Supervised Learning : Exploring Regularization Approaches for Controlling Model Complexity Through Weight Penalization for Neural Network Classification¶
1. Table of Contents ¶
This project manually implements the L1 Regularization, L2 Regularization and ElasticNet Regularization algorithms using various helpful packages in Python to penalize large weights, reduce model complexity and improve generalization with fixed values applied for the learning rate and iteration count parameters to optimally update the gradients and weights of an artificial neural network classification model. The cost function, classification accuracy and layer weight optimization profiles of the different regularization algorithms were compared. All results were consolidated in a Summary presented at the end of the document.
Artificial Neural Network, in the context of categorical response prediction, consists of interconnected nodes called neurons organized in layers. The model architecture involves an input layer which receives the input data, with each neuron representing a feature or attribute of the data; hidden layers which perform computations on the input data through weighted connections between neurons and apply activation functions to produce outputs; and the output layer which produces the final predictions equal to the number of classes, each representing the probability of the input belonging to a particular class, based on the computations performed in the hidden layers. Neurons within adjacent layers are connected by weighted connections. Each connection has an associated weight that determines the strength of influence one neuron has on another. These weights are adjusted during the training process to enable the network to learn from the input data and make accurate predictions. Activation functions introduce non-linearities into the network, allowing it to learn complex relationships between inputs and outputs. The training process involves presenting input data along with corresponding target outputs to the network and adjusting the weights to minimize the difference between the predicted outputs and the actual targets which is typically performed through optimization algorithms such as gradient descent and backpropagation. The training process iteratively updates the weights until the model's predictions closely match the target outputs.
Backpropagation and Weight Update, in the context of an artificial neural network, involve the process of iteratively adjusting the weights of the connections between neurons in the network to minimize the difference between the predicted and the actual target responses. Input data is fed into the neural network, and it propagates through the network layer by layer, starting from the input layer, through hidden layers, and ending at the output layer. At each neuron, the weighted sum of inputs is calculated, followed by the application of an activation function to produce the neuron's output. Once the forward pass is complete, the network's output is compared to the actual target output. The difference between the predicted output and the actual output is quantified using a loss function, which measures the discrepancy between the predicted and actual values. Common loss functions for classification tasks include cross-entropy loss. During the backward pass, the error is propagated backward through the network to compute the gradients of the loss function with respect to each weight in the network. This is achieved using the chain rule of calculus, which allows the error to be decomposed and distributed backward through the network. The gradients quantify how much a change in each weight would affect the overall error of the network. Once the gradients are computed, the weights are updated in the opposite direction of the gradient to minimize the error. This update is typically performed using an optimization algorithm such as gradient descent, which adjusts the weights in proportion to their gradients and a learning rate hyperparameter. The learning rate determines the size of the step taken in the direction opposite to the gradient. These steps are repeated for multiple iterations (epochs) over the training data. As the training progresses, the weights are adjusted iteratively to minimize the error, leading to a neural network model that accurately classifies input data.
Regularization Algorithms, in the context of neural network classification, are techniques used to prevent overfitting and improve the generalization performance of the model by imposing constraints on its parameters during training. These constraints are typically applied to the weights of the neural network and are aimed at reducing model complexity, controlling the magnitude of the weights, and promoting simpler and more generalizable solutions. Regularization approaches work by adding penalty terms to the loss function during training. These penalty terms penalize large weights or complex models, encouraging the optimization process to prioritize simpler solutions that generalize well to unseen data. By doing so, regularization helps prevent the neural network from fitting noise or irrelevant patterns present in the training data and encourages it to learn more robust and meaningful representations.
1.1. Data Background ¶
Datasets used for the analysis were separately gathered and consolidated from various sources including:
- Cancer Rates from World Population Review
- Social Protection and Labor Indicator from World Bank
- Education Indicator from World Bank
- Economy and Growth Indicator from World Bank
- Environment Indicator from World Bank
- Climate Change Indicator from World Bank
- Agricultural and Rural Development Indicator from World Bank
- Social Development Indicator from World Bank
- Health Indicator from World Bank
- Science and Technology Indicator from World Bank
- Urban Development Indicator from World Bank
- Human Development Indices from Human Development Reports
- Environmental Performance Indices from Yale Center for Environmental Law and Policy
This study hypothesized that various global development indicators and indices influence cancer rates across countries.
The target variable for the study is:
- CANRAT - Dichotomized category based on age-standardized cancer rates, per 100K population (2022)
The predictor variables for the study are:
- GDPPER - GDP per person employed, current US Dollars (2020)
- URBPOP - Urban population, % of total population (2020)
- PATRES - Patent applications by residents, total count (2020)
- RNDGDP - Research and development expenditure, % of GDP (2020)
- POPGRO - Population growth, annual % (2020)
- LIFEXP - Life expectancy at birth, total in years (2020)
- TUBINC - Incidence of tuberculosis, per 100K population (2020)
- DTHCMD - Cause of death by communicable diseases and maternal, prenatal and nutrition conditions, % of total (2019)
- AGRLND - Agricultural land, % of land area (2020)
- GHGEMI - Total greenhouse gas emissions, kt of CO2 equivalent (2020)
- RELOUT - Renewable electricity output, % of total electricity output (2015)
- METEMI - Methane emissions, kt of CO2 equivalent (2020)
- FORARE - Forest area, % of land area (2020)
- CO2EMI - CO2 emissions, metric tons per capita (2020)
- PM2EXP - PM2.5 air pollution, population exposed to levels exceeding WHO guideline value, % of total (2017)
- POPDEN - Population density, people per sq. km of land area (2020)
- GDPCAP - GDP per capita, current US Dollars (2020)
- ENRTER - Tertiary school enrollment, % gross (2020)
- HDICAT - Human development index, ordered category (2020)
- EPISCO - Environment performance index , score (2022)
1.2. Data Description ¶
- The dataset is comprised of:
- 177 rows (observations)
- 22 columns (variables)
- 1/22 metadata (object)
- COUNTRY
- 1/22 target (categorical)
- CANRAT
- 19/22 predictor (numeric)
- GDPPER
- URBPOP
- PATRES
- RNDGDP
- POPGRO
- LIFEXP
- TUBINC
- DTHCMD
- AGRLND
- GHGEMI
- RELOUT
- METEMI
- FORARE
- CO2EMI
- PM2EXP
- POPDEN
- GDPCAP
- ENRTER
- EPISCO
- 1/22 predictor (categorical)
- HDICAT
- 1/22 metadata (object)
##################################
# Loading Python Libraries
##################################
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import itertools
import os
%matplotlib inline
from operator import add,mul,truediv
from sklearn.experimental import enable_iterative_imputer
from sklearn.impute import IterativeImputer
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PowerTransformer
from sklearn.preprocessing import StandardScaler
from scipy import stats
##################################
# Defining file paths
##################################
DATASETS_ORIGINAL_PATH = r"datasets\original"
##################################
# Loading the dataset
# from the DATASETS_ORIGINAL_PATH
##################################
cancer_rate = pd.read_csv(os.path.join("..", DATASETS_ORIGINAL_PATH, "CategoricalCancerRates.csv"))
##################################
# Performing a general exploration of the dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate.shape)
Dataset Dimensions:
(177, 22)
##################################
# Listing the column names and data types
##################################
print('Column Names and Data Types:')
display(cancer_rate.dtypes)
Column Names and Data Types:
COUNTRY object CANRAT object GDPPER float64 URBPOP float64 PATRES float64 RNDGDP float64 POPGRO float64 LIFEXP float64 TUBINC float64 DTHCMD float64 AGRLND float64 GHGEMI float64 RELOUT float64 METEMI float64 FORARE float64 CO2EMI float64 PM2EXP float64 POPDEN float64 ENRTER float64 GDPCAP float64 HDICAT object EPISCO float64 dtype: object
##################################
# Taking a snapshot of the dataset
##################################
cancer_rate.head()
COUNTRY | CANRAT | GDPPER | URBPOP | PATRES | RNDGDP | POPGRO | LIFEXP | TUBINC | DTHCMD | ... | RELOUT | METEMI | FORARE | CO2EMI | PM2EXP | POPDEN | ENRTER | GDPCAP | HDICAT | EPISCO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | Australia | High | 98380.63601 | 86.241 | 2368.0 | NaN | 1.235701 | 83.200000 | 7.2 | 4.941054 | ... | 13.637841 | 131484.763200 | 17.421315 | 14.772658 | 24.893584 | 3.335312 | 110.139221 | 51722.06900 | VH | 60.1 |
1 | New Zealand | High | 77541.76438 | 86.699 | 348.0 | NaN | 2.204789 | 82.256098 | 7.2 | 4.354730 | ... | 80.081439 | 32241.937000 | 37.570126 | 6.160799 | NaN | 19.331586 | 75.734833 | 41760.59478 | VH | 56.7 |
2 | Ireland | High | 198405.87500 | 63.653 | 75.0 | 1.23244 | 1.029111 | 82.556098 | 5.3 | 5.684596 | ... | 27.965408 | 15252.824630 | 11.351720 | 6.768228 | 0.274092 | 72.367281 | 74.680313 | 85420.19086 | VH | 57.4 |
3 | United States | High | 130941.63690 | 82.664 | 269586.0 | 3.42287 | 0.964348 | 76.980488 | 2.3 | 5.302060 | ... | 13.228593 | 748241.402900 | 33.866926 | 13.032828 | 3.343170 | 36.240985 | 87.567657 | 63528.63430 | VH | 51.1 |
4 | Denmark | High | 113300.60110 | 88.116 | 1261.0 | 2.96873 | 0.291641 | 81.602439 | 4.1 | 6.826140 | ... | 65.505925 | 7778.773921 | 15.711000 | 4.691237 | 56.914456 | 145.785100 | 82.664330 | 60915.42440 | VH | 77.9 |
5 rows × 22 columns
##################################
# Setting the levels of the categorical variables
##################################
cancer_rate['CANRAT'] = cancer_rate['CANRAT'].astype('category')
cancer_rate['CANRAT'] = cancer_rate['CANRAT'].cat.set_categories(['Low', 'High'], ordered=True)
cancer_rate['HDICAT'] = cancer_rate['HDICAT'].astype('category')
cancer_rate['HDICAT'] = cancer_rate['HDICAT'].cat.set_categories(['L', 'M', 'H', 'VH'], ordered=True)
##################################
# Performing a general exploration of the numeric variables
##################################
print('Numeric Variable Summary:')
display(cancer_rate.describe(include='number').transpose())
Numeric Variable Summary:
count | mean | std | min | 25% | 50% | 75% | max | |
---|---|---|---|---|---|---|---|---|
GDPPER | 165.0 | 45284.424283 | 3.941794e+04 | 1718.804896 | 13545.254510 | 34024.900890 | 66778.416050 | 2.346469e+05 |
URBPOP | 174.0 | 59.788121 | 2.280640e+01 | 13.345000 | 42.432750 | 61.701500 | 79.186500 | 1.000000e+02 |
PATRES | 108.0 | 20607.388889 | 1.340683e+05 | 1.000000 | 35.250000 | 244.500000 | 1297.750000 | 1.344817e+06 |
RNDGDP | 74.0 | 1.197474 | 1.189956e+00 | 0.039770 | 0.256372 | 0.873660 | 1.608842 | 5.354510e+00 |
POPGRO | 174.0 | 1.127028 | 1.197718e+00 | -2.079337 | 0.236900 | 1.179959 | 2.031154 | 3.727101e+00 |
LIFEXP | 174.0 | 71.746113 | 7.606209e+00 | 52.777000 | 65.907500 | 72.464610 | 77.523500 | 8.456000e+01 |
TUBINC | 174.0 | 105.005862 | 1.367229e+02 | 0.770000 | 12.000000 | 44.500000 | 147.750000 | 5.920000e+02 |
DTHCMD | 170.0 | 21.260521 | 1.927333e+01 | 1.283611 | 6.078009 | 12.456279 | 36.980457 | 6.520789e+01 |
AGRLND | 174.0 | 38.793456 | 2.171551e+01 | 0.512821 | 20.130276 | 40.386649 | 54.013754 | 8.084112e+01 |
GHGEMI | 170.0 | 259582.709895 | 1.118550e+06 | 179.725150 | 12527.487367 | 41009.275980 | 116482.578575 | 1.294287e+07 |
RELOUT | 153.0 | 39.760036 | 3.191492e+01 | 0.000296 | 10.582691 | 32.381668 | 63.011450 | 1.000000e+02 |
METEMI | 170.0 | 47876.133575 | 1.346611e+05 | 11.596147 | 3662.884908 | 11118.976025 | 32368.909040 | 1.186285e+06 |
FORARE | 173.0 | 32.218177 | 2.312001e+01 | 0.008078 | 11.604388 | 31.509048 | 49.071780 | 9.741212e+01 |
CO2EMI | 170.0 | 3.751097 | 4.606479e+00 | 0.032585 | 0.631924 | 2.298368 | 4.823496 | 3.172684e+01 |
PM2EXP | 167.0 | 91.940595 | 2.206003e+01 | 0.274092 | 99.627134 | 100.000000 | 100.000000 | 1.000000e+02 |
POPDEN | 174.0 | 200.886765 | 6.453834e+02 | 2.115134 | 27.454539 | 77.983133 | 153.993650 | 7.918951e+03 |
ENRTER | 116.0 | 49.994997 | 2.970619e+01 | 2.432581 | 22.107195 | 53.392460 | 71.057467 | 1.433107e+02 |
GDPCAP | 170.0 | 13992.095610 | 1.957954e+04 | 216.827417 | 1870.503029 | 5348.192875 | 17421.116227 | 1.173705e+05 |
EPISCO | 165.0 | 42.946667 | 1.249086e+01 | 18.900000 | 33.000000 | 40.900000 | 50.500000 | 7.790000e+01 |
##################################
# Performing a general exploration of the object variable
##################################
print('Object Variable Summary:')
display(cancer_rate.describe(include='object').transpose())
Object Variable Summary:
count | unique | top | freq | |
---|---|---|---|---|
COUNTRY | 177 | 177 | Australia | 1 |
##################################
# Performing a general exploration of the categorical variables
##################################
print('Categorical Variable Summary:')
display(cancer_rate.describe(include='category').transpose())
Categorical Variable Summary:
count | unique | top | freq | |
---|---|---|---|---|
CANRAT | 177 | 2 | Low | 132 |
HDICAT | 167 | 4 | VH | 59 |
1.3. Data Quality Assessment ¶
Data quality findings based on assessment are as follows:
- No duplicated rows observed.
- Missing data noted for 20 variables with Null.Count>0 and Fill.Rate<1.0.
- RNDGDP: Null.Count = 103, Fill.Rate = 0.418
- PATRES: Null.Count = 69, Fill.Rate = 0.610
- ENRTER: Null.Count = 61, Fill.Rate = 0.655
- RELOUT: Null.Count = 24, Fill.Rate = 0.864
- GDPPER: Null.Count = 12, Fill.Rate = 0.932
- EPISCO: Null.Count = 12, Fill.Rate = 0.932
- HDICAT: Null.Count = 10, Fill.Rate = 0.943
- PM2EXP: Null.Count = 10, Fill.Rate = 0.943
- DTHCMD: Null.Count = 7, Fill.Rate = 0.960
- METEMI: Null.Count = 7, Fill.Rate = 0.960
- CO2EMI: Null.Count = 7, Fill.Rate = 0.960
- GDPCAP: Null.Count = 7, Fill.Rate = 0.960
- GHGEMI: Null.Count = 7, Fill.Rate = 0.960
- FORARE: Null.Count = 4, Fill.Rate = 0.977
- TUBINC: Null.Count = 3, Fill.Rate = 0.983
- AGRLND: Null.Count = 3, Fill.Rate = 0.983
- POPGRO: Null.Count = 3, Fill.Rate = 0.983
- POPDEN: Null.Count = 3, Fill.Rate = 0.983
- URBPOP: Null.Count = 3, Fill.Rate = 0.983
- LIFEXP: Null.Count = 3, Fill.Rate = 0.983
- 120 observations noted with at least 1 missing data. From this number, 14 observations reported high Missing.Rate>0.2.
- COUNTRY=Guadeloupe: Missing.Rate= 0.909
- COUNTRY=Martinique: Missing.Rate= 0.909
- COUNTRY=French Guiana: Missing.Rate= 0.909
- COUNTRY=New Caledonia: Missing.Rate= 0.500
- COUNTRY=French Polynesia: Missing.Rate= 0.500
- COUNTRY=Guam: Missing.Rate= 0.500
- COUNTRY=Puerto Rico: Missing.Rate= 0.409
- COUNTRY=North Korea: Missing.Rate= 0.227
- COUNTRY=Somalia: Missing.Rate= 0.227
- COUNTRY=South Sudan: Missing.Rate= 0.227
- COUNTRY=Venezuela: Missing.Rate= 0.227
- COUNTRY=Libya: Missing.Rate= 0.227
- COUNTRY=Eritrea: Missing.Rate= 0.227
- COUNTRY=Yemen: Missing.Rate= 0.227
- Low variance observed for 1 variable with First.Second.Mode.Ratio>5.
- PM2EXP: First.Second.Mode.Ratio = 53.000
- No low variance observed for any variable with Unique.Count.Ratio>10.
- High skewness observed for 5 variables with Skewness>3 or Skewness<(-3).
