
##    140        0.3459             nan     0.1000   -0.0003
##    160        0.3168             nan     0.1000   -0.0008
##    180        0.2882             nan     0.1000   -0.0005
##    200        0.2667             nan     0.1000   -0.0009
##    220        0.2456             nan     0.1000   -0.0004
##    240        0.2248             nan     0.1000   -0.0010
##    260        0.2076             nan     0.1000   -0.0006
##    280        0.1893             nan     0.1000   -0.0007
##    300        0.1744             nan     0.1000   -0.0004
##    320        0.1617             nan     0.1000   -0.0007
##    340        0.1502             nan     0.1000    0.0001
##    360        0.1397             nan     0.1000   -0.0005
##    380        0.1301             nan     0.1000   -0.0008
##    400        0.1200             nan     0.1000   -0.0003
##    420        0.1121             nan     0.1000   -0.0003
##    440        0.1038             nan     0.1000   -0.0002
##    460        0.0961             nan     0.1000   -0.0003
##    480        0.0897             nan     0.1000   -0.0001
##    500        0.0836             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2371             nan     0.1000    0.0378
##      2        1.1645             nan     0.1000    0.0292
##      3        1.0998             nan     0.1000    0.0284
##      4        1.0539             nan     0.1000    0.0199
##      5        1.0144             nan     0.1000    0.0153
##      6        0.9810             nan     0.1000    0.0160
##      7        0.9457             nan     0.1000    0.0143
##      8        0.9146             nan     0.1000    0.0125
##      9        0.8875             nan     0.1000    0.0109
##     10        0.8645             nan     0.1000    0.0099
##     20        0.7009             nan     0.1000    0.0041
##     40        0.5558             nan     0.1000   -0.0005
##     60        0.4610             nan     0.1000   -0.0010
##     80        0.3883             nan     0.1000    0.0003
##    100        0.3383             nan     0.1000   -0.0009
##    120        0.2935             nan     0.1000    0.0000
##    140        0.2567             nan     0.1000   -0.0007
##    160        0.2272             nan     0.1000    0.0001
##    180        0.2023             nan     0.1000   -0.0004
##    200        0.1782             nan     0.1000   -0.0001
##    220        0.1589             nan     0.1000   -0.0003
##    240        0.1424             nan     0.1000   -0.0005
##    260        0.1265             nan     0.1000   -0.0003
##    280        0.1136             nan     0.1000   -0.0003
##    300        0.1022             nan     0.1000   -0.0003
##    320        0.0933             nan     0.1000   -0.0003
##    340        0.0833             nan     0.1000   -0.0001
##    360        0.0757             nan     0.1000   -0.0002
##    380        0.0685             nan     0.1000   -0.0001
##    400        0.0619             nan     0.1000   -0.0001
##    420        0.0568             nan     0.1000   -0.0002
##    440        0.0518             nan     0.1000    0.0000
##    460        0.0479             nan     0.1000   -0.0001
##    480        0.0440             nan     0.1000   -0.0002
##    500        0.0398             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2422             nan     0.1000    0.0362
##      2        1.1708             nan     0.1000    0.0272
##      3        1.1153             nan     0.1000    0.0231
##      4        1.0612             nan     0.1000    0.0217
##      5        1.0188             nan     0.1000    0.0169
##      6        0.9747             nan     0.1000    0.0172
##      7        0.9379             nan     0.1000    0.0149
##      8        0.9057             nan     0.1000    0.0138
##      9        0.8797             nan     0.1000    0.0101
##     10        0.8546             nan     0.1000    0.0075
##     20        0.6973             nan     0.1000    0.0007
##     40        0.5569             nan     0.1000    0.0001
##     60        0.4713             nan     0.1000   -0.0013
##     80        0.4063             nan     0.1000   -0.0017
##    100        0.3488             nan     0.1000   -0.0004
##    120        0.3040             nan     0.1000   -0.0002
##    140        0.2669             nan     0.1000   -0.0011
##    160        0.2380             nan     0.1000   -0.0011
##    180        0.2116             nan     0.1000   -0.0010
##    200        0.1902             nan     0.1000   -0.0010
##    220        0.1692             nan     0.1000   -0.0004
##    240        0.1532             nan     0.1000   -0.0011
##    260        0.1376             nan     0.1000   -0.0001
##    280        0.1235             nan     0.1000   -0.0011
##    300        0.1117             nan     0.1000   -0.0004
##    320        0.0997             nan     0.1000   -0.0002
##    340        0.0918             nan     0.1000   -0.0003
##    360        0.0824             nan     0.1000   -0.0001
##    380        0.0742             nan     0.1000   -0.0002
##    400        0.0680             nan     0.1000   -0.0004
##    420        0.0623             nan     0.1000   -0.0003
##    440        0.0555             nan     0.1000   -0.0002
##    460        0.0511             nan     0.1000   -0.0002
##    480        0.0463             nan     0.1000   -0.0001
##    500        0.0423             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2399             nan     0.1000    0.0379
##      2        1.1668             nan     0.1000    0.0329
##      3        1.1041             nan     0.1000    0.0294
##      4        1.0533             nan     0.1000    0.0197
##      5        1.0094             nan     0.1000    0.0175
##      6        0.9747             nan     0.1000    0.0151
##      7        0.9389             nan     0.1000    0.0139
##      8        0.9067             nan     0.1000    0.0147
##      9        0.8793             nan     0.1000    0.0096
##     10        0.8552             nan     0.1000    0.0082
##     20        0.7078             nan     0.1000    0.0035
##     40        0.5789             nan     0.1000   -0.0006
##     60        0.4827             nan     0.1000   -0.0006
##     80        0.4181             nan     0.1000    0.0001
##    100        0.3624             nan     0.1000    0.0002
##    120        0.3163             nan     0.1000   -0.0004
##    140        0.2773             nan     0.1000   -0.0011
##    160        0.2471             nan     0.1000   -0.0007
##    180        0.2199             nan     0.1000   -0.0006
##    200        0.1985             nan     0.1000   -0.0006
##    220        0.1789             nan     0.1000   -0.0008
##    240        0.1606             nan     0.1000   -0.0006
##    260        0.1442             nan     0.1000   -0.0004
##    280        0.1294             nan     0.1000   -0.0002
##    300        0.1173             nan     0.1000   -0.0006
##    320        0.1066             nan     0.1000   -0.0004
##    340        0.0965             nan     0.1000   -0.0002
##    360        0.0877             nan     0.1000   -0.0001
##    380        0.0802             nan     0.1000   -0.0004
##    400        0.0726             nan     0.1000   -0.0002
##    420        0.0664             nan     0.1000   -0.0003
##    440        0.0604             nan     0.1000   -0.0000
##    460        0.0553             nan     0.1000   -0.0001
##    480        0.0506             nan     0.1000   -0.0002
##    500        0.0460             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2401             nan     0.1000    0.0366
##      2        1.1668             nan     0.1000    0.0334
##      3        1.1072             nan     0.1000    0.0234
##      4        1.0437             nan     0.1000    0.0276
##      5        0.9959             nan     0.1000    0.0201
##      6        0.9506             nan     0.1000    0.0165
##      7        0.9180             nan     0.1000    0.0115
##      8        0.8897             nan     0.1000    0.0103
##      9        0.8634             nan     0.1000    0.0096
##     10        0.8413             nan     0.1000    0.0080
##     20        0.6742             nan     0.1000    0.0018
##     40        0.5270             nan     0.1000    0.0000
##     60        0.4265             nan     0.1000    0.0003
##     80        0.3616             nan     0.1000   -0.0011
##    100        0.3049             nan     0.1000   -0.0001
##    120        0.2602             nan     0.1000   -0.0007
##    140        0.2228             nan     0.1000   -0.0012
##    160        0.1926             nan     0.1000   -0.0001
##    180        0.1641             nan     0.1000   -0.0006
##    200        0.1428             nan     0.1000   -0.0003
##    220        0.1253             nan     0.1000   -0.0003
##    240        0.1086             nan     0.1000   -0.0004
##    260        0.0960             nan     0.1000    0.0001
##    280        0.0857             nan     0.1000   -0.0001
##    300        0.0756             nan     0.1000   -0.0002
##    320        0.0670             nan     0.1000   -0.0003
##    340        0.0591             nan     0.1000   -0.0000
##    360        0.0522             nan     0.1000   -0.0000
##    380        0.0473             nan     0.1000   -0.0002
##    400        0.0421             nan     0.1000   -0.0001
##    420        0.0378             nan     0.1000   -0.0001
##    440        0.0335             nan     0.1000   -0.0001
##    460        0.0297             nan     0.1000   -0.0001
##    480        0.0266             nan     0.1000   -0.0001
##    500        0.0236             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2310             nan     0.1000    0.0418
##      2        1.1637             nan     0.1000    0.0273
##      3        1.0971             nan     0.1000    0.0283
##      4        1.0471             nan     0.1000    0.0224
##      5        0.9999             nan     0.1000    0.0193
##      6        0.9579             nan     0.1000    0.0168
##      7        0.9190             nan     0.1000    0.0172
##      8        0.8923             nan     0.1000    0.0094
##      9        0.8653             nan     0.1000    0.0098
##     10        0.8384             nan     0.1000    0.0105
##     20        0.6777             nan     0.1000    0.0015
##     40        0.5352             nan     0.1000   -0.0016
##     60        0.4294             nan     0.1000   -0.0012
##     80        0.3525             nan     0.1000   -0.0010
##    100        0.2941             nan     0.1000    0.0004
##    120        0.2472             nan     0.1000    0.0002
##    140        0.2127             nan     0.1000   -0.0004
##    160        0.1822             nan     0.1000   -0.0005
##    180        0.1591             nan     0.1000   -0.0003
##    200        0.1377             nan     0.1000   -0.0004
##    220        0.1190             nan     0.1000   -0.0004
##    240        0.1047             nan     0.1000   -0.0005
##    260        0.0933             nan     0.1000   -0.0001
##    280        0.0830             nan     0.1000   -0.0002
##    300        0.0735             nan     0.1000   -0.0001
##    320        0.0654             nan     0.1000   -0.0002
##    340        0.0575             nan     0.1000   -0.0002
##    360        0.0511             nan     0.1000   -0.0000
##    380        0.0457             nan     0.1000   -0.0001
##    400        0.0409             nan     0.1000    0.0000
##    420        0.0365             nan     0.1000   -0.0001
##    440        0.0332             nan     0.1000   -0.0001
##    460        0.0300             nan     0.1000   -0.0001
##    480        0.0268             nan     0.1000   -0.0001
##    500        0.0238             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2344             nan     0.1000    0.0383
##      2        1.1662             nan     0.1000    0.0292
##      3        1.1067             nan     0.1000    0.0252
##      4        1.0516             nan     0.1000    0.0204
##      5        1.0096             nan     0.1000    0.0212
##      6        0.9658             nan     0.1000    0.0149
##      7        0.9301             nan     0.1000    0.0125
##      8        0.8990             nan     0.1000    0.0132
##      9        0.8714             nan     0.1000    0.0100
##     10        0.8471             nan     0.1000    0.0080
##     20        0.6950             nan     0.1000   -0.0013
##     40        0.5500             nan     0.1000   -0.0000
##     60        0.4511             nan     0.1000    0.0005
##     80        0.3817             nan     0.1000   -0.0023
##    100        0.3240             nan     0.1000   -0.0008
##    120        0.2821             nan     0.1000    0.0002
##    140        0.2429             nan     0.1000   -0.0005
##    160        0.2107             nan     0.1000   -0.0013
##    180        0.1811             nan     0.1000   -0.0009
##    200        0.1578             nan     0.1000    0.0001
##    220        0.1388             nan     0.1000   -0.0005
##    240        0.1231             nan     0.1000   -0.0004
##    260        0.1074             nan     0.1000   -0.0004
##    280        0.0945             nan     0.1000   -0.0003
##    300        0.0839             nan     0.1000   -0.0003
##    320        0.0743             nan     0.1000   -0.0004
##    340        0.0660             nan     0.1000   -0.0003
##    360        0.0585             nan     0.1000   -0.0003
##    380        0.0523             nan     0.1000   -0.0003
##    400        0.0470             nan     0.1000   -0.0002
##    420        0.0416             nan     0.1000   -0.0002
##    440        0.0370             nan     0.1000   -0.0002
##    460        0.0332             nan     0.1000   -0.0001
##    480        0.0293             nan     0.1000   -0.0001
##    500        0.0266             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3179             nan     0.0010    0.0003
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3144             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3042             nan     0.0010    0.0004
##     40        1.2875             nan     0.0010    0.0004
##     60        1.2714             nan     0.0010    0.0003
##     80        1.2561             nan     0.0010    0.0003
##    100        1.2412             nan     0.0010    0.0003
##    120        1.2269             nan     0.0010    0.0003
##    140        1.2132             nan     0.0010    0.0003
##    160        1.1995             nan     0.0010    0.0003
##    180        1.1862             nan     0.0010    0.0003
##    200        1.1735             nan     0.0010    0.0003
##    220        1.1608             nan     0.0010    0.0002
##    240        1.1487             nan     0.0010    0.0003
##    260        1.1372             nan     0.0010    0.0003
##    280        1.1258             nan     0.0010    0.0002
##    300        1.1147             nan     0.0010    0.0002
##    320        1.1039             nan     0.0010    0.0002
##    340        1.0934             nan     0.0010    0.0002
##    360        1.0832             nan     0.0010    0.0002
##    380        1.0731             nan     0.0010    0.0002
##    400        1.0636             nan     0.0010    0.0002
##    420        1.0542             nan     0.0010    0.0002
##    440        1.0450             nan     0.0010    0.0002
##    460        1.0361             nan     0.0010    0.0002
##    480        1.0272             nan     0.0010    0.0002
##    500        1.0187             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3144             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3041             nan     0.0010    0.0004
##     40        1.2877             nan     0.0010    0.0004
##     60        1.2719             nan     0.0010    0.0003
##     80        1.2566             nan     0.0010    0.0003
##    100        1.2418             nan     0.0010    0.0003
##    120        1.2273             nan     0.0010    0.0003
##    140        1.2135             nan     0.0010    0.0003
##    160        1.1999             nan     0.0010    0.0003
##    180        1.1869             nan     0.0010    0.0003
##    200        1.1744             nan     0.0010    0.0003
##    220        1.1621             nan     0.0010    0.0003
##    240        1.1499             nan     0.0010    0.0003
##    260        1.1383             nan     0.0010    0.0002
##    280        1.1271             nan     0.0010    0.0002
##    300        1.1157             nan     0.0010    0.0003
##    320        1.1049             nan     0.0010    0.0002
##    340        1.0942             nan     0.0010    0.0002
##    360        1.0841             nan     0.0010    0.0002
##    380        1.0742             nan     0.0010    0.0002
##    400        1.0647             nan     0.0010    0.0002
##    420        1.0551             nan     0.0010    0.0002
##    440        1.0457             nan     0.0010    0.0002
##    460        1.0367             nan     0.0010    0.0002
##    480        1.0278             nan     0.0010    0.0001
##    500        1.0193             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0003
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3042             nan     0.0010    0.0004
##     40        1.2880             nan     0.0010    0.0003
##     60        1.2720             nan     0.0010    0.0003
##     80        1.2568             nan     0.0010    0.0003
##    100        1.2420             nan     0.0010    0.0004
##    120        1.2274             nan     0.0010    0.0003
##    140        1.2134             nan     0.0010    0.0003
##    160        1.2001             nan     0.0010    0.0003
##    180        1.1872             nan     0.0010    0.0003
##    200        1.1741             nan     0.0010    0.0003
##    220        1.1617             nan     0.0010    0.0002
##    240        1.1497             nan     0.0010    0.0003
##    260        1.1381             nan     0.0010    0.0002
##    280        1.1266             nan     0.0010    0.0003
##    300        1.1157             nan     0.0010    0.0003
##    320        1.1049             nan     0.0010    0.0002
##    340        1.0946             nan     0.0010    0.0002
##    360        1.0843             nan     0.0010    0.0002
##    380        1.0743             nan     0.0010    0.0002
##    400        1.0647             nan     0.0010    0.0002
##    420        1.0555             nan     0.0010    0.0002
##    440        1.0463             nan     0.0010    0.0002
##    460        1.0372             nan     0.0010    0.0002
##    480        1.0285             nan     0.0010    0.0002
##    500        1.0199             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0005
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3033             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2685             nan     0.0010    0.0004
##     80        1.2522             nan     0.0010    0.0003
##    100        1.2364             nan     0.0010    0.0004
##    120        1.2210             nan     0.0010    0.0004
##    140        1.2064             nan     0.0010    0.0003
##    160        1.1920             nan     0.0010    0.0003
##    180        1.1781             nan     0.0010    0.0003
##    200        1.1644             nan     0.0010    0.0003
##    220        1.1514             nan     0.0010    0.0003
##    240        1.1386             nan     0.0010    0.0003
##    260        1.1262             nan     0.0010    0.0003
##    280        1.1140             nan     0.0010    0.0003
##    300        1.1023             nan     0.0010    0.0003
##    320        1.0906             nan     0.0010    0.0002
##    340        1.0794             nan     0.0010    0.0002
##    360        1.0686             nan     0.0010    0.0002
##    380        1.0582             nan     0.0010    0.0002
##    400        1.0479             nan     0.0010    0.0002
##    420        1.0381             nan     0.0010    0.0002
##    440        1.0285             nan     0.0010    0.0002
##    460        1.0190             nan     0.0010    0.0002
##    480        1.0097             nan     0.0010    0.0002
##    500        1.0006             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0005
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3122             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0004
##     40        1.2861             nan     0.0010    0.0004
##     60        1.2694             nan     0.0010    0.0004
##     80        1.2528             nan     0.0010    0.0003
##    100        1.2374             nan     0.0010    0.0004
##    120        1.2221             nan     0.0010    0.0004
##    140        1.2072             nan     0.0010    0.0003
##    160        1.1929             nan     0.0010    0.0003
##    180        1.1789             nan     0.0010    0.0003
##    200        1.1653             nan     0.0010    0.0003
##    220        1.1523             nan     0.0010    0.0003
##    240        1.1396             nan     0.0010    0.0003
##    260        1.1272             nan     0.0010    0.0002
##    280        1.1151             nan     0.0010    0.0002
##    300        1.1034             nan     0.0010    0.0002
##    320        1.0921             nan     0.0010    0.0003
##    340        1.0810             nan     0.0010    0.0002
##    360        1.0702             nan     0.0010    0.0002
##    380        1.0597             nan     0.0010    0.0003
##    400        1.0493             nan     0.0010    0.0002
##    420        1.0394             nan     0.0010    0.0002
##    440        1.0297             nan     0.0010    0.0002
##    460        1.0203             nan     0.0010    0.0002
##    480        1.0110             nan     0.0010    0.0002
##    500        1.0021             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2693             nan     0.0010    0.0004
##     80        1.2530             nan     0.0010    0.0004
##    100        1.2373             nan     0.0010    0.0004
##    120        1.2219             nan     0.0010    0.0003
##    140        1.2075             nan     0.0010    0.0003
##    160        1.1932             nan     0.0010    0.0003
##    180        1.1793             nan     0.0010    0.0003
##    200        1.1658             nan     0.0010    0.0003
##    220        1.1528             nan     0.0010    0.0003
##    240        1.1404             nan     0.0010    0.0003
##    260        1.1280             nan     0.0010    0.0003
##    280        1.1162             nan     0.0010    0.0002
##    300        1.1046             nan     0.0010    0.0003
##    320        1.0934             nan     0.0010    0.0002
##    340        1.0822             nan     0.0010    0.0002
##    360        1.0716             nan     0.0010    0.0002
##    380        1.0612             nan     0.0010    0.0002
##    400        1.0510             nan     0.0010    0.0002
##    420        1.0410             nan     0.0010    0.0002
##    440        1.0313             nan     0.0010    0.0002
##    460        1.0220             nan     0.0010    0.0002
##    480        1.0129             nan     0.0010    0.0002
##    500        1.0039             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0005
##      2        1.3192             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3026             nan     0.0010    0.0004
##     40        1.2843             nan     0.0010    0.0004
##     60        1.2666             nan     0.0010    0.0004
##     80        1.2497             nan     0.0010    0.0003
##    100        1.2328             nan     0.0010    0.0004
##    120        1.2166             nan     0.0010    0.0003
##    140        1.2012             nan     0.0010    0.0003
##    160        1.1862             nan     0.0010    0.0004
##    180        1.1716             nan     0.0010    0.0003
##    200        1.1575             nan     0.0010    0.0003
##    220        1.1436             nan     0.0010    0.0003
##    240        1.1304             nan     0.0010    0.0002
##    260        1.1172             nan     0.0010    0.0003
##    280        1.1046             nan     0.0010    0.0003
##    300        1.0924             nan     0.0010    0.0003
##    320        1.0805             nan     0.0010    0.0003
##    340        1.0690             nan     0.0010    0.0002
##    360        1.0576             nan     0.0010    0.0003
##    380        1.0468             nan     0.0010    0.0003
##    400        1.0361             nan     0.0010    0.0002
##    420        1.0255             nan     0.0010    0.0002
##    440        1.0154             nan     0.0010    0.0002
##    460        1.0055             nan     0.0010    0.0002
##    480        0.9959             nan     0.0010    0.0002
##    500        0.9864             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0005
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3024             nan     0.0010    0.0004
##     40        1.2843             nan     0.0010    0.0004
##     60        1.2666             nan     0.0010    0.0004
##     80        1.2496             nan     0.0010    0.0003
##    100        1.2332             nan     0.0010    0.0003
##    120        1.2174             nan     0.0010    0.0004
##    140        1.2019             nan     0.0010    0.0003
##    160        1.1868             nan     0.0010    0.0003
##    180        1.1720             nan     0.0010    0.0003
##    200        1.1583             nan     0.0010    0.0003
##    220        1.1446             nan     0.0010    0.0003
##    240        1.1314             nan     0.0010    0.0003
##    260        1.1183             nan     0.0010    0.0003
##    280        1.1058             nan     0.0010    0.0003
##    300        1.0936             nan     0.0010    0.0003
##    320        1.0816             nan     0.0010    0.0002
##    340        1.0703             nan     0.0010    0.0003
##    360        1.0590             nan     0.0010    0.0002
##    380        1.0480             nan     0.0010    0.0002
##    400        1.0373             nan     0.0010    0.0002
##    420        1.0269             nan     0.0010    0.0002
##    440        1.0167             nan     0.0010    0.0002
##    460        1.0071             nan     0.0010    0.0002
##    480        0.9977             nan     0.0010    0.0002
##    500        0.9885             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3192             nan     0.0010    0.0005
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0005
##     20        1.3023             nan     0.0010    0.0004
##     40        1.2841             nan     0.0010    0.0004
##     60        1.2667             nan     0.0010    0.0004
##     80        1.2497             nan     0.0010    0.0003
##    100        1.2334             nan     0.0010    0.0004
##    120        1.2178             nan     0.0010    0.0003
##    140        1.2024             nan     0.0010    0.0004
##    160        1.1878             nan     0.0010    0.0003
##    180        1.1734             nan     0.0010    0.0003
##    200        1.1596             nan     0.0010    0.0003
##    220        1.1459             nan     0.0010    0.0003
##    240        1.1326             nan     0.0010    0.0003
##    260        1.1198             nan     0.0010    0.0003
##    280        1.1075             nan     0.0010    0.0002
##    300        1.0955             nan     0.0010    0.0002
##    320        1.0837             nan     0.0010    0.0002
##    340        1.0722             nan     0.0010    0.0003
##    360        1.0612             nan     0.0010    0.0002
##    380        1.0503             nan     0.0010    0.0002
##    400        1.0400             nan     0.0010    0.0002
##    420        1.0298             nan     0.0010    0.0002
##    440        1.0199             nan     0.0010    0.0002
##    460        1.0102             nan     0.0010    0.0002
##    480        1.0008             nan     0.0010    0.0001
##    500        0.9917             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0044
##      2        1.3030             nan     0.0100    0.0041
##      3        1.2956             nan     0.0100    0.0029
##      4        1.2874             nan     0.0100    0.0035
##      5        1.2789             nan     0.0100    0.0039
##      6        1.2705             nan     0.0100    0.0035
##      7        1.2629             nan     0.0100    0.0031
##      8        1.2558             nan     0.0100    0.0034
##      9        1.2474             nan     0.0100    0.0035
##     10        1.2396             nan     0.0100    0.0032
##     20        1.1712             nan     0.0100    0.0031
##     40        1.0599             nan     0.0100    0.0020
##     60        0.9776             nan     0.0100    0.0015
##     80        0.9109             nan     0.0100    0.0010
##    100        0.8571             nan     0.0100    0.0006
##    120        0.8127             nan     0.0100    0.0005
##    140        0.7744             nan     0.0100    0.0007
##    160        0.7445             nan     0.0100    0.0004
##    180        0.7185             nan     0.0100    0.0005
##    200        0.6959             nan     0.0100    0.0002
##    220        0.6767             nan     0.0100    0.0003
##    240        0.6585             nan     0.0100    0.0001
##    260        0.6422             nan     0.0100    0.0001
##    280        0.6284             nan     0.0100   -0.0000
##    300        0.6147             nan     0.0100    0.0001
##    320        0.6012             nan     0.0100    0.0001
##    340        0.5891             nan     0.0100   -0.0000
##    360        0.5773             nan     0.0100    0.0001
##    380        0.5680             nan     0.0100    0.0001
##    400        0.5583             nan     0.0100    0.0000
##    420        0.5488             nan     0.0100   -0.0000
##    440        0.5399             nan     0.0100    0.0001
##    460        0.5309             nan     0.0100   -0.0000
##    480        0.5227             nan     0.0100   -0.0001
##    500        0.5146             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3139             nan     0.0100    0.0033
##      2        1.3058             nan     0.0100    0.0035
##      3        1.2976             nan     0.0100    0.0038
##      4        1.2895             nan     0.0100    0.0037
##      5        1.2813             nan     0.0100    0.0038
##      6        1.2731             nan     0.0100    0.0039
##      7        1.2645             nan     0.0100    0.0036
##      8        1.2576             nan     0.0100    0.0031
##      9        1.2499             nan     0.0100    0.0035
##     10        1.2422             nan     0.0100    0.0035
##     20        1.1750             nan     0.0100    0.0028
##     40        1.0641             nan     0.0100    0.0017
##     60        0.9788             nan     0.0100    0.0012
##     80        0.9129             nan     0.0100    0.0012
##    100        0.8588             nan     0.0100    0.0011
##    120        0.8144             nan     0.0100    0.0007
##    140        0.7780             nan     0.0100    0.0006
##    160        0.7472             nan     0.0100    0.0005
##    180        0.7214             nan     0.0100    0.0001
##    200        0.6993             nan     0.0100    0.0003
##    220        0.6798             nan     0.0100    0.0004
##    240        0.6627             nan     0.0100    0.0001
##    260        0.6476             nan     0.0100    0.0002
##    280        0.6330             nan     0.0100    0.0002
##    300        0.6202             nan     0.0100   -0.0000
##    320        0.6086             nan     0.0100    0.0002
##    340        0.5971             nan     0.0100    0.0000
##    360        0.5868             nan     0.0100   -0.0001
##    380        0.5765             nan     0.0100   -0.0000
##    400        0.5672             nan     0.0100    0.0000
##    420        0.5582             nan     0.0100    0.0001
##    440        0.5495             nan     0.0100   -0.0000
##    460        0.5413             nan     0.0100    0.0001
##    480        0.5331             nan     0.0100    0.0000
##    500        0.5258             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0041
##      2        1.3040             nan     0.0100    0.0039
##      3        1.2967             nan     0.0100    0.0033
##      4        1.2887             nan     0.0100    0.0034
##      5        1.2813             nan     0.0100    0.0036
##      6        1.2730             nan     0.0100    0.0040
##      7        1.2645             nan     0.0100    0.0039
##      8        1.2574             nan     0.0100    0.0034
##      9        1.2495             nan     0.0100    0.0036
##     10        1.2418             nan     0.0100    0.0033
##     20        1.1744             nan     0.0100    0.0027
##     40        1.0655             nan     0.0100    0.0020
##     60        0.9792             nan     0.0100    0.0014
##     80        0.9120             nan     0.0100    0.0009
##    100        0.8572             nan     0.0100    0.0010
##    120        0.8123             nan     0.0100    0.0006
##    140        0.7764             nan     0.0100    0.0006
##    160        0.7475             nan     0.0100    0.0004
##    180        0.7223             nan     0.0100    0.0006
##    200        0.7007             nan     0.0100    0.0001
##    220        0.6820             nan     0.0100    0.0002
##    240        0.6655             nan     0.0100    0.0002
##    260        0.6505             nan     0.0100    0.0000
##    280        0.6369             nan     0.0100   -0.0001
##    300        0.6253             nan     0.0100   -0.0001
##    320        0.6134             nan     0.0100    0.0001
##    340        0.6027             nan     0.0100   -0.0000
##    360        0.5919             nan     0.0100   -0.0001
##    380        0.5820             nan     0.0100   -0.0002
##    400        0.5730             nan     0.0100    0.0000
##    420        0.5643             nan     0.0100   -0.0000
##    440        0.5559             nan     0.0100   -0.0001
##    460        0.5475             nan     0.0100   -0.0000
##    480        0.5396             nan     0.0100   -0.0000
##    500        0.5323             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3111             nan     0.0100    0.0042
##      2        1.3021             nan     0.0100    0.0037
##      3        1.2929             nan     0.0100    0.0042
##      4        1.2840             nan     0.0100    0.0039
##      5        1.2753             nan     0.0100    0.0040
##      6        1.2666             nan     0.0100    0.0033
##      7        1.2586             nan     0.0100    0.0038
##      8        1.2502             nan     0.0100    0.0036
##      9        1.2418             nan     0.0100    0.0039
##     10        1.2342             nan     0.0100    0.0032
##     20        1.1605             nan     0.0100    0.0031
##     40        1.0454             nan     0.0100    0.0023
##     60        0.9568             nan     0.0100    0.0017
##     80        0.8879             nan     0.0100    0.0015
##    100        0.8332             nan     0.0100    0.0009
##    120        0.7855             nan     0.0100    0.0007
##    140        0.7470             nan     0.0100    0.0005
##    160        0.7158             nan     0.0100    0.0006
##    180        0.6882             nan     0.0100    0.0003
##    200        0.6640             nan     0.0100    0.0001
##    220        0.6430             nan     0.0100    0.0001
##    240        0.6240             nan     0.0100    0.0001
##    260        0.6067             nan     0.0100    0.0001
##    280        0.5907             nan     0.0100    0.0002
##    300        0.5759             nan     0.0100   -0.0000
##    320        0.5631             nan     0.0100    0.0000
##    340        0.5511             nan     0.0100   -0.0001
##    360        0.5371             nan     0.0100    0.0001
##    380        0.5259             nan     0.0100   -0.0002
##    400        0.5159             nan     0.0100   -0.0002
##    420        0.5053             nan     0.0100    0.0001
##    440        0.4950             nan     0.0100   -0.0000
##    460        0.4858             nan     0.0100   -0.0001
##    480        0.4769             nan     0.0100   -0.0000
##    500        0.4676             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0043
##      2        1.3025             nan     0.0100    0.0039
##      3        1.2939             nan     0.0100    0.0039
##      4        1.2852             nan     0.0100    0.0038
##      5        1.2767             nan     0.0100    0.0038
##      6        1.2691             nan     0.0100    0.0032
##      7        1.2607             nan     0.0100    0.0038
##      8        1.2522             nan     0.0100    0.0037
##      9        1.2438             nan     0.0100    0.0037
##     10        1.2360             nan     0.0100    0.0033
##     20        1.1618             nan     0.0100    0.0029
##     40        1.0479             nan     0.0100    0.0020
##     60        0.9604             nan     0.0100    0.0018
##     80        0.8927             nan     0.0100    0.0011
##    100        0.8366             nan     0.0100    0.0010
##    120        0.7916             nan     0.0100    0.0006
##    140        0.7526             nan     0.0100    0.0006
##    160        0.7208             nan     0.0100    0.0002
##    180        0.6927             nan     0.0100    0.0002
##    200        0.6674             nan     0.0100    0.0001
##    220        0.6472             nan     0.0100    0.0001
##    240        0.6277             nan     0.0100    0.0001
##    260        0.6111             nan     0.0100   -0.0001
##    280        0.5954             nan     0.0100    0.0002
##    300        0.5811             nan     0.0100   -0.0000
##    320        0.5692             nan     0.0100   -0.0001
##    340        0.5559             nan     0.0100   -0.0000
##    360        0.5438             nan     0.0100   -0.0001
##    380        0.5330             nan     0.0100   -0.0000
##    400        0.5228             nan     0.0100    0.0000
##    420        0.5123             nan     0.0100   -0.0000
##    440        0.5030             nan     0.0100   -0.0002
##    460        0.4938             nan     0.0100    0.0001
##    480        0.4842             nan     0.0100   -0.0000
##    500        0.4763             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0041
##      2        1.3031             nan     0.0100    0.0040
##      3        1.2944             nan     0.0100    0.0040
##      4        1.2862             nan     0.0100    0.0034
##      5        1.2775             nan     0.0100    0.0038
##      6        1.2697             nan     0.0100    0.0036
##      7        1.2618             nan     0.0100    0.0038
##      8        1.2538             nan     0.0100    0.0038
##      9        1.2456             nan     0.0100    0.0039
##     10        1.2378             nan     0.0100    0.0036
##     20        1.1665             nan     0.0100    0.0028
##     40        1.0516             nan     0.0100    0.0022
##     60        0.9637             nan     0.0100    0.0017
##     80        0.8946             nan     0.0100    0.0012
##    100        0.8396             nan     0.0100    0.0010
##    120        0.7942             nan     0.0100    0.0009
##    140        0.7574             nan     0.0100    0.0007
##    160        0.7251             nan     0.0100    0.0005
##    180        0.6976             nan     0.0100    0.0003
##    200        0.6744             nan     0.0100    0.0002
##    220        0.6538             nan     0.0100    0.0003
##    240        0.6349             nan     0.0100   -0.0000
##    260        0.6191             nan     0.0100    0.0002
##    280        0.6042             nan     0.0100    0.0001
##    300        0.5906             nan     0.0100    0.0000
##    320        0.5789             nan     0.0100    0.0001
##    340        0.5674             nan     0.0100   -0.0001
##    360        0.5554             nan     0.0100    0.0000
##    380        0.5440             nan     0.0100   -0.0001
##    400        0.5338             nan     0.0100   -0.0000
##    420        0.5246             nan     0.0100   -0.0002
##    440        0.5153             nan     0.0100    0.0001
##    460        0.5063             nan     0.0100   -0.0000
##    480        0.4970             nan     0.0100   -0.0001
##    500        0.4892             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0040
##      2        1.3032             nan     0.0100    0.0040
##      3        1.2942             nan     0.0100    0.0043
##      4        1.2845             nan     0.0100    0.0044
##      5        1.2759             nan     0.0100    0.0035
##      6        1.2667             nan     0.0100    0.0041
##      7        1.2578             nan     0.0100    0.0039
##      8        1.2494             nan     0.0100    0.0039
##      9        1.2403             nan     0.0100    0.0037
##     10        1.2335             nan     0.0100    0.0026
##     20        1.1586             nan     0.0100    0.0030
##     40        1.0376             nan     0.0100    0.0023
##     60        0.9473             nan     0.0100    0.0017
##     80        0.8736             nan     0.0100    0.0013
##    100        0.8149             nan     0.0100    0.0009
##    120        0.7687             nan     0.0100    0.0007
##    140        0.7279             nan     0.0100    0.0005
##    160        0.6945             nan     0.0100    0.0004
##    180        0.6654             nan     0.0100    0.0000
##    200        0.6401             nan     0.0100    0.0003
##    220        0.6169             nan     0.0100    0.0003
##    240        0.5972             nan     0.0100    0.0001
##    260        0.5777             nan     0.0100    0.0001
##    280        0.5610             nan     0.0100    0.0000
##    300        0.5451             nan     0.0100    0.0001
##    320        0.5306             nan     0.0100    0.0001
##    340        0.5176             nan     0.0100    0.0000
##    360        0.5045             nan     0.0100   -0.0000
##    380        0.4914             nan     0.0100   -0.0001
##    400        0.4798             nan     0.0100   -0.0002
##    420        0.4683             nan     0.0100    0.0001
##    440        0.4574             nan     0.0100    0.0000
##    460        0.4469             nan     0.0100    0.0000
##    480        0.4372             nan     0.0100    0.0000
##    500        0.4284             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0042
##      2        1.3020             nan     0.0100    0.0044
##      3        1.2931             nan     0.0100    0.0041
##      4        1.2849             nan     0.0100    0.0039
##      5        1.2758             nan     0.0100    0.0042
##      6        1.2671             nan     0.0100    0.0036
##      7        1.2588             nan     0.0100    0.0038
##      8        1.2498             nan     0.0100    0.0040
##      9        1.2414             nan     0.0100    0.0036
##     10        1.2331             nan     0.0100    0.0035
##     20        1.1606             nan     0.0100    0.0027
##     40        1.0404             nan     0.0100    0.0022
##     60        0.9457             nan     0.0100    0.0019
##     80        0.8722             nan     0.0100    0.0012
##    100        0.8138             nan     0.0100    0.0008
##    120        0.7662             nan     0.0100    0.0009
##    140        0.7269             nan     0.0100    0.0007
##    160        0.6947             nan     0.0100    0.0002
##    180        0.6665             nan     0.0100    0.0005
##    200        0.6424             nan     0.0100    0.0003
##    220        0.6205             nan     0.0100    0.0001
##    240        0.6007             nan     0.0100    0.0001
##    260        0.5812             nan     0.0100    0.0002
##    280        0.5650             nan     0.0100    0.0000
##    300        0.5497             nan     0.0100    0.0001
##    320        0.5353             nan     0.0100   -0.0000
##    340        0.5227             nan     0.0100   -0.0000
##    360        0.5105             nan     0.0100    0.0000
##    380        0.4990             nan     0.0100    0.0001
##    400        0.4881             nan     0.0100    0.0000
##    420        0.4765             nan     0.0100    0.0001
##    440        0.4659             nan     0.0100   -0.0000
##    460        0.4565             nan     0.0100   -0.0001
##    480        0.4471             nan     0.0100    0.0001
##    500        0.4380             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3115             nan     0.0100    0.0044
##      2        1.3023             nan     0.0100    0.0042
##      3        1.2928             nan     0.0100    0.0040
##      4        1.2848             nan     0.0100    0.0034
##      5        1.2759             nan     0.0100    0.0040
##      6        1.2675             nan     0.0100    0.0040
##      7        1.2590             nan     0.0100    0.0037
##      8        1.2508             nan     0.0100    0.0038
##      9        1.2424             nan     0.0100    0.0038
##     10        1.2353             nan     0.0100    0.0031
##     20        1.1625             nan     0.0100    0.0030
##     40        1.0406             nan     0.0100    0.0021
##     60        0.9489             nan     0.0100    0.0015
##     80        0.8773             nan     0.0100    0.0013
##    100        0.8196             nan     0.0100    0.0009
##    120        0.7728             nan     0.0100    0.0007
##    140        0.7353             nan     0.0100    0.0004
##    160        0.7025             nan     0.0100    0.0004
##    180        0.6747             nan     0.0100    0.0003
##    200        0.6501             nan     0.0100    0.0004
##    220        0.6299             nan     0.0100    0.0003
##    240        0.6114             nan     0.0100    0.0001
##    260        0.5942             nan     0.0100    0.0001
##    280        0.5771             nan     0.0100    0.0000
##    300        0.5618             nan     0.0100    0.0001
##    320        0.5475             nan     0.0100   -0.0000
##    340        0.5356             nan     0.0100   -0.0000
##    360        0.5231             nan     0.0100   -0.0001
##    380        0.5117             nan     0.0100   -0.0001
##    400        0.5004             nan     0.0100   -0.0002
##    420        0.4901             nan     0.0100    0.0001
##    440        0.4801             nan     0.0100   -0.0001
##    460        0.4697             nan     0.0100   -0.0001
##    480        0.4609             nan     0.0100   -0.0001
##    500        0.4522             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2405             nan     0.1000    0.0351
##      2        1.1734             nan     0.1000    0.0283
##      3        1.1110             nan     0.1000    0.0237
##      4        1.0690             nan     0.1000    0.0162
##      5        1.0245             nan     0.1000    0.0202
##      6        0.9844             nan     0.1000    0.0174
##      7        0.9471             nan     0.1000    0.0172
##      8        0.9116             nan     0.1000    0.0155
##      9        0.8835             nan     0.1000    0.0108
##     10        0.8646             nan     0.1000    0.0047
##     20        0.7063             nan     0.1000    0.0012
##     40        0.5690             nan     0.1000    0.0015
##     60        0.4826             nan     0.1000   -0.0019
##     80        0.4257             nan     0.1000   -0.0012
##    100        0.3697             nan     0.1000   -0.0001
##    120        0.3281             nan     0.1000   -0.0009
##    140        0.2925             nan     0.1000   -0.0001
##    160        0.2595             nan     0.1000   -0.0000
##    180        0.2343             nan     0.1000   -0.0004
##    200        0.2098             nan     0.1000   -0.0007
##    220        0.1909             nan     0.1000    0.0001
##    240        0.1743             nan     0.1000   -0.0002
##    260        0.1584             nan     0.1000   -0.0003
##    280        0.1459             nan     0.1000   -0.0001
##    300        0.1346             nan     0.1000   -0.0006
##    320        0.1236             nan     0.1000   -0.0002
##    340        0.1136             nan     0.1000   -0.0003
##    360        0.1041             nan     0.1000   -0.0002
##    380        0.0960             nan     0.1000   -0.0004
##    400        0.0886             nan     0.1000   -0.0000
##    420        0.0823             nan     0.1000   -0.0003
##    440        0.0763             nan     0.1000   -0.0002
##    460        0.0709             nan     0.1000   -0.0000
##    480        0.0655             nan     0.1000   -0.0001
##    500        0.0615             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2422             nan     0.1000    0.0347
##      2        1.1821             nan     0.1000    0.0275
##      3        1.1195             nan     0.1000    0.0299
##      4        1.0665             nan     0.1000    0.0206
##      5        1.0272             nan     0.1000    0.0186
##      6        0.9885             nan     0.1000    0.0165
##      7        0.9525             nan     0.1000    0.0151
##      8        0.9203             nan     0.1000    0.0143
##      9        0.8926             nan     0.1000    0.0100
##     10        0.8689             nan     0.1000    0.0082
##     20        0.7078             nan     0.1000    0.0012
##     40        0.5779             nan     0.1000    0.0004
##     60        0.4994             nan     0.1000    0.0003
##     80        0.4415             nan     0.1000    0.0002
##    100        0.3910             nan     0.1000   -0.0016
##    120        0.3499             nan     0.1000    0.0002
##    140        0.3146             nan     0.1000   -0.0006
##    160        0.2796             nan     0.1000   -0.0005
##    180        0.2527             nan     0.1000   -0.0008
##    200        0.2307             nan     0.1000   -0.0004
##    220        0.2071             nan     0.1000   -0.0000
##    240        0.1900             nan     0.1000   -0.0004
##    260        0.1737             nan     0.1000   -0.0003
##    280        0.1573             nan     0.1000   -0.0004
##    300        0.1414             nan     0.1000   -0.0004
##    320        0.1298             nan     0.1000   -0.0003
##    340        0.1197             nan     0.1000   -0.0003
##    360        0.1109             nan     0.1000   -0.0003
##    380        0.1028             nan     0.1000   -0.0004
##    400        0.0939             nan     0.1000   -0.0002
##    420        0.0867             nan     0.1000   -0.0002
##    440        0.0805             nan     0.1000   -0.0001
##    460        0.0747             nan     0.1000   -0.0003
##    480        0.0698             nan     0.1000   -0.0002
##    500        0.0650             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2388             nan     0.1000    0.0379
##      2        1.1705             nan     0.1000    0.0309
##      3        1.1107             nan     0.1000    0.0244
##      4        1.0597             nan     0.1000    0.0217
##      5        1.0178             nan     0.1000    0.0150
##      6        0.9779             nan     0.1000    0.0154
##      7        0.9437             nan     0.1000    0.0136
##      8        0.9165             nan     0.1000    0.0083
##      9        0.8901             nan     0.1000    0.0117
##     10        0.8615             nan     0.1000    0.0100
##     20        0.7104             nan     0.1000    0.0024
##     40        0.5821             nan     0.1000   -0.0007
##     60        0.5065             nan     0.1000   -0.0016
##     80        0.4468             nan     0.1000   -0.0020
##    100        0.3957             nan     0.1000   -0.0004
##    120        0.3600             nan     0.1000   -0.0002
##    140        0.3237             nan     0.1000   -0.0003
##    160        0.2895             nan     0.1000    0.0004
##    180        0.2616             nan     0.1000   -0.0012
##    200        0.2377             nan     0.1000   -0.0008
##    220        0.2179             nan     0.1000   -0.0015
##    240        0.1981             nan     0.1000   -0.0007
##    260        0.1829             nan     0.1000   -0.0008
##    280        0.1698             nan     0.1000   -0.0005
##    300        0.1558             nan     0.1000   -0.0009
##    320        0.1424             nan     0.1000   -0.0002
##    340        0.1307             nan     0.1000   -0.0004
##    360        0.1207             nan     0.1000   -0.0006
##    380        0.1120             nan     0.1000   -0.0003
##    400        0.1049             nan     0.1000   -0.0005
##    420        0.0981             nan     0.1000   -0.0004
##    440        0.0914             nan     0.1000   -0.0005
##    460        0.0840             nan     0.1000   -0.0003
##    480        0.0773             nan     0.1000   -0.0004
##    500        0.0717             nan     0.1000   -0.0005
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2286             nan     0.1000    0.0435
##      2        1.1564             nan     0.1000    0.0330
##      3        1.0911             nan     0.1000    0.0264
##      4        1.0417             nan     0.1000    0.0201
##      5        0.9884             nan     0.1000    0.0204
##      6        0.9513             nan     0.1000    0.0168
##      7        0.9103             nan     0.1000    0.0146
##      8        0.8796             nan     0.1000    0.0118
##      9        0.8496             nan     0.1000    0.0120
##     10        0.8251             nan     0.1000    0.0104
##     20        0.6624             nan     0.1000    0.0032
##     40        0.5250             nan     0.1000   -0.0001
##     60        0.4379             nan     0.1000    0.0005
##     80        0.3727             nan     0.1000    0.0006
##    100        0.3197             nan     0.1000   -0.0010
##    120        0.2714             nan     0.1000   -0.0008
##    140        0.2351             nan     0.1000   -0.0008
##    160        0.2048             nan     0.1000   -0.0004
##    180        0.1806             nan     0.1000   -0.0003
##    200        0.1613             nan     0.1000   -0.0003
##    220        0.1419             nan     0.1000   -0.0002
##    240        0.1268             nan     0.1000   -0.0002
##    260        0.1139             nan     0.1000   -0.0004
##    280        0.1021             nan     0.1000   -0.0004
##    300        0.0908             nan     0.1000   -0.0002
##    320        0.0814             nan     0.1000   -0.0003
##    340        0.0723             nan     0.1000   -0.0002
##    360        0.0658             nan     0.1000   -0.0002
##    380        0.0601             nan     0.1000   -0.0002
##    400        0.0548             nan     0.1000   -0.0002
##    420        0.0496             nan     0.1000   -0.0000
##    440        0.0449             nan     0.1000   -0.0000
##    460        0.0408             nan     0.1000   -0.0001
##    480        0.0370             nan     0.1000   -0.0000
##    500        0.0335             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2394             nan     0.1000    0.0370
##      2        1.1659             nan     0.1000    0.0330
##      3        1.1021             nan     0.1000    0.0308
##      4        1.0523             nan     0.1000    0.0207
##      5        1.0028             nan     0.1000    0.0233
##      6        0.9615             nan     0.1000    0.0190
##      7        0.9270             nan     0.1000    0.0137
##      8        0.8977             nan     0.1000    0.0139
##      9        0.8678             nan     0.1000    0.0136
##     10        0.8399             nan     0.1000    0.0120
##     20        0.6668             nan     0.1000    0.0030
##     40        0.5338             nan     0.1000   -0.0007
##     60        0.4448             nan     0.1000    0.0002
##     80        0.3828             nan     0.1000   -0.0008
##    100        0.3321             nan     0.1000   -0.0016
##    120        0.2859             nan     0.1000   -0.0016
##    140        0.2501             nan     0.1000   -0.0006
##    160        0.2191             nan     0.1000   -0.0007
##    180        0.1945             nan     0.1000   -0.0005
##    200        0.1710             nan     0.1000   -0.0001
##    220        0.1513             nan     0.1000   -0.0006
##    240        0.1342             nan     0.1000   -0.0003
##    260        0.1201             nan     0.1000   -0.0003
##    280        0.1081             nan     0.1000   -0.0004
##    300        0.0970             nan     0.1000   -0.0003
##    320        0.0873             nan     0.1000   -0.0003
##    340        0.0794             nan     0.1000   -0.0000
##    360        0.0716             nan     0.1000   -0.0002
##    380        0.0641             nan     0.1000   -0.0001
##    400        0.0583             nan     0.1000   -0.0001
##    420        0.0524             nan     0.1000   -0.0001
##    440        0.0478             nan     0.1000   -0.0001
##    460        0.0435             nan     0.1000   -0.0000
##    480        0.0395             nan     0.1000   -0.0002
##    500        0.0358             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2358             nan     0.1000    0.0402
##      2        1.1620             nan     0.1000    0.0279
##      3        1.1022             nan     0.1000    0.0288
##      4        1.0537             nan     0.1000    0.0203
##      5        1.0004             nan     0.1000    0.0212
##      6        0.9554             nan     0.1000    0.0170
##      7        0.9207             nan     0.1000    0.0130
##      8        0.8864             nan     0.1000    0.0135
##      9        0.8573             nan     0.1000    0.0100
##     10        0.8266             nan     0.1000    0.0095
##     20        0.6691             nan     0.1000    0.0009
##     40        0.5300             nan     0.1000   -0.0012
##     60        0.4469             nan     0.1000   -0.0006
##     80        0.3738             nan     0.1000   -0.0008
##    100        0.3249             nan     0.1000   -0.0012
##    120        0.2856             nan     0.1000   -0.0011
##    140        0.2545             nan     0.1000   -0.0006
##    160        0.2278             nan     0.1000   -0.0007
##    180        0.2015             nan     0.1000   -0.0002
##    200        0.1782             nan     0.1000   -0.0006
##    220        0.1585             nan     0.1000   -0.0006
##    240        0.1431             nan     0.1000   -0.0005
##    260        0.1263             nan     0.1000   -0.0003
##    280        0.1146             nan     0.1000   -0.0004
##    300        0.1026             nan     0.1000   -0.0004
##    320        0.0937             nan     0.1000   -0.0003
##    340        0.0846             nan     0.1000   -0.0002
##    360        0.0763             nan     0.1000   -0.0002
##    380        0.0690             nan     0.1000   -0.0003
##    400        0.0625             nan     0.1000   -0.0002
##    420        0.0572             nan     0.1000   -0.0003
##    440        0.0524             nan     0.1000   -0.0000
##    460        0.0477             nan     0.1000   -0.0001
##    480        0.0431             nan     0.1000   -0.0002
##    500        0.0392             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2268             nan     0.1000    0.0420
##      2        1.1527             nan     0.1000    0.0333
##      3        1.0922             nan     0.1000    0.0268
##      4        1.0354             nan     0.1000    0.0242
##      5        0.9861             nan     0.1000    0.0209
##      6        0.9434             nan     0.1000    0.0176
##      7        0.9070             nan     0.1000    0.0147
##      8        0.8712             nan     0.1000    0.0139
##      9        0.8436             nan     0.1000    0.0104
##     10        0.8167             nan     0.1000    0.0095
##     20        0.6464             nan     0.1000    0.0008
##     40        0.4898             nan     0.1000   -0.0003
##     60        0.3964             nan     0.1000   -0.0006
##     80        0.3201             nan     0.1000   -0.0016
##    100        0.2658             nan     0.1000   -0.0009
##    120        0.2207             nan     0.1000   -0.0003
##    140        0.1852             nan     0.1000   -0.0002
##    160        0.1622             nan     0.1000   -0.0002
##    180        0.1426             nan     0.1000   -0.0005
##    200        0.1238             nan     0.1000   -0.0000
##    220        0.1092             nan     0.1000   -0.0002
##    240        0.0952             nan     0.1000   -0.0005
##    260        0.0829             nan     0.1000   -0.0002
##    280        0.0749             nan     0.1000   -0.0003
##    300        0.0649             nan     0.1000   -0.0000
##    320        0.0578             nan     0.1000   -0.0002
##    340        0.0514             nan     0.1000   -0.0000
##    360        0.0451             nan     0.1000   -0.0002
##    380        0.0401             nan     0.1000   -0.0000
##    400        0.0352             nan     0.1000   -0.0000
##    420        0.0315             nan     0.1000   -0.0001
##    440        0.0281             nan     0.1000   -0.0001
##    460        0.0244             nan     0.1000   -0.0001
##    480        0.0214             nan     0.1000   -0.0000
##    500        0.0192             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2354             nan     0.1000    0.0356
##      2        1.1627             nan     0.1000    0.0282
##      3        1.1019             nan     0.1000    0.0269
##      4        1.0429             nan     0.1000    0.0265
##      5        0.9926             nan     0.1000    0.0191
##      6        0.9510             nan     0.1000    0.0163
##      7        0.9086             nan     0.1000    0.0181
##      8        0.8713             nan     0.1000    0.0137
##      9        0.8451             nan     0.1000    0.0090
##     10        0.8190             nan     0.1000    0.0095
##     20        0.6438             nan     0.1000    0.0034
##     40        0.4907             nan     0.1000   -0.0014
##     60        0.3997             nan     0.1000    0.0002
##     80        0.3386             nan     0.1000   -0.0028
##    100        0.2837             nan     0.1000   -0.0004
##    120        0.2437             nan     0.1000   -0.0013
##    140        0.2105             nan     0.1000   -0.0006
##    160        0.1805             nan     0.1000   -0.0008
##    180        0.1528             nan     0.1000   -0.0005
##    200        0.1329             nan     0.1000   -0.0002
##    220        0.1147             nan     0.1000   -0.0002
##    240        0.0997             nan     0.1000   -0.0002
##    260        0.0882             nan     0.1000   -0.0004
##    280        0.0781             nan     0.1000   -0.0003
##    300        0.0698             nan     0.1000   -0.0002
##    320        0.0620             nan     0.1000   -0.0003
##    340        0.0547             nan     0.1000   -0.0002
##    360        0.0474             nan     0.1000   -0.0001
##    380        0.0423             nan     0.1000   -0.0002
##    400        0.0372             nan     0.1000   -0.0001
##    420        0.0331             nan     0.1000   -0.0002
##    440        0.0293             nan     0.1000   -0.0001
##    460        0.0261             nan     0.1000   -0.0001
##    480        0.0234             nan     0.1000   -0.0001
##    500        0.0206             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2252             nan     0.1000    0.0465
##      2        1.1522             nan     0.1000    0.0328
##      3        1.0983             nan     0.1000    0.0223
##      4        1.0410             nan     0.1000    0.0257
##      5        0.9909             nan     0.1000    0.0198
##      6        0.9490             nan     0.1000    0.0186
##      7        0.9084             nan     0.1000    0.0168
##      8        0.8750             nan     0.1000    0.0134
##      9        0.8453             nan     0.1000    0.0108
##     10        0.8186             nan     0.1000    0.0113
##     20        0.6555             nan     0.1000    0.0002
##     40        0.5053             nan     0.1000   -0.0002
##     60        0.4196             nan     0.1000   -0.0013
##     80        0.3509             nan     0.1000   -0.0010
##    100        0.2953             nan     0.1000   -0.0009
##    120        0.2539             nan     0.1000   -0.0002
##    140        0.2168             nan     0.1000   -0.0009
##    160        0.1850             nan     0.1000   -0.0002
##    180        0.1625             nan     0.1000   -0.0007
##    200        0.1429             nan     0.1000   -0.0005
##    220        0.1257             nan     0.1000   -0.0005
##    240        0.1092             nan     0.1000   -0.0004
##    260        0.0968             nan     0.1000   -0.0004
##    280        0.0850             nan     0.1000   -0.0000
##    300        0.0758             nan     0.1000   -0.0002
##    320        0.0659             nan     0.1000   -0.0003
##    340        0.0575             nan     0.1000   -0.0001
##    360        0.0517             nan     0.1000   -0.0001
##    380        0.0460             nan     0.1000   -0.0003
##    400        0.0404             nan     0.1000   -0.0003
##    420        0.0365             nan     0.1000   -0.0002
##    440        0.0324             nan     0.1000   -0.0001
##    460        0.0290             nan     0.1000   -0.0001
##    480        0.0258             nan     0.1000   -0.0002
##    500        0.0230             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0003
##      3        1.3182             nan     0.0010    0.0003
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3045             nan     0.0010    0.0003
##     40        1.2894             nan     0.0010    0.0003
##     60        1.2746             nan     0.0010    0.0003
##     80        1.2604             nan     0.0010    0.0003
##    100        1.2461             nan     0.0010    0.0003
##    120        1.2331             nan     0.0010    0.0003
##    140        1.2201             nan     0.0010    0.0003
##    160        1.2074             nan     0.0010    0.0003
##    180        1.1952             nan     0.0010    0.0003
##    200        1.1835             nan     0.0010    0.0003
##    220        1.1718             nan     0.0010    0.0002
##    240        1.1603             nan     0.0010    0.0002
##    260        1.1492             nan     0.0010    0.0002
##    280        1.1383             nan     0.0010    0.0002
##    300        1.1278             nan     0.0010    0.0003
##    320        1.1177             nan     0.0010    0.0002
##    340        1.1078             nan     0.0010    0.0002
##    360        1.0981             nan     0.0010    0.0002
##    380        1.0891             nan     0.0010    0.0002
##    400        1.0801             nan     0.0010    0.0001
##    420        1.0711             nan     0.0010    0.0001
##    440        1.0621             nan     0.0010    0.0002
##    460        1.0537             nan     0.0010    0.0002
##    480        1.0453             nan     0.0010    0.0002
##    500        1.0374             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0003
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0003
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0003
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0003
##     40        1.2898             nan     0.0010    0.0004
##     60        1.2750             nan     0.0010    0.0003
##     80        1.2608             nan     0.0010    0.0004
##    100        1.2469             nan     0.0010    0.0003
##    120        1.2336             nan     0.0010    0.0003
##    140        1.2204             nan     0.0010    0.0003
##    160        1.2075             nan     0.0010    0.0003
##    180        1.1948             nan     0.0010    0.0003
##    200        1.1828             nan     0.0010    0.0003
##    220        1.1708             nan     0.0010    0.0003
##    240        1.1596             nan     0.0010    0.0002
##    260        1.1487             nan     0.0010    0.0002
##    280        1.1380             nan     0.0010    0.0003
##    300        1.1277             nan     0.0010    0.0002
##    320        1.1180             nan     0.0010    0.0002
##    340        1.1079             nan     0.0010    0.0002
##    360        1.0983             nan     0.0010    0.0002
##    380        1.0890             nan     0.0010    0.0002
##    400        1.0799             nan     0.0010    0.0002
##    420        1.0711             nan     0.0010    0.0002
##    440        1.0623             nan     0.0010    0.0002
##    460        1.0538             nan     0.0010    0.0002
##    480        1.0454             nan     0.0010    0.0002
##    500        1.0375             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0003
##      7        1.3151             nan     0.0010    0.0003
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0003
##     40        1.2898             nan     0.0010    0.0004
##     60        1.2750             nan     0.0010    0.0003
##     80        1.2604             nan     0.0010    0.0003
##    100        1.2464             nan     0.0010    0.0003
##    120        1.2332             nan     0.0010    0.0003
##    140        1.2203             nan     0.0010    0.0003
##    160        1.2077             nan     0.0010    0.0003
##    180        1.1955             nan     0.0010    0.0003
##    200        1.1832             nan     0.0010    0.0003
##    220        1.1718             nan     0.0010    0.0003
##    240        1.1606             nan     0.0010    0.0003
##    260        1.1499             nan     0.0010    0.0002
##    280        1.1391             nan     0.0010    0.0002
##    300        1.1288             nan     0.0010    0.0002
##    320        1.1187             nan     0.0010    0.0003
##    340        1.1089             nan     0.0010    0.0002
##    360        1.0993             nan     0.0010    0.0002
##    380        1.0901             nan     0.0010    0.0002
##    400        1.0812             nan     0.0010    0.0002
##    420        1.0724             nan     0.0010    0.0001
##    440        1.0640             nan     0.0010    0.0002
##    460        1.0557             nan     0.0010    0.0002
##    480        1.0477             nan     0.0010    0.0002
##    500        1.0395             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3130             nan     0.0010    0.0003
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0004
##     40        1.2868             nan     0.0010    0.0004
##     60        1.2709             nan     0.0010    0.0003
##     80        1.2554             nan     0.0010    0.0003
##    100        1.2407             nan     0.0010    0.0003
##    120        1.2263             nan     0.0010    0.0003
##    140        1.2124             nan     0.0010    0.0003
##    160        1.1988             nan     0.0010    0.0003
##    180        1.1857             nan     0.0010    0.0002
##    200        1.1731             nan     0.0010    0.0003
##    220        1.1609             nan     0.0010    0.0002
##    240        1.1488             nan     0.0010    0.0003
##    260        1.1372             nan     0.0010    0.0002
##    280        1.1258             nan     0.0010    0.0002
##    300        1.1148             nan     0.0010    0.0002
##    320        1.1043             nan     0.0010    0.0002
##    340        1.0938             nan     0.0010    0.0002
##    360        1.0836             nan     0.0010    0.0002
##    380        1.0737             nan     0.0010    0.0002
##    400        1.0641             nan     0.0010    0.0002
##    420        1.0546             nan     0.0010    0.0002
##    440        1.0454             nan     0.0010    0.0002
##    460        1.0366             nan     0.0010    0.0001
##    480        1.0278             nan     0.0010    0.0002
##    500        1.0195             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3040             nan     0.0010    0.0004
##     40        1.2876             nan     0.0010    0.0004
##     60        1.2717             nan     0.0010    0.0004
##     80        1.2565             nan     0.0010    0.0003
##    100        1.2417             nan     0.0010    0.0003
##    120        1.2272             nan     0.0010    0.0003
##    140        1.2130             nan     0.0010    0.0002
##    160        1.1997             nan     0.0010    0.0003
##    180        1.1863             nan     0.0010    0.0003
##    200        1.1735             nan     0.0010    0.0003
##    220        1.1614             nan     0.0010    0.0003
##    240        1.1492             nan     0.0010    0.0002
##    260        1.1377             nan     0.0010    0.0002
##    280        1.1262             nan     0.0010    0.0003
##    300        1.1151             nan     0.0010    0.0002
##    320        1.1045             nan     0.0010    0.0002
##    340        1.0944             nan     0.0010    0.0003
##    360        1.0841             nan     0.0010    0.0002
##    380        1.0744             nan     0.0010    0.0002
##    400        1.0648             nan     0.0010    0.0002
##    420        1.0555             nan     0.0010    0.0002
##    440        1.0464             nan     0.0010    0.0002
##    460        1.0374             nan     0.0010    0.0002
##    480        1.0286             nan     0.0010    0.0002
##    500        1.0204             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0004
##     20        1.3039             nan     0.0010    0.0003
##     40        1.2881             nan     0.0010    0.0004
##     60        1.2724             nan     0.0010    0.0003
##     80        1.2574             nan     0.0010    0.0003
##    100        1.2428             nan     0.0010    0.0004
##    120        1.2283             nan     0.0010    0.0003
##    140        1.2145             nan     0.0010    0.0003
##    160        1.2010             nan     0.0010    0.0003
##    180        1.1883             nan     0.0010    0.0003
##    200        1.1757             nan     0.0010    0.0003
##    220        1.1636             nan     0.0010    0.0003
##    240        1.1515             nan     0.0010    0.0002
##    260        1.1399             nan     0.0010    0.0002
##    280        1.1287             nan     0.0010    0.0002
##    300        1.1179             nan     0.0010    0.0002
##    320        1.1075             nan     0.0010    0.0002
##    340        1.0972             nan     0.0010    0.0002
##    360        1.0870             nan     0.0010    0.0002
##    380        1.0772             nan     0.0010    0.0002
##    400        1.0674             nan     0.0010    0.0002
##    420        1.0582             nan     0.0010    0.0002
##    440        1.0494             nan     0.0010    0.0002
##    460        1.0406             nan     0.0010    0.0002
##    480        1.0320             nan     0.0010    0.0002
##    500        1.0237             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3030             nan     0.0010    0.0004
##     40        1.2856             nan     0.0010    0.0004
##     60        1.2687             nan     0.0010    0.0004
##     80        1.2525             nan     0.0010    0.0004
##    100        1.2371             nan     0.0010    0.0003
##    120        1.2222             nan     0.0010    0.0003
##    140        1.2076             nan     0.0010    0.0003
##    160        1.1935             nan     0.0010    0.0003
##    180        1.1800             nan     0.0010    0.0003
##    200        1.1664             nan     0.0010    0.0003
##    220        1.1533             nan     0.0010    0.0003
##    240        1.1407             nan     0.0010    0.0002
##    260        1.1286             nan     0.0010    0.0003
##    280        1.1167             nan     0.0010    0.0002
##    300        1.1056             nan     0.0010    0.0002
##    320        1.0945             nan     0.0010    0.0002
##    340        1.0836             nan     0.0010    0.0002
##    360        1.0730             nan     0.0010    0.0002
##    380        1.0628             nan     0.0010    0.0002
##    400        1.0528             nan     0.0010    0.0002
##    420        1.0430             nan     0.0010    0.0002
##    440        1.0335             nan     0.0010    0.0002
##    460        1.0243             nan     0.0010    0.0002
##    480        1.0154             nan     0.0010    0.0002
##    500        1.0067             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0005
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0005
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3124             nan     0.0010    0.0005
##     10        1.3116             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2858             nan     0.0010    0.0004
##     60        1.2692             nan     0.0010    0.0003
##     80        1.2535             nan     0.0010    0.0003
##    100        1.2382             nan     0.0010    0.0003
##    120        1.2234             nan     0.0010    0.0003
##    140        1.2085             nan     0.0010    0.0003
##    160        1.1946             nan     0.0010    0.0003
##    180        1.1810             nan     0.0010    0.0003
##    200        1.1677             nan     0.0010    0.0002
##    220        1.1549             nan     0.0010    0.0003
##    240        1.1424             nan     0.0010    0.0003
##    260        1.1303             nan     0.0010    0.0003
##    280        1.1187             nan     0.0010    0.0002
##    300        1.1073             nan     0.0010    0.0002
##    320        1.0960             nan     0.0010    0.0003
##    340        1.0850             nan     0.0010    0.0002
##    360        1.0747             nan     0.0010    0.0002
##    380        1.0646             nan     0.0010    0.0002
##    400        1.0546             nan     0.0010    0.0002
##    420        1.0449             nan     0.0010    0.0002
##    440        1.0355             nan     0.0010    0.0002
##    460        1.0263             nan     0.0010    0.0002
##    480        1.0175             nan     0.0010    0.0002
##    500        1.0087             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0003
##      4        1.3171             nan     0.0010    0.0003
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0003
##     40        1.2867             nan     0.0010    0.0003
##     60        1.2703             nan     0.0010    0.0004
##     80        1.2545             nan     0.0010    0.0003
##    100        1.2394             nan     0.0010    0.0004
##    120        1.2243             nan     0.0010    0.0003
##    140        1.2099             nan     0.0010    0.0003
##    160        1.1960             nan     0.0010    0.0003
##    180        1.1828             nan     0.0010    0.0003
##    200        1.1697             nan     0.0010    0.0003
##    220        1.1571             nan     0.0010    0.0002
##    240        1.1444             nan     0.0010    0.0003
##    260        1.1324             nan     0.0010    0.0003
##    280        1.1207             nan     0.0010    0.0002
##    300        1.1093             nan     0.0010    0.0002
##    320        1.0980             nan     0.0010    0.0002
##    340        1.0874             nan     0.0010    0.0002
##    360        1.0771             nan     0.0010    0.0002
##    380        1.0668             nan     0.0010    0.0002
##    400        1.0572             nan     0.0010    0.0002
##    420        1.0475             nan     0.0010    0.0002
##    440        1.0383             nan     0.0010    0.0002
##    460        1.0292             nan     0.0010    0.0002
##    480        1.0204             nan     0.0010    0.0002
##    500        1.0118             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3138             nan     0.0100    0.0030
##      2        1.3058             nan     0.0100    0.0032
##      3        1.2970             nan     0.0100    0.0038
##      4        1.2891             nan     0.0100    0.0033
##      5        1.2813             nan     0.0100    0.0037
##      6        1.2742             nan     0.0100    0.0037
##      7        1.2672             nan     0.0100    0.0030
##      8        1.2600             nan     0.0100    0.0030
##      9        1.2523             nan     0.0100    0.0032
##     10        1.2454             nan     0.0100    0.0034
##     20        1.1813             nan     0.0100    0.0026
##     40        1.0780             nan     0.0100    0.0018
##     60        1.0008             nan     0.0100    0.0013
##     80        0.9375             nan     0.0100    0.0013
##    100        0.8866             nan     0.0100    0.0010
##    120        0.8459             nan     0.0100    0.0007
##    140        0.8108             nan     0.0100    0.0005
##    160        0.7813             nan     0.0100    0.0004
##    180        0.7562             nan     0.0100    0.0004
##    200        0.7358             nan     0.0100    0.0003
##    220        0.7167             nan     0.0100    0.0002
##    240        0.7000             nan     0.0100    0.0001
##    260        0.6848             nan     0.0100    0.0000
##    280        0.6689             nan     0.0100    0.0000
##    300        0.6552             nan     0.0100    0.0000
##    320        0.6421             nan     0.0100    0.0001
##    340        0.6303             nan     0.0100    0.0002
##    360        0.6192             nan     0.0100   -0.0001
##    380        0.6078             nan     0.0100   -0.0001
##    400        0.5981             nan     0.0100   -0.0000
##    420        0.5881             nan     0.0100    0.0000
##    440        0.5792             nan     0.0100   -0.0002
##    460        0.5700             nan     0.0100   -0.0001
##    480        0.5614             nan     0.0100    0.0000
##    500        0.5530             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3125             nan     0.0100    0.0034
##      2        1.3057             nan     0.0100    0.0030
##      3        1.2975             nan     0.0100    0.0040
##      4        1.2896             nan     0.0100    0.0038
##      5        1.2816             nan     0.0100    0.0039
##      6        1.2740             nan     0.0100    0.0031
##      7        1.2669             nan     0.0100    0.0032
##      8        1.2603             nan     0.0100    0.0031
##      9        1.2524             nan     0.0100    0.0035
##     10        1.2452             nan     0.0100    0.0030
##     20        1.1808             nan     0.0100    0.0026
##     40        1.0794             nan     0.0100    0.0019
##     60        0.9999             nan     0.0100    0.0015
##     80        0.9377             nan     0.0100    0.0013
##    100        0.8880             nan     0.0100    0.0007
##    120        0.8471             nan     0.0100    0.0007
##    140        0.8127             nan     0.0100    0.0005
##    160        0.7839             nan     0.0100    0.0004
##    180        0.7604             nan     0.0100    0.0000
##    200        0.7394             nan     0.0100   -0.0001
##    220        0.7203             nan     0.0100    0.0001
##    240        0.7033             nan     0.0100    0.0003
##    260        0.6887             nan     0.0100   -0.0000
##    280        0.6743             nan     0.0100    0.0001
##    300        0.6622             nan     0.0100   -0.0001
##    320        0.6506             nan     0.0100    0.0000
##    340        0.6395             nan     0.0100    0.0000
##    360        0.6285             nan     0.0100   -0.0001
##    380        0.6181             nan     0.0100   -0.0000
##    400        0.6090             nan     0.0100   -0.0001
##    420        0.5998             nan     0.0100   -0.0000
##    440        0.5908             nan     0.0100    0.0000
##    460        0.5812             nan     0.0100    0.0001
##    480        0.5727             nan     0.0100   -0.0001
##    500        0.5641             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0037
##      2        1.3049             nan     0.0100    0.0035
##      3        1.2979             nan     0.0100    0.0033
##      4        1.2908             nan     0.0100    0.0034
##      5        1.2834             nan     0.0100    0.0036
##      6        1.2766             nan     0.0100    0.0032
##      7        1.2702             nan     0.0100    0.0028
##      8        1.2632             nan     0.0100    0.0027
##      9        1.2565             nan     0.0100    0.0030
##     10        1.2492             nan     0.0100    0.0031
##     20        1.1849             nan     0.0100    0.0024
##     40        1.0808             nan     0.0100    0.0021
##     60        1.0015             nan     0.0100    0.0015
##     80        0.9386             nan     0.0100    0.0013
##    100        0.8884             nan     0.0100    0.0009
##    120        0.8479             nan     0.0100    0.0007
##    140        0.8146             nan     0.0100    0.0007
##    160        0.7860             nan     0.0100    0.0004
##    180        0.7601             nan     0.0100    0.0005
##    200        0.7394             nan     0.0100    0.0000
##    220        0.7211             nan     0.0100    0.0001
##    240        0.7041             nan     0.0100    0.0001
##    260        0.6897             nan     0.0100    0.0002
##    280        0.6748             nan     0.0100    0.0001
##    300        0.6619             nan     0.0100    0.0001
##    320        0.6507             nan     0.0100    0.0000
##    340        0.6399             nan     0.0100   -0.0000
##    360        0.6294             nan     0.0100    0.0001
##    380        0.6196             nan     0.0100    0.0001
##    400        0.6104             nan     0.0100    0.0001
##    420        0.6017             nan     0.0100   -0.0002
##    440        0.5935             nan     0.0100   -0.0001
##    460        0.5856             nan     0.0100   -0.0002
##    480        0.5766             nan     0.0100   -0.0001
##    500        0.5686             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3129             nan     0.0100    0.0037
##      2        1.3038             nan     0.0100    0.0039
##      3        1.2954             nan     0.0100    0.0037
##      4        1.2877             nan     0.0100    0.0033
##      5        1.2793             nan     0.0100    0.0039
##      6        1.2718             nan     0.0100    0.0032
##      7        1.2639             nan     0.0100    0.0034
##      8        1.2562             nan     0.0100    0.0035
##      9        1.2486             nan     0.0100    0.0032
##     10        1.2416             nan     0.0100    0.0030
##     20        1.1742             nan     0.0100    0.0025
##     40        1.0658             nan     0.0100    0.0018
##     60        0.9801             nan     0.0100    0.0017
##     80        0.9141             nan     0.0100    0.0011
##    100        0.8608             nan     0.0100    0.0009
##    120        0.8177             nan     0.0100    0.0007
##    140        0.7820             nan     0.0100    0.0005
##    160        0.7509             nan     0.0100    0.0003
##    180        0.7252             nan     0.0100    0.0001
##    200        0.7014             nan     0.0100    0.0003
##    220        0.6815             nan     0.0100    0.0002
##    240        0.6628             nan     0.0100    0.0002
##    260        0.6451             nan     0.0100    0.0000
##    280        0.6285             nan     0.0100    0.0001
##    300        0.6130             nan     0.0100   -0.0000
##    320        0.5987             nan     0.0100   -0.0001
##    340        0.5872             nan     0.0100    0.0000
##    360        0.5759             nan     0.0100   -0.0002
##    380        0.5646             nan     0.0100    0.0001
##    400        0.5528             nan     0.0100    0.0000
##    420        0.5420             nan     0.0100   -0.0001
##    440        0.5310             nan     0.0100    0.0002
##    460        0.5220             nan     0.0100   -0.0002
##    480        0.5116             nan     0.0100   -0.0001
##    500        0.5015             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0036
##      2        1.3045             nan     0.0100    0.0033
##      3        1.2965             nan     0.0100    0.0037
##      4        1.2885             nan     0.0100    0.0033
##      5        1.2807             nan     0.0100    0.0038
##      6        1.2733             nan     0.0100    0.0033
##      7        1.2649             nan     0.0100    0.0040
##      8        1.2571             nan     0.0100    0.0036
##      9        1.2489             nan     0.0100    0.0035
##     10        1.2415             nan     0.0100    0.0033
##     20        1.1739             nan     0.0100    0.0029
##     40        1.0638             nan     0.0100    0.0018
##     60        0.9822             nan     0.0100    0.0016
##     80        0.9184             nan     0.0100    0.0011
##    100        0.8651             nan     0.0100    0.0009
##    120        0.8213             nan     0.0100    0.0007
##    140        0.7851             nan     0.0100    0.0005
##    160        0.7543             nan     0.0100    0.0002
##    180        0.7278             nan     0.0100    0.0002
##    200        0.7049             nan     0.0100    0.0002
##    220        0.6850             nan     0.0100    0.0002
##    240        0.6671             nan     0.0100    0.0001
##    260        0.6485             nan     0.0100    0.0001
##    280        0.6337             nan     0.0100    0.0001
##    300        0.6179             nan     0.0100    0.0001
##    320        0.6041             nan     0.0100    0.0001
##    340        0.5927             nan     0.0100    0.0001
##    360        0.5805             nan     0.0100   -0.0000
##    380        0.5695             nan     0.0100    0.0002
##    400        0.5578             nan     0.0100    0.0002
##    420        0.5477             nan     0.0100    0.0001
##    440        0.5372             nan     0.0100   -0.0000
##    460        0.5280             nan     0.0100   -0.0001
##    480        0.5194             nan     0.0100   -0.0001
##    500        0.5102             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0038
##      2        1.3032             nan     0.0100    0.0041
##      3        1.2952             nan     0.0100    0.0035
##      4        1.2873             nan     0.0100    0.0036
##      5        1.2788             nan     0.0100    0.0039
##      6        1.2707             nan     0.0100    0.0040
##      7        1.2632             nan     0.0100    0.0034
##      8        1.2556             nan     0.0100    0.0036
##      9        1.2478             nan     0.0100    0.0034
##     10        1.2399             nan     0.0100    0.0033
##     20        1.1724             nan     0.0100    0.0029
##     40        1.0665             nan     0.0100    0.0021
##     60        0.9839             nan     0.0100    0.0015
##     80        0.9201             nan     0.0100    0.0011
##    100        0.8672             nan     0.0100    0.0006
##    120        0.8263             nan     0.0100    0.0005
##    140        0.7909             nan     0.0100    0.0005
##    160        0.7615             nan     0.0100    0.0003
##    180        0.7346             nan     0.0100    0.0002
##    200        0.7119             nan     0.0100    0.0002
##    220        0.6924             nan     0.0100    0.0000
##    240        0.6751             nan     0.0100    0.0001
##    260        0.6596             nan     0.0100    0.0002
##    280        0.6439             nan     0.0100    0.0002
##    300        0.6297             nan     0.0100   -0.0002
##    320        0.6156             nan     0.0100    0.0001
##    340        0.6031             nan     0.0100    0.0001
##    360        0.5920             nan     0.0100    0.0000
##    380        0.5808             nan     0.0100    0.0000
##    400        0.5696             nan     0.0100    0.0002
##    420        0.5596             nan     0.0100   -0.0001
##    440        0.5491             nan     0.0100    0.0000
##    460        0.5391             nan     0.0100    0.0000
##    480        0.5302             nan     0.0100   -0.0000
##    500        0.5212             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0042
##      2        1.3029             nan     0.0100    0.0039
##      3        1.2949             nan     0.0100    0.0037
##      4        1.2859             nan     0.0100    0.0036
##      5        1.2778             nan     0.0100    0.0038
##      6        1.2696             nan     0.0100    0.0037
##      7        1.2627             nan     0.0100    0.0033
##      8        1.2550             nan     0.0100    0.0036
##      9        1.2472             nan     0.0100    0.0033
##     10        1.2399             nan     0.0100    0.0031
##     20        1.1684             nan     0.0100    0.0029
##     40        1.0545             nan     0.0100    0.0019
##     60        0.9684             nan     0.0100    0.0015
##     80        0.9001             nan     0.0100    0.0010
##    100        0.8440             nan     0.0100    0.0008
##    120        0.7976             nan     0.0100    0.0007
##    140        0.7607             nan     0.0100    0.0005
##    160        0.7273             nan     0.0100    0.0005
##    180        0.6983             nan     0.0100    0.0003
##    200        0.6733             nan     0.0100    0.0001
##    220        0.6503             nan     0.0100    0.0003
##    240        0.6307             nan     0.0100    0.0001
##    260        0.6122             nan     0.0100   -0.0001
##    280        0.5953             nan     0.0100    0.0001
##    300        0.5799             nan     0.0100   -0.0000
##    320        0.5649             nan     0.0100    0.0001
##    340        0.5507             nan     0.0100   -0.0000
##    360        0.5379             nan     0.0100   -0.0002
##    380        0.5257             nan     0.0100   -0.0000
##    400        0.5139             nan     0.0100    0.0000
##    420        0.5022             nan     0.0100   -0.0000
##    440        0.4904             nan     0.0100    0.0001
##    460        0.4807             nan     0.0100   -0.0000
##    480        0.4701             nan     0.0100   -0.0002
##    500        0.4611             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0037
##      2        1.3036             nan     0.0100    0.0042
##      3        1.2948             nan     0.0100    0.0040
##      4        1.2869             nan     0.0100    0.0036
##      5        1.2788             nan     0.0100    0.0037
##      6        1.2708             nan     0.0100    0.0039
##      7        1.2634             nan     0.0100    0.0034
##      8        1.2554             nan     0.0100    0.0035
##      9        1.2473             nan     0.0100    0.0036
##     10        1.2388             nan     0.0100    0.0037
##     20        1.1679             nan     0.0100    0.0031
##     40        1.0550             nan     0.0100    0.0016
##     60        0.9661             nan     0.0100    0.0017
##     80        0.8958             nan     0.0100    0.0009
##    100        0.8410             nan     0.0100    0.0009
##    120        0.7978             nan     0.0100    0.0006
##    140        0.7602             nan     0.0100    0.0007
##    160        0.7270             nan     0.0100    0.0004
##    180        0.6994             nan     0.0100    0.0001
##    200        0.6752             nan     0.0100    0.0003
##    220        0.6542             nan     0.0100    0.0001
##    240        0.6345             nan     0.0100   -0.0001
##    260        0.6175             nan     0.0100    0.0001
##    280        0.5993             nan     0.0100    0.0001
##    300        0.5841             nan     0.0100   -0.0000
##    320        0.5690             nan     0.0100    0.0003
##    340        0.5553             nan     0.0100   -0.0000
##    360        0.5424             nan     0.0100   -0.0000
##    380        0.5293             nan     0.0100   -0.0002
##    400        0.5179             nan     0.0100   -0.0000
##    420        0.5067             nan     0.0100    0.0000
##    440        0.4963             nan     0.0100   -0.0000
##    460        0.4849             nan     0.0100    0.0000
##    480        0.4751             nan     0.0100   -0.0000
##    500        0.4658             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3113             nan     0.0100    0.0045
##      2        1.3028             nan     0.0100    0.0040
##      3        1.2941             nan     0.0100    0.0040
##      4        1.2855             nan     0.0100    0.0034
##      5        1.2774             nan     0.0100    0.0032
##      6        1.2692             nan     0.0100    0.0037
##      7        1.2622             nan     0.0100    0.0032
##      8        1.2543             nan     0.0100    0.0034
##      9        1.2468             nan     0.0100    0.0033
##     10        1.2387             nan     0.0100    0.0038
##     20        1.1695             nan     0.0100    0.0029
##     40        1.0574             nan     0.0100    0.0019
##     60        0.9736             nan     0.0100    0.0015
##     80        0.9050             nan     0.0100    0.0014
##    100        0.8513             nan     0.0100    0.0008
##    120        0.8074             nan     0.0100    0.0003
##    140        0.7704             nan     0.0100    0.0005
##    160        0.7397             nan     0.0100    0.0003
##    180        0.7116             nan     0.0100    0.0002
##    200        0.6886             nan     0.0100    0.0004
##    220        0.6659             nan     0.0100   -0.0001
##    240        0.6460             nan     0.0100    0.0001
##    260        0.6283             nan     0.0100   -0.0000
##    280        0.6123             nan     0.0100    0.0003
##    300        0.5967             nan     0.0100    0.0001
##    320        0.5822             nan     0.0100    0.0001
##    340        0.5683             nan     0.0100   -0.0000
##    360        0.5549             nan     0.0100    0.0000
##    380        0.5422             nan     0.0100    0.0001
##    400        0.5310             nan     0.0100    0.0002
##    420        0.5188             nan     0.0100   -0.0001
##    440        0.5080             nan     0.0100    0.0000
##    460        0.4980             nan     0.0100   -0.0001
##    480        0.4878             nan     0.0100   -0.0001
##    500        0.4776             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2361             nan     0.1000    0.0350
##      2        1.1733             nan     0.1000    0.0280
##      3        1.1280             nan     0.1000    0.0191
##      4        1.0820             nan     0.1000    0.0184
##      5        1.0378             nan     0.1000    0.0182
##      6        1.0019             nan     0.1000    0.0148
##      7        0.9726             nan     0.1000    0.0119
##      8        0.9393             nan     0.1000    0.0129
##      9        0.9099             nan     0.1000    0.0109
##     10        0.8858             nan     0.1000    0.0105
##     20        0.7379             nan     0.1000    0.0024
##     40        0.6069             nan     0.1000    0.0001
##     60        0.5181             nan     0.1000   -0.0016
##     80        0.4547             nan     0.1000   -0.0010
##    100        0.4008             nan     0.1000   -0.0012
##    120        0.3568             nan     0.1000   -0.0003
##    140        0.3215             nan     0.1000   -0.0008
##    160        0.2887             nan     0.1000   -0.0002
##    180        0.2617             nan     0.1000   -0.0004
##    200        0.2410             nan     0.1000   -0.0005
##    220        0.2152             nan     0.1000   -0.0000
##    240        0.1949             nan     0.1000   -0.0009
##    260        0.1787             nan     0.1000   -0.0005
##    280        0.1637             nan     0.1000   -0.0002
##    300        0.1497             nan     0.1000   -0.0004
##    320        0.1382             nan     0.1000   -0.0005
##    340        0.1260             nan     0.1000   -0.0003
##    360        0.1180             nan     0.1000   -0.0000
##    380        0.1097             nan     