- POPDEN: Skewness = +10.267
- GHGEMI: Skewness = +9.496
- PATRES: Skewness = +9.284
- METEMI: Skewness = +5.801
- PM2EXP: Skewness = -3.141
##################################
# Counting the number of duplicated rows
##################################
cancer_rate.duplicated().sum()
np.int64(0)
##################################
# Gathering the data types for each column
##################################
data_type_list = list(cancer_rate.dtypes)
##################################
# Gathering the variable names for each column
##################################
variable_name_list = list(cancer_rate.columns)
##################################
# Gathering the number of observations for each column
##################################
row_count_list = list([len(cancer_rate)] * len(cancer_rate.columns))
##################################
# Gathering the number of missing data for each column
##################################
null_count_list = list(cancer_rate.isna().sum(axis=0))
##################################
# Gathering the number of non-missing data for each column
##################################
non_null_count_list = list(cancer_rate.count())
##################################
# Gathering the missing data percentage for each column
##################################
fill_rate_list = map(truediv, non_null_count_list, row_count_list)
##################################
# Formulating the summary
# for all columns
##################################
all_column_quality_summary = pd.DataFrame(zip(variable_name_list,
data_type_list,
row_count_list,
non_null_count_list,
null_count_list,
fill_rate_list),
columns=['Column.Name',
'Column.Type',
'Row.Count',
'Non.Null.Count',
'Null.Count',
'Fill.Rate'])
display(all_column_quality_summary)
Column.Name | Column.Type | Row.Count | Non.Null.Count | Null.Count | Fill.Rate | |
---|---|---|---|---|---|---|
0 | COUNTRY | object | 177 | 177 | 0 | 1.000000 |
1 | CANRAT | category | 177 | 177 | 0 | 1.000000 |
2 | GDPPER | float64 | 177 | 165 | 12 | 0.932203 |
3 | URBPOP | float64 | 177 | 174 | 3 | 0.983051 |
4 | PATRES | float64 | 177 | 108 | 69 | 0.610169 |
5 | RNDGDP | float64 | 177 | 74 | 103 | 0.418079 |
6 | POPGRO | float64 | 177 | 174 | 3 | 0.983051 |
7 | LIFEXP | float64 | 177 | 174 | 3 | 0.983051 |
8 | TUBINC | float64 | 177 | 174 | 3 | 0.983051 |
9 | DTHCMD | float64 | 177 | 170 | 7 | 0.960452 |
10 | AGRLND | float64 | 177 | 174 | 3 | 0.983051 |
11 | GHGEMI | float64 | 177 | 170 | 7 | 0.960452 |
12 | RELOUT | float64 | 177 | 153 | 24 | 0.864407 |
13 | METEMI | float64 | 177 | 170 | 7 | 0.960452 |
14 | FORARE | float64 | 177 | 173 | 4 | 0.977401 |
15 | CO2EMI | float64 | 177 | 170 | 7 | 0.960452 |
16 | PM2EXP | float64 | 177 | 167 | 10 | 0.943503 |
17 | POPDEN | float64 | 177 | 174 | 3 | 0.983051 |
18 | ENRTER | float64 | 177 | 116 | 61 | 0.655367 |
19 | GDPCAP | float64 | 177 | 170 | 7 | 0.960452 |
20 | HDICAT | category | 177 | 167 | 10 | 0.943503 |
21 | EPISCO | float64 | 177 | 165 | 12 | 0.932203 |
##################################
# Counting the number of columns
# with Fill.Rate < 1.00
##################################
len(all_column_quality_summary[(all_column_quality_summary['Fill.Rate']<1)])
20
##################################
# Identifying the columns
# with Fill.Rate < 1.00
##################################
display(all_column_quality_summary[(all_column_quality_summary['Fill.Rate']<1)].sort_values(by=['Fill.Rate'], ascending=True))
Column.Name | Column.Type | Row.Count | Non.Null.Count | Null.Count | Fill.Rate | |
---|---|---|---|---|---|---|
5 | RNDGDP | float64 | 177 | 74 | 103 | 0.418079 |
4 | PATRES | float64 | 177 | 108 | 69 | 0.610169 |
18 | ENRTER | float64 | 177 | 116 | 61 | 0.655367 |
12 | RELOUT | float64 | 177 | 153 | 24 | 0.864407 |
21 | EPISCO | float64 | 177 | 165 | 12 | 0.932203 |
2 | GDPPER | float64 | 177 | 165 | 12 | 0.932203 |
16 | PM2EXP | float64 | 177 | 167 | 10 | 0.943503 |
20 | HDICAT | category | 177 | 167 | 10 | 0.943503 |
15 | CO2EMI | float64 | 177 | 170 | 7 | 0.960452 |
13 | METEMI | float64 | 177 | 170 | 7 | 0.960452 |
11 | GHGEMI | float64 | 177 | 170 | 7 | 0.960452 |
9 | DTHCMD | float64 | 177 | 170 | 7 | 0.960452 |
19 | GDPCAP | float64 | 177 | 170 | 7 | 0.960452 |
14 | FORARE | float64 | 177 | 173 | 4 | 0.977401 |
6 | POPGRO | float64 | 177 | 174 | 3 | 0.983051 |
3 | URBPOP | float64 | 177 | 174 | 3 | 0.983051 |
17 | POPDEN | float64 | 177 | 174 | 3 | 0.983051 |
10 | AGRLND | float64 | 177 | 174 | 3 | 0.983051 |
7 | LIFEXP | float64 | 177 | 174 | 3 | 0.983051 |
8 | TUBINC | float64 | 177 | 174 | 3 | 0.983051 |
##################################
# Identifying the rows
# with Fill.Rate < 0.90
##################################
column_low_fill_rate = all_column_quality_summary[(all_column_quality_summary['Fill.Rate']<0.90)]
##################################
# Gathering the metadata labels for each observation
##################################
row_metadata_list = cancer_rate["COUNTRY"].values.tolist()
##################################
# Gathering the number of columns for each observation
##################################
column_count_list = list([len(cancer_rate.columns)] * len(cancer_rate))
##################################
# Gathering the number of missing data for each row
##################################
null_row_list = list(cancer_rate.isna().sum(axis=1))
##################################
# Gathering the missing data percentage for each column
##################################
missing_rate_list = map(truediv, null_row_list, column_count_list)
##################################
# Identifying the rows
# with missing data
##################################
all_row_quality_summary = pd.DataFrame(zip(row_metadata_list,
column_count_list,
null_row_list,
missing_rate_list),
columns=['Row.Name',
'Column.Count',
'Null.Count',
'Missing.Rate'])
display(all_row_quality_summary)
Row.Name | Column.Count | Null.Count | Missing.Rate | |
---|---|---|---|---|
0 | Australia | 22 | 1 | 0.045455 |
1 | New Zealand | 22 | 2 | 0.090909 |
2 | Ireland | 22 | 0 | 0.000000 |
3 | United States | 22 | 0 | 0.000000 |
4 | Denmark | 22 | 0 | 0.000000 |
... | ... | ... | ... | ... |
172 | Congo Republic | 22 | 3 | 0.136364 |
173 | Bhutan | 22 | 2 | 0.090909 |
174 | Nepal | 22 | 2 | 0.090909 |
175 | Gambia | 22 | 4 | 0.181818 |
176 | Niger | 22 | 2 | 0.090909 |
177 rows × 4 columns
##################################
# Counting the number of rows
# with Missing.Rate > 0.00
##################################
len(all_row_quality_summary[(all_row_quality_summary['Missing.Rate']>0.00)])
120
##################################
# Counting the number of rows
# with Missing.Rate > 0.20
##################################
len(all_row_quality_summary[(all_row_quality_summary['Missing.Rate']>0.20)])
14
##################################
# Identifying the rows
# with Missing.Rate > 0.20
##################################
row_high_missing_rate = all_row_quality_summary[(all_row_quality_summary['Missing.Rate']>0.20)]
##################################
# Identifying the rows
# with Missing.Rate > 0.20
##################################
display(all_row_quality_summary[(all_row_quality_summary['Missing.Rate']>0.20)].sort_values(by=['Missing.Rate'], ascending=False))
Row.Name | Column.Count | Null.Count | Missing.Rate | |
---|---|---|---|---|
35 | Guadeloupe | 22 | 20 | 0.909091 |
39 | Martinique | 22 | 20 | 0.909091 |
56 | French Guiana | 22 | 20 | 0.909091 |
13 | New Caledonia | 22 | 11 | 0.500000 |
44 | French Polynesia | 22 | 11 | 0.500000 |
75 | Guam | 22 | 11 | 0.500000 |
53 | Puerto Rico | 22 | 9 | 0.409091 |
85 | North Korea | 22 | 6 | 0.272727 |
168 | South Sudan | 22 | 6 | 0.272727 |
132 | Somalia | 22 | 6 | 0.272727 |
117 | Libya | 22 | 5 | 0.227273 |
73 | Venezuela | 22 | 5 | 0.227273 |
161 | Eritrea | 22 | 5 | 0.227273 |
164 | Yemen | 22 | 5 | 0.227273 |
##################################
# Formulating the dataset
# with numeric columns only
##################################
cancer_rate_numeric = cancer_rate.select_dtypes(include='number')
##################################
# Gathering the variable names for each numeric column
##################################
numeric_variable_name_list = cancer_rate_numeric.columns
##################################
# Gathering the minimum value for each numeric column
##################################
numeric_minimum_list = cancer_rate_numeric.min()
##################################
# Gathering the mean value for each numeric column
##################################
numeric_mean_list = cancer_rate_numeric.mean()
##################################
# Gathering the median value for each numeric column
##################################
numeric_median_list = cancer_rate_numeric.median()
##################################
# Gathering the maximum value for each numeric column
##################################
numeric_maximum_list = cancer_rate_numeric.max()
##################################
# Gathering the first mode values for each numeric column
##################################
numeric_first_mode_list = [cancer_rate[x].value_counts(dropna=True).index.tolist()[0] for x in cancer_rate_numeric]
##################################
# Gathering the second mode values for each numeric column
##################################
numeric_second_mode_list = [cancer_rate[x].value_counts(dropna=True).index.tolist()[1] for x in cancer_rate_numeric]
##################################
# Gathering the count of first mode values for each numeric column
##################################
numeric_first_mode_count_list = [cancer_rate_numeric[x].isin([cancer_rate[x].value_counts(dropna=True).index.tolist()[0]]).sum() for x in cancer_rate_numeric]
##################################
# Gathering the count of second mode values for each numeric column
##################################
numeric_second_mode_count_list = [cancer_rate_numeric[x].isin([cancer_rate[x].value_counts(dropna=True).index.tolist()[1]]).sum() for x in cancer_rate_numeric]
##################################
# Gathering the first mode to second mode ratio for each numeric column
##################################
numeric_first_second_mode_ratio_list = map(truediv, numeric_first_mode_count_list, numeric_second_mode_count_list)
##################################
# Gathering the count of unique values for each numeric column
##################################
numeric_unique_count_list = cancer_rate_numeric.nunique(dropna=True)
##################################
# Gathering the number of observations for each numeric column
##################################
numeric_row_count_list = list([len(cancer_rate_numeric)] * len(cancer_rate_numeric.columns))
##################################
# Gathering the unique to count ratio for each numeric column
##################################
numeric_unique_count_ratio_list = map(truediv, numeric_unique_count_list, numeric_row_count_list)
##################################
# Gathering the skewness value for each numeric column
##################################
numeric_skewness_list = cancer_rate_numeric.skew()
##################################
# Gathering the kurtosis value for each numeric column
##################################
numeric_kurtosis_list = cancer_rate_numeric.kurtosis()
numeric_column_quality_summary = pd.DataFrame(zip(numeric_variable_name_list,
numeric_minimum_list,
numeric_mean_list,
numeric_median_list,
numeric_maximum_list,
numeric_first_mode_list,
numeric_second_mode_list,
numeric_first_mode_count_list,
numeric_second_mode_count_list,
numeric_first_second_mode_ratio_list,
numeric_unique_count_list,
numeric_row_count_list,
numeric_unique_count_ratio_list,
numeric_skewness_list,
numeric_kurtosis_list),
columns=['Numeric.Column.Name',
'Minimum',
'Mean',
'Median',
'Maximum',
'First.Mode',
'Second.Mode',
'First.Mode.Count',
'Second.Mode.Count',
'First.Second.Mode.Ratio',
'Unique.Count',
'Row.Count',
'Unique.Count.Ratio',
'Skewness',
'Kurtosis'])
display(numeric_column_quality_summary)
Numeric.Column.Name | Minimum | Mean | Median | Maximum | First.Mode | Second.Mode | First.Mode.Count | Second.Mode.Count | First.Second.Mode.Ratio | Unique.Count | Row.Count | Unique.Count.Ratio | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GDPPER | 1718.804896 | 45284.424283 | 34024.900890 | 2.346469e+05 | 98380.636010 | 77541.764380 | 1 | 1 | 1.000000 | 165 | 177 | 0.932203 | 1.517574 | 3.471992 |
1 | URBPOP | 13.345000 | 59.788121 | 61.701500 | 1.000000e+02 | 100.000000 | 86.699000 | 2 | 1 | 2.000000 | 173 | 177 | 0.977401 | -0.210702 | -0.962847 |
2 | PATRES | 1.000000 | 20607.388889 | 244.500000 | 1.344817e+06 | 6.000000 | 2.000000 | 4 | 3 | 1.333333 | 97 | 177 | 0.548023 | 9.284436 | 91.187178 |
3 | RNDGDP | 0.039770 | 1.197474 | 0.873660 | 5.354510e+00 | 1.232440 | 3.422870 | 1 | 1 | 1.000000 | 74 | 177 | 0.418079 | 1.396742 | 1.695957 |
4 | POPGRO | -2.079337 | 1.127028 | 1.179959 | 3.727101e+00 | 1.235701 | 2.204789 | 1 | 1 | 1.000000 | 174 | 177 | 0.983051 | -0.195161 | -0.423580 |
5 | LIFEXP | 52.777000 | 71.746113 | 72.464610 | 8.456000e+01 | 83.200000 | 82.256098 | 1 | 1 | 1.000000 | 174 | 177 | 0.983051 | -0.357965 | -0.649601 |
6 | TUBINC | 0.770000 | 105.005862 | 44.500000 | 5.920000e+02 | 12.000000 | 4.100000 | 4 | 3 | 1.333333 | 131 | 177 | 0.740113 | 1.746333 | 2.429368 |
7 | DTHCMD | 1.283611 | 21.260521 | 12.456279 | 6.520789e+01 | 4.941054 | 4.354730 | 1 | 1 | 1.000000 | 170 | 177 | 0.960452 | 0.900509 | -0.691541 |
8 | AGRLND | 0.512821 | 38.793456 | 40.386649 | 8.084112e+01 | 46.252480 | 38.562911 | 1 | 1 | 1.000000 | 174 | 177 | 0.983051 | 0.074000 | -0.926249 |
9 | GHGEMI | 179.725150 | 259582.709895 | 41009.275980 | 1.294287e+07 | 571903.119900 | 80158.025830 | 1 | 1 | 1.000000 | 170 | 177 | 0.960452 | 9.496120 | 101.637308 |
10 | RELOUT | 0.000296 | 39.760036 | 32.381668 | 1.000000e+02 | 100.000000 | 80.081439 | 3 | 1 | 3.000000 | 151 | 177 | 0.853107 | 0.501088 | -0.981774 |
11 | METEMI | 11.596147 | 47876.133575 | 11118.976025 | 1.186285e+06 | 131484.763200 | 32241.937000 | 1 | 1 | 1.000000 | 170 | 177 | 0.960452 | 5.801014 | 38.661386 |
12 | FORARE | 0.008078 | 32.218177 | 31.509048 | 9.741212e+01 | 17.421315 | 37.570126 | 1 | 1 | 1.000000 | 173 | 177 | 0.977401 | 0.519277 | -0.322589 |
13 | CO2EMI | 0.032585 | 3.751097 | 2.298368 | 3.172684e+01 | 14.772658 | 6.160799 | 1 | 1 | 1.000000 | 170 | 177 | 0.960452 | 2.721552 | 10.311574 |
14 | PM2EXP | 0.274092 | 91.940595 | 100.000000 | 1.000000e+02 | 100.000000 | 100.000000 | 106 | 2 | 53.000000 | 61 | 177 | 0.344633 | -3.141557 | 9.032386 |
15 | POPDEN | 2.115134 | 200.886765 | 77.983133 | 7.918951e+03 | 3.335312 | 19.331586 | 1 | 1 | 1.000000 | 174 | 177 | 0.983051 | 10.267750 | 119.995256 |
16 | ENRTER | 2.432581 | 49.994997 | 53.392460 | 1.433107e+02 | 110.139221 | 75.734833 | 1 | 1 | 1.000000 | 116 | 177 | 0.655367 | 0.275863 | -0.392895 |
17 | GDPCAP | 216.827417 | 13992.095610 | 5348.192875 | 1.173705e+05 | 51722.069000 | 41760.594780 | 1 | 1 | 1.000000 | 170 | 177 | 0.960452 | 2.258568 | 5.938690 |
18 | EPISCO | 18.900000 | 42.946667 | 40.900000 | 7.790000e+01 | 29.600000 | 43.600000 | 3 | 3 | 1.000000 | 137 | 177 | 0.774011 | 0.641799 | 0.035208 |
##################################
# Counting the number of numeric columns
# with First.Second.Mode.Ratio > 5.00
##################################
len(numeric_column_quality_summary[(numeric_column_quality_summary['First.Second.Mode.Ratio']>5)])
1
##################################
# Identifying the numeric columns
# with First.Second.Mode.Ratio > 5.00
##################################
display(numeric_column_quality_summary[(numeric_column_quality_summary['First.Second.Mode.Ratio']>5)].sort_values(by=['First.Second.Mode.Ratio'], ascending=False))
Numeric.Column.Name | Minimum | Mean | Median | Maximum | First.Mode | Second.Mode | First.Mode.Count | Second.Mode.Count | First.Second.Mode.Ratio | Unique.Count | Row.Count | Unique.Count.Ratio | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14 | PM2EXP | 0.274092 | 91.940595 | 100.0 | 100.0 | 100.0 | 100.0 | 106 | 2 | 53.0 | 61 | 177 | 0.344633 | -3.141557 | 9.032386 |
##################################
# Counting the number of numeric columns
# with Unique.Count.Ratio > 10.00
##################################
len(numeric_column_quality_summary[(numeric_column_quality_summary['Unique.Count.Ratio']>10)])
0
##################################
# Counting the number of numeric columns
# with Skewness > 3.00 or Skewness < -3.00
##################################
len(numeric_column_quality_summary[(numeric_column_quality_summary['Skewness']>3) | (numeric_column_quality_summary['Skewness']<(-3))])
5
##################################
# Identifying the numeric columns
# with Skewness > 3.00 or Skewness < -3.00
##################################
display(numeric_column_quality_summary[(numeric_column_quality_summary['Skewness']>3) | (numeric_column_quality_summary['Skewness']<(-3))].sort_values(by=['Skewness'], ascending=False))
Numeric.Column.Name | Minimum | Mean | Median | Maximum | First.Mode | Second.Mode | First.Mode.Count | Second.Mode.Count | First.Second.Mode.Ratio | Unique.Count | Row.Count | Unique.Count.Ratio | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | POPDEN | 2.115134 | 200.886765 | 77.983133 | 7.918951e+03 | 3.335312 | 19.331586 | 1 | 1 | 1.000000 | 174 | 177 | 0.983051 | 10.267750 | 119.995256 |
9 | GHGEMI | 179.725150 | 259582.709895 | 41009.275980 | 1.294287e+07 | 571903.119900 | 80158.025830 | 1 | 1 | 1.000000 | 170 | 177 | 0.960452 | 9.496120 | 101.637308 |
2 | PATRES | 1.000000 | 20607.388889 | 244.500000 | 1.344817e+06 | 6.000000 | 2.000000 | 4 | 3 | 1.333333 | 97 | 177 | 0.548023 | 9.284436 | 91.187178 |
11 | METEMI | 11.596147 | 47876.133575 | 11118.976025 | 1.186285e+06 | 131484.763200 | 32241.937000 | 1 | 1 | 1.000000 | 170 | 177 | 0.960452 | 5.801014 | 38.661386 |
14 | PM2EXP | 0.274092 | 91.940595 | 100.000000 | 1.000000e+02 | 100.000000 | 100.000000 | 106 | 2 | 53.000000 | 61 | 177 | 0.344633 | -3.141557 | 9.032386 |
##################################
# Formulating the dataset
# with object column only
##################################
cancer_rate_object = cancer_rate.select_dtypes(include='object')
##################################
# Gathering the variable names for the object column
##################################
object_variable_name_list = cancer_rate_object.columns
##################################
# Gathering the first mode values for the object column
##################################
object_first_mode_list = [cancer_rate[x].value_counts().index.tolist()[0] for x in cancer_rate_object]
##################################
# Gathering the second mode values for each object column
##################################
object_second_mode_list = [cancer_rate[x].value_counts().index.tolist()[1] for x in cancer_rate_object]
##################################
# Gathering the count of first mode values for each object column
##################################
object_first_mode_count_list = [cancer_rate_object[x].isin([cancer_rate[x].value_counts(dropna=True).index.tolist()[0]]).sum() for x in cancer_rate_object]
##################################
# Gathering the count of second mode values for each object column
##################################
object_second_mode_count_list = [cancer_rate_object[x].isin([cancer_rate[x].value_counts(dropna=True).index.tolist()[1]]).sum() for x in cancer_rate_object]