0.1000   -0.0002
##    400        0.1026             nan     0.1000   -0.0003
##    420        0.0949             nan     0.1000   -0.0004
##    440        0.0885             nan     0.1000   -0.0001
##    460        0.0819             nan     0.1000   -0.0001
##    480        0.0756             nan     0.1000   -0.0001
##    500        0.0695             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2417             nan     0.1000    0.0394
##      2        1.1764             nan     0.1000    0.0282
##      3        1.1244             nan     0.1000    0.0217
##      4        1.0789             nan     0.1000    0.0211
##      5        1.0379             nan     0.1000    0.0162
##      6        1.0056             nan     0.1000    0.0129
##      7        0.9750             nan     0.1000    0.0116
##      8        0.9404             nan     0.1000    0.0139
##      9        0.9137             nan     0.1000    0.0109
##     10        0.8926             nan     0.1000    0.0062
##     20        0.7431             nan     0.1000    0.0011
##     40        0.6024             nan     0.1000    0.0011
##     60        0.5230             nan     0.1000   -0.0006
##     80        0.4642             nan     0.1000   -0.0006
##    100        0.4084             nan     0.1000   -0.0021
##    120        0.3643             nan     0.1000    0.0002
##    140        0.3284             nan     0.1000   -0.0007
##    160        0.2961             nan     0.1000   -0.0008
##    180        0.2695             nan     0.1000   -0.0010
##    200        0.2417             nan     0.1000   -0.0017
##    220        0.2231             nan     0.1000   -0.0011
##    240        0.2047             nan     0.1000   -0.0010
##    260        0.1894             nan     0.1000   -0.0005
##    280        0.1734             nan     0.1000   -0.0005
##    300        0.1592             nan     0.1000   -0.0004
##    320        0.1476             nan     0.1000   -0.0000
##    340        0.1368             nan     0.1000   -0.0002
##    360        0.1249             nan     0.1000   -0.0003
##    380        0.1170             nan     0.1000   -0.0003
##    400        0.1084             nan     0.1000   -0.0005
##    420        0.1010             nan     0.1000   -0.0004
##    440        0.0941             nan     0.1000   -0.0003
##    460        0.0885             nan     0.1000   -0.0002
##    480        0.0823             nan     0.1000   -0.0003
##    500        0.0766             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2456             nan     0.1000    0.0333
##      2        1.1762             nan     0.1000    0.0320
##      3        1.1269             nan     0.1000    0.0225
##      4        1.0732             nan     0.1000    0.0246
##      5        1.0299             nan     0.1000    0.0165
##      6        0.9871             nan     0.1000    0.0165
##      7        0.9544             nan     0.1000    0.0107
##      8        0.9259             nan     0.1000    0.0126
##      9        0.9051             nan     0.1000    0.0061
##     10        0.8778             nan     0.1000    0.0101
##     20        0.7378             nan     0.1000    0.0033
##     40        0.6086             nan     0.1000    0.0011
##     60        0.5348             nan     0.1000    0.0006
##     80        0.4750             nan     0.1000   -0.0005
##    100        0.4220             nan     0.1000   -0.0012
##    120        0.3736             nan     0.1000   -0.0026
##    140        0.3341             nan     0.1000   -0.0013
##    160        0.3035             nan     0.1000   -0.0005
##    180        0.2767             nan     0.1000   -0.0000
##    200        0.2553             nan     0.1000   -0.0009
##    220        0.2336             nan     0.1000   -0.0004
##    240        0.2150             nan     0.1000   -0.0006
##    260        0.1996             nan     0.1000   -0.0012
##    280        0.1852             nan     0.1000   -0.0007
##    300        0.1723             nan     0.1000   -0.0004
##    320        0.1591             nan     0.1000   -0.0006
##    340        0.1470             nan     0.1000   -0.0006
##    360        0.1356             nan     0.1000   -0.0003
##    380        0.1257             nan     0.1000   -0.0002
##    400        0.1172             nan     0.1000   -0.0001
##    420        0.1082             nan     0.1000   -0.0003
##    440        0.1005             nan     0.1000   -0.0001
##    460        0.0939             nan     0.1000   -0.0002
##    480        0.0864             nan     0.1000   -0.0004
##    500        0.0809             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2496             nan     0.1000    0.0344
##      2        1.1873             nan     0.1000    0.0292
##      3        1.1268             nan     0.1000    0.0264
##      4        1.0743             nan     0.1000    0.0230
##      5        1.0314             nan     0.1000    0.0141
##      6        0.9872             nan     0.1000    0.0195
##      7        0.9473             nan     0.1000    0.0156
##      8        0.9158             nan     0.1000    0.0142
##      9        0.8902             nan     0.1000    0.0116
##     10        0.8628             nan     0.1000    0.0108
##     20        0.7115             nan     0.1000    0.0024
##     40        0.5594             nan     0.1000   -0.0010
##     60        0.4682             nan     0.1000    0.0003
##     80        0.3936             nan     0.1000   -0.0007
##    100        0.3369             nan     0.1000   -0.0001
##    120        0.2903             nan     0.1000   -0.0009
##    140        0.2535             nan     0.1000   -0.0001
##    160        0.2195             nan     0.1000    0.0000
##    180        0.1957             nan     0.1000   -0.0003
##    200        0.1736             nan     0.1000    0.0001
##    220        0.1559             nan     0.1000   -0.0003
##    240        0.1399             nan     0.1000   -0.0003
##    260        0.1247             nan     0.1000   -0.0002
##    280        0.1114             nan     0.1000   -0.0002
##    300        0.1009             nan     0.1000   -0.0001
##    320        0.0916             nan     0.1000   -0.0004
##    340        0.0826             nan     0.1000   -0.0004
##    360        0.0750             nan     0.1000   -0.0001
##    380        0.0683             nan     0.1000   -0.0001
##    400        0.0616             nan     0.1000   -0.0002
##    420        0.0561             nan     0.1000   -0.0001
##    440        0.0512             nan     0.1000   -0.0001
##    460        0.0468             nan     0.1000   -0.0001
##    480        0.0424             nan     0.1000   -0.0000
##    500        0.0384             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2387             nan     0.1000    0.0359
##      2        1.1728             nan     0.1000    0.0249
##      3        1.1146             nan     0.1000    0.0242
##      4        1.0527             nan     0.1000    0.0260
##      5        1.0118             nan     0.1000    0.0187
##      6        0.9754             nan     0.1000    0.0137
##      7        0.9428             nan     0.1000    0.0136
##      8        0.9074             nan     0.1000    0.0120
##      9        0.8798             nan     0.1000    0.0113
##     10        0.8564             nan     0.1000    0.0076
##     20        0.7107             nan     0.1000    0.0023
##     40        0.5675             nan     0.1000   -0.0006
##     60        0.4794             nan     0.1000   -0.0004
##     80        0.4062             nan     0.1000   -0.0004
##    100        0.3545             nan     0.1000    0.0000
##    120        0.3118             nan     0.1000   -0.0007
##    140        0.2772             nan     0.1000   -0.0007
##    160        0.2393             nan     0.1000   -0.0010
##    180        0.2105             nan     0.1000   -0.0001
##    200        0.1865             nan     0.1000   -0.0004
##    220        0.1648             nan     0.1000    0.0001
##    240        0.1468             nan     0.1000    0.0002
##    260        0.1324             nan     0.1000   -0.0006
##    280        0.1193             nan     0.1000   -0.0005
##    300        0.1067             nan     0.1000   -0.0003
##    320        0.0957             nan     0.1000   -0.0000
##    340        0.0861             nan     0.1000   -0.0002
##    360        0.0791             nan     0.1000   -0.0006
##    380        0.0712             nan     0.1000   -0.0002
##    400        0.0650             nan     0.1000   -0.0004
##    420        0.0595             nan     0.1000   -0.0002
##    440        0.0533             nan     0.1000   -0.0001
##    460        0.0481             nan     0.1000   -0.0002
##    480        0.0435             nan     0.1000   -0.0002
##    500        0.0395             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2362             nan     0.1000    0.0362
##      2        1.1636             nan     0.1000    0.0313
##      3        1.1072             nan     0.1000    0.0279
##      4        1.0562             nan     0.1000    0.0209
##      5        1.0135             nan     0.1000    0.0201
##      6        0.9726             nan     0.1000    0.0179
##      7        0.9389             nan     0.1000    0.0129
##      8        0.9093             nan     0.1000    0.0112
##      9        0.8836             nan     0.1000    0.0090
##     10        0.8561             nan     0.1000    0.0105
##     20        0.7126             nan     0.1000    0.0024
##     40        0.5733             nan     0.1000   -0.0011
##     60        0.4872             nan     0.1000   -0.0016
##     80        0.4204             nan     0.1000   -0.0015
##    100        0.3672             nan     0.1000   -0.0010
##    120        0.3198             nan     0.1000   -0.0017
##    140        0.2841             nan     0.1000   -0.0007
##    160        0.2508             nan     0.1000   -0.0003
##    180        0.2228             nan     0.1000   -0.0004
##    200        0.1984             nan     0.1000   -0.0003
##    220        0.1756             nan     0.1000   -0.0008
##    240        0.1571             nan     0.1000   -0.0009
##    260        0.1421             nan     0.1000   -0.0005
##    280        0.1258             nan     0.1000   -0.0007
##    300        0.1122             nan     0.1000   -0.0006
##    320        0.1017             nan     0.1000   -0.0003
##    340        0.0932             nan     0.1000   -0.0002
##    360        0.0853             nan     0.1000   -0.0006
##    380        0.0781             nan     0.1000   -0.0003
##    400        0.0713             nan     0.1000   -0.0002
##    420        0.0647             nan     0.1000   -0.0002
##    440        0.0601             nan     0.1000   -0.0002
##    460        0.0542             nan     0.1000   -0.0001
##    480        0.0493             nan     0.1000   -0.0002
##    500        0.0454             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2394             nan     0.1000    0.0370
##      2        1.1615             nan     0.1000    0.0301
##      3        1.1007             nan     0.1000    0.0252
##      4        1.0483             nan     0.1000    0.0216
##      5        1.0001             nan     0.1000    0.0192
##      6        0.9619             nan     0.1000    0.0150
##      7        0.9223             nan     0.1000    0.0153
##      8        0.8907             nan     0.1000    0.0119
##      9        0.8662             nan     0.1000    0.0077
##     10        0.8386             nan     0.1000    0.0094
##     20        0.6783             nan     0.1000    0.0010
##     40        0.5148             nan     0.1000    0.0007
##     60        0.4257             nan     0.1000   -0.0013
##     80        0.3497             nan     0.1000    0.0005
##    100        0.2922             nan     0.1000   -0.0005
##    120        0.2465             nan     0.1000    0.0000
##    140        0.2112             nan     0.1000   -0.0003
##    160        0.1811             nan     0.1000   -0.0001
##    180        0.1582             nan     0.1000   -0.0005
##    200        0.1354             nan     0.1000   -0.0004
##    220        0.1167             nan     0.1000   -0.0002
##    240        0.1024             nan     0.1000   -0.0002
##    260        0.0910             nan     0.1000   -0.0003
##    280        0.0800             nan     0.1000    0.0001
##    300        0.0710             nan     0.1000   -0.0002
##    320        0.0629             nan     0.1000   -0.0000
##    340        0.0553             nan     0.1000    0.0000
##    360        0.0493             nan     0.1000   -0.0001
##    380        0.0436             nan     0.1000    0.0001
##    400        0.0386             nan     0.1000   -0.0003
##    420        0.0337             nan     0.1000    0.0001
##    440        0.0298             nan     0.1000   -0.0000
##    460        0.0263             nan     0.1000   -0.0000
##    480        0.0233             nan     0.1000   -0.0000
##    500        0.0209             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2365             nan     0.1000    0.0422
##      2        1.1624             nan     0.1000    0.0295
##      3        1.1046             nan     0.1000    0.0227
##      4        1.0556             nan     0.1000    0.0221
##      5        1.0092             nan     0.1000    0.0192
##      6        0.9697             nan     0.1000    0.0144
##      7        0.9362             nan     0.1000    0.0136
##      8        0.9014             nan     0.1000    0.0131
##      9        0.8726             nan     0.1000    0.0103
##     10        0.8496             nan     0.1000    0.0072
##     20        0.6834             nan     0.1000    0.0003
##     40        0.5183             nan     0.1000   -0.0012
##     60        0.4203             nan     0.1000   -0.0015
##     80        0.3438             nan     0.1000    0.0004
##    100        0.2925             nan     0.1000   -0.0009
##    120        0.2534             nan     0.1000   -0.0007
##    140        0.2190             nan     0.1000   -0.0007
##    160        0.1894             nan     0.1000   -0.0006
##    180        0.1637             nan     0.1000   -0.0007
##    200        0.1437             nan     0.1000   -0.0005
##    220        0.1263             nan     0.1000   -0.0005
##    240        0.1112             nan     0.1000   -0.0002
##    260        0.0978             nan     0.1000   -0.0001
##    280        0.0854             nan     0.1000   -0.0001
##    300        0.0757             nan     0.1000   -0.0003
##    320        0.0673             nan     0.1000   -0.0002
##    340        0.0602             nan     0.1000   -0.0002
##    360        0.0537             nan     0.1000   -0.0003
##    380        0.0479             nan     0.1000   -0.0001
##    400        0.0427             nan     0.1000   -0.0000
##    420        0.0380             nan     0.1000   -0.0001
##    440        0.0338             nan     0.1000   -0.0002
##    460        0.0301             nan     0.1000   -0.0001
##    480        0.0274             nan     0.1000   -0.0000
##    500        0.0242             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2353             nan     0.1000    0.0383
##      2        1.1622             nan     0.1000    0.0338
##      3        1.0967             nan     0.1000    0.0285
##      4        1.0456             nan     0.1000    0.0238
##      5        1.0050             nan     0.1000    0.0169
##      6        0.9605             nan     0.1000    0.0174
##      7        0.9284             nan     0.1000    0.0115
##      8        0.8946             nan     0.1000    0.0092
##      9        0.8681             nan     0.1000    0.0093
##     10        0.8428             nan     0.1000    0.0089
##     20        0.6936             nan     0.1000    0.0001
##     40        0.5390             nan     0.1000   -0.0014
##     60        0.4329             nan     0.1000   -0.0001
##     80        0.3642             nan     0.1000   -0.0013
##    100        0.3084             nan     0.1000   -0.0016
##    120        0.2664             nan     0.1000   -0.0009
##    140        0.2306             nan     0.1000   -0.0008
##    160        0.1980             nan     0.1000   -0.0006
##    180        0.1711             nan     0.1000   -0.0003
##    200        0.1512             nan     0.1000   -0.0006
##    220        0.1325             nan     0.1000   -0.0006
##    240        0.1179             nan     0.1000   -0.0005
##    260        0.1046             nan     0.1000   -0.0002
##    280        0.0922             nan     0.1000   -0.0003
##    300        0.0819             nan     0.1000   -0.0000
##    320        0.0736             nan     0.1000   -0.0002
##    340        0.0653             nan     0.1000   -0.0001
##    360        0.0584             nan     0.1000   -0.0002
##    380        0.0521             nan     0.1000   -0.0003
##    400        0.0460             nan     0.1000   -0.0001
##    420        0.0412             nan     0.1000   -0.0001
##    440        0.0365             nan     0.1000   -0.0002
##    460        0.0330             nan     0.1000   -0.0001
##    480        0.0296             nan     0.1000   -0.0002
##    500        0.0267             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0003
##      4        1.3179             nan     0.0010    0.0004
##      5        1.3171             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3154             nan     0.0010    0.0003
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3138             nan     0.0010    0.0003
##     10        1.3130             nan     0.0010    0.0003
##     20        1.3051             nan     0.0010    0.0003
##     40        1.2892             nan     0.0010    0.0004
##     60        1.2738             nan     0.0010    0.0003
##     80        1.2588             nan     0.0010    0.0004
##    100        1.2442             nan     0.0010    0.0003
##    120        1.2304             nan     0.0010    0.0003
##    140        1.2169             nan     0.0010    0.0003
##    160        1.2039             nan     0.0010    0.0003
##    180        1.1909             nan     0.0010    0.0003
##    200        1.1786             nan     0.0010    0.0003
##    220        1.1662             nan     0.0010    0.0003
##    240        1.1541             nan     0.0010    0.0003
##    260        1.1425             nan     0.0010    0.0002
##    280        1.1315             nan     0.0010    0.0002
##    300        1.1208             nan     0.0010    0.0002
##    320        1.1105             nan     0.0010    0.0003
##    340        1.1006             nan     0.0010    0.0002
##    360        1.0910             nan     0.0010    0.0002
##    380        1.0814             nan     0.0010    0.0002
##    400        1.0723             nan     0.0010    0.0002
##    420        1.0633             nan     0.0010    0.0002
##    440        1.0544             nan     0.0010    0.0002
##    460        1.0459             nan     0.0010    0.0002
##    480        1.0377             nan     0.0010    0.0002
##    500        1.0293             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0003
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3044             nan     0.0010    0.0004
##     40        1.2887             nan     0.0010    0.0004
##     60        1.2730             nan     0.0010    0.0004
##     80        1.2579             nan     0.0010    0.0003
##    100        1.2433             nan     0.0010    0.0003
##    120        1.2294             nan     0.0010    0.0002
##    140        1.2155             nan     0.0010    0.0003
##    160        1.2023             nan     0.0010    0.0003
##    180        1.1893             nan     0.0010    0.0003
##    200        1.1770             nan     0.0010    0.0003
##    220        1.1652             nan     0.0010    0.0002
##    240        1.1535             nan     0.0010    0.0003
##    260        1.1422             nan     0.0010    0.0003
##    280        1.1310             nan     0.0010    0.0002
##    300        1.1203             nan     0.0010    0.0002
##    320        1.1100             nan     0.0010    0.0002
##    340        1.1001             nan     0.0010    0.0002
##    360        1.0905             nan     0.0010    0.0002
##    380        1.0809             nan     0.0010    0.0002
##    400        1.0716             nan     0.0010    0.0002
##    420        1.0624             nan     0.0010    0.0002
##    440        1.0538             nan     0.0010    0.0002
##    460        1.0451             nan     0.0010    0.0002
##    480        1.0370             nan     0.0010    0.0001
##    500        1.0289             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0003
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3129             nan     0.0010    0.0004
##     20        1.3047             nan     0.0010    0.0004
##     40        1.2885             nan     0.0010    0.0003
##     60        1.2730             nan     0.0010    0.0003
##     80        1.2586             nan     0.0010    0.0003
##    100        1.2438             nan     0.0010    0.0003
##    120        1.2302             nan     0.0010    0.0003
##    140        1.2170             nan     0.0010    0.0003
##    160        1.2038             nan     0.0010    0.0003
##    180        1.1909             nan     0.0010    0.0003
##    200        1.1785             nan     0.0010    0.0002
##    220        1.1664             nan     0.0010    0.0002
##    240        1.1550             nan     0.0010    0.0002
##    260        1.1439             nan     0.0010    0.0002
##    280        1.1332             nan     0.0010    0.0002
##    300        1.1228             nan     0.0010    0.0003
##    320        1.1127             nan     0.0010    0.0002
##    340        1.1027             nan     0.0010    0.0002
##    360        1.0932             nan     0.0010    0.0002
##    380        1.0836             nan     0.0010    0.0002
##    400        1.0741             nan     0.0010    0.0002
##    420        1.0652             nan     0.0010    0.0002
##    440        1.0565             nan     0.0010    0.0001
##    460        1.0483             nan     0.0010    0.0002
##    480        1.0400             nan     0.0010    0.0002
##    500        1.0317             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0005
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0003
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0003
##     40        1.2866             nan     0.0010    0.0004
##     60        1.2704             nan     0.0010    0.0004
##     80        1.2545             nan     0.0010    0.0003
##    100        1.2385             nan     0.0010    0.0004
##    120        1.2235             nan     0.0010    0.0003
##    140        1.2089             nan     0.0010    0.0003
##    160        1.1951             nan     0.0010    0.0003
##    180        1.1818             nan     0.0010    0.0003
##    200        1.1684             nan     0.0010    0.0003
##    220        1.1557             nan     0.0010    0.0003
##    240        1.1434             nan     0.0010    0.0003
##    260        1.1312             nan     0.0010    0.0003
##    280        1.1196             nan     0.0010    0.0003
##    300        1.1083             nan     0.0010    0.0002
##    320        1.0975             nan     0.0010    0.0002
##    340        1.0868             nan     0.0010    0.0002
##    360        1.0763             nan     0.0010    0.0002
##    380        1.0662             nan     0.0010    0.0002
##    400        1.0563             nan     0.0010    0.0002
##    420        1.0469             nan     0.0010    0.0002
##    440        1.0375             nan     0.0010    0.0002
##    460        1.0283             nan     0.0010    0.0002
##    480        1.0196             nan     0.0010    0.0001
##    500        1.0111             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2864             nan     0.0010    0.0004
##     60        1.2698             nan     0.0010    0.0004
##     80        1.2540             nan     0.0010    0.0003
##    100        1.2388             nan     0.0010    0.0003
##    120        1.2234             nan     0.0010    0.0003
##    140        1.2089             nan     0.0010    0.0003
##    160        1.1951             nan     0.0010    0.0003
##    180        1.1814             nan     0.0010    0.0003
##    200        1.1687             nan     0.0010    0.0003
##    220        1.1559             nan     0.0010    0.0003
##    240        1.1438             nan     0.0010    0.0003
##    260        1.1316             nan     0.0010    0.0002
##    280        1.1202             nan     0.0010    0.0002
##    300        1.1092             nan     0.0010    0.0002
##    320        1.0984             nan     0.0010    0.0002
##    340        1.0878             nan     0.0010    0.0002
##    360        1.0776             nan     0.0010    0.0002
##    380        1.0674             nan     0.0010    0.0002
##    400        1.0579             nan     0.0010    0.0002
##    420        1.0484             nan     0.0010    0.0002
##    440        1.0394             nan     0.0010    0.0002
##    460        1.0305             nan     0.0010    0.0002
##    480        1.0219             nan     0.0010    0.0002
##    500        1.0132             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2863             nan     0.0010    0.0004
##     60        1.2699             nan     0.0010    0.0004
##     80        1.2541             nan     0.0010    0.0003
##    100        1.2389             nan     0.0010    0.0003
##    120        1.2242             nan     0.0010    0.0003
##    140        1.2102             nan     0.0010    0.0003
##    160        1.1966             nan     0.0010    0.0002
##    180        1.1833             nan     0.0010    0.0003
##    200        1.1704             nan     0.0010    0.0003
##    220        1.1581             nan     0.0010    0.0003
##    240        1.1458             nan     0.0010    0.0003
##    260        1.1340             nan     0.0010    0.0003
##    280        1.1226             nan     0.0010    0.0003
##    300        1.1116             nan     0.0010    0.0002
##    320        1.1008             nan     0.0010    0.0002
##    340        1.0903             nan     0.0010    0.0002
##    360        1.0802             nan     0.0010    0.0002
##    380        1.0701             nan     0.0010    0.0002
##    400        1.0607             nan     0.0010    0.0002
##    420        1.0512             nan     0.0010    0.0002
##    440        1.0422             nan     0.0010    0.0002
##    460        1.0333             nan     0.0010    0.0002
##    480        1.0245             nan     0.0010    0.0002
##    500        1.0161             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0005
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3026             nan     0.0010    0.0004
##     40        1.2844             nan     0.0010    0.0004
##     60        1.2668             nan     0.0010    0.0004
##     80        1.2501             nan     0.0010    0.0004
##    100        1.2340             nan     0.0010    0.0004
##    120        1.2184             nan     0.0010    0.0004
##    140        1.2034             nan     0.0010    0.0003
##    160        1.1889             nan     0.0010    0.0003
##    180        1.1745             nan     0.0010    0.0003
##    200        1.1609             nan     0.0010    0.0003
##    220        1.1476             nan     0.0010    0.0003
##    240        1.1349             nan     0.0010    0.0003
##    260        1.1226             nan     0.0010    0.0002
##    280        1.1107             nan     0.0010    0.0003
##    300        1.0992             nan     0.0010    0.0002
##    320        1.0876             nan     0.0010    0.0002
##    340        1.0765             nan     0.0010    0.0002
##    360        1.0658             nan     0.0010    0.0002
##    380        1.0557             nan     0.0010    0.0002
##    400        1.0454             nan     0.0010    0.0002
##    420        1.0353             nan     0.0010    0.0002
##    440        1.0258             nan     0.0010    0.0002
##    460        1.0163             nan     0.0010    0.0002
##    480        1.0071             nan     0.0010    0.0002
##    500        0.9982             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3116             nan     0.0010    0.0005
##     20        1.3023             nan     0.0010    0.0004
##     40        1.2843             nan     0.0010    0.0003
##     60        1.2675             nan     0.0010    0.0004
##     80        1.2506             nan     0.0010    0.0004
##    100        1.2345             nan     0.0010    0.0004
##    120        1.2193             nan     0.0010    0.0004
##    140        1.2044             nan     0.0010    0.0003
##    160        1.1898             nan     0.0010    0.0003
##    180        1.1759             nan     0.0010    0.0003
##    200        1.1623             nan     0.0010    0.0003
##    220        1.1493             nan     0.0010    0.0003
##    240        1.1364             nan     0.0010    0.0003
##    260        1.1241             nan     0.0010    0.0003
##    280        1.1121             nan     0.0010    0.0003
##    300        1.1007             nan     0.0010    0.0002
##    320        1.0892             nan     0.0010    0.0002
##    340        1.0782             nan     0.0010    0.0003
##    360        1.0676             nan     0.0010    0.0002
##    380        1.0573             nan     0.0010    0.0002
##    400        1.0472             nan     0.0010    0.0002
##    420        1.0373             nan     0.0010    0.0002
##    440        1.0278             nan     0.0010    0.0002
##    460        1.0183             nan     0.0010    0.0002
##    480        1.0093             nan     0.0010    0.0002
##    500        1.0005             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0005
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2853             nan     0.0010    0.0004
##     60        1.2687             nan     0.0010    0.0003
##     80        1.2524             nan     0.0010    0.0004
##    100        1.2367             nan     0.0010    0.0004
##    120        1.2211             nan     0.0010    0.0004
##    140        1.2066             nan     0.0010    0.0003
##    160        1.1922             nan     0.0010    0.0003
##    180        1.1785             nan     0.0010    0.0003
##    200        1.1652             nan     0.0010    0.0003
##    220        1.1518             nan     0.0010    0.0003
##    240        1.1392             nan     0.0010    0.0003
##    260        1.1269             nan     0.0010    0.0003
##    280        1.1150             nan     0.0010    0.0003
##    300        1.1036             nan     0.0010    0.0003
##    320        1.0925             nan     0.0010    0.0003
##    340        1.0817             nan     0.0010    0.0003
##    360        1.0714             nan     0.0010    0.0002
##    380        1.0613             nan     0.0010    0.0002
##    400        1.0515             nan     0.0010    0.0002
##    420        1.0417             nan     0.0010    0.0002
##    440        1.0322             nan     0.0010    0.0002
##    460        1.0230             nan     0.0010    0.0002
##    480        1.0137             nan     0.0010    0.0002
##    500        1.0048             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3125             nan     0.0100    0.0040
##      2        1.3055             nan     0.0100    0.0027
##      3        1.2973             nan     0.0100    0.0039
##      4        1.2883             nan     0.0100    0.0041
##      5        1.2806             nan     0.0100    0.0035
##      6        1.2727             nan     0.0100    0.0039
##      7        1.2650             nan     0.0100    0.0032
##      8        1.2569             nan     0.0100    0.0036
##      9        1.2498             nan     0.0100    0.0035
##     10        1.2430             nan     0.0100    0.0032
##     20        1.1746             nan     0.0100    0.0028
##     40        1.0688             nan     0.0100    0.0020
##     60        0.9916             nan     0.0100    0.0014
##     80        0.9304             nan     0.0100    0.0012
##    100        0.8786             nan     0.0100    0.0008
##    120        0.8343             nan     0.0100    0.0007
##    140        0.8001             nan     0.0100    0.0006
##    160        0.7717             nan     0.0100    0.0003
##    180        0.7463             nan     0.0100    0.0003
##    200        0.7258             nan     0.0100    0.0002
##    220        0.7066             nan     0.0100    0.0000
##    240        0.6898             nan     0.0100    0.0001
##    260        0.6725             nan     0.0100    0.0001
##    280        0.6577             nan     0.0100    0.0001
##    300        0.6430             nan     0.0100    0.0001
##    320        0.6298             nan     0.0100    0.0001
##    340        0.6176             nan     0.0100   -0.0001
##    360        0.6067             nan     0.0100    0.0001
##    380        0.5954             nan     0.0100   -0.0001
##    400        0.5850             nan     0.0100   -0.0001
##    420        0.5757             nan     0.0100   -0.0000
##    440        0.5662             nan     0.0100   -0.0001
##    460        0.5566             nan     0.0100   -0.0002
##    480        0.5481             nan     0.0100    0.0001
##    500        0.5395             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0037
##      2        1.3039             nan     0.0100    0.0040
##      3        1.2951             nan     0.0100    0.0036
##      4        1.2872             nan     0.0100    0.0033
##      5        1.2798             nan     0.0100    0.0032
##      6        1.2727             nan     0.0100    0.0034
##      7        1.2658             nan     0.0100    0.0030
##      8        1.2581             nan     0.0100    0.0034
##      9        1.2507             nan     0.0100    0.0034
##     10        1.2445             nan     0.0100    0.0030
##     20        1.1785             nan     0.0100    0.0026
##     40        1.0739             nan     0.0100    0.0022
##     60        0.9939             nan     0.0100    0.0017
##     80        0.9290             nan     0.0100    0.0013
##    100        0.8775             nan     0.0100    0.0008
##    120        0.8354             nan     0.0100    0.0006
##    140        0.8016             nan     0.0100    0.0004
##    160        0.7739             nan     0.0100    0.0006
##    180        0.7484             nan     0.0100    0.0004
##    200        0.7270             nan     0.0100    0.0001
##    220        0.7072             nan     0.0100    0.0001
##    240        0.6901             nan     0.0100    0.0001
##    260        0.6753             nan     0.0100   -0.0000
##    280        0.6611             nan     0.0100    0.0001
##    300        0.6486             nan     0.0100    0.0000
##    320        0.6360             nan     0.0100    0.0000
##    340        0.6233             nan     0.0100    0.0000
##    360        0.6127             nan     0.0100    0.0000
##    380        0.6021             nan     0.0100   -0.0000
##    400        0.5922             nan     0.0100   -0.0001
##    420        0.5837             nan     0.0100   -0.0001
##    440        0.5751             nan     0.0100   -0.0000
##    460        0.5665             nan     0.0100   -0.0001
##    480        0.5587             nan     0.0100   -0.0000
##    500        0.5507             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3133             nan     0.0100    0.0037
##      2        1.3048             nan     0.0100    0.0039
##      3        1.2962             nan     0.0100    0.0040
##      4        1.2882             nan     0.0100    0.0038
##      5        1.2810             nan     0.0100    0.0035
##      6        1.2741             nan     0.0100    0.0036
##      7        1.2667             nan     0.0100    0.0033
##      8        1.2587             nan     0.0100    0.0035
##      9        1.2509             nan     0.0100    0.0034
##     10        1.2432             nan     0.0100    0.0036
##     20        1.1772             nan     0.0100    0.0026
##     40        1.0734             nan     0.0100    0.0015
##     60        0.9919             nan     0.0100    0.0014
##     80        0.9288             nan     0.0100    0.0012
##    100        0.8779             nan     0.0100    0.0008
##    120        0.8372             nan     0.0100    0.0007
##    140        0.8035             nan     0.0100    0.0004
##    160        0.7753             nan     0.0100    0.0004
##    180        0.7506             nan     0.0100    0.0002
##    200        0.7292             nan     0.0100    0.0002
##    220        0.7102             nan     0.0100    0.0001
##    240        0.6939             nan     0.0100    0.0001
##    260        0.6792             nan     0.0100    0.0002
##    280        0.6664             nan     0.0100    0.0001
##    300        0.6539             nan     0.0100    0.0000
##    320        0.6426             nan     0.0100    0.0001
##    340        0.6315             nan     0.0100   -0.0001
##    360        0.6212             nan     0.0100    0.0001
##    380        0.6114             nan     0.0100   -0.0000
##    400        0.6014             nan     0.0100   -0.0002
##    420        0.5917             nan     0.0100   -0.0001
##    440        0.5825             nan     0.0100   -0.0002
##    460        0.5736             nan     0.0100   -0.0001
##    480        0.5651             nan     0.0100   -0.0000
##    500        0.5575             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0042
##      2        1.3033             nan     0.0100    0.0042
##      3        1.2947             nan     0.0100    0.0039
##      4        1.2867             nan     0.0100    0.0033
##      5        1.2788             nan     0.0100    0.0035
##      6        1.2707             nan     0.0100    0.0037
##      7        1.2621             nan     0.0100    0.0034
##      8        1.2547             nan     0.0100    0.0032
##      9        1.2462             nan     0.0100    0.0036
##     10        1.2391             nan     0.0100    0.0031
##     20        1.1673             nan     0.0100    0.0027
##     40        1.0559             nan     0.0100    0.0021
##     60        0.9716             nan     0.0100    0.0014
##     80        0.9047             nan     0.0100    0.0012
##    100        0.8498             nan     0.0100    0.0009
##    120        0.8060             nan     0.0100    0.0006
##    140        0.7685             nan     0.0100    0.0005
##    160        0.7380             nan     0.0100    0.0005
##    180        0.7110             nan     0.0100    0.0004
##    200        0.6876             nan     0.0100    0.0002
##    220        0.6672             nan     0.0100    0.0002
##    240        0.6488             nan     0.0100    0.0002
##    260        0.6312             nan     0.0100    0.0002
##    280        0.6157             nan     0.0100    0.0001
##    300        0.6017             nan     0.0100    0.0002
##    320        0.5871             nan     0.0100    0.0001
##    340        0.5746             nan     0.0100    0.0001
##    360        0.5617             nan     0.0100    0.0000
##    380        0.5496             nan     0.0100   -0.0002
##    400        0.5383             nan     0.0100    0.0000
##    420        0.5275             nan     0.0100    0.0001
##    440        0.5172             nan     0.0100    0.0001
##    460        0.5074             nan     0.0100   -0.0001
##    480        0.4983             nan     0.0100   -0.0001
##    500        0.4882             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0039
##      2        1.3043             nan     0.0100    0.0037
##      3        1.2954             nan     0.0100    0.0040
##      4        1.2874             nan     0.0100    0.0039
##      5        1.2795             nan     0.0100    0.0038
##      6        1.2707             nan     0.0100    0.0037
##      7        1.2630             nan     0.0100    0.0038
##      8        1.2549             nan     0.0100    0.0035
##      9        1.2472             nan     0.0100    0.0035
##     10        1.2392             nan     0.0100    0.0039
##     20        1.1699             nan     0.0100    0.0030
##     40        1.0579             nan     0.0100    0.0019
##     60        0.9747             nan     0.0100    0.0014
##     80        0.9077             nan     0.0100    0.0011
##    100        0.8550             nan     0.0100    0.0009
##    120        0.8117             nan     0.0100    0.0006
##    140        0.7761             nan     0.0100    0.0004
##    160        0.7455             nan     0.0100    0.0002
##    180        0.7189             nan     0.0100    0.0006
##    200        0.6954             nan     0.0100    0.0002
##    220        0.6759             nan     0.0100    0.0001
##    240        0.6591             nan     0.0100    0.0001
##    260        0.6420             nan     0.0100   -0.0001
##    280        0.6273             nan     0.0100   -0.0001
##    300        0.6118             nan     0.0100    0.0002
##    320        0.5979             nan     0.0100    0.0002
##    340        0.5856             nan     0.0100    0.0000
##    360        0.5737             nan     0.0100   -0.0001
##    380        0.5611             nan     0.0100    0.0001
##    400        0.5501             nan     0.0100   -0.0001
##    420        0.5393             nan     0.0100   -0.0001
##    440        0.5291             nan     0.0100   -0.0003
##    460        0.5194             nan     0.0100   -0.0001
##    480        0.5096             nan     0.0100   -0.0001
##    500        0.5009             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0040
##      2        1.3029             nan     0.0100    0.0041
##      3        1.2945             nan     0.0100    0.0038
##      4        1.2856             nan     0.0100    0.0042
##      5        1.2775             nan     0.0100    0.0034
##      6        1.2694             nan     0.0100    0.0039
##      7        1.2613             nan     0.0100    0.0037
##      8        1.2533             nan     0.0100    0.0038
##      9        1.2454             nan     0.0100    0.0033
##     10        1.2374             nan     0.0100    0.0034
##     20        1.1705             nan     0.0100    0.0028
##     40        1.0593             nan     0.0100    0.0020
##     60        0.9740             nan     0.0100    0.0015
##     80        0.9088             nan     0.0100    0.0009
##    100        0.8558             nan     0.0100    0.0010
##    120        0.8142             nan     0.0100    0.0007
##    140        0.7791             nan     0.0100    0.0005
##    160        0.7515             nan     0.0100    0.0003
##    180        0.7271             nan     0.0100    0.0005
##    200        0.7053             nan     0.0100    0.0002
##    220        0.6859             nan     0.0100    0.0002
##    240        0.6686             nan     0.0100    0.0001
##    260        0.6516             nan     0.0100    0.0001
##    280        0.6373             nan     0.0100   -0.0001
##    300        0.6242             nan     0.0100    0.0000
##    320        0.6111             nan     0.0100    0.0001
##    340        0.5977             nan     0.0100   -0.0001
##    360        0.5855             nan     0.0100    0.0002
##    380        0.5730             nan     0.0100    0.0001
##    400        0.5622             nan     0.0100   -0.0001
##    420        0.5513             nan     0.0100   -0.0001
##    440        0.5414             nan     0.0100    0.0000
##    460        0.5321             nan     0.0100   -0.0002
##    480        0.5232             nan     0.0100    0.0000
##    500        0.5138             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3113             nan     0.0100    0.0047
##      2        1.3020             nan     0.0100    0.0043
##      3        1.2930             nan     0.0100    0.0041
##      4        1.2840             nan     0.0100    0.0038
##      5        1.2746             nan     0.0100    0.0042
##      6        1.2656             nan     0.0100    0.0040
##      7        1.2577             nan     0.0100    0.0034
##      8        1.2487             nan     0.0100    0.0042
##      9        1.2409             nan     0.0100    0.0034
##     10        1.2326             nan     0.0100    0.0034
##     20        1.1578             nan     0.0100    0.0026
##     40        1.0424             nan     0.0100    0.0021
##     60        0.9541             nan     0.0100    0.0014
##     80        0.8843             nan     0.0100    0.0012
##    100        0.8281             nan     0.0100    0.0010
##    120        0.7815             nan     0.0100    0.0007
##    140        0.7443             nan     0.0100    0.0005
##    160        0.7124             nan     0.0100    0.0002
##    180        0.6835             nan     0.0100    0.0002
##    200        0.6580             nan     0.0100    0.0002
##    220        0.6353             nan     0.0100    0.0002
##    240        0.6147             nan     0.0100    0.0000
##    260        0.5959             nan     0.0100    0.0001
##    280        0.5783             nan     0.0100    0.0001
##    300        0.5618             nan     0.0100    0.0000
##    320        0.5460             nan     0.0100    0.0000
##    340        0.5324             nan     0.0100   -0.0000
##    360        0.5190             nan     0.0100   -0.0002
##    380        0.5070             nan     0.0100    0.0000
##    400        0.4957             nan     0.0100    0.0000
##    420        0.4848             nan     0.0100   -0.0000
##    440        0.4725             nan     0.0100    0.0000
##    460        0.4621             nan     0.0100    0.0000
##    480        0.4515             nan     0.0100    0.0001
##    500        0.4415             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3118             nan     0.0100    0.0038
##      2        1.3028             nan     0.0100    0.0037
##      3        1.2939             nan     0.0100    0.0040
##      4        1.2853             nan     0.0100    0.0040
##      5        1.2764             nan     0.0100    0.0037
##      6        1.2675             nan     0.0100    0.0040
##      7        1.2579             nan     0.0100    0.0041
##      8        1.2492             nan     0.0100    0.0037
##      9        1.2415             nan     0.0100    0.0034
##     10        1.2333             nan     0.0100    0.0034
##     20        1.1605             nan     0.0100    0.0032
##     40        1.0467             nan     0.0100    0.0019
##     60        0.9590             nan     0.0100    0.0016
##     80        0.8899             nan     0.0100    0.0009
##    100        0.8349             nan     0.0100    0.0005
##    120        0.7897             nan     0.0100    0.0005
##    140        0.7527             nan     0.0100    0.0003
##    160        0.7215             nan     0.0100    0.0003
##    180        0.6941             nan     0.0100    0.0005
##    200        0.6693             nan     0.0100    0.0003
##    220        0.6472             nan     0.0100    0.0002
##    240        0.6275             nan     0.0100    0.0001
##    260        0.6089             nan     0.0100   -0.0002
##    280        0.5919             nan     0.0100    0.0001
##    300        0.5756             nan     0.0100    0.0001
##    320        0.5608             nan     0.0100    0.0002
##    340        0.5471             nan     0.0100    0.0001
##    360        0.5345             nan     0.0100    0.0001
##    380        0.5223             nan     0.0100    0.0000
##    400        0.5097             nan     0.0100   -0.0001
##    420        0.4982             nan     0.0100    0.0000
##    440        0.4871             nan     0.0100    0.0001
##    460        0.4757             nan     0.0100    0.0000
##    480        0.4659             nan     0.0100   -0.0002
##    500        0.4563             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3113             nan     0.0100    0.0045
##      2        1.3021             nan     0.0100    0.0036
##      3        1.2931             nan     0.0100    0.0043
##      4        1.2847             nan     0.0100    0.0038
##      5        1.2766             nan     0.0100    0.0040
##      6        1.2684             nan     0.0100    0.0037
##      7        1.2591             nan     0.0100    0.0040
##      8        1.2516             nan     0.0100    0.0036
##      9        1.2436             nan     0.0100    0.0037
##     10        1.2354             nan     0.0100    0.0037
##     20        1.1651             nan     0.0100    0.0025
##     40        1.0508             nan     0.0100    0.0021
##     60        0.9649             nan     0.0100    0.0016
##     80        0.8984             nan     0.0100    0.0013
##    100        0.8444             nan     0.0100    0.0010
##    120        0.7997             nan     0.0100    0.0008
##    140        0.7620             nan     0.0100    0.0004
##    160        0.7305             nan     0.0100    0.0004
##    180        0.7030             nan     0.0100    0.0003
##    200        0.6777             nan     0.0100   -0.0001
##    220        0.6568             nan     0.0100    0.0002
##    240        0.6377             nan     0.0100    0.0001
##    260        0.6195             nan     0.0100    0.0001
##    280        0.6025             nan     0.0100    0.0001
##    300        0.5872             nan     0.0100   -0.0000
##    320        0.5732             nan     0.0100   -0.0001
##    340        0.5583             nan     0.0100    0.0001
##    360        0.5465             nan     0.0100   -0.0001
##    380        0.5342             nan     0.0100    0.0001
##    400        0.5225             nan     0.0100   -0.0000
##    420        0.5114             nan     0.0100   -0.0000
##    440        0.5006             nan     0.0100    0.0000
##    460        0.4899             nan     0.0100   -0.0001
##    480        0.4800             nan     0.0100   -0.0001
##    500        0.4708             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2391             nan     0.1000    0.0378
##      2        1.1661             nan     0.1000    0.0317
##      3        1.1201             nan     0.1000    0.0183
##      4        1.0661             nan     0.1000    0.0239
##      5        1.0215             nan     0.1000    0.0195
##      6        0.9836             nan     0.1000    0.0119
##      7        0.9523             nan     0.1000    0.0145
##      8        0.9215             nan     0.1000    0.0097
##      9        0.8941             nan     0.1000    0.0103
##     10        0.8702             nan     0.1000    0.0093
##     20        0.7247             nan     0.1000    0.0021
##     40        0.5967             nan     0.1000   -0.0002
##     60        0.5048             nan     0.1000    0.0001
##     80        0.4321             nan     0.1000    0.0008
##    100        0.3812             nan     0.1000   -0.0002
##    120        0.3426             nan     0.1000   -0.0006
##    140        0.3008             nan     0.1000   -0.0001
##    160        0.2688             nan     0.1000   -0.0000
##    180        0.2423             nan     0.1000   -0.0008
##    200        0.2190             nan     0.1000   -0.0004
##    220        0.1969             nan     0.1000   -0.0007
##    240        0.1780             nan     0.1000   -0.0001
##    260        0.1600             nan     0.1000   -0.0005
##    280        0.1453             nan     0.1000   -0.0003
##    300        0.1315             nan     0.1000   -0.0002
##    320        0.1201             nan     0.1000   -0.0002
##    340        0.1099             nan     0.1000   -0.0002
##    360        0.1015             nan     0.1000   -0.0002
##    380        0.0941             nan     0.1000   -0.0003
##    400        0.0860             nan     0.1000    0.0001
##    420        0.0790             nan     0.1000   -0.0001
##    440        0.0731             nan     0.1000   -0.0002
##    460        0.0669             nan     0.1000   -0.0002
##    480        0.0620             nan     0.1000   -0.0001
##    500        0.0571             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2277             nan     0.1000    0.0409
##      2        1.1687             nan     0.1000    0.0253
##      3        1.1082             nan     0.1000    0.0242
##      4        1.0621             nan     0.1000    0.0203
##      5        1.0195             nan     0.1000    0.0167
##      6        0.9813             nan     0.1000    0.0146
##      7        0.9514             nan     0.1000    0.0130
##      8        0.9208             nan     0.1000    0.0114
##      9        0.8956             nan     0.1000    0.0100
##     10        0.8689             nan     0.1000    0.0090
##     20        0.7322             nan     0.1000    0.0018
##     40        0.5988             nan     0.1000   -0.0007
##     60        0.5237             nan     0.1000   -0.0004
##     80        0.4528             nan     0.1000   -0.0003
##    100        0.3995             nan     0.1000   -0.0004
##    120        0.3522             nan     0.1000   -0.0000
##    140        0.3144             nan     0.1000   -0.0001
##    160        0.2863             nan     0.1000   -0.0004
##    180        0.2578             nan     0.1000   -0.0007
##    200        0.2318             nan     0.1000   -0.0007
##    220        0.2083             nan     0.1000   -0.0004
##    240        0.1898             nan     0.1000   -0.0009
##    260        0.1724             nan     0.1000   -0.0005
##    280        0.1566             nan     0.1000   -0.0001
##    300        0.1435             nan     0.1000   -0.0003
##    320        0.1316             nan     0.1000    0.0001
##    340        0.1199             nan     0.1000   -0.0003
##    360        0.1104             nan     0.1000   -0.0005
##    380        0.1009             nan     0.1000   -0.0001
##    400        0.0920             nan     0.1000   -0.0003
##    420        0.0848             nan     0.1000   -0.0003
##    440        0.0782             nan     0.1000   -0.0004
##    460        0.0719             nan     0.1000   -0.0004
##    480        0.0660             nan     0.1000   -0.0002
##    500        0.0610             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2387             nan     0.1000    0.0404
##      2        1.1760             nan     0.1000    0.0281
##      3        1.1221             nan     0.1000    0.0243
##      4        1.0716             nan     0.1000    0.0198
##      5        1.0306             nan     0.1000    0.0188
##      6        0.9997             nan     0.1000    0.0122
##      7        0.9636             nan     0.1000    0.0139
##      8        0.9346             nan     0.1000    0.0127
##      9        0.9069             nan     0.1000    0.0099
##     10        0.8815             nan     0.1000    0.0064
##     20        0.7386             nan     0.1000    0.0021
##     40        0.6165             nan     0.1000   -0.0008
##     60        0.5297             nan     0.1000    0.0004
##     80        0.4759             nan     0.1000   -0.0003
##    100        0.4244             nan     0.1000   -0.0021
##    120        0.3734             nan     0.1000   -0.0014
##    140        0.3382             nan     0.1000   -0.0009
##    160        0.3072             nan     0.1000   -0.0016
##    180        0.2755             nan     0.1000   -0.0003
##    200        0.2510             nan     0.1000   -0.0007
##    220        0.2306             nan     0.1000   -0.0007
##    240        0.2104             nan     0.1000   -0.0004
##    260        0.1930             nan     0.1000   -0.0004
##    280        0.1767             nan     0.1000   -0.0000
##    300        0.1614             nan     0.1000   -0.0000
##    320        0.1483             nan     0.1000   -0.0010
##    340        0.1364             nan     0.1000   -0.0004
##    360        0.1272             nan     0.1000   -0.0007
##    380        0.1163             nan     0.1000   -0.0002
##    400        0.1070             nan     0.1000   -0.0007
##    420        0.0982             nan     0.1000   -0.0004
##    440        0.0909             nan     0.1000   -0.0002
##    460        0.0837             nan     0.1000   -0.0004
##    480        0.0782             nan     0.1000   -0.0004
##    500        0.0718             nan     0.1000   -0.0004
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2273             nan     0.1000    0.0399
##      2        1.1568             nan     0.1000    0.0319
##      3        1.1035             nan     0.1000    0.0249
##      4        1.0555             nan     0.1000    0.0217
##      5        1.0104             nan     0.1000    0.0196
##      6        0.9699             nan     0.1000    0.0157
##      7        0.9379             nan     0.1000    0.0131
##      8        0.9070             nan     0.1000    0.0127
##      9        0.8792             nan     0.1000    0.0106
##     10        0.8565             nan     0.1000    0.0102
##     20        0.6927             nan     0.1000    0.0023
##     40        0.5393             nan     0.1000    0.0003
##     60        0.4510             nan     0.1000   -0.0002
##     80        0.3787             nan     0.1000    0.0016
##    100        0.3228             nan     0.1000   -0.0005
##    120        0.2758             nan     0.1000    0.0000
##    140        0.2371             nan     0.1000   -0.0001
##    160        0.2103             nan     0.1000   -0.0001
##    180        0.1827             nan     0.1000   -0.0002
##    200        0.1595             nan     0.1000   -0.0003
##    220        0.1415             nan     0.1000    0.0000
##    240        0.1255             nan     0.1000   -0.0001
##    260        0.1109             nan     0.1000   -0.0003
##    280        0.0994             nan     0.1000   -0.0003
##    300        0.0880             nan     0.1000   -0.0003
##    320        0.0799             nan     0.1000   -0.0003
##    340        0.0719             nan     0.1000   -0.0003
##    360        0.0646             nan     0.1000   -0.0002
##    380        0.0581             nan     0.1000   -0.0002
##    400        0.0524             nan     0.1000   -0.0000
##    420        0.0472             nan     0.1000   -0.0001
##    440        0.0430             nan     0.1000   -0.0001
##    460        0.0387             nan     0.1000   -0.0001
##    480        0.0352             nan     0.1000   -0.0001
##    500        0.0316             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2338             nan     0.1000    0.0360
##      2        1.1604             nan     0.1000    0.0302
##      3        1.0991             nan     0.1000    0.0280
##      4        1.0456             nan     0.1000    0.0224
##      5        0.9960             nan     0.1000    0.0205
##      6        0.9615             nan     0.1000    0.0143
##      7        0.9245             nan     0.1000    0.0142
##      8        0.8935             nan     0.1000    0.0128
##      9        0.8660             nan     0.1000    0.0085
##     10        0.8449             nan     0.1000    0.0068
##     20        0.7004             nan     0.1000    0.0026
##     40        0.5568             nan     0.1000    0.0005
##     60        0.4691             nan     0.1000    0.0010
##     80        0.4006             nan     0.1000   -0.0008
##    100        0.3406             nan     0.1000   -0.0004
##    120        0.2947             nan     0.1000   -0.0003
##    140        0.2549             nan     0.1000   -0.0002
##    160        0.2220             nan     0.1000   -0.0004
##    180        0.1957             nan     0.1000   -0.0001
##    200        0.1729             nan     0.1000   -0.0006
##    220        0.1544             nan     0.1000   -0.0006
##    240        0.1371             nan     0.1000   -0.0007
##    260        0.1219             nan     0.1000   -0.0004
##    280        0.1090             nan     0.1000   -0.0007
##    300        0.0970             nan     0.1000   -0.0001
##    320        0.0852             nan     0.1000   -0.0002
##    340        0.0774             nan     0.1000   -0.0003
##    360        0.0702             nan     0.1000   -0.0002
##    380        0.0629             nan     0.1000   -0.0001
##    400        0.0572             nan     0.1000   -0.0002
##    420        0.0519             nan     0.1000   -0.0001
##    440        0.0465             nan     0.1000   -0.0001
##    460        0.0421             nan     0.1000   -0.0000
##    480        0.0383             nan     0.1000   -0.0001
##    500        0.0348             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2379             nan     0.1000    0.0365
##      2        1.1654             nan     0.1000    0.0354
##      3        1.1073             nan     0.1000    0.0235
##      4        1.0559             nan     0.1000    0.0171
##      5        1.0154             nan     0.1000    0.0177
##      6        0.9760             nan     0.1000    0.0169
##      7        0.9437             nan     0.1000    0.0149
##      8        0.9122             nan     0.1000    0.0110
##      9        0.8843             nan     0.1000    0.0113
##     10        0.8601             nan     0.1000    0.0082
##     20        0.7031             nan     0.1000    0.0018
##     40        0.5596             nan     0.1000   -0.0016
##     60        0.4727             nan     0.1000   -0.0000
##     80        0.4030             nan     0.1000   -0.0017
##    100        0.3501             nan     0.1000   -0.0014
##    120        0.3006             nan     0.1000   -0.0006
##    140        0.2666             nan     0.1000   -0.0004
##    160        0.2376             nan     0.1000   -0.0004
##    180        0.2120             nan     0.1000   -0.0005
##    200        0.1881             nan     0.1000   -0.0005
##    220        0.1686             nan     0.1000   -0.0004
##    240        0.1503             nan     0.1000   -0.0007
##    260        0.1350             nan     0.1000   -0.0004
##    280        0.1209             nan     0.1000   -0.0004
##    300        0.1085             nan     0.1000   -0.0004
##    320        0.0973             nan     0.1000   -0.0005
##    340        0.0888             nan     0.1000   -0.0003
##    360        0.0798             nan     0.1000   -0.0001
##    380        0.0714             nan     0.1000   -0.0000
##    400        0.0643             nan     0.1000   -0.0002
##    420        0.0586             nan     0.1000   -0.0002
##    440        0.0532             nan     0.1000   -0.0001
##    460        0.0479             nan     0.1000   -0.0001
##    480        0.0438             nan     0.1000   -0.0002
##    500        0.0394             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2405             nan     0.1000    0.0361
##      2        1.1596             nan     0.1000    0.0366
##      3        1.0962             nan     0.1000    0.0267
##      4        1.0431             nan     0.1000    0.0233
##      5        0.9928             nan     0.1000    0.0204
##      6        0.9538             nan     0.1000    0.0149
##      7        0.9199             nan     0.1000    0.0114
##      8        0.8890             nan     0.1000    0.0126
##      9        0.8552             nan     0.1000    0.0112
##     10        0.8280             nan     0.1000    0.0117
##     20        0.6651             nan     0.1000   -0.0008
##     40        0.4964             nan     0.1000   -0.0004
##     60        0.3997             nan     0.1000   -0.0006
##     80        0.3235             nan     0.1000   -0.0005
##    100        0.2724             nan     0.1000   -0.0004
##    120        0.2296             nan     0.1000   -0.0004
##    140        0.1952             nan     0.1000   -0.0007
##    160        0.1668             nan     0.1000   -0.0002
##    180        0.1417             nan     0.1000   -0.0000
##    200        0.1238             nan     0.1000   -0.0005
##    220        0.1054             nan     0.1000   -0.0000
##    240        0.0917             nan     0.1000   -0.0001
##    260        0.0795             nan     0.1000    0.0000
##    280        0.0688             nan     0.1000   -0.0002
##    300        0.0610             nan     0.1000   -0.0002
##    320        0.0537             nan     0.1000   -0.0001
##    340        0.0477             nan     0.1000   -0.0002
##    360        0.0421             nan     0.1000   -0.0002
##    380        0.0375             nan     0.1000   -0.0001
##    400        0.0333             nan     0.1000   -0.0000
##    420        0.0298             nan     0.1000   -0.0000
##    440        0.0264             nan     0.1000   -0.0000
##    460        0.0234             nan     0.1000   -0.0000
##    480        0.0207             nan     0.1000   -0.0001
##    500        0.0182             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2285             nan     0.1000    0.0436
##      2        1.1459             nan     0.1000    0.0354
##      3        1.0861             nan     0.1000    0.0239
##      4        1.0300             nan     0.1000    0.0258
##      5        0.9835             nan     0.1000    0.0208
##      6        0.9450             nan     0.1000    0.0146
##      7        0.9073             nan     0.1000    0.0138
##      8        0.8768             nan     0.1000    0.0110
##      9        0.8499             nan     0.1000    0.0078
##     10        0.8264             nan     0.1000    0.0063
##     20        0.6655             nan     0.1000    0.0021
##     40        0.5048             nan     0.1000   -0.0012
##     60        0.4093             nan     0.1000   -0.0017
##     80        0.3326             nan     0.1000   -0.0000
##    100        0.2759             nan     0.1000    0.0002
##    120        0.2327             nan     0.1000   -0.0006
##    140        0.1999             nan     0.1000   -0.0004
##    160        0.1711             nan     0.1000   -0.0003
##    180        0.1483             nan     0.1000   -0.0006
##    200        0.1263             nan     0.1000   -0.0004
##    220        0.1085             nan     0.1000   -0.0003
##    240        0.0948             nan     0.1000   -0.0002
##    260        0.0832             nan     0.1000   -0.0005
##    280        0.0727             nan     0.1000   -0.0001
##    300        0.0632             nan     0.1000   -0.0003
##    320        0.0554             nan     0.1000   -0.0001
##    340        0.0481             nan     0.1000   -0.0000
##    360        0.0424             nan     0.1000   -0.0001
##    380        0.0367             nan     0.1000   -0.0001
##    400        0.0324             nan     0.1000   -0.0001
##    420        0.0287             nan     0.1000   -0.0001
##    440        0.0250             nan     0.1000   -0.0001
##    460        0.0222             nan     0.1000   -0.0001
##    480        0.0197             nan     0.1000   -0.0001
##    500        0.0174             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2392             nan     0.1000    0.0370
##      2        1.1641             nan     0.1000    0.0323
##      3        1.1025             nan     0.1000    0.0240
##      4        1.0496             nan     0.1000    0.0207
##      5        0.9999             nan     0.1000    0.0211
##      6        0.9648             nan     0.1000    0.0155
##      7        0.9265             nan     0.1000    0.0127
##      8        0.8973             nan     0.1000    0.0097
##      9        0.8681             nan     0.1000    0.0112
##     10        0.8423             nan     0.1000    0.0107
##     20        0.6891             nan     0.1000    0.0007
##     40        0.5401             nan     0.1000   -0.0004
##     60        0.4396             nan     0.1000   -0.0016
##     80        0.3600             nan     0.1000   -0.0001
##    100        0.3052             nan     0.1000   -0.0002
##    120        0.2567             nan     0.1000   -0.0012
##    140        0.2217             nan     0.1000   -0.0007
##    160        0.1913             nan     0.1000   -0.0007
##    180        0.1674             nan     0.1000   -0.0007
##    200        0.1439             nan     0.1000   -0.0001
##    220        0.1263             nan     0.1000   -0.0010
##    240        0.1102             nan     0.1000   -0.0001
##    260        0.0970             nan     0.1000   -0.0002
##    280        0.0863             nan     0.1000   -0.0003
##    300        0.0757             nan     0.1000   -0.0004
##    320        0.0669             nan     0.1000   -0.0004
##    340        0.0586             nan     0.1000   -0.0002
##    360        0.0517             nan     0.1000   -0.0002
##    380        0.0457             nan     0.1000   -0.0001
##    400        0.0404             nan     0.1000   -0.0002
##    420        0.0357             nan     0.1000   -0.0001
##    440        0.0319             nan     0.1000   -0.0001
##    460        0.0281             nan     0.1000   -0.0001
##    480        0.0252             nan     0.1000   -0.0001
##    500        0.0220             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0003
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0003
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3048             nan     0.0010    0.0004
##     40        1.2894             nan     0.0010    0.0003
##     60        1.2747             nan     0.0010    0.0003
##     80        1.2607             nan     0.0010    0.0003
##    100        1.2471             nan     0.0010    0.0003
##    120        1.2337             nan     0.0010    0.0003
##    140        1.2205             nan     0.0010    0.0003
##    160        1.2074             nan     0.0010    0.0003
##    180        1.1951             nan     0.0010    0.0003
##    200        1.1831             nan     0.0010    0.0003
##    220        1.1715             nan     0.0010    0.0003
##    240        1.1604             nan     0.0010    0.0003
##    260        1.1494             nan     0.0010    0.0002
##    280        1.1388             nan     0.0010    0.0003
##    300        1.1285             nan     0.0010    0.0002
##    320        1.1181             nan     0.0010    0.0002
##    340        1.1083             nan     0.0010    0.0002
##    360        1.0985             nan     0.0010    0.0002
##    380        1.0890             nan     0.0010    0.0002
##    400        1.0798             nan     0.0010    0.0002
##    420        1.0711             nan     0.0010    0.0002
##    440        1.0622             nan     0.0010    0.0002
##    460        1.0538             nan     0.0010    0.0002
##    480        1.0455             nan     0.0010    0.0002
##    500        1.0373             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0003
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0003
##      7        1.3150             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0003
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0004
##     40        1.2898             nan     0.0010    0.0003
##     60        1.2747             nan     0.0010    0.0003
##     80        1.2603             nan     0.0010    0.0003
##    100        1.2461             nan     0.0010    0.0003
##    120        1.2326             nan     0.0010    0.0003
##    140        1.2198             nan     0.0010    0.0003
##    160        1.2070             nan     0.0010    0.0003
##    180        1.1946             nan     0.0010    0.0003
##    200        1.1825             nan     0.0010    0.0003
##    220        1.1708             nan     0.0010    0.0003
##    240        1.1595             nan     0.0010    0.0002
##    260        1.1486             nan     0.0010    0.0002
##    280        1.1380             nan     0.0010    0.0002
##    300        1.1275             nan     0.0010    0.0002
##    320        1.1175             nan     0.0010    0.0002
##    340        1.1077             nan     0.0010    0.0002
##    360        1.0981             nan     0.0010    0.0002
##    380        1.0888             nan     0.0010    0.0002
##    400        1.0797             nan     0.0010    0.0002
##    420        1.0709             nan     0.0010    0.0002
##    440        1.0622             nan     0.0010    0.0002
##    460        1.0538             nan     0.0010    0.0002
##    480        1.0458             nan     0.0010    0.0001
##    500        1.0379             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0003
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0003
##     40        1.2899             nan     0.0010    0.0003
##     60        1.2750             nan     0.0010    0.0003
##     80        1.2606             nan     0.0010    0.0003
##    100        1.2469             nan     0.0010    0.0003
##    120        1.2333             nan     0.0010    0.0003
##    140        1.2205             nan     0.0010    0.0003
##    160        1.2080             nan     0.0010    0.0003
##    180        1.1958             nan     0.0010    0.0003
##    200        1.1841             nan     0.0010    0.0002
##    220        1.1726             nan     0.0010    0.0003
##    240        1.1615             nan     0.0010    0.0002
##    260        1.1504             nan     0.0010    0.0002
##    280        1.1397             nan     0.0010    0.0002
##    300        1.1296             nan     0.0010    0.0002
##    320        1.1198             nan     0.0010    0.0002
##    340        1.1100             nan     0.0010    0.0002
##    360        1.1006             nan     0.0010    0.0002
##    380        1.0911             nan     0.0010    0.0002
##    400        1.0821             nan     0.0010    0.0002
##    420        1.0734             nan     0.0010    0.0002
##    440        1.0650             nan     0.0010    0.0002
##    460        1.0566             nan     0.0010    0.0002
##    480        1.0482             nan     0.0010    0.0002
##    500        1.0404             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3034             nan     0.0010    0.0004
##     40        1.2870             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0004
##     80        1.2560             nan     0.0010    0.0004
##    100        1.2412             nan     0.0010    0.0003
##    120        1.2268             nan     0.0010    0.0003
##    140        1.2128             nan     0.0010    0.0003
##    160        1.1992             nan     0.0010    0.0003
##    180        1.1862             nan     0.0010    0.0003
##    200        1.1735             nan     0.0010    0.0003
##    220        1.1612             nan     0.0010    0.0003
##    240        1.1492             nan     0.0010    0.0003
##    260        1.1374             nan     0.0010    0.0002
##    280        1.1261             nan     0.0010    0.0002
##    300        1.1148             nan     0.0010    0.0002
##    320        1.1041             nan     0.0010    0.0002
##    340        1.0936             nan     0.0010    0.0002
##    360        1.0836             nan     0.0010    0.0002
##    380        1.0738             nan     0.0010    0.0002
##    400        1.0641             nan     0.0010    0.0002
##    420        1.0547             nan     0.0010    0.0002
##    440        1.0455             nan     0.0010    0.0002
##    460        1.0366             nan     0.0010    0.0002
##    480        1.0282             nan     0.0010    0.0002
##    500        1.0199             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0003
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0003
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0004
##     40        1.2872             nan     0.0010    0.0004
##     60        1.2715             nan     0.0010    0.0004
##     80        1.2561             nan     0.0010    0.0003
##    100        1.2410             nan     0.0010    0.0003
##    120        1.2268             nan     0.0010    0.0003
##    140        1.2130             nan     0.0010    0.0003
##    160        1.1997             nan     0.0010    0.0003
##    180        1.1869             nan     0.0010    0.0003
##    200        1.1741             nan     0.0010    0.0002
##    220        1.1619             nan     0.0010    0.0003
##    240        1.1499             nan     0.0010    0.0003
##    260        1.1382             nan     0.0010    0.0002
##    280        1.1269             nan     0.0010    0.0003
##    300        1.1159             nan     0.0010    0.0002
##    320        1.1053             nan     0.0010    0.0002
##    340        1.0950             nan     0.0010    0.0002
##    360        1.0848             nan     0.0010    0.0002
##    380        1.0748             nan     0.0010    0.0002
##    400        1.0653             nan     0.0010    0.0002
##    420        1.0561             nan     0.0010    0.0002
##    440        1.0467             nan     0.0010    0.0002
##    460        1.0379             nan     0.0010    0.0002
##    480        1.0294             nan     0.0010    0.0002
##    500        1.0209             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3182             nan     0.0010    0.0004
##      4        1.3174             nan     0.0010    0.0003
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0003
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0003
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3042             nan     0.0010    0.0004
##     40        1.2878             nan     0.0010    0.0003
##     60        1.2724             nan     0.0010    0.0003
##     80        1.2573             nan     0.0010    0.0003
##    100        1.2425             nan     0.0010    0.0003
##    120        1.2282             nan     0.0010    0.0003
##    140        1.2145             nan     0.0010    0.0003
##    160        1.2012             nan     0.0010    0.0003
##    180        1.1881             nan     0.0010    0.0003
##    200        1.1753             nan     0.0010    0.0003
##    220        1.1627             nan     0.0010    0.0003
##    240        1.1505             nan     0.0010    0.0003
##    260        1.1392             nan     0.0010    0.0002
##    280        1.1277             nan     0.0010    0.0002
##    300        1.1168             nan     0.0010    0.0003
##    320        1.1061             nan     0.0010    0.0002
##    340        1.0960             nan     0.0010    0.0002
##    360        1.0861             nan     0.0010    0.0002
##    380        1.0764             nan     0.0010    0.0002
##    400        1.0670             nan     0.0010    0.0002
##    420        1.0576             nan     0.0010    0.0002
##    440        1.0485             nan     0.0010    0.0002
##    460        1.0396             nan     0.0010    0.0002
##    480        1.0313             nan     0.0010    0.0002
##    500        1.0229             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3168             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0004
##      6        1.3150             nan     0.0010    0.0004
##      7        1.3140             nan     0.0010    0.0004
##      8        1.3132             nan     0.0010    0.0004
##      9        1.3122             nan     0.0010    0.0004
##     10        1.3114             nan     0.0010    0.0004
##     20        1.3025             nan     0.0010    0.0004
##     40        1.2850             nan     0.0010    0.0003
##     60        1.2683             nan     0.0010    0.0004
##     80        1.2520             nan     0.0010    0.0003
##    100        1.2362             nan     0.0010    0.0003
##    120        1.2211             nan     0.0010    0.0003
##    140        1.2066             nan     0.0010    0.0003
##    160        1.1926             nan     0.0010    0.0003
##    180        1.1788             nan     0.0010    0.0003
##    200        1.1653             nan     0.0010    0.0003
##    220        1.1522             nan     0.0010    0.0003
##    240        1.1399             nan     0.0010    0.0003
##    260        1.1278             nan     0.0010    0.0003
##    280        1.1157             nan     0.0010    0.0003
##    300        1.1042             nan     0.0010    0.0002
##    320        1.0929             nan     0.0010    0.0002
##    340        1.0818             nan     0.0010    0.0002
##    360        1.0711             nan     0.0010    0.0002
##    380        1.0606             nan     0.0010    0.0002
##    400        1.0506             nan     0.0010    0.0002
##    420        1.0407             nan     0.0010    0.0002
##    440        1.0313             nan     0.0010    0.0002
##    460        1.0222             nan     0.0010    0.0002
##    480        1.0133             nan     0.0010    0.0002
##    500        1.0045             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3030             nan     0.0010    0.0004
##     40        1.2860             nan     0.0010    0.0004
##     60        1.2693             nan     0.0010    0.0003
##     80        1.2531             nan     0.0010    0.0004
##    100        1.2372             nan     0.0010    0.0004
##    120        1.2222             nan     0.0010    0.0003
##    140        1.2073             nan     0.0010    0.0003
##    160        1.1931             nan     0.0010    0.0003
##    180        1.1794             nan     0.0010    0.0003
##    200        1.1662             nan     0.0010    0.0003
##    220        1.1534             nan     0.0010    0.0003
##    240        1.1410             nan     0.0010    0.0003
##    260        1.1292             nan     0.0010    0.0002
##    280        1.1174             nan     0.0010    0.0003
##    300        1.1058             nan     0.0010    0.0003
##    320        1.0947             nan     0.0010    0.0003
##    340        1.0840             nan     0.0010    0.0002
##    360        1.0733             nan     0.0010    0.0002
##    380        1.0631             nan     0.0010    0.0002
##    400        1.0533             nan     0.0010    0.0002
##    420        1.0434             nan     0.0010    0.0002
##    440        1.0340             nan     0.0010    0.0002
##    460        1.0248             nan     0.0010    0.0002
##    480        1.0159             nan     0.0010    0.0002
##    500        1.0073             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0005
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3127             nan     0.0010    0.0004
##     10        1.3118             nan     0.0010    0.0004
##     20        1.3032             nan     0.0010    0.0004
##     40        1.2864             nan     0.0010    0.0004
##     60        1.2701             nan     0.0010    0.0004
##     80        1.2542             nan     0.0010    0.0003
##    100        1.2388             nan     0.0010    0.0004
##    120        1.2241             nan     0.0010    0.0003
##    140        1.2097             nan     0.0010    0.0003
##    160        1.1955             nan     0.0010    0.0003
##    180        1.1821             nan     0.0010    0.0002
##    200        1.1692             nan     0.0010    0.0003
##    220        1.1564             nan     0.0010    0.0003
##    240        1.1439             nan     0.0010    0.0003
##    260        1.1321             nan     0.0010    0.0002
##    280        1.1200             nan     0.0010    0.0002
##    300        1.1089             nan     0.0010    0.0002
##    320        1.0980             nan     0.0010    0.0002
##    340        1.0873             nan     0.0010    0.0002
##    360        1.0771             nan     0.0010    0.0002
##    380        1.0669             nan     0.0010    0.0002
##    400        1.0569             nan     0.0010    0.0002
##    420        1.0472             nan     0.0010    0.0002
##    440        1.0377             nan     0.0010    0.0002
##    460        1.0287             nan     0.0010    0.0002
##    480        1.0199             nan     0.0010    0.0002
##    500        1.0112             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0039
##      2        1.3048             nan     0.0100    0.0033
##      3        1.2977             nan     0.0100    0.0033
##      4        1.2893             nan     0.0100    0.0037
##      5        1.2820             nan     0.0100    0.0036
##      6        1.2753             nan     0.0100    0.0026
##      7        1.2692             nan     0.0100    0.0024
##      8        1.2624             nan     0.0100    0.0032
##      9        1.2555             nan     0.0100    0.0033
##     10        1.2473             nan     0.0100    0.0035
##     20        1.1856             nan     0.0100    0.0023
##     40        1.0800             nan     0.0100    0.0022
##     60        0.9989             nan     0.0100    0.0014
##     80        0.9386             nan     0.0100    0.0012
##    100        0.8885             nan     0.0100    0.0009
##    120        0.8466             nan     0.0100    0.0005
##    140        0.8122             nan     0.0100    0.0005
##    160        0.7816             nan     0.0100    0.0004
##    180        0.7561             nan     0.0100    0.0004
##    200        0.7341             nan     0.0100    0.0003
##    220        0.7159             nan     0.0100    0.0001
##    240        0.6989             nan     0.0100    0.0001
##    260        0.6830             nan     0.0100    0.0000
##    280        0.6686             nan     0.0100    0.0001
##    300        0.6545             nan     0.0100    0.0001
##    320        0.6422             nan     0.0100   -0.0000
##    340        0.6312             nan     0.0100    0.0002
##    360        0.6202             nan     0.0100   -0.0002
##    380        0.6104             nan     0.0100    0.0001
##    400        0.6010             nan     0.0100   -0.0002
##    420        0.5917             nan     0.0100    0.0000
##    440        0.5822             nan     0.0100   -0.0000
##    460        0.5736             nan     0.0100   -0.0001
##    480        0.5645             nan     0.0100   -0.0001
##    500        0.5568             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0039
##      2        1.3044             nan     0.0100    0.0035
##      3        1.2969             nan     0.0100    0.0035
##      4        1.2897             nan     0.0100    0.0028
##      5        1.2822             nan     0.0100    0.0031
##      6        1.2753             nan     0.0100    0.0032
##      7        1.2677             nan     0.0100    0.0031
##      8        1.2606             nan     0.0100    0.0030
##      9        1.2536             nan     0.0100    0.0032
##     10        1.2466             nan     0.0100    0.0028
##     20        1.1821             nan     0.0100    0.0027
##     40        1.0803             nan     0.0100    0.0019
##     60        1.0009             nan     0.0100    0.0014
##     80        0.9373             nan     0.0100    0.0011
##    100        0.8882             nan     0.0100    0.0009
##    120        0.8481             nan     0.0100    0.0006
##    140        0.8140             nan     0.0100    0.0005
##    160        0.7853             nan     0.0100    0.0002
##    180        0.7601             nan     0.0100    0.0003
##    200        0.7395             nan     0.0100    0.0005
##    220        0.7209             nan     0.0100    0.0000
##    240        0.7038             nan     0.0100    0.0001
##    260        0.6879             nan     0.0100    0.0001
##    280        0.6731             nan     0.0100    0.0000
##    300        0.6600             nan     0.0100    0.0002
##    320        0.6470             nan     0.0100   -0.0000
##    340        0.6359             nan     0.0100   -0.0000
##    360        0.6263             nan     0.0100    0.0000
##    380        0.6162             nan     0.0100    0.0001
##    400        0.6067             nan     0.0100    0.0000
##    420        0.5966             nan     0.0100    0.0001
##    440        0.5865             nan     0.0100    0.0001
##    460        0.5768             nan     0.0100    0.0000
##    480        0.5684             nan     0.0100   -0.0002
##    500        0.5608             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0036
##      2        1.3050             nan     0.0100    0.0037
##      3        1.2980             nan     0.0100    0.0029
##      4        1.2901             nan     0.0100    0.0033
##      5        1.2821             nan     0.0100    0.0032
##      6        1.2748             nan     0.0100    0.0033
##      7        1.2673             nan     0.0100    0.0031
##      8        1.2601             nan     0.0100    0.0033
##      9        1.2535             nan     0.0100    0.0029
##     10        1.2465             nan     0.0100    0.0031
##     20        1.1824             nan     0.0100    0.0030
##     40        1.0804             nan     0.0100    0.0020
##     60        1.0009             nan     0.0100    0.0014
##     80        0.9375             nan     0.0100    0.0012
##    100        0.8872             nan     0.0100    0.0008
##    120        0.8469             nan     0.0100    0.0007
##    140        0.8148             nan     0.0100    0.0004
##    160        0.7868             nan     0.0100    0.0004
##    180        0.7632             nan     0.0100    0.0003
##    200        0.7417             nan     0.0100    0.0003
##    220        0.7241             nan     0.0100    0.0002
##    240        0.7082             nan     0.0100    0.0001
##    260        0.6948             nan     0.0100    0.0001
##    280        0.6818             nan     0.0100    0.0002
##    300        0.6695             nan     0.0100    0.0001
##    320        0.6584             nan     0.0100    0.0000
##    340        0.6475             nan     0.0100    0.0001
##    360        0.6387             nan     0.0100    0.0000
##    380        0.6293             nan     0.0100    0.0002
##    400        0.6195             nan     0.0100   -0.0000
##    420        0.6105             nan     0.0100   -0.0003
##    440        0.6023             nan     0.0100   -0.0000
##    460        0.5936             nan     0.0100    0.0001
##    480        0.5855             nan     0.0100   -0.0001
##    500        0.5777             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0038
##      2        1.3035             nan     0.0100    0.0036
##      3        1.2951             nan     0.0100    0.0040
##      4        1.2868             nan     0.0100    0.0035
##      5        1.2785             nan     0.0100    0.0038
##      6        1.2705             nan     0.0100    0.0033
##      7        1.2628             nan     0.0100    0.0034
##      8        1.2555             nan     0.0100    0.0034
##      9        1.2474             nan     0.0100    0.0038
##     10        1.2397             nan     0.0100    0.0031
##     20        1.1726             nan     0.0100    0.0028
##     40        1.0634             nan     0.0100    0.0021
##     60        0.9787             nan     0.0100    0.0015
##     80        0.9137             nan     0.0100    0.0011
##    100        0.8607             nan     0.0100    0.0008
##    120        0.8175             nan     0.0100    0.0005
##    140        0.7815             nan     0.0100    0.0004
##    160        0.7507             nan     0.0100    0.0002
##    180        0.7242             nan     0.0100    0.0003
##    200        0.7015             nan     0.0100    0.0003
##    220        0.6809             nan     0.0100    0.0002
##    240        0.6623             nan     0.0100    0.0002
##    260        0.6456             nan     0.0100    0.0001
##    280        0.6300             nan     0.0100    0.0002
##    300        0.6159             nan     0.0100   -0.0002
##    320        0.6014             nan     0.0100    0.0001
##    340        0.5873             nan     0.0100    0.0001
##    360        0.5756             nan     0.0100    0.0002
##    380        0.5629             nan     0.0100    0.0001
##    400        0.5509             nan     0.0100    0.0000
##    420        0.5405             nan     0.0100   -0.0000
##    440        0.5296             nan     0.0100    0.0001
##    460        0.5201             nan     0.0100   -0.0000
##    480        0.5109             nan     0.0100    0.0001
##    500        0.5014             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0037
##      2        1.3039             nan     0.0100    0.0038
##      3        1.2960             nan     0.0100    0.0042
##      4        1.2877             nan     0.0100    0.0036
##      5        1.2793             nan     0.0100    0.0035
##      6        1.2711             nan     0.0100    0.0035
##      7        1.2640             nan     0.0100    0.0029
##      8        1.2572             nan     0.0100    0.0030
##      9        1.2499             nan     0.0100    0.0035
##     10        1.2420             nan     0.0100    0.0032
##     20        1.1745             nan     0.0100    0.0027
##     40        1.0675             nan     0.0100    0.0020
##     60        0.9838             nan     0.0100    0.0016
##     80        0.9177             nan     0.0100    0.0012
##    100        0.8658             nan     0.0100    0.0010
##    120        0.8227             nan     0.0100    0.0008
##    140        0.7875             nan     0.0100    0.0004
##    160        0.7573             nan     0.0100    0.0004
##    180        0.7316             nan     0.0100    0.0002
##    200        0.7085             nan     0.0100    0.0002
##    220        0.6881             nan     0.0100    0.0000
##    240        0.6708             nan     0.0100   -0.0000
##    260        0.6543             nan     0.0100    0.0001
##    280        0.6396             nan     0.0100    0.0000
##    300        0.6248             nan     0.0100    0.0001
##    320        0.6106             nan     0.0100   -0.0002
##    340        0.5977             nan     0.0100   -0.0002
##    360        0.5859             nan     0.0100    0.0001
##    380        0.5746             nan     0.0100   -0.0000
##    400        0.5641             nan     0.0100   -0.0001
##    420        0.5537             nan     0.0100   -0.0001
##    440        0.5438             nan     0.0100   -0.0001
##    460        0.5341             nan     0.0100   -0.0000
##    480        0.5242             nan     0.0100   -0.0002
##    500        0.5149             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0035
##      2        1.3045             nan     0.0100    0.0040
##      3        1.2968             nan     0.0100    0.0038
##      4        1.2886             nan     0.0100    0.0038
##      5        1.2803             nan     0.0100    0.0036
##      6        1.2727             nan     0.0100    0.0033
##      7        1.2647             nan     0.0100    0.0037
##      8        1.2574             nan     0.0100    0.0033
##      9        1.2498             nan     0.0100    0.0036
##     10        1.2424             nan     0.0100    0.0033
##     20        1.1763             nan     0.0100    0.0027
##     40        1.0691             nan     0.0100    0.0019
##     60        0.9849             nan     0.0100    0.0013
##     80        0.9203             nan     0.0100    0.0011
##    100        0.8673             nan     0.0100    0.0008
##    120        0.8243             nan     0.0100    0.0007
##    140        0.7905             nan     0.0100    0.0006
##    160        0.7613             nan     0.0100    0.0003
##    180        0.7364             nan     0.0100    0.0003
##    200        0.7141             nan     0.0100    0.0003
##    220        0.6936             nan     0.0100    0.0001
##    240        0.6754             nan     0.0100    0.0002
##    260        0.6601             nan     0.0100   -0.0000
##    280        0.6444             nan     0.0100    0.0001
##    300        0.6308             nan     0.0100   -0.0000
##    320        0.6172             nan     0.0100   -0.0001
##    340        0.6046             nan     0.0100    0.0001
##    360        0.5929             nan     0.0100   -0.0001
##    380        0.5813             nan     0.0100    0.0000
##    400        0.5715             nan     0.0100    0.0001
##    420        0.5606             nan     0.0100   -0.0001
##    440        0.5507             nan     0.0100    0.0001
##    460        0.5415             nan     0.0100   -0.0000
##    480        0.5325             nan     0.0100    0.0001
##    500        0.5239             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0036
##      2        1.3021             nan     0.0100    0.0042
##      3        1.2937             nan     0.0100    0.0036
##      4        1.2846             nan     0.0100    0.0040
##      5        1.2764             nan     0.0100    0.0039
##      6        1.2683             nan     0.0100    0.0038
##      7        1.2605             nan     0.0100    0.0037
##      8        1.2528             nan     0.0100    0.0034
##      9        1.2448             nan     0.0100    0.0034
##     10        1.2372             nan     0.0100    0.0035
##     20        1.1665             nan     0.0100    0.0026
##     40        1.0525             nan     0.0100    0.0017
##     60        0.9656             nan     0.0100    0.0012
##     80        0.8969             nan     0.0100    0.0010
##    100        0.8425             nan     0.0100    0.0010
##    120        0.7958             nan     0.0100    0.0006
##    140        0.7580             nan     0.0100    0.0004
##    160        0.7256             nan     0.0100    0.0001
##    180        0.6970             nan     0.0100    0.0003
##    200        0.6722             nan     0.0100    0.0003
##    220        0.6491             nan     0.0100    0.0003
##    240        0.6294             nan     0.0100   -0.0000
##    260        0.6102             nan     0.0100   -0.0001
##    280        0.5932             nan     0.0100    0.0001
##    300        0.5771             nan     0.0100    0.0001
##    320        0.5621             nan     0.0100    0.0001
##    340        0.5492             nan     0.0100    0.0000
##    360        0.5361             nan     0.0100    0.0001
##    380        0.5238             nan     0.0100    0.0001
##    400        0.5112             nan     0.0100    0.0000
##    420        0.4999             nan     0.0100   -0.0001
##    440        0.4886             nan     0.0100    0.0001
##    460        0.4781             nan     0.0100    0.0001
##    480        0.4681             nan     0.0100   -0.0001
##    500        0.4582             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3111             nan     0.0100    0.0039
##      2        1.3019             nan     0.0100    0.0040
##      3        1.2928             nan     0.0100    0.0039
##      4        1.2842             nan     0.0100    0.0038
##      5        1.2760             nan     0.0100    0.0036
##      6        1.2670             nan     0.0100    0.0038
##      7        1.2591             nan     0.0100    0.0036
##      8        1.2508             nan     0.0100    0.0036
##      9        1.2428             nan     0.0100    0.0035
##     10        1.2354             nan     0.0100    0.0033
##     20        1.1649             nan     0.0100    0.0028
##     40        1.0511             nan     0.0100    0.0020
##     60        0.9649             nan     0.0100    0.0016
##     80        0.8984             nan     0.0100    0.0009
##    100        0.8444             nan     0.0100    0.0008
##    120        0.7990             nan     0.0100    0.0009
##    140        0.7630             nan     0.0100    0.0005
##    160        0.7324             nan     0.0100    0.0004
##    180        0.7057             nan     0.0100    0.0003
##    200        0.6813             nan     0.0100    0.0003
##    220        0.6601             nan     0.0100    0.0001
##    240        0.6403             nan     0.0100    0.0001
##    260        0.6236             nan     0.0100    0.0001
##    280        0.6059             nan     0.0100    0.0000
##    300        0.5912             nan     0.0100   -0.0000
##    320        0.5777             nan     0.0100    0.0001
##    340        0.5631             nan     0.0100    0.0001
##    360        0.5498             nan     0.0100   -0.0001
##    380        0.5373             nan     0.0100   -0.0000
##    400        0.5265             nan     0.0100    0.0000
##    420        0.5153             nan     0.0100   -0.0001
##    440        0.5043             nan     0.0100    0.0001
##    460        0.4938             nan     0.0100   -0.0001
##    480        0.4837             nan     0.0100   -0.0000
##    500        0.4730             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3111             nan     0.0100    0.0042
##      2        1.3024             nan     0.0100    0.0040
##      3        1.2940             nan     0.0100    0.0037
##      4        1.2857             nan     0.0100    0.0036
##      5        1.2780             nan     0.0100    0.0038
##      6        1.2694             nan     0.0100    0.0036
##      7        1.2615             nan     0.0100    0.0034
##      8        1.2537             nan     0.0100    0.0035
##      9        1.2463             nan     0.0100    0.0031
##     10        1.2394             nan     0.0100    0.0031
##     20        1.1694             nan     0.0100    0.0024
##     40        1.0566             nan     0.0100    0.0019
##     60        0.9700             nan     0.0100    0.0013
##     80        0.9026             nan     0.0100    0.0011
##    100        0.8486             nan     0.0100    0.0010
##    120        0.8043             nan     0.0100    0.0006
##    140        0.7697             nan     0.0100    0.0005
##    160        0.7382             nan     0.0100    0.0003
##    180        0.7123             nan     0.0100    0.0001
##    200        0.6895             nan     0.0100    0.0005
##    220        0.6682             nan     0.0100    0.0002
##    240        0.6495             nan     0.0100    0.0000
##    260        0.6325             nan     0.0100    0.0000
##    280        0.6164             nan     0.0100    0.0002
##    300        0.6013             nan     0.0100    0.0001
##    320        0.5876             nan     0.0100    0.0001
##    340        0.5742             nan     0.0100   -0.0000
##    360        0.5609             nan     0.0100   -0.0001
##    380        0.5481             nan     0.0100   -0.0000
##    400        0.5373             nan     0.0100    0.0001
##    420        0.5261             nan     0.0100   -0.0001
##    440        0.5161             nan     0.0100    0.0000
##    460        0.5057             nan     0.0100   -0.0003
##    480        0.4960             nan     0.0100    0.0001
##    500        0.4869             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2447             nan     0.1000    0.0378
##      2        1.1822             nan     0.1000    0.0256
##      3        1.1276             nan     0.1000    0.0184
##      4        1.0808             nan     0.1000    0.0228
##      5        1.0349             nan     0.1000    0.0188
##      6        0.9951             nan     0.1000    0.0178
##      7        0.9638             nan     0.1000    0.0097
##      8        0.9309             nan     0.1000    0.0135
##      9        0.9060             nan     0.1000    0.0104
##     10        0.8842             nan     0.1000    0.0076
##     20        0.7405             nan     0.1000    0.0011
##     40        0.6010             nan     0.1000    0.0007
##     60        0.5190             nan     0.1000   -0.0002
##     80        0.4481             nan     0.1000   -0.0003
##    100        0.3962             nan     0.1000    0.0006
##    120        0.3505             nan     0.1000   -0.0004
##    140        0.3151             nan     0.1000   -0.0004
##    160        0.2835             nan     0.1000   -0.0003
##    180        0.2567             nan     0.1000   -0.0001
##    200        0.2318             nan     0.1000    0.0000
##    220        0.2095             nan     0.1000   -0.0003
##    240        0.1894             nan     0.1000    0.0000
##    260        0.1733             nan     0.1000   -0.0007
##    280        0.1566             nan     0.1000    0.0000
##    300        0.1431             nan     0.1000   -0.0006
##    320        0.1314             nan     0.1000   -0.0003
##    340        0.1205             nan     0.1000   -0.0002
##    360        0.1106             nan     0.1000   -0.0002
##    380        0.1019             nan     0.1000   -0.0002
##    400        0.0951             nan     0.1000   -0.0003
##    420        0.0881             nan     0.1000   -0.0003
##    440        0.0814             nan     0.1000   -0.0001
##    460        0.0744             nan     0.1000   -0.0002
##    480        0.0691             nan     0.1000   -0.0002
##    500        0.0644             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2445             nan     0.1000    0.0365
##      2        1.1807             nan     0.1000    0.0254
##      3        1.1280             nan     0.1000    0.0235
##      4        1.0749             nan     0.1000    0.0224
##      5        1.0383             nan     0.1000    0.0135
##      6        0.9984             nan     0.1000    0.0160
##      7        0.9635             nan     0.1000    0.0153
##      8        0.9347             nan     0.1000    0.0126
##      9        0.9055             nan     0.1000    0.0111
##     10        0.8798             nan     0.1000    0.0101
##     20        0.7339             nan     0.1000    0.0023
##     40        0.6039             nan     0.1000   -0.0003
##     60        0.5145             nan     0.1000   -0.0007
##     80        0.4507             nan     0.1000   -0.0007
##    100        0.4001             nan     0.1000    0.0002
##    120        0.3545             nan     0.1000   -0.0006
##    140        0.3230             nan     0.1000   -0.0002
##    160        0.2897             nan     0.1000   -0.0002
##    180        0.2589             nan     0.1000   -0.0003
##    200        0.2369             nan     0.1000   -0.0003
##    220        0.2175             nan     0.1000   -0.0008
##    240        0.2001             nan     0.1000   -0.0010
##    260        0.1820             nan     0.1000   -0.0007
##    280        0.1660             nan     0.1000   -0.0004
##    300        0.1541             nan     0.1000   -0.0004
##    320        0.1417             nan     0.1000   -0.0006
##    340        0.1300             nan     0.1000   -0.0003
##    360        0.1210             nan     0.1000   -0.0002
##    380        0.1117             nan     0.1000   -0.0004
##    400        0.1033             nan     0.1000   -0.0005
##    420        0.0953             nan     0.1000   -0.0003
##    440        0.0888             nan     0.1000    0.0000
##    460        0.0818             nan     0.1000   -0.0001
##    480        0.0761             nan     0.1000   -0.0003
##    500        0.0712             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2449             nan     0.1000    0.0325
##      2        1.1842             nan     0.1000    0.0288
##      3        1.1275             nan     0.1000    0.0253
##      4        1.0790             nan     0.1000    0.0195
##      5        1.0422             nan     0.1000    0.0165
##      6        1.0065             nan     0.1000    0.0164
##      7        0.9725             nan     0.1000    0.0129
##      8        0.9400             nan     0.1000    0.0117
##      9        0.9166             nan     0.1000    0.0084
##     10        0.8924             nan     0.1000    0.0089
##     20        0.7437             nan     0.1000    0.0020
##     40        0.6262             nan     0.1000   -0.0009
##     60        0.5457             nan     0.1000    0.0001
##     80        0.4854             nan     0.1000   -0.0014
##    100        0.4302             nan     0.1000   -0.0012
##    120        0.3844             nan     0.1000   -0.0009
##    140        0.3507             nan     0.1000   -0.0014
##    160        0.3188             nan     0.1000   -0.0010
##    180        0.2877             nan     0.1000   -0.0003
##    200        0.2610             nan     0.1000   -0.0006
##    220        0.2389             nan     0.1000   -0.0008
##    240        0.2196             nan     0.1000   -0.0004
##    260        0.1988             nan     0.1000   -0.0008
##    280        0.1842             nan     0.1000   -0.0010
##    300        0.1698             nan     0.1000   -0.0003
##    320        0.1573             nan     0.1000   -0.0003
##    340        0.1434             nan     0.1000   -0.0004
##    360        0.1326             nan     0.1000   -0.0006
##    380        0.1228             nan     0.1000   -0.0002
##    400        0.1120             nan     0.1000   -0.0005
##    420        0.1042             nan     0.1000   -0.0001
##    440        0.0964             nan     0.1000   -0.0003
##    460        0.0893             nan     0.1000   -0.0002
##    480        0.0827             nan     0.1000   -0.0002
##    500        0.0765             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2454             nan     0.1000    0.0347
##      2        1.1713             nan     0.1000    0.0313
##      3        1.1073             nan     0.1000    0.0284
##      4        1.0583             nan     0.1000    0.0204
##      5        1.0134             nan     0.1000    0.0212
##      6        0.9725             nan     0.1000    0.0164
##      7        0.9323             nan     0.1000    0.0148
##      8        0.9010             nan     0.1000    0.0123
##      9        0.8787             nan     0.1000    0.0079
##     10        0.8512             nan     0.1000    0.0116
##     20        0.6942             nan     0.1000    0.0013
##     40        0.5527             nan     0.1000   -0.0007
##     60        0.4664             nan     0.1000   -0.0006
##     80        0.4005             nan     0.1000   -0.0009
##    100        0.3431             nan     0.1000   -0.0006
##    120        0.2980             nan     0.1000   -0.0004
##    140        0.2612             nan     0.1000   -0.0003
##    160        0.2255             nan     0.1000   -0.0005
##    180        0.1944             nan     0.1000   -0.0000
##    200        0.1749             nan     0.1000   -0.0004
##    220        0.1534             nan     0.1000   -0.0003
##    240        0.1378             nan     0.1000   -0.0004
##    260        0.1232             nan     0.1000    0.0000
##    280        0.1097             nan     0.1000   -0.0004
##    300        0.0981             nan     0.1000   -0.0000
##    320        0.0868             nan     0.1000   -0.0002
##    340        0.0785             nan     0.1000   -0.0001
##    360        0.0709             nan     0.1000   -0.0003
##    380        0.0639             nan     0.1000    0.0001
##    400        0.0575             nan     0.1000   -0.0001
##    420        0.0520             nan     0.1000   -0.0000
##    440        0.0474             nan     0.1000   -0.0002
##    460        0.0431             nan     0.1000   -0.0001
##    480        0.0388             nan     0.1000   -0.0000
##    500        0.0352             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2328             nan     0.1000    0.0392
##      2        1.1640             nan     0.1000    0.0307
##      3        1.1044             nan     0.1000    0.0261
##      4        1.0514             nan     0.1000    0.0199
##      5        1.0102             nan     0.1000    0.0172
##      6        0.9706             nan     0.1000    0.0160
##      7        0.9341             nan     0.1000    0.0132
##      8        0.9041             nan     0.1000    0.0112
##      9        0.8800             nan     0.1000    0.0074
##     10        0.8523             nan     0.1000    0.0096
##     20        0.7001             nan     0.1000   -0.0002
##     40        0.5680             nan     0.1000   -0.0004
##     60        0.4821             nan     0.1000   -0.0006
##     80        0.4125             nan     0.1000    0.0000
##    100        0.3632             nan     0.1000   -0.0020
##    120        0.3103             nan     0.1000   -0.0012
##    140        0.2709             nan     0.1000   -0.0010
##    160        0.2377             nan     0.1000   -0.0003
##    180        0.2124             nan     0.1000   -0.0006
##    200        0.1879             nan     0.1000   -0.0008
##    220        0.1675             nan     0.1000   -0.0009
##    240        0.1494             nan     0.1000    0.0004
##    260        0.1342             nan     0.1000    0.0000
##    280        0.1200             nan     0.1000   -0.0003
##    300        0.1083             nan     0.1000   -0.0001
##    320        0.0972             nan     0.1000   -0.0000
##    340        0.0877             nan     0.1000   -0.0004
##    360        0.0793             nan     0.1000   -0.0004
##    380        0.0727             nan     0.1000   -0.0003
##    400        0.0658             nan     0.1000   -0.0002
##    420        0.0591             nan     0.1000   -0.0002
##    440        0.0535             nan     0.1000   -0.0004
##    460        0.0484             nan     0.1000   -0.0002
##    480        0.0435             nan     0.1000   -0.0001
##    500        0.0396             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2410             nan     0.1000    0.0358
##      2        1.1691             nan     0.1000    0.0323
##      3        1.1078             nan     0.1000    0.0267
##      4        1.0599             nan     0.1000    0.0206
##      5        1.0139             nan     0.1000    0.0183
##      6        0.9787             nan     0.1000    0.0150
##      7        0.9422             nan     0.1000    0.0150
##      8        0.9113             nan     0.1000    0.0121
##      9        0.8846             nan     0.1000    0.0102
##     10        0.8629             nan     0.1000    0.0078
##     20        0.6984             nan     0.1000    0.0036
##     40        0.5699             nan     0.1000   -0.0006
##     60        0.4856             nan     0.1000   -0.0012
##     80        0.4209             nan     0.1000    0.0001
##    100        0.3607             nan     0.1000   -0.0007
##    120        0.3156             nan     0.1000   -0.0006
##    140        0.2791             nan     0.1000   -0.0016
##    160        0.2484             nan     0.1000   -0.0011
##    180        0.2217             nan     0.1000   -0.0003
##    200        0.1986             nan     0.1000   -0.0007
##    220        0.1777             nan     0.1000   -0.0006
##    240        0.1617             nan     0.1000   -0.0008
##    260        0.1441             nan     0.1000   -0.0007
##    280        0.1309             nan     0.1000   -0.0006
##    300        0.1177             nan     0.1000   -0.0005
##    320        0.1063             nan     0.1000   -0.0005
##    340        0.0960             nan     0.1000   -0.0002
##    360        0.0864             nan     0.1000   -0.0005
##    380        0.0776             nan     0.1000   -0.0003
##    400        0.0701             nan     0.1000   -0.0002
##    420        0.0638             nan     0.1000   -0.0001
##    440        0.0573             nan     0.1000   -0.0002
##    460        0.0519             nan     0.1000   -0.0002
##    480        0.0475             nan     0.1000   -0.0001
##    500        0.0437             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2403             nan     0.1000    0.0366
##      2        1.1655             nan     0.1000    0.0330
##      3        1.1021             nan     0.1000    0.0267
##      4        1.0474             nan     0.1000    0.0234
##      5        0.9965             nan     0.1000    0.0231
##      6        0.9579             nan     0.1000    0.0146
##      7        0.9177             nan     0.1000    0.0150
##      8        0.8867             nan     0.1000    0.0127
##      9        0.8587             nan     0.1000    0.0101
##     10        0.8339             nan     0.1000    0.0082
##     20        0.6723             nan     0.1000    0.0021
##     40        0.5220             nan     0.1000   -0.0007
##     60        0.4266             nan     0.1000   -0.0009
##     80        0.3494             nan     0.1000   -0.0001
##    100        0.2914             nan     0.1000    0.0000
##    120        0.2527             nan     0.1000   -0.0008
##    140        0.2162             nan     0.1000   -0.0002
##    160        0.1831             nan     0.1000   -0.0011
##    180        0.1571             nan     0.1000   -0.0002
##    200        0.1345             nan     0.1000   -0.0003
##    220        0.1177             nan     0.1000   -0.0002
##    240        0.1031             nan     0.1000   -0.0002
##    260        0.0911             nan     0.1000   -0.0003
##    280        0.0804             nan     0.1000   -0.0003
##    300        0.0707             nan     0.1000   -0.0003
##    320        0.0628             nan     0.1000   -0.0003
##    340        0.0554             nan     0.1000   -0.0001
##    360        0.0483             nan     0.1000   -0.0000
##    380        0.0430             nan     0.1000   -0.0001
##    400        0.0378             nan     0.1000   -0.0001
##    420        0.0333             nan     0.1000    0.0000
##    440        0.0297             nan     0.1000   -0.0000
##    460        0.0263             nan     0.1000   -0.0001
##    480        0.0235             nan     0.1000   -0.0001
##    500        0.0212             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2443             nan     0.1000    0.0289
##      2        1.1741             nan     0.1000    0.0333
##      3        1.1095             nan     0.1000    0.0260
##      4        1.0509             nan     0.1000    0.0235
##      5        1.0031             nan     0.1000    0.0224
##      6        0.9671             nan     0.1000    0.0128
##      7        0.9309             nan     0.1000    0.0158
##      8        0.8939             nan     0.1000    0.0125
##      9        0.8638             nan     0.1000    0.0122
##     10        0.8381             nan     0.1000    0.0093
##     20        0.6806             nan     0.1000    0.0003
##     40        0.5296             nan     0.1000    0.0010
##     60        0.4321             nan     0.1000   -0.0001
##     80        0.3567             nan     0.1000   -0.0016
##    100        0.2999             nan     0.1000   -0.0005
##    120        0.2545             nan     0.1000   -0.0006
##    140        0.2169             nan     0.1000   -0.0000
##    160        0.1899             nan     0.1000   -0.0008
##    180        0.1628             nan     0.1000   -0.0010
##    200        0.1415             nan     0.1000   -0.0005
##    220        0.1219             nan     0.1000   -0.0005
##    240        0.1071             nan     0.1000   -0.0004
##    260        0.0942             nan     0.1000   -0.0002
##    280        0.0833             nan     0.1000   -0.0000
##    300        0.0731             nan     0.1000   -0.0002
##    320        0.0645             nan     0.1000   -0.0001
##    340        0.0567             nan     0.1000   -0.0001
##    360        0.0495             nan     0.1000   -0.0001
##    380        0.0440             nan     0.1000   -0.0001
##    400        0.0391             nan     0.1000   -0.0001
##    420        0.0348             nan     0.1000   -0.0000
##    440        0.0307             nan     0.1000   -0.0001
##    460        0.0274             nan     0.1000   -0.0001
##    480        0.0240             nan     0.1000   -0.0000
##    500        0.0214             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2320             nan     0.1000    0.0440
##      2        1.1611             nan     0.1000    0.0352
##      3        1.1037             nan     0.1000    0.0267
##      4        1.0492             nan     0.1000    0.0222
##      5        1.0054             nan     0.1000    0.0198
##      6        0.9642             nan     0.1000    0.0188
##      7        0.9279             nan     0.1000    0.0130
##      8        0.8977             nan     0.1000    0.0122
##      9        0.8698             nan     0.1000    0.0108
##     10        0.8452             nan     0.1000    0.0074
##     20        0.6984             nan     0.1000   -0.0003
##     40        0.5521             nan     0.1000   -0.0012
##     60        0.4518             nan     0.1000   -0.0015
##     80        0.3766             nan     0.1000   -0.0012
##    100        0.3219             nan     0.1000   -0.0004
##    120        0.2728             nan     0.1000   -0.0005
##    140        0.2308             nan     0.1000   -0.0015
##    160        0.1986             nan     0.1000   -0.0004
##    180        0.1731             nan     0.1000   -0.0005
##    200        0.1534             nan     0.1000   -0.0004
##    220        0.1331             nan     0.1000   -0.0003
##    240        0.1175             nan     0.1000   -0.0001
##    260        0.1049             nan     0.1000   -0.0006
##    280        0.0923             nan     0.1000   -0.0001
##    300        0.0820             nan     0.1000   -0.0004
##    320        0.0738             nan     0.1000   -0.0002
##    340        0.0664             nan     0.1000   -0.0002
##    360        0.0585             nan     0.1000   -0.0002
##    380        0.0524             nan     0.1000   -0.0003
##    400        0.0461             nan     0.1000   -0.0000
##    420        0.0408             nan     0.1000   -0.0002
##    440        0.0359             nan     0.1000   -0.0001
##    460        0.0323             nan     0.1000   -0.0000
##    480        0.0292             nan     0.1000   -0.0001
##    500        0.0264             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0003
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2867             nan     0.0010    0.0004
##     60        1.2704             nan     0.0010    0.0004
##     80        1.2549             nan     0.0010    0.0002
##    100        1.2394             nan     0.0010    0.0004
##    120        1.2245             nan     0.0010    0.0003
##    140        1.2102             nan     0.0010    0.0003
##    160        1.1963             nan     0.0010    0.0003
##    180        1.1832             nan     0.0010    0.0003
##    200        1.1704             nan     0.0010    0.0003
##    220        1.1577             nan     0.0010    0.0002
##    240        1.1456             nan     0.0010    0.0003
##    260        1.1340             nan     0.0010    0.0003
##    280        1.1222             nan     0.0010    0.0002
##    300        1.1110             nan     0.0010    0.0002
##    320        1.1005             nan     0.0010    0.0002
##    340        1.0896             nan     0.0010    0.0002
##    360        1.0793             nan     0.0010    0.0002
##    380        1.0692             nan     0.0010    0.0003
##    400        1.0593             nan     0.0010    0.0002
##    420        1.0497             nan     0.0010    0.0002
##    440        1.0407             nan     0.0010    0.0002
##    460        1.0318             nan     0.0010    0.0002
##    480        1.0231             nan     0.0010    0.0002
##    500        1.0149             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0005
##      3        1.3179             nan     0.0010    0.0005
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3134             nan     0.0010    0.0004
##      9        1.3125             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0004
##     40        1.2862             nan     0.0010    0.0004
##     60        1.2695             nan     0.0010    0.0004
##     80        1.2537             nan     0.0010    0.0003
##    100        1.2386             nan     0.0010    0.0004
##    120        1.2236             nan     0.0010    0.0003
##    140        1.2095             nan     0.0010    0.0003
##    160        1.1959             nan     0.0010    0.0003
##    180        1.1827             nan     0.0010    0.0003
##    200        1.1700             nan     0.0010    0.0003
##    220        1.1577             nan     0.0010    0.0003
##    240        1.1455             nan     0.0010    0.0003
##    260        1.1338             nan     0.0010    0.0002
##    280        1.1224             nan     0.0010    0.0003
##    300        1.1113             nan     0.0010    0.0002
##    320        1.1005             nan     0.0010    0.0002
##    340        1.0901             nan     0.0010    0.0002
##    360        1.0800             nan     0.0010    0.0002
##    380        1.0701             nan     0.0010    0.0002
##    400        1.0604             nan     0.0010    0.0002
##    420        1.0512             nan     0.0010    0.0002
##    440        1.0421             nan     0.0010    0.0002
##    460        1.0332             nan     0.0010    0.0002
##    480        1.0244             nan     0.0010    0.0002
##    500        1.0158             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0005
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2863             nan     0.0010    0.0004
##     60        1.2705             nan     0.0010    0.0003
##     80        1.2548             nan     0.0010    0.0003
##    100        1.2398             nan     0.0010    0.0003
##    120        1.2252             nan     0.0010    0.0003
##    140        1.2110             nan     0.0010    0.0003
##    160        1.1974             nan     0.0010    0.0003
##    180        1.1840             nan     0.0010    0.0003
##    200        1.1710             nan     0.0010    0.0003
##    220        1.1585             nan     0.0010    0.0002
##    240        1.1464             nan     0.0010    0.0002
##    260        1.1348             nan     0.0010    0.0003
##    280        1.1235             nan     0.0010    0.0002
##    300        1.1125             nan     0.0010    0.0003
##    320        1.1016             nan     0.0010    0.0002
##    340        1.0914             nan     0.0010    0.0002
##    360        1.0815             nan     0.0010    0.0002
##    380        1.0714             nan     0.0010    0.0002
##    400        1.0620             nan     0.0010    0.0002
##    420        1.0530             nan     0.0010    0.0002
##    440        1.0439             nan     0.0010    0.0002
##    460        1.0350             nan     0.0010    0.0002
##    480        1.0265             nan     0.0010    0.0002
##    500        1.0183             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0005
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0005
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0005
##      6        1.3150             nan     0.0010    0.0004
##      7        1.3141             nan     0.0010    0.0004
##      8        1.3131             nan     0.0010    0.0005
##      9        1.3122             nan     0.0010    0.0004
##     10        1.3112             nan     0.0010    0.0004
##     20        1.3019             nan     0.0010    0.0004
##     40        1.2842             nan     0.0010    0.0004
##     60        1.2670             nan     0.0010    0.0004
##     80        1.2506             nan     0.0010    0.0004
##    100        1.2347             nan     0.0010    0.0004
##    120        1.2189             nan     0.0010    0.0004
##    140        1.2039             nan     0.0010    0.0003
##    160        1.1898             nan     0.0010    0.0004
##    180        1.1754             nan     0.0010    0.0003
##    200        1.1618             nan     0.0010    0.0003
##    220        1.1482             nan     0.0010    0.0003
##    240        1.1354             nan     0.0010    0.0002
##    260        1.1230             nan     0.0010    0.0003
##    280        1.1108             nan     0.0010    0.0003
##    300        1.0990             nan     0.0010    0.0003
##    320        1.0874             nan     0.0010    0.0002
##    340        1.0762             nan     0.0010    0.0003
##    360        1.0653             nan     0.0010    0.0002
##    380        1.0551             nan     0.0010    0.0002
##    400        1.0448             nan     0.0010    0.0002
##    420        1.0346             nan     0.0010    0.0002
##    440        1.0251             nan     0.0010    0.0002
##    460        1.0158             nan     0.0010    0.0002
##    480        1.0067             nan     0.0010    0.0002
##    500        0.9977             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3196             nan     0.0010    0.0004
##      2        1.3186             nan     0.0010    0.0004
##      3        1.3176             nan     0.0010    0.0004
##      4        1.3167             nan     0.0010    0.0004
##      5        1.3157             nan     0.0010    0.0004
##      6        1.3148             nan     0.0010    0.0004
##      7        1.3139             nan     0.0010    0.0004
##      8        1.3129             nan     0.0010    0.0004
##      9        1.3119             nan     0.0010    0.0004
##     10        1.3111             nan     0.0010    0.0004
##     20        1.3019             nan     0.0010    0.0004
##     40        1.2837             nan     0.0010    0.0004
##     60        1.2669             nan     0.0010    0.0004
##     80        1.2504             nan     0.0010    0.0004
##    100        1.2342             nan     0.0010    0.0004
##    120        1.2189             nan     0.0010    0.0004
##    140        1.2034             nan     0.0010    0.0003
##    160        1.1888             nan     0.0010    0.0003
##    180        1.1747             nan     0.0010    0.0003
##    200        1.1615             nan     0.0010    0.0003
##    220        1.1482             nan     0.0010    0.0003
##    240        1.1352             nan     0.0010    0.0003
##    260        1.1228             nan     0.0010    0.0002
##    280        1.1106             nan     0.0010    0.0002
##    300        1.0988             nan     0.0010    0.0003
##    320        1.0875             nan     0.0010    0.0003
##    340        1.0763             nan     0.0010    0.0002
##    360        1.0658             nan     0.0010    0.0002
##    380        1.0552             nan     0.0010    0.0002
##    400        1.0451             nan     0.0010    0.0002
##    420        1.0354             nan     0.0010    0.0002
##    440        1.0258             nan     0.0010    0.0002
##    460        1.0162             nan     0.0010    0.0002
##    480        1.0070             nan     0.0010    0.0002
##    500        0.9978             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0005
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3151             nan     0.0010    0.0004
##      7        1.3141             nan     0.0010    0.0004
##      8        1.3133             nan     0.0010    0.0004
##      9        1.3124             nan     0.0010    0.0005
##     10        1.3114             nan     0.0010    0.0005
##     20        1.3023             nan     0.0010    0.0004
##     40        1.2850             nan     0.0010    0.0004
##     60        1.2677             nan     0.0010    0.0004
##     80        1.2514             nan     0.0010    0.0004
##    100        1.2359             nan     0.0010    0.0003
##    120        1.2205             nan     0.0010    0.0003
##    140        1.2055             nan     0.0010    0.0003
##    160        1.1912             nan     0.0010    0.0003
##    180        1.1772             nan     0.0010    0.0003
##    200        1.1637             nan     0.0010    0.0003
##    220        1.1506             nan     0.0010    0.0003
##    240        1.1377             nan     0.0010    0.0003
##    260        1.1251             nan     0.0010    0.0003
##    280        1.1133             nan     0.0010    0.0003
##    300        1.1016             nan     0.0010    0.0002
##    320        1.0902             nan     0.0010    0.0003
##    340        1.0794             nan     0.0010    0.0002
##    360        1.0687             nan     0.0010    0.0002
##    380        1.0585             nan     0.0010    0.0002
##    400        1.0484             nan     0.0010    0.0002
##    420        1.0385             nan     0.0010    0.0002
##    440        1.0290             nan     0.0010    0.0002
##    460        1.0196             nan     0.0010    0.0002
##    480        1.0107             nan     0.0010    0.0002
##    500        1.0019             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0005
##      3        1.3177             nan     0.0010    0.0004
##      4        1.3167             nan     0.0010    0.0005
##      5        1.3156             nan     0.0010    0.0005
##      6        1.3147             nan     0.0010    0.0004
##      7        1.3138             nan     0.0010    0.0004
##      8        1.3129             nan     0.0010    0.0005
##      9        1.3120             nan     0.0010    0.0004
##     10        1.3111             nan     0.0010    0.0004
##     20        1.3015             nan     0.0010    0.0004
##     40        1.2827             nan     0.0010    0.0004
##     60        1.2646             nan     0.0010    0.0004
##     80        1.2470             nan     0.0010    0.0004
##    100        1.2300             nan     0.0010    0.0004
##    120        1.2137             nan     0.0010    0.0004
##    140        1.1982             nan     0.0010    0.0003
##    160        1.1831             nan     0.0010    0.0004
##    180        1.1683             nan     0.0010    0.0003
##    200        1.1541             nan     0.0010    0.0003
##    220        1.1405             nan     0.0010    0.0003
##    240        1.1271             nan     0.0010    0.0003
##    260        1.1142             nan     0.0010    0.0003
##    280        1.1015             nan     0.0010    0.0002
##    300        1.0895             nan     0.0010    0.0002
##    320        1.0776             nan     0.0010    0.0003
##    340        1.0661             nan     0.0010    0.0002
##    360        1.0550             nan     0.0010    0.0002
##    380        1.0437             nan     0.0010    0.0002
##    400        1.0330             nan     0.0010    0.0002
##    420        1.0226             nan     0.0010    0.0002
##    440        1.0125             nan     0.0010    0.0002
##    460        1.0027             nan     0.0010    0.0002
##    480        0.9930             nan     0.0010    0.0002
##    500        0.9837             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3187             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0005
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3159             nan     0.0010    0.0005
##      6        1.3149             nan     0.0010    0.0005
##      7        1.3140             nan     0.0010    0.0004
##      8        1.3130             nan     0.0010    0.0004
##      9        1.3122             nan     0.0010    0.0004
##     10        1.3112             nan     0.0010    0.0004
##     20        1.3015             nan     0.0010    0.0004
##     40        1.2830             nan     0.0010    0.0004
##     60        1.2652             nan     0.0010    0.0004
##     80        1.2478             nan     0.0010    0.0004
##    100        1.2312             nan     0.0010    0.0004
##    120        1.2151             nan     0.0010    0.0003
##    140        1.1998             nan     0.0010    0.0003
##    160        1.1848             nan     0.0010    0.0004
##    180        1.1703             nan     0.0010    0.0003
##    200        1.1563             nan     0.0010    0.0003
##    220        1.1426             nan     0.0010    0.0003
##    240        1.1293             nan     0.0010    0.0003
##    260        1.1162             nan     0.0010    0.0003
##    280        1.1036             nan     0.0010    0.0003
##    300        1.0913             nan     0.0010    0.0003
##    320        1.0798             nan     0.0010    0.0003
##    340        1.0683             nan     0.0010    0.0002
##    360        1.0572             nan     0.0010    0.0003
##    380        1.0461             nan     0.0010    0.0002
##    400        1.0355             nan     0.0010    0.0002
##    420        1.0252             nan     0.0010    0.0002
##    440        1.0152             nan     0.0010    0.0002
##    460        1.0056             nan     0.0010    0.0002
##    480        0.9961             nan     0.0010    0.0002
##    500        0.9866             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0005
##      2        1.3187             nan     0.0010    0.0004
##      3        1.3178             nan     0.0010    0.0004
##      4        1.3168             nan     0.0010    0.0005
##      5        1.3159             nan     0.0010    0.0005
##      6        1.3149             nan     0.0010    0.0004
##      7        1.3139             nan     0.0010    0.0005
##      8        1.3129             nan     0.0010    0.0004
##      9        1.3120             nan     0.0010    0.0004
##     10        1.3110             nan     0.0010    0.0004
##     20        1.3017             nan     0.0010    0.0004
##     40        1.2837             nan     0.0010    0.0005
##     60        1.2661             nan     0.0010    0.0004
##     80        1.2489             nan     0.0010    0.0003
##    100        1.2325             nan     0.0010    0.0004
##    120        1.2167             nan     0.0010    0.0003
##    140        1.2015             nan     0.0010    0.0003
##    160        1.1866             nan     0.0010    0.0003
##    180        1.1723             nan     0.0010    0.0003
##    200        1.1583             nan     0.0010    0.0003
##    220        1.1448             nan     0.0010    0.0003
##    240        1.1318             nan     0.0010    0.0003
##    260        1.1191             nan     0.0010    0.0003
##    280        1.1067             nan     0.0010    0.0002
##    300        1.0945             nan     0.0010    0.0003
##    320        1.0830             nan     0.0010    0.0002
##    340        1.0715             nan     0.0010    0.0003
##    360        1.0605             nan     0.0010    0.0002
##    380        1.0497             nan     0.0010    0.0002
##    400        1.0392             nan     0.0010    0.0002
##    420        1.0290             nan     0.0010    0.0002
##    440        1.0192             nan     0.0010    0.0002
##    460        1.0099             nan     0.0010    0.0002
##    480        1.0005             nan     0.0010    0.0002
##    500        0.9913             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3110             nan     0.0100    0.0041
##      2        1.3017             nan     0.0100    0.0041
##      3        1.2933             nan     0.0100    0.0040
##      4        1.2844             nan     0.0100    0.0043
##      5        1.2765             nan     0.0100    0.0032
##      6        1.2675             nan     0.0100    0.0038
##      7        1.2606             nan     0.0100    0.0034
##      8        1.2536             nan     0.0100    0.0028
##      9        1.2465             nan     0.0100    0.0033
##     10        1.2395             nan     0.0100    0.0031
##     20        1.1687             nan     0.0100    0.0030
##     40        1.0613             nan     0.0100    0.0022
##     60        0.9758             nan     0.0100    0.0015
##     80        0.9116             nan     0.0100    0.0011
##    100        0.8591             nan     0.0100    0.0009
##    120        0.8164             nan     0.0100    0.0008
##    140        0.7823             nan     0.0100    0.0003
##    160        0.7524             nan     0.0100    0.0004
##    180        0.7274             nan     0.0100    0.0003
##    200        0.7041             nan     0.0100    0.0002
##    220        0.6844             nan     0.0100    0.0002
##    240        0.6666             nan     0.0100    0.0002
##    260        0.6513             nan     0.0100    0.0001
##    280        0.6366             nan     0.0100   -0.0001
##    300        0.6224             nan     0.0100    0.0001
##    320        0.6100             nan     0.0100    0.0000
##    340        0.5968             nan     0.0100    0.0002
##    360        0.5860             nan     0.0100    0.0000
##    380        0.5753             nan     0.0100    0.0002
##    400        0.5649             nan     0.0100   -0.0001
##    420        0.5543             nan     0.0100    0.0001
##    440        0.5455             nan     0.0100    0.0000
##    460        0.5374             nan     0.0100    0.0000
##    480        0.5288             nan     0.0100   -0.0001
##    500        0.5209             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0041
##      2        1.3036             nan     0.0100    0.0039
##      3        1.2956             nan     0.0100    0.0035
##      4        1.2872             nan     0.0100    0.0042
##      5        1.2796             nan     0.0100    0.0033
##      6        1.2706             nan     0.0100    0.0043
##      7        1.2623             nan     0.0100    0.0040
##      8        1.2542             nan     0.0100    0.0038
##      9        1.2468             nan     0.0100    0.0033
##     10        1.2402             nan     0.0100    0.0029
##     20        1.1726             nan     0.0100    0.0027
##     40        1.0637             nan     0.0100    0.0020
##     60        0.9799             nan     0.0100    0.0016
##     80        0.9118             nan     0.0100    0.0011
##    100        0.8572             nan     0.0100    0.0009
##    120        0.8143             nan     0.0100    0.0007
##    140        0.7795             nan     0.0100    0.0004
##    160        0.7498             nan     0.0100    0.0003
##    180        0.7246             nan     0.0100    0.0004
##    200        0.7048             nan     0.0100    0.0002
##    220        0.6851             nan     0.0100    0.0001
##    240        0.6675             nan     0.0100    0.0002
##    260        0.6525             nan     0.0100    0.0001
##    280        0.6383             nan     0.0100    0.0000
##    300        0.6254             nan     0.0100   -0.0000
##    320        0.6128             nan     0.0100   -0.0000
##    340        0.6021             nan     0.0100    0.0001
##    360        0.5920             nan     0.0100    0.0001
##    380        0.5817             nan     0.0100   -0.0001
##    400        0.5712             nan     0.0100    0.0000
##    420        0.5620             nan     0.0100    0.0001
##    440        0.5531             nan     0.0100   -0.0002
##    460        0.5450             nan     0.0100   -0.0001
##    480        0.5367             nan     0.0100   -0.0002
##    500        0.5295             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0041
##      2        1.3024             nan     0.0100    0.0041
##      3        1.2944             nan     0.0100    0.0040
##      4        1.2859             nan     0.0100    0.0039
##      5        1.2781             nan     0.0100    0.0037
##      6        1.2705             nan     0.0100    0.0035
##      7        1.2629             nan     0.0100    0.0034
##      8        1.2553             nan     0.0100    0.0039
##      9        1.2472             nan     0.0100    0.0036
##     10        1.2395             nan     0.0100    0.0037
##     20        1.1707             nan     0.0100    0.0026
##     40        1.0607             nan     0.0100    0.0018
##     60        0.9794             nan     0.0100    0.0014
##     80        0.9123             nan     0.0100    0.0011
##    100        0.8599             nan     0.0100    0.0008
##    120        0.8173             nan     0.0100    0.0004
##    140        0.7842             nan     0.0100    0.0004
##    160        0.7543             nan     0.0100    0.0004
##    180        0.7297             nan     0.0100    0.0002
##    200        0.7078             nan     0.0100    0.0002
##    220        0.6898             nan     0.0100    0.0002
##    240        0.6735             nan     0.0100    0.0003
##    260        0.6591             nan     0.0100    0.0001
##    280        0.6457             nan     0.0100    0.0001
##    300        0.6333             nan     0.0100    0.0000
##    320        0.6219             nan     0.0100    0.0001
##    340        0.6108             nan     0.0100    0.0000
##    360        0.6007             nan     0.0100    0.0001
##    380        0.5908             nan     0.0100    0.0000
##    400        0.5809             nan     0.0100   -0.0000
##    420        0.5717             nan     0.0100    0.0000
##    440        0.5631             nan     0.0100   -0.0000
##    460        0.5553             nan     0.0100    0.0000
##    480        0.5470             nan     0.0100   -0.0000
##    500        0.5395             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0038
##      2        1.3033             nan     0.0100    0.0043
##      3        1.2935             nan     0.0100    0.0044
##      4        1.2838             nan     0.0100    0.0042
##      5        1.2760             nan     0.0100    0.0036
##      6        1.2670             nan     0.0100    0.0039
##      7        1.2579             nan     0.0100    0.0037
##      8        1.2495             nan     0.0100    0.0037
##      9        1.2411             nan     0.0100    0.0038
##     10        1.2335             nan     0.0100    0.0033
##     20        1.1602             nan     0.0100    0.0034
##     40        1.0433             nan     0.0100    0.0023
##     60        0.9563             nan     0.0100    0.0012
##     80        0.8846             nan     0.0100    0.0010
##    100        0.8296             nan     0.0100    0.0013
##    120        0.7852             nan     0.0100    0.0008
##    140        0.7483             nan     0.0100    0.0002
##    160        0.7176             nan     0.0100    0.0005
##    180        0.6923             nan     0.0100    0.0003
##    200        0.6686             nan     0.0100    0.0001
##    220        0.6464             nan     0.0100    0.0002
##    240        0.6275             nan     0.0100    0.0002
##    260        0.6100             nan     0.0100    0.0001
##    280        0.5932             nan     0.0100    0.0001
##    300        0.5790             nan     0.0100   -0.0001
##    320        0.5644             nan     0.0100    0.0001
##    340        0.5521             nan     0.0100   -0.0002
##    360        0.5398             nan     0.0100    0.0001
##    380        0.5283             nan     0.0100   -0.0001
##    400        0.5157             nan     0.0100   -0.0000
##    420        0.5050             nan     0.0100   -0.0001
##    440        0.4955             nan     0.0100    0.0001
##    460        0.4855             nan     0.0100   -0.0001
##    480        0.4762             nan     0.0100   -0.0001
##    500        0.4674             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3108             nan     0.0100    0.0044
##      2        1.3018             nan     0.0100    0.0036
##      3        1.2922             nan     0.0100    0.0042
##      4        1.2833             nan     0.0100    0.0037
##      5        1.2753             nan     0.0100    0.0036
##      6        1.2670             nan     0.0100    0.0037
##      7        1.2592             nan     0.0100    0.0033
##      8        1.2509             nan     0.0100    0.0039
##      9        1.2421             nan     0.0100    0.0039
##     10        1.2335             nan     0.0100    0.0035
##     20        1.1636             nan     0.0100    0.0028
##     40        1.0487             nan     0.0100    0.0020
##     60        0.9613             nan     0.0100    0.0013
##     80        0.8921             nan     0.0100    0.0012
##    100        0.8384             nan     0.0100    0.0009
##    120        0.7937             nan     0.0100    0.0009
##    140        0.7561             nan     0.0100    0.0003
##    160        0.7239             nan     0.0100    0.0003
##    180        0.6975             nan     0.0100    0.0003
##    200        0.6738             nan     0.0100    0.0001
##    220        0.6537             nan     0.0100    0.0001
##    240        0.6342             nan     0.0100    0.0001
##    260        0.6168             nan     0.0100   -0.0001
##    280        0.6011             nan     0.0100    0.0000
##    300        0.5866             nan     0.0100    0.0001
##    320        0.5737             nan     0.0100    0.0001
##    340        0.5608             nan     0.0100    0.0000
##    360        0.5479             nan     0.0100   -0.0001
##    380        0.5372             nan     0.0100   -0.0000
##    400        0.5268             nan     0.0100   -0.0000
##    420        0.5161             nan     0.0100   -0.0000
##    440        0.5071             nan     0.0100   -0.0001
##    460        0.4969             nan     0.0100    0.0000
##    480        0.4882             nan     0.0100   -0.0001
##    500        0.4797             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3115             nan     0.0100    0.0038
##      2        1.3021             nan     0.0100    0.0043
##      3        1.2928             nan     0.0100    0.0043
##      4        1.2840             nan     0.0100    0.0042
##      5        1.2750             nan     0.0100    0.0038
##      6        1.2663             nan     0.0100    0.0041
##      7        1.2581             nan     0.0100    0.0033
##      8        1.2507             nan     0.0100    0.0033
##      9        1.2424             nan     0.0100    0.0037
##     10        1.2342             nan     0.0100    0.0039
##     20        1.1608             nan     0.0100    0.0030
##     40        1.0475             nan     0.0100    0.0020
##     60        0.9612             nan     0.0100    0.0017
##     80        0.8909             nan     0.0100    0.0012
##    100        0.8385             nan     0.0100    0.0009
##    120        0.7952             nan     0.0100    0.0006
##    140        0.7591             nan     0.0100    0.0005
##    160        0.7287             nan     0.0100    0.0003
##    180        0.7023             nan     0.0100    0.0002
##    200        0.6796             nan     0.0100    0.0003
##    220        0.6596             nan     0.0100    0.0001
##    240        0.6423             nan     0.0100    0.0000
##    260        0.6261             nan     0.0100    0.0002
##    280        0.6121             nan     0.0100   -0.0000
##    300        0.5978             nan     0.0100   -0.0001
##    320        0.5849             nan     0.0100   -0.0000
##    340        0.5728             nan     0.0100   -0.0000
##    360        0.5617             nan     0.0100    0.0000
##    380        0.5501             nan     0.0100   -0.0001
##    400        0.5392             nan     0.0100    0.0000
##    420        0.5298             nan     0.0100   -0.0001
##    440        0.5206             nan     0.0100   -0.0001
##    460        0.5105             nan     0.0100   -0.0001
##    480        0.5013             nan     0.0100   -0.0000
##    500        0.4925             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3104             nan     0.0100    0.0045
##      2        1.3004             nan     0.0100    0.0046
##      3        1.2911             nan     0.0100    0.0043
##      4        1.2815             nan     0.0100    0.0044
##      5        1.2729             nan     0.0100    0.0039
##      6        1.2644             nan     0.0100    0.0039
##      7        1.2549             nan     0.0100    0.0043
##      8        1.2467             nan     0.0100    0.0037
##      9        1.2377             nan     0.0100    0.0043
##     10        1.2290             nan     0.0100    0.0036
##     20        1.1518             nan     0.0100    0.0032
##     40        1.0306             nan     0.0100    0.0019
##     60        0.9393             nan     0.0100    0.0016
##     80        0.8682             nan     0.0100    0.0011
##    100        0.8121             nan     0.0100    0.0009
##    120        0.7648             nan     0.0100    0.0006
##    140        0.7246             nan     0.0100    0.0005
##    160        0.6926             nan     0.0100    0.0005
##    180        0.6649             nan     0.0100    0.0001
##    200        0.6404             nan     0.0100    0.0003
##    220        0.6172             nan     0.0100   -0.0000
##    240        0.5968             nan     0.0100    0.0001
##    260        0.5779             nan     0.0100    0.0001
##    280        0.5609             nan     0.0100    0.0002
##    300        0.5455             nan     0.0100    0.0001
##    320        0.5309             nan     0.0100   -0.0001
##    340        0.5166             nan     0.0100    0.0000
##    360        0.5037             nan     0.0100    0.0000
##    380        0.4908             nan     0.0100   -0.0002
##    400        0.4788             nan     0.0100   -0.0000
##    420        0.4674             nan     0.0100    0.0001
##    440        0.4563             nan     0.0100   -0.0000
##    460        0.4452             nan     0.0100   -0.0002
##    480        0.4347             nan     0.0100   -0.0001
##    500        0.4254             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3099             nan     0.0100    0.0049
##      2        1.3013             nan     0.0100    0.0040
##      3        1.2926             nan     0.0100    0.0038
##      4        1.2833             nan     0.0100    0.0040
##      5        1.2742             nan     0.0100    0.0043
##      6        1.2655             nan     0.0100    0.0037
##      7        1.2569             nan     0.0100    0.0039
##      8        1.2483             nan     0.0100    0.0040
##      9        1.2400             nan     0.0100    0.0039
##     10        1.2315             nan     0.0100    0.0040
##     20        1.1550             nan     0.0100    0.0033
##     40        1.0333             nan     0.0100    0.0020
##     60        0.9420             nan     0.0100    0.0016
##     80        0.8706             nan     0.0100    0.0013
##    100        0.8122             nan     0.0100    0.0009
##    120        0.7684             nan     0.0100    0.0005
##    140        0.7293             nan     0.0100    0.0006
##    160        0.6964             nan     0.0100    0.0005
##    180        0.6682             nan     0.0100    0.0005
##    200        0.6442             nan     0.0100    0.0000
##    220        0.6227             nan     0.0100    0.0003
##    240        0.6028             nan     0.0100    0.0003
##    260        0.5844             nan     0.0100    0.0001
##    280        0.5685             nan     0.0100   -0.0000
##    300        0.5529             nan     0.0100    0.0001
##    320        0.5386             nan     0.0100    0.0001
##    340        0.5251             nan     0.0100   -0.0000
##    360        0.5119             nan     0.0100   -0.0001
##    380        0.4997             nan     0.0100   -0.0001
##    400        0.4886             nan     0.0100    0.0000
##    420        0.4779             nan     0.0100    0.0001
##    440        0.4672             nan     0.0100   -0.0001
##    460        0.4565             nan     0.0100    0.0000
##    480        0.4466             nan     0.0100    0.0000
##    500        0.4378             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3098             nan     0.0100    0.0046
##      2        1.2997             nan     0.0100    0.0049
##      3        1.2918             nan     0.0100    0.0034
##      4        1.2832             nan     0.0100    0.0039
##      5        1.2732             nan     0.0100    0.0044
##      6        1.2650             nan     0.0100    0.0035
##      7        1.2562             nan     0.0100    0.0041
##      8        1.2479             nan     0.0100    0.0036
##      9        1.2395             nan     0.0100    0.0038
##     10        1.2315             nan     0.0100    0.0035
##     20        1.1594             nan     0.0100    0.0033
##     40        1.0399             nan     0.0100    0.0024
##     60        0.9481             nan     0.0100    0.0017
##     80        0.8771             nan     0.0100    0.0011
##    100        0.8226             nan     0.0100    0.0010
##    120        0.7780             nan     0.0100    0.0007
##    140        0.7403             nan     0.0100    0.0004
##    160        0.7082             nan     0.0100    0.0004
##    180        0.6797             nan     0.0100    0.0004
##    200        0.6568             nan     0.0100    0.0002
##    220        0.6354             nan     0.0100    0.0000
##    240        0.6166             nan     0.0100    0.0001
##    260        0.6004             nan     0.0100   -0.0002
##    280        0.5838             nan     0.0100   -0.0001
##    300        0.5689             nan     0.0100    0.0001
##    320        0.5549             nan     0.0100   -0.0001
##    340        0.5403             nan     0.0100   -0.0000
##    360        0.5278             nan     0.0100    0.0000
##    380        0.5161             nan     0.0100    0.0001
##    400        0.5054             nan     0.0100   -0.0000
##    420        0.4937             nan     0.0100   -0.0002
##    440        0.4825             nan     0.0100   -0.0001
##    460        0.4728             nan     0.0100   -0.0000
##    480        0.4630             nan     0.0100   -0.0001
##    500        0.4529             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2328             nan     0.1000    0.0408
##      2        1.1660             nan     0.1000    0.0300
##      3        1.1001             nan     0.1000    0.0275
##      4        1.0456             nan     0.1000    0.0216
##      5        1.0005             nan     0.1000    0.0166
##      6        0.9660             nan     0.1000    0.0144
##      7        0.9329             nan     0.1000    0.0118
##      8        0.9005             nan     0.1000    0.0144
##      9        0.8763             nan     0.1000    0.0114
##     10        0.8529             nan     0.1000    0.0075
##     20        0.7005             nan     0.1000    0.0036
##     40        0.5721             nan     0.1000   -0.0002
##     60        0.4840             nan     0.1000   -0.0017
##     80        0.4261             nan     0.1000   -0.0008
##    100        0.3813             nan     0.1000   -0.0008
##    120        0.3308             nan     0.1000   -0.0005
##    140        0.2943             nan     0.1000   -0.0002
##    160        0.2635             nan     0.1000   -0.0005
##    180        0.2389             nan     0.1000   -0.0004
##    200        0.2161             nan     0.1000    0.0000
##    220        0.1952             nan     0.1000   -0.0002
##    240        0.1752             nan     0.1000   -0.0004
##    260        0.1591             nan     0.1000   -0.0004
##    280        0.1435             nan     0.1000   -0.0004
##    300        0.1322             nan     0.1000   -0.0006
##    320        0.1218             nan     0.1000   -0.0001
##    340        0.1104             nan     0.1000   -0.0002
##    360        0.1006             nan     0.1000   -0.0001
##    380        0.0921             nan     0.1000   -0.0001
##    400        0.0851             nan     0.1000    0.0000
##    420        0.0790             nan     0.1000   -0.0003
##    440        0.0724             nan     0.1000   -0.0002
##    460        0.0673             nan     0.1000   -0.0003
##    480        0.0619             nan     0.1000   -0.0000
##    500        0.0571             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2348             nan     0.1000    0.0406
##      2        1.1695             nan     0.1000    0.0286
##      3        1.1119             nan     0.1000    0.0244
##      4        1.0572             nan     0.1000    0.0246
##      5        1.0078             nan     0.1000    0.0236
##      6        0.9701             nan     0.1000    0.0157
##      7        0.9364             nan     0.1000    0.0133
##      8        0.9032             nan     0.1000    0.0113
##      9        0.8738             nan     0.1000    0.0100
##     10        0.8444             nan     0.1000    0.0122
##     20        0.7007             nan     0.1000    0.0022
##     40        0.5764             nan     0.1000   -0.0007
##     60        0.4957             nan     0.1000   -0.0014
##     80        0.4310             nan     0.1000   -0.0001
##    100        0.3822             nan     0.1000    0.0003
##    120        0.3372             nan     0.1000   -0.0007
##    140        0.3013             nan     0.1000   -0.0005
##    160        0.2728             nan     0.1000   -0.0006
##    180        0.2486             nan     0.1000   -0.0003
##    200        0.2242             nan     0.1000   -0.0014
##    220        0.2013             nan     0.1000   -0.0008
##    240        0.1806             nan     0.1000   -0.0004
##    260        0.1662             nan     0.1000   -0.0002
##    280        0.1541             nan     0.1000   -0.0006
##    300        0.1406             nan     0.1000   -0.0006
##    320        0.1293             nan     0.1000   -0.0001
##    340        0.1188             nan     0.1000   -0.0003
##    360        0.1099             nan     0.1000   -0.0004
##    380        0.1019             nan     0.1000   -0.0005
##    400        0.0943             nan     0.1000   -0.0002
##    420        0.0867             nan     0.1000   -0.0003
##    440        0.0799             nan     0.1000   -0.0003
##    460        0.0735             nan     0.1000   -0.0002
##    480        0.0688             nan     0.1000   -0.0002
##    500        0.0640             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2353             nan     0.1000    0.0386
##      2        1.1638             nan     0.1000    0.0321
##      3        1.1038             nan     0.1000    0.0252
##      4        1.0540             nan     0.1000    0.0192
##      5        1.0129             nan     0.1000    0.0173
##      6        0.9681             nan     0.1000    0.0189
##      7        0.9338             nan     0.1000    0.0163
##      8        0.9038             nan     0.1000    0.0149
##      9        0.8784             nan     0.1000    0.0092
##     10        0.8547             nan     0.1000    0.0098
##     20        0.7055             nan     0.1000    0.0048
##     40        0.5862             nan     0.1000    0.0001
##     60        0.5104             nan     0.1000   -0.0004
##     80        0.4554             nan     0.1000   -0.0011
##    100        0.4058             nan     0.1000   -0.0002
##    120        0.3648             nan     0.1000   -0.0008
##    140        0.3302             nan     0.1000   -0.0002
##    160        0.2930             nan     0.1000   -0.0007
##    180        0.2653             nan     0.1000   -0.0001
##    200        0.2366             nan     0.1000   -0.0007
##    220        0.2172             nan     0.1000   -0.0008
##    240        0.1992             nan     0.1000   -0.0006
##    260        0.1811             nan     0.1000   -0.0005
##    280        0.1654             nan     0.1000   -0.0003
##    300        0.1522             nan     0.1000   -0.0005
##    320        0.1407             nan     0.1000   -0.0006
##    340        0.1281             nan     0.1000   -0.0002
##    360        0.1175             nan     0.1000   -0.0001
##    380        0.1086             nan     0.1000   -0.0003
##    400        0.0990             nan     0.1000   -0.0002
##    420        0.0919             nan     0.1000   -0.0002
##    440        0.0853             nan     0.1000   -0.0004
##    460        0.0794             nan     0.1000   -0.0002
##    480        0.0731             nan     0.1000   -0.0002
##    500        0.0677             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2358             nan     0.1000    0.0398
##      2        1.1656             nan     0.1000    0.0285
##      3        1.1089             nan     0.1000    0.0229
##      4        1.0461             nan     0.1000    0.0266
##      5        0.9991             nan     0.1000    0.0205
##      6        0.9572             nan     0.1000    0.0159
##      7        0.9212             nan     0.1000    0.0146
##      8        0.8797             nan     0.1000    0.0146
##      9        0.8492             nan     0.1000    0.0101
##     10        0.8277             nan     0.1000    0.0048
##     20        0.6697             nan     0.1000    0.0034
##     40        0.5286             nan     0.1000   -0.0003
##     60        0.4327             nan     0.1000   -0.0005
##     80        0.3633             nan     0.1000    0.0002
##    100        0.3117             nan     0.1000   -0.0005
##    120        0.2727             nan     0.1000   -0.0012
##    140        0.2385             nan     0.1000   -0.0003
##    160        0.2063             nan     0.1000   -0.0007
##    180        0.1782             nan     0.1000   -0.0001
##    200        0.1584             nan     0.1000   -0.0004
##    220        0.1405             nan     0.1000   -0.0004
##    240        0.1263             nan     0.1000   -0.0003
##    260        0.1121             nan     0.1000   -0.0002
##    280        0.0993             nan     0.1000   -0.0005
##    300        0.0888             nan     0.1000   -0.0003
##    320        0.0788             nan     0.1000   -0.0002
##    340        0.0712             nan     0.1000   -0.0002
##    360        0.0641             nan     0.1000   -0.0002
##    380        0.0574             nan     0.1000   -0.0000
##    400        0.0521             nan     0.1000   -0.0001
##    420        0.0469             nan     0.1000   -0.0002
##    440        0.0422             nan     0.1000   -0.0000
##    460        0.0383             nan     0.1000   -0.0001
##    480        0.0348             nan     0.1000   -0.0001
##    500        0.0317             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2315             nan     0.1000    0.0415
##      2        1.1550             nan     0.1000    0.0314
##      3        1.0971             nan     0.1000    0.0223
##      4        1.0462             nan     0.1000    0.0220
##      5        1.0048             nan     0.1000    0.0195
##      6        0.9576             nan     0.1000    0.0204
##      7        0.9168             nan     0.1000    0.0180
##      8        0.8856             nan     0.1000    0.0128
##      9        0.8572             nan     0.1000    0.0129
##     10        0.8286             nan     0.1000    0.0094
##     20        0.6789             nan     0.1000    0.0025
##     40        0.5419             nan     0.1000   -0.0015
##     60        0.4533             nan     0.1000   -0.0012
##     80        0.3828             nan     0.1000   -0.0005
##    100        0.3252             nan     0.1000   -0.0002
##    120        0.2845             nan     0.1000   -0.0001
##    140        0.2459             nan     0.1000   -0.0010
##    160        0.2146             nan     0.1000   -0.0011
##    180        0.1909             nan     0.1000   -0.0009
##    200        0.1687             nan     0.1000   -0.0005
##    220        0.1500             nan     0.1000   -0.0004
##    240        0.1346             nan     0.1000   -0.0005
##    260        0.1189             nan     0.1000   -0.0002
##    280        0.1077             nan     0.1000   -0.0003
##    300        0.0974             nan     0.1000   -0.0002
##    320        0.0885             nan     0.1000   -0.0004
##    340        0.0794             nan     0.1000   -0.0005
##    360        0.0719             nan     0.1000   -0.0004
##    380        0.0644             nan     0.1000   -0.0004
##    400        0.0575             nan     0.1000   -0.0001
##    420        0.0519             nan     0.1000   -0.0001
##    440        0.0470             nan     0.1000   -0.0001
##    460        0.0422             nan     0.1000   -0.0001
##    480        0.0379             nan     0.1000   -0.0002
##    500        0.0346             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2231             nan     0.1000    0.0407
##      2        1.1473             nan     0.1000    0.0323
##      3        1.0870             nan     0.1000    0.0279
##      4        1.0345             nan     0.1000    0.0240
##      5        0.9764             nan     0.1000    0.0220
##      6        0.9393             nan     0.1000    0.0176
##      7        0.9049             nan     0.1000    0.0132
##      8        0.8746             nan     0.1000    0.0113
##      9        0.8463             nan     0.1000    0.0107
##     10        0.8229             nan     0.1000    0.0095
##     20        0.6721             nan     0.1000    0.0024
##     40        0.5339             nan     0.1000   -0.0005
##     60        0.4523             nan     0.1000   -0.0009
##     80        0.3861             nan     0.1000   -0.0019
##    100        0.3333             nan     0.1000   -0.0006
##    120        0.2895             nan     0.1000   -0.0014
##    140        0.2570             nan     0.1000   -0.0011
##    160        0.2229             nan     0.1000   -0.0003
##    180        0.1966             nan     0.1000   -0.0009
##    200        0.1756             nan     0.1000   -0.0007
##    220        0.1562             nan     0.1000   -0.0009
##    240        0.1428             nan     0.1000   -0.0002
##    260        0.1286             nan     0.1000   -0.0004
##    280        0.1168             nan     0.1000   -0.0005
##    300        0.1045             nan     0.1000   -0.0002
##    320        0.0945             nan     0.1000   -0.0001
##    340        0.0852             nan     0.1000   -0.0007
##    360        0.0768             nan     0.1000   -0.0003
##    380        0.0702             nan     0.1000   -0.0004
##    400        0.0634             nan     0.1000   -0.0001
##    420        0.0576             nan     0.1000   -0.0003
##    440        0.0513             nan     0.1000   -0.0003
##    460        0.0460             nan     0.1000   -0.0002
##    480        0.0415             nan     0.1000   -0.0002
##    500        0.0384             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2284             nan     0.1000    0.0422
##      2        1.1509             nan     0.1000    0.0326
##      3        1.0852             nan     0.1000    0.0289
##      4        1.0293             nan     0.1000    0.0255
##      5        0.9766             nan     0.1000    0.0185
##      6        0.9329             nan     0.1000    0.0168
##      7        0.8957             nan     0.1000    0.0168
##      8        0.8626             nan     0.1000    0.0112
##      9        0.8298             nan     0.1000    0.0137
##     10        0.8031             nan     0.1000    0.0104
##     20        0.6397             nan     0.1000    0.0035
##     40        0.4810             nan     0.1000    0.0008
##     60        0.3841             nan     0.1000    0.0007
##     80        0.3177             nan     0.1000   -0.0008
##    100        0.2658             nan     0.1000   -0.0008
##    120        0.2263             nan     0.1000    0.0001
##    140        0.1894             nan     0.1000   -0.0003
##    160        0.1627             nan     0.1000   -0.0004
##    180        0.1388             nan     0.1000    0.0002
##    200        0.1208             nan     0.1000   -0.0004
##    220        0.1042             nan     0.1000    0.0000
##    240        0.0900             nan     0.1000   -0.0002
##    260        0.0788             nan     0.1000   -0.0004
##    280        0.0693             nan     0.1000   -0.0001
##    300        0.0605             nan     0.1000   -0.0002
##    320        0.0537             nan     0.1000   -0.0000
##    340        0.0471             nan     0.1000   -0.0002
##    360        0.0411             nan     0.1000   -0.0001
##    380        0.0362             nan     0.1000    0.0000
##    400        0.0324             nan     0.1000   -0.0001
##    420        0.0285             nan     0.1000   -0.0001
##    440        0.0253             nan     0.1000   -0.0001
##    460        0.0223             nan     0.1000   -0.0001
##    480        0.0199             nan     0.1000   -0.0000
##    500        0.0177             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2286             nan     0.1000    0.0466
##      2        1.1516             nan     0.1000    0.0371
##      3        1.0864             nan     0.1000    0.0264
##      4        1.0274             nan     0.1000    0.0259
##      5        0.9793             nan     0.1000    0.0215
##      6        0.9409             nan     0.1000    0.0128
##      7        0.9052             nan     0.1000    0.0140
##      8        0.8734             nan     0.1000    0.0127
##      9        0.8448             nan     0.1000    0.0109
##     10        0.8176             nan     0.1000    0.0082
##     20        0.6502             nan     0.1000    0.0031
##     40        0.4996             nan     0.1000   -0.0003
##     60        0.4036             nan     0.1000    0.0003
##     80        0.3271             nan     0.1000   -0.0004
##    100        0.2768             nan     0.1000   -0.0008
##    120        0.2322             nan     0.1000   -0.0008
##    140        0.1966             nan     0.1000   -0.0004
##    160        0.1694             nan     0.1000   -0.0003
##    180        0.1465             nan     0.1000   -0.0002
##    200        0.1264             nan     0.1000   -0.0000
##    220        0.1082             nan     0.1000    0.0002
##    240        0.0947             nan     0.1000   -0.0003
##    260        0.0831             nan     0.1000   -0.0004
##    280        0.0738             nan     0.1000   -0.0002
##    300        0.0651             nan     0.1000   -0.0003
##    320        0.0572             nan     0.1000   -0.0004
##    340        0.0504             nan     0.1000   -0.0002
##    360        0.0450             nan     0.1000   -0.0002
##    380        0.0400             nan     0.1000   -0.0003
##    400        0.0350             nan     0.1000   -0.0001
##    420        0.0310             nan     0.1000   -0.0000
##    440        0.0275             nan     0.1000   -0.0001
##    460        0.0245             nan     0.1000   -0.0001
##    480        0.0213             nan     0.1000   -0.0000
##    500        0.0190             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2315             nan     0.1000    0.0422
##      2        1.1601             nan     0.1000    0.0308
##      3        1.0905             nan     0.1000    0.0299
##      4        1.0383             nan     0.1000    0.0242
##      5        0.9904             nan     0.1000    0.0215
##      6        0.9467             nan     0.1000    0.0169
##      7        0.9093             nan     0.1000    0.0144
##      8        0.8721             nan     0.1000    0.0157
##      9        0.8446             nan     0.1000    0.0100
##     10        0.8199             nan     0.1000    0.0082
##     20        0.6573             nan     0.1000    0.0022
##     40        0.5216             nan     0.1000   -0.0001
##     60        0.4237             nan     0.1000   -0.0005
##     80        0.3539             nan     0.1000   -0.0015
##    100        0.2961             nan     0.1000   -0.0008
##    120        0.2528             nan     0.1000   -0.0010
##    140        0.2183             nan     0.1000   -0.0010
##    160        0.1867             nan     0.1000   -0.0004
##    180        0.1595             nan     0.1000   -0.0005
##    200        0.1397             nan     0.1000   -0.0005
##    220        0.1210             nan     0.1000   -0.0003
##    240        0.1063             nan     0.1000   -0.0007
##    260        0.0935             nan     0.1000   -0.0002
##    280        0.0823             nan     0.1000   -0.0005
##    300        0.0718             nan     0.1000   -0.0002
##    320        0.0637             nan     0.1000   -0.0003
##    340        0.0566             nan     0.1000   -0.0002
##    360        0.0503             nan     0.1000   -0.0001
##    380        0.0442             nan     0.1000   -0.0001
##    400        0.0394             nan     0.1000   -0.0002
##    420        0.0351             nan     0.1000   -0.0001
##    440        0.0315             nan     0.1000   -0.0001
##    460        0.0279             nan     0.1000   -0.0001
##    480        0.0248             nan     0.1000   -0.0001
##    500        0.0221             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0003
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0003
##     10        1.3125             nan     0.0010    0.0004
##     20        1.3046             nan     0.0010    0.0003
##     40        1.2891             nan     0.0010    0.0004
##     60        1.2743             nan     0.0010    0.0003
##     80        1.2596             nan     0.0010    0.0003
##    100        1.2455             nan     0.0010    0.0003
##    120        1.2317             nan     0.0010    0.0003
##    140        1.2182             nan     0.0010    0.0003
##    160        1.2055             nan     0.0010    0.0003
##    180        1.1928             nan     0.0010    0.0003
##    200        1.1806             nan     0.0010    0.0002
##    220        1.1684             nan     0.0010    0.0003
##    240        1.1570             nan     0.0010    0.0003
##    260        1.1458             nan     0.0010    0.0002
##    280        1.1353             nan     0.0010    0.0002
##    300        1.1247             nan     0.0010    0.0002
##    320        1.1146             nan     0.0010    0.0002
##    340        1.1045             nan     0.0010    0.0002
##    360        1.0949             nan     0.0010    0.0002
##    380        1.0852             nan     0.0010    0.0002
##    400        1.0760             nan     0.0010    0.0002
##    420        1.0671             nan     0.0010    0.0001
##    440        1.0582             nan     0.0010    0.0002
##    460        1.0495             nan     0.0010    0.0002
##    480        1.0412             nan     0.0010    0.0002
##    500        1.0332             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3199             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3184             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0003
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0003
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3047             nan     0.0010    0.0004
##     40        1.2892             nan     0.0010    0.0003
##     60        1.2741             nan     0.0010    0.0003
##     80        1.2594             nan     0.0010    0.0004
##    100        1.2453             nan     0.0010    0.0003
##    120        1.2314             nan     0.0010    0.0003
##    140        1.2178             nan     0.0010    0.0003
##    160        1.2051             nan     0.0010    0.0003
##    180        1.1926             nan     0.0010    0.0003
##    200        1.1808             nan     0.0010    0.0002
##    220        1.1689             nan     0.0010    0.0002
##    240        1.1578             nan     0.0010    0.0002
##    260        1.1466             nan     0.0010    0.0002
##    280        1.1360             nan     0.0010    0.0002
##    300        1.1253             nan     0.0010    0.0002
##    320        1.1151             nan     0.0010    0.0002
##    340        1.1050             nan     0.0010    0.0002
##    360        1.0953             nan     0.0010    0.0002
##    380        1.0857             nan     0.0010    0.0002
##    400        1.0764             nan     0.0010    0.0002
##    420        1.0676             nan     0.0010    0.0002
##    440        1.0589             nan     0.0010    0.0002
##    460        1.0504             nan     0.0010    0.0002
##    480        1.0424             nan     0.0010    0.0001
##    500        1.0343             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0003
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3127             nan     0.0010    0.0004
##     20        1.3050             nan     0.0010    0.0003
##     40        1.2895             nan     0.0010    0.0004
##     60        1.2741             nan     0.0010    0.0004
##     80        1.2600             nan     0.0010    0.0003
##    100        1.2462             nan     0.0010    0.0002
##    120        1.2326             nan     0.0010    0.0003
##    140        1.2192             nan     0.0010    0.0003
##    160        1.2065             nan     0.0010    0.0003
##    180        1.1941             nan     0.0010    0.0003
##    200        1.1818             nan     0.0010    0.0002
##    220        1.1703             nan     0.0010    0.0002
##    240        1.1589             nan     0.0010    0.0002
##    260        1.1479             nan     0.0010    0.0002
##    280        1.1372             nan     0.0010    0.0002
##    300        1.1267             nan     0.0010    0.0002
##    320        1.1163             nan     0.0010    0.0002
##    340        1.1063             nan     0.0010    0.0002
##    360        1.0965             nan     0.0010    0.0002
##    380        1.0874             nan     0.0010    0.0002
##    400        1.0780             nan     0.0010    0.0002
##    420        1.0690             nan     0.0010    0.0002
##    440        1.0602             nan     0.0010    0.0002
##    460        1.0518             nan     0.0010    0.0002
##    480        1.0435             nan     0.0010    0.0002
##    500        1.0355             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3121             nan     0.0010    0.0003
##     20        1.3034             nan     0.0010    0.0003
##     40        1.2867             nan     0.0010    0.0003
##     60        1.2707             nan     0.0010    0.0003
##     80        1.2552             nan     0.0010    0.0004
##    100        1.2402             nan     0.0010    0.0004
##    120        1.2254             nan     0.0010    0.0003
##    140        1.2115             nan     0.0010    0.0003
##    160        1.1977             nan     0.0010    0.0003
##    180        1.1845             nan     0.0010    0.0003
##    200        1.1716             nan     0.0010    0.0002
##    220        1.1592             nan     0.0010    0.0003
##    240        1.1473             nan     0.0010    0.0003
##    260        1.1355             nan     0.0010    0.0002
##    280        1.1243             nan     0.0010    0.0002
##    300        1.1130             nan     0.0010    0.0002
##    320        1.1019             nan     0.0010    0.0002
##    340        1.0914             nan     0.0010    0.0002
##    360        1.0811             nan     0.0010    0.0002
##    380        1.0711             nan     0.0010    0.0002
##    400        1.0614             nan     0.0010    0.0002
##    420        1.0519             nan     0.0010    0.0002
##    440        1.0426             nan     0.0010    0.0002
##    460        1.0334             nan     0.0010    0.0001
##    480        1.0248             nan     0.0010    0.0002
##    500        1.0161             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0003
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0003
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0003
##     40        1.2872             nan     0.0010    0.0003
##     60        1.2711             nan     0.0010    0.0003
##     80        1.2555             nan     0.0010    0.0003
##    100        1.2405             nan     0.0010    0.0003
##    120        1.2259             nan     0.0010    0.0003
##    140        1.2117             nan     0.0010    0.0003
##    160        1.1979             nan     0.0010    0.0003
##    180        1.1849             nan     0.0010    0.0003
##    200        1.1720             nan     0.0010    0.0003
##    220        1.1596             nan     0.0010    0.0002
##    240        1.1478             nan     0.0010    0.0003
##    260        1.1361             nan     0.0010    0.0003
##    280        1.1247             nan     0.0010    0.0002
##    300        1.1134             nan     0.0010    0.0002
##    320        1.1028             nan     0.0010    0.0002
##    340        1.0923             nan     0.0010    0.0002
##    360        1.0821             nan     0.0010    0.0002
##    380        1.0720             nan     0.0010    0.0002
##    400        1.0623             nan     0.0010    0.0002
##    420        1.0527             nan     0.0010    0.0002
##    440        1.0438             nan     0.0010    0.0002
##    460        1.0348             nan     0.0010    0.0002
##    480        1.0262             nan     0.0010    0.0002
##    500        1.0177             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2874             nan     0.0010    0.0003
##     60        1.2716             nan     0.0010    0.0004
##     80        1.2561             nan     0.0010    0.0003
##    100        1.2413             nan     0.0010    0.0003
##    120        1.2269             nan     0.0010    0.0003
##    140        1.2128             nan     0.0010    0.0003
##    160        1.1992             nan     0.0010    0.0003
##    180        1.1862             nan     0.0010    0.0003
##    200        1.1733             nan     0.0010    0.0003
##    220        1.1611             nan     0.0010    0.0003
##    240        1.1490             nan     0.0010    0.0002
##    260        1.1374             nan     0.0010    0.0003
##    280        1.1264             nan     0.0010    0.0002
##    300        1.1152             nan     0.0010    0.0002
##    320        1.1047             nan     0.0010    0.0002
##    340        1.0941             nan     0.0010    0.0002
##    360        1.0840             nan     0.0010    0.0002
##    380        1.0742             nan     0.0010    0.0002
##    400        1.0644             nan     0.0010    0.0002
##    420        1.0551             nan     0.0010    0.0002
##    440        1.0463             nan     0.0010    0.0001
##    460        1.0373             nan     0.0010    0.0002
##    480        1.0287             nan     0.0010    0.0002
##    500        1.0203             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0003
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3144             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0004
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2855             nan     0.0010    0.0004
##     60        1.2686             nan     0.0010    0.0004
##     80        1.2522             nan     0.0010    0.0004
##    100        1.2366             nan     0.0010    0.0003
##    120        1.2214             nan     0.0010    0.0003
##    140        1.2064             nan     0.0010    0.0003
##    160        1.1922             nan     0.0010    0.0003
##    180        1.1784             nan     0.0010    0.0003
##    200        1.1650             nan     0.0010    0.0003
##    220        1.1523             nan     0.0010    0.0002
##    240        1.1398             nan     0.0010    0.0003
##    260        1.1276             nan     0.0010    0.0003
##    280        1.1156             nan     0.0010    0.0003
##    300        1.1042             nan     0.0010    0.0002
##    320        1.0927             nan     0.0010    0.0002
##    340        1.0820             nan     0.0010    0.0002
##    360        1.0714             nan     0.0010    0.0002
##    380        1.0610             nan     0.0010    0.0002
##    400        1.0508             nan     0.0010    0.0002
##    420        1.0410             nan     0.0010    0.0002
##    440        1.0314             nan     0.0010    0.0001
##    460        1.0221             nan     0.0010    0.0002
##    480        1.0129             nan     0.0010    0.0002
##    500        1.0040             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3197             nan     0.0010    0.0004
##      2        1.3188             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3169             nan     0.0010    0.0004
##      5        1.3160             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0003
##      8        1.3133             nan     0.0010    0.0005
##      9        1.3124             nan     0.0010    0.0004
##     10        1.3115             nan     0.0010    0.0004
##     20        1.3027             nan     0.0010    0.0004
##     40        1.2855             nan     0.0010    0.0004
##     60        1.2687             nan     0.0010    0.0004
##     80        1.2523             nan     0.0010    0.0004
##    100        1.2369             nan     0.0010    0.0003
##    120        1.2216             nan     0.0010    0.0004
##    140        1.2069             nan     0.0010    0.0003
##    160        1.1926             nan     0.0010    0.0003
##    180        1.1786             nan     0.0010    0.0003
##    200        1.1651             nan     0.0010    0.0003
##    220        1.1525             nan     0.0010    0.0003
##    240        1.1397             nan     0.0010    0.0003
##    260        1.1277             nan     0.0010    0.0003
##    280        1.1158             nan     0.0010    0.0003
##    300        1.1041             nan     0.0010    0.0003
##    320        1.0929             nan     0.0010    0.0003
##    340        1.0820             nan     0.0010    0.0002
##    360        1.0715             nan     0.0010    0.0002
##    380        1.0611             nan     0.0010    0.0002
##    400        1.0509             nan     0.0010    0.0002
##    420        1.0409             nan     0.0010    0.0002
##    440        1.0311             nan     0.0010    0.0002
##    460        1.0217             nan     0.0010    0.0002
##    480        1.0127             nan     0.0010    0.0002
##    500        1.0038             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0004
##      3        1.3181             nan     0.0010    0.0003
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3155             nan     0.0010    0.0004
##      7        1.3146             nan     0.0010    0.0003
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0003