##################################
# Gathering the first mode to second mode ratio for each object column
##################################
object_first_second_mode_ratio_list = map(truediv, object_first_mode_count_list, object_second_mode_count_list)
##################################
# Gathering the count of unique values for each object column
##################################
object_unique_count_list = cancer_rate_object.nunique(dropna=True)
##################################
# Gathering the number of observations for each object column
##################################
object_row_count_list = list([len(cancer_rate_object)] * len(cancer_rate_object.columns))
##################################
# Gathering the unique to count ratio for each object column
##################################
object_unique_count_ratio_list = map(truediv, object_unique_count_list, object_row_count_list)
object_column_quality_summary = pd.DataFrame(zip(object_variable_name_list,
object_first_mode_list,
object_second_mode_list,
object_first_mode_count_list,
object_second_mode_count_list,
object_first_second_mode_ratio_list,
object_unique_count_list,
object_row_count_list,
object_unique_count_ratio_list),
columns=['Object.Column.Name',
'First.Mode',
'Second.Mode',
'First.Mode.Count',
'Second.Mode.Count',
'First.Second.Mode.Ratio',
'Unique.Count',
'Row.Count',
'Unique.Count.Ratio'])
display(object_column_quality_summary)
Object.Column.Name | First.Mode | Second.Mode | First.Mode.Count | Second.Mode.Count | First.Second.Mode.Ratio | Unique.Count | Row.Count | Unique.Count.Ratio | |
---|---|---|---|---|---|---|---|---|---|
0 | COUNTRY | Australia | New Zealand | 1 | 1 | 1.0 | 177 | 177 | 1.0 |
##################################
# Counting the number of object columns
# with First.Second.Mode.Ratio > 5.00
##################################
len(object_column_quality_summary[(object_column_quality_summary['First.Second.Mode.Ratio']>5)])
0
##################################
# Counting the number of object columns
# with Unique.Count.Ratio > 10.00
##################################
len(object_column_quality_summary[(object_column_quality_summary['Unique.Count.Ratio']>10)])
0
##################################
# Formulating the dataset
# with categorical columns only
##################################
cancer_rate_categorical = cancer_rate.select_dtypes(include='category')
##################################
# Gathering the variable names for the categorical column
##################################
categorical_variable_name_list = cancer_rate_categorical.columns
##################################
# Gathering the first mode values for each categorical column
##################################
categorical_first_mode_list = [cancer_rate[x].value_counts().index.tolist()[0] for x in cancer_rate_categorical]
##################################
# Gathering the second mode values for each categorical column
##################################
categorical_second_mode_list = [cancer_rate[x].value_counts().index.tolist()[1] for x in cancer_rate_categorical]
##################################
# Gathering the count of first mode values for each categorical column
##################################
categorical_first_mode_count_list = [cancer_rate_categorical[x].isin([cancer_rate[x].value_counts(dropna=True).index.tolist()[0]]).sum() for x in cancer_rate_categorical]
##################################
# Gathering the count of second mode values for each categorical column
##################################
categorical_second_mode_count_list = [cancer_rate_categorical[x].isin([cancer_rate[x].value_counts(dropna=True).index.tolist()[1]]).sum() for x in cancer_rate_categorical]
##################################
# Gathering the first mode to second mode ratio for each categorical column
##################################
categorical_first_second_mode_ratio_list = map(truediv, categorical_first_mode_count_list, categorical_second_mode_count_list)
##################################
# Gathering the count of unique values for each categorical column
##################################
categorical_unique_count_list = cancer_rate_categorical.nunique(dropna=True)
##################################
# Gathering the number of observations for each categorical column
##################################
categorical_row_count_list = list([len(cancer_rate_categorical)] * len(cancer_rate_categorical.columns))
##################################
# Gathering the unique to count ratio for each categorical column
##################################
categorical_unique_count_ratio_list = map(truediv, categorical_unique_count_list, categorical_row_count_list)
categorical_column_quality_summary = pd.DataFrame(zip(categorical_variable_name_list,
categorical_first_mode_list,
categorical_second_mode_list,
categorical_first_mode_count_list,
categorical_second_mode_count_list,
categorical_first_second_mode_ratio_list,
categorical_unique_count_list,
categorical_row_count_list,
categorical_unique_count_ratio_list),
columns=['Categorical.Column.Name',
'First.Mode',
'Second.Mode',
'First.Mode.Count',
'Second.Mode.Count',
'First.Second.Mode.Ratio',
'Unique.Count',
'Row.Count',
'Unique.Count.Ratio'])
display(categorical_column_quality_summary)
Categorical.Column.Name | First.Mode | Second.Mode | First.Mode.Count | Second.Mode.Count | First.Second.Mode.Ratio | Unique.Count | Row.Count | Unique.Count.Ratio | |
---|---|---|---|---|---|---|---|---|---|
0 | CANRAT | Low | High | 132 | 45 | 2.933333 | 2 | 177 | 0.011299 |
1 | HDICAT | VH | H | 59 | 39 | 1.512821 | 4 | 177 | 0.022599 |
##################################
# Counting the number of categorical columns
# with First.Second.Mode.Ratio > 5.00
##################################
len(categorical_column_quality_summary[(categorical_column_quality_summary['First.Second.Mode.Ratio']>5)])
0
##################################
# Counting the number of categorical columns
# with Unique.Count.Ratio > 10.00
##################################
len(categorical_column_quality_summary[(categorical_column_quality_summary['Unique.Count.Ratio']>10)])
0
1.4. Data Preprocessing ¶
1.4.1 Data Cleaning ¶
- Subsets of rows and columns with high rates of missing data were removed from the dataset:
- 4 variables with Fill.Rate<0.9 were excluded for subsequent analysis.
- RNDGDP: Null.Count = 103, Fill.Rate = 0.418
- PATRES: Null.Count = 69, Fill.Rate = 0.610
- ENRTER: Null.Count = 61, Fill.Rate = 0.655
- RELOUT: Null.Count = 24, Fill.Rate = 0.864
- 14 rows with Missing.Rate>0.2 were exluded for subsequent analysis.
- COUNTRY=Guadeloupe: Missing.Rate= 0.909
- COUNTRY=Martinique: Missing.Rate= 0.909
- COUNTRY=French Guiana: Missing.Rate= 0.909
- COUNTRY=New Caledonia: Missing.Rate= 0.500
- COUNTRY=French Polynesia: Missing.Rate= 0.500
- COUNTRY=Guam: Missing.Rate= 0.500
- COUNTRY=Puerto Rico: Missing.Rate= 0.409
- COUNTRY=North Korea: Missing.Rate= 0.227
- COUNTRY=Somalia: Missing.Rate= 0.227
- COUNTRY=South Sudan: Missing.Rate= 0.227
- COUNTRY=Venezuela: Missing.Rate= 0.227
- COUNTRY=Libya: Missing.Rate= 0.227
- COUNTRY=Eritrea: Missing.Rate= 0.227
- COUNTRY=Yemen: Missing.Rate= 0.227
- 4 variables with Fill.Rate<0.9 were excluded for subsequent analysis.
- No variables were removed due to zero or near-zero variance.
- The cleaned dataset is comprised of:
- 163 rows (observations)
- 18 columns (variables)
- 1/18 metadata (object)
- COUNTRY
- 1/18 target (categorical)
- CANRAT
- 15/18 predictor (numeric)
- GDPPER
- URBPOP
- POPGRO
- LIFEXP
- TUBINC
- DTHCMD
- AGRLND
- GHGEMI
- METEMI
- FORARE
- CO2EMI
- PM2EXP
- POPDEN
- GDPCAP
- EPISCO
- 1/18 predictor (categorical)
- HDICAT
- 1/18 metadata (object)
##################################
# Performing a general exploration of the original dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate.shape)
Dataset Dimensions:
(177, 22)
##################################
# Filtering out the rows with
# with Missing.Rate > 0.20
##################################
cancer_rate_filtered_row = cancer_rate.drop(cancer_rate[cancer_rate.COUNTRY.isin(row_high_missing_rate['Row.Name'].values.tolist())].index)
##################################
# Performing a general exploration of the filtered dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate_filtered_row.shape)
Dataset Dimensions:
(163, 22)
##################################
# Filtering out the columns with
# with Fill.Rate < 0.90
##################################
cancer_rate_filtered_row_column = cancer_rate_filtered_row.drop(column_low_fill_rate['Column.Name'].values.tolist(), axis=1)
##################################
# Formulating a new dataset object
# for the cleaned data
##################################
cancer_rate_cleaned = cancer_rate_filtered_row_column
##################################
# Performing a general exploration of the filtered dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate_cleaned.shape)
Dataset Dimensions:
(163, 18)
1.4.2 Missing Data Imputation ¶
Iterative Imputer is based on the Multivariate Imputation by Chained Equations (MICE) algorithm - an imputation method based on fully conditional specification, where each incomplete variable is imputed by a separate model. As a sequential regression imputation technique, the algorithm imputes an incomplete column (target column) by generating plausible synthetic values given other columns in the data. Each incomplete column must act as a target column, and has its own specific set of predictors. For predictors that are incomplete themselves, the most recently generated imputations are used to complete the predictors prior to prior to imputation of the target columns.
Linear Regression explores the linear relationship between a scalar response and one or more covariates by having the conditional mean of the dependent variable be an affine function of the independent variables. The relationship is modeled through a disturbance term which represents an unobserved random variable that adds noise. The algorithm is typically formulated from the data using the least squares method which seeks to estimate the coefficients by minimizing the squared residual function. The linear equation assigns one scale factor represented by a coefficient to each covariate and an additional coefficient called the intercept or the bias coefficient which gives the line an additional degree of freedom allowing to move up and down a two-dimensional plot.
- Missing data for numeric variables were imputed using the iterative imputer algorithm with a linear regression estimator.
- GDPPER: Null.Count = 1
- FORARE: Null.Count = 1
- PM2EXP: Null.Count = 5
- Missing data for categorical variables were imputed using the most frequent value.
- HDICAP: Null.Count = 1
##################################
# Formulating the summary
# for all cleaned columns
##################################
cleaned_column_quality_summary = pd.DataFrame(zip(list(cancer_rate_cleaned.columns),
list(cancer_rate_cleaned.dtypes),
list([len(cancer_rate_cleaned)] * len(cancer_rate_cleaned.columns)),
list(cancer_rate_cleaned.count()),
list(cancer_rate_cleaned.isna().sum(axis=0))),
columns=['Column.Name',
'Column.Type',
'Row.Count',
'Non.Null.Count',
'Null.Count'])
display(cleaned_column_quality_summary)
Column.Name | Column.Type | Row.Count | Non.Null.Count | Null.Count | |
---|---|---|---|---|---|
0 | COUNTRY | object | 163 | 163 | 0 |
1 | CANRAT | category | 163 | 163 | 0 |
2 | GDPPER | float64 | 163 | 162 | 1 |
3 | URBPOP | float64 | 163 | 163 | 0 |
4 | POPGRO | float64 | 163 | 163 | 0 |
5 | LIFEXP | float64 | 163 | 163 | 0 |
6 | TUBINC | float64 | 163 | 163 | 0 |
7 | DTHCMD | float64 | 163 | 163 | 0 |
8 | AGRLND | float64 | 163 | 163 | 0 |
9 | GHGEMI | float64 | 163 | 163 | 0 |
10 | METEMI | float64 | 163 | 163 | 0 |
11 | FORARE | float64 | 163 | 162 | 1 |
12 | CO2EMI | float64 | 163 | 163 | 0 |
13 | PM2EXP | float64 | 163 | 158 | 5 |
14 | POPDEN | float64 | 163 | 163 | 0 |
15 | GDPCAP | float64 | 163 | 163 | 0 |
16 | HDICAT | category | 163 | 162 | 1 |
17 | EPISCO | float64 | 163 | 163 | 0 |
##################################
# Formulating the cleaned dataset
# with categorical columns only
##################################
cancer_rate_cleaned_categorical = cancer_rate_cleaned.select_dtypes(include='object')
##################################
# Formulating the cleaned dataset
# with numeric columns only
##################################
cancer_rate_cleaned_numeric = cancer_rate_cleaned.select_dtypes(include='number')
##################################
# Taking a snapshot of the cleaned dataset
##################################
cancer_rate_cleaned_numeric.head()
GDPPER | URBPOP | POPGRO | LIFEXP | TUBINC | DTHCMD | AGRLND | GHGEMI | METEMI | FORARE | CO2EMI | PM2EXP | POPDEN | GDPCAP | EPISCO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 98380.63601 | 86.241 | 1.235701 | 83.200000 | 7.2 | 4.941054 | 46.252480 | 5.719031e+05 | 131484.763200 | 17.421315 | 14.772658 | 24.893584 | 3.335312 | 51722.06900 | 60.1 |
1 | 77541.76438 | 86.699 | 2.204789 | 82.256098 | 7.2 | 4.354730 | 38.562911 | 8.015803e+04 | 32241.937000 | 37.570126 | 6.160799 | NaN | 19.331586 | 41760.59478 | 56.7 |
2 | 198405.87500 | 63.653 | 1.029111 | 82.556098 | 5.3 | 5.684596 | 65.495718 | 5.949773e+04 | 15252.824630 | 11.351720 | 6.768228 | 0.274092 | 72.367281 | 85420.19086 | 57.4 |
3 | 130941.63690 | 82.664 | 0.964348 | 76.980488 | 2.3 | 5.302060 | 44.363367 | 5.505181e+06 | 748241.402900 | 33.866926 | 13.032828 | 3.343170 | 36.240985 | 63528.63430 | 51.1 |
4 | 113300.60110 | 88.116 | 0.291641 | 81.602439 | 4.1 | 6.826140 | 65.499675 | 4.113555e+04 | 7778.773921 | 15.711000 | 4.691237 | 56.914456 | 145.785100 | 60915.42440 | 77.9 |
##################################
# Defining the estimator to be used
# at each step of the round-robin imputation
##################################
lr = LinearRegression()
##################################
# Defining the parameter of the
# iterative imputer which will estimate
# the columns with missing values
# as a function of the other columns
# in a round-robin fashion
##################################
iterative_imputer = IterativeImputer(
estimator = lr,
max_iter = 10,
tol = 1e-10,
imputation_order = 'ascending',
random_state=88888888
)
##################################
# Implementing the iterative imputer
##################################
cancer_rate_imputed_numeric_array = iterative_imputer.fit_transform(cancer_rate_cleaned_numeric)
##################################
# Transforming the imputed data
# from an array to a dataframe
##################################
cancer_rate_imputed_numeric = pd.DataFrame(cancer_rate_imputed_numeric_array,
columns = cancer_rate_cleaned_numeric.columns)
##################################
# Taking a snapshot of the imputed dataset
##################################
cancer_rate_imputed_numeric.head()
GDPPER | URBPOP | POPGRO | LIFEXP | TUBINC | DTHCMD | AGRLND | GHGEMI | METEMI | FORARE | CO2EMI | PM2EXP | POPDEN | GDPCAP | EPISCO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 98380.63601 | 86.241 | 1.235701 | 83.200000 | 7.2 | 4.941054 | 46.252480 | 5.719031e+05 | 131484.763200 | 17.421315 | 14.772658 | 24.893584 | 3.335312 | 51722.06900 | 60.1 |
1 | 77541.76438 | 86.699 | 2.204789 | 82.256098 | 7.2 | 4.354730 | 38.562911 | 8.015803e+04 | 32241.937000 | 37.570126 | 6.160799 | 65.867296 | 19.331586 | 41760.59478 | 56.7 |
2 | 198405.87500 | 63.653 | 1.029111 | 82.556098 | 5.3 | 5.684596 | 65.495718 | 5.949773e+04 | 15252.824630 | 11.351720 | 6.768228 | 0.274092 | 72.367281 | 85420.19086 | 57.4 |
3 | 130941.63690 | 82.664 | 0.964348 | 76.980488 | 2.3 | 5.302060 | 44.363367 | 5.505181e+06 | 748241.402900 | 33.866926 | 13.032828 | 3.343170 | 36.240985 | 63528.63430 | 51.1 |
4 | 113300.60110 | 88.116 | 0.291641 | 81.602439 | 4.1 | 6.826140 | 65.499675 | 4.113555e+04 | 7778.773921 | 15.711000 | 4.691237 | 56.914456 | 145.785100 | 60915.42440 | 77.9 |
##################################
# Formulating the cleaned dataset
# with categorical columns only
##################################
cancer_rate_cleaned_categorical = cancer_rate_cleaned.select_dtypes(include='category')
##################################
# Imputing the missing data
# for categorical columns with
# the most frequent category
##################################
cancer_rate_cleaned_categorical['HDICAT'] = cancer_rate_cleaned_categorical['HDICAT'].fillna(cancer_rate_cleaned_categorical['HDICAT'].mode()[0])
cancer_rate_imputed_categorical = cancer_rate_cleaned_categorical.reset_index(drop=True)
##################################
# Formulating the imputed dataset
##################################
cancer_rate_imputed = pd.concat([cancer_rate_imputed_numeric,cancer_rate_imputed_categorical], axis=1, join='inner')
##################################
# Gathering the data types for each column
##################################
data_type_list = list(cancer_rate_imputed.dtypes)
##################################
# Gathering the variable names for each column
##################################
variable_name_list = list(cancer_rate_imputed.columns)
##################################
# Gathering the number of observations for each column
##################################
row_count_list = list([len(cancer_rate_imputed)] * len(cancer_rate_imputed.columns))
##################################
# Gathering the number of missing data for each column
##################################
null_count_list = list(cancer_rate_imputed.isna().sum(axis=0))
##################################
# Gathering the number of non-missing data for each column
##################################
non_null_count_list = list(cancer_rate_imputed.count())
##################################
# Gathering the missing data percentage for each column
##################################
fill_rate_list = map(truediv, non_null_count_list, row_count_list)
##################################
# Formulating the summary
# for all imputed columns
##################################
imputed_column_quality_summary = pd.DataFrame(zip(variable_name_list,
data_type_list,
row_count_list,
non_null_count_list,
null_count_list,
fill_rate_list),
columns=['Column.Name',
'Column.Type',
'Row.Count',
'Non.Null.Count',
'Null.Count',
'Fill.Rate'])
display(imputed_column_quality_summary)
Column.Name | Column.Type | Row.Count | Non.Null.Count | Null.Count | Fill.Rate | |
---|---|---|---|---|---|---|
0 | GDPPER | float64 | 163 | 163 | 0 | 1.0 |
1 | URBPOP | float64 | 163 | 163 | 0 | 1.0 |
2 | POPGRO | float64 | 163 | 163 | 0 | 1.0 |
3 | LIFEXP | float64 | 163 | 163 | 0 | 1.0 |
4 | TUBINC | float64 | 163 | 163 | 0 | 1.0 |
5 | DTHCMD | float64 | 163 | 163 | 0 | 1.0 |
6 | AGRLND | float64 | 163 | 163 | 0 | 1.0 |
7 | GHGEMI | float64 | 163 | 163 | 0 | 1.0 |
8 | METEMI | float64 | 163 | 163 | 0 | 1.0 |
9 | FORARE | float64 | 163 | 163 | 0 | 1.0 |
10 | CO2EMI | float64 | 163 | 163 | 0 | 1.0 |
11 | PM2EXP | float64 | 163 | 163 | 0 | 1.0 |
12 | POPDEN | float64 | 163 | 163 | 0 | 1.0 |
13 | GDPCAP | float64 | 163 | 163 | 0 | 1.0 |
14 | EPISCO | float64 | 163 | 163 | 0 | 1.0 |
15 | CANRAT | category | 163 | 163 | 0 | 1.0 |
16 | HDICAT | category | 163 | 163 | 0 | 1.0 |
1.4.3 Outlier Detection ¶
- High number of outliers observed for 5 numeric variables with Outlier.Ratio>0.10 and marginal to high Skewness.