##     40        1.2863             nan     0.0010    0.0004
##     60        1.2697             nan     0.0010    0.0003
##     80        1.2536             nan     0.0010    0.0003
##    100        1.2381             nan     0.0010    0.0003
##    120        1.2233             nan     0.0010    0.0003
##    140        1.2088             nan     0.0010    0.0003
##    160        1.1947             nan     0.0010    0.0003
##    180        1.1809             nan     0.0010    0.0003
##    200        1.1676             nan     0.0010    0.0002
##    220        1.1551             nan     0.0010    0.0003
##    240        1.1427             nan     0.0010    0.0003
##    260        1.1304             nan     0.0010    0.0003
##    280        1.1186             nan     0.0010    0.0003
##    300        1.1074             nan     0.0010    0.0002
##    320        1.0964             nan     0.0010    0.0002
##    340        1.0856             nan     0.0010    0.0002
##    360        1.0751             nan     0.0010    0.0002
##    380        1.0652             nan     0.0010    0.0002
##    400        1.0553             nan     0.0010    0.0002
##    420        1.0457             nan     0.0010    0.0003
##    440        1.0365             nan     0.0010    0.0002
##    460        1.0273             nan     0.0010    0.0002
##    480        1.0182             nan     0.0010    0.0002
##    500        1.0094             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0040
##      2        1.3041             nan     0.0100    0.0031
##      3        1.2962             nan     0.0100    0.0038
##      4        1.2881             nan     0.0100    0.0034
##      5        1.2808             nan     0.0100    0.0033
##      6        1.2731             nan     0.0100    0.0033
##      7        1.2661             nan     0.0100    0.0031
##      8        1.2586             nan     0.0100    0.0033
##      9        1.2511             nan     0.0100    0.0033
##     10        1.2441             nan     0.0100    0.0028
##     20        1.1780             nan     0.0100    0.0028
##     40        1.0724             nan     0.0100    0.0021
##     60        0.9930             nan     0.0100    0.0018
##     80        0.9314             nan     0.0100    0.0010
##    100        0.8818             nan     0.0100    0.0008
##    120        0.8418             nan     0.0100    0.0005
##    140        0.8087             nan     0.0100    0.0007
##    160        0.7800             nan     0.0100    0.0004
##    180        0.7550             nan     0.0100    0.0003
##    200        0.7325             nan     0.0100    0.0001
##    220        0.7139             nan     0.0100    0.0002
##    240        0.6967             nan     0.0100    0.0001
##    260        0.6815             nan     0.0100    0.0002
##    280        0.6679             nan     0.0100    0.0001
##    300        0.6559             nan     0.0100    0.0001
##    320        0.6435             nan     0.0100    0.0001
##    340        0.6326             nan     0.0100    0.0001
##    360        0.6221             nan     0.0100    0.0002
##    380        0.6111             nan     0.0100    0.0001
##    400        0.6013             nan     0.0100   -0.0001
##    420        0.5915             nan     0.0100   -0.0000
##    440        0.5815             nan     0.0100    0.0000
##    460        0.5733             nan     0.0100   -0.0001
##    480        0.5654             nan     0.0100    0.0001
##    500        0.5573             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0037
##      2        1.3047             nan     0.0100    0.0034
##      3        1.2963             nan     0.0100    0.0035
##      4        1.2884             nan     0.0100    0.0035
##      5        1.2808             nan     0.0100    0.0034
##      6        1.2733             nan     0.0100    0.0032
##      7        1.2662             nan     0.0100    0.0033
##      8        1.2585             nan     0.0100    0.0035
##      9        1.2509             nan     0.0100    0.0033
##     10        1.2442             nan     0.0100    0.0032
##     20        1.1800             nan     0.0100    0.0023
##     40        1.0777             nan     0.0100    0.0020
##     60        0.9976             nan     0.0100    0.0013
##     80        0.9326             nan     0.0100    0.0012
##    100        0.8816             nan     0.0100    0.0009
##    120        0.8410             nan     0.0100    0.0005
##    140        0.8079             nan     0.0100    0.0002
##    160        0.7795             nan     0.0100    0.0005
##    180        0.7555             nan     0.0100    0.0004
##    200        0.7343             nan     0.0100    0.0003
##    220        0.7146             nan     0.0100    0.0002
##    240        0.6971             nan     0.0100    0.0002
##    260        0.6827             nan     0.0100   -0.0002
##    280        0.6683             nan     0.0100    0.0001
##    300        0.6553             nan     0.0100    0.0001
##    320        0.6432             nan     0.0100   -0.0000
##    340        0.6317             nan     0.0100   -0.0001
##    360        0.6213             nan     0.0100   -0.0000
##    380        0.6111             nan     0.0100    0.0001
##    400        0.6015             nan     0.0100   -0.0000
##    420        0.5915             nan     0.0100    0.0001
##    440        0.5830             nan     0.0100    0.0001
##    460        0.5742             nan     0.0100    0.0000
##    480        0.5659             nan     0.0100    0.0000
##    500        0.5578             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0041
##      2        1.3050             nan     0.0100    0.0033
##      3        1.2976             nan     0.0100    0.0035
##      4        1.2899             nan     0.0100    0.0035
##      5        1.2827             nan     0.0100    0.0035
##      6        1.2759             nan     0.0100    0.0031
##      7        1.2675             nan     0.0100    0.0040
##      8        1.2602             nan     0.0100    0.0034
##      9        1.2534             nan     0.0100    0.0030
##     10        1.2473             nan     0.0100    0.0031
##     20        1.1799             nan     0.0100    0.0030
##     40        1.0755             nan     0.0100    0.0019
##     60        0.9958             nan     0.0100    0.0014
##     80        0.9341             nan     0.0100    0.0009
##    100        0.8845             nan     0.0100    0.0009
##    120        0.8414             nan     0.0100    0.0007
##    140        0.8077             nan     0.0100    0.0005
##    160        0.7792             nan     0.0100    0.0002
##    180        0.7561             nan     0.0100    0.0004
##    200        0.7352             nan     0.0100    0.0003
##    220        0.7168             nan     0.0100    0.0003
##    240        0.7006             nan     0.0100    0.0000
##    260        0.6863             nan     0.0100    0.0000
##    280        0.6730             nan     0.0100    0.0001
##    300        0.6604             nan     0.0100    0.0001
##    320        0.6482             nan     0.0100    0.0002
##    340        0.6369             nan     0.0100    0.0001
##    360        0.6262             nan     0.0100    0.0000
##    380        0.6157             nan     0.0100    0.0000
##    400        0.6058             nan     0.0100    0.0000
##    420        0.5977             nan     0.0100   -0.0002
##    440        0.5898             nan     0.0100   -0.0001
##    460        0.5811             nan     0.0100   -0.0001
##    480        0.5727             nan     0.0100   -0.0001
##    500        0.5648             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0036
##      2        1.3031             nan     0.0100    0.0042
##      3        1.2950             nan     0.0100    0.0031
##      4        1.2863             nan     0.0100    0.0037
##      5        1.2784             nan     0.0100    0.0035
##      6        1.2706             nan     0.0100    0.0033
##      7        1.2621             nan     0.0100    0.0038
##      8        1.2551             nan     0.0100    0.0028
##      9        1.2472             nan     0.0100    0.0033
##     10        1.2394             nan     0.0100    0.0030
##     20        1.1693             nan     0.0100    0.0031
##     40        1.0596             nan     0.0100    0.0020
##     60        0.9754             nan     0.0100    0.0015
##     80        0.9080             nan     0.0100    0.0011
##    100        0.8548             nan     0.0100    0.0008
##    120        0.8102             nan     0.0100    0.0008
##    140        0.7729             nan     0.0100    0.0003
##    160        0.7413             nan     0.0100    0.0004
##    180        0.7145             nan     0.0100    0.0001
##    200        0.6917             nan     0.0100    0.0002
##    220        0.6710             nan     0.0100   -0.0001
##    240        0.6521             nan     0.0100   -0.0000
##    260        0.6351             nan     0.0100    0.0001
##    280        0.6202             nan     0.0100   -0.0001
##    300        0.6063             nan     0.0100   -0.0001
##    320        0.5927             nan     0.0100   -0.0001
##    340        0.5789             nan     0.0100    0.0000
##    360        0.5674             nan     0.0100    0.0002
##    380        0.5567             nan     0.0100   -0.0001
##    400        0.5457             nan     0.0100   -0.0001
##    420        0.5351             nan     0.0100   -0.0000
##    440        0.5256             nan     0.0100   -0.0001
##    460        0.5159             nan     0.0100   -0.0001
##    480        0.5069             nan     0.0100    0.0001
##    500        0.4981             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0035
##      2        1.3033             nan     0.0100    0.0039
##      3        1.2952             nan     0.0100    0.0038
##      4        1.2867             nan     0.0100    0.0041
##      5        1.2789             nan     0.0100    0.0030
##      6        1.2713             nan     0.0100    0.0034
##      7        1.2629             nan     0.0100    0.0036
##      8        1.2552             nan     0.0100    0.0036
##      9        1.2473             nan     0.0100    0.0033
##     10        1.2394             nan     0.0100    0.0033
##     20        1.1713             nan     0.0100    0.0029
##     40        1.0586             nan     0.0100    0.0016
##     60        0.9771             nan     0.0100    0.0013
##     80        0.9107             nan     0.0100    0.0011
##    100        0.8582             nan     0.0100    0.0010
##    120        0.8159             nan     0.0100    0.0006
##    140        0.7802             nan     0.0100    0.0005
##    160        0.7497             nan     0.0100    0.0005
##    180        0.7241             nan     0.0100    0.0002
##    200        0.7002             nan     0.0100    0.0004
##    220        0.6802             nan     0.0100    0.0002
##    240        0.6623             nan     0.0100    0.0001
##    260        0.6453             nan     0.0100    0.0000
##    280        0.6298             nan     0.0100    0.0000
##    300        0.6163             nan     0.0100   -0.0000
##    320        0.6034             nan     0.0100   -0.0000
##    340        0.5898             nan     0.0100   -0.0001
##    360        0.5785             nan     0.0100   -0.0001
##    380        0.5677             nan     0.0100   -0.0000
##    400        0.5570             nan     0.0100   -0.0001
##    420        0.5472             nan     0.0100   -0.0001
##    440        0.5374             nan     0.0100    0.0001
##    460        0.5277             nan     0.0100   -0.0000
##    480        0.5188             nan     0.0100   -0.0000
##    500        0.5090             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0041
##      2        1.3038             nan     0.0100    0.0039
##      3        1.2954             nan     0.0100    0.0036
##      4        1.2866             nan     0.0100    0.0037
##      5        1.2787             nan     0.0100    0.0039
##      6        1.2701             nan     0.0100    0.0036
##      7        1.2631             nan     0.0100    0.0029
##      8        1.2550             nan     0.0100    0.0036
##      9        1.2476             nan     0.0100    0.0033
##     10        1.2405             nan     0.0100    0.0028
##     20        1.1732             nan     0.0100    0.0028
##     40        1.0661             nan     0.0100    0.0022
##     60        0.9811             nan     0.0100    0.0013
##     80        0.9147             nan     0.0100    0.0013
##    100        0.8642             nan     0.0100    0.0008
##    120        0.8209             nan     0.0100    0.0007
##    140        0.7854             nan     0.0100    0.0005
##    160        0.7556             nan     0.0100    0.0002
##    180        0.7310             nan     0.0100    0.0004
##    200        0.7078             nan     0.0100    0.0002
##    220        0.6893             nan     0.0100    0.0001
##    240        0.6720             nan     0.0100    0.0002
##    260        0.6575             nan     0.0100    0.0002
##    280        0.6422             nan     0.0100    0.0000
##    300        0.6274             nan     0.0100   -0.0001
##    320        0.6145             nan     0.0100    0.0001
##    340        0.6034             nan     0.0100   -0.0002
##    360        0.5923             nan     0.0100    0.0001
##    380        0.5801             nan     0.0100    0.0001
##    400        0.5694             nan     0.0100   -0.0001
##    420        0.5594             nan     0.0100   -0.0000
##    440        0.5506             nan     0.0100   -0.0001
##    460        0.5404             nan     0.0100   -0.0001
##    480        0.5304             nan     0.0100   -0.0001
##    500        0.5215             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3117             nan     0.0100    0.0044
##      2        1.3020             nan     0.0100    0.0040
##      3        1.2930             nan     0.0100    0.0040
##      4        1.2851             nan     0.0100    0.0037
##      5        1.2766             nan     0.0100    0.0038
##      6        1.2682             nan     0.0100    0.0039
##      7        1.2604             nan     0.0100    0.0034
##      8        1.2528             nan     0.0100    0.0032
##      9        1.2442             nan     0.0100    0.0038
##     10        1.2361             nan     0.0100    0.0036
##     20        1.1648             nan     0.0100    0.0031
##     40        1.0497             nan     0.0100    0.0024
##     60        0.9620             nan     0.0100    0.0019
##     80        0.8916             nan     0.0100    0.0014
##    100        0.8348             nan     0.0100    0.0010
##    120        0.7905             nan     0.0100    0.0007
##    140        0.7518             nan     0.0100    0.0006
##    160        0.7184             nan     0.0100    0.0005
##    180        0.6894             nan     0.0100    0.0003
##    200        0.6654             nan     0.0100    0.0002
##    220        0.6445             nan     0.0100    0.0003
##    240        0.6234             nan     0.0100    0.0001
##    260        0.6055             nan     0.0100   -0.0001
##    280        0.5873             nan     0.0100    0.0001
##    300        0.5720             nan     0.0100    0.0001
##    320        0.5574             nan     0.0100    0.0001
##    340        0.5427             nan     0.0100    0.0001
##    360        0.5295             nan     0.0100    0.0001
##    380        0.5171             nan     0.0100    0.0002
##    400        0.5057             nan     0.0100   -0.0002
##    420        0.4954             nan     0.0100    0.0000
##    440        0.4851             nan     0.0100    0.0000
##    460        0.4748             nan     0.0100   -0.0000
##    480        0.4645             nan     0.0100    0.0001
##    500        0.4546             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0037
##      2        1.3027             nan     0.0100    0.0042
##      3        1.2940             nan     0.0100    0.0037
##      4        1.2855             nan     0.0100    0.0040
##      5        1.2770             nan     0.0100    0.0035
##      6        1.2684             nan     0.0100    0.0040
##      7        1.2601             nan     0.0100    0.0038
##      8        1.2518             nan     0.0100    0.0034
##      9        1.2444             nan     0.0100    0.0037
##     10        1.2364             nan     0.0100    0.0037
##     20        1.1652             nan     0.0100    0.0029
##     40        1.0507             nan     0.0100    0.0019
##     60        0.9644             nan     0.0100    0.0016
##     80        0.8942             nan     0.0100    0.0012
##    100        0.8391             nan     0.0100    0.0008
##    120        0.7949             nan     0.0100    0.0004
##    140        0.7563             nan     0.0100    0.0004
##    160        0.7243             nan     0.0100    0.0004
##    180        0.6977             nan     0.0100    0.0004
##    200        0.6741             nan     0.0100    0.0003
##    220        0.6532             nan     0.0100    0.0000
##    240        0.6330             nan     0.0100    0.0003
##    260        0.6155             nan     0.0100    0.0001
##    280        0.5989             nan     0.0100   -0.0000
##    300        0.5837             nan     0.0100   -0.0000
##    320        0.5704             nan     0.0100   -0.0000
##    340        0.5564             nan     0.0100   -0.0000
##    360        0.5445             nan     0.0100   -0.0002
##    380        0.5321             nan     0.0100   -0.0000
##    400        0.5207             nan     0.0100    0.0000
##    420        0.5085             nan     0.0100   -0.0000
##    440        0.4973             nan     0.0100   -0.0002
##    460        0.4875             nan     0.0100   -0.0001
##    480        0.4767             nan     0.0100    0.0000
##    500        0.4675             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0036
##      2        1.3034             nan     0.0100    0.0035
##      3        1.2953             nan     0.0100    0.0036
##      4        1.2866             nan     0.0100    0.0040
##      5        1.2780             nan     0.0100    0.0039
##      6        1.2706             nan     0.0100    0.0032
##      7        1.2621             nan     0.0100    0.0036
##      8        1.2547             nan     0.0100    0.0030
##      9        1.2467             nan     0.0100    0.0034
##     10        1.2382             nan     0.0100    0.0036
##     20        1.1689             nan     0.0100    0.0030
##     40        1.0543             nan     0.0100    0.0019
##     60        0.9676             nan     0.0100    0.0017
##     80        0.9012             nan     0.0100    0.0009
##    100        0.8470             nan     0.0100    0.0007
##    120        0.8009             nan     0.0100    0.0007
##    140        0.7642             nan     0.0100    0.0004
##    160        0.7334             nan     0.0100    0.0005
##    180        0.7063             nan     0.0100    0.0002
##    200        0.6829             nan     0.0100    0.0001
##    220        0.6623             nan     0.0100    0.0002
##    240        0.6416             nan     0.0100    0.0001
##    260        0.6242             nan     0.0100   -0.0001
##    280        0.6089             nan     0.0100   -0.0001
##    300        0.5935             nan     0.0100   -0.0000
##    320        0.5791             nan     0.0100    0.0000
##    340        0.5655             nan     0.0100    0.0001
##    360        0.5539             nan     0.0100   -0.0002
##    380        0.5420             nan     0.0100    0.0000
##    400        0.5311             nan     0.0100    0.0000
##    420        0.5219             nan     0.0100   -0.0001
##    440        0.5111             nan     0.0100   -0.0002
##    460        0.4996             nan     0.0100    0.0001
##    480        0.4902             nan     0.0100    0.0000
##    500        0.4801             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2456             nan     0.1000    0.0316
##      2        1.1810             nan     0.1000    0.0310
##      3        1.1266             nan     0.1000    0.0263
##      4        1.0780             nan     0.1000    0.0202
##      5        1.0322             nan     0.1000    0.0180
##      6        0.9898             nan     0.1000    0.0167
##      7        0.9560             nan     0.1000    0.0129
##      8        0.9260             nan     0.1000    0.0107
##      9        0.8982             nan     0.1000    0.0115
##     10        0.8767             nan     0.1000    0.0081
##     20        0.7281             nan     0.1000   -0.0005
##     40        0.6015             nan     0.1000   -0.0006
##     60        0.5156             nan     0.1000    0.0005
##     80        0.4527             nan     0.1000   -0.0006
##    100        0.4009             nan     0.1000    0.0005
##    120        0.3569             nan     0.1000   -0.0005
##    140        0.3182             nan     0.1000   -0.0010
##    160        0.2871             nan     0.1000   -0.0008
##    180        0.2599             nan     0.1000   -0.0005
##    200        0.2371             nan     0.1000   -0.0003
##    220        0.2151             nan     0.1000   -0.0009
##    240        0.1941             nan     0.1000   -0.0004
##    260        0.1747             nan     0.1000   -0.0004
##    280        0.1587             nan     0.1000   -0.0006
##    300        0.1448             nan     0.1000   -0.0000
##    320        0.1316             nan     0.1000   -0.0001
##    340        0.1214             nan     0.1000   -0.0002
##    360        0.1119             nan     0.1000   -0.0004
##    380        0.1027             nan     0.1000   -0.0003
##    400        0.0949             nan     0.1000   -0.0001
##    420        0.0869             nan     0.1000   -0.0000
##    440        0.0805             nan     0.1000   -0.0000
##    460        0.0743             nan     0.1000   -0.0001
##    480        0.0695             nan     0.1000   -0.0002
##    500        0.0644             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2418             nan     0.1000    0.0391
##      2        1.1779             nan     0.1000    0.0298
##      3        1.1207             nan     0.1000    0.0245
##      4        1.0717             nan     0.1000    0.0198
##      5        1.0295             nan     0.1000    0.0164
##      6        0.9918             nan     0.1000    0.0160
##      7        0.9560             nan     0.1000    0.0130
##      8        0.9259             nan     0.1000    0.0130
##      9        0.8995             nan     0.1000    0.0112
##     10        0.8787             nan     0.1000    0.0070
##     20        0.7310             nan     0.1000    0.0014
##     40        0.6090             nan     0.1000   -0.0001
##     60        0.5306             nan     0.1000   -0.0005
##     80        0.4639             nan     0.1000    0.0001
##    100        0.4089             nan     0.1000   -0.0009
##    120        0.3681             nan     0.1000   -0.0000
##    140        0.3270             nan     0.1000   -0.0017
##    160        0.2972             nan     0.1000    0.0000
##    180        0.2686             nan     0.1000   -0.0006
##    200        0.2474             nan     0.1000   -0.0008
##    220        0.2241             nan     0.1000   -0.0006
##    240        0.2056             nan     0.1000   -0.0008
##    260        0.1898             nan     0.1000   -0.0004
##    280        0.1756             nan     0.1000   -0.0002
##    300        0.1613             nan     0.1000   -0.0004
##    320        0.1491             nan     0.1000   -0.0004
##    340        0.1373             nan     0.1000   -0.0005
##    360        0.1274             nan     0.1000   -0.0005
##    380        0.1181             nan     0.1000   -0.0002
##    400        0.1104             nan     0.1000   -0.0002
##    420        0.1015             nan     0.1000   -0.0008
##    440        0.0940             nan     0.1000   -0.0002
##    460        0.0871             nan     0.1000   -0.0005
##    480        0.0807             nan     0.1000   -0.0002
##    500        0.0745             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2434             nan     0.1000    0.0371
##      2        1.1731             nan     0.1000    0.0338
##      3        1.1214             nan     0.1000    0.0259
##      4        1.0758             nan     0.1000    0.0182
##      5        1.0328             nan     0.1000    0.0177
##      6        0.9950             nan     0.1000    0.0176
##      7        0.9632             nan     0.1000    0.0114
##      8        0.9366             nan     0.1000    0.0099
##      9        0.9084             nan     0.1000    0.0098
##     10        0.8871             nan     0.1000    0.0082
##     20        0.7435             nan     0.1000    0.0022
##     40        0.6234             nan     0.1000   -0.0003
##     60        0.5416             nan     0.1000   -0.0007
##     80        0.4831             nan     0.1000    0.0006
##    100        0.4295             nan     0.1000   -0.0004
##    120        0.3875             nan     0.1000   -0.0002
##    140        0.3506             nan     0.1000   -0.0014
##    160        0.3186             nan     0.1000   -0.0020
##    180        0.2925             nan     0.1000   -0.0012
##    200        0.2688             nan     0.1000   -0.0005
##    220        0.2449             nan     0.1000   -0.0005
##    240        0.2238             nan     0.1000   -0.0015
##    260        0.2067             nan     0.1000   -0.0010
##    280        0.1906             nan     0.1000   -0.0002
##    300        0.1754             nan     0.1000   -0.0004
##    320        0.1610             nan     0.1000   -0.0003
##    340        0.1487             nan     0.1000   -0.0004
##    360        0.1371             nan     0.1000   -0.0002
##    380        0.1275             nan     0.1000   -0.0004
##    400        0.1196             nan     0.1000   -0.0005
##    420        0.1100             nan     0.1000   -0.0004
##    440        0.1020             nan     0.1000   -0.0003
##    460        0.0945             nan     0.1000   -0.0002
##    480        0.0877             nan     0.1000   -0.0004
##    500        0.0821             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2345             nan     0.1000    0.0360
##      2        1.1595             nan     0.1000    0.0307
##      3        1.1004             nan     0.1000    0.0239
##      4        1.0533             nan     0.1000    0.0206
##      5        1.0109             nan     0.1000    0.0166
##      6        0.9692             nan     0.1000    0.0165
##      7        0.9340             nan     0.1000    0.0145
##      8        0.9020             nan     0.1000    0.0127
##      9        0.8771             nan     0.1000    0.0100
##     10        0.8545             nan     0.1000    0.0068
##     20        0.6986             nan     0.1000    0.0014
##     40        0.5347             nan     0.1000   -0.0017
##     60        0.4510             nan     0.1000   -0.0013
##     80        0.3799             nan     0.1000   -0.0006
##    100        0.3290             nan     0.1000   -0.0001
##    120        0.2911             nan     0.1000   -0.0007
##    140        0.2570             nan     0.1000   -0.0008
##    160        0.2259             nan     0.1000   -0.0006
##    180        0.1992             nan     0.1000   -0.0001
##    200        0.1756             nan     0.1000   -0.0002
##    220        0.1561             nan     0.1000   -0.0000
##    240        0.1396             nan     0.1000   -0.0003
##    260        0.1256             nan     0.1000   -0.0004
##    280        0.1128             nan     0.1000   -0.0005
##    300        0.1019             nan     0.1000   -0.0001
##    320        0.0913             nan     0.1000    0.0000
##    340        0.0823             nan     0.1000   -0.0002
##    360        0.0749             nan     0.1000   -0.0003
##    380        0.0674             nan     0.1000   -0.0001
##    400        0.0612             nan     0.1000   -0.0003
##    420        0.0554             nan     0.1000   -0.0002
##    440        0.0503             nan     0.1000   -0.0001
##    460        0.0461             nan     0.1000   -0.0002
##    480        0.0416             nan     0.1000   -0.0001
##    500        0.0378             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2346             nan     0.1000    0.0395
##      2        1.1680             nan     0.1000    0.0289
##      3        1.1009             nan     0.1000    0.0282
##      4        1.0494             nan     0.1000    0.0220
##      5        1.0032             nan     0.1000    0.0209
##      6        0.9688             nan     0.1000    0.0114
##      7        0.9327             nan     0.1000    0.0153
##      8        0.8994             nan     0.1000    0.0131
##      9        0.8727             nan     0.1000    0.0097
##     10        0.8474             nan     0.1000    0.0095
##     20        0.7014             nan     0.1000    0.0005
##     40        0.5626             nan     0.1000   -0.0016
##     60        0.4769             nan     0.1000    0.0011
##     80        0.4091             nan     0.1000    0.0001
##    100        0.3533             nan     0.1000   -0.0007
##    120        0.3019             nan     0.1000   -0.0011
##    140        0.2676             nan     0.1000   -0.0013
##    160        0.2363             nan     0.1000   -0.0007
##    180        0.2063             nan     0.1000   -0.0003
##    200        0.1845             nan     0.1000   -0.0003
##    220        0.1633             nan     0.1000   -0.0002
##    240        0.1450             nan     0.1000   -0.0001
##    260        0.1302             nan     0.1000   -0.0006
##    280        0.1172             nan     0.1000   -0.0008
##    300        0.1046             nan     0.1000   -0.0004
##    320        0.0939             nan     0.1000    0.0000
##    340        0.0852             nan     0.1000   -0.0002
##    360        0.0767             nan     0.1000   -0.0001
##    380        0.0702             nan     0.1000   -0.0002
##    400        0.0640             nan     0.1000   -0.0002
##    420        0.0584             nan     0.1000   -0.0004
##    440        0.0528             nan     0.1000   -0.0002
##    460        0.0478             nan     0.1000   -0.0002
##    480        0.0436             nan     0.1000   -0.0000
##    500        0.0398             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2428             nan     0.1000    0.0401
##      2        1.1729             nan     0.1000    0.0333
##      3        1.1079             nan     0.1000    0.0252
##      4        1.0589             nan     0.1000    0.0186
##      5        1.0165             nan     0.1000    0.0183
##      6        0.9751             nan     0.1000    0.0168
##      7        0.9420             nan     0.1000    0.0114
##      8        0.9083             nan     0.1000    0.0132
##      9        0.8812             nan     0.1000    0.0113
##     10        0.8562             nan     0.1000    0.0106
##     20        0.7081             nan     0.1000    0.0031
##     40        0.5608             nan     0.1000   -0.0009
##     60        0.4785             nan     0.1000   -0.0021
##     80        0.4112             nan     0.1000   -0.0006
##    100        0.3574             nan     0.1000    0.0002
##    120        0.3149             nan     0.1000   -0.0001
##    140        0.2733             nan     0.1000   -0.0003
##    160        0.2402             nan     0.1000   -0.0007
##    180        0.2127             nan     0.1000   -0.0008
##    200        0.1908             nan     0.1000   -0.0004
##    220        0.1724             nan     0.1000   -0.0009
##    240        0.1568             nan     0.1000   -0.0003
##    260        0.1416             nan     0.1000   -0.0005
##    280        0.1294             nan     0.1000   -0.0002
##    300        0.1165             nan     0.1000   -0.0004
##    320        0.1061             nan     0.1000   -0.0004
##    340        0.0953             nan     0.1000   -0.0004
##    360        0.0861             nan     0.1000   -0.0002
##    380        0.0783             nan     0.1000   -0.0002
##    400        0.0711             nan     0.1000   -0.0002
##    420        0.0652             nan     0.1000   -0.0003
##    440        0.0596             nan     0.1000   -0.0003
##    460        0.0543             nan     0.1000   -0.0004
##    480        0.0497             nan     0.1000   -0.0001
##    500        0.0454             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2364             nan     0.1000    0.0389
##      2        1.1560             nan     0.1000    0.0370
##      3        1.0984             nan     0.1000    0.0245
##      4        1.0479             nan     0.1000    0.0195
##      5        1.0030             nan     0.1000    0.0190
##      6        0.9632             nan     0.1000    0.0144
##      7        0.9257             nan     0.1000    0.0133
##      8        0.8906             nan     0.1000    0.0141
##      9        0.8603             nan     0.1000    0.0094
##     10        0.8354             nan     0.1000    0.0104
##     20        0.6746             nan     0.1000    0.0004
##     40        0.5164             nan     0.1000   -0.0006
##     60        0.4215             nan     0.1000   -0.0005
##     80        0.3463             nan     0.1000   -0.0009
##    100        0.2864             nan     0.1000    0.0003
##    120        0.2421             nan     0.1000   -0.0001
##    140        0.2126             nan     0.1000   -0.0005
##    160        0.1817             nan     0.1000   -0.0004
##    180        0.1563             nan     0.1000   -0.0004
##    200        0.1370             nan     0.1000   -0.0007
##    220        0.1192             nan     0.1000   -0.0002
##    240        0.1050             nan     0.1000    0.0000
##    260        0.0915             nan     0.1000   -0.0002
##    280        0.0808             nan     0.1000   -0.0003
##    300        0.0706             nan     0.1000   -0.0001
##    320        0.0626             nan     0.1000   -0.0001
##    340        0.0560             nan     0.1000   -0.0001
##    360        0.0500             nan     0.1000   -0.0000
##    380        0.0442             nan     0.1000   -0.0001
##    400        0.0393             nan     0.1000   -0.0001
##    420        0.0355             nan     0.1000   -0.0001
##    440        0.0315             nan     0.1000   -0.0001
##    460        0.0278             nan     0.1000    0.0000
##    480        0.0251             nan     0.1000   -0.0000
##    500        0.0227             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2403             nan     0.1000    0.0325
##      2        1.1646             nan     0.1000    0.0346
##      3        1.1061             nan     0.1000    0.0261
##      4        1.0580             nan     0.1000    0.0196
##      5        1.0115             nan     0.1000    0.0191
##      6        0.9752             nan     0.1000    0.0151
##      7        0.9355             nan     0.1000    0.0143
##      8        0.9056             nan     0.1000    0.0117
##      9        0.8756             nan     0.1000    0.0118
##     10        0.8509             nan     0.1000    0.0092
##     20        0.6878             nan     0.1000    0.0039
##     40        0.5271             nan     0.1000    0.0007
##     60        0.4276             nan     0.1000   -0.0017
##     80        0.3572             nan     0.1000   -0.0010
##    100        0.3020             nan     0.1000   -0.0007
##    120        0.2516             nan     0.1000    0.0009
##    140        0.2124             nan     0.1000    0.0000
##    160        0.1820             nan     0.1000   -0.0007
##    180        0.1583             nan     0.1000   -0.0001
##    200        0.1398             nan     0.1000   -0.0005
##    220        0.1210             nan     0.1000   -0.0003
##    240        0.1061             nan     0.1000   -0.0003
##    260        0.0925             nan     0.1000   -0.0006
##    280        0.0811             nan     0.1000   -0.0003
##    300        0.0715             nan     0.1000   -0.0003
##    320        0.0634             nan     0.1000   -0.0002
##    340        0.0560             nan     0.1000   -0.0003
##    360        0.0501             nan     0.1000   -0.0001
##    380        0.0444             nan     0.1000   -0.0002
##    400        0.0393             nan     0.1000   -0.0002
##    420        0.0347             nan     0.1000   -0.0000
##    440        0.0310             nan     0.1000   -0.0001
##    460        0.0276             nan     0.1000   -0.0001
##    480        0.0248             nan     0.1000   -0.0001
##    500        0.0219             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2318             nan     0.1000    0.0401
##      2        1.1584             nan     0.1000    0.0338
##      3        1.1019             nan     0.1000    0.0237
##      4        1.0516             nan     0.1000    0.0230
##      5        1.0042             nan     0.1000    0.0188
##      6        0.9672             nan     0.1000    0.0166
##      7        0.9353             nan     0.1000    0.0120
##      8        0.9007             nan     0.1000    0.0134
##      9        0.8710             nan     0.1000    0.0098
##     10        0.8457             nan     0.1000    0.0094
##     20        0.6841             nan     0.1000    0.0046
##     40        0.5418             nan     0.1000   -0.0010
##     60        0.4428             nan     0.1000   -0.0006
##     80        0.3716             nan     0.1000   -0.0004
##    100        0.3168             nan     0.1000   -0.0014
##    120        0.2746             nan     0.1000   -0.0008
##    140        0.2364             nan     0.1000   -0.0010
##    160        0.2067             nan     0.1000   -0.0004
##    180        0.1816             nan     0.1000   -0.0011
##    200        0.1590             nan     0.1000   -0.0007
##    220        0.1413             nan     0.1000   -0.0006
##    240        0.1245             nan     0.1000   -0.0005
##    260        0.1102             nan     0.1000   -0.0004
##    280        0.0971             nan     0.1000   -0.0005
##    300        0.0857             nan     0.1000   -0.0004
##    320        0.0754             nan     0.1000   -0.0001
##    340        0.0669             nan     0.1000   -0.0002
##    360        0.0598             nan     0.1000   -0.0002
##    380        0.0536             nan     0.1000   -0.0001
##    400        0.0477             nan     0.1000   -0.0001
##    420        0.0433             nan     0.1000   -0.0002
##    440        0.0385             nan     0.1000   -0.0002
##    460        0.0349             nan     0.1000   -0.0003
##    480        0.0313             nan     0.1000   -0.0001
##    500        0.0282             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0003
##      4        1.3179             nan     0.0010    0.0004
##      5        1.3171             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3154             nan     0.0010    0.0003
##      8        1.3147             nan     0.0010    0.0003
##      9        1.3140             nan     0.0010    0.0003
##     10        1.3131             nan     0.0010    0.0004
##     20        1.3052             nan     0.0010    0.0004
##     40        1.2896             nan     0.0010    0.0004
##     60        1.2745             nan     0.0010    0.0003
##     80        1.2598             nan     0.0010    0.0003
##    100        1.2458             nan     0.0010    0.0003
##    120        1.2321             nan     0.0010    0.0003
##    140        1.2187             nan     0.0010    0.0003
##    160        1.2057             nan     0.0010    0.0003
##    180        1.1933             nan     0.0010    0.0002
##    200        1.1814             nan     0.0010    0.0003
##    220        1.1698             nan     0.0010    0.0002
##    240        1.1586             nan     0.0010    0.0003
##    260        1.1474             nan     0.0010    0.0002
##    280        1.1367             nan     0.0010    0.0002
##    300        1.1262             nan     0.0010    0.0002
##    320        1.1161             nan     0.0010    0.0002
##    340        1.1060             nan     0.0010    0.0002
##    360        1.0964             nan     0.0010    0.0002
##    380        1.0868             nan     0.0010    0.0002
##    400        1.0777             nan     0.0010    0.0002
##    420        1.0690             nan     0.0010    0.0002
##    440        1.0604             nan     0.0010    0.0002
##    460        1.0519             nan     0.0010    0.0002
##    480        1.0436             nan     0.0010    0.0002
##    500        1.0355             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3179             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3163             nan     0.0010    0.0003
##      7        1.3155             nan     0.0010    0.0004
##      8        1.3148             nan     0.0010    0.0003
##      9        1.3140             nan     0.0010    0.0004
##     10        1.3132             nan     0.0010    0.0004
##     20        1.3051             nan     0.0010    0.0004
##     40        1.2898             nan     0.0010    0.0004
##     60        1.2747             nan     0.0010    0.0003
##     80        1.2601             nan     0.0010    0.0003
##    100        1.2462             nan     0.0010    0.0003
##    120        1.2325             nan     0.0010    0.0003
##    140        1.2192             nan     0.0010    0.0003
##    160        1.2062             nan     0.0010    0.0003
##    180        1.1937             nan     0.0010    0.0003
##    200        1.1815             nan     0.0010    0.0003
##    220        1.1698             nan     0.0010    0.0003
##    240        1.1587             nan     0.0010    0.0003
##    260        1.1477             nan     0.0010    0.0003
##    280        1.1373             nan     0.0010    0.0002
##    300        1.1269             nan     0.0010    0.0002
##    320        1.1169             nan     0.0010    0.0002
##    340        1.1072             nan     0.0010    0.0002
##    360        1.0976             nan     0.0010    0.0002
##    380        1.0885             nan     0.0010    0.0002
##    400        1.0794             nan     0.0010    0.0002
##    420        1.0706             nan     0.0010    0.0002
##    440        1.0622             nan     0.0010    0.0002
##    460        1.0537             nan     0.0010    0.0001
##    480        1.0455             nan     0.0010    0.0002
##    500        1.0376             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3180             nan     0.0010    0.0003
##      5        1.3172             nan     0.0010    0.0004
##      6        1.3163             nan     0.0010    0.0004
##      7        1.3155             nan     0.0010    0.0003
##      8        1.3146             nan     0.0010    0.0004
##      9        1.3138             nan     0.0010    0.0004
##     10        1.3130             nan     0.0010    0.0004
##     20        1.3052             nan     0.0010    0.0003
##     40        1.2896             nan     0.0010    0.0003
##     60        1.2746             nan     0.0010    0.0003
##     80        1.2603             nan     0.0010    0.0003
##    100        1.2465             nan     0.0010    0.0003
##    120        1.2327             nan     0.0010    0.0003
##    140        1.2199             nan     0.0010    0.0003
##    160        1.2073             nan     0.0010    0.0003
##    180        1.1950             nan     0.0010    0.0003
##    200        1.1832             nan     0.0010    0.0002
##    220        1.1716             nan     0.0010    0.0002
##    240        1.1602             nan     0.0010    0.0002
##    260        1.1493             nan     0.0010    0.0002
##    280        1.1388             nan     0.0010    0.0002
##    300        1.1285             nan     0.0010    0.0002
##    320        1.1186             nan     0.0010    0.0002
##    340        1.1091             nan     0.0010    0.0002
##    360        1.0997             nan     0.0010    0.0002
##    380        1.0904             nan     0.0010    0.0002
##    400        1.0815             nan     0.0010    0.0002
##    420        1.0728             nan     0.0010    0.0002
##    440        1.0642             nan     0.0010    0.0002
##    460        1.0559             nan     0.0010    0.0002
##    480        1.0477             nan     0.0010    0.0002
##    500        1.0396             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3125             nan     0.0010    0.0004
##     20        1.3039             nan     0.0010    0.0004
##     40        1.2873             nan     0.0010    0.0004
##     60        1.2717             nan     0.0010    0.0004
##     80        1.2561             nan     0.0010    0.0003
##    100        1.2411             nan     0.0010    0.0003
##    120        1.2268             nan     0.0010    0.0003
##    140        1.2133             nan     0.0010    0.0003
##    160        1.1998             nan     0.0010    0.0003
##    180        1.1868             nan     0.0010    0.0003
##    200        1.1738             nan     0.0010    0.0003
##    220        1.1613             nan     0.0010    0.0002
##    240        1.1495             nan     0.0010    0.0003
##    260        1.1379             nan     0.0010    0.0002
##    280        1.1263             nan     0.0010    0.0002
##    300        1.1153             nan     0.0010    0.0002
##    320        1.1044             nan     0.0010    0.0002
##    340        1.0938             nan     0.0010    0.0002
##    360        1.0838             nan     0.0010    0.0002
##    380        1.0739             nan     0.0010    0.0002
##    400        1.0641             nan     0.0010    0.0002
##    420        1.0548             nan     0.0010    0.0002
##    440        1.0456             nan     0.0010    0.0002
##    460        1.0364             nan     0.0010    0.0002
##    480        1.0277             nan     0.0010    0.0002
##    500        1.0194             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0003
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3144             nan     0.0010    0.0003
##      9        1.3135             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3040             nan     0.0010    0.0004
##     40        1.2877             nan     0.0010    0.0004
##     60        1.2717             nan     0.0010    0.0004
##     80        1.2565             nan     0.0010    0.0004
##    100        1.2418             nan     0.0010    0.0003
##    120        1.2276             nan     0.0010    0.0003
##    140        1.2135             nan     0.0010    0.0003
##    160        1.1998             nan     0.0010    0.0003
##    180        1.1867             nan     0.0010    0.0002
##    200        1.1739             nan     0.0010    0.0003
##    220        1.1613             nan     0.0010    0.0003
##    240        1.1492             nan     0.0010    0.0002
##    260        1.1376             nan     0.0010    0.0002
##    280        1.1265             nan     0.0010    0.0002
##    300        1.1156             nan     0.0010    0.0002
##    320        1.1048             nan     0.0010    0.0002
##    340        1.0943             nan     0.0010    0.0002
##    360        1.0840             nan     0.0010    0.0002
##    380        1.0741             nan     0.0010    0.0001
##    400        1.0645             nan     0.0010    0.0002
##    420        1.0551             nan     0.0010    0.0002
##    440        1.0461             nan     0.0010    0.0002
##    460        1.0371             nan     0.0010    0.0002
##    480        1.0286             nan     0.0010    0.0002
##    500        1.0201             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0003
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3144             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0003
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3045             nan     0.0010    0.0004
##     40        1.2885             nan     0.0010    0.0003
##     60        1.2725             nan     0.0010    0.0004
##     80        1.2575             nan     0.0010    0.0003
##    100        1.2427             nan     0.0010    0.0003
##    120        1.2286             nan     0.0010    0.0003
##    140        1.2149             nan     0.0010    0.0003
##    160        1.2014             nan     0.0010    0.0003
##    180        1.1883             nan     0.0010    0.0003
##    200        1.1756             nan     0.0010    0.0003
##    220        1.1635             nan     0.0010    0.0003
##    240        1.1516             nan     0.0010    0.0003
##    260        1.1401             nan     0.0010    0.0002
##    280        1.1289             nan     0.0010    0.0002
##    300        1.1182             nan     0.0010    0.0002
##    320        1.1077             nan     0.0010    0.0002
##    340        1.0973             nan     0.0010    0.0002
##    360        1.0873             nan     0.0010    0.0002
##    380        1.0775             nan     0.0010    0.0002
##    400        1.0679             nan     0.0010    0.0002
##    420        1.0589             nan     0.0010    0.0002
##    440        1.0500             nan     0.0010    0.0002
##    460        1.0412             nan     0.0010    0.0002
##    480        1.0325             nan     0.0010    0.0002
##    500        1.0244             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2854             nan     0.0010    0.0004
##     60        1.2685             nan     0.0010    0.0003
##     80        1.2524             nan     0.0010    0.0004
##    100        1.2369             nan     0.0010    0.0002
##    120        1.2219             nan     0.0010    0.0003
##    140        1.2071             nan     0.0010    0.0004
##    160        1.1929             nan     0.0010    0.0003
##    180        1.1791             nan     0.0010    0.0003
##    200        1.1654             nan     0.0010    0.0003
##    220        1.1524             nan     0.0010    0.0003
##    240        1.1399             nan     0.0010    0.0002
##    260        1.1277             nan     0.0010    0.0003
##    280        1.1158             nan     0.0010    0.0003
##    300        1.1043             nan     0.0010    0.0002
##    320        1.0932             nan     0.0010    0.0002
##    340        1.0823             nan     0.0010    0.0002
##    360        1.0716             nan     0.0010    0.0002
##    380        1.0614             nan     0.0010    0.0002
##    400        1.0516             nan     0.0010    0.0002
##    420        1.0420             nan     0.0010    0.0002
##    440        1.0325             nan     0.0010    0.0002
##    460        1.0233             nan     0.0010    0.0002
##    480        1.0144             nan     0.0010    0.0002
##    500        1.0056             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3149             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2866             nan     0.0010    0.0004
##     60        1.2701             nan     0.0010    0.0003
##     80        1.2543             nan     0.0010    0.0004
##    100        1.2387             nan     0.0010    0.0004
##    120        1.2236             nan     0.0010    0.0003
##    140        1.2093             nan     0.0010    0.0003
##    160        1.1953             nan     0.0010    0.0003
##    180        1.1819             nan     0.0010    0.0003
##    200        1.1685             nan     0.0010    0.0003
##    220        1.1558             nan     0.0010    0.0003
##    240        1.1435             nan     0.0010    0.0002
##    260        1.1313             nan     0.0010    0.0003
##    280        1.1193             nan     0.0010    0.0002
##    300        1.1079             nan     0.0010    0.0003
##    320        1.0966             nan     0.0010    0.0002
##    340        1.0857             nan     0.0010    0.0002
##    360        1.0751             nan     0.0010    0.0002
##    380        1.0646             nan     0.0010    0.0002
##    400        1.0545             nan     0.0010    0.0002
##    420        1.0449             nan     0.0010    0.0002
##    440        1.0356             nan     0.0010    0.0002
##    460        1.0265             nan     0.0010    0.0002
##    480        1.0174             nan     0.0010    0.0002
##    500        1.0089             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3176             nan     0.0010    0.0004
##      5        1.3168             nan     0.0010    0.0003
##      6        1.3158             nan     0.0010    0.0004
##      7        1.3150             nan     0.0010    0.0004
##      8        1.3141             nan     0.0010    0.0004
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0004
##     40        1.2866             nan     0.0010    0.0003
##     60        1.2705             nan     0.0010    0.0003
##     80        1.2547             nan     0.0010    0.0004
##    100        1.2391             nan     0.0010    0.0003
##    120        1.2245             nan     0.0010    0.0003
##    140        1.2102             nan     0.0010    0.0003
##    160        1.1963             nan     0.0010    0.0003
##    180        1.1826             nan     0.0010    0.0003
##    200        1.1697             nan     0.0010    0.0003
##    220        1.1569             nan     0.0010    0.0003
##    240        1.1447             nan     0.0010    0.0003
##    260        1.1327             nan     0.0010    0.0002
##    280        1.1210             nan     0.0010    0.0002
##    300        1.1097             nan     0.0010    0.0002
##    320        1.0983             nan     0.0010    0.0002
##    340        1.0879             nan     0.0010    0.0002
##    360        1.0774             nan     0.0010    0.0002
##    380        1.0674             nan     0.0010    0.0002
##    400        1.0577             nan     0.0010    0.0002
##    420        1.0482             nan     0.0010    0.0002
##    440        1.0388             nan     0.0010    0.0002
##    460        1.0298             nan     0.0010    0.0002
##    480        1.0209             nan     0.0010    0.0002
##    500        1.0122             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0040
##      2        1.3058             nan     0.0100    0.0035
##      3        1.2981             nan     0.0100    0.0036
##      4        1.2909             nan     0.0100    0.0035
##      5        1.2828             nan     0.0100    0.0038
##      6        1.2751             nan     0.0100    0.0036
##      7        1.2676             nan     0.0100    0.0032
##      8        1.2602             nan     0.0100    0.0031
##      9        1.2529             nan     0.0100    0.0032
##     10        1.2461             nan     0.0100    0.0034
##     20        1.1825             nan     0.0100    0.0027
##     40        1.0784             nan     0.0100    0.0020
##     60        0.9985             nan     0.0100    0.0009
##     80        0.9356             nan     0.0100    0.0013
##    100        0.8828             nan     0.0100    0.0009
##    120        0.8422             nan     0.0100    0.0008
##    140        0.8077             nan     0.0100    0.0004
##    160        0.7789             nan     0.0100    0.0005
##    180        0.7543             nan     0.0100    0.0004
##    200        0.7315             nan     0.0100    0.0005
##    220        0.7119             nan     0.0100    0.0002
##    240        0.6945             nan     0.0100    0.0001
##    260        0.6798             nan     0.0100    0.0001
##    280        0.6655             nan     0.0100    0.0001
##    300        0.6531             nan     0.0100    0.0001
##    320        0.6415             nan     0.0100    0.0001
##    340        0.6306             nan     0.0100    0.0000
##    360        0.6201             nan     0.0100   -0.0001
##    380        0.6095             nan     0.0100    0.0000
##    400        0.5996             nan     0.0100   -0.0001
##    420        0.5908             nan     0.0100   -0.0000
##    440        0.5823             nan     0.0100   -0.0001
##    460        0.5723             nan     0.0100    0.0002
##    480        0.5633             nan     0.0100    0.0000
##    500        0.5550             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3128             nan     0.0100    0.0041
##      2        1.3045             nan     0.0100    0.0035
##      3        1.2963             nan     0.0100    0.0038
##      4        1.2883             nan     0.0100    0.0032
##      5        1.2803             nan     0.0100    0.0035
##      6        1.2726             nan     0.0100    0.0031
##      7        1.2654             nan     0.0100    0.0031
##      8        1.2576             nan     0.0100    0.0036
##      9        1.2504             nan     0.0100    0.0033
##     10        1.2431             nan     0.0100    0.0033
##     20        1.1802             nan     0.0100    0.0025
##     40        1.0787             nan     0.0100    0.0020
##     60        1.0009             nan     0.0100    0.0017
##     80        0.9394             nan     0.0100    0.0012
##    100        0.8887             nan     0.0100    0.0006
##    120        0.8474             nan     0.0100    0.0007
##    140        0.8131             nan     0.0100    0.0004
##    160        0.7849             nan     0.0100    0.0005
##    180        0.7592             nan     0.0100    0.0003
##    200        0.7361             nan     0.0100    0.0003
##    220        0.7167             nan     0.0100    0.0000
##    240        0.6999             nan     0.0100    0.0001
##    260        0.6843             nan     0.0100    0.0001
##    280        0.6705             nan     0.0100   -0.0000
##    300        0.6588             nan     0.0100    0.0000
##    320        0.6465             nan     0.0100    0.0000
##    340        0.6344             nan     0.0100    0.0001
##    360        0.6239             nan     0.0100   -0.0002
##    380        0.6133             nan     0.0100   -0.0002
##    400        0.6040             nan     0.0100    0.0001
##    420        0.5946             nan     0.0100   -0.0001
##    440        0.5854             nan     0.0100    0.0000
##    460        0.5768             nan     0.0100    0.0001
##    480        0.5687             nan     0.0100    0.0000
##    500        0.5606             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0035
##      2        1.3058             nan     0.0100    0.0033
##      3        1.2978             nan     0.0100    0.0035
##      4        1.2899             nan     0.0100    0.0036
##      5        1.2822             nan     0.0100    0.0034
##      6        1.2747             nan     0.0100    0.0032
##      7        1.2675             nan     0.0100    0.0033
##      8        1.2601             nan     0.0100    0.0034
##      9        1.2529             nan     0.0100    0.0034
##     10        1.2458             nan     0.0100    0.0032
##     20        1.1835             nan     0.0100    0.0027
##     40        1.0820             nan     0.0100    0.0019
##     60        1.0030             nan     0.0100    0.0014
##     80        0.9397             nan     0.0100    0.0010
##    100        0.8890             nan     0.0100    0.0009
##    120        0.8489             nan     0.0100    0.0007
##    140        0.8151             nan     0.0100    0.0003
##    160        0.7861             nan     0.0100    0.0003
##    180        0.7612             nan     0.0100    0.0002
##    200        0.7406             nan     0.0100    0.0003
##    220        0.7234             nan     0.0100   -0.0000
##    240        0.7079             nan     0.0100    0.0001
##    260        0.6935             nan     0.0100   -0.0000
##    280        0.6804             nan     0.0100    0.0000
##    300        0.6676             nan     0.0100    0.0000
##    320        0.6562             nan     0.0100   -0.0001
##    340        0.6449             nan     0.0100    0.0001
##    360        0.6347             nan     0.0100   -0.0001
##    380        0.6235             nan     0.0100   -0.0000
##    400        0.6146             nan     0.0100   -0.0000
##    420        0.6067             nan     0.0100   -0.0002
##    440        0.5974             nan     0.0100    0.0001
##    460        0.5893             nan     0.0100    0.0000
##    480        0.5812             nan     0.0100   -0.0001
##    500        0.5725             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0042
##      2        1.3033             nan     0.0100    0.0037
##      3        1.2941             nan     0.0100    0.0039
##      4        1.2850             nan     0.0100    0.0038
##      5        1.2770             nan     0.0100    0.0033
##      6        1.2689             nan     0.0100    0.0036
##      7        1.2610             nan     0.0100    0.0034
##      8        1.2536             nan     0.0100    0.0037
##      9        1.2460             nan     0.0100    0.0033
##     10        1.2390             nan     0.0100    0.0030
##     20        1.1709             nan     0.0100    0.0031
##     40        1.0632             nan     0.0100    0.0015
##     60        0.9798             nan     0.0100    0.0014
##     80        0.9140             nan     0.0100    0.0011
##    100        0.8617             nan     0.0100    0.0011
##    120        0.8181             nan     0.0100    0.0005
##    140        0.7816             nan     0.0100    0.0005
##    160        0.7507             nan     0.0100    0.0003
##    180        0.7229             nan     0.0100    0.0002
##    200        0.7003             nan     0.0100    0.0002
##    220        0.6793             nan     0.0100   -0.0000
##    240        0.6605             nan     0.0100    0.0002
##    260        0.6436             nan     0.0100   -0.0001
##    280        0.6284             nan     0.0100    0.0002
##    300        0.6128             nan     0.0100    0.0001
##    320        0.5981             nan     0.0100    0.0000
##    340        0.5839             nan     0.0100    0.0001
##    360        0.5717             nan     0.0100    0.0001
##    380        0.5592             nan     0.0100    0.0001
##    400        0.5480             nan     0.0100    0.0001
##    420        0.5363             nan     0.0100    0.0001
##    440        0.5249             nan     0.0100    0.0001
##    460        0.5157             nan     0.0100   -0.0001
##    480        0.5059             nan     0.0100    0.0001
##    500        0.4965             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3119             nan     0.0100    0.0042
##      2        1.3030             nan     0.0100    0.0040
##      3        1.2949             nan     0.0100    0.0037
##      4        1.2873             nan     0.0100    0.0036
##      5        1.2792             nan     0.0100    0.0035
##      6        1.2708             nan     0.0100    0.0036
##      7        1.2634             nan     0.0100    0.0035
##      8        1.2550             nan     0.0100    0.0035
##      9        1.2471             nan     0.0100    0.0032
##     10        1.2397             nan     0.0100    0.0030
##     20        1.1713             nan     0.0100    0.0020
##     40        1.0618             nan     0.0100    0.0020
##     60        0.9801             nan     0.0100    0.0015
##     80        0.9142             nan     0.0100    0.0012
##    100        0.8624             nan     0.0100    0.0008
##    120        0.8204             nan     0.0100    0.0006
##    140        0.7852             nan     0.0100    0.0006
##    160        0.7553             nan     0.0100    0.0004
##    180        0.7309             nan     0.0100    0.0003
##    200        0.7076             nan     0.0100    0.0004
##    220        0.6884             nan     0.0100    0.0002
##    240        0.6692             nan     0.0100    0.0002
##    260        0.6520             nan     0.0100    0.0002
##    280        0.6371             nan     0.0100    0.0000
##    300        0.6227             nan     0.0100   -0.0001
##    320        0.6081             nan     0.0100   -0.0002
##    340        0.5960             nan     0.0100    0.0001
##    360        0.5845             nan     0.0100    0.0000
##    380        0.5729             nan     0.0100    0.0002
##    400        0.5618             nan     0.0100    0.0001
##    420        0.5509             nan     0.0100    0.0001
##    440        0.5405             nan     0.0100    0.0001
##    460        0.5311             nan     0.0100    0.0000
##    480        0.5220             nan     0.0100   -0.0001
##    500        0.5127             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3132             nan     0.0100    0.0035
##      2        1.3047             nan     0.0100    0.0036
##      3        1.2964             nan     0.0100    0.0038
##      4        1.2882             nan     0.0100    0.0036
##      5        1.2800             nan     0.0100    0.0036
##      6        1.2723             nan     0.0100    0.0034
##      7        1.2646             nan     0.0100    0.0035
##      8        1.2568             nan     0.0100    0.0035
##      9        1.2499             nan     0.0100    0.0028
##     10        1.2424             nan     0.0100    0.0032
##     20        1.1744             nan     0.0100    0.0030
##     40        1.0676             nan     0.0100    0.0022
##     60        0.9836             nan     0.0100    0.0014
##     80        0.9198             nan     0.0100    0.0013
##    100        0.8679             nan     0.0100    0.0010
##    120        0.8255             nan     0.0100    0.0004
##    140        0.7913             nan     0.0100    0.0003
##    160        0.7611             nan     0.0100    0.0004
##    180        0.7357             nan     0.0100    0.0001
##    200        0.7131             nan     0.0100    0.0002
##    220        0.6925             nan     0.0100    0.0003
##    240        0.6745             nan     0.0100    0.0002
##    260        0.6594             nan     0.0100   -0.0001
##    280        0.6441             nan     0.0100    0.0001
##    300        0.6302             nan     0.0100   -0.0001
##    320        0.6166             nan     0.0100    0.0002
##    340        0.6037             nan     0.0100   -0.0001
##    360        0.5904             nan     0.0100    0.0000
##    380        0.5788             nan     0.0100   -0.0003
##    400        0.5686             nan     0.0100    0.0000
##    420        0.5590             nan     0.0100    0.0000
##    440        0.5483             nan     0.0100   -0.0001
##    460        0.5387             nan     0.0100   -0.0001
##    480        0.5288             nan     0.0100   -0.0001
##    500        0.5199             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3124             nan     0.0100    0.0041
##      2        1.3036             nan     0.0100    0.0041
##      3        1.2943             nan     0.0100    0.0043
##      4        1.2855             nan     0.0100    0.0044
##      5        1.2761             nan     0.0100    0.0038
##      6        1.2674             nan     0.0100    0.0037
##      7        1.2595             nan     0.0100    0.0033
##      8        1.2515             nan     0.0100    0.0033
##      9        1.2437             nan     0.0100    0.0033
##     10        1.2358             nan     0.0100    0.0036
##     20        1.1634             nan     0.0100    0.0030
##     40        1.0494             nan     0.0100    0.0023
##     60        0.9638             nan     0.0100    0.0017
##     80        0.8956             nan     0.0100    0.0009
##    100        0.8408             nan     0.0100    0.0008
##    120        0.7944             nan     0.0100    0.0009
##    140        0.7577             nan     0.0100    0.0006
##    160        0.7251             nan     0.0100    0.0008
##    180        0.6966             nan     0.0100    0.0003
##    200        0.6715             nan     0.0100    0.0003
##    220        0.6488             nan     0.0100    0.0003
##    240        0.6307             nan     0.0100    0.0001
##    260        0.6124             nan     0.0100    0.0001
##    280        0.5952             nan     0.0100   -0.0001
##    300        0.5800             nan     0.0100    0.0002
##    320        0.5646             nan     0.0100   -0.0001
##    340        0.5496             nan     0.0100    0.0001
##    360        0.5361             nan     0.0100   -0.0000
##    380        0.5224             nan     0.0100    0.0001
##    400        0.5110             nan     0.0100    0.0001
##    420        0.4992             nan     0.0100   -0.0002
##    440        0.4881             nan     0.0100    0.0000
##    460        0.4776             nan     0.0100   -0.0001
##    480        0.4678             nan     0.0100    0.0001
##    500        0.4569             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3128             nan     0.0100    0.0040
##      2        1.3035             nan     0.0100    0.0040
##      3        1.2947             nan     0.0100    0.0040
##      4        1.2862             nan     0.0100    0.0040
##      5        1.2782             nan     0.0100    0.0035
##      6        1.2701             nan     0.0100    0.0036
##      7        1.2616             nan     0.0100    0.0034
##      8        1.2542             nan     0.0100    0.0032
##      9        1.2469             nan     0.0100    0.0030
##     10        1.2394             nan     0.0100    0.0031
##     20        1.1689             nan     0.0100    0.0027
##     40        1.0568             nan     0.0100    0.0022
##     60        0.9702             nan     0.0100    0.0017
##     80        0.9017             nan     0.0100    0.0013
##    100        0.8465             nan     0.0100    0.0010
##    120        0.8015             nan     0.0100    0.0006
##    140        0.7646             nan     0.0100    0.0004
##    160        0.7331             nan     0.0100    0.0005
##    180        0.7055             nan     0.0100    0.0002
##    200        0.6823             nan     0.0100    0.0000
##    220        0.6604             nan     0.0100    0.0001
##    240        0.6413             nan     0.0100    0.0001
##    260        0.6225             nan     0.0100    0.0001
##    280        0.6053             nan     0.0100    0.0002
##    300        0.5880             nan     0.0100    0.0001
##    320        0.5734             nan     0.0100    0.0001
##    340        0.5601             nan     0.0100    0.0001
##    360        0.5478             nan     0.0100    0.0000
##    380        0.5342             nan     0.0100   -0.0001
##    400        0.5215             nan     0.0100    0.0000
##    420        0.5094             nan     0.0100   -0.0000
##    440        0.4975             nan     0.0100   -0.0001
##    460        0.4873             nan     0.0100    0.0000
##    480        0.4769             nan     0.0100   -0.0000
##    500        0.4668             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3126             nan     0.0100    0.0039
##      2        1.3035             nan     0.0100    0.0043
##      3        1.2945             nan     0.0100    0.0037
##      4        1.2863             nan     0.0100    0.0038
##      5        1.2782             nan     0.0100    0.0033
##      6        1.2707             nan     0.0100    0.0038
##      7        1.2628             nan     0.0100    0.0036
##      8        1.2552             nan     0.0100    0.0035
##      9        1.2472             nan     0.0100    0.0036
##     10        1.2396             nan     0.0100    0.0032
##     20        1.1694             nan     0.0100    0.0029
##     40        1.0572             nan     0.0100    0.0019
##     60        0.9715             nan     0.0100    0.0015
##     80        0.9052             nan     0.0100    0.0011
##    100        0.8506             nan     0.0100    0.0010
##    120        0.8042             nan     0.0100    0.0006
##    140        0.7674             nan     0.0100    0.0004
##    160        0.7362             nan     0.0100    0.0004
##    180        0.7091             nan     0.0100    0.0004
##    200        0.6844             nan     0.0100    0.0003
##    220        0.6650             nan     0.0100    0.0001
##    240        0.6458             nan     0.0100    0.0002
##    260        0.6283             nan     0.0100    0.0001
##    280        0.6113             nan     0.0100    0.0001
##    300        0.5962             nan     0.0100    0.0001
##    320        0.5818             nan     0.0100   -0.0001
##    340        0.5685             nan     0.0100   -0.0001
##    360        0.5560             nan     0.0100   -0.0000
##    380        0.5429             nan     0.0100    0.0001
##    400        0.5310             nan     0.0100    0.0001
##    420        0.5194             nan     0.0100   -0.0001
##    440        0.5087             nan     0.0100   -0.0000
##    460        0.4983             nan     0.0100    0.0000
##    480        0.4879             nan     0.0100    0.0000
##    500        0.4791             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2430             nan     0.1000    0.0322
##      2        1.1783             nan     0.1000    0.0294
##      3        1.1196             nan     0.1000    0.0234
##      4        1.0714             nan     0.1000    0.0181
##      5        1.0270             nan     0.1000    0.0167
##      6        0.9869             nan     0.1000    0.0154
##      7        0.9533             nan     0.1000    0.0133
##      8        0.9255             nan     0.1000    0.0124
##      9        0.8998             nan     0.1000    0.0093
##     10        0.8721             nan     0.1000    0.0087
##     20        0.7289             nan     0.1000    0.0011
##     40        0.5906             nan     0.1000   -0.0008
##     60        0.5087             nan     0.1000   -0.0030
##     80        0.4387             nan     0.1000   -0.0005
##    100        0.3835             nan     0.1000   -0.0002
##    120        0.3392             nan     0.1000   -0.0002
##    140        0.3014             nan     0.1000    0.0004
##    160        0.2698             nan     0.1000   -0.0003
##    180        0.2442             nan     0.1000   -0.0000
##    200        0.2232             nan     0.1000   -0.0005
##    220        0.2035             nan     0.1000   -0.0011
##    240        0.1853             nan     0.1000   -0.0008
##    260        0.1693             nan     0.1000    0.0002
##    280        0.1526             nan     0.1000   -0.0002
##    300        0.1387             nan     0.1000   -0.0002
##    320        0.1267             nan     0.1000   -0.0002
##    340        0.1172             nan     0.1000   -0.0003
##    360        0.1074             nan     0.1000   -0.0003
##    380        0.0987             nan     0.1000   -0.0003
##    400        0.0903             nan     0.1000   -0.0002
##    420        0.0834             nan     0.1000   -0.0002
##    440        0.0774             nan     0.1000   -0.0003
##    460        0.0716             nan     0.1000   -0.0000
##    480        0.0662             nan     0.1000   -0.0002
##    500        0.0608             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2474             nan     0.1000    0.0311
##      2        1.1756             nan     0.1000    0.0311
##      3        1.1216             nan     0.1000    0.0232
##      4        1.0760             nan     0.1000    0.0181
##      5        1.0338             nan     0.1000    0.0176
##      6        0.9951             nan     0.1000    0.0178
##      7        0.9656             nan     0.1000    0.0124
##      8        0.9384             nan     0.1000    0.0118
##      9        0.9130             nan     0.1000    0.0099
##     10        0.8900             nan     0.1000    0.0091
##     20        0.7386             nan     0.1000    0.0001
##     40        0.6007             nan     0.1000    0.0000
##     60        0.5187             nan     0.1000    0.0020
##     80        0.4509             nan     0.1000   -0.0021
##    100        0.3968             nan     0.1000   -0.0011
##    120        0.3519             nan     0.1000   -0.0013
##    140        0.3131             nan     0.1000   -0.0012
##    160        0.2819             nan     0.1000   -0.0003
##    180        0.2556             nan     0.1000   -0.0005
##    200        0.2329             nan     0.1000   -0.0010
##    220        0.2119             nan     0.1000   -0.0008
##    240        0.1937             nan     0.1000   -0.0006
##    260        0.1787             nan     0.1000   -0.0004
##    280        0.1632             nan     0.1000   -0.0004
##    300        0.1502             nan     0.1000    0.0000
##    320        0.1368             nan     0.1000   -0.0004
##    340        0.1269             nan     0.1000   -0.0005
##    360        0.1171             nan     0.1000   -0.0001
##    380        0.1076             nan     0.1000   -0.0003
##    400        0.0993             nan     0.1000   -0.0003
##    420        0.0916             nan     0.1000   -0.0004
##    440        0.0846             nan     0.1000   -0.0002
##    460        0.0785             nan     0.1000   -0.0003
##    480        0.0729             nan     0.1000   -0.0002
##    500        0.0667             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2404             nan     0.1000    0.0375
##      2        1.1835             nan     0.1000    0.0263
##      3        1.1284             nan     0.1000    0.0250
##      4        1.0808             nan     0.1000    0.0212
##      5        1.0359             nan     0.1000    0.0188
##      6        1.0014             nan     0.1000    0.0146
##      7        0.9659             nan     0.1000    0.0130
##      8        0.9344             nan     0.1000    0.0115
##      9        0.9069             nan     0.1000    0.0099
##     10        0.8842             nan     0.1000    0.0098
##     20        0.7494             nan     0.1000    0.0009
##     40        0.6168             nan     0.1000   -0.0008
##     60        0.5394             nan     0.1000   -0.0010
##     80        0.4764             nan     0.1000    0.0006
##    100        0.4186             nan     0.1000    0.0002
##    120        0.3735             nan     0.1000   -0.0018
##    140        0.3385             nan     0.1000   -0.0011
##    160        0.3087             nan     0.1000   -0.0014
##    180        0.2773             nan     0.1000   -0.0007
##    200        0.2525             nan     0.1000   -0.0007
##    220        0.2312             nan     0.1000   -0.0012
##    240        0.2100             nan     0.1000   -0.0005
##    260        0.1912             nan     0.1000   -0.0003
##    280        0.1783             nan     0.1000   -0.0001
##    300        0.1640             nan     0.1000   -0.0005
##    320        0.1515             nan     0.1000   -0.0005
##    340        0.1401             nan     0.1000   -0.0003
##    360        0.1293             nan     0.1000   -0.0004
##    380        0.1199             nan     0.1000   -0.0003
##    400        0.1119             nan     0.1000   -0.0006
##    420        0.1042             nan     0.1000   -0.0003
##    440        0.0964             nan     0.1000   -0.0004
##    460        0.0904             nan     0.1000   -0.0003
##    480        0.0839             nan     0.1000   -0.0004
##    500        0.0779             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2329             nan     0.1000    0.0402
##      2        1.1694             nan     0.1000    0.0277
##      3        1.1071             nan     0.1000    0.0289
##      4        1.0575             nan     0.1000    0.0192
##      5        1.0135             nan     0.1000    0.0185
##      6        0.9778             nan     0.1000    0.0151
##      7        0.9469             nan     0.1000    0.0133
##      8        0.9123             nan     0.1000    0.0142
##      9        0.8875             nan     0.1000    0.0106
##     10        0.8642             nan     0.1000    0.0070
##     20        0.7020             nan     0.1000    0.0035
##     40        0.5641             nan     0.1000   -0.0018
##     60        0.4714             nan     0.1000   -0.0004
##     80        0.3974             nan     0.1000    0.0009
##    100        0.3357             nan     0.1000   -0.0011
##    120        0.2888             nan     0.1000   -0.0008
##    140        0.2523             nan     0.1000    0.0002
##    160        0.2221             nan     0.1000    0.0002
##    180        0.1926             nan     0.1000   -0.0002
##    200        0.1729             nan     0.1000   -0.0004
##    220        0.1534             nan     0.1000   -0.0002
##    240        0.1351             nan     0.1000   -0.0003
##    260        0.1203             nan     0.1000   -0.0002
##    280        0.1072             nan     0.1000   -0.0001
##    300        0.0968             nan     0.1000   -0.0004
##    320        0.0873             nan     0.1000   -0.0002
##    340        0.0787             nan     0.1000   -0.0003
##    360        0.0711             nan     0.1000   -0.0001
##    380        0.0638             nan     0.1000   -0.0002
##    400        0.0567             nan     0.1000   -0.0000
##    420        0.0513             nan     0.1000   -0.0002
##    440        0.0466             nan     0.1000   -0.0000
##    460        0.0422             nan     0.1000   -0.0001
##    480        0.0381             nan     0.1000    0.0000
##    500        0.0348             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2448             nan     0.1000    0.0325
##      2        1.1704             nan     0.1000    0.0300
##      3        1.1201             nan     0.1000    0.0194
##      4        1.0692             nan     0.1000    0.0216
##      5        1.0304             nan     0.1000    0.0162
##      6        0.9903             nan     0.1000    0.0131
##      7        0.9538             nan     0.1000    0.0167
##      8        0.9197             nan     0.1000    0.0160
##      9        0.8927             nan     0.1000    0.0103
##     10        0.8669             nan     0.1000    0.0094
##     20        0.7106             nan     0.1000    0.0008
##     40        0.5655             nan     0.1000   -0.0001
##     60        0.4657             nan     0.1000   -0.0007
##     80        0.3965             nan     0.1000   -0.0002
##    100        0.3370             nan     0.1000   -0.0006
##    120        0.2972             nan     0.1000   -0.0006
##    140        0.2626             nan     0.1000   -0.0005
##    160        0.2303             nan     0.1000   -0.0006
##    180        0.2024             nan     0.1000   -0.0004
##    200        0.1777             nan     0.1000   -0.0005
##    220        0.1572             nan     0.1000   -0.0005
##    240        0.1403             nan     0.1000   -0.0003
##    260        0.1252             nan     0.1000   -0.0005
##    280        0.1129             nan     0.1000    0.0002
##    300        0.1008             nan     0.1000   -0.0002
##    320        0.0901             nan     0.1000   -0.0002
##    340        0.0803             nan     0.1000   -0.0001
##    360        0.0729             nan     0.1000   -0.0002
##    380        0.0659             nan     0.1000   -0.0001
##    400        0.0597             nan     0.1000   -0.0003
##    420        0.0535             nan     0.1000   -0.0002
##    440        0.0483             nan     0.1000   -0.0001
##    460        0.0437             nan     0.1000   -0.0000
##    480        0.0401             nan     0.1000   -0.0002
##    500        0.0365             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2386             nan     0.1000    0.0349
##      2        1.1708             nan     0.1000    0.0269
##      3        1.1139             nan     0.1000    0.0246
##      4        1.0664             nan     0.1000    0.0206
##      5        1.0261             nan     0.1000    0.0157
##      6        0.9880             nan     0.1000    0.0166
##      7        0.9530             nan     0.1000    0.0113
##      8        0.9240             nan     0.1000    0.0113
##      9        0.8994             nan     0.1000    0.0082
##     10        0.8723             nan     0.1000    0.0098
##     20        0.7191             nan     0.1000    0.0027
##     40        0.5788             nan     0.1000   -0.0023
##     60        0.4854             nan     0.1000    0.0000
##     80        0.4140             nan     0.1000   -0.0003
##    100        0.3602             nan     0.1000   -0.0008
##    120        0.3159             nan     0.1000   -0.0010
##    140        0.2772             nan     0.1000   -0.0002
##    160        0.2470             nan     0.1000   -0.0006
##    180        0.2216             nan     0.1000   -0.0006
##    200        0.1973             nan     0.1000   -0.0011
##    220        0.1744             nan     0.1000   -0.0005
##    240        0.1562             nan     0.1000   -0.0006
##    260        0.1403             nan     0.1000   -0.0005
##    280        0.1262             nan     0.1000   -0.0002
##    300        0.1133             nan     0.1000   -0.0003
##    320        0.1013             nan     0.1000   -0.0006
##    340        0.0909             nan     0.1000   -0.0004
##    360        0.0821             nan     0.1000   -0.0002
##    380        0.0749             nan     0.1000   -0.0002
##    400        0.0690             nan     0.1000   -0.0000
##    420        0.0623             nan     0.1000   -0.0001
##    440        0.0569             nan     0.1000   -0.0002
##    460        0.0521             nan     0.1000   -0.0002
##    480        0.0479             nan     0.1000   -0.0002
##    500        0.0428             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2319             nan     0.1000    0.0381
##      2        1.1542             nan     0.1000    0.0324
##      3        1.0940             nan     0.1000    0.0264
##      4        1.0400             nan     0.1000    0.0220
##      5        0.9941             nan     0.1000    0.0208
##      6        0.9589             nan     0.1000    0.0134
##      7        0.9242             nan     0.1000    0.0104
##      8        0.8892             nan     0.1000    0.0120
##      9        0.8623             nan     0.1000    0.0116
##     10        0.8344             nan     0.1000    0.0104
##     20        0.6655             nan     0.1000    0.0045
##     40        0.5015             nan     0.1000   -0.0001
##     60        0.4072             nan     0.1000   -0.0001
##     80        0.3404             nan     0.1000    0.0002
##    100        0.2878             nan     0.1000   -0.0016
##    120        0.2409             nan     0.1000   -0.0009
##    140        0.2027             nan     0.1000   -0.0008
##    160        0.1721             nan     0.1000   -0.0003
##    180        0.1495             nan     0.1000   -0.0002
##    200        0.1290             nan     0.1000   -0.0002
##    220        0.1117             nan     0.1000   -0.0002
##    240        0.0982             nan     0.1000   -0.0002
##    260        0.0849             nan     0.1000   -0.0002
##    280        0.0742             nan     0.1000   -0.0002
##    300        0.0653             nan     0.1000    0.0000
##    320        0.0567             nan     0.1000   -0.0001
##    340        0.0502             nan     0.1000   -0.0002
##    360        0.0441             nan     0.1000    0.0000
##    380        0.0389             nan     0.1000   -0.0001
##    400        0.0337             nan     0.1000   -0.0001
##    420        0.0297             nan     0.1000   -0.0000
##    440        0.0260             nan     0.1000   -0.0001
##    460        0.0230             nan     0.1000   -0.0001
##    480        0.0202             nan     0.1000   -0.0000
##    500        0.0177             nan     0.1000    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2287             nan     0.1000    0.0386
##      2        1.1565             nan     0.1000    0.0321
##      3        1.0975             nan     0.1000    0.0233
##      4        1.0476             nan     0.1000    0.0205
##      5        0.9977             nan     0.1000    0.0218
##      6        0.9607             nan     0.1000    0.0158
##      7        0.9241             nan     0.1000    0.0161
##      8        0.8938             nan     0.1000    0.0098
##      9        0.8648             nan     0.1000    0.0105
##     10        0.8407             nan     0.1000    0.0087
##     20        0.6769             nan     0.1000    0.0010
##     40        0.5284             nan     0.1000   -0.0007
##     60        0.4306             nan     0.1000   -0.0011
##     80        0.3524             nan     0.1000   -0.0004
##    100        0.3006             nan     0.1000   -0.0011
##    120        0.2496             nan     0.1000   -0.0007
##    140        0.2133             nan     0.1000   -0.0005
##    160        0.1831             nan     0.1000   -0.0011
##    180        0.1603             nan     0.1000   -0.0005
##    200        0.1386             nan     0.1000   -0.0003
##    220        0.1219             nan     0.1000   -0.0005
##    240        0.1051             nan     0.1000   -0.0003
##    260        0.0910             nan     0.1000   -0.0004
##    280        0.0791             nan     0.1000   -0.0003
##    300        0.0691             nan     0.1000   -0.0004
##    320        0.0613             nan     0.1000   -0.0002
##    340        0.0546             nan     0.1000   -0.0003
##    360        0.0478             nan     0.1000   -0.0002
##    380        0.0423             nan     0.1000   -0.0001
##    400        0.0380             nan     0.1000   -0.0001
##    420        0.0335             nan     0.1000   -0.0000
##    440        0.0299             nan     0.1000   -0.0002
##    460        0.0266             nan     0.1000   -0.0000
##    480        0.0238             nan     0.1000   -0.0000
##    500        0.0211             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2481             nan     0.1000    0.0321
##      2        1.1782             nan     0.1000    0.0301
##      3        1.1144             nan     0.1000    0.0300
##      4        1.0608             nan     0.1000    0.0248
##      5        1.0125             nan     0.1000    0.0202
##      6        0.9754             nan     0.1000    0.0142
##      7        0.9393             nan     0.1000    0.0144
##      8        0.9074             nan     0.1000    0.0114
##      9        0.8798             nan     0.1000    0.0108
##     10        0.8564             nan     0.1000    0.0083
##     20        0.6899             nan     0.1000    0.0027
##     40        0.5384             nan     0.1000   -0.0006
##     60        0.4447             nan     0.1000    0.0003
##     80        0.3695             nan     0.1000   -0.0011
##    100        0.3129             nan     0.1000   -0.0006
##    120        0.2667             nan     0.1000   -0.0003
##    140        0.2294             nan     0.1000   -0.0010
##    160        0.1971             nan     0.1000   -0.0004
##    180        0.1712             nan     0.1000   -0.0005
##    200        0.1486             nan     0.1000   -0.0003
##    220        0.1308             nan     0.1000   -0.0003
##    240        0.1156             nan     0.1000   -0.0003
##    260        0.1016             nan     0.1000   -0.0002
##    280        0.0896             nan     0.1000   -0.0004
##    300        0.0802             nan     0.1000   -0.0003
##    320        0.0717             nan     0.1000   -0.0002
##    340        0.0641             nan     0.1000   -0.0002
##    360        0.0566             nan     0.1000   -0.0002
##    380        0.0498             nan     0.1000   -0.0002
##    400        0.0445             nan     0.1000   -0.0001
##    420        0.0393             nan     0.1000   -0.0002
##    440        0.0350             nan     0.1000   -0.0002
##    460        0.0309             nan     0.1000   -0.0001
##    480        0.0278             nan     0.1000   -0.0001
##    500        0.0250             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0003
##      6        1.3159             nan     0.0010    0.0003
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3136             nan     0.0010    0.0003
##     10        1.3128             nan     0.0010    0.0003
##     20        1.3052             nan     0.0010    0.0003
##     40        1.2903             nan     0.0010    0.0003
##     60        1.2756             nan     0.0010    0.0003
##     80        1.2616             nan     0.0010    0.0003
##    100        1.2479             nan     0.0010    0.0003
##    120        1.2347             nan     0.0010    0.0003
##    140        1.2215             nan     0.0010    0.0003
##    160        1.2091             nan     0.0010    0.0003
##    180        1.1968             nan     0.0010    0.0003
##    200        1.1850             nan     0.0010    0.0003
##    220        1.1734             nan     0.0010    0.0002
##    240        1.1621             nan     0.0010    0.0002
##    260        1.1514             nan     0.0010    0.0002
##    280        1.1408             nan     0.0010    0.0002
##    300        1.1306             nan     0.0010    0.0002
##    320        1.1207             nan     0.0010    0.0002
##    340        1.1110             nan     0.0010    0.0002
##    360        1.1011             nan     0.0010    0.0002
##    380        1.0919             nan     0.0010    0.0002
##    400        1.0829             nan     0.0010    0.0002
##    420        1.0740             nan     0.0010    0.0001
##    440        1.0653             nan     0.0010    0.0002
##    460        1.0569             nan     0.0010    0.0002
##    480        1.0490             nan     0.0010    0.0002
##    500        1.0409             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3191             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0003
##      5        1.3167             nan     0.0010    0.0003
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3135             nan     0.0010    0.0003
##     10        1.3128             nan     0.0010    0.0003
##     20        1.3049             nan     0.0010    0.0003
##     40        1.2899             nan     0.0010    0.0003
##     60        1.2753             nan     0.0010    0.0003
##     80        1.2612             nan     0.0010    0.0003
##    100        1.2474             nan     0.0010    0.0003
##    120        1.2342             nan     0.0010    0.0002
##    140        1.2215             nan     0.0010    0.0003
##    160        1.2089             nan     0.0010    0.0003
##    180        1.1969             nan     0.0010    0.0002
##    200        1.1850             nan     0.0010    0.0003
##    220        1.1736             nan     0.0010    0.0002
##    240        1.1627             nan     0.0010    0.0002
##    260        1.1519             nan     0.0010    0.0002
##    280        1.1413             nan     0.0010    0.0003
##    300        1.1310             nan     0.0010    0.0002
##    320        1.1209             nan     0.0010    0.0002
##    340        1.1113             nan     0.0010    0.0002
##    360        1.1016             nan     0.0010    0.0002
##    380        1.0922             nan     0.0010    0.0002
##    400        1.0833             nan     0.0010    0.0002
##    420        1.0746             nan     0.0010    0.0002
##    440        1.0659             nan     0.0010    0.0002
##    460        1.0575             nan     0.0010    0.0002
##    480        1.0494             nan     0.0010    0.0002
##    500        1.0413             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0003
##      3        1.3183             nan     0.0010    0.0003
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3167             nan     0.0010    0.0004
##      6        1.3159             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0003
##      8        1.3143             nan     0.0010    0.0003
##      9        1.3136             nan     0.0010    0.0003
##     10        1.3128             nan     0.0010    0.0004
##     20        1.3051             nan     0.0010    0.0003
##     40        1.2904             nan     0.0010    0.0003
##     60        1.2758             nan     0.0010    0.0003
##     80        1.2619             nan     0.0010    0.0003
##    100        1.2487             nan     0.0010    0.0003
##    120        1.2354             nan     0.0010    0.0002
##    140        1.2226             nan     0.0010    0.0003
##    160        1.2098             nan     0.0010    0.0003
##    180        1.1977             nan     0.0010    0.0003
##    200        1.1859             nan     0.0010    0.0003
##    220        1.1742             nan     0.0010    0.0002
##    240        1.1630             nan     0.0010    0.0003
##    260        1.1523             nan     0.0010    0.0002
##    280        1.1414             nan     0.0010    0.0002
##    300        1.1314             nan     0.0010    0.0002
##    320        1.1213             nan     0.0010    0.0002
##    340        1.1115             nan     0.0010    0.0002
##    360        1.1020             nan     0.0010    0.0002
##    380        1.0928             nan     0.0010    0.0002
##    400        1.0839             nan     0.0010    0.0002
##    420        1.0753             nan     0.0010    0.0002
##    440        1.0667             nan     0.0010    0.0002
##    460        1.0583             nan     0.0010    0.0002
##    480        1.0500             nan     0.0010    0.0002
##    500        1.0421             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0003
##      3        1.3181             nan     0.0010    0.0004
##      4        1.3173             nan     0.0010    0.0004
##      5        1.3164             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0003
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3139             nan     0.0010    0.0004
##      9        1.3131             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0004
##     20        1.3041             nan     0.0010    0.0004
##     40        1.2875             nan     0.0010    0.0003
##     60        1.2719             nan     0.0010    0.0004
##     80        1.2566             nan     0.0010    0.0004
##    100        1.2421             nan     0.0010    0.0003
##    120        1.2278             nan     0.0010    0.0003
##    140        1.2140             nan     0.0010    0.0003
##    160        1.2006             nan     0.0010    0.0003
##    180        1.1875             nan     0.0010    0.0003
##    200        1.1747             nan     0.0010    0.0003
##    220        1.1624             nan     0.0010    0.0003
##    240        1.1502             nan     0.0010    0.0003
##    260        1.1386             nan     0.0010    0.0002
##    280        1.1276             nan     0.0010    0.0002
##    300        1.1168             nan     0.0010    0.0002
##    320        1.1063             nan     0.0010    0.0002
##    340        1.0959             nan     0.0010    0.0002
##    360        1.0858             nan     0.0010    0.0002
##    380        1.0758             nan     0.0010    0.0002
##    400        1.0664             nan     0.0010    0.0002
##    420        1.0571             nan     0.0010    0.0002
##    440        1.0480             nan     0.0010    0.0002
##    460        1.0391             nan     0.0010    0.0002
##    480        1.0301             nan     0.0010    0.0002
##    500        1.0216             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3190             nan     0.0010    0.0003
##      3        1.3182             nan     0.0010    0.0003
##      4        1.3174             nan     0.0010    0.0004
##      5        1.3165             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0004
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3140             nan     0.0010    0.0003
##      9        1.3132             nan     0.0010    0.0004
##     10        1.3123             nan     0.0010    0.0005
##     20        1.3038             nan     0.0010    0.0004
##     40        1.2875             nan     0.0010    0.0004
##     60        1.2718             nan     0.0010    0.0004
##     80        1.2566             nan     0.0010    0.0003
##    100        1.2421             nan     0.0010    0.0003
##    120        1.2279             nan     0.0010    0.0003
##    140        1.2141             nan     0.0010    0.0003
##    160        1.2006             nan     0.0010    0.0003
##    180        1.1873             nan     0.0010    0.0003
##    200        1.1745             nan     0.0010    0.0003
##    220        1.1621             nan     0.0010    0.0002
##    240        1.1501             nan     0.0010    0.0003
##    260        1.1385             nan     0.0010    0.0003
##    280        1.1271             nan     0.0010    0.0002
##    300        1.1161             nan     0.0010    0.0002
##    320        1.1053             nan     0.0010    0.0002
##    340        1.0949             nan     0.0010    0.0002
##    360        1.0849             nan     0.0010    0.0002
##    380        1.0750             nan     0.0010    0.0002
##    400        1.0654             nan     0.0010    0.0002
##    420        1.0560             nan     0.0010    0.0002
##    440        1.0470             nan     0.0010    0.0002
##    460        1.0380             nan     0.0010    0.0002
##    480        1.0294             nan     0.0010    0.0002
##    500        1.0208             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3171             nan     0.0010    0.0004
##      5        1.3162             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3136             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3036             nan     0.0010    0.0004
##     40        1.2874             nan     0.0010    0.0003
##     60        1.2719             nan     0.0010    0.0003
##     80        1.2566             nan     0.0010    0.0003
##    100        1.2419             nan     0.0010    0.0003
##    120        1.2278             nan     0.0010    0.0003
##    140        1.2138             nan     0.0010    0.0003
##    160        1.2004             nan     0.0010    0.0003
##    180        1.1877             nan     0.0010    0.0003
##    200        1.1749             nan     0.0010    0.0002
##    220        1.1631             nan     0.0010    0.0002
##    240        1.1514             nan     0.0010    0.0003
##    260        1.1400             nan     0.0010    0.0002
##    280        1.1285             nan     0.0010    0.0002
##    300        1.1177             nan     0.0010    0.0002
##    320        1.1072             nan     0.0010    0.0002
##    340        1.0971             nan     0.0010    0.0002
##    360        1.0872             nan     0.0010    0.0002
##    380        1.0774             nan     0.0010    0.0002
##    400        1.0679             nan     0.0010    0.0002
##    420        1.0587             nan     0.0010    0.0002
##    440        1.0496             nan     0.0010    0.0002
##    460        1.0406             nan     0.0010    0.0002
##    480        1.0321             nan     0.0010    0.0002
##    500        1.0238             nan     0.0010    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3152             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3133             nan     0.0010    0.0004
##      9        1.3124             nan     0.0010    0.0004
##     10        1.3115             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0004
##     40        1.2856             nan     0.0010    0.0003
##     60        1.2689             nan     0.0010    0.0004
##     80        1.2529             nan     0.0010    0.0003
##    100        1.2377             nan     0.0010    0.0003
##    120        1.2229             nan     0.0010    0.0003
##    140        1.2082             nan     0.0010    0.0003
##    160        1.1942             nan     0.0010    0.0003
##    180        1.1803             nan     0.0010    0.0003
##    200        1.1668             nan     0.0010    0.0003
##    220        1.1538             nan     0.0010    0.0002
##    240        1.1415             nan     0.0010    0.0002
##    260        1.1293             nan     0.0010    0.0002
##    280        1.1175             nan     0.0010    0.0002
##    300        1.1060             nan     0.0010    0.0003
##    320        1.0949             nan     0.0010    0.0002
##    340        1.0842             nan     0.0010    0.0002
##    360        1.0736             nan     0.0010    0.0002
##    380        1.0631             nan     0.0010    0.0002
##    400        1.0531             nan     0.0010    0.0002
##    420        1.0436             nan     0.0010    0.0002
##    440        1.0339             nan     0.0010    0.0002
##    460        1.0245             nan     0.0010    0.0002
##    480        1.0154             nan     0.0010    0.0002
##    500        1.0066             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3179             nan     0.0010    0.0004
##      4        1.3170             nan     0.0010    0.0004
##      5        1.3161             nan     0.0010    0.0004
##      6        1.3153             nan     0.0010    0.0004
##      7        1.3143             nan     0.0010    0.0004
##      8        1.3135             nan     0.0010    0.0003
##      9        1.3126             nan     0.0010    0.0004
##     10        1.3117             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2860             nan     0.0010    0.0004
##     60        1.2693             nan     0.0010    0.0004
##     80        1.2534             nan     0.0010    0.0004
##    100        1.2376             nan     0.0010    0.0003
##    120        1.2228             nan     0.0010    0.0003
##    140        1.2080             nan     0.0010    0.0003
##    160        1.1939             nan     0.0010    0.0003
##    180        1.1805             nan     0.0010    0.0003
##    200        1.1670             nan     0.0010    0.0002
##    220        1.1545             nan     0.0010    0.0003
##    240        1.1421             nan     0.0010    0.0003
##    260        1.1302             nan     0.0010    0.0003
##    280        1.1182             nan     0.0010    0.0003
##    300        1.1070             nan     0.0010    0.0002
##    320        1.0960             nan     0.0010    0.0002
##    340        1.0850             nan     0.0010    0.0002
##    360        1.0746             nan     0.0010    0.0002
##    380        1.0643             nan     0.0010    0.0002
##    400        1.0543             nan     0.0010    0.0002
##    420        1.0448             nan     0.0010    0.0002
##    440        1.0353             nan     0.0010    0.0002
##    460        1.0261             nan     0.0010    0.0002
##    480        1.0170             nan     0.0010    0.0002
##    500        1.0085             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3198             nan     0.0010    0.0004
##      2        1.3189             nan     0.0010    0.0004
##      3        1.3180             nan     0.0010    0.0004
##      4        1.3172             nan     0.0010    0.0004
##      5        1.3163             nan     0.0010    0.0004
##      6        1.3154             nan     0.0010    0.0004
##      7        1.3145             nan     0.0010    0.0004
##      8        1.3137             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3032             nan     0.0010    0.0004
##     40        1.2865             nan     0.0010    0.0003
##     60        1.2699             nan     0.0010    0.0004
##     80        1.2540             nan     0.0010    0.0004
##    100        1.2387             nan     0.0010    0.0003
##    120        1.2243             nan     0.0010    0.0003
##    140        1.2098             nan     0.0010    0.0003
##    160        1.1960             nan     0.0010    0.0002
##    180        1.1825             nan     0.0010    0.0003
##    200        1.1693             nan     0.0010    0.0003
##    220        1.1566             nan     0.0010    0.0003
##    240        1.1443             nan     0.0010    0.0003
##    260        1.1321             nan     0.0010    0.0002
##    280        1.1205             nan     0.0010    0.0002
##    300        1.1090             nan     0.0010    0.0003
##    320        1.0980             nan     0.0010    0.0002
##    340        1.0871             nan     0.0010    0.0002
##    360        1.0767             nan     0.0010    0.0002
##    380        1.0664             nan     0.0010    0.0002
##    400        1.0567             nan     0.0010    0.0002
##    420        1.0472             nan     0.0010    0.0002
##    440        1.0378             nan     0.0010    0.0002
##    460        1.0286             nan     0.0010    0.0002
##    480        1.0196             nan     0.0010    0.0002
##    500        1.0111             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3129             nan     0.0100    0.0037
##      2        1.3053             nan     0.0100    0.0038
##      3        1.2982             nan     0.0100    0.0032
##      4        1.2912             nan     0.0100    0.0026
##      5        1.2842             nan     0.0100    0.0031
##      6        1.2769             nan     0.0100    0.0033
##      7        1.2698             nan     0.0100    0.0031
##      8        1.2629             nan     0.0100    0.0031
##      9        1.2560             nan     0.0100    0.0028
##     10        1.2492             nan     0.0100    0.0031
##     20        1.1872             nan     0.0100    0.0022
##     40        1.0851             nan     0.0100    0.0019
##     60        1.0041             nan     0.0100    0.0013
##     80        0.9406             nan     0.0100    0.0010
##    100        0.8868             nan     0.0100    0.0008
##    120        0.8434             nan     0.0100    0.0008
##    140        0.8083             nan     0.0100    0.0004
##    160        0.7784             nan     0.0100    0.0004
##    180        0.7545             nan     0.0100    0.0004
##    200        0.7322             nan     0.0100    0.0003
##    220        0.7119             nan     0.0100    0.0002
##    240        0.6941             nan     0.0100    0.0002
##    260        0.6788             nan     0.0100    0.0000
##    280        0.6644             nan     0.0100    0.0000
##    300        0.6527             nan     0.0100   -0.0000
##    320        0.6404             nan     0.0100    0.0001
##    340        0.6295             nan     0.0100    0.0001
##    360        0.6184             nan     0.0100    0.0000
##    380        0.6077             nan     0.0100   -0.0001
##    400        0.5971             nan     0.0100    0.0000
##    420        0.5872             nan     0.0100   -0.0000
##    440        0.5786             nan     0.0100   -0.0000
##    460        0.5705             nan     0.0100   -0.0001
##    480        0.5625             nan     0.0100   -0.0001
##    500        0.5549             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0037
##      2        1.3049             nan     0.0100    0.0033
##      3        1.2977             nan     0.0100    0.0030
##      4        1.2904             nan     0.0100    0.0032
##      5        1.2835             nan     0.0100    0.0030
##      6        1.2763             nan     0.0100    0.0033
##      7        1.2697             nan     0.0100    0.0028
##      8        1.2630             nan     0.0100    0.0029
##      9        1.2560             nan     0.0100    0.0031
##     10        1.2491             nan     0.0100    0.0031
##     20        1.1871             nan     0.0100    0.0026
##     40        1.0848             nan     0.0100    0.0020
##     60        1.0054             nan     0.0100    0.0014
##     80        0.9418             nan     0.0100    0.0010
##    100        0.8905             nan     0.0100    0.0011
##    120        0.8474             nan     0.0100    0.0005
##    140        0.8133             nan     0.0100    0.0006
##    160        0.7839             nan     0.0100    0.0004
##    180        0.7594             nan     0.0100    0.0003
##    200        0.7369             nan     0.0100    0.0004
##    220        0.7186             nan     0.0100    0.0002
##    240        0.7023             nan     0.0100    0.0002
##    260        0.6860             nan     0.0100    0.0001
##    280        0.6718             nan     0.0100    0.0001
##    300        0.6584             nan     0.0100    0.0001
##    320        0.6460             nan     0.0100    0.0001
##    340        0.6345             nan     0.0100   -0.0001
##    360        0.6241             nan     0.0100   -0.0000
##    380        0.6127             nan     0.0100   -0.0002
##    400        0.6030             nan     0.0100   -0.0001
##    420        0.5935             nan     0.0100    0.0001
##    440        0.5846             nan     0.0100    0.0000
##    460        0.5752             nan     0.0100    0.0001
##    480        0.5665             nan     0.0100   -0.0001
##    500        0.5588             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3131             nan     0.0100    0.0033
##      2        1.3050             nan     0.0100    0.0034
##      3        1.2982             nan     0.0100    0.0028
##      4        1.2907             nan     0.0100    0.0031
##      5        1.2830             nan     0.0100    0.0033
##      6        1.2763             nan     0.0100    0.0033
##      7        1.2691             nan     0.0100    0.0031
##      8        1.2617             nan     0.0100    0.0030
##      9        1.2547             nan     0.0100    0.0034
##     10        1.2474             nan     0.0100    0.0032
##     20        1.1845             nan     0.0100    0.0023
##     40        1.0842             nan     0.0100    0.0019
##     60        1.0057             nan     0.0100    0.0014
##     80        0.9409             nan     0.0100    0.0011
##    100        0.8900             nan     0.0100    0.0010
##    120        0.8488             nan     0.0100    0.0008
##    140        0.8138             nan     0.0100    0.0006
##    160        0.7846             nan     0.0100    0.0006
##    180        0.7593             nan     0.0100    0.0004
##    200        0.7384             nan     0.0100    0.0003
##    220        0.7197             nan     0.0100    0.0001
##    240        0.7035             nan     0.0100    0.0004
##    260        0.6892             nan     0.0100   -0.0000
##    280        0.6754             nan     0.0100    0.0000
##    300        0.6628             nan     0.0100    0.0000
##    320        0.6511             nan     0.0100   -0.0000
##    340        0.6406             nan     0.0100   -0.0001
##    360        0.6310             nan     0.0100   -0.0002
##    380        0.6215             nan     0.0100    0.0001
##    400        0.6118             nan     0.0100   -0.0000
##    420        0.6030             nan     0.0100   -0.0000
##    440        0.5943             nan     0.0100    0.0001
##    460        0.5871             nan     0.0100   -0.0000
##    480        0.5789             nan     0.0100   -0.0001
##    500        0.5702             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3127             nan     0.0100    0.0032
##      2        1.3046             nan     0.0100    0.0033
##      3        1.2960             nan     0.0100    0.0040
##      4        1.2881             nan     0.0100    0.0037
##      5        1.2798             nan     0.0100    0.0038
##      6        1.2720             nan     0.0100    0.0031
##      7        1.2644             nan     0.0100    0.0033
##      8        1.2570             nan     0.0100    0.0033
##      9        1.2503             nan     0.0100    0.0030
##     10        1.2429             nan     0.0100    0.0028
##     20        1.1748             nan     0.0100    0.0027
##     40        1.0676             nan     0.0100    0.0022
##     60        0.9835             nan     0.0100    0.0014
##     80        0.9155             nan     0.0100    0.0012
##    100        0.8621             nan     0.0100    0.0011
##    120        0.8177             nan     0.0100    0.0003
##    140        0.7814             nan     0.0100    0.0006
##    160        0.7502             nan     0.0100    0.0002
##    180        0.7249             nan     0.0100    0.0001
##    200        0.7006             nan     0.0100    0.0002
##    220        0.6790             nan     0.0100    0.0001
##    240        0.6608             nan     0.0100   -0.0000
##    260        0.6428             nan     0.0100    0.0002
##    280        0.6272             nan     0.0100    0.0001
##    300        0.6130             nan     0.0100   -0.0001
##    320        0.6000             nan     0.0100   -0.0001
##    340        0.5871             nan     0.0100   -0.0001
##    360        0.5743             nan     0.0100   -0.0000
##    380        0.5619             nan     0.0100    0.0001
##    400        0.5503             nan     0.0100   -0.0000
##    420        0.5401             nan     0.0100   -0.0000
##    440        0.5301             nan     0.0100   -0.0001
##    460        0.5206             nan     0.0100    0.0000
##    480        0.5106             nan     0.0100    0.0000
##    500        0.5007             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0040
##      2        1.3035             nan     0.0100    0.0040
##      3        1.2961             nan     0.0100    0.0030
##      4        1.2877             nan     0.0100    0.0036
##      5        1.2796             nan     0.0100    0.0040
##      6        1.2719             nan     0.0100    0.0034
##      7        1.2645             nan     0.0100    0.0031
##      8        1.2570             nan     0.0100    0.0031
##      9        1.2495             nan     0.0100    0.0033
##     10        1.2419             nan     0.0100    0.0033
##     20        1.1750             nan     0.0100    0.0025
##     40        1.0668             nan     0.0100    0.0022
##     60        0.9818             nan     0.0100    0.0015
##     80        0.9161             nan     0.0100    0.0011
##    100        0.8629             nan     0.0100    0.0008
##    120        0.8188             nan     0.0100    0.0007
##    140        0.7832             nan     0.0100    0.0005
##    160        0.7533             nan     0.0100    0.0004
##    180        0.7269             nan     0.0100    0.0003
##    200        0.7042             nan     0.0100    0.0004
##    220        0.6846             nan     0.0100    0.0001
##    240        0.6669             nan     0.0100    0.0001
##    260        0.6507             nan     0.0100    0.0000
##    280        0.6363             nan     0.0100    0.0001
##    300        0.6217             nan     0.0100   -0.0001
##    320        0.6081             nan     0.0100    0.0001
##    340        0.5960             nan     0.0100    0.0001
##    360        0.5835             nan     0.0100    0.0001
##    380        0.5710             nan     0.0100    0.0002
##    400        0.5598             nan     0.0100   -0.0001
##    420        0.5501             nan     0.0100    0.0000
##    440        0.5399             nan     0.0100    0.0001
##    460        0.5295             nan     0.0100    0.0001
##    480        0.5203             nan     0.0100   -0.0000
##    500        0.5113             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0036
##      2        1.3039             nan     0.0100    0.0036
##      3        1.2965             nan     0.0100    0.0029
##      4        1.2886             nan     0.0100    0.0034
##      5        1.2811             nan     0.0100    0.0034
##      6        1.2731             nan     0.0100    0.0035
##      7        1.2661             nan     0.0100    0.0033
##      8        1.2587             nan     0.0100    0.0033
##      9        1.2508             nan     0.0100    0.0032
##     10        1.2428             nan     0.0100    0.0034
##     20        1.1774             nan     0.0100    0.0025
##     40        1.0707             nan     0.0100    0.0016
##     60        0.9871             nan     0.0100    0.0015
##     80        0.9197             nan     0.0100    0.0011
##    100        0.8663             nan     0.0100    0.0010
##    120        0.8235             nan     0.0100    0.0007
##    140        0.7884             nan     0.0100    0.0006
##    160        0.7591             nan     0.0100    0.0005
##    180        0.7324             nan     0.0100    0.0005
##    200        0.7099             nan     0.0100    0.0002
##    220        0.6901             nan     0.0100    0.0001
##    240        0.6716             nan     0.0100    0.0001
##    260        0.6559             nan     0.0100   -0.0001
##    280        0.6408             nan     0.0100   -0.0001
##    300        0.6263             nan     0.0100   -0.0001
##    320        0.6135             nan     0.0100   -0.0001
##    340        0.6011             nan     0.0100   -0.0000
##    360        0.5896             nan     0.0100   -0.0000
##    380        0.5781             nan     0.0100    0.0001
##    400        0.5681             nan     0.0100    0.0001
##    420        0.5564             nan     0.0100   -0.0001
##    440        0.5464             nan     0.0100    0.0000
##    460        0.5374             nan     0.0100   -0.0002
##    480        0.5282             nan     0.0100   -0.0001
##    500        0.5194             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3123             nan     0.0100    0.0037
##      2        1.3033             nan     0.0100    0.0042
##      3        1.2944             nan     0.0100    0.0039
##      4        1.2865             nan     0.0100    0.0035
##      5        1.2782             nan     0.0100    0.0037
##      6        1.2698             nan     0.0100    0.0035
##      7        1.2617             nan     0.0100    0.0035
##      8        1.2541             nan     0.0100    0.0036
##      9        1.2464             nan     0.0100    0.0038
##     10        1.2391             nan     0.0100    0.0031
##     20        1.1684             nan     0.0100    0.0030
##     40        1.0552             nan     0.0100    0.0024
##     60        0.9690             nan     0.0100    0.0015
##     80        0.8983             nan     0.0100    0.0012
##    100        0.8425             nan     0.0100    0.0009
##    120        0.7970             nan     0.0100    0.0005
##    140        0.7580             nan     0.0100    0.0003
##    160        0.7254             nan     0.0100    0.0005
##    180        0.6962             nan     0.0100    0.0002
##    200        0.6707             nan     0.0100    0.0005
##    220        0.6478             nan     0.0100    0.0002
##    240        0.6275             nan     0.0100    0.0001
##    260        0.6095             nan     0.0100   -0.0001
##    280        0.5925             nan     0.0100    0.0002
##    300        0.5766             nan     0.0100    0.0001
##    320        0.5617             nan     0.0100    0.0001
##    340        0.5458             nan     0.0100    0.0000
##    360        0.5333             nan     0.0100    0.0001
##    380        0.5212             nan     0.0100   -0.0000
##    400        0.5104             nan     0.0100    0.0000
##    420        0.4990             nan     0.0100   -0.0001
##    440        0.4877             nan     0.0100    0.0000
##    460        0.4775             nan     0.0100   -0.0000
##    480        0.4673             nan     0.0100   -0.0000
##    500        0.4572             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0038
##      2        1.3028             nan     0.0100    0.0041
##      3        1.2937             nan     0.0100    0.0042
##      4        1.2855             nan     0.0100    0.0034
##      5        1.2771             nan     0.0100    0.0039
##      6        1.2689             nan     0.0100    0.0037
##      7        1.2606             nan     0.0100    0.0036
##      8        1.2535             nan     0.0100    0.0031
##      9        1.2456             nan     0.0100    0.0036
##     10        1.2382             nan     0.0100    0.0035
##     20        1.1663             nan     0.0100    0.0029
##     40        1.0557             nan     0.0100    0.0014
##     60        0.9686             nan     0.0100    0.0015
##     80        0.9006             nan     0.0100    0.0014
##    100        0.8449             nan     0.0100    0.0010
##    120        0.7993             nan     0.0100    0.0005
##    140        0.7619             nan     0.0100    0.0006
##    160        0.7305             nan     0.0100    0.0003
##    180        0.7020             nan     0.0100    0.0004
##    200        0.6758             nan     0.0100    0.0002
##    220        0.6537             nan     0.0100    0.0002
##    240        0.6331             nan     0.0100    0.0001
##    260        0.6146             nan     0.0100    0.0001
##    280        0.5989             nan     0.0100   -0.0001
##    300        0.5829             nan     0.0100    0.0000
##    320        0.5680             nan     0.0100    0.0001
##    340        0.5541             nan     0.0100    0.0000
##    360        0.5408             nan     0.0100    0.0000
##    380        0.5290             nan     0.0100    0.0001
##    400        0.5169             nan     0.0100    0.0002
##    420        0.5059             nan     0.0100   -0.0000
##    440        0.4956             nan     0.0100    0.0000
##    460        0.4854             nan     0.0100   -0.0001
##    480        0.4752             nan     0.0100    0.0001
##    500        0.4656             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0041
##      2        1.3030             nan     0.0100    0.0039
##      3        1.2944             nan     0.0100    0.0038
##      4        1.2860             nan     0.0100    0.0039
##      5        1.2776             nan     0.0100    0.0036
##      6        1.2689             nan     0.0100    0.0037
##      7        1.2605             nan     0.0100    0.0033
##      8        1.2530             nan     0.0100    0.0034
##      9        1.2451             nan     0.0100    0.0033
##     10        1.2373             nan     0.0100    0.0034
##     20        1.1676             nan     0.0100    0.0031
##     40        1.0567             nan     0.0100    0.0020
##     60        0.9705             nan     0.0100    0.0016
##     80        0.9034             nan     0.0100    0.0011
##    100        0.8482             nan     0.0100    0.0007
##    120        0.8034             nan     0.0100    0.0009
##    140        0.7671             nan     0.0100    0.0003
##    160        0.7354             nan     0.0100    0.0003
##    180        0.7082             nan     0.0100    0.0005
##    200        0.6845             nan     0.0100    0.0002
##    220        0.6642             nan     0.0100   -0.0000
##    240        0.6454             nan     0.0100   -0.0001
##    260        0.6260             nan     0.0100    0.0001
##    280        0.6097             nan     0.0100    0.0001
##    300        0.5952             nan     0.0100   -0.0000
##    320        0.5815             nan     0.0100   -0.0000
##    340        0.5681             nan     0.0100   -0.0001
##    360        0.5554             nan     0.0100    0.0001
##    380        0.5430             nan     0.0100    0.0001
##    400        0.5317             nan     0.0100   -0.0001
##    420        0.5211             nan     0.0100   -0.0001
##    440        0.5103             nan     0.0100    0.0001
##    460        0.4997             nan     0.0100   -0.0001
##    480        0.4901             nan     0.0100    0.0001
##    500        0.4802             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2466             nan     0.1000    0.0354
##      2        1.1854             nan     0.1000    0.0283
##      3        1.1298             nan     0.1000    0.0227
##      4        1.0807             nan     0.1000    0.0188
##      5        1.0386             nan     0.1000    0.0189
##      6        1.0004             nan     0.1000    0.0167
##      7        0.9692             nan     0.1000    0.0128
##      8        0.9418             nan     0.1000    0.0094
##      9        0.9145             nan     0.1000    0.0120
##     10        0.8903             nan     0.1000    0.0087
##     20        0.7412             nan     0.1000    0.0024
##     40        0.5997             nan     0.1000    0.0006
##     60        0.5150             nan     0.1000   -0.0003
##     80        0.4588             nan     0.1000   -0.0011
##    100        0.4001             nan     0.1000   -0.0000
##    120        0.3543             nan     0.1000   -0.0002
##    140        0.3152             nan     0.1000   -0.0004
##    160        0.2859             nan     0.1000   -0.0002
##    180        0.2607             nan     0.1000   -0.0008
##    200        0.2362             nan     0.1000   -0.0004
##    220        0.2141             nan     0.1000   -0.0009
##    240        0.1956             nan     0.1000   -0.0003
##    260        0.1780             nan     0.1000   -0.0003
##    280        0.1638             nan     0.1000   -0.0000
##    300        0.1496             nan     0.1000   -0.0005
##    320        0.1382             nan     0.1000   -0.0002
##    340        0.1269             nan     0.1000   -0.0001
##    360        0.1157             nan     0.1000   -0.0000
##    380        0.1071             nan     0.1000   -0.0002
##    400        0.0984             nan     0.1000   -0.0002
##    420        0.0917             nan     0.1000   -0.0003
##    440        0.0840             nan     0.1000   -0.0001
##    460        0.0773             nan     0.1000   -0.0002
##    480        0.0705             nan     0.1000   -0.0001
##    500        0.0652             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2556             nan     0.1000    0.0277
##      2        1.1898             nan     0.1000    0.0282
##      3        1.1409             nan     0.1000    0.0228
##      4        1.0985             nan     0.1000    0.0157
##      5        1.0546             nan     0.1000    0.0185
##      6        1.0180             nan     0.1000    0.0154
##      7        0.9787             nan     0.1000    0.0171
##      8        0.9477             nan     0.1000    0.0086
##      9        0.9202             nan     0.1000    0.0080
##     10        0.8959             nan     0.1000    0.0098
##     20        0.7462             nan     0.1000    0.0042
##     40        0.6104             nan     0.1000   -0.0005
##     60        0.5308             nan     0.1000   -0.0004
##     80        0.4773             nan     0.1000    0.0002
##    100        0.4216             nan     0.1000   -0.0012
##    120        0.3800             nan     0.1000   -0.0008
##    140        0.3397             nan     0.1000   -0.0013
##    160        0.3038             nan     0.1000   -0.0012
##    180        0.2720             nan     0.1000   -0.0000
##    200        0.2502             nan     0.1000   -0.0002
##    220        0.2297             nan     0.1000   -0.0011
##    240        0.2094             nan     0.1000   -0.0004
##    260        0.1903             nan     0.1000   -0.0002
##    280        0.1720             nan     0.1000   -0.0003
##    300        0.1563             nan     0.1000   -0.0004
##    320        0.1444             nan     0.1000   -0.0001
##    340        0.1326             nan     0.1000   -0.0004
##    360        0.1218             nan     0.1000   -0.0006
##    380        0.1125             nan     0.1000   -0.0003
##    400        0.1035             nan     0.1000   -0.0002
##    420        0.0956             nan     0.1000   -0.0004
##    440        0.0878             nan     0.1000   -0.0002
##    460        0.0814             nan     0.1000   -0.0002
##    480        0.0750             nan     0.1000   -0.0001
##    500        0.0697             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2424             nan     0.1000    0.0343
##      2        1.1825             nan     0.1000    0.0304
##      3        1.1262             nan     0.1000    0.0263
##      4        1.0788             nan     0.1000    0.0204
##      5        1.0351             nan     0.1000    0.0196
##      6        0.9972             nan     0.1000    0.0147
##      7        0.9648             nan     0.1000    0.0136
##      8        0.9364             nan     0.1000    0.0105
##      9        0.9098             nan     0.1000    0.0096
##     10        0.8807             nan     0.1000    0.0104
##     20        0.7405             nan     0.1000    0.0048
##     40        0.6121             nan     0.1000    0.0004
##     60        0.5384             nan     0.1000   -0.0012
##     80        0.4721             nan     0.1000   -0.0003
##    100        0.4261             nan     0.1000   -0.0013
##    120        0.3812             nan     0.1000   -0.0013
##    140        0.3509             nan     0.1000   -0.0011
##    160        0.3155             nan     0.1000   -0.0008
##    180        0.2883             nan     0.1000   -0.0007
##    200        0.2603             nan     0.1000   -0.0005
##    220        0.2358             nan     0.1000   -0.0007
##    240        0.2173             nan     0.1000   -0.0008
##    260        0.1980             nan     0.1000   -0.0001
##    280        0.1831             nan     0.1000   -0.0007
##    300        0.1684             nan     0.1000   -0.0007
##    320        0.1543             nan     0.1000   -0.0002
##    340        0.1431             nan     0.1000   -0.0005
##    360        0.1320             nan     0.1000   -0.0003
##    380        0.1229             nan     0.1000   -0.0006
##    400        0.1128             nan     0.1000   -0.0004
##    420        0.1043             nan     0.1000   -0.0003
##    440        0.0961             nan     0.1000   -0.0005
##    460        0.0893             nan     0.1000   -0.0002
##    480        0.0826             nan     0.1000   -0.0004
##    500        0.0771             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2355             nan     0.1000    0.0382
##      2        1.1671             nan     0.1000    0.0307
##      3        1.1082             nan     0.1000    0.0237
##      4        1.0607             nan     0.1000    0.0198
##      5        1.0169             nan     0.1000    0.0172
##      6        0.9773             nan     0.1000    0.0151
##      7        0.9423             nan     0.1000    0.0157
##      8        0.9121             nan     0.1000    0.0103
##      9        0.8836             nan     0.1000    0.0103
##     10        0.8611             nan     0.1000    0.0098
##     20        0.7021             nan     0.1000    0.0009
##     40        0.5599             nan     0.1000   -0.0002
##     60        0.4664             nan     0.1000   -0.0023
##     80        0.3991             nan     0.1000   -0.0007
##    100        0.3429             nan     0.1000   -0.0004
##    120        0.2982             nan     0.1000   -0.0000
##    140        0.2574             nan     0.1000   -0.0008
##    160        0.2247             nan     0.1000   -0.0004
##    180        0.2000             nan     0.1000   -0.0010
##    200        0.1790             nan     0.1000   -0.0004
##    220        0.1599             nan     0.1000    0.0001
##    240        0.1416             nan     0.1000   -0.0003
##    260        0.1261             nan     0.1000   -0.0003
##    280        0.1117             nan     0.1000   -0.0003
##    300        0.1011             nan     0.1000   -0.0005
##    320        0.0919             nan     0.1000   -0.0002
##    340        0.0834             nan     0.1000   -0.0002
##    360        0.0746             nan     0.1000   -0.0003
##    380        0.0676             nan     0.1000   -0.0003
##    400        0.0610             nan     0.1000    0.0000
##    420        0.0550             nan     0.1000   -0.0001
##    440        0.0502             nan     0.1000   -0.0001
##    460        0.0455             nan     0.1000   -0.0001
##    480        0.0414             nan     0.1000   -0.0002
##    500        0.0376             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2318             nan     0.1000    0.0375
##      2        1.1608             nan     0.1000    0.0297
##      3        1.1008             nan     0.1000    0.0243
##      4        1.0490             nan     0.1000    0.0226
##      5        1.0059             nan     0.1000    0.0179
##      6        0.9702             nan     0.1000    0.0154
##      7        0.9412             nan     0.1000    0.0123
##      8        0.9125             nan     0.1000    0.0142
##      9        0.8845             nan     0.1000    0.0112
##     10        0.8614             nan     0.1000    0.0072
##     20        0.7047             nan     0.1000    0.0025
##     40        0.5586             nan     0.1000    0.0002
##     60        0.4706             nan     0.1000   -0.0004
##     80        0.4039             nan     0.1000   -0.0010
##    100        0.3519             nan     0.1000   -0.0015
##    120        0.3087             nan     0.1000   -0.0003
##    140        0.2719             nan     0.1000   -0.0004
##    160        0.2410             nan     0.1000   -0.0013
##    180        0.2130             nan     0.1000   -0.0002
##    200        0.1914             nan     0.1000   -0.0009
##    220        0.1696             nan     0.1000   -0.0001
##    240        0.1518             nan     0.1000   -0.0007
##    260        0.1357             nan     0.1000   -0.0008
##    280        0.1224             nan     0.1000   -0.0002
##    300        0.1095             nan     0.1000   -0.0003
##    320        0.0993             nan     0.1000   -0.0004
##    340        0.0903             nan     0.1000   -0.0005
##    360        0.0806             nan     0.1000   -0.0004
##    380        0.0727             nan     0.1000   -0.0002
##    400        0.0659             nan     0.1000   -0.0002
##    420        0.0593             nan     0.1000   -0.0001
##    440        0.0537             nan     0.1000   -0.0002
##    460        0.0485             nan     0.1000   -0.0001
##    480        0.0441             nan     0.1000   -0.0001
##    500        0.0401             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2324             nan     0.1000    0.0383
##      2        1.1712             nan     0.1000    0.0279
##      3        1.1169             nan     0.1000    0.0223
##      4        1.0650             nan     0.1000    0.0211
##      5        1.0209             nan     0.1000    0.0171
##      6        0.9858             nan     0.1000    0.0141
##      7        0.9496             nan     0.1000    0.0136
##      8        0.9202             nan     0.1000    0.0116
##      9        0.8960             nan     0.1000    0.0089
##     10        0.8674             nan     0.1000    0.0111
##     20        0.7167             nan     0.1000   -0.0005
##     40        0.5779             nan     0.1000    0.0004
##     60        0.4841             nan     0.1000    0.0011
##     80        0.4197             nan     0.1000   -0.0008
##    100        0.3628             nan     0.1000   -0.0007
##    120        0.3223             nan     0.1000   -0.0006
##    140        0.2823             nan     0.1000   -0.0005
##    160        0.2516             nan     0.1000   -0.0002
##    180        0.2248             nan     0.1000   -0.0005
##    200        0.2020             nan     0.1000   -0.0003
##    220        0.1812             nan     0.1000   -0.0014
##    240        0.1638             nan     0.1000   -0.0007
##    260        0.1471             nan     0.1000   -0.0010
##    280        0.1334             nan     0.1000   -0.0003
##    300        0.1198             nan     0.1000    0.0000
##    320        0.1079             nan     0.1000   -0.0002
##    340        0.0976             nan     0.1000   -0.0004
##    360        0.0877             nan     0.1000   -0.0003
##    380        0.0789             nan     0.1000   -0.0002
##    400        0.0720             nan     0.1000   -0.0003
##    420        0.0654             nan     0.1000   -0.0001
##    440        0.0605             nan     0.1000   -0.0002
##    460        0.0545             nan     0.1000   -0.0004
##    480        0.0496             nan     0.1000   -0.0003
##    500        0.0444             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2363             nan     0.1000    0.0409
##      2        1.1652             nan     0.1000    0.0327
##      3        1.0972             nan     0.1000    0.0271
##      4        1.0427             nan     0.1000    0.0212
##      5        1.0008             nan     0.1000    0.0158
##      6        0.9568             nan     0.1000    0.0188
##      7        0.9223             nan     0.1000    0.0129
##      8        0.8917             nan     0.1000    0.0136
##      9        0.8598             nan     0.1000    0.0124
##     10        0.8317             nan     0.1000    0.0112
##     20        0.6667             nan     0.1000   -0.0006
##     40        0.5094             nan     0.1000    0.0014
##     60        0.4112             nan     0.1000   -0.0011
##     80        0.3439             nan     0.1000   -0.0025
##    100        0.2856             nan     0.1000    0.0004
##    120        0.2406             nan     0.1000   -0.0008
##    140        0.2030             nan     0.1000   -0.0002
##    160        0.1754             nan     0.1000   -0.0003
##    180        0.1502             nan     0.1000   -0.0002
##    200        0.1330             nan     0.1000   -0.0003
##    220        0.1155             nan     0.1000   -0.0001
##    240        0.1019             nan     0.1000   -0.0004
##    260        0.0896             nan     0.1000   -0.0002
##    280        0.0793             nan     0.1000   -0.0001
##    300        0.0695             nan     0.1000   -0.0001
##    320        0.0610             nan     0.1000   -0.0002
##    340        0.0553             nan     0.1000   -0.0003
##    360        0.0493             nan     0.1000   -0.0001
##    380        0.0437             nan     0.1000   -0.0000
##    400        0.0384             nan     0.1000    0.0000
##    420        0.0340             nan     0.1000   -0.0001
##    440        0.0301             nan     0.1000   -0.0001
##    460        0.0269             nan     0.1000   -0.0000
##    480        0.0238             nan     0.1000   -0.0001
##    500        0.0216             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2364             nan     0.1000    0.0374
##      2        1.1637             nan     0.1000    0.0330
##      3        1.0991             nan     0.1000    0.0264
##      4        1.0469             nan     0.1000    0.0227
##      5        1.0071             nan     0.1000    0.0168
##      6        0.9695             nan     0.1000    0.0161
##      7        0.9288             nan     0.1000    0.0179
##      8        0.8990             nan     0.1000    0.0133
##      9        0.8727             nan     0.1000    0.0077
##     10        0.8459             nan     0.1000    0.0094
##     20        0.6770             nan     0.1000    0.0000
##     40        0.5317             nan     0.1000    0.0004
##     60        0.4317             nan     0.1000   -0.0002
##     80        0.3538             nan     0.1000   -0.0002
##    100        0.2961             nan     0.1000    0.0003
##    120        0.2544             nan     0.1000   -0.0012
##    140        0.2168             nan     0.1000   -0.0009
##    160        0.1869             nan     0.1000   -0.0005
##    180        0.1601             nan     0.1000   -0.0009
##    200        0.1385             nan     0.1000   -0.0005
##    220        0.1231             nan     0.1000   -0.0003
##    240        0.1085             nan     0.1000   -0.0003
##    260        0.0950             nan     0.1000   -0.0002
##    280        0.0818             nan     0.1000   -0.0001
##    300        0.0728             nan     0.1000   -0.0002
##    320        0.0638             nan     0.1000    0.0000
##    340        0.0571             nan     0.1000   -0.0000
##    360        0.0501             nan     0.1000   -0.0002
##    380        0.0446             nan     0.1000   -0.0002
##    400        0.0399             nan     0.1000   -0.0002
##    420        0.0353             nan     0.1000   -0.0000
##    440        0.0311             nan     0.1000   -0.0000
##    460        0.0280             nan     0.1000    0.0000
##    480        0.0249             nan     0.1000   -0.0000
##    500        0.0220             nan     0.1000   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2326             nan     0.1000    0.0356
##      2        1.1624             nan     0.1000    0.0300
##      3        1.1075             nan     0.1000    0.0259
##      4        1.0542             nan     0.1000    0.0231
##      5        1.0083             nan     0.1000    0.0189
##      6        0.9701             nan     0.1000    0.0160
##      7        0.9377             nan     0.1000    0.0113
##      8        0.9090             nan     0.1000    0.0097
##      9        0.8790             nan     0.1000    0.0110
##     10        0.8520             nan     0.1000    0.0081
##     20        0.6776             nan     0.1000    0.0007
##     40        0.5346             nan     0.1000   -0.0004
##     60        0.4455             nan     0.1000   -0.0002
##     80        0.3646             nan     0.1000   -0.0006
##    100        0.3100             nan     0.1000   -0.0007
##    120        0.2655             nan     0.1000   -0.0006
##    140        0.2278             nan     0.1000   -0.0016
##    160        0.1966             nan     0.1000   -0.0003
##    180        0.1710             nan     0.1000   -0.0004
##    200        0.1521             nan     0.1000    0.0002
##    220        0.1343             nan     0.1000   -0.0002
##    240        0.1197             nan     0.1000   -0.0001
##    260        0.1056             nan     0.1000   -0.0002
##    280        0.0931             nan     0.1000   -0.0003
##    300        0.0823             nan     0.1000   -0.0002
##    320        0.0721             nan     0.1000   -0.0001
##    340        0.0642             nan     0.1000   -0.0002
##    360        0.0568             nan     0.1000   -0.0002
##    380        0.0505             nan     0.1000   -0.0001
##    400        0.0454             nan     0.1000   -0.0002
##    420        0.0407             nan     0.1000   -0.0002
##    440        0.0366             nan     0.1000   -0.0001
##    460        0.0327             nan     0.1000   -0.0002
##    480        0.0291             nan     0.1000   -0.0002
##    500        0.0259             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0003
##      7        1.3155             nan     0.0010    0.0003
##      8        1.3146             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3129             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0004
##     40        1.2891             nan     0.0010    0.0004
##     60        1.2738             nan     0.0010    0.0003
##     80        1.2589             nan     0.0010    0.0004
##    100        1.2442             nan     0.0010    0.0003
##    120        1.2301             nan     0.0010    0.0003
##    140        1.2165             nan     0.0010    0.0003
##    160        1.2033             nan     0.0010    0.0003
##    180        1.1904             nan     0.0010    0.0003
##    200        1.1779             nan     0.0010    0.0003
##    220        1.1660             nan     0.0010    0.0003
##    240        1.1544             nan     0.0010    0.0002
##    260        1.1429             nan     0.0010    0.0002
##    280        1.1318             nan     0.0010    0.0002
##    300        1.1208             nan     0.0010    0.0002
##    320        1.1102             nan     0.0010    0.0002
##    340        1.1004             nan     0.0010    0.0003
##    360        1.0903             nan     0.0010    0.0002
##    380        1.0806             nan     0.0010    0.0002
##    400        1.0710             nan     0.0010    0.0002
##    420        1.0620             nan     0.0010    0.0002
##    440        1.0531             nan     0.0010    0.0002
##    460        1.0445             nan     0.0010    0.0002
##    480        1.0360             nan     0.0010    0.0001
##    500        1.0275             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0003
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0003
##      5        1.3170             nan     0.0010    0.0004
##      6        1.3162             nan     0.0010    0.0004
##      7        1.3154             nan     0.0010    0.0003
##      8        1.3146             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3129             nan     0.0010    0.0003
##     20        1.3049             nan     0.0010    0.0004
##     40        1.2889             nan     0.0010    0.0004
##     60        1.2732             nan     0.0010    0.0003
##     80        1.2584             nan     0.0010    0.0003
##    100        1.2441             nan     0.0010    0.0003
##    120        1.2301             nan     0.0010    0.0003
##    140        1.2167             nan     0.0010    0.0003
##    160        1.2035             nan     0.0010    0.0003
##    180        1.1906             nan     0.0010    0.0003
##    200        1.1785             nan     0.0010    0.0003
##    220        1.1666             nan     0.0010    0.0003
##    240        1.1546             nan     0.0010    0.0002
##    260        1.1433             nan     0.0010    0.0002
##    280        1.1322             nan     0.0010    0.0002
##    300        1.1214             nan     0.0010    0.0002
##    320        1.1109             nan     0.0010    0.0002
##    340        1.1011             nan     0.0010    0.0002
##    360        1.0911             nan     0.0010    0.0003
##    380        1.0813             nan     0.0010    0.0002
##    400        1.0717             nan     0.0010    0.0002
##    420        1.0627             nan     0.0010    0.0002
##    440        1.0537             nan     0.0010    0.0002
##    460        1.0449             nan     0.0010    0.0002
##    480        1.0366             nan     0.0010    0.0002
##    500        1.0285             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0003
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0003
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3153             nan     0.0010    0.0004
##      8        1.3145             nan     0.0010    0.0004
##      9        1.3137             nan     0.0010    0.0004
##     10        1.3129             nan     0.0010    0.0004
##     20        1.3049             nan     0.0010    0.0003
##     40        1.2895             nan     0.0010    0.0004
##     60        1.2746             nan     0.0010    0.0003
##     80        1.2598             nan     0.0010    0.0003
##    100        1.2459             nan     0.0010    0.0003
##    120        1.2320             nan     0.0010    0.0003
##    140        1.2183             nan     0.0010    0.0003
##    160        1.2053             nan     0.0010    0.0003
##    180        1.1925             nan     0.0010    0.0003
##    200        1.1801             nan     0.0010    0.0003
##    220        1.1683             nan     0.0010    0.0002
##    240        1.1567             nan     0.0010    0.0003
##    260        1.1452             nan     0.0010    0.0003
##    280        1.1343             nan     0.0010    0.0003
##    300        1.1233             nan     0.0010    0.0002
##    320        1.1129             nan     0.0010    0.0002
##    340        1.1028             nan     0.0010    0.0002
##    360        1.0927             nan     0.0010    0.0002
##    380        1.0833             nan     0.0010    0.0002
##    400        1.0736             nan     0.0010    0.0002
##    420        1.0645             nan     0.0010    0.0002
##    440        1.0555             nan     0.0010    0.0002
##    460        1.0472             nan     0.0010    0.0002
##    480        1.0388             nan     0.0010    0.0002
##    500        1.0305             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3160             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3144             nan     0.0010    0.0003
##      9        1.3134             nan     0.0010    0.0004
##     10        1.3126             nan     0.0010    0.0004
##     20        1.3038             nan     0.0010    0.0003
##     40        1.2870             nan     0.0010    0.0004
##     60        1.2702             nan     0.0010    0.0004
##     80        1.2541             nan     0.0010    0.0003
##    100        1.2386             nan     0.0010    0.0004
##    120        1.2233             nan     0.0010    0.0003
##    140        1.2091             nan     0.0010    0.0003
##    160        1.1954             nan     0.0010    0.0003
##    180        1.1819             nan     0.0010    0.0003
##    200        1.1688             nan     0.0010    0.0003
##    220        1.1561             nan     0.0010    0.0002
##    240        1.1437             nan     0.0010    0.0002
##    260        1.1317             nan     0.0010    0.0003
##    280        1.1201             nan     0.0010    0.0002
##    300        1.1087             nan     0.0010    0.0002
##    320        1.0977             nan     0.0010    0.0002
##    340        1.0867             nan     0.0010    0.0002
##    360        1.0760             nan     0.0010    0.0002
##    380        1.0659             nan     0.0010    0.0002
##    400        1.0561             nan     0.0010    0.0002
##    420        1.0464             nan     0.0010    0.0002
##    440        1.0370             nan     0.0010    0.0002
##    460        1.0276             nan     0.0010    0.0002
##    480        1.0186             nan     0.0010    0.0002
##    500        1.0100             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3204             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3187             nan     0.0010    0.0004
##      4        1.3177             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3152             nan     0.0010    0.0004
##      8        1.3143             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3037             nan     0.0010    0.0004
##     40        1.2872             nan     0.0010    0.0004
##     60        1.2711             nan     0.0010    0.0004
##     80        1.2553             nan     0.0010    0.0003
##    100        1.2396             nan     0.0010    0.0003
##    120        1.2250             nan     0.0010    0.0003
##    140        1.2108             nan     0.0010    0.0003
##    160        1.1970             nan     0.0010    0.0003
##    180        1.1836             nan     0.0010    0.0003
##    200        1.1704             nan     0.0010    0.0003
##    220        1.1577             nan     0.0010    0.0003
##    240        1.1454             nan     0.0010    0.0003
##    260        1.1336             nan     0.0010    0.0003
##    280        1.1221             nan     0.0010    0.0002
##    300        1.1107             nan     0.0010    0.0002
##    320        1.0995             nan     0.0010    0.0003
##    340        1.0886             nan     0.0010    0.0002
##    360        1.0780             nan     0.0010    0.0002
##    380        1.0679             nan     0.0010    0.0002
##    400        1.0582             nan     0.0010    0.0002
##    420        1.0486             nan     0.0010    0.0002
##    440        1.0390             nan     0.0010    0.0002
##    460        1.0296             nan     0.0010    0.0002
##    480        1.0208             nan     0.0010    0.0002
##    500        1.0122             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0004
##      2        1.3195             nan     0.0010    0.0004
##      3        1.3186             nan     0.0010    0.0004
##      4        1.3178             nan     0.0010    0.0004
##      5        1.3169             nan     0.0010    0.0004
##      6        1.3161             nan     0.0010    0.0004
##      7        1.3151             nan     0.0010    0.0004
##      8        1.3142             nan     0.0010    0.0004
##      9        1.3133             nan     0.0010    0.0004
##     10        1.3124             nan     0.0010    0.0004
##     20        1.3040             nan     0.0010    0.0004
##     40        1.2873             nan     0.0010    0.0004
##     60        1.2716             nan     0.0010    0.0004
##     80        1.2558             nan     0.0010    0.0004
##    100        1.2409             nan     0.0010    0.0003
##    120        1.2265             nan     0.0010    0.0003
##    140        1.2122             nan     0.0010    0.0003
##    160        1.1984             nan     0.0010    0.0003
##    180        1.1849             nan     0.0010    0.0003
##    200        1.1719             nan     0.0010    0.0003
##    220        1.1593             nan     0.0010    0.0002
##    240        1.1470             nan     0.0010    0.0002
##    260        1.1354             nan     0.0010    0.0003
##    280        1.1237             nan     0.0010    0.0003
##    300        1.1127             nan     0.0010    0.0003
##    320        1.1018             nan     0.0010    0.0002
##    340        1.0911             nan     0.0010    0.0002
##    360        1.0807             nan     0.0010    0.0002
##    380        1.0707             nan     0.0010    0.0002
##    400        1.0611             nan     0.0010    0.0002
##    420        1.0516             nan     0.0010    0.0002
##    440        1.0424             nan     0.0010    0.0002
##    460        1.0331             nan     0.0010    0.0002
##    480        1.0244             nan     0.0010    0.0002
##    500        1.0157             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0005
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3156             nan     0.0010    0.0005
##      7        1.3148             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3128             nan     0.0010    0.0004
##     10        1.3119             nan     0.0010    0.0004
##     20        1.3028             nan     0.0010    0.0004
##     40        1.2852             nan     0.0010    0.0004
##     60        1.2682             nan     0.0010    0.0003
##     80        1.2514             nan     0.0010    0.0004
##    100        1.2350             nan     0.0010    0.0003
##    120        1.2196             nan     0.0010    0.0003
##    140        1.2045             nan     0.0010    0.0003
##    160        1.1900             nan     0.0010    0.0003
##    180        1.1757             nan     0.0010    0.0003
##    200        1.1617             nan     0.0010    0.0003
##    220        1.1485             nan     0.0010    0.0003
##    240        1.1356             nan     0.0010    0.0002
##    260        1.1232             nan     0.0010    0.0003
##    280        1.1112             nan     0.0010    0.0003
##    300        1.0995             nan     0.0010    0.0003
##    320        1.0881             nan     0.0010    0.0002
##    340        1.0766             nan     0.0010    0.0002
##    360        1.0657             nan     0.0010    0.0002
##    380        1.0549             nan     0.0010    0.0002
##    400        1.0446             nan     0.0010    0.0002
##    420        1.0343             nan     0.0010    0.0002
##    440        1.0245             nan     0.0010    0.0002
##    460        1.0148             nan     0.0010    0.0002
##    480        1.0054             nan     0.0010    0.0002
##    500        0.9965             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3203             nan     0.0010    0.0005
##      2        1.3194             nan     0.0010    0.0004
##      3        1.3185             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0005
##     20        1.3030             nan     0.0010    0.0004
##     40        1.2856             nan     0.0010    0.0004
##     60        1.2685             nan     0.0010    0.0004
##     80        1.2524             nan     0.0010    0.0003
##    100        1.2362             nan     0.0010    0.0003
##    120        1.2205             nan     0.0010    0.0003
##    140        1.2054             nan     0.0010    0.0003
##    160        1.1911             nan     0.0010    0.0003
##    180        1.1771             nan     0.0010    0.0003
##    200        1.1633             nan     0.0010    0.0002
##    220        1.1500             nan     0.0010    0.0003
##    240        1.1372             nan     0.0010    0.0002
##    260        1.1248             nan     0.0010    0.0003
##    280        1.1125             nan     0.0010    0.0003
##    300        1.1007             nan     0.0010    0.0002
##    320        1.0894             nan     0.0010    0.0003
##    340        1.0785             nan     0.0010    0.0002
##    360        1.0679             nan     0.0010    0.0002
##    380        1.0574             nan     0.0010    0.0002
##    400        1.0470             nan     0.0010    0.0002
##    420        1.0372             nan     0.0010    0.0002
##    440        1.0273             nan     0.0010    0.0002
##    460        1.0179             nan     0.0010    0.0002
##    480        1.0087             nan     0.0010    0.0002
##    500        0.9999             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3202             nan     0.0010    0.0004
##      2        1.3193             nan     0.0010    0.0004
##      3        1.3184             nan     0.0010    0.0004
##      4        1.3175             nan     0.0010    0.0004
##      5        1.3166             nan     0.0010    0.0004
##      6        1.3157             nan     0.0010    0.0004
##      7        1.3147             nan     0.0010    0.0004
##      8        1.3138             nan     0.0010    0.0004
##      9        1.3129             nan     0.0010    0.0004
##     10        1.3120             nan     0.0010    0.0004
##     20        1.3031             nan     0.0010    0.0004
##     40        1.2856             nan     0.0010    0.0004
##     60        1.2691             nan     0.0010    0.0004
##     80        1.2530             nan     0.0010    0.0004
##    100        1.2373             nan     0.0010    0.0003
##    120        1.2222             nan     0.0010    0.0003
##    140        1.2073             nan     0.0010    0.0003
##    160        1.1931             nan     0.0010    0.0003
##    180        1.1792             nan     0.0010    0.0003
##    200        1.1659             nan     0.0010    0.0003
##    220        1.1527             nan     0.0010    0.0003
##    240        1.1399             nan     0.0010    0.0003
##    260        1.1278             nan     0.0010    0.0003
##    280        1.1157             nan     0.0010    0.0003
##    300        1.1040             nan     0.0010    0.0003
##    320        1.0927             nan     0.0010    0.0003
##    340        1.0818             nan     0.0010    0.0003
##    360        1.0710             nan     0.0010    0.0002
##    380        1.0605             nan     0.0010    0.0002
##    400        1.0502             nan     0.0010    0.0002
##    420        1.0407             nan     0.0010    0.0002
##    440        1.0313             nan     0.0010    0.0002
##    460        1.0219             nan     0.0010    0.0002
##    480        1.0128             nan     0.0010    0.0002
##    500        1.0040             nan     0.0010    0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3116             nan     0.0100    0.0043
##      2        1.3038             nan     0.0100    0.0032
##      3        1.2960             nan     0.0100    0.0037
##      4        1.2882             nan     0.0100    0.0037
##      5        1.2800             nan     0.0100    0.0038
##      6        1.2712             nan     0.0100    0.0037
##      7        1.2642             nan     0.0100    0.0030
##      8        1.2566             nan     0.0100    0.0034
##      9        1.2489             nan     0.0100    0.0035
##     10        1.2414             nan     0.0100    0.0031
##     20        1.1747             nan     0.0100    0.0030
##     40        1.0680             nan     0.0100    0.0021
##     60        0.9886             nan     0.0100    0.0013
##     80        0.9256             nan     0.0100    0.0012
##    100        0.8735             nan     0.0100    0.0006
##    120        0.8312             nan     0.0100    0.0007
##    140        0.7958             nan     0.0100    0.0006
##    160        0.7659             nan     0.0100    0.0005
##    180        0.7409             nan     0.0100    0.0002
##    200        0.7194             nan     0.0100    0.0002
##    220        0.6994             nan     0.0100    0.0001
##    240        0.6818             nan     0.0100    0.0002
##    260        0.6650             nan     0.0100    0.0001
##    280        0.6507             nan     0.0100    0.0000
##    300        0.6362             nan     0.0100    0.0000
##    320        0.6234             nan     0.0100   -0.0001
##    340        0.6116             nan     0.0100   -0.0001
##    360        0.6006             nan     0.0100    0.0000
##    380        0.5902             nan     0.0100   -0.0001
##    400        0.5809             nan     0.0100   -0.0000
##    420        0.5711             nan     0.0100   -0.0000
##    440        0.5619             nan     0.0100   -0.0000
##    460        0.5532             nan     0.0100    0.0000
##    480        0.5444             nan     0.0100   -0.0001
##    500        0.5359             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3142             nan     0.0100    0.0032
##      2        1.3058             nan     0.0100    0.0042
##      3        1.2976             nan     0.0100    0.0039
##      4        1.2897             nan     0.0100    0.0034
##      5        1.2819             nan     0.0100    0.0034
##      6        1.2739             nan     0.0100    0.0038
##      7        1.2668             nan     0.0100    0.0032
##      8        1.2599             nan     0.0100    0.0030
##      9        1.2528             nan     0.0100    0.0032
##     10        1.2459             nan     0.0100    0.0031
##     20        1.1825             nan     0.0100    0.0027
##     40        1.0741             nan     0.0100    0.0023
##     60        0.9923             nan     0.0100    0.0013
##     80        0.9289             nan     0.0100    0.0009
##    100        0.8753             nan     0.0100    0.0011
##    120        0.8324             nan     0.0100    0.0006
##    140        0.7982             nan     0.0100    0.0004
##    160        0.7689             nan     0.0100    0.0003
##    180        0.7443             nan     0.0100    0.0002
##    200        0.7225             nan     0.0100    0.0002
##    220        0.7038             nan     0.0100    0.0002
##    240        0.6865             nan     0.0100    0.0002
##    260        0.6703             nan     0.0100   -0.0001
##    280        0.6570             nan     0.0100   -0.0001
##    300        0.6439             nan     0.0100    0.0001
##    320        0.6324             nan     0.0100   -0.0001
##    340        0.6216             nan     0.0100   -0.0002
##    360        0.6104             nan     0.0100    0.0000
##    380        0.6000             nan     0.0100   -0.0001
##    400        0.5910             nan     0.0100   -0.0001
##    420        0.5825             nan     0.0100   -0.0000
##    440        0.5737             nan     0.0100   -0.0000
##    460        0.5642             nan     0.0100   -0.0000
##    480        0.5568             nan     0.0100    0.0001
##    500        0.5494             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3138             nan     0.0100    0.0035
##      2        1.3058             nan     0.0100    0.0034
##      3        1.2981             nan     0.0100    0.0037
##      4        1.2911             nan     0.0100    0.0031
##      5        1.2837             nan     0.0100    0.0036
##      6        1.2762             nan     0.0100    0.0036
##      7        1.2688             nan     0.0100    0.0033
##      8        1.2620             nan     0.0100    0.0032
##      9        1.2549             nan     0.0100    0.0033
##     10        1.2475             nan     0.0100    0.0034
##     20        1.1830             nan     0.0100    0.0026
##     40        1.0737             nan     0.0100    0.0023
##     60        0.9912             nan     0.0100    0.0016
##     80        0.9276             nan     0.0100    0.0010
##    100        0.8743             nan     0.0100    0.0010
##    120        0.8325             nan     0.0100    0.0006
##    140        0.7985             nan     0.0100    0.0005
##    160        0.7699             nan     0.0100    0.0003
##    180        0.7451             nan     0.0100    0.0003
##    200        0.7242             nan     0.0100    0.0001
##    220        0.7056             nan     0.0100    0.0001
##    240        0.6879             nan     0.0100    0.0000
##    260        0.6730             nan     0.0100    0.0001
##    280        0.6592             nan     0.0100   -0.0001
##    300        0.6462             nan     0.0100    0.0001
##    320        0.6341             nan     0.0100    0.0001
##    340        0.6232             nan     0.0100   -0.0001
##    360        0.6134             nan     0.0100   -0.0001
##    380        0.6031             nan     0.0100    0.0000
##    400        0.5951             nan     0.0100   -0.0001
##    420        0.5861             nan     0.0100   -0.0000
##    440        0.5777             nan     0.0100    0.0000
##    460        0.5699             nan     0.0100   -0.0000
##    480        0.5630             nan     0.0100   -0.0000
##    500        0.5551             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0042
##      2        1.3032             nan     0.0100    0.0040
##      3        1.2948             nan     0.0100    0.0034
##      4        1.2861             nan     0.0100    0.0041
##      5        1.2780             nan     0.0100    0.0036
##      6        1.2700             nan     0.0100    0.0032
##      7        1.2617             nan     0.0100    0.0038
##      8        1.2539             nan     0.0100    0.0035
##      9        1.2463             nan     0.0100    0.0031
##     10        1.2390             nan     0.0100    0.0029
##     20        1.1687             nan     0.0100    0.0027
##     40        1.0539             nan     0.0100    0.0021
##     60        0.9694             nan     0.0100    0.0016
##     80        0.9014             nan     0.0100    0.0013
##    100        0.8477             nan     0.0100    0.0010
##    120        0.8017             nan     0.0100    0.0007
##    140        0.7655             nan     0.0100    0.0004
##    160        0.7349             nan     0.0100    0.0003
##    180        0.7088             nan     0.0100    0.0004
##    200        0.6848             nan     0.0100    0.0003
##    220        0.6638             nan     0.0100    0.0001
##    240        0.6451             nan     0.0100    0.0000
##    260        0.6270             nan     0.0100    0.0003
##    280        0.6114             nan     0.0100    0.0001
##    300        0.5973             nan     0.0100   -0.0000
##    320        0.5822             nan     0.0100    0.0000
##    340        0.5687             nan     0.0100   -0.0000
##    360        0.5561             nan     0.0100   -0.0000
##    380        0.5443             nan     0.0100   -0.0002
##    400        0.5336             nan     0.0100   -0.0000
##    420        0.5233             nan     0.0100    0.0001
##    440        0.5130             nan     0.0100    0.0000
##    460        0.5030             nan     0.0100    0.0000
##    480        0.4935             nan     0.0100   -0.0001
##    500        0.4838             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3122             nan     0.0100    0.0040
##      2        1.3033             nan     0.0100    0.0040
##      3        1.2951             nan     0.0100    0.0036
##      4        1.2876             nan     0.0100    0.0034
##      5        1.2791             nan     0.0100    0.0038
##      6        1.2714             nan     0.0100    0.0035
##      7        1.2636             nan     0.0100    0.0033
##      8        1.2556             nan     0.0100    0.0035
##      9        1.2476             nan     0.0100    0.0033
##     10        1.2397             nan     0.0100    0.0036
##     20        1.1702             nan     0.0100    0.0027
##     40        1.0581             nan     0.0100    0.0018
##     60        0.9735             nan     0.0100    0.0015
##     80        0.9068             nan     0.0100    0.0010
##    100        0.8526             nan     0.0100    0.0008
##    120        0.8078             nan     0.0100    0.0008
##    140        0.7710             nan     0.0100    0.0006
##    160        0.7404             nan     0.0100    0.0004
##    180        0.7143             nan     0.0100    0.0004
##    200        0.6920             nan     0.0100    0.0002
##    220        0.6720             nan     0.0100    0.0003
##    240        0.6539             nan     0.0100    0.0001
##    260        0.6367             nan     0.0100    0.0000
##    280        0.6207             nan     0.0100    0.0001
##    300        0.6071             nan     0.0100    0.0002
##    320        0.5941             nan     0.0100    0.0001
##    340        0.5813             nan     0.0100    0.0000
##    360        0.5705             nan     0.0100    0.0000
##    380        0.5586             nan     0.0100    0.0001
##    400        0.5474             nan     0.0100   -0.0000
##    420        0.5372             nan     0.0100   -0.0000
##    440        0.5270             nan     0.0100    0.0000
##    460        0.5174             nan     0.0100   -0.0000
##    480        0.5076             nan     0.0100   -0.0001
##    500        0.4980             nan     0.0100    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0040
##      2        1.3035             nan     0.0100    0.0037
##      3        1.2951             nan     0.0100    0.0034
##      4        1.2873             nan     0.0100    0.0037
##      5        1.2795             nan     0.0100    0.0035
##      6        1.2724             nan     0.0100    0.0031
##      7        1.2645             nan     0.0100    0.0036
##      8        1.2566             nan     0.0100    0.0035
##      9        1.2485             nan     0.0100    0.0038
##     10        1.2407             nan     0.0100    0.0035
##     20        1.1713             nan     0.0100    0.0030
##     40        1.0605             nan     0.0100    0.0021
##     60        0.9725             nan     0.0100    0.0017
##     80        0.9070             nan     0.0100    0.0011
##    100        0.8535             nan     0.0100    0.0008
##    120        0.8103             nan     0.0100    0.0008
##    140        0.7723             nan     0.0100    0.0005
##    160        0.7422             nan     0.0100    0.0004
##    180        0.7172             nan     0.0100    0.0002
##    200        0.6944             nan     0.0100    0.0002
##    220        0.6758             nan     0.0100    0.0001
##    240        0.6588             nan     0.0100   -0.0000
##    260        0.6425             nan     0.0100    0.0001
##    280        0.6271             nan     0.0100    0.0002
##    300        0.6136             nan     0.0100   -0.0001
##    320        0.6012             nan     0.0100    0.0000
##    340        0.5897             nan     0.0100    0.0001
##    360        0.5779             nan     0.0100   -0.0000
##    380        0.5672             nan     0.0100   -0.0000
##    400        0.5569             nan     0.0100   -0.0001
##    420        0.5466             nan     0.0100   -0.0000
##    440        0.5373             nan     0.0100    0.0000
##    460        0.5286             nan     0.0100   -0.0001
##    480        0.5204             nan     0.0100   -0.0001
##    500        0.5114             nan     0.0100   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3114             nan     0.0100    0.0044
##      2        1.3016             nan     0.0100    0.0045
##      3        1.2932             nan     0.0100    0.0038
##      4        1.2849             nan     0.0100    0.0037
##      5        1.2757             nan     0.0100    0.0036
##      6        1.2675             nan     0.0100    0.0038
##      7        1.2588             nan     0.0100    0.0038
##      8        1.2503             nan     0.0100    0.0037
##      9        1.2423             nan     0.0100    0.0035
##     10        1.2344             nan     0.0100    0.0035
##     20        1.1620             nan     0.0100    0.0034
##     40        1.0457             nan     0.0100    0.0018
##     60        0.9544             nan     0.0100    0.0018
##     80        0.8837             nan     0.0100    0.0013
##    100        0.8264             nan     0.0100    0.0006
##    120        0.7797             nan     0.0100    0.0004
##    140        0.7412             nan     0.0100    0.0004
##    160        0.7080             nan     0.0100    0.0005
##    180        0.6801             nan     0.0100    0.0001
##    200        0.6550             nan     0.0100    0.0002
##    220        0.6320             nan     0.0100    0.0003
##    240        0.6109             nan     0.0100    0.0002
##    260        0.5920             nan     0.0100    0.0001
##    280        0.5743             nan     0.0100    0.0000
##    300        0.5579             nan     0.0100   -0.0001
##    320        0.5427             nan     0.0100   -0.0001
##    340        0.5273             nan     0.0100    0.0001
##    360        0.5143             nan     0.0100    0.0000
##    380        0.5018             nan     0.0100    0.0000
##    400        0.4899             nan     0.0100    0.0001
##    420        0.4787             nan     0.0100   -0.0000
##    440        0.4672             nan     0.0100   -0.0000
##    460        0.4570             nan     0.0100    0.0000
##    480        0.4465             nan     0.0100   -0.0000
##    500        0.4369             nan     0.0100    0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3121             nan     0.0100    0.0037
##      2        1.3027             nan     0.0100    0.0043
##      3        1.2931             nan     0.0100    0.0042
##      4        1.2842             nan     0.0100    0.0037
##      5        1.2756             nan     0.0100    0.0041
##      6        1.2672             nan     0.0100    0.0034
##      7        1.2584             nan     0.0100    0.0037
##      8        1.2498             nan     0.0100    0.0041
##      9        1.2423             nan     0.0100    0.0033
##     10        1.2341             nan     0.0100    0.0033
##     20        1.1607             nan     0.0100    0.0031
##     40        1.0444             nan     0.0100    0.0021
##     60        0.9572             nan     0.0100    0.0018
##     80        0.8890             nan     0.0100    0.0014
##    100        0.8336             nan     0.0100    0.0006
##    120        0.7884             nan     0.0100    0.0006
##    140        0.7514             nan     0.0100    0.0004
##    160        0.7196             nan     0.0100    0.0006
##    180        0.6921             nan     0.0100    0.0003
##    200        0.6661             nan     0.0100    0.0002
##    220        0.6446             nan     0.0100    0.0001
##    240        0.6240             nan     0.0100    0.0002
##    260        0.6053             nan     0.0100    0.0001
##    280        0.5890             nan     0.0100   -0.0001
##    300        0.5732             nan     0.0100    0.0001
##    320        0.5583             nan     0.0100    0.0001
##    340        0.5433             nan     0.0100   -0.0001
##    360        0.5305             nan     0.0100   -0.0001
##    380        0.5181             nan     0.0100   -0.0001
##    400        0.5066             nan     0.0100   -0.0000
##    420        0.4958             nan     0.0100   -0.0001
##    440        0.4843             nan     0.0100   -0.0001
##    460        0.4746             nan     0.0100   -0.0000
##    480        0.4641             nan     0.0100    0.0001
##    500        0.4535             nan     0.0100   -0.0000
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.3120             nan     0.0100    0.0041
##      2        1.3031             nan     0.0100    0.0038
##      3        1.2938             nan     0.0100    0.0044
##      4        1.2851             nan     0.0100    0.0038
##      5        1.2770             nan     0.0100    0.0036
##      6        1.2685             nan     0.0100    0.0039
##      7        1.2603             nan     0.0100    0.0034
##      8        1.2515             nan     0.0100    0.0041
##      9        1.2433             nan     0.0100    0.0037
##     10        1.2349             nan     0.0100    0.0037
##     20        1.1622             nan     0.0100    0.0028
##     40        1.0461             nan     0.0100    0.0021
##     60        0.9589             nan     0.0100    0.0013
##     80        0.8892             nan     0.0100    0.0012
##    100        0.8348             nan     0.0100    0.0011
##    120        0.7904             nan     0.0100    0.0008
##    140        0.7533             nan     0.0100    0.0005
##    160        0.7209             nan     0.0100    0.0006
##    180        0.6939             nan     0.0100    0.0003
##    200        0.6704             nan     0.0100    0.0002
##    220        0.6499             nan     0.0100    0.0002
##    240        0.6299             nan     0.0100    0.0002
##    260        0.6132             nan     0.0100    0.0001
##    280        0.5967             nan     0.0100   -0.0000
##    300        0.5803             nan     0.0100    0.0001
##    320        0.5667             nan     0.0100   -0.0000
##    340        0.5538             nan     0.0100    0.0000
##    360        0.5412             nan     0.0100    0.0000
##    380        0.5289             nan     0.0100   -0.0000
##    400        0.5187             nan     0.0100   -0.0000
##    420        0.5079             nan     0.0100   -0.0001
##    440        0.4971             nan     0.0100    0.0000
##    460        0.4867             nan     0.0100    0.0001
##    480        0.4778             nan     0.0100   -0.0002
##    500        0.4683             nan     0.0100   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2432             nan     0.1000    0.0336
##      2        1.1832             nan     0.1000    0.0260
##      3        1.1225             nan     0.1000    0.0251
##      4        1.0738             nan     0.1000    0.0222
##      5        1.0251             nan     0.1000    0.0237
##      6        0.9873             nan     0.1000    0.0149
##      7        0.9565             nan     0.1000    0.0127
##      8        0.9301             nan     0.1000    0.0082
##      9        0.9022             nan     0.1000    0.0113
##     10        0.8770             nan     0.1000    0.0093
##     20        0.7236             nan     0.1000    0.0047
##     40        0.5820             nan     0.1000    0.0002
##     60        0.5024             nan     0.1000   -0.0009
##     80        0.4433             nan     0.1000   -0.0008
##    100        0.3918             nan     0.1000   -0.0006
##    120        0.3489             nan     0.1000   -0.0005
##    140        0.3145             nan     0.1000   -0.0002
##    160        0.2823             nan     0.1000   -0.0003
##    180        0.2515             nan     0.1000   -0.0001
##    200        0.2259             nan     0.1000   -0.0002
##    220        0.2030             nan     0.1000   -0.0001
##    240        0.1849             nan     0.1000   -0.0002
##    260        0.1668             nan     0.1000   -0.0002
##    280        0.1520             nan     0.1000   -0.0006
##    300        0.1375             nan     0.1000   -0.0003
##    320        0.1265             nan     0.1000   -0.0002
##    340        0.1171             nan     0.1000   -0.0005
##    360        0.1084             nan     0.1000   -0.0004
##    380        0.0995             nan     0.1000   -0.0004
##    400        0.0920             nan     0.1000   -0.0002
##    420        0.0852             nan     0.1000   -0.0005
##    440        0.0783             nan     0.1000   -0.0002
##    460        0.0714             nan     0.1000   -0.0001
##    480        0.0653             nan     0.1000    0.0001
##    500        0.0604             nan     0.1000   -0.0003
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2448             nan     0.1000    0.0335
##      2        1.1728             nan     0.1000    0.0304
##      3        1.1139             nan     0.1000    0.0289
##      4        1.0616             nan     0.1000    0.0232
##      5        1.0202             nan     0.1000    0.0155
##      6        0.9832             nan     0.1000    0.0165
##      7        0.9481             nan     0.1000    0.0152
##      8        0.9187             nan     0.1000    0.0128
##      9        0.8900             nan     0.1000    0.0126
##     10        0.8715             nan     0.1000    0.0064
##     20        0.7191             nan     0.1000    0.0032
##     40        0.6004             nan     0.1000    0.0004
##     60        0.5260             nan     0.1000    0.0006
##     80        0.4579             nan     0.1000   -0.0017
##    100        0.4086             nan     0.1000   -0.0001
##    120        0.3613             nan     0.1000   -0.0010
##    140        0.3241             nan     0.1000   -0.0018
##    160        0.2930             nan     0.1000   -0.0007
##    180        0.2645             nan     0.1000   -0.0008
##    200        0.2371             nan     0.1000   -0.0002
##    220        0.2178             nan     0.1000   -0.0009
##    240        0.1964             nan     0.1000   -0.0008
##    260        0.1775             nan     0.1000   -0.0002
##    280        0.1616             nan     0.1000    0.0001
##    300        0.1482             nan     0.1000   -0.0003
##    320        0.1357             nan     0.1000   -0.0003
##    340        0.1250             nan     0.1000   -0.0002
##    360        0.1155             nan     0.1000   -0.0004
##    380        0.1050             nan     0.1000   -0.0003
##    400        0.0967             nan     0.1000   -0.0003
##    420        0.0886             nan     0.1000   -0.0003
##    440        0.0810             nan     0.1000   -0.0003
##    460        0.0745             nan     0.1000   -0.0002
##    480        0.0688             nan     0.1000   -0.0002
##    500        0.0639             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2391             nan     0.1000    0.0330
##      2        1.1805             nan     0.1000    0.0259
##      3        1.1283             nan     0.1000    0.0234
##      4        1.0777             nan     0.1000    0.0195
##      5        1.0300             nan     0.1000    0.0220
##      6        0.9886             nan     0.1000    0.0173
##      7        0.9548             nan     0.1000    0.0136
##      8        0.9266             nan     0.1000    0.0101
##      9        0.9003             nan     0.1000    0.0116
##     10        0.8749             nan     0.1000    0.0113
##     20        0.7291             nan     0.1000    0.0008
##     40        0.6100             nan     0.1000   -0.0009
##     60        0.5254             nan     0.1000   -0.0003
##     80        0.4722             nan     0.1000   -0.0013
##    100        0.4222             nan     0.1000   -0.0004
##    120        0.3757             nan     0.1000   -0.0015
##    140        0.3434             nan     0.1000   -0.0009
##    160        0.3103             nan     0.1000   -0.0003
##    180        0.2817             nan     0.1000   -0.0007
##    200        0.2546             nan     0.1000    0.0001
##    220        0.2308             nan     0.1000   -0.0004
##    240        0.2109             nan     0.1000   -0.0005
##    260        0.1930             nan     0.1000   -0.0005
##    280        0.1780             nan     0.1000   -0.0006
##    300        0.1630             nan     0.1000   -0.0002
##    320        0.1502             nan     0.1000   -0.0002
##    340        0.1388             nan     0.1000   -0.0006
##    360        0.1278             nan     0.1000   -0.0005
##    380        0.1192             nan     0.1000   -0.0005
##    400        0.1099             nan     0.1000   -0.0002
##    420        0.1009             nan     0.1000   -0.0002
##    440        0.0934             nan     0.1000   -0.0001
##    460        0.0861             nan     0.1000   -0.0004
##    480        0.0796             nan     0.1000   -0.0003
##    500        0.0741             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2333             nan     0.1000    0.0386
##      2        1.1692             nan     0.1000    0.0276
##      3        1.1075             nan     0.1000    0.0260
##      4        1.0580             nan     0.1000    0.0213
##      5        1.0118             nan     0.1000    0.0209
##      6        0.9712             nan     0.1000    0.0167
##      7        0.9383             nan     0.1000    0.0113
##      8        0.9082             nan     0.1000    0.0100
##      9        0.8795             nan     0.1000    0.0111
##     10        0.8524             nan     0.1000    0.0116
##     20        0.6876             nan     0.1000    0.0010
##     40        0.5497             nan     0.1000   -0.0014
##     60        0.4523             nan     0.1000   -0.0001
##     80        0.3826             nan     0.1000    0.0003
##    100        0.3275             nan     0.1000   -0.0008
##    120        0.2811             nan     0.1000   -0.0003
##    140        0.2452             nan     0.1000    0.0000
##    160        0.2144             nan     0.1000    0.0000
##    180        0.1864             nan     0.1000   -0.0000
##    200        0.1649             nan     0.1000   -0.0007
##    220        0.1475             nan     0.1000   -0.0002
##    240        0.1314             nan     0.1000   -0.0003
##    260        0.1165             nan     0.1000   -0.0003
##    280        0.1040             nan     0.1000   -0.0001
##    300        0.0935             nan     0.1000   -0.0003
##    320        0.0837             nan     0.1000    0.0000
##    340        0.0752             nan     0.1000   -0.0001
##    360        0.0672             nan     0.1000   -0.0001
##    380        0.0603             nan     0.1000   -0.0002
##    400        0.0553             nan     0.1000   -0.0001
##    420        0.0498             nan     0.1000   -0.0001
##    440        0.0444             nan     0.1000   -0.0001
##    460        0.0404             nan     0.1000   -0.0002
##    480        0.0364             nan     0.1000   -0.0001
##    500        0.0330             nan     0.1000    0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2345             nan     0.1000    0.0346
##      2        1.1623             nan     0.1000    0.0303
##      3        1.1022             nan     0.1000    0.0260
##      4        1.0435             nan     0.1000    0.0229
##      5        0.9938             nan     0.1000    0.0222
##      6        0.9524             nan     0.1000    0.0166
##      7        0.9193             nan     0.1000    0.0130
##      8        0.8871             nan     0.1000    0.0134
##      9        0.8600             nan     0.1000    0.0077
##     10        0.8371             nan     0.1000    0.0077
##     20        0.6800             nan     0.1000    0.0042
##     40        0.5428             nan     0.1000    0.0000
##     60        0.4538             nan     0.1000   -0.0006
##     80        0.3785             nan     0.1000   -0.0008
##    100        0.3270             nan     0.1000   -0.0004
##    120        0.2917             nan     0.1000   -0.0012
##    140        0.2557             nan     0.1000   -0.0011
##    160        0.2242             nan     0.1000   -0.0003
##    180        0.1996             nan     0.1000   -0.0014
##    200        0.1765             nan     0.1000   -0.0006
##    220        0.1589             nan     0.1000   -0.0004
##    240        0.1411             nan     0.1000   -0.0004
##    260        0.1262             nan     0.1000   -0.0003
##    280        0.1122             nan     0.1000   -0.0006
##    300        0.0997             nan     0.1000   -0.0002
##    320        0.0889             nan     0.1000   -0.0005
##    340        0.0807             nan     0.1000    0.0000
##    360        0.0723             nan     0.1000   -0.0003
##    380        0.0657             nan     0.1000   -0.0001
##    400        0.0588             nan     0.1000   -0.0001
##    420        0.0533             nan     0.1000   -0.0002
##    440        0.0482             nan     0.1000   -0.0002
##    460        0.0439             nan     0.1000   -0.0000
##    480        0.0401             nan     0.1000   -0.0001
##    500        0.0365             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2475             nan     0.1000    0.0341
##      2        1.1685             nan     0.1000    0.0345
##      3        1.1105             nan     0.1000    0.0268
##      4        1.0597             nan     0.1000    0.0208
##      5        1.0166             nan     0.1000    0.0209
##      6        0.9775             nan     0.1000    0.0155
##      7        0.9476             nan     0.1000    0.0102
##      8        0.9175             nan     0.1000    0.0107
##      9        0.8897             nan     0.1000    0.0100
##     10        0.8653             nan     0.1000    0.0100
##     20        0.7041             nan     0.1000    0.0028
##     40        0.5632             nan     0.1000    0.0006
##     60        0.4672             nan     0.1000   -0.0010
##     80        0.4073             nan     0.1000    0.0002
##    100        0.3586             nan     0.1000   -0.0007
##    120        0.3133             nan     0.1000   -0.0007
##    140        0.2735             nan     0.1000   -0.0008
##    160        0.2416             nan     0.1000   -0.0003
##    180        0.2166             nan     0.1000   -0.0007
##    200        0.1915             nan     0.1000   -0.0004
##    220        0.1689             nan     0.1000   -0.0006
##    240        0.1514             nan     0.1000   -0.0002
##    260        0.1352             nan     0.1000   -0.0005
##    280        0.1228             nan     0.1000   -0.0004
##    300        0.1097             nan     0.1000   -0.0006
##    320        0.0990             nan     0.1000   -0.0005
##    340        0.0891             nan     0.1000   -0.0002
##    360        0.0805             nan     0.1000   -0.0002
##    380        0.0725             nan     0.1000   -0.0003
##    400        0.0660             nan     0.1000   -0.0003
##    420        0.0599             nan     0.1000   -0.0002
##    440        0.0536             nan     0.1000   -0.0002
##    460        0.0486             nan     0.1000   -0.0001
##    480        0.0443             nan     0.1000   -0.0001
##    500        0.0403             nan     0.1000   -0.0002
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2381             nan     0.1000    0.0410
##      2        1.1672             nan     0.1000    0.0317
##      3        1.1027             nan     0.1000    0.0291
##      4        1.0442             nan     0.1000    0.0248
##      5        0.9980             nan     0.1000    0.0229
##      6        0.9570             nan     0.1000    0.0136
##      7        0.9175             nan     0.1000    0.0149
##      8        0.8893             nan     0.1000    0.0105
##      9        0.8597             nan     0.1000    0.0115
##     10        0.8329             nan     0.1000    0.0074
##     20        0.6609             nan     0.1000    0.0033
##     40        0.4933             nan     0.1000   -0.0002
##     60        0.3999             nan     0.1000   -0.0004
##     80        0.3292             nan     0.1000    0.0007
##    100        0.2711             nan     0.1000   -0.0006
##    120        0.2291             nan     0.1000   -0.0009
##    140        0.1957             nan     0.1000   -0.0005
##    160        0.1684             nan     0.1000   -0.0002
##    180        0.1439             nan     0.1000    0.0001
##    200        0.1264             nan     0.1000   -0.0003
##    220        0.1092             nan     0.1000   -0.0002
##    240        0.0954             nan     0.1000   -0.0003
##    260        0.0838             nan     0.1000   -0.0002
##    280        0.0748             nan     0.1000    0.0001
##    300        0.0662             nan     0.1000   -0.0002
##    320        0.0571             nan     0.1000   -0.0002
##    340        0.0508             nan     0.1000    0.0001
##    360        0.0452             nan     0.1000   -0.0000
##    380        0.0396             nan     0.1000   -0.0000
##    400        0.0351             nan     0.1000    0.0000
##    420        0.0314             nan     0.1000   -0.0001
##    440        0.0279             nan     0.1000   -0.0000
##    460        0.0246             nan     0.1000   -0.0001
##    480        0.0221             nan     0.1000    0.0000
##    500        0.0197             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2324             nan     0.1000    0.0405
##      2        1.1554             nan     0.1000    0.0331
##      3        1.0897             nan     0.1000    0.0298
##      4        1.0326             nan     0.1000    0.0245
##      5        0.9879             nan     0.1000    0.0189
##      6        0.9449             nan     0.1000    0.0177
##      7        0.9059             nan     0.1000    0.0158
##      8        0.8751             nan     0.1000    0.0148
##      9        0.8435             nan     0.1000    0.0112
##     10        0.8181             nan     0.1000    0.0097
##     20        0.6571             nan     0.1000    0.0044
##     40        0.5023             nan     0.1000   -0.0012
##     60        0.4126             nan     0.1000   -0.0007
##     80        0.3326             nan     0.1000   -0.0009
##    100        0.2784             nan     0.1000   -0.0000
##    120        0.2354             nan     0.1000   -0.0011
##    140        0.1981             nan     0.1000   -0.0004
##    160        0.1679             nan     0.1000   -0.0006
##    180        0.1450             nan     0.1000   -0.0004
##    200        0.1242             nan     0.1000   -0.0003
##    220        0.1086             nan     0.1000   -0.0004
##    240        0.0952             nan     0.1000   -0.0001
##    260        0.0826             nan     0.1000   -0.0003
##    280        0.0728             nan     0.1000   -0.0002
##    300        0.0639             nan     0.1000   -0.0002
##    320        0.0564             nan     0.1000   -0.0002
##    340        0.0495             nan     0.1000   -0.0001
##    360        0.0437             nan     0.1000   -0.0002
##    380        0.0390             nan     0.1000   -0.0001
##    400        0.0348             nan     0.1000   -0.0002
##    420        0.0308             nan     0.1000   -0.0001
##    440        0.0270             nan     0.1000   -0.0001
##    460        0.0241             nan     0.1000   -0.0001
##    480        0.0213             nan     0.1000   -0.0001
##    500        0.0189             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2340             nan     0.1000    0.0379
##      2        1.1660             nan     0.1000    0.0339
##      3        1.1029             nan     0.1000    0.0279
##      4        1.0487             nan     0.1000    0.0230
##      5        0.9986             nan     0.1000    0.0190
##      6        0.9566             nan     0.1000    0.0193
##      7        0.9207             nan     0.1000    0.0134
##      8        0.8892             nan     0.1000    0.0104
##      9        0.8597             nan     0.1000    0.0114
##     10        0.8305             nan     0.1000    0.0110
##     20        0.6697             nan     0.1000    0.0026
##     40        0.5193             nan     0.1000    0.0002
##     60        0.4286             nan     0.1000   -0.0018
##     80        0.3600             nan     0.1000   -0.0019
##    100        0.3020             nan     0.1000   -0.0013
##    120        0.2533             nan     0.1000   -0.0007
##    140        0.2152             nan     0.1000   -0.0001
##    160        0.1885             nan     0.1000   -0.0006
##    180        0.1631             nan     0.1000   -0.0004
##    200        0.1424             nan     0.1000   -0.0009
##    220        0.1222             nan     0.1000   -0.0004
##    240        0.1071             nan     0.1000   -0.0003
##    260        0.0943             nan     0.1000   -0.0008
##    280        0.0831             nan     0.1000   -0.0003
##    300        0.0732             nan     0.1000   -0.0003
##    320        0.0640             nan     0.1000   -0.0002
##    340        0.0569             nan     0.1000   -0.0002
##    360        0.0509             nan     0.1000   -0.0002
##    380        0.0449             nan     0.1000   -0.0001
##    400        0.0398             nan     0.1000   -0.0002
##    420        0.0350             nan     0.1000   -0.0001
##    440        0.0312             nan     0.1000   -0.0001
##    460        0.0278             nan     0.1000   -0.0000
##    480        0.0249             nan     0.1000   -0.0001
##    500        0.0225             nan     0.1000   -0.0001
## 
## Iter   TrainDeviance   ValidDeviance   StepSize   Improve
##      1        1.2390             nan     0.1000    0.0358
##      2        1.1744             nan     0.1000    0.0271
##      3        1.1110             nan     0.1000    0.0288
##      4        1.0590             nan     0.1000    0.0239
##      5        1.0149             nan     0.1000    0.0193
##      6        0.9817             nan     0.1000    0.0133
##      7        0.9503             nan     0.1000    0.0135
##      8        0.9206             nan     0.1000    0.0134
##      9        0.8915             nan     0.1000    0.0109
##     10        0.8643             nan     0.1000    0.0113
##     20        0.7128             nan     0.1000    0.0021
##     40        0.5738             nan     0.1000    0.0002
##     60        0.4796             nan     0.1000   -0.0001
##     80        0.4069             nan     0.1000    0.0007
##    100        0.3495             nan     0.1000   -0.0002
##    120        0.3062             nan     0.1000   -0.0005
##    140        0.2678             nan     0.1000   -0.0003
##    160        0.2363             nan     0.1000   -0.0004
##    180        0.2097             nan     0.1000   -0.0001
##    200        0.1871             nan     0.1000   -0.0004
##    220        0.1651             nan     0.1000   -0.0000
##    240        0.1501             nan     0.1000   -0.0003
##    260        0.1321             nan     0.1000   -0.0002
##    280        0.1185             nan     0.1000   -0.0001
##    300        0.1062             nan     0.1000   -0.0003
##    320        0.0968             nan     0.1000    0.0000
##    340        0.0878             nan     0.1000   -0.0001
##    360        0.0795             nan     0.1000   -0.0001
##    380        0.0722             nan     0.1000    0.0000
##    400        0.0656             nan     0.1000   -0.0001
##    420        0.0600             nan     0.1000   -0.0001
##    440        0.0545             nan     0.1000   -0.0001
##    460        0.0495             nan     0.1000    0.0000
##    480        0.0456             nan     0.1000   -0.0002
##    500        0.0410             nan     0.1000    0.0000
##################################
# Reporting the cross-validation results
# for the train set
##################################
MBS_GBM_Tune
## Stochastic Gradient Boosting 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   shrinkage  interaction.depth  n.minobsinnode  ROC        Sens       Spec     
##   0.001      4                   5              0.8855789  0.9562868  0.4994118
##   0.001      4                  10              0.8856134  0.9583799  0.4976471
##   0.001      4                  15              0.8847856  0.9576751  0.5035294
##   0.001      5                   5              0.8905689  0.9555850  0.5411765
##   0.001      5                  10              0.8896630  0.9583768  0.5341176
##   0.001      5                  15              0.8897455  0.9583799  0.5347059
##   0.001      6                   5              0.8949840  0.9580320  0.5570588
##   0.001      6                  10              0.8937728  0.9587216  0.5547059
##   0.001      6                  15              0.8924258  0.9587307  0.5470588
##   0.010      4                   5              0.9123163  0.9006865  0.7588235
##   0.010      4                  10              0.9103749  0.8978978  0.7541176
##   0.010      4                  15              0.9096421  0.8964882  0.7547059
##   0.010      5                   5              0.9191473  0.8985843  0.7676471
##   0.010      5                  10              0.9173787  0.9027887  0.7670588
##   0.010      5                  15              0.9148426  0.9010313  0.7694118
##   0.010      6                   5              0.9256190  0.9066270  0.7835294
##   0.010      6                  10              0.9232580  0.9062853  0.7811765
##   0.010      6                  15              0.9205954  0.9101236  0.7752941
##   0.100      4                   5              0.9611713  0.9457818  0.9011765
##   0.100      4                  10              0.9614875  0.9485889  0.9011765
##   0.100      4                  15              0.9585759  0.9506758  0.9011765
##   0.100      5                   5              0.9647306  0.9492784  0.8964706
##   0.100      5                  10              0.9623021  0.9503219  0.9000000
##   0.100      5                  15              0.9599509  0.9471915  0.9011765
##   0.100      6                   5              0.9644697  0.9468284  0.9041176
##   0.100      6                  10              0.9638927  0.9489214  0.9000000
##   0.100      6                  15              0.9622481  0.9499771  0.8964706
## 
## Tuning parameter 'n.trees' was held constant at a value of 500
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were n.trees = 500, interaction.depth =
##  5, shrinkage = 0.1 and n.minobsinnode = 5.
MBS_GBM_Tune$finalModel
## A gradient boosted model with bernoulli loss function.
## 500 iterations were performed.
## There were 6 predictors of which 6 had non-zero influence.
MBS_GBM_Tune$results
##    shrinkage interaction.depth n.minobsinnode n.trees       ROC      Sens
## 1      0.001                 4              5     500 0.8855789 0.9562868
## 2      0.001                 4             10     500 0.8856134 0.9583799
## 3      0.001                 4             15     500 0.8847856 0.9576751
## 10     0.010                 4              5     500 0.9123163 0.9006865
## 11     0.010                 4             10     500 0.9103749 0.8978978
## 12     0.010                 4             15     500 0.9096421 0.8964882
## 19     0.100                 4              5     500 0.9611713 0.9457818
## 20     0.100                 4             10     500 0.9614875 0.9485889
## 21     0.100                 4             15     500 0.9585759 0.9506758
## 4      0.001                 5              5     500 0.8905689 0.9555850
## 5      0.001                 5             10     500 0.8896630 0.9583768
## 6      0.001                 5             15     500 0.8897455 0.9583799
## 13     0.010                 5              5     500 0.9191473 0.8985843
## 14     0.010                 5             10     500 0.9173787 0.9027887
## 15     0.010                 5             15     500 0.9148426 0.9010313
## 22     0.100                 5              5     500 0.9647306 0.9492784
## 23     0.100                 5             10     500 0.9623021 0.9503219
## 24     0.100                 5             15     500 0.9599509 0.9471915
## 7      0.001                 6              5     500 0.8949840 0.9580320
## 8      0.001                 6             10     500 0.8937728 0.9587216
## 9      0.001                 6             15     500 0.8924258 0.9587307
## 16     0.010                 6              5     500 0.9256190 0.9066270
## 17     0.010                 6             10     500 0.9232580 0.9062853
## 18     0.010                 6             15     500 0.9205954 0.9101236
## 25     0.100                 6              5     500 0.9644697 0.9468284
## 26     0.100                 6             10     500 0.9638927 0.9489214
## 27     0.100                 6             15     500 0.9622481 0.9499771
##         Spec      ROCSD     SensSD     SpecSD
## 1  0.4994118 0.02405694 0.01921378 0.07346566
## 2  0.4976471 0.02439127 0.01843250 0.06880404
## 3  0.5035294 0.02463188 0.01817604 0.07429503
## 10 0.7588235 0.02111331 0.02157003 0.05111925
## 11 0.7541176 0.02115259 0.01996058 0.05378548
## 12 0.7547059 0.02078841 0.02241857 0.04853684
## 19 0.9011765 0.02144100 0.02674577 0.04038990
## 20 0.9011765 0.02063435 0.02529413 0.04016618
## 21 0.9011765 0.02002030 0.02834439 0.03689194
## 4  0.5411765 0.02375077 0.01854122 0.07039905
## 5  0.5341176 0.02388615 0.01809084 0.06278338
## 6  0.5347059 0.02371382 0.01807513 0.05895818
## 13 0.7676471 0.02037398 0.01977190 0.05233862
## 14 0.7670588 0.02138825 0.02131783 0.05211086
## 15 0.7694118 0.02096681 0.01922948 0.04426446
## 22 0.8964706 0.01848443 0.02802019 0.03760798
## 23 0.9000000 0.01999341 0.02767224 0.04093944
## 24 0.9011765 0.02014616 0.02444462 0.04061238
## 7  0.5570588 0.02361444 0.01674995 0.07183338
## 8  0.5547059 0.02400943 0.01668693 0.06514999
## 9  0.5470588 0.02430751 0.01664892 0.06576671
## 16 0.7835294 0.02103619 0.01924743 0.04905391
## 17 0.7811765 0.02057186 0.01993281 0.05099924
## 18 0.7752941 0.02101536 0.01799566 0.05173601
## 25 0.9041176 0.02010398 0.03064104 0.04393754
## 26 0.9000000 0.02091672 0.02910325 0.03867582
## 27 0.8964706 0.02050969 0.02508434 0.04169837
(MBS_GBM_Train_AUROC <- MBS_GBM_Tune$results[MBS_GBM_Tune$results$n.trees==MBS_GBM_Tune$bestTune$n.trees &
                                             MBS_GBM_Tune$results$shrinkage==MBS_GBM_Tune$bestTune$shrinkage &
                                             MBS_GBM_Tune$results$n.minobsinnode==MBS_GBM_Tune$bestTune$n.minobsinnode &
                                             MBS_GBM_Tune$results$interaction.depth==MBS_GBM_Tune$bestTune$interaction.depth,
                                             c("ROC")])
## [1] 0.9647306
##################################
# Identifying and plotting the
# best model predictors
##################################
MBS_GBM_VarImp <- varImp(MBS_GBM_Tune, scale = TRUE)
plot(MBS_GBM_VarImp,
     top=6,
     scales=list(y=list(cex = .95)),
     main="Ranked VariGBMle Importance : Stochastic Gradient Boosting",
     xlGBM="Scaled Variable Importance Metrics",
     ylGBM="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
MBS_GBM_Test <- data.frame(MBS_GBM_Test_Observed = MA_Test$diagnosis,
                          MBS_GBM_Test_Predicted = predict(MBS_GBM_Tune,
                                                          MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                          type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
MBS_GBM_Test_ROC <- roc(response = MBS_GBM_Test$MBS_GBM_Test_Observed,
                       predictor = MBS_GBM_Test$MBS_GBM_Test_Predicted.M,
                       levels = rev(levels(MBS_GBM_Test$MBS_GBM_Test_Observed)))