- PM2EXP: Outlier.Count = 37, Outlier.Ratio = 0.226, Skewness=-3.061
- GHGEMI: Outlier.Count = 27, Outlier.Ratio = 0.165, Skewness=+9.299
- GDPCAP: Outlier.Count = 22, Outlier.Ratio = 0.134, Skewness=+2.311
- POPDEN: Outlier.Count = 20, Outlier.Ratio = 0.122, Skewness=+9.972
- METEMI: Outlier.Count = 20, Outlier.Ratio = 0.122, Skewness=+5.688
- Minimal number of outliers observed for 5 numeric variables with Outlier.Ratio<0.10 and normal Skewness.
- TUBINC: Outlier.Count = 12, Outlier.Ratio = 0.073, Skewness=+1.747
- CO2EMI: Outlier.Count = 11, Outlier.Ratio = 0.067, Skewness=+2.693
- GDPPER: Outlier.Count = 3, Outlier.Ratio = 0.018, Skewness=+1.554
- EPISCO: Outlier.Count = 3, Outlier.Ratio = 0.018, Skewness=+0.635
- CANRAT: Outlier.Count = 2, Outlier.Ratio = 0.012, Skewness=+0.910
##################################
# Formulating the imputed dataset
# with numeric columns only
##################################
cancer_rate_imputed_numeric = cancer_rate_imputed.select_dtypes(include='number')
##################################
# Gathering the variable names for each numeric column
##################################
numeric_variable_name_list = list(cancer_rate_imputed_numeric.columns)
##################################
# Gathering the skewness value for each numeric column
##################################
numeric_skewness_list = cancer_rate_imputed_numeric.skew()
##################################
# Computing the interquartile range
# for all columns
##################################
cancer_rate_imputed_numeric_q1 = cancer_rate_imputed_numeric.quantile(0.25)
cancer_rate_imputed_numeric_q3 = cancer_rate_imputed_numeric.quantile(0.75)
cancer_rate_imputed_numeric_iqr = cancer_rate_imputed_numeric_q3 - cancer_rate_imputed_numeric_q1
##################################
# Gathering the outlier count for each numeric column
# based on the interquartile range criterion
##################################
numeric_outlier_count_list = ((cancer_rate_imputed_numeric < (cancer_rate_imputed_numeric_q1 - 1.5 * cancer_rate_imputed_numeric_iqr)) | (cancer_rate_imputed_numeric > (cancer_rate_imputed_numeric_q3 + 1.5 * cancer_rate_imputed_numeric_iqr))).sum()
##################################
# Gathering the number of observations for each column
##################################
numeric_row_count_list = list([len(cancer_rate_imputed_numeric)] * len(cancer_rate_imputed_numeric.columns))
##################################
# Gathering the unique to count ratio for each categorical column
##################################
numeric_outlier_ratio_list = map(truediv, numeric_outlier_count_list, numeric_row_count_list)
##################################
# Formulating the outlier summary
# for all numeric columns
##################################
numeric_column_outlier_summary = pd.DataFrame(zip(numeric_variable_name_list,
numeric_skewness_list,
numeric_outlier_count_list,
numeric_row_count_list,
numeric_outlier_ratio_list),
columns=['Numeric.Column.Name',
'Skewness',
'Outlier.Count',
'Row.Count',
'Outlier.Ratio'])
display(numeric_column_outlier_summary)
Numeric.Column.Name | Skewness | Outlier.Count | Row.Count | Outlier.Ratio | |
---|---|---|---|---|---|
0 | GDPPER | 1.554457 | 3 | 163 | 0.018405 |
1 | URBPOP | -0.212327 | 0 | 163 | 0.000000 |
2 | POPGRO | -0.181666 | 0 | 163 | 0.000000 |
3 | LIFEXP | -0.329704 | 0 | 163 | 0.000000 |
4 | TUBINC | 1.747962 | 12 | 163 | 0.073620 |
5 | DTHCMD | 0.930709 | 0 | 163 | 0.000000 |
6 | AGRLND | 0.035315 | 0 | 163 | 0.000000 |
7 | GHGEMI | 9.299960 | 27 | 163 | 0.165644 |
8 | METEMI | 5.688689 | 20 | 163 | 0.122699 |
9 | FORARE | 0.563015 | 0 | 163 | 0.000000 |
10 | CO2EMI | 2.693585 | 11 | 163 | 0.067485 |
11 | PM2EXP | -3.088403 | 37 | 163 | 0.226994 |
12 | POPDEN | 9.972806 | 20 | 163 | 0.122699 |
13 | GDPCAP | 2.311079 | 22 | 163 | 0.134969 |
14 | EPISCO | 0.635994 | 3 | 163 | 0.018405 |
##################################
# Formulating the individual boxplots
# for all numeric columns
##################################
for column in cancer_rate_imputed_numeric:
plt.figure(figsize=(17,1))
sns.boxplot(data=cancer_rate_imputed_numeric, x=column)
1.4.4 Collinearity ¶
Pearson’s Correlation Coefficient is a parametric measure of the linear correlation for a pair of features by calculating the ratio between their covariance and the product of their standard deviations. The presence of high absolute correlation values indicate the univariate association between the numeric predictors and the numeric response.
- Majority of the numeric variables reported moderate to high correlation which were statistically significant.
- Among pairwise combinations of numeric variables, high Pearson.Correlation.Coefficient values were noted for:
- GDPPER and GDPCAP: Pearson.Correlation.Coefficient = +0.921
- GHGEMI and METEMI: Pearson.Correlation.Coefficient = +0.905
- Among the highly correlated pairs, variables with the lowest correlation against the target variable were removed.
- GDPPER: Pearson.Correlation.Coefficient = +0.690
- METEMI: Pearson.Correlation.Coefficient = +0.062
- The cleaned dataset is comprised of:
- 163 rows (observations)
- 16 columns (variables)
- 1/16 metadata (object)
- COUNTRY
- 1/16 target (categorical)
- CANRAT
- 13/16 predictor (numeric)
- URBPOP
- POPGRO
- LIFEXP
- TUBINC
- DTHCMD
- AGRLND
- GHGEMI
- FORARE
- CO2EMI
- PM2EXP
- POPDEN
- GDPCAP
- EPISCO
- 1/16 predictor (categorical)
- HDICAT
- 1/16 metadata (object)
##################################
# Formulating a function
# to plot the correlation matrix
# for all pairwise combinations
# of numeric columns
##################################
def plot_correlation_matrix(corr, mask=None):
f, ax = plt.subplots(figsize=(11, 9))
sns.heatmap(corr,
ax=ax,
mask=mask,
annot=True,
vmin=-1,
vmax=1,
center=0,
cmap='coolwarm',
linewidths=1,
linecolor='gray',
cbar_kws={'orientation': 'horizontal'})
##################################
# Computing the correlation coefficients
# and correlation p-values
# among pairs of numeric columns
##################################
cancer_rate_imputed_numeric_correlation_pairs = {}
cancer_rate_imputed_numeric_columns = cancer_rate_imputed_numeric.columns.tolist()
for numeric_column_a, numeric_column_b in itertools.combinations(cancer_rate_imputed_numeric_columns, 2):
cancer_rate_imputed_numeric_correlation_pairs[numeric_column_a + '_' + numeric_column_b] = stats.pearsonr(
cancer_rate_imputed_numeric.loc[:, numeric_column_a],
cancer_rate_imputed_numeric.loc[:, numeric_column_b])
##################################
# Formulating the pairwise correlation summary
# for all numeric columns
##################################
cancer_rate_imputed_numeric_summary = cancer_rate_imputed_numeric.from_dict(cancer_rate_imputed_numeric_correlation_pairs, orient='index')
cancer_rate_imputed_numeric_summary.columns = ['Pearson.Correlation.Coefficient', 'Correlation.PValue']
display(cancer_rate_imputed_numeric_summary.sort_values(by=['Pearson.Correlation.Coefficient'], ascending=False).head(20))
Pearson.Correlation.Coefficient | Correlation.PValue | |
---|---|---|
GDPPER_GDPCAP | 0.921010 | 8.158179e-68 |
GHGEMI_METEMI | 0.905121 | 1.087643e-61 |
POPGRO_DTHCMD | 0.759470 | 7.124695e-32 |
GDPPER_LIFEXP | 0.755787 | 2.055178e-31 |
GDPCAP_EPISCO | 0.696707 | 5.312642e-25 |
LIFEXP_GDPCAP | 0.683834 | 8.321371e-24 |
GDPPER_EPISCO | 0.680812 | 1.555304e-23 |
GDPPER_URBPOP | 0.666394 | 2.781623e-22 |
GDPPER_CO2EMI | 0.654958 | 2.450029e-21 |
TUBINC_DTHCMD | 0.643615 | 1.936081e-20 |
URBPOP_LIFEXP | 0.623997 | 5.669778e-19 |
LIFEXP_EPISCO | 0.620271 | 1.048393e-18 |
URBPOP_GDPCAP | 0.559181 | 8.624533e-15 |
CO2EMI_GDPCAP | 0.550221 | 2.782997e-14 |
URBPOP_CO2EMI | 0.550046 | 2.846393e-14 |
LIFEXP_CO2EMI | 0.531305 | 2.951829e-13 |
URBPOP_EPISCO | 0.510131 | 3.507463e-12 |
POPGRO_TUBINC | 0.442339 | 3.384403e-09 |
DTHCMD_PM2EXP | 0.283199 | 2.491837e-04 |
CO2EMI_EPISCO | 0.282734 | 2.553620e-04 |
##################################
# Plotting the correlation matrix
# for all pairwise combinations
# of numeric columns
##################################
cancer_rate_imputed_numeric_correlation = cancer_rate_imputed_numeric.corr()
mask = np.triu(cancer_rate_imputed_numeric_correlation)
plot_correlation_matrix(cancer_rate_imputed_numeric_correlation,mask)
plt.show()
##################################
# Formulating a function
# to plot the correlation matrix
# for all pairwise combinations
# of numeric columns
# with significant p-values only
##################################
def correlation_significance(df=None):
p_matrix = np.zeros(shape=(df.shape[1],df.shape[1]))
for col in df.columns:
for col2 in df.drop(col,axis=1).columns:
_ , p = stats.pearsonr(df[col],df[col2])
p_matrix[df.columns.to_list().index(col),df.columns.to_list().index(col2)] = p
return p_matrix
##################################
# Plotting the correlation matrix
# for all pairwise combinations
# of numeric columns
# with significant p-values only
##################################
cancer_rate_imputed_numeric_correlation_p_values = correlation_significance(cancer_rate_imputed_numeric)
mask = np.invert(np.tril(cancer_rate_imputed_numeric_correlation_p_values<0.05))
plot_correlation_matrix(cancer_rate_imputed_numeric_correlation,mask)
##################################
# Filtering out one among the
# highly correlated variable pairs with
# lesser Pearson.Correlation.Coefficient
# when compared to the target variable
##################################
cancer_rate_imputed_numeric.drop(['GDPPER','METEMI'], inplace=True, axis=1)
##################################
# Performing a general exploration of the filtered dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate_imputed_numeric.shape)
Dataset Dimensions:
(163, 13)
1.4.5 Shape Transformation ¶
Yeo-Johnson Transformation applies a new family of distributions that can be used without restrictions, extending many of the good properties of the Box-Cox power family. Similar to the Box-Cox transformation, the method also estimates the optimal value of lambda but has the ability to transform both positive and negative values by inflating low variance data and deflating high variance data to create a more uniform data set. While there are no restrictions in terms of the applicable values, the interpretability of the transformed values is more diminished as compared to the other methods.
- A Yeo-Johnson transformation was applied to all numeric variables to improve distributional shape.
- Most variables achieved symmetrical distributions with minimal outliers after transformation.
- One variable which remained skewed even after applying shape transformation was removed.
- PM2EXP
- The transformed dataset is comprised of:
- 163 rows (observations)
- 15 columns (variables)
- 1/15 metadata (object)
- COUNTRY
- 1/15 target (categorical)
- CANRAT
- 12/15 predictor (numeric)
- URBPOP
- POPGRO
- LIFEXP
- TUBINC
- DTHCMD
- AGRLND
- GHGEMI
- FORARE
- CO2EMI
- POPDEN
- GDPCAP
- EPISCO
- 1/15 predictor (categorical)
- HDICAT
- 1/15 metadata (object)
##################################
# Conducting a Yeo-Johnson Transformation
# to address the distributional
# shape of the variables
##################################
yeo_johnson_transformer = PowerTransformer(method='yeo-johnson',
standardize=False)
cancer_rate_imputed_numeric_array = yeo_johnson_transformer.fit_transform(cancer_rate_imputed_numeric)
##################################
# Formulating a new dataset object
# for the transformed data
##################################
cancer_rate_transformed_numeric = pd.DataFrame(cancer_rate_imputed_numeric_array,
columns=cancer_rate_imputed_numeric.columns)
##################################
# Formulating the individual boxplots
# for all transformed numeric columns
##################################
for column in cancer_rate_transformed_numeric:
plt.figure(figsize=(17,1))
sns.boxplot(data=cancer_rate_transformed_numeric, x=column)
##################################
# Filtering out the column
# which remained skewed even
# after applying shape transformation
##################################
cancer_rate_transformed_numeric.drop(['PM2EXP'], inplace=True, axis=1)
##################################
# Performing a general exploration of the filtered dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate_transformed_numeric.shape)
Dataset Dimensions:
(163, 12)
1.4.6 Centering and Scaling ¶
- All numeric variables were transformed using the standardization method to achieve a comparable scale between values.
- The scaled dataset is comprised of:
- 163 rows (observations)
- 15 columns (variables)
- 1/15 metadata (object)
- COUNTRY
- 1/15 target (categorical)
- CANRAT
- 12/15 predictor (numeric)
- URBPOP
- POPGRO
- LIFEXP
- TUBINC
- DTHCMD
- AGRLND
- GHGEMI
- FORARE
- CO2EMI
- POPDEN
- GDPCAP
- EPISCO
- 1/15 predictor (categorical)
- HDICAT
- 1/15 metadata (object)
##################################
# Conducting standardization
# to transform the values of the
# variables into comparable scale
##################################
standardization_scaler = StandardScaler()
cancer_rate_transformed_numeric_array = standardization_scaler.fit_transform(cancer_rate_transformed_numeric)
##################################
# Formulating a new dataset object
# for the scaled data
##################################
cancer_rate_scaled_numeric = pd.DataFrame(cancer_rate_transformed_numeric_array,
columns=cancer_rate_transformed_numeric.columns)
##################################
# Formulating the individual boxplots
# for all transformed numeric columns
##################################
for column in cancer_rate_scaled_numeric:
plt.figure(figsize=(17,1))
sns.boxplot(data=cancer_rate_scaled_numeric, x=column)
1.4.7 Data Encoding ¶
- One-hot encoding was applied to the HDICAP_VH variable resulting to 4 additional columns in the dataset:
- HDICAP_L
- HDICAP_M
- HDICAP_H
- HDICAP_VH
##################################
# Formulating the categorical column
# for encoding transformation
##################################
cancer_rate_categorical_encoded = pd.DataFrame(cancer_rate_cleaned_categorical.loc[:, 'HDICAT'].to_list(),
columns=['HDICAT'])
##################################
# Applying a one-hot encoding transformation
# for the categorical column
##################################
cancer_rate_categorical_encoded = pd.get_dummies(cancer_rate_categorical_encoded, columns=['HDICAT'])
1.4.8 Preprocessed Data Description ¶
- The preprocessed dataset is comprised of:
- 163 rows (observations)
- 18 columns (variables)
- 1/18 metadata (object)
- COUNTRY
- 1/18 target (categorical)
- CANRAT
- 12/18 predictor (numeric)
- URBPOP
- POPGRO
- LIFEXP
- TUBINC
- DTHCMD
- AGRLND
- GHGEMI
- FORARE
- CO2EMI
- POPDEN
- GDPCAP
- EPISCO
- 4/18 predictor (categorical)
- HDICAT_L
- HDICAT_M
- HDICAT_H
- HDICAT_VH
- 1/18 metadata (object)
##################################
# Consolidating both numeric columns
# and encoded categorical columns
##################################
cancer_rate_preprocessed = pd.concat([cancer_rate_scaled_numeric,cancer_rate_categorical_encoded], axis=1, join='inner')
##################################
# Performing a general exploration of the consolidated dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate_preprocessed.shape)
Dataset Dimensions:
(163, 16)
1.5. Data Exploration ¶
1.5.1 Exploratory Data Analysis ¶
- Bivariate analysis identified individual predictors with generally positive association to the target variable based on visual inspection.