(MBS_GBM_Test_AUROC <- auc(MBS_GBM_Test_ROC)[1])
## [1] 0.9830651

1.5.3 Extreme Gradient Boosting (MBS_XGB)


Extreme Gradient Boosting is an optimized and scalable version of the stochastic gradient boosting developed to overcome its limitations. The algorithm introduced enhancements including regularization terms to control overfitting and a second-order gradient approximation to improve convergence speed. Parallel processing is also implemented, making the computations faster than traditional GBM for large datasets.

[A] The extreme gradient boosting model was implemented through the xgboost package.

[B] The model contains 1 hyperparameter:
     [B.1] nrounds = maximum number of iterations held constant at a value equal to 500
     [B.2] max_depth = maximum depth of the trees made to vary across a range of values equal to 4 to 6
     [B.3] eta = step size or learning rate of each boosting step made to vary across a range of values equal to 0.2 to 0.4
     [B.4] gamma = minimum loss reduction required to make a further partition on a leaf node of the tree made to vary across a range of values equal to 0.001 to 0.1
     [B.5] colsample_bytree = subsample ratio of columns when constructing each tree held constant at a value equal to 1
     [B.6] min_child_weight = minimum sum of instance weight (hessian) needed in a child held constant at a value equal to 1
     [B.7] subsample = subsample ratio of the training instance held constant at a value equal to 1

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves nrounds=500, max_depth=6, eta=0.3, gamma=0.001, colsample_bytree=1, min_child_weight=1 and subsample=1
     [C.2] AUROC = 0.96403

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] texture_mean (numeric)
     [D.2] symmetry_worst (numeric)
     [D.3] smoothness_mean (numeric)
     [D.4] texture_worst (numeric)
     [D.5] smoothness_worst (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.98972

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
XGB_Grid = expand.grid(nrounds = 500,
                      max_depth = c(4,5,6),
                      eta = c(0.2,0.3,0.4),
                      gamma = c(0.1,0.01,0.001),
                      colsample_bytree = 1,
                      min_child_weight = 1,
                      subsample = 1)

##################################
# Running the extreme gradient boosting model
# by setting the caret method to 'xgbTree'
##################################
set.seed(12345678)
MBS_XGB_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                 y = MA_Train$diagnosis,
                 method = "xgbTree",
                 tuneGrid = XGB_Grid,
                 metric = "ROC",
                 trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
MBS_XGB_Tune
## eXtreme Gradient Boosting 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   eta  max_depth  gamma  ROC        Sens       Spec     
##   0.2  4          0.001  0.9626835  0.9527841  0.9005882
##   0.2  4          0.010  0.9633867  0.9527841  0.9023529
##   0.2  4          0.100  0.9596240  0.9503402  0.9088235
##   0.2  5          0.001  0.9626556  0.9520732  0.8982353
##   0.2  5          0.010  0.9629735  0.9527750  0.9029412
##   0.2  5          0.100  0.9611275  0.9534859  0.9011765
##   0.2  6          0.001  0.9634468  0.9503432  0.9000000
##   0.2  6          0.010  0.9633502  0.9489336  0.9000000
##   0.2  6          0.100  0.9605459  0.9499924  0.8988235
##   0.3  4          0.001  0.9629143  0.9545294  0.8958824
##   0.3  4          0.010  0.9615315  0.9520793  0.8994118
##   0.3  4          0.100  0.9582784  0.9520763  0.9011765
##   0.3  5          0.001  0.9619608  0.9534798  0.9005882
##   0.3  5          0.010  0.9613663  0.9531350  0.9029412
##   0.3  5          0.100  0.9610368  0.9513959  0.9029412
##   0.3  6          0.001  0.9640349  0.9562777  0.9000000
##   0.3  6          0.010  0.9630643  0.9520915  0.9023529
##   0.3  6          0.100  0.9599690  0.9496506  0.8994118
##   0.4  4          0.001  0.9623312  0.9545385  0.8929412
##   0.4  4          0.010  0.9614739  0.9548772  0.8982353
##   0.4  4          0.100  0.9605573  0.9531228  0.8958824
##   0.4  5          0.001  0.9627857  0.9534706  0.8976471
##   0.4  5          0.010  0.9616459  0.9510359  0.8976471
##   0.4  5          0.100  0.9599004  0.9496415  0.9011765
##   0.4  6          0.001  0.9634008  0.9559298  0.8923529
##   0.4  6          0.010  0.9635828  0.9545294  0.8982353
##   0.4  6          0.100  0.9604719  0.9538337  0.8958824
## 
## Tuning parameter 'nrounds' was held constant at a value of 500
## Tuning
## 
## Tuning parameter 'min_child_weight' was held constant at a value of 1
## 
## Tuning parameter 'subsample' was held constant at a value of 1
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were nrounds = 500, max_depth = 6, eta
##  = 0.3, gamma = 0.001, colsample_bytree = 1, min_child_weight = 1 and
##  subsample = 1.
MBS_XGB_Tune$finalModel
## ##### xgb.Booster
## raw: 538.2 Kb 
## call:
##   xgboost::xgb.train(params = list(eta = param$eta, max_depth = param$max_depth, 
##     gamma = param$gamma, colsample_bytree = param$colsample_bytree, 
##     min_child_weight = param$min_child_weight, subsample = param$subsample), 
##     data = x, nrounds = param$nrounds, objective = "binary:logistic")
## params (as set within xgb.train):
##   eta = "0.3", max_depth = "6", gamma = "0.001", colsample_bytree = "1", min_child_weight = "1", subsample = "1", objective = "binary:logistic", validate_parameters = "TRUE"
## xgb.attributes:
##   niter
## callbacks:
##   cb.print.evaluation(period = print_every_n)
## # of features: 6 
## niter: 500
## nfeatures : 6 
## xNames : texture_mean smoothness_mean compactness_se texture_worst smoothness_worst symmetry_worst 
## problemType : Classification 
## tuneValue :
##     nrounds max_depth eta gamma colsample_bytree min_child_weight subsample
## 16     500         6 0.3 0.001                1                1         1
## obsLevels : B M 
## param :
##  list()
MBS_XGB_Tune$results
##    eta max_depth gamma colsample_bytree min_child_weight subsample nrounds
## 1  0.2         4 0.001                1                1         1     500
## 2  0.2         4 0.010                1                1         1     500
## 3  0.2         4 0.100                1                1         1     500
## 10 0.3         4 0.001                1                1         1     500
## 11 0.3         4 0.010                1                1         1     500
## 12 0.3         4 0.100                1                1         1     500
## 19 0.4         4 0.001                1                1         1     500
## 20 0.4         4 0.010                1                1         1     500
## 21 0.4         4 0.100                1                1         1     500
## 4  0.2         5 0.001                1                1         1     500
## 5  0.2         5 0.010                1                1         1     500
## 6  0.2         5 0.100                1                1         1     500
## 13 0.3         5 0.001                1                1         1     500
## 14 0.3         5 0.010                1                1         1     500
## 15 0.3         5 0.100                1                1         1     500
## 22 0.4         5 0.001                1                1         1     500
## 23 0.4         5 0.010                1                1         1     500
## 24 0.4         5 0.100                1                1         1     500
## 7  0.2         6 0.001                1                1         1     500
## 8  0.2         6 0.010                1                1         1     500
## 9  0.2         6 0.100                1                1         1     500
## 16 0.3         6 0.001                1                1         1     500
## 17 0.3         6 0.010                1                1         1     500
## 18 0.3         6 0.100                1                1         1     500
## 25 0.4         6 0.001                1                1         1     500
## 26 0.4         6 0.010                1                1         1     500
## 27 0.4         6 0.100                1                1         1     500
##          ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1  0.9626835 0.9527841 0.9005882 0.01990016 0.02550560 0.03943261
## 2  0.9633867 0.9527841 0.9023529 0.02079769 0.02622359 0.04388829
## 3  0.9596240 0.9503402 0.9088235 0.02060821 0.02884956 0.04004935
## 10 0.9629143 0.9545294 0.8958824 0.01934490 0.02694649 0.04264706
## 11 0.9615315 0.9520793 0.8994118 0.01941356 0.02743655 0.04020206
## 12 0.9582784 0.9520763 0.9011765 0.02142355 0.02636969 0.04038990
## 19 0.9623312 0.9545385 0.8929412 0.02124940 0.02497991 0.03832945
## 20 0.9614739 0.9548772 0.8982353 0.02214990 0.02546892 0.03498640
## 21 0.9605573 0.9531228 0.8958824 0.02067730 0.02897600 0.04047904
## 4  0.9626556 0.9520732 0.8982353 0.02161392 0.03009695 0.03957859
## 5  0.9629735 0.9527750 0.9029412 0.02098700 0.02881183 0.03844213
## 6  0.9611275 0.9534859 0.9011765 0.02202231 0.02675918 0.03925856
## 13 0.9619608 0.9534798 0.9005882 0.02232639 0.02702379 0.03874100
## 14 0.9613663 0.9531350 0.9029412 0.02225453 0.02750147 0.03890811
## 15 0.9610368 0.9513959 0.9029412 0.02131813 0.02534249 0.04308430
## 22 0.9627857 0.9534706 0.8976471 0.02058136 0.02729771 0.04148171
## 23 0.9616459 0.9510359 0.8976471 0.02039345 0.03068864 0.03993218
## 24 0.9599004 0.9496415 0.9011765 0.02195891 0.03038183 0.04277365
## 7  0.9634468 0.9503432 0.9000000 0.02089150 0.02937984 0.03749279
## 8  0.9633502 0.9489336 0.9000000 0.01942530 0.02897697 0.03773236
## 9  0.9605459 0.9499924 0.8988235 0.02224698 0.02723485 0.04100982
## 16 0.9640349 0.9562777 0.9000000 0.02173075 0.02449281 0.03474864
## 17 0.9630643 0.9520915 0.9023529 0.02155671 0.02787412 0.03392993
## 18 0.9599690 0.9496506 0.8994118 0.02134556 0.02661137 0.04064787
## 25 0.9634008 0.9559298 0.8923529 0.02148545 0.02504785 0.03388741
## 26 0.9635828 0.9545294 0.8982353 0.02175795 0.02789006 0.03723232
## 27 0.9604719 0.9538337 0.8958824 0.02372122 0.02640844 0.04092183
(MBS_XGB_Train_AUROC <- MBS_XGB_Tune$results[MBS_XGB_Tune$results$nrounds==MBS_XGB_Tune$bestTune$nrounds &
                                             MBS_XGB_Tune$results$max_depth==MBS_XGB_Tune$bestTune$max_depth &
                                             MBS_XGB_Tune$results$eta==MBS_XGB_Tune$bestTune$eta &
                                             MBS_XGB_Tune$results$gamma==MBS_XGB_Tune$bestTune$gamma &
                                             MBS_XGB_Tune$results$colsample_bytree==MBS_XGB_Tune$bestTune$colsample_bytree &
                                             MBS_XGB_Tune$results$min_child_weight==MBS_XGB_Tune$bestTune$min_child_weight &
                                             MBS_XGB_Tune$results$subsample==MBS_XGB_Tune$bestTune$subsample,
                                             c("ROC")])
## [1] 0.9640349
##################################
# Identifying and plotting the
# best model predictors
##################################
MBS_XGB_VarImp <- varImp(MBS_XGB_Tune, scale = TRUE)
plot(MBS_XGB_VarImp,
     top=6,
     scales=list(y=list(cex = .95)),
     main="Ranked VariXGBle Importance : Extreme Gradient Boosting",
     xlXGB="Scaled Variable Importance Metrics",
     ylXGB="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
MBS_XGB_Test <- data.frame(MBS_XGB_Test_Observed = MA_Test$diagnosis,
                          MBS_XGB_Test_Predicted = predict(MBS_XGB_Tune,
                                                          MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                          type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
MBS_XGB_Test_ROC <- roc(response = MBS_XGB_Test$MBS_XGB_Test_Observed,
                       predictor = MBS_XGB_Test$MBS_XGB_Test_Predicted.M,
                       levels = rev(levels(MBS_XGB_Test$MBS_XGB_Test_Observed)))

(MBS_XGB_Test_AUROC <- auc(MBS_XGB_Test_ROC)[1])
## [1] 0.989772

1.6 Model Bagging


Model Bagging, also known as bootstrap aggregation, is an ensemble learning approach that combines the benefits of bootstrapping and aggregation to yield a stable model and improve the prediction performance of a statistical learning method. In bagging, equal-sized subsets are sampled from a dataset with bootstrapping (repeated subsampling of the rows of the original data with replacement) and models trained on each of the subsets independently and in parallel. Aggregation involves combining the results from each model by averaging or voting to get a final result. The bagging process reduces the variance of the statistical learning method after consolidation. The final model tends to have sufficiently low variance by increasing robustness to noise in the data.

1.6.1 Random Forest (MBG_RF)


Random Forest is an ensemble learning method made up of a large set of small decision trees called estimators, with each producing its own prediction. The random forest model aggregates the predictions of the estimators to produce a more accurate prediction. The algorithm involves bootstrap aggregating (where smaller subsets of the training data are repeatedly subsampled with replacement), random subspacing (where a subset of features are sampled and used to train each individual estimator), estimator training (where unpruned decision trees are formulated for each estimator) and inference by aggregating the predictions of all estimators.

[A] The random forest model from the randomForest package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mtry = number of randomly selected predictors made to vary across a range of values equal to 2 to 5

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mtry=2
     [C.2] AUROC = 0.97000

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] texture_worst (numeric)
     [D.2] texture_mean (numeric)
     [D.3] symmetry_worst (numeric)
     [D.4] smoothness_worst (numeric)
     [D.5] smoothness_mean (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.99195

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
RF_Grid = data.frame(mtry = c(2,3,4,5))

##################################
# Running the random forest model
# by setting the caret method to 'rf'
##################################
set.seed(12345678)
MBG_RF_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                 y = MA_Train$diagnosis,
                 method = "rf",
                 tuneGrid = RF_Grid,
                 metric = "ROC",
                 trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
MBG_RF_Tune
## Random Forest 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   mtry  ROC        Sens       Spec     
##   2     0.9700081  0.9580351  0.8970588
##   3     0.9686273  0.9562929  0.9000000
##   4     0.9677953  0.9548955  0.8952941
##   5     0.9663847  0.9538459  0.8988235
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
MBG_RF_Tune$finalModel
## 
## Call:
##  randomForest(x = x, y = y, mtry = param$mtry) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 2
## 
##         OOB estimate of  error rate: 3.18%
## Confusion matrix:
##     B   M class.error
## B 561  11  0.01923077
## M  18 322  0.05294118
MBG_RF_Tune$results
##   mtry       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1    2 0.9700081 0.9580351 0.8970588 0.01778857 0.02017469 0.04746303
## 2    3 0.9686273 0.9562929 0.9000000 0.01882807 0.02196796 0.04572245
## 3    4 0.9677953 0.9548955 0.8952941 0.01958256 0.02104960 0.04637213
## 4    5 0.9663847 0.9538459 0.8988235 0.02050067 0.02117526 0.04273149
(MBG_RF_Train_AUROC <- MBG_RF_Tune$results[MBG_RF_Tune$results$mtry==MBG_RF_Tune$bestTune$mtry,
                                           c("ROC")])
## [1] 0.9700081
##################################
# Identifying and plotting the
# best model predictors
##################################
MBG_RF_VarImp <- varImp(MBG_RF_Tune, scale = TRUE)
plot(MBG_RF_VarImp,
     top=6,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Random Forest",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
MBG_RF_Test <- data.frame(MBG_RF_Test_Observed = MA_Test$diagnosis,
                          MBG_RF_Test_Predicted = predict(MBG_RF_Tune,
                                                          MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                          type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
MBG_RF_Test_ROC <- roc(response = MBG_RF_Test$MBG_RF_Test_Observed,
                       predictor = MBG_RF_Test$MBG_RF_Test_Predicted.M,
                       levels = rev(levels(MBG_RF_Test$MBG_RF_Test_Observed)))

(MBG_RF_Test_AUROC <- auc(MBG_RF_Test_ROC)[1])
## [1] 0.9919517

1.6.2 Bagged Classification and Regression Trees (MBG_BCART)


Bagged Classification and Regression Trees combine bootstrapping and decision trees to construct an ensemble. The modeling process involves generating bootstrap samples of the original data, training an unpruned decision tree for each bootstrap subset of the data and implementing an ensemble voting for all the individual decision tree predictions to formulate the final prediction. The bootstrap aggregation (bagging) mechanism improves the model performance by reducing variance. Although the individual decision trees in the model are identically distributed, they are not necessarily independent and share similar structure. This similarity, known as tree correlation, is an essential factor that prevents further reduction of variance.

[A] The bagged CART model from the ipred, plyr and e1071 packages was implemented through the caret package.

[B] The model does not contain any hyperparameter.

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] AUROC = 0.96444

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] smoothness_worst (numeric)
     [D.2] symmetry_worst (numeric)
     [D.3] texture_worst (numeric)
     [D.4] smoothness_mean (numeric)
     [D.5] compactness_se (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.98583

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# No hyperparameter tuning process required

##################################
# Running the bagged CART model
# by setting the caret method to 'treebag'
##################################
set.seed(12345678)
MBG_BCART_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                        y = MA_Train$diagnosis,
                        method = "treebag",
                        nbagg = 50,
                        metric = "ROC",
                        trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
MBG_BCART_Tune
## Bagged CART 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results:
## 
##   ROC        Sens       Spec
##   0.9644432  0.9541998  0.9
MBG_BCART_Tune$finalModel
## 
## Bagging classification trees with 50 bootstrap replications
MBG_BCART_Tune$results
##   parameter       ROC      Sens Spec      ROCSD     SensSD     SpecSD
## 1      none 0.9644432 0.9541998  0.9 0.02096563 0.02170402 0.04452427
(MBG_BCART_Train_AUROC <- MBG_BCART_Tune$results$ROC)
## [1] 0.9644432
##################################
# Identifying and plotting the
# best model predictors
##################################
MBG_BCART_VarImp <- varImp(MBG_BCART_Tune, scale = TRUE)
plot(MBG_BCART_VarImp,
     top=6,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Bagged Classification and Regression Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
MBG_BCART_Test <- data.frame(MBG_BCART_Test_Observed = MA_Test$diagnosis,
                             MBG_BCART_Test_Predicted = predict(MBG_BCART_Tune,
                                                                MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                                type = "prob"))

##################################
# Reporting the independent evaluation results
# for the test set
##################################
MBG_BCART_Test_ROC <- roc(response = MBG_BCART_Test$MBG_BCART_Test_Observed,
                          predictor = MBG_BCART_Test$MBG_BCART_Test_Predicted.M,
                          levels = rev(levels(MBG_BCART_Test$MBG_BCART_Test_Observed)))

(MBG_BCART_Test_AUROC <- auc(MBG_BCART_Test_ROC)[1])
## [1] 0.9858317

1.7 Model Stacking


Model Stacking, also known as stacked generalization, is an ensemble approach which involves creating a variety of base learners and using them to create intermediate predictions, one for each learned model. A meta-model is incorporated that gains knowledge of the same target from intermediate predictions. Unlike bagging, in stacking, the models are typically different (e.g. not all decision trees) and fit on the same dataset (e.g. instead of samples of the training dataset). Unlike boosting, in stacking, a single model is used to learn how to best combine the predictions from the contributing models (e.g. instead of a sequence of models that correct the predictions of prior models). Stacking is appropriate when the predictions made by the base learners or the errors in predictions made by the models have minimal correlation. Achieving an improvement in performance is dependent upon the choice of base learners and whether they are sufficiently skillful in their predictions.

1.7.1 Base Learner Model Development using Linear Discriminant Analysis (BAL_LDA)


Linear Discriminant Analysis finds a linear combination of features that best separates the classes in a data set by projecting the data onto a lower-dimensional space that maximizes the separation between the classes. The algorithm searches for a set of linear discriminants that maximize the ratio of between-class variance to within-class variance by evaluating directions in the feature space that best separate the different classes of data. LDA assumes that the data has a Gaussian distribution and that the covariance matrices of the different classes are equal, in addition to the data being linearly separable by the presence of a linear decision boundary can accurately classify the different classes.

[A] The linear discriminant analysis model from the MASS package was implemented through the caret package.

[B] The model does not contain any hyperparameter.

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] AUROC = 0.87628

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.88833

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# No hyperparameter tuning process required

##################################
# Running the linear discriminant analysis model
# by setting the caret method to 'lda'
##################################
set.seed(12345678)
BAL_LDA_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                        y = MA_Train$diagnosis,
                        method = "lda",
                        preProc = c("center","scale"),
                        metric = "ROC",
                        trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
BAL_LDA_Tune
## Linear Discriminant Analysis 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## Pre-processing: centered (6), scaled (6) 
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results:
## 
##   ROC        Sens       Spec     
##   0.8762815  0.8720214  0.7105882
BAL_LDA_Tune$finalModel
## Call:
## lda(x, y)
## 
## Prior probabilities of groups:
##        B        M 
## 0.627193 0.372807 
## 
## Group means:
##   texture_mean smoothness_mean compactness_se texture_worst smoothness_worst
## B   -0.3194390      -0.2990245     -0.2777306    -0.3459548       -0.3280838
## M    0.5374091       0.5030648      0.4672410     0.5820181        0.5519528
##   symmetry_worst
## B     -0.2957632
## M      0.4975782
## 
## Coefficients of linear discriminants:
##                        LD1
## texture_mean     0.4986787
## smoothness_mean  0.3218366
## compactness_se   0.2495221
## texture_worst    0.2741160
## smoothness_worst 0.2408554
## symmetry_worst   0.3784915
BAL_LDA_Tune$results
##   parameter       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1      none 0.8762815 0.8720214 0.7105882 0.02587517 0.02739545 0.05331432
(BAL_LDA_Train_AUROC <- BAL_LDA_Tune$results$ROC)
## [1] 0.8762815
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
BAL_LDA_Test <- data.frame(BAL_LDA_Test_Observed = MA_Test$diagnosis,
                           BAL_LDA_Test_Predicted = predict(BAL_LDA_Tune,
                                                            MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                            type = "prob"))

BAL_LDA_Test
##      BAL_LDA_Test_Observed BAL_LDA_Test_Predicted.B BAL_LDA_Test_Predicted.M
## 4                        M              0.006126311              0.993873689
## 5                        M              0.942711747              0.057288253
## 14                       M              0.579064544              0.420935456
## 19                       M              0.385557673              0.614442327
## 24                       M              0.407580856              0.592419144
## 29                       M              0.038467533              0.961532467
## 31                       M              0.084012467              0.915987533
## 33                       M              0.059833498              0.940166502
## 34                       M              0.104825602              0.895174398
## 36                       M              0.123134528              0.876865472
## 37                       M              0.213046186              0.786953814
## 41                       M              0.762194634              0.237805366
## 44                       M              0.243102433              0.756897567
## 50                       B              0.633616180              0.366383820
## 51                       B              0.883649952              0.116350048
## 60                       B              0.941211680              0.058788320
## 63                       M              0.152736238              0.847263762
## 66                       M              0.081701843              0.918298157
## 70                       B              0.956197471              0.043802529
## 72                       B              0.926760828              0.073239172
## 76                       M              0.675879310              0.324120690
## 77                       B              0.938615062              0.061384938
## 98                       B              0.859180598              0.140819402
## 101                      M              0.412386407              0.587613593
## 107                      B              0.348515684              0.651484316
## 122                      M              0.615196888              0.384803112
## 124                      B              0.968617292              0.031382708
## 136                      M              0.496541534              0.503458466
## 143                      B              0.686963614              0.313036386
## 145                      B              0.981924747              0.018075253
## 151                      B              0.492150246              0.507849754
## 153                      B              0.610903722              0.389096278
## 157                      M              0.413945858              0.586054142
## 167                      B              0.997185897              0.002814103
## 170                      B              0.904311554              0.095688446
## 173                      M              0.812030361              0.187969639
## 174                      B              0.978730977              0.021269023
## 181                      M              0.241659587              0.758340413
## 185                      M              0.524089965              0.475910035
## 186                      B              0.878625062              0.121374938
## 195                      M              0.231580068              0.768419932
## 199                      M              0.348140696              0.651859304
## 213                      M              0.947602810              0.052397190
## 215                      M              0.056860324              0.943139676
## 219                      M              0.393506696              0.606493304
## 221                      B              0.973705501              0.026294499
## 227                      B              0.921367896              0.078632104
## 231                      M              0.330572265              0.669427735
## 237                      M              0.134627362              0.865372638
## 238                      M              0.805720619              0.194279381
## 247                      B              0.929093207              0.070906793
## 252                      B              0.876231913              0.123768087
## 260                      M              0.008999501              0.991000499
## 261                      M              0.114163242              0.885836758
## 262                      M              0.728155795              0.271844205
## 265                      M              0.364679966              0.635320034
## 271                      B              0.995874752              0.004125248
## 280                      B              0.900993219              0.099006781
## 305                      B              0.924318983              0.075681017
## 311                      B              0.736500069              0.263499931
## 315                      B              0.633755327              0.366244673
## 317                      B              0.996050405              0.003949595
## 327                      B              0.987789680              0.012210320
## 328                      B              0.984770455              0.015229545
## 330                      M              0.290667258              0.709332742
## 334                      B              0.968849268              0.031150732
## 338                      M              0.174995596              0.825004404
## 356                      B              0.903045873              0.096954127
## 357                      B              0.430524826              0.569475174
## 364                      B              0.811698009              0.188301991
## 368                      B              0.727507423              0.272492577
## 373                      M              0.872668128              0.127331872
## 388                      B              0.988414548              0.011585452
## 389                      B              0.957745027              0.042254973
## 391                      B              0.962310108              0.037689892
## 393                      M              0.177431936              0.822568064
## 396                      B              0.948444928              0.051555072
## 397                      B              0.583968627              0.416031373
## 404                      B              0.824463807              0.175536193
## 420                      B              0.563842969              0.436157031
## 422                      B              0.842474215              0.157525785
## 427                      B              0.779936684              0.220063316
## 429                      B              0.983858264              0.016141736
## 430                      B              0.978101034              0.021898966
## 435                      B              0.925778429              0.074221571
## 442                      M              0.325620184              0.674379816
## 454                      B              0.936216623              0.063783377
## 458                      B              0.633531078              0.366468922
## 463                      B              0.810336471              0.189663529
## 470                      B              0.356359884              0.643640116
## 474                      B              0.706685284              0.293314716
## 478                      B              0.981238254              0.018761746
## 479                      B              0.821103847              0.178896153
## 484                      B              0.902055587              0.097944413
## 486                      B              0.677747460              0.322252540
## 489                      B              0.744881334              0.255118666
## 490                      M              0.681658672              0.318341328
## 491                      B              0.606617961              0.393382039
## 492                      B              0.998066340              0.001933660
## 499                      M              0.735157269              0.264842731
## 501                      B              0.943572720              0.056427280
## 503                      B              0.598182906              0.401817094
## 507                      B              0.534944505              0.465055495
## 509                      B              0.958952980              0.041047020
## 514                      B              0.956897407              0.043102593
## 518                      M              0.588851055              0.411148945
## 523                      B              0.920707025              0.079292975
## 534                      M              0.563458379              0.436541621
## 535                      B              0.756220900              0.243779100
## 536                      M              0.446628256              0.553371744
## 542                      B              0.214561414              0.785438586
## 545                      B              0.789312389              0.210687611
## 549                      B              0.885565165              0.114434835
## 550                      B              0.510647176              0.489352824
## 561                      B              0.382288558              0.617711442
## 563                      M              0.016016932              0.983983068
## 566                      M              0.247083120              0.752916880
## 569                      B              0.965394152              0.034605848
## 574                      M              0.942711747              0.057288253
## 581                      M              0.356014840              0.643985160
## 582                      M              0.215119777              0.784880223
## 594                      M              0.113214377              0.886785623
## 596                      M              0.091384833              0.908615167
## 597                      M              0.702993860              0.297006140
## 598                      M              0.038467533              0.961532467
## 599                      M              0.878500112              0.121499888
## 600                      M              0.084012467              0.915987533
## 612                      M              0.057472228              0.942527772
## 616                      B              0.855211064              0.144788936
## 617                      M              0.148575243              0.851424757
## 626                      M              0.290264105              0.709735895
## 634                      M              0.064339370              0.935660630
## 639                      B              0.956197471              0.043802529
## 641                      B              0.926760828              0.073239172
## 650                      B              0.320740216              0.679259784
## 665                      M              0.259719596              0.740280404
## 666                      B              0.925463665              0.074536335
## 673                      B              0.557022744              0.442977256
## 676                      B              0.348515684              0.651484316
## 684                      B              0.620718568              0.379281432
## 688                      M              0.068214661              0.931785339
## 691                      M              0.615196888              0.384803112
## 696                      M              0.222808227              0.777191773
## 709                      B              0.943771833              0.056228167
## 710                      B              0.987245490              0.012754510
## 713                      B              0.830292869              0.169707131
## 727                      B              0.921633095              0.078366905
## 730                      B              0.382668083              0.617331917
## 732                      M              0.333612109              0.666387891
## 740                      B              0.961858377              0.038141623
## 741                      M              0.681062354              0.318937646
## 763                      M              0.040915331              0.959084669
## 769                      M              0.177021698              0.822978302
## 788                      M              0.393506696              0.606493304
## 790                      B              0.973705501              0.026294499
## 791                      B              0.870821564              0.129178436
## 792                      B              0.682622616              0.317377384
## 793                      M              0.182399687              0.817600313
## 801                      B              0.726087033              0.273912967
## 803                      M              0.354643905              0.645356095
## 806                      M              0.134627362              0.865372638
## 810                      B              0.944706021              0.055293979
## 812                      B              0.393474697              0.606525303
## 813                      B              0.779393668              0.220606332
## 821                      B              0.876231913              0.123768087
## 836                      B              0.658099084              0.341900916
## 842                      M              0.448926362              0.551073638
## 843                      B              0.901788723              0.098211277
## 848                      B              0.973498488              0.026501512
## 853                      M              0.528763024              0.471236976
## 862                      B              0.711409516              0.288590484
## 865                      B              0.979123666              0.020876334
## 879                      B              0.996373712              0.003626288
## 890                      B              0.741480170              0.258519830
## 891                      M              0.878337490              0.121662510
## 897                      B              0.984770455              0.015229545
## 902                      B              0.499343912              0.500656088
## 904                      B              0.892320617              0.107679383
## 905                      M              0.361244898              0.638755102
## 906                      B              0.966801278              0.033198722
## 916                      B              0.823396789              0.176603211
## 919                      B              0.783263908              0.216736092
## 920                      B              0.979880096              0.020119904
## 930                      B              0.990855172              0.009144828
## 940                      M              0.079097793              0.920902207
## 945                      B              0.846430270              0.153569730
## 947                      B              0.594187576              0.405812424
## 948                      B              0.872995937              0.127004063
## 951                      B              0.941410746              0.058589254
## 961                      B              0.801844856              0.198155144
## 966                      B              0.583968627              0.416031373
## 969                      B              0.832591332              0.167408668
## 979                      B              0.638449388              0.361550612
## 985                      B              0.374275674              0.625724326
## 991                      B              0.842474215              0.157525785
## 996                      B              0.779936684              0.220063316
## 998                      B              0.983858264              0.016141736
## 999                      B              0.978101034              0.021898966
## 1005                     M              0.305786852              0.694213148
## 1006                     B              0.708477812              0.291522188
## 1007                     B              0.942459340              0.057540660
## 1009                     B              0.990361755              0.009638245
## 1015                     B              0.367056365              0.632943635
## 1021                     M              0.374776492              0.625223508
## 1027                     B              0.633531078              0.366468922
## 1033                     B              0.755897965              0.244102035
## 1042                     B              0.973607166              0.026392834
## 1044                     B              0.862842688              0.137157312
## 1049                     M              0.359535242              0.640464758
## 1059                     M              0.681658672              0.318341328
## 1060                     B              0.606617961              0.393382039
## 1063                     B              0.997138711              0.002861289
## 1075                     B              0.556668408              0.443331592
## 1087                     M              0.588851055              0.411148945
## 1089                     B              0.652990898              0.347009102
## 1095                     B              0.868301964              0.131698036
## 1098                     B              0.929532127              0.070467873
## 1099                     B              0.925197595              0.074802405
## 1102                     B              0.934244281              0.065755719
## 1106                     M              0.302156084              0.697843916
## 1108                     B              0.561058807              0.438941193
## 1109                     B              0.180044308              0.819955692
## 1113                     B              0.517216264              0.482783736
## 1114                     B              0.789312389              0.210687611
## 1119                     B              0.510647176              0.489352824
## 1133                     M              0.147249898              0.852750102
##################################
# Reporting the independent evaluation results
# for the test set
##################################
BAL_LDA_Test_ROC <- roc(response = BAL_LDA_Test$BAL_LDA_Test_Observed,
                        predictor = BAL_LDA_Test$BAL_LDA_Test_Predicted.M,
                        levels = rev(levels(BAL_LDA_Test$BAL_LDA_Test_Observed)))

(BAL_LDA_Test_AUROC <- auc(BAL_LDA_Test_ROC)[1])
## [1] 0.88833

1.7.2 Base Learner Model Development using Classification and Regression Trees (BAL_CART)


Classification and Regression Trees construct binary trees for both both nominal and continuous input attributes using Gini Index as its splitting criteria. The algorithm handles missing values by surrogating tests to approximate outcomes. In the pruning phase, CART uses pre-pruning technique called Cost-Complexity pruning to remove redundant branches from the decision tree to improve the accuracy. In the first stage, a sequence of increasingly smaller trees are built on the training data. In the second stage, one of these tree is chosen as the pruned tree, based on its classification accuracy on a pruning set, adopting a cross-validated method in its pruning technique.

[A] The classification and regression trees model from the rpart package was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] cp = complexity parameter threshold made to vary across a range of values equal to 0.001 to 0.020

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves cp=0.001
     [C.2] AUROC = 0.86145

[D] The model allows for ranking of predictors in terms of variable importance. The top-performing predictors in the model are as follows:
     [D.1] smoothness_worst (numeric)
     [D.2] symmetry_worst (numeric)
     [D.3] texture_worst (numeric)
     [D.4] compactness_se (numeric)
     [D.5] smoothness_mean (numeric)

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.92106

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
CART_Grid = data.frame(cp = c(0.001, 0.005, 0.010, 0.015, 0.020))

##################################
# Running the classification and regression tree model
# by setting the caret method to 'rpart'
##################################
set.seed(12345678)
BAL_CART_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                       y = MA_Train$diagnosis,
                       method = "rpart",
                       tuneGrid = CART_Grid,
                       metric = "ROC",
                       trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
BAL_CART_Tune
## CART 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   cp     ROC        Sens       Spec     
##   0.001  0.8614523  0.8503158  0.7482353
##   0.005  0.8512807  0.8640061  0.7452941
##   0.010  0.8297650  0.8702944  0.7211765
##   0.015  0.8139619  0.8608299  0.7170588
##   0.020  0.8094478  0.8552677  0.7164706
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.001.
BAL_CART_Tune$finalModel
## n= 912 
## 
## node), split, n, loss, yval, (yprob)
##       * denotes terminal node
## 
##    1) root 912 340 B (0.62719298 0.37280702)  
##      2) texture_mean< 2.927988 437  67 B (0.84668192 0.15331808)  
##        4) symmetry_worst< -1.34686 398  38 B (0.90452261 0.09547739)  
##          8) smoothness_mean< -2.074653 390  33 B (0.91538462 0.08461538)  
##           16) texture_mean< 2.711046 134   0 B (1.00000000 0.00000000) *
##           17) texture_mean>=2.711046 256  33 B (0.87109375 0.12890625)  
##             34) symmetry_worst< -1.427209 247  28 B (0.88663968 0.11336032)  
##               68) smoothness_mean< -2.468758 62   0 B (1.00000000 0.00000000) *
##               69) smoothness_mean>=-2.468758 185  28 B (0.84864865 0.15135135)  
##                138) smoothness_mean>=-2.28574 59   3 B (0.94915254 0.05084746) *
##                139) smoothness_mean< -2.28574 126  25 B (0.80158730 0.19841270)  
##                  278) compactness_se< -4.691273 24   0 B (1.00000000 0.00000000) *
##                  279) compactness_se>=-4.691273 102  25 B (0.75490196 0.24509804)  
##                    558) smoothness_mean< -2.296604 94  20 B (0.78723404 0.21276596)  
##                     1116) compactness_se>=-4.479607 81  14 B (0.82716049 0.17283951)  
##                       2232) smoothness_worst< -1.472892 73  10 B (0.86301370 0.13698630)  
##                         4464) symmetry_worst>=-1.749307 28   0 B (1.00000000 0.00000000) *
##                         4465) symmetry_worst< -1.749307 45  10 B (0.77777778 0.22222222)  
##                           8930) symmetry_worst< -1.841614 34   2 B (0.94117647 0.05882353) *
##                           8931) symmetry_worst>=-1.841614 11   3 M (0.27272727 0.72727273) *
##                       2233) smoothness_worst>=-1.472892 8   4 B (0.50000000 0.50000000) *
##                     1117) compactness_se< -4.479607 13   6 B (0.53846154 0.46153846) *
##                    559) smoothness_mean>=-2.296604 8   3 M (0.37500000 0.62500000) *
##             35) symmetry_worst>=-1.427209 9   4 M (0.44444444 0.55555556) *
##          9) smoothness_mean>=-2.074653 8   3 M (0.37500000 0.62500000) *
##        5) symmetry_worst>=-1.34686 39  10 M (0.25641026 0.74358974)  
##         10) smoothness_mean< -2.32364 7   1 B (0.85714286 0.14285714) *
##         11) smoothness_mean>=-2.32364 32   4 M (0.12500000 0.87500000) *
##      3) texture_mean>=2.927988 475 202 M (0.42526316 0.57473684)  
##        6) smoothness_mean< -2.425205 140  29 B (0.79285714 0.20714286)  
##         12) symmetry_worst< -1.496954 133  23 B (0.82706767 0.17293233)  
##           24) smoothness_worst< -1.60101 85   8 B (0.90588235 0.09411765)  
##             48) texture_mean>=2.980363 64   3 B (0.95312500 0.04687500) *
##             49) texture_mean< 2.980363 21   5 B (0.76190476 0.23809524)  
##               98) symmetry_worst< -1.919875 12   0 B (1.00000000 0.00000000) *
##               99) symmetry_worst>=-1.919875 9   4 M (0.44444444 0.55555556) *
##           25) smoothness_worst>=-1.60101 48  15 B (0.68750000 0.31250000)  
##             50) texture_mean< 3.108829 21   1 B (0.95238095 0.04761905) *
##             51) texture_mean>=3.108829 27  13 M (0.48148148 0.51851852)  
##              102) texture_mean>=3.176386 20   7 B (0.65000000 0.35000000)  
##                204) compactness_se< -3.643388 13   2 B (0.84615385 0.15384615) *
##                205) compactness_se>=-3.643388 7   2 M (0.28571429 0.71428571) *
##              103) texture_mean< 3.176386 7   0 M (0.00000000 1.00000000) *
##         13) symmetry_worst>=-1.496954 7   1 M (0.14285714 0.85714286) *
##        7) smoothness_mean>=-2.425205 335  91 M (0.27164179 0.72835821)  
##         14) texture_worst< 4.411908 18   1 B (0.94444444 0.05555556) *
##         15) texture_worst>=4.411908 317  74 M (0.23343849 0.76656151)  
##           30) symmetry_worst< -1.776275 102  44 M (0.43137255 0.56862745)  
##             60) compactness_se< -3.02233 89  44 M (0.49438202 0.50561798)  
##              120) texture_worst< 4.897936 54  20 B (0.62962963 0.37037037)  
##                240) texture_worst>=4.751011 13   0 B (1.00000000 0.00000000) *
##                241) texture_worst< 4.751011 41  20 B (0.51219512 0.48780488)  
##                  482) texture_mean< 3.07522 26   9 B (0.65384615 0.34615385)  
##                    964) smoothness_mean>=-2.347868 12   1 B (0.91666667 0.08333333) *
##                    965) smoothness_mean< -2.347868 14   6 M (0.42857143 0.57142857) *
##                  483) texture_mean>=3.07522 15   4 M (0.26666667 0.73333333) *
##              121) texture_worst>=4.897936 35  10 M (0.28571429 0.71428571)  
##                242) symmetry_worst< -2.207988 9   2 B (0.77777778 0.22222222) *
##                243) symmetry_worst>=-2.207988 26   3 M (0.11538462 0.88461538) *
##             61) compactness_se>=-3.02233 13   0 M (0.00000000 1.00000000) *
##           31) symmetry_worst>=-1.776275 215  30 M (0.13953488 0.86046512)  
##             62) compactness_se< -4.040144 38  16 M (0.42105263 0.57894737)  
##              124) smoothness_mean>=-2.294648 15   2 B (0.86666667 0.13333333) *
##              125) smoothness_mean< -2.294648 23   3 M (0.13043478 0.86956522) *
##             63) compactness_se>=-4.040144 177  14 M (0.07909605 0.92090395)  
##              126) smoothness_mean< -2.32432 37   9 M (0.24324324 0.75675676) *
##              127) smoothness_mean>=-2.32432 140   5 M (0.03571429 0.96428571)  
##                254) texture_worst< 4.824228 54   5 M (0.09259259 0.90740741)  
##                  508) compactness_se< -3.447524 24   5 M (0.20833333 0.79166667)  
##                   1016) texture_worst>=4.608306 8   3 B (0.62500000 0.37500000) *
##                   1017) texture_worst< 4.608306 16   0 M (0.00000000 1.00000000) *
##                  509) compactness_se>=-3.447524 30   0 M (0.00000000 1.00000000) *
##                255) texture_worst>=4.824228 86   0 M (0.00000000 1.00000000) *
BAL_CART_Tune$results
##      cp       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1 0.001 0.8614523 0.8503158 0.7482353 0.03685507 0.04170440 0.06635597
## 2 0.005 0.8512807 0.8640061 0.7452941 0.03662151 0.02767361 0.05816420
## 3 0.010 0.8297650 0.8702944 0.7211765 0.04245561 0.03675966 0.07705751
## 4 0.015 0.8139619 0.8608299 0.7170588 0.04009017 0.04021240 0.07056270
## 5 0.020 0.8094478 0.8552677 0.7164706 0.04150844 0.03315895 0.06891397
(BAL_CART_Train_AUROC <- BAL_CART_Tune$results[BAL_CART_Tune$results$cp==BAL_CART_Tune$bestTune$cp,
                                                     c("ROC")])
## [1] 0.8614523
##################################
# Identifying and plotting the
# best model predictors
##################################
BAL_CART_VarImp <- varImp(BAL_CART_Tune, scale = TRUE)
plot(BAL_CART_VarImp,
     top=6,
     scales=list(y=list(cex = .95)),
     main="Ranked Variable Importance : Classification and Regression Trees",
     xlab="Scaled Variable Importance Metrics",
     ylab="Predictors",
     cex=2,
     origin=0,
     alpha=0.45)

##################################
# Independently evaluating the model
# on the test set
##################################
BAL_CART_Test <- data.frame(BAL_CART_Test_Observed = MA_Test$diagnosis,
                            BAL_CART_Test_Predicted = predict(BAL_CART_Tune,
                                                              MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                              type = "prob"))

BAL_CART_Test
##      BAL_CART_Test_Observed BAL_CART_Test_Predicted.B BAL_CART_Test_Predicted.M
## 4                         M                 0.0000000                1.00000000
## 5                         M                 1.0000000                0.00000000
## 14                        M                 0.0000000                1.00000000
## 19                        M                 0.1153846                0.88461538
## 24                        M                 0.1304348                0.86956522
## 29                        M                 0.0000000                1.00000000
## 31                        M                 0.0000000                1.00000000
## 33                        M                 0.0000000                1.00000000
## 34                        M                 0.2432432                0.75675676
## 36                        M                 0.2432432                0.75675676
## 37                        M                 0.0000000                1.00000000
## 41                        M                 0.9531250                0.04687500
## 44                        M                 0.6250000                0.37500000
## 50                        B                 0.9523810                0.04761905
## 51                        B                 0.9531250                0.04687500
## 60                        B                 1.0000000                0.00000000
## 63                        M                 0.0000000                1.00000000
## 66                        M                 0.0000000                1.00000000
## 70                        B                 1.0000000                0.00000000
## 72                        B                 1.0000000                0.00000000
## 76                        M                 0.4285714                0.57142857
## 77                        B                 0.3750000                0.62500000
## 98                        B                 0.9166667                0.08333333
## 101                       M                 0.1153846                0.88461538
## 107                       B                 0.9491525                0.05084746
## 122                       M                 0.9491525                0.05084746
## 124                       B                 1.0000000                0.00000000
## 136                       M                 0.1304348                0.86956522
## 143                       B                 0.9491525                0.05084746
## 145                       B                 1.0000000                0.00000000
## 151                       B                 0.8666667                0.13333333
## 153                       B                 0.9491525                0.05084746
## 157                       M                 0.0000000                1.00000000
## 167                       B                 1.0000000                0.00000000
## 170                       B                 0.9411765                0.05882353
## 173                       M                 0.3750000                0.62500000
## 174                       B                 1.0000000                0.00000000
## 181                       M                 0.0000000                1.00000000
## 185                       M                 0.1304348                0.86956522
## 186                       B                 0.5000000                0.50000000
## 195                       M                 0.0000000                1.00000000
## 199                       M                 0.0000000                1.00000000
## 213                       M                 0.9491525                0.05084746
## 215                       M                 0.2432432                0.75675676
## 219                       M                 0.2432432                0.75675676
## 221                       B                 1.0000000                0.00000000
## 227                       B                 0.9491525                0.05084746
## 231                       M                 0.0000000                1.00000000
## 237                       M                 0.2432432                0.75675676
## 238                       M                 0.9523810                0.04761905
## 247                       B                 1.0000000                0.00000000
## 252                       B                 0.5384615                0.46153846
## 260                       M                 0.0000000                1.00000000
## 261                       M                 0.1304348                0.86956522
## 262                       M                 0.0000000                1.00000000
## 265                       M                 0.1304348                0.86956522
## 271                       B                 1.0000000                0.00000000
## 280                       B                 1.0000000                0.00000000
## 305                       B                 0.9411765                0.05882353
## 311                       B                 0.1428571                0.85714286
## 315                       B                 0.9491525                0.05084746
## 317                       B                 1.0000000                0.00000000
## 327                       B                 1.0000000                0.00000000
## 328                       B                 1.0000000                0.00000000
## 330                       M                 0.2666667                0.73333333
## 334                       B                 1.0000000                0.00000000
## 338                       M                 0.2432432                0.75675676
## 356                       B                 1.0000000                0.00000000
## 357                       B                 0.9491525                0.05084746
## 364                       B                 0.9411765                0.05882353
## 368                       B                 1.0000000                0.00000000
## 373                       M                 0.2727273                0.72727273
## 388                       B                 1.0000000                0.00000000
## 389                       B                 1.0000000                0.00000000
## 391                       B                 1.0000000                0.00000000
## 393                       M                 0.0000000                1.00000000
## 396                       B                 1.0000000                0.00000000
## 397                       B                 0.9166667                0.08333333
## 404                       B                 1.0000000                0.00000000
## 420                       B                 0.8666667                0.13333333
## 422                       B                 1.0000000                0.00000000
## 427                       B                 1.0000000                0.00000000
## 429                       B                 1.0000000                0.00000000
## 430                       B                 1.0000000                0.00000000
## 435                       B                 0.9411765                0.05882353
## 442                       M                 0.2857143                0.71428571
## 454                       B                 1.0000000                0.00000000
## 458                       B                 0.8461538                0.15384615
## 463                       B                 0.9531250                0.04687500
## 470                       B                 0.9491525                0.05084746
## 474                       B                 0.9531250                0.04687500
## 478                       B                 1.0000000                0.00000000
## 479                       B                 1.0000000                0.00000000
## 484                       B                 1.0000000                0.00000000
## 486                       B                 1.0000000                0.00000000
## 489                       B                 0.9491525                0.05084746
## 490                       M                 0.1428571                0.85714286
## 491                       B                 0.0000000                1.00000000
## 492                       B                 1.0000000                0.00000000
## 499                       M                 0.3750000                0.62500000
## 501                       B                 0.9411765                0.05882353
## 503                       B                 0.9491525                0.05084746
## 507                       B                 0.9166667                0.08333333
## 509                       B                 0.9411765                0.05882353
## 514                       B                 1.0000000                0.00000000
## 518                       M                 0.9166667                0.08333333
## 523                       B                 0.9531250                0.04687500
## 534                       M                 0.2432432                0.75675676
## 535                       B                 0.9411765                0.05882353
## 536                       M                 0.0000000                1.00000000
## 542                       B                 0.2857143                0.71428571
## 545                       B                 0.9166667                0.08333333
## 549                       B                 0.9523810                0.04761905
## 550                       B                 0.8461538                0.15384615
## 561                       B                 0.7777778                0.22222222
## 563                       M                 0.0000000                1.00000000
## 566                       M                 0.1153846                0.88461538
## 569                       B                 0.9531250                0.04687500
## 574                       M                 1.0000000                0.00000000
## 581                       M                 0.8571429                0.14285714
## 582                       M                 0.2432432                0.75675676
## 594                       M                 0.0000000                1.00000000
## 596                       M                 0.0000000                1.00000000
## 597                       M                 0.4285714                0.57142857
## 598                       M                 0.0000000                1.00000000
## 599                       M                 0.2727273                0.72727273
## 600                       M                 0.0000000                1.00000000
## 612                       M                 0.2432432                0.75675676
## 616                       B                 1.0000000                0.00000000
## 617                       M                 0.1250000                0.87500000
## 626                       M                 0.4444444                0.55555556
## 634                       M                 0.0000000                1.00000000
## 639                       B                 1.0000000                0.00000000
## 641                       B                 1.0000000                0.00000000
## 650                       B                 0.1153846                0.88461538
## 665                       M                 0.2432432                0.75675676
## 666                       B                 0.9491525                0.05084746
## 673                       B                 0.9166667                0.08333333
## 676                       B                 0.9491525                0.05084746
## 684                       B                 0.9491525                0.05084746
## 688                       M                 0.0000000                1.00000000
## 691                       M                 0.9491525                0.05084746
## 696                       M                 0.1304348                0.86956522
## 709                       B                 1.0000000                0.00000000
## 710                       B                 1.0000000                0.00000000
## 713                       B                 0.4444444                0.55555556
## 727                       B                 1.0000000                0.00000000
## 730                       B                 0.6250000                0.37500000
## 732                       M                 0.1250000                0.87500000
## 740                       B                 1.0000000                0.00000000
## 741                       M                 0.1304348                0.86956522
## 763                       M                 0.0000000                1.00000000
## 769                       M                 0.1304348                0.86956522
## 788                       M                 0.2432432                0.75675676
## 790                       B                 1.0000000                0.00000000
## 791                       B                 1.0000000                0.00000000
## 792                       B                 0.9491525                0.05084746
## 793                       M                 0.0000000                1.00000000
## 801                       B                 0.9531250                0.04687500
## 803                       M                 0.1153846                0.88461538
## 806                       M                 0.2432432                0.75675676
## 810                       B                 0.9411765                0.05882353
## 812                       B                 1.0000000                0.00000000
## 813                       B                 0.9531250                0.04687500
## 821                       B                 0.5384615                0.46153846
## 836                       B                 0.9444444                0.05555556
## 842                       M                 0.2432432                0.75675676
## 843                       B                 0.5384615                0.46153846
## 848                       B                 1.0000000                0.00000000
## 853                       M                 0.9166667                0.08333333
## 862                       B                 0.5000000                0.50000000
## 865                       B                 1.0000000                0.00000000
## 879                       B                 1.0000000                0.00000000
## 890                       B                 0.9491525                0.05084746
## 891                       M                 0.4444444                0.55555556
## 897                       B                 1.0000000                0.00000000
## 902                       B                 0.8666667                0.13333333
## 904                       B                 0.9523810                0.04761905
## 905                       M                 0.1153846                0.88461538
## 906                       B                 1.0000000                0.00000000
## 916                       B                 0.9523810                0.04761905
## 919                       B                 1.0000000                0.00000000
## 920                       B                 1.0000000                0.00000000
## 930                       B                 1.0000000                0.00000000
## 940                       M                 0.2432432                0.75675676
## 945                       B                 1.0000000                0.00000000
## 947                       B                 0.9531250                0.04687500
## 948                       B                 1.0000000                0.00000000
## 951                       B                 1.0000000                0.00000000
## 961                       B                 0.9491525                0.05084746
## 966                       B                 0.9166667                0.08333333
## 969                       B                 0.2727273                0.72727273
## 979                       B                 0.4444444                0.55555556
## 985                       B                 0.2432432                0.75675676
## 991                       B                 1.0000000                0.00000000
## 996                       B                 1.0000000                0.00000000
## 998                       B                 1.0000000                0.00000000
## 999                       B                 1.0000000                0.00000000
## 1005                      M                 0.0000000                1.00000000
## 1006                      B                 0.1304348                0.86956522
## 1007                      B                 1.0000000                0.00000000
## 1009                      B                 1.0000000                0.00000000
## 1015                      B                 1.0000000                0.00000000
## 1021                      M                 0.1153846                0.88461538
## 1027                      B                 0.8461538                0.15384615
## 1033                      B                 1.0000000                0.00000000
## 1042                      B                 1.0000000                0.00000000
## 1044                      B                 0.3750000                0.62500000
## 1049                      M                 0.9444444                0.05555556
## 1059                      M                 0.1428571                0.85714286
## 1060                      B                 0.0000000                1.00000000
## 1063                      B                 1.0000000                0.00000000
## 1075                      B                 1.0000000                0.00000000
## 1087                      M                 0.9166667                0.08333333
## 1089                      B                 0.9491525                0.05084746
## 1095                      B                 1.0000000                0.00000000
## 1098                      B                 1.0000000                0.00000000
## 1099                      B                 1.0000000                0.00000000
## 1102                      B                 1.0000000                0.00000000
## 1106                      M                 0.1153846                0.88461538
## 1108                      B                 0.8461538                0.15384615
## 1109                      B                 0.2857143                0.71428571
## 1113                      B                 0.9531250                0.04687500
## 1114                      B                 0.9166667                0.08333333
## 1119                      B                 0.8461538                0.15384615
## 1133                      M                 0.0000000                1.00000000
##################################
# Reporting the independent evaluation results
# for the test set
##################################
BAL_CART_Test_ROC <- roc(response = BAL_CART_Test$BAL_CART_Test_Observed,
                         predictor = BAL_CART_Test$BAL_CART_Test_Predicted.M,
                         levels = rev(levels(BAL_CART_Test$BAL_CART_Test_Observed)))

(BAL_CART_Test_AUROC <- auc(BAL_CART_Test_ROC)[1])
## [1] 0.9210681

1.7.3 Base Learner Model Development using Support Vector Machine - Radial Basis Function Kernel (BAL_SVM_R)


Support Vector Machine plots each observation in an N-dimensional space corresponding to the number of features in the data set and finds a hyperplane that maximally separates the different classes by a maximally large margin (which is defined as the distance between the hyperplane and the closest data points from each class). The algorithm applies kernel transformation by mapping non-linearly separable data using the similarities between the points in a high-dimensional feature space for improved discrimination.

[A] The support vector machine (radial basis function kernel) model from the kernlab package was implemented through the caret package.

[B] The model contains 2 hyperparameters:
     [B.1] sigma = sigma held constant at a value of 0.21332
     [B.2] C = cost made to vary across a range of 14 default values

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves sigma=0.17905 and C=2048
     [C.2] AUROC = 0.90977

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.93762

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
# used a range of default values

##################################
# Running the support vector machine model
# by setting the caret method to 'svmRadial'
##################################
set.seed(12345678)
BAL_SVM_R_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                        y = MA_Train$diagnosis,
                        method = "svmRadial",
                        preProc = c("center", "scale"),
                        tuneLength = 14,
                        metric = "ROC",
                        trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
BAL_SVM_R_Tune
## Support Vector Machines with Radial Basis Function Kernel 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## Pre-processing: centered (6), scaled (6) 
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   C        ROC        Sens       Spec     
##      0.25  0.8792747  0.8964943  0.7005882
##      0.50  0.8828520  0.8964851  0.7064706
##      1.00  0.8853296  0.8961373  0.7064706
##      2.00  0.8879393  0.8958017  0.7164706
##      4.00  0.8909259  0.8937056  0.7241176
##      8.00  0.8960321  0.9003417  0.7300000
##     16.00  0.8967388  0.9052235  0.7264706
##     32.00  0.8982511  0.9059283  0.7347059
##     64.00  0.9005909  0.9135957  0.7482353
##    128.00  0.9039633  0.9233837  0.7552941
##    256.00  0.9090738  0.9374005  0.7652941
##    512.00  0.9090150  0.9412387  0.7782353
##   1024.00  0.9077637  0.9387643  0.7900000
##   2048.00  0.9097712  0.9436857  0.7976471
## 
## Tuning parameter 'sigma' was held constant at a value of 0.1790538
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.1790538 and C = 2048.
BAL_SVM_R_Tune$finalModel
## Support Vector Machine object of class "ksvm" 
## 
## SV type: C-svc  (classification) 
##  parameter : cost C = 2048 
## 
## Gaussian Radial Basis kernel function. 
##  Hyperparameter : sigma =  0.179053781320727 
## 
## Number of Support Vectors : 302 
## 
## Objective Function Value : -123343.3 
## Training error : 0.013158 
## Probability model included.
BAL_SVM_R_Tune$results
##        sigma       C       ROC      Sens      Spec      ROCSD     SensSD
## 1  0.1790538    0.25 0.8792747 0.8964943 0.7005882 0.02548830 0.02322464
## 2  0.1790538    0.50 0.8828520 0.8964851 0.7064706 0.02410960 0.02143187
## 3  0.1790538    1.00 0.8853296 0.8961373 0.7064706 0.02490232 0.02237023
## 4  0.1790538    2.00 0.8879393 0.8958017 0.7164706 0.02417564 0.02120909
## 5  0.1790538    4.00 0.8909259 0.8937056 0.7241176 0.02144916 0.02499684
## 6  0.1790538    8.00 0.8960321 0.9003417 0.7300000 0.02035456 0.02715491
## 7  0.1790538   16.00 0.8967388 0.9052235 0.7264706 0.01882154 0.02634028
## 8  0.1790538   32.00 0.8982511 0.9059283 0.7347059 0.01957743 0.02468638
## 9  0.1790538   64.00 0.9005909 0.9135957 0.7482353 0.02224693 0.02746024
## 10 0.1790538  128.00 0.9039633 0.9233837 0.7552941 0.02309492 0.02966385
## 11 0.1790538  256.00 0.9090738 0.9374005 0.7652941 0.02327350 0.03080847
## 12 0.1790538  512.00 0.9090150 0.9412387 0.7782353 0.02271246 0.02797556
## 13 0.1790538 1024.00 0.9077637 0.9387643 0.7900000 0.02374909 0.03058368
## 14 0.1790538 2048.00 0.9097712 0.9436857 0.7976471 0.02420238 0.02639300
##        SpecSD
## 1  0.04800669
## 2  0.05031619
## 3  0.05085061
## 4  0.04319292
## 5  0.04864069
## 6  0.04838064
## 7  0.04727280
## 8  0.05766006
## 9  0.05474856
## 10 0.04762981
## 11 0.04793155
## 12 0.04706648
## 13 0.04083366
## 14 0.04272306
(BAL_SVM_R_Train_AUROC <- BAL_SVM_R_Tune$results[BAL_SVM_R_Tune$results$C==BAL_SVM_R_Tune$bestTune$C,
                                                       c("ROC")])
## [1] 0.9097712
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
BAL_SVM_R_Test <- data.frame(BAL_SVM_R_Test_Observed = MA_Test$diagnosis,
                             BAL_SVM_R_Test_Predicted = predict(BAL_SVM_R_Tune,
                                                                MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                                type = "prob"))

BAL_SVM_R_Test
##     BAL_SVM_R_Test_Observed BAL_SVM_R_Test_Predicted.B
## 1                         M                 0.44662437
## 2                         M                 0.96681608
## 3                         M                 0.44658845
## 4                         M                 0.49596629
## 5                         M                 0.11150143
## 6                         M                 0.01569566
## 7                         M                 0.31379620
## 8                         M                 0.34778723
## 9                         M                 0.44660688
## 10                        M                 0.02901136
## 11                        M                 0.40709619
## 12                        M                 0.44656374
## 13                        M                 0.29240511
## 14                        B                 0.63760184
## 15                        B                 0.83664724
## 16                        B                 0.99997498
## 17                        M                 0.18805776
## 18                        M                 0.44661459
## 19                        B                 0.98590876
## 20                        B                 0.88515682
## 21                        M                 0.44663097
## 22                        B                 0.83142716
## 23                        B                 0.76187257
## 24                        M                 0.31943128
## 25                        B                 0.39732776
## 26                        M                 0.48486454
## 27                        B                 0.99999887
## 28                        M                 0.16435496
## 29                        B                 0.64793620
## 30                        B                 0.99903564
## 31                        B                 0.96526165
## 32                        B                 0.97945396
## 33                        M                 0.44659843
## 34                        B                 0.99989690
## 35                        B                 0.76853900
## 36                        M                 0.44661322
## 37                        B                 0.99278361
## 38                        M                 0.28446231
## 39                        M                 0.25385324
## 40                        B                 0.74652191
## 41                        M                 0.18837573
## 42                        M                 0.44657322
## 43                        M                 0.44660513
## 44                        M                 0.01181226
## 45                        M                 0.43513162
## 46                        B                 0.99791285
## 47                        B                 0.99736932
## 48                        M                 0.40247234
## 49                        M                 0.75056262
## 50                        M                 0.44663490
## 51                        B                 0.94428161
## 52                        B                 0.69498110
## 53                        M                 0.25963825
## 54                        M                 0.44662583
## 55                        M                 0.44658866
## 56                        M                 0.23194048
## 57                        B                 0.99979818
## 58                        B                 0.87311077
## 59                        B                 0.81813510
## 60                        B                 0.63012226
## 61                        B                 0.95423496
## 62                        B                 0.99996983
## 63                        B                 0.99936958
## 64                        B                 0.99994043
## 65                        M                 0.22183777
## 66                        B                 0.67864195
## 67                        M                 0.05280415
## 68                        B                 0.78464884
## 69                        B                 0.63010395
## 70                        B                 0.63010153
## 71                        B                 0.63010836
## 72                        M                 0.44657233
## 73                        B                 0.99782870
## 74                        B                 0.91971262
## 75                        B                 0.99999643
## 76                        M                 0.31889360
## 77                        B                 0.89735021
## 78                        B                 0.68136752
## 79                        B                 0.98731832
## 80                        B                 0.88269311
## 81                        B                 0.44297446
## 82                        B                 0.58223340
## 83                        B                 0.99975744
## 84                        B                 0.99912945
## 85                        B                 0.63008456
## 86                        M                 0.44662362
## 87                        B                 0.99996040
## 88                        B                 0.31981095
## 89                        B                 0.96210734
## 90                        B                 0.63009806
## 91                        B                 0.91531929
## 92                        B                 0.95207073
## 93                        B                 0.63007930
## 94                        B                 0.94340184
## 95                        B                 0.97479915
## 96                        B                 0.81672158
## 97                        M                 0.85442999
## 98                        B                 0.68987415
## 99                        B                 0.99952286
## 100                       M                 0.69757647
## 101                       B                 0.84281820
## 102                       B                 0.86154082
## 103                       B                 0.63009434
## 104                       B                 0.98927084
## 105                       B                 0.99013721
## 106                       M                 0.62321388
## 107                       B                 0.97686343
## 108                       M                 0.39672259
## 109                       B                 0.63005392
## 110                       M                 0.44666425
## 111                       B                 0.63008359
## 112                       B                 0.50601663
## 113                       B                 0.63010998
## 114                       B                 0.80018102
## 115                       B                 0.70965320
## 116                       M                 0.05996713
## 117                       M                 0.25816221
## 118                       B                 0.91915162
## 119                       M                 0.96681608
## 120                       M                 0.44659653
## 121                       M                 0.37879946
## 122                       M                 0.14365041
## 123                       M                 0.01429934
## 124                       M                 0.45018460
## 125                       M                 0.01569566
## 126                       M                 0.44660385
## 127                       M                 0.31379620
## 128                       M                 0.44665740
## 129                       B                 0.63002533
## 130                       M                 0.04854398
## 131                       M                 0.36356965
## 132                       M                 0.07119308
## 133                       B                 0.98590876
## 134                       B                 0.88515682
## 135                       B                 0.63009259
## 136                       M                 0.39144637
## 137                       B                 0.97776648
## 138                       B                 0.68430267
## 139                       B                 0.39732776
## 140                       B                 0.63008428
## 141                       M                 0.13525971
## 142                       M                 0.48486454
## 143                       M                 0.39703097
## 144                       B                 0.99876888
## 145                       B                 0.99999993
## 146                       B                 0.98148681
## 147                       B                 0.75366862
## 148                       B                 0.52900974
## 149                       M                 0.18003087
## 150                       B                 0.99999816
## 151                       M                 0.36986063
## 152                       M                 0.01615978
## 153                       M                 0.01179846
## 154                       M                 0.43513162
## 155                       B                 0.99791285
## 156                       B                 0.98708004
## 157                       B                 0.87622783
## 158                       M                 0.06918595
## 159                       B                 0.85767588
## 160                       M                 0.44656950
## 161                       M                 0.75056262
## 162                       B                 0.92288555
## 163                       B                 0.63009247
## 164                       B                 0.63004151
## 165                       B                 0.69498110
## 166                       B                 0.63006726
## 167                       M                 0.37933654
## 168                       B                 0.63007755
## 169                       B                 0.99838210
## 170                       M                 0.58769029
## 171                       B                 0.94781870
## 172                       B                 0.99996600
## 173                       B                 0.99990480
## 174                       B                 0.71567239
## 175                       M                 0.11516391
## 176                       B                 0.99994043
## 177                       B                 0.63004753
## 178                       B                 0.77813933
## 179                       M                 0.44656839
## 180                       B                 0.75846635
## 181                       B                 0.63003696
## 182                       B                 0.99014081
## 183                       B                 0.99624884
## 184                       B                 0.99999605
## 185                       M                 0.44661287
## 186                       B                 0.99400435
## 187                       B                 0.83290603
## 188                       B                 0.91218616
## 189                       B                 0.96651099
## 190                       B                 0.63007931
## 191                       B                 0.68136752
## 192                       B                 0.63006207
## 193                       B                 0.78872709
## 194                       B                 0.45225906
## 195                       B                 0.44297446
## 196                       B                 0.58223340
## 197                       B                 0.99975744
## 198                       B                 0.99912945
## 199                       M                 0.48573932
## 200                       B                 0.63006243
## 201                       B                 0.63009567
## 202                       B                 0.99988961
## 203                       B                 0.63002311
## 204                       M                 0.44656566
## 205                       B                 0.31981095
## 206                       B                 0.63875182
## 207                       B                 0.88256443
## 208                       B                 0.63011291
## 209                       M                 0.44659950
## 210                       M                 0.85442999
## 211                       B                 0.68987415
## 212                       B                 0.99992615
## 213                       B                 0.63005153
## 214                       M                 0.62321388
## 215                       B                 0.89393457
## 216                       B                 0.78611843
## 217                       B                 0.99888634
## 218                       B                 0.99998287
## 219                       B                 0.94387725
## 220                       M                 0.09677441
## 221                       B                 0.63002120
## 222                       B                 0.84509788
## 223                       B                 0.63007770
## 224                       B                 0.50601663
## 225                       B                 0.80018102
## 226                       M                 0.16459484
##     BAL_SVM_R_Test_Predicted.M
## 1                 5.533756e-01
## 2                 3.318392e-02
## 3                 5.534116e-01
## 4                 5.040337e-01
## 5                 8.884986e-01
## 6                 9.843043e-01
## 7                 6.862038e-01
## 8                 6.522128e-01
## 9                 5.533931e-01
## 10                9.709886e-01
## 11                5.929038e-01
## 12                5.534363e-01
## 13                7.075949e-01
## 14                3.623982e-01
## 15                1.633528e-01
## 16                2.501836e-05
## 17                8.119422e-01
## 18                5.533854e-01
## 19                1.409124e-02
## 20                1.148432e-01
## 21                5.533690e-01
## 22                1.685728e-01
## 23                2.381274e-01
## 24                6.805687e-01
## 25                6.026722e-01
## 26                5.151355e-01
## 27                1.134718e-06
## 28                8.356450e-01
## 29                3.520638e-01
## 30                9.643595e-04
## 31                3.473835e-02
## 32                2.054604e-02
## 33                5.534016e-01
## 34                1.030988e-04
## 35                2.314610e-01
## 36                5.533868e-01
## 37                7.216388e-03
## 38                7.155377e-01
## 39                7.461468e-01
## 40                2.534781e-01
## 41                8.116243e-01
## 42                5.534268e-01
## 43                5.533949e-01
## 44                9.881877e-01
## 45                5.648684e-01
## 46                2.087152e-03
## 47                2.630682e-03
## 48                5.975277e-01
## 49                2.494374e-01
## 50                5.533651e-01
## 51                5.571839e-02
## 52                3.050189e-01
## 53                7.403618e-01
## 54                5.533742e-01
## 55                5.534113e-01
## 56                7.680595e-01
## 57                2.018189e-04
## 58                1.268892e-01
## 59                1.818649e-01
## 60                3.698777e-01
## 61                4.576504e-02
## 62                3.016689e-05
## 63                6.304212e-04
## 64                5.956627e-05
## 65                7.781622e-01
## 66                3.213580e-01
## 67                9.471958e-01
## 68                2.153512e-01
## 69                3.698960e-01
## 70                3.698985e-01
## 71                3.698916e-01
## 72                5.534277e-01
## 73                2.171299e-03
## 74                8.028738e-02
## 75                3.566212e-06
## 76                6.811064e-01
## 77                1.026498e-01
## 78                3.186325e-01
## 79                1.268168e-02
## 80                1.173069e-01
## 81                5.570255e-01
## 82                4.177666e-01
## 83                2.425552e-04
## 84                8.705529e-04
## 85                3.699154e-01
## 86                5.533764e-01
## 87                3.960191e-05
## 88                6.801890e-01
## 89                3.789266e-02
## 90                3.699019e-01
## 91                8.468071e-02
## 92                4.792927e-02
## 93                3.699207e-01
## 94                5.659816e-02
## 95                2.520085e-02
## 96                1.832784e-01
## 97                1.455700e-01
## 98                3.101259e-01
## 99                4.771412e-04
## 100               3.024235e-01
## 101               1.571818e-01
## 102               1.384592e-01
## 103               3.699057e-01
## 104               1.072916e-02
## 105               9.862787e-03
## 106               3.767861e-01
## 107               2.313657e-02
## 108               6.032774e-01
## 109               3.699461e-01
## 110               5.533357e-01
## 111               3.699164e-01
## 112               4.939834e-01
## 113               3.698900e-01
## 114               1.998190e-01
## 115               2.903468e-01
## 116               9.400329e-01
## 117               7.418378e-01
## 118               8.084838e-02
## 119               3.318392e-02
## 120               5.534035e-01
## 121               6.212005e-01
## 122               8.563496e-01
## 123               9.857007e-01
## 124               5.498154e-01
## 125               9.843043e-01
## 126               5.533962e-01
## 127               6.862038e-01
## 128               5.533426e-01
## 129               3.699747e-01
## 130               9.514560e-01
## 131               6.364303e-01
## 132               9.288069e-01
## 133               1.409124e-02
## 134               1.148432e-01
## 135               3.699074e-01
## 136               6.085536e-01
## 137               2.223352e-02
## 138               3.156973e-01
## 139               6.026722e-01
## 140               3.699157e-01
## 141               8.647403e-01
## 142               5.151355e-01
## 143               6.029690e-01
## 144               1.231116e-03
## 145               7.017823e-08
## 146               1.851319e-02
## 147               2.463314e-01
## 148               4.709903e-01
## 149               8.199691e-01
## 150               1.843389e-06
## 151               6.301394e-01
## 152               9.838402e-01
## 153               9.882015e-01
## 154               5.648684e-01
## 155               2.087152e-03
## 156               1.291996e-02
## 157               1.237722e-01
## 158               9.308140e-01
## 159               1.423241e-01
## 160               5.534305e-01
## 161               2.494374e-01
## 162               7.711445e-02
## 163               3.699075e-01
## 164               3.699585e-01
## 165               3.050189e-01
## 166               3.699327e-01
## 167               6.206635e-01
## 168               3.699224e-01
## 169               1.617901e-03
## 170               4.123097e-01
## 171               5.218130e-02
## 172               3.400486e-05
## 173               9.519997e-05
## 174               2.843276e-01
## 175               8.848361e-01
## 176               5.956627e-05
## 177               3.699525e-01
## 178               2.218607e-01
## 179               5.534316e-01
## 180               2.415337e-01
## 181               3.699630e-01
## 182               9.859192e-03
## 183               3.751161e-03
## 184               3.949477e-06
## 185               5.533871e-01
## 186               5.995654e-03
## 187               1.670940e-01
## 188               8.781384e-02
## 189               3.348901e-02
## 190               3.699207e-01
## 191               3.186325e-01
## 192               3.699379e-01
## 193               2.112729e-01
## 194               5.477409e-01
## 195               5.570255e-01
## 196               4.177666e-01
## 197               2.425552e-04
## 198               8.705529e-04
## 199               5.142607e-01
## 200               3.699376e-01
## 201               3.699043e-01
## 202               1.103856e-04
## 203               3.699769e-01
## 204               5.534343e-01
## 205               6.801890e-01
## 206               3.612482e-01
## 207               1.174356e-01
## 208               3.698871e-01
## 209               5.534005e-01
## 210               1.455700e-01
## 211               3.101259e-01
## 212               7.384536e-05
## 213               3.699485e-01
## 214               3.767861e-01
## 215               1.060654e-01
## 216               2.138816e-01
## 217               1.113662e-03
## 218               1.712896e-05
## 219               5.612275e-02
## 220               9.032256e-01
## 221               3.699788e-01
## 222               1.549021e-01
## 223               3.699223e-01
## 224               4.939834e-01
## 225               1.998190e-01
## 226               8.354052e-01
##################################
# Reporting the independent evaluation results
# for the test set
##################################
BAL_SVM_R_Test_ROC <- roc(response = BAL_SVM_R_Test$BAL_SVM_R_Test_Observed,
                          predictor = BAL_SVM_R_Test$BAL_SVM_R_Test_Predicted.M,
                          levels = rev(levels(BAL_SVM_R_Test$BAL_SVM_R_Test_Observed)))

(BAL_SVM_R_Test_AUROC <- auc(BAL_SVM_R_Test_ROC)[1])
## [1] 0.9376258

1.7.4 Base Learner Model Development using K-Nearest Neighbors (BAL_KNN)


K-Nearest Neighbors use proximity to make predictions about the class grouping of an individual data point. The algorithm examines the labels of a chosen number of data points surrounding a target data point given a distance-based similarity metric, in order to make a prediction about the class that the data point falls into. The process involves setting a value for the chosen number of neighbors, calculating the distance between the target point across all instances, sorting the calculated distances, obtaining the labels of the top entries and returning the prediction for the target point.