- Higher values or higher proportions for the following predictors are associated with the CANRAT HIGH category:
- URBPOP
- LIFEXP
- CO2EMI
- GDPCAP
- EPISCO
- HDICAP_VH=1
- Decreasing values or smaller proportions for the following predictors are associated with the CANRAT LOW category:
- POPGRO
- TUBINC
- DTHCMD
- HDICAP_L=0
- HDICAP_M=0
- HDICAP_H=0
- Values for the following predictors are not associated with the CANRAT HIGH or LOW categories:
- AGRLND
- GHGEMI
- FORARE
- POPDEN
##################################
# Segregating the target
# and predictor variable lists
##################################
cancer_rate_preprocessed_target = cancer_rate_filtered_row['CANRAT'].to_frame()
cancer_rate_preprocessed_target.reset_index(inplace=True, drop=True)
cancer_rate_preprocessed_categorical = cancer_rate_preprocessed[cancer_rate_categorical_encoded.columns]
cancer_rate_preprocessed_categorical_combined = cancer_rate_preprocessed_categorical.join(cancer_rate_preprocessed_target)
cancer_rate_preprocessed = cancer_rate_preprocessed.drop(cancer_rate_categorical_encoded.columns, axis=1)
cancer_rate_preprocessed_predictors = cancer_rate_preprocessed.columns
cancer_rate_preprocessed_combined = cancer_rate_preprocessed.join(cancer_rate_preprocessed_target)
##################################
# Segregating the target
# and predictor variable names
##################################
y_variable = 'CANRAT'
x_variables = cancer_rate_preprocessed_predictors
##################################
# Defining the number of
# rows and columns for the subplots
##################################
num_rows = 6
num_cols = 2
##################################
# Formulating the subplot structure
##################################
fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 30))
##################################
# Flattening the multi-row and
# multi-column axes
##################################
axes = axes.ravel()
##################################
# Formulating the individual boxplots
# for all scaled numeric columns
##################################
for i, x_variable in enumerate(x_variables):
ax = axes[i]
ax.boxplot([group[x_variable] for name, group in cancer_rate_preprocessed_combined.groupby(y_variable, observed=True)])
ax.set_title(f'{y_variable} Versus {x_variable}')
ax.set_xlabel(y_variable)
ax.set_ylabel(x_variable)
ax.set_xticks(range(1, len(cancer_rate_preprocessed_combined[y_variable].unique()) + 1), ['Low', 'High'])
##################################
# Adjusting the subplot layout
##################################
plt.tight_layout()
##################################
# Presenting the subplots
##################################
plt.show()
##################################
# Segregating the target
# and predictor variable names
##################################
y_variables = cancer_rate_preprocessed_categorical.columns
x_variable = 'CANRAT'
##################################
# Defining the number of
# rows and columns for the subplots
##################################
num_rows = 2
num_cols = 2
##################################
# Formulating the subplot structure
##################################
fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 10))
##################################
# Flattening the multi-row and
# multi-column axes
##################################
axes = axes.ravel()
##################################
# Formulating the individual stacked column plots
# for all categorical columns
##################################
for i, y_variable in enumerate(y_variables):
ax = axes[i]
category_counts = cancer_rate_preprocessed_categorical_combined.groupby([x_variable, y_variable], observed=True).size().unstack(fill_value=0)
category_proportions = category_counts.div(category_counts.sum(axis=1), axis=0)
category_proportions.plot(kind='bar', stacked=True, ax=ax)
ax.set_title(f'{x_variable} Versus {y_variable}')
ax.set_xlabel(x_variable)
ax.set_ylabel('Proportions')
##################################
# Adjusting the subplot layout
##################################
plt.tight_layout()
##################################
# Presenting the subplots
##################################
plt.show()
1.5.2 Hypothesis Testing ¶
- The relationship between the numeric predictors to the CANRAT target variable was statistically evaluated using the following hypotheses:
- Null: Difference in the means between groups LOW and HIGH is equal to zero
- Alternative: Difference in the means between groups LOW and HIGH is not equal to zero
- There is sufficient evidence to conclude of a statistically significant difference between the means of the numeric measurements obtained from LOW and HIGH groups of the CANRAT target variable in 9 of the 12 numeric predictors given their high t-test statistic values with reported low p-values less than the significance level of 0.05.
- GDPCAP: T.Test.Statistic=-11.937, Correlation.PValue=0.000
- EPISCO: T.Test.Statistic=-11.789, Correlation.PValue=0.000
- LIFEXP: T.Test.Statistic=-10.979, Correlation.PValue=0.000
- TUBINC: T.Test.Statistic=+9.609, Correlation.PValue=0.000
- DTHCMD: T.Test.Statistic=+8.376, Correlation.PValue=0.000
- CO2EMI: T.Test.Statistic=-7.031, Correlation.PValue=0.000
- URBPOP: T.Test.Statistic=-6.541, Correlation.PValue=0.000
- POPGRO: T.Test.Statistic=+4.905, Correlation.PValue=0.000
- GHGEMI: T.Test.Statistic=-2.243, Correlation.PValue=0.026
- The relationship between the categorical predictors to the CANRAT target variable was statistically evaluated using the following hypotheses:
- Null: The categorical predictor is independent of the categorical target variable
- Alternative: The categorical predictor is dependent of the categorical target variable
- There is sufficient evidence to conclude of a statistically significant relationship difference between the categories of the categorical predictors and the LOW and HIGH groups of the CANRAT target variable in all 4 categorical predictors given their high chisquare statistic values with reported low p-values less than the significance level of 0.05.
- HDICAT_VH: ChiSquare.Test.Statistic=76.764, ChiSquare.Test.PValue=0.000
- HDICAT_H: ChiSquare.Test.Statistic=13.860, ChiSquare.Test.PValue=0.000
- HDICAT_M: ChiSquare.Test.Statistic=10.286, ChiSquare.Test.PValue=0.001
- HDICAT_L: ChiSquare.Test.Statistic=9.081, ChiSquare.Test.PValue=0.002
##################################
# Computing the t-test
# statistic and p-values
# between the target variable
# and numeric predictor columns
##################################
cancer_rate_preprocessed_numeric_ttest_target = {}
cancer_rate_preprocessed_numeric = cancer_rate_preprocessed_combined
cancer_rate_preprocessed_numeric_columns = cancer_rate_preprocessed_predictors
for numeric_column in cancer_rate_preprocessed_numeric_columns:
group_0 = cancer_rate_preprocessed_numeric[cancer_rate_preprocessed_numeric.loc[:,'CANRAT']=='Low']
group_1 = cancer_rate_preprocessed_numeric[cancer_rate_preprocessed_numeric.loc[:,'CANRAT']=='High']
cancer_rate_preprocessed_numeric_ttest_target['CANRAT_' + numeric_column] = stats.ttest_ind(
group_0[numeric_column],
group_1[numeric_column],
equal_var=True)
##################################
# Formulating the pairwise ttest summary
# between the target variable
# and numeric predictor columns
##################################
cancer_rate_preprocessed_numeric_summary = cancer_rate_preprocessed_numeric.from_dict(cancer_rate_preprocessed_numeric_ttest_target, orient='index')
cancer_rate_preprocessed_numeric_summary.columns = ['T.Test.Statistic', 'T.Test.PValue']
display(cancer_rate_preprocessed_numeric_summary.sort_values(by=['T.Test.PValue'], ascending=True).head(12))
T.Test.Statistic | T.Test.PValue | |
---|---|---|
CANRAT_GDPCAP | -11.936988 | 6.247937e-24 |
CANRAT_EPISCO | -11.788870 | 1.605980e-23 |
CANRAT_LIFEXP | -10.979098 | 2.754214e-21 |
CANRAT_TUBINC | 9.608760 | 1.463678e-17 |
CANRAT_DTHCMD | 8.375558 | 2.552108e-14 |
CANRAT_CO2EMI | -7.030702 | 5.537463e-11 |
CANRAT_URBPOP | -6.541001 | 7.734940e-10 |
CANRAT_POPGRO | 4.904817 | 2.269446e-06 |
CANRAT_GHGEMI | -2.243089 | 2.625563e-02 |
CANRAT_FORARE | -1.174143 | 2.420717e-01 |
CANRAT_POPDEN | -0.495221 | 6.211191e-01 |
CANRAT_AGRLND | -0.047628 | 9.620720e-01 |
##################################
# Computing the chisquare
# statistic and p-values
# between the target variable
# and categorical predictor columns
##################################
cancer_rate_preprocessed_categorical_chisquare_target = {}
cancer_rate_preprocessed_categorical = cancer_rate_preprocessed_categorical_combined
cancer_rate_preprocessed_categorical_columns = ['HDICAT_L','HDICAT_M','HDICAT_H','HDICAT_VH']
for categorical_column in cancer_rate_preprocessed_categorical_columns:
contingency_table = pd.crosstab(cancer_rate_preprocessed_categorical[categorical_column],
cancer_rate_preprocessed_categorical['CANRAT'])
cancer_rate_preprocessed_categorical_chisquare_target['CANRAT_' + categorical_column] = stats.chi2_contingency(
contingency_table)[0:2]
##################################
# Formulating the pairwise chisquare summary
# between the target variable
# and categorical predictor columns
##################################
cancer_rate_preprocessed_categorical_summary = cancer_rate_preprocessed_categorical.from_dict(cancer_rate_preprocessed_categorical_chisquare_target, orient='index')
cancer_rate_preprocessed_categorical_summary.columns = ['ChiSquare.Test.Statistic', 'ChiSquare.Test.PValue']
display(cancer_rate_preprocessed_categorical_summary.sort_values(by=['ChiSquare.Test.PValue'], ascending=True).head(4))
ChiSquare.Test.Statistic | ChiSquare.Test.PValue | |
---|---|---|
CANRAT_HDICAT_VH | 76.764134 | 1.926446e-18 |
CANRAT_HDICAT_M | 13.860367 | 1.969074e-04 |
CANRAT_HDICAT_L | 10.285575 | 1.340742e-03 |
CANRAT_HDICAT_H | 9.080788 | 2.583087e-03 |
1.6. Neural Network Classification Gradient and Weight Updates ¶
1.6.1 Premodelling Data Description ¶
- All the predictor variables determined to have a statistically significant difference between the means of the numeric measurements obtained from LOW and HIGH groups of the CANRAT target variable were used for the subsequent modelling process.
- GDPCAP: T.Test.Statistic=-11.937, Correlation.PValue=0.000
- EPISCO: T.Test.Statistic=-11.789, Correlation.PValue=0.000
- LIFEXP: T.Test.Statistic=-10.979, Correlation.PValue=0.000
- TUBINC: T.Test.Statistic=+9.609, Correlation.PValue=0.000
- DTHCMD: T.Test.Statistic=+8.376, Correlation.PValue=0.000
- CO2EMI: T.Test.Statistic=-7.031, Correlation.PValue=0.000
- URBPOP: T.Test.Statistic=-6.541, Correlation.PValue=0.000
- POPGRO: T.Test.Statistic=+4.905, Correlation.PValue=0.000
- GHGEMI: T.Test.Statistic=-2.243, Correlation.PValue=0.026
##################################
# Assignining all numeric columns
# as model predictors
##################################
cancer_rate_premodelling = cancer_rate_preprocessed_combined
cancer_rate_premodelling.columns
Index(['URBPOP', 'POPGRO', 'LIFEXP', 'TUBINC', 'DTHCMD', 'AGRLND', 'GHGEMI', 'FORARE', 'CO2EMI', 'POPDEN', 'GDPCAP', 'EPISCO', 'CANRAT'], dtype='object')
##################################
# Performing a general exploration of the pre-modelling dataset
##################################
print('Dataset Dimensions: ')
display(cancer_rate_premodelling.shape)
Dataset Dimensions:
(163, 13)
##################################
# Listing the column names and data types
##################################
print('Column Names and Data Types:')
display(cancer_rate_premodelling.dtypes)
Column Names and Data Types:
URBPOP float64 POPGRO float64 LIFEXP float64 TUBINC float64 DTHCMD float64 AGRLND float64 GHGEMI float64 FORARE float64 CO2EMI float64 POPDEN float64 GDPCAP float64 EPISCO float64 CANRAT category dtype: object
##################################
# Taking a snapshot of the dataset
##################################
cancer_rate_premodelling.head()
URBPOP | POPGRO | LIFEXP | TUBINC | DTHCMD | AGRLND | GHGEMI | FORARE | CO2EMI | POPDEN | GDPCAP | EPISCO | CANRAT | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1.186561 | 0.075944 | 1.643195 | -1.102296 | -0.971464 | 0.377324 | 1.388807 | -0.467775 | 1.736841 | -2.208974 | 1.549766 | 1.306738 | High |
1 | 1.207291 | 0.916022 | 1.487969 | -1.102296 | -1.091413 | 0.043134 | 0.367038 | 0.398501 | 0.943507 | -0.989532 | 1.407752 | 1.102912 | High |
2 | 0.172100 | -0.100235 | 1.537044 | -1.275298 | -0.836295 | 1.162279 | 0.211987 | -0.815470 | 1.031680 | -0.007131 | 1.879374 | 1.145832 | High |
3 | 1.024859 | -0.155217 | 0.664178 | -1.696341 | -0.903718 | 0.296508 | 2.565440 | 0.259803 | 1.627748 | -0.522844 | 1.685426 | 0.739753 | High |
4 | 1.271466 | -0.718131 | 1.381877 | -1.413414 | -0.657145 | 1.162434 | 0.019979 | -0.559264 | 0.686270 | 0.512619 | 1.657777 | 2.218327 | High |
##################################
# Formulating a scatterplot matrix
# of all pairwise combinations of
# numeric predictors labeled by
# categorical response classes
##################################
sns.pairplot(cancer_rate_premodelling, hue='CANRAT')
plt.show()
##################################
# Converting the dataframe to
# a numpy array
##################################
cancer_rate_premodelling_matrix = cancer_rate_premodelling.to_numpy()
##################################
# Preparing the data and
# and converting to a suitable format
# as a neural network model input
##################################
matrix_x_values = cancer_rate_premodelling.iloc[:,0:12].to_numpy()
y_values_series = np.where(cancer_rate_premodelling['CANRAT'] == 'High', 1, 0)
y_values = pd.get_dummies(y_values_series)
y_values = y_values.to_numpy()
1.6.2 No Regularization ¶
Backpropagation and Weight Update, in the context of an artificial neural network, involve the process of iteratively adjusting the weights of the connections between neurons in the network to minimize the difference between the predicted and the actual target responses. Input data is fed into the neural network, and it propagates through the network layer by layer, starting from the input layer, through hidden layers, and ending at the output layer. At each neuron, the weighted sum of inputs is calculated, followed by the application of an activation function to produce the neuron's output. Once the forward pass is complete, the network's output is compared to the actual target output. The difference between the predicted output and the actual output is quantified using a loss function, which measures the discrepancy between the predicted and actual values. Common loss functions for classification tasks include cross-entropy loss. During the backward pass, the error is propagated backward through the network to compute the gradients of the loss function with respect to each weight in the network. This is achieved using the chain rule of calculus, which allows the error to be decomposed and distributed backward through the network. The gradients quantify how much a change in each weight would affect the overall error of the network. Once the gradients are computed, the weights are updated in the opposite direction of the gradient to minimize the error. This update is typically performed using an optimization algorithm such as gradient descent, which adjusts the weights in proportion to their gradients and a learning rate hyperparameter. The learning rate determines the size of the step taken in the direction opposite to the gradient. These steps are repeated for multiple iterations (epochs) over the training data. As the training progresses, the weights are adjusted iteratively to minimize the error, leading to a neural network model that accurately classifies input data.
Regularization Algorithms, in the context of neural network classification, are techniques used to prevent overfitting and improve the generalization performance of the model by imposing constraints on its parameters during training. These constraints are typically applied to the weights of the neural network and are aimed at reducing model complexity, controlling the magnitude of the weights, and promoting simpler and more generalizable solutions. Regularization approaches work by adding penalty terms to the loss function during training. These penalty terms penalize large weights or complex models, encouraging the optimization process to prioritize simpler solutions that generalize well to unseen data. By doing so, regularization helps prevent the neural network from fitting noise or irrelevant patterns present in the training data and encourages it to learn more robust and meaningful representations.
No Regularization provides no additional constraints or penalties imposed on the model's parameters (weights and biases) during training. The model is free to learn complex patterns in the training data without any restrictions. Without regularization, the neural network may have a tendency to memorize noise or irrelevant patterns present in the training data. This can result in a highly complex model with large weights and intricate decision boundaries. Due to the lack of constraints on model complexity, there is a higher risk of overfitting when the model captures noise or idiosyncrasies in the training set rather than learning the underlying patterns of the data. In effect, the model may perform well on the training data but poorly on new, unseen data.
- Neural network learning with no regularization was implemented with parameter settings described as follows:
- Learning Rate = 0.01
- Iteration = 5000
- The mean absolute weights learned at each layer were relatively flat and consistent across the entire iteration.
- The final cost estimate determined as 0.20503 at the 5000th epoch was not optimally low as compared to those obtained with regularization applied.
- Applying parameter updates with no regularization, the neural network model performance is estimated as follows:
- Accuracy = 92.02453
- The estimated classification accuracy was not optimal as compared to those obtained with regularization methods applied.
##################################
# Defining the neural network architecture
##################################
input_size = 12
hidden_sizes = [3, 3, 3]
output_size = 2
##################################
# Defining the training parameters
##################################
learning_rate = 0.01
iterations = 5001
##################################
# Initializing model weights and biases
##################################
def initialize_parameters(input_size, hidden_sizes, output_size):
parameters = {}
layer_sizes = [input_size] + hidden_sizes + [output_size]
for i in range(1, len(layer_sizes)):
parameters[f'W{i}'] = np.random.randn(layer_sizes[i-1], layer_sizes[i])
parameters[f'b{i}'] = np.zeros((1, layer_sizes[i]))
return parameters
##################################
# Defining the activation function (ReLU)
##################################
def relu(x):
return np.maximum(0, x)
##################################
# Defining the Softmax function
##################################
def softmax(x):
exps = np.exp(x - np.max(x, axis=1, keepdims=True))
return exps / np.sum(exps, axis=1, keepdims=True)
##################################
# Defining the Forward propagation algorithm
##################################
def forward_propagation(X, parameters):
cache = {'A0': X}
for i in range(1, len(parameters) // 2 + 1):
cache[f'Z{i}'] = np.dot(cache[f'A{i-1}'], parameters[f'W{i}']) + parameters[f'b{i}']
cache[f'A{i}'] = relu(cache[f'Z{i}']) if i != len(parameters) // 2 else softmax(cache[f'Z{i}'])
return cache
##################################
# Defining the Backward propagation algorithm
##################################
def backward_propagation(X, Y, parameters, cache):
m = X.shape[0]
gradients = {}
dZ = cache[f'A{len(parameters) // 2}'] - Y
for i in range(len(parameters) // 2, 0, -1):
gradients[f'dW{i}'] = (1 / m) * np.dot(cache[f'A{i-1}'].T, dZ)
gradients[f'db{i}'] = (1 / m) * np.sum(dZ, axis=0, keepdims=True)
if i > 1:
dA = np.dot(dZ, parameters[f'W{i}'].T)
dZ = dA * (cache[f'Z{i-1}'] > 0)
return gradients
##################################
# Defining the Cross-entropy loss
##################################
def compute_cost(Y, Y_hat):
m = Y.shape[0]
logprobs = -np.log(Y_hat[range(m), np.argmax(Y, axis=1)])
return np.sum(logprobs) / m
##################################
# Updating model parameters
# with no regularization
##################################
def update_parameters_no_reg(parameters, gradients, learning_rate):
for i in range(1, len(parameters) // 2 + 1):
parameters[f'W{i}'] -= learning_rate * gradients[f'dW{i}']
parameters[f'b{i}'] -= learning_rate * gradients[f'db{i}']
return parameters
##################################
# Implementing neural network model training
# using no regularization
##################################
##################################
# Initializing training parameters
##################################
np.random.seed(88888)
parameters = initialize_parameters(input_size, hidden_sizes, output_size)
##################################
# Creating lists to store cost and accuracy for plotting
##################################
costs = []
accuracies = []
##################################
# Creating lists to store weights for plotting
##################################
weight_history = {f'W{i}': [] for i in range(1, len(hidden_sizes) + 2)}
##################################
# Training a neural network model
# using no regularization
##################################
for i in range(iterations):
# Implementing forward propagation
cache = forward_propagation(matrix_x_values, parameters)
Y_hat = cache[f'A{len(parameters) // 2}']
# Computing cost and accuracy
cost = compute_cost(y_values, Y_hat)
accuracy = np.mean(np.argmax(y_values, axis=1) == np.argmax(Y_hat, axis=1))
# Implementing backward propagation
gradients = backward_propagation(matrix_x_values, y_values, parameters, cache)
# Updating model parameter values
parameters = update_parameters_no_reg(parameters, gradients, learning_rate)
# Recording model weight values
for j in range(1, len(hidden_sizes) + 2):
weight_history[f'W{j}'].append(parameters[f'W{j}'].copy())
# Recording cost and accuracy values
costs.append(cost)
accuracies.append(accuracy)
# Printing cost and accuracy every 100 iterations
if i % 100 == 0:
print(f"Iteration {i}: Cost = {cost}, Accuracy = {accuracy}")
Iteration 0: Cost = 0.6655730513459841, Accuracy = 0.7484662576687117 Iteration 100: Cost = 0.4433799916031117, Accuracy = 0.7484662576687117 Iteration 200: Cost = 0.4296527297209187, Accuracy = 0.7484662576687117 Iteration 300: Cost = 0.4207049707713461, Accuracy = 0.7484662576687117 Iteration 400: Cost = 0.41306128247154633, Accuracy = 0.7484662576687117 Iteration 500: Cost = 0.40617287045398526, Accuracy = 0.7484662576687117 Iteration 600: Cost = 0.399957242190881, Accuracy = 0.7484662576687117 Iteration 700: Cost = 0.39458769407449806, Accuracy = 0.7484662576687117 Iteration 800: Cost = 0.38949596163129635, Accuracy = 0.7484662576687117 Iteration 900: Cost = 0.38497517324765024, Accuracy = 0.7484662576687117 Iteration 1000: Cost = 0.38094361998405624, Accuracy = 0.7975460122699386 Iteration 1100: Cost = 0.3772707517499272, Accuracy = 0.7852760736196319 Iteration 1200: Cost = 0.37387392093517025, Accuracy = 0.7914110429447853 Iteration 1300: Cost = 0.37065030109024116, Accuracy = 0.7791411042944786 Iteration 1400: Cost = 0.3675696328690523, Accuracy = 0.7852760736196319 Iteration 1500: Cost = 0.3645840415235353, Accuracy = 0.803680981595092 Iteration 1600: Cost = 0.3612766252373598, Accuracy = 0.8466257668711656 Iteration 1700: Cost = 0.3571343603940606, Accuracy = 0.852760736196319 Iteration 1800: Cost = 0.35269802358387276, Accuracy = 0.8711656441717791 Iteration 1900: Cost = 0.34846303617880475, Accuracy = 0.8711656441717791 Iteration 2000: Cost = 0.3436917695749288, Accuracy = 0.8711656441717791 Iteration 2100: Cost = 0.338422458132082, Accuracy = 0.8711656441717791 Iteration 2200: Cost = 0.3329668363721044, Accuracy = 0.8711656441717791 Iteration 2300: Cost = 0.32707243309276396, Accuracy = 0.8773006134969326 Iteration 2400: Cost = 0.3202156715156502, Accuracy = 0.8711656441717791 Iteration 2500: Cost = 0.3134557926416705, Accuracy = 0.8711656441717791 Iteration 2600: Cost = 0.3069538407007726, Accuracy = 0.8711656441717791 Iteration 2700: Cost = 0.30085221518673927, Accuracy = 0.8834355828220859 Iteration 2800: Cost = 0.2950480755009638, Accuracy = 0.8773006134969326 Iteration 2900: Cost = 0.2894966573009472, Accuracy = 0.8834355828220859 Iteration 3000: Cost = 0.2834331135808198, Accuracy = 0.8834355828220859 Iteration 3100: Cost = 0.27734022675958664, Accuracy = 0.8895705521472392 Iteration 3200: Cost = 0.27144698115197863, Accuracy = 0.8895705521472392 Iteration 3300: Cost = 0.26569904888847556, Accuracy = 0.8895705521472392 Iteration 3400: Cost = 0.2601293460642317, Accuracy = 0.8895705521472392 Iteration 3500: Cost = 0.25519554130519556, Accuracy = 0.8895705521472392 Iteration 3600: Cost = 0.2504756961908363, Accuracy = 0.8895705521472392 Iteration 3700: Cost = 0.24553061524899952, Accuracy = 0.8957055214723927 Iteration 3800: Cost = 0.24082289534111034, Accuracy = 0.8957055214723927 Iteration 3900: Cost = 0.23648196638176655, Accuracy = 0.8957055214723927 Iteration 4000: Cost = 0.23255818171571618, Accuracy = 0.8957055214723927 Iteration 4100: Cost = 0.22900452070781954, Accuracy = 0.901840490797546 Iteration 4200: Cost = 0.22554933629064006, Accuracy = 0.901840490797546 Iteration 4300: Cost = 0.2223728324241222, Accuracy = 0.901840490797546 Iteration 4400: Cost = 0.2195657956442702, Accuracy = 0.901840490797546 Iteration 4500: Cost = 0.21687063543853785, Accuracy = 0.9079754601226994 Iteration 4600: Cost = 0.21428226236032571, Accuracy = 0.9079754601226994 Iteration 4700: Cost = 0.2118573030973284, Accuracy = 0.9141104294478528 Iteration 4800: Cost = 0.20951426434007592, Accuracy = 0.9202453987730062 Iteration 4900: Cost = 0.20723913006547426, Accuracy = 0.9202453987730062 Iteration 5000: Cost = 0.2050367162135878, Accuracy = 0.9202453987730062
##################################
# Plotting cost and accuracy profiles
##################################
plt.figure(figsize=(15, 4.75))
plt.subplot(1, 2, 1)
plt.plot(range(iterations), costs)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.title('No Regularization: Cost Function by Iteration')
plt.subplot(1, 2, 2)
plt.plot(range(iterations), accuracies)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Accuracy')
plt.title('No Regularization: Classification by Iteration')
plt.show()
##################################
# Plotting model weight profiles
##################################
num_layers = len(hidden_sizes) + 1
plt.figure(figsize=(15, 10))
for i in range(1, num_layers + 1):
plt.subplot(2, num_layers // 2, i)
plt.plot(range(iterations), [np.max(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Maximum Weight")
plt.plot(range(iterations), [np.mean(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Mean Weight")
plt.plot(range(iterations), [np.min(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Minimum Weight")
plt.ylim([-1,5])
plt.legend(loc="upper right")
plt.xlabel('Iterations')
plt.ylabel('Absolute Weight')
plt.title(f'No Regularization: Layer {i} Weights by Iteration')
plt.show()
##################################
# Gathering the final accuracy, cost
# and mean layer weight values for
# No Regularization
##################################
NR_metrics = pd.DataFrame(["ACCURACY","LOSS","LAYER 1 MEAN WEIGHT","LAYER 2 MEAN WEIGHT","LAYER 3 MEAN WEIGHT","LAYER 4 MEAN WEIGHT"])
NR_values = pd.DataFrame([accuracies[-1],
costs[-1],
[np.mean(np.abs(weights)) for weights in weight_history['W1']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W2']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W3']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W4']][-1]])
NR_method = pd.DataFrame(["No Regularization"]*6)
NR_summary = pd.concat([NR_metrics,
NR_values,
NR_method], axis=1)
NR_summary.columns = ['Metric', 'Value', 'Method']
NR_summary.reset_index(inplace=True, drop=True)
display(NR_summary)
Metric | Value | Method | |
---|---|---|---|
0 | ACCURACY | 0.920245 | No Regularization |
1 | LOSS | 0.205037 | No Regularization |
2 | LAYER 1 MEAN WEIGHT | 0.878401 | No Regularization |
3 | LAYER 2 MEAN WEIGHT | 0.663882 | No Regularization |
4 | LAYER 3 MEAN WEIGHT | 0.662323 | No Regularization |
5 | LAYER 4 MEAN WEIGHT | 1.042851 | No Regularization |
1.6.3 L1 Regularization ¶
Backpropagation and Weight Update, in the context of an artificial neural network, involve the process of iteratively adjusting the weights of the connections between neurons in the network to minimize the difference between the predicted and the actual target responses. Input data is fed into the neural network, and it propagates through the network layer by layer, starting from the input layer, through hidden layers, and ending at the output layer. At each neuron, the weighted sum of inputs is calculated, followed by the application of an activation function to produce the neuron's output. Once the forward pass is complete, the network's output is compared to the actual target output. The difference between the predicted output and the actual output is quantified using a loss function, which measures the discrepancy between the predicted and actual values. Common loss functions for classification tasks include cross-entropy loss. During the backward pass, the error is propagated backward through the network to compute the gradients of the loss function with respect to each weight in the network. This is achieved using the chain rule of calculus, which allows the error to be decomposed and distributed backward through the network. The gradients quantify how much a change in each weight would affect the overall error of the network. Once the gradients are computed, the weights are updated in the opposite direction of the gradient to minimize the error. This update is typically performed using an optimization algorithm such as gradient descent, which adjusts the weights in proportion to their gradients and a learning rate hyperparameter. The learning rate determines the size of the step taken in the direction opposite to the gradient. These steps are repeated for multiple iterations (epochs) over the training data. As the training progresses, the weights are adjusted iteratively to minimize the error, leading to a neural network model that accurately classifies input data.
Regularization Algorithms, in the context of neural network classification, are techniques used to prevent overfitting and improve the generalization performance of the model by imposing constraints on its parameters during training. These constraints are typically applied to the weights of the neural network and are aimed at reducing model complexity, controlling the magnitude of the weights, and promoting simpler and more generalizable solutions. Regularization approaches work by adding penalty terms to the loss function during training. These penalty terms penalize large weights or complex models, encouraging the optimization process to prioritize simpler solutions that generalize well to unseen data. By doing so, regularization helps prevent the neural network from fitting noise or irrelevant patterns present in the training data and encourages it to learn more robust and meaningful representations.
L1 Regularization adds a penalty term to the loss function proportional to the absolute values of the weights. It encourages sparsity in the weight matrix, effectively performing feature selection by driving some weights to exactly zero. This makes the process robust to irrelevant features by reducing their impact on the model. Despite these advantages, L1 regularization has drawbacks as a method including less stable solutions (the optimization problem with L1 regularization can have multiple solutions, leading to instability in the learned weights) and being not differentiable (the absolute value function used in L1 regularization is not differentiable at zero, which can complicate optimization). In the context of neural network classification, an alternate formulation involves implementing L1 regularization by applying a sign instead of an absolute function directly to the weights. By using the sign function, L1 regularization encourages weights to become exactly zero more readily than the traditional L1 regularization with the absolute function. This leads to sparser weight matrices, where many weights are effectively pruned, resulting in simpler and potentially more interpretable models. Computing the gradient of the absolute value function in traditional L1 regularization involves dealing with piecewise gradients, which can be computationally expensive, especially in deep neural networks with many weights. In contrast, using the sign function simplifies the gradient calculation, leading to potentially faster training and convergence.
- Neural network learning with L1 regularization was implemented with parameter settings described as follows:
- Learning Rate = 0.01
- Iteration = 5000
- Lambda Penalty = 0.01
- The mean absolute weights learned at each layer showed a decreasing pattern with lower values after completing the iteration.
- The final cost estimate determined as 0.17995 at the 5000th epoch was not optimally low as compared to those obtained from other regularization methods.
- Applying parameter updates with L1 regularization, the neural network model performance is estimated as follows:
- Accuracy = 94.47852
- The estimated classification accuracy was not optimal as compared to those obtained with other regularization methods.
##################################
# Updating model parameters
# with L1 regularization
##################################
def update_parameters_l1(parameters, gradients, learning_rate, lambd):
for i in range(1, len(parameters) // 2 + 1):
parameters[f'W{i}'] -= learning_rate * (gradients[f'dW{i}'] + lambd * np.sign(parameters[f'W{i}']))
parameters[f'b{i}'] -= learning_rate * gradients[f'db{i}']
return parameters
##################################
# Implementing neural network model training
# using L1 regularization
##################################
##################################
# Initializing training parameters
##################################
np.random.seed(88888)
parameters = initialize_parameters(input_size, hidden_sizes, output_size)
##################################
# Initializing regularization parameters
##################################
lambd = 0.01
##################################
# Creating lists to store cost and accuracy for plotting
##################################
costs = []
accuracies = []
##################################
# Creating lists to store weights for plotting
##################################
weight_history = {f'W{i}': [] for i in range(1, len(hidden_sizes) + 2)}
##################################
# Training a neural network model
# using L1 regularization
##################################
for i in range(iterations):
# Implementing forward propagation
cache = forward_propagation(matrix_x_values, parameters)
Y_hat = cache[f'A{len(parameters) // 2}']
# Computing cost and accuracy
cost = compute_cost(y_values, Y_hat)
accuracy = np.mean(np.argmax(y_values, axis=1) == np.argmax(Y_hat, axis=1))
# Implementing backward propagation
gradients = backward_propagation(matrix_x_values, y_values, parameters, cache)
# Updating model parameter values
parameters = update_parameters_l1(parameters, gradients, learning_rate, lambd)
# Recording model weight values
for j in range(1, len(hidden_sizes) + 2):
weight_history[f'W{j}'].append(parameters[f'W{j}'].copy())
# Recording cost and accuracy values
costs.append(cost)
accuracies.append(accuracy)
# Printing cost and accuracy every 100 iterations
if i % 100 == 0:
print(f"Iteration {i}: Cost = {cost}, Accuracy = {accuracy}")
Iteration 0: Cost = 0.6655730513459841, Accuracy = 0.7484662576687117 Iteration 100: Cost = 0.44620357994035403, Accuracy = 0.7484662576687117 Iteration 200: Cost = 0.43307112409474996, Accuracy = 0.7484662576687117 Iteration 300: Cost = 0.42457535967861454, Accuracy = 0.7484662576687117 Iteration 400: Cost = 0.41765452099976647, Accuracy = 0.7484662576687117 Iteration 500: Cost = 0.41170724982013035, Accuracy = 0.7484662576687117 Iteration 600: Cost = 0.4063499602749478, Accuracy = 0.7484662576687117 Iteration 700: Cost = 0.40141996486069714, Accuracy = 0.7484662576687117 Iteration 800: Cost = 0.39695705069308856, Accuracy = 0.7484662576687117 Iteration 900: Cost = 0.39285529652649204, Accuracy = 0.7484662576687117 Iteration 1000: Cost = 0.38913393417512976, Accuracy = 0.7484662576687117 Iteration 1100: Cost = 0.3857114802428095, Accuracy = 0.7484662576687117 Iteration 1200: Cost = 0.3825210045073452, Accuracy = 0.7914110429447853 Iteration 1300: Cost = 0.37937159597852754, Accuracy = 0.803680981595092 Iteration 1400: Cost = 0.3764264835577567, Accuracy = 0.803680981595092 Iteration 1500: Cost = 0.37341353349753437, Accuracy = 0.803680981595092 Iteration 1600: Cost = 0.3704330887924824, Accuracy = 0.8098159509202454 Iteration 1700: Cost = 0.3677665429681632, Accuracy = 0.8098159509202454 Iteration 1800: Cost = 0.3653634929369406, Accuracy = 0.8159509202453987 Iteration 1900: Cost = 0.36310828688489394, Accuracy = 0.803680981595092 Iteration 2000: Cost = 0.3609504438310516, Accuracy = 0.8159509202453987 Iteration 2100: Cost = 0.35886339217069807, Accuracy = 0.8466257668711656 Iteration 2200: Cost = 0.3566944718648629, Accuracy = 0.8588957055214724 Iteration 2300: Cost = 0.35434982822269445, Accuracy = 0.8650306748466258 Iteration 2400: Cost = 0.35192154096340367, Accuracy = 0.8773006134969326 Iteration 2500: Cost = 0.34951439928775097, Accuracy = 0.8834355828220859 Iteration 2600: Cost = 0.3470638446792961, Accuracy = 0.8834355828220859 Iteration 2700: Cost = 0.3440257861485014, Accuracy = 0.8834355828220859 Iteration 2800: Cost = 0.3404546571268586, Accuracy = 0.8895705521472392 Iteration 2900: Cost = 0.3363334046862561, Accuracy = 0.8895705521472392 Iteration 3000: Cost = 0.3317444189334096, Accuracy = 0.8895705521472392 Iteration 3100: Cost = 0.32646060277262845, Accuracy = 0.8957055214723927 Iteration 3200: Cost = 0.32077768163859566, Accuracy = 0.901840490797546 Iteration 3300: Cost = 0.31478412904161457, Accuracy = 0.901840490797546 Iteration 3400: Cost = 0.3078686049768993, Accuracy = 0.901840490797546 Iteration 3500: Cost = 0.3006401546086458, Accuracy = 0.901840490797546 Iteration 3600: Cost = 0.2932899519596623, Accuracy = 0.9079754601226994 Iteration 3700: Cost = 0.28584434868765835, Accuracy = 0.9079754601226994 Iteration 3800: Cost = 0.2782177401479206, Accuracy = 0.9079754601226994 Iteration 3900: Cost = 0.2698838742701279, Accuracy = 0.9141104294478528 Iteration 4000: Cost = 0.2611581439010262, Accuracy = 0.9141104294478528 Iteration 4100: Cost = 0.25289715446609773, Accuracy = 0.9141104294478528 Iteration 4200: Cost = 0.24518855563495806, Accuracy = 0.9079754601226994 Iteration 4300: Cost = 0.2370974098251177, Accuracy = 0.9079754601226994 Iteration 4400: Cost = 0.22830112023860194, Accuracy = 0.9079754601226994 Iteration 4500: Cost = 0.21929767663337, Accuracy = 0.9079754601226994 Iteration 4600: Cost = 0.21094110059481677, Accuracy = 0.9141104294478528 Iteration 4700: Cost = 0.20290463857310742, Accuracy = 0.9202453987730062 Iteration 4800: Cost = 0.19480834249568046, Accuracy = 0.9263803680981595 Iteration 4900: Cost = 0.18713222331393783, Accuracy = 0.9386503067484663 Iteration 5000: Cost = 0.1799557750100305, Accuracy = 0.9447852760736196
##################################
# Plotting cost and accuracy profiles
##################################
plt.figure(figsize=(15, 4.75))
plt.subplot(1, 2, 1)
plt.plot(range(iterations), costs)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.title('L1 Regularization: Cost Function by Iteration')
plt.subplot(1, 2, 2)
plt.plot(range(iterations), accuracies)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Accuracy')
plt.title('L1 Regularization: Classification by Iteration')
plt.show()
##################################
# Plotting model weight profiles
##################################
num_layers = len(hidden_sizes) + 1
plt.figure(figsize=(15, 10))
for i in range(1, num_layers + 1):
plt.subplot(2, num_layers // 2, i)
plt.plot(range(iterations), [np.max(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Maximum Weight")
plt.plot(range(iterations), [np.mean(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Mean Weight")
plt.plot(range(iterations), [np.min(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Minimum Weight")
plt.ylim([-1,5])
plt.legend(loc="upper right")
plt.xlabel('Iterations')
plt.ylabel('Absolute Weight')
plt.title(f'L1 Regularization: Layer {i} Weights by Iteration')
plt.show()
##################################
# Gathering the final accuracy, cost
# and mean layer weight values for
# L1 Regularization
##################################
L1R_metrics = pd.DataFrame(["ACCURACY","LOSS","LAYER 1 MEAN WEIGHT","LAYER 2 MEAN WEIGHT","LAYER 3 MEAN WEIGHT","LAYER 4 MEAN WEIGHT"])
L1R_values = pd.DataFrame([accuracies[-1],
costs[-1],
[np.mean(np.abs(weights)) for weights in weight_history['W1']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W2']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W3']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W4']][-1]])
L1R_method = pd.DataFrame(["L1 Regularization"]*6)
L1R_summary = pd.concat([L1R_metrics,
L1R_values,
L1R_method], axis=1)
L1R_summary.columns = ['Metric', 'Value', 'Method']
L1R_summary.reset_index(inplace=True, drop=True)
display(L1R_summary)
Metric | Value | Method | |
---|---|---|---|
0 | ACCURACY | 0.944785 | L1 Regularization |
1 | LOSS | 0.179956 | L1 Regularization |
2 | LAYER 1 MEAN WEIGHT | 0.493354 | L1 Regularization |
3 | LAYER 2 MEAN WEIGHT | 0.413750 | L1 Regularization |
4 | LAYER 3 MEAN WEIGHT | 0.390737 | L1 Regularization |
5 | LAYER 4 MEAN WEIGHT | 0.715698 | L1 Regularization |
1.6.4 L2 Regularization ¶
Backpropagation and Weight Update, in the context of an artificial neural network, involve the process of iteratively adjusting the weights of the connections between neurons in the network to minimize the difference between the predicted and the actual target responses. Input data is fed into the neural network, and it propagates through the network layer by layer, starting from the input layer, through hidden layers, and ending at the output layer. At each neuron, the weighted sum of inputs is calculated, followed by the application of an activation function to produce the neuron's output. Once the forward pass is complete, the network's output is compared to the actual target output. The difference between the predicted output and the actual output is quantified using a loss function, which measures the discrepancy between the predicted and actual values. Common loss functions for classification tasks include cross-entropy loss. During the backward pass, the error is propagated backward through the network to compute the gradients of the loss function with respect to each weight in the network. This is achieved using the chain rule of calculus, which allows the error to be decomposed and distributed backward through the network. The gradients quantify how much a change in each weight would affect the overall error of the network. Once the gradients are computed, the weights are updated in the opposite direction of the gradient to minimize the error. This update is typically performed using an optimization algorithm such as gradient descent, which adjusts the weights in proportion to their gradients and a learning rate hyperparameter. The learning rate determines the size of the step taken in the direction opposite to the gradient. These steps are repeated for multiple iterations (epochs) over the training data. As the training progresses, the weights are adjusted iteratively to minimize the error, leading to a neural network model that accurately classifies input data.