[A] The k-nearest neighbors model was implemented through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] k = number of neighbors made to vary across a range of values equal to 1 to 15

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves k=1
     [C.2] AUROC = 0.90764

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.93611

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
KNN_Grid = data.frame(k = 1:15)

##################################
# Running the k-nearest neighbors model
# by setting the caret method to 'knn'
##################################
set.seed(12345678)
BAL_KNN_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                      y = MA_Train$diagnosis,
                      method = "knn",
                      preProc = c("center", "scale"),
                      tuneGrid = KNN_Grid,
                      metric = "ROC",
                      trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
BAL_KNN_Tune
## k-Nearest Neighbors 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## Pre-processing: centered (6), scaled (6) 
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   k   ROC        Sens       Spec     
##    1  0.9076428  0.9205797  0.8947059
##    2  0.8730636  0.8202471  0.7252941
##    3  0.8824422  0.8248574  0.6982353
##    4  0.8818437  0.8643417  0.7288235
##    5  0.8815800  0.8887689  0.7488235
##    6  0.8827032  0.8716644  0.7294118
##    7  0.8848091  0.8730648  0.7211765
##    8  0.8832599  0.8825080  0.7247059
##    9  0.8826004  0.8905416  0.7305882
##   10  0.8821762  0.8839146  0.7129412
##   11  0.8817764  0.8867185  0.7164706
##   12  0.8794329  0.8870664  0.7135294
##   13  0.8785997  0.8860046  0.7123529
##   14  0.8818346  0.8821571  0.7117647
##   15  0.8846281  0.8825263  0.7135294
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 1.
BAL_KNN_Tune$finalModel
## 1-nearest neighbor model
## Training set outcome distribution:
## 
##   B   M 
## 572 340
BAL_KNN_Tune$results
##     k       ROC      Sens      Spec      ROCSD     SensSD     SpecSD
## 1   1 0.9076428 0.9205797 0.8947059 0.02583023 0.02881542 0.04064787
## 2   2 0.8730636 0.8202471 0.7252941 0.02876280 0.04286672 0.05229039
## 3   3 0.8824422 0.8248574 0.6982353 0.02631797 0.03848173 0.05807117
## 4   4 0.8818437 0.8643417 0.7288235 0.02394691 0.03156119 0.04651958
## 5   5 0.8815800 0.8887689 0.7488235 0.01965491 0.03178715 0.03649904
## 6   6 0.8827032 0.8716644 0.7294118 0.02080533 0.03287310 0.04411765
## 7   7 0.8848091 0.8730648 0.7211765 0.01884352 0.02994811 0.04482280
## 8   8 0.8832599 0.8825080 0.7247059 0.02014577 0.03294398 0.04127265
## 9   9 0.8826004 0.8905416 0.7305882 0.01945929 0.03067128 0.03620157
## 10 10 0.8821762 0.8839146 0.7129412 0.02010782 0.02722610 0.04767519
## 11 11 0.8817764 0.8867185 0.7164706 0.02007380 0.02682363 0.04462939
## 12 12 0.8794329 0.8870664 0.7135294 0.02001825 0.03088131 0.04331791
## 13 13 0.8785997 0.8860046 0.7123529 0.02061021 0.03027290 0.04246920
## 14 14 0.8818346 0.8821571 0.7117647 0.02038839 0.02947233 0.04432142
## 15 15 0.8846281 0.8825263 0.7135294 0.02000838 0.02791806 0.05114040
(BAL_KNN_Train_AUROC <- BAL_KNN_Tune$results[BAL_KNN_Tune$results$k==BAL_KNN_Tune$bestTune$k,
                                                   c("ROC")])
## [1] 0.9076428
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
BAL_KNN_Test <- data.frame(BAL_KNN_Test_Observed = MA_Test$diagnosis,
                           BAL_KNN_Test_Predicted = predict(BAL_KNN_Tune,
                                                            MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                            type = "prob"))

BAL_KNN_Test
##     BAL_KNN_Test_Observed BAL_KNN_Test_Predicted.B BAL_KNN_Test_Predicted.M
## 1                       M                        0                        1
## 2                       M                        1                        0
## 3                       M                        0                        1
## 4                       M                        0                        1
## 5                       M                        0                        1
## 6                       M                        0                        1
## 7                       M                        0                        1
## 8                       M                        0                        1
## 9                       M                        0                        1
## 10                      M                        0                        1
## 11                      M                        0                        1
## 12                      M                        0                        1
## 13                      M                        0                        1
## 14                      B                        1                        0
## 15                      B                        1                        0
## 16                      B                        1                        0
## 17                      M                        0                        1
## 18                      M                        0                        1
## 19                      B                        1                        0
## 20                      B                        1                        0
## 21                      M                        0                        1
## 22                      B                        1                        0
## 23                      B                        1                        0
## 24                      M                        0                        1
## 25                      B                        0                        1
## 26                      M                        1                        0
## 27                      B                        1                        0
## 28                      M                        0                        1
## 29                      B                        1                        0
## 30                      B                        1                        0
## 31                      B                        1                        0
## 32                      B                        1                        0
## 33                      M                        0                        1
## 34                      B                        1                        0
## 35                      B                        1                        0
## 36                      M                        0                        1
## 37                      B                        1                        0
## 38                      M                        0                        1
## 39                      M                        0                        1
## 40                      B                        1                        0
## 41                      M                        0                        1
## 42                      M                        0                        1
## 43                      M                        0                        1
## 44                      M                        0                        1
## 45                      M                        0                        1
## 46                      B                        1                        0
## 47                      B                        1                        0
## 48                      M                        0                        1
## 49                      M                        0                        1
## 50                      M                        0                        1
## 51                      B                        1                        0
## 52                      B                        0                        1
## 53                      M                        0                        1
## 54                      M                        0                        1
## 55                      M                        0                        1
## 56                      M                        0                        1
## 57                      B                        1                        0
## 58                      B                        1                        0
## 59                      B                        1                        0
## 60                      B                        1                        0
## 61                      B                        1                        0
## 62                      B                        1                        0
## 63                      B                        1                        0
## 64                      B                        1                        0
## 65                      M                        0                        1
## 66                      B                        1                        0
## 67                      M                        0                        1
## 68                      B                        1                        0
## 69                      B                        1                        0
## 70                      B                        1                        0
## 71                      B                        1                        0
## 72                      M                        0                        1
## 73                      B                        1                        0
## 74                      B                        1                        0
## 75                      B                        1                        0
## 76                      M                        0                        1
## 77                      B                        1                        0
## 78                      B                        1                        0
## 79                      B                        1                        0
## 80                      B                        1                        0
## 81                      B                        1                        0
## 82                      B                        1                        0
## 83                      B                        1                        0
## 84                      B                        1                        0
## 85                      B                        1                        0
## 86                      M                        0                        1
## 87                      B                        1                        0
## 88                      B                        0                        1
## 89                      B                        1                        0
## 90                      B                        1                        0
## 91                      B                        1                        0
## 92                      B                        1                        0
## 93                      B                        1                        0
## 94                      B                        1                        0
## 95                      B                        1                        0
## 96                      B                        1                        0
## 97                      M                        0                        1
## 98                      B                        0                        1
## 99                      B                        1                        0
## 100                     M                        0                        1
## 101                     B                        1                        0
## 102                     B                        1                        0
## 103                     B                        1                        0
## 104                     B                        1                        0
## 105                     B                        1                        0
## 106                     M                        1                        0
## 107                     B                        1                        0
## 108                     M                        0                        1
## 109                     B                        1                        0
## 110                     M                        0                        1
## 111                     B                        1                        0
## 112                     B                        1                        0
## 113                     B                        1                        0
## 114                     B                        1                        0
## 115                     B                        1                        0
## 116                     M                        0                        1
## 117                     M                        0                        1
## 118                     B                        1                        0
## 119                     M                        1                        0
## 120                     M                        0                        1
## 121                     M                        0                        1
## 122                     M                        0                        1
## 123                     M                        0                        1
## 124                     M                        0                        1
## 125                     M                        0                        1
## 126                     M                        0                        1
## 127                     M                        0                        1
## 128                     M                        0                        1
## 129                     B                        1                        0
## 130                     M                        0                        1
## 131                     M                        0                        1
## 132                     M                        0                        1
## 133                     B                        1                        0
## 134                     B                        1                        0
## 135                     B                        1                        0
## 136                     M                        0                        1
## 137                     B                        1                        0
## 138                     B                        1                        0
## 139                     B                        0                        1
## 140                     B                        1                        0
## 141                     M                        0                        1
## 142                     M                        1                        0
## 143                     M                        0                        1
## 144                     B                        1                        0
## 145                     B                        1                        0
## 146                     B                        1                        0
## 147                     B                        1                        0
## 148                     B                        1                        0
## 149                     M                        0                        1
## 150                     B                        1                        0
## 151                     M                        0                        1
## 152                     M                        0                        1
## 153                     M                        0                        1
## 154                     M                        0                        1
## 155                     B                        1                        0
## 156                     B                        1                        0
## 157                     B                        1                        0
## 158                     M                        0                        1
## 159                     B                        1                        0
## 160                     M                        0                        1
## 161                     M                        0                        1
## 162                     B                        1                        0
## 163                     B                        1                        0
## 164                     B                        1                        0
## 165                     B                        0                        1
## 166                     B                        1                        0
## 167                     M                        0                        1
## 168                     B                        1                        0
## 169                     B                        1                        0
## 170                     M                        0                        1
## 171                     B                        1                        0
## 172                     B                        1                        0
## 173                     B                        1                        0
## 174                     B                        1                        0
## 175                     M                        0                        1
## 176                     B                        1                        0
## 177                     B                        1                        0
## 178                     B                        1                        0
## 179                     M                        0                        1
## 180                     B                        1                        0
## 181                     B                        1                        0
## 182                     B                        1                        0
## 183                     B                        1                        0
## 184                     B                        1                        0
## 185                     M                        0                        1
## 186                     B                        1                        0
## 187                     B                        1                        0
## 188                     B                        1                        0
## 189                     B                        1                        0
## 190                     B                        1                        0
## 191                     B                        1                        0
## 192                     B                        1                        0
## 193                     B                        1                        0
## 194                     B                        1                        0
## 195                     B                        1                        0
## 196                     B                        1                        0
## 197                     B                        1                        0
## 198                     B                        1                        0
## 199                     M                        0                        1
## 200                     B                        1                        0
## 201                     B                        1                        0
## 202                     B                        1                        0
## 203                     B                        1                        0
## 204                     M                        0                        1
## 205                     B                        0                        1
## 206                     B                        1                        0
## 207                     B                        1                        0
## 208                     B                        1                        0
## 209                     M                        0                        1
## 210                     M                        0                        1
## 211                     B                        0                        1
## 212                     B                        1                        0
## 213                     B                        1                        0
## 214                     M                        1                        0
## 215                     B                        1                        0
## 216                     B                        1                        0
## 217                     B                        1                        0
## 218                     B                        1                        0
## 219                     B                        1                        0
## 220                     M                        0                        1
## 221                     B                        1                        0
## 222                     B                        1                        0
## 223                     B                        1                        0
## 224                     B                        1                        0
## 225                     B                        1                        0
## 226                     M                        0                        1
##################################
# Reporting the independent evaluation results
# for the test set
##################################
BAL_KNN_Test_ROC <- roc(response = BAL_KNN_Test$BAL_KNN_Test_Observed,
                        predictor = BAL_KNN_Test$BAL_KNN_Test_Predicted.M,
                        levels = rev(levels(BAL_KNN_Test$BAL_KNN_Test_Observed)))

(BAL_KNN_Test_AUROC <- auc(BAL_KNN_Test_ROC)[1])
## [1] 0.9361167

1.7.5 Base Learner Model Development using Naive Bayes (BAL_NB)


Naive Bayes Classifier categorizes instances by applying Bayes Theorem in determining posterior probabilities as conditioned by the likelihood of features, and prior probabilities pertaining to both events and features. The algorithm naively assumes independence between features and assigns the same weight (degree of significance) to all given features. The class conditional probabilities and the prior probabilities are calculated to yield the posterior probability, and operates by returning the class, which has the maximum posterior probability out of a group of classes.

[A] The naive bayes model from the klaR package was implemented through the caret package.

[B] The model contains 3 hyperparameters:
     [B.1] fL = laplace correction held constant at a value of 2
     [B.2] adjust = bandwidth adjustment held constant at a value of FALSE
     [B.3] usekernel = distribution type made to vary across a range of levels equal to TRUE and FALSE

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves fL=2, adjust=FALSE and usekernel=FALSE
     [C.2] AUROC = 0.88735

[D] The model does not allow for ranking of predictors in terms of variable importance.

[E] The independent test model performance of the final model is summarized as follows:
     [E.1] AUROC = 0.90383

Code Chunk | Output
##################################
# Setting the conditions
# for hyperparameter tuning
##################################
NB_Grid = data.frame(usekernel = c(TRUE, FALSE), 
                     fL = 2, 
                     adjust = FALSE)

##################################
# Running the naive bayes model
# by setting the caret method to 'nb'
##################################
set.seed(12345678)
BAL_NB_Tune <- train(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                     y = MA_Train$diagnosis,
                     method = "nb",
                     tuneGrid = NB_Grid,
                     metric = "ROC",
                     trControl = RKFold_Control)

##################################
# Reporting the cross-validation results
# for the train set
##################################
BAL_NB_Tune
## Naive Bayes 
## 
## 912 samples
##   6 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   usekernel  ROC        Sens       Spec     
##   FALSE      0.8873525  0.8552525  0.7605882
##    TRUE            NaN        NaN        NaN
## 
## Tuning parameter 'fL' was held constant at a value of 2
## Tuning
##  parameter 'adjust' was held constant at a value of FALSE
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were fL = 2, usekernel = FALSE and adjust
##  = FALSE.
BAL_NB_Tune$finalModel
## $apriori
## grouping
##        B        M 
## 0.627193 0.372807 
## 
## $tables
## $tables$texture_mean
##       [,1]      [,2]
## B 2.866111 0.2131833
## M 3.054338 0.1756238
## 
## $tables$smoothness_mean
##        [,1]      [,2]
## B -2.394224 0.1422449
## M -2.276397 0.1231980
## 
## $tables$compactness_se
##        [,1]      [,2]
## B -4.044941 0.6453164
## M -3.559438 0.5400556
## 
## $tables$texture_worst
##       [,1]      [,2]
## B 4.374373 0.4270218
## M 4.792405 0.3581525
## 
## $tables$smoothness_worst
##        [,1]       [,2]
## B -1.553385 0.08631008
## M -1.469949 0.08502371
## 
## $tables$symmetry_worst
##        [,1]      [,2]
## B -1.882256 0.3136605
## M -1.584759 0.3956037
## 
## 
## $levels
## [1] "B" "M"
## 
## $call
## NaiveBayes.default(x = x, grouping = y, usekernel = FALSE, fL = param$fL)
## 
## $x
##       texture_mean smoothness_mean compactness_se texture_worst
## X1        2.339881       -2.133687      -3.015119      3.845649
## X2        2.877512       -2.468168      -4.336671      4.393994
## X3        3.056357       -2.210918      -3.217377      4.558289
## X6        2.753661       -2.057289      -3.397703      4.421124
## X7        2.994732       -2.357781      -4.281638      4.712710
## X8        3.036394       -2.129472      -3.496938      4.746189
## X9        3.082827       -2.061209      -3.351836      4.919334
## X10       3.179719       -2.131999      -2.628731      5.491708
## X11       3.145875       -2.500305      -4.681080      5.114832
## X12       2.884242       -2.332014      -3.203741      4.685875
## X13       3.210844       -2.328929      -2.489276      4.867801
## X15       3.118392       -2.179483      -2.824135      5.000625
## X16       3.315639       -2.172434      -3.160607      5.301845
## X17       3.002211       -2.315974      -4.455028      4.928999
## X18       3.029167       -2.145581      -3.688480      4.967287
## X20       2.664447       -2.324933      -4.226734      4.034440
## X21       2.754297       -2.230264      -3.964369      4.146994
## X22       2.520917       -2.278869      -4.246098      3.668189
## X23       2.657458       -2.232127      -2.932194      4.017490
## X25       3.062456       -2.188364      -3.972835      4.972347
## X26       2.797281       -2.131999      -3.270432      4.226835
## X27       3.069447       -2.249993      -3.488391      5.074506
## X28       3.008155       -2.360214      -3.603803      4.684455
## X30       2.711378       -2.318003      -3.495618      4.058702
## X32       2.928524       -2.199126      -3.377286      4.744803
## X35       2.883683       -2.263364      -3.551555      4.684455
## X38       2.913437       -2.409836      -5.318724      4.345339
## X39       3.226844       -2.365844      -4.515329      4.533450
## X40       3.035914       -2.286712      -3.799141      4.594701
## X42       3.061052       -2.098013      -4.037586      5.200544
## X43       3.211247       -2.398986      -2.296603      5.072078
## X45       3.082369       -2.331602      -4.280192      4.864503
## X46       2.867899       -2.208184      -3.220377      4.219926
## X47       2.823757       -2.453408      -4.106822      4.274627
## X48       2.926382       -2.155891      -3.756730      4.732992
## X49       2.683074       -2.272056      -4.249596      4.165667
## X52       2.793616       -2.565900      -4.442201      4.376271
## X53       2.903617       -2.493625      -4.781907      4.220791
## X54       2.928524       -2.164564      -3.519643      4.451081
## X55       3.091951       -2.401743      -4.575611      4.980549
## X56       2.931194       -2.351355      -4.741907      4.317312
## X57       2.921547       -2.250942      -3.769656      4.746189
## X58       3.072230       -2.174192      -3.556098      4.917397
## X59       2.960623       -2.518257      -4.756807      4.298995
## X61       2.700018       -2.176834      -4.510770      3.857866
## X62       3.043570       -2.085057      -3.453965      4.668773
## X64       2.629007       -2.561226      -3.234497      4.031624
## X65       3.171365       -2.187472      -3.631366      5.090232
## X67       3.044999       -2.259526      -4.042701      4.972347
## X68       2.946542       -2.508503      -4.686814      4.428254
## X69       2.852439       -2.238672      -2.452711      4.332192
## X71       3.059176       -2.406946      -4.103184      4.635650
## X73       3.199489       -2.233992      -2.879551      5.111247
## X74       2.759377       -2.295609      -3.880040      4.179793
## X75       2.804572       -2.389015      -4.006883      4.377888
## X78       2.781920       -2.239610      -2.840611      4.001364
## X79       3.176803       -2.051048      -2.683114      4.982438
## X80       2.890372       -2.309207      -4.097750      4.504524
## X81       3.043093       -2.205458      -4.071019      5.009980
## X82       2.763800       -2.227478      -3.331205      4.376271
## X83       3.215269       -2.241490      -2.865933      5.099260
## X84       3.269189       -2.107841      -2.805112      5.044600
## X85       2.750471       -2.330676      -4.010739      4.510643
## X86       2.918851       -2.315265      -4.105001      4.714115
## X87       3.066191       -2.359791      -3.512241      4.821893
## X88       3.202340       -2.404729      -3.994318      4.898589
## X89       3.081910       -2.433605      -3.691683      4.904441
## X90       2.723924       -2.178599      -3.120842      3.936655
## X91       3.178887       -2.410839      -4.007433      4.812472
## X92       3.125005       -2.385967      -3.711534      4.581390
## X93       2.691921       -2.609790      -4.567874      4.307339
## X94       2.906901       -2.280824      -4.205723      4.588794
## X95       2.987196       -2.264326      -3.292792      4.458901
## X96       3.136798       -2.399316      -3.357563      4.974243
## X97       2.881443       -2.258568      -4.440504      4.185067
## X99       2.552565       -2.409836      -4.319991      3.828226
## X100      2.984166       -2.327698      -3.542185      4.927712
## X102      2.597491       -2.145581      -4.524512      4.060557
## X103      3.021400       -2.524105      -5.099794      5.051957
## X104      2.965273       -2.297598      -3.818533      4.653708
## X105      2.959587       -2.303686      -3.808114      4.385955
## X106      2.744704       -1.967542      -3.536330      4.311499
## X108      2.919931       -2.467814      -4.559241      4.700742
## X109      2.979095       -2.020418      -2.445532      4.737167
## X110      3.056827       -2.435088      -4.162409      4.815168
## X111      2.832625       -2.266253      -3.529485      4.232863
## X112      3.033028       -2.309308      -3.208431      4.553792
## X113      2.978077       -2.546314      -2.597493      4.419537
## X114      3.005187       -2.187472      -3.284215      4.340417
## X115      2.761907       -2.162823      -3.810821      4.067964
## X116      3.069447       -2.326058      -3.686083      4.604270
## X117      2.757475       -2.357886      -2.694147      3.818947
## X118      2.813611       -2.152442      -3.663992      4.692258
## X119      3.131573       -2.158485      -3.224894      4.904441
## X120      2.996232       -2.476700      -4.776908      4.724620
## X121      2.381396       -2.367337      -4.180556      3.702239
## X123      3.005683       -1.933093      -2.322176      4.440088
## X125      2.796671       -2.642965      -3.420380      4.340417
## X126      2.845491       -2.432124      -4.691927      4.407598
## X127      3.206398       -2.379682      -4.444753      5.217803
## X128      2.939691       -2.498965      -3.600502      4.573218
## X129      2.796671       -2.162823      -3.173663      3.945456
## X130      3.223664       -2.287696      -3.448604      5.096856
## X131      2.587012       -2.238672      -3.706636      3.894116
## X132      2.969388       -2.214574      -4.210429      4.593226
## X133      3.069912       -2.294617      -3.936316      4.979920
## X134      2.634045       -2.357886      -4.189755      4.033502
## X135      3.086943       -2.361274      -4.253106      4.961581
## X137      2.813611       -2.252843      -4.283087      4.554542
## X138      2.733718       -2.339353      -4.185802      4.279690
## X139      2.866193       -2.148149      -3.358138      4.229421
## X140      2.594508       -2.150723      -3.352979      3.680332
## X141      2.482404       -2.380547      -5.175038      3.488165
## X142      2.893146       -2.330882      -3.943514      4.538741
## X144      2.767576       -2.444494      -4.158563      4.262772
## X146      2.684440       -2.161086      -3.048922      3.760309
## X147      2.808197       -2.215490      -3.315111      4.621105
## X148      2.932260       -2.508626      -3.020640      4.553792
## X149      2.719979       -2.305590      -3.773566      4.089126
## X150      2.885359       -2.532753      -4.140179      4.316482
## X152      3.030134       -2.363929      -2.915813      4.853256
## X154      2.571084       -2.327493      -4.712199      3.737909
## X155      2.730464       -2.366164      -3.903559      4.147887
## X156      2.887033       -2.447149      -4.159203      4.534963
## X158      2.968361       -2.597628      -3.626468      4.741335
## X159      2.544747       -2.373974      -4.626496      3.953251
## X160      2.561868       -2.588269      -5.093908      3.932732
## X161      3.004692       -2.217325      -3.727620      4.608673
## X162      2.768832       -2.442537      -3.488391      3.894116
## X163      2.898671       -2.189256      -3.782311      4.621834
## X164      3.100993       -2.290657      -3.449863      4.783310
## X165      3.092859       -2.472306      -3.671433      4.751724
## X166      2.983660       -2.474442      -4.830441      4.579906
## X168      2.933857       -2.423059      -3.700952      4.615263
## X169      3.205993       -2.254748      -3.314836      5.020540
## X171      2.516890       -2.274970      -4.439656      3.665973
## X172      2.977059       -2.402626      -4.544075      4.863182
## X175      2.718001       -2.431328      -4.588313      4.028805
## X176      2.670694       -2.392729      -4.827439      3.815845
## X177      2.893700       -2.333147      -2.429510      4.471360
## X178      3.001217       -2.319630      -3.195648      4.767568
## X179      3.100993       -2.772429      -6.095937      4.806397
## X180      2.569554       -2.437374      -5.057098      3.721768
## X182      3.279783       -2.170680      -3.045133      5.090835
## X183      3.011113       -2.343720      -3.788479      5.050733
## X184      2.702703       -2.401411      -3.289298      3.883102
## X187      2.922086       -2.454804      -4.690619      4.619646
## X188      2.844328       -2.325444      -4.743973      4.225973
## X189      2.855895       -2.295609      -4.735735      4.628388
## X190      2.766319       -2.515778      -3.811273      4.065190
## X191      3.140698       -2.230264      -1.999522      5.304618
## X192      3.063858       -2.436231      -4.022955      4.401206
## X193      2.902520       -2.666429      -5.000289      4.177151
## X194      3.290638       -2.269150      -3.258397      5.421659
## X196      2.793004       -2.533131      -4.143325      4.278004
## X197      3.104138       -2.120264      -3.396807      5.122583
## X198      3.083743       -2.607617      -2.938218      4.495315
## X200      3.006672       -2.315468      -4.137043      4.879637
## X201      2.973487       -2.344866      -4.029119      4.761381
## X202      2.961141       -2.411508      -3.661653      4.581390
## X203      3.283539       -2.170680      -2.971820      5.042143
## X204      3.167583       -2.022683      -3.471191      5.551376
## X205      2.923162       -2.306091      -3.957544      4.490698
## X206      2.814210       -2.421819      -3.953366      4.124564
## X207      2.848971       -2.217325      -4.382827      4.378696
## X208      3.008648       -2.433605      -4.197707      4.522074
## X209      3.115292       -2.300587      -3.492984      4.815841
## X210      2.558002       -2.503234      -4.393290      3.696783
## X211      3.097386       -2.397995      -3.321185      4.725319
## X212      2.941276       -2.422383      -4.058784      4.517508
## X214      3.241029       -2.296603      -2.458654      4.741335
## X216      2.829087       -2.276917      -3.370280      4.660893
## X217      2.909630       -2.368404      -3.171992      4.673060
## X218      2.861057       -2.519001      -3.467337      4.477566
## X220      3.480317       -2.474560      -3.632877      5.725074
## X222      2.631889       -2.252843      -3.766193      3.825137
## X223      2.863914       -2.243373      -4.268698      4.347796
## X224      3.008155       -2.277892      -3.740594      4.890764
## X225      2.834389       -2.471596      -4.506230      4.409194
## X226      2.600465       -2.312030      -4.248895      3.801311
## X228      2.741485       -2.480397      -3.439834      4.039126
## X229      3.176803       -2.537928      -3.774873      4.956498
## X230      3.105931       -2.218244      -3.255021      4.881604
## X232      3.298795       -2.676116      -4.106215      5.107058
## X233      3.520757       -2.553614      -4.988923      5.547844
## X234      3.325396       -2.390433      -3.881494      5.315680
## X235      2.766948       -2.469348      -4.565949      4.025039
## X236      3.056357       -2.400198      -4.280915      4.890111
## X239      3.326833       -2.498235      -3.559607      5.484477
## X240      3.670715       -2.321564      -3.580922      5.699444
## X241      2.747271       -2.362017      -4.383628      4.014653
## X242      2.710713       -2.535022      -5.312416      4.136255
## X243      2.900872       -2.344241      -2.827848      4.733688
## X244      3.168424       -2.520368      -3.624216      4.618186
## X245      3.157000       -2.275943      -3.425900      4.906389
## X246      2.988708       -2.234926      -4.278748      4.835955
## X248      2.646884       -2.434974      -2.883833      3.883102
## X249      3.227637       -2.337487      -4.570769      5.191870
## X250      2.703373       -2.289669      -4.399783      4.208655
## X251      3.159550       -2.295609      -3.242144      4.665910
## X253      2.986692       -2.242431      -2.984397      4.562778
## X254      2.837908       -2.294617      -4.197707      4.525113
## X255      2.961658       -2.268184      -4.017384      4.485299
## X256      2.836150       -2.210918      -3.619727      4.283900
## X257      3.359333       -2.379466      -3.043873      5.253674
## X258      2.848971       -2.013654      -3.081726      4.333015
## X259      3.144152       -2.199126      -2.814244      4.977398
## X263      3.096934       -2.408057      -2.816582      4.683033
## X264      2.964242       -2.545931      -4.698932      4.979289
## X266      3.437851       -2.357147      -4.214480      5.806493
## X267      2.941804       -2.334282      -3.329528      4.355967
## X268      3.083743       -2.531244      -3.727205      4.874383
## X269      2.785628       -2.361804      -3.826763      4.412381
## X270      3.015045       -2.223774      -3.039684      4.534207
## X272      2.568022       -2.319324      -4.490057      3.725005
## X273      3.044046       -2.364354      -3.003764      4.748958
## X274      2.751748       -2.403843      -4.540319      4.181552
## X275      3.197856       -2.424188      -4.449022      5.162741
## X276      2.854169       -2.099644      -4.207065      4.008967
## X277      2.650421       -2.366697      -4.710753      4.008967
## X278      2.994732       -2.416538      -4.497213      4.464360
## X279      2.881443       -2.532250      -5.244966      4.600594
## X281      3.280911       -2.282782      -3.709490      5.232668
## X282      2.640485       -2.549381      -4.239139      3.938613
## X283      2.900322       -2.266253      -3.817167      4.781263
## X284      2.932260       -2.238672      -3.357851      4.525113
## X285      2.753661       -2.548741      -3.228674      4.074426
## X286      2.912351       -2.477772      -4.827314      4.367359
## X287      3.033028       -2.452827      -2.965009      4.686585
## X288      2.574138       -2.665709      -4.308776      3.654863
## X289      2.993730       -2.523232      -2.493503      4.305672
## X290      2.938633       -2.440354      -4.272276      4.603535
## X291      2.982140       -2.435317      -2.240550      4.288943
## X292      2.949688       -2.408835      -3.856115      4.607206
## X293      2.773838       -2.297598      -3.910524      4.096440
## X294      2.859913       -2.480277      -4.199705      4.574706
## X295      2.623218       -2.336452      -4.439656      3.860909
## X296      2.585506       -2.386184      -4.809369      3.804433
## X297      2.513656       -2.462989      -4.405500      3.573135
## X298      2.898119       -2.305790      -4.600183      4.392389
## X299      2.899772       -2.721744      -4.285263      4.537986
## X300      3.139400       -2.287696      -4.238446      4.458120
## X301      2.939162       -2.162823      -3.441082      4.610871
## X302      2.990217       -2.470885      -3.390554      4.366547
## X303      3.172203       -2.225624      -3.050822      4.833951
## X304      2.923699       -2.236797      -4.671096      4.482982
## X306      3.198265       -2.593740      -3.756302      4.976136
## X307      2.761275       -2.463811      -4.845841      4.143420
## X308      2.667228       -2.658546      -5.321995      4.109184
## X309      2.542389       -2.606939      -5.587067      3.805473
## X310      2.627563       -2.482669      -5.357855      3.852784
## X312      2.753024       -2.574656      -5.112502      4.256821
## X313      2.593013       -2.431101      -3.587045      3.748604
## X314      2.372111       -2.453757      -4.312501      3.334618
## X316      2.824351       -2.463811      -5.805151      4.076268
## X318      2.937573       -2.328313      -4.098955      4.518270
## X319      2.939162       -2.305790      -2.719617      4.393191
## X320      2.833213       -2.582696      -4.529135      4.121857
## X321      2.783776       -2.243373      -3.154728      4.157683
## X322      2.978586       -2.523232      -4.285989      4.363297
## X323      2.589267       -2.176834      -3.904055      4.199074
## X324      3.068518       -2.145581      -3.716867      4.991235
## X325      2.721953       -2.444955      -4.255923      4.225110
## X326      2.850707       -2.274970      -4.654991      4.200819
## X329      3.030617       -2.146436      -3.871361      4.896635
## X331      2.741485       -2.354826      -3.428055      4.276316
## X332      2.962692       -2.345597      -3.424978      4.273783
## X333      2.988708       -2.249993      -4.506230      4.576936
## X335      2.945491       -2.487350      -4.775721      4.768255
## X336      3.044522       -2.190150      -4.019052      5.070864
## X337      2.655352       -2.357886      -3.770090      3.802352
## X339      2.863914       -2.295609      -4.234297      4.654427
## X340      3.189241       -2.235861      -3.926629      4.919334
## X341      2.805782       -2.327800      -3.489045      4.236301
## X342      2.823757       -2.467342      -3.360727      4.366547
## X343      2.705380       -2.270118      -3.975495      4.093700
## X344      3.076390       -2.323094      -3.390851      5.160983
## X345      2.737609       -2.162823      -4.512591      3.928802
## X346      2.688528       -2.314455      -3.063797      4.054986
## X347      2.939162       -2.478607      -4.513503      4.670202
## X348      2.690565       -2.421932      -4.195713      3.906069
## X349      2.774462       -2.399537      -4.762058      4.173623
## X350      2.705380       -2.155891      -3.722643      3.885109
## X351      2.837323       -2.582167      -4.963132      4.079030
## X352      2.955951       -2.085057      -2.724332      4.454212
## X353      2.859913       -2.163693      -3.159900      4.407598
## X354      3.248046       -2.278869      -3.716867      5.075113
## X355      2.644045       -2.620864      -3.385226      3.685830
## X358      2.785628       -2.436917      -4.835968      4.562030
## X359      2.740195       -2.489758      -3.540804      3.883102
## X360      2.907993       -2.293625      -4.712533      4.519792
## X361      2.894253       -2.598837      -5.361683      4.190330
## X362      3.071303       -2.455503      -3.889772      4.818532
## X363      2.935982       -2.335522      -4.106822      4.592488
## X365      2.830268       -2.533635      -4.382027      4.252561
## X366      3.080992       -2.391416      -3.960163      4.620376
## X367      3.289521       -2.312131      -3.063155      5.110649
## X369      2.847812       -2.366164      -4.499010      4.625478
## X370      3.086487       -2.241490      -3.568079      4.578422
## X371      3.148024       -2.328724      -3.239844      4.938626
## X372      2.580974       -2.530364      -4.209755      3.675924
## X374      2.853593       -2.359579      -3.965951      4.374653
## X375      2.776954       -2.488674      -4.143325      4.121857
## X376      2.776954       -2.314658      -4.010739      4.023154
## X377      3.006672       -2.399867      -2.571380      4.346158
## X378      3.339677       -2.588003      -4.420352      5.217230
## X379      2.718001       -2.492778      -3.511906      4.069812
## X380      2.935451       -2.107018      -3.090263      5.050733
## X381      2.561868       -2.089896      -4.030244      4.150563
## X382      2.703373       -2.527355      -3.961739      4.177151
## X383      3.123246       -2.668589      -3.087848      4.785356
## X384      2.861057       -2.261443      -3.295487      4.371414
## X385      2.618855       -2.481353      -3.876173      3.849729
## X386      3.148024       -2.443918      -4.050136      4.981809
## X387      2.645465       -2.512319      -3.497929      4.037253
## X390      3.144583       -2.292635      -3.194915      4.900541
## X392      2.823757       -2.264326      -3.929169      4.344519
## X394      3.103689       -2.148149      -3.289835      4.787400
## X395      2.874694       -2.273998      -4.115977      4.578422
## X398      2.859913       -2.520244      -3.359000      4.197328
## X399      2.696652       -2.558639      -4.220588      4.134460
## X400      2.848392       -2.398325      -3.930187      4.479114
## X401      3.045474       -2.095571      -3.291984      4.721123
## X402      2.389680       -2.422270      -4.419521      4.115529
## X403      2.906354       -2.610334      -3.293330      4.488386
## X405      2.704711       -2.443918      -4.768748      3.796097
## X406      2.922624       -2.298593      -3.847172      4.562030
## X407      2.698673       -2.354405      -4.385232      4.064264
## X408      3.061988       -2.583490      -3.105547      4.666626
## X409      3.028199       -2.267218      -3.585601      4.549287
## X410      2.885917       -2.443573      -3.767923      4.796917
## X411      2.866193       -2.423849      -4.610484      5.256500
## X412      2.823163       -2.228406      -4.671844      4.625478
## X413      3.076390       -2.529611      -3.621595      4.735776
## X414      3.096030       -2.463341      -3.572698      4.971715
## X415      3.394844       -2.486508      -4.249596      5.289608
## X416      3.052585       -2.325547      -3.489045      4.680900
## X417      3.077312       -2.259526      -4.089954      4.952042
## X418      3.048325       -2.189256      -3.247018      4.712008
## X419      2.498974       -2.432124      -4.371680      3.803393
## X421      2.946542       -2.459707      -3.888795      4.664478
## X423      2.773838       -2.218244      -3.909526      4.072581
## X424      2.951258       -2.401632      -3.572342      4.556042
## X425      2.950735       -2.230264      -3.971242      4.374653
## X426      3.057768       -2.511210      -5.167816      4.800985
## X428      3.090133       -2.430305      -3.840633      5.002499
## X431      3.114848       -2.307899      -2.778526      4.706382
## X432      2.872434       -2.249993      -3.412764      4.353519
## X433      2.972464       -2.177716      -3.606378      4.523594
## X434      3.089678       -2.284745      -3.197114      4.932212
## X436      2.976549       -2.244316      -4.022396      4.923849
## X437      2.972464       -2.392948      -4.296216      4.470584
## X438      2.771338       -2.470057      -4.346659      4.242305
## X439      2.975530       -2.443688      -4.514416      4.737167
## X440      2.751110       -2.529988      -4.684430      4.039126
## X441      2.844909       -2.417435      -3.070887      4.656584
## X443      2.759377       -2.428489      -4.460204      3.862936
## X444      2.907993       -2.508134      -4.319240      4.385955
## X445      2.824351       -2.413852      -4.160484      4.279690
## X446      3.214466       -2.273026      -3.899600      4.895332
## X447      3.333275       -2.302885      -3.904551      5.378924
## X448      2.871302       -2.388252      -4.447312      4.339596
## X449      2.962175       -2.478368      -3.888306      4.763445
## X450      3.021400       -2.334695      -3.875209      5.004371
## X451      3.069912       -2.716133      -2.802965      4.748958
## X452      3.218876       -2.271086      -3.948168      4.934138
## X453      3.340385       -2.472543      -3.653898      5.343130
## X455      2.841998       -2.455387      -4.763111      4.290621
## X456      3.424914       -2.381087      -4.385232      5.539246
## X457      3.377246       -2.369045      -3.722229      5.393426
## X459      3.224062       -2.480636      -4.713424      4.992489
## X460      3.339322       -2.527731      -4.366153      5.290165
## X461      3.301377       -2.312837      -3.808114      5.150996
## X462      3.268428       -2.221927      -2.923598      4.960311
## X464      2.910174       -2.464163      -4.073954      4.442448
## X465      2.902520       -2.594811      -4.204383      4.432205
## X466      3.002211       -2.490844      -2.709501      4.556042
## X467      3.032064       -2.444725      -3.448604      4.553042
## X468      2.895912       -2.487590      -4.376442      4.489157
## X469      3.149740       -2.376339      -2.655695      4.796239
## X471      2.917230       -2.413964      -3.917538      4.565019
## X472      3.337192       -2.435888      -4.163695      5.081777
## X473      2.703373       -2.513553      -4.034191      3.934694
## X475      2.748552       -2.295609      -3.476029      4.042868
## X476      2.755570       -2.403511      -4.019608      4.042868
## X477      3.021887       -2.415642      -3.414891      4.684455
## X480      2.970927       -2.276917      -2.905892      4.364923
## X481      2.892037       -2.398325      -4.094745      4.727414
## X482      2.956991       -2.526854      -4.526359      4.624021
## X483      2.643334       -2.233992      -4.232228      3.944480
## X485      2.423031       -2.260484      -4.006334      3.500171
## X487      2.824351       -2.448652      -4.273710      4.551541
## X488      2.934920       -2.217325      -3.563834      4.897287
## X493      3.023347       -2.301586      -3.611918      4.597650
## X494      2.551786       -2.607481      -4.602175      3.744333
## X495      3.022374       -2.612513      -3.886355      4.768255
## X496      3.006178       -2.344762      -4.289630      4.769627
## X497      2.899772       -2.229335      -3.688080      4.290621
## X498      2.851284       -2.415978      -4.289630      4.467474
## X500      3.055886       -2.221005      -3.578770      4.921270
## X502      3.198265       -2.152442      -3.255540      5.058072
## X504      2.987196       -2.370650      -3.394420      4.430625
## X505      2.554899       -1.811554      -3.091803      3.746469
## X506      2.575661       -2.075450      -3.018387      3.916970
## X508      2.840247       -2.125276      -3.751606      4.169207
## X510      3.175968       -2.134532      -3.007805      5.257064
## X511      2.687167       -2.513430      -3.240099      3.873042
## X512      2.687847       -2.468404      -4.425352      3.871024
## X513      3.021400       -2.201835      -3.787595      4.849274
## X515      2.948116       -2.384338      -4.116590      4.740641
## X516      2.923699       -2.254748      -4.109864      4.363297
## X517      3.024320       -2.236797      -3.975495      4.607940
## X519      2.902520       -2.105375      -3.759731      4.469807
## X520      2.815409       -2.184802      -4.159844      4.255969
## X521      2.631889       -1.987045      -3.673006      3.897110
## X522      3.072693       -2.273026      -3.438276      4.660893
## X524      2.927453       -2.311021      -3.793796      4.565765
## X525      2.752386       -2.354721      -3.891240      4.360042
## X526      2.572612       -2.267218      -4.038721      3.957138
## X527      2.931194       -2.230264      -4.238446      4.530422
## X528      2.507157       -2.407612      -4.691927      4.035378
## X529      2.577942       -2.081043      -3.427439      3.636967
## X530      2.598235       -2.207275      -4.462803      3.680332
## X531      2.865624       -2.232127      -4.009085      4.735080
## X532      2.996732       -2.286712      -4.058784      4.792163
## X533      2.793004       -2.377632      -4.929793      4.120954
## X537      3.115735       -2.265289      -3.656219      5.138013
## X538      3.196221       -2.090705      -3.353837      5.011847
## X539      3.238286       -2.513553      -4.636454      4.931570
## X540      3.236323       -2.445532      -2.740005      4.993116
## X541      2.670002       -2.304186      -3.191261      4.073504
## X543      3.235536       -2.491931      -4.446458      5.018060
## X544      3.334345       -2.445186      -4.288901      5.304063
## X546      3.145445       -2.380979      -3.863709      4.811124
## X547      2.794228       -2.360850      -4.927168      4.258523
## X548      2.808197       -2.421707      -3.478943      4.281375
## X551      3.067122       -2.599510      -4.506230      4.500691
## X552      3.110845       -2.346955      -3.489701      4.754487
## X553      3.382015       -2.491810      -4.395720      5.238363
## X554      3.088311       -2.381628      -3.998671      4.522074
## X555      3.364533       -2.510471      -3.838308      5.223531
## X556      3.318178       -2.404618      -3.598673      5.175599
## X557      2.975019       -2.299590      -3.806762      4.351068
## X558      3.327910       -2.510471      -4.488276      5.136237
## X559      3.121483       -2.468286      -3.070671      4.685165
## X560      3.175133       -2.379358      -3.512576      5.303509
## X562      3.379974       -2.597090      -4.724179      5.365966
## X564      3.222469       -2.208184      -3.144232      4.832614
## X565      3.108614       -2.198225      -3.543568      4.622564
## X567      3.335058       -2.470412      -3.288494      5.129122
## X568      3.378611       -2.138767      -2.787418      5.425895
## X570      2.339881       -2.133687      -3.015119      3.845649
## X571      2.877512       -2.468168      -4.336671      4.393994
## X572      3.056357       -2.210918      -3.217377      4.558289
## X573      3.014554       -1.948413      -2.595883      4.629842
## X575      2.753661       -2.057289      -3.397703      4.421124
## X576      2.994732       -2.357781      -4.281638      4.712710
## X577      3.036394       -2.129472      -3.496938      4.746189
## X578      3.082827       -2.061209      -3.351836      4.919334
## X579      3.179719       -2.131999      -2.628731      5.491708
## X580      3.145875       -2.500305      -4.681080      5.114832
## X583      3.175968       -2.476819      -3.465416      4.712710
## X584      3.118392       -2.179483      -2.824135      5.000625
## X585      3.315639       -2.172434      -3.160607      5.301845
## X586      3.002211       -2.315974      -4.455028      4.928999
## X587      3.029167       -2.145581      -3.688480      4.967287
## X588      3.097837       -2.319630      -3.967007      4.928999
## X589      2.664447       -2.324933      -4.226734      4.034440
## X590      2.754297       -2.230264      -3.964369      4.146994
## X591      2.520917       -2.278869      -4.246098      3.668189
## X592      2.657458       -2.232127      -2.932194      4.017490
## X593      3.137232       -2.361486      -4.374852      5.214935
## X595      2.797281       -2.131999      -3.270432      4.226835
## X601      2.928524       -2.199126      -3.377286      4.744803
## X602      3.177220       -2.122767      -3.479591      5.005619
## X603      3.276012       -2.364354      -3.405808      4.930285
## X604      2.883683       -2.263364      -3.551555      4.684455
## X605      3.072230       -2.342366      -3.689280      4.806397
## X606      3.078233       -2.320444      -3.508226      4.895332
## X607      2.913437       -2.409836      -5.318724      4.345339
## X608      3.226844       -2.365844      -4.515329      4.533450
## X609      3.035914       -2.286712      -3.799141      4.594701
## X610      3.071767       -2.505681      -4.508043      4.888151
## X611      3.061052       -2.098013      -4.037586      5.200544
## X613      3.009635       -2.262403      -3.841099      4.736472
## X614      3.082369       -2.331602      -4.280192      4.864503
## X615      2.867899       -2.208184      -3.220377      4.219926
## X618      2.683074       -2.272056      -4.249596      4.165667
## X619      3.104587       -2.435888      -4.281638      4.988725
## X620      3.072693       -2.449115      -4.629668      4.572474
## X621      2.793616       -2.565900      -4.442201      4.376271
## X622      2.903617       -2.493625      -4.781907      4.220791
## X623      2.928524       -2.164564      -3.519643      4.451081
## X624      3.091951       -2.401743      -4.575611      4.980549
## X625      2.931194       -2.351355      -4.741907      4.317312
## X627      3.072230       -2.174192      -3.556098      4.917397
## X628      2.960623       -2.518257      -4.756807      4.298995
## X629      2.467252       -2.327698      -4.551629      3.639212
## X630      2.700018       -2.176834      -4.510770      3.857866
## X631      3.043570       -2.085057      -3.453965      4.668773
## X632      3.097837       -2.254748      -2.651292      4.839292
## X633      2.629007       -2.561226      -3.234497      4.031624
## X635      3.175551       -2.143873      -3.767923      5.085404
## X636      3.044999       -2.259526      -4.042701      4.972347
## X637      2.946542       -2.508503      -4.686814      4.428254
## X638      2.852439       -2.238672      -2.452711      4.332192
## X640      3.059176       -2.406946      -4.103184      4.635650
## X642      3.199489       -2.233992      -2.879551      5.111247
## X643      2.759377       -2.295609      -3.880040      4.179793
## X644      2.804572       -2.389015      -4.006883      4.377888
## X645      2.978077       -2.389451      -3.815350      4.484527
## X646      2.392426       -2.047168      -3.561718      3.284809
## X647      2.781920       -2.239610      -2.840611      4.001364
## X648      3.176803       -2.051048      -2.683114      4.982438
## X649      2.890372       -2.309207      -4.097750      4.504524
## X651      2.763800       -2.227478      -3.331205      4.376271
## X652      3.215269       -2.241490      -2.865933      5.099260
## X653      3.269189       -2.107841      -2.805112      5.044600
## X654      2.750471       -2.330676      -4.010739      4.510643
## X655      2.918851       -2.315265      -4.105001      4.714115
## X656      3.066191       -2.359791      -3.512241      4.821893
## X657      3.202340       -2.404729      -3.994318      4.898589
## X658      3.081910       -2.433605      -3.691683      4.904441
## X659      2.723924       -2.178599      -3.120842      3.936655
## X660      3.178887       -2.410839      -4.007433      4.812472
## X661      3.125005       -2.385967      -3.711534      4.581390
## X662      2.691921       -2.609790      -4.567874      4.307339
## X663      2.906901       -2.280824      -4.205723      4.588794
## X664      2.987196       -2.264326      -3.292792      4.458901
## X667      2.992728       -2.278869      -4.224681      4.614531
## X668      2.552565       -2.409836      -4.319991      3.828226
## X669      2.984166       -2.327698      -3.542185      4.927712
## X670      3.218076       -2.355142      -4.207737      5.196499
## X671      2.597491       -2.145581      -4.524512      4.060557
## X672      3.021400       -2.524105      -5.099794      5.051957
## X674      2.959587       -2.303686      -3.808114      4.385955
## X675      2.744704       -1.967542      -3.536330      4.311499
## X677      2.919931       -2.467814      -4.559241      4.700742
## X678      2.979095       -2.020418      -2.445532      4.737167
## X679      3.056827       -2.435088      -4.162409      4.815168
## X680      2.832625       -2.266253      -3.529485      4.232863
## X681      3.033028       -2.309308      -3.208431      4.553792
## X682      2.978077       -2.546314      -2.597493      4.419537
## X683      3.005187       -2.187472      -3.284215      4.340417
## X685      3.069447       -2.326058      -3.686083      4.604270
## X686      2.757475       -2.357886      -2.694147      3.818947
## X687      2.813611       -2.152442      -3.663992      4.692258
## X689      2.996232       -2.476700      -4.776908      4.724620
## X690      2.381396       -2.367337      -4.180556      3.702239
## X692      3.005683       -1.933093      -2.322176      4.440088
## X693      2.387845       -2.206366      -4.361440      3.703328
## X694      2.796671       -2.642965      -3.420380      4.340417
## X695      2.845491       -2.432124      -4.691927      4.407598
## X697      2.939691       -2.498965      -3.600502      4.573218
## X698      2.796671       -2.162823      -3.173663      3.945456
## X699      3.223664       -2.287696      -3.448604      5.096856
## X700      2.587012       -2.238672      -3.706636      3.894116
## X701      2.969388       -2.214574      -4.210429      4.593226
## X702      3.069912       -2.294617      -3.936316      4.979920
## X703      2.634045       -2.357886      -4.189755      4.033502
## X704      3.086943       -2.361274      -4.253106      4.961581
## X705      3.112181       -2.401853      -4.421183      5.084195
## X706      2.813611       -2.252843      -4.283087      4.554542
## X707      2.733718       -2.339353      -4.185802      4.279690
## X708      2.866193       -2.148149      -3.358138      4.229421
## X711      2.893146       -2.330882      -3.943514      4.538741
## X712      2.851284       -2.214574      -4.054163      4.648665
## X714      2.706048       -2.551944      -4.027995      4.167437
## X715      2.684440       -2.161086      -3.048922      3.760309
## X716      2.808197       -2.215490      -3.315111      4.621105
## X717      2.932260       -2.508626      -3.020640      4.553792
## X718      2.719979       -2.305590      -3.773566      4.089126
## X719      2.885359       -2.532753      -4.140179      4.316482
## X720      3.033991       -2.175952      -4.472389      4.449513
## X721      3.030134       -2.363929      -2.915813      4.853256
## X722      2.730464       -2.233059      -2.344866      4.055916
## X723      2.571084       -2.327493      -4.712199      3.737909
## X724      2.730464       -2.366164      -3.903559      4.147887
## X725      2.887033       -2.447149      -4.159203      4.534963
## X726      3.032064       -2.193731      -3.004975      4.526631
## X728      2.544747       -2.373974      -4.626496      3.953251
## X729      2.561868       -2.588269      -5.093908      3.932732
## X731      2.768832       -2.442537      -3.488391      3.894116
## X733      3.100993       -2.290657      -3.449863      4.783310
## X734      3.092859       -2.472306      -3.671433      4.751724
## X735      2.983660       -2.474442      -4.830441      4.579906
## X736      2.273156       -2.344032      -4.623742      3.221497
## X737      2.933857       -2.423059      -3.700952      4.615263
## X738      3.205993       -2.254748      -3.314836      5.020540
## X739      2.830268       -2.317191      -4.290359      4.360856
## X742      2.475698       -2.073857      -3.763172      3.815845
## X743      2.688528       -2.296603      -3.853283      3.792962
## X744      2.718001       -2.431328      -4.588313      4.028805
## X745      2.670694       -2.392729      -4.827439      3.815845
## X746      2.893700       -2.333147      -2.429510      4.471360
## X747      3.001217       -2.319630      -3.195648      4.767568
## X748      3.100993       -2.772429      -6.095937      4.806397
## X749      2.569554       -2.437374      -5.057098      3.721768
## X750      3.085116       -2.212744      -3.674188      5.052569
## X751      3.279783       -2.170680      -3.045133      5.090835
## X752      3.011113       -2.343720      -3.788479      5.050733
## X753      2.702703       -2.401411      -3.289298      3.883102
## X754      3.109507       -2.401632      -4.272276      4.738557
## X755      2.715357       -2.378710      -4.422849      4.207786
## X756      2.922086       -2.454804      -4.690619      4.619646
## X757      2.844328       -2.325444      -4.743973      4.225973
## X758      2.855895       -2.295609      -4.735735      4.628388
## X759      2.766319       -2.515778      -3.811273      4.065190
## X760      3.140698       -2.230264      -1.999522      5.304618
## X761      3.063858       -2.436231      -4.022955      4.401206
## X762      2.902520       -2.666429      -5.000289      4.177151
## X764      3.144583       -2.259526      -2.971625      4.721123
## X765      2.793004       -2.533131      -4.143325      4.278004
## X766      3.104138       -2.120264      -3.396807      5.122583
## X767      3.083743       -2.607617      -2.938218      4.495315
## X768      3.113071       -2.462402      -3.297378      5.003747
## X770      2.973487       -2.344866      -4.029119      4.761381
## X771      2.961141       -2.411508      -3.661653      4.581390
## X772      3.283539       -2.170680      -2.971820      5.042143
## X773      3.167583       -2.022683      -3.471191      5.551376
## X774      2.923162       -2.306091      -3.957544      4.490698
## X775      2.814210       -2.421819      -3.953366      4.124564
## X776      2.848971       -2.217325      -4.382827      4.378696
## X777      3.008648       -2.433605      -4.197707      4.522074
## X778      3.115292       -2.300587      -3.492984      4.815841
## X779      2.558002       -2.503234      -4.393290      3.696783
## X780      3.097386       -2.397995      -3.321185      4.725319
## X781      2.941276       -2.422383      -4.058784      4.517508
## X782      2.916148       -2.169804      -3.585601      3.959079
## X783      3.241029       -2.296603      -2.458654      4.741335
## X784      3.170106       -2.357781      -3.294138      5.172099
## X785      2.829087       -2.276917      -3.370280      4.660893
## X786      2.909630       -2.368404      -3.171992      4.673060
## X787      2.861057       -2.519001      -3.467337      4.477566
## X789      3.480317       -2.474560      -3.632877      5.725074
## X794      2.834389       -2.471596      -4.506230      4.409194
## X795      2.600465       -2.312030      -4.248895      3.801311
## X796      2.738256       -2.250942      -4.820718      4.084542
## X797      2.741485       -2.480397      -3.439834      4.039126
## X798      3.176803       -2.537928      -3.774873      4.956498
## X799      3.105931       -2.218244      -3.255021      4.881604
## X800      2.948641       -2.170680      -3.908031      4.509879
## X802      3.520757       -2.553614      -4.988923      5.547844
## X804      2.766948       -2.469348      -4.565949      4.025039
## X805      3.056357       -2.400198      -4.280915      4.890111
## X807      3.066191       -2.482310      -3.463179      4.605738
## X808      3.326833       -2.498235      -3.559607      5.484477
## X809      3.670715       -2.321564      -3.580922      5.699444
## X811      2.710713       -2.535022      -5.312416      4.136255
## X814      3.157000       -2.275943      -3.425900      4.906389
## X815      2.988708       -2.234926      -4.278748      4.835955
## X816      2.858193       -2.629008      -4.154732      4.723921
## X817      2.646884       -2.434974      -2.883833      3.883102
## X818      3.227637       -2.337487      -4.570769      5.191870
## X819      2.703373       -2.289669      -4.399783      4.208655
## X820      3.159550       -2.295609      -3.242144      4.665910
## X822      2.986692       -2.242431      -2.984397      4.562778
## X823      2.837908       -2.294617      -4.197707      4.525113
## X824      2.961658       -2.268184      -4.017384      4.485299
## X825      2.836150       -2.210918      -3.619727      4.283900
## X826      3.359333       -2.379466      -3.043873      5.253674
## X827      2.848971       -2.013654      -3.081726      4.333015
## X828      3.144152       -2.199126      -2.814244      4.977398
## X829      3.513335       -2.241490      -3.666727      5.913428
## X830      3.298057       -2.302585      -4.149012      5.412105
## X831      3.138100       -2.446225      -4.504420      4.966653
## X832      3.096934       -2.408057      -2.816582      4.683033
## X833      2.964242       -2.545931      -4.698932      4.979289
## X834      3.094219       -2.330367      -4.417861      4.827259
## X835      3.437851       -2.357147      -4.214480      5.806493
## X837      3.083743       -2.531244      -3.727205      4.874383
## X838      2.785628       -2.361804      -3.826763      4.412381
## X839      3.015045       -2.223774      -3.039684      4.534207
## X840      2.822569       -2.744351      -5.596723      4.161235
## X841      2.568022       -2.319324      -4.490057      3.725005
## X844      3.197856       -2.424188      -4.449022      5.162741
## X845      2.854169       -2.099644      -4.207065      4.008967
## X846      2.650421       -2.366697      -4.710753      4.008967
## X847      2.994732       -2.416538      -4.497213      4.464360
## X849      2.719979       -2.352196      -4.172739      4.255969
## X850      3.280911       -2.282782      -3.709490      5.232668
## X851      2.640485       -2.549381      -4.239139      3.938613
## X852      2.900322       -2.266253      -3.817167      4.781263
## X854      2.753661       -2.548741      -3.228674      4.074426
## X855      2.912351       -2.477772      -4.827314      4.367359
## X856      3.033028       -2.452827      -2.965009      4.686585
## X857      2.574138       -2.665709      -4.308776      3.654863
## X858      2.993730       -2.523232      -2.493503      4.305672
## X859      2.938633       -2.440354      -4.272276      4.603535
## X860      2.982140       -2.435317      -2.240550      4.288943
## X861      2.949688       -2.408835      -3.856115      4.607206
## X863      2.859913       -2.480277      -4.199705      4.574706
## X864      2.623218       -2.336452      -4.439656      3.860909
## X866      2.513656       -2.462989      -4.405500      3.573135
## X867      2.898119       -2.305790      -4.600183      4.392389
## X868      2.899772       -2.721744      -4.285263      4.537986
## X869      3.139400       -2.287696      -4.238446      4.458120
## X870      2.939162       -2.162823      -3.441082      4.610871
## X871      2.990217       -2.470885      -3.390554      4.366547
## X872      3.172203       -2.225624      -3.050822      4.833951
## X873      2.923699       -2.236797      -4.671096      4.482982
## X874      2.899221       -2.424414      -3.629856      4.244873
## X875      3.198265       -2.593740      -3.756302      4.976136
## X876      2.761275       -2.463811      -4.845841      4.143420
## X877      2.667228       -2.658546      -5.321995      4.109184
## X878      2.542389       -2.606939      -5.587067      3.805473
## X880      2.950212       -2.428829      -4.698383      4.633474
## X881      2.753024       -2.574656      -5.112502      4.256821
## X882      2.593013       -2.431101      -3.587045      3.748604
## X883      2.372111       -2.453757      -4.312501      3.334618
## X884      2.923162       -2.231195      -4.266557      4.314822
## X885      2.824351       -2.463811      -5.805151      4.076268
## X886      2.644755       -2.559544      -5.155603      3.756060
## X887      2.937573       -2.328313      -4.098955      4.518270
## X888      2.939162       -2.305790      -2.719617      4.393191
## X889      2.833213       -2.582696      -4.529135      4.121857
## X892      2.589267       -2.176834      -3.904055      4.199074
## X893      3.068518       -2.145581      -3.716867      4.991235
## X894      2.721953       -2.444955      -4.255923      4.225110
## X895      2.850707       -2.274970      -4.654991      4.200819
## X896      2.555676       -2.374189      -4.481184      3.913012
## X898      3.030617       -2.146436      -3.871361      4.896635
## X899      3.085573       -2.149864      -3.281816      4.534207
## X900      2.741485       -2.354826      -3.428055      4.276316
## X901      2.962692       -2.345597      -3.424978      4.273783
## X903      2.693275       -2.488192      -4.944286      4.283059
## X907      3.064792       -2.395139      -3.244963      5.143922
## X908      2.863914       -2.295609      -4.234297      4.654427
## X909      3.189241       -2.235861      -3.926629      4.919334
## X910      2.805782       -2.327800      -3.489045      4.236301
## X911      2.823757       -2.467342      -3.360727      4.366547
## X912      2.705380       -2.270118      -3.975495      4.093700
## X913      3.076390       -2.323094      -3.390851      5.160983
## X914      2.737609       -2.162823      -4.512591      3.928802
## X915      2.688528       -2.314455      -3.063797      4.054986
## X917      2.690565       -2.421932      -4.195713      3.906069
## X918      2.774462       -2.399537      -4.762058      4.173623
## X921      2.955951       -2.085057      -2.724332      4.454212
## X922      2.859913       -2.163693      -3.159900      4.407598
## X923      3.248046       -2.278869      -3.716867      5.075113
## X924      2.644045       -2.620864      -3.385226      3.685830
## X925      2.948116       -2.434974      -3.161787      4.313992
## X926      2.922624       -2.223774      -3.236022      4.506820
## X927      2.785628       -2.436917      -4.835968      4.562030
## X928      2.740195       -2.489758      -3.540804      3.883102
## X929      2.907993       -2.293625      -4.712533      4.519792
## X931      3.071303       -2.455503      -3.889772      4.818532
## X932      2.935982       -2.335522      -4.106822      4.592488
## X933      2.906354       -2.334489      -4.014610      4.552291
## X934      2.830268       -2.533635      -4.382027      4.252561
## X935      3.080992       -2.391416      -3.960163      4.620376
## X936      3.289521       -2.312131      -3.063155      5.110649
## X937      2.891482       -2.382603      -4.277306      4.444020
## X938      2.847812       -2.366164      -4.499010      4.625478
## X939      3.086487       -2.241490      -3.568079      4.578422
## X941      2.580974       -2.530364      -4.209755      3.675924
## X942      2.714695       -2.301586      -3.621221      4.264469
## X943      2.853593       -2.359579      -3.965951      4.374653
## X944      2.776954       -2.488674      -4.143325      4.121857
## X946      3.006672       -2.399867      -2.571380      4.346158
## X949      2.935451       -2.107018      -3.090263      5.050733
## X950      2.561868       -2.089896      -4.030244      4.150563
## X952      3.123246       -2.668589      -3.087848      4.785356
## X953      2.861057       -2.261443      -3.295487      4.371414
## X954      2.618855       -2.481353      -3.876173      3.849729
## X955      3.148024       -2.443918      -4.050136      4.981809
## X956      2.645465       -2.512319      -3.497929      4.037253
## X957      2.782539       -2.655553      -4.258041      4.100089
## X958      2.740840       -2.481114      -2.707700      4.003267
## X959      3.144583       -2.292635      -3.194915      4.900541
## X960      2.503074       -2.302985      -4.294016      3.667081
## X962      2.994231       -2.154165      -3.530851      4.832614
## X963      3.103689       -2.148149      -3.289835      4.787400
## X964      2.874694       -2.273998      -4.115977      4.578422
## X965      2.843746       -2.520119      -4.363794      4.544020
## X967      2.859913       -2.520244      -3.359000      4.197328
## X968      2.696652       -2.558639      -4.220588      4.134460
## X970      3.045474       -2.095571      -3.291984      4.721123
## X971      2.389680       -2.422270      -4.419521      4.115529
## X972      2.906354       -2.610334      -3.293330      4.488386
## X973      2.783158       -2.314759      -4.354411      4.362484
## X974      2.704711       -2.443918      -4.768748      3.796097
## X975      2.922624       -2.298593      -3.847172      4.562030
## X976      2.698673       -2.354405      -4.385232      4.064264
## X977      3.061988       -2.583490      -3.105547      4.666626
## X978      3.028199       -2.267218      -3.585601      4.549287
## X980      2.866193       -2.423849      -4.610484      5.256500
## X981      2.823163       -2.228406      -4.671844      4.625478
## X982      3.076390       -2.529611      -3.621595      4.735776
## X983      3.096030       -2.463341      -3.572698      4.971715
## X984      3.394844       -2.486508      -4.249596      5.289608
## X986      3.077312       -2.259526      -4.089954      4.952042
## X987      3.048325       -2.189256      -3.247018      4.712008
## X988      2.498974       -2.432124      -4.371680      3.803393
## X989      3.063858       -2.284745      -4.662587      4.799630
## X990      2.946542       -2.459707      -3.888795      4.664478
## X992      2.773838       -2.218244      -3.909526      4.072581
## X993      2.951258       -2.401632      -3.572342      4.556042
## X994      2.950735       -2.230264      -3.971242      4.374653
## X995      3.057768       -2.511210      -5.167816      4.800985
## X997      3.090133       -2.430305      -3.840633      5.002499
## X1000     3.114848       -2.307899      -2.778526      4.706382
## X1001     2.872434       -2.249993      -3.412764      4.353519
## X1002     2.972464       -2.177716      -3.606378      4.523594
## X1003     3.089678       -2.284745      -3.197114      4.932212
## X1004     2.829678       -2.416426      -4.095345      4.151454
## X1008     2.975530       -2.443688      -4.514416      4.737167
## X1010     2.844909       -2.417435      -3.070887      4.656584
## X1011     3.235536       -2.485187      -3.144696      5.207462
## X1012     2.759377       -2.428489      -4.460204      3.862936
## X1013     2.907993       -2.508134      -4.319240      4.385955
## X1014     2.824351       -2.413852      -4.160484      4.279690
## X1016     3.333275       -2.302885      -3.904551      5.378924
## X1017     2.871302       -2.388252      -4.447312      4.339596
## X1018     2.962175       -2.478368      -3.888306      4.763445
## X1019     3.021400       -2.334695      -3.875209      5.004371
## X1020     3.069912       -2.716133      -2.802965      4.748958
## X1022     3.340385       -2.472543      -3.653898      5.343130
## X1023     2.637628       -2.208184      -4.381227      3.804433
## X1024     2.841998       -2.455387      -4.763111      4.290621
## X1025     3.424914       -2.381087      -4.385232      5.539246
## X1026     3.377246       -2.369045      -3.722229      5.393426
## X1028     3.224062       -2.480636      -4.713424      4.992489
## X1029     3.339322       -2.527731      -4.366153      5.290165
## X1030     3.301377       -2.312837      -3.808114      5.150996
## X1031     3.268428       -2.221927      -2.923598      4.960311
## X1032     3.295466       -2.659975      -4.086972      4.998750
## X1034     2.902520       -2.594811      -4.204383      4.432205
## X1035     3.002211       -2.490844      -2.709501      4.556042
## X1036     3.032064       -2.444725      -3.448604      4.553042
## X1037     2.895912       -2.487590      -4.376442      4.489157
## X1038     3.149740       -2.376339      -2.655695      4.796239
## X1039     2.900322       -2.141317      -3.440146      4.548535
## X1040     2.917230       -2.413964      -3.917538      4.565019
## X1041     3.337192       -2.435888      -4.163695      5.081777
## X1043     3.400197       -2.564080      -4.798391      5.352397
## X1045     2.755570       -2.403511      -4.019608      4.042868
## X1046     3.021887       -2.415642      -3.414891      4.684455
## X1047     2.810607       -2.684138      -4.331334      4.261073
## X1048     2.680336       -2.257612      -3.856588      4.269554
## X1050     2.892037       -2.398325      -4.094745      4.727414
## X1051     2.956991       -2.526854      -4.526359      4.624021
## X1052     2.643334       -2.233992      -4.232228      3.944480
## X1053     2.870169       -2.307598      -4.805330      4.403605
## X1054     2.423031       -2.260484      -4.006334      3.500171
## X1055     2.797891       -2.352406      -2.594141      4.194706
## X1056     2.824351       -2.448652      -4.273710      4.551541
## X1057     2.934920       -2.217325      -3.563834      4.897287
## X1058     2.783158       -2.182139      -4.348979      4.243161
## X1061     2.582487       -2.546186      -4.794637      3.954223
## X1062     3.023347       -2.301586      -3.611918      4.597650
## X1064     3.022374       -2.612513      -3.886355      4.768255
## X1065     3.006178       -2.344762      -4.289630      4.769627
## X1066     2.899772       -2.229335      -3.688080      4.290621
## X1067     2.851284       -2.415978      -4.289630      4.467474
## X1068     2.863343       -2.290657      -3.437654      4.351068
## X1069     3.055886       -2.221005      -3.578770      4.921270
## X1070     2.817801       -2.314354      -4.006883      4.141631
## X1071     3.198265       -2.152442      -3.255540      5.058072
## X1072     2.792391       -2.155891      -4.156007      4.226835
## X1073     2.987196       -2.370650      -3.394420      4.430625
## X1074     2.554899       -1.811554      -3.091803      3.746469
## X1076     2.997730       -2.210918      -3.817622      4.454212
## X1077     2.840247       -2.125276      -3.751606      4.169207
## X1078     2.753661       -2.361592      -4.420352      3.889116
## X1079     3.175968       -2.134532      -3.007805      5.257064
## X1080     2.687167       -2.513430      -3.240099      3.873042
## X1081     2.687847       -2.468404      -4.425352      3.871024
## X1082     3.021400       -2.201835      -3.787595      4.849274
## X1083     2.614472       -2.319528      -4.010739      3.836443
## X1084     2.948116       -2.384338      -4.116590      4.740641
## X1085     2.923699       -2.254748      -4.109864      4.363297
## X1086     3.024320       -2.236797      -3.975495      4.607940
## X1088     2.902520       -2.105375      -3.759731      4.469807
## X1090     2.631889       -1.987045      -3.673006      3.897110
## X1091     3.072693       -2.273026      -3.438276      4.660893
## X1092     2.987196       -2.463811      -5.132803      4.624750
## X1093     2.927453       -2.311021      -3.793796      4.565765
## X1094     2.752386       -2.354721      -3.891240      4.360042
## X1096     2.931194       -2.230264      -4.238446      4.530422
## X1097     2.507157       -2.407612      -4.691927      4.035378
## X1100     2.865624       -2.232127      -4.009085      4.735080
## X1101     2.996732       -2.286712      -4.058784      4.792163
## X1103     3.028683       -2.390761      -3.477323      4.676626
## X1104     2.869035       -2.334385      -3.387886      4.630569
## X1105     3.037833       -2.257612      -3.643524      4.554542
## X1107     3.196221       -2.090705      -3.353837      5.011847
## X1110     2.670002       -2.304186      -3.191261      4.073504
## X1111     3.218476       -2.426223      -3.067658      4.983068
## X1112     3.235536       -2.491931      -4.446458      5.018060
## X1115     3.145445       -2.380979      -3.863709      4.811124
## X1116     2.794228       -2.360850      -4.927168      4.258523
## X1117     2.808197       -2.421707      -3.478943      4.281375
## X1118     2.962175       -2.466163      -4.489167      4.562778
## X1120     3.067122       -2.599510      -4.506230      4.500691
## X1121     3.110845       -2.346955      -3.489701      4.754487
## X1122     3.382015       -2.491810      -4.395720      5.238363
## X1123     3.088311       -2.381628      -3.998671      4.522074
## X1124     3.364533       -2.510471      -3.838308      5.223531
## X1125     3.318178       -2.404618      -3.598673      5.175599
## X1126     2.975019       -2.299590      -3.806762      4.351068
## X1127     3.327910       -2.510471      -4.488276      5.136237
## X1128     3.121483       -2.468286      -3.070671      4.685165
## X1129     3.175133       -2.379358      -3.512576      5.303509
## X1130     3.301377       -2.309710      -3.620100      5.072078
## X1131     3.379974       -2.597090      -4.724179      5.365966
## X1132     3.421653       -2.255702      -3.027429      5.598355
## X1134     3.108614       -2.198225      -3.543568      4.622564
## X1135     3.341093       -2.324831      -3.720164      5.363258
## X1136     3.335058       -2.470412      -3.288494      5.129122
## X1137     3.378611       -2.138767      -2.787418      5.425895
## X1138     3.200304       -2.944469      -5.368740      4.895984
##       smoothness_worst symmetry_worst
## X1           -1.401837     -0.9485186
## X2           -1.552206     -1.8138504
## X3           -1.468032     -1.3273311
## X6           -1.343543     -1.1682237
## X7           -1.468808     -1.6137366
## X8           -1.390483     -1.5377457
## X9           -1.373392     -1.0226796
## X10          -1.323124     -1.0268307
## X11          -1.577215     -1.6835473
## X12          -1.486854     -1.2478490
## X13          -1.644401     -1.5488672
## X15          -1.391541     -1.3351867
## X16          -1.382068     -1.0794752
## X17          -1.460319     -1.6339618
## X18          -1.344209     -1.2853171
## X20          -1.469584     -1.6655621
## X21          -1.520913     -1.5444060
## X22          -1.515956     -2.0406102
## X23          -1.489239     -0.9275957
## X25          -1.338889     -1.3273311
## X26          -1.429814     -1.1365073
## X27          -1.437240     -1.0628195
## X28          -1.510212     -2.1336080
## X30          -1.544904     -1.8096966
## X32          -1.396495     -0.8985507
## X35          -1.467258     -1.0606668
## X38          -1.677854     -2.4867416
## X39          -1.694115     -3.0556014
## X40          -1.406135     -1.7749290
## X42          -1.305088     -1.6735918
## X43          -1.548331     -0.9266552
## X45          -1.445488     -1.2910944
## X46          -1.381719     -1.2448554
## X47          -1.527155     -1.5892127
## X48          -1.345211     -1.2025631
## X49          -1.448886     -1.8159323
## X52          -1.619427     -2.1292007
## X53          -1.593905     -1.7898096
## X54          -1.534290     -1.6387702
## X55          -1.489637     -1.8669460
## X56          -1.547473     -1.4783924
## X57          -1.401122     -1.3628885
## X58          -1.498044     -1.2888687
## X59          -1.652261     -2.0497116
## X61          -1.536401     -1.3534209
## X62          -1.395786     -1.6686442
## X64          -1.670976     -1.4910873
## X65          -1.323775     -1.4385789
## X67          -1.428706     -1.7280747
## X68          -1.530085     -2.0824829
## X69          -1.453440     -1.0758313
## X71          -1.571881     -1.9598138
## X73          -1.415161     -1.4747157
## X74          -1.480924     -1.9306463
## X75          -1.579449     -1.9088155
## X78          -1.454964     -1.2655509
## X79          -1.395786     -0.7116307
## X80          -1.530504     -1.7938986
## X81          -1.425391     -1.8055564
## X82          -1.433147     -1.3676525
## X83          -1.419530     -2.1213029
## X84          -1.488443     -2.1603515
## X85          -1.494430     -1.4406136
## X86          -1.486061     -1.2902036
## X87          -1.523404     -1.6393726
## X88          -1.547473     -1.1798150
## X89          -1.524236     -1.6686442
## X90          -1.535556     -1.5629177
## X91          -1.607252     -1.9825153
## X92          -1.544049     -1.9559389
## X93          -1.659708     -2.4422513
## X94          -1.509803     -1.8647794
## X95          -1.427599     -1.7569038
## X96          -1.573211     -1.2928782
## X97          -1.595732     -2.2380872
## X99          -1.473086     -1.7986859
## X100         -1.473086     -1.8362356
## X102         -1.415525     -1.6935843
## X103         -1.603546     -1.8532856
## X104         -1.424656     -1.9058328
## X105         -1.560451     -1.7622177
## X106         -1.320199     -1.5651813
## X108         -1.575878     -1.6618738
## X109         -1.374083     -1.1407587
## X110         -1.374774     -1.7602223
## X111         -1.459169     -1.9738585
## X112         -1.531344     -2.2390390
## X113         -1.717446     -2.0841850
## X114         -1.525902     -2.0970190
## X115         -1.366172     -1.6973693
## X116         -1.446619     -2.0505420
## X117         -1.578108     -2.9206783
## X118         -1.315025     -1.3402996
## X119         -1.322473     -1.4953499
## X120         -1.627498     -0.8624052
## X121         -1.428706     -1.6417852
## X123         -1.375812     -1.5234428
## X125         -1.650288     -2.4194174
## X126         -1.587999     -2.1134503
## X127         -1.457637     -1.3951992
## X128         -1.652261     -1.7522726
## X129         -1.490832     -1.9298875
## X130         -1.536401     -1.4789186
## X131         -1.474648     -1.3956885
## X132         -1.429444     -1.7549169
## X133         -1.487251     -1.3903175
## X134         -1.558708     -1.8327119
## X135         -1.459935     -1.5869030
## X137         -1.538094     -2.8336824
## X138         -1.573211     -1.8662234
## X139         -1.480924     -1.4229317
## X140         -1.498446     -2.3622810
## X141         -1.553935     -1.5892127
## X142         -1.520085     -1.7850558
## X144         -1.520913     -1.3571983
## X146         -1.475821     -1.8298999
## X147         -1.491231     -0.6320347
## X148         -1.664214     -1.7450294
## X149         -1.519257     -1.8554329
## X150         -1.677342     -2.1256850
## X152         -1.398983     -1.4700056
## X154         -1.508987     -1.7404419
## X155         -1.454964     -1.2237105
## X156         -1.561324     -1.5845978
## X158         -1.726991     -1.9785734
## X159         -1.536401     -1.9888468
## X160         -1.581689     -1.8221988
## X161         -1.502079     -1.5533453
## X162         -1.603084     -2.0463949
## X163         -1.470361     -1.3136025
## X164         -1.464938     -2.1996053
## X165         -1.556535     -1.3384376
## X166         -1.640502     -1.8880790
## X168         -1.583037     -1.7729134
## X169         -1.494831     -2.3033148
## X171         -1.491231     -1.7615522
## X172         -1.484873     -1.7241946
## X175         -1.625591     -1.8418938
## X176         -1.585739     -1.9283710
## X177         -1.525485     -1.9118051
## X178         -1.479351     -1.6190575
## X179         -1.763600     -2.1748286
## X180         -1.585739     -2.7364649
## X182         -1.450022     -1.1242373
## X183         -1.479744     -1.4114596
## X184         -1.604471     -2.6997069
## X187         -1.553935     -1.5322240
## X188         -1.516368     -1.9436150
## X189         -1.502888     -1.5355339
## X190         -1.616129     -2.0144782
## X191         -1.434262     -0.7826129
## X192         -1.694063     -2.2845122
## X193         -1.824755     -2.5774861
## X194         -1.345545     -1.5272765
## X196         -1.615659     -1.6369648
## X197         -1.361734     -1.6037499
## X198         -1.724360     -2.1091071
## X200         -1.427231     -0.9009890
## X201         -1.473867     -1.8720155
## X202         -1.492829     -1.6961064
## X203         -1.433147     -1.5366393
## X204         -1.209422     -1.0042088
## X205         -1.475039     -1.6429933
## X206         -1.450022     -1.4224305
## X207         -1.479351     -1.6581966
## X208         -1.609112     -1.4948162
## X209         -1.505728     -1.1128640
## X210         -1.559143     -2.1522740
## X211         -1.578555     -1.7081572
## X212         -1.534290     -1.9722906
## X214         -1.550051     -2.9953191
## X216         -1.461856     -1.3195307
## X217         -1.483291     -1.4314859
## X218         -1.686819     -1.7345684
## X220         -1.482107     -1.8397690
## X222         -1.494831     -1.6125574
## X223         -1.482896     -1.6184651
## X224         -1.427231     -1.1650483
## X225         -1.535978     -1.9952086
## X226         -1.527155     -1.6143267
## X228         -1.597563     -1.6798045
## X229         -1.556969     -1.7622177
## X230         -1.348222     -1.4264463
## X232         -1.703821     -1.7470007
## X233         -1.663010     -1.7068831
## X234         -1.558708     -2.0513730
## X235         -1.445111     -1.8090056
## X236         -1.531344     -2.2390390
## X239         -1.623214     -2.6004371
## X240         -1.499252     -1.7443730
## X241         -1.535133     -1.9762139
## X242         -1.644401     -1.7132666
## X243         -1.506542     -1.4773407
## X244         -1.695111     -1.8756488
## X245         -1.460703     -1.7011661
## X246         -1.440979     -1.7248404
## X248         -1.545331     -1.8932321
## X249         -1.446997     -1.4254410
## X250         -1.489637     -1.8749213
## X251         -1.563950     -1.5771365
## X253         -1.370978     -1.8145440
## X254         -1.478958     -1.5702903
## X255         -1.447752     -1.4406136
## X256         -1.442104     -1.6107907
## X257         -1.533868     -1.7675541
## X258         -1.352253     -1.5039222
## X259         -1.445111     -1.4937496
## X263         -1.598480     -1.6113793
## X264         -1.621791     -1.8611765
## X266         -1.484873     -1.7345684
## X267         -1.563074     -1.6885556
## X268         -1.660208     -2.0439127
## X269         -1.544476     -1.3314830
## X270         -1.511439     -1.9185567
## X272         -1.502079     -1.8256936
## X273         -1.537670     -1.7575668
## X274         -1.459169     -1.7522726
## X275         -1.519671     -1.9968038
## X276         -1.501675     -2.2447636
## X277         -1.543196     -1.8083150
## X278         -1.550051     -1.9474538
## X279         -1.638076     -2.1389154
## X281         -1.346547     -1.5039222
## X282         -1.644889     -1.5915268
## X283         -1.439855     -1.3379726
## X284         -1.499252     -1.8000570
## X285         -1.666428     -2.4732544
## X286         -1.643912     -1.9960060
## X287         -1.606788     -2.0282975
## X288         -1.682219     -2.1621529
## X289         -1.648811     -1.6791818
## X290         -1.605860     -1.4990925
## X291         -1.663562     -2.1959068
## X292         -1.520499     -1.6748318
## X293         -1.453060     -1.4401046
## X294         -1.497641     -1.5915268
## X295         -1.526737     -2.1091071
## X296         -1.582138     -1.7642162
## X297         -1.698055     -2.3203498
## X298         -1.597105     -2.4969375
## X299         -1.691083     -1.8954469
## X300         -1.594361     -2.2380872
## X301         -1.448508     -1.6711155
## X302         -1.638076     -1.8597382
## X303         -1.506542     -1.4847225
## X304         -1.480137     -2.2514717
## X306         -1.685886     -1.5114749
## X307         -1.601239     -1.8844106
## X308         -1.669710     -1.6569733
## X309         -1.713449     -2.2005314
## X310         -1.654735     -2.3571020
## X312         -1.657217     -1.9762139
## X313         -1.571438     -1.9497625
## X314         -1.618012     -1.4350269
## X316         -1.612379     -2.5679247
## X318         -1.471917     -1.7715714
## X319         -1.559579     -1.5719981
## X320         -1.747337     -2.5871077
## X321         -1.484477     -1.9163022
## X322         -1.636142     -1.6184651
## X323         -1.429075     -2.0978789
## X324         -1.412624     -0.6826914
## X325         -1.544476     -1.8771050
## X326         -1.491630     -1.8575837
## X329         -1.413348     -1.5903692
## X331         -1.471528     -1.6399753
## X332         -1.530924     -1.3351867
## X333         -1.475821     -1.4857809
## X335         -1.559143     -1.9574875
## X336         -1.466097     -1.9050882
## X337         -1.594818     -2.0555355
## X339         -1.484477     -1.7177547
## X340         -1.440979     -1.9276134
## X341         -1.528409     -1.6196501
## X342         -1.554367     -1.6624877
## X343         -1.478172     -1.4810257
## X344         -1.560888     -1.1446385
## X345         -1.461856     -1.8034913
## X346         -1.501270     -2.0538690
## X347         -1.530504     -1.7267800
## X348         -1.560015     -1.5869030
## X349         -1.435005     -1.7456862
## X350         -1.528827     -1.5782813
## X351         -1.664817     -1.8270941
## X352         -1.427968     -1.0696662
## X353         -1.435377     -1.2924320
## X354         -1.388371     -1.8822146
## X355         -1.722066     -1.9405520
## X358         -1.589811     -2.1151915
## X359         -1.655231     -2.0538690
## X360         -1.512259     -2.0373158
## X361         -1.699057     -2.2323896
## X362         -1.595732     -1.8947083
## X363         -1.526737     -1.8180177
## X365         -1.563074     -1.8201066
## X366         -1.514721     -1.9155516
## X367         -1.535133     -1.4969524
## X369         -1.500059     -1.9920239
## X370         -1.528409     -1.8201066
## X371         -1.479351     -0.8795614
## X372         -1.602161     -2.0104407
## X374         -1.423555     -1.8568664
## X375         -1.611911     -1.4694835
## X376         -1.553502     -1.5617875
## X377         -1.594361     -1.9245875
## X378         -1.610510     -1.8532856
## X379         -1.536401     -1.4365479
## X380         -1.221525     -1.1031070
## X381         -1.406135     -1.4590896
## X382         -1.616599     -1.5344296
## X383         -1.725620     -2.2727630
## X384         -1.474648     -1.7668858
## X385         -1.583937     -1.8235956
## X386         -1.520913     -2.0185279
## X387         -1.649795     -1.8655012
## X390         -1.546616     -1.9405520
## X392         -1.461856     -2.0447396
## X394         -1.445865     -1.2325409
## X395         -1.472696     -1.6220237
## X398         -1.686456     -2.4856130
## X399         -1.604934     -1.9298875
## X400         -1.549621     -1.7938986
## X401         -1.316639     -1.5109338
## X402         -1.495633     -2.0323892
## X403         -1.697160     -1.5316732
## X405         -1.639046     -2.1721026
## X406         -1.500059     -2.2154336
## X407         -1.566145     -1.7945814
## X408         -1.693330     -2.0096347
## X409         -1.453440     -1.6155076
## X410         -1.551343     -1.4025614
## X411         -1.464552     -1.6680271
## X412         -1.497641     -1.6527015
## X413         -1.620845     -2.1030497
## X414         -1.625115     -1.5561527
## X415         -1.592083     -1.5174436
## X416         -1.475039     -1.6066785
## X417         -1.436867     -1.7319669
## X418         -1.440230     -1.6496593
## X419         -1.520085     -1.7966320
## X421         -1.547473     -1.6303680
## X423         -1.479351     -1.7884496
## X424         -1.592538     -1.8180177
## X425         -1.486061     -1.5377457
## X426         -1.602161     -2.1265631
## X428         -1.524652     -1.6729722
## X431         -1.477780     -1.7358713
## X432         -1.465711     -1.9559389
## X433         -1.386615     -1.6321636
## X434         -1.489239     -1.6472311
## X436         -1.405058     -1.5471923
## X437         -1.562636     -1.4747157
## X438         -1.570996     -1.8313051
## X439         -1.605860     -1.9896404
## X440         -1.645868     -2.3274232
## X441         -1.488841     -1.9683790
## X443         -1.627498     -2.6386361
## X444         -1.673109     -1.8497148
## X445         -1.541491     -1.7516124
## X446         -1.521328     -1.9230772
## X447         -1.484873     -1.6686442
## X448         -1.557403     -1.3333333
## X449         -1.619427     -2.0234038
## X450         -1.498044     -2.1996053
## X451         -1.690457     -2.1657627
## X452         -1.436122     -2.1766489
## X453         -1.565266     -2.0430863
## X455         -1.557838     -1.4974871
## X456         -1.581241     -2.2678960
## X457         -1.482896     -1.7241946
## X459         -1.560888     -2.1648594
## X460         -1.609578     -2.1513794
## X461         -1.409733     -1.6454131
## X462         -1.502484     -1.8917577
## X464         -1.508579     -1.5300225
## X465         -1.533447     -2.2304954
## X466         -1.568346     -1.7496338
## X467         -1.504916     -1.9505330
## X468         -1.490035     -1.6172812
## X469         -1.565705     -2.1693820
## X471         -1.553935     -1.5499851
## X472         -1.642449     -2.0790851
## X473         -1.630847     -1.8575837
## X475         -1.512668     -1.9367333
## X476         -1.515133     -1.6478377
## X477         -1.589811     -1.9730743
## X480         -1.494430     -1.4720966
## X481         -1.565266     -2.0773893
## X482         -1.631327     -2.1204282
## X483         -1.488046     -1.5207121
## X485         -1.431294     -1.9551652
## X487         -1.594818     -2.0364934
## X488         -1.441353     -1.4996282
## X493         -1.522157     -1.5076925
## X494         -1.691396     -2.1885391
## X495         -1.605860     -1.8583015
## X496         -1.561761     -2.1091071
## X497         -1.434262     -1.5190767
## X498         -1.535978     -1.6303680
## X500         -1.460319     -2.0160966
## X502         -1.342543     -1.3099702
## X504         -1.569228     -1.7087947
## X505         -1.307322     -1.6285751
## X506         -1.274705     -1.7476584
## X508         -1.387668     -1.7932162
## X510         -1.363438     -1.6435978
## X511         -1.627020     -1.9193090
## X512         -1.596189     -2.1398020
## X513         -1.419165     -1.3402996
## X515         -1.548761     -2.1867032
## X516         -1.453060     -1.6155076
## X517         -1.449644     -1.6072651
## X519         -1.463396     -1.9359709
## X520         -1.456108     -1.6090266
## X521         -1.324101     -1.2964545
## X522         -1.508579     -1.5595304
## X524         -1.475430     -1.7470007
## X525         -1.477780     -1.9984010
## X526         -1.395077     -1.6618738
## X527         -1.401122     -1.3719574
## X528         -1.529246     -1.5863263
## X529         -1.487648     -2.3033148
## X530         -1.438733     -1.7925342
## X531         -1.505728     -2.0177170
## X532         -1.427968     -1.5322240
## X533         -1.541066     -1.7756016
## X537         -1.493229     -1.8504281
## X538         -1.351243     -1.7776215
## X539         -1.544476     -1.6166897
## X540         -1.411177     -1.7864122
## X541         -1.507356     -2.1442434
## X543         -1.633249     -1.8334159
## X544         -1.627498     -2.0217765
## X546         -1.561761     -1.8910211
## X547         -1.532184     -1.8626165
## X548         -1.461471     -1.8554329
## X551         -1.662208     -2.0340294
## X552         -1.620372     -1.5527846
## X553         -1.553935     -2.0765423
## X554         -1.612846     -2.0530365
## X555         -1.556969     -2.1065078
## X556         -1.491630     -2.2390390
## X557         -1.540640     -2.2051713
## X558         -1.627020     -2.0201513
## X559         -1.649795     -2.2088944
## X560         -1.526737     -2.3519414
## X562         -1.700430     -3.0539870
## X564         -1.482501     -1.6954754
## X565         -1.481318     -2.4065265
## X567         -1.596189     -2.2466769
## X568         -1.391894     -1.1284389
## X570         -1.401837     -0.9485186
## X571         -1.552206     -1.8138504
## X572         -1.468032     -1.3273311
## X573         -1.246824     -0.4547732
## X575         -1.343543     -1.1682237
## X576         -1.468808     -1.6137366
## X577         -1.390483     -1.5377457
## X578         -1.373392     -1.0226796
## X579         -1.323124     -1.0268307
## X580         -1.577215     -1.6835473
## X583         -1.599859     -1.7735849
## X584         -1.391541     -1.3351867
## X585         -1.382068     -1.0794752
## X586         -1.460319     -1.6339618
## X587         -1.344209     -1.2853171
## X588         -1.442104     -1.8014296
## X589         -1.469584     -1.6655621
## X590         -1.520913     -1.5444060
## X591         -1.515956     -2.0406102
## X592         -1.489239     -0.9275957
## X593         -1.484873     -1.7648831
## X595         -1.429814     -1.1365073
## X601         -1.396495     -0.8985507
## X602         -1.397561     -1.3662211
## X603         -1.443230     -1.3004918
## X604         -1.467258     -1.0606668
## X605         -1.423188     -0.8679915
## X606         -1.467258     -1.3375078
## X607         -1.677854     -2.4867416
## X608         -1.694115     -3.0556014
## X609         -1.406135     -1.7749290
## X610         -1.617070     -1.6551407
## X611         -1.305088     -1.6735918
## X613         -1.435377     -1.2707870
## X614         -1.445488     -1.2910944
## X615         -1.381719     -1.2448554
## X618         -1.448886     -1.8159323
## X619         -1.585739     -1.7326167
## X620         -1.621318     -2.0547020
## X621         -1.619427     -2.1292007
## X622         -1.593905     -1.7898096
## X623         -1.534290     -1.6387702
## X624         -1.489637     -1.8669460
## X625         -1.547473     -1.4783924
## X627         -1.498044     -1.2888687
## X628         -1.652261     -2.0497116
## X629         -1.363097     -1.5245369
## X630         -1.536401     -1.3534209
## X631         -1.395786     -1.6686442
## X632         -1.395431     -1.7502930
## X633         -1.670976     -1.4910873
## X635         -1.392600     -1.4705280
## X636         -1.428706     -1.7280747
## X637         -1.530085     -2.0824829
## X638         -1.453440     -1.0758313
## X640         -1.571881     -1.9598138
## X642         -1.415161     -1.4747157
## X643         -1.480924     -1.9306463
## X644         -1.579449     -1.9088155
## X645         -1.446619     -1.8851434
## X646         -1.465324     -1.8418938
## X647         -1.454964     -1.2655509
## X648         -1.395786     -0.7116307
## X649         -1.530504     -1.7938986
## X651         -1.433147     -1.3676525
## X652         -1.419530     -2.1213029
## X653         -1.488443     -2.1603515
## X654         -1.494430     -1.4406136
## X655         -1.486061     -1.2902036
## X656         -1.523404     -1.6393726
## X657         -1.547473     -1.1798150
## X658         -1.524236     -1.6686442
## X659         -1.535556     -1.5629177
## X660         -1.607252     -1.9825153
## X661         -1.544049     -1.9559389
## X662         -1.659708     -2.4422513
## X663         -1.509803     -1.8647794
## X664         -1.427599     -1.7569038
## X667         -1.519257     -2.5478042
## X668         -1.473086     -1.7986859
## X669         -1.473086     -1.8362356
## X670         -1.540640     -1.8844106
## X671         -1.415525     -1.6935843
## X672         -1.603546     -1.8532856
## X674         -1.560451     -1.7622177
## X675         -1.320199     -1.5651813
## X677         -1.575878     -1.6618738
## X678         -1.374083     -1.1407587
## X679         -1.374774     -1.7602223
## X680         -1.459169     -1.9738585
## X681         -1.531344     -2.2390390
## X682         -1.717446     -2.0841850
## X683         -1.525902     -2.0970190
## X685         -1.446619     -2.0505420
## X686         -1.578108     -2.9206783
## X687         -1.315025     -1.3402996
## X689         -1.627498     -0.8624052
## X690         -1.428706     -1.6417852
## X692         -1.375812     -1.5234428
## X693         -1.520499     -1.7209705
## X694         -1.650288     -2.4194174
## X695         -1.587999     -2.1134503
## X697         -1.652261     -1.7522726
## X698         -1.490832     -1.9298875
## X699         -1.536401     -1.4789186
## X700         -1.474648     -1.3956885
## X701         -1.429444     -1.7549169
## X702         -1.487251     -1.3903175
## X703         -1.558708     -1.8327119
## X704         -1.459935     -1.5869030
## X705         -1.477780     -1.7602223
## X706         -1.538094     -2.8336824
## X707         -1.573211     -1.8662234
## X708         -1.480924     -1.4229317
## X711         -1.520085     -1.7850558
## X712         -1.480137     -1.9344474
## X714         -1.625591     -2.1702883
## X715         -1.475821     -1.8298999
## X716         -1.491231     -0.6320347
## X717         -1.664214     -1.7450294
## X718         -1.519257     -1.8554329
## X719         -1.677342     -2.1256850
## X720         -1.527155     -1.5377457
## X721         -1.398983     -1.4700056
## X722         -1.529246     -1.5874800
## X723         -1.508987     -1.7404419
## X724         -1.454964     -1.2237105
## X725         -1.561324     -1.5845978
## X726         -1.478172     -2.0299327
## X728         -1.536401     -1.9888468
## X729         -1.581689     -1.8221988
## X731         -1.603084     -2.0463949
## X733         -1.464938     -2.1996053
## X734         -1.556535     -1.3384376
## X735         -1.640502     -1.8880790
## X736         -1.471139     -2.3747864
## X737         -1.583037     -1.7729134
## X738         -1.494831     -2.3033148
## X739         -1.561761     -2.0790851
## X742         -1.435005     -1.5267281
## X743         -1.561761     -2.5859017
## X744         -1.625591     -1.8418938
## X745         -1.585739     -1.9283710
## X746         -1.525485     -1.9118051
## X747         -1.479351     -1.6190575
## X748         -1.763600     -2.1748286
## X749         -1.585739     -2.7364649
## X750         -1.457254     -1.7424059
## X751         -1.450022     -1.1242373
## X752         -1.479744     -1.4114596
## X753         -1.604471     -2.6997069
## X754         -1.525485     -1.5494260
## X755         -1.438733     -1.6929546
## X756         -1.553935     -1.5322240
## X757         -1.516368     -1.9436150
## X758         -1.502888     -1.5355339
## X759         -1.616129     -2.0144782
## X760         -1.434262     -0.7826129
## X761         -1.694063     -2.2845122
## X762         -1.824755     -2.5774861
## X764         -1.519257     -1.6514837
## X765         -1.615659     -1.6369648
## X766         -1.361734     -1.6037499
## X767         -1.724360     -2.1091071
## X768         -1.516780     -1.5394073
## X770         -1.473867     -1.8720155
## X771         -1.492829     -1.6961064
## X772         -1.433147     -1.5366393
## X773         -1.209422     -1.0042088
## X774         -1.475039     -1.6429933
## X775         -1.450022     -1.4224305
## X776         -1.479351     -1.6581966
## X777         -1.609112     -1.4948162
## X778         -1.505728     -1.1128640
## X779         -1.559143     -2.1522740
## X780         -1.578555     -1.7081572
## X781         -1.534290     -1.9722906
## X782         -1.594818     -2.9266464
## X783         -1.550051     -2.9953191
## X784         -1.424656     -0.9098798
## X785         -1.461856     -1.3195307
## X786         -1.483291     -1.4314859
## X787         -1.686819     -1.7345684
## X789         -1.482107     -1.8397690
## X794         -1.535978     -1.9952086
## X795         -1.527155     -1.6143267
## X796         -1.508987     -1.9110570
## X797         -1.597563     -1.6798045
## X798         -1.556969     -1.7622177
## X799         -1.348222     -1.4264463
## X800         -1.373392     -1.5869030
## X802         -1.663010     -1.7068831
## X804         -1.445111     -1.8090056
## X805         -1.531344     -2.2390390
## X807         -1.556535     -2.2276590
## X808         -1.623214     -2.6004371
## X809         -1.499252     -1.7443730
## X811         -1.644401     -1.7132666
## X814         -1.460703     -1.7011661
## X815         -1.440979     -1.7248404
## X816         -1.613783     -1.8021165
## X817         -1.545331     -1.8932321
## X818         -1.446997     -1.4254410
## X819         -1.489637     -1.8749213
## X820         -1.563950     -1.5771365
## X822         -1.370978     -1.8145440
## X823         -1.478958     -1.5702903
## X824         -1.447752     -1.4406136
## X825         -1.442104     -1.6107907
## X826         -1.533868     -1.7675541
## X827         -1.352253     -1.5039222
## X828         -1.445111     -1.4937496
## X829         -1.313415     -1.3748365
## X830         -1.438360     -1.5629177
## X831         -1.551343     -2.0389620
## X832         -1.598480     -1.6113793
## X833         -1.621791     -1.8611765
## X834         -1.425023     -1.5267281
## X835         -1.484873     -1.7345684
## X837         -1.660208     -2.0439127
## X838         -1.544476     -1.3314830
## X839         -1.511439     -1.9185567
## X840         -1.738456     -2.0340294
## X841         -1.502079     -1.8256936
## X844         -1.519671     -1.9968038
## X845         -1.501675     -2.2447636
## X846         -1.543196     -1.8083150
## X847         -1.550051     -1.9474538
## X849         -1.575433     -1.6791818
## X850         -1.346547     -1.5039222
## X851         -1.644889     -1.5915268
## X852         -1.439855     -1.3379726
## X854         -1.666428     -2.4732544
## X855         -1.643912     -1.9960060
## X856         -1.606788     -2.0282975
## X857         -1.682219     -2.1621529
## X858         -1.648811     -1.6791818
## X859         -1.605860     -1.4990925
## X860         -1.663562     -2.1959068
## X861         -1.520499     -1.6748318
## X863         -1.497641     -1.5915268
## X864         -1.526737     -2.1091071
## X866         -1.698055     -2.3203498
## X867         -1.597105     -2.4969375
## X868         -1.691083     -1.8954469
## X869         -1.594361     -2.2380872
## X870         -1.448508     -1.6711155
## X871         -1.638076     -1.8597382
## X872         -1.506542     -1.4847225
## X873         -1.480137     -2.2514717
## X874         -1.593905     -2.2562827
## X875         -1.685886     -1.5114749
## X876         -1.601239     -1.8844106
## X877         -1.669710     -1.6569733
## X878         -1.713449     -2.2005314
## X880         -1.558708     -1.3869129
## X881         -1.657217     -1.9762139
## X882         -1.571438     -1.9497625
## X883         -1.618012     -1.4350269
## X884         -1.506542     -1.5680169
## X885         -1.612379     -2.5679247
## X886         -1.662208     -2.1766489
## X887         -1.471917     -1.7715714
## X888         -1.559579     -1.5719981
## X889         -1.747337     -2.5871077
## X892         -1.429075     -2.0978789
## X893         -1.412624     -0.6826914
## X894         -1.544476     -1.8771050
## X895         -1.491630     -1.8575837
## X896         -1.533868     -2.3643578
## X898         -1.413348     -1.5903692
## X899         -1.475039     -1.8235956
## X900         -1.471528     -1.6399753
## X901         -1.530924     -1.3351867
## X903         -1.583937     -1.7695612
## X907         -1.447374     -1.2973504
## X908         -1.484477     -1.7177547
## X909         -1.440979     -1.9276134
## X910         -1.528409     -1.6196501
## X911         -1.554367     -1.6624877
## X912         -1.478172     -1.4810257
## X913         -1.560888     -1.1446385
## X914         -1.461856     -1.8034913
## X915         -1.501270     -2.0538690
## X917         -1.560015     -1.5869030
## X918         -1.435005     -1.7456862
## X921         -1.427968     -1.0696662
## X922         -1.435377     -1.2924320
## X923         -1.388371     -1.8822146
## X924         -1.722066     -1.9405520
## X925         -1.616129     -2.3426983
## X926         -1.508171     -1.5845978
## X927         -1.589811     -2.1151915
## X928         -1.655231     -2.0538690
## X929         -1.512259     -2.0373158
## X931         -1.595732     -1.8947083
## X932         -1.526737     -1.8180177
## X933         -1.510212     -2.0875956
## X934         -1.563074     -1.8201066
## X935         -1.514721     -1.9155516
## X936         -1.535133     -1.4969524
## X937         -1.498044     -1.5256320
## X938         -1.500059     -1.9920239
## X939         -1.528409     -1.8201066
## X941         -1.602161     -2.0104407
## X942         -1.572324     -1.8277950
## X943         -1.423555     -1.8568664
## X944         -1.611911     -1.4694835
## X946         -1.594361     -1.9245875
## X949         -1.221525     -1.1031070
## X950         -1.406135     -1.4590896
## X952         -1.725620     -2.2727630
## X953         -1.474648     -1.7668858
## X954         -1.583937     -1.8235956
## X955         -1.520913     -2.0185279
## X956         -1.649795     -1.8655012
## X957         -1.743107     -1.9668175
## X958         -1.613314     -2.3063064
## X959         -1.546616     -1.9405520
## X960         -1.508171     -1.6904389
## X962         -1.381022     -1.5427374
## X963         -1.445865     -1.2325409
## X964         -1.472696     -1.6220237
## X965         -1.630368     -1.9817260
## X967         -1.686456     -2.4856130
## X968         -1.604934     -1.9298875
## X970         -1.316639     -1.5109338
## X971         -1.495633     -2.0323892
## X972         -1.697160     -1.5316732
## X973         -1.581241     -1.4831367
## X974         -1.639046     -2.1721026
## X975         -1.500059     -2.2154336
## X976         -1.566145     -1.7945814
## X977         -1.693330     -2.0096347
## X978         -1.453440     -1.6155076
## X980         -1.464552     -1.6680271
## X981         -1.497641     -1.6527015
## X982         -1.620845     -2.1030497
## X983         -1.625115     -1.5561527
## X984         -1.592083     -1.5174436
## X986         -1.436867     -1.7319669
## X987         -1.440230     -1.6496593
## X988         -1.520085     -1.7966320
## X989         -1.533447     -1.6661779
## X990         -1.547473     -1.6303680
## X992         -1.479351     -1.7884496
## X993         -1.592538     -1.8180177
## X994         -1.486061     -1.5377457
## X995         -1.602161     -2.1265631
## X997         -1.524652     -1.6729722
## X1000        -1.477780     -1.7358713
## X1001        -1.465711     -1.9559389
## X1002        -1.386615     -1.6321636
## X1003        -1.489239     -1.6472311
## X1004        -1.560888     -1.9801488
## X1008        -1.605860     -1.9896404
## X1010        -1.488841     -1.9683790
## X1011        -1.471139     -2.0000000
## X1012        -1.627498     -2.6386361
## X1013        -1.673109     -1.8497148
## X1014        -1.541491     -1.7516124
## X1016        -1.484873     -1.6686442
## X1017        -1.557403     -1.3333333
## X1018        -1.619427     -2.0234038
## X1019        -1.498044     -2.1996053
## X1020        -1.690457     -2.1657627
## X1022        -1.565266     -2.0430863
## X1023        -1.506542     -1.9178048
## X1024        -1.557838     -1.4974871
## X1025        -1.581241     -2.2678960
## X1026        -1.482896     -1.7241946
## X1028        -1.560888     -2.1648594
## X1029        -1.609578     -2.1513794
## X1030        -1.409733     -1.6454131
## X1031        -1.502484     -1.8917577
## X1032        -1.654239     -2.1300810
## X1034        -1.533447     -2.2304954
## X1035        -1.568346     -1.7496338
## X1036        -1.504916     -1.9505330
## X1037        -1.490035     -1.6172812
## X1038        -1.565705     -2.1693820
## X1039        -1.347217     -1.8778337
## X1040        -1.553935     -1.5499851
## X1041        -1.642449     -2.0790851
## X1043        -1.692284     -2.0748497
## X1045        -1.515133     -1.6478377
## X1046        -1.589811     -1.9730743
## X1047        -1.694272     -1.8640580
## X1048        -1.504510     -1.6879284
## X1050        -1.565266     -2.0773893
## X1051        -1.631327     -2.1204282
## X1052        -1.488046     -1.5207121
## X1053        -1.569228     -1.9856773
## X1054        -1.431294     -1.9551652
## X1055        -1.579897     -1.5185321
## X1056        -1.594818     -2.0364934
## X1057        -1.441353     -1.4996282
## X1058        -1.436867     -1.7769479
## X1061        -1.669659     -2.7364649
## X1062        -1.522157     -1.5076925
## X1064        -1.605860     -1.8583015
## X1065        -1.561761     -2.1091071
## X1066        -1.434262     -1.5190767
## X1067        -1.535978     -1.6303680
## X1068        -1.480531     -1.9920239
## X1069        -1.460319     -2.0160966
## X1070        -1.598022     -2.2864798
## X1071        -1.342543     -1.3099702
## X1072        -1.416979     -1.5606584
## X1073        -1.569228     -1.7087947
## X1074        -1.307322     -1.6285751
## X1076        -1.484477     -1.8426028
## X1077        -1.387668     -1.7932162
## X1078        -1.503699     -2.1702883
## X1079        -1.363438     -1.6435978
## X1080        -1.627020     -1.9193090
## X1081        -1.596189     -2.1398020
## X1082        -1.419165     -1.3402996
## X1083        -1.558708     -1.9028570
## X1084        -1.548761     -2.1867032
## X1085        -1.453060     -1.6155076
## X1086        -1.449644     -1.6072651
## X1088        -1.463396     -1.9359709
## X1090        -1.324101     -1.2964545
## X1091        -1.508579     -1.5595304
## X1092        -1.610510     -1.9551652
## X1093        -1.475430     -1.7470007
## X1094        -1.477780     -1.9984010
## X1096        -1.401122     -1.3719574
## X1097        -1.529246     -1.5863263
## X1100        -1.505728     -2.0177170
## X1101        -1.427968     -1.5322240
## X1103        -1.615659     -1.5245369
## X1104        -1.474257     -2.1802966
## X1105        -1.539366     -1.6055062
## X1107        -1.351243     -1.7776215
## X1110        -1.507356     -2.1442434
## X1111        -1.509395     -1.5427374
## X1112        -1.633249     -1.8334159
## X1115        -1.561761     -1.8910211
## X1116        -1.532184     -1.8626165
## X1117        -1.461471     -1.8554329
## X1118        -1.569228     -1.9590379
## X1120        -1.662208     -2.0340294
## X1121        -1.620372     -1.5527846
## X1122        -1.553935     -2.0765423
## X1123        -1.612846     -2.0530365
## X1124        -1.556969     -2.1065078
## X1125        -1.491630     -2.2390390
## X1126        -1.540640     -2.2051713
## X1127        -1.627020     -2.0201513
## X1128        -1.649795     -2.2088944
## X1129        -1.526737     -2.3519414
## X1130        -1.550912     -2.2163702
## X1131        -1.700430     -3.0539870
## X1132        -1.478565     -1.1276737
## X1134        -1.481318     -2.4065265
## X1135        -1.583937     -1.9436150
## X1136        -1.596189     -2.2466769
## X1137        -1.391894     -1.1284389
## X1138        -1.714905     -1.7326167
## 
## $usekernel
## [1] FALSE
## 
## $varnames
## [1] "texture_mean"     "smoothness_mean"  "compactness_se"   "texture_worst"   
## [5] "smoothness_worst" "symmetry_worst"  
## 
## $xNames
## [1] "texture_mean"     "smoothness_mean"  "compactness_se"   "texture_worst"   
## [5] "smoothness_worst" "symmetry_worst"  
## 
## $problemType
## [1] "Classification"
## 
## $tuneValue
##   fL usekernel adjust
## 1  2     FALSE  FALSE
## 
## $obsLevels
## [1] "B" "M"
## attr(,"ordered")
## [1] FALSE
## 
## $param
## list()
## 
## attr(,"class")
## [1] "NaiveBayes"
BAL_NB_Tune$results
##   usekernel fL adjust       ROC      Sens      Spec      ROCSD     SensSD
## 1     FALSE  2  FALSE 0.8873525 0.8552525 0.7605882 0.02125535 0.03336686
## 2      TRUE  2  FALSE       NaN       NaN       NaN         NA         NA
##       SpecSD
## 1 0.04679768
## 2         NA
(BAL_NB_Train_AUROC <- BAL_NB_Tune$results[BAL_NB_Tune$results$usekernel==BAL_NB_Tune$bestTune$usekernel &
                                                 BAL_NB_Tune$results$adjust==BAL_NB_Tune$bestTune$adjust &
                                                 BAL_NB_Tune$results$fL==BAL_NB_Tune$bestTune$fL,
                                                 c("ROC")])
## [1] 0.8873525
##################################
# Identifying and plotting the
# best model predictors
##################################
# model does not support variable importance measurement