Regularization Algorithms, in the context of neural network classification, are techniques used to prevent overfitting and improve the generalization performance of the model by imposing constraints on its parameters during training. These constraints are typically applied to the weights of the neural network and are aimed at reducing model complexity, controlling the magnitude of the weights, and promoting simpler and more generalizable solutions. Regularization approaches work by adding penalty terms to the loss function during training. These penalty terms penalize large weights or complex models, encouraging the optimization process to prioritize simpler solutions that generalize well to unseen data. By doing so, regularization helps prevent the neural network from fitting noise or irrelevant patterns present in the training data and encourages it to learn more robust and meaningful representations.
L2 Regularization typically adds a penalty term to the loss function proportional to the square of the weights. It discourages large weights and pushes them towards smaller values. The process provides stable solutions as L2 regularization leads to a convex optimization problem, ensuring a unique and stable solution. Additionally, the method has a smoothing effect by encourages small weights, which can prevent overfitting and lead to smoother decision boundaries. L2 regularization however does not perform feature selection by not forcing any weights to become exactly zero, so it may not eliminate irrelevant features. As a method, it also may not effectively handle highly correlated features well since L2 regularization treats all features equally. In the context of neural network classification, an alternate formulation involves implementing L2 regularization where the raw values of the weights are directly penalized without squaring them. This method provides a more balanced regularization effect across different weight magnitudes. Additionally, avoiding the squaring operation helps mitigate numerical instability issues particular for neural network model structures (such as exploding gradients), thereby improving the overall robustness of the training process.
- Neural network learning with L2 regularization was implemented with parameter settings described as follows:
- Learning Rate = 0.01
- Iteration = 5000
- Lambda Penalty = 0.01
- The mean absolute weights learned at each layer showed a decreasing pattern with lower values after completing the iteration.
- The final cost estimate determined as 0.17509 at the 5000th epoch was not optimally low as compared to those obtained from other regularization methods.
- Applying parameter updates with L2 regularization, the neural network model performance is estimated as follows:
- Accuracy = 94.47852
- The estimated classification accuracy was not optimal as compared to those obtained with other regularization methods.
##################################
# Updating model parameters
# with L2 regularization
##################################
def update_parameters_l2(parameters, gradients, learning_rate, lambd):
for i in range(1, len(parameters) // 2 + 1):
parameters[f'W{i}'] -= learning_rate * (gradients[f'dW{i}'] + lambd * parameters[f'W{i}'])
parameters[f'b{i}'] -= learning_rate * gradients[f'db{i}']
return parameters
##################################
# Implementing neural network model training
# using L2 regularization
##################################
##################################
# Initializing training parameters
##################################
np.random.seed(88888)
parameters = initialize_parameters(input_size, hidden_sizes, output_size)
##################################
# Initializing regularization parameters
##################################
lambd = 0.01
##################################
# Creating lists to store cost and accuracy for plotting
##################################
costs = []
accuracies = []
##################################
# Creating lists to store weights for plotting
##################################
weight_history = {f'W{i}': [] for i in range(1, len(hidden_sizes) + 2)}
##################################
# Training a neural network model
# using L2 regularization
##################################
for i in range(iterations):
# Implementing forward propagation
cache = forward_propagation(matrix_x_values, parameters)
Y_hat = cache[f'A{len(parameters) // 2}']
# Computing cost and accuracy
cost = compute_cost(y_values, Y_hat)
accuracy = np.mean(np.argmax(y_values, axis=1) == np.argmax(Y_hat, axis=1))
# Implementing backward propagation
gradients = backward_propagation(matrix_x_values, y_values, parameters, cache)
# Updating model parameter values
parameters = update_parameters_l2(parameters, gradients, learning_rate, lambd)
# Recording model weight values
for j in range(1, len(hidden_sizes) + 2):
weight_history[f'W{j}'].append(parameters[f'W{j}'].copy())
# Recording cost and accuracy values
costs.append(cost)
accuracies.append(accuracy)
# Printing cost and accuracy every 100 iterations
if i % 100 == 0:
print(f"Iteration {i}: Cost = {cost}, Accuracy = {accuracy}")
Iteration 0: Cost = 0.6655730513459841, Accuracy = 0.7484662576687117 Iteration 100: Cost = 0.4442996438506513, Accuracy = 0.7484662576687117 Iteration 200: Cost = 0.4304587698949185, Accuracy = 0.7484662576687117 Iteration 300: Cost = 0.42162536321474514, Accuracy = 0.7484662576687117 Iteration 400: Cost = 0.4142955681666065, Accuracy = 0.7484662576687117 Iteration 500: Cost = 0.4078085101343822, Accuracy = 0.7484662576687117 Iteration 600: Cost = 0.4019708537703823, Accuracy = 0.7484662576687117 Iteration 700: Cost = 0.39684543068242, Accuracy = 0.7484662576687117 Iteration 800: Cost = 0.3920371113336695, Accuracy = 0.7484662576687117 Iteration 900: Cost = 0.38778015559099654, Accuracy = 0.7484662576687117 Iteration 1000: Cost = 0.38395598780420337, Accuracy = 0.7484662576687117 Iteration 1100: Cost = 0.38044959930593164, Accuracy = 0.7975460122699386 Iteration 1200: Cost = 0.3771724995725463, Accuracy = 0.7914110429447853 Iteration 1300: Cost = 0.3740787887008591, Accuracy = 0.7852760736196319 Iteration 1400: Cost = 0.37115549826650257, Accuracy = 0.7975460122699386 Iteration 1500: Cost = 0.36834368323684114, Accuracy = 0.7791411042944786 Iteration 1600: Cost = 0.36550336866647776, Accuracy = 0.7791411042944786 Iteration 1700: Cost = 0.3627518930505024, Accuracy = 0.7852760736196319 Iteration 1800: Cost = 0.3597398271534722, Accuracy = 0.8098159509202454 Iteration 1900: Cost = 0.35660119548076413, Accuracy = 0.8404907975460123 Iteration 2000: Cost = 0.3528872093091873, Accuracy = 0.852760736196319 Iteration 2100: Cost = 0.3484851329147474, Accuracy = 0.8711656441717791 Iteration 2200: Cost = 0.3432958873638266, Accuracy = 0.8711656441717791 Iteration 2300: Cost = 0.3376032114261907, Accuracy = 0.8711656441717791 Iteration 2400: Cost = 0.3318094930879634, Accuracy = 0.8834355828220859 Iteration 2500: Cost = 0.32616023844845315, Accuracy = 0.8834355828220859 Iteration 2600: Cost = 0.32040146774770567, Accuracy = 0.8834355828220859 Iteration 2700: Cost = 0.3144087314521224, Accuracy = 0.8895705521472392 Iteration 2800: Cost = 0.3082058862774129, Accuracy = 0.8895705521472392 Iteration 2900: Cost = 0.30159169415707976, Accuracy = 0.8895705521472392 Iteration 3000: Cost = 0.294460050444439, Accuracy = 0.901840490797546 Iteration 3100: Cost = 0.287565445986065, Accuracy = 0.901840490797546 Iteration 3200: Cost = 0.2807765509799802, Accuracy = 0.901840490797546 Iteration 3300: Cost = 0.27309660354153664, Accuracy = 0.901840490797546 Iteration 3400: Cost = 0.2645481088076783, Accuracy = 0.9079754601226994 Iteration 3500: Cost = 0.25538936882638313, Accuracy = 0.9141104294478528 Iteration 3600: Cost = 0.2470696001583417, Accuracy = 0.9141104294478528 Iteration 3700: Cost = 0.2394613948970441, Accuracy = 0.9079754601226994 Iteration 3800: Cost = 0.23268259764738236, Accuracy = 0.9079754601226994 Iteration 3900: Cost = 0.2267594663589448, Accuracy = 0.9079754601226994 Iteration 4000: Cost = 0.2216092951999511, Accuracy = 0.9141104294478528 Iteration 4100: Cost = 0.2167888897515206, Accuracy = 0.9141104294478528 Iteration 4200: Cost = 0.212228088956155, Accuracy = 0.9141104294478528 Iteration 4300: Cost = 0.2079227901275921, Accuracy = 0.9141104294478528 Iteration 4400: Cost = 0.2039310844851094, Accuracy = 0.9202453987730062 Iteration 4500: Cost = 0.20016016283324173, Accuracy = 0.9263803680981595 Iteration 4600: Cost = 0.19424766862658757, Accuracy = 0.9202453987730062 Iteration 4700: Cost = 0.18832681261487702, Accuracy = 0.9325153374233128 Iteration 4800: Cost = 0.18382694548194442, Accuracy = 0.9325153374233128 Iteration 4900: Cost = 0.1790869056141248, Accuracy = 0.9447852760736196 Iteration 5000: Cost = 0.1750977650395162, Accuracy = 0.9447852760736196
##################################
# Plotting cost and accuracy profiles
##################################
plt.figure(figsize=(15, 4.75))
plt.subplot(1, 2, 1)
plt.plot(range(iterations), costs)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.title('L2 Regularization: Cost Function by Iteration')
plt.subplot(1, 2, 2)
plt.plot(range(iterations), accuracies)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Accuracy')
plt.title('L2 Regularization: Classification by Iteration')
plt.show()
##################################
# Plotting model weight profiles
##################################
num_layers = len(hidden_sizes) + 1
plt.figure(figsize=(15, 10))
for i in range(1, num_layers + 1):
plt.subplot(2, num_layers // 2, i)
plt.plot(range(iterations), [np.max(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Maximum Weight")
plt.plot(range(iterations), [np.mean(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Mean Weight")
plt.plot(range(iterations), [np.min(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Minimum Weight")
plt.ylim([-1,5])
plt.legend(loc="upper right")
plt.xlabel('Iterations')
plt.ylabel('Absolute Weight')
plt.title(f'L2 Regularization: Layer {i} Weights by Iteration')
plt.show()
##################################
# Gathering the final accuracy, cost
# and mean layer weight values for
# L2 Regularization
##################################
L2R_metrics = pd.DataFrame(["ACCURACY","LOSS","LAYER 1 MEAN WEIGHT","LAYER 2 MEAN WEIGHT","LAYER 3 MEAN WEIGHT","LAYER 4 MEAN WEIGHT"])
L2R_values = pd.DataFrame([accuracies[-1],
costs[-1],
[np.mean(np.abs(weights)) for weights in weight_history['W1']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W2']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W3']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W4']][-1]])
L2R_method = pd.DataFrame(["L2 Regularization"]*6)
L2R_summary = pd.concat([L2R_metrics,
L2R_values,
L2R_method], axis=1)
L2R_summary.columns = ['Metric', 'Value', 'Method']
L2R_summary.reset_index(inplace=True, drop=True)
display(L2R_summary)
1.6.5 ElasticNet Regularization ¶
Backpropagation and Weight Update, in the context of an artificial neural network, involve the process of iteratively adjusting the weights of the connections between neurons in the network to minimize the difference between the predicted and the actual target responses. Input data is fed into the neural network, and it propagates through the network layer by layer, starting from the input layer, through hidden layers, and ending at the output layer. At each neuron, the weighted sum of inputs is calculated, followed by the application of an activation function to produce the neuron's output. Once the forward pass is complete, the network's output is compared to the actual target output. The difference between the predicted output and the actual output is quantified using a loss function, which measures the discrepancy between the predicted and actual values. Common loss functions for classification tasks include cross-entropy loss. During the backward pass, the error is propagated backward through the network to compute the gradients of the loss function with respect to each weight in the network. This is achieved using the chain rule of calculus, which allows the error to be decomposed and distributed backward through the network. The gradients quantify how much a change in each weight would affect the overall error of the network. Once the gradients are computed, the weights are updated in the opposite direction of the gradient to minimize the error. This update is typically performed using an optimization algorithm such as gradient descent, which adjusts the weights in proportion to their gradients and a learning rate hyperparameter. The learning rate determines the size of the step taken in the direction opposite to the gradient. These steps are repeated for multiple iterations (epochs) over the training data. As the training progresses, the weights are adjusted iteratively to minimize the error, leading to a neural network model that accurately classifies input data.
Regularization Algorithms, in the context of neural network classification, are techniques used to prevent overfitting and improve the generalization performance of the model by imposing constraints on its parameters during training. These constraints are typically applied to the weights of the neural network and are aimed at reducing model complexity, controlling the magnitude of the weights, and promoting simpler and more generalizable solutions. Regularization approaches work by adding penalty terms to the loss function during training. These penalty terms penalize large weights or complex models, encouraging the optimization process to prioritize simpler solutions that generalize well to unseen data. By doing so, regularization helps prevent the neural network from fitting noise or irrelevant patterns present in the training data and encourages it to learn more robust and meaningful representations.
ElasticNet Regularization combines L1 and L2 regularization by adding both penalty terms to the loss function. It addresses the limitations of L1 and L2 regularization by providing a compromise between feature selection and weight shrinkage. ElasticNet regularization combines the advantages of both L1 and L2 methods by providing a more flexible regularization approach. It can handle highly correlated features better than L1 regularization alone. Some disadvantages include the presence of more hyperparameters (ElasticNet regularization introduces an additional hyperparameter to control the balance between L1 and L2 penalties, which needs to be tuned) and computational complexity (training with ElasticNet regularization can be computationally more expensive compared to L1 or L2 regularization alone).
- Neural network learning with ElasticNet regularization was implemented with parameter settings described as follows:
- Learning Rate = 0.01
- Iteration = 5000
- Lambda Penalty = 0.01
- The mean absolute weights learned at each layer showed a decreasing pattern with lower values after completing the iteration.
- The final cost estimate determined as 0.10962 at the 5000th epoch was the optimal value determined among all regularization methods.
- Applying parameter updates with ElasticNet regularization, the neural network model performance is estimated as follows:
- Accuracy = 96.93251
- The estimated classification accuracy was the most optimal among all regularization methods.
##################################
# Updating model parameters
# with ElasticNet regularization
##################################
def update_parameters_elastic(parameters, gradients, learning_rate, lambd):
for i in range(1, len(parameters) // 2 + 1):
parameters[f'W{i}'] -= learning_rate * (gradients[f'dW{i}'] + lambd * parameters[f'W{i}'] + lambd * np.sign(parameters[f'W{i}']))
parameters[f'b{i}'] -= learning_rate * gradients[f'db{i}']
return parameters
##################################
# Implementing neural network model training
# with ElasticNet regularization
##################################
##################################
# Initializing training parameters
##################################
np.random.seed(88888)
parameters = initialize_parameters(input_size, hidden_sizes, output_size)
##################################
# Initializing regularization parameters
##################################
lambd = 0.01
##################################
# Creating lists to store cost and accuracy for plotting
##################################
costs = []
accuracies = []
##################################
# Creating lists to store weights for plotting
##################################
weight_history = {f'W{i}': [] for i in range(1, len(hidden_sizes) + 2)}
##################################
# Training a neural network model
# using ElasticNet regularization
##################################
for i in range(iterations):
# Implementing forward propagation
cache = forward_propagation(matrix_x_values, parameters)
Y_hat = cache[f'A{len(parameters) // 2}']
# Computing cost and accuracy
cost = compute_cost(y_values, Y_hat)
accuracy = np.mean(np.argmax(y_values, axis=1) == np.argmax(Y_hat, axis=1))
# Implementing backward propagation
gradients = backward_propagation(matrix_x_values, y_values, parameters, cache)
# Updating model parameter values
parameters = update_parameters_elastic(parameters, gradients, learning_rate, lambd)
# Recording model weight values
for j in range(1, len(hidden_sizes) + 2):
weight_history[f'W{j}'].append(parameters[f'W{j}'].copy())
# Recording cost and accuracy values
costs.append(cost)
accuracies.append(accuracy)
# Printing cost and accuracy every 100 iterations
if i % 100 == 0:
print(f"Iteration {i}: Cost = {cost}, Accuracy = {accuracy}")
##################################
# Plotting cost and accuracy profiles
##################################
plt.figure(figsize=(15, 4.75))
plt.subplot(1, 2, 1)
plt.plot(range(iterations), costs)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Cost')
plt.title('ElasticNet Regularization: Cost Function by Iteration')
plt.subplot(1, 2, 2)
plt.plot(range(iterations), accuracies)
plt.ylim([0,1])
plt.xlabel('Iterations')
plt.ylabel('Accuracy')
plt.title('ElasticNet Regularization: Classification by Iteration')
plt.show()
##################################
# Plotting model weight profiles
##################################
num_layers = len(hidden_sizes) + 1
plt.figure(figsize=(15, 10))
for i in range(1, num_layers + 1):
plt.subplot(2, num_layers // 2, i)
plt.plot(range(iterations), [np.max(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Maximum Weight")
plt.plot(range(iterations), [np.mean(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Mean Weight")
plt.plot(range(iterations), [np.min(np.abs(weights)) for weights in weight_history[f'W{i}']], label="Minimum Weight")
plt.ylim([-1,5])
plt.legend(loc="upper right")
plt.xlabel('Iterations')
plt.ylabel('Absolute Weight')
plt.title(f'ElasticNet Regularization: Layer {i} Weights by Iteration')
plt.show()
##################################
# Gathering the final accuracy, cost
# and mean layer weight values for
# ElasticNet Regularization
##################################
ENR_metrics = pd.DataFrame(["ACCURACY","LOSS","LAYER 1 MEAN WEIGHT","LAYER 2 MEAN WEIGHT","LAYER 3 MEAN WEIGHT","LAYER 4 MEAN WEIGHT"])
ENR_values = pd.DataFrame([accuracies[-1],
costs[-1],
[np.mean(np.abs(weights)) for weights in weight_history['W1']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W2']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W3']][-1],
[np.mean(np.abs(weights)) for weights in weight_history['W4']][-1]])
ENR_method = pd.DataFrame(["ElasticNet Regularization"]*6)
ENR_summary = pd.concat([ENR_metrics,
ENR_values,
ENR_method], axis=1)
ENR_summary.columns = ['Metric', 'Value', 'Method']
ENR_summary.reset_index(inplace=True, drop=True)
display(ENR_summary)
1.7. Consolidated Findings ¶
- Neural network models which applied regularization generally learned lower weight values as compared to the reference model with no regularization. The magnitude of weights arranged from lowest to highest is given below:
- ElasticNet Regularization = Combined L1 and L2 Penalization using Alternate Formulation
- L1 Regularization = Alternate Formulation by Penalizing Signed Weights
- L2 Regularization = Alternate Formulation by Penalizing Raw Weights
- Incidentally, neural network models which applied regularization demonstrated higher classification accuracy values than the reference model with no regularization. This might be counterintuitive considering that penalized models are expected to address overfitting and generalize better. However, since the models were not evaluated on an independent set, these findings may be inconclusive.
- The choice of Regularization Algorithms for penalizing the weights of a binary classification model using a neural network depends on various factors, including the characteristics of the dataset, the model architecture, and the specific goals of the task.
- L1 Regularization encourages sparsity in the weight matrix, resulting in many weights being driven to zero. This can be beneficial when there are a large number of features, and it's desirable to identify and prioritize the most relevant ones for the classification task.
- L2 Regularization is effective in preventing the weights from growing too large, which helps prevent overfitting and improves generalization performance. It is particularly useful when dealing with deep neural networks or models with a large number of parameters, where large weights can lead to overfitting.
- ElasticNet Regularization combines the benefits of both L1 and L2 regularization by simultaneously promoting sparsity and controlling weight magnitudes. It is particularly useful when dealing with datasets where a large number of features are present, and it's essential to perform feature selection while also controlling model complexity.
##################################
# Consolidating all the
# model performance metrics
##################################
model_performance_comparison = pd.concat([NR_summary,
L1R_summary,
L2R_summary,
ENR_summary],
ignore_index=True)
print('Neural Network Model Comparison: ')
display(model_performance_comparison)
##################################
# Consolidating the values for the
# accuracy metrics
# for all models
##################################
model_performance_comparison_accuracy = model_performance_comparison[model_performance_comparison['Metric']=='ACCURACY']
model_performance_comparison_accuracy.reset_index(inplace=True, drop=True)
model_performance_comparison_accuracy
##################################
# Plotting the values for the
# accuracy metrics
# for all models
##################################
fig, ax = plt.subplots(figsize=(7, 7))
accuracy_hbar = ax.barh(model_performance_comparison_accuracy['Method'], model_performance_comparison_accuracy['Value'])
ax.set_xlabel("Accuracy")
ax.set_ylabel("Neural Network Classification Models")
ax.bar_label(accuracy_hbar, fmt='%.5f', padding=-50, color='white', fontweight='bold')
ax.set_xlim(0,1)
plt.show()
##################################
# Consolidating the values for the
# logarithmic loss error metrics
# for all models
##################################
model_performance_comparison_loss = model_performance_comparison[model_performance_comparison['Metric']=='LOSS']
model_performance_comparison_loss.reset_index(inplace=True, drop=True)
model_performance_comparison_loss
##################################
# Plotting the values for the
# loss error
# for all models
##################################
fig, ax = plt.subplots(figsize=(7, 7))
loss_hbar = ax.barh(model_performance_comparison_loss['Method'], model_performance_comparison_loss['Value'])
ax.set_xlabel("Loss Error")
ax.set_ylabel("Neural Network Classification Models")
ax.bar_label(loss_hbar, fmt='%.5f', padding=-50, color='white', fontweight='bold')
ax.set_xlim(0,0.25)
plt.show()
##################################
# Consolidating the mean weights
# for all models
##################################
weight_labels = ['LAYER 1 MEAN WEIGHT','LAYER 2 MEAN WEIGHT','LAYER 3 MEAN WEIGHT','LAYER 4 MEAN WEIGHT']
NR_weights = model_performance_comparison[((model_performance_comparison['Metric'] == 'LAYER 1 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 2 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 3 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 4 MEAN WEIGHT')) &
(model_performance_comparison['Method']=='No Regularization')]['Value'].values
L1R_weights = model_performance_comparison[((model_performance_comparison['Metric'] == 'LAYER 1 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 2 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 3 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 4 MEAN WEIGHT')) &
(model_performance_comparison['Method']=='L1 Regularization')]['Value'].values
L2R_weights = model_performance_comparison[((model_performance_comparison['Metric'] == 'LAYER 1 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 2 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 3 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 4 MEAN WEIGHT')) &
(model_performance_comparison['Method']=='L2 Regularization')]['Value'].values
ENR_weights = model_performance_comparison[((model_performance_comparison['Metric'] == 'LAYER 1 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 2 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 3 MEAN WEIGHT') |
(model_performance_comparison['Metric'] == 'LAYER 4 MEAN WEIGHT')) &
(model_performance_comparison['Method']=='ElasticNet Regularization')]['Value'].values
##################################
# Plotting the values for the
# mean weights
# for all models
##################################
NN_layer_mean_weight_plot = pd.DataFrame({'No Regularization': list(NR_weights),
'L1 Regularization': list(L1R_weights),
'L2 Regularization': list(L2R_weights),
'ElasticNet Regularization': list(ENR_weights)},
index=['LAYER 1 MEAN WEIGHT','LAYER 2 MEAN WEIGHT','LAYER 3 MEAN WEIGHT','LAYER 4 MEAN WEIGHT'])
NN_layer_mean_weight_plot
##################################
# Plotting all the mean weights
# for all models
##################################
NN_layer_mean_weight_plot = NN_layer_mean_weight_plot.plot.barh(figsize=(10, 6), width=0.90)
NN_layer_mean_weight_plot.set_xlim(0.00,1.25)
NN_layer_mean_weight_plot.set_title("Model Comparison by Neural Network Layer Mean Weights")
NN_layer_mean_weight_plot.set_xlabel("Absolute Weight")
NN_layer_mean_weight_plot.set_ylabel("Regularization Conditions")
NN_layer_mean_weight_plot.grid(False)
NN_layer_mean_weight_plot.legend(loc='center left', bbox_to_anchor=(1.0, 0.5))
for container in NN_layer_mean_weight_plot.containers:
NN_layer_mean_weight_plot.bar_label(container, fmt='%.5f', padding=-50, color='white', fontweight='bold')
2. Summary ¶
3. References ¶
- [Book] Deep Learning: A Visual Approach by Andrew Glassner
- [Book] Deep Learning with Python by François Chollet
- [Book] The Elements of Statistical Learning by Trevor Hastie, Robert Tibshirani and Jerome Friedman
- [Book] Data Preparation for Machine Learning: Data Cleaning, Feature Selection, and Data Transforms in Python by Jason Brownlee
- [Book] Feature Engineering and Selection: A Practical Approach for Predictive Models by Max Kuhn and Kjell Johnson
- [Book] Feature Engineering for Machine Learning by Alice Zheng and Amanda Casari
- [Book] Applied Predictive Modeling by Max Kuhn and Kjell Johnson
- [Book] Data Mining: Practical Machine Learning Tools and Techniques by Ian Witten, Eibe Frank, Mark Hall and Christopher Pal
- [Book] Data Cleaning by Ihab Ilyas and Xu Chu
- [Book] Data Wrangling with Python by Jacqueline Kazil and Katharine Jarmul
- [Book] Regression Modeling Strategies by Frank Harrell
- [Python Library API] NumPy by NumPy Team
- [Python Library API] pandas by Pandas Team
- [Python Library API] seaborn by Seaborn Team
- [Python Library API] matplotlib.pyplot by MatPlotLib Team
- [Python Library API] itertools by Python Team
- [Python Library API] operator by Python Team
- [Python Library API] sklearn.experimental by Scikit-Learn Team
- [Python Library API] sklearn.impute by Scikit-Learn Team
- [Python Library API] sklearn.linear_model by Scikit-Learn Team
- [Python Library API] sklearn.preprocessing by Scikit-Learn Team
- [Python Library API] scipy by SciPy Team
- [Article] Step-by-Step Exploratory Data Analysis (EDA) using Python%20with,distributions%20using%20Python%20programming%20language.) by Malamahadevan Mahadevan (Analytics Vidhya)
- [Article] Exploratory Data Analysis in Python — A Step-by-Step Process by Andrea D'Agostino (Towards Data Science)
- [Article] Exploratory Data Analysis with Python by Douglas Rocha (Medium)
- [Article] 4 Ways to Automate Exploratory Data Analysis (EDA) in Python by Abdishakur Hassan (BuiltIn)
- [Article] 10 Things To Do When Conducting Your Exploratory Data Analysis (EDA) by Alifia Harmadi (Medium)
- [Article] How to Handle Missing Data with Python by Jason Brownlee (Machine Learning Mastery)
- [Article] Statistical Imputation for Missing Values in Machine Learning by Jason Brownlee (Machine Learning Mastery)
- [Article] Imputing Missing Data with Simple and Advanced Techniques by Idil Ismiguzel (Towards Data Science)
- [Article] Missing Data Imputation Approaches | How to handle missing values in Python by Selva Prabhakaran (Machine Learning +)
- [Article] Master The Skills Of Missing Data Imputation Techniques In Python(2022) And Be Successful by Mrinal Walia (Analytics Vidhya)
- [Article] How to Preprocess Data in Python by Afroz Chakure (BuiltIn)
- [Article] Easy Guide To Data Preprocessing In Python by Ahmad Anis (KDNuggets)
- [Article] Data Preprocessing in Python by Tarun Gupta (Towards Data Science)
- [Article] Data Preprocessing using Python by Suneet Jain (Medium)
- [Article] Data Preprocessing in Python by Abonia Sojasingarayar (Medium)
- [Article] Data Preprocessing in Python by Afroz Chakure (Medium)
- [Article] Detecting and Treating Outliers | Treating the Odd One Out! by Harika Bonthu (Analytics Vidhya)
- [Article] Outlier Treatment with Python by Sangita Yemulwar (Analytics Vidhya)
- [Article] A Guide to Outlier Detection in Python by Sadrach Pierre (BuiltIn)
- [Article] How To Find Outliers in Data Using Python (and How To Handle Them) by Eric Kleppen (Career Foundry)
- [Article] Statistics in Python — Collinearity and Multicollinearity by Wei-Meng Lee (Towards Data Science)
- [Article] Understanding Multicollinearity and How to Detect it in Python by Terence Shin (Towards Data Science)
- [Article] A Python Library to Remove Collinearity by Gianluca Malato (Your Data Teacher)
- [Article] 8 Best Data Transformation in Pandas by Tirendaz AI (Medium)
- [Article] Data Transformation Techniques with Python: Elevate Your Data Game! by Siddharth Verma (Medium)
- [Article] Data Scaling with Python by Benjamin Obi Tayo (KDNuggets)
- [Article] How to Use StandardScaler and MinMaxScaler Transforms in Python by Jason Brownlee (Machine Learning Mastery)
- [Article] Feature Engineering: Scaling, Normalization, and Standardization by Aniruddha Bhandari (Analytics Vidhya)
- [Article] How to Normalize Data Using scikit-learn in Python by Jayant Verma (Digital Ocean)
- [Article] What are Categorical Data Encoding Methods | Binary Encoding by Shipra Saxena (Analytics Vidhya)
- [Article] Guide to Encoding Categorical Values in Python by Chris Moffitt (Practical Business Python)
- [Article] Categorical Data Encoding Techniques in Python: A Complete Guide by Soumen Atta (Medium)
- [Article] Categorical Feature Encoding Techniques by Tara Boyle (Medium)
- [Article] Ordinal and One-Hot Encodings for Categorical Data by Jason Brownlee (Machine Learning Mastery)
- [Article] Hypothesis Testing with Python: Step by Step Hands-On Tutorial with Practical Examples by Ece Işık Polat (Towards Data Science)
- [Article] 17 Statistical Hypothesis Tests in Python (Cheat Sheet) by Jason Brownlee (Machine Learning Mastery)
- [Article] A Step-by-Step Guide to Hypothesis Testing in Python using Scipy by Gabriel Rennó (Medium)
- [Article] How Does Backpropagation in a Neural Network Work? by Anas Al-Masri (Builtin)
- [Article] A Step by Step Backpropagation Example by Matt Mazur (MattMazur.Com)
- [Article] Understanding Backpropagation by Brent Scarff (Towards Data Science)
- [Article] Understanding Backpropagation Algorithm by Simeon Kostadinov (Towards Data Science)
- [Article] A Comprehensive Guide to the Backpropagation Algorithm in Neural Networks by Ahmed Gad (Neptune.AI)
- [Article] Backpropagation by John McGonagle, George Shaikouski and Christopher Williams (Brilliant)
- [Article] Backpropagation in Neural Networks by Inna Logunova (Serokell.IO)
- [Article] Backpropagation Concept Explained in 5 Levels of Difficulty by Devashish Sood (Medium)
- [Article] BackProp Explainer by Donny Bertucci (GitHub)
- [Article] Backpropagation Algorithm in Neural Network and Machine Learning by Intellipaat Team
- [Article] Understanding Backpropagation in Neural Networks by Tech-AI-Math Team
- [Article] Backpropagation Neural Network using Python by Avinash Navlani (Machine Learning Geek)
- [Article] Back Propagation in Neural Network: Machine Learning Algorithm by Daniel Johnson (Guru99)
- [Article] What is Backpropagation? by Thomas Wood (DeepAI.Org)
- [Article] Activation Functions in Neural Networks [12 Types & Use Cases] by Pragati Baheti (V7.Com)
- [Article] Activation Functions in Neural Networks by Sagar Sharma (Towards Data Science)
- [Article] A Practical Comparison of Activation Functions by Danny Denenberg (Medium)
- [Article] What is an Activation Function? A Complete Guide by Petru Potrimba (RoboFlow.Com)
- [Article] L1, L2 and Elastic Net Regularization in Neural Networks (A Deep Dive) by Francesco Franco (AI.Mind.SO)
- [Article] Regularization in Neural Networks by Bala Priya (PineCone.IO)
- [Article] Regularization in Deep Learning — L1, L2, and Dropout by Artem Oppermann (Towards Data Science)
- [Article] Regularization Techniques for Training Deep Neural Networks bySergios Karagiannakos (TheAISummer.Com)
- [Article] What is Regularization? by IBM Team
- [Article] Regularization — Understanding L1 and L2 regularization for Deep Learning by Ujwal Tewari (Medium)
- [Article] A Guide to Regularization in Python by Sadrach Pierre (BuiltIn)
- [Article] Regularization: Make your Machine Learning Algorithms Learn, not Memorize by Anand Borad (EInfoChips.Com)
- [Article] Regularization In Neural Networks by Egor Howell (Towards Data Science)
- [Article] Elastic Net Regression : The Best of L1 and L2 Norm Penalties by Aditya Kakde (Medium)
- [Article] L1 And L2 Regularization Explained, When To Use Them & Practical How To Examples by Neri Van Otten (SpotIntelligence.Com)
- [Article] Elastic Net Regression —Combined Features of L1 and L2 regularization by Abhishek Jain (Medium)
- [Article] The Choice of Regularization: Ridge, Lasso and Elastic Net Regression by Rukshan Pramoditha (Towards Data Science)
- [Article] Regularization Techniques in Keras Neural Networks by Okan Yenigün (AIMind.SO)
- [Article] Courage to learn ML: Demystifying L1 & L2 Regularization (Part 1) by Amy Ma (Towards Data Science)
- [Article] Courage to learn ML: Demystifying L1 & L2 Regularization (Part 2) by Amy Ma (Towards Data Science)
- [Article] Courage to learn ML: Demystifying L1 & L2 Regularization (Part 3) by Amy Ma (Towards Data Science)
- [Article] L1, L2 and Elastic Net Regularization in Neural Networks (A Deep Dive) by Ramsey Elbasheer
- [Article] Regularization for Neural Networks with Framingham Case Study by Rachel Draelos (GlassBoxMedicine.Com)
- [Article] Regularization in Machine Learning by Prashant Gupta (Towards Data Science)
- [Article] Regularization Techniques in Deep Learning: Ultimate Guidebook by Turing Team
- [Article] Regularization by ML-Cheatsheet Team
- [Article] Explaining L1 and L2 Regularization in Machine Learning by Fernando Jean Dijkinga (Medium)
- [Article] Deep Learning Best Practices: Regularization Techniques for Better Neural Network Performance by Niranjan Kumar (HeartBeat.Comet.ML)
- [Publication] Data Quality for Machine Learning Tasks by Nitin Gupta, Shashank Mujumdar, Hima Patel, Satoshi Masuda, Naveen Panwar, Sambaran Bandyopadhyay, Sameep Mehta, Shanmukha Guttula, Shazia Afzal, Ruhi Sharma Mittal and Vitobha Munigala (KDD ’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining)
- [Publication] Overview and Importance of Data Quality for Machine Learning Tasks by Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha Guttula, Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal and Vitobha Munigala (KDD ’20: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining)
- [Publication] Multiple Imputation of Discrete and Continuous Data by Fully Conditional Specification by Stef van Buuren (Statistical Methods in Medical Research)
- [Publication] Mathematical Contributions to the Theory of Evolution: Regression, Heredity and Panmixia by Karl Pearson (Royal Society)
- [Publication] A New Family of Power Transformations to Improve Normality or Symmetry by In-Kwon Yeo and Richard Johnson (Biometrika)
- [Course] IBM Data Analyst Professional Certificate by IBM Team (Coursera)
- [Course] IBM Data Science Professional Certificate by IBM Team (Coursera)
- [Course] IBM Machine Learning Professional Certificate by IBM Team (Coursera)
- [Course] Machine Learning Specialization Certificate by DeepLearning.AI Team (Coursera)
from IPython.display import display, HTML
display(HTML("<style>.rendered_html { font-size: 15px; font-family: 'Trebuchet MS'; }</style>"))