##################################
# Independently evaluating the model
# on the test set
##################################
BAL_NB_Test <- data.frame(BAL_NB_Test_Observed = MA_Test$diagnosis,
                          BAL_NB_Test_Predicted = predict(BAL_NB_Tune,
                                                          MA_Test[,!names(MA_Test) %in% c("diagnosis")],
                                                          type = "prob"))

BAL_NB_Test
##      BAL_NB_Test_Observed BAL_NB_Test_Predicted.B BAL_NB_Test_Predicted.M
## 4                       M            8.418867e-06            9.999916e-01
## 5                       M            9.947802e-01            5.219820e-03
## 14                      M            6.863230e-01            3.136770e-01
## 19                      M            1.487708e-01            8.512292e-01
## 24                      M            2.813452e-01            7.186548e-01
## 29                      M            1.320029e-03            9.986800e-01
## 31                      M            8.611625e-03            9.913884e-01
## 33                      M            3.780788e-03            9.962192e-01
## 34                      M            1.443492e-02            9.855651e-01
## 36                      M            3.884397e-03            9.961156e-01
## 37                      M            3.340474e-02            9.665953e-01
## 41                      M            9.299440e-01            7.005599e-02
## 44                      M            3.661805e-02            9.633819e-01
## 50                      B            7.332968e-01            2.667032e-01
## 51                      B            9.811725e-01            1.882750e-02
## 60                      B            9.987229e-01            1.277059e-03
## 63                      M            2.245885e-02            9.775412e-01
## 66                      M            7.032281e-03            9.929677e-01
## 70                      B            9.984081e-01            1.591913e-03
## 72                      B            9.969872e-01            3.012839e-03
## 76                      M            5.911188e-01            4.088812e-01
## 77                      B            9.997844e-01            2.155780e-04
## 98                      B            7.482378e-01            2.517622e-01
## 101                     M            3.492114e-01            6.507886e-01
## 107                     B            7.730772e-02            9.226923e-01
## 122                     M            4.615057e-01            5.384943e-01
## 124                     B            9.997801e-01            2.199472e-04
## 136                     M            4.127956e-01            5.872044e-01
## 143                     B            5.884881e-01            4.115119e-01
## 145                     B            9.993874e-01            6.125853e-04
## 151                     B            5.333960e-01            4.666040e-01
## 153                     B            8.349582e-01            1.650418e-01
## 157                     M            1.931211e-01            8.068789e-01
## 167                     B            9.999992e-01            8.482450e-07
## 170                     B            9.702524e-01            2.974760e-02
## 173                     M            9.813259e-01            1.867412e-02
## 174                     B            9.974796e-01            2.520361e-03
## 181                     M            5.137427e-02            9.486257e-01
## 185                     M            5.043588e-01            4.956412e-01
## 186                     B            9.677181e-01            3.228189e-02
## 195                     M            8.459365e-02            9.154064e-01
## 199                     M            1.767134e-01            8.232866e-01
## 213                     M            9.316257e-01            6.837434e-02
## 215                     M            1.321134e-03            9.986789e-01
## 219                     M            1.859137e-01            8.140863e-01
## 221                     B            9.992881e-01            7.119289e-04
## 227                     B            9.935420e-01            6.458020e-03
## 231                     M            9.611758e-02            9.038824e-01
## 237                     M            3.190678e-02            9.680932e-01
## 238                     M            8.379804e-01            1.620196e-01
## 247                     B            9.931943e-01            6.805651e-03
## 252                     B            9.770018e-01            2.299823e-02
## 260                     M            1.145796e-03            9.988542e-01
## 261                     M            3.113683e-02            9.688632e-01
## 262                     M            8.395667e-01            1.604333e-01
## 265                     M            1.729267e-01            8.270733e-01
## 271                     B            9.999991e-01            8.758747e-07
## 280                     B            9.825885e-01            1.741150e-02
## 305                     B            9.765564e-01            2.344359e-02
## 311                     B            8.728224e-01            1.271776e-01
## 315                     B            6.945252e-01            3.054748e-01
## 317                     B            9.999968e-01            3.184820e-06
## 327                     B            9.996640e-01            3.360282e-04
## 328                     B            9.997532e-01            2.468207e-04
## 330                     M            1.151531e-01            8.848469e-01
## 334                     B            9.993082e-01            6.917658e-04
## 338                     M            2.069080e-02            9.793092e-01
## 356                     B            9.581310e-01            4.186896e-02
## 357                     B            2.390588e-01            7.609412e-01
## 364                     B            8.143429e-01            1.856571e-01
## 368                     B            7.906987e-01            2.093013e-01
## 373                     M            9.604987e-01            3.950130e-02
## 388                     B            9.999464e-01            5.360802e-05
## 389                     B            9.967851e-01            3.214911e-03
## 391                     B            9.994831e-01            5.168794e-04
## 393                     M            1.943944e-02            9.805606e-01
## 396                     B            9.950741e-01            4.925881e-03
## 397                     B            3.901841e-01            6.098159e-01
## 404                     B            9.410957e-01            5.890427e-02
## 420                     B            6.205150e-01            3.794850e-01
## 422                     B            9.717101e-01            2.828993e-02
## 427                     B            8.754185e-01            1.245815e-01
## 429                     B            9.998516e-01            1.484434e-04
## 430                     B            9.990260e-01            9.740379e-04
## 435                     B            9.885298e-01            1.147020e-02
## 442                     M            1.714923e-01            8.285077e-01
## 454                     B            9.970224e-01            2.977611e-03
## 458                     B            8.144607e-01            1.855393e-01
## 463                     B            9.808887e-01            1.911127e-02
## 470                     B            8.588458e-02            9.141154e-01
## 474                     B            9.838966e-01            1.610339e-02
## 478                     B            9.998429e-01            1.570680e-04
## 479                     B            9.162635e-01            8.373653e-02
## 484                     B            9.840122e-01            1.598781e-02
## 486                     B            8.471689e-01            1.528311e-01
## 489                     B            8.396732e-01            1.603268e-01
## 490                     M            7.804773e-01            2.195227e-01
## 491                     B            7.257897e-01            2.742103e-01
## 492                     B            9.999859e-01            1.405010e-05
## 499                     M            6.982981e-01            3.017019e-01
## 501                     B            9.879214e-01            1.207857e-02
## 503                     B            5.931235e-01            4.068765e-01
## 507                     B            4.010532e-01            5.989468e-01
## 509                     B            9.970054e-01            2.994587e-03
## 514                     B            9.983239e-01            1.676132e-03
## 518                     M            4.200733e-01            5.799267e-01
## 523                     B            9.951034e-01            4.896611e-03
## 534                     M            5.478869e-01            4.521131e-01
## 535                     B            5.845559e-01            4.154441e-01
## 536                     M            3.012400e-01            6.987600e-01
## 542                     B            8.485578e-02            9.151442e-01
## 545                     B            7.804988e-01            2.195012e-01
## 549                     B            9.727728e-01            2.722715e-02
## 550                     B            5.809883e-01            4.190117e-01
## 561                     B            2.193662e-01            7.806338e-01
## 563                     M            1.423350e-03            9.985767e-01
## 566                     M            1.961924e-01            8.038076e-01
## 569                     B            9.999903e-01            9.708791e-06
## 574                     M            9.947802e-01            5.219820e-03
## 581                     M            9.135214e-02            9.086479e-01
## 582                     M            1.856151e-01            8.143849e-01
## 594                     M            6.759268e-03            9.932407e-01
## 596                     M            3.445315e-03            9.965547e-01
## 597                     M            5.599734e-01            4.400266e-01
## 598                     M            1.320029e-03            9.986800e-01
## 599                     M            9.731682e-01            2.683176e-02
## 600                     M            8.611625e-03            9.913884e-01
## 612                     M            5.645765e-03            9.943542e-01
## 616                     B            9.570635e-01            4.293653e-02
## 617                     M            8.665746e-03            9.913343e-01
## 626                     M            4.669960e-02            9.533004e-01
## 634                     M            3.012508e-03            9.969875e-01
## 639                     B            9.984081e-01            1.591913e-03
## 641                     B            9.969872e-01            3.012839e-03
## 650                     B            8.920921e-02            9.107908e-01
## 665                     M            9.192660e-02            9.080734e-01
## 666                     B            9.860749e-01            1.392512e-02
## 673                     B            2.933858e-01            7.066142e-01
## 676                     B            7.730772e-02            9.226923e-01
## 684                     B            6.234754e-01            3.765246e-01
## 688                     M            3.351730e-03            9.966483e-01
## 691                     M            4.615057e-01            5.384943e-01
## 696                     M            9.143037e-02            9.085696e-01
## 709                     B            9.951737e-01            4.826330e-03
## 710                     B            9.999904e-01            9.624905e-06
## 713                     B            9.354000e-01            6.460004e-02
## 727                     B            9.923178e-01            7.682178e-03
## 730                     B            1.784058e-01            8.215942e-01
## 732                     M            9.242316e-02            9.075768e-01
## 740                     B            9.994710e-01            5.289834e-04
## 741                     M            7.095309e-01            2.904691e-01
## 763                     M            2.659527e-03            9.973405e-01
## 769                     M            9.119714e-03            9.908803e-01
## 788                     M            1.859137e-01            8.140863e-01
## 790                     B            9.992881e-01            7.119289e-04
## 791                     B            9.837746e-01            1.622540e-02
## 792                     B            7.322536e-01            2.677464e-01
## 793                     M            1.451720e-02            9.854828e-01
## 801                     B            9.807689e-01            1.923105e-02
## 803                     M            3.144980e-01            6.855020e-01
## 806                     M            3.190678e-02            9.680932e-01
## 810                     B            9.954171e-01            4.582943e-03
## 812                     B            1.753027e-01            8.246973e-01
## 813                     B            9.524541e-01            4.754592e-02
## 821                     B            9.770018e-01            2.299823e-02
## 836                     B            7.036007e-01            2.963993e-01
## 842                     M            2.889183e-01            7.110817e-01
## 843                     B            9.827448e-01            1.725516e-02
## 848                     B            9.994349e-01            5.651353e-04
## 853                     M            3.506119e-01            6.493881e-01
## 862                     B            7.849815e-01            2.150185e-01
## 865                     B            9.998603e-01            1.396787e-04
## 879                     B            9.999949e-01            5.115656e-06
## 890                     B            8.090039e-01            1.909961e-01
## 891                     M            9.859185e-01            1.408150e-02
## 897                     B            9.997532e-01            2.468207e-04
## 902                     B            4.109252e-01            5.890748e-01
## 904                     B            9.792663e-01            2.073368e-02
## 905                     M            1.257893e-01            8.742107e-01
## 906                     B            9.988321e-01            1.167869e-03
## 916                     B            9.339058e-01            6.609417e-02
## 919                     B            9.531747e-01            4.682528e-02
## 920                     B            9.998864e-01            1.136243e-04
## 930                     B            9.999744e-01            2.560407e-05
## 940                     M            2.528686e-03            9.974713e-01
## 945                     B            9.669483e-01            3.305167e-02
## 947                     B            9.167996e-01            8.320035e-02
## 948                     B            9.765901e-01            2.340987e-02
## 951                     B            9.964543e-01            3.545711e-03
## 961                     B            8.111540e-01            1.888460e-01
## 966                     B            3.901841e-01            6.098159e-01
## 969                     B            9.113059e-01            8.869412e-02
## 979                     B            5.619843e-01            4.380157e-01
## 985                     B            1.493080e-01            8.506920e-01
## 991                     B            9.717101e-01            2.828993e-02
## 996                     B            8.754185e-01            1.245815e-01
## 998                     B            9.998516e-01            1.484434e-04
## 999                     B            9.990260e-01            9.740379e-04
## 1005                    M            6.556220e-02            9.344378e-01
## 1006                    B            8.166196e-01            1.833804e-01
## 1007                    B            9.949829e-01            5.017136e-03
## 1009                    B            9.998712e-01            1.287548e-04
## 1015                    B            2.149525e-01            7.850475e-01
## 1021                    M            1.238714e-01            8.761286e-01
## 1027                    B            8.144607e-01            1.855393e-01
## 1033                    B            8.411580e-01            1.588420e-01
## 1042                    B            9.994990e-01            5.009985e-04
## 1044                    B            9.564314e-01            4.356862e-02
## 1049                    M            1.943295e-01            8.056705e-01
## 1059                    M            7.804773e-01            2.195227e-01
## 1060                    B            7.257897e-01            2.742103e-01
## 1063                    B            9.999978e-01            2.202499e-06
## 1075                    B            6.721752e-01            3.278248e-01
## 1087                    M            4.200733e-01            5.799267e-01
## 1089                    B            6.945497e-01            3.054503e-01
## 1095                    B            9.728210e-01            2.717904e-02
## 1098                    B            9.955472e-01            4.452756e-03
## 1099                    B            9.972506e-01            2.749390e-03
## 1102                    B            9.966100e-01            3.389963e-03
## 1106                    M            9.370223e-02            9.062978e-01
## 1108                    B            8.002142e-01            1.997858e-01
## 1109                    B            5.369302e-02            9.463070e-01
## 1113                    B            7.557723e-01            2.442277e-01
## 1114                    B            7.804988e-01            2.195012e-01
## 1119                    B            5.809883e-01            4.190117e-01
## 1133                    M            3.531121e-02            9.646888e-01
##################################
# Reporting the independent evaluation results
# for the test set
##################################
BAL_NB_Test_ROC <- roc(response = BAL_NB_Test$BAL_NB_Test_Observed,
                       predictor = BAL_NB_Test$BAL_NB_Test_Predicted.M,
                       levels = rev(levels(BAL_NB_Test$BAL_NB_Test_Observed)))

(BAL_NB_Test_AUROC <- auc(BAL_NB_Test_ROC)[1])
## [1] 0.8969651

1.7.6 Base Learner Ensemble


[A] An ensemble of optimal individual base learners based on previous hyperparameter tuning evaluation was formulated as follows:
     [A.1] Linear Discriminant Analysis
     [A.2] Classification and Regression Trees
            [A.2.1] cp = 0.001
     [A.3] Support Vector Machine - Radial Basis Function Kernel
            [A.3.1] sigma = 0.17905
            [A.3.2] C = 2048
     [A.4] K-Nearest Neighbors
            [A.4.1] k = 1
     [A.5] Naive Bayes
            [A.5.1] fL = 2
            [A.5.2] adjust = FALSE
            [A.5.3] usekernel = FALSE

[B] Among pairs of base learners, no high correlation was observed.

Code Chunk | Output
##################################
# Consolidating the base learners
# with optimal hyperparameters
##################################
set.seed(12345678)
BAL_LIST <- caretList(x = MA_Train[,!names(MA_Train) %in% c("diagnosis")],
                      y = MA_Train$diagnosis,
                      trControl=RKFold_Control,
                      metric="ROC",
                      tuneList=list(
                        BAL_LDA=caretModelSpec(method="lda", 
                                               preProcess=c("center","scale")),
                        BAL_CART=caretModelSpec(method="rpart", 
                                                tuneGrid=data.frame(cp=0.001)),
                        BAL_SVM_R=caretModelSpec(method="svmRadial",
                                                 preProcess=c("center","scale"),
                                                 tuneGrid=data.frame(C = 2048, sigma = 0.1790538)),
                        BAL_KNN=caretModelSpec(method="knn",
                                               preProcess=c("center","scale"),
                                               tuneGrid=data.frame(k = 1)),
                        BAL_NB=caretModelSpec(method="nb",
                                               tuneGrid=data.frame(usekernel=FALSE,fL = 2,adjust = FALSE)))             
                        )

BAL_LIST
## $BAL_LDA
## Linear Discriminant Analysis 
## 
## Pre-processing: centered (6), scaled (6) 
## Resampling results:
## 
##   ROC        Sens       Spec     
##   0.8762815  0.8720214  0.7105882
## 
## 
## $BAL_CART
## CART 
## 
## No pre-processing
## Resampling results:
## 
##   ROC        Sens       Spec     
##   0.8522563  0.8531716  0.7235294
## 
## Tuning parameter 'cp' was held constant at a value of 0.001
## 
## $BAL_SVM_R
## Support Vector Machines with Radial Basis Function Kernel 
## 
## Pre-processing: centered (6), scaled (6) 
## Resampling results:
## 
##   ROC        Sens       Spec     
##   0.9106172  0.9437193  0.7976471
## 
## Tuning parameter 'sigma' was held constant at a value of 0.1790538
## 
## Tuning parameter 'C' was held constant at a value of 2048
## 
## $BAL_KNN
## k-Nearest Neighbors 
## 
## Pre-processing: centered (6), scaled (6) 
## Resampling results:
## 
##   ROC       Sens       Spec     
##   0.902676  0.9171167  0.8882353
## 
## Tuning parameter 'k' was held constant at a value of 1
## 
## $BAL_NB
## Naive Bayes 
## 
## No pre-processing
## Resampling results:
## 
##   ROC        Sens      Spec     
##   0.8873915  0.852418  0.7629412
## 
## Tuning parameter 'fL' was held constant at a value of 2
## Tuning
##  parameter 'usekernel' was held constant at a value of FALSE
## Tuning
##  parameter 'adjust' was held constant at a value of FALSE
## 
## attr(,"class")
## [1] "caretList" "list"
##################################
# Comparing the base learners
# with optimal hyperparameters
##################################
BAL_LIST_RESAMPLES <- resamples(BAL_LIST)
summary(BAL_LIST_RESAMPLES)
## 
## Call:
## summary.resamples(object = BAL_LIST_RESAMPLES)
## 
## Models: BAL_LDA, BAL_CART, BAL_SVM_R, BAL_KNN, BAL_NB 
## Number of resamples: 25 
## 
## ROC 
##                Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## BAL_LDA   0.8102302 0.8641641 0.8828689 0.8762815 0.8913829 0.9296675    0
## BAL_CART  0.7877967 0.8317136 0.8553708 0.8522563 0.8726343 0.9186061    0
## BAL_SVM_R 0.8675181 0.8980818 0.9066047 0.9106172 0.9307276 0.9522704    0
## BAL_KNN   0.8533282 0.8855779 0.9037084 0.9026760 0.9237616 0.9608696    0
## BAL_NB    0.8363003 0.8818369 0.8868286 0.8873915 0.8980908 0.9285166    0
## 
## Sens 
##                Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## BAL_LDA   0.8260870 0.8508772 0.8684211 0.8720214 0.8947368 0.9304348    0
## BAL_CART  0.7368421 0.8333333 0.8596491 0.8531716 0.8956522 0.9122807    0
## BAL_SVM_R 0.8947368 0.9217391 0.9478261 0.9437193 0.9565217 0.9824561    0
## BAL_KNN   0.8684211 0.9035088 0.9210526 0.9171167 0.9385965 0.9652174    0
## BAL_NB    0.7807018 0.8333333 0.8508772 0.8524180 0.8771930 0.9391304    0
## 
## Spec 
##                Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## BAL_LDA   0.6323529 0.6764706 0.7058824 0.7105882 0.7352941 0.8235294    0
## BAL_CART  0.6029412 0.6764706 0.7205882 0.7235294 0.7647059 0.8382353    0
## BAL_SVM_R 0.6911765 0.7647059 0.8088235 0.7976471 0.8382353 0.9117647    0
## BAL_KNN   0.7941176 0.8529412 0.8823529 0.8882353 0.9264706 1.0000000    0
## BAL_NB    0.6323529 0.7352941 0.7647059 0.7629412 0.7941176 0.8823529    0
dotplot(BAL_LIST_RESAMPLES)

splom(BAL_LIST_RESAMPLES)

##################################
# Measuring the correlation among
# base learners
##################################
(BAL_LIST_COR <- modelCor(resamples(BAL_LIST)))
##               BAL_LDA    BAL_CART    BAL_SVM_R     BAL_KNN       BAL_NB
## BAL_LDA    1.00000000 -0.06342888  0.122350102  0.08479269 -0.131117037
## BAL_CART  -0.06342888  1.00000000  0.078299147 -0.24343738 -0.081248867
## BAL_SVM_R  0.12235010  0.07829915  1.000000000  0.21687863 -0.005995804
## BAL_KNN    0.08479269 -0.24343738  0.216878631  1.00000000 -0.189499723
## BAL_NB    -0.13111704 -0.08124887 -0.005995804 -0.18949972  1.000000000

1.7.7 Meta-Learner Model Development using Logistic Regression (MEL_LR)


Logistic Regression models the relationship between the probability of an event (among two outcome levels) by having the log-odds of the event be a linear combination of a set of predictors weighted by their respective parameter estimates. The parameters are estimated via maximum likelihood estimation by testing different values through multiple iterations to optimize for the best fit of log odds. All of these iterations produce the log likelihood function, and logistic regression seeks to maximize this function to find the best parameter estimates. Given the optimal parameters, the conditional probabilities for each observation can be calculated, logged, and summed together to yield a predicted probability.

[A] The logistic regression model from the stats package was implemented on the optimal base learner ensemble through the caret package.

[B] The model does not contain any hyperparameter.

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration is fixed due to the absence of a hyperparameter
     [C.2] ROC Curve AUC = 0.96993


[D] The independent test model performance of the final model is summarized as follows:
     [D.1] ROC Curve AUC = 0.96613

Code Chunk | Output
##################################
# Formulating a stacked model
# using the base learners
# and a linear regression meta-model
##################################
set.seed(12345678)
MEL_LR <- caretStack(BAL_LIST,
                     metric="ROC",
                     trControl=RKFold_Control,
                     method="glm")
print(MEL_LR)
## The following models were ensembled: BAL_LDA, BAL_CART, BAL_SVM_R, BAL_KNN, BAL_NB  
## 
## caret::train model:
## Generalized Linear Model 
## 
## 912 samples
##   5 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results:
## 
##   ROC        Sens       Spec     
##   0.9699332  0.9520763  0.9147059
## 
## 
## Final model:
## 
## Call:  NULL
## 
## Coefficients:
## (Intercept)      BAL_LDA     BAL_CART    BAL_SVM_R      BAL_KNN       BAL_NB  
##     -5.0427      -0.1463      -0.4083       4.4379       4.9060       1.4449  
## 
## Degrees of Freedom: 911 Total (i.e. Null);  906 Residual
## Null Deviance:       1205 
## Residual Deviance: 351.6     AIC: 363.6
(MEL_LR_Train_AUROC <- MEL_LR$ens_model$results$ROC)
## [1] 0.9699332
##################################
# Independently evaluating the model
# on the test set
##################################
MEL_LR_Test <- data.frame(MEL_LR_Test_Observed = MA_Test$diagnosis,
                          MEL_LR_Test_Predicted = predict(MEL_LR,
                                                          MA_Test[,!names(MA_Test) %in% c("diagnosis")]))

MEL_LR_Test
##     MEL_LR_Test_Observed MEL_LR_Test_Predicted.B MEL_LR_Test_Predicted.M
## 1                      M             0.039723064             0.960276936
## 2                      M             0.992813330             0.007186670
## 3                      M             0.093030883             0.906969117
## 4                      M             0.055240146             0.944759854
## 5                      M             0.011613039             0.988386961
## 6                      M             0.005824800             0.994175200
## 7                      M             0.021610536             0.978389464
## 8                      M             0.025207859             0.974792141
## 9                      M             0.036324604             0.963675396
## 10                     M             0.005506428             0.994493572
## 11                     M             0.033738105             0.966261895
## 12                     M             0.087769722             0.912230278
## 13                     M             0.015512894             0.984487106
## 14                     B             0.960717222             0.039282778
## 15                     B             0.987974397             0.012025603
## 16                     B             0.993627901             0.006372099
## 17                     M             0.012285296             0.987714704
## 18                     M             0.039694581             0.960305419
## 19                     B             0.993312443             0.006687557
## 20                     B             0.990153313             0.009846687
## 21                     M             0.068869028             0.931130972
## 22                     B             0.990441703             0.009558297
## 23                     B             0.977328360             0.022671640
## 24                     M             0.032664172             0.967335828
## 25                     B             0.023097789             0.976902211
## 26                     M             0.890173319             0.109826681
## 27                     B             0.993612505             0.006387495
## 28                     M             0.017430390             0.982569610
## 29                     B             0.953826350             0.046173650
## 30                     B             0.993579684             0.006420316
## 31                     B             0.987581569             0.012418431
## 32                     B             0.991942308             0.008057692
## 33                     M             0.048984333             0.951015667
## 34                     B             0.993586401             0.006413599
## 35                     B             0.983657463             0.016342537
## 36                     M             0.115240160             0.884759840
## 37                     B             0.993436612             0.006563388
## 38                     M             0.019644163             0.980355837
## 39                     M             0.029504261             0.970495739
## 40                     B             0.984934307             0.015065693
## 41                     M             0.013315236             0.986684764
## 42                     M             0.048339823             0.951660177
## 43                     M             0.085933965             0.914066035
## 44                     M             0.005187671             0.994812329
## 45                     M             0.042009276             0.957990724
## 46                     B             0.993564944             0.006435056
## 47                     B             0.993681727             0.006318273
## 48                     M             0.035496426             0.964503574
## 49                     M             0.136258886             0.863741114
## 50                     M             0.077280505             0.922719495
## 51                     B             0.992173894             0.007826106
## 52                     B             0.276818129             0.723181871
## 53                     M             0.016843944             0.983156056
## 54                     M             0.038812249             0.961187751
## 55                     M             0.111282956             0.888717044
## 56                     M             0.017119890             0.982880110
## 57                     B             0.993585994             0.006414006
## 58                     B             0.989476557             0.010523443
## 59                     B             0.986887769             0.013112231
## 60                     B             0.975359027             0.024640973
## 61                     B             0.989153126             0.010846874
## 62                     B             0.993588575             0.006411425
## 63                     B             0.993582913             0.006417087
## 64                     B             0.993596387             0.006403613
## 65                     M             0.014414467             0.985585533
## 66                     B             0.975880185             0.024119815
## 67                     M             0.006160309             0.993839691
## 68                     B             0.984121889             0.015878111
## 69                     B             0.922598056             0.077401944
## 70                     B             0.962926075             0.037073925
## 71                     B             0.961265926             0.038734074
## 72                     M             0.115531624             0.884468376
## 73                     B             0.993555676             0.006444324
## 74                     B             0.991393186             0.008606814
## 75                     B             0.993615606             0.006384394
## 76                     M             0.022182563             0.977817437
## 77                     B             0.990570316             0.009429684
## 78                     B             0.949004486             0.050995514
## 79                     B             0.992911402             0.007088598
## 80                     B             0.984687898             0.015312102
## 81                     B             0.929374115             0.070625885
## 82                     B             0.957013816             0.042986184
## 83                     B             0.993595135             0.006404865
## 84                     B             0.993581652             0.006418348
## 85                     B             0.970466553             0.029533447
## 86                     M             0.043074904             0.956925096
## 87                     B             0.993616743             0.006383257
## 88                     B             0.045437260             0.954562740
## 89                     B             0.992822679             0.007177321
## 90                     B             0.906184184             0.093815816
## 91                     B             0.991562837             0.008437163
## 92                     B             0.992418479             0.007581521
## 93                     B             0.967041347             0.032958653
## 94                     B             0.992072925             0.007927075
## 95                     B             0.991702005             0.008297995
## 96                     B             0.984330688             0.015669312
## 97                     M             0.413153339             0.586846661
## 98                     B             0.252157172             0.747842828
## 99                     B             0.993579045             0.006420955
## 100                    M             0.220300330             0.779699670
## 101                    B             0.988352487             0.011647513
## 102                    B             0.981963831             0.018036169
## 103                    B             0.937622039             0.062377961
## 104                    B             0.993529244             0.006470756
## 105                    B             0.993407340             0.006592660
## 106                    M             0.936920039             0.063079961
## 107                    B             0.993227309             0.006772691
## 108                    M             0.056762017             0.943237983
## 109                    B             0.949467953             0.050532047
## 110                    M             0.056549992             0.943450008
## 111                    B             0.928109326             0.071890674
## 112                    B             0.933426348             0.066573652
## 113                    B             0.969844773             0.030155227
## 114                    B             0.977505336             0.022494664
## 115                    B             0.947481014             0.052518986
## 116                    M             0.006970534             0.993029466
## 117                    M             0.020414638             0.979585362
## 118                    B             0.991566610             0.008433390
## 119                    M             0.992813330             0.007186670
## 120                    M             0.030643981             0.969356019
## 121                    M             0.033350529             0.966649471
## 122                    M             0.009924604             0.990075396
## 123                    M             0.005767727             0.994232273
## 124                    M             0.066841205             0.933158795
## 125                    M             0.005824800             0.994175200
## 126                    M             0.117332343             0.882667657
## 127                    M             0.021610536             0.978389464
## 128                    M             0.036127391             0.963872609
## 129                    B             0.968712476             0.031287524
## 130                    M             0.006267137             0.993732863
## 131                    M             0.023341681             0.976658319
## 132                    M             0.007272537             0.992727463
## 133                    B             0.993312443             0.006687557
## 134                    B             0.990153313             0.009846687
## 135                    B             0.932029832             0.067970168
## 136                    M             0.030779260             0.969220740
## 137                    B             0.993168100             0.006831900
## 138                    B             0.942764322             0.057235678
## 139                    B             0.023097789             0.976902211
## 140                    B             0.952843940             0.047156060
## 141                    M             0.009582801             0.990417199
## 142                    M             0.890173319             0.109826681
## 143                    M             0.033125162             0.966874838
## 144                    B             0.993571447             0.006428553
## 145                    B             0.993597135             0.006402865
## 146                    B             0.994173240             0.005826760
## 147                    B             0.982658594             0.017341406
## 148                    B             0.886682831             0.113317169
## 149                    M             0.012155682             0.987844318
## 150                    B             0.993615936             0.006384064
## 151                    M             0.064487566             0.935512434
## 152                    M             0.005844224             0.994155776
## 153                    M             0.005396298             0.994603702
## 154                    M             0.042009276             0.957990724
## 155                    B             0.993564944             0.006435056
## 156                    B             0.993281946             0.006718054
## 157                    B             0.985898056             0.014101944
## 158                    M             0.007205215             0.992794785
## 159                    B             0.989245052             0.010754948
## 160                    M             0.055782402             0.944217598
## 161                    M             0.136258886             0.863741114
## 162                    B             0.991698882             0.008301118
## 163                    B             0.914571647             0.085428353
## 164                    B             0.969423444             0.030576556
## 165                    B             0.276818129             0.723181871
## 166                    B             0.957635359             0.042364641
## 167                    M             0.037296645             0.962703355
## 168                    B             0.974710495             0.025289505
## 169                    B             0.993575528             0.006424472
## 170                    M             0.078366328             0.921633672
## 171                    B             0.991766240             0.008233760
## 172                    B             0.993603018             0.006396982
## 173                    B             0.993587245             0.006412755
## 174                    B             0.974630559             0.025369441
## 175                    M             0.026427134             0.973572866
## 176                    B             0.993596387             0.006403613
## 177                    B             0.939939729             0.060060271
## 178                    B             0.984487845             0.015512155
## 179                    M             0.043000906             0.956999094
## 180                    B             0.983070682             0.016929318
## 181                    B             0.968436712             0.031563288
## 182                    B             0.993141110             0.006858890
## 183                    B             0.993531242             0.006468758
## 184                    B             0.993593580             0.006406420
## 185                    M             0.035858081             0.964141919
## 186                    B             0.993300177             0.006699823
## 187                    B             0.987167610             0.012832390
## 188                    B             0.990979341             0.009020659
## 189                    B             0.992825697             0.007174303
## 190                    B             0.962704544             0.037295456
## 191                    B             0.949004486             0.050995514
## 192                    B             0.975083251             0.024916749
## 193                    B             0.978926877             0.021073123
## 194                    B             0.859333533             0.140666467
## 195                    B             0.929374115             0.070625885
## 196                    B             0.957013816             0.042986184
## 197                    B             0.993595135             0.006404865
## 198                    B             0.993581652             0.006418348
## 199                    M             0.049761316             0.950238684
## 200                    B             0.973575429             0.026424571
## 201                    B             0.969969214             0.030030786
## 202                    B             0.993591460             0.006408540
## 203                    B             0.919248489             0.080751511
## 204                    M             0.042805339             0.957194661
## 205                    B             0.045437260             0.954562740
## 206                    B             0.965093751             0.034906249
## 207                    B             0.990018236             0.009981764
## 208                    B             0.975544476             0.024455524
## 209                    M             0.034162318             0.965837682
## 210                    M             0.413153339             0.586846661
## 211                    B             0.252157172             0.747842828
## 212                    B             0.993586898             0.006413102
## 213                    B             0.955422702             0.044577298
## 214                    M             0.936920039             0.063079961
## 215                    B             0.986216621             0.013783379
## 216                    B             0.984627120             0.015372880
## 217                    B             0.993590377             0.006409623
## 218                    B             0.993629375             0.006370625
## 219                    B             0.992194182             0.007805818
## 220                    M             0.008514817             0.991485183
## 221                    B             0.964848237             0.035151763
## 222                    B             0.970131269             0.029868731
## 223                    B             0.961235491             0.038764509
## 224                    B             0.933426348             0.066573652
## 225                    B             0.977505336             0.022494664
## 226                    M             0.011297304             0.988702696
#################################
# Reporting the independent evaluation results
# for the test set
#################################
MEL_LR_Test_ROC <- roc(response = MEL_LR_Test$MEL_LR_Test_Observed,
                    predictor = MEL_LR_Test$MEL_LR_Test_Predicted.M,
                    levels = rev(levels(MEL_LR_Test$MEL_LR_Test_Observed)))

(MEL_LR_Test_AUROC <- auc(MEL_LR_Test_ROC)[1])
## [1] 0.9661301

1.7.8 Meta-Learner Model Development using Random Forest (MEL_RF)


Random Forest is an ensemble learning method made up of a large set of small decision trees called estimators, with each producing its own prediction. The random forest model aggregates the predictions of the estimators to produce a more accurate prediction. The algorithm involves bootstrap aggregating (where smaller subsets of the training data are repeatedly subsampled with replacement), random subspacing (where a subset of features are sampled and used to train each individual estimator), estimator training (where unpruned decision trees are formulated for each estimator) and inference by aggregating the predictions of all estimators.

[A] The random forest model from the randomForest package was implemented optimal base learner ensemble through the caret package.

[B] The model contains 1 hyperparameter:
     [B.1] mtry = number of randomly selected predictors made to vary across a range of values equal to 2 to 5

[C] The 5-cycle repeated 5-fold cross-validated model performance of the final model is summarized as follows:
     [C.1] Final model configuration involves mtry=3
     [C.2] AUROC = 0.97611

[D] The independent test model performance of the final model is summarized as follows:
     [D.1] AUROC = 0.96898

Code Chunk | Output
##################################
# Formulating a stacked model
# using the base learners
# and a random forest meta-model
##################################
set.seed(12345678)
MEL_RF <- caretStack(BAL_LIST,
                     metric="ROC",
                     trControl=RKFold_Control,
                     method="rf",
                     tuneGrid = RF_Grid)
print(MEL_RF)
## The following models were ensembled: BAL_LDA, BAL_CART, BAL_SVM_R, BAL_KNN, BAL_NB  
## 
## caret::train model:
## Random Forest 
## 
## 912 samples
##   5 predictor
##   2 classes: 'B', 'M' 
## 
## No pre-processing
## Resampling: Cross-Validated (5 fold, repeated 5 times) 
## Summary of sample sizes: 729, 729, 730, 730, 730, 730, ... 
## Resampling results across tuning parameters:
## 
##   mtry  ROC        Sens       Spec     
##   2     0.9761136  0.9559359  0.9317647
##   3     0.9738558  0.9573364  0.9352941
##   4     0.9733648  0.9597834  0.9382353
##   5     0.9730741  0.9594294  0.9382353
## 
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
## 
## Final model:
## 
## Call:
##  randomForest(x = x, y = y, mtry = param$mtry) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 2
## 
##         OOB estimate of  error rate: 4.5%
## Confusion matrix:
##     B   M class.error
## B 551  21  0.03671329
## M  20 320  0.05882353
(MEL_RF_Train_AUROC <- max(MEL_RF$ens_model$results$ROC))
## [1] 0.9761136
##################################
# Independently evaluating the model
# on the test set
##################################
MEL_RF_Test <- data.frame(MEL_RF_Test_Observed = MA_Test$diagnosis,
                          MEL_RF_Test_Predicted = predict(MEL_RF,
                                                          MA_Test[,!names(MA_Test) %in% c("diagnosis")]))

MEL_RF_Test
##     MEL_RF_Test_Observed MEL_RF_Test_Predicted.B MEL_RF_Test_Predicted.M
## 1                      M                   0.006                   0.994
## 2                      M                   0.998                   0.002
## 3                      M                   0.104                   0.896
## 4                      M                   0.064                   0.936
## 5                      M                   0.096                   0.904
## 6                      M                   0.000                   1.000
## 7                      M                   0.000                   1.000
## 8                      M                   0.000                   1.000
## 9                      M                   0.026                   0.974
## 10                     M                   0.002                   0.998
## 11                     M                   0.022                   0.978
## 12                     M                   0.088                   0.912
## 13                     M                   0.062                   0.938
## 14                     B                   1.000                   0.000
## 15                     B                   0.994                   0.006
## 16                     B                   1.000                   0.000
## 17                     M                   0.000                   1.000
## 18                     M                   0.006                   0.994
## 19                     B                   1.000                   0.000
## 20                     B                   1.000                   0.000
## 21                     M                   0.012                   0.988
## 22                     B                   0.944                   0.056
## 23                     B                   0.992                   0.008
## 24                     M                   0.004                   0.996
## 25                     B                   0.292                   0.708
## 26                     M                   0.904                   0.096
## 27                     B                   1.000                   0.000
## 28                     M                   0.002                   0.998
## 29                     B                   0.998                   0.002
## 30                     B                   1.000                   0.000
## 31                     B                   0.982                   0.018
## 32                     B                   0.982                   0.018
## 33                     M                   0.148                   0.852
## 34                     B                   1.000                   0.000
## 35                     B                   0.998                   0.002
## 36                     M                   0.146                   0.854
## 37                     B                   1.000                   0.000
## 38                     M                   0.000                   1.000
## 39                     M                   0.112                   0.888
## 40                     B                   0.934                   0.066
## 41                     M                   0.016                   0.984
## 42                     M                   0.126                   0.874
## 43                     M                   0.100                   0.900
## 44                     M                   0.002                   0.998
## 45                     M                   0.032                   0.968
## 46                     B                   1.000                   0.000
## 47                     B                   1.000                   0.000
## 48                     M                   0.012                   0.988
## 49                     M                   0.050                   0.950
## 50                     M                   0.146                   0.854
## 51                     B                   1.000                   0.000
## 52                     B                   0.312                   0.688
## 53                     M                   0.000                   1.000
## 54                     M                   0.014                   0.986
## 55                     M                   0.206                   0.794
## 56                     M                   0.114                   0.886
## 57                     B                   1.000                   0.000
## 58                     B                   0.984                   0.016
## 59                     B                   0.994                   0.006
## 60                     B                   0.902                   0.098
## 61                     B                   0.978                   0.022
## 62                     B                   1.000                   0.000
## 63                     B                   1.000                   0.000
## 64                     B                   1.000                   0.000
## 65                     M                   0.002                   0.998
## 66                     B                   1.000                   0.000
## 67                     M                   0.006                   0.994
## 68                     B                   0.996                   0.004
## 69                     B                   0.910                   0.090
## 70                     B                   0.998                   0.002
## 71                     B                   0.994                   0.006
## 72                     M                   0.054                   0.946
## 73                     B                   1.000                   0.000
## 74                     B                   1.000                   0.000
## 75                     B                   1.000                   0.000
## 76                     M                   0.002                   0.998
## 77                     B                   0.992                   0.008
## 78                     B                   0.948                   0.052
## 79                     B                   0.968                   0.032
## 80                     B                   1.000                   0.000
## 81                     B                   0.858                   0.142
## 82                     B                   0.940                   0.060
## 83                     B                   1.000                   0.000
## 84                     B                   1.000                   0.000
## 85                     B                   1.000                   0.000
## 86                     M                   0.052                   0.948
## 87                     B                   1.000                   0.000
## 88                     B                   0.094                   0.906
## 89                     B                   0.968                   0.032
## 90                     B                   0.706                   0.294
## 91                     B                   0.876                   0.124
## 92                     B                   1.000                   0.000
## 93                     B                   0.950                   0.050
## 94                     B                   0.926                   0.074
## 95                     B                   0.966                   0.034
## 96                     B                   0.942                   0.058
## 97                     M                   0.616                   0.384
## 98                     B                   0.486                   0.514
## 99                     B                   1.000                   0.000
## 100                    M                   0.290                   0.710
## 101                    B                   0.994                   0.006
## 102                    B                   1.000                   0.000
## 103                    B                   0.942                   0.058
## 104                    B                   1.000                   0.000
## 105                    B                   1.000                   0.000
## 106                    M                   0.972                   0.028
## 107                    B                   1.000                   0.000
## 108                    M                   0.042                   0.958
## 109                    B                   0.906                   0.094
## 110                    M                   0.082                   0.918
## 111                    B                   0.924                   0.076
## 112                    B                   0.978                   0.022
## 113                    B                   0.996                   0.004
## 114                    B                   0.982                   0.018
## 115                    B                   0.648                   0.352
## 116                    M                   0.000                   1.000
## 117                    M                   0.004                   0.996
## 118                    B                   1.000                   0.000
## 119                    M                   0.998                   0.002
## 120                    M                   0.278                   0.722
## 121                    M                   0.164                   0.836
## 122                    M                   0.000                   1.000
## 123                    M                   0.000                   1.000
## 124                    M                   0.016                   0.984
## 125                    M                   0.000                   1.000
## 126                    M                   0.134                   0.866
## 127                    M                   0.000                   1.000
## 128                    M                   0.026                   0.974
## 129                    B                   0.998                   0.002
## 130                    M                   0.000                   1.000
## 131                    M                   0.006                   0.994
## 132                    M                   0.002                   0.998
## 133                    B                   1.000                   0.000
## 134                    B                   1.000                   0.000
## 135                    B                   0.862                   0.138
## 136                    M                   0.086                   0.914
## 137                    B                   0.968                   0.032
## 138                    B                   0.840                   0.160
## 139                    B                   0.292                   0.708
## 140                    B                   0.998                   0.002
## 141                    M                   0.000                   1.000
## 142                    M                   0.904                   0.096
## 143                    M                   0.094                   0.906
## 144                    B                   1.000                   0.000
## 145                    B                   1.000                   0.000
## 146                    B                   0.920                   0.080
## 147                    B                   1.000                   0.000
## 148                    B                   0.780                   0.220
## 149                    M                   0.000                   1.000
## 150                    B                   1.000                   0.000
## 151                    M                   0.058                   0.942
## 152                    M                   0.000                   1.000
## 153                    M                   0.008                   0.992
## 154                    M                   0.032                   0.968
## 155                    B                   1.000                   0.000
## 156                    B                   0.892                   0.108
## 157                    B                   1.000                   0.000
## 158                    M                   0.006                   0.994
## 159                    B                   0.988                   0.012
## 160                    M                   0.086                   0.914
## 161                    M                   0.050                   0.950
## 162                    B                   1.000                   0.000
## 163                    B                   0.806                   0.194
## 164                    B                   0.994                   0.006
## 165                    B                   0.312                   0.688
## 166                    B                   0.984                   0.016
## 167                    M                   0.106                   0.894
## 168                    B                   0.952                   0.048
## 169                    B                   1.000                   0.000
## 170                    M                   0.442                   0.558
## 171                    B                   0.950                   0.050
## 172                    B                   1.000                   0.000
## 173                    B                   1.000                   0.000
## 174                    B                   0.992                   0.008
## 175                    M                   0.268                   0.732
## 176                    B                   1.000                   0.000
## 177                    B                   0.956                   0.044
## 178                    B                   0.990                   0.010
## 179                    M                   0.010                   0.990
## 180                    B                   1.000                   0.000
## 181                    B                   0.996                   0.004
## 182                    B                   0.968                   0.032
## 183                    B                   1.000                   0.000
## 184                    B                   1.000                   0.000
## 185                    M                   0.026                   0.974
## 186                    B                   0.998                   0.002
## 187                    B                   1.000                   0.000
## 188                    B                   0.980                   0.020
## 189                    B                   0.998                   0.002
## 190                    B                   0.996                   0.004
## 191                    B                   0.948                   0.052
## 192                    B                   0.886                   0.114
## 193                    B                   0.874                   0.126
## 194                    B                   0.618                   0.382
## 195                    B                   0.858                   0.142
## 196                    B                   0.940                   0.060
## 197                    B                   1.000                   0.000
## 198                    B                   1.000                   0.000
## 199                    M                   0.010                   0.990
## 200                    B                   0.904                   0.096
## 201                    B                   1.000                   0.000
## 202                    B                   1.000                   0.000
## 203                    B                   0.824                   0.176
## 204                    M                   0.030                   0.970
## 205                    B                   0.094                   0.906
## 206                    B                   0.982                   0.018
## 207                    B                   1.000                   0.000
## 208                    B                   0.930                   0.070
## 209                    M                   0.316                   0.684
## 210                    M                   0.616                   0.384
## 211                    B                   0.486                   0.514
## 212                    B                   1.000                   0.000
## 213                    B                   0.992                   0.008
## 214                    M                   0.972                   0.028
## 215                    B                   0.978                   0.022
## 216                    B                   0.998                   0.002
## 217                    B                   1.000                   0.000
## 218                    B                   1.000                   0.000
## 219                    B                   1.000                   0.000
## 220                    M                   0.014                   0.986
## 221                    B                   0.996                   0.004
## 222                    B                   0.700                   0.300
## 223                    B                   0.956                   0.044
## 224                    B                   0.978                   0.022
## 225                    B                   0.982                   0.018
## 226                    M                   0.000                   1.000
#################################
# Reporting the independent evaluation results
# for the test set
#################################
MEL_RF_Test_ROC <- roc(response = MEL_RF_Test$MEL_RF_Test_Observed,
                       predictor = MEL_RF_Test$MEL_RF_Test_Predicted.M,
                       levels = rev(levels(MEL_RF_Test$MEL_RF_Test_Observed)))

(MEL_RF_Test_AUROC <- auc(MEL_RF_Test_ROC)[1])
## [1] 0.9689805

1.8 Consolidated Findings


[A] Models which are based on boosting and bagging algorithms demonstrated excellent cross-validated and test AUROC metrics:
     [A.1] MBS_AB: Adaptive Boosting (adabag package)
            [A.1.1] Cross-Validation AUROC = 0.97109
            [A.1.2] Test ROC Curve AUROC = 0.99564
     [A.2] MBS_GBM: Stochastic Gradient Boosting (gbm package)
            [A.2.1] Cross-Validation AUROC = 0.96473
            [A.2.2] Test ROC Curve AUROC = 0.98306
     [A.3] MBS_XGB: Extreme Gradient Boosting (xgboost package)
            [A.3.1] Cross-Validation AUROC = 0.96403
            [A.3.2] Test ROC Curve AUROC = 0.98977
     [A.4] MBG_RF: Random Forest (randomForest package)
            [A.4.1] Cross-Validation AUROC = 0.97000
            [A.4.2] Test ROC Curve AUROC = 0.99195
     [A.5] MBG_BCART: Bagged Classification and Regression Trees (ipred, plyr and e1071 packages)
            [A.5.1] Cross-Validation AUROC = 0.96444
            [A.5.2] Test ROC Curve AUROC = 0.998583

[B] Models implemented as base learners which are not based on boosting and bagging algorithms individually demonstrated inferior cross-validated and test AUROC metrics:
     [B.1] BAL_LDA: Linear Discriminant Analysis (MASS package)
            [B.1.1] Cross-Validation AUROC = 0.87628
            [B.1.2] Test ROC Curve AUROC = 0.88833
     [B.2] BAL_CART: Classification and Regression Trees (rpart package)
            [B.2.1] Cross-Validation AUROC = 0.86145
            [B.2.2] Test ROC Curve AUROC = 0.92106
     [B.3] BAL_SVM_R: Support Vector Machine - Radial Basis Function Kernel (kernlab package)
            [B.3.1] Cross-Validation AUROC = 0.90977
            [B.3.2] Test ROC Curve AUROC = 0.93762
     [B.4] BAL_KNN: K-Nearest Neighbors (caret package)
            [B.4.1] Cross-Validation AUROC = 0.90764
            [B.4.2] Test ROC Curve AUROC = 0.93611
     [B.5] BAL_NB: Naive Bayes (klaR package)
            [B.5.1] Cross-Validation AUROC = 0.88735
            [B.5.2] Test ROC Curve AUROC = 0.89696

[C] The model stacking process demonstrated improved cross-validated and test AUROC metrics as compared to individual base learners:
     [C.1] MEL_LR: Logistic Regression (stats package)
            [C.1.1] Cross-Validation AUROC = 0.96993
            [C.1.2] Test ROC Curve AUROC = 0.96613
     [C.2] MEL_RF: Classification and Regression Trees (randomForest package)
            [C.2.1] Cross-Validation AUROC = 0.97611
            [C.2.2] Test ROC Curve AUROC = 0.96898

Code Chunk | Output
##################################
# Consolidating the resampling results
# for the formulated individual models
##################################
(Consolidated_Resampling <- resamples(list(MBS_AB = MBS_AB_Tune,
                                           MBS_GBM = MBS_GBM_Tune,
                                           MBS_XGB = MBS_XGB_Tune,
                                           MBG_RF = MBG_RF_Tune,
                                           MBG_BCART = MBG_BCART_Tune,
                                           BAL_LDA = BAL_LDA_Tune,
                                           BAL_CART = BAL_CART_Tune,
                                           BAL_KNN = BAL_KNN_Tune,
                                           BAL_NB = BAL_NB_Tune)))
## 
## Call:
## resamples.default(x = list(MBS_AB = MBS_AB_Tune, MBS_GBM =
##  = MBG_BCART_Tune, BAL_LDA = BAL_LDA_Tune, BAL_CART = BAL_CART_Tune, BAL_KNN
##  = BAL_KNN_Tune, BAL_NB = BAL_NB_Tune))
## 
## Models: MBS_AB, MBS_GBM, MBS_XGB, MBG_RF, MBG_BCART, BAL_LDA, BAL_CART, BAL_KNN, BAL_NB 
## Number of resamples: 25 
## Performance metrics: ROC, Sens, Spec 
## Time estimates for: everything, final model fit
summary(Consolidated_Resampling)
## 
## Call:
## summary.resamples(object = Consolidated_Resampling)
## 
## Models: MBS_AB, MBS_GBM, MBS_XGB, MBG_RF, MBG_BCART, BAL_LDA, BAL_CART, BAL_KNN, BAL_NB 
## Number of resamples: 25 
## 
## ROC 
##                Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## MBS_AB    0.9336945 0.9595908 0.9748452 0.9710985 0.9860614 0.9941176    0
## MBS_GBM   0.9262126 0.9476982 0.9656863 0.9647306 0.9821981 0.9877238    0
## MBS_XGB   0.9220846 0.9460358 0.9700722 0.9640349 0.9820691 0.9900256    0
## MBG_RF    0.9324690 0.9563939 0.9729747 0.9700081 0.9831841 0.9930946    0
## MBG_BCART 0.9224071 0.9521100 0.9696852 0.9644432 0.9808437 0.9901535    0
## BAL_LDA   0.8102302 0.8641641 0.8828689 0.8762815 0.8913829 0.9296675    0
## BAL_CART  0.7863777 0.8392673 0.8597187 0.8614523 0.8853844 0.9405371    0
## BAL_KNN   0.8342363 0.8946931 0.9120227 0.9076428 0.9237616 0.9562020    0
## BAL_NB    0.8354220 0.8777090 0.8886189 0.8873525 0.8989938 0.9317136    0
## 
## Sens 
##                Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## MBS_AB    0.9043478 0.9298246 0.9565217 0.9527750 0.9736842 0.9913043    0
## MBS_GBM   0.8956522 0.9298246 0.9478261 0.9492784 0.9652174 1.0000000    0
## MBS_XGB   0.9122807 0.9385965 0.9565217 0.9562777 0.9739130 0.9913043    0
## MBG_RF    0.9130435 0.9473684 0.9565217 0.9580351 0.9652174 0.9913043    0
## MBG_BCART 0.8956522 0.9473684 0.9561404 0.9541998 0.9736842 0.9913043    0
## BAL_LDA   0.8260870 0.8508772 0.8684211 0.8720214 0.8947368 0.9304348    0
## BAL_CART  0.7631579 0.8086957 0.8596491 0.8503158 0.8859649 0.9043478    0
## BAL_KNN   0.8596491 0.9035088 0.9210526 0.9205797 0.9391304 0.9736842    0
## BAL_NB    0.7913043 0.8333333 0.8596491 0.8552525 0.8771930 0.9130435    0
## 
## Spec 
##                Min.   1st Qu.    Median      Mean   3rd Qu.      Max. NA's
## MBS_AB    0.7941176 0.8823529 0.8970588 0.8964706 0.9264706 0.9558824    0
## MBS_GBM   0.8235294 0.8676471 0.8970588 0.8964706 0.9264706 0.9705882    0
## MBS_XGB   0.8235294 0.8823529 0.8970588 0.9000000 0.9264706 0.9558824    0
## MBG_RF    0.8088235 0.8676471 0.8823529 0.8970588 0.9411765 0.9852941    0
## MBG_BCART 0.8235294 0.8676471 0.9117647 0.9000000 0.9264706 0.9852941    0
## BAL_LDA   0.6323529 0.6764706 0.7058824 0.7105882 0.7352941 0.8235294    0
## BAL_CART  0.5588235 0.7058824 0.7500000 0.7482353 0.7794118 0.8823529    0
## BAL_KNN   0.8088235 0.8676471 0.8970588 0.8947059 0.9264706 0.9558824    0
## BAL_NB    0.6911765 0.7205882 0.7500000 0.7605882 0.7794118 0.8529412    0
##################################
# Exploring the resampling results
# for the formulated individual models
##################################
bwplot(Consolidated_Resampling,
       main = "Model Resampling Performance Comparison (Range)",
       ylab = "Model",
       pch=16,
       cex=2,
       layout=c(3,1))

##################################
# Consolidating the train and test AUROC
# for the formulated individual models
# together with the ensemble and stacked models
##################################

Model <- c('MBS_AB','MBS_GBM','MBS_XGB',
           'MBG_RF','MBG_BCART',
           'BAL_LDA','BAL_CART','BAL_SVM_R','BAL_KNN','BAL_NB',
           'MEL_LR','MEL_RF',
           'MBS_AB','MBS_GBM','MBS_XGB',
           'MBG_RF','MBG_BCART',
           'BAL_LDA','BAL_CART','BAL_SVM_R','BAL_KNN','BAL_NB',
           'MEL_LR','MEL_RF')

Set <- c(rep('Cross-Validation',12),rep('Test',12))

AUROC <- c(MBS_AB_Train_AUROC,MBS_GBM_Train_AUROC,MBS_XGB_Train_AUROC,
           MBG_RF_Train_AUROC,MBG_BCART_Train_AUROC,
           BAL_LDA_Train_AUROC,BAL_CART_Train_AUROC,BAL_SVM_R_Train_AUROC,BAL_KNN_Train_AUROC,BAL_NB_Train_AUROC,
           MEL_LR_Train_AUROC,MEL_RF_Train_AUROC,
           MBS_AB_Test_AUROC,MBS_GBM_Test_AUROC,MBS_XGB_Test_AUROC,
           MBG_RF_Test_AUROC,MBG_BCART_Test_AUROC,
           BAL_LDA_Test_AUROC,BAL_CART_Test_AUROC,BAL_SVM_R_Test_AUROC,BAL_KNN_Test_AUROC,BAL_NB_Test_AUROC,
           MEL_LR_Test_AUROC,MEL_RF_Test_AUROC)

AUROC_Summary <- as.data.frame(cbind(Model,Set,AUROC))

AUROC_Summary$AUROC <- as.numeric(as.character(AUROC_Summary$AUROC))
AUROC_Summary$Set <- factor(AUROC_Summary$Set,
                            levels = c("Cross-Validation",
                                       "Test"))
AUROC_Summary$Model <- factor(AUROC_Summary$Model,
                              levels = c('MBS_AB',
                                         'MBS_GBM',
                                         'MBS_XGB',
                                         'MBG_RF',
                                         'MBG_BCART',
                                         'BAL_LDA',
                                         'BAL_CART',
                                         'BAL_SVM_R',
                                         'BAL_KNN',
                                         'BAL_NB',
                                         'MEL_LR',
                                         'MEL_RF'))

print(AUROC_Summary, row.names=FALSE)
##      Model              Set     AUROC
##     MBS_AB Cross-Validation 0.9710985
##    MBS_GBM Cross-Validation 0.9647306
##    MBS_XGB Cross-Validation 0.9640349
##     MBG_RF Cross-Validation 0.9700081
##  MBG_BCART Cross-Validation 0.9644432
##    BAL_LDA Cross-Validation 0.8762815
##   BAL_CART Cross-Validation 0.8614523
##  BAL_SVM_R Cross-Validation 0.9097712
##    BAL_KNN Cross-Validation 0.9076428
##     BAL_NB Cross-Validation 0.8873525
##     MEL_LR Cross-Validation 0.9699332
##     MEL_RF Cross-Validation 0.9761136
##     MBS_AB             Test 0.9956405
##    MBS_GBM             Test 0.9830651
##    MBS_XGB             Test 0.9897720
##     MBG_RF             Test 0.9919517
##  MBG_BCART             Test 0.9858317
##    BAL_LDA             Test 0.8883300
##   BAL_CART             Test 0.9210681
##  BAL_SVM_R             Test 0.9376258
##    BAL_KNN             Test 0.9361167
##     BAL_NB             Test 0.8969651
##     MEL_LR             Test 0.9661301
##     MEL_RF             Test 0.9689805
(AUROC_Plot <- dotplot(Model ~ AUROC,
                           data = AUROC_Summary,
                           groups = Set,
                           main = "Classification Model Performance Comparison",
                           ylab = "Model",
                           xlab = "AUROC",
                           auto.key = list(adj=1, space="top", columns=2),
                           type=c("p", "h"),
                           origin = 0,
                           alpha = 0.45,
                           pch = 16,
                           cex = 2))

2. Summary



3. References


[Book] Ensemble Methods for Machine Learning by Gautam Kunapuli
[Book] Statistics and Machine Learning in Python by Edouard Duchesnay, Tommy Lofstedt and Feki Younes
[Book] Applied Predictive Modeling by Max Kuhn and Kjell Johnson
[Book] An Introduction to Statistical Learning by Gareth James, Daniela Witten, Trevor Hastie and Rob Tibshirani
[Book] Multivariate Data Visualization with R by Deepayan Sarkar
[Book] Machine Learning by Samuel Jackson
[Book] Data Modeling Methods by Jacob Larget
[Book] Introduction to R and Statistics by University of Western Australia
[Book] Feature Engineering and Selection: A Practical Approach for Predictive Models by Max Kuhn and Kjell Johnson
[Book] Introduction to Research Methods by Eric van Holm
[R Package] AppliedPredictiveModeling by Max Kuhn
[R Package] caret by Max Kuhn
[R Package] rpart by Terry Therneau and Beth Atkinson
[R Package] lattice by Deepayan Sarkar
[R Package] dplyr by Hadley Wickham
[R Package] tidyr by Hadley Wickham
[R Package] moments by Lukasz Komsta and Frederick
[R Package] skimr by Elin Waring
[R Package] RANN by Sunil Arya, David Mount, Samuel Kemp and Gregory Jefferis
[R Package] corrplot by Taiyun Wei
[R Package] tidyverse by Hadley Wickham
[R Package] lares by Bernardo Lares
[R Package] DMwR2 by Luis Torgo
[R Package] gridExtra by Baptiste Auguie and Anton Antonov
[R Package] rattle by Graham Williams
[R Package] RColorBrewer by Erich Neuwirth
[R Package] stats by R Core Team
[R Package] caretEnsemble by Zachary Deane-Mayer
[R Package] pROC by Xavier Robin
[R Package] adabag by Esteban Alfaro, Matias Gamez and Noelia Garcia
[R Package] gbm by Brandon Greenwell, Bradley Boehmke and Jay Cunningham
[R Package] xgboost by Jiaming Yuan
[R Package] randomForest by Andy Liaw
[R Package] kernlab by Alexandros Karatzoglou
[R Package] klaR by Christian Roever, Nils Raabe, Karsten Luebke, Uwe Ligges, Gero Szepannek, Marc Zentgraf and David Meyer
[R Package] rpart by Terry Therneau and Beth Atkinson
[R Package] rpart.plot by Stephen Milborrow
[Article] A Brief Introduction to caretEnsemble by Zachary Deane-Mayer
[Article] A Gentle Introduction to Ensemble Learning Algorithms by Jason Brownlee
[Article] Ensemble Methods: Elegant Techniques to Produce Improved Machine Learning Results by Necati Demir
[Article] The Complete Guide to Ensemble Learning by Rohit Kundu
[Article] Develop an Intuition for How Ensemble Learning Works by Jason Brownlee
[Article] How to Build an Ensemble Of Machine Learning Algorithms in R by Jason Brownlee
[Article] Ensemble Learning: Bagging, Boosting, and Stacking by Towards AI Team
[Article] Bagging, Boosting, and Stacking in Machine Learning by Emmanuella Budu
[Article] Stacking Ensemble Machine Learning With Python by Jason Brownlee
[Article] Essence of Boosting Ensembles for Machine Learning by Jason Brownlee
[Article] Ensemble Modeling with R by Deepika Singh
[Article] Creating Ensemble Models in R by Dustin Rogers
[Article] Stacking Ensemble Machine Learning With Python by Jason Brownlee
[Article] Stacking Machine Learning: Everything You Need to Know by Ada Parker
[Article] Ensemble Learning: Bagging, Boosting and Stacking by Edouard Duchesnay, Tommy Lofstedt and Feki Younes
[Article] Stack Machine Learning Models: Get Better Results by IBM Team
[Article] Gradient Boosting vs AdaBoost vs XGBoost vs CatBoost vs LightGBM by Geeks for Geeks Team
[Article] A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee
[Article] The Ultimate Guide to AdaBoost Algorithm | What is AdaBoost Algorithm? by Ashish Kumar
[Publication] Experiments with a New Boosting Algorithm by Yoav Freund and Robert Schapire (Proceedings of the Thirteenth International Conference on Machine Learning)
[Publication] Stochastic Gradient Boosting by Jerome Friedman (Computational Statistics and Data Analysis)
[Publication] XGBoost: A Scalable Tree Boosting System by Tianqi Chen and Carlos Guestrin (22nd SIGKDD Conference on Knowledge Discovery and Data Mining)
[Publication] Ensemble Selection from Libraries of Models by Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew and Alex Ksikes (Proceedings of the 21 st International Conference on Machine Learning)
[Publication] Random Forest by Leo Breiman (Machine Learning)
[Publication] Bagging Predictors by Leo Breiman (Machine Learning)
[Publication] The Use of Multiple Measurements in Taxonomic Problems by Ronald Fisher (Annals of Human Genetics)
[Publication] Classification and Regression Trees by Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone (Computer Science)
[Publication] A Training Algorithm for Optimal Margin Classifiers by Bernhard Boser, Isabelle Guyon and Vladimir Vapnik (Proceedings of the Fifth Annual Workshop on Computational Learning Theory)
[Publication] Nearest Neighbor Pattern Classification Thomas Cover and Peter Hart (IEEE Transactions on Information Theory)
[Publication] Who Discovered Bayes’s Theorem? by Stephen Stigler (The American Statistician)
[Publication] The Origins of Logistic Regression by JS Cramer (Econometrics eJournal)
[Course] Applied Data Mining and Statistical Learning by Penn State Eberly College of